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Chapter 1 
 

Introduction 
1.1 Background and motivation 
Mass movement is the downslope movement of rock, soil, or regolith, largely 
under the force of gravity (Cruden, 1991). Landslides are a specific type of 
mass movement that is characterized by a sliding of the upper layer, and 
they may occur over a wide variety of spatial and temporal scales. The main 
societal significance of landslide analyses lies in the hazard that landslide 
events pose to people and property. According to the United Nations 
International Strategy for Disaster Reduction (UNISDR) and the database of 
the Centre for Research on the Epidemiology of Disasters (CRED; EM-DAT, 
2011), landslides are ranked 3rd in terms of number of fatalities among the 
top ten natural disasters. Landslides have killed more than 80 000 people 
around the world in the last 10 years (Petley, 2011). The data in such 
catalogues are only an indication of the general trends, and should be 
interpreted as a minimum given the incompleteness of the database. Despite 
remarkable efforts of compiling and updating landslide maps at regional, 
national or global scale, the number of landslide events is often 
underestimated, especially in populated mountainous regions (Petley et al., 
2005; Petley et al., 2010). 
 
In the monsoon-dominated regions in Southeast Asia (e.g. Malaysia), 
landslides frequently occur in areas characterized by steep hillslopes, high 
rainfall intensities, seasonally dry periods, and unstable soils (Douglas, 1999; 
Sidle and Ochiai, 2006). In South and Southeast Asia, deforestation resulted 
losses of original forestland of about 28000 km2 per annum (UN-ESCAP, 
2008). The growing population required a more dense transportation network 
across the rural areas. The development of new transport infrastructure often 
seriously affected the slope stability (Petley at al., 2007), increasing the 
hazard for the society. Based on a comprehensive survey in the tropics, rate 
of landslide disturbance is increased from 5 to 8 times in a 170 m wide swath 
along road corridors (Larsen and Parks, 1997). Other studies reported an 25 
to 350 times increase in landslides in forests with small roads compared to 
pristine forests (Gray and Megahan, 1981; Amaranthus et al., 1985). 
Documenting landslides provides fundamental information on the 
landslideprocesses, which is very useful for reducing landslide hazards and 
risk (Corominas and Moya, 2008). 
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Landslides are also significant from other perspectives. In geomorphology, 
landslides have been recognized as effective agents responsible for the long-
term evolution of hillslopes. They shape mountainous landscapes, either by 
large episodic or small frequent events. In the ecology and physiology of 
forest ecosystems, landslides are responsible for the disruption of forests 
ecosystems across a wide range of scales in space and time (Frolking et al., 
2009; Thomas, 1994; Clark, 1990). They disrupt forest homogeneity by 
creating forest gaps due to larger and fast landslides, but also affect the size 
and shape of the trees on slow moving landslides.  
 
This research primarily focused on landslide mapping in areas partially or 
completely covered by dense woody vegetation, to which we will refer to as 
forested landslides. Woody vegetation affects landslides in multiple ways. 
Vegetation roots increase soil shear strength, which increases slope stability 
(Greenway, 1987; McIntosh et al., 2009). Forests also increase evaporation 
rates, and prevent pore pressure from exceeding the critical threshold for 
triggering landslides. On the other hand, trees increase the weight of the top 
layer, adding to the downslope force, and Crozier (2010) emphasized the 
infiltration capacity in forested slopes was higher than in areas partially 
covered by vegetation. Hence the ability to gain water offsets any effect from 
enhanced root cohesion resulting in a reduction in slope stability. These 
effects make that forested landslides are not uncommon (e.g. Jones, 1973; 
De Ploey and Cruz, 1979; Thomas, 1983). Especially prolonged and intense 
rainfall will lead to an increase in landslide activity. So (1971) reported the 
occurrence of 702 landslides as a result of a rainfall total of over 400 mm in a 
day in Hong Kong. About 35 % of these landslides were located in a sloping 
forested area with tree height over 2.5 m.  
 
Landslide mapping: New tools for an old problem 
Landslide inventory maps are fundamental for assessing landslide 
susceptibility, hazard, and risk. The landslide inventory gives the locations of 
landslides, their topology and geometrical characteristics, the possible failure 
mechanism, the state of activity and frequency of occurrences, the possible 
causal factors, and the historical damage (Van Westen et al., 2008). Different 
landslide mapping techniques have been applied depending on purpose of the 
inventory, the extent of the study area, the scale and resolution of the source 
maps, and the skills and experience of the investigators (Guzzetti et al., 
2000; Van Westen et al., 2006). An extensive review on landslide mapping 
techniques on the detection, fast characterization, rapid mapping and long-
term monitoring is given in SafeLand Deliverable 4.1 (2010). Landslide 
inventory mapping is routinely carried out based on one of following 
approaches:- 
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 Geomorphological field mapping is often applied in identifying single 
landslides or small groups of landslides triggered by a specific event in a 
certain period (e.g. Cardinalli et al., 2006; Santangelo et al., 2010), or in 
validating an inventory compiled by aerial-photo interpretation (Guzzetti 
et al., 2000; Cardinalli et al., 2001). 

 Visual interpretation of aerial photos (black and white, color-infrared) 
remains the most common method to map landslides. Particularly 
stereoscopic aerial photos are often used for a detailed morphological 
analysis (e.g. Cardinalli et al., 2000; Brardinoni et al., 2003; Van Westen 
and Lulie Getahun, 2003; Prokesova et al., 2010; Fiorucci et al., 2011). 

 Visual interpretation of mono- and stereoscopic satellite images using a 
various visualisations based on different band combinations of 
multispectral imagery that may be pan-sharpened (e.g. Hovius et al., 
1997; Nichol et al., 2006; Marcelino et al., 2009; Fiorucci et al., 2011). 

 Analysis of satellite- and airborne-based synthetic aperture radar (SAR), 
e.g. Singhroy and Molch (2004), Rott (2009), Lauknes et al. (2010). 
Examples of analyses include Differential Synthetic Aperture Radar 
Interferometry and Persistent Scatters. 

 (Semi)-automated classification of multispectral satellite images based on 
spectral and topographic characteristics (Nichol et al., 2006; Tarolli et al., 
2010; Mondini et al., 2011). For example, an automated classification 
scheme has been carried out using an object-oriented knowledge-based 
method (Martha et al., 2010, 2011, 2012; Stumpf and Kerle, 2011). 

 Analysis of topographic morphology based on very high resolution 
airborne laser scanning-derived images (McKean and Roering, 2004; 
Sekiguchi and Sato, 2004; Van Den Eeckhaut et al., 2005, 2007; Glenn 
et al., 2006; Schulz, 2007; Kasai et al., 2009; Bell et al. 2011; Razak et 
al., 2011). Examples of developed methods are surface roughness, slope 
and fractal dimension. 

 
The objective of the image analyses is to create an inventory map that is as 
complete as possible and that can be carried out in a reasonable amount of 
time (Ibsen and Brunsden, 1996; Glade, 2001). New mapping techniques 
based on airborne remote sensing data are promising tools to facilitate the 
production of reliable landslide inventory maps. In this thesis, the focus is on 
airborne laser scanning as these data provide a wealth of data on both the 
vegetation and the underlying terrain. 
 
Airborne laser scanning for forested landslides characterization 
According to Petrie and Toth (2008), airborne laser scanning (ALS) is the 
most important geospatial data acquisition technology that has been 
introduced in mainstream topographic mapping in the last two decennia. ALS 
has revolutionized the acquisition of terrain data and physical presence of the 
objects because it can collect explicit 3D data in large volumes at an 
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unprecedented accuracy within a relatively short time. ALS is based on an 
airborne platform that carries three instruments: (1) a dGPS for positioning, 
(2) an inertial navigation system that determines the pitch, heading, and roll 
of the aircraft, and (3) an airborne laser scanner: a laser rangefinder unit 
includes the actual laser, the transmitting and receiving optics, and the 
receiver with its detector, time counter, digitizing unit and including its 
optical scanning mechanism. After synchronization and integration of these 
data streams, a georeferenced point cloud results. With its ability to 
penetrate the space in the forest foliage and reach the ground, in addition to 
its independence of solar incidence, ALS is superior over passive optical (e.g. 
aerial-photograph, optical satellite images) and active radar sensors (e.g. 
interferometric synthetic aperture) for generating a high resolution digital 
terrain model in a mountainous forested terrain (Kraus and Pfeifer, 1998; 
Hodgson et al., 2003; Kraus, 2007). Typical raster-based products of ALS 
point clouds are Digital Terrain Model (DTM) of the bare earth, a Digital 
Canopy Model (DCM) of the top of the vegetation, and a normalized Digital 
Canopy Model (nDCM), the difference between DCM and DTM, which 
represents the canopy height.  
 
Landslide inventory mapping has made significant steps forward due to the 
availability of ALS data. In the first place, the use of monoscopic- and 
stereoscopic-derived images created from a ALS-derived DTMs allowed for a 
much better recognition of diagnostic features for landslide interpretation 
(Sekiguchi and Sato, 2004; Van Den Eeckhaut et al., 2005; Van Den 
Eeckhaut et al., 2007; Schulz, 2007; Kasai et al., 2009). ALS-derived 
stereoscopic images are superior to stereo-radargrammetry, stereo-aerial 
photos, and stereo-optical imagery, to interpret the landslide morphology. 
Secondly, ALS data has been used to characterize vegetation and single trees 
(Razak et al. 2011). Patterns in vegetation and possible disruptions may be 
used in the inventory as well. The disadvantages of ALS data are that the 
data collection is still relatively expensive, even though prices have dropped 
over the last decade and therefore the data is not available for many areas.  
 
ALS data provides a synoptic view, even in large inaccessible areas, which 
makes it useful to accurately map landslide-morphological features in a 
tropical environment with a relatively low point density. The data is a 
promising technique to produce multi-sources spatial data for landslide 
susceptibility mapping tools, notably the topographic and vegetation 
characteristics in a populated mountainous region with poor triggering data. 
Moreover, past landslide events and conditioning factor maps derived solely 
from ALS data can be alternative input for statistical landslide modeling. In 
addition, high density ALS (HDALS) is state-of-the-art for geometrically 
retrieving disrupted trees in temperate and tropical environments. Tree 
growth anomalies disturbed by different landslide processes can be 
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parameterized purely based on HDALS data and its vegetation characteristics 
may provide clues to landslide activity. With the advancement of ALS system 
and point cloud processing routine, it is capable of producing and updating 
landslide maps, as more rapid recovery take places for landslide terrain in the 
tropics than in temperate forests (Douglas et al., 1999) and becoming a rapid 
mapping tool for emergency response and disaster management.  

1.2 Problem definition 

1.2.1 Landslide inventory mapping 
Despite the importance of landslide inventory maps for mitigation and 
planning, they are rarely created (Brabb and Harrod, 1989; Nadem et al., 
2006; Guzzetti et al., 2012). The compilation of landslide inventory maps is a 
tedious procedure due to the fact that each individual landslide has to be 
mapped and described together with their characteristics (Van Westen et al., 
2006). Paucity of reliable information on landslides, therefore, hampers the 
possibility of assessing landslide susceptibility, hazard and risk at the 
regional, national and continental scales (e.g. Brabb et al., 2000). 
 
The different approaches for landslide inventory mapping listed in section 1.1 
all have drawbacks. Field mapping yields a high accuracy if aided by GPS and 
sophisticated instrumentation such as a laser rangefinder binocular 
(Santangelo et al., 2010), but it is very time consuming and expensive, and 
therefore only applied in limited areas (Haneberg et al., 2009; Santangelo et 
al., 2010). Monoscopic and stereoscopic images derived from a topographical 
map have significant limitations to a landslide inventory map (Will, 2002), 
because the altitudes on topographic maps are usually extracted from aerial 
photographs. Therefore the resulting DTM generally has a low accuracy. 
DTMs in densely forested and built-up areas that are based on 
photogrammetry depend on the sun light, flying height, camera types, and a 
relevant ground point should be visible from at least two imaging positions 
(Kraus, 2007). Therefore the ground surface is not well represented in 
photogrammetric DTMs of forested terrain, which leads to incomplete and 
unreliable landslide inventories. Brardinoni et al. (2003) reported that not 
visible or undetectable landslides from aerial photographs can represent up 
to 85% of the total number of failures and significant volume (up to 30%) of 
debris to the amount mobilized.  
 
Visual analysis based on very high resolution satellite remote sensing images 
proved to be effective to map fresh landslides in a large forested terrain, 
where the landslides have left clear signs of their occurrences (Guzzetti et al., 
2012). Semi-automatic detection of landslides based on optical satellite 
sensors, particularly the use of multispectral information was most efficient 
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for recent or reactivated slope failures, with clearly distinct radiometric 
signatures in a forested terrain (e.g. Mondini et al. 2011). These methods 
also work for fresh landslides in subtropical environments (e.g. Borghuis et 
al., 2007; Tsai et al., 2010; Yang and Chen, 2010). However, old and 
dormant landslides under forest are difficult to map and characterize. The 
resulting map poorly represents landslides in such landscapes (Fookes et al., 
1991; Wills and McCrink, 2002; Brardinoni et al., 2003).  
 
Satellite- and airborne interferometric SAR have advantage optical methods 
with respect to the dependency on clear skies during data collection. 
However, application of SAR data for landslide inventory mapping is limited 
due to atmosphere propagation effects, foreshortening, layover effects and 
vegetation decorrelation in forested terrain (Rott, 2009).  
 
In equatorial forests, landslide inventory mapping is further hampered by 
rapid revegetation of the slides. Vegetation growth causes the signature of 
small and shallow landslides to be obscure within months or seasons. Hence, 
soon after their occurrence, the evidences of landslides cannot be recognized 
easily on the images (Fig. 1.1).  
 
Airborne laser scanning has already been successfully used to map forested 
dormant landslides in the Flemish Ardennes, Belgium (Van den Eeckhout et 
al. 2007). However, it has not yet been applied to forested landslide 
complexes in the temperate regions, or to tropical forests. No studies have 
reported on mapping and classifying complex landslides, and estimating their 
activity beneath dense vegetation. 
 

 
Fig. 1.1: Landslides in a tropical environment. A) High resolution satellite image 
captured four months before the catastrophic at Bukit Antarabangsa, Kuala Lumpur, 
Malaysia. B) Fatal landslides that caused significant economic and human losses in 
December 2008. C) A debris flow occurred in October 1996 in the Cameron Highlands, 
Pahang, Malaysia. D) The same area as in C), where the landslide area is re-vegetated. 
Note that the eight floor apartments were constructed at the landslide deposition zone.  
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1.2.2 ALS terrain model quality associated to forested 
landslides 

Manual interpretation of terrain features lies at the basis of landslide 
inventory mapping. Hence the quality of the landslide DTM is crucial for an 
accurate interpretation. The essential step in DTM generation is the 
classification of ground points and non-ground points, which is also known as 
DTM filtering, or bare earth extraction. Despite the automated methods for 
DTM filtering (Kobler et al., 2007), complex situations still require additional 
attention, or fine-tuning of filter settings. Complexity may be due to dense 
forests, and undergrowth, steep slopes, terrain discontinuities, large terrain 
variability, (Huising and Gomez Pereira, 1998; Sithole and Vosselman, 2004). 
All of these cases occur on forested landslides. 
 
A number of studies have reported on terrain model quality (Hodgson and 
Bresnahan, 2004; Pfeifer and Mandlburger, 2009). Despite a general 
consensus on the usefulness of ALS for landslide mapping, a few knowledge 
gaps remains: (1) no studies specifically assessed the DTM quality of forested 
landslides, (2) there are no guidelines for tuning DTM filters to derive an 
optimal DTM in quantitative terms of vertical error and in qualitative terms of 
image interpretability, (3) the minimum required point density of ALS data is 
unknown, which is relevant to minimize survey costs for landslides in forested 
regions. Therefore, a careful assessment is needed of DTM filtering for 
detailed landslide mapping in tropical and temperate regions.  
 
1.2.3 Landslide susceptibility mapping 
Landslide susceptibility is mathematically defined as the probability of spatial 
occurrence of known slope failures, given a set of geo-environmental factors 
(Guzzetti et al., 2005). A susceptibility map portrays the areas prone to 
landslides, which is useful to take into account in short and long term land-
use planning. In many forested tropical regions that are under population 
pressure, predicting landslide susceptibility is crucial as many land use 
changes occur due to newly established roads, agricultural areas, and built-
up areas.  
 
Several studies have assessed and predicted the landslide occurrences in the 
Malaysian mountainous landscape (e.g. Pradhan, 2010; Pradhan et al., 2010; 
Pradhan and Lee, 2010a). However, the training data of these susceptibility 
studies are based on historic inventories of landslide occurrences. The historic 
data are limited by the duration of the inventory, and they are likely biased 
towards landslides along transportation routes, and inhabited areas. ALS can 
be used to deliver create landslide inventory maps that is unbiased towards 
roads, or populated area. At the same time, ALS can be used to deliver the 
geo-environmental factor maps that are used to predict the landslide 
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probability. These factor maps represent topographic, hydrological, 
anthropogenic, and geological information. Based on the highly detailed 
information that can be derived from ALS data improvements in susceptibility 
mapping is expected, but no studies have reported on the use of ALS-derived 
conditioning factor maps.  

1.2.4 Landslide activity analysis  
Landslide activity analysis is a crucial aspect of landslide inventory mapping 
and it is even more challenging in a forested rugged terrain. Assessment of 
landslide activity is based on the observation of the past activity and from the 
analysis and interpretation of geomorphic features which can be associated to 
the degree of activity of the landslide. Landsliding may damage trees and 
produce silent witnesses, sensu Corominas and Moya (2008). Trees as silent 
witnesses may be displaced, tilted, partially buried, bended, or limited in 
growth by landslides. Several attempts have been made to use tree 
irregularities as indicator to landslide activity. Van Den Eeckhaut et al. (2009) 
used dendrogeomorphology to link tree rings to landslide activity. However, 
dendromorphology is costly and requires an intensive field investigation and 
subsequent laboratory analysis, resulting in a relatively low number of 
samples, and limitation in terrain coverage and tree species. Mackey and 
Roering (2011) successfully used multitemporal images to track individual 
trees over time. Tree tracking only works with slow moving landslides, and 
requires a sequence of images.  
 
The importance of disrupted trees as bio-indicator to local surface 
deformation has been recognized (Parise, 2003), but studies into this relation 
were always hampered by difficulties in spatially retrieving these indicators. 
ALS has been used extensively to delineate single trees and analyse their 
vertical trees (e.g. Reitberger et al. 2009). However, the extraction of tree 
irregularities due to landslides from ALS data has not been studied so far, 
mainly because of the high density data required for a detailed analysis 
(Bucksch et al. 2010). Although TLS provides some practical solutions of the 
tree extraction (e.g., Eysn et al. 2013), no methods exist to spatially map 
tilted and bended trees from airborne laser scanning data, and the degree to 
which vegetation is affected by landsliding still remains unexplored.  

1.3 Research objectives 
This study investigates the suitability of airborne laser scanning for mapping 
and classifying landslides under forests in temperate and tropical 
environments. The specific objectives of this research are: 
 to quantitatively and qualitatively evaluate optimal ALS-derived DTMs for 

landslide inventory mapping. 
 to evaluate the uncertainty in ALS-derived landslide interpretations. 
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 to evaluate the suitability of airborne laser scanning for producing 
landslide susceptibility maps.  

 to analyse ALS-derived vegetation indicators that are indicative for 
landslide activity.  

1.4 Research questions 
From the research objectives, the following major and minor research 
questions were formulated: 
1. Is it possible to generate an optimal digital terrain model for mapping 

and classification of landslides in a temperate forest (Chapter 3) and a 
tropical rainforest (Chapter 4) using airborne laser scanning (ALS) data? 
a. What is the ALS derived DTM accuracy in a temperate forest and in a 

tropical rainforest environment?  
b. What is the best ALS derived DTM that offers maximum 

interpretability with respect to landslide indicators? 
c. What are the minimum and optimal required point densities of ALS 

data for mapping landslides? 
 
2. What is the uncertainty of ALS-derived landslide inventories (Chapter 5)? 

a. How to quantitatively compare landslide inventories compiled at 
different scales and source data (ALS, aerial-photo/satellite images)?  

b. What is the positional mismatch and completeness of landslide 
inventory maps produced by means of multi-scale visual analysis of 
stereoscopic ALS images? 

c. How to compare ALS derived landslide inventories that contain 
landslides generated under different conditions over a long period of 
time, with historical landslide inventories that cover a short period of 
time? 

 
3. What are the requirements of ALS derived factors maps that are used in 

statistical landslide susceptibility assessment (Chapter 6)? 
a. Which of these factors maps can be derived using semi-automated 

techniques, and what is their accuracy? 
b.  How much additional data is required apart from ALS derived factor 

data?  
c.  What is the influence of the temporal aspects of both the landslide 

inventories and factors maps (land cover) on the landslide 
susceptibility prediction results?  

 
4. How accurately can ALS data represent disrupted vegetation by 

landslides (Chapter 7)? 
a. Which vegetation indicators can be used for characterizing slope 

instability based on field data? 
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b.  Which of these vegetation indicators for slope instability can be 
derived from ALS point clouds? 

c.  What are the minimum and optimal required point densities of ALS 
data for vegetation indicators landslides? 

 
To answer these questions, two studies areas were selected. One study area 
was located in the Cameron Highlands, a tropical region in peninsular 
Malaysia with different land cover types. The other study area was situated in 
Southern French Alps, with a temperate climate. 

1.5 Thesis outline 
Chapter 1 provides the research background and the key challenges, and 
then specifies research objectives in the form of research questions and 
outlines the structure of the dissertation.  
 
Chapter 2 describes the study areas in different environments: i) Bois Noir 
area in a temperate climate, ii) Cameron Highlands in the Malaysian tropical 
environment. 
 
Chapter 3 illustrates the suitability of high density ALS data for bare earth 
extraction used for landslide identification and characterization in a 
temperate landscape. The quantitative and qualitative assessment of ALS-
derived DTMs was carried out to evaluate the preservation of landslide 
morphological features. An appropriate point density is presented for a 
detailed analysis of landslide morphological characterization.  
 
Chapter 4 highlights the potential of ALS data with a low point density for 
generating an optimal DTM for landslide mapping in the tropics. Field 
measurements were used for an error assessment of the DTM, while landslide 
interpretation of different DTMs was used to determine the required data for 
optimal landslide recognition.  
 
Chapter 5 demonstrates the quantification of uncertainty of ALS-derived 
landslide inventory maps in the tropics. The landslide maps, generated 
independently by four expert interpreters, were evaluated in terms of 
correctness and completeness. Uncertainty issues related to landslide 
inventory mapping in the anthropogenic region are critically discussed, with 
respect to consistency, compilation time, funding, local knowledge and 
experience.  
 
Chapter 6 describes the investigation of the potential use of airborne laser 
scanning data for generating landslide susceptibility maps in a tropical 
populated region with poor information on the landslide triggers. Two 
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reference landslide inventory maps were used in a multivariate logistic 
regression analysis. The existing historic inventory map was used as well as 
the new inventory map based on the ALS data. Several geo-environmental 
factor maps were derived from the ALS data. These factor maps were used as 
independent variables.  
 
Chapter 7 addresses vegetation analysis as a bio-indicator for landslides. 
Based on raster-based and point-based analyses of ALS data, it quantifies 
forest canopy gaps, tree height dissimilarities, and single tree inclination and 
orientation. The statistical tests showed significant differences between the 
extracted parameters in landslide and non-landslide zones. 
 
Chapter 8 highlights the research contributions discovered in Chapters 3-7, 
provides answers to the research questions, and lists the (near) future 
research works especially in the context of tropical environments. 
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Chapter 2 
 

Study Areas 

2.1 Introduction 
Two different study areas (Fig. 2.1) were selected in order to pursue the 
objectives of this research covering the temperate and tropical environments. 
In France, the Bois Noir area was selected, which is close to Barcelonnette 
basin; in Malaysia, the Cameron Highlands was studied. In this chapter, the 
geology, geomorphology, and vegetation is described. In addition the ALS 
data and field reference data are given to limit iterations in other chapters.  
 

 
Fig. 2.1: Study areas. A) Bois Noir, Barcelonnette, France C) Cameron Highlands, 
Malaysia and associated field photos in B and D, respectively. 

2.2 Bois Noir area, Barcelonnette, France 
The Bois Noir catchment is located on the north-facing slope of the 
Barcelonnette basin (Figs, 2.1A; 2.2A) in the southern French Alps, 2.5 km to 
the south-east of Jausiers (Alpes-de-Haute-Provence, France). The 
Barcelonette basin is drained by the Ubaye river, while Bois Noir is situated 
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between two small streams, the Torrent de la Frache and the Riou Versant. 
The altitude of the study area ranges between 1400 and 2100 m above mean 
sea level, and the area is characterized by irregular topography with slope 
gradients between 10 and 70° (Thiery et al., 2007). This forested catchment 
is situated in the dry intra-Alpine zone, and is characterized by strong inter-
annual rainfall variability. The HISTALP meteorological dataset (Efthymiadis 
et al., 2006) contains a measurement station at 2 km from Bois Noir (44o 25’ 
N, 6o 45’ E). The average rainfall is 1015±179 mm year-1 for the period 
1800-2004. Rainfall intensity can exceed 50 mm h-1 especially during 
summer storms (Flageollet et al., 1999). Maquaire et al. (2003) reported that 
the mean annual temperature is 7.50C with 130 frost days per annum.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.2: Location of the study area at the Bois Noir landslide in the Barcelonnette 
Basin (South French Alps). A) Orthophoto of the study area and the ALS zone in 2009. 
B) Map showing validation points measured in different geomorphological features and 
trees over forested and open terrain. C) Photographs of representative landslides 
features. 
 
