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—Would you tell me, please, which way I ought to go from here?—
asked Alice. —That depends a good deal on where you want to get
to.—said the Cheshire Cat. —I don’t much care where... —Then it
doesn’t much matter which way you go. —...so long as I get somewhere.
—Oh, you are sure to do that, only if you walk long enough.

— Lewis Carroll, Alice in Wonderland
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1Introduction

1.1 Background: the (re) emergence of
vector-borne diseases

Vectors are living agents capable of transmitting pathogens causing infec-
tious diseases to humans, animals, and plants (Last, 2001). Vector-borne
diseases (VBD) are a major threat compromising public health, food security,
and economic activities around the globe (WHO, 2014). The treatment of
a VBD has associated an economic burden for citizens and the subsequent
medical costs for public health systems (WHO, 2017). In addition, patients
suffering a VBD also might have a temporal or chronic level of disability,
which prevents them from working and supporting their households (WHO,
2014). For instance, an average episode of dengue requiring hospitalization
represents 15 – 19 lost days (WHO, 2009), whereas an episode of mild Lyme
borreliosis (LB) can take 5 weeks for a patient to recover (van den Wijngaard
et al., 2015).

Currently, the World Health Organization (WHO) has identified nine types
of vectors (i.e. mosquitoes, ticks, sandflies, triatomine bugs, black flies, tse-
tse flies, mites, snails, and lice) that can cause, at least, 16 major vector-borne
diseases in humans. Major tick-borne diseases comprise two bacterial infec-
tions (i.e. Lyme borreliosis, tick-borne encephalitis) and one viral infection
(i.e. Crimea-Congo haemorrhagic fever), although there are several minor
tick-borne diseases (e.g. rickettsial diseases, human babesiosis, relapsing
fever) with local importance (WHO, 2017). Livestock and crops are not free
of the risk of acquiring VBD: ticks can infect cattle with bovine babesiosis,
aphids transmit citrus tristeza virus to orange trees, whereas sap-feeding
insects infect with the xylella fastidiosa bacterium grapevines or olive trees.
Crops and cattle infected with VBDs might suffer damage or health condi-
tions that compromise annual productivity, with the consequential cost for
the agriculture and livestock sectors (NASEM, 2016).

Scientists and medical doctors started to discover the vector-borne transmis-
sion of pathogens after 1877, and by 1910, more than 10 VBD were already
identified (Gubler, 1998). After the end of World War II, governments and
public health organizations started massive programmes of vector eradic-
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1. Introduction

ation, especially focused on mosquito and lice abatement, by carrying out
campaigns of insecticide spraying that dramatically decreased the vector
populations —in spite of its toxicity to humans, wildlife and nature (Vos et al.,
2000; WHO, 2015)— and consequentially, the incidence of VBD plunged.
These programmes were a success from the point of view of disease control,
but after two decades of implementation they were abandoned, because
VBD were no longer a public health issue (Gubler, 1998).

The cease of the fumigation campaigns was not the only cause of the global
(re) emergence of VBD. Historically, most of VBD have been confined to dis-
tinct geographical areas, but the global changes human societies triggered,
also created opportunities for vectors and pathogens to geographically ex-
pand to new areas (WHO, 2014). Therefore, after the cease of these cam-
paigns, major global modifiers such as climate change, human develop-
ments and demography, socio-economic exchanges, and human outdoor
recreational activities, proved its relevant role at reintroducing vectors and
facilitating the transmission of VBD.

The onset of the 1970s started with the identification of carbon emissions
produced by a plethora of anthropogenic activities (e.g. burning fossil fuels,
increasing transportation intensity, deforestation), as a trigger leading to a
global increase of temperatures (Sawyer, 1972). Increasing temperatures ex-
acerbate the intensity and incidence of extreme weather events (e.g. drought,
flood, storms), and this in turn, might affect human health by causing an
excessive mortality during heat waves, increasing the risk of respiratory
disease due to pollution, or even shifting the geographic distribution of VBD
(Haines et al., 2006; Medlock et al., 2013). By the end of the decade, this hy-
pothesis was deemed as plausible by the World Meteorological Organization
(WMO), who warned about the vulnerability of citizens in front of global
warming (WMO, 1979).

The stage of human development of a society, is also a factor of resilience
(or vulnerability) when a global change occurs: developed societies with
well-consolidated health systems —and a low endemicity of VBD (WHO,
2016)— were able to better combat the upsurge of VBD from 1980s onwards,
whereas the health systems of developing societies were overwhelmed by
its resurgence (NASEM, 2016; WHO, 2017). Regarding demography, in the
last five decades there have been two major types of movements of people.
First, population growth, especially in developing societies, resulted in the
major settlement of people in urban areas, often by means of an unplanned
urbanization (Gubler, 1998). Second, in developed societies, a process of
counter-urbanization occurred, in which part of citizens abandoned crowded
urban centers to settle in peri-urban areas, thus bringing humans in closer
contact with nature (Zeman and Benes, 2014). Both situations, increased and
prompted suitable conditions for vectors to thrive, and for VBD to cause
outbreaks (Chakravarti and Kumaria, 2005; Okwa et al., 2009; Randolph
et al., 2008), which pose recurrent challenges to the health systems.
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1.2. Lyme borreliosis: a complex ecological problem

Global traffic and trade have substantially increased in the past 50 years:
passenger flights have consistently grow 9% annually since 1960s (Tatem
et al., 2006), and shipping traffic has experienced a fourfold increase since
1992 (Tournadre, 2014). Airplane traffic has facilitated the propagation of
pathogens by transporting aboard infected humans or vectors in their adult
stage, whereas vector eggs can be found in cargo shipping, which has helped
introducing VBD like malaria, dengue, or chikungunya in non-endemic
regions (Guzman et al., 2016; Tatem et al., 2012). In addition, the increasing
societal adoption of healthier lifestyles by dedicating leisure time to physical
or sportive activities outdoors, means that more humans are exposed to
tick-borne diseases, such as LB (Sandifer et al., 2015), in suburban forests
(Paul et al., 2016), urban parks (Hansford et al., 2017), and even private
gardens (Mulder et al., 2013).

Today’s globalized economy has accelerated the international flow of citizens,
commodities, and livestock, which has expanded the geographic range
of VBD and has allowed pathogens and vectors to colonize new regions
(Lemon, Stanley M. et al., 2008). Since the (re) emergence of VBD, West Nile
virus has been established in United States, chikungunya fever has resurged
in Asia and Africa, dengue has appeared in Europe, whereas Zika virus
has travelled all the way from Uganda to Brazil where it caused a major
outbreak (Bouzid et al., 2014; Gubler et al., 2017; Musso et al., 2015). This
globalized context poses new challenges to specialists and researchers to
effectively plan campaigns that reduce the effect of new outbreaks.

1.2 Lyme borreliosis: a complex ecological problem

Ticks are pervasive ectoparasites globally present (except in regions with
an extreme climatology) that are adapted to survive in a wide range of
environmental conditions (Cumming, 2002; Vesco et al., 2011). Ticks are
hematophagous arthropods, which means that they need to feed from hu-
man or animal hosts to complete their life cycle (i.e. egg, larvae, nymph,
adult) (Lindgren and Jaenson, 2006). There are multiple tick species, capable
of infecting with different pathogens humans, livestock, wildlife or pets
(Uspensky, 2017). Ticks of genus Ixodes (also known as ‘hard ticks’) are cap-
able of co-transmitting spirochetal and rickettsial bacteria, flaviviruses and
protozoan parasites that cause different diseases in humans (Diuk-Wasser
et al., 2016).

The relationship between a tick and LB was first reported in 1909. In that year,
a Swedish dermatologist described an expanding skin lesion in an elderly
patient, following a tick bite (Dammin, 1989). This skin lesion is known as
erythema migrans (EM), and is a common early-stage manifestation of LB
which can develop into severe forms of LB (e.g. neuroborreliosis, arthritis)
if left untreated (van den Wijngaard et al., 2017). However, LB is one of
the latest incorporations to the list of VBD, since the causative agent was
not investigated until 1975. That year, a cluster of children arthritis and
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carditis in the village of Lyme (Connecticut, USA) attracted the attention of
public health specialists. Scientists carried out a thorough investigation and
several years later, the agent causing Lyme disease was found (Burgdorfer
et al., 1982). The Borrelia burgdorferi complex is formed by different types of
spirochetal bacteria (e.g. B. burgdorferi, B. afzelii, B. garinii) that cause similar
symptoms of LB in humans (Diuk-Wasser et al., 2016).

Since the identification of the borrelia pathogens, scientists and clinicians
have reported that the incidence of LB has steadily increased in, at least,
nine European countries (Medlock et al., 2013), Canada (Ogden et al., 2014),
and the USA (Schwartz et al., 2017). However, in recent years, sub European
sentinel networks of general practitioners have identified the first signs of
stabilization (Altpeter et al., 2013; Bleyenheuft et al., 2015; Vandenesch et al.,
2014). In the Netherlands, tick bite consultations in general practitioners
(GP) tripled during the period 1994-2009, from 191 to 564 cases per 100,000
inhabitants, whereas the incidence of EM experienced a similar rise, growing
from 39 to 134 cases per 100,000 inhabitants (Hofhuis et al., 2015a). Similarly
to other European countries, LB incidence in the Netherlands is showing
the first signs of stabilization (Hofhuis et al., 2016). Yet, each year there are
roughly 25,000 Dutch citizens that are diagnosed with LB. Most of them
respond well to the antibiotic treatment, but there is a minority of patients
reporting persisting symptoms after treatment, that can lead to disabling
symptoms and increase the disease burden (van den Wijngaard et al., 2017).

LB infections are the realization of a complex ecological system involving the
interaction of several biotic (e.g. environment, wildlife) and abiotic factors
(e.g. weather, landscape) (Ostfeld, 2012). Ticks are the vehicle that pathogens
utilize to infect new organisms, hence, it is of utmost importance to monitor
tick dynamics to be able to identify hazardous locations for LB infection.
Nevertheless, ticks are not the only factor to consider at estimating the risk
of tick bites, since this calculation requires the inclusion of human exposure
metrics in a location. Because of the global changes mentioned in Section
1.1, there range of ticks and humans has expanded, subsequently increasing
the chances of a human-tick encounter while carrying out outdoor activities.

The geographical range of ticks has experienced an latitudinal and altitudinal
expansion in the last decades as reported by scientists in Norway (Jore
et al., 2011), Sweden (Jaenson et al., 2012) and Canad (Clow et al., 2017).
This is due to two sequential factors: increasing global temperatures have
turned unsuitable habitats for the tick life cycle into suitable regions, and
subsequently, different wildlife species (e.g. rodents, ungulates, birds) have
expanded their range, thus introducing ticks in new locations (Medlock et al.,
2013). In addition, ticks are particularly vulnerable to weather conditions,
since their high surface-to-volume ratio is prone to water losses through their
exoskeleton, conditions that make them to desiccate and die (Ostfeld, 2012).
Temperature determines the start of the questing season, or the survival
chances throughout the winter season (Ogden et al., 2006; Randolph et al.,
2008). Precipitation and atmospheric water levels (e.g. evapotranspiration,
saturation deficit) are important to keep optimal levels of humidity at the
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1.3. The role of citizen science at monitoring tick-borne diseases

ground level, which is crucial for the development of new tick populations
and determine tick activity (Berger et al., 2014a; Mather et al., 1996; Randolph
and Storey, 1999).

Similarly, the geographical range of humans has experienced an expansion.
Concretely in Europe, intense human activities have led to a massive modi-
fication of the landscape. As a result, the area of cities has expanded, due
to the development of low-density residential areas at the outskirts of cities
(EEA, 2006). Urban sprawl has a remarkable effect on the human population
distributions, since it brings urban settlers in closer contact with nature and
the countryside (EEA, 2011). As a response of the expanded human range,
several bird (e.g. thrushes) and mammal species (e.g. rodents, foxes, rac-
coons) have adapted their ethology to be able to live at the interface between
forests and urban regions (e.g. more food, less predators) (Uspensky, 2017),
but this also means that the pathogens that wildlife species carry are closer to
residential areas. In addition, the progressive adoption of healthier lifestyles
encourages citizens to spend more time outdoors carrying out leisure or
sportive activites, but this behaviour could also lead to a higher exposure to
tick-borne diseases (Mulder et al., 2013; Hall et al., 2017).

As seen, LB is an elusive public health threat due to the ubiquity of ticks
and humans, and the wide range of biotic and abiotic factors involved in
the ecologic system. In addition, traditional acquisition methods such as
satellites, simulation models, or sensor networks are not able to monitor
such fine-grained phenomena. In this context, citizen science initiatives
can engage the general public in a wide array of environmental and public
health monitoring activities. These activities result in very local observations
and enable taking the pulse of LB and other VBF at unprecedented spatio-
temporal scales.

1.3 The role of citizen science at monitoring
tick-borne diseases

Citizen science (CS) is the non-professional involvement of volunteers in the
scientific process, whether it is in the data collection phase or other phases
of research (Gold et al., 2018). CS can be applied to any field of expertise (e.g.
astronomy, ecology, meteorology, water and air quality), and some of these
projects have gathered enough compromise from citizens to last more than a
century. As an example, ornithologists in the USA and UK started organizing
yearly bird counts in 1900 and 1932 (Craglia and Shanley, 2015), respectively,
only surpassed in antiquity by the first meteorology cooperative programme,
initiated in USA in 1890 (Fiebrich, 2009). Thus, long before the term CS was
popularized, enthusiasts of science could see the potential of joining efforts
at monitoring diverse large-scale or fine-grained environmental phenomena.

The rise of Web 2.0 technologies (O’Reilly, 2007) applied to geography boos-
ted the number of applications that are based in citizen’s location. Global
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1. Introduction

society has witnessed the emergence of new technologies such as web map-
ping, location-based services, geotagging or geoblogging, and its widespread
use required the creation or the re-formulation of terms in order to refer
those developments properly (Elwood, 2008a,b). The continuous growth
and popularity of Web 2.0 technologies among citizens, naturally led to a
new way of digital collaboration between users and data acquisition based
in crowdsourcing for a specific purpose. Crowdsourcing is an activity where
the massive participation of citizens through communities of users is desired
in order to accomplish collectively something perceived as a greater good,
whose output might be exploited by other individuals, public or private
entities (Haklay, 2010).

Citizen’s participation is at the core of “Volunteered Geographic Information”
(VGI) (Goodchild, 2007a), a term that intends to approach the efforts made
by the crowd in location-based projects to the geospatial domain. The author
argues that humanity as a collective possesses a huge amount of knowledge
about the Earth surface and its properties (e.g. local toponyms, status of
cultural heritage, conditions or road pavement in a city), therefore, enabling
citizens with electronic devices to digitize this knowledge makes possible
the creation of a massive collection of raw data, that subsequently can be
introduced in scientific analysis, web services or geoprocesses (Goodchild,
2007b).

The idea of “humans-as-sensors” promoted by Goodchild, has been im-
plemented in a plethora of CS initiatives in the past decade, and across
multiple disciplines. Citizens reporting on fine-grained phenomena such
as the occurrence of pollinators (e.g. BeeSpotter), birds (e.g. eBird), or
wildlife in general (e.g. Waarneming, ‘observation’ in Dutch), contribute
monitoring the pulse of distributions of living organisms. Human-made
structures or toponyms around the globe have been thoroughly mapped (e.g.
OpenStreetMap) and identified (e.g. GeoNames) by volunteers, and it is
even possible for citizens to report the changes of agricultural land use and
urban dynamics (e.g. LandSense), or contribute monitoring the weather (e.g.
Weather Observations Website, WOW) using a personal automatic weather
station. The data provided by these platforms might contribute to a wide
range of applications, from monitoring the species migration or distributions
at the national or continental scale (La Sorte et al., 2017), to help studying
urban heat islands (Chapman et al., 2017), assessing the synchronicity of
phenological events (Mehdipoor et al., 2018b), or even assisting emergency
managers when natural disasters occur (Haworth, 2016).

CS can be used to advance scientific discovery and knowledge, build a sense
of community, inform policy and environmental management, or to edu-
cate and rise awareness among a target citizen group (Craglia and Shanley,
2015). These are desirable topics to comply with to advance towards a more
informed and participatory decision making process (Gold et al., 2018). CS
initiatives have gained a remarkable attention in the scientific scope, this is
why the number of publications using VGI has experienced a substantial
increase (Kullenberg and Kasperowski, 2016) in multiple fields of environ-
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mental sciences and Earth Observation (See et al., 2016a,b) since the early
2000s. This is in general a positive trend, since the inclusion of VGI sources
in scientific workflows can provide an unprecedented spatio-temporal resol-
ution at monitoring complex and elusive environmental phenomena. Nev-
ertheless, VGI is not exempt of several issues and challenges that require
attention.

Data quality control is a dicey challenge to work with when dealing with
VGI collections. By default, there are some general rules proposed by (Good-
child and Li, 2012) to increase the quality of VGI observations, in which it is
necessary to implement a validation workflow considering three dimensions:
crowdsourcing, social and geographical. The verification of these three di-
mensions implies that a new observation, if valid, should have been reported
by other users, approved by a group of trusted moderators, and consistent
with the surrounding observations. However, although this procedure is
reasonable, the complexity of the phenomena under study in CS projects
might require a more elaborated validation procedure. For an instance, in
(Zhao and Sui, 2017) the authors engineer a procedure to detect location
spoofing in Twitter data by using a time-aware Bayesian analysis, in (Me-
hdipoor et al., 2015) the authors develop a workflow to detect temporally
inconsistent volunteered observations, whereas the eBird project (Sullivan
et al., 2009) applies a thorough checklist of filters verifying whether a bird
species observation is out of range or season. VGI quality is also related
with the level of expertise of each individual contributor (Yang et al., 2016).
For example, volunteers helping at classifying wildlife species might not
have enough skills to distinguish between two types of deer (Kosmala et al.,
2016), or citizens with limited access to technology might not have a basic
technical profile (e.g. map literacy, fluent use of digital devices) enabling
them to introduce new observations correctly in a database (Su et al., 2017).

The representativeness of the phenomenon under study (Zhang and Zhu,
2018) and the inequality in data coverage (reporting bias) (Su et al., 2017) are
also related with the number of contributors to the project and their skills.
Oftentimes, mitigating the effects of these factors requires the development
of a custom-made procedure. For an instance, researchers in the eBird project
propose an adaptative spatio-temporal model capable of accommodating
spatial bias and the density of reports in a region by training local models
that are subsequently integrated in a larger one (Fink et al., 2010, 2013). Other
researchers filter clusters of repetitive observations (Boria et al., 2014; Varela
et al., 2014) or they provide a weight to observations matching a set of criteria
(Zhu et al., 2015), with the intention of mitigating reporting bias. These two
factors are also related with the number of contributors to the project in a
region, and their skills. In Haklay et al. (2009) the authors discuss that a
small group of 15 contributors per square kilometre can map reality with a
good positional accuracy for the OSM project, to the point that this dataset is
comparable in quality to Ordnance Survey (UK) in densely populated areas
(Haklay, 2010). Thus, positional errors in VGI data collections might not be
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randomly distributed, but depending on the professional or amateur skills
on the contributor (Craglia and Shanley, 2015; Yang et al., 2016).

Other well-known issues of VGI include sustaining the commitment of users
in the long term and the privacy or confidentiality of data (Craglia and
Shanley, 2015). The authors discuss that to keep a CS project alive in the
long-term it is necessary to understand the motivation of the users and align-
ing the objectives of the project with the expectations of the users. Regarding
privacy, the authors recommend documenting a project properly, so the
procedure can be reproduced and be understood from different disciplines
and backgrounds. Note however, that some projects might be tied to con-
fidentiality and privacy clauses, since the phenomenon under study can be
sensitive (e.g. monitoring endangered species) or the contributors do not
wish to be identified (e.g. personal data, living habits) (Mooney et al., 2017).

Life and environmental sciences tend to coalesce the majority of CS initiatives
(Gold et al., 2018), but in the field of health geographics there are not so many
examples that have studied how volunteered data could help at monitoring
VBD. Some existing study cases include the incorporation of volunteered
data to devise new indicators predicting dengue in Malaysia (Mokraoui
et al., 2018) or the mapping of Chagas disease in Texas with the help of
citizens submitting triatomine bugs for analysis (Curtis-Robles et al., 2015).
Focusing in tick-borne diseases, there have been some initiatives by public
research institutes in which they have launched campaigns of analysing
submitted ticks to check for the pathogens they are carrying (Nieto et al.,
2018). Other scientists have followed a less conventional approach, in which
roadkill animals are analysed to find out the tick-borne pathogens they
carry (Szekeres et al., 2018). In addition, public health organizations gather
data from general practitioners (GP) every few years to assess the number
of tick-borne consultations (Hofhuis et al., 2016). The limitations of these
valuable efforts are that public campaigns to analyse ticks can provide vast
amounts of data at the national scale, but they tend to be “one-time efforts”,
which are costly to maintain in time. Analysing roadkill animals might
provide accurate information on pathogens at the local scale, however, it
is not straightforward to scale the results up to the national scale to get a
general overview on the status of a disease. Finally, the assessment of GP
data can provide accurate results on the incidence of tick-borne diseases,
however, these massive studies gathering data from thousands of GP are
commissioned every few years, so they are unable to account the intra
annual variation of a disease. In this context it seems desirable to find a
CS initiative capable of monitoring tick bites and tick dynamics at a fine
spatio-temporal resolution, so it is possible to assess for each location in the
country the probability of getting a tick bite.

In 2006, Wageningen University started collecting volunteer tick bites through
the educational phenology platform Natuurkalender (NK; ‘nature’s calen-
dar’, www.natuurkalender.nl), gathering nearly 10,000 volunteered tick bites
in six years. This pioneering project attracted the attention of the Dutch
National Institute for Public Health and the Environment (RIVM) and in
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2012, the platform Tekenradar (TR; ‘tick radar’, www.tekenradar.nl) was
launched together with Wageningen University. TR is a web platform es-
pecially conceived to inform citizens about the risk and prevention of tick
bites and at the same time a citizen science platform to collect volunteer
tick bites and erythema migrans observations. These projects have attracted
enough media attention over the years to engage citizens at contributing,
on a volunteered basis, tick bite reports to the platforms. The result of this
engagement with citizens has produced over 50,000 volunteered tick bite
reports in the Netherlands. This unique collection of observations enables
multiple possibilities at monitoring and modelling elusive public health
threats, such as tick bites. To the best of our knowledge, these platforms
constitute the first citizen science projects that specifically focus on ticks and
tick-borne diseases. Also in 2006, a group of scientists from Wageningen
University started a countrywide investigation to assess the factors influen-
cing the risk of LB (Gassner et al., 2011). This study comprised the monthly
sampling of 24 forested locations in the Netherlands to count ticks in each
of their life stages (i.e. larvae, nymph, adult). To do so, a group of trained
volunteers would sample a transect of forest using a method called blanket
dragging and turning the blanket every 25m to count the number of ticks
attached. This project ran from 2006 – 2016 and created a unique collection
of volunteered data measuring tick dynamics.

These two volunteered collections of data on tick dynamics and tick bites
reports were available at the beginning of this PhD thesis for research pur-
poses. Note that these data sources are not free of the problems associated
to VGI mentioned before, since they present some of the expected traits
of volunteered collections, such as loose structure, positional accuracies,
reporting bias, and a variable quality of the observations (Mehdipoor et al.,
2015; Senaratne et al., 2017; Welvaert and Caley, 2016). Albeit these expec-
ted issues, these data collections have a sufficient quality to be included in
several scientific workflows. Hence, the modelling of these data collections
enable the possibility of mapping at a fine spatio-temporal resolution tick
hazard, human exposure to tick bites, and tick bite risk.

1.4 Spatio-temporal modelling of hazard, exposure,
and risk with data-driven models

In the field of risk assessment, risk (R) is often modelled as a function of
hazard (H), exposure (E), and vulnerability (V). The relationship between
the four variables can be conceptualized as R = HxExV (Braks et al., 2016;
UNDRR, 2016). The dictionary of epidemiology (Last, 2001) defines risk
as the “probability that an individual will become ill or die within a stated period
of time [. . . ]”, hazard is the “inherent capability of an agent [. . . ] to have an
adversely health effect”, whereas the exposure refers to the “proximity and/or
contact with a source of a disease agent in such a manner that effective transmission
of the agent or harmful effects of the agent may occur”.
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Vulnerability is defined by the UN (UNDRR, 2016) as “the conditions determ-
ined by physical, social, economic and environmental factors [...] increasing the
susceptibility to the impacts of hazards”. The combination of the abovemen-
tioned risk assessment principle with the definitions used in epidemiology,
provide an analytical framework that we used throughout the development
of this PhD thesis. In this research, we understand R as the “risk of tick
bite”, H as “tick dynamics”, and E as “human exposure”. The V compon-
ent has not been considered in this research, due to the unavailability or
incompleteness of occupational or human behavioural data collections. Nev-
ertheless, we expect vulnerability to be fairly constant, since citizens tend not
to take preventive measures against ticks (e.g. chemical repellent, protective
clothes), thus becoming vulnerable. Therefore, the remaining of this PhD
dissertation describes data-driven approaches that enable the calculation
of each of these components and integrating them in a single tick bite risk
variable.

In the past decades, there has been a remarkable effort in the fields of bio-
logy, ecology, and epidemiology to model tick-borne diseases, especially LB.
Modelling these three components requires the inclusion of the spatial and
temporal dimensions, since they are inherently dependent on the location
and time. Previous works in literature modelling different VBDs have at-
tempted at quantifying the H component including the spatial dimension
explicitly or implicitly. In (Berger et al., 2014a; Linard et al., 2007) the authors
explicity conceive space as a dimension from which a number of parameters
(i.e. real-world traits) characterizing local or global effects can be derived,
which are subsequently modelled with classical statistical methods, whereas
in (Kala et al., 2017) the authors implicitly define the spatial dependency
using a geographic weighted regression. Other researchers have attempted
to simultaneously model space and time to find clusters of spatio-temporal
co-ocurrence of disease outbreaks (Kanaroglou et al., 2015; Yang et al., 2017).
Although these are valid approaches, there is an intrinsic limitation in it:
classical statistical models tend to have difficulties at finding and under-
standing the non-linear interactions within the elements of the zoonotic
cycle (i.e. ticks, pathogens, environment, humans) (Ostfeld, 2012). In this
context, the use of machine learning methods to model spatio-temporal
phenomena might overcome these hurdles, since these methods naturally
deal with non-linear phenomena and high-dimensional problems. In this
thesis we have performed classification, regression, and frequent pattern
analyses using machine learning algorithms. The objective of these analyses
was to investigate and calculate each of the components of R using machine
learning methods.

1.5 Societal and environmental relevance

VBDs pose a substantial burden on public health systems and households,
which translates in medical costs, working days lost to illness, and potential
long-term sequels for the patient (WHO, 2014). Measuring the burden and
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cost of a disease is not a straightforward task, since these conditions vary
for each year, country (or region) affected, and the intensity and persistence
of an outbreak (Murray et al., 2012). In public health there is a measure to
quantify the burden of a disease in patients: the disability-adjusted life years
(DALY), which refers to the number of life-years lost due to poor health or
disability per population unit (World Bank, 1993), often 100,000 citizens.

VBD have a variable cost and burden depending on the factors mentioned
before: In the USA, Chagas had an estimated cost of $464 per patient and
0.51 DALYs (Lee et al., 2013), whereas in South America the disease burden
ranges 25 -125 DALYs (Stanaway and Roth, 2015). Dengue outbreaks in
Southeast Asia during the period 2001-2010 cost $610M - $1,384M with an es-
timated disease burden of 21-52 DALYs (Shepard et al., 2013). Chikungunya
in India supposed a cost of $5.5M and 4.5 DALYs (Krishnamoorthy et al.,
2009), whereas in the Caribbean region the disease burden ranges from 0.25 –
911 DALYs (Cardona-Ospina et al., 2015). Focusing in LB, a study in the USA
shows that the economical of treating short-term to persisting symptoms,
ranges between $464 - $1380 (Zhang et al., 2006). In the Netherlands, the
treatment of LB costs approximately AC5,700 per patient, with a yearly lump
sum ofAC20M euros in total, and an estimated disease burden of 10.55 DALYs
(van den Wijngaard et al., 2017).