Geologically, the northern part of Bois Noir is characterized by morainic 
colluvium and autochthonous Callovo-Oxfordian unstable black marls, 
overlaid by deposits of reworked glacial till. The area is highly affected by 
landslides (Flageollet et al., 1999; Maquaire et al., 2003). The southern part 
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of Bois Noir is characterized by outcrops of limestone in the summit crest and 
features steep slopes of up to 70 , with extensive scree slopes. The 
hummocky topography is inherited from the different phases of the 
Quaternary glaciation (Hippolyte and Dumont, 2002).  
 
Flageollet et al. (1999) stated that the slope instability is controlled by the 
climatic conditions. Instability is likely to occur after heavy rainfall following a 
relatively dry period. A hydrological discontinuity created by the contact of 
marine deposits and black marls plays a role in landslide susceptibility. 
According to Thiery et al. (2007), these predisposing geomorphic and climatic 
factors explain the development of rotational or translational shallow 
landslides, which usually affect the uppermost two to six meters. They also 
reported that this area has been identified as highly susceptible to landslides 
although most of the area is covered by vegetation. Thiery et al. (2007) 
created a landslide inventory map of 1:10,000 scale, based on aerial-photo 
interpretation, field surveys and historical records. Tilted and deformed trees, 
as well as recent scarps and open cracks clearly indicated that there is scope 
and reason to believe that the Bois Noir landslide has been subjected to 
multiple reactivations in the recent past (Lopez Saez et al., 2011). 
 
The forest in the Ubaye Valley was seriously affected by the population 
pressure and soil erosion in the 15th and 16th centuries (Weber, 1994). 
However, in the 19th century reforestation was started over the Ubaye valley 
through the enforcement of local laws (Arnaud, 1906). A land use map 
derived from a 2004 Landsat ETM+ fused with a 1994 SPOT-P image 
exemplified that most of area is covered by forests, i.e. coniferous, deciduous 
and broadleave forests (Thiery et al., 2007). The forest is mainly comprised 
of Pinus uncinata Mill. Ex Mirb (mountain pine), Pinus sylvestris (Scotch 
Pine), Larix deciduas (Larch), Picea abies (Spruce), and Pinus Nigra (Austrian 
pine). The study area was largely covered by unthinned P. uncinata 
plantations of about a century old resulting in very small crowns and high 
stem densities. The areas characterized by larger crowns and lower stem 
densities are due to irregular thinning of the P. uncinata plantations. On scree 
slopes, the pioneering P. uncinata trees occur with larger crowns. These 
areas have a lower tree density, and the trees can occur as multi-stemmed 
shrubs. 
 
Historical forestry records 
The forestry archives of the French National Forest Office (ONF) were 
analyzed for the Bois Noir area (ONF, 2011). The archives covered a 115 
year period between 1895 and 2010, and contained information on tree 
status, soil, roots, tree diseases, landscape and surface hydrology. The 
archived data also reported damage to trees in the Bois Noir area from either 
landslides, hailstorm or disease. The earliest record of trees affected by 
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landslides dated back to 1897. In 1925, 1947 and 1993, about 240 trees 
were reported affected by landsliding (Fig. 2.3). No causal factors were given 
for the 1925 and 1947 events. Unfortunately, no detailed spatial information 
was available for these events. Mudflow and debris flow events in 1960 
resulted in more than 50 trees inclined. A road construction in 1993 resulted 
in many landslides in the subsequent years (Thiery et al., 2004). Disrupted 
trees were also observed in the years following the landslide events. 

 
Fig. 2.3: Number of disrupted trees caused by landsliding reported in the historical 
forestry reports for Bois Noir, Barcelonnette, France. 
 
The historical inventory also reported on a fairly large number of trees in the 
Bois Noir area that were affected by three diseases: Rhizosphaera kalkhoffii, 
Lophodermium seditiosium, and Sphaeropsis sapinea. Sphaeropsis sapinea 
was reported first in the Bois Noir area. It is caused by a fungus (Diplodia 
pinea, and can infect younger trees. Especially pine trees that are growing 
under stressful conditions are easily attacked. The historical report suggests 
that landslides were the main factor contributing to the disruption of 
vegetation, whereas tree diseases play a role after the events took place. For 
instance, after the landslide events in 1993, about 200 trees were seriously 
affected by diseases. 
 
Areal extent of chapters 3 and 7 
The Bois Noir study area was used in two chapters, chapters 3 and 7. 
Chapter 3 focused on a small and active part of 24 ha, which is indicated in 
the blue rectangle in Fig. 2.2B. This spatial subset was used to limit data 
volumes and to optimize the scale of visualization. The locations of the field 
data for chapter 3 are indicated in Fig. 2.2B as well. These reference points 
indicate the terrain height measurements. Chapter 7 deals with vegetation 
analysis in the whole area, and is indicated by the red polygon in Fig. 2.2B, 
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and the total extent of Fig. 2.4. The points in Fig. 2.4 represent the field 
reference data for vegetation analysis collected in June 2009, June 2010, and 
September 2011. In total, biometric data of 560 individual trees were 
collected.  
 

 
Fig 2.4: Field tree reference data collected in Bois Noir (Barcelonnette, France) showing 
on a 25 cm color composite image derived from ALS-derived DTM. Location of drunken 
trees is shown in a tree plot A. 

2.3 Cameron Highlands, Pahang, Malaysia 
The Cameron Highlands area is located in the Indo-Malaysian tropical 
rainforest zone and on an undulating plateau in the central part of the main 
range of Peninsular Malaysia (Fig. 2.5). The study area covers 100 km2 
stretching from Kampung Raja to Ringlet, up to 5 km to the east from the 
major road of the Cameron Highlands. The height ranges between 820 and 
2000 m above mean sea level, with an annual rainfall between 2500 and 
3000 mm per year, and a daily maximum rainfall of approximately 100 mm. 
Given its relatively high altitude, the temperatures are lower than in the rest 
of Peninsular Malaysia, with an average daily temperature of 23  C and 
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night-time average of 10  C (MMD, 2011). This relatively cool temperature 
makes the Cameron Highlands a popular tourist attraction. 
 
Geologically, Peninsular Malaysia is subdivided in a N-S direction by the 
Saub-Bentong suture, dividing the East Malaya terrane derived from 
Gondwanaland in the Devonian, from the Sibumasu terrane derived from 
Gondwanaland in the Permian (Metcalfe, 2000). Two important 
compressional events affected the Peninsula, one in Late Permian times and 
the other in the mid- to late Cretaceous.  
 
The Late Palaeozoic compressional event was a major orogenic mountain 
building phase with associated emplacement of major Permo–Triassic granite 
plutons that form the eastern and main ranges (Harbury et al., 1990). The 
current tectonic situation is related to the subduction of the Australian plate 
under the Sunda plate (with movement of about 34 mm/year), producing 
large earthquakes along the Sumatran subduction zone and the Sumatran 
transform fault (Vigny et al., 2005; Yan et al., 2006). Also the divergent 
boundary effect of the Sagaing and Sumatra right-slip faults poses an explicit 
implication on the seismic situation in Malaysia. Peninsular Malaysia is in a 
relative low seismic hazard zone, without any recorded earthquakes of a 
magnitude of more than 5. The estimated horizontal Peak Ground 
Acceleration in rock of 6-8% g with a 10% probability of occurrence within 50 
years (Petersen et al., 2004). 
 
The study area is underlain by megacrystic biotite granites (Krahenbuhl, 
1991) with some scattered outcrops of meta-sediments, which are composed 
of schists, phyllite, slate, and limestones (Chow and Zakaria, 2003). Across 
the schist area, the thickness of the residual soil is less than 6 m, overlain by 
weathered rock (hard to weak layers (Bujang et al., 2008), and often located 
at the higher elevation areas (Husaini et al., 2005). 
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Fig. 2.5: The study area. A) Location of the study area in the Cameron Highlands, 
Peninsular Malaysia. B) The district of the Cameron Highlands shown with a shaded 
relief map derived from a 30 m ASTER GDEM. The rectangular area represents the 
actual study area (100 km2) with indication of land-cover types and field terrain 
heights. The dotted white boxes I to V indicate the detail locations presented in 
Chapter 4. 
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Weathering profiles in the granites can be very thick, and roadcuts in these 
weathered materials present many problems related to slope instability 
(Durgin, 1977; Brand, 1989; Thomas, 1994). Weathering classifications (e.g. 
Dearman, 1978; Hencher and Martin, 1982) for profiles of granite in Malaysia 
show a depth of 30 meters. The completely weathered zone (Weathering 
Grade 6) is up to 10 m thick and indistinctly preserves the textures, but not 
structures, of the original bedrock. The weathered zone (Grades 5, 4 and 3) 
is up to 25 m thick and consists of in situ, moderately to highly weathered 
bedrock materials that indistinctly to distinctly preserve the minerals, the 
texture and the structure of the original bedrock (Raj, 1985). 
 
The forest types consist of lowland evergreen rainforest (hill dipterocarp 
forest and upper dipterocarp forest), lower montane forest (montane oak 
forest), and upper montane forest (montane ericaceous forest) (Wyatt-Smith, 
1995). The undergrowth consists largely of woody plants – seedlings and 
sapling trees, shrubs and young woody climbers. The stemmed palms (e.g. 
Arenga westerhoutti), stemless palms (e.g. Licuala spp) and rattans (e.g. 
Calamus castaneus) are the dominant undergrowth in the study area. The 
tropical climate and nutrient-rich granitic soil provide a favourable 
environment for agricultural activities (e.g. vegetables, floriculture, and tea 
plantation). The increasing population pressure has led to the clearing of the 
original forest for the construction of housing estates, roads and new 
agricultural areas.  
 
Landslides are an increasing problem in the Cameron Highlands, as a result 
of human interactions such as deforestation, and terrain modification for 
roads and agriculture (Douglas, 1999; Chow and Zakaria, 2003; Pradhan and 
Lee, 2010). One of current practices is to excavate the top of ridges and to 
create artificial platforms for agriculture terraces and housing. The excavated 
materials are dumped along the sides of the plateaus, leading to severe 
erosion and landslides. Given the high risk of injury, fatality, and damage to 
the infrastructure, the documentation of the extent of the slope failures is 
crucial. In the Malaysian National Slope Master Plan 2009–2023 (PWD, 
2009), it is recommended to update the landslide inventory every five years, 
and several landslide mapping techniques are listed. Airborne remote sensing 
is recommended as a tool for collecting landslide information on a national 
level. Long-term records of landslides are not complete. The first landslide in 
the records dates back to December 07, 1919 (Jaapar, 2006) and from 1973 
to 2007, 440 landslides were reported, with about 600 fatalities. However, 
thousands of minor slope failures were not properly documented (PWD, 
2009). Fig. 2.6 presents some field photos showing different landscapes, with 
indications of landslide movements. 
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The forested zone consists of old-growth forests (Fig. 2.6A–D), with very 
dense vegetation, and multi-storey canopies, as well as rejuvenated forests 
in locations which might have been affected by landslides, forest fires, or 
illegal deforestation activities. The upland agriculture zone (Fig. 2.6E–H) is 
sparsely covered by woody vegetation, which often indicates the breaklines 
resulting from the man-made terraces built for farming activity (Fig. 2.6F). 
The agricultural zone also features plastic-covered green houses for 
vegetable and floriculture cultivation. The tea plantation area is characterized 
by an undulating topography, with well managed slopes, with few larger trees 
and a proper accessibility for harvesting (Fig. 2.6I–L). 
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Chapter 3 
 

Airborne laser scanning of forested landslides 
characterization: Terrain model quality and 

visualization* 

3.1 Introduction 
Landslides occur under a wide range of environmental conditions, including 
forested mountainous landscapes. Landslides often cause extensive damage 
and many casualties. Hence, it is important to identify landslides and assess 
the landslide susceptibility, hazard and risk. Landslide inventory maps are 
prepared by interpreting the geomorphic features of landslides on remote 
sensing imagery supported by field surveys. These maps yield insight into the 
locations of landslides, their typology, failure mechanisms, causal factors, 
frequency of occurrence, volumes and historic damage (Van Westen et al., 
2008). For sparsely or non-vegetated areas, various landslide mapping 
techniques are available, e.g. using single or multi-temporal aerial 
photographs (Brardinoni et al., 2003; Van Westen and Lulie Getahun, 2003; 
Prokesova et al., 2010), high spatial resolution satellite images (Nichol et al., 
2006), or satellite-based synthetic aperture radar (Rott, 2009). In forested 
terrain, these techniques are less effective to identify landslides. Under 
closed forest canopies, visual interpretation of distinctive landslide 
morphology is limited.  
 
Over the last few years, Airborne Laser Scanning (ALS) became available and 
is used to map landslide morphology and activity in areas that are partly or 
completely covered by dense vegetation (Sekiguchi and Sato, 2004; Van Den 
Eeckhaut et al., 2005; Glenn et al., 2006; Schulz, 2007; Van Den Eeckhaut 
et al., 2007).  
 
The ability of ALS to penetrate the forest canopy and its independence of 
solar incidence angle makes ALS superior to image-based photogrammetric 
techniques for acquiring a high resolution digital terrain model (DTM) in 
forested terrain (Kraus, 2007) and the high spatial resolution of ALS 
outperforms the use of synthetic aperture radar (SAR). The interpretability of 

* This chapter is based on: 
Razak, K.A., Straatsma, M.W, Van Westen, C.J., Malet, J.P., de Jong, S.M (2011) 
Airborne laser scanning of forested landslides characterization: Terrain model quality 
and visualization. Geomorphology 126, 186-200. 
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landslides depends on the quality of the DTM. Reported vertical accuracies of 
vegetated and sloping terrain vary between 0.20 m and 2.00 m (Huising and 
Gomes Pereira, 1998), 0.26 m for deciduous forest (Hodgson and Bresnahan, 
2004), 0.57 m (Kraus and Pfeifer, 1998), 0.31 m for conifer forest 
(Reutebuch et al., 2003) and 0.31 m for shrub and conifer trees (Wang and 
Glenn, 2009). So far no detailed assessment on DTM has been carried out to 
reveal the suitability of ALS and derived DTMs to accurately map landslide-
morphological features.  
 
ALS data is typically delivered as a very large dataset of points (clouds) with 
X, Y, Z coordinates (easting, northing and elevation). Various filter types are 
used to extract trees, houses or the bare earth surface under trees from the 
dataset. Filtering of ground points from the ALS point is an important step in 
the accurate geomorphologic mapping of landslides. Generally, ALS-derived 
DTMs have been used to characterize landslide morphology and activity 
(McKean and Roering, 2004; Glenn et al., 2006; Kasai et al., 2009).  
 
Several algorithms have been developed for DTM extraction from ALS point 
clouds (Sithole and Vosselman, 2004). In spite of the ability to automatically 
classify ground points and non-ground points, complex scenarios such as the 
preservation of discontinuities, vegetation on slopes, low vegetation and 
influence of outliers, still require further improvement of the filtering 
algorithms (Sithole and Vosselman, 2004) and some manual editing is often 
carried out by the data vendor. The selection of the appropriate filtering 
algorithm depends on the type and complexity of the landscape (Sithole and 
Vosselman, 2004; James et al., 2007). An optimal method for landslide 
inventory mapping is currently not known. Especially, the preservation of 
important landslide characteristics, such as scarps, cracks, rock blocks and 
back-tilting of the surface, while removing vegetation is a challenging task. 
Therefore the first objective of this paper is to test the performance of two 
well-known DTM filters, the hierarchical robust interpolation and progressive 
TIN densification, to quantify the error in the DTMs in rugged forested terrain 
focusing on geomorphological features of forested landslides. For this we 
acquired very high resolution ALS data of 170 points/m2 to exclude point 
density as a limiting factor and to allow the determination of the appropriate 
point density for landslide mapping.  
 
The second part of the paper evaluates various visualization methods of an 
ALS-derived DTM of a large complex landslide. Different visualization 
techniques are discussed in the literature: monoscopic images (e.g. shaded 
relief, color composite, openness) and 3D model (stereoscopic images, 3D 
point cloud visualization) approaches. Our second objective is to qualitatively 
assess the visual interpretability of a landslide DTM with respect to activity, 
scarps, rock blocks, displaced material and composition of the main slides 
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and sub-slides using different visualization techniques. The evaluation was 
carried out by different image interpretation experts. Examples are taken 
from the Bois Noir landslide in the southern French Alps (Chapter 2), which is 
a complex landslide area (Flageollet et al., 1999; Thiery et al., 2007). 

3.2 Methods 

3.2.1 Data collection 
Field measurements 
A field campaign was carried out in June 2009, during which terrain heights 
were measured using a Leica differential GPS system 1200. A total station 
was used to measure under dense canopies where the GPS signal was too 
weak for accurate positioning. We established two geodetic base stations to 
create a local geodetic network. Locations were selected based on open sky 
view for optimal reception of the GPS signals and to avoid the delayed signals 
affected by multipath effects. A 24-hour static observation was carried out for 
each geodetic station. Horizontal and vertical accuracy of this tool with static 
observation mode is about 3 and 10 mm at 0.5 ppm, respectively.  
 
Post-processing on the GPS data was done by taking the coordinate 
references from three available permanent GPS stations of RENAG (REseau 
NAtional GPS) located nearest to the study area. Position and baseline time 
series for the evaluation on the validity of the stations for reference are 
available online at http://webrenag.unice.fr. Horizontal and vertical precision 
of geodetic stations are on average 8 and 13 mm, respectively. Using these 
base stations, real-time kinematic (RTK) GPS was used to measure the 
terrain height. The GPS data was processed using strategy schemes 
implemented in Topcon Tools software ver. 7.2. The RAF98 geoid model was 
used to convert the ellipsoidal height into orthometric height. All the 
coordinates were projected into the local coordinate system, Lambert zone III 
using Lambert Conformal Conic with NTF (Nouvelle Triangulation de France) 
as datum.  
 
In case it took too long or was not possible to get an accurate value using 
RTK-GPS, a total station was used. The position of the total station was 
determined using the two geodetic base points set up close to the forest 
boundary. From there, points under the dense tree canopy were measured 
and their accuracy is dependent on the geodetic station. A total of 332 points 
were collected over the study area; they were distributed over 
geomorphological features such as scarps, cracks, blocks, depletion zones 
and accumulation zones (Fig. 2.2; Chapter 2). Two tree plots were measured, 
resulting in the terrain height at the location of 101 individual trees. Also a 
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number of points were taken to represent the terrain height outside the 
geomorphological features. 
 
ALS acquisition 
The ALS campaign was carried out under snow-free conditions in July 2009, 
using a helicopter flying about 300 m above the ground. An airborne hand-
held laser scanning system provided by the Helimap company was used. This 
system has been developed specifically for the mapping over mountainous 
forested areas (Vallet and Skaloud, 2004). A RIEGL VQ-480 laser scanner 
with a pulse repetition rate of up to 300 kHz was used to record full 
waveform laser data. Positioning was done using a Topcon Legacy GGD 
capable of tracking GPS and GLONASS positioning satellites. The orientation 
of the aircraft was determined using the iMAR FSAS inertial measurement 
unit (see Table 3.1 for details). In order to increase the point density seven 
flight lines were flown resulting in 50 million points. We used last pulse data 
that amounted to 35 million points with a mean point density of 140 points 
m-2, which is still far above any commercial application of ALS data.  
 
Table 3.1: Metadata for the airborne laser scanning campaign 
Acquisition (month/year) July 2009 
Laser Scanner Riegl VQ480i 
IMU system  iMAR FSAS – record 500 Hz 
GPS system  Topcon Legacy – record 5 Hz 
Laser pulse repetition rate 300 kHz 
Measurement rate Up to 150 000 s-1 
Beam divergence 0.3 mrad 
Laser beam footprint 75 mm at 250 m 
Field of view 60o 
Scanning method Rotating multi-facet mirror 

3.2.2 Quantitative assessment of landslide DTM 
accuracy 

In this study, we evaluated two common filters for bare-earth extraction 
(Sithole and Vosselman, 2004): hierarchical robust interpolation (HRI) and 
progressive TIN densification (PTD). Both filters execute automatically 
without manual editing and work on point clouds directly without gridding the 
data, so no information is lost by point to grid conversion. We tested the 
effect of different filter settings and assessed the result quantitatively against 
field reference data and qualitatively using different visualizations and 
knowledge from expert image interpreters. 
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Parameterization of Hierarchical Robust Interpolation 
Robust interpolation was originally developed for ALS data in forested areas 
(Kraus and Pfeifer, 1998). A hierarchical approach was originally proposed by 
Pfeifer et al. (2001) and has similar structure to the image pyramids, but the 
reduction function operates on the laser point data. The HRI method was 
embedded in SCOP++ software and has the capability to automatically 
extract points belonging to the ground surface and classify the non-ground 
points into several classes such as buildings, vegetation and low points. 
 
At three different hierarchical levels that increase in resolution, four steps are 
carried out to extract ground points: thin out, filter, interpolate, and sort 
out/classify. In the thin out step, the original data are thinned out to a low 
density point cloud. A grid is overlaid over the point cloud and for each cell, 
the lowest or most central point is chosen. In the filter step, a DTM is 
determined by applying the method of Kraus and Pfeifer (1998), which works 
by iteratively computing a local average. Weights are based on the residual 
value relative to the DTM in the previous iteration. The weight function gives 
a low weight to points with a large residual and high weight to points with a 
small residual. Fig. 3.1A shows a schematic diagram of a weight function 
which involves lower and upper branches for parameterization. The weight 
function has half of its maximum value at h and the weight function is cut off 
at tolerance, t. Next, a new DTM is defined by applying the linear prediction 
algorithm, and in each step it is compared to the data of a higher resolution. 
In the sort out step, points within a certain vertical buffer are taken for the 
next iteration, and others are excluded. For the basic setting, we use 0.25 m 
as grid resolution and 0.15 m for mean accuracy of the point clouds. The 
value of the mean accuracy is considered by taking into account the mean 
errors produced by the differential GPS, inertial measurement unit and laser 
scanner system. 
 
We proposed an iterative approach based on the HRI method, which we will 
refer to as the landslide filter. This filter is capable of dealing with the 
complexity of terrain, especially in a rugged forested area for landslide 
mapping. Besides that, we used two predefined parameterizations embedded 
in SCOP++, called as a HRI-default filter and a forest filter in this thesis 
(Table 3.2). The forest filter is suggested for vegetated areas, whereas the 
HRI-default filter works best for areas with a mix of forest and open terrain.  
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Fig. 3.1: Parameterization of hierarchical robust interpolation (HRI) and progressive 
TIN densification (PTD) methods. A) Weight function of the HRI method, showing the 
half-weight value (h) and tolerance (t) for residual calculation. B) Triangle of identified 
ground points indicate angles (a, b, and c) and distance to the plane (d) of the PTD 
method. 
 
The landslide filter implements the robust interpolation in three schemes. 
Every scheme uses different parameters for the four steps as mentioned 
earlier and a number of points within the buffer zone as data input. Herein, 
buffer zone refers to classified points (points on the ground and the points in 
between at the certain height of above and below the ground surface). We 
assume that within the buffer zone, there are ALS points that belong to the 
landslide diagnostic features such as ALS points on the crown cracks and 
main scarps beneath the dense vegetation. In the first scheme, non-ground 
points are filtered out and only those points within 0.45 m buffer zone (taken 
from the ground surface to 0.225 m above and below it) are classified. This 
improved the estimate of the DTM. Therefore in the subsequent iterations 
more stringent limits were imposed on the filtering. For example, buffer 
zones of 0.2 and 0.1 m are used during the second and third scheme, 
respectively, and the values of h and t decrease further. By implementing 
this strategy, the residual to the true DTM becomes increasingly accurate. 
The DTM was less affected by vegetation or non-ground points for the second 
and third scheme. Hence, the bare-earth points are classified more accurately 
and the DTM accuracy is improved.  
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Table 3.2: Parameterization of weight functions, thinning output and buffer zones for 
the landslide filter, forest filter and HRI-default filter 

 
Step /  
Filter 

Filter Step – weight function Thin out 
Step 

Classify  
Step Upper branch Lower branch 

Half-weight 
(m) 

Tolerance 
(m) 

Half-weight 
(m) 

Tolerance 
(m) 

Cell size 
(m) 

Buffer zone 
(m) 

 First Hierarchy 
Landslide filter       
  1st Scheme 0.80 2.40 - 3.60 3 0.45 
  2nd Scheme 0.56 1.68 - 2.52 3 0.20 
  3rd Scheme 0.40 1.20 - 1.80 3 0.10 
Forest filter 0.80 2.40 - 3.60 6 0.45 
HRI-default filter 0.80 2.40 - 3.60 3 0.45 
 Second Hierarchy 
Landslide filter       
  1st Scheme 0.30 0.90 1.20 1.20 2 0.45 
  2nd Scheme 0.21 0.63 0.84 0.84 2 0.20 
  3rd Scheme 0.15 0.45 0.60 0.60 2 0.10 
Forest filter 0.30 0.90 1.20 1.20 3 0.45 
HRI-default filter 0.30 0.90 1.20 1.20 2 0.45 
 Third Hierarchy 
Landslide filter       
  1st Scheme 0.15 0.30 0.23 0.45 0.25 0.45 
  2nd Scheme 0.11 0.30 0.16 0.45 0.25 0.20 
  3rd Scheme 0.08 0.30 0.11 0.45 0.25 0.10 
Forest filter 0.15 0.30 0.23 0.45 0.25 0.45 
HRI-default filter 0.15 0.30 0.23 0.45 0.25 0.45 

 
Parameterization of Progressive TIN Densification 
The PTD method was developed by Axelsson (2000). It has been 
implemented in the Terrascan software and operates on point data. Starting 
with a sparse TIN, based on neighbourhood minima, the TIN is progressively 
densified to represent more local detail. In each iteration, points are added to 
the existing TIN if they are below predefined thresholds. The thresholds are 
determined on the basis of the angle points (a, b, c) of the TIN facets and the 
distance (d) to the plane (Fig. 3.1B). The procedure to add candidate points 
(p) to the TIN is done continuously until all points exceed the thresholds. 
Parameterization of PTD consists of the selection of the maximum slope of 
the study area, the lowest points in a large grid, the maximum number of 
iterations for distance and angle to the plane, and threshold for the edge 
length. This predefined parameterization will be referred to as PTD filter.   
 