For all the above, we think that the monitoring of VBD in general, and LB
in concrete, has a remarkable societal relevance, especially to contribute to
three the UN sustainable development goals (SDG) 1: “good health and well-
being”, “climate action”, and “life on land”. LB might not have the dubious
honor of being a well-known VBD causing tens of millions of infections
per year globally, yet this silent disease has a substantial burden. Ticks
are organisms with a reduced motility that require a complex ecological
system around them to survive. This means that if we can use VGI data to,
both, understand the relationship between ticks and the environment, and
the environment and humans, then we are able to devise novel and more
effective map products for tick hazard, human exposure and tick bite risk
that can help at designing tick-borne prevention campaigns.

In this research we worked at developing such map products to help pub-
lic health professionals, and to inform citizenship on the risk of getting a
tick bite. Tick hazard maps can be useful for ecologists and biologists to
further study how tick dynamics is influenced by atmospheric conditions
or wildlife. Human exposure maps could help public health specialists to
identify recreational locations that are massively visited by citizens and
consequently, design a tick prevention campaign in the closest neighbour-
hoods or municipalities. In addition, public health specialists could use this
map to jointly work with forest managers to implement measures of tick
habitat manipulation (e.g. clear shrubs, add dry substrates) to make forests
a safer environment for visitors. Citizens and public health specialists could
benefit of a tick bite risk map, since the former group would be aware of

1United Nations SDG
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the locations to avoid or where extra caution is needed, whereas the latter
group could target new locations to inform about the risk of LB. Regarding
distribution channels, we think that citizens could benefit of a mobile applic-
ation alerting users when they are entering a risky location for LB infection.
In addition, the models developed in this research could be implemented
and deployed in other organizations, so they can be used, studied, and
further improved them to match the necessities of each professional group.
We hope that this thesis could help as a basis for different professionals to
work towards better tick bite prevention campaigns, so in the next years we
witness a decrease in the number of LB cases.

Linking our research with other VBD, we hope that the lessons learned dur-
ing the development of this PhD thesis can help at monitoring other diseases
in a similar manner. We think that it might be of interest for other research-
ers learning how to combine VGI with environmental data to subsequently
modelling it with machine learning methods, since these methods can un-
derstand the non-linearity of zoonotic cycles and enable the possibility of
devising new map products regarding hazard, exposure, and risk of disease.
We envision that the popularization of these methods among the health
geographics researchers and public health specialists, could help planning
large-scale VBD prevention campaigns, so that the number of infections
per year decrease substantially. This is especially important in develop-
ing countries, since VBD tend to exacerbate poverty and socio-economic
differences.

1.6 Research objectives

Human societies are witnessing an era in which major global changes are
occurring at an accelerated pace. As a response, these changes might have
a negative impact in our daily lives, hence it seems reasonable to dedicate
efforts at monitoring them to create more resilient societies. In the context of
VBDs in general and LB in particular, this quest requires the investigation of
a plethora of phenomena at the finest spatio-temporal resolution possible.

The objective of this research is to investigate innovative methods to ad-
vance the modelling of tick dynamics and tick bite risk, by simultaneously
modelling volunteered data and a wide array of heterogeneous geodata col-
lections with data-driven methods. This methodology is important to gain
knowledge on where and when these negative impacts will occur, and might
help professionals to mitigate these pernicious effects. We operationalize
this main objective by investigating data-driven approaches to model the R,
H, and E components. The following research questions (RQ) introduce the
research questions that vertebrate this PhD research:

• RQ1: How to develop a data-driven approach combining volunteered
and environmental geodata, which is capable of capturing tick dynam-
ics and assess the major drivers of tick activity across time-scales?
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• RQ2: How to use data mining methods to identify spatio-temporal
patterns linked to tick bites and verify that these patterns, stemming
from volunteered observations, are intrinsic to the phenomenon under
study?

• RQ3: How to devise a novel indicator of human exposure to ticks,
enabling the geographical identification of clusters of high exposure?

• RQ4: How to integrate hazard and exposure metrics to devise a tick
bite risk model, capable of handling the skewness and zero-inflation
inherent to the volunteered tick bite reports?

1.7 Thesis outline

This chapter contains a thorough description of the main building blocks
that vertebrate this thesis (i.e. VBDs, LB cycle, citizen science, data-driven
methods), and we highlight our contributions or innovations to each of them.
We also include a section in which we discuss the environmental and the
societal relevance of this thesis. This chapter also includes the main research
objective and research questions of this thesis.

Chapter 2 presents the description of a data-driven model capable of pre-
dicting daily tick dynamics. This analysis required the integration of an
array of environmental variables (i.e. weather, tick habitat, satellite-derived
vegetation indices, land cover, mast years) at different time-scales, to better
understand the impact that long-term and short-term variables have on tick
activity. We modify a well-known ensemble learning algorithm to enable it
to yield temporally-aware predictions based on the day of the year.

Chapter 3 introduces an extensive exploratory data analysis that identifies
the most recurrent human and environmental patterns found in a volun-
teered tick bites dataset. We enrich the volunteer dataset with multiple
environmental and human variables, which are modelled with a frequent
pattern mining algorithm. We also assess whether the tick bites collection is
representative of the phenomenon under study, by generating an artificial
dataset and comparing whether the patterns of the original tick bites dataset
can be reproduced by random spatio-temporal sampling.

Chapter 4 presents a novel map representing human exposure to tick bites
in forested areas in the Netherlands. This map is the result of combining the
tick dynamics model developed in Chapter 2 with the volunteered tick bites.
We demonstrate that the risk of tick bite is strongly influenced by human
behavior, rather than the tick dynamics in a location. With this map, we are
able to identify at the national level locations where citizens are exposed to
ticks, such as urban parks, popular recreational sites, or suburban forests.

Chapter 5 develops a tick bite risk model integrating tick hazard and human
exposure to tick bites. We take the tick dynamics model developed in
Chapter 2 and we devise a series of human exposure indicators, based
on accessibility and landscape attractiveness metrics. We modify a well-
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known ensemble learning algorithm to enable it modelling imbalanced data
collections, by combining a segmentation task with count data models (i.e.
Poisson family). In this way, we are able to predict tick bite risk for the
Netherlands and identify risky locations for disease transmission.

Chapter 6 summarizes the main findings from Chapters 2 to 5. We provide
a reflection on the relevance of the contributions of this thesis, and we
answer the research objectives posed in Chapter 1. In addition, we provide
recommendations and guidelines for future research.
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2Modelling and mapping tick
dynamics using volunteered
observations

2.1 Introduction

Tick populations and tick-borne infections like Lyme borreliosis have steadily
increased since the mid-1990s. This concurrent increase has been observed
in various European countries (Heyman et al., 2010; Jaenson et al., 2009), in
the US (Subak, 2003) and in Canada (Ogden et al., 2014). In the Netherlands,
periodic national studies among general practitioners (GPs), revealed a con-
sistent two-decade rising trend in the number of tick bites consultations
and Lyme borreliosis diagnoses (Hofhuis et al., 2015b), that only showed
a first sign of stabilization recently. Still, more than 20,000 people per year
develop Lyme borreliosis in the Netherlands and its disease burden is sub-
stantial, especially in patients who develop chronical symptoms (Hofhuis
et al., 2016).

Scientists of different fields have investigated this global increase of tick
populations and tick-borne infections, converging upon two main causes:
global environmental changes are altering the spatio-temporal dynamics of
ticks (Medlock et al., 2013; Sprong et al., 2012) and socio-economic changes
are changing the spatial patterns of human populations around urbanized
areas, increasing the human exposure to ticks (Randolph, 2013; Randolph
et al., 2008; Zeman and Benes, 2014). Tick dynamics are complex ecological
processes driven by numerous factors (i.e. wildlife, weather, vegetation,
landscape). Understanding the interactions between these factors and tick
dynamics is crucial to develop models capable of forecasting the incidence
and distribution of ticks and tick-borne diseases (Estrada-Peña and de la
Fuente, 2016; Ostfeld, 2012).

Models predicting the spatio-temporal distribution of ticks are needed to
implement control measures which mitigate future disease infections (Cianci

This chapter is based on: (Garcia-Martí et al., 2017)
Available at: https://doi.org/10.1186/s12942-017-0114-8
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et al., 2015; Hartemink et al., 2015) or help managing public health risks
(Medlock et al., 2013). However, the development of such models is not
straightforward due to several issues. First, it is unclear what the best set of
environmental predictors are. Past studies have found correlations between
different combinations of biotic and abiotic factors and tick dynamics, but
the spatio-temporal scale of these experiments is diverse enough to pose dif-
ficulties in drawing general conclusions. For instance, Berger et al. (2014b,a)
found a link between relative humidity and the seasonal abundance of ticks
at the regional level. Dantas-Torres and Otranto (2013), found weak correla-
tions at local scale between monthly temperature, evapotranspiration and
saturation deficit with tick abundances, whereas Randolph and Storey (1999)
found links (in laboratory conditions) between the saturation deficit and the
number of questing ticks. Second, it is often unclear at what time scales the
different predictors operate. Previous studies have found linear correlations
between tick abundances and environmental predictors at multiple tem-
poral scales (Berger et al., 2014b; Tack et al., 2012). However, the temporal
sparsity of the tick sampling or the use of short-term time series question if
these correlations are scalable to long-term time series at the country level.
Third, tick dynamics are complex phenomena that traditionally have been
modelled with linear methods. Two of the well-known disadvantages of
classical linear methods is that they are not capable of finding non-linear
interactions between variables (except when explicitly included a-priori),
and do not properly handle large numbers of predictors (e.g. due to collin-
earity). However, such data are a reality when modelling complex natural
phenomena.

In this work, we address the above-mentioned issues by modelling nine
years of monthly data on Active Questing Ticks (AQT) collected by volun-
teers on 15 different locations in the Netherlands. This modelling exercise
includes a wide array of (a)biotic predictors and, by applying an ensemble
regression method (i.e. Random Forest), we aim at identifying the most
important variables to model AQT at multiple time-scales. Building such
AQT dynamic model allows us to explore and map tick’s seasonality across
the Netherlands. We envision applications of this model in the fields of en-
vironmental and ecological research, nature management and public health,
which hopefully will reduce the incidence of Lyme disease.

2.2 Ticks and environment

2.2.1 Tick sampling

Ticks are blood sucking arthropods capable of transmitting a wide variety of
pathogens (e.g. bacteria, viruses) which cause disease in humans (Heyman
et al., 2010). Deciduous or mixed forests in temperate and humid regions,
which are inhabited by different mammalian species (e.g. deer, rodents),
create optimal habitats sustaining ticks life cycle (Ostfeld, 2012). Ticks quest
at the top of vegetation or litter layer, waiting for a human or animal host
to attach and feed. This behavior is used to determine tick populations
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in a particular location. To do so, two manual monitoring techniques are
used: flagging and dragging. Flagging consists on sweeping a squared cloth
attached to a pole on one side upon the litter or vegetation layers, whereas
dragging consists in attaching the previous material to a rope, which the
investigator can pull along the study area (Rulison et al., 2013). In both
cases, ticks that are touched by the cloth attach to it, allowing researchers
to count the number of ticks in its different life stages (i.e. larvae, nymph,
or adult). Both techniques have been widely used in small scale biological
studies to acquire raw data on tick counts that can be later incorporated in a
scientific workflow (Dantas-Torres and Otranto, 2013; Estrada-Peña, 2001;
Estrada-Peña et al., 2013; Gassner et al., 2011; Randolph, 2000).

2.2.2 Environmental factors

Ticks are particularly susceptible to environmental conditions because of
their high surface-to-volume ratio, which makes them experience water
losses through their exoskeleton, and their lack of thermal inertia, which
makes them vulnerable to extreme weather conditions (Ostfeld, 2012). The
following sub sections list the environmental variables used in our work
and sketch their impact on tick dynamics.

2.2.2.1 Weather data

Temperature determines the start of the questing season, tick population
development rate and the chances of survival through the winter season
(Ogden et al., 2006; Randolph et al., 2008; Wu et al., 2010). Precipitation and
relative humidity are crucial to sustain tick populations in nature. Precipita-
tion is necessary during the summer season (Jore et al., 2014), but extreme
precipitation events (i.e. drought and heavy rain) may prevent the devel-
opment of new tick populations (Ostfeld, 2012). Long-lasting and adverse
humidity conditions have been linked to an increased mortality among
nymphal ticks and this, in turn, may decrease the total number of cases of
Lyme disease (Berger et al., 2014a). Some studies suggest that nymphal ticks
can desiccate within 48 hours if the humidity conditions at ground level
are sub-optimal (Berger et al., 2014b). Additionally, relative humidity and
temperature can be used to calculate the saturation deficit and vapor pres-
sure. Saturation deficit has been used in a previous and thorough study to
understand the role of humidity in tick survival (Randolph and Storey, 1999)
and vapor pressure has been identified as a major indicator of tick habitat
suitability (Brownstein et al., 2003). In some studies, evapotranspiration has
been used as a proxy for vapor pressure deficit (Ruiz-Fons et al., 2012).

Weather datasets are publicly available at the online data center of the
Royal Netherlands Meteorological Institute (KNMI)1. We downloaded daily
gridded layers of temperature, precipitation, evapotranspiration and relative
humidity for the period 2005-2014. From temperature and relative humidity,
we obtained saturation deficit and vapour pressure (Murray, 1967; Randolph

1https://data.knmi.nl/datasets
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and Storey, 1999). The temporal resolution of the weather datasets and the
tick sampling is different, since the former are available at daily temporal
resolution, whereas the latter is carried out on a unique day each month. To
match both resolutions, it is necessary to aggregate the weather variables to
a coarser temporal scale in a way that reflect the impact later caused on the
tick count.

2.2.2.2 Vegetation data from satellites

Ticks are sensitive to local environmental conditions, such as the thickness
of forest canopy or soil moisture at the ground level (Medlock et al., 2013).
Earth observation satellites allow the monitoring of these environmental
conditions over large areas. In this work, we used three vegetation indices
to characterize local environmental conditions: the Normalized Difference
Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI) and the
Normalized Difference Water Index (NDWI). Previous studies have demon-
strated that fluctuations in NDVI, which has traditionally been used to
measure the greenness and the density of vegetation, correlate well with
fluctuations in the number of nymphs and adult ticks and that NDVI can be
used as a proxy to find suitable tick habitats (Estrada-Peña, 2001; Randolph,
2000). More recent studies show that novel vegetation indices like EVI or
NDWI are better estimators of tick populations (Barrios González, 2013) and
Lyme disease incidence (Ozdenerol, 2015).

Vegetation indices are publicly available in the Google Earth Engine (GEE)
platform 2 3. GEE is a free image processing cloud platform for environ-
mental analysis, which aggregates and integrates products coming from
different Earth observation sensors, such as the Moderate-Resolution Ima-
ging Spectroradiometer (MODIS). MODIS provides daily global imagery at
250, 500 and 1000 meters of spatial resolution. However, due to the persistent
cloud coverage over the Netherlands we used MODIS composite products.
In particular, we used the MCD43A4 product, which provides the NDVI,
EVI and NDWI indices derived from the daily surface reflectance at a pixel
size of 500 meters, using data of the previous 16 days. It is important to note
that this product is released every eight days, so there is a 50% of temporal
overlap between each composite, meaning that the vegetation signal will
contain smooth changes.

2.2.2.3 Land cover, tick habitat and mast years

Land cover is another important factor in the field of tick ecology because it
influences tick survival and determines the chances of human-tick contact.
Ticks prefer habitats where the vegetation prevents reaching desiccation
conditions and where hosts (e.g. deer, rodents, mice) species are present.
Complex landscapes, in which multiple land covers are intertwined in a
small area unit, increase the probability of contact between ticks and their

2https://code.earthengine.google.com/
3https://earthengine.google.com/
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human or animal hosts (Hartemink and Takken, 2016; Lambin et al., 2010; Li
et al., 2015; Tran and Tran, 2016). For land cover we use the 7th release of the
national land cover database or LGN (Landelijk Grondgebruik Nederland)4.
This database was produced in 2012 and contains information for 39 classes
at 25 m.

The sampling sites are located in forested areas with specific types of vegeta-
tion (i.e. deciduous and coniferous forest, grasses, and bushlands). The plant
associations in these sites contribute determining the presence of wildlife
species in each location, by providing forage or shelter, and subsequently,
tick populations move with them. Previous studies have demonstrated that
deciduous forests present higher abundances of AQT than coniferous forest,
and also that a dense shrub layer has a positive effect on tick populations
(Tack et al., 2013). Gassner et al. (2011) gives a thorough description of the
plant associations and habitat characteristics found in the surroundings of
each transect of the flagging sites.

2.3 Data

This work relies on a unique dataset of tick dynamics collected by volunteers
in the context of a project of participatory modelling. This dataset was
enriched with a set of environmental variables extracted for each sampling
location. For this, we collected and preprocessed weather and satellite
data, and included biological data regarding habitat and mast years. The
remaining of this section first contains a description of the volunteered
tick counts data (Section 2.3.1), and then we explain the process of feature
engineering carried out to create a series of predictors that characterize tick
dynamics as monitored by volunteers (Section 2.3.2).

2.3.1 Volunteered tick counts reports

In the context of the Dutch phenological network Nature’s Calendar5 every
month since July 2006, a group of volunteers sampled AQT on 24 forest
sites. This joint effort aimed to quantify and understand the spatial and
temporal dynamics of ticks and the Borrelia bacteria that can cause Lyme
disease (Gassner et al., 2011). Out of the 24 sites participating in the research
project, we were able to include data from 15 sites, which represent a total
of 3,073 observations collected by volunteers. We excluded the sites in
which the sampling stopped in an early stage of the project, or the site was
sparsely sampled in time. At each site, volunteers sampled two transects,
separated from each other several hundred meters. Ticks were collected
using a technique called “dragging”, in which the volunteer drags a 1m 2

cloth over the low vegetation of each transect for 100m, turning the cloth
every 25m to count the number of larvae, nymphs and adult ticks. This
study focuses on the nymphs because they pose the highest risk for humans

4http://tinyurl.com/j47m2ol
5www.natuurkalender.nl
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to get a tick bite. Figure 2.1 shows the raw number of nymphs per transect
and per month. The number of AQT across all sites present strong spatial
and temporal variations: 1) Some transects present a more continuous and
recurrent shape, whereas others have an erratic tick count (e.g. Gieten vs.
Bilthoven); 2) Some transects produce very different yields, from low tick
counts to high peaks (e.g. Veldhoven vs. Eijsden); 3) Transects within a
sampling site may yield a different number of ticks, even though they are
close in space and sampled on the same day (e.g Montferland). The reasons
of these strong local and seasonal variations are still poorly understood, but
previous works have found clear links between tick populations and the
abundance of small mammals in the area (Ostfeld et al., 2006), mast years
(Jones et al., 1998) or warming weather conditions (Jore et al., 2014; Subak,
2003), which are major influences over tick dynamics, as seen in Section
2.2.2.

Volunteered projects have proved useful to acquire information at a timely
and fine spatial scale, but the quality and the amount of uncertainty of
such data collections is difficult to measure (Kamel Boulos, 2005; Kamel
Boulos et al., 2011; Goodchild and Li, 2012). A visual inspection of Figure 2.1
shows that the monthly tick counts signal presents an irregular and noisy
shape. A closer descriptive analysis of the raw data reveals that out of 3,073
records in the dataset, around one third of the samples are zeros, and a small
proportion of samples present high peaks. Zero AQT means that a volunteer
visited a site for tick sampling on a particular date and no ticks were caught
questing, whereas a peaky AQT means the ticks were very active on that
day.

To assess the potential impact that zero and peaky AQT may have in our
modelling process, we created four versions of the original dataset, which
vary in the amount of zeroes and peaky observations. In two datasets we
removed all samples with a zero AQT within the tick season (i.e. 1st March
until 31st October) and half of the samples with a zero AQT outside the
season. This creates a group with two datasets with a reduced amount of
zeros, and a second group with two datasets which are not modified with
respect to the original. After this step, we applied a smoothing process to
only one of the datasets of each group. We chose a Savitzky-Golay filter to
mitigate the effect of peaky AQT in the modelling process, whereas the other
dataset was kept with the original AQT signal. In this way, the modelling
process accounts for the possible effect of extreme observations to fit the
AQT signal, and helps distinguishing whether varying levels of noise is
hampering the learning process of the chosen modelling algorithm.
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Figure 2.1: Monthly time-series (2006-2014) of active questing ticks (AQT) per transect. Each subplot shows both the number of 
ticks counted by the volunteer (red) and the Savizky-Golay smoothed version of this signal (blue).
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2.3.2 Characterizing the environment

Feature engineering is a common process in the machine learning field to
obtain new predictors from original data sources, which incorporate the
knowledge of a domain to create predictive models. In our case, we obtained
a set of features, based in the theoretical grounds described in Sections 2.2.1
and 2.2.2, which aim to that aim to characterize the environmental conditions
in each tick sampling site. Thus, this work uses 101 features (Table 2.2) clas-
sified in five types: weather, remote-sensed vegetation, land cover, habitat
and mast. Weather and vegetation features contain a value aggregated in
a particular time window. Land cover, habitat and mast features contain
the value of land cover in a point, the type of tick habitat in the sampling
sites, and the strength of a mast year for three tree species, respectively. The
remaining of this section describes how the features associated to each type
were obtained from the original data sources.

Because of the lack of consensus in the literature on the optimal temporal
unit(s) to model AQT, we created a suite of features by aggregating each
weather variable (i.e. minimum and maximum temperature, precipitation,
evapotranspiration, relative humidity, saturation deficit, and vapour pres-
sure deficit) at multiple temporal scales. These temporal scales are defined
by the number of days before the date of the tick sampling. The reason for
doing this is straightforward: we assume the tick count produced today, de-
pends on past weather conditions. Therefore, for each tick sampling date we
calculated weather features using a range of 1 to 7 days before the sampling
date (i.e. fine temporal units), and of 14, 30, 90 and 365 days (i.e. coarse
temporal units). This procedure leads to 11 features per weather variable,
adding up a total of 77 features (indices 16-92, type W).

Using GEE, we averaged the 3 to 4 images available per month to reduce the
impact of clouds. Then, using the coordinates of each of the flagging sites,
we obtained three (NDVI, EVI and NDWI) time-series summarizing the
evolution of vegetation indices since 2005. To remove further noise in these
time series, we decomposed each of them into their seasonal, trend and noise
components. We kept the seasonal component and obtained the minimum
value and range (i.e. width between the minimum and maximum values) per
transect and vegetation index. This procedure creates 6 vegetation features
(indices 93-98, type V) that condense the general vegetation and moisture
conditions in the site over the time-series.

For the land cover, we reduced the number of classes to 12 due to two
reasons: 1) the flagging sites are located only in certain types of land cover
(e.g. deciduous, grasslands); 2) several land cover types are unrelated to
the tick ecology (e.g. sweet water, saltmarshes) or can be aggregated to a
coarser level (e.g. types of crop to agricultural land), thus can be unified in a
single category. After re-classifying the LGN, the product was resampled
to 500 and 1000 meters of spatial resolution using a majority filter. This
process allows to account for the surroundings of each flagging site, and
reduces the chances of the flagging site to be placed in a noisy pixel at
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ID Feature Name Short description Type

1 Litter Thickness of litter layer H
2 Moss Coverage on a 1–10 scale of the moss layer H
3 Herb Coverage on a 1–10 scale of the herb layer H
4 Brush Coverage on a 1–10 scale of the brush layer H
5 Tree Coverage on a 1–10 scale of the tree layer H
6 BioLC Land cover as described in (Gassner et al., 2011) H
7 Oak-Y Strength of mast year in a oak forests M
8 AOak-Y Strength of mast year in American oak forests M
9 Beech-Y Strength of mast year in European beech forests M
16 tmin-X Avg. min. temperature in a time window W
17 tmax-X Avg max. temperature in a time window W
18 prec-X Avg. precipitation in a time window W
19 rv-X Avg. evapotranspiration in a time window W
20 rh-X Avg. relative humidity in a time window W
21 sd-X Avg. saturation deficit in a time window W
22 vp-X Avg. vapour pressure in a time window W
93 min_ndvi Min. NDVI value for a location in a year V
94 range_ndvi Range for NDVI value for a location in a year V
95 min_evi Minimum EVI value for a location in a year V
96 range_evi Range for EVI value for a location in a year V
97 min_ndwi Minimum NDWI value for a location in a year V
98 range_ndvi Range for NDWI value for a location in a year V
99 lc25m Land cover in a location at 25m spatial res. L
100 lc500m Land cover in a location at 500m spatial res. L
101 lc1km Land cover in a location at 1km spatial res. L

Table 2.2: List of features involved in the current analysis. The features
belong to the following categories: tick habitat (H), mast years (M), weather
(W), vegetation (V) and land cover (L). The weather features are calculated
at 11 temporal aggregations, so there are 77 weather features in total. The
X character is replaced by a number between 1-7 for short-term temporal
aggregations or by a 14, 30, 90 or 365 in the case of bi-weekly, monthly,
seasonal or yearly temporal aggregation, respectively. Mast features have a
Y character that will be replaced by a number between 0-2 in function of the
mast year they are referring to. In total, there are 101 features involved in
this work.
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25m resolution. We obtained the value of the land cover for each of the
flagging sites at these three different spatial resolutions (indices 99-101, type
L). The strength of the mast year of the year of the observation, as well as
the strength of the previous two years (indices 7-15, Type M) is included in
our work, because tick dynamics might have a delayed response to mast
years. Finally, the habitat characteristics per transect are described using 5
variables: the thickness of litter layer and the amount of moss, herbal, brush
and tree layers, which are encoded in 5 features (indices 1-6, Type H).

2.4 Modelling AQT with Random Forest

Random Forest (RF, (Breiman, 2001)) is an ensemble learning method that can
be used both for classification and regression problems. Ensemble methods
rely on the creation of a committee of experts, which work on solving a
real-world problem while minimize the chances of taking a poor decision.
In the case of RF, the ensemble is formed by a group of weak learners called
decision trees, which are combined to create a robust decision ensemble.

RF is a combination of the bagging growing scheme (Breiman, 1996) and the
Random Subspace Method (Ho, 1998). These two sources of randomness
contribute to create an ensemble with very different trees that lead to high
variance predictions when tested individually (Louppe et al., 2013). Bagging
allows RF to see multiple variations of the input data, whereas the RSM
introduces randomness in the samples and features presented to each tree
during the learning phase. This process creates an ensemble of trees, which is
capable of adapting to the tick dynamics phenomenon, and yield predictions
with great robustness and stability (Rodriguez-Galiano et al., 2014).

The mechanism used by RF to grow decision trees for regression problems,
such as modelling AQT as a function of environmental features, is conceptu-
ally simple. For each tree (B), N bootstrap samples (with replacement) are
drawn from the available training data. This subsample is used to grow a
unique decision tree (Tb) by recursively partitioning the N samples until a
stop condition is reached, namely: 1) all the samples within a node have the
same target response target; 2) the samples in the node are homogeneous
with respect to the selected features; 3) a heuristic, such as the maximum
depth of the tree, is reached. If none of these conditions are met, the al-
gorithm grows the tree by selecting the best feature and split point among
a given and random subset of training features, where best means that it
minimizes the Mean Squared Error (MSE). This process creates two child
nodes, and the available samples are assigned to them considering the split
criteria (e.g. samples with values for feature m larger than the split point
value go to the left child node). This procedure is repeated until a full forest
with B trees is grown.

After completing the training phase, RF predicts unseen samples by av-
eraging the predictions of the B trees. This reduce the variance and the
generalization error of the predictions. In fact, the generalization error
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converges as the number of trees increases, thus reducing the chances of
overfitting data (Breiman, 2001; Rodriguez-Galiano et al., 2014).

A key characteristic of RF is that it provides a measure of the importance of
the features involved in the modelling. This is done by averaging the reduc-
tion in MSE associated to the use of each variable in each of the nodes/trees
that form the ensemble (Louppe et al., 2013). In our work, we exploit this
characteristic to understand the main drivers of tick dynamics. Thus, the
ranking of features provided by RF gives an idea about what the most rel-
evant (or irrelevant) features are, regardless of the dimensionality of the
problem. This is particularly suitable to understand the complex and non-
linear interactions found in biological and environmental systems.