Due to the use of local minima, the PTD method is sensitive to below terrain 
blunders, which need to be removed before filtering. We removed all 
blunders points, defined as points with the next lowest points within the local 
window. Points 0.5 m lower than any neighbouring point within a 5 m radius 
are used. We set the maximum slope angle to 86o, the iteration angle to 10o, 
and the distance to the plane to 1.5 m. For the iteration angle, the edge 
length was set to less than 5 m in order to avoid adding unnecessary points 
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and to reduce the use of memory and computation time. These choices are 
based on point density and terrain characteristics over the study area. 
 
Quantitative error assessment 
The vertical accuracy of the different DTMs was first determined by 
computing the RMSE (root mean square error) between field points and a 
DTM as defined in Eq. (3.1):  
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 (3.1) 

 
where n is the number of field reference points, GPSZ  are the terrain heights 

of points measured by GPS, ALSZ  are the predicted heights from the terrain 
model. RMSE was calculated for forested and open terrain and in both cases 
a further subdivision was made for scarps, cracks, rocks and ground surface. 
In addition, the DTM was evaluated under dense canopy at the locations of 
the tree plots. This procedure was applied to the DTMs derived from the four 
different filters.  
The effect on the spatial representation of the four different DTM filters was 
assessed by computing the differences between the results from the landslide 
filter and the other filters. The last quality aspect evaluated is the density 
analysis of filtered points. The point density of the ground points is computed 
based on the average number of points within one square meter. 

3.2.3 Qualitative assessment of DTM interpretability 
The qualitative assessment of the ALS-derived DTMs produced by the 
different ALS filtering parameterization was carried out in two ways. Firstly, 
we assessed the interpretability of geomorphological features on a hybrid 
DTM. A hybrid DTM consists of a regular grid, intermeshed with break lines, 
form lines, border lines and spot heights (SCOP++, 2008). Such DTMs have 
been used in many landscape studies, (e.g. Hollaus et al., 2006; Szekely et 
al., 2009). We assessed the interpretability of cracks, scarps, rock blocks, 
depletion zones and accumulation zones. 
 
Secondly, we asked three expert interpreters to evaluate the interpretability 
of the different DTMs. The DTMs were provided to the expert image 
interpreters without informing them on the applied filtering methodology. The 
evaluation was done on the basis of a stereoscopic model and shaded relief 
images. The interpretability of different DTMs was rated based on the degree 
of morphological appearance and a landslide inventory map was created 
using DTM that was rated highest. The image interpretation was done using a 
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screen visualization technique with 3D anaglyph glasses. A landslide map 
indicates the outlines of geomorphological units, roads, cracks, drainage 
network, and landslide activity. 
 
Visualization in 2D 
The interpretability of the images depends on the DTM visualization 
techniques. Here we compared four different visualization techniques based 
on a gridded DTM with a 0.25 m cell size. 
 
 Shaded relief map (Horn, 1981). This technique applies an azimuth of 

310o and an altitude of 40o for the sun’s position. 
 Color composite map (Smith and Clark, 2005). It is based on three 

shaded relief images with an azimuth in the West, North-West and North 
direction. Linear stretching was applied to the image. 

 Openness map (Yokoyama et al., 2002). This technique generates an 
angular measure of surface form, unbiased from solar irradiation. It is 
computed from the zenith and nadir angles along eight DTM azimuths. 
Positive and negative openness indicates the convex and concave 
features of topography, respectively.  

 Red relief image (Chiba et al., 2008). This technique produces a red 
image by adjusting the chrome value of red on the topographic slope and 
its brightness on the openness value. This image was prepared by Asia 
Air Survey Co. Ltd. using openness distance of 10 times of the grid 
resolution size of 0.25 m to optimize the visualization. 

 
Visualization in 3D 
Two types of 3D visualization were also produced and evaluated. The two 3D 
visualizations are one static and one dynamic presentation. Visualization in 
three dimensions was carried out using the following two techniques: 
 
 Stereoscopic model (Smith and Clark, 2005). A shaded relief and 

openness map and the DTM have been used to generate a stereoscopic 
view of the area. 

 3D point cloud visualization (Vosselman and Klein, 2010). This 
visualization technique offered a dynamic representation of the 3D point 
cloud as implemented in the Quick Terrain Modeler software version 7.1. 
The high density point clouds can visualize the representation of the relief 
and disrupted trees affected by landslides. 

 
Analysis of ALS point density for landslide recognition 
In this study, the point density of all ALS data was 140 points m-2. We have 
checked landslide interpretability of the ALS data at different point densities. 
The ground point dataset with an average of 53 points m-2 was thinned out 
progressively to derive eight data sets. The initial density was substantially 
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reduced to end up with a density that is commonly used for generating ALS-
derived DTMs. The eight datasets were categorized based on point grouping 
that have been used as thinning strategy. Horizontal distance of 0.25, 1, 3, 
5, 7, 9, 11 and 13 m were used during the point grouping routine. At each 
thinning level, all the points within the given horizontal distance were 
grouped, and the thinning process stops after all the points were grouped. 
Next, the central points in each group were also selected for the thinning 
dataset. This process was done using the algorithm implemented in 
Terrascan software. The eight datasets have point densities varying between 
1.69 and 27.20 points m-2. 
 
Each thinned dataset was used to create a 1 m resolution DTM by using a 
natural neighbour interpolation technique. This interpolator is suitable to deal 
with rough terrain and is an essential step for the recognition of the 
morphological features (Pirotti and Tarolli, 2010). The original DTM and the 
eight thinned ALS-derived DTMs were given to expert-image interpreters for 
suitability assessment. Diagnostic morphological features have been checked 
for this assessment in order to examine the suitability of ALS point density 
for landslide recognition. This assessment is informative for the users who 
want to order and use the ALS data for mapping landslides beneath 
vegetation. 

3.3 Results 
This study aimed at evaluating the use of various ALS-derived DTMs for 
landslide mapping and identification of morphological features of landslides. 
The main results are presented and discussed in this section. 

3.3.1 Quantitative assessment  
The vertical accuracy of the four produced DTMs varied between 0.28 and 
0.87 m compared to the field data and depended on the different 
morphological features and the applied filters (Table 3.3). For all 
morphological features the PTD filter outperformed the filters based on HRI 
with RMSE being lower than that for the best HRI parameterization by 0.02 to 
0.04 m. The landslide filter showed the best results of the different HRI 
parameterizations. The errors for cracks and scarps were lower when no 
vegetation was present, but for rock blocks RMSE values were comparable 
between the open and forested terrain. The two tree sampling plots also 
showed the PTD as the best filter and the landslide filter as the best HRI 
parameterization (Table 3.4). 
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Table 3.3: Quantitative assessment of the vertical accuracy of morphological landslide 
features with different filter parameterization. Units are in meters 
 Cracks 

 
Scarps Rocks Ground 

surface 
No. RMSE No. RMSE No. RMSE No. RMSE 

Open terrain 
 
Landslide filter  

5 
0.33  

5 
0.40  

18 
0.33  

94 
0.34 

Forest filter 0.33 0.39 0.39 0.35 
HRI-default filter 0.33 0.87 0.41 0.35 
PTD filter 0.29 0.36 0.32 0.31 
Forested terrain 
 
Landslide filter  

35 
0.38  

12 
0.51  

9 
0.38  

53 
0.33 

Forest filter 0.38 0.51 0.37 0.34 
HRI-default filter 0.38 0.51 0.38 0.34 
PTD filter 0.35 0.50 0.31 0.28 

 
Table 3.4: Quantitative assessment of the vertical accuracy of vegetation features with 
different filter parameterization. Units are in meters 
 Tree - Plot A Tree - Plot B 

Number of 
points 

RMSE 
(meter) 

Number 
of points 

RMSE 
(meter) 

Landslide filter  
22 

0.34  
79 

0.36 
Forest filter 0.40 0.37 
HRI-default filter 0.41 0.37 
PTD filter 0.32 0.33 

 
Fig. 3.2 shows a line profile extracted from the DTMs produced by the four 
filters over an area covering crown cracks, main scarps and vegetated 
terrain. The location of the line profile (a-a’) is shown in Fig. 2.2 (Chapter 2). 
This area was delineated by the interpreters as a recent slide clearly showing 
an active scarp and crown cracks on the image. Nine GPS points were 
collected here for validation. The landslide filter worked well for this area by 
preserving the crack on the upper scarp and the terrain morphology on the 
area below the scarp. The PTD filter showed a smoothening effect but still 
followed the roughness of the ground surface. In contrast, the forest and 
HRI-default filters still contain about ten points on the vegetation which was 
not properly filtered out (Fig. 3.2). 
 
The original point density of last pulse data was 140 points m-2. The point 
density of the ground points varied between 22 points m-2 and 76 points m-2 
depending on the filters (Table 3.5). The point density of the filtered data 
using parameterization of the landslide filter was about 52 points m-2, and 
64% of the point cloud was filtered out during the automatic filtering process. 
For the second and third scheme of the landslide filter, the number of points 
was reduced to 46% and 36% of the original data. Point density of extracted 
ground points using the forest and HRI-default filters are about 76 points m-2 

and 75 points m-2, respectively. In contrast, point density analysis of the PTD 
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method shows that the ALS points were reduced by 85% after the filtering 
process. Less ground points resulting from the PTD filter led to insufficient 
points to represent the diagnostic landslide morphological features and thus, 
produce less accurate landslide DTM for forested landslide recognition.  
 

 
Fig. 3.2: Profile through the study area showing the results of the four filters together 
with the GPS measurements over a complex area. Location of line profile (a-a’) is 
shown in Fig. 2.2 (Chapter 2). 
 
The differences between the DTMs generated by the landslide filter and the 
other filters were computed to evaluate the spatial effect of the different 
filters (Fig. 3.3). The major height difference between the landslide and PTD 
filters were mostly found over the zone of depletion as depicted in the two 
subset area in Fig. 3.3A. It shows that the landslide filter preserves small 
scale morphological features on such areas better than the PTD filter. In Figs. 
3.3B,C, height differences between the landslide filter and both default filters 
indicate that most of the active landslide areas show altitude differences up 
to 0.15 m, whereas, in forested area, the height difference is up to 0.30 m. 
Significant height differences also showed up in areas with a higher slope and 
along the stream incisions. Consequently, the Figs. 3.3B,C show more points 
that are not completely filtered out over open terrain and forested area.  
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Fig. 3.3: Height differences between terrain models generated from the landslide filter- 
and A) PTD filter, B) forest filter and C) HRI-default filter. Positive values indicate that 
the DTM from the landslide filter is higher than the one from the other filter. 
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Table 3.5: Point density of ALS ground points extracted using four different filters 
 ALS data input 

(million points) 
Filtered ground points 
(average points m-2) 

Landslide filter 
   First Scheme  
   Second Scheme 
   Third Scheme 

 
35.1 
19.2 
18.9 

 
75 

68 

53 
Forest filter 35.1 76 
HRI-default filter 35.1 75 
PTD filter 35.1 22 

3.3.2 Qualitative assessment of ALS-derived DTMs 
The qualitative analysis on the generated DTMs by different filtering 
parameter settings was carried out based on shaded relief images of the 
hybrid DTM model as shown in Fig. 3.4. The reference image is the terrain 
model generated by the landslide filter. Fig. 3.4A presents an area with a 
number of shallow cracks in the terrain. Each of the filters was capable of 
identifying the cracks although the HRI-default filter and the forest filter still 
showed some vegetation that was not properly filtered out. Fig. 3.4B 
indicates that the landslide and PTD filters were slightly better in eliminating 
trees compared to the other two filters. The accumulation zones in the 
complex landslide can be recognized on each of the filter products. The 
displaced material and the disrupted road are seen on the subset images 
(Fig. 3.4C). In Fig. 3.4D, the landslide filter shows slightly better results than 
the other filters for an escarpment area. However, as can be seen in Fig. 
3.4E, the trade-off for the good performance is that both the landslide and 
PTD filters were worse for detecting isolated rock blocks in the area. The PTD 
filter also showed a smoothening effect due to insufficient ground points over 
the test area. 

3.3.3 Expert interpretations of DTMs 
The three experts on image interpretation that evaluated the results from the 
various filters agreed that the ALS-derived image generated using the 
landslide filter was the best for landslide interpretation. The PTD-derived DTM 
showed less information over the deposition and accumulation zones, 
whereas, the forest and HRI-default filters are not completely filter out the 
trees. 
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Fig. 3.4: Examples of the representation of the shaded relief images from hybrid DTM 
models from the four filters for different landslide features. See text for explanation. 
 
Fig. 3.5 shows the diagnostic features of landslides on openness images 
derived from DTM constructed with the landslide filter. The presence of clear 
cracks (A), semicircular niches followed by concave slopes (B), flow lobes 
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with concentric patterns (C), hummocky terrain (D) and several secondary 
geomorphological features can be clearly observed. The recognition of small 
cracks might be the best feature that can be interpreted from these images, 
which provides additional information as compared to the interpretation of 
optical images (e.g. aerial photos or satellite images). The forest cover hides 
most of these landslide features, except for the few active zones, and makes 
the interpretation of the landslides very difficult from optical images. 
 
Mapping landslide types is also possible, since the diagnostic features were 
interpretable on the images with a spatial resolution of 0.25 m. Most of the 
landslides in the study area had a source area where cracks were developed 
with a radial pattern, followed by a rotational landslide scarp (Fig. 3.5B). 
Most of the landslides are flow-type slides, and the landslide rigid body 
turned progressively into a flow-type body characterized by lobes with 
concentric ridges and cracks (Fig. 3.5C). There were also indications of mass 
flows that reached less steep slopes and that could not extend laterally, 
producing pressure ridges with higher elevations, and large cracks in the 
upslope part (Fig. 3.5F). Another clear feature indicating flow-type behaviour 
was found in the East of the study area, where the mass flow of a larger 
landslide that enters the area from the South was separated from the 
surrounding terrain with lateral ridges (Fig. 3.5E). 
 
The classification of landslide activity is more difficult based on only 
monoscopic images of filtered ALS data. As the information on vegetation 
characteristics was removed, it is not possible to use the presence of 
disrupted vegetation as a possible diagnostic feature. It is advisable to 
combine the interpretation of ALS-derived images with aerial photographs to 
get the best results. One of the best features that can be used in this case 
was the state of the roads and tracks that pass through the area. Interrupted 
roads (Fig. 3.5J) can be found in several places indicating recent landslide 
activity that took out the road surface. Also the downslope movement of the 
road surface on a landslide (Fig. 3.5K) was a clear diagnostic feature. The 
freshness of landslide features can only be used to classify the landslide in 
different classes of activity and relative age, although in this area most of the 
features appear rather fresh indicating that the entire area has been 
subjected to landslide activity very recently (Lopez Saez et al., 2011).  
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Fig. 3.5: Diagnostic features for the interpretation of landslide type and activity using 
the openness image from ALS, as indicated by expert image interpreters. The white 
arrows indicate the direction of landslide movement. 
 
With the help of the openness map it was possible to map out the various 
phases of landslide activity, as many features were intersected by scarps and 
flow patterns of more recent events. This allowed the reconstruction of the 
various phases of landslide activity. The interpretation indicates that the 
landslide history has been very complex with many phases of mass flows that 
overlap or are reactivated (Fig. 3.5L). There are a number of aspects that are 
still unclear in the image and need further evaluation. This is partly because 
the image is covering part of a larger landslide complex (Bois Noir) and that 
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there are features of older landslide phases which can only be properly 
interpreted when a larger area is evaluated.  
 
A complete geomorphological interpretation of the sample area is presented 
in Fig. 3.6. One of the questions that remained after interpreting the images 
is whether a number of ridge features (F and G in Fig. 3.4) have a structural 
geological control (for instance showing the bedding or the main local 
discontinuity of the underlying rocks) or are related to older landslide 
features. Given the importance of landslides in the area and the relatively 
large depth of the landslide features, it is more likely that these ridges are 
related to larger scale instability that can only be interpreted well when 
looking at the image of the entire Bois Noir landslide slope segment. Also the 
relationship between the most recent landslide activity and larger scale 
instability features (H in Fig. 3.4) should be further investigated. It appears 
that the recent landslide near H is actually occurring in a landslide block that 
is located directly upslope. The line of reactivation (I in Fig. 3.4) seems to be 
related to an older landslide mass coming from upslope, as well as the large 
glacier-like flow structure (J in Fig. 3.4). The area between H and J is 
considered as a large flow accumulation which has had several stages of 
reactivation.  
 
The landslide inventory map (Fig. 3.6) was prepared by the expert 
interpreters. The map combines the relative age of the landslides with 
morphological features and the landslide types. The areas indicated as “non-
landslide area” are the side slopes and ridges between the landslide masses. 
They could be part of a larger, and older, landslide complex, but this can only 
be interpreted from images of a larger area. The source area is characterized 
by a large density of small cracks. They appear upslope of the actual active 
landslide area. The active landslides appear in a linear zone, probably related 
to a step in a larger landslide complex, and seriously affect the forest road in 
four places, two times in the scarp area and two times in the accumulation 
area of the active landslides. The eastern part of the area consists of a large 
mass flow, which is reactivated in several places. 
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Fig. 3.6: Geomorphological map with classification of landslides created by the expert 
image interpreters. 

3.3.4 Visualization methods 
The different 2D visualisations of the study area are presented in Fig. 3.7. 
The shaded relief image is less effective in highlighting micro-morphological 
features and it is difficult to identify features that occur parallel to the source 
areas of the landslides due to the illumination direction. This image requires a 
directional light source. The colour composite technique significantly 
improves the quality of the image in terms of visibility of some morphological 
features such as flow pattern and hummocky topography. The openness 
image is recognized by the image interpreters to be more appropriate for 
landslide visualization.  
 
Based on the qualitative assessment carried out on monoscopic images by 
expert image interpreters, many more macro- and micro-morphological 
features can be found on the openness map compared to the shaded relief 
map. The red relief image has similar interpretability as the openness map, 
but the image interpreters found the overall red colour to be disturbing in the 
image interpretation process. Small details are visible in the scarps and 
accumulation zone. 
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Fig. 3.7: Illustrations of the various visualization methods used for landslide 
interpretation. A) Shaded relief map. B) Colour composite map. C) Openness map. D) 
Red relief image map. 
 
The 3D visualisations of the non-filtered and filtered datasets are shown in 
Figs. 3.8 and 3.9. The stereoscopic model presented as an anaglyph in Fig. 
3.8A shows that most of the landslide morphologies are hidden beneath 
dense vegetation, whereas geomorphological features under forest are clearly 
seen in Fig. 3.8B. Fig. 3.9A presents 34.2 million points cloud over the non-
filtered dataset, whereas 9.2 million points represent the ground points are 
depicted in Fig. 3.9B. It presents the scarps that were forming in the rough 
terrain. However, for landslide interpretation the 3D point cloud 
representation is less useful than the anaglyph images produced from the 
openness image. 

3.3.5 Effect of ALS point density on landslide 
recognition 

The thinned out data sets ranged from a point density of 1.69 to 27.20 points 
m-2 (Table 3.6). Fig. 3.10 shows a detail of the Bois Noir area, visualized as 
openness images. Three datasets are shown, the original, and thinned out 
data sets at levels 3 and 8. The visual assessments by experts started on the 
dataset with level 8 then followed by the other levels including the original 
dataset. The experts all agreed that the thinned dataset could be used to 
recognize the major geomorphological indicators of landslide activity. 
However, in order to differentiate the minor relief, recognize individual 
landform and properly assess the landslide activity, point densities at level 1–
3 are required. 
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Fig. 3.8: Stereoscopic models of non-filtered and filtered dataset. A) Anaglyph image 
showing dense vegetation covered the landslide area. B) Digital terrain model 
visualized as an openness image showing the morphology of forested landslides. Both 
images need to view with red-blue anaglyph glasses.  
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Fig. 3.9: 3D point cloud visualization of Bois Noir landslide in France. A) 34.2 million 
points cloud represents the non-filtered dataset. B) Filtered ground points resulting in 
9.2 million points cloud over the complex landslides. 
 
Table 3.6: Thinning data with different average point density for landslide mapping. 
The original points are 12.6 million points with point density 53 points m-2 

Thinning       Horizontal distance   Average point density      No. of points 
   Level     (meter)                    (points m-2)        (x 106) 

     1  0.25   27.20   6.50  
     2  1  12.37   2.96  
     3  3  5.69   1.36  
     4  5  3.80   0.91 
     5  7  2.84   0.69 
     6  9  2.32   0.55 
     7  11  2.00   0.46 
     8  13  1.69   0.40 
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Fig. 3.10: Three examples of an openness map made from different point densities. A) 
Original dataset. B) Thinned level 3. C) Thinned level 8 (See also Table 3.6 for 
explanation of thinning levels).  

3.4 Discussion and conclusions 
In this study, we evaluated the suitability of various types of ALS-derived 
DTMs for mapping landslides and for identifying morphological features of 
landslides. We used a quantitative measure for expressing the accuracy of 
the landslide DTMs based on ALS data and we investigated the usefulness of 
different visualisation techniques on the interpretability of the landslide 
morphology. The vertical accuracy of the DTM varied between 0.28 and 0.36 
m for the PTD filter. The accuracy depends on the types of geomorphological 
features. Our results are an improvement in accuracy compared to the 
previous studies that reported 0.57 m (Kraus and Pfeifer, 1998) and 0.46 m 
(Hodgson et al., 2003) vertical error over forested area. Reutebuch et al. 
(2003) and Wang and Glenn (2009) reported similar results for sloping 
forested terrain.  
 
The results from the different filter parameterizations of the HRI method 
were slightly less accurate, but still in the range between 0.30 and 0.40 m. 
The PTD filter yielded slightly lower RMSE than the landslide filter: about 0.28 
and 0.33 m for morphological preservation and elimination of the trees, 
respectively. However, the landslide filter showed a better visualization for 
landslide recognition as indicated by expert image interpreters.  
 
Pfeifer and Mandlburger (2009) stated that the evaluation of an ALS-derived 
DTM under forest is difficult and expensive because it requires a higher 
precision of the ground control points than the ALS dataset and that 
reference points should be well distributed over the study area. In this work, 
we succeeded however to carry out a thorough accuracy assessment. Under 
a dense canopy, the GPS signal was indeed too weak for a few cases to reach 
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a high accuracy. We solved this problem by linking measurements acquired 
by a total station to GPS points outside the forest canopy. 
 
The interpretation of slope movements from the ALS-derived DTM is based on 
the recognition or identification of elements associated with slope movements 
and the interpretation of their significance to slope instability. The ALS-
derived DTM offers a significant improvement for landslide recognition and 
classification in forested terrain, as compared to optical images. Small 
morphological features, such as cracks, lateral ridges, pressure ridges and 
step wise morphology are clearly recognizable and gives the image 
interpreter unprecedented detail. Also the type of landslide is easily 
recognized from the detailed DTM.  
 
The trade-off between the four different filters is that trees were properly 
filtered out in the landslide and PTD filters, but rock blocks and the edges of 
incised channels are also filtered out. The HRI-default and forest filters 
maintained more of the trees, rock and channel edges. This trade-off is not 
shown in the accuracy assessment, but only showed up while interpreting the 
gridded DTM. This suggests that the HRI method with landslide filter 
parameterization would be a good method for DTM extraction of forested 
landslides, but that a separate filter should be applied when there is an 
interest in rock blocks and step edges.  
 
The assessment of landslide activity was more difficult using just the DTM. 
This could be done much better if two ALS datasets were available from two 
different periods. Vegetation characteristics are important indicators of 
activity and these are normally obtained from aerial images. However, also 
with high density ALS data the distribution pattern of irregular trees can be a 
good indicator for assessing landslide activity. The shape of the tree stem 
and the orientation of the tree may also be influenced by landslides. Back-
tilting of trees indicate a rotational slide, whereas bended stems indicate slow 
motion of the top soil. These topics are currently being investigated. 
 
While differences in the RMSE values differed little between the filters, the 
method of visualisation had a large effect on the interpretability of the 
landslide. A stereoscopic model was used to visualize the landslides. The 3D 
view of the landscape gave a much stronger impression of the landscape 
dynamics than any of the monoscopic images. The interpretability of the 3D 
point cloud visualization was also less attractive than the stereo image due to 
the varying point densities across the area. For vegetation assessment the 
raw point cloud would be superior as at such a high point density the shape 
of the tree is clearly recognizable. The openness image showed most of the 
details in the area. It has a more natural view than the composite image and 
has the added advantage that the openness can be combined in a 
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stereoscopic view as it is monochromatic. Shaded relief images proved less 
attractive due to the dependence on solar angle and the loss of detail in the 
end result. 
 
The required point density for landslide interpretation depends on the 
purpose of the study. Gross morphological features of landslides are easily 
distinguished at a point density of 1.69 points m-2. Detailed analysis of 
morphological features requires a point density more than 5.69 points m-2. 
However for vegetation analysis, very high density ALS data are preferable to 
enable detailed characterization of the shape of tree stems and branches 
(Bucksch and Lindenbergh, 2008). 
 