RF, like most data-driven regression methods, are not time-aware models.
This means that its standard application to regression problems involving
(seasonal) time-series, such as the AQT dataset, can lead to sub-optimal
results. The reason for this is that the trees in the RF ensemble are trained
with random subsets of the training set, where each data sample belongs to a
particular date. Thus, RF is trained to predict single snapshots and remains
unaware of the temporal continuity of the time-series.

In this work we overcome this limitation by introducing time-awareness
in RF. To do so, we transformed the AQT counts into monthly Z-scores by:
1) grouping the 9 years of observations according to the month when they
were collected; 2) calculating monthly means and standard deviations, after
removing extreme observations from each group so that the Z-scores are
not biased. In this context, extreme observations are those that report AQT
counts above the 3rd quartile or below the 1st quartile of the monthly values;
3) creating monthly Z-scores, by subtracting the monthly mean from each
observation, and dividing the result by the corresponding monthly standard
deviation. In this way, we ensure that samples collected during the same
month have a constrained and normalized range of AQT counts.

With this monthly normalization we train RF to understand which factors
increase or decrease AQT with respect to the long-term average, instead of
modelling the absolute number of ticks recorded in a particular location and
month. Moreover, by predicting monthly Z-scores we help RF to understand
the temporality of the data and hope to get more realistic seasonal dynamics
than by using the classical (single snapshot) RF model.

The general set-up of the RF models was as follows: 1) we reserved 70%
of the data for training, and the remaining 30% was used for testing the
model. Samples were randomly assigned to the training and test subsets; 2)
To account for the randomness of RF (different features and samples used
in each tree/run), we executed the models 10 times (keeping the training
and test samples constant) and the error metrics and feature importance
were averaged; 3) we use two well-known statistical metrics to validate
our results, the root mean squared error (RMSE) and the normalized RMSE
(NRMSE). Note that the error metrics were obtained after de-normalizing
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the Z-scored signal. Finally, we used the trained model to prepare maps
illustrating its performance in a country-wide scenario.

2.5 Experiments

The process described in Section 2.3.1 creates four versions of the original
dataset with a varying number of zero and peaky AQT, and the process
of feature engineering from Section 2.3.2 enriches each of the volunteered
observations with 101 features. With this set-up, we designed the tree
experiments explained in the next sub sections,whose goal is: 1) to assess
the impact of noisy observations and selecting the best model capable of
capturing AQT dynamics; 2) to evaluate the most important features to
model AQT at different time scales; 3) to create AQT map for forested areas
in the Netherlands.

2.5.1 Model selection by assessing the impact of noisy AQT

We modelled the four versions of the volunteered AQT dataset with our time-
aware version of RF. Figure 2.2 shows the general performance of the models.
To ease the interpretation of these results, three elements are included: 1) a
1:1 line showing the ideal predictions; 2) a grey band showing one standard
deviation from the mean of the observations; 3) a grey box containing the
selected statistical metrics for this experiment. The visual inspection of the
four plots shows that the two experiments using raw data perform poorly
when compared to the two experiments using smoothed data. The models
built with raw data have the highest errors in terms of RMSE and NRMSE
and also present a higher dispersion of the predictions, indicating that these
models did not properly capture the peaky AQT observations.

A close inspection of the NRMSE metric reveals that RF models with smoothed
data present very similar performances, regardless of the number of zeros
left in the AQT dataset. This suggests that smoothed models can capture the
conditions yielding low AQT, but peaky AQT may be actually hampering
the modelling process. This is clearly visible when inspecting the points
falling outside the gray band in the bottom subplots: a certain number of
high AQT true observations could not be captured by the model, thus pro-
ducing a lower prediction than the true value. We selected the model for
next experiments based on the lowest RMSE and NRMSE metrics, thus, out
of the four models, we picked the one keeping zero AQT and smoothing the
peaky AQT with the Savitzky-Golay filter.
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Figure 2.2: Performance of RF in each of the four selected scenarios. The X-axis represents the predictions yielded by the model
and the Y-axis the true values measured by volunteers. To assess the quality of the volunteered AQT dataset, we have tested
RF with varying levels of zero AQT and peaky AQT. As seen, the model has more difficulties in capturing peaks than zeros.
Thus, the selected model for the following experiments is the model at the bottom left, because it presents the lowest metrics.
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Table 2.4 presents the feature importance of the top 10 features for the selec-
ted RF model. To ease the interpretation of results, we restrict the ranking of
the feature importance to the top 10 most prominent out of 101. As seen in
this table, the modelled phenomenon is driven by a combination of several
weather variables and a vegetation one. The two most explanatory features
are the annual evapotranspiration (i.e. ev-365) and the monthly relative
humidity (i.e. rh-30). Temperature, which has been traditionally spotted
in tick modelling studies as a major driver of tick dynamics, only appears
once (as tmax-365) and with a relatively low importance. In this experiment,
water-related features perform better than temperature. Note that evapo-
transpiration and relative humidity do appear several times in the ranking
(i.e. ev-90, rh-365), suggesting that in a context with multiple atmospheric
variables, water-levels are again more important than temperature. It is also
important to highlight that variables about mast years or tick habitat do not
appear in the top ten. This could be because they are static (i.e. one value
for the whole study period) and, hence, unable to explain the temporal and
spatial variation in seen in the AQT dataset.

To further evaluate the usefulness of our RF-based model to predict AQT,
we split the test samples according to their associated transect (cf. Figure
2.3). The goodness of the fitting (R2) between the predictions and the real
smoothed AQT values varies between 0.19 and 0.94, indicating that the
performance of the model strongly depends on each transect. In Figure 4
(left) we sort the R2 values to provide a better depiction of the performance
of the model per transect. Based on these results, we note that the model
presents a moderate-to-strong R2 (i.e. 0.7 < R2 < 1) for roughtly half of the
sites. This means that these transects better respond to weather variables
than the remaining transects, in which AQT may be driven by variables,
such as wildlife, not included in the current model. Note that for transects
within the same site (e.g. Vaals, Montferland) the goodness of fit is very
different, revealing the very local nature of AQT. Figure 2.4 (right) shows
the geographic representation of the transects. Symbols in green represent
the transects better responding to weather variables, whereas red symbols
represent the poorly fitted transects. The visual inspection of this figure
shows no strong spatial pattern (e.g. north-south gradient).
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Position Feature Importance

1 ev-365 15
2 rh-30 11
3 tmax-365 7
4 prec-90 4
5 prec-3 4
6 ev-90 3
7 rh-365 3
8 tmin-365 2
9 prec-365 2
10 tmax-90 2

Table 2.4: Ranking of the top ten most important features (out of 101) for
the selected RF model. The sum of the feature importance for all features
provided by RF equals to 1, but to ease the interpretation of results we
multiplied it by a hundred to have natural numbers. As seen, features
involving atmospheric water levels (i.e. evapotranspiration and relative
humidity) are found to be important to predict tick activity, since they
appear several times in the current ranking.
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Figure 2.3: Performance of the selected RF for each flagging site. The X-axis represents the prediction yielded by the model and 
the Y-axis the true values measured by the volunteers. The R2 value is provided in the title of each subplot.
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Figure 2.4: Performance of the selected RF model per transect sorted by the R2 score (left) with its geographic location (right).
The left image shows that the model is able to fit half of the sites with a moderate-to-strong R2 (i.e. 0.7 < R2 < 1), whereas
the performance in the remaining sites is weak-to-moderate (i.e. 0.3 < R2 < 0.7). This means that the transects with a high R2

score, respond better to weather variables than the rest of the transects, which may be driven by variables not included in the
current model (e.g. wildlife) due to inavailability. The right figure shows the geographic location of the transects: green squares
represent transects with moderate-to-strong fitting, whereas red squares represents transects with weak-to-moderate fitting.
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1 2 3 4 5 6 7 14 30 90 365

Rank F I F I F I F I F I F I F I F I F I F I F I
1 EV 15 EV 15 EV 15 EV 15 TX 16 TX 14 EV 14 TX 14 TX 15 RH 17 RH 16
2 TX 13 TX 14 TX 14 TX 14 EV 13 EV 13 TX 13 TN 13 PR 14 EV 15 TX 15
3 TN 11 TN 12 PR 13 PR 11 TN 12 P 13 TN 12 EV 12 RH 12 PR 14 PR 13
4 RH 11 RH 11 TN 12 TN 11 PR 11 RH 12 RH 12 PR 12 TN 12 SD 9 EV 13
5 PR 10 PR 9 RH 10 RH 10 RH 10 TN 9 PR 11 RH 11 EV 11 TN 9 TN 12

Table 2.6: Ranking of the top five features for the selected RF model across all temporal scales. Each feature is
accompanied by its importance, which has been calculated as the mean of 10 runs. Features involving atmospheric
water levels (i.e. evapotranspiration and relative humidity) are found to be relevant to model tick activity in
all temporal scales. These results are consistent with the ones provided by the general model. Interestingly,
evapotranspiration is marked as the most relevant feature in very short-term time scales, whereas relative humidity
is a better predictor for long time scales.
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2.5.2 Feature importance across multiple time scales

The model structure selected in the previous section is used here to find
out the best temporal scale to model AQT. To do so, we train one RF model
for each of the 11 time scales described in Section 2.3.2 and we execute the
model with a subset of features of the input dataset: we keep all the non-
weather features (a total of 24 features) and we add the weather features
corresponding to that particular time scale (7 features). Thus, we run the
modelling process 11 times with 31 features, providing at each iteration
the feature importance. In this way, it is possible to get new insights about
whether the importance of the features to model AQT change over increasing
temporal windows, which might guide the choice of a particular time scale
to model AQT optimally.

Table 2.6 shows the importance of the features at multiple time scales. Each
column of the table shows the top five most important features (out of 31)
for each of the selected time scales. To ease the description of results at
multiple time scales, we restrict the ranking of features to the most relevant
top five. This table shows that the most explanatory features for all time
scales are weather-based ones and that non-weather features (i.e. vegetation,
land cover, tick habitat, mast years) do not significantly contribute to model
tick dynamics. Evapotranspiration, relative humidity and the maximum
temperature appear to be the most important features. EV better performed
in the short-term experiments (i.e. temporal aggregation from 1 day to 4
days before the sampling date), whereas RH is the best one in the long-term
experiments (i.e. seasonal and annual temporal aggregation). TX appears to
be the best predictor in the remaining experiments.

2.5.3 Mapping tick dynamics

The RF model selected in Section 2.5.1 was used in a country-wide exercise
to produce three map products: the mean and standard deviation of AQT
for the year 2014, and the AQT on a date expected to be close to the peak
activity of ticks in nymphal stage. We selected the year 2014 because it is the
last of the AQT time-series.

Since the flagging sites are located in forested areas, we identified forested
pixels in the land cover map and extracted their locations. Then, to this
selection of pixels, we applied the process of feature engineering described
in Section 2.3.2 for each day of the selected year, thus obtaining 365 country
level datasets. The model was retrained with the 86 features available at the
country level (i.e. remove tick habitat and mast year features) and tested
with the newly created datasets for forested pixels. The predictions yielded
by the model were transformed into raster format to obtain three products:
first, we obtained the annual mean and standard deviation of AQT based on
the daily computed values, which identifies at the country level regions with
higher or lower tick activity; second, we obtained the temporal profile of the
pixels containing the sites to visualize the daily seasonality of AQT; third,
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we mapped the AQT for a particular day of the year, which is expected to be
close to the peak of tick populations in the nymphal stage.

Figure 2.5 illustrates the annual mean (left) and standard deviation (right)
of predicted AQT. A visual inspection of the mean map shows that there
are more AQT in the eastern half of the country (i.e. orange to red regions),
especially within the provinces of Overijssel and Drenthe. The standard de-
viation map depicts the spatial variability of the predictions: regions in light
green and yellow show areas where the predictions oscillated significantly
above or below the mean AQT, whereas regions in dark blue show locations
where the prediction is stable throughout the year. Figure 2.6 shows the
daily temporal evolution of AQT for the grid cells where the flagging sites
are located. This figure also shows three additional elements: the long-term
monthly average for all sites obtained from the boxplots, the long-term
monthly average for the site, and the 2014 monthly average for the site. Note
that there are 15 sub plots, because each grid cell overlaps the two transects.
This allows to visually identify sites whose predicted AQT is (dis)similar to
the averages. Figure 2.7 shows the predicted AQT for June 1st, which we
expect to be close to this peak population of nymphs. As seen, the highest
predictions of AQT are predicted in the east half of the country, but there is
another spot of high activity in the southern province of Noord-Brabant.
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Figure 2.5: Predicted mean (left) and std. dev. (right) of AQT for 2014. The map of mean AQT ranges 
between 0 (green) and 32 (red) and shows how the highest values of tick activity during 2014 are 
concentrated within the provinces of Overijssel and Drenthe. The map of the std. dev. of AQT ranges 
between 3 (dark blue) and 26 (yellow) and shows the deviation from the mean of all forested pixels in the 
country. The east half of the country presents higher variations, indicating that tick activity in this areas 
may change significantly. Predictions along the coastal provinces (i.e. Noord-Holland, Zuid-Holland and 
Zeeland) do not seem to deviate significantly from the predicted mean.35
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2.6 Discussion

Ensemble learning algorithms such as RF can model non-linear relationships
in complex natural processes. This data-driven algorithm provides an in-
dication of the relative feature importance of the predictors involved in the
analysis. This is particularly useful to model processes in which the main
drivers are unknown. RF has a robust and stable behavior when handling
potentially noisy data, a condition often occurring in volunteered datasets,
like our AQT time-series. However, since RF is not a time-aware method, it
performs sub optimally when modelling seasonal phenomena. In this work,
we provide a methodological innovation to introduce time-awareness in RF
by transforming our target AQT signal into a monthly bounded one, thus
helping the trees in the ensemble to distinguish time.

The study on the importance of the features show that water-related features
(i.e. evapotranspiration and relative humidity) are better predictors of the
tick activity than temperature or vegetation. This suggests that the tick
activity may be driven by atmospheric water levels, which are crucial for
tick survival. A closer look of the model performances regarding statistical
metrics, indicate that the model can fit the AQT signal for half of the transects,
but the fitting decays for the other half. A hypothesis that may explain
this difference is that the tick activity may be driven by different variable
depending on the geographic location: the sites with a higher R2 score might
be strongly influenced by atmospheric conditions, whereas the sites with a
lower R2 score might be driven by variables currently not included in the
model (e.g. wildlife). In addition, the analysis of the feature importance at
multiple temporal scales is consistent with the results of the general model,
because water-related features are spotted as the most prominent features
across all temporal scales.

The two major hurdles encountered during this experiment are related with
the weather uniformity in the country and the low spatial resolution of the
available environmental datasets. First, the low elevation and the small
size of the Netherlands make the country very uniform in terms of weather
and vegetation variables (e.g. reduced north-south temperature gradient,
high and persistent “greenness”). This means that vegetation indices, often
included in previous studies in the field, are not discriminative enough to
model AQT. Second, the available weather and vegetation datasets have a
spatial resolution which is too coarse to model tick dynamics, a phenomenon
which was found to be very local as suggested in (Estrada-Peña et al., 2012).
This might have an impact when characterizing the AQT with the environ-
mental datasets: different locations with similar weather conditions yield
an uncorrelated number of AQT, masking the relationship between weather
and ticks and increasing the errors of the model. To mitigate these effects
and decrease the average error of the models, we recommend using weather
datasets at a finer resolution or involve more volunteers in this long-term
citizen science project to get more data.
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Figure 2.6: Daily predicted AQT for the locations of the flagging sites. Each
subplot contains four curves: the long-term monthly average (grey) across all
sites, the long-term monthly average for the flagging site (dark red), the 2014
monthly average for the flagging site (black), and the daily predicted AQT for
2014 yielded by RF (blue). Note that in 2014, the sampling stopped in Nijverdal
and Eijsden.

2.7 Conclusion

Citizen science initiatives allow monitoring of environmental phenomena
via crowdsourcing, and produce geospatial data collections that can support
scientific analysis. The question at the beginning of this work was whether
the collective effort carried out by a group of volunteers, would translate
into predictive models estimating tick activity in the Netherlands. Results
show that combining volunteered AQT data with environmental variables
and modelling them with a time-aware version of RF, can capture most of
the spatial and temporal variation in the number of active questing ticks in
the country.

The combined analysis of volunteered AQT and environmental variables
consistently spotted that water-based features, especially evapotranspiration,
play a crucial role in predicting AQT. In this sense, further studies in the field
of tick ecology should consider adding, besides the classical temperature
and vegetation indices, water-based features. Aside identifying the most
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Figure 2.7: Predicted AQT at the country level for June 1st of 2014. The map
ranges from low values of tick activity (dark green) to high values of tick activity
(red). The peak populations of ticks in the nymphal stage reaches its maximum
between May and June depending on the weather conditions of the year. Thus,
we expect this date to be a close depiction of the tick activity at its maximum. The
highest AQT are predicted in the east half of the country, in particular within the
province of Drenthe, whereas coastal regions present lower levels of tick activity.
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important variables to model tick dynamics, this study has produced a model
that, scaling up from volunteered observations, can map daily tick activity at
the country level. The use of this model may open the way to study spatial
patterns and seasonal trends at the national level, not only tick activity, but
also of other non-linear natural phenomena, such as phenological events or
species distributions.

With these new insights, we envision different applications in the field of
tick related ecological research, nature management and public health. In
ecological research, our tick activity model allows the identification of tick
hotspots and of the sampling sites where the model fit was good or bad,
which can be used to better select new monitoring sites. With the model
we can better analyze the impact of extreme weather events and climate
change on tick dynamics and population development. In nature manage-
ment, these maps can help owners of green areas to be more aware of the
variation of tick dynamics in the areas they are responsible for, which can
lead to a better planning in space and time of different forestry manage-
ment activities. In tick hotspots with many visitors, nature managers could
consider to more frequently mow the grass directly next to walking and
cycling trails or picnic areas to try to reduce tick populations. In public
health, this model can be used to better inform people that visit natural
areas on current tick activity levels. In combination with weather forecasts
also detailed forecasts for the coming days can be given. The proposed
model predicting tick activity will replace the very basic tick activity forecast
currently implemented in the Dutch citizen science website Tekenradar (Tick
radar, www.tekenradar.nl).The spatially detailed tick activity forecasts are
expected to raise awareness among the general public and many different
stakeholders involved in the problem of Lyme disease. Having more detailed
information hopefully translates in an increase of protective and preventive
measures when visiting forested areas. Overall, we expect that a better
understanding of tick dynamics may contribute to design interventions to
reduce the incidence of Lyme disease.
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3Identifying environmental and
human factors associated with
tick bites using volunteered
reports and frequent pattern
mining

3.1 Introduction

Tick populations and tick-borne infections like Lyme borreliosis are steadily
increasing since the mid-1990s. This concurrent increase has been observed
in different European countries (Heyman et al., 2010; Jaenson et al., 2009),
in the United States (Subak, 2003; Tuite et al., 2013) and in Canada (Ogden
et al., 2014). In the Netherlands, more than 20,000 people per year develop
Lyme borreliosis (Hofhuis et al., 2015b), and its disease burden is substantial,
especially in patients that develop long-term persisting symptoms.

Global environmental change is pushing the distribution of ticks northwards,
modifying its spatio-temporal dynamics and increasing the abundance of
ticks in nature (Medlock et al., 2013). Previous research efforts in the field
of mathematics, biology and environmental modelling have found a tight
relationship between wildlife (Ostfeld et al., 2006), environment conditions
(Swart et al., 2014; Tack et al., 2013), weather (Medlock et al., 2013) and tick
populations. However, the increase of tick populations does not necessarily
translate in more tick bites, because we need to account for outdoor human
recreational activities, which are a crucial factor in Lyme disease monitoring.
Outdoor recreational activities (e.g. visit to natural areas, parks or gardens)
increase the exposure of humans to ticks and also the chances of getting a
tick bite while performing outdoor activities. Thanks to advances in ICT
it is now possible to collect geospatially-enabled tick bite reports and start
citizen science projects with information directly provided by people that

This chapter is based on: (Garcia-Martí et al., 2016)
Available at: https://doi.org/10.1111/tgis.12211
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have been bitten by a tick. This geospatially-enabled data is also known as
Volunteered Geographic Information or VGI (Goodchild, 2007a).

Despite the well-known problems associated to VGI, such as quality and
accuracy (Goodchild and Li, 2012; Mehdipoor et al., 2015) a remarkable
number of volunteer projects have been created or re-invigorated in the
last decade. Comparatively however, the number of efforts incorporating
volunteer information to a scientific workflow is still limited (Mehdipoor
et al., 2015; Rosemartin et al., 2015). In 2006, Wageningen University started
collecting volunteer tick bites through the educational phenology platform
Natuurkalender (NK; ‘nature’s calendar’, www.natuurkalender.nl), gather-
ing nearly 10,000 volunteered tick bites in six years. This pioneering project
attracted the attention of the Dutch National Institute for Public Health and
the Environment (RIVM) and in 2012, the platform Tekenradar (TR; ‘tick
radar’, www.tekenradar.nl) was launched together with Wageningen Uni-
versity. TR is a web platform especially conceived to inform citizens about
the risk and prevention of tick bites and at the same time a citizen science
platform to collect volunteer tick bites and erythema migrans 1 observations.
In a bit more than three years, TR has collected nearly 25,000 volunteer
observations. Both projects, to the best of our knowledge, are the first citizen
science project in the world that specifically focuses on ticks and tick-borne
diseases. At present there is an insufficient understanding of the factors that
determine the tick bite risk. Previous research efforts based on volunteered
tick bite reports have identified risky landscapes, activities and vulnerable
age groups (Mulder et al., 2013). However, no studies have simultaneously
analyzed the importance of weather data, remotely-sensed vegetation in-
dices and volunteered data to identify environmental and human factors
associated to tick bites and to map them in the geographic space. In this
research we will tackle these issues by identifying frequent environmental
patterns associated to tick bite reports. This research opens the way for
creating a national tick bite risk map and for designing interventions that
will decrease the number of tick bites and reduce the incidence of Lyme
disease.

3.2 Data and methods

3.2.1 Volunteered tick bite reports

This study is based on the collection of tick bite reports collected by the
NK and the TR initiatives. The NK dataset contains 9,256 observations
registered between 2006 and 2012 and the TR dataset contains 24,584 obser-
vations registered from March 2012 to November 2014. This relatively large
number of tick bites reports was achieved because both initiatives received
substantial 2 in the Netherlands (van Vliet et al., 2014). The TR attracted

1Red rash around the tick bite, indicative of infection
2https://www.rivm.nl/documenten/tekenradarnl-webplatform-over-tekenbeten-en-

ziekte-van-lyme
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more observations than NK mainly due to the fact that TR also provided the
possibility to send in ticks for analysis and because it included a daily and
dynamic spatially specific tick activity forecast that attracted lots of media
and visitors.

The tick bite reports were first filtered to remove records without a geo-
graphic coordinate (i.e. volunteer did not specify a location) and to remove
records outside of the boundaries of the Netherlands. After that, a total of
28,865 valid observations were found. Figure 3.1 shows the geographical
distribution of all the reports for the period 2006-2014. There is a clear spatial
clustering along the coast and in the center part of the country, which are
likely driven by human activity patterns during leisure time in combination
with tick densities in nature; de Hoge Veluwe National Park, the Utrechtse
Heuvelrug forest, the recreational areas of the West Frisian Islands and along
the coast, are typical tick habitats and have a high human recreational pres-
sure.

The filtered collection of tick bite reports was used to extract the volunteered-
related data reported along with the tick bite report: date, year of birth, ad-
dress, type of environment where the tick bite occurred (e.g., forest, garden,
park) and activity the person was carrying out when he/she got bitten by
a tick (e.g., walking, picking fruits, gardening). See Section for more de-
tails about these categories. The address field is free-text and volunteers
report their home address with more or less detail. Therefore, some records
contain a postal code with 6 digits (which identifies a range of houses or
buildings in the same street) and some others have a coarser resolution,
by only indicating the neighborhood in a city or the city itself. To create a
more standardized data set, we used geocoding services to extract the postal
code, street address, municipality subdivision, municipality and province
whenever possible. More specifically, we used the geocoding service from
the Dutch National Spatial Data Infrastructure (PDOK3). This service ex-
poses a REST interface that receives a string of data and returns a XML file
with the structured address belonging to this string.

Finally, we re-projected the original coordinates of the TR dataset, which
were in decimal degrees (EPSG:4326, WGS84), to the official coordinate
system of the Netherlands (EPSG:28992, RD_New). The reason for this
change is that NK reports were already in RD_New and also because GIS
software is usually faster with projected coordinates.

3.2.2 Environmental data

Tick-related literature indicates that temperature, precipitation, soil mois-
ture, air humidity and vegetation type determine both tick presence and
tick dynamics in a given area. In the following sections we describe the
environmental datasets used to represent these variables.

3https://www.pdok.nl
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Figure 3.1: Geographic projection of the volunteer tick bites observations for
the period 2006-2014. Each black dot represents a tick bite report.
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3.2.2.1 Weather data

Weather data was obtained from the Royal Netherlands Meteorological In-
stitute (KNMI 4). Concretely, we used daily gridded (1 km) temperature and
precipitation data for the period 2006-2014. These weather layers are an
interpolation of 34 automatic weather stations scattered across the country.
Temperature determines the start of the questing season, tick population
development rate and the survival probability through winter (Ogden et al.,
2006; Randolph et al., 2008). Precipitation is necessary during the hot sum-
mer season to sustain tick populations (Bennet et al., 2006). Besides that,
precipitation during spring (especially in May) may contribute to increase
the prevalence of tick bites and Lyme disease during summer (Jore et al.,
2014). Lyme disease cases in the northeastern United States were positively
correlated with precipitation during May and June of the same years, but
not with the precipitation of the previous ones (McCabe and Bunnell, 2011).

3.2.2.2 Vegetation indicators

Ticks are particularly sensitive to the thickness of forest canopy and soil
moisture at the litter level (Medlock et al., 2013). Earth observation satellites
enable monitoring these environmental conditions over large areas. This is
why tick populations have been modeled by combining weather variables
and satellite-derived vegetation indices (Barrios et al., 2012; Estrada-Peña
et al., 2012). In this research, we used three vegetation indices: the Normal-
ized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index
(EVI), and the Normalized Difference Water Index (NDWI).

NDVI has traditionally been used to measure vegetation greenness and
density. Previous studies have shown that the fluctuations in NDVI correlate
well with the number of nymph and adult ticks at different moments of the
year (Estrada-Peña, 2001; Randolph, 2000). More recent studies show that
novel vegetation indices like the EVI are better indicators of tick abundance
(Estrada-Peña et al., 2011) and that indices that measure the water content of
vegetation (e.g. the NDWI) might outperform NDVI and EVI for tick popu-
lation modelling (Barrios González, 2013). All three vegetation indices were
obtained for the period 2006-2014 from the Google Earth Engine 5 6 (GEE)
platform. GEE is a free image processing cloud platform for environmental
analysis, which aggregates products coming from different Earth observa-
tion sensors, such as the Moderate-Resolution Imaging Spectroradiometer
(MODIS). MODIS provides daily global imagery at 250, 500 and 1000 meters
of spatial resolution. However, due to the persistent cloud coverage over the
Netherlands we used MODIS composite products. In particular, we used the
MCD43A4 product, which provides the NDVI, EVI and NDWI indices as
derived from daily surface reflectance at 500m spatial resolution and using
data of the previous 16 days. This product is released every 8 days so there
is a 50% temporal overlap between each composite.

4https://data.knmi.nl/portal/KNMI-DataCentre.html
5https://ee-api.appspot.com
6https://earthengine.google.org
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3.2.2.3 Land use and soil data

Previous works have shown the influence of land use and landscape compos-
ition on the spatial distribution of Lyme disease (Lambin et al., 2010). Land
use is related to human exposure because it determines human presence in
a particular location, e.g. recreation, agriculture, urban area (Linard et al.,
2007). The chances of humans being bitten by ticks depend on the exposure
and interaction of people with different land uses, especially forested areas
(Vanwambeke et al., 2010). Soil type favors the growing of certain types of
trees that, in turn, are more or less capable of sustaining wildlife. For an
instance, previous works have shown that coniferous stands tend to present
lower tick densities when compared to deciduous forests (Tack et al., 2012).

In this study, land use information was obtained from a map produced by
the Dutch Central Bureau for Statistics (CBS). This map (BBG2008) contains
14 different types of land use, however, here we grouped classes referring to
transportation and built-up areas and several agricultural land uses to create
a map with the following categories: agriculture, built-up, dry terrain, forest,
recreation, transportation, water and wet terrain. We also used the national
soil type map produced by Alterra 7, a research institute of Wageningen Uni-
versity. This map contains 10 different types of soil, which were also reduced
to 8 classes: clay, built-up, gravel, loam, peat, sand, water. We also included
a Physical Geography layer that contains the 10 main physiographic units:
clay area, dunes, fenlands, Dutch hills, inlets, intertidal zone, river lands,
sandy soils, North Sea and others.

3.2.3 Mining frequent patterns

The data mining workflow designed to identify frequent patterns in the tick
bite reports consisted of three main steps: 1) generation of features from the
environmental datasets and volunteered tick bite reports; 2) classification of
the features with the Jenks Natural Breaks algorithm in order to discretize
the input data and 3) extraction of the most frequent patterns using the
AprioriClose algorithm.

3.2.3.1 Feature engineering

Feature engineering is a typical machine learning process to obtain new
variables that incorporate the knowledge of a particular domain to create
prediction and classification models. In our case, we obtained features from
the original data sources mentioned in Sections 3.2.1 and 3.2.2. The aim of
these features is to characterize each tick bite report using the environmental
and volunteered datasets. In this work we are using 39 features (Table 3.2)
classified in six different types: Temperature (T), Precipitation (P), Vegetation
(V), Volunteer (R), Soil (S) and Distances (D). In addition to the type, each of
the features can be continuous or discrete, depending if they are representing
a variable aggregated in a particular time window or expressing a point
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ID Feature Name Short Description Type

1 Accspr Acc. of spring mean temperature T
2 Accsum Acc. of summer mean temperature T
3 Accaut Acc. of autumn mean temperature T
4 accwin Acc. of winter mean temperature T
5 Accd Acc. of temperature from 1st Jan. until the tick bite date T
6 d20 No. of days in a year with temperature over 20°C T
7 d25 No. of days in a year with temperature over 25°C T
8 d30 No. of days in a year with temperature over 30°C T
9 precspr Acc. of spring precipitation P
10 precsum Acc. of summer precipitation P
11 precaut Acc. of autumn precipitation P
12 precwin Acc. of winter precipitation P
13 norainspr No. of days in spring without precipitation P
14 norainsum No. of days in summer without precipitation P
15 norainaut No. of days in autumn without precipitation P
16 norainwin No. of days in winter without precipitation P
17 ndvispr Acc. of NDVI in spring V
18 ndvisum Acc. of NDVI in summer V
19 ndviaut Acc. of NDVI in autum V
20 ndwiwin Acc. of NDVI in winter V
21 evispr Acc. of EVI in spring V
22 evisum Acc. of EVI in summer V
23 eviaut Acc. of EVI in autumn V
24 eviwin Acc. of EVI in winter V
25 ndwispr Acc. of NDWI in spring V
26 ndwisum Acc. of NDWI in summer V
27 ndwiaut Acc. of NDWI in autumn V
28 ndwiwin Acc. of NDWI in winter V
29 weekday Day of the week when the tick bite occurred R
30 Woy Week of the year when the tick bite occurred R
31 Env Type of environment where the tick bite occurred R
32 Actv Type of activity carried out when the tick bite occurred R
33 agegroup Age group of the volunteer R
34 landuse Type of land use in the location of the tick bite S
35 Soil Type of soil in the location of the tick bite S
36 Fisio Physiographic unit in the location of the tick bite S
37 dforests Distance to the closest forest D
38 drecreation Distance to the closest recreation area D
39 dbuiltup Distance to the closest built-up area D

Table 3.2: List of features used in this work. Column type stands for: T
(Temperature), P (Precipitation), V (Vegetation), R (Volunteer’s reports), S
(Soil), D (Distance)
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value, respectively. The following subsections detail the features used in this
experiment.

Features derived from the volunteered tick bites reports Features dir-
ectly derived from the volunteered reports (indices 29-33, Type R) and from
the location of the tick bites (indices 37-39, Type D) are shown in Table
3.2. First we extracted the type of environment and activity the volunteer
reported and we encoded both of them in eight different categories. The
environment-related categories which the volunteer can report online, com-
prise the following fixed categories: dunes, forest, garden, heath lands,
meadow, urban park, wetland and others. Note that this feature is subject
to the user knowing where the tick bite occurred and about his/her percep-
tion/knowledge about natural spaces. The activities the volunteer can report
online consist of the following categories: gardening, pic-nic, picking fruits,
playing, walking, walking with the dog, others and not reported. The age
of the volunteer was classified into three categories: children (0-17), adults
(18-60) and elderly (>60). This process of aggregating data to a coarser level
of detail, eases the process of finding patterns in data. We also extracted the
day of the week when each tick bite occurred and we calculated the distance
to the closest forest patch, recreational area and urban area with the aim of
identifying risky areas.

Features derived from environmental data The weather and satellite-
derived vegetation indices were aggregated to a seasonal scale (i.e. spring,
summer, autumn and winter), with the intention of capturing intra annual
clusters in tick bites reports. Using this temporal scale allowed us to obtain
two different types of climatic and vegetation features: continuous accu-
mulative features and discrete features. The accumulative features consist
in obtaining the seasonal accumulation of the variable by adding the daily
values for each tick bite location using the weather (temperature and precip-
itation) and vegetation (NDVI, EVI and NDWI) datasets. This accumulation
captures the seasonal variability in each tick bite location and provides hints
about if this place is “greener” or “warmer” than other places in the Nether-
lands. In this way, we obtained 20 accumulative features (indices 1-5, 9-12
and 17-28 in Table 3.2, Type T, P and V respectively). We also calculated
the temperature accumulation between 1st of January until the date of the
tick bite, with the aim of capturing the temporal structure associated to each
tick bite report. For instance, tick bites occurring in spring have a smaller
temperature accumulation than those from autumn.

Discrete features are counters of days where a particular condition was
matched (indices 6-8, 13-16 in Table 3.2, Type T and P respectively). Human
activities in nature might be the main driver for tick bites occurrence, there-
fore, being able to identify if good weather conditions are directly linked
with tick bites, could provide solid hints on how to model this phenomenon
in the future. For each tick bite location in the dataset, we used the daily

7http://www.geodata.alterra.nl/Grondsoorten.htm
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weather data to count the number of days per season above three temper-
ature thresholds (i.e. 20, 25 and 30 degrees Celsius) and we counted the
number of days per season with no rain registered. Finally, we also extracted
the type of land use, soil type and physiographic unit (indices 34-36, Type S
in Table 3.2). These three features contain discrete data in the form of class
label categories (e.g. sandy soil, agricultural lands or built-up area).

3.2.3.2 Classification of features

The feature engineering process (Section 3.2.3.1 ) resulted in a table with 39
features (Table 3.2) where each row is unique and, therefore, it is difficult to
find frequent patterns. To overcome this problem, we used the Jenks Natural
Breaks (Jenks, 1967) algorithm to convert all non-categorical features into
discrete classes, because categorical features (e.g. land use, soil type, activity
carried out by the volunteer) are already classified.

The Jenks Natural Breaks (JNB) algorithm finds optimal class thresholds by
minimizing the intra cluster variance and maximizing the distance between
classes in continuous features. The chosen Python implementation of this
algorithm 8 needs an initial parameter to find the number of breaks in data.
The optimal number of classes was found by iteratively testing all values
between 2 and 10 and calculating the goodness of variance fit (GFV) of
the resulting classification. The GFV measures how well a statistical linear
model fits data by yielding a value between 0 (worst fit) and 1 (best fit). We
selected as optimal the first classification that yielded a GFV equal or larger
than 0.8. Results were visualized using a stacked bar graph (Figure 3.2) that
shows the classes found for each of the features.

3.2.3.3 Frequent patterns in tick bite locations

Frequent environmental conditions associated to tick bites were mined using
the closed form of Apriori algorithm. This version applies a closure oper-
ation to features, by limiting the search space to frequent closed item sets
which is usually smaller than the frequent itemsets. This means less opera-
tions need to be done, improving the performance of the original algorithm.
The Apriori algorithm (Agrawal and Srikant, 1994) is one of the most pop-
ular algorithms to discover frequent association rules in large datasets. A
frequent association rule is defined as an ordered item set that appears in
data in, at least, minsup percent (0%-100%) of the data. The notion of this
minimum support, minsup, is an important concept in the Apriori algorithm.
Support is the number of repetitions an item set has been seen in input data.
For each tick bite observation (item set) appearing in data, a new node is
created and propagated down the tree until a leaf or root position. Each
node contains a “hit counter” with the number of repetitions of the item set
that is updated as long as new tick bite observations are read. The minimum
support defined by the user implies that only nodes containing a number
of repetitions bigger than this threshold are kept for the patterns extraction.

8https://github.com/perrygeo/jenks
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Figure 3.2: Number of tick bite reports per classified feature. For each
feature, the numbers represent the upper and lower thresholds of the classes
identified by the JNB algorithm. Temperature thresholds are expressed in
degrees Celsius, precipitation in millimeters, vegetation indices in seasonal
accumulations, discrete features are expressed in either categories or in
number of days and distances are in meters. For a complete description of
the features see Table 3.2.
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Thus, if this parameter is set to low values, it means that the threshold to
include a pattern is also low, and the patterns obtained are longer in number
of items. Contrarily, if the parameter is set to high values, it means that the
user is only interested in keeping patterns with a very high frequency, and
this is prone to produce shorter patterns.

One of the major drawbacks of Apriori is its slow performance for moder-
ately big input transactions. The number of candidates generated grows
exponentially and thus its efficiency is low. Therefore, we have used in this
work an enhanced version of the original algorithm that limits the search
space to item sets that accomplish a closure property, improving its general
performance. AprioriClose (Pasquier et al., 1999), works by only generating
candidates that are not included in any superset having exactly the same
support. Thus, the output of this algorithm guarantees that only the maximal
superset values are generated, reducing the number of patterns obtained.

The chosen platform for the frequent pattern mining operation is SPMF 9

(Fournier-Viger et al., 2014), which is a Java-based open-source platform spe-
cialized in pattern finding. The closure operation in AprioriClose algorithm
implies that an operation with two frequent patterns, yields a pattern that
is also a frequent pattern. This rule reduces the search space and there-
fore, the number of operations performed by the algorithm, improving its
performance compared to the original algorithm.

AprioriClose requires a matrix of integers, therefore, the discretized table
with JNB was encoded accordingly for the processing. For this purpose, we
encoded each observation in 39 items of 6 digits as follows: the first pair of
digits was fixed to 99, to avoid filling with zeros the header of the number;
the second pair of digits indicated which of the 39 features is in use and
the last pair of digits indicated the class within the feature. In this work we
used a minimum support of minsup 25%, because constraining the algorithm
more by increasing minsup only produced patterns of length 1 or 2, which
are not informative.

To study the effect of data imbalance, we performed the frequent pattern
operation in both collections separately with two goals: 1) identify if both
collections identify consistently the relevant features and 2) analyze if there
is any transference of information from NK to TR that can set up time-
persistent patterns. Both points are required to know if the data imbalance
favorable to TR is actually driving the tick bites phenomenon. The same
process of feature engineering described in Section 3.2.3.1 was applied to
NK and TR separately to obtain the corresponding table of features. After
this, we applied the same Jenks Natural Breaks classification used with the
tick bites reports and mined the most frequent patterns using AprioriClose
with the same input parameter (minsup=25%).To ease the visual explora-
tion of patterns, we have used three types of graphical elements: 1) heat
maps in Python to summarize the patterns produced in each experiment;

9http://www.philippe-fournier-viger.com/spmf/index.php
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2) interactive ring maps in Javascript to give a general overview of the rel-
evance of features in patterns; 3) maps to display two selected patterns in
the geographical space. Heat maps is a compact representation of patterns,
useful to explore the frequency of appearance of the features and its classes.
Ring maps provide a quick overview of the type of the patterns produced
by AprioriClose. Ring maps depict patterns in a series of concentric rings,
where each ring represents a feature identified in the pattern. Each ring is
divided in segments that will contain the type of a specific feature. We have
assigned to each type of feature a different color: Red represents temperature
features (Type T), blue is precipitation (Type P), green are the vegetation in-
dices (Type V), pink are the volunteer features (Type R), yellow are distance
features (Type D) and brown represents soil type and land use (Type S). The
size of the segments is variable, depending on the number of patterns found
using a particular feature. Thus, interpreting ring maps requires moving
from the inner ring to the outer ring, only moving to a new segment if it is
adjacent to the previous one, to understand the combinations of features
found in data. Maps are helpful to explore the spatio-temporal distribution
of the tick bites reports associated to a particular pattern. For this purpose,
we have selected two time-persistent patterns (i.e. occurring every year in
the time series) and projected them in the geographical space.

3.2.4 Frequent environmental patterns in the Netherlands

The patterns mined from the tick bites reports collection are patterns ex-
pected to be capturing environmental conditions associated to tick bites,
however, they might also contain typical conditions found in the Nether-
lands. To be able to remove such patterns that are just typical or average
Dutch conditions we mined patterns in a pseudo-random locations dataset
and compared the patterns yielded by the two collections. The underlying
idea is that patterns occurring in, both, the tick bite reports and the random
locations are likely a reflection of the average situation in the Netherlands
and thus, are not discriminating and should be removed from further ana-
lysis.

The pseudo-random locations were generated by choosing a random point
within a 10 kilometer buffer around each tick bite location. For the calcu-
lation of the features as described in Section 3.2.3.1, this random point got
assigned the date of the corresponding tick bite report. We thus generated
the “validation” random dataset keeping a certain spatio-temporal structure
resembling the tick bites distribution; this is stricter than generating random
points in space and time, as these might fall on land types that clearly are
non-tick habitats and/or in time intervals that fall outside of the typical
activity period – e.g. hard freeze periods. It is important to highlight that
volunteered-based features (Type R, Table 3.2) were not included in this
validation experiment, due to the impossibility of knowing them for these
particular locations.
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The features obtained from the pseudo-random locations were first discret-
ized using the JNB classification obtained for the tick bite reports and then
we mined the most frequent patterns using AprioriClose with a minsup of
25%. Like for the tick bites, results are shown using heat maps and ring
maps.

3.3 Results

3.3.1 Classification of features

The application of the JNB algorithm to the non-categorical features defined
in Section 3.2.3.1 yielded both the optimal number of classes for each feature
and their upper and lower break values. Using these break values we created
a discretized version of the features. Figure 3.2 shows the number of tick
bite reports per feature and per class. Features are presented in the same
order shown in Table 3.2 (i.e. temperature, precipitation, vegetation, volun-
teer, soil and distances) and, for readability reasons, seasonal temperature
accumulations were divided by 90 (number of standard days in a season) to
calculate averages, as these are easier to interpret.

Figure 3.2 also shows JNB discretized most of the non-categorical features
into 3 classes, although some of them were discretized into 2 (i.e. d25) or
4 classes (i.e. NDWI indices). Additionally, it shows that accumulative
features tend to have a similar number of tick bites reports per class whereas
discrete features have differing amounts of tick bites per class. For instance,
temperature and precipitation accumulations in spring, autumn and winter
contain a similar number of tick bites per class. Therefore, it is not possible
to study the effect of a warm/cold or rainy/dry seasons over the number
of tick bites reports using this kind of features. However, discrete features
seem to be more discriminative. For instance, the features that count the
number of days with a a threshold (i.e. d20, d25, d30 in Table 3.2), show
classes that contain a significant portion of the tick bites reports. Here we see
the expected positive correlation between warm summers and the number
of tick bites. Moreover, features that count the numbers of non-rainy days
(i.e. norainspr, norainsum, norainaut, norainwin in Table 3.2) show
that the drier the season, the more tick bites.

Vegetation features show that most of the tick bites occurred either close to
the peak of greenness of deciduous and mixed forests or in evergreen forests,
because the NDVI and EVI values are relatively high. The NDWI-based
features indicate that most tick bites occur in medium-to-high moisture
levels, which is in line with the fact that ticks need moisture conditions to
survive (Barrios et al., 2012). In addition, the fact that people tend to do
recreational activities in nature during the summer break (which is in an
advanced greenness state), could also explain that the majority of tick bites
reports are produced in similar vegetation and moisture conditions.
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The feature landuse shows that most of the reports come from forests, built-
up areas (including gardens and parks) and agricultural lands. Landuse
also shows that tick bites are distributed evenly across these three classes,
meaning that not only forests, the natural habitat for ticks, pose a risk for
humans. The features soil and physio show that most of the tick bites
occur in sandy soils. Distance features, dforests, drecreational and
dbuiltup, show that the majority of tick bites occur quite close to these
types of land uses. Concretely, most volunteers report their tick bites from
locations that are at a maximum distance of 450 m of a forest, 525 m of
a recreational area or 575 m of a built-up area. In fact, the number of
tick bites produced in built-up areas and the information derived from the
distance-based features, suggest that most of the tick bites occur in peri-
urban residential areas, where different types of landscape are mixed.

Regarding the volunteer features, the week of the year in which the tick
bite was reported (woy) shows that most tick bites occur between weeks
19 and 26 (i.e. May to mid-June) and weeks 26 to 34 (i.e. mid-June to mid-
August). Remarkably, the number of tick bite reports for these two periods
is similar. The feature dayofweek shows that most of the observations are
reported on Saturday and Sunday, when people have more time for outdoor
leisure activities, as confirmed by the features actv and env, which show
that most volunteers were gardening, playing or walking in forests. The
feature agegroup shows that most of the reports refer to children (below 18
years of age) and elderly people (older than 60 years of age). These results
might be used by decision-makers to target further Lyme-disease prevention
campaigns.

3.3.2 Mining frequent patterns

This section presents the results of applying the AprioriClose algorithm to
the features associated to the complete tick bites collection (NK+TR). After
that, and to evaluate and validate these patterns, we present the results of
separately mining the patterns associated to the NK and TR datasets to study
the impact of data imbalance and mining the patterns associated to random
locations to determine common environmental conditions in the study area.

3.3.2.1 Frequent patterns associated to all the tick bites reports

The application of AprioriClose to the JNB-classified features associated to
tick bites locations resulted in a total of 429 patterns with lengths ranging
from one to four items. Notice that patterns with one and two items are
deemed uninteresting. The list of patterns yielded show that there is an
apparent tie between continuous (i.e. accumulations and distances) and
discrete (i.e. counters and categories) features. Out of the 62 patterns with
three and four items, 31 contain two or three continuous features and 31 con-
tain two or three discrete features. However, out of the 31 with continuous
features, only four contain temperature accumulations and the rest mainly
contain distance features. Regarding the discrete features, the combinations
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of the number of warm days with non-rainy days appear 8 times in pat-
terns. This means that spring and summer seasons with few rain and warm
weather, which are more favorable conditions for outdoor activities, are
related to a higher number of tick bites regardless of temperature accumula-
tions. In this case, distance features also appear in a high number of patterns,
a behavior in line with the big number of tick bites produced at a maximum
distance of 500 meters (Figure 3.2) away of a forest, recreational or built-up
area. Figure 3.3(a) shows a heat map summarizing the 62 patterns produced
with all tick bites locations. Horizontal axis represents the 39 features used
in this work (Table 3.2) and the vertical axis the classes that JNB identified
(Figure 3.2). The grayscale assigns a frequency to the features and classes
found frequent after mining patterns with AprioriClose. Note that feature
soil has been moved to a different position to make the chart more compact.
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# Feature Class Feature Class Feature Class Frequency

1 accwin 0C – 3C d25 14 – 41 days d30 2 – 6 days 9669
2 accwin 0C – 3C d25 14 – 41 days norainsum 49 – 69 days 8357
3 accwin 0C – 3C d25 14 – 41 days dforests 0 – 463 meters 8026
4 accwin 5C – 8C d20 37 – 55 days d25 0 – 14 days 8277
5 d30 2 – 6 days drec 0 – 525 meters dbuiltup 0 – 571 meters 7332
6 weekday Weekends soil Sandy soil dforest 0 – 463 meters 8755
7 soil Sandy soil fisio Sandy soil dforests 0 – 463 meters 11823
8 fisio Sandy soil drec 0 – 525 meters dbuiltup 0 – 571 meters 7407
9 dforests 0 – 463 meters drec 0 – 525 meters dbuiltup 0 – 571 meters 8161

Table 3.4: Patterns of length 3 found in NK, TR and NK+TR. For a complete description of the features see Table 1. The frequency
refers to the number of times each pattern appears in NK+TR.
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Figure 3.4 provides a general overview of the patterns found by AprioriClose
using ring maps. There is a clear difference between both images: while
patterns with three items present more heterogeneity in the features they
contain, patterns with four items are clearly dominated by accumulative
temperature features. It is important to highlight that Figure 3.4 show
that distance, temperature and soil type features are present in most of
the combinations and precipitation features appear a reasonable number of
times. Figure 3.4 (left) shows two patterns marked with a white dot (patterns
5 and 6, Table 3.4). Each feature in the pattern corresponds to one of the
segments starting from the inner ring and moving to the outer ring.

3.3.2.2 Frequent patterns associated to NK and TR reports

The application of AprioriClose to the features associated to the NK reports
produced 453 patterns, ranging from one to four items. The same operation
applied to TR features resulted in 762 patterns, ranging from one to seven
items. The difference in the length of the patterns stems from the imbalance
in the number of volunteers sampling tick bites in NK and TR collections:
TR collection has near four times more tick bites reports than NK, so the
variability it contains is higher and this subsequently turns into longer
patterns. Figure 3.3(a-c) graphically points out the data imbalance: the
resemblance between NK+TR (Figure 3.3a) and TR (Figure 3.3b) heat maps
is remarkable, indicating that TR collection is strongly influencing the pattern
mining for NK+TR experiment described in Section 3.3.2.1.

Following this line, we have depicted the patterns extracted from NK and
TR in figures 3.5 and 3.6, respectively. Figure 3.5 shows that the most
relevant features in NK collection contain temperature, precipitation and
distance features. Figure 3.6 reveals the importance of temperature and
distance features in TR and, to a less extent, precipitation. As seen, both
data collections tend to converge in the identification of relevant features to
monitor tick bites phenomenon. However, if we compare these two figures
with Figure 3.4, we can see that the ring maps produced for the patterns of all
tick bites is losing the relevance of precipitation features and increasing the
relevance of soil features. This means that data imbalance has a certain effect
on the patterns produced, because it is still identifying relevant conditions,
but there is some information loss on the process of mining frequent patterns
from NK+TR collections.

Persistent patterns found in NK and TR collections are shown in Table 3.4.
These 9 patterns have occurred along all years in the time series and this
can provide hints about the main drivers of tick bites phenomenon: the
proximity to built-up area, forest and/or recreational area, and temperature
thresholds have a strong presence, contrarily to temperature accumulations.
These findings are in line with results described in Section 3.3.1 and reveal
recurrent reported conditions that might be used to identify tick bite risk
conditions for humans.
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Figure 3.3: Heat maps showing the frequency of features and classes for NK
+TR (a), TR (b), NK (c) and random locations (d) for patterns with three and four 
items. The horizontal axis lists all the features created for this work (Table 3.2) and 
the vertical axis indicates the class that has been identified in the frequent 
patterns (Figure 3.2)58
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Figure 3.4: Ring maps for the patterns of length 3 (left) and 4 (right) that have
a minimum support of 25% in the complete tick bites collection (NK+TR).
Each ring represents a feature identified in each pattern, the width of the
segment the number of times a feature has appeared in the patterns and
segments marked with a white dot illustrate how to interpret ring maps, by
moving from the inner to the outer rings.

Figure 3.5: Ring maps for the patterns of length 3 (left) and 4 (right) that
have a minimum support of 25% in the NK collection.

59



3. Identifying environmental and human factors associated with tick bites

Figure 3.6: Ring maps for the patterns of length 3 (left) and 4 (right) that
have a minimum support of 25% in the TR collection

3.3.2.3 Frequent patterns associated to random locations

The application of AprioriClose to the features associated to the pseudo-
random locations produced 744 patterns ranging from one to five features.
The comparison of these patterns with the patterns associated to tick bites
yielded zero coincidences. This means that the frequent patterns associated
to the tick bite reports truly represent conditions linked to tick bites and
not the common environmental conditions in our study area. Figure 3.3(d)
shows the summary of the patterns obtained for the random locations. As
seen, the difference between this plot and the three above is substantial
in the features identified as frequent and also in its frequency, explaining
the zero coincidences between this data collection and tick bites collection.
Figure 3.7 shows the ring maps for patterns with three and four items for
the random dataset. As seen, temperature features are clearly dominant
in both maps, however, an interesting characteristic in both ring maps is
the relatively high amount of patterns yielded using vegetation indices, in
contrast with the patterns depicted in Figures 3.4, 3.5 and 3.6. This means
the common patterns in the Netherlands are associated to the “greenness”
levels of the country.

3.3.3 Spatio-temporal visualization

Figures 3.8 and 3.9 illustrate the spatio-temporal distribution of tick bites
associated to two of the persistent patterns (i.e. frequent patterns found
in the NK+TR, NK and TR). We chose these two patterns because they
contain several of the most frequent features identified by AprioriClose.
More precisely, these figures illustrate the patterns: d30, drec, dbuiltup
(Pattern 5, Table 3.4) and weekday, soil, dforests (Pattern 6, Table 3.4).
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Figure 3.7: Ring maps for the patterns of length 3 (left) and 4 (right) that
have a minimum support of 25% in the pseudo-random locations collection

At the level of classes in the feature, the first pattern shows tick bites that
occurred at a maximum distance of 525 m of a recreational area, 571 m of
a built-up area and in a year with 14 - 41 days with a temperature above
25 degrees Celsius, and the second pattern shows tick bites that occurred
during weekends, in sandy soil and at a maximum distance of 463 m of a
forest.

The inclusion of distance features makes the tick bites reports to be clustered
around any of the selected land uses (i.e. forest, built-up, recreational area).
For each year, this clustering effect reveals locations with a high recreational
pressure in the conditions specified by the patterns. Thus, popular places
for recreation (i.e. areas along the coast and forested areas in the center of
the country) consistently tend to accumulate observations, due to the higher
human recreational pressure. The imbalance in the number of tick bite
reports is appreciated in both figures where we can see that there are more
tick bites from 2012 (the year when TR was launched) onwards. However,
it is important to note that 2014, a year particularly rich in tick bite reports,
does not contribute with many tick bites to Pattern 5 (Table 3.4) represented
in Figure 3.9. In fact, we observe that 2006 contains more tick bites reports
than 2014. This may indicate that other features (e.g. number of non-rainy
days) were the major drivers of tick bites for 2014.

Table 3.6 shows the percentage of tick bites reports associated to each pattern
per year and the total percentage of tick bites reports per year represented
by the combination of these two patterns. As seen, Pattern 6 consistently
explains around a 30% of the tick bites reports per year. This is produced
because this pattern includes a soil feature which is something temporally
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Figure 3.8: Spatio-temporal projection of pattern: weekday, soil, dforests per
year. This pattern shows tick bites that occurred at a maximum distance of
525 m of a recreational area, 571 m of a built-up area and in a year with 14 -
41 days with a temperature above 25 degrees Celsius
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Figure 3.9: Spatio-temporal projection of pattern: d30, drec, dbuiltup per
year.This pattern shows tick bites that occurred during weekends, in sandy
soil and at a maximum distance of 463 m of a forest.
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Year Pattern 5 Pattern 6 Total

2006 52% 32% 53%
2007 9% 29% 33%
2008 26% 28% 39%
2009 21% 32% 40%
2010 37% 30% 45%
2011 10% 34% 38%
2012 23% 31% 40%
2013 44% 29% 46%
2014 3% 30% 32%

Table 3.6: Percentage of tick bites that occur under the environmental and/or
human factors depicted by the selected persistent patterns (patterns 5 and 6,
Table 3.4). Pattern 5 shows tick bites occurring at a maximum distance of
525 m of a recreational area, 571 m of a build-up area and in a year with 14 –
41 days contains with a temperature above 25 degrees Celsius, and Pattern
6 shows tick bites that occurred during weekends, in sandy soil and at a
maximum distance of 463 m of a forest The total percentage was calculated
using the number of unique tick bites in the selected patterns.

constant in a country. Pattern 5 shows a more variable representativity
of the tick bites per year, due to the temperature feature included: years
with a lower percentage of tick bites reports (e.g. 2007, 2011 and 2014) may
be linked to a year that was colder or there were wetter conditions that
prevented people to go to nature.