This research has shown the quality of an ALS-derived DTM for landslides 
mapping under a dense forest canopy. The generation of a detailed landslide 
inventory in forested terrain is considered important for landslide hazard 
assessment. This method should also be suitable in tropical areas where the 
re-vegetation of landslides proceeds rapidly. Furthermore, the vegetation 
characteristics, particularly on irregular trees extracted from high density ALS 
data could be used to assess the landslide activity beneath densely vegetated 
area.  
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Chapter 4 
 

Generating an optimal DTM from airborne 
laser scanning data for landslide mapping in a 

tropical forest environment* 

4.1 Introduction 
Landslides have been recognized as important geomorphic processes which 
form a major landscape component of the humid tropical mountain 
environments (Thomas, 1994). In such areas, landslides may damage 
physical structures and cause loss of lives. In Southeast Asia, landslides 
occur frequently in areas with steep hillslopes, high rainfall intensities, 
seasonally dry periods, and unstable soils, which are hindrances for 
managing upland forests and agricultural lands (Douglas, 1999; Sidle and 
Ochiai, 2006).  
 
Landslide inventory mapping is routinely done based on (i) visual monoscopic 
or stereoscopic aerial or satellite image interpretation, (ii) automated or 
semi-automated classification of satellite imagery based on spectral and 
topographic characteristics, (iii) field investigation, (iv) historical records, (v) 
visual interpretation of Airborne Laser Scanning (ALS) derived shaded relief 
images, and (vi) Radar interferometry (Van Westen et al., 2008; Guzzetti et 
al., 2012). Field mapping yields greater accuracy if aided by GPS and 
sophisticated instrumentation such as a laser rangefinder binocular 
(Santangelo et al., 2010), but has limitations in terrain coverage and is time 
consuming as well as expensive (Haneberg et al., 2009; Santangelo et al., 
2010). Image analysis using aerial photos, optical satellite, and radar images 
can efficiently cover a large area but results in poor mapping of landslides in 
rugged forested terrain (Fookes et al., 1991; Wills and McCrink, 2002; 
Brardinoni et al., 2003; Van Den Eeckhaut et al., 2007). 
 
In a tropical environment, landslide mapping for large areas is difficult 
because the landslides are covered by multi-storey dense forest canopies and 
the weather conditions (cloudy and rainy) are often unfavourable for optical 
remote sensing. Landslides in tropical forests are rapidly covered by 

* This chapter is based on:- 
Razak, K.A., Santangelo, M., Van Westen, C.J., Straatsma, M.W., de Jong, S.M. 
(2013). Generating an optimal DTM from airborne laser scanning data for landslide 
mapping in a tropical forest environment. Geomorphology 190, 112-125. 
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vegetation regrowth. Hence, soon after their occurrence the evidence of 
landslides are obscured in optical images. The lack of reliable landslide 
inventory maps hampers the assessment of landslide hazard and risk which 
may subsequently complicate the implementation of mitigation measures. 
Therefore, it is essential to test and evaluate new tools for mapping the 
location and extent of landslides beneath dense vegetation in the tropics.  
 
ALS is one of the most important geospatial data acquisition technologies 
that have been introduced recently (Petrie and Toth, 2008). ALS has 
revolutionized the acquisition of terrain data because it can collect explicit 
topographic data over wide areas at an unprecedented accuracy within a 
relatively short time. With its ability to penetrate the space between forest 
foliage to the ground and its independence of solar incidence, ALS is superior 
over passive optical (e.g. aerial-photograph, satellite images) and active 
radar sensors (e.g. interferometric synthetic aperture) for generating a high-
resolution digital terrain model (DTM) in forested terrain (Kraus and Pfeifer, 
1998; Hodgson et al., 2003; Kraus, 2007; Chapter 3).  
 
The essential step towards DTM generation is the classification of ground 
points and non-ground points (e.g. buildings and trees). It is also known as 
the filtering process, which is important because the extracted point clouds 
have a direct impact on the quality of the digital terrain modeling and 
subsequent products (Chapter 3). Although humans are cognitively able to 
identify points representing the ground surface, the manual or semi-
automatic filtering is not practically feasible for large point clouds. Despite 
the availability of automated filtering algorithms, a number of difficult 
scenarios are reported such as for dense vegetation on slopes, high surface 
roughness, preservation of sharp ridges, low vegetation, complex objects at 
convex slopes, and steep forested terrain (Huising and Gomez Pereira, 1998; 
Sithole and Vosselman, 2004). These cases are predominantly observed for 
recognizing landslides in tropical environments. Therefore, the selection of an 
appropriate filtering algorithm and its parameterization is required for such 
complex landscapes (Sithole and Vosselman, 2004; James et al., 2007). So 
far, there have been relatively limited studies to properly evaluate the quality 
of ALS-derived DTMs in the tropics (Blair and Hofton, 1999; Hofton et al., 
2002; Clark et al., 2004; Haneberg et al., 2009), particularly for mapping 
and classifying the tropical landslides. 
 
Landslide inventory mapping has made significant steps forward due to the 
availability of ALS data, because the use of shaded relief images created from 
ALS-derived DTMs allowed for a much better recognition of diagnostic 
features for landslide interpretation, even under dense forest (Sekiguchi and 
Sato, 2004; Van Den Eeckhaut et al., 2005; Ardizzone et al., 2007; Van Den 
Eeckhaut et al., 2007; Schulz, 2007; Kasai et al., 2009). However, none of 
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these studies has examined the developed approaches of landslide mapping 
in tropical environments with a relatively low point density.  
 
The main objective of this study is to evaluate the potential of airborne laser 
scanning for generating landslide inventory maps under tropical forests in the 
Cameron Highlands, Malaysia. A description of the study area with respect to 
geology, geomorphology, and vegetation was given in Chapter 2. We 
quantitatively and qualitatively assessed DTMs for landslide recognition and 
classification. We applied three progressively stringent filters to extract 
ground points, and examined four different surface interpolation methods to 
create gridded DTMs. The statistical measures of vertical accuracy were 
computed using field reference data based on differential Global Positioning 
System (GPS) and a Total Station for all DTMs with respect to three different 
land-cover classes. Expert image interpreters created the landslide inventory 
maps and assessed the interpretability of the different DTMs. 

4.2 Data and methods 

4.2.1 Airborne laser scanning measurement  
The ALS data were acquired by the Department of Survey and Mapping of 
Malaysia (JUPEM) as a national pilot survey over the Cameron Highlands in 
June 2004 using the Optech Airborne Laser Terrain Mapper (Optech ALTM) 
3100 (see Table 4.1 for details). In this study, we used a point cloud of about 
113 million points with a mean point density of 1.83 points m-2. All the strips 
were projected onto the local Malaysia Rectified Skew Orthomorphic 
(Malaysia RSO) projection system (Mugnier, 2009). Pre-processing of the 
point cloud was performed to eliminate isolated points (e.g. flying birds, 
transmission lines, and water droplets from low-level clouds). 

4.2.2 Field validation terrain height data 
A total of 448 ground-surveyed terrain height points were collected during 
field campaigns in July 2009 and January 2011 using a GPS (Topcon Hiper 
Pro) and a Total Station (TS; Nikon DTM-352). Heights ranged between 875 
and 1670 m above sea level. Of the 448 field-measured terrain heights 47% 
was under forests, 39% in agricultural areas, and 14% in tea plantations.  
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Table 4.1: Metadata for the airborne laser scanning campaign in the Cameron 
Highlands 
Airborne laser scanner and its 
accuracy 

Optech ALTM 3100; average horizontal accuracy 
0.30 m; vertical accuracy 0.20 m at 1200 m with 
one sigma 

Inertial measurement unit 
(IMU) system and its accuracy 

ALTM IMU records at 200 Hz with an accuracy of 
0.015o roll/pitch and 0.03o heading 

Positional geodetic system and 
its accuracy 

Trimble 4000SSi records at 10 Hz with static 
accuracy of 5 mm (horizontal) and 10 mm 
(vertical)  

Laser pulse repetition rate 100 kHz 
Measurement rate Up to 100 000 pulses per second 
Beam divergence Dual divergence 0.3 mrad 
Laser beam footprint 0.08 m at 250 m 
Scan angle  Up to 25o 
Scanning method Oscillating plane mirrors (saw-tooth pattern)  

 
We applied a purposive sampling scheme to acquire terrain height as it was 
impossible to collect them randomly or systematically on a regular grid due 
to poor accessibility of large parts of the mountainous area. More points were 
selected around known landslide locations. A combination of GPS techniques 
such as real-time-kinematic (RTK), rapid-static and static observations was 
used depending on the density of vegetation coverage. In areas completely 
covered by dense forest, a local surveying scheme using a TS was utilized. 
The average accuracies for the RTK-GPS and total station observations were 
0.15 and 0.09 m, respectively. We used four existing permanent control 
stations established by JUPEM in order to setup several geodetic base 
stations for a local geodetic network within the study area. Horizontal and 
vertical accuracy of the geodetic stations were on average 12 and 25 mm, 
respectively. The coordinates of the reference points were projected onto the 
Malaysia RSO coordinate system. 

4.2.3 ALS filtering and its parameterization 
We chose the hierarchic robust interpolation (HRI) method as implemented in 
the SCOP++ software (TUV, 2012) for DTM extraction from the raw point 
cloud, as the method is specifically developed for forested environments 
(Kraus and Pfeifer, 1998). HRI was extended in a hierarchical approach by 
Pfeifer et al. (2001). A standard HRI processing routine required three 
different hierarchical levels, which increase in resolution. Four processing 
steps are iteratively carried out at three hierarchical levels (pyramidal 
approach): (i) thinning out, (ii) filtering, (iii) interpolation, and (iv) 
sorting/classification (TUV, 2012). HRI uses a linear prediction algorithm with 
individual accuracies for each measurement. From the robust least square 
adjustment, a weighting function was applied to compute weights based on 
the residuals. The ground points are more likely to be below the modelled 
surface (a rough surface computed with equal weights), have positive 
residuals, and are given more weight. On the contrary, points above the 
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modelled surface (e.g. negative residuals) yield small weights and have less 
influence on the subsequent iterations.  
 
We modified the extraction of bare-earth points by using three subsequent 
filtering steps instead of one. Progressively stringent parameters were chosen 
following the method described in Chapter 3. For the Malaysian tropical 
dataset we introduced modifications of the parameterization (Table 3.2) in 
order to adapt to the lower point density, the complexity of under-storey 
vegetation, and the ruggedness of the terrain. We used a 1 m grid resolution, 
0.35 m for the mean accuracy, and different parameters for the weighting 
function and buffer zone. A detailed parameterization for filtering used in this 
study is shown in Table 4.2. This led to four point clouds: the raw point cloud 
and the extracted points after the first, second and third filtering step.  

4.2.4 Surface interpolation methods to create gridded 
DTMs 

The ground points extracted at each filter step were used to generate 1-m 
grid DTMs using four surface interpolation techniques: (i) the linear prediction 
derived from the SCOP++ (SCP), (ii) the inverse distance weighting (IDW), 
(iii) the natural neighbor (NEN) and (iv) the topo-to-raster (T2R). The ALS-
derived DTMs were quantitatively and qualitatively assessed with respect to 
landslide interpretation in the tropics.  
 
The SCP is implemented in the SCOP++ processing modules for DTM 
derivation. This interpolator is based on linear prediction also known as linear 
least-square interpolation (Kraus and Mikhail, 1972). It captures the non-
smooth terrain surfaces (e.g. breaklines, ridges, and troughlines). Briese 
(2004) provided details on this method. The IDW, NEN and T2R were 
implemented in the 3D Analyst extension of ESRI ArcGIS. These interpolators 
were chosen to get a balance between reasonable computational times and 
accuracy. The IDW and NEN are deterministic interpolation methods, which 
are often used to derive DTMs from ALS points in rugged forested terrain 
(Clark et al., 2004; Pirotti and Tarolli, 2010; Chapter 3). IDW (Isaaks and 
Srivastava, 1989) is a multivariate interpolation and the computation of 
assigned values to unknown points required a weighted average of the values 
available at the known scattered set of points. The basic equations of IDW 
are (Shepard, 1968): 
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Table 4.2: A modified landslide filter parameterization for filtering process implied in 
the Malaysian tropical environment (Inset figure showing the weight function used in 
the filter step). The output grid resolution was set to 1 m, and mean expected accuracy 
of the ALS data was set to 0.35 m. Units in meter 

 

Thin out 
step 

Filter step 
 

Sort out 
step 

Classify 
step 

 
Cell size  
 

Lower branch Upper branch 
 
Interval  

 
Buffer 
zone 

Half- 
weight 

Toler 
ance 

Half- 
weight 

Toler
ance 

 
Hierarchy levels 

 
1st Scheme of point cloud processing 

1 3 - 3.60 0.80 2.40 6.00 0.75 

2 2 1.20 1.20 0.30 0.90 2.10 0.75 
3 1 0.30 0.60 0.20 0.40 - 0.75 

 
 
2nd Scheme of point cloud processing 

1 3 - 2.52 0.56 1.68 4.12 0.50 
2 2 0.84 0.84 0.21 0.63 1.47 0.50 
3 1 0.21 0.60 0.14 0.40 - 0.50 
  

3rd Scheme of point cloud processing 
1 3 - 1.80 0.4 1.20 3.00 0.25 
2 2 0.60 0.60 0.15 0.45 1.05 0.25 
3 1 0.15 0.60 0.10 0.40 - 0.25 
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Where p(x) is a interpolated value at given points, x is an arbitrary points, xi 
is a known value, d is a given distance in the form of metric operator from xi 
to x, n is the total number of known points used in the interpolation, and r is 
a real number (positive) or known as a power parameter.  
 
IDW was applied using a power of 2, following Clark et al. (2004) who also 
created a DTM for a tropical forested region. The number of neighboring 
points was set to four to limit selection of points on a different morphological 
unit further away.  
 
The NEN method is based on so-called area-stealing interpolation (Sibson, 
1981; Watson, 1988; Ledoux and Gold, 2004). It is weighted average 
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interpolation technique that uses geometric relationships in order to choose 
and weight nearby points. The points used to estimate the value of an 
attribute at location x are the natural neighbour of x, and the weight of each 
neighbour is equal to the natural neighbour coordinates of x with respect to 
this neighbour (Ledoux and Gold, 2004). The NEN method is based on 
Voronoi tessellation of a discrete set of spatial points. The basic equation of 
the NEN method is: 
 

ii

n

i
i yxfyxf ,,

1

 (4.3) 

 

Where yxf ,  is the interpolated function value at yx, , i are the 

weights and ii yxf ,  are the known value at the i-th point ii yx , . The 

weights are computed by determining the ratios of volumes ‘stolen’ when 

placing yx,  into the tessellation. This method has advantages over the 

simpler interpolation methods such as nearest neighbor, and it performs well 
even if the data are highly anisotropic (Ledoux and Gold, 2004). In ESRI 

ArcGIS, yxf ,  are determined by finding the closest of input to query points 

and applying weights to the based on proportionate areas to interpolate a 
value. The weights are calculated based on the proportion of overlap between 
the constructed neighboring Voronoi (Thiessen) polygons and initial polygons. 
This method tends to smooth the surface except at locations of the input 
samples or within the range of samples used (Ledoux and Gold, 2004), given 
that the method is data dependent and has many desirable properties as an 
interpolation function (Sibson, 1981; Piper, 1993).  
 
The T2R interpolator is based on the ANUDEM program developed by 
Hutchinson (1989) specifically designed for generating a hydrologically 
correct continuous surface. This method implements a discretized thinplate 
spline technique (Wahba, 1990) and has the advantage that it follows abrupt 
changes in terrain, such as streams and ridges. Hutchinson (1989) 
implemented a drainage enforcement technique, which firstly identifies pits 
and saddles from sparse and scattered terrain data. D8 technique of the 
steepest gradient was used to trace a path from the neighbor to either a pit 
or the edge of the grid for all the downhill neighbors around each saddle. The 
elevation along the path is set to create an approximately linear descent, and 
then a finite element interpolation method was used. However, the method is 
likely to smooth out some prominent surface features (Hutchinson, 1989). 
 
 

55 



 

4.2.5 Quantitative assessment of ALS-derived DTMs 
We quantitatively assessed the DTMs errors in two different ways. Firstly, the 
vertical error was computed for each DTM by subtracting DTM elevation from 
the elevation of field-measured points. Three statistical measures of vertical 
accuracy were computed: root-mean-square error (RMSE), mean-square 
error (MSE) and mean–absolute-percentage error (MAPE) (Isaaks and 
Srivastava, 1989; Mayer and Butler, 1993).  
 

5.02 /ˆ nzzRMSE ii  (4.4) 

 

nzzMAE ii /ˆ  (4.5) 

 

nzzzMAPE iii //ˆ100  (4.6) 

 

Where iz represents the observed value, iẑ is the predicted value, and n  is 

the number of pairs. RMSE provides an accuracy index at a global level 
(Burrough, 1986) which can be used to estimate the effect of sampling and 
interpolation errors (Wechsler and Kroll, 2006). The DTM accuracy was 
further computed per slope class and per land cover type. Secondly, with 
respect to the extracted ground points at each filter step, we analyzed the 
spatial effect of progressive filtering by computing the height difference 
between the DTMs and summarized per land cover type.   

4.2.6 Landslide interpretability of ALS-derived DTMs 
The suitability of the different DTMs for landslide recognition was evaluated 
based on visual interpretation by three expert landslide interpreters. They 
used monoscopic and stereoscopic ALS-shaded relief images. A description of 
the methods for generating monoscopic and stereoscopic ALS images for 
landslide visualization under densely forested area can be found in Chapter 3. 
Based on the results derived from the expert opinions, a list of morphological 
features and situations was made under which the optimal filter and 
associated surface interpolation has been indicated with respect to landslide 
mapping. Interpretability rating was defined as: (i) good, (ii) fairly good, and 
(iii) poor, for each map. Good referred to the clearest evidence of diagnostic 
features appearing on the images, which enabled them to distinguish stable 
from unstable with confidence. In contrast, poor interpretability yielded a 
relatively high uncertainty to identify the landslide margins and subsequent 
units. Moreover, landslide types and states of activity were more difficult to 
determine. For the fairly good rate, the conditions provided less or unclear 
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evidence of landslide diagnostic features, although the presence of slope 
failures can still be assumed.  
 
The qualitative map comparison was carried out based on the diagnostic 
features identified at three landslide kinematic zones. The landslide source 
zone (LSZ) refers to the area above the landslide scarp which is 
representative for the condition in which the landslide took place. The 
landslide depletion zone (LDZ) is the area below the crown of the landslide 
where the surface topography was lowered as a consequence of mass 
movement. The landslide accumulation zone (LAZ) is the area where mass 
movement materials are deposited on top of the pre-existing surface. 
Additional morphological features found outside these zones were recorded 
under “other diagnostic geomorphological features” (OGF) such as tectonic 
and lineament features.  
 
The image interpretation criteria are solely based on the tone, texture and 
pattern, which allow inferring a series of geomorphologic signatures, like 
semicircular niches, cracks, primary and secondary scarps, flow related 
morphologies, lateral channels, convex–concave profile slopes, hummocky 
topography, levees, displaced materials, interruptions in the drainage 
pattern, and disrupted roads (Wills and McCrink, 2002; Van Den Eeckhaut et 
al., 2007; Chapter 3). For a complex and large landslide, the interpreters 
adopted morphological criteria rather than photographical ones (e.g. related 
to surface roughness and land use pattern), such as a horse-shoe drainage 
pattern, debris cones on the borders of the landslide deposit, restricted main 
stream valley, and a concave–convex profile slope, which can be easily 
associated with the presence of a very large mass movement. 
 
A digital stereo on-screen interpretation was utilized at different scales 
depending on the interpretability of macro- and micro-morphological 
landslide features. The direction of movement of the mapped landslides and 
the landslide types were indicated and classified, following the landslide 
classification by Varnes (1978). For each interpreted element, the 
identification certainty was indicated. The stereo images were also used to 
interpret the lineaments and geological setting in the study area. 
 
The activity of the landslides was interpreted by evaluating the freshness of 
the diagnostic features, the relation with other visible landslide processes (to 
differentiate reactivated landslides), and by visually comparing the stereo 
images of the shaded relief with stereo images of high-resolution optical 
IKONOS satellite data. The IKONOS images were taken between February 
and June 2001. Fig. 4.1 presents the available data for the image 
interpreters, for the area I in Fig. 2.5B. Fig. 4.1A shows the satellite image 
depicts the agriculture terraces and buildings next to the edge of the forest 
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margin, the point density before and after the filtering (Figs. 4.1B,G), and 
shaded relief images after each filtering step (Figs. 4.1D,E,F) and the tree 
attributes (Fig. 4.1H). 
 
During the landslide interpretation, the existing landslide inventory prepared 
by Pradhan and Lee (2010) was used as a reference. Their compilation of 
more than 21 years of landslide inventory resulted in a total of 324 landslides 
in their study area of 293 km2 (Pradhan, 2010; Pradhan and Lee, 2010; 
Pradhan et al., 2010). 55 landslides were located in our study area of 100 
km2. Given the fact that this inventory was compiled at 1:25000 scale, we 
encountered considerable positional errors in the location of the landslides, 
when overlaying them on the 1 m resolution maps derived from our ALS 
analysis. We corrected these errors by positioning them on the right location 
with appropriate attributes using visual image interpretation. 
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Fig. 4.1: Examples of the spatial data used for qualitative assessment of landslides 
from ALS-derived images. The location corresponds to I in Fig. 2.5B. A) High-resolution 
satellite image depicting the agricultural terraces up to the edge of forest margin and 
buildings. B) and G) the point density of the original (mean, 1.83 points m-2) and 
filtered ALS data (mean, 0.34 points m-2), respectively. C) A shaded relief of ALS-
derived DSM. D) E) and F) the first, second and third filter images derived from the 
SCP-derived products, respectively. H) Tree location with indication of its height up to 
58 m (in red) and crown width up 16 m (in green). 
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4.2 Results  

4.3.1 Quantitative assessment of the ALS-filtered data 
The ALS-derived DTMs had overall RMSE vertical errors ranging from 0.886 
to 4.203 m, with a large error computed in the forested terrain (5.915 m 
RMSE) (Table 4.3). The SCP image at the third filter yielded the most 
accurate DTM with the lowest overall RMSE (0.886 m). As expected, larger 
vertical errors were found after one round of filtering, independent of the 
interpolator, with an average RMSE of 4.045 m. The second and third filters 
resulted in an average RMSE of 2.178 and 1.416 m, respectively. After the 
first filtering step, the T2R-derived DTM depicted the lowest overall RMSE 
(3.909 m) across the landscape. The NEN-derived DTM was significantly 
more accurate (1.971 m) than others after the second filtering step, whereas 
the T2R had a large error. The SCP method always reveals the best results 
after three filtering steps. The IDW-derived DTM had the highest overall 
RMSE value (2.016 m) after the third filter step compared to the other 
interpolation techniques. All ALS filters depicted lower vertical errors in the 
tea plantation compared to forest and agriculture zones. 
 
An important result of comparing the surface interpolation methods is that an 
optimum DTM accuracy is found for agriculture and tea zones. The lowest 
errors obtained in the NEN and IDW after the second filtering step, whereas 
the T2R and SCP had the lowest errors after the third filtering step in both 
zones. The fact that there is no single best method for DTM generation, made 
it necessary to use qualitative measures for DTM interpretability of 
geomorphological features. 
 
We found that the ALS-derived DTM error was not evenly distributed across 
the landscape (Fig. 4.2). The DTM errors were less for slopes below 30° than 
the overall RMSE (0.886 m for SCP after three filters), and increased non-
linearly with steeper slopes. About 64% of the landslides occurred in the area 
with a slope between 21 and 40o, and showed an overall RMSE of 0.87 m. 
The DTM error increased to a RMSE of 1.53 m for slopes over 400. However, 
only 17% of the landslides were located in this slope class. 
 
The original ALS data in the forested area occupied more points and not 
surprisingly, the retrieval of ground points in this zone resulted in 16, 9, and 
5% of the points for the first, second and third filters, respectively. The 
original point density in the tea plantation was lower compared to other land-
cover types. The filtering in the tea plantation depicted 83, 76, and 53% of 
ground points after the first, second, and third filters, respectively. Similarly, 
the bare-earth extraction in the agriculture zone ranged between 83 to 60% 
of ground points. 
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Fig. 4.2: DTM error (RMSE) presented with respect to slope gradient and distribution of 
landslides (black bars). A number of field-measured terrain height indicated in 
brackets. 
 
Nine map comparisons were carried out to determine the height differences 
after subsequent filtering, separated by land cover class (Table 4.4). The 
largest height differences were found in the forested terrain for all DTMs 
between the first and third filter for all interpolation methods. The height 
difference between the second and third filtering steps resulted in small 
discrepancy across the landscape. The negative height differences ranged 
between -0.224 to -0.008 m and were predominantly found in the tea 
plantation and agriculture zones. The NEN, SCP, and IDW depicted the lowest 
height differences for the forest, agriculture, and tea plantation zones, 
respectively.  

4.3.2 Landslide interpretability of ALS-derived images 
Fig. 4.3A gives an example of the ALS-derived images for the four surface 
interpolators and the three different filters with the interpreted landslides. 
Fig. 4.3B shows shaded relief of ALS-derived DSMs visualized as anaglyph 
images for three filters derived from the IDW interpolation. The location of 
the subset area, which is completely covered by forest, corresponds to II in 
Fig. 2.5B. A large portion of the trees is still visible after the first filtering step 
for all the surface interpolations. Generally the IDW tends to show more 
rough surfaces, which are more prominent at the third filter compared to 
other surface interpolators. Contrarily, the NEN and T2R images presented 
relatively smooth surfaces on the sloping terrain, ridges and top of 
mountains. 
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Table 4.3: The vertical accuracy of ALS-derived DTMs summarized for the three land 
cover types (SCP = SCOP++ linear prediction; NEN = Natural neighbour; T2R = Topo-
to-Raster; IDW = Inverse distance weighting). Units in meter. 

Inter-
polators 

ALS 
filters 

Forested zone 
(N = 187) 

Agriculture zone 
(N = 175) 

Tea plantation zone 
(N = 62) 

Total for all zones 
(N = 448) 

RMSE MSE MAPE RMSE MSE MAPE RMSE MSE MAPE Overall 
RMSE 

Overall 
MSE 

Overall 
MAPE 

SCP 1st filter 5.915 3.072 0.251 1.209 0.799 0.080 1.074 0.578 0.078 4.203 1.822 0.159 
2nd filter 2.884 1.535 0.137 1.150 0.733 0.076 1.009 0.557 0.071 2.139 1.087 0.104 
3rd filter 0.898 0.677 0.065 0.890 0.636 0.066 0.868 0.594 0.069 0.886 0.649 0.066 

NEN 1st filter 5.642 2.997 0.255 1.635 0.560 0.096 1.464 0.719 0.098 4.042 1.730 0.171 
2nd filter 2.627 1.467 0.129 1.119 0.713 0.075 1.030 0.581 0.071 1.971 1.050 0.100 
3rd filter 1.389 0.585 0.092 1.213 0.572 0.078 1.242 0.561 0.085 1.303 0.576 0.085 

T2R 1st filter 5.514 2.823 0.248 1.726 0.771 0.102 1.752 0.660 0.117 3.909 1.722 0.173 
2nd filter 3.051 1.433 0.170 1.848 0.553 0.110 1.943 0.561 0.133 2.498 0.969 0.142 
3rd filter 1.577 0.526 0.103 1.355 0.476 0.085 1.306 0.533 0.087 1.458 0.510 0.094 

IDW 1st filter 5.698 3.077 0.254 1.361 0.694 0.082 1.200 0.616 0.084 4.027 1.805 0.163 
2nd filter 2.790 1.228 0.143 1.251 0.551 0.077 1.039 0.499 0.075 2.104 0.863 0.108 
3rd filter 2.611 0.219 0.141 1.282 0.606 0.079 1.181 0.525 0.083 2.016 0.412 0.109 

 
Table 4.4: Statistics of height differences for all surface interpolations presented based 
on land cover types (SCP = SCOP++ linear prediction; NEN = Natural neighbour; T2R 
= Topo-to-Raster; IDW = Inverse distance weighting). Units in meter 

No Pair-wise maps 
for three land cover 

SCP 
(Mean ± SD) 

NEN 
(Mean ± SD) 

T2R 
(Mean ± SD) 

IDW 
(Mean ± SD) 

 
Forested terrain 
1 First - second filter 2.733 ± 5.348 1.063 ± 3.316 2.783 ± 5.206 3.124 ± 5.776 
2 Second - third filter 1.156 ± 3.370 2.481 ± 5.419 1.250 ± 3.474 1.374 ± 4.128 
3 First - third filter 4.074 ± 6.601 4.041 ± 6.605 4.200 ± 6.654 4.705 ± 7.408 
 
Agriculture zone 
4 First - second filter -0.008 ± 0.598 -0.191 ± 1.158 0.017 ± 0.845 -0.031 ± 0.718 
5 Second - third filter 0.023 ± 0.616  -0.012 ± 0.523 -0.027 ± 0.733 0.004 ± 0.627 
6 First - third filter 0.030 ± 0.799 -0.071 ± 0.797 0.034 ± 1.039 0.062 ± 0.779 
 
Tea plantation 
7 First - second filter -0.039 ± 0.600 -0.213 ± 1.177 0.123 ± 0.919 -0.137 ± 0.653 
8 Second - third filter -0.081 ± 0.545 0.064 ± 0.451 -0.224 ± 0.871 0.019 ± 0.528 
9 First - third filter -0.179 ± 0.713 -0.133 ± 0.735 -0.151 ± 0.951 -0.066 ± 0.582 

 
The expert knowledge revealed that the ALS-derived image generated using 
the IDW interpolator was the best among the tested images for landslide 
recognition. The ranking of landslide interpretability based on ALS-derived 
DTMs is given in Table 4.5. For the three landslide kinematic zones, the NEN 
and T2R images provided less clear evidence of diagnostic landslide features 
including the neotectonic activities (e.g. displaced terraces, landslide 
occurring along lines, shutter ridges, and subsidence zones with horsts and 
grabens). The IDW produced more noisy terrain models but without a heavy 
smoothing of the relief. Contrarily, the NEN, T2R and SCP generated sharper 
surfaces but smoothed the relief more than the IDW. The image interpreters 
indicated that images derived from the IDW interpolator were more suitable 
for landslide detection than the other images. 
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Fig. 4.3: A) 12 shaded relief maps made with three filters and four surface 
interpolations for a subset of the study (II in Fig. 2.8B; Chapter 2). B) Original ALS 
image and three images of the successive filters using the IDW interpolator presented 
as blue and red anaglyph relief images. See text for an explanation. 
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Table 4.5: Qualitative assessment of filters and surface interpolators (G = Good, FG = 
Fairly Good, P= Poor, LSZ =Landslide source zone, LDZ = landslide depletion zone, 
LAZ = landslide accumulation zone, OGF= other diagnostic geomorphological features) 
 First filter Second filter 

 
Third filter 

 LSZ LDZ LAZ OGF LSZ LDZ LAZ OGF LSZ LDZ LAZ OGF 

SCP FG FG FG FG P FG FG P P FG FG P 
NEN P P P P P P P P P P P P 
T2R P P P P P FG FG P P P P P 
IDW FG FG FG FG G G G FG G G G FG 

 
A total of 561 landslides were mapped using the stereoscopic ALS-derived 
shaded relief image. Surprisingly, the ALS landslide map revealed about ten 
times more landslides in the Cameron Highlands than had been mapped 
previously using aerial photographs and satellite images. About 48% of the 
slope failures were characterized as shallow flow types. Around 26% of the 
mapped landslides were verified in the field; a map validation is usually 
performed on a limited portion of the mapped landslides, mainly less than 
15% (Galli et al., 2008). The ALS-derived image also unveiled about 125 
neotectonic features. Examples of ALS images derived from three ALS filters 
resulting in different quality of landslide interpretability are given in Figs. 4.4-
4.6. In an old-growth tropical rainforest (Fig. 4.4A), the ALS image derived 
from the second filter is preferable for a detailed landslide interpretation (see 
Fig. 4.4C), as it clearly revealed most of the diagnostic landslide features 
hidden. The second filter product succeeded in removing the vegetation while 
preserving the micro-morphology of old landslides. It allowed the recognition 
of landslide morphology under forests. Contrarily, the quality of the third 
filter image is reduced and its topography is dramatically changed making the 
landslide interpretation rather difficult (Fig. 4.4D). A large part of this image 
is very smoothed and artifact effects are distracting the interpretation, such 
as ‘fallen tree’ and ‘dotted needles’ patterns. The second filter (Fig. 4.4B) is 
also difficult to interpret as vegetation patches are still largely visible. 
 
For image interpretation in an agricultural area, with trees on the steeper 
hillslopes, the situation is again different. The image generated from the first 
filter gave a better contrast for landslide interpretation (Fig. 4.5B) whereas 
the second filter (Fig. 4.5C) and the third filter (Fig. 4.5D) led to linear 
artifacts that could be erroneously interpreted as landslide scarps. Fig. 4.6 
gives an example of landslide freshness as shown by the clear diagnostic 
features of recent landslides activities labelled a to g. The location 
corresponds to III in Fig. 2.5B (Chapter 2).  
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Fig. 4.4: Quality of IDW-derived DTMs affecting the landslide interpretability. A) 
Shaded relief of ALS-derived DSM indicating a dense tropical rainforest area. B) 
Vegetation patches are still present after the first filtering. C) Diagnostic landslide 
features are clearly visible derived from the second filter. D) Poor DTM resulting from 
the third filtering step, with many artifacts and high smoothing effects. The location 
corresponds to III in Fig. 2.5B; Chapter 2.  

4.4 Discussion 
Accurate and interpretable topographic information of the Earth’s surface is 
important for landslide studies. Understanding the effect of ALS filtering for 
terrain modeling is of pivotal importance for determining the reliability of 
landslide inventory maps. In this study, we evaluated the various types of 
ALS-derived DTMs as a result of applying different ALS filter 
parameterizations and surface interpolations for recognizing and classifying 
landslides in a tropical mountainous region in Malaysia. A hierarchical robust 
filtering algorithm with an appropriate parameterization was used to generate 
reliable ALS-derived DTMs for landslide interpretation in dense evergreen 
forests with complex undergrowth. 
 
In monsoon-dominated regions, landslide topographic signatures can be 
rapidly obscured by tropical vegetation. In this study, we showed that the 
stereoscopic ALS-derived DTM can be a very good source for forested 
landslide characterization, although it is evidently problematic to recognize 
shallow landslides and debris flows beneath forests (Brardinoni et al., 2003). 
It allowed mapping and classifying a large number of complex landslides and 
geomorphological features (neotectonic and lineament). The total number of 
landslides mapped using ALS data is substantially higher than that of 
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previously published landslide inventory compiled over 21 years (e.g. 
Pradhan and Lee, 2010). 
 

 
Fig. 4.5 ALS filtering results displayed as shaded relief images for a sparsely vegetated 
terrain susceptible to landslides (location IV in Fig. 2.5; Chapter 2). A) Original ALS 
data. B) Result of the first filter allows a better landslide interpretability. C) Second 
filter derived image with arrows indicating artifacts that would lead to wrong landslide 
interpretations. D) Third filter result with arrows showing large smoothing effects and 
artifacts.  
 
Use of incomplete landslide inventories resulting from undetected landslides 
poses significant problems on landslide hazard analysis (Van Westen et al., 
2008). Van Den Eeckhaut et al. (2007) found that 85% of landslides in the 
Flemish Ardennes are located under forest, resulting from poor landslide 
inventory compiled from aerial photo interpretation (API). Brardinoni et al. 
(2003) reported that undetectable landslides from API can represent up to 
85% of the total number of failures and significant volume (up to 30%) of 
debris to the amount mobilized. 
 
Given that the quality of filtered ALS points has a direct impact on derivative 
products, the field validation data should be collected independently, and 
with a higher precision (Pfeifer and Mandlburger, 2009). Error assessment of 
ALS-based DTMs is difficult, time-consuming, and expensive, and it is even 
more so in a rainforest. In this study, however, we succeeded to collect 448 

66 



 

validation points using different space-based geodetic measurements 
techniques (e.g. Static, RS and RTK) coupled with a high precision local 
surveying tool (e.g. Total Station). This approach is relatively fast, accurate, 
and more practical compared to optical levelling techniques, such as used in 
tropical forests by Hofton et al. (2002). 
 

 
Fig. 4.6: Diagnostic features for recent landslide activity revealed by an ALS-derived 
image. A) Image of area V in Fig. 2.5B. B) Close up view. Arrows indicate points where 
landslide features were detected: i) arrow a indicates a lateral landslide deposit that 
partially covered the escarpment, and depletion zone of the slope failure indicated by 
arrow b; (ii) arrows b, c, f, g indicate landslide deposit partially blocking a road; (iii) 
arrows e and d indicate two slope failures which have partially eroded a road.  
 
The vertical accuracy of twelve DTMs (four interpolators for each filter) varied 
between 4.203 and 0.886 m of overall RMSE. The accuracy differed 
depending on the completeness of filtering to remove the vegetation and the 
surface interpolation techniques used. These results are an improvement 
compared to Clark et al. (2004) who reported a DTM with an overall RMSE of 
2.29 m in the tropical wet forest in Costa Rica. The DTM accuracy of a small-
footprint ALS sensor data evaluated in this study is much better than a large-
footprint LVIS sensor data with an overall RMSE of 5.64 m (Hofton et al., 
2002) and the stereo-radargrammetry technique (Baghdadi et al., 2005; 
Chen et al., 2007) acquired in tropical rainforest regions.  
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Clark et al. (2004) found higher errors with higher slope in the Costa Rican 
rainforest and we found a similar pattern in our study area. Interestingly, we 
found 83% of landslides to be located at slopes below 40% where a low DTM 
error (<1 m) was reported. This is important as a threshold angle of slope 
steepness is often used in determining the landslide initiation, and the 
shallow and rapid landslides prevailed in the aforementioned slope gradient 
(Sidle and Ochiai, 2006).  
 
The large errors obtained in the rugged forested terrain are due to dense 
undergrowth on the slopes, structurally complex trees, steep terrain, and 
sharp edges. These conditions are challenging for all bare-earth extraction 
algorithms (Sithole and Vosselman, 2004). Furthermore, we observed that 
only few points represented the ground surface under very dense forest, 
even though first and last return data were recorded. Locally point density 
was reduced by heavy low altitude cloud cover, leading to smoothing effects. 
Contrarily, the filtering in the tea plantation zone performed well, even after 
the first filter. This is because of HRI algorithm in which its filter 
characteristics (e.g. points-to-points operation, surface-based filter structure) 
can filter out the points relatively easy in the tea plantation zone, as most of 
the tea is likely to have same plant height, planted in a systematic way, with 
few tall trees randomly scattered over the area. 
 
The landslide interpretation using the ALS-derived images is based on the 
recognition of elements associated with slope movements and the 
identification of their significance to slope instability. We observed that 
landslide recognition was not the same for each level of filtering. The third 
filtering step even led to a significant reduction in interpretability, while 
overall the vertical error did reduce. A clear trade-off for automatic filtering 
was observed between the amount of vegetation removed and the amount of 
micro-morphology retained in the images that allowed a better landslide 
interpretation. Non-ground features (e.g. trees and buildings) were removed 
in the third filter step; however it resulted in artifacts and excessive 
smoothing. Slope failures can still be mapped in such images but result in 
incomplete landslide inventory maps with high uncertainties. Contrarily, the 
less stringent filtering, i.e., the first and second filters better depicted the 
general slope morphology, reducing the artifacts with respect to the third 
filter. More diagnostic landslide features were represented coupled with clear 
indications of micro-morphology, although vegetation pattern is sometimes 
still visible on the images. Hence a purely quantitative error assessment does 
not lead to the best DTM for landslide inventory mapping.  
 
The qualitative assessment of ALS-derived DTMs revealed that IDW-derived 
images preserved macro- and micro-morphological features much better as 
compared to other surface interpolation methods assessed in this study. It is 
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worth mentioning that an optimal ALS image applicable for landslide 
identification is also dependent on the scale of observation and dimension of 
the geomorphologic features. In most of the cases, a combination of different 
image sources or scales is required to reduce uncertainty in landslide 
mapping. Moreover, the analysis proved that the suitability of DTMs for 
landslide mapping for each filtering step is also a function of (i) the size of 
the morphological features (ii) the degree of tropical vegetation cover (iii) the 
type of geomorphological features to be observed, i.e. neotectonic 
alignments. 

4.5 Conclusion 
Mapping landslides in humid tropical mountainous regions is a difficult task 
due to the poor accessibility, the rapid re-vegetation, and cloudy weather 
conditions. In this study we presented and evaluated a novel method using 
ALS-based DTMs resulted from various filtering parameterizations and 
surface interpolations for landslide inventory mapping in an equatorial 
mountainous landscape.  
 
We showed that a small-footprint ALS system enabled identification and 
classification of complex landslides beneath dense vegetation, but care 
should be taken in filtering the data in a equatorial evergreen rainforest. We 
quantitatively assessed the terrain models associated to landslides with 448 
field-measured terrain height points, resulting in a lowest overall RMSE of 
0.886 m across the landscape, which is an improvement over previous 
studies. The presented method is favorable for dense, structurally complex 
forests as other satellite-, or airborne remote sensing techniques perform 
poorly in these areas. Compared to the previous mapping efforts, the ALS-
derived images revealed 10 times more landslides and previously unknown 
neotectonic features in a tropical populated region with poor seismic data.  
 
A combination of filtering steps is needed for optimal landslide identification 
under dense tropical forests. Less stringent filtering produced a DTM that 
revealed more diagnostic micro-morphology, but also left some of the 
vegetation in the DTM. A low RMSE alone is not a good indication for 
landslide interpretability and should not be the aim of any data analyst. The 
experts found that the IDW-derived DTM is preferable for landslide 
interpretation. The fact that there is no single best method for DTM 
generation, made it necessary to the use of qualitative measures for DTM 
interpretability of distinctive landslide geomorphology. We concluded that the 
density of the laser point and the resulting ground point density after filtering 
are key parameters for producing a DTM applicable for landslide mapping. 
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The acquisition of precise terrain information has been of utmost importance 
for a better understanding of tropical landslides in equatorial forest 
environments. The reported accuracy and expert knowledge on ALS-derived 
DTMs posed in the present study are crucial aspects to properly determine 
the reliability and uncertainty of landslide inventory maps. Replicability still 
strongly depends on the quality of the DTM interpretation, and the time spent 
on the task. Given the complexity of the terrain, automating the 
inventorisation will still be challenging in the tropics. The method of the 
present study is recommended for all forested mountainous terrain affected 
by landslides in tropical and sub-tropical regions. 
 

70 



 

Chapter 5 
 

Airborne laser scanning derived landslide 
inventory in the tropics: Map compilation and 

uncertainty analysis* 

5.1 Introduction 
Landslides occur over a wide variety of spatial and temporal scales across all 
continents. They vary in terms of the type, size, volume, length of runout, 
speed of movement, materials involved, and the triggering mechanism 
(Soeters and Van Westen 1996). Although landslide maps are extremely 
important for estimating future hazard and risk and for reducing damage and 
victims (Brabb and Harrod 1989; Brabb 1991) it is estimated that currently 
still less than 1% of the sloping areas in the world are covered by landslide 
inventory maps (Guzzetti et al. 2012). Such landslide maps should show the 
locations of landslides, the topology and geometrical characteristics, the 
possible failure mechanism, the state of activity and frequency of 
occurrences, the causal factors, and the historical damage (Wieczorek 1984; 
Guzzetti et al. 2000; Van Westen et al. 2008; Guzzetti et al. 2012). 
 
Landslide inventories are carried out using a variety of techniques. A recent 
overview of the methods used for landslide inventory mapping is given by 
Guzzetti et al. (2012). Visual interpretation of stereoscopic imagery remains 
the most widely used method, and results in the best inventories when 
carried out by expert interpreters (Cardinali et al. 2002). Nowadays, many 
parts of the world are covered by high resolution imagery, which can be 
downloaded, and combined in a Geographical Information System (GIS) with 
a Digital Terrain Model (DTM) to generate stereoscopic images essential for 
landslide survey and interpretation.  
 
One of the most important recent developments is the use of shaded relief 
images produced from Airborne Laser Scanning (ALS) DTMs. Objects (e.g. 
vegetation and constructions) at the earth surface have been removed from 
these ALS data to facilitate visual interpretation of landslide phenomena 

* This chapter is based on:- 
Razak, K.A., Van Westen, C.J., Santangelo, M., Damen, M., Abd Talib, J., Endut, N.B., 
Cardinalli, M., Straatsma, M.W., de Jong, S.M. Airborne laser scanning derived 
landslide inventory in the tropics: Map compilation and uncertainty analysis. Submitted 
to Earth Surface Processes and Landforms. 
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(Haugerud et al. 2003; Ardizzone et al. 2007; Van den Eeckhaut et al. 2009; 
Razak et al. 2011).  
 
Despite remarkable efforts of compiling and updating landslide inventory 
maps at regional, national or global scales, only little effort is made to 
quantify their quality (Carrara et al. 1992; Guzzetti et al. 2000; Guzzetti et 
al. 2002). There are no standards defined for the method that should be used 
for landslide inventory mapping, and for expressing the accuracy (Galli et al. 
2008). The accuracy of a landslide inventory depends on the completeness of 
the map, and the geographical and thematic correctness of the information 
depicted on the map (Guzzetti et al. 2012). 
 
The completeness refers to the proportion of landslides compiled in a 
particular inventory as compared to the real areal extent of the landslides. 
This is a complicated issue as there is generally no true and error free 
landslide inventory map to compare with. The completeness not only refers 
to the presence or absence of all landslides, but also to the presence of 
relevant attribute information. In many mountainous areas, landslides are 
one of the most important landscape processes, and over a long period of 
time, many slopes may have experienced landslide processes in one form or 
another. One of the most complicating factors is that the geomorphological 
expression of landslides is slowly getting less clear due to weathering, soil 
erosion, vegetation regrowth and anthropogenic modification. Therefore a 
fully complete landslide inventory map is probably a utopia, unless it is made 
for a specific period of time (Van Den Eeckhaut et al. 2007; Guzzetti et al. 
2012). The accuracy of an inventory depends on multiple factors (Guzzetti et 
al. 2012): i) the scale, date and quality of the materials or data used to make 
the inventory from, ii) the type, scale and quality of the topographic base 
map used as a reference for the landslide information, iii) the tools used to 
interpret and analyze the imagery i.e., stereoscopes and computer 3D 
visualization devices, iv) the skills and experience of the interpreters, and v) 
the time spend on the inventory. 
 
The geographical correctness relates to an accuracy measure of a landslide in 
a map corresponding to its position, size, area and shape of the same 
landslide in the field (Santangelo et al. 2010). An important aspect is whether 
inventory maps depict landslides as points or as polygons. This has important 
implications for further analysis, e.g. for size-frequency analysis. If landslides 
are mapped as polygons it is very relevant whether initiation and 
accumulation areas are mapped separately, which is quite relevant when 
using them as input for susceptibility and hazard analysis. Another important 
component associated to the geographic accuracy is related to the landslide 
topology, especially for landslides with several phases of reactivation on top 
of each other. The thematic correctness refers to the conformity of the 
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attribute information associated to each slope failure, with respect to the 
description of the type, age, depth, volume, and activity. 
 
Carrara et al. (1992) emphasized that the uncertainty or error of landslide 
mapping is larger in areas with old, dormant landslides, covered by dense 
vegetation, and landslide zones modified by intense farming activities. These 
factors of uncertainty are predominately observed in populated tropical 
environments. In these areas, landslide mapping using image interpretation 
from aerial-photographs or satellite images is difficult as diagnostic landslide 
features fade quickly by subsequent erosion or vegetation growth. Tropical 
vegetation regenerates very rapidly masking the distinctive landslides 
diagnostic features within a few years for larger landslides and within a few 
months for shallow slope failures. This complicates the survey of landslides 
under tropical vegetation (Guzzetti et al. 2012).  
 
Landslides in humid regions are often triggered by very intense and 
prolonged monsoon rainfall, the landscape is characterized by progressive 
weathering, steep slopes, rapid vegetation growth, and anthropogenic 
activities. These characteristics complicate the work of landslide interpreters, 
even using high resolution ALS data, and may result in landslide maps 
affected by a relatively large positional error. Cruden and Varnes (1996) 
emphasized that not all landslides are clearly or easily recognizable, simply 
because of a large variability of landslide phenomena. Wills and McCrink 
(2002) underlined that there are always landslides that have very subtle 
expression and are not recognized in heavily forested terrain. For deep-
seated landslides under forest, recognizing the exact extent of the failed 
mass may not be easy even for fresh slope failures (Guzzetti et al. 2012).  
 
So far, very few studies have analyzed the reliability of landslide inventory 
maps in tropical areas compiled through image interpretation of aerial 
photographs or satellite-images (e.g. Fookes et al. 1991). Recently, the 
application of ALS has proven to be a very useful new tool to prepare and 
update landslide inventory maps in a tropical landscape (Chapter 4). The 
removal of vegetation from ALS data and the use of stereoscopic 
interpretation of ALS-derived hillshading images proved to be a very effective 
tool to map and classify even old and dormant landslides beneath tropical 
forest (Chapter 4). However, no studies have tried to quantify the uncertainty 
of landslide inventory maps produced from ALS data in a tropical 
mountainous region.  
 
The aim of this chapter is to quantitatively evaluate the positional mismatch 
and completeness of ALS-derived landslide inventory maps compiled by 
means of expert-based visual image analysis for a test area in the Cameron 
Highlands, Malaysia. Six expert interpreters prepared geomorphological (i.e. 
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“historic”, sensu Malamud et al., 2004) landslide inventory maps based on 
systematic visual interpretation of stereoscopic ALS-derived images. Two 
reference landslide maps in forested (secondary and old-growth) and partly 
forested (agriculture and tea plantation) areas were carefully defined. The 
existing landslide inventory map compiled by Pradhan and Lee (2010) was 
also incorporated in the quantitative map comparison analyses. 

5.2 Data and methods 

5.2.1 Airborne laser scanning data and DTM generation 
In this study, we used an ALS point cloud of 113 million points with a mean 
point density of 1.83 points·m-2 that was provided by the Department of 
Surveying and Mapping of Malaysia (JUPEM). The ALS campaign was carried 
out by JUPEM over the Cameron Highlands in June 2004, using an Optech 
ALTM 3100 laser scanner, ALTM IMU, and Trimble 4000SS positional system. 
The ALS system can measure up to 100,000 pulses per second, and has a 
saw-tooth scanning pattern. The data and maps were compiled in a local 
coordinate system, the Malaysia Rectified Skew Orthomorphic projection 
system (Mugnier, 2009). 
  
The ALS bare earth extraction was carried using the hierarchical robust 
interpolation algorithm embedded in the SCOP++ software (TUV, 2012). The 
software had a stepwise filter parameterization, appropriate for dense 
vegetation and a low point density (Chapter 4). The accuracy of the ALS-
derived DTM was quantitatively assessed with 448 ground-surveyed 
reference points collected using high precision differential GPS and a total 
station. The landslide DTM had an overall RMSE of 0.886 m (Chapter 4). The 
DTM was used to generate hillshading images for the study area, with a 
spatial resolution of 1 m. The hillshading image and DTM were used to 
produce a stereopair with the ILWIS software (ILWIS, 2012). 