3.4 Discussion

Citizen science projects allow the collective monitoring of a wide range of
(environmental) phenomena at detailed spatio-temporal scales. Therefore,
these projects have the potential to accelerate scientific discovery. However,
it remains challenging for researchers to work with volunteered data because
of its heterogeneous character and its ever-questioned quality. In our case,
we had to deal with an imbalanced inter-annual distribution of tick bites
reports as the NK dataset contains appreciably less reports than the TR
dataset. This means that TR reports may be over represented in the results.
A possible way to mitigate this problem is to sample the TR reports so as
to have a similar number of reports per year. However, this leads to data
(information) loss and we took the decision of analyzing the complete tick
bite collection. The impact of data imbalance was studied by mining frequent
patterns in the NK and TR datasets separately. This analysis showed that
there are NK and TR specific patterns that do not appear when mining the
complete tick bite collection. However, a similar set of relevant features and
classes were mined from both datasets. In fact, this analysis also showed
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that there are persistent patterns in both collections. Tekenradar.nl is an
ongoing project that collects about 8,000 tick bites reports each year. In this
amount remains stable, data imbalance will not play a major role in future
analysis.

Contrarily to tick modelling studies, this study revealed that days above a
certain temperature threshold or precipitation threshold and the proximity to
a forest, recreational or build up areas, are more relevant to model tick bites
than the accumulation of environmental (e.g. weather) features. We believe
that this is because these features are closely related to human behavior
(e.g. outdoor activities). Our results also show that there is not a strong link
between seasonally accumulated environmental factors and tick bites. This
suggests that shorter time frames (e.g. weeks, months) could be tested as
environmental features are known to explain tick distributions and activity
(Estrada-Peña et al., 2012; Ostfeld et al., 2006). In this line, the incorporation
of landscape fragmentation indices in further studies could prove useful
since previous research has found a link between landscape, tick densities
and Lyme disease incidence (Lambin et al., 2010; Li et al., 2012). In the
current study, around 65% of the tick bites reports are produced in locations
that are less than 575 m of a forest, built-up area or recreational area and 25%
of the tick bites are produced in agricultural lands. The fact that a few land
use types concentrate most of the tick bites, and the remarkably high number
of patterns with features on proximity to forest, built-up or recreational area,
suggests that landscape fragmentation could indeed be useful to explain tick
bite occurrences.

The analytical engine of this study is the AprioriClose algorithm, which
is an unsupervised method to explore large and complex datasets. This
unsupervised character makes it hard to perform a traditional validation
of the results. Therefore, to determine the validity of these patterns we
generated a random locations dataset in a 10 km buffer around each tick
bite report so as to keep the spatio-temporal distribution of the original
reports. This method can be seen as a strict validation of the patterns because
it prevents the random points from falling far from both the tick habitat
and the tick season. This allows confirming whether the mined patterns
are indeed strongly associated to tick bites, conditional on the area under
investigation being suitable for ticks and without taking into account the
volunteered-based features. We found that most of the patterns mined in
random location stem from vegetation and temperature features and that
there was no overlap between the patterns produced when mining tick
bite locations and random locations. This means the collective “sampling”
effort carried out by the thousands of volunteers that support the NK and
TR initiatives, captures well the occurrence of tick bites in space and time.
In turn, this means that the tick bite dataset used in this study has a high
scientific value.

From a geographic perspective, mapping two of the persistent patterns
revealed that the corresponding tick bites are scattered across the country
and tend to be clustered in forested areas. The minimum support threshold
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applied to the AprioriClose algorithm makes sure that each pattern repres-
ents at least 25% of the tick bites. Therefore, the two chosen patterns could
represent up to 50% of all the tick bites. With the six features identified with
the selected patterns we are capable of explaining an average of 40% of the
tick bites phenomenon per year. The reason not to reach this 50% is due to
the overlapping between the tick bites reports associated to each pattern.
Adding a new persistent pattern to the initial selection may increase the
representativity of the tick bites phenomenon.

3.5 Conclusion

Tick bites are the result of two interrelated geographic phenomena: 1) tick
abundance and activity, and, 2) human presence. The volunteered tick bite
datasets used in this work report the intersection of these two phenomena
in a particular location and time. Here we used frequent pattern mining
to characterize the environmental and human factors associated to “where”
and “when” tick bites occur. In particular, the individual and combined
analysis of the NK and TR datasets revealed the following main findings: 1)
there are temporally persistent patterns in the tick bite datasets; 2) there is a
positive correlation between the number of warm days or non-rainy days
and the number of tick bites; 3) proximity to forest, recreational or built-up
area appears a remarkably high number of times in the patterns yielded and
4) in tick-suitable areas, vegetation features do not seem to be sufficient to
explain the tick bites phenomenon. Thus, we conclude that human-related
factors are more important to model tick bites than using environmental
variables that characterize the environmental conditions of a given location
for a particular time frame.

Regarding the methods, to the best of our knowledge, this is the first study
that applies frequent pattern mining method to a volunteered dataset that
pertains to the public health domain. This work proved that frequent pattern
mining is an efficient form of extracting information from crowdsourced
geo-information. This is important as grass-root campaigns involving cit-
izens (may) overcome the limitations of traditional statistical surveys and
observational sensor networks by providing a high amount of data that
allows the study of geographical phenomena at unique spatio-temporal
resolutions.

In the public health domain, the identification of environmental and human
factors associated to tick bites does not only open the way for modelling and
mapping tick bite risk but it also demonstrates the scientific value of volun-
teered geographical information for public health applications. Further work
will focus on the development of an improved forecasting model for tick
bite risk. This new model could be linked to the current Tekenradar website
to provide specific spatio-temporal information that, hopefully, contributes
to the reduction of the number of tick bites and of Lyme borreliosis in the
Netherlands.
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4Using volunteered observations
to map human exposure to ticks

4.1 Introduction

Forests are complex dynamic systems that provide a wide array of ecosys-
tem services to society, such as groundwater protection, and wood and fiber
production (Hengeveld et al., 2017). Also, forests provide recreational ser-
vices (e.g. sports, leisure activities), which may have positive (e.g. stress
reduction) and negative (e.g. increased exposure to pathogens) impacts on
human health (Sandifer et al., 2015). The transmission of pathogens caus-
ing tick-borne diseases to human hosts poses an important threat to public
health (Ehrmann et al., 2017). In this regard, the European Centre for Disease
Prevention and Control (ECDC) surveys five different tick-borne diseases
(i.e. Lyme borreliosis, tick-borne encephalitis, relapsing fever, Crimean-
Congo hemorrhagic fever, and Mediterranean spotted fever, from ECDC,
last accessed July 5th, 2018), and reports the prevalence of these diseases
across the European continent.

The incidence of Lyme borreliosis (LB), the most prevalent tick-borne disease
in Europe, has steadily increased during the period 1990-2010 in, at least,
nine European countries (Medlock et al., 2013). In recent years, however, sub
European sentinel networks of general practitioners have identified the first
signs of stabilization (Altpeter et al., 2013; Bleyenheuft et al., 2015; Vanden-
esch et al., 2014). In the Netherlands alone, the number of LB cases has
continuously increased since the mid-1990s (Hofhuis et al., 2015b; Hofhuis
A et al., 2006), but a recent study shows that this trend is also stabilizing
(Hofhuis et al., 2016). Yet, over 20,000 citizens are diagnosed each year with
LB, a situation that prompted researchers from Wageningen University and
the Dutch Institute for Public Health and the Environment (RIVM), to start
two crowdsourced projects to collect data on tick bites. Since 2006, the plat-
forms Natuurkalender (NK; “nature’s calendar”; www.natuurkalender.nl)
and Tekenradar (TR; “tick radar”; www.tekenradar.nl), have collected nearly
50,000 geo-located tick bite reports. To the best of our knowledge, these

This chapter is based on: (Garcia-Marti et al., 2018)
Available at: https://doi.org/10.1038/s41598-018-33900-2
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platforms constitute the first citizen science projects that specifically focus on
ticks and tick-borne diseases. Citizen science projects present an interesting
characteristic when compared to classical forms of data acquisition (e.g.
ground surveys or sensor networks): the ubiquity of the crowd allows a
fine-grained sampling in space and time, which makes it possible to monitor
elusive public health threats, such as tick bites.

The volunteered tick bite reports collected by the NK and TR projects de-
pict the risk of getting a tick bite. This risk is the result of the interaction
of two components: hazard (e.g. tick activity) and human exposure (e.g.
recreational intensity in a location) (Braks et al., 2016), which tends to oc-
cur outdoors (e.g. forests, urban parks). There are significant efforts in
literature to quantify the hazard component (De Keukeleire et al., 2015;
Garcia-Martí et al., 2017; Swart et al., 2014), but finding proxies of exposure
is a harder task, due to the unavailability of human recreational metrics at
the national scale. Quantifying recreational pressure in nature is of interest
in fields as diverse as public health, forestry management or environmental
science. In public health, knowing the intensity of recreational activities
might help delimiting locations that serve as an interface between natural
elements and humans (De Keukeleire et al., 2015; Hall et al., 2017; Hansford
et al., 2017; Mulder et al., 2013). This can be useful to better design tick
bite prevention campaigns in forested areas. However, the complexity of
forest ownership in the Netherlands might pose hurdles to this task. The
sixth Dutch National Forest Inventory (Schelhaas et al., 2014) indicates that
forests occupy 373,480 hectares (roughly, 11% of the territory). Public or-
ganizations (e.g. Staatbosbeheer: www.staatsbosbeheer.nl, municipalities)
own 260,900 hectares of forest, whereas private partners (e.g. Natuurmonu-
menten: www.natuurmonumenten.nl, citizens) own 112,600 hectares of
forest. Dutch law requires private owners with a property larger than 5 hec-
tares to be registered at the Dutch Industrial Board for Forest and Nature (i.e.
Bosschap www.bosschap.nl). Currently, 1,431 citizens own 61,000 hectares
of forest larger than 5 hectares, and an unknown number of citizens own
51,600 hectares of smaller forest patches (Hoogstra-Klein, 2016; Schelhaas
et al., 2014). Thus, educating a relatively small group of public and private
foresters to reduce tick bites in their domain, might lead to a substantial
decrease in the number of LB cases per year. For instance, forest owners with
parcels presenting a medium or high human exposure, could implement
preventive measures of tick habitat manipulation, such as grass mowing,
removing leaf litter, or covering heavily visited locations with dry substrates
(e.g. wood chips, gravel) (Hubálek et al., 2006).

In this work, we present a novel method to quantify country-wide exposure
to ticks in forested areas. Our method is based on volunteered tick bite re-
ports, and on a hazard model developed in our previous work (Garcia-Martí
et al., 2017). This hazard model was also based on volunteered data about
tick activity in forested areas. The resulting human exposure is presented
as a categorical map that shows the recreational intensity across Dutch for-
ested areas. Such a human exposure map should facilitate the cooperation
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4.2. Modelling human exposure to tick bites

between public health specialists and forest managers to jointly tackle public
awareness about tick bite prevention, especially in locations with a high
intensity of human exposure. In addition, this first-of-its-kind exposure map
helps to understand and locate sources of potential landscape disturbance
(by visitors) and could support better ecological management practices.

4.2 Modelling human exposure to tick bites

Obtaining measures of human exposure to ticks is a challenging task due
to the unavailability of nation-wide datasets representing human activities
outdoors. However, human exposure is tightly related to risk and hazard, so
it can be calculated from these two variables. In this section we describe the
theoretical background, operationalisation and the data processing workflow
that allows the calculation of human exposure and graphical mapping of
this variable.

4.2.1 Theoretical background

In the field of risk assessment, risk (R) is often modelled as a function of
hazard (H) and exposure (E). The relationship between the three variables
can be conceptualized as R = H × E (Braks et al., 2016). In the paragraphs
below, we discuss in more detail how we can conceptualize R, H, and E in
terms of probabilities, and how those probabilities connect to our data. The
exposure below pertains to a single location (i.e. grid cell in the rasterized
map). In Section 4.2.2 we operationalize the theory by linking it to the NK
and TR studies.

We can define a normalized measure of exposure E as a probability: E =
P (visit) . Following the same logic, we can define a normalized meas-
ure for H as the conditional probability of a tick bite given a visit: H =
P (bite|visit).Then, we can define R as the unconditional probability of get-
ting a tick bite: R = P (bite). From the law of total probability, and the obvi-
ous fact that a tick bit requires a visit, we have: P (bite) = P (bite|visit)P (visit)+
P (bite|novisit)P (novisit) = P (bite|visit)P (visit), from which we recover
R = H × E.

4.2.2 Operationalisation

Let v be a variable representing the unknown total number of visits to each
grid cell, and let n be the total number of records in the NK and TR studies,
then an estimate of E = P (visit) is v/n. The probability H = P (bite|visit)
can be estimated as the total number of reported tick bites b at the location,
divided by the number of visits b/v. Note that H may be zero when b = 0,
and is undefined when v = 0. The unconditional probability: R = P (bite)
can be estimated by dividing the total number of tick bites by the number of
records in the NK and TR studies b/n.
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Using these estimates for the probabilities, we find that v can be calculated
when the number of person-days in the study (i.e. the number of tick bite
reports), and a measure of the hazard of the active ticks are known:

E =
R

H
=

b

nH
(4.1)

Hence, it is possible to obtain a measure of human exposure to ticks by
dividing the number of tick bites in a location by a measure of the hazard
for that location. For a proxy of H , we use a previously developed hazard
model (Garcia-Martí et al., 2017). Note that the value of n is immaterial as
it is a constant over the Netherlands, and the output of the hazard model
is not H but assumed to be proportional to H. The above is conditional on
H being not equal to zero, which is satisfied since a property of our hazard
model is that it always yields strictly positive hazard.

4.2.3 Data processing

The calculation of human exposure to ticks req uires calculating risk and haz-
ard. The risk of getting a tick bite can be estimated from the volunteered tick
bite reports, and hazard can be derived from a tick activity model developed
in our previous work (Garcia-Martí et al., 2017). The workflow designed to
obtain human exposure to ticks consists of four steps: 1) mapping the risk
of getting a tick bite; 2) estimating tick hazard; 3) calculating and mapping
human exposure; 4) validating the results. Note that this work has been
developed using different Python libraries: numpy (Oliphant, 2006) has been
used to handle the different arrays, jenks (Perry, 2014) package implements
Jenks Natural Breaks (JNB) algorithm (Jenks, 1967) to classify the exposure
layer, GDAL (GDAL Development Team, 2018) and cartopy (Met Office
UK, 2010) were used to process geospatial data and prepare the maps, and
matplotlib (Hunter, 2007), and seaborn (Waskom et al., 2017) to prepare the
plots.

The transformation of tick bite reports into a risk layer requires selecting a
spatial aggregation unit. Here we choose a regular grid with cells of 1km2 as
spatial unit because the existing hazard model works for grid cells with this
spatial resolution. Thus, the tick bite reports were aggregated to grid cells
of 1km2. Risk is defined as the cumulative sum of tick bite reports over the
period 2006-2016 occurring in each grid cell (Figure 4.1A), if the cumulative
sum is greater than zero. The number of tick bites per cell ranges between 1
(in blue) and 353 (in red). The visual inspection of Figure 4.1A shows that
coastal (e.g. from Haarlem to Middelburg), and forested areas (e.g. Veluwe
national park, Utrechtse Heuvelrug) in the center of the country present a
high concentration of high risk locations. These are well-known locations
for outdoor recreation. Smaller regions of high tick bite risk can be found in
the rest of the country (e.g. provinces of Drenthe and Groningen).
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Figure 4.1: Risk of tick bites (2006-2016) as collected by the NK and TR volunteered projects. The cumulative sum of tick
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the country. However, the reports tend to be clustered around forests (e.g. Veluwe national park, center of the country), or
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Case Risk Hazard Exposure Interpretation Representation

1 R > 0 H > 0 E > 0 Std. case Fig. 4.3, class. E
2 R > 0 H = undef. E = undef. TB in non-forested loc. Fig. 4.6, light green
3 R = 0 H > 0 E = 0 Forest low recr. or H Fig. 4.6, yellow
4 R = 0 H = undef. E = undef. No data Fig. 4.6, grey

Table 4.2: The four possible cases that can occur when dividing risk by
hazard.

Hazard is defined as the tick activity provided by a data-driven model(Garcia-
Martí et al., 2017) that predicts daily tick activity in vegetated areas suitable
for ticks (i.e. forests and natural grasslands). This model was built using
nine years (2006-2014) of volunteered tick activity data (acquired in the
Netherlands by using cloth dragging) and a large suite of environmental
variables. Volunteers sampled 15 vegetated locations on a monthly basis,
and counted the number of ticks per life stage (i.e. larvae, nymph, and adult).
Our model, which was only calibrated for nymphs as they pose the highest
hazard to humans, uses 101 biotic and abiotic environmental predictors.
These predictors include data about the habitat conditions for ticks (e.g.
litter, moss), mast years for three tree species, weather (e.g. temperature,
evapotranspiration, relative humidity), satellite-derived vegetation indices
(e.g. NDVI), and land cover. To account for the effect that short- and long-
term weather conditions have on tick activity, we aggregated the weather
data to 11 temporal resolutions (i.e. 1-7, 14, 30, 90, 365 days). The model
yields daily tick activity for 4,132km2 for forests and grasslands (hereinafter
‘forests’) , which enables further studies in the fields of ecological research,
nature management and public health. Limitations of this model include
the lack of data about wildlife, due to unavailability of this type of data at
the national level and for the entire study period. Hazard predictions are
included in this work by running our data-driven model for each day of
each year included in the study period to compute the maximum annual
tick activity, and by averaging these annual values to obtain a robust proxy
of tick hazard at 1km (Figure 4.1). A visual inspection of Figure 4.2 shows
that the area of highest tick activity is located in the northeastern half of the
country (e.g. provinces of Overijssel, and Drenthe). Forested areas in the
center and south of the country present an average tick activity and coastal
areas present a low tick activity.

As explained in section 4.2.2, human exposure can be calculated by dividing
the risk and the hazard components. Note that there are locations in which
these measures are not available. This means that there are locations in which
no tick bites are reported, or locations outside forests with no measurement
on tick activity available that are excluded from the exposure calculation.
Depending on the values of these variables, four cases will be found (c.f.
Table 4.2): 1) risk and hazard are positive (i.e. R > 0 and H > 0); 2) risk is
positive and hazard is undefined (i.e. R > 0 and H = undefined); 3) risk
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0 5 10 15 20 25 30

Hazard

Figure 4.2: Hazard (e.g. tick activity) per 1km grid cell. We used the model
developed in (Garcia-Martí et al., 2017) to predict daily tick activity for the
period 2006-2016. Then, we calculated the maximum mean tick activity
for the period to devise this map. The numbers in the legend indicate
the average number of active questing ticks per grid cell. The locations of
the highest hazard are within the provinces of Groningen, Drenthe, and
Overijssel, whereas the lowest hazard levels are located along the coastal
areas.
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is zero and hazard is positive (i.e. R = 0 and H > 0); 4) risk is zero and
hazard is undefined (i.e. R = 0 and H = undefined). Cases 2 and 4 lead
to a mathematically undefined operation, hence the exposure is undefined
too. Case 1 represents locations in which there is tick activity and human
exposure. Case 2 can be used to characterize locations where tick bites are
reported outside forests (e.g. urban and peri-urban areas). Case 3 depicts
forested locations with a low recreational intensity or a low hazard (i.e. no
tick bites reported), and case 4 shows areas in which there is no risk and
hazard data available.

To ease the interpretation of the results, the resulting exposure was classified
using the JNB algorithm. This algorithm minimizes the intra cluster variance
and maximizes the distance between clusters. The optimal number of classes
is iteratively found testing all values between 2 and 10 and calculating the
goodness of variance fit of the resulting classification. Using the classes
yielded by this algorithm, we created a categorical human exposure to ticks
map.

To assess the validity of our exposure results, we compared them with a
publicly available map depicting the attractiveness of the landscape (i.e.
Belevingswaarde van het landschap, last accessed July 5th, 2018) (Crommen-
tuijn et al., 2007; Roos-Klein Lankhorst et al., 2005). The attractiveness map
relies on 3 positive variables (i.e. naturalness, terrain elevation, historical
value), and 3 negative variables (i.e. visibility of the horizon, urbanization,
noise pollution) to classify the attractiveness of each grid cell. In short, this
map shows how much citizens find a landscape attractive, expressed as six
categories in the range 6-8. The less attractive locations have an attractive-
ness lower or equal to 7, and the most attractive ones an attractiveness higher
than 7. For our validity assessment we first extracted the value of landscape
attractiveness for each of the forested locations with calculated exposure.
Then, we counted the number of grid cells in our exposure map that belong
to each of the six attractiveness classes. Finally, we normalized these counts
by the total number of grid cells belonging to each attractiveness class to
obtain the percentages of tick bites that occurred in each exposure class.

4.3 Results

Figure 4.3 shows the classified tick exposure map, obtained by dividing
the risk of getting a tick bite risk (Figure 4.1A) by the hazard (Figure 4.2).
The application of the JNB algorithm resulted in the identification of three
exposure classes: low, medium, and high. A visual inspection of Fig. 4.3
shows that there is a high amount of grid cells belonging to the medium
exposure class. Those cells are especially concentrated along the forest edges
of the Utrechtse Heuvelrug forest and of the Veluwe national park (center of
the country). The class high exposure corresponds to highly popular places
for outdoor activities, such as the coastal areas from Haarlem to Middelburg,
or with a lower intensity, areas close to Hertogenbosch, Eindhoven, and
around the small forest patches between Groningen and Emmen (north of
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Landscape attractiveness

Exposure Low High
High 29 (6%) 193 (6%)
Medium 41 (9%) 514 (15%)
Low 201 (43%) 1,987 (58%)
Zero 196 (42%) 726 (21%)

Table 4.4: Forested areas per human exposure and simplified landscape
attractiveness classes (i.e. low corresponds to scores ≤ 7, whereas high
to score s>7). Areas as expressed in km2 and as percentage over the total
forested areas. There are 2,965 km2 of forests in which citizens are exposed to
ticks, and 992 km2 with an exposure equal to zero (i.e. no tick bites recorded,
although there might be a certain tick activity in those areas)

the country). The class low exposure indicates locations that are less visited,
and yet visitors could get bitten by ticks.

Figure 4.4 explore the relationship between E, H, and R. The boxplot in
Figure 4.4a show that the risk of getting a tick bite has a skewed distribution
(i.e. long-tailed distribution) spanning up to 353 tick bites per grid cell (not
shown due to visual cluttering of the box plots), regardless of the exposure
class. The medians of the boxplots (plot A) correspond to 3, 8, and 23
tick bites per km2 for the low, medium, and high exposure classes. The
height of each box indicates the variety of risky conditions in which tick
bites ensue. Low and medium exposure classes present a narrow range of
risky conditions, whereas the high exposure class occurs in a wider range
of conditions. The boxplots in Figure 4.4b show that the hazards have
a unimodal distribution, regardless on the exposure class. The medians
indicate that tick bites occur in locations with similar levels of hazard, and
the fairly uniform height of the boxes show that the range of risky conditions
in which tick bites occur is alike. Note that Figure 4.4a shows that the risk
increases as the exposure increases, whereas Figure 4.4b shows how hazard
is almost constant as long as the exposure increases.

Figure 4.5 shows the relationship between human exposure and the at-
tractiveness of the landscape. Each cell represents a number of grid cells
belonging to both categories. To ease the interpretation of results, note that
we included the locations in which the exposure or the hazard are low (i.e.
no tick bites registered in that forested location), and also that we applied
a per-column normalization to turn the raw numbers to percentages. The
visual inspection of the attractiveness layer and Figure 4.6 reveals that the
first three columns show the exposure in forest patches which are less at-
tractive for citizens (i.e. ≤ 7), whereas the last three columns correspond to
attractive forested and rural locations (i.e. > 7). As seen, the distribution
of exposure grid cells within the first group is similar among the different
attractiveness classes. In the second group, there are two columns showing
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Low Medium High

Exposure

Figure 4.3: Human exposure to tick bites as a result of combining the maps in 
the previous two figures. Background color refers to non-forested locations or 
locations without tick bite reports. The exposure is classified in three 
categories. Well-known forest edges (e.g. Veluwe national park, Utrechtse 
Heuvelrug forest) and popular outdoor recreational areas (e.g. coastal areas 
from Haarlem to Middelburg) are classified as places with a medium and 
high human exposure. The remaining low exposure class depicts locations 
less intensely visited by people. Both results suggest that human exposure to 
tick bites is driven by two types of users (i.e. recreational, residential) as 
spotted in previous works (De Keukeleire et al., 2015; Zeman and Benes, 
2014), that may require different treatment in the design of public health 
campaigns targeting a decrease on tick bites occurrence.76
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Figure 4.4: Boxplots showing the relationship between exposure and risk
(a), and the relationship between exposure and hazard (b). For both figures,
the X-axis shows the exposure class, and the Y-axis shows the number of
tick bites per grid cells (a), and the tick activity per grid cell (b), respectively.
Risk is a skewed distribution (i.e. long-tailed), thus presents low averages
per boxplot, and a high number of outliers (reaching the maximum of 353
tick bite reports/cell), whereas hazard is a Gaussian-like distribution and so
the averages per boxplot occupy the central part of the distribution. Plot A
shows how the risk increases as the exposure increases, and plot B shows
how the hazard remains (almost) constant as long as the exposure increases.
This means that the risk of getting tick bites is mainly driven by exposure
factors, regardless of the amount of hazard (e.g. tick activity) in a location.
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interesting patterns. The fifth column shows that 65% and 26% of the grid
cells in the attractiveness class 7.5 – 8 have a zero and low exposure, respect-
ively. The last column shows that 17% and 61 of the grid cells in the > 8 class
have a zero and low exposure, respectively. This indicates that citizens prefer
visiting certain forested locations. The absolute numbers in Figure 4.6 show
that the majority of the human exposure is concentrated along the column
with the maximum attractiveness. In Table 4.4 we provide a summary on the
area in which humans are exposed to ticks. As seen, citizens are exposed to
ticks in 271 km2 of forests in unattractive locations, and 2,694 km2 of forests
in attractive locations. Note that there are 922 km2 of forest in which the
exposure is zero. Thus, this study shows that citizens are more exposed to
ticks in locations that are very appealing to the general public.

Figure 4.6 shows the four possible cases (Table 4.2) that can occur when
dividing the risk by the hazard layer. To avoid visual cluttering, the three
exposure classes from Figure 4.3 have been merged into a single class. Figure
4.6 also shows the locations with tick bites outside forests, forests with a
low recreational intensity, and the locations with zero tick bites reported.
The visualization of cases 2 and 3 (Table 4.2) reveals two new insights. First,
we can see that the occurrence of tick bites is a pervasive phenomenon that
goes beyond the forest edges, because there are tick bites reported out of
this scope, and across the country. Thus, vegetated landscape types (e.g.
residential areas close to forest, urban parks with a dense tree coverage,
natural coastal dunes with dense shrubs), might be optimal locations in
which ticks and humans are in close contact. Second, there is a number of
small forest patches without tick bite reports, which indicates that citizens
do not intensively visit these locations.