5.2.2 ALS-derived landslide inventories and reference 
maps 

Hard- and softcopy ALS-derived hillshading images were given to six image 
interpretation experts, and they were asked to make a landslide inventory 
map for the study area. The experimental scheme of image interpretation 
was summarized and coded as indicated in Table 5.1.  
 
The interpreters received a guideline to map the landslides based on 
diagnostic morphological features such as semi-circular niches, cracks, 
primary and secondary scarps, convex and concave slopes, hummocky 
topography and displaced material zone (Soeters and Van Westen 1996; 
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Chapter 3). Also, interrupted drainage lines and disrupted roads were used as 
indicators. Landslide interpretation was performed by carefully delineating 
the landslide margins and storing them as polygons. Some of the interpreters 
also provided the additional information, e.g. the landslide types, 
accumulation and depositional areas and the direction of the landslide 
movement. Lineaments were also recognized and stored in a separate map. 
To avoid bias in the experimental landslide interpretation, the interpreters 
had no access to other landslide maps for the area.  
 
The interpreters were free to choose their preferred method of image 
interpretation. All landslide interpreters made use of stereoscopic images to 
identify and map the landslides in the study area. Interpreters Map 1 and 
Map 2 used only hardcopy stereo images because of limited performance of 
hardware and inaccessibility to appropriate software for landslide 
identification. Their landslide inventory maps were digitized using ESRI 
ArcGIS 10 software and the data were stored in a GIS. Interpreters Map 3, 
Map 5 and Map 6 carried out a digital on-screen interpretation with a variety 
of visualization techniques at scales ranging from 1:25000 to 1:500, whereas 
Map 4 used a mirror stereoscope to produce outlines. These were 
subsequently digitized and stored in a GIS.  
 
Interpreters Map 1, Map 2, Map 3, and Map 4 used a relatively short period, 
of two to three days to complete the landslide map. They also used a single 
hillshading image which was derived from the most accurate ALS image 
(RMSE 0.866 m; Chapter 4). Interpreters Map 5 and Map 6 used more time 
(5 to 8 days) and produced a more detailed interpretation than the other 
interpreters. In addition, they were provided with ALS-derived hillshading 
images resulting from all three DTM filtering steps and three methods for 
surface interpolations (Chapter 4). However, they were both not able to 
complete the inventory for the entire area. Therefore, Map 5 concentrated on 
mapping landslides in the partly vegetated areas (agriculture and tea 
plantation) and Map 6 focused on the landslides in the forested area. Map 6 
also indicated the certainty of each mapped landslide, its type, depth and 
relative age, detailed morphological (sub)-units, structural lineament, and 
neotectonic features. 

5.2.3 Existing landslide inventory map 
The existing landslide inventory map (Pradhan and Lee, 2010a) was used and 
referred as Map 7 (Table 5.1). It contained 55 small landslides in the study 
area, mainly occurring along the roadcuts. This inventory was compiled by 
means of visual interpretation of archived aerial photographs (with scales 
ranging from 1:10000 to 1:50000), satellite images (SPOT 5 panchromatic, 
IKONOS, and RADARSAT), landslide archives over the past 21 years. In 
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addition, several field campaigns were carried out in the period 2006 to 2008 
(Pradhan and Lee 2010; Pradhan et al. 2010), using a standard field data 
collection with dGPS. This inventory has been used for regional landslide 
susceptibility mapping (Pradhan and Lee 2010; Pradhan et al. 2010; Pradhan 
2010) and landslide hazard analysis (Pradhan and Youssef 2010; Pradhan 
2010). 

5.2.4 Quantitative assessment of tropical landslide 
inventories 

We analyzed the geographical uncertainty by calculating the percentage of 
mapping error (ME) as presented by Carrara et al. (1992). The overall 
mapping error is also referred to as positional mismatch, or geographical 
discrepancy. This method is widely used to quantitatively assess the 
uncertainty of generated landslide inventory maps in various regions (e.g. 
Ardizzone et al. 2002; Van Den Eeckhaut et al. 2007; Galli et al. 2008; 
Santangelo et al. 2010). The ME index can be calculated (Eq. 5.1) as: 
 

100
MapBMapA

MapBMapAMapBMapA
MapBMapA Area

AreaArea
ME  (5.1) 

 
where and are the symbols for the intersection and union, respectively, 

of two maps (Maps A, B), MbMaArea  is the area of landslide polygons 

(presented in square meter) either in Map A or Map B, and MapBMapAArea  is 

the area of landslide polygons (m2) indicated as a landslide in both Map A 
and Map B. We performed pairwise geographical union and intersection of the 
landslide maps using ESRI ArcGIS 10. Carrara et al. (1992) indicated that the 
overall mapping error represents the total error associated to interpretation, 
classification, topographic locations, digitizing and georectification. 
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Table 5.1: Characteristics of the landslide inventory maps available in the Cameron 
Highlands, Malaysia 

Landslide inventory 
and code 

Method of 
compilation 

Type of data used Interpretation 
modes  

Map 1: ALS-derived 
landslide inventory 

Visual interpretation 
using a mirror 
stereoscope and tracing 
papers 

Stereo-pair colour 
composite ALS 
images (hardcopy) 

Stereoscopic 
interpretation  

Map 2: ALS-derived 
landslide inventory 

Visual interpretation 
using an anaglyph glass 
on ALS images and 
tracing paper 

Anaglyph hill-
shading ALS images 
(hardcopy) 

Stereoscopic 
interpretation  

Map 3: ALS-derived 
landslide inventory 

Digital stereo on screen 
landslide interpretation  

Anaglyph hill-
shading ALS images 
(softcopy) 

Stereoscopic 
interpretation  

Map 4: ALS-derived 
landslide inventory 

Visual interpretation 
using a mirror 
stereoscope and later 
transferred into a GIS 

Stereo-pair color 
composite ALS 
images (hardcopy)  

Stereoscopic 
interpretation  

Map 5: ALS-derived 
landslide inventory - 
Reference map in 
agriculture and tea 
areas 

Digital stereo on-screen 
landslide interpretation  

Anaglyph hill-
shading ALS images 
(softcopy) 

Stereoscopic 
interpretation 

Map 6: ALS-derived 
landslide inventory - 
Reference map in 
forested terrain 

Digital stereo on-screen 
landslide interpretation  

Anaglyph hill-
shading ALS images 
(softcopy) 

Stereoscopic 
interpretation 

 
Map 7: Existing 
landslide inventory  

Visual interpretation on 
optical images, 
historical data and field 
mapping in non-forested 
areas. 

Aerial-photos, 
satellite-, radar 
images and 
fieldwork 

Mono- and 
stereoscopic 
interpretations  

 
To overcome the lack of a generally accepted true landslide inventory map, 
we selected different reference data for forest and for partly vegetated areas. 
In the forested terrain, we used Map 6 as the reference map as we consider it 
the most detailed and correct one since it was compiled by carefully 
examining different ALS-derived images that resulted from different filter 
parameterizations and surface interpolations (Chapter 4). In the partly 
vegetated areas (agriculture and tea plantation) we used Map 5 as the 
reference map. Moreover we also compared the ALS-derived maps with the 
existing landslide inventory maps. Fig. 5.1 shows the areas of interest 
indicating the land cover map that was used in presenting the quantification 
of map uncertainty.  

5.2.5 Comparison of size-frequency distributions  
Frequency-size statistics of the different inventories have also been computed 
to compare the different inventories, and to support considerations on the 
degree of completeness of the presented landslide inventories. In general an 
inverse relationship exists between landslide area and frequency of 
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occurrence in a specific area (Malamud et al., 2004; Ghosh et al., 2012). This 
has been observed for many landslide types, patterns, and triggering 
mechanisms, and in different geological, geomorphological, lithological, 
climatic and environmental settings. The size-frequency distribution is 
calculated using the following equation: 
 

L

L

LT
L A

N
N

1
 (5.2) 

 

Where LN  is the number of landslides with areas between LA and 

LL AA  and LTN  is the total number of landslides in the inventory. The bin 

width LA is the range of landslide areas that are grouped together. The bin 

width increases with increasing area LA so that bin widths are approximately 

equal on a logarithmic scale.  
 
In this research, probability density functions are fitted with the Double 
Pareto distribution function of Stark and Hovius (2001), and with the Inverse 
Gamma function of Malamud et al. (2004). The computation was done using 
an R script available as Web Processing Service (Rossi et al., 2012; 
Marchesini et al., 2012), which implements parametric and non-parametric 
approaches to estimate the probability density and frequency density of 
landslide size. Double Pareto models of probability density of the landslide 
area, p(AL), were obtained through maximum likelihood estimation (Rossi et 
al., 2012). We chose to compare the distributions based on the parameters  
(which represents the slope of the heavy tail of the distribution, the higher 
the value, the higher the slope), and , the area of the most frequent 
landslide in the estimated distributions (i.e. the rollover point). The service is 
accessible through the web using a local client, and is capable of handling 
landslide inventory ESRI shapefiles.  

5.3 Results  
The output of the analyses presents the geographical accuracy and the 
completeness of the landslide inventory maps. First, the summary statistics 
of the individual landslide maps are presented, followed by the error 
assessment. The completeness was assessed based on the output of the size-
frequency distribution. 
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5.3.1 Expert-based landslide inventory mapping using 
ALS data 

The results of the landslide inventory mapping are shown in Fig. 5.1 and 
Table 5.2. The number of landslides mapped using ALS data ranged between 
68 (Map 1) and 561 (Map 5). The two reference maps (Map 5 and Map 6) 
had a much larger number of landslides as compared to the other interpreted 
maps (Maps 1-4), even though they did not cover the entire area. The 
overlapping areas of the reference maps (refer to the two red tones) and 
other maps (different colors) can be seen in the southern parts of forested 
and agriculture area (Fig. 5.1A, B). The number of landslides mapped from 
ALS images is substantially larger than those from the existing inventory (55 
only). On average, the total area affected by landslides was rather high for 
the agriculture and forested areas respectively. Also this is substantially 
larger than for the existing landslide inventory (0.4 percent of the total area), 
which indicates that the ALS-derived images allow the recognition of many 
more landslides that are missed using a conventional technique. Map1 seems 
to be exaggerating the landslide size substantially as it had the lowest 
number of landslides and the largest landslide area of all ALS-derived maps. 
 
The results of a descriptive statistics of the ALS-derived landslide inventories 
and the existing map for the three land use types are given in Tables 5.3-5.5. 
It can be concluded that the number of landslides in the reference maps is 
always substantially larger than in the other ALS-derived maps. The total 
area mapped as landslide area varies considerably, depending on the 
interpreter, and can be either underestimated (due to the limited number of 
landslides mapped) or overestimated (due to the extreme size of landslides 
mapped). The total number of landslides in the existing map was much lower 
than the reference map based on ALS data. This is an important indication 
that ALS maps can produce better inventories especially in forested terrain, 
as the ALS-derived DTM allows to recognize landslide features beneath 
tropical vegetation that are impossible to recognize using optical images. 
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Fig. 5.1: Landslide inventory maps presented based on land cover types. A) Forested 
terrain. B) Agriculture area. C) Tea plantation area. Two different reference maps were 
used: i) Map 6 for forested area, ii) Map 5 for agriculture and tea plantation zones. The 
areas of interest of A, B, C represented three land cover classes (Fig. 2.5; Chapter 2).  
 
Table 5.2: Characteristics of the ALS-based reference maps, ALS-based inventory maps 
and the existing landslide inventory map in the Cameron Highlands, Malaysia 

 Total number of 
mapped landslides 

Total area affected by 
landslide area (ha) 

Percent of 
affected area  

ALS-based reference maps 
Map 6 
(forested area) 

453 541.6 11.6 

Map 5  
(partly vegetated) 

561 1093.1 10.9 

ALS-based inventory maps 
Map 1 68 1242.9 12.4 
Map 2 93 475.8 4.8 
Map 3 113 487.1 4.9 
Map 4 153 263.2 2.6 
Existing inventory map 
Map 7 55 38.3 0.4 
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Table 5.3: Summary statistics of landslide inventory maps for forested terrain 
 ALS-derived landslide inventory maps Existing 

map 
Map 1 Map 2 Map 3 Map 4 Map 6 

(Ref.) 
Map 7 

Total number of 
mapped landslides 39 47 51 54 358 36 

Total mapped 
landslide area (ha) 618.7 181.8 145.8 2632.0 449.4 13.7 

Percent of landslide 
area (%) 16.3 4.8 3.8 2.63 11.9 0.3 

Smallest mapped 
landslide (103 m2) 1.1 0.7 2.0 1.0 5.0 0.9 

Largest mapped 
landslide (ha) 87.5 23.8 20.3 167.5 85.6 1.4 

Perimeter mapped 
landslide (103 m) 73.6 44.2 40.9 83.2 150.1 13.0 

 
Table 5.4: Summary statistics of landslide inventory maps for agricultural areas  

 ALS-derived landslide inventory maps Existing 
map 

Map 1 Map 2 Map 3 Map 4 Map 5 
(Ref.) 

Map 7 

Total number of 
mapped landslides 32 52 73 121 525 36 

Total mapped 
landslide area (ha) 101.2 68.5 54.7 63.9 352.3 16.1 

Percent of 
landslide area (%) 11.9 24.8 17.4 15.4 66.5 2.3 

Smallest mapped 
landslide (103 m) 10.6 11.4 2.0 1.0 1.0 0.2 

Largest mapped 
landslide (ha) 29.4 6.8 3.4 7.2 21.2 1.3 

Perimeter mapped 
landslide (103 m) 43.8 56.81 48.7 62.7 285.0 13.1 

 
Table 5.5: Summary statistics of landslide inventory maps for tea plantation area  

 ALS-derived landslide inventory maps Existing 
map 

Map 1 Map 2 Map 3 Map 4 Map 5 
(Ref.) 

Map 7 

Total number of 
mapped landslides 16 18 20 22 60 14 

Total mapped 
landslide area (ha) 151.8 46.6 67.1 25.7 42.1 5.4 

Percent of landslide 
area (%) 25.9 7.9 11.5 4.4 7.2 0.9 

Smallest mapped 
landslide (103 m2) 4.7 2.0 1.0 1.0 1.0 1.3 

Largest mapped 
landslide (ha) 24.8 7.3 16.4 6.6 6.9 0.7 

Perimeter mapped 
landslide (103 m) 37.5 19.1 22.3 13.0 26.1 4.2 
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The different results presented in Figs. 5.2 and 5.3 illustrate that landslide 
recognition and classification are not straightforward, even for expert image 
interpreters. Sufficient time, appropriate interpretation tools and proper 
geomorphological knowledge are required for a better image interpretation of 
landslides in a tropical forested terrain. Otherwise it leads to a substantial 
uncertainty in landslide mapping. Fig. 5.2 shows a comparison of the 
appearance of four different geomorphologic features depicted on DTMs 
derived through Inverse Distance Weighting (IDW) interpolation of filtered 
ALS data (Chapter 4). 
 
Figs. 5.2(A) and (B) show that the main landslide features (escarpment and 
deposition area) are not clearly distinguishable from an initial filtering step 
due to a partial removal of the dense vegetation cover that still obscures the 
surface, and landslide detection is affected by large uncertainty. For the same 
maps, a second filtering step seems to better highlight the terrain surface, 
without changing the general appearance of the slopes. When subsequent 
filter steps are applied, this results in the removal of all vegetation, but also 
leads to the smoothing of the terrain surface, making landslide recognition 
more uncertain. 
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Fig. 5.2: Classification of landslide types and tectonic features derived from IDW-
derived DTMs for different ALS filters. A) Slide-earthflow was mapped with indication of 
crown and body zones. B) Slide and flow types of landslides in sparsely vegetated 
terrain.  

Fig. 5.3 illustrates that very large, and apparently older and modified 
landslide complexes have morphological signatures that can be recognized 
from ALS-derived images, by observing the envelope of the slope shape and 
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curvatures, and the pattern of the drainage network, even on low filtered 
images. Very small landslides are completely obscured by the vegetation and 
can be recognized only in highly filtered images. Figs. 5.3 (A) and (B) show a 
large landslide, recognized by adopting morphological criteria, related to 
surface roughness, land use pattern, a horse-shoe shaped drainage pattern, 
debris cones on the borders of the landslide deposit, restricted main stream 
valley, and a concave convex profile slope, which can be associated to the 
presence of an ancient large mass movement. In Figs. 5.3(C) and (D) two 
smaller landslides are portrayed, which form part of a larger, more 
complicated landslide complex with several stages of reactivation. In this 
case the first filter step proved to be unsuitable for landslide detection, while 
the minimum vegetation removal necessary for an appropriate image 
interpretation was reached by the second filter step. Figs. 5.3(E) and (F) 
show that small landslides are more distinct at the third level of filtering. 
Hence, image suitability for landslide detection is also dependent on the scale 
of observation and dimension of the geomorphologic features. 
 
The results of the comparison of the landslide inventory maps by visual 
interpretation of ALS-hillshading images revealed that careful interpretation 
of such images is essential, and a range of different image products should 
be used to obtain the best results. Landslide interpretations based on a single 
type of ALS-derived image, or done without sufficient investment of time led 
to highly uncertain maps. However, ALS-derived inventory maps allow the 
identification of many more landslide features as compared to conventional 
inventory methods, especially for forested areas. An important point is that 
the landslides mapped from ALS images can also be older landslide 
complexes, which are now completely covered by dense vegetation. 

5.3.2 Error assessment of landslide inventory maps 
In order to make a quantitative analysis of the errors in the ALS-derived 
landslide inventory maps we made 45 pair-wise map comparisons, and 
calculated the mapping error. The results are presented in Tables 5.6 to 5.8. 
The error varied between 72 to 99%, with the largest errors obtained in the 
forested terrain. The assessment in comparison to the reference maps 
resulted in mismatches ranging from 82 to 99%, with the largest errors 
found in the forested terrain as well (Table 5.6). This indicates that the ALS-
derived maps (Map 1 to Map 4) seem to be of substantially lesser quality as 
compared to the reference maps (Map 5 and Map 6). Map 1-4 did not include 
many landslides in the reference maps. 
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Fig. 5.3: Mapping and classifying landslides of different sizes. Images (left) show the 
image without landslide indication. An expert mapping is indicated (right). The size of 
the landslides determines, among the other factors, the best filter for landslide 
detection.  
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The comparison of the individual ALS-derived inventories also resulted in very 
large discrepancies, indicating that they differ greatly. This is once again 
evidence that the use of ALS-derived hillshading maps is not a guarantee for 
success. Careful and dedicated image interpretation is required, using several 
products and carried out by skillful interpreters, that take sufficient time for 
interpretation.  
 
Table 5.6: Mapping errors calculated for the pair-wise of landslide inventory maps 
presented based on forested terrain zone 

 
Mapping error 

 (%) 

Among the ALS inventories Existing 
inventory 

 
Map 1 Map 2 Map 3 Map 4 Map 7 

 
Map 6 95.82 94.51 93.39 99.65 99.43 
Map 1  95.72 90.12 98.55 99.01 
Map 2   76.65 99.55 99.51 
Map 3    96.16 98.12 
Map 4     99.31 

 
The geographical uncertainty was higher in the forested areas, as compared 
to the agricultural and tea plantation areas, due to the effect of smoothing of 
the DTM in the vegetation removal process. Landslide inventories from ALS 
maps for agricultural areas and tea plantation showed mapping errors 
between 84 to 93% and 82 to 98%, respectively. The degree of mapping 
error of existing landslide map is higher in all map comparisons. 
 
Table 5.7: Mapping errors calculated for the pair-wise of landslide inventory maps 
presented based on agriculture zone 

 
Mapping error 

(%) 

Among the ALS inventories Existing 
inventory 

 
Map 1 Map 2 Map 3 Map 4 Map 7 

 
Map 5 89.56 93.23 90.56 84.68 98.82 
Map 1  92.31 86.81 94.70 99.01 
Map 2   79.85 94.10 99.64 
Map 3    85.89 98.20 
Map 4     99.39 

 
Table 5.8: Mapping errors calculated for the pair-wise of landslide inventory maps 
presented based on tea plantation zone 

Positional 
mismatch 

 (%) 

Among the ALS inventories Existing 
inventory 

Map 1 Map 2 Map 3 Map 4 Map 7 
 

Map 5 98.67 97.32 82.22 87.14 99.49 
Map 1  92.18 72.07 92.25 99.00 
Map 2   86.09 97.11 98.46 
Map 3    85.34 99.50 
Map 4     100 
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A low positional error was found in the tea plantation area because the 
quality of ALS-derived DTM over the tea-landscape is better compared to 
other land cover types (Chapter 4) resulting in a larger degree of similarity of 
landslide maps. The existing landslide inventory map had very large 
positional errors (98 to 100%) as compared to the ALS-derived reference 
inventory maps. This is due to the fact that the existing inventory has far less 
landslides than the reference inventories.  

5.3.3 Frequency-size distributions of landslide 
inventories 

Frequency-size statistics of all inventories were computed and the Double 
Pareto Model of probability density of the landslide area was obtained 
through maximum likelihood estimation. Fig. 5.4 shows the landslide 
frequency size statistics of the six landslide inventory maps produced by 
interpretation of ALS-derived images. The box plot and Table 5.9 show that 
(i) the area ranges covered by the different landslide inventories are much 
smaller for Maps 1 to 4 than for Maps 5 and 6, and that (ii) Maps 4 to 6 have 
a median of the 103 m2 order, while the median of Maps 1 to 3 is one order of 
magnitude greater. These elements point out different approaches of the 
image interpreters. Maps 1 to 3 portray fewer landslides, generally larger 
than 104 m2, while landslide inventories 4 to 6 report a larger number of 
slope failures. Analysis of frequency-size statistics (Fig. 5.4 and Table 5.9) 
indicated the consistency of reference maps (Maps 5 and 6) compared to 
other ALS-derived landslide inventory maps. 
 
The reference maps portray slope failures ranging in area between four 
orders of magnitude (105 to 102 m2) (Table 5.9), and also show the lowest 
rollover size. Assuming a length to width ratio (the along slope length divided 
by the across slope width) of 1 for the smaller landslides, the deviation from 
the power-law scaling for AL=2×102 m2 (Maps 5 and 6) occurs for linear 
dimensions of ~ 15 m, which corresponds to a distance of 3 cm at the 
maximum visualization scale of 1:500, and to 15 pixels in the ALS-derived 
DTMs. Rollover values for Maps 1 to 4 imply that landslides smaller than 104 

m2 (for Maps 1 and 2) and 103 m2 (for Maps 3 and 4) were not consistently 
mapped, and are incomplete for slope failures smaller than .  
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Fig.5.4: Statistics of landslide size. A) Comparison of Double Pareto probability density 
models, p(AL) for Maps 1 to 7. B), Box plots comparison of landslide areas, AL, for Maps 
1 to 7. ALS-derived landslide maps (Maps 1-6) and existing landslide map (Map 7). 
 
In conclusion frequency-size statistics point out that Maps 1 to 4 are much 
more incomplete than Maps 5 and 6, especially for smaller landslides, while 
Maps 5 and 6 still remain incomplete for AL 2×102 m2, a considerable value 
for geomorphological inventories (see Malamud et al., 2004). In Fig. 5.4H, 
frequency size probability distributions have been plotted on the same graph, 
to allow the reader a better visual comparison. It is worth to mention that 
inventory maps 5 and 6 were produced for different land cover type, 
nevertheless they show similar distributions, whereas maps 1 to 4 were all 
compiled for the entire study area, but show different frequency-size 
distributions. 

5.4 Discussion and conclusions 
In this study, we investigated the differences in landslide inventory maps in 
several ways. First, we compared ALS-derived inventories carried out on a 
single ALS-derived product (Map 1-4) with the reference inventories (Map 5, 
6). The reference inventories were carried out using a series of different ALS-
derived products, and resulted in more detailed maps. The intercomparison 
and comparison were performed for different forested area, agricultural area 
and tea plantations separately. Secondly we compared the ALS-derived 
reference maps with an existing landslide inventory map of Pradhan and Lee 
(2010).  
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Table 5.9: Comparison of the frequency statistics of landslide area. Standard error 
values ( ) of  are also reported.  is the size (area) of the most frequent landslide in 
the estimated distributions. NL = Landslide frequency; AMIN = minimum landslide size; 
AMAX = maximum landslide size 

Map NL (#) AMIN 
(m2)  

AMAX (m2) Double pareto (Stark and Hovius, 
2001) 

     2) 

Map1 68 1.06×104 9.94×104 1.26 ± 0.050 1.08×104 

Map2 93 1.14×104 2.38×104 2.06 ± 0.020 1.17×104 

Map3 113 1.95×103 3.02×105 1.36 ± 0.011 2.29×103 

Map4 153 1.01×103 1.67×105 1.18 ± 0.005 1.16×103 

Map5 561 2.52×102 5.73×105 1.54 ± 0.011 7.86×102 

Map6 453 2.40×102 9.28×105 1.02 ± 0.006 4.11×102 

Map7 55 3.40×103 1.8×104 3.57 ± 0.010 3.69×103 

 
The results showed more landslides compared to the existing map based on 
conventional techniques, independent of the interpreter. Many of the 
landslides were not visible in optical images, or through field investigations, 
as they were old and re-vegetated, but did show on the ALS DTM. Results of 
the ALS maps are remarkably good even when only a relatively low ALS point 
density is available. Despite the difficulty to recognize shallow landslides and 
debris flows under forest canopy (Brardinoni et al. 2003; Korup 2005), we 
demonstrated the use of ALS data to map and classify a large number of 
landslides and geomorphological features in the tropics. For example, 48% of 
the slope failures in the database were characterized as shallow flow types 
and newly found neotectonic features (Chapter 4). In comparison to a 
previously published landslide inventory (Pradhan and Lee 2010), the total 
number of landslides mapped using ALS data is substantially higher, not only 
in the forested areas, but also in the case of other land cover types. 
Unfortunately it was not possible to compare the two reference maps (Map 5 
and Map 6) as these were made for different areas, and didn’t overlap. Due 
to this it is also not possible to indicate how consistent these maps are. 
Future work is required to evaluate this.  
 
It is not known under which conditions many of the large landslides that are 
currently covered by dense vegetation have occurred. We have considered 
two possible scenarios. The first one is that they have been triggered by very 
extreme rainfall events. However, there are no clear evidences for such 
extreme rainfall-triggered landslide events from meteorological stations or 
from archives in this area. The other hypothesis is that these landslides might 
be quite old and are related to earlier periods during the Holocene, which 
might have been characterized by different climatic conditions, and a less 
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dense vegetation cover than nowadays. More research on the relative age of 
the abundant and apparently old landslides would be required.  
 
A further interesting geomorphological feature revealed during the ALS-
image interpretation was the presence of clear neotectonic features in the 
study area, such as displaced terrace levels, shutter ridges, horst and graben 
structures, and disrupted drainage channels along tectonic lineaments (Fig. 
5.5). The ALS image revealed a substantial level of seismic activity in the 
recent past, as the morphological features are quite clear and recent since 
they are not eroded away. However, since the area has no record of historic 
seismic events, more research is needed on the neotectonic activity and 
possible relationship with landslide activities.  
 

 
Fig. 5.5: Evidence of neotectonic features in the study area. A) Displaced terrace levels 
along a fault line, B) Horst and graben structures. 
 
The method applied in this research can be used to quantify the positional 
mismatch between two different landslide inventories in the tropics. But in 
order to evaluate the error an inventory should be compared with a reference 
map, which is error-free in itself. Most of the time a reference map is not 
complete, but still considered to be the best approximation of the true 
landslide inventory (Van Den Eeckhaut et al. 2007; Guzzetti et al. 2012). 
Acquiring a good reference map is generally a large problem, as also in our 
case the two reference maps, although derived by international experts on 
image interpretation, and using a series of ALS-derived products, cannot be 
guaranteed to be free of errors and omissions. Furthermore, frequency-size 
distributions of the reference maps showed that these inventories were 
incomplete for AL 2×102 m2. The inventory mapping took a considerable 
amount of time, and both teams were not able to map the entire study area 
of 93 km2. Therefore the interpreters concentrated on areas with different 
land cover types, where one reference map focused on forested areas, and 
the other on agricultural areas and tea plantations. As these are located in 
different parts of the study area, it was not possible to compare the two 
reference maps with each other. 
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Van Den Eeckhaut et al. (2007) assessed the consistency of landslide maps 
derived from ALS images in the temperate forest environment (Flemish 
Ardennes, Belgium). Even in such temperate forest and relatively smooth 
landscape, the large dissimilarity between ALS-derived and conventional 
landslide inventory maps was reported up to 82%, and even larger (91%) 
when compared among the interpreted maps. In the northern Apennines, 
Ardizzone et al. (2002) evaluated the positional similarities and discrepancies 
of three landslide maps resulting in large positional error ranging between 
55-65%, and a location mismatch of up to 80% for all overlain maps.  
 
We conclude that the degree of dissimilarity of landslide maps is relatively 
high even for those compiled by local expert image interpreters using 
stereoscopic ALS images. Quantifying the skills and experience of the 
interpreters is difficult and remains subjective. We selected interpreters with 
a long experience in landslide interpretation and local knowledge about the 
area. Despite that, we encountered that some of the resulting landslide 
inventories have very large mismatches. For instance, Map1 tends to map 
entire first order watershed areas as single landslides, on the basis of a few 
diagnostic features.  
 
Although the landslide interpreters have long been working on image 
interpretation (aerial-photos and satellite images) and have sufficient 
knowledge on the local landscape, landslide recognition and classification 
using ALS data required different interpretation skills and experience. ALS is 
considered a relatively new landslide mapping technique (Guzzetti et al. 
2012) and mostly depends on the interpretability (scale and dimension) of 
diagnostic morphological features on the ALS images. Guzzetti et al. (2012) 
underlined that a large number of landslide inventory maps have been 
produced in several parts of the world, but still standards to prepare landslide 
inventory maps do not exist, not even for visual analysis of stereoscopic 
aerial photographs. If aerial photo-interpretation needs the development of 
skills and standards, it is even more so for landslide mapping using ALS-
derived images, which requires sufficient experience and training. 
Unfortunately image interpretation skills receive poor emphasis these days in 
the curricula of most of the physical geography courses worldwide.  
 
The analysis of the inverse relationship between the size and frequency of the 
landslides using probability density functions showed that Maps 1 to 4 differ 
strongly from each other and from the reference maps, in terms of the 
“rollover”, of the minimum landslide size and of the slope of the heavy tail 
distribution (Table 5.9, Fig. 5.4). Possible explanations for these differences 
in the size distribution may include: Firstly, the different methods used for 
image interpretation (i.e. computer screen or paper). The hardcopy landslide 
interpretation may be limited by the quality and scale of the printed image. A 
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low resolution, and small scale print limits the minimum detectable landslide 
size. In particular, slope failures smaller than 103 m2 (Map 4) and 104 m2 
(Maps 1 and 2) could not be detected. This caused the minimum landslide 
area of hardcopy inventories to be considerably larger than for softcopy 
maps. Map 3 was the exception as it produced directly using on-screen 
digitizing method. Secondly, the number of images used in the interpretation 
i.e. different filters or different interpolation maps, influenced the 
interpretability some morphological features. The best results were obtained 
with multiple levels of terrain filtering and interpolation methods. Thirdly, the 
focus of the inventory on recent landslides only, or event inventories rather 
than geomorphological inventories. Mapping recent landslides leads a to 
focus on features that are typical of “fresh” landslides, such as road 
blockages, fresh escarpments, vegetation discontinuities showing a non-
geometrical shape (typical of anthropic activity), levees, or a typical 
sharpness of the deposit. A morphological inventory leads to recognizing 
landslides that include older ones, which can have been partly dismantled or 
eroded by river action. Lastly, the experience of the geomorphologists and 
the effort they have put into the work also affected the quality of the final 
map. The landslide mapping required a complex analysis, which is performed 
by the image interpreter, who takes into account as many variables as he can 
detect, to recognize and classify landslides, but also to find reasons why 
certain landforms cannot be landslides. The higher the experience, the more 
reliable the outcome will be. 
 
Time and funds also affected the quality of landslide inventory maps. Fiorucci 
et al. (2011) reported that two months were required to complete an event-
based landslide inventory map using ALS data in an area of only 10 km2 in 
Collazzone, Italy. In our study only limited time was given to the landslide 
interpreters to produce the final landslide inventory maps for a tropical 
mountainous region of 93 km2. A complete overview of the temporal, 
technological, economical and human resources needed for completing a 
landslide map is given in Galli et al. (2008). It has to be noted that the rate 
of map production is a proxy for estimating the personnel cost for the 
production of a landslide map (Guzzetti et al., 2012), whereas in our study, 
the landslide interpretation was carried out without any costs involved, as the 
interpreters did the work in their spare time.  
 
In contrast to site-specific studies where extensive field investigation can 
map all existing landslides, producing a landslide map at medium scales must 
rely on geomorphological features to identify landslides. The results of the 
present study revealed that ALS data with low point density is useful to map 
and classify slope failures in tropical mountainous landscapes dominated by 
landslides. Great care should be taken by the expert-based analysis of ALS 
data for landslide interpretation under tropical vegetation. It should be 
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carried out by dedicated landslide interpreters, with sufficient time and 
knowledge of the landscape. A (semi)-automatic method for extracting 
landslides based on ALS derivatives coupled with object-oriented analysis will 
be an alternative and more efficient mapping approach, but automatic 
mapping has proven to be quite problematic in mountainous areas (Van Den 
Eeckhaut et al., 2012), and it is even more so in a tropical rainforest 
environments. 
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Chapter 6 
 

Landslide susceptibility assessment using 
laser scanning-derived maps in a tropical 

environment  

6.1 Introduction 
In a tropical environment, landslides play a significant role in landform 
evolution and have been recognized as major landscape components of the 
humid tropical morphogenic system (Thomas, 1994). Landslides may cause 
substantial damage to the infrastructures (e.g. roads, buildings), and result 
in the loss of lives. In the tropical countries of Southeast Asia like Malaysia, 
landslides frequently occur in upland forests and agricultural lands which are 
characterized by steep slopes, high rainfall intensities, seasonally dry periods, 
and high weathering rates (Douglas, 1999; Sidle and Ochiai, 2006). 
Landslides are often associated with recent changes in land use, and 
especially road construction is one of the most important factors that trigger 
landslides in tropical areas. 
 
Risk avoidance, the minimization of development in landslide prone areas, is 
the most effective and economical way to reduce landslide risk (Crozier, 
2005). Therefore predictive modeling of landslide susceptibility and hazard is 
of vital importance, especially in rapidly developing regions, where complete 
avoidance is not an option. Predictive modeling aims at identifying the areas 
that are susceptible to future landslides based on the relationships between 
past and present landslide occurrences and a set of environmental factors. A 
landslide susceptibility map (LSM) allows us to establish regulations for land-
use management over the different susceptibility zones (Brabb, 1984; 
Ardizzone et al., 2002).  
 
Many methods have been proposed to evaluate landslide susceptibility at 
different mapping scales such as direct geomorphological mapping, heuristic 
approaches, statistical classification methods (e.g. probability approach) and 
process-driven (e.g. geotechnical modelling) (e.g. Carrara et al., 1995; 
Soeters and Van Westen, 1996; Chung and Fabbri, 1999; Guzzetti et al., 
1999; Nefeslioglu et al., 2008a; Nefeslioglu et al., 2008b; Van Westen et al., 
2008). The statistical methods, which are often used at medium scale 
(1:25,000 to 1:50,000) are based on the analysis of the relationship between 
a set of geo-environmental factors that control slope instability, and an 
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inventory of historical landslide occurrences (Cardinali et al., 2002; Thiery et 
al., 2007).  
 
The reliability of LSMs, that are generated using statistical methods, depends 
most of all on the quality and completeness of the landslide inventory used 
as input, and on the geomorphological understanding of the relationship 
between landslides and the causal factors. The reliability also depends on the 
quality of the spatial data layers, the amount of available data, and the scale 
of data used (Ayalew and Yamagishi, 2005; Van Westen et al., 2008). As the 
statistical methods are based on the assumption that the susceptibility to 
landslides depends on the relationships between past landslide events and a 
set of causal factors, care should be taken to apply them in environments 
that undergo rapid changes, such as deforestation, or road construction 
(Brabb et al., 2000; Van Westen et al., 2005; Guzzetti et al., 2012).  
 
Landslide mapping has evolved by the use of airborne laser scanning (ALS), 
which allow experienced image interpreters to recognize and classify 
landslides also in rugged and forested terrain (see Chapters 3, 4, and 5; 
Razak et al., 2011, 2013). ALS data can be used to extract terrain features, 
including the small topographic indicators of landslides (such as scarps, 
semicircular niches, cracks, bulging topography etc.). ALS data have been 
used for landslide mapping in areas covered by forest in temperate regions 
(Sekiguchi and Sato, 2004; Van Den Eeckhaut et al., 2005; Van Den 
Eeckhaut et al., 2007; Schulz, 2007; Kasai et al., 2009; Razak et al., 2011a). 
However, limited studies have presented the use of ALS derived data for 
landslide susceptibility assessment in the tropics. 
 
The main objective of this study is to evaluate the suitability of ALS data for 
creating LSMs in tropical forested areas. The second objective is to evaluate 
the effect of different landslide inventory maps, generated independently, on 
the resulting landslide susceptibility maps. The third objective is to evaluate 
the use of an optimal landslide inventory in relation to possible changes in 
the terrain conditions in the coming period as a basis for the landslide 
susceptibility assessment. The developed methods were tested in a densely 
forested section of the Cameron Highlands covering a strip of 100 km2 in 
Peninsular Malaysia (see Chapter 2 for the characteristics of the study area).  

6.2 Methods 

6.2.1 Airborne laser scanning campaign and data 
We used ALS data provided by the Department of Survey and Mapping 
Malaysia (JUPEM) of the Cameron Highlands, Malaysia. The ALS data were 
acquired in June 2004 using the Optech Airborne Laser Terrain Mapper 
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(Optech ALTM) 3100 laser scanning system. A detailed specification of the 
ALTM system was depicted in Table 4.1. The study area was sampled by 113 
million points with a mean point density of 1.83 points m-2 over 100 km2. 
 
We extracted the ALS ground points using a specific filtering parameterization 
for forested landslides (Chapter 4). In order to accommodate to the lower 
point density, the complexity of terrain and undergrowth vegetation in the 
tropics we have modified the parameters, as explained in Chapter 4.  
 
A gridded bare surface model with a 1 m cell length was generated using a 
linear least-square interpolation method which was originally developed by 
Kraus and Mikhail (1972) in SCOP++ software (TUV, 2012). The terrain 
model was quantitatively assessed with 448 field measured terrain heights 
collected using GPS and Total Station, resulting in a root mean square error 
(RMSE) of 0.866 m (Chapter 4). 

6.2.2 Landslide inventory mapping 
The ALS-derived landslide inventory map (LIM) was produced by means of 
visual analysis of ALS images by expert image interpreters (see details in 
Chapter 4). The landslide interpreters made used a set of ALS-derived 
hillshading images generated with three different filter steps and three 
methods for surface interpolations for recognizing landslides located beneath 
forests and other vegetated areas (e.g. tea plantation and agriculture zones). 
A digital on-screen interpretation based on stereoscopic images was 
implemented at scales ranging from 1:25,000 to 1:500. Landslide margins 
were delineated and represented as polygons. The LIM contained polygon 
attributes for erosion, or deposition, and landslide types following the 
landslide classification by Varnes (1978). A list of diagnostic landslide 
features based on morphological, vegetation and drainage pattern is shown 
in Chapters 3 and 4. Structural lineaments and neotectonic features were 
also identified in the images.  
 
Apart from the ALS landslide inventory, we also used an existing landslide 
inventory with landslides which have been reported in the past decades, and 
which are mostly concentrated along the roads in the study area. It was 
produced based on visual interpretation of archived aerial photographs with 
scales ranging from 1:10,000 to 1:50,000, satellite images, e.g. SPOT 5 
panchromatic, IKONOS, RADARSAT, landslide archives over the past 21 
years, and several field-campaigns (Pradhan and Lee, 2010; Pradhan et al., 
2010). This inventory has been used for regional landslide susceptibility 
mapping (Pradhan and Lee, 2010; Pradhan et al., 2010; Pradhan, 2010) and 
landslide hazards analysis (Pradhan and Youssef, 2010; Pradhan, 2010). 
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6.2.3 Landslide conditioning factors  
Four groups of landslide conditioning factors (LCFs) have been used that are 
coupled to landslide susceptibility (Regmi et al., 2010; Van Westen et al., 
2008; Table 6.2). In total 22 LCF’s were computed, all based on ALS data.  
 
Topographic factors 
We generated the topographic conditioning factors based on the ALS-derived 
DEM, such as slope gradient (SLG), slope aspect (SLA) and plan curvature 
(PLC). These primary topographical attributes were calculated using 
embedded algorithms in ESRI ArcGIS. The slope gradient map was produced 
by computing the maximum rate of change between each cell and its 
neighbour, and the aspect map identified the steepest downslope direction. 
The topographic curvature is defined the rate of change of slope and aspect 
in a particular direction (Wilson and Gallant, 2000). The PLC was generated 
as the second derivative of the DEM. A positive curvature indicates a convex 
plan-form. Zero curvatures corresponding to flat terrain, or to planar slopes.  
 
Hydrological terrain factors 
Hydrological related terrain factors used in this susceptibility analysis are 
sediment transport index (STI), topographic wetness index (TWI) and 
distance to drainage network (DRN). These hydrological or flow 
accumulation-based terrain parameters were calculated using compound 
topographic indices as implemented in the ILWIS software (ILWIS, 2012). 
The STI is often used to reflect the erosive power of the overland flow. The 
TWI describes the propensity for an area to be saturated to the surface given 
its contributing area and slope characteristics. A high resolution digital 
elevation model (DEM) derived from low density ALS data is suitable to 
generate hydrological related terrain factors. STI, TWI, and DRN derived from 
ALS data can be a good measure of water-related attributes such as surface 
water, sub-surface water and groundwater (Regmi et al., 2010). High 
fluctuation of water-related attributes may changes the pore water pressure 
to exceed the critical threshold that could potentially trigger landslides. 
Similarly, the soil moisture and the erosive power of water flow can be 
estimated by the stream power indexes (Moore et al., 1991). We also took 
into account the sediment transport index as it empirically resembles the 
Universal Soil Loss Equation and could potentially be used to highlight 
instability areas (Moore and Wilson, 1992). 
 
Geological factors 
The existing structural lineament information was mainly based on aerial-
photo interpretation carried out by the Department of Mineral and 
Geosciences (JMG) Malaysia (Pradhan and Lee, 2010). However, it was too 
coarse for the working scale in the present study. Therefore we obtained a 
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new lineament map made by experts using stereoscopic ALS-derived images 
and compared this with the existing map. We constructed a colour composite 
of three shaded relief images with an azimuth in the West, North-West and 
North direction and applied a linear stretching to the image. A multi-direction 
hillshading method was used to avoid problems in identifying lineaments that 
run parallel to the illumination direction in case of a single illumination 
(Oguchi et al., 2003). Even though the lithology, soil type and soil depth are 
important aspects controlling the landslides, it was not possible to use the 
existing maps in the susceptibility analysis due to their coarse scale and lack 
of detail (e.g. only two lithological units in the entire study area). Generation 
of more detailed maps was not feasible for this relatively large area in a 
forested, rugged and mountainous region.  
 
Anthropogenic factors 
ALS data is particularly useful when non-ground features (buildings, roads, 
vegetation types) are extracted to provide reliable data on anthropogenic 
factors related to landslide susceptibility and the elements-at-risk for 
landslides (e.g., buildings and roads). We differentiated forest types due to 
the expected causal relations with landslide controlling factors in the study 
area, as conversion of old-growth forests to plantations and regeneration of 
secondary forests may reduce the rooting strength, and thus increase 
landslide potential (Sidle and Ochiai, 2006; Sidle et al., 2006). The 
conversion of tropical forests to commercial agricultural lands (e.g. 
vegetables and floriculture) can also have significant effects on slope 
stability. Similarly, the agriculture zones in the study area are often 
characterized by poorly designed and managed terraces, coupling with water 
concentration in this area, which are likely to increase the susceptibility to 
landslides. The land cover map generated from ALS data consisted of six 
classes: buildings, roads, tea plantation, agriculture area, secondary forest 
and old-growth forest. 
 
Building mapping 
Buildings were derived using the edge detection and region growing 
techniques implemented in the SCOP++ software (TUV, 2012). It is part of 
the terrain modeling, where non-terrain points are subsequently classified as 
buildings. Building outlines may be derived from those points that are 
classified as buildings using region growing. SCOP++ requires three 
parameters to be set to determine building outlines: cell size, minimum 
building size, and minimum slope (Table 6.1). The cell and building size are 
dependent on the density of the point cloud and the minimum number of 
buildings required to be detected. Minimum slope is used as a threshold to 
detect the edges and boundaries of the buildings. First, the edge of a building 
is detected based on computation of the steepest gradient. Then the 
algorithm starts searching and the points are included that are likely to be 
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part of the building geometry. The Hierarchical Robust Interpolation (HRI) 
method is applied that involves three different hierarchical levels that 
increase in resolution, for which the building filter was executed, while the 
terrain model was generated.  
 
Table 6.1: Building filter parameterization used for the building extraction in the study 
area 
Parameters/stages Cell sizes     Minimum building size       Minimum slope 
    (meter)         (square meter)                (tangent) 
   First stage       3.0             9.0                                1.1 
   Second stage          2.0             9.0                                1.0 
   Third stage      2.0             9.0                                0.9 
 
In principal, three main parameterizations were set using maximum 
thresholds in the first stage and the values were decreased in the second and 
third processing stages following the standard HRI processing routine in the 
SCOP++ software. The processing steps were the filtering and classification 
of the bare Earth model. The default settings provided by the SCOP++ 
software for buildings in a forested landscape were used initially. Later on 
these were modified, based on the point density of the available ALS data, 
local knowledge on building geometry and topographical elements. For 
simplifying the building footprints, we applied the Douglas-Pecker algorithm 
(Douglas and Pecker, 1973) implemented in GIS for noise removal.  
 
Road mapping 
The existing road map provided by the Public Works Department Malaysia 
(PWD) was out of date and unreliable for the working scale. Therefore, the 
road map was updated using the ALS-derived products. In this study, we 
used a new visualization technique, called topographic openness which was 
developed by Yokoyama et al. (2002)(see Chapter 3 for explanation). This 
map can be viewed as a stereoscopic or an anaglyph image using red and 
blue glasses. Roads were visually mapped with the help of such ALS-
topographic openness images, with primary roads referring to main 
transportation routes in the area, while the rest are identified as secondary 
roads. As a part of road mapping, we also mapped the road cut zones by 
analyzing the roads in the vicinity of steep slopes using GIS spatial analyses 
and visual analysis. 
 
Vegetation mapping 
For vegetation mapping we used the TreeVaW software (Tree Variable 
Window), an integrated ALS processing software package for detecting 
dominant single trees and estimating tree height and crown width (Popescu 
et al., 2002; Popescu and Wynne, 2004). TreeVaW is an automated 
processing routine run in the IDL-ENVI software. It works on a gridded 
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normalised canopy height model (nCHM), which is computed as the 
difference between the digital surface model (DSM) and Digital Terrain Model 
(DTM) at a 1 m grid resolution. The tree attributes (position, height, and 
crown width) and altitude information were used in GIS to classify old-growth 
and secondary forests following the Malaysian forest classification described 
by Wyatt-Smith (1995). Old-growth forests are typically taller than secondary 
forest (e.g. more than 30 m) and located at relatively high elevation (e.g. 
more than 900 m above the mean sea level) and associated to common tree 
species (dipterocarp forest family) with undergrowth consists largely of 
woody plants – seedlings and sapling trees, shrubs and young woody 
climbers. The stemmed palms (e.g. Arenga westerhoutti), stemless palms 
(e.g. Licuala spp.) and rattans (e.g. Calamus castaneus) are the main species 
in the secondary forest.  
 
After generating the two forest classes, we used the results produced from 
the filtering and classification steps in SCOP++ and identified the tea 
plantation zones using a GIS tool with clear diagnostic features as the tea will 
most likely have the same plant height and is planted in a systematic way. 
After classification of buildings, roads, old-growth forests, secondary forests, 
and tea plantations, the agriculture zone was extracted and carefully checked 
with respect to ALS-derived hillshade DSM, DTM and high resolution satellite 
images.  
 
Classification accuracy 
Classification accuracy of the land cover map was determined using reference 
data collected from visual image interpretation and fieldwork. To assess the 
quality of the land cover map produced from the ALS data, the reference data 
was independently acquired by digitizing polygons based on digital high 
resolution satellite images, and by overlaying the DSM upon the classified 
raster image. Small homogeneous polygons were mapped in the field that 
best represented each class. A total of 300 reference polygons were 
purposively selected and compared with the final classification and 
summarized in a confusion matrix. The quality assessment of buildings and 
roads was made additionally to the results presented in Razak et al. (2011B) 
focusing on the most important elements-at-risk for landslides (buildings and 
roads). We used a reference data set generated from a stereoscopic visual 
interpretation of ALS-derived DSM and further validated the results using 
dynamic 3D point cloud visualization for assessing extracted buildings.  
 
A stereoscopic model was produced with a combination of a shaded-relief of 
the DSM and the ALS-derived DTM. Further details about the artificial stereo 
image generating technique can be found in Van Westen et al. (2004). The 
3D point cloud is capable to provide a geometrically accurate dataset which is 
much better than the one provided by photogrammetric products (Leberl et 
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al., 2010). Point clouds with a large number of points can be dynamically 
visualized in a 3D model using the Quick Terrain Modeler software. A 
reference dataset derived from the stereoscopic visualization was 
simultaneously evaluated with the 3D point cloud.  
 
To evaluate the performance of the extracted buildings, we analysed the 
results of the quantitative assessment of building extraction (Lee et al., 
2003; Rottensteiner et al., 2005; Sohn and Dowman, 2007) in relation to the 
reference buildings mapped using the following equations (Eqs. 6.1,6.2,6.3):- 
 

Completeness         = 100
FNTP

TP
 (6.1) 

Correctness            =  100
FPTP

TP
 (6.2) 

Quality percentage = 100
FPFNTP

TP
 (6.3) 

 
Where, TP (True Positive) is the number of building footprints classified by 
both datasets, FN (False Negative) is the number of building footprints 
classified only by the reference dataset, FP (False Positive) is the number of 
building footprints classified only by the ALS building extraction method. The 
completeness is referring to the percentage of correctly classified building 
footprints, whereas the correctness is the ratio of the correctly classified 
building areas (TP) with respect to the total building areas classified by the 
reference data and by the automatic method (TP+FP). These factors indicate 
a measure of building extraction performance.  
 
The accuracy of ALS-derived roads was measured based on 32 field-surveyed 
GPS points in this area. The validation data was collected in July 2009. The 
terrain heights of these points were measured using a Topcon Hiper Pro, 
using a real-time kinematic technique with horizontal and vertical accuracy of 
about 10 mm and 20 mm, respectively. The statistical measurement of root 
mean square is sufficient for an analysis of height differences. The gradient of 
ALS-derived road was carefully analyzed and compared with the field data.  