4.4 Discussion

Our results show that clusters of high human exposure are concentrated
along forest edges and popular places for recreation. The analysis reveals
that the exposure categories in Figure 4.3 mostly occur in forested locations
that are very attractive locations, as seen in Figure 4.5 and Table 4.4. This
can be related to previous literature, since transitional vegetation (i.e. eco-
tones) has been identified as a risky place to acquire tick-borne pathogens:
humans tend to carry out outdoor activities along the forest edge, rather
than going inside (Lambin et al., 2010; Linard et al., 2007). Moreover, forest
edges are suitable locations for mammalian species to forage, and present
higher abundances of ticks (Brownstein et al., 2005; Madder and Baeten,
2012). The Netherlands is heavily urbanized (EEA, 2011), which means
that multiple land uses are intertwined in a small area unit, thus bringing
humans and ticks in peri-urban and residential areas in close contact. All the
above suggests that the exposure to tick bites is driven by two types of activ-
ities, namely recreational, and residential, as suggested in previous works
(De Keukeleire et al., 2015; Zeman and Benes, 2014). Therefore, we suggest
defining different LB prevention campaigns and public health policies for
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Figure 4.5: Heat map showing the relationship between the exposure classes
and the attractiveness classes. The X-axis represents the six classes available
in the attractiveness map, and the Y-axis the three classes of the exposure
map. Thus, each cell in the heat map represents the number of grid cells
belonging to both categories. Note that we applied a per-column normaliza-
tion of the raw numbers to percentages to ease the interpretation of results,
but both values are shown. The first three columns correspond to forest
patches that are less attractive for citizens, whereas the last three columns
correspond to attractive forested and rural locations. Thus, the first group of
columns show a more urban exposure to ticks, whereas the second group
of columns show human exposure to ticks in forested locations. The last
two columns show an interesting pattern. The fifth column shows that
65% and 26% of the grid cells in the attractiveness class 7.5 – 8 have a zero
and low exposure, respectively. The last column shows that 17% and 61%
of the grid cells in the maximum attractiveness class have a zero and low
exposure, respectively. This means that within forested locations, citizens
have a preference for visiting a subset of them. Absolute numbers show that
the majority of the exposure grid cells are concentrated along the column
with the maximum attractiveness. This indicates that human recreational
intensity is mainly concentrated in very appealing locations.
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1 2 3 4
Case

Figure 4.6: Visual representation of the four cases described in Table 1. To
avoid visual cluttering, the classes in the first case (i.e. R > 0 and H > 0) have
been condensed in one category (white). The remaining cases, namely, tick
bites reported outside forests (i.e. R > 0 and H = undefined), forests with a
low recreational intensity (i.e. R = 0 and H > 0), and locations with zero tick
bites reported (i.e. low exposure or low hazard) R = 0 and H = undefined),
are shown in the image in light green, yellow, and grey respectively.
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each activity. For an instance, activities such as gardening (Mulder et al.,
2013) can be linked to the residential exposure, whereas other activities such
as scouting (De Keukeleire et al., 2015), or outdoor sport (Hall et al., 2017)
competitions could be linked to the recreational exposure. Note that a limita-
tion of this work is that we are unable to provide a measure of occupational
risk, but farmers (Keukeleire et al., 2016), veterinarians (Szekeres et al., 2015),
landscapers (Li et al., 2018), or forest workers (de Groot, 2016) are known to
have an elevated risk of LB infection. Unfortunately, information on whether
the tick bite was acquired during a work-related activity was only available
for the TR data and is therefore not incorporated in the model. However,
these collectives tend to present a higher seroprevalence for LB (Keukeleire
et al., 2016; Szekeres et al., 2015).

The boxplots in Figure 4.4 show that the risk of getting a tick bite increases as
the exposure increases, whereas the hazard remains constant as long as the
exposure increases, which is indicative that the risk of getting a tick bite is
driven by the human exposure in a location more than to the existing hazard.
This makes sense, because humans might be unaware of the hazard, and do
not consider this threat when organizing outdoor activities. For example,
the recreational coastal areas between Haarlem and Middelburg present a
relatively low hazard (Figure 4.2), however, the risk of getting a tick bite
(Figure 4.1) is very high, because the human exposure around the area is
high as well. This is also supported by Figure 4.5 and Table 4.4, as they show
that citizens mainly get exposed to ticks in areas which are very attractive,
and therefore, it is likely that they have high numbers of recreational visitors.

These new insights show that hazard maps alone are insufficient to identify
locations with a high risk for LB, motivating the creation of human exposure
maps for public health specialists and forest managers. In this line, maps like
the one presented in Figure 4.3 and 4.6 may help to facilitate the cooperation
between public health specialists and foresters to implement prevention cam-
paigns. For instance, these maps can be used to classify patches of forests
that require active management and those that can suffice with only public
awareness campaigns. In this work we encountered three main hurdles.
First, the difficulty of validating the exposure results, since exposure heavily
depends on the quality of the hazard model, and on the representativeness
of the tick bite reports. The hazard model can capture general tick dynamics.
However, hazard predictions might be uncertain in locations in which at-
mospheric conditions are not the main driver of tick activity. At the same
time, the risk map contains an unknown factor of citizen’s reporting errors
(e.g. positional inaccuracy at the time of adding the tick bite report to the
NK and TR platforms, or citizens that over- or under-report tick bites). To
overcome these issues and to validate the exposure products ICT data (e.g.
mobile phones locations), geolocated data streams from social networks (e.g.
Twitter) could be incorporated in the analysis. However, the use of this
data is limited by privacy laws. Second, the exposure remains unknown
in locations where there is no data from hazard or risk. This means that
locations in which the hazard model is unable to predict the tick activity (e.g.
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non-forested areas), or locations where there are no tick bites registered, it
is not possible to apply eq. 1, thus we cannot estimate human exposure to
ticks. Third, there is a substantial number of locations in which there are no
tick bites reported during the study period. We do not think that the risk is
actually inexistent in these locations, but with the current data collections
we are unable to disentangle if the zero tick bite count is due to a low human
exposure or a low hazard. As a consequence, we choose to exclude these
locations from the exposure calculation, because it is hard to assess whether
or not it is a true zero, and subsequently we do not know if it is a robust
indicator for low risk of tick bite.

4.5 Conclusion

In this paper we present a first-of-its-kind map of human exposure to ticks
in forested areas created from volunteered data. This map will hopefully
contribute to mitigate the number of tick bites and hence of LB cases because
exposure information might encourage forests managers and public health
specialists to implement preventive measures. For instance, this map could
be used to design targeted informative campaigns in recreational locations.
Moreover, ecologists might use exposure information to locate hot spots
of human disturbance, which could support better nature management
practices. Future work should aim at quantifying uncertainties in the risk,
hazard and exposure information, studying the main drivers of tick bites
at each location (i.e. high hazard, vs. high exposure areas), and analyzing
exposure in residential areas.
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5Modelling tick bite risk by
combining random forests and
count data regression models

5.1 Background

Over the last couple of decades, urban areas have dramatically expanded
(EEA, 2006)]. In Europe, the development of low density residential areas in
the periphery of cities has become the norm for urban growth (EEA, 2006).
This phenomenon, known as urban sprawl, has a plethora of negative ef-
fects over the local climate (e.g. urban heat islands), the modification of
the landscape (e.g. fragmentation), and the alteration of ecosystems (e.g.
biodiversity loss) (EEA, 2011). In addition, urban sprawl also brings urban
settlers in closer contact with nature and the countryside (Tack, 2013). As
a response, several bird (e.g. thrushes) and mammal species (e.g. rodents,
foxes, raccoons) have adapted their ethology to be able to live at the in-
terface between forests and urban regions (e.g. more food, less predators)
(Uspensky, 2017). This also means that the parasites and pathogens that
several wildlife species carry get closer to residential areas and that, for
instance, the hazard for tick-borne diseases increases (Allan et al., 2003). In
parallel to this, the progressive adoption of healthier lifestyles encourages
citizens to spend more time outdoors carrying out leisure (Mulder et al.,
2013) or sportive activities (Hall et al., 2017). This behavior leads to a higher
exposure to tick-borne diseases (Sandifer et al., 2015).

Socio-economic changes and the subsequent response of nature means that
citizens are more vulnerable to tick-borne diseases today than in the past.
Hence, the transmission of pathogens causing tick-borne diseases is an
important public health threat (Ehrmann et al., 2017). In fact, recent research
demonstrates that ticks have trespassed the limits of forests and natural
grasslands to start inhabiting green spaces within metropolitan areas. Urban
parks in Zurich (Oechslin et al., 2017), Milan (Olivieri et al., 2017), Kiev

This chapter is based on: (Garcia-Marti et al., 2019)
Available at: https://doi.org/10.1101/642728
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(Didyk et al., 2017), Warsaw (Kowalec et al., 2017) or Lisbon (Santos et al.,
2018), and suburban forests in Paris (Paul et al., 2016), Budapest (Szekeres
et al., 2016, 2018) or Wroclaw (Kiewra et al., 2017), present tick populations,
and researchers were able to identify pathogens capable of causing Lyme
borreliosis (LB) or tick-borne encephalitis (TBE) in humans. Since parks and
suburban forests are potentially visited by thousands to millions of citizens
every year, it is necessary to fully comprehend and model the risk of getting
a tick bite to prevent this major public health threat.

The risk of getting a tick bite is the result of the interaction between its
exposure and hazard components. Traditionally, researchers have tried to
represent the risk of LB by quantifying the hazard component alone (Eisen
et al., 2010; Gassner et al., 2016; LoGiudice et al., 2003), but in the last years
researchers have worked on integrating hazard and exposure metrics to
model tick bite risk (De Keukeleire et al., 2015; Zeimes et al., 2014) because
hazard maps alone are insufficient to identify locations with a high risk for
LB (Garcia-Marti et al., 2018).

The location of citizens is key to model the level of risk they are exposed to,
but acquiring this type of information requires a partnership of researchers
and public-health specialists to create (inter-)national networks of surveil-
lance and citizen observatories. In the Netherlands, Wageningen University
& Research (WUR) and the Dutch Institute for Public Health and the Envir-
onment (RIVM) started two citizen science projects to collect data on ticks
and tick bites. These projects, which started in 2006 and 2012, have attracted
enough media attention over the years to engage citizens at contributing
tick bite reports. This engagement has resulted in over 50,000 volunteered
tick bite reports in the Netherlands. This unique dataset enables new ap-
proaches to monitor and model elusive public health threats, such as tick
bites. However, volunteered data is often unstructured, contains positional
inaccuracies and reporting bias, and observations have a variable quality
(Mehdipoor et al., 2018a; Senaratne et al., 2017), conditions that might cause
difficulties when including volunteered data in a scientific workflow.

A major challenge in our work was dealing with the highly skewed and
zero-inflated distribution of the tick bite reports. These two types of dispro-
portions are inherent traits of our data collection. Skewness refers to the
asymmetry of the distribution, whereas zero-inflation refers to distributions
in which zero-valued observations are frequent. In this work, our goal is
creating a spatial tick bite risk model with national coverage. However,
adding the spatial dimension implies the simultaneous modelling of a few
locations reporting a high number of tick bites, and a substantial amount of
locations in which zero tick bites are recorded.

Although these characteristics make it hard to use machine learning meth-
ods (Krawczyk, 2016), we pursue a solution based on machine learning
because of its proven ability to handle non-linear and complex relationships.
Classical count data statistical models are better equipped to handle skewed
and zero-inflated datasets but they are unable to capture the inherent non-
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linearity in data. Thus, here we propose a solution integrating machine
learning and classical statistic models. We combine the “segmentation cap-
abilities” of the well-known Random Forest regressor (Breiman, 2001), which
can split the data into homogenous groups using decision tree rules, with
count data models of the Poisson family, which are better suited to model
count data. Thus, our scientific contribution is two-fold: we present a tick
bite risk model based on a wide array of hazard and exposure metrics, and
we propose a methodological step forward by combining Random Forest
and count data models to better model skewed and zero-inflated distribu-
tions.

5.2 Risk, exposure, and hazard

In the field of risk assessment, risk (R) is often modelled as a function of
hazard (H) and exposure (E). The relationship between these three variables
can be conceptualized as R = H × E (Braks et al., 2016). Thus, the calculation
of tick bite risk should include variables representing both the H and E
components, which likely have different underlying factors.

In the case of ticks and LB, the first spirochetes were identified in the early
1980s (Burgdorfer et al., 1982), and it took several years for the first studies
to point out at human exposure to ticks as the source of the disease. Back
then, various studies (e.g. (Falco and Fish, 1989; Magnarelli et al., 1995)
had already identified urban recreational parks as risky locations for LB,
thus recommending prevention campaigns at parks and to inform citizens
living nearby a green space. LB emerges from a complex ecological system
driven by a wide array of factors (e.g. wildlife, climate, vegetation) (Ostfeld,
2012). For over 20 years scientists have studied the interactions between
these factors to devise robust models of tick hazard. Multiple efforts can be
found in literature since the late 1990s to quantify and map this component
of tick bite risk. However, in our recent research (Garcia-Marti et al., 2018)
we found out that the E component may be more relevant to determine tick
bite risk. The quantification of the E component is a challenging task, due
to the unavailability of human exposure metrics at the national scale. Thus,
in this work we devoted special effort and creative thinking at developing
novel human exposure indicators, which are combined with our tick hazard
model (Garcia-Martí et al., 2017) to predict tick bite risk.

5.2.1 Tick hazard

The H component of tick bite risk has been widely studied since the late
1990s. Scientists have thoroughly worked to understand the impact that
wildlife (Ostfeld et al., 2006; Randolph and Storey, 1999), mast years (Buon-
accorsi et al., 2003; Kelly et al., 2008), vegetation type (Tack et al., 2012), and
weather variables (Berger et al., 2014b) have on tick populations. The pursuit
of reliable models on tick hazard has prompted researchers to model this
component of risk from multiple perspectives. Thus, we can find studies
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dedicated to tick habitat suitability (Estrada-Peña et al., 2015), tick presence
(Swart et al., 2014), tick activity (Bennet et al., 2006), or tick dynamics (Garcia-
Martí et al., 2017), with a varying number of biotic and abiotic parameters,
and applied from local to continental spatial scales. In this work we use tick
activity as a proxy for tick hazard. Tick activity represents the number of
ticks that are questing for blood meals, which are the ones biting humans.
Tick activity is extracted from a data-driven model that predicts daily tick
activity in forests and natural grasslands (Garcia-Martí et al., 2017). The map
in Figure 5.1 shows the predicted tick activity of this model, which is the
average number of questing ticks per grid cell for the entire study period
(2006-2014).

5.2.2 Human exposure

Human exposure to ticks is intrinsically linked to human behavior outdoors
and to diverse socio-economic factors. For instance, (Zeman and Benes,
2014) discuss the peri-urbanization process in the Czech Republic, which
prompted wealthy settlers to move away from large metropolitan areas into
peri-urban areas to be in closer contact with nature and open spaces. This,
in turn, triggered an increase in the number of tick-borne infections that was
not directly related with any identifiable expansion on the tick habitat range.

Similarly, the societal adoption of healthier lifestyles encourages citizens
to spend more time outdoors carrying out physical or sportive activities.
For instance, in (Hall et al., 2017) the authors used a mass-participation
cross-country marathon competition in Ireland to survey a large number of
citizens and assess their exposure to ticks. Also, (Padgett and Bonilla, 2011)
identify common picnic spots in a national park in the USA, as locations
posing a risk of human exposure to ticks. Children participating in scouting
or summer camp activities are found to be vulnerable to tick bites in a study
in Belgium (De Keukeleire et al., 2015). All these examples are associated to
the so-called “recreational exposure”, however, there are also studies that
pinpoint activities in the peri domestic environment as risky for tick bites.
Previous works considering the “residential exposure” include a study in
the Netherlands finding a high risk of tick bites in gardens (Mulder et al.,
2013) and two studies in the USA (Hahn et al., 2017) and Czech Republic
(Zeman et al., 2015) indicating that properties in the peri-urban environment
with a large interface between a forest and the garden or backyard pose a
high risk for inhabitants of acquiring pathogens.

A thorough study for TBE in Stockholm demonstrates a use case in which
exposure and hazard variables are combined to obtain tick bite risk indic-
ators (Zeimes et al., 2014). The authors create metrics for human exposure
based in accessibility and scenic beauty, whereas for the hazard they include
variables of wildlife, forest, and land cover. Indeed, accessibility measured
as the distance to an access road or trail is an important variable to account
for when modelling tick bite risk. In (Li et al., 2016) the authors assess the
willingness of residents to travel for woodland leisure, because it varies as a
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Figure 5.1: Tick activity per 1km grid cell. This tick activity estimation is
provided by the data-driven model in (Garcia-Martí et al., 2017), which is
capable of predicting daily tick activity. We run this model for each day
during the period (2006-2014) and we calculated a robust long-term metric
of hazard, showing the maximum mean tick activity for the entire period. As
seen, hazard is minimum along the coastline and maximum in the northeast
of the country.
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function of whether citizens have to walk, cycle, or drive to the leisure place.
However, accessibility is not the only factor to account for human exposure.
There are locations in nature that are attractive for citizens due to presence
of recreational areas or amenities (Lambin et al., 2010), or because they have
intrinsic value such as high scenic beauty or a good preservation (Nielsen
et al., 2012).

5.3 Methods

5.3.1 Tick bite risk monitored by volunteers

This work is based on the collection of volunteered tick bite reports from the
Natuurkalender (NK; “nature’s calendar”; www.natuurkalender.nl) and the
Tekenradar (TR; “tick radar”; www.tekenradar.nl) citizen science initiatives
promoted by WUR and the RIVM. During the six years (2006-2012) that NK
registered tick bite reports, this platform gathered 9,256 user contributions,
whereas the TR initiative collected 46,655 reports for the period 2012-2016.
This means that in total there are 55,911 reports available. However, some of
these reports lack geographic coordinates or are placed outside the bound-
aries of the Netherlands. Hence, a total of 46,838 valid reports were found.
Here we approximate the risk of getting a tick bite in a given area by the
cumulative sum of tick bites reports in that area for the whole study period
(i.e. 2006-2016).

Prior to the modelling phase a spatial aggregation operation was used to
transform the individual tick bite reports into a tick bite risk proxy. We
choose a regular grid with cells of 1km2 for the aggregation because that is
the resolution of the existing hazard model described in Section 5.2.1. This
aggregation groups together observations that are close in the geographic
space (Figure 5.2a). However, it also creates a grid with right-skewed and
zero-inflated (Figure 5.3) grid cell values. More precisely, the grid has a
total of 36,866 cells. 9,985 cells have at least one tick bite report and the
remaining 26,881 cells have zero tick bite reports. This means that for each
grid cell with at least 1 tick bite, we have 3 in which no tick bites are recorded.
Skewedness and zero-inflation are common real-world problems, especially
when modelling count data, (Hadiji et al., 2015). Thus the analysis of the
tick bite reports requires a modelling approach capable of handling these
characteristics (Krawczyk, 2016).
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Figure 5.2: (a) Tick bite risk (2006-2016) as monitored by the NK and TR initiatives. We use as a proxy of 
tick bite risk the cumulative sum of tick bite reports per 1km grid cell. This image shows that tick bites 
are produced throughout the country, but the reports tend to be clustered around forests (e.g. Veluwe 
national park), or recreational areas (e.g. coastal areas). (b) Geographic locations. Provinces and national 
parks are labeled with capital letters, cities are labeled in lowercase.
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5.3.2 Ensemble learning from skewed and zero-inflated datasets

Random Forest (RF) (Breiman, 2001) is an ensemble learning method that
can be used both for classifications an regression problems. The ensemble
is formed by decision trees, whose individual predictions typically have a
high variance, but when combined, they produce a robust and highly stable
estimator (Louppe et al., 2013). RF combines bagging (Breiman, 1996) and
the random subspace method (Ho, 1998). Bagging allows RF to see multiple
variations of the input data and the random subspace method introduces
randomness in the features presented to each tree during the learning phase.
These two mechanisms are responsible of the diversity of the ensemble. RF
predicts unseen samples by averaging the predictions of the trees in the
ensemble.

RF and other canonical machine learning algorithms work under the as-
sumption of having a similar number of samples per class or range. If this is
not the case, the application of a canonical RF tend to produce results biased
to the majority class or most common values (Japkowicz and Stephen, 2002;
Krawczyk, 2016). Learning from a imbalanced (classification) or skewed
(regression) dataset, is a non-trivial problem that started to receive attention
in the early 2000s (He and Garcia, 2009). According to (Krawczyk, 2016)
there are three categories of methods to learn from imbalanced or skewed
data: 1) data-level methods; 2) algorithm-level methods; 3) hybrid methods.
Data-level methods aim at balancing the dependent variable by applying
over/under sampling techniques. Algorithm-level methods require the
modification of the method in use to (partially) remove the bias towards
the majority class or most common range of values. The hybrid methods
combine the balancing of the dependent variable and a modification of the
method in use. We propose an algorithm-level method to mitigate the effects
of the data imbalance over the predictive power of RF.

As explained in Section 5.3.1, the aggregation of the tick bite reports to create
a 1km raster layer of tick bite risk created right-skewed and zero-inflated
dataset (Figure 5.3). The sum of tick bites reported in each grid cell can be
viewed as a discrete random variable that only takes non-negative values.
This means that these reports can be modelled using well-known discrete
probabilistic models for count data (hereinafter: count data models), such as
Poisson (POI) and negative binomial (NB). Because of the large proportion
of zero tick bites per grid cell, we also tested the zero-inflated versions of
these models: the zero-inflated Poisson (ZIP) (Lambert, 1992), and the zero-
inflated negative binomial (ZINB) (Greene, 1994) models. The difference
between the original and the zero-inflated models is that in the latter type
of models data is assumed to be derived from a two-stage process: 1) a
Bernoulli trial deciding whether the event occurs or not (with probability p,
the zero-inflation factor; 2) in case the event occurs, the counts will happen
according to some rate Λ. Note that this second process can also generate
zeros. This two-stage process is convenient for the problem we are modelling.
First, we check the presence of ticks (and humans) and if present, we check
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Figure 5.3: Histogram of the tick bites per grid cell. As seen, after the process
of spatial aggregation described in Section 5.3.1, a skewed distribution with
zero-inflation is created. Note that the X-axis is represented in log-scale to
ease the visualization of the distribution. The number of grid cells containing
more than 30 – 40 tick bite reports is almost negligible, but the distribution
spans until a maximum of 353 tick bites per cell.
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the “rate of transmission”, conceptually composed of visiting rates and
biting rates.

Zero-inflated models have been used to predict TBE in a set-up in which the
majority of the available samples had a zero (Stefanoff et al., 2018) . However,
this approach is limiting because count data models do not generally work
well in set ups where there are complex non-linear interactions between the
predictors and the response variable. In our work, the use of RF allows the
inclusion of a wide array of predictors and the identification of the main ones
to segment the problem into more homogeneous cases, which can afterwards
be modelled using count data models. We propose a modelling approach
that combines weak (i.e. decision trees) and strong (i.e. models for count
data) estimators to improve the canonical form of RF. Figure 5.4 sketches
our modelling approach where ensemble trees are only grown until their
terminal leaves hold a minimal number of relatively homogeneous samples.
These samples are subsequently analyzed with the four selected count data
models (i.e. POI, NB, ZIP, ZINB). During the testing phase, each of the test
samples will be propagated down each tree in the ensemble and will yield
four predictions (one per count data model). The final prediction of the
ensemble will be calculated by averaging the predictions of each model type,
just like a canonical RF operates.
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Figure 5.4: Proposed approach to couple RF and count data models (Poisson: POI, negative binomial: NB, 
zero-inflated Poisson: ZIP, and zero-inflated negative binomial: ZINB). First, the ensemble of decision 
trees is used to segment the samples into groups with similar characteristics. These trees are shallow trees, 
so that each of the leaf nodes contains a few hundred of samples. Second, we plug the selected count data 
models to each of the leaf nodes in the ensemble. The predictions yielded by the count data models are 
subsequently averaged to obtain the final prediction for each RF and count data model combination.
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5.3.3 Modelling tick bite risk

The data and modelling approach described in the previous sections were
used to model tick bite risk in the Netherlands. First, we explain the process
of feature engineering applied to enrich each of the tick bite reports with
hazard and exposure variables. Then, we describe our modelling experi-
ments. Note that our work was developed using various Python libraries:
numpy (Oliphant, 2006) to handle the multidimensional arrays, statsmodels
(Seabold and Perktold, 2010) to fit the count data models, GDAL (GDAL
Development Team, 2018) and cartopy (Met Office UK, 2010) to process geo-
spatial data and prepare the visualizations through map layers, matplotlib
(Hunter, 2007) to prepare the rest of the figures, and SkillMetrics 1 library
and scipy (Oliphant, 2007) to obtain the statistical metrics used to evaluate
the model.

5.3.3.1 Feature engineering

In this study, we extend the ideas regarding human exposure described
in (Zeimes et al., 2014). To do so, we use a substantial amount of official
Dutch geospatial data, and of other user-contributed geo-sources, to derive
accessibility and attractiveness metrics. Because of the aggregation of the tick
bites to a uniform raster layer, the exposure metrics where calculated as the
geographic distance between the center of each grid cell and a set of selected
real-world features in which we expect the co-ocurrence of humans and
ticks. As explained in Section 5.2.1 hazard metrics are extracted for forests
and natural grasslands using the model developed by (Garcia-Martí et al.,
2017). Table 5.2 presents the 19 exposure metrics and the 2 hazard metrics
that were used to model tick bite risk in the Netherlands. The following
paragraphs contain more details about each of the metrics.

1https://github.com/PeterRochford/SkillMetrics
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Id Name Data type Description Source Provider Type

1 dbuiltup int Dist. built-up area BBG2008 Statistics NL (CBS) AC
2 dforest int Dist. forest patch BBG2008 Statistics NL (CBS) AC
3 drecreation int Dist. recreational area BBG2008 Statistics NL (CBS) AC
4 dbrr int Dist. regional bike route OpenStreetMap OSM Foundation AC
5 dwrl int Dist. local walking path OpenStreetMap OSM Foundation AC
6 dwrr int Dist. regional walking route OpenStreetMap OSM Foundation AC
7 dwrn int Dist. national walking route OpenStreetMap OSM Foundation AC
8 dcamping int Dist. camping location TOP10NL Cadaster NL AT
9 dcaravan int Dist. caravan parking location TOP10NL Cadaster NL AT
10 dcross int Dist. bike cross circuit TOP10NL Cadaster NL AT
11 dgolf int Dist. golf course TOP10NL Cadaster NL AT
12 dheem int Dist. wild garden TOP10NL Cadaster NL AT
13 dhaven int Dist. non-commercial haven TOP10NL Cadaster NL AT
14 dsafari int Dist. safari park TOP10NL Cadaster NL AT
15 dwater int Dist. waterbody (pond or lake) TOP10NL Cadaster NL AT
16 dbath int Dist. authorized bathing location Swimming locations National Registry AT
17 attr cat Attr. of location Lanscape attr. WUR / National Registry AT
18 LU cat Land use at location BBG2008 Statistics NL (CBS) AT
19 LC cat Land cover at location LGN7 WUR AT
20 maxmeanhaz float Max. mean H 2006-2014 Tick dynamics (Garcia-Martí et al., 2017) HZ
21 maxstdhaz float Max. std. dev. of H 2006-2014 Tick dynamics (Garcia-Martí et al., 2017) HZ

Table 5.2: Features used in this work
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We derived accessibility metrics (Table 5.2, indices 1 – 7, Type AC) from the
land-use map (BBG 2008) provided by Statistics Netherlands (CBS 2), and
from the transportation networks contributed by volunteers in OpenStreet-
Maps (OSM 3). Using these data sources, we calculate the distance from each
grid cell to a series of selected land uses and transportation networks. We
compute the geographic distance (in meters) of each grid cell to the closest
of selected BBG 2008 land use types, namely, forests, recreational areas and
urban areas. We downloaded the latest snapshot of OSM for the Nether-
lands (last access, July 2018) and extracted the user-contributed cycling and
walking networks. The former is available at local, regional and national
scales whereas the latter is only available at the national scale. Note that
the bike networks do not overlap so, for instance, the national routes do
not include routes between small cities or forest patches, but longer routes
connecting the edges of the country. We compute the geographic distance (in
meters) between each grid cell and each of the selected cycling and walking
networks.

We obtained attractiveness metrics (Table 5.2, indices 8 – 19, Type AT) by
using data from the Dutch Cadaster, the Dutch National Registry, and WUR.
From the Dutch Cadaster, we use the so-called functional polygons of their
TOP10NL 4 product. These polygons demarcate areas with 296 types of
functions (Full list available: http://geoplaza.vu.nl/data/dataset/top10nl,
last accessed November 2nd, 2018). Here, we selected 8 functions related to
outdoor activities where humans could meet ticks: campings, caravan parks,
bike cross circuit, golf courses, wild gardens, non-commercial havens, and
safari parks. We also extract from the TOP10NL the location of all lakes and
ponds in the country, since they can serve as attractors of visitors to nature
due to its scenic beauty or recreational use. We include a publicly available
map (Dutch National Registry) categorizing the attractiveness of the Dutch
landscape (i.e. Belevingswaarde van het landschap 5 , last accessed July 5th,
2018) (Crommentuijn et al., 2007; Roos-Klein Lankhorst et al., 2005). Finally,
for each location, we extracted the land use and land cover categories from
BBG 2008 and LGN7 database (produced by WUR), respectively.