6.2.4 Landslide susceptibility analysis 
According to the guidelines for landslide susceptibility, hazard and risk zoning 
published by the Joint Technical Committee on Landslides and Engineered 
Slopes (Fell et al., 2008), landslide susceptibility and hazard mapping at 
medium to small (1:25,000 to 1:250,000) scale may be applicable with 
intermediate zoning level for advisory purposes. Considering recent landslide 
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literature, at this scale of analysis multivariate statistical techniques are the 
most commonly used tool in landslide susceptibility analysis (Yesilnacar and 
Topal, 2005; Nefeslioglu et al., 2008a; Nefeslioglu et al., 2008b).  
 
Among these techniques, logistic regression analysis is one of the most 
applied methods in landslide susceptibility analysis (Yilmaz, 2009; Das et al., 
2011; Nefeslioglu and Gokceoglu, 2011). Logistic regression is useful for 
predicting the presence or absence of a characteristic or outcome based on 
values of a set of predictor variables. Logistic regression has the advantage 
compared to the linear regression model, that the variables may be either 
continuous or discrete, or any combination of both types, and they do not 
necessarily need to have a normal distribution.  
 
The relationship between landslide occurrence and its dependency on several 
variables can be quantitatively as: 
 

ze1/1  (6.4) 

 
Where  is the estimated probability of landslide occurrence. 
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Table 6.2: Landslide conditioning factors derived from ALS data categorized as 
topographic-, hydrological-, anthropogenic-, and geological structure-related factor 
maps coupled with significance for landslide susceptibility mapping 

Category 
of 
factors 

Attributes 
 

Type and data range used in 
LR equation 
 

Relevance for landslide 
susceptibility 

 
To

po
gr

ap
hi

c 
fa

ct
or

s 

Topographic elevation 
(TOE) 

 
Continuous (meters) 
 

Climate, vegetation, and 
potential energy 

Slope gradient (SLG)  
 
Continuous (degrees) 

Gravity driven phenomena, 
overland and sub-surface 

flow velocity 

Slope aspect (SLA) 
 

Binary East (SLE) (45 – 135 
Degrees) 
Binary South (SLS) (135-335 
Degrees) 
Binary West (SLW) (225-315 
Degrees) 
Binary North (SLN) (315-45 
Degrees) 
 

Soil moisture, solar 
insolation, 

evapotranspiration, flora 
and fauna distribution 

Plan curvature (PLC) 
 
Continuous (dimensionless) 
 

Converging, diverging flow, 
soil water content, and soil 

characteristics 

 
H

yd
ro

lo
gi

ca
l 

fa
ct

or
s 

Sediment transport 
index (STI) 

 
Continuous  
 

Runoff, potential energy, 
sedimentation 

 
Topography wetness 
index (TWI) 
 

Continuous  Soil water content 

Distance to drainage 
network (DRN) 

Binary 
Up to 75 m (DRN75) 

Hydrologic processes, 
hillslope undercutting 

A
nt

hr
op

og
en

ic
 f
ac

to
rs

 

Land cover type-1 
Buildings (LBU) Binary 

Vegetation, soil and water 
flow, pore-water pressure, 

evapotranspiration 

Land cover type-2 
Roads (LRO) Binary 

Land cover type-3 Tea 
plantations (LTP) Binary 

Land cover type-4 
Agriculture (LAG) Binary 

Land cover type-5 
Secondary forests (LSF) Binary 

Land cover type-6 Old-
growth forests (LOF) Binary 

Distance to Road-cuts 
(ROC) 

 
Binary 
0-200 m (ROC200) 
200-400 m (ROC400) 
400-600 m (ROC600) 
600-800 m (ROC800) 
  

 
S
tr

uc
tu

ra
l 

ge
ol

og
ic

al
 

fa
ct

or
s 

Distance to lineaments 
(LIN) 

Binary 
0-100 m (LIN100) 
100-200 m (LIN200) 
200-300 m (LIN300) 
300-400 m (LIN400) 
400-500 m (LIN500) 
 

Geological controlling 
pattern 
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The probability varies from 0 to 1 on an S-shaped curve and z is the linear 
combination that involves fitting an equation as follows: 
 

nno xbxbxbbz ...2211  (6.5) 

 

Where ob is the intercept of the model, ib (i = 1, 2, …, n) are the regression 

coefficients of the logistic regression model, and the ix (i = 0, 1, 2, …., n) are 

the independent variables. The linear model is a logistic regression of 
presence or absence of landslides based on the independent variables 
(prefailure conditions).  
 
In order to evaluate the spatial distribution of landslide susceptibility, we 
applied logistic regression for two situations: using the existing landslide 
inventory map and the ALS-derived landslide inventory map. The first stage 
in multivariate landslide susceptibility modelling is the preparation of a data 
matrix including the relevant conditioning factors. The resolution of the grid 
was 1×1 m, which would result in more than 90 million spatial units when we 
would take this as the basis for the analysis. Obviously, this would be too 
computationally demanding. However, topographic parameters having high 
spatial computational resolutions are also crucial and desired in landslide 
susceptibility evaluations. Therefore we reduced the model grid cell size to 10 
x 10 m, resulting in a total of 854,527 grid cells. In the data matrix, the 
columns constitute the relevant independent variables and presence/absence 
data from the LIM, while the rows are the cases corresponding to each 
individual grid cell.  
 
In total, 22 different independent variables were evaluated as landslide 
conditioning factors (see Table 6.2). The landslides were sampled, using the 
method presented by Nefeslioglu et al. (2012), by extracting the grid cells 
located one pixel upslope (10 m) from the rupture zone of the mapped 
landslides. Ten percent of the landslide cells were separated as validation 
data, and 90% was used for developing the model. In order to produce the 
final training data, an equal amount of non-presence data was sampled at 
random for each of the two landslide inventories. A backward conditional 
stepwise algorithm was implemented during the training stage. 
 
In order to evaluate the overall spatial performance of the produced LSMs, a 
threshold independent technique, using ROC curves, was used. Evaluation of 
the ROC curves is one of the most common accuracy estimation techniques in 
natural hazard assessments (Begueria, 2006). The area under ROC curves 
(AUC) is interpreted as the degree of the accuracy of the prediction. The 
minimum value of AUC 0.5 represents no improvement over random 
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assignment while the maximum value of which is 1 indicates complete 
discrimination. 

6.3 Results 

6.3.1 Landslide inventory mapping 
A total of 1014 landslides were mapped using the stereoscopic hillshading 
images derived from the ALS (See Chapter 5 for details). The actual number 
of landslides is probably much more, since the landslide inventory is 
composed of two individual inventories generated by two groups for different 
parts of the study area. The landslides were mapped under dense forest 
cover, and revealed that a large part of the landscape shows clear evidence 
of past landslide activity. It is important to mention here that the ALS derived 
landslide inventory does not contain information on the (relative) age of 
occurrence of landslides. The landslide features recognized under dense 
tropical forest cover might be considerably old. As we are also able to clearly 
recognize landforms related to tectonic activity, whereas the area doesn’t 
have any historic seismic activity, this is an indication that landforms, 
including landslides, under tropical forest may be conserved for a 
considerable period. 
 
The existing landslide inventory map is based on historical landslide 
occurrences from the past 21 years. The inventory contains 55 landslides, 
which are mainly concentrated along the roads. The ALS-derived landslide 
inventory map revealed about 18 times more landslides in the study area 
than the existing landslide inventory. Based on the ALS-inventory 22.5% of 
the total area is affected by landslides which is substantially larger than for 
the existing landslide inventory (0.4 % of the total area). It indicates that the 
ALS-derived images allow the identification of many more landslides 
especially in locations covered by vegetation. However, also in the zones 
covered by low vegetation (e.g. the tea plantations) the ALS-derived 
interpretations revealed many more landslides. The existing inventory map 
and the ALS-derived inventory show a very large degree of mismatch (98 
%). This is due to the fact that the existing inventory has far less landslides 
than the reference inventories (see Chapters 4 and 5). A large number of the 
historical slope failures (48%) was characterized as shallow flows, which 
usually begin with small scale translational slides. The landslides mapped 
from ALS images can also be older landslides, which are much larger and 
deep seated, and which are now completely covered by vegetation.  

6.3.2 Generation of landslide conditioning factor maps 
In this study, four groups of factor maps were generated: topographic-, 
hydrological-, anthropogenic-, and geological-related factor maps. The 
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topographic-factor maps are shown in Fig. 6.1. The anthropogenic and 
geological factor maps are shown in Fig. 6.2. The land cover classification 
derived from ALS was compared with the published land cover map by 
Pradhan and Lee (2009)(See Fig. 6.3C). The map was used in creating a 
landslide susceptibility map in the Cameron Highlands. The ALS land cover 
map had an average accuracy of 88.5%. User’s and producer’s accuracy are 
ranging from 86 to 90% (Table 6.5). The produced ALS derived land cover 
map has more classes (especially the secondary forest- and agriculture 
lands) compared to the land cover map by Pradhan and Lee (2010) who used 
a SPOT 5 image with 10 m spatial resolution captured in July 2004 (see Fig. 
6.3C) and verified with field survey. Their land cover map shows fewer 
classes, and most of the area is under primary forests. Their map also 
contains a class “rubber plantation”, which we were not able to find in the 
study area. 
 
In the field, we observed that illegal farming activity takes place in areas 
where the secondary forests are converted into agriculture lands without the 
proper approval from local authorities, and the original terrain has been 
rapidly modified for developing agriculture terraces. It is worth mentioning 
that many current reported landslides occurred in these particular land cover 
classes. 
 
In this research, buildings and roads are independently extracted and 
evaluated due to the interest on the elements-at-risk for landslides in the 
study area. Some examples of ALS-derived building extraction are shown in 
Fig. 6.4. We extracted 137 buildings with height of up to 20 m. The building 
footprint area ranged between 9 and 3875 m2. The buildings were detected 
at the rate of 88.6% (completeness) and 90.0% in correctness. We attained 
higher correctness performance than the completeness due to the tendency 
of the building filter to produce less false positive than false negatives. The 
overall success of the extracted buildings was 80.7%. 
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Fig. 6.1: Topographic factor maps derived from ALS data. A) Topographic elevation: B) 
Slope Gradient: C) Slope aspect: D) Plan curvature. 
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Fig. 6.2: Landslide factor maps derived from ALS data, A) Land-cover; B) Road-cuts; 
C) Distance to lineaments.  
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Fig. 6.3: Existing factor maps (modified from Pradhan and Lee, 2009) in the Cameron 
Highlands. A) Geology: B) Soil types: C) Land cover derived from SPOT-5 image.  
 
Table 6.3: Classification accuracy of the land cover map produced using ALS data 
 Tea  

plantation (%) 
Agriculture 

(%) 
Secondary 
forest (%) 

Old-growth 
forest (%) 

Producer’s accuracy 88.9 88.6 87.4 89.0 
User’s accuracy 86.7 89.7 87.4 90.2 

 

 
Fig. 6.4: Examples of extracted buildings from ALS data– in agricultural zone (A) and 
tea plantation (B). 
 
Ma (2005) reported an average of 86.5% correctly detected buildings in an 
area with low topographic roughness. With a combination of multi-spectral 
data and a high resolution orthophoto, Rottensteiner et al. (2005) achieved 
94 and 80% for completeness and correctness, respectively. Sohn and 
Dowman (2007) found an overall quality of 80.5% with detection rate of 
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88.3% and more than 90% for correctness. The result presented here is 
promising because the building extraction was done in a tropical area with a 
low density ALS data.  
 
In this research, the produced road map resulted in a 58% increase in the 
total road length in comparison to the existing road map published by PWD. 
The mean road gradient ranged between 4 and 32o, with a standard deviation 
of 13.60. The accuracy was 0.68 m (RMSE) compared to the 32 GPS points 
measured in the field. White et al. (2010) reported similar results using 126 
reference points. This assessment is one way to evaluate the produced road 
map from the remotely sensed data. In the field, we observed that location of 
the roads have significant relationship with the past and present landslide 
occurrences, largely reported occur along the cut-slopes.  
 
From the ALS-derived hillshading image four times more geological 
lineaments were mapped as compared to the national geology map, which 
was based on aerial-photos and satellite image interpretation coupled with 
field investigation. Major lineaments are mostly oriented northwest to 
southeast in the study area. Interpretation of ALS data also revealed 
evidences of neo-tectonic activities (e.g. subsidence zones with horsts and 
grabens, shutter ridges, displaced terraces). 

6.3.3 Landslide susceptibility analyses 
The landslide inventories presented earlier were used to generate two 
landslide susceptibility maps (Fig. 6.5). In both cases all landslides were 
used, without differentiating them according to the type. Also the total 
landslide areas were used, and not only the scarp areas. In order to produce 
the final training data, an equal amount of non-landslide points were sampled 
randomly for each landslide inventory. We computed the backward 
conditional logistic regression equations for the models using the two 
landslide inventories. 
 
For the ALS-derived landslide inventory the following equation was used: 
zALS = (TOE x 0.0005) + (SLG x 0.0212) – (PLC x 0.0032) + (STI x 0.0067) – 
(TWI x 0.0287) – (LBU x 1.9909) – (LTP x 0.1973) + (LAG x 0.2167) + (SLE 
x 0.0728) + (SLS x 0.2829) + (SLW x 0.3179) – (SLN x 0.1051) – (DRN75 x 
0.0780) – (LIN100 x 0.0779) + (LIN200 x 0.1566) + (LIN300 x 0.2875) + 
(LIN400 x 0.5997) + (LIN500 x 0.3405) + (ROC200 x 0.3048) – (ROC400 x 
0.1219) + (ROC600 x 0.3781) + (ROC800 x 0.1213) – 0.386722468182 
 
For the historical landslide inventory the following equation was used: 
zHIS = (TOE x 0.0014) + (LBU x 20.3006) + (LRO x 0.5636) – (LOF x 1.8077) 
– (SLE x 0.3318) + (DRN75 x 0.3310) + (LIN100 x 1.1477) + (LIN200 x 
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1.0704) + (LIN300 x 1.1292) + (LIN400 x 1.2953) + (ROC200 x 21.2156) + 
(ROC400 x 20.6344) + (ROC600 x 19.6558) – 22.990563 
 
Table 6.4: Factors used in the logistic regression equations using the ALS-derived 
inventory and the historical landslide inventory 
 Meaning ALS derived 

landslide 
inventory (ALI) 

Historical 
landslide 

inventory (HLI) 
TOE Topographic elevation 0.0005 0.0014 
SLG Slope Gradient 0.0212 - 
SLE Slope aspect : East 0.0728 -0.3318 
SLS Slope aspect: South 0.2829 - 
SLW Slope aspect: West 0.3179 - 
SLN Slope aspect: North -0.1051 - 
PLC Plan curvature  0.0032 - 
STI Sediment transport index  0.0067 - 
TWI Topography wetness index  -0.0287 - 
DRN75 Distance to drainage network  -0.0780 0.3310 
LBU Buildings  -1.9909 20.3006 
LRO Roads  - 0.5636 
LTP Tea plantations  -0.1973 - 
LAG Agriculture  0.2167 - 
LSF Secondary forests  - - 
LOF Old-growth forests - -1.8077 
ROC200 0-200 m from roads 0.3048 21.2156 
ROC400 200-400 m from roads -0.1219 20.6344 
ROC600 400-600 m from roads 0.3781 19.6558 
ROC800 600-800 m from roads 0.1213 - 
LIN100 0-100 m from lineaments -0.0779 1.1477 
LIN200 100-200 m from lineaments 0.1566 1.0704 
LIN300 200-300 m from lineaments 0.2875 1.1292 
LIN400 300-400 m from lineaments 0.5997 1.2953 
 
The resulting landslide susceptibility maps are shown in Fig. 6.5. It is clear 
that these two maps have very different patterns. The HLI susceptibility map 
contains large parts of the area that have very low landslide susceptibility. 
This is due to the fact that the HLI contains landslides that have mainly 
occurred along the roads. Apart from the roads several buffer zones at 
different distance from roads and from lineaments determine the 
susceptibility pattern. The pattern of the landslide susceptibility map for the 
ALI is much more complex, which is also caused by the wide distribution of 
the ALI inventory throughout the study area. 
 
The landslide susceptibility analysis shows that no single landslide recorded in 
the historical inventory occurred in the forested area, which is mainly due to 

112 



 

the fact that these landslides were not mapped using aerial photo-
interpretation. With ALS data, many more landslides can be found beneath 
forests and technically providing a much better scenario on landslide 
distribution over the region. However, limited characteristics of each landslide 
or even with unknown ages may lead to a different way of treating such data 
input in the susceptibility analysis.  
 
The accuracy of the susceptibility maps is presented in Table 6.5 and Fig. 
6.6. From the 1014 landslides in the ALS-derived map only 59% were 
correctly classified in the landslide susceptibility map, compared to 90% of 
the 55 landslides in the historical inventory. Also the AUC value for the 
susceptibility maps generated from the historical landslide inventory is much 
higher than that for the ALS derived map.  
 
Table 6.5: Accuracy assessment of the landslide susceptibility maps considering the 
correctly classified landslides and the area under ROC curve statistics 

Landslide inventory 
used 

Number of 
landslides 

Correct classification 
percentage for the 

landslide data 

Area under ROC 
curve (AUC) 

ALS-derived 
landslide map  

1014 59% 0.613 

Historical landslide 
inventory map 

55 90% 0.836 
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Fig. 6.5: Landslide susceptibility maps generated using different landslide inventories. 
A) ALS landslide inventory; B) Historical landslide inventory map. 
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Fig. 6.6: ROC curves for landslide susceptibility maps produced based on: A) ALS-
derived landslide inventory map, and (B) historical landslide inventory. 

6.4 Discussion and conclusions 

The results from the landslide susceptibility assessment show that one has to 
be very careful with the interpretation of the susceptibility maps and the 
related accuracy measures. When comparing the two landslide inventory 
maps, it is clear that the ALS derived inventory contains many more 
landslides, which are more equally distributed throughout the study area, and 
for which the date of occurrence is not clear. The landslides might have 
occurred under quite different conditions than that prevails today. Therefore 
the use of factors that are representative of the current situation might lead 
to misleading results. For instance the vegetation cover might have been 
considerably different at the time of occurrence of these landslides, than the 
tropical forest cover that is prevailing today. Also there exists a possibility 
that these landslides might have been triggered by earthquakes in the past. 
This could be related to the evidences of neotectonic landforms based on ALS 
derived stereo-image interpretation.   
 
The factor maps used in this study do not seem to be able to provide the 
unique combinations of conditions under which the landslides occurred in the 
past. This can be due to several reasons. One important factor is that the 
landslides mapped from the ALS images consist of different types, which may 
have specific combinations of causal factors. Also the landslides occur 
throughout the area, in different slope classes, topographic conditions and 
land cover classes, so that no clear signatures can be seen in the resulting 
susceptibility map, and therefore it has a very low predictive power.  
 
The historical landslide inventory on the other hand consists of a limited data 
set of landslides that have occurred along the road, mainly in relation to the 
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collapse of road cuts, or failure of the upslope part of these cutslopes. The 
landslides have been extracted from archives, and cover a period of 21 years. 
The susceptibility map has a clear pattern, related to the existing road 
network. However, this landslide susceptibility map doesn’t imply that the 
areas further away from the road are safe in terms of landslide occurrence. If 
a new road would be constructed in the areas that are now indicated as 
having a low landslide susceptibility, this would alter the initial conditions and 
this could lead to the occurrence of landslide in those locations.  
 
This study clearly indicates that it is highly relevant to generate a 
comprehensive landslide inventory, including landslides that have occurred 
longer ago. However, these should not be used in a subsequent landslide 
susceptibility assessment, as the conditions under which they have occurred 
might be substantially different than those prevailing now or in the near 
future. Therefore the best way to generate landslide susceptibility maps, is to 
use the historical landslide inventory as a basis for the statistical analysis, 
and to use the ALS derived inventory later as a separate legend class in the 
susceptibility map.  
 
The initial aim of this study was to investigate whether it is possible generate 
most of the input data for landslide susceptibility assessment (consisting of 
the landslide inventory and the conditioning factor maps) from ALS data and 
used them for landslide susceptibility analysis. The existing topographic map 
produced by the JUPEM has 10 m contour interval; and is outdated in parts of 
the area, where recent road and building construction has taken place. The 
altitude information depicted on a topographic map for forested areas is often 
not very accurate (Will, 2002) and even more so in a tropical rainforest 
landscape. Kraus (2007) noted that the accuracy of ALS-derived altitude is 
superior to photogrammetric-derived data in densely forested and built-up 
areas as the latter depends on the natural sunlight, flying height, camera 
types, and the poor visibility of ground points from at least two imaging 
positions. Low density ALS data can also provide very useful information 
related to the vegetation, anthropogenic and geological factors. The 
vegetation characteristics were extracted from ALS data and are more 
accurate than the use of normalized difference vegetation index maps 
(NDVI), which are generated from satellite images and are widely applied in 
landslide susceptibility studies.  
 
Anthropogenic activities are considered one of the most important causative 
factors for landslides (Douglas, 1999; Chow et al., 2003; Pradhan and Lee, 
2010). In the field we observed a detrimental effect of human activities such 
as the conversion of forest to intensive agricultural activities (e.g. vegetables, 
floriculture, and tea plantation) and road construction. In the field, we also 
observed that a large number of landslides have occurred on the secondary 
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roads, which are often used for local agriculture activity, and not always well-
maintained by the local government agencies. The relation between roads 
and landslide occurrence was very clear when using the recent historical 
landslide inventory, but the relation was completely lost when using the 
larger ALS derived landslide inventory map.  
 
It is crucial to incorporate the road-cut information into a susceptibility 
modelling for predicting future landslides (Petley et al., 2007). In literature 
landslides are reported to occur much more frequent (with a maximum up to 
350 times) than in virgin forests (Gray and Megahan, 1981; Amaranthus et 
al., 1985; Larsen and Parks (1997). In future work, the road condition (e.g. 
good, partly damage, and damage) should also be taken into consideration 
for predicting the future landslides. The distance buffers used around the 
roads should in future research be limited to the direct surrounding and the 
slopes that are influenced by the road cuts only. The result of the 
susceptibility assessment seemed to show better results for the map based 
on historical data in comparison to the ALS data. The historical landslide 
inventory contains substantially less landslides with smaller sizes that have 
occurred mainly along the main roads or the ones that caused fatalities. The 
ALS-derived landslide inventory maps, on the other hand, contain many more 
landslides, which are distributed all over the area, and have a very different 
size-frequency distribution. The ALS derived inventory map does not contain 
information on the relative age of the landslides, and that is also the main 
problem in using such a map in a susceptibility assessment. Statistical 
susceptibility assessment assumes that conditions that have led to landslides 
in the past can be used to predict landslides in the future. A landslide 
susceptibility map is generated for the coming years, and assumes that the 
conditions that are used in the assessment remain constant. For instance the 
construction of a new road in areas indicated as low susceptible in the map 
generated using the historical inventory (See Fig. 6.5B) will alter the land 
cover conditions considerably and therefore the susceptibility level.  
 
Based on the landslide susceptibility maps produced in this research, some 
further research is required. In particular, to test several more scenarios on 
different factors maps for different landslide input maps. For examples, the 
land use class agriculture, the road related factors, the forest related factors, 
the importance of buildings as causal factors for landslides, including 
cutslopes behind buildings. The landslide susceptibility assessment requires a 
data set of landslides in combination with the various terrain factors that 
were existing when the landslides occurred. This requires a landslide data set 
with known ages, and the ALS derived map contains a large number of 
landslides that might be very old, and may have been conserved under the 
dense forest vegetation for a considerable number of years. Therefore using 
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the complete set of landslides without knowing their relative age is 
problematic.  
 
The role of land cover as a contributing factor in landslide susceptibility 
assessment in tropical areas should be reconsidered. Too often researchers 
only use a (recent) land cover map, without taking into account land cover 
changes that might be more indicative for landslide occurrence. Therefore it 
is important to generate land cover maps from different time periods and use 
the land cover changes in relation to the landslides that have occurred in the 
same period of time. Unfortunately in this study no older land cover maps 
were available. 
 
The factor maps used in landslide susceptibility assessment are often the 
ones that are relatively easy to obtain. For instance the topographic and 
hydrologic factors derived from Digital Elevation Models, or land cover classes 
derived from (satellite) images. However, it is much more difficult to 
incorporate the very relevant factors related to lithological types, weathering 
zones, soil types and soil depth. In this study these were largely ignored, due 
to lack of data. Future work should also concentrate on the use of ALS data 
for deriving indicators for soil type and soil depth mapping, in combination 
with field information and geostatistical analysis (Kuriakose, 2010).Further 
research is also needed to separate the landslide types and generate different 
susceptibility maps for different sets of causal mechanisms.  
 
We conclude that ALS data can be an important contribution to generate both 
landslide inventory maps and contributing factors maps used in landslide 
susceptibility assessment. In combination with good historical information, 
the ALS-derived landslide susceptibility map can give a more complete 
picture than using only recent historical landslide inventories (Pradhan and 
Lee, 2010). The interpretation of stereoscopic ALS-derived images is a 
promising tool to identify old landslides hidden under forest canopy 
(Brardinoni et al., 2003; Korup, 2005). These should not be included directly 
in the statistical modelling but should be included in the final susceptibility 
map as a separate legend class, indicating the location of past landslides.  
 
A higher accuracy indicator of a landslide susceptibility map, e.g. a higher 
value of the AUC, is not an absolute indicator for the quality of the map. The 
quality of the input data, both in terms of the landslide inventory