The hazard metrics (Table 5.2, indices 20 – 21, Type HZ) are extracted from
the model outlined in Section 5.2.1. This model, described in more detail
in (Garcia-Martí et al., 2017), is based on nine years (2006-2014) of data
collected by volunteers. These volunteers carried out a monthly sampling
by cloth dragging of 15 vegetated locations in the Netherlands, counting
the number of ticks per life stage (i.e. larvae, nymph, and adult). Our
model was calibrated for the nymph life stage only, since nymphs pose
the highest hazard to humans. The model also includes 101 biotic and
abiotic environmental predictors. These predictors describe the tick habitat
conditions (e.g. litter, moss), the occurrence of mast years for three tree

2https://www.cbs.nl/en-gb
3https://www.openstreetmap.org
4https://zakelijk.kadaster.nl/-/top10nl
5https://data.overheid.nl/data/dataset/49505-belevingswaarde-van-het-landschap
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species, weather conditions (e.g. temperature, evapotranspiration, relative
humidity), satellite-derived vegetation indices (e.g. NDVI), and land cover.
To account for the effect that short- and long-term weather conditions have
on tick activity, we aggregated the weather data to 11 temporal resolutions
(i.e. 1–7, 14, 30, 90, 365 days). We run our data-driven model for each day in
the period 2006-2014. Then we computed the average of the maximum tick
activity of each year and its standard deviation to obtain robust and long-
term proxies for tick hazard in forests and natural grasslands locations. This
means that outside of these locations, the hazard is unknown. In this case,
we are unable to use value imputation, since this would require imputing
values for most of the country. Instead, outside of these locations, we used a
symbolic value of minus one. This value is meant to separate locations for
which we have and do not have hazard data. The selection of this value is
backed up by recent research (Heylen et al., 2013), which shows that tick
densities decrease along the forest-urban land use transition. Thus, the
symbolic value of minus one helps at grouping together samples without
hazard and samples with low hazard, which tend to occur outside forests.

5.3.3.2 Experiments

The spatial aggregation and feature engineering described in sections 5.3.1
and 5.3.3.1, resulted in a matrix with 36,866 rows and 21 columns. Each
row represents a grid cell and each column the E or H features selected for
this work. A series of experiments were designed to identify a tick bite risk
model that can handle the skewness and zero-inflation present in this matrix.
First, we randomly selected 60% of the data for training all the models and
reserved the remaining 40% for testing them. Then, we defined a range of
values for the two main RF parameters of our ensemble: 1) the number of
tree estimators; and 2) the number of samples per terminal leaf node. We
trained ensembles using 10, 20, and 50 trees and where each tree had at
least 100, 200, 400, 600 and 800 samples per terminal leaf. The number of
samples per leaf node determines the “level of development” of the trees in
the ensemble. Thus, experiments with few samples per leaf node (e.g. 100
samples) create deep trees close to full development, whereas shallow trees
are created when there are many samples per leaf node (e.g. 800 samples).
In total, 15 RF ensembles were trained using the same split of training and
test samples. Subsequently, these RF ensembles were crossed with the four
discrete probability models for count data (i.e. POI, NB, ZIP, ZINB), which
were fitted using a non-parametric approach (i.e. without having to specify
any hyper parameter), using a Nelder-Meade optimization routine to obtain
the maximum likelihood estimates of the parameters of the distributions.

Two issues could hamper the fitting of the count data models: excessive
skewness or excessive zero-inflation. The selected count data models can
deal with skewed distributions, but the segmentation carried out by RF
might leave the leave nodes with a subset of samples highly skewed towards
zero (i.e. 85% - 100% of zeros). We explored how often these circumstances
occur for each tree in the ensemble and we found out that in average, the
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fitting does not converge in 5% - 9% of the leaf nodes in the ensemble.
In those cases, we keep the default behavior of a canonical RF, which is
returning the mean of the samples falling in that node. Finally, model
performance is checked with the test dataset. For this, we track the itinerary
of each of the test samples down the tree, and identify the leaf node in which
it ends up. Then, we pass this sample to each of count data models fitted
with data from that node to get the prediction of that tree. We do this for
each tree in the ensemble, and we average these tree-based predictions to get
the final (ensemble) prediction, following the default behavior of canonical
RF models.

A modified Taylor diagram is used to graphically summarize the test results.
This diagram shows three statistics in a single plot: the standard deviation,
the root-mean-squared deviation (RMSD), and Pearson’s correlation coeffi-
cient. Taylor diagrams represent the relationship between the three variables,
which essentially lie on a 2D manifold and are projected onto a 2D flat geo-
metry without loss of information. We use this diagram because an accuracy
metric like RMSD alone is not informative in the case of heavily skewed
data, where also measures of dispersion play an important role. Since our
distribution is skewed and zero-inflated, we substituted Pearson’s coeffi-
cient by Spearman and Kendall Tau ranked correlation coefficients. The
ensemble and count data models combination that yield reasonable trade-off
between RMSD, standard deviation and correlation coefficient are then used
to create tick bite risk maps for the Netherlands. The map created when
using a canonical RF is added to the list of best models to be able to evaluate
the advantages of our approach. Finally, we intersect these maps with the
human exposure layers showed in Figure 5.5.

5.4 Results

Figure 5.6 shows the ability of the four count data models and the canonical
RF to fit the skewed distribution of tick bites in the different set-ups. Overd-
ispersion is better fitted by POI and ZIP models compared to NB and ZINB,
since the former models yield values between 0 and 30 tick bites per grid
cell, whereas NB and ZINB are barely able to predict beyond 10 tick bites
per cell. Interestingly, the zero-inflation seems to be better captured by NB
and ZINB than POI and ZIP, as seen by the frequency of predicted zeros of
these models is similar to the original distribution. RF performs similarly
in all the prepared set-ups, and seems unable to predict over a wide range
of values, most values typically being constrained to below 5 tick bites. In
general terms, the NB, ZIP, and ZINB models seem to capture reasonably
well the original distribution, but the POI model and the canonical RF do
not perform well: the POI model yields predictions with a frequency con-
siderably higher than the original values, whereas RF is unable to predict
beyond few tick bites per grid cell. In addition, POI and RF are not able
to capture the zero-inflation. As seen, the predicted distributions do not
seem to considerably improve or deteriorate based on the increasing number

98



5.4. Results

Figure 5.5: (a) Human exposure to tick bites classified in three categories. (b)
Class 1 in this map correspond to the classes from (a), class 2 represents tick
bites reported outside forests, class 3 represents forests with no tick bites
recorded, and class 4 shows locations where no tick bites were reported
during the study period. These results can be found in (Garcia-Marti et al.,
2018), and we cross them with the tick bite risk maps obtained in this work
to explore the risk per human exposure category (Figure 5.9).

of samples per leaf node (i.e. 100-600 samples), but the experiments with
shallow trees (i.e. 800 samples) seem to have a negative impact in the ability
of the models to predict zeros.

Figure 5.7 shows the performance of the ensemble in two modified Taylor
diagrams. Each of the colored symbols represents an ensemble with a
concrete number of tree estimators (T) and samples per leaf node (S). A
visual inspection of the diagrams reveals that all ensembles yield predictions
that are strongly correlated (i.e. correlation > 0.8 for Spearman’s and > 0.7
for Kendall’s Tau) with the tick bite data. The Taylor diagrams also show
that the RMSD of these models is within a reasonable and stable range (i.e. 1
– 6) for all the experiments. However, in this work we are not only interested
in models with a high correlation and low error, but also in those providing
a realistic range of predictions, which is given by the standard deviation
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(stdev) represented by the dotted radial axes. The models present a variable
skill to account for overdispersion (i.e. stdev 1 – 8). Considering these three
statistical metrics, we think that the models better performing are located
under the arc created by RMSD=2. Using the pink hexagon as a reference
point, we can see that there are NB, ZIP, and ZINB models below this arc
present a high Pearson/Kendall correlation (i.e. >0.9), a low RMSD (i.e. <2)
and a fair range of stdev (i.e. 2 – 5). Out of these selected models, we can see
that 2 ZIP and 1 ZINB models present a higher skill to model overdispersion
(stdev > 4), whereas the small cluster of NB and ZINB models under the arc
are better suited to predict zero-inflation. These diagrams also show that the
optimal experiments correspond to 200-600 S and 20-50 T. To create the tick
bite risk maps, we select the experiments with 200 samples per leaf node
and 20 tree estimators since we believe they provide the best results. Figure
5.8 shows the tick bite risk maps produced by the four count data models
(a-d), by the canonical RF (e), and a zoom-up of the maps obtained with the
ZIP and ZINB models (f-g). The application of POI and ZIP models at the
country level create maps that present a wide range of predicted tick bites.
The NB and ZINB models yield maps that are visually less prominent, and
the predictions of RF are mostly uniform throughout the territory and do
not show any remarkable pattern. In Figure 5.6 and 5.7 we see that NB and
ZINB present a higher skill to model zero-inflation, which means that they
perform better than POI or ZIP at delineating regions with a low tick bite risk.
In this sense, NB and ZIP mark large areas in the northwest (e.g. province
of Friesland) and in the center west (e.g. region of the Groene Hart) of the
country, either as very low or inexistent risk of tick bites. Figure 5.6 and 5.7
also show that ZIP has a better ability to predict over dispersed data, which
is particularly suitable to identify less prominent risky locations, such as the
patchy forest structures of the northeast of the country (e.g. provinces of
Groningen and Drenthe) and the forests in the south (e.g. province of Noord-
Brabant). The inspection of the zoomed ZIP and ZINB models (Figure 5.8;
f-g) shows that the risk is maximum in popular recreational locations. The
Veluwe national park, the Utrechtse Heuvelrug forests, and the recreational
areas along the coast present the highest tick bite risk of the country.

100



5.4.
R

esults

Figure 5.6: Histograms of original (red) and predicted (blue) distributions for an ensemble with 20 trees and an increasing
number of samples per leaf node. Note that for visualization purposes, the axes have been limited and the zeros are summarized
in the text box within each subplot, thus showing the number of true zeros, predicted zeros and the associated percentage. The
first four columns correspond to the count data models, whereas the last column shows the performance of the canonical RF.
As seen, POI and ZIP can predict for a wider range of values, whereas NB and ZINB are good at predicting zeros and the low
part of the distribution.101
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Figure 5.7: Modified Taylor diagrams showing the performance of the mod-
els based in three metrics: standard deviation, RMSD, and a correlation
coefficient (left: Spearman’s, right: Kendall Tau), which are represented by
the Y, circular, and radial axes, respectively. Each of the colored symbols
represents an ensemble with a concrete number of tree estimators (T) and
samples per leaf node (S). The models better performing are located under
the arc created by RMSD=2, since they present a high Pearson/Kendall
coefficient, low RMSD, and a fair standard deviation. Out of these selected
models, we can see that 2 ZIP and 1 ZINB models present a higher skill to
model overdispersion (i.e. std. dev. > 4), whereas the small cluster of NB
and ZINB models under the arc are better suited to predict zero-inflation. As
seen, experiments with in the range of 200-600 samples per leaf node seem
to perform optimally in both diagrams.
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Figure 5.8: Tick bite risk maps produced by combining RF with each of the count data models. The upper row (a-e) shows the
general overview of the models, whereas the bottom row shows a close-up for the ZIP (f) and ZINB (g) models. The NB (b) and
ZINB (d) models are better suited to delineate regions with low or inexistent tick bite risk, thus they present sharper declines
between different land uses. The ZIP (c) model is capable of predicting the risk of tick bite over a range of values, this is why
its associated map presents smooth and gradual changes across the study area. POI (a) and RF (e) are over/under predicting,
respectively, since the former finds risk in most locations of the country, whereas the latter yields and almost-homogeneous
prediction. The visual inspection of the zoomed models (f, g) identify popular places for recreation intensely visited by citizens.
The forested areas between Utrecht, Apeldoorn, and Arnhem, together with the recreational areas along the coast are regions
where tick bite risk is particularly high.
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Figure 5.9 depicts the risk of tick bite classified by the exposure levels found
in Figure 5.5. We show a plot for each count model (a-d), for the canonical
RF (e), and the original volunteered reports from NK and TR (f) classified
by type of human exposure as well. The models have different skills to
predict risk for each of the exposure classes in Figure 5.5. Considering the
low, medium, and high exposure classes in Figure 5.5a, we see that ZIP
better captures the overdispersion of data, since its interquartile range across
classes (i.e. 0 – 10 TB/cell) is longer than NB and ZINB models (i.e. 0 – 6
TB/cell). Also, NB and ZINB present a higher skill at modelling the low
exposure class, since it coincides with the original tick bite distribution (i.e.
0 – 4 TB/cell). ZIP provides more flexibility at predicting for the medium
(i.e. 3 – 9 TB/cell) and high (i.e. 3 – 10 TB/cell) exposure classes, since these
they span a range resembling the original distribution (i.e. 0 – 6 TB/cell
and 0 – 14 TB/cell, respectively). Regarding the exposure classes in Figure
5.5b, we can see that ZIP seems to capture well the category of tick bite risk
in non-intensively visited forests. The NB, ZIP, and ZINB models are not
able to predict a range for the category of tick bites outside forests. The
canonical RF shows a poor performance across the exposure classes, since
it is only able to predict for a narrow margin of the original distribution.
Based in the results provided in this section, we believe that, overall, the ZIP
and ZINB models present stable predictions and the ability of modelling
overdispersion and zero-inflation, respectively.

5.5 Discussion

In this work we illustrate that canonical RF models have difficulties captur-
ing skewed distributions and we present our approach conceived to mitigate
the effects of biasing the model towards the mean. To do so, we apply an
algorithm-level modification of RF (Krawczyk, 2016), by combining weak
estimators (i.e. decision trees) with robust estimators (i.e. count data mod-
els). By doing this, we keep two important characteristics of both types of
estimators: a fast segmentation of the samples, and a realistic prediction of
the tick bite risk. Thus, the integration of the segmentation capabilities of RF
and the count data models creates a robust combined estimator.

Due to the skewed and zero-inflated nature of the tick bites per grid cell,
our work does not aim at creating a model with the lowest performance
metrics (i.e. low RMSD and standard deviation), but a model that finds
the trade-off between the error and the capability of predicting tick bites
over the reaslistic range of data values. For this, we tested various model
configurations. The metrics represented in Figure 5.7 show the performance
of the models based in three metrics: the standard deviation, the RMSD,
and a correlation coefficient. Based on these three metrics, we think the
that the ZIP and ZINB models are the ones performing better, since they
present good correlation coefficients, reduced RMSD and are able to capture
overdispersion or zero-inflation, respectively, which can open the door to
multiple applications in ecological modelling and public health.
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Figure 5.9: Tick bite risk classified based on the human exposure classes
from Figure 5.5. The subplots show the predicted distributions per human
exposure class for each of the count data models (a-d) and RF (e), and the
type of human exposure using the original volunteered observations from
NK and TR (f). The models present a different skill at predicting for each
of the exposure classes. For example, ZIP and ZINB yield predictions for
the low exposure class very similar to the original ones, whereas ZIP has
analogous predictive capabilities for the forests with a low recreational in-
tensity. Note, however, that although ZIP and ZINB can model the medium
exposure class reasonably, none of the used models are able to capture the
high skewness present in the high exposure class. The canonical RF is not
able to predict the over dispersion of the original dataset.
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The presented maps illustrate that the proposed approach can be used
to estimate the tick bite risk in a location. The NB and ZINB models seem
adequate for low-risk detection, since they perform better with zero-inflation
in data, which subsequently enables the identification of low-risk regions.
Then, the ZIP models are more suitable to fit over dispersed data, which
enables the quantification of the risk within a wide range of values. Visually,
this means that NB and ZINB maps identifies large regions with low-risk
with sharp declines between different land uses, whereas the predictions
yielded by ZIP show a richer range of predictions that can help at location
risky locations in the country. The selected ZIP and ZINB models are able
to identify locations of high risk in popular recreational places (e.g. Veluwe
national park, coastal recreational areas), but they also have proved useful
at detecting risky locations which are less intensively visited by citizens (e.g.
patchy forests in the provinces of Noord-Braband, Drenthe, and Groningen).
We believe that these maps can support several public health interventions
intended to decrease the number of tick bites.

Using the categories from Figure 5.5 and the map layers in Figure 5.8, we
inspected the risk of tick bites in function of human exposure inside and
outside forests. In Figure 5.9 we see that some of the models are able to
predict reasonably well for certain human exposure categories. For example,
ZIP and ZINB yield predictions for the low exposure class very similar to
the original ones, whereas ZIP has analogous predictive capabilities for
the forests with a low recreational intensity. Note, however, that although
ZIP and ZINB can model the medium exposure class reasonably, none of
the used models are able to capture the high skewness present in the high
exposure class. This limitation suggests that human exposure in highly
visited locations might need additional features to better characterize the
human activities outdoors. Considering all insights together, we think
that these results suggest that a combination of RF and ZIP would be the
most suitable one to estimate the tick bite risk in a location, whereas the
combination of RF and ZINB would be adequate to detect locations with
zero or very low risk.

In this work we encountered four hurdles. First, finding a proper valid-
ation metric for skewed distributions was challenging, because the most
commonly used measures of model performance use statistical measures of
location, not of dispersion, whereas in this case we are equally interested
in predicting the dispersion. The (modified) Taylor diagram can help at
evaluating the models because it can represent three statistical metrics in a
single chart. Second, the TB collection is self-reported by each user of NK
and TR. This means that this is a source of spatial inaccuracy based on the
level of map literacy and spatial awareness of each user. With the current
data collection, we are not able to quantify, nor correct, for this spatial inac-
curacy. This means that at the time of the feature engineering we might be
characterizing an observation which is incorrectly placed. We acknowledge
the importance of citizen science campaigns, but we recommend that further
data collection campaigns dedicate effort to find the positional accuracy of
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each observation. Third, there is a small fraction of the non-parametric count
data model fittings that fail to converge due to excessive data imbalance
for the optimization routines. Further work should aim at incorporating
statistical knowledge to improve the fitting procedure, so that all models
converge and contribute to the joint prediction of the ensemble. Fourth, the
hazard model used in this work can produce a robust estimation of tick
activity within forests, but not on other land uses. Thus, in this work the
contribution of E and H could only be estimated in forested areas, whereas
in the remaining land uses the model is entirely driven by E features. Further
work should aim at combining different hazard metrics (e.g. tick suitabil-
ity) to obtain a continuous picture of tick hazard throughout the country.
This improved hazard metrics could help at disentangling which of the two
factors (i.e. E or H) is dominant for each location, and thus would allow a
deeper understanding of the factors of tick bite risk.

5.6 Conclusion

In this work we illustrate how canonical machine learning algorithms like RF
may not perform well at modelling a skewed and zero-inflated distribution,
and we present our algorithm-level solution to mitigate the bias towards the
mean. Our approach consists in modifying the default behavior of RF by
combining weak estimators (i.e. decision trees) with robust estimators (i.e.
count data models). Thus, we connect four discrete probability models for
count data (i.e. Poisson, negative binomial, zero-inflated Poisson, and zero-
inflated negative-binomial) to each of the leaf nodes of RF. Subsequently,
we enable RF to predict for skewed and zero-inflated distributions, which
constitutes a methodological step forward in the machine learning field.
We used this modified RF to model tick bite risk using volunteered reports
collected by two Dutch citizen science projects. We extend the current state
of the art on tick bite risk modelling by devising and integrating a wide
array of hazard and exposure metrics. By doing this, we are able to create
tick bite risk maps for the Netherlands, and to explore the risk based on
human exposure. We hope that this double contribution can help other
researchers across multiple fields at modelling skewed and zero-inflated
distributions using machine learning methods. Finally, we believe that
this work also demonstrates that the incorporation of volunteered data
to a scientific workflow is not only possible, but recommended to model
fine-grained phenomena that escape classic monitoring networks.
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6.1 Introduction

This PhD research revolves around the investigation and development of
innovative data-driven methods to advance the spatio-temporal modelling
of tick dynamics and tick bite risk. Advancing the modelling of these two
phenomena is important to better understand where and when tick bites
can occur, so that preventive campaigns could be implemented in these
locations to reduce the number of new LB infections. We apply data-driven
methods to model the non-linear relationships between tick bite risk (R),
human exposure to ticks (E) and tick hazard existent in nature (H), by means
of integrating volunteered and environmental data, and considering the
spatial and temporal dimensions.

Understanding these relationships required an in-depth modelling of the
R, E, and H components, to enable the creation of an integrated analytical
framework capable of predicting tick dynamics and tick bite risk at the
country level. With this research, I am engaged with specialists in the fields
of public health, forestry, or ecology, creating maps that can help at designing
tick-borne mitigation campaigns or increase public awareness towards LB.
In this chapter, I reflect on the work presented by discussing how the pieces
of this dissertation connect to each other (Section 6.2). I provide a reasoned
answer to the research objectives posed in the introduction chapter (Section
6.3), and I highlight the main contributions of this thesis (Section 6.4). Finally,
I outline ideas for prospective research lines (Section 6.5).

6.2 Connecting the dots

The development of this PhD has been possible due to the contribution of
anonymous volunteers to two long-term citizen science projects. The RIVM
and WUR have coordinated for over a decade the collection of tick bites, and
the monthly tick activity monitored by trained volunteers. The availability of
these two geodata collections, has enabled complex analyses at a fine spatio-
temporal resolution in the fields of ecology or public health. It also illustrates
that the application of machine learning methods can provide new insights
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on well-consolidated fields with a remarkable body of associated literature.
In this thesis we incrementally presented our approach to model in space
and time the three components that determine the number of LB infections
in humans. We used the intrinsic relationship between risk, hazard, and
exposure to devise new contributions at modelling these components. The
remaining of this subsection explains the relationship between chapters.
Note that, in chronological order, Chapter 3 was developed first, followed
by Chapter 2, 4, and 5.

The development of Chapter 3 prompted questions about the nature of
the volunteered tick bites collection. Back then, questions such as “what is
the component that the tick bites collection is measuring?”, “are the volunteered
reports containing a substantial amount of spatial inaccuracy?”, or “how to validate
volunteered data collections?”, fueled discussions among several specialists
of different fields. After the development of this research, these questions
might seem trivial, but at the time were crucial to understand whether the
tick bites collection was a by-product of R, E, or H. This was important, since
the remaining of the thesis would build at the top of these decisions. The
experiments and discussions that we conducted concluded that the tick bite
reports are a realization of R, thus meaning that there was an interaction of
the E and H components (unknown at the time) producing the measured
tick bite risk signal.

Realizing that the volunteered tick bites was a proxy for R, prompted this
research to seek and estimate the E and H components. In Chapter 2 we
presented our approach to calculate the H component stemming from the
volunteered tick activity monitored by trained volunteers. The analytical
framework that we proposed in this chapter was designed not only to pro-
duce an estimation of the tick activity, but also to elucidate questions such
as “what are the drivers of tick dynamics at multiple time-scales?”, or “how can
we enable time-awareness in the selected modelling method?”. Both were chal-
lenging tasks, since a deep study of the literature showed that the scientific
community does not have reached yet a consensus on the recommended vari-
ables to model tick dynamics, neither about the appropriate spatio-temporal
resolution(s) to do so. In addition, it is yet unclear how to make machine
learning algorithms to understand the temporal dimension, which is needed
to obtain realistic tick dynamics. The development of this workflow created
a model capable of predicting daily tick activity at the country level, which
is a realization of H component.

After creating the H component, we realized that it was essential to obtain
the E, so we could create a framework to integrally model R. However, prior
to modelling something as heterogeneous and ubiquitous as human expos-
ure to ticks, we decided to make a pre-step to assess (and double check)
whether the E component could be derived from the newly calculated H
and the R. In this way, it would be possible to acquire some prior knowledge
about the E that would help at deriving meaningful variables afterwards. In
Chapter 4 we propose a methodology to obtain a novel spatial E compon-
ent, temporally static, which completes the demonstration of the intrinsic
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relationship between the three components. This research also helped at cla-
rifying a question present since the beginning of the research: “is R actually
triggered by the H or by E?”. The visual inspection of this novel E component
revealed locations at the interface of natural and urban areas, as long as
popular places for recreation, with high levels of human exposure, which
suggest that the risk of tick bite is strongly influenced by human exposure
on a particular day and location.

Knowing the strength and location of the human exposure component was
key to obtain meaningful variables characterizing this heterogeneous and
ubiquitous component. In Chapter 5 we used this newly acquired know-
ledge to devise good indicators of human exposure outdoors. These indicat-
ors were targeted at characterizing the urban-natural interface and popular
recreational locations. After this step, we had the R, H, and E components,
which enabled to train a data-driven model to predict the risk of tick bite.
This model enables researchers and specialists to respond questions such as
“what are the top three most risky locations for tick bite in the country?”, a nai̋ve
question that entangles a great complexity to be answered.

6.3 Answers to research questions

RQ1: How to develop a data-driven approach combining volunteered
and environmental geodata, which is capable of capturing tick dynam-
ics and assess the major drivers of tick activity across time-scales? In
Chapter 2, we present our spatio-temporal data-driven approach to model
tick dynamics by integrating volunteered data on tick activity with environ-
mental variables. An extensive study on the literature revealed that there
are three gaps that scientists have not studied sufficiently when modelling
tick dynamics. First, it is unclear what the recommended set of environ-
mental predictors is. Second, it is unknown at what time scales the different
predictors operate. Third, the use of linear methods is insufficient to model
such a complex ecological problem as tick dynamics. In our study, we
overcome these limitations by modelling tick dynamics with wide array
of environmental predictors aggregated at multiple temporal scales. We
apply a well-known machine learning method (i.e. RF) which is capable of
mapping complex non-linear interactions between the predictors and the
target variable. In addition, we modified this method to enable it to predict
tick activity considering the time dimension, and we used the framework
described above to predict daily tick dynamics. The main findings of this
paper reveal that atmospheric water levels (e.g. evapotranspiration, relative
humidity) are major drivers of tick activity across all temporal scales, and
we proposed a model capable of identifying daily tick activity at the country
level. The estimation of tick dynamics is a way of proxying the hazard that
ticks represent to humans. Thus, this piece of work is reused during the
development of chapters 4 and 5.
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RQ2: How to use data mining methods to identify spatio-temporal pat-
terns linked to tick bites and verify that these patterns, stemming from
volunteered observations, are intrinsic to the phenomenon under study?
In Chapter 3, we started the exploration of the volunteered tick bites by
means of carrying out a thorough exploratory data analysis. Since there is
little knowledge on how tick bites are produced, we performed this study
with a double goal in mind: 1) to assess what are the environmental and
human factors that might be associated with a higher risk of tick bites; 2) to
assess whether the volunteered tick bites collection contains any information
which is intrinsic to the tick bites phenomenon. We identified an array of
environmental, human, and weather variables that we modelled with a
classic machine learning algorithm for frequent pattern mining (i.e. Apriori).
This algorithm automatically explores the co-ocurrence of features causing
a tick bite, thus it is possible to assess and map what are the most frequent
conditions triggering them. We found several persistent patterns throughout
the study period that reveals that the number of warm days (or alternatively,
rainy days) and the distance to forests, do have an impact on the occurrence
of tick bites, since they prompt (or prevent) humans to carry outdoor activit-
ies. At the time of this analysis (2015) the previous two results suggested
a new hypothesis regarding the tick bites phenomenon: tick bites could be
strongly driven by human recreational patterns outdoors in peri-urban areas.
Regarding the quality of the volunteered tick bites collection, we crafted an
original validation method to ensure that the volunteered reports contained
information associated to the tick bites phenomenon and was not a product
of random sampling. This procedure confirmed that the volunteered data
contributed by citizens, was indeed capturing the tick bites phenomenon in
space and time, subsequently implying that this dataset contains information
with scientific value. The assessment of validity of the tick bites collection
was important for the development of chapters 4 and 5.

RQ3: How to devise a novel indicator of human exposure to ticks, en-
abling the geographical identification of clusters of high exposure? In
Chapter 4, we present a first-of-its-kind map of human exposure to tick bites,
which stems from the combination of the tick dynamics work in Chapter 2
and the volunteered tick bites collected by the NK and TR citizen science pro-
jects. In Chapter 1 we explain that there is a close relationship between the R,
H, and E components, which means that it should be possible to get a (rough)
estimation of each of them as a linear combination of the remaining two. In
this work, we used this principle to obtain a novel map product showing the
human exposure to tick bites. This operation enables mapping the different
types of locations in which humans are exposed to ticks and provide an
estimation on the intensity of this exposure. The map reveals forest patches
frequently visited by citizens, especially at the interface between urban and
natural areas. In addition, this map shows locations outside forests in which
tick bites are reported, and also forested locations with a very low recre-
ational pressure. Our results indicate that the risk of tick bite is strongly
influenced by the human exposure, more than to the existing hazard in a
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location. This suggests that hazard maps alone are insufficient to identify
risky locations for LB infection, which motivates creating exposure maps
for public health specialists and forest managers that could assist them at
designing tick-borne mitigation campaigns. This work confirms the versatil-
ity and usefulness of citizen science projects at monitoring fine-grained and
elusive public health threats, and encourages further research at calculating
human exposure metrics to have a better overview on tick bite risk.

RQ4: How to integrate hazard and exposure metrics to devise a tick bite
risk model, capable of handling the skewness and zero-inflation inherent
to the volunteered tick bite reports? In Chapter 5, we take the knowledge
acquired in the previous chapters to develop a data-driven tick bite risk
model, integrating H and E metrics in a single analysis. We combine the
tick dynamics model (H) developed in Chapter 2 and we derive a series of
human exposure metrics (E) rooted in the findings of Chapter 3 and 4, to
build a robust indicator of tick bite risk. We derived a series of accessibility
and attractiveness metrics from publicly available geodata sources (official,
user-contributed) and we modelled them using a well-known ensemble
learning algorithm (i.e. RF). A major challenge in this work was learning
from a highly skewed and zero-inflated distribution of the tick bites, since
canonical machine learning algorithms have difficulties at modelling non-
normal data. We solved this problem by modifying the chosen method and
combining the built-in segmentation task with count data probability models
(i.e. Poisson family), which are better suited to learn from imbalanced
data. The contributions of this work are double fold: first we propose
an integral analytical framework to model risk of tick bite based on H
and E metrics, and second, we propose a methodological step forward
by combining a machine learning-method with count data models, which
enables an ensemble learning algorithm to model skewed and zero-inflated
distributions.

6.4 Main contributions

In this thesis we propose guidelines to carry out an integral spatio-temporal
assessment of tick bite risk considering human exposure and tick hazard
factors. The individual and integrated modelling of these three components
has produced four main scientific contributions and insights. First, we il-
lustrate the intrinsic relationship between the R, E, and H components. This
is important, since it suggests that other researchers in the field could derive
a component from the other two and opens the way to re-use components to
keep advancing modelling human-tick interactions. Second, we found that
tick dynamics are consistently more influenced by water-related features
(i.e. evapotranspiration, relative humidity) at all time scales, than to tem-
perature or vegetation features. The latter types of features have been the
preferred modelling choice in the past decades, but recent studies suggested
that tick activity could be driven by atmospheric water levels. Our study
supports these hypotheses at a fixed spatial scale and multiple temporal
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scales and recommends the inclusion of water-related features to model
tick dynamics. Third, the study of frequent patterns reveals that favorable
weather conditions for outdoor recreation are positively correlated with the
number of tick bites per year and illustrates that tick bites tend to be geo-
graphically clustered at the interface between forest and urban areas. Both
results suggest that residential exposure to ticks might play a significant
role at triggering new tick bites. Fourth, we found out that tick bite risk is
strongly influenced by human exposure, more than to the existing hazard
in a location. This contribution led us to create a robust human exposure
indicator that we used to create the last contribution, in which we provide
a nationwide tick bite risk map that might help at fostering new research
lines.

During this PhD journey, we implemented three methodological contri-
butions that might serve a step-forward for new research in the fields of
machine learning and environmental modelling. First, we bridge the inab-
ility of RF to produce time-aware predictions. We made a first attempt at
applying a data-level modification of this method, in which we apply Z-
scores to the tick activity count, and subsequently we proceed at modelling
the data as it was initially planned. In this way, we provide ‘context’ to the
model to be able to distinguish between different weather conditions (e.g.
winter vs summer) yielding a similar tick activity count. In this way, we
force RF to learn the mapping between the covariates and the Z-score’d tick
activity, thus better ‘understanding’ the temporal dimension. Second, we
solve RF’s inability to learn from skewed and zero-inflated distributions. We
propose an algorithm-level modification in which we combine the ‘segment-
ation’ capabilities of RF with count data models (e.g. Poisson family) which
are better suited to model imbalanced distributions. Third, we developed
a simple method to estimate human exposure to ticks, which overcomes
the unavailability of ICT data (e.g. mobile phones locations) due to privacy
laws, to create a nationwide coverage of human exposure to ticks.

We believe that this thesis also contains two contributions to the citizen
science community. First, we would like to acknowledge the importance
of VGI data at monitoring, with unprecedented levels of detail, elusive
phenomena such as tick dynamics of tick bites. Our work has consistently
demonstrated that citizen science projects can produce volunteered inform-
ation ready to feed scientific workflows. Second, despite the challenges
attributed to VGI described in Section 1.3, especially concerning data quality
and representativeness, we think that geodata collections contributed by
citizens are promising at modeling fine-grained and health-related phenom-
ena. Thus, we have advanced at validating VGI data by devising creative
methodologies and workflows checking whether the volunteered collections
contain a signal that can be recovered. We consider this a practical but
very important contribution, since there is no single manual on the proper
treatment of VGI, thus each success case help researchers at validating VGI
collections.
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6.5 Prospective research lines and applications

In general, we think that possible future lines of research should (also) aim
at quantifying uncertainties in the R, E, and H components, which may
help reducing the error metrics reported during the development of this
thesis. However, looking beyond error metrics, there are some interesting
experiments ahead outlined in the remaining of this section.

6.5.1 Improving prediction of tick dynamics

In Section 1.2 we explained that LB infections are the outcome of a complex
ecological system involving the interaction of several biotic (e.g. environ-
ment, wildlife) and abiotic factors (e.g. weather, landscape). The hazard
model presented in Chapter 2 is able to capture general tick dynamics (e.g.
large scale dynamics), but our predictions might be uncertain in locations
in which weather conditions are not the main driver of tick activity. The
missing piece of the LB ecological system that we were not able to include
in the model, is the dynamics of different wildlife species. We believe that
the inclusion of population dynamics on mammals (e.g. rodents, ungulates,
foxes) and birds, could help at better predicting the peaks of tick activity
present in data. During this research, we used the best possible collection of
weather data for the Netherlands, provided by the Dutch Met Office (KNMI).
These weather datasets are daily gridded layers at 1km resolution interpol-
ated from the 34 automatic weather stations of the country. Although this
resolution is reasonable for the type of experiments that we are doing, we
suspect that this yet-coarse spatio-temporal resolution might not be cap-
turing correctly local radiative or evaporative processes, which determine
tick activity. We believe that the introduction of weather data at a finer
spatio-temporal resolution (e.g. hourly, grid cells smaller than 1km) could
help at pinpointing these local processes and improve the model metrics.

6.5.2 Creating a dynamic tick bite risk model

In Section 1.4 and Chapter 5 we introduced the concept of risk and we
explained how to obtain risk maps from the volunteered reports. One of
the limitations of this model is that is temporally static, which means that
the risk of tick bite in a location does not change. Since most of the tick
bites are reported during the period May-Aug accross years, we believe
that this risk map is showing the ‘maximum potential’ tick bite risk in
each location. However, a more advanced risk model should include some
improvements, such as fluctuating between ‘low risk’ and ‘high risk’ state
from winter to summer seasons, decrease (or increase) the level of risk if the
weather conditions are harmful for the tick survival (e.g. too hot, too dry)
or preventing humans to go outdoors (e.g. heavy rain, severe wind gust
conditions). In addition, we recommend that, given the tick bite risk map,
explore what are the main drivers of tick bites at each location (i.e. high
hazard or high exposure), since this can help planning mitigation strategies.
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6. Synthesis

6.5.3 Linking machine learning and statistics

In Chapter 5 we proposed an algorithm-level modification for RF, in which
we combine its built-in segmentation capabilities with count data models. In
5.4 we illustrate how data-driven count data models are plugged to each tree
estimator in the ensemble to learn from a highly skewed and zero-inflated
distribution. The count data models of the Poisson family are defined by two
parameters, π and λ, which correspond to the probability of ocurrence of an
event and the rate at which this event occurs. The application of these count
data models to each leaf node in the ensemble implies that after finishing
the training phase of the ensemble, there is an array of pairs (π, λ) that are
defining the shape of the tick bite risk distribution. We represented this array
in a 2D space as Figure 6.1 illustrates. This figure shows the same analytical
set up used in 5, but keeping the (π, λ) fitted to each leaf node. The point
clouds in the figure suggest that there could be an overarching 2D Gaussian
curve wrapping the points. This is interesting, since approximating the tick
bite risk with this well-known model might pose some benefits regarding
interpretability and fast computation of the risk. Further analysis could
include the interpretation of these coefficients (e.g. assessing the value of
parameters when risk is min/max), and carrying out a statistical analysis,
including fitting the Gaussian curve, assessment of the uncertainty, and
comparing the results with the current data-driven tick bite risk model.

6.5.4 Applications and other spatio-temporal analyses

• Assesing and improving the quality of VGI: As seen in Chapter 3,
the tick bite reports contain an unknown factor of citizens’ reporting
errors (e.g. positional inaccuracies, over- or under-reporting tick bites)
that we recommend tackling in further research. To overcome these
issues further research could aim at making a full assessment of the
data quality and representativeness of tick bites. Also, crossing the
volunteered data with ICT data (e.g. mobile phones locations), or
geolocated data streams from social networks (e.g. Twitter, Instagram)
could be helpful at improving the quality of the reported positions,
since tick bites could be repositioned to fall within the intended real-
world feature.

• Human exposure: residential vs. recreational: In Chapter 4 we sug-
gest that the exposure to tick bites is driven by two types of activities,
namely “recreational exposure” and “residential exposure”. The exist-
ing volunteered tick bites collection might be helpful to analyze the
residential exposure in peri-urban areas. This would enable a high-
resolution analysis of tick bite risk and find out locations (e.g. gardens,
grasslands, small suburban forests) that might pose a high risk for
urban dwellers.

• Applications for professionals and citizens: In the event that the
models developed during this thesis could be operationalized, that is,
running in a server and reading from a real-time tick bites and tick
activity database, we believe that some web/smartphone applications
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6.5. Prospective research lines and applications

Figure 6.1: Visualization of π and λ coefficients for the selected ensemble.
This figure shows the same analytical set up used in 5, in which we train
ensembles for an increasing number of tress (T) and samples per leaf node
(SPL). The X and Y axes show the fitted values of λ and π, respectively.

could be devised to deliver the R, E, and H maps. We envision that
public health specialists and/or forest managers could be interested at
receiving timely updates on R and E, since it can help planning tick
mitigation strategies or design public health campaigns. Ecologists
and biologists could be interested in studying the tick dynamics at the
large-scale to locate regions of interest that enable a finer-scale analysis.
Finally, citizens could be interested in receiving alerts in their phone
in case they are entering a risky area for tick bites or the levels of tick
hazard are high.
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7Summary

Human activities have induced global changes, which among other impacts
are leading to the re-emergence of vector-borne diseases. Climate change,
human and demographic developments, socio-economic exchanges, and the
increase of human outdoor recreational activities, are some of the relevant
factors that are contributing to the occurrence of vectors (e.g. mosquitoes,
ticks) outside their endemic enclosements and facilitating the global trans-
mission of vector-borne diseases between regions. The World Health Organ-
ization (WHO) has identified nine type of vectors that can cause, at least, 16
major vector-borne diseases in humans. Major tick-borne diseases comprise
two bacterial infections (i.e. Lyme borreliosis, tick-borne encephalitis) and
one viral infection (i.e. Crimea-Congo haemorrhagic fever), although there
are several minor tick-borne diseases (e.g. rickettsial diseases, relapsing
fever) with local importance.

Ticks are pervasive ectoparasites with a limited motility that require a wide
array of biotic (e.g. environment, wildlife) and abiotic (e.g. weather, land-
scape structure) conditions ensuring their survival. Scientists have reported
a latitudinal and altitudinal expansion of tick range in the last decades,
which has been attributed to two related factors: global warming has turned
unsuitable habitats into suitable ones and, subsequently, various wildlife
species (e.g. rodents, birds, ungulates) have expanded their ranges and
introduced ticks in new locations.

The expansion of the range of ticks is not the sole element prompting tick-
borne diseases. Our planet is experiencing an increasing urbanization.
Urban sprawl has increased the amount of residential areas in the peri-
phery of cities, which are in closer contact with green spaces and nature.
As a response, several bird and mammal species have adapted their etho-
logy to live at the interface between forests and urban regions, where the
chances of finding more food and less predators are higher. However, the
proximity between nature and urban areas also means that pathogens and
parasites carried by wildlife are getting closer to citizens. This phenomenon
also explains the increasing hazard for tick-borne diseases. In addition, the
progressive adoption of healthier lifestyles prompts citizens to carry more
outdoor activities leading to a higher exposure to tick-borne diseases.

119



7. Summary

Lyme borreliosis (LB) is a tick-borne disease that has experienced a sub-
stantial spatio-temporal expansion in the Northern hemisphere in the last
20 years. Scientists and clinicians in nine European countries, USA, and
Canada, have reported that the incidence of LB has steadily increased. In
recent years, however, sub European sentinel networks of general practi-
tioners have identified the first signs of stabilization. Yet, each year, roughly
25,000 Dutch citizens are diagnosed with LB. Albeit most of them respond
well to the antibiotic treatment, there is a minority of patients reporting
persisting symptoms that might lead to chronic symptoms and disability.

Ticks are the vehicle that pathogens utilize to infect new organisms, therefore,
it is utterly important to monitor tick dynamics that enable the identification
of hazardous locations for LB infection. The ubiquity of humans in natural
spaces and the small size of ticks poses multiple challenges for public health
organizations to monitor this disease. This is why two Dutch organizations
started citizen science-based initiatives to collect data that can shed light on
tick bite risk and tick dynamics.

During the period 2006-2012 the educational phenology platform Natuurkal-
ender, linked to Wageningen University, gathered nearly 10,000 volunteered
tick bites. This pioneering project attracted the attention of the Dutch Na-
tional Institute for Public Health and the Environment (RIVM), and in 2012,
the platform Tekenradar was launched by these two organizations. Tekenradar
has collected over 50,000 volunteered tick bite reports in the Netherlands. To
the best of our knowledge, these initiatives constitute the first citizen science
projects that specifically focus on ticks and tick-borne diseases. Also in 2006,
a group of scientists from Wageningen University started a country wide
project to assess tick dynamics. A group of trained volunteers sampled a
transect of forest on a monthly basis using a method called blanket dragging,
counting the caught ticks every 25 meters. This project was carried out
during the period 2006-2016 and created a unique collection of volunteered
data.

These unique collections of volunteered observations on tick bites and tick
dynamics enable the study of public health threats, such as LB. Volunteered
data has the potential of monitoring complex and elusive environmental
phenomena at an unprecedented spatio-temporal resolution. However, vo-
lunteered data is not exempt of several issues and challenges that require
attention. Data quality and representativeness are some of the challenges
that required attention before feeding these observations to scientific work-
flows.

In this PhD thesis, we focus on extracting spatial patterns and temporal
trends from these volunteered data collections with two objectives in mind:
modelling tick dynamics to identify the major drivers of tick populations,
and modelling human activities to identify potentially risky factors and
regions for LB. This disease is the product of a complex zoonotic cycle in
which biotic and abiotic factors are weaved together. In our approach, we
use machine learning methods to combine these data-sources about these
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factors and to account for the non-linearity of the interactions within the
zoonotic cycle. In this way, we are able to create data-driven models capable
of predicting daily tick activity and identifying risky locations for LB.

This journey towards the modelling of tick dynamics and tick bite risk has
been structured in four steps. First, we present an approach to calculate tick
dynamics stemming from the volunteered tick activity data. For this, we in-
vestigate the impact that long- and short-term variables have on tick activity,
and we provide a model capable of predicting daily tick activity in forests at
the national scale . Second, we introduce an extensive exploratory analysis to
identify the most recurrent human and environmental patterns found in the
tick bites dataset. This analysis enables the assessment of whether the tick
bites collection is representative of the phenomenon under study, and helps
elucidating whether this collection contains a clear tick bite signal. Third,
we created a novel map of human exposure to tick bites in forested areas.
We demonstrate that the risk of tick bite is strongly influenced by human
behaviour, rather than by the particular tick dynamics in a given location.
This map can also be used to identify locations where citizens are most
exposed to ticks. Fourth, we develop a tick bite risk model that integrates
information on tick dynamics (hazard) and human exposure to tick bites.
This final analysis relies on the tick dynamic model developed previously,
the knowledge acquired after the second and third analytical workflows,
and on a series of human exposure indicators based on accessibility and
landscape attractiveness. All these analytical workflows contribute at creat-
ing actionable geo-information products that can assist decision makers at
designing tick bite prevention campaigns.

This PhD thesis has led to several scientific and methodological contribu-
tions that constitute a step-forward in the fields of spatio-temporal machine
learning and environmental modelling. From a scientific point of view, our
data-driven approaches showed that water-related features determine tick
activity at multiple time scales, that tick bite risk is strongly influenced by
human exposure rather than by tick activity, and that it is possible to loc-
alize and map the riskiest locations for tick bites, often located along the
forest-urban interface. Regarding methodological contributions, we propose
two modifications for a well-known machine learning method (i.e. Random
Forest). These modifications extend the canonical functionalities of this
method, enabling it to learn from skewed and zero-inflated distributions
and timeseries data. To conclude, we believe that our work demonstrates
that citizen science projects can produce valuable volunteered information
that can feed scientific workflows to study elusive geographic phenomena,
and that data-driven machine learning methods are paving the road for
novel research lines on ticks and vector-borne diseases.
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8Samenvatting

Menselijke activiteiten hebben mondiale veranderingen veroorzaakt, waar-
door onder andere ziekten die door vectoren worden overgedragen weer zijn
toegenomen. Klimaatverandering, menselijke en demografische ontwikkelin-
gen, socio-economische uitwisselingen en de toename van recreatieve activ-
iteiten buitenshuis, zijn een aantal van de relevante factoren die bijdragen
aan het vóórkomen van vectoren (bijvoorbeeld muggen en teken) buiten hun
endemische gebieden en die de mondiale verspreiding van vectorziektes
faciliteren. De wereldgezondheidsorganisatie (WHO) heeft negen typen
vectoren geïdentificeerd die ten minste zestien heftige ziektes aan mensen
kunnen overdragen. Voor ziektes overdraagbaar door teken vallen hieron-
der twee bacteriële infecties (de ziekte van Lyme en tekenencefalitis) en
een virale infectie (Krim-Congovirus), met daarnaast verscheidene andere
ziektes die nog niet wijdverspreid voorkomen maar lokaal wel van belang
zijn (bv. ziektes veroorzaakt door rickettsiae, febris recurrens – terugkerende
koorts).

Teken zijn algemeen voorkomende ectoparasieten met een beperkte mo-
biliteit die om te overleven een omgeving nodig hebben die moet voldoen
aan een aantal biotische (waaronder milieu, voorkomen van diersoorten)
en abiotische (o.a. weer, landschapssamenstelling) factoren. Wetenschap-
pers hebben over het vóórkomen van teken in de afgelopen decennia een
verspreiding naar meer geografische breedtes en een groter hoogtebereik
gerapporteerd, wat gerelateerd wordt aan twee factoren: door mondiale op-
warming zijn voorheen ongeschikte habitats geschikt worden en vervolgens
zijn verschillende diersoorten (o.a. knaagdieren, vogels en hoefdieren) naar
deze nieuwe locaties getrokken en hebben daar teken geïntroduceerd.

De uitbreiding van de plekken waar teken voorkomen is niet de enige reden
waarom door teken overdraagbare ziektes in opmars zijn. Onze planeet
ondergaat ook een toename in urbanisatie. Het bouwen van woningen
aan de randen van steden leidt tot een intensiever contact met de groene
ruimte en natuur. Een gevolg hiervan is dat verschillende vogel- en zoog-
diersoorten hun leefpatronen hebben aangepast aan de bebouwde omgeving
waar ze minder roofdieren tegenkomen en meer voedsel kunnen vinden. Dit
mixen van natuur en bebouwde omgeving heeft echter ook tot gevolg dat
pathogenen en parasieten die door wilde dieren worden verspreid dichterbij
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8. Samenvatting

mensen komen. Dit fenomeen verklaart het toegenomen risico op ziektes
overgedragen door teken. Daarnaast is door het promoten van een gezon-
dere leefstijl het aantal activiteiten buitenshuis toegenomen wat ook leidt tot
een hogere blootstelling aan teken en de ziektes die zij kunnen overdragen.

De ziekte van Lyme (LB) is een door teken overdraagbare ziekte die een
enorme toename heeft laten zien op het noordelijk halfrond in de afgelo-
pen twintig jaar. Wetenschappers en medici in negen Europese landen, de
Verenigde Staten en Canada hebben gerapporteerd dat het vóórkomen van
LB constant is toegenomen. In recente jaren wordt er echter een stabilisatie
gezien door een groep van Europese huisartsen. Toch wordt elk jaar bij
ongeveer 25 duizend Nederlanders de ziekte van Lyme vastgesteld. De
meesten van hen reageren goed op een behandeling met antibiotica, maar
een minderheid heeft last van blijvende symptomen die leiden tot chronische
klachten en invaliditeit.

Teken zijn het middel waarmee pathogenen nieuwe organismen infecteren,
en daarom is het zeer belangrijk om de tekendynamiek te monitoren om
gevaarlijke plekken, waar het risico op LB infectie hoog is, te kunnen iden-
tificeren. Dat mensen veel in de natuur komen en het kleine formaat van
teken maakt het zeer lastig voor volksgezondheidsorganisaties om de ver-
spreiding van deze ziekte goed in kaart te kunnen brengen. Hierom hebben
twee Nederlandse organisaties citizen science initiatieven gelanceerd zodat
zij data kunnen verzamelen om de tekendynamiek en factoren die het risico
op tekenbeten beïnvloeden beter te kunnen begrijpen.

In de periode 2006-2012 zijn bijna tienduizend tekenbeten gemeld door
vrijwilligers aan het educatieve fenologienetwerk Natuurkalender (gelinkt aan
Wageningen universiteit). Dit pionierende project trok de aandacht van het
Rijksinstituut voor Volksgezondheid en het Milieu (RIVM) en in 2012 werd
gezamenlijk de website Tekenradar gelanceerd. Tekenradar heeft meer dan
vijftigduizend meldingen van vrijwilligers over tekenbeten in Nederland
geregistreerd. Voor zover ons bekend is, waren deze initiatieven de eerste
citizen science projecten die specifiek op teken en door teken overdraagbare
ziektes gericht zijn. Tussen 2006 en 2016 heeft een groep wetenschappers van
Wageningen universiteit ook een nationaal project uitgevoerd om te kijken
naar de tekendynamiek. Hiervoor werd maandelijks een traject in een bos
bemonsterd door getrainde vrijwilligers, waarbij elke 25 meter werd geteld
hoeveel teken er aanwezig waren op het laken dat door de vrijwilligers
getrokken werd over het traject.

Deze unieke verzamelingen van observaties door vrijwilligers met betrekking
tot tekenbeten en tekendynamiek helpen ons om bedreigingen voor de
volksgezondheid zoals LB te bestuderen. Het verzamelen van data door
vrijwilligers heeft de potentie om complexe fenomenen op een ruimtelijke
en tijdsschaal zonder precedent te kunnen bemonsteren. Deze metingen
zijn echter niet geheel vrij van problemen en vragen om een zorgvuldige
kwaliteitscontrole waarbij representativiteit van data ook moet worden mee-
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genomen voordat deze observaties in wetenschappelijke analyses kunnen
worden gebruikt.

In dit proefschrift hebben we de nadruk gelegd op het extraheren van
ruimtelijke patronen en trends in de tijd gebaseerd op deze dataverzamelin-
gen, waarbij er twee achterliggende objectieven zijn: het modelleren van
tekendynamiek om de belangrijkste invloeden op tekenpopulaties te iden-
tificeren; en het modelleren van menselijke activiteiten om potentiële ris-
icofactoren en regio’s voor LB te onderkennen. Deze ziekte is het product
van een complexe zoönotische cyclus waarin biotische en abiotische factoren
met elkaar verbonden zijn. We hebben machine learning methodes gebruikt
om deze databronnen over deze factoren te combineren en om te kunnen
werken met de nonlineariteit van de interacties in de zoönotische cyclus. Zo
hebben we modellen gebaseerd op de data gecreëerd die dagelijkse teken-
activiteit kunnen voorspellen samen met de locaties waar het risico op het
oplopen van LB hoog is.

Om tot dit resultaat te kunnen komen, zijn vier stappen ondernomen. Ten
eerste presenteren we een methodologie om de tekendynamiek te kunnen
berekenen gebaseerd op de tekenactiviteit gerapporteerd door de vrijwil-
ligers. Hiervoor hebben we gekeken naar het belang van variabelen met
korte en lange termijn op de tekenactiviteit en daaruit een model afgeleid
wat op de nationale schaal de dagelijkse tekenactiviteit voorspellen kan.
Ten tweede hebben we een uitgebreide verkennende analyse uitgevoerd om
de vaakst terugkerende menselijke en omgevingspatronen te vinden in de
dataset over gerapporteerde tekenbeten. Deze analyse zorgt ervoor dat we
kunnen beoordelen of de tekenbetenverzameling representatief is van het
bestudeerde fenomeen en maakt duidelijk of er een duidelijk “tekenbeetsig-
naal” in de data zit. Ten derde hebben we een nieuwe kaart gemaakt van
menselijke blootstelling aan teken(beten) in bosrijke omgevingen. Deze kaart
laat zien dat het risico op een tekenbeet sterker door het gedrag van mensen
wordt beïnvloed dan door de lokale tekendynamiek. Deze kaart kan ook
worden gebruikt om locaties te identificeren waar burgers het meest worden
blootgesteld aan teken. Daar kan bijvoorbeeld door volkgsgezondheidsor-
ganisaties actief voorlichting over preventie van tekenbeten worden gegeven.
Ten vierde hebben we een model ontwikkeld wat het risico op tekenbeten
voorspelt waarvoor de informatie over tekendynamiek en menselijke bloots-
telling aan teken(beten) wordt geïntegreerd. Deze laatste analyse gebruikt
het model over tekendynamiek dat eerder werd ontwikkeld, de kennis die
in de tweede en derde analyses werd opgedaan, en een serie indicatoren van
menselijke blootstelling gebaseerd op toegankelijkheid en aantrekkelijkheid
van het landschap. Al deze analytische methodologieën leiden tot bruikbare
geoinformatieproducten die beleidsmakers kunnen helpen om effectieve
tekenbeetpreventiecampagnes op te zetten.

Dit proefschrift heeft geleid tot een aantal wetenschappelijke en method-
ologische bijdragen die een stap vooruit vormen in de velden ruimtelijke
modellering en spatiotemporele machine learning. Vanuit een wetenschap-
pelijk oogpunt hebben onze methodologieën die gedreven worden door data
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laten zien dat factoren gerelateerd aan water (zoals relatieve vochtigheid)
tekenactiviteit bepalen op meerdere tijdschalen. Daarnaast hebben we gez-
ien dat het risico op het oplopen van een tekenbeet sterker door menselijke
blootstelling dan door tekenactiviteit bepaald wordt, en dat het mogelijk is
om de meest riskante locaties voor het oplopen van een tekenbeet te identi-
ficeren en te karteren. Deze plekken zijn veelal de overgang tussen bos en
bebouwing. Met betrekking tot de methodologische bijdragen hebben we
twee aanpassingen voorgesteld voor een veelgebruikte machine learning
methode (random forests). Deze aanpassingen breiden de standaardfuncties
van deze methode uit, waardoor het kan leren van data met een scheve ver-
deling en statistische verdelingen met veel nullen, en van data uit tijdseries.
We geloven dat ons werk laat zien dat citizen science projecten waardevolle
informatie kan produceren die in wetenschappelijke analyses gebruikt kan
worden om veelzijdige geografische fenomenen te bestuderen en dat ma-
chine learning methoden gedreven door data nieuwe onderzoeksrichtingen
naar teken en vectorziektes mogelijk maken.
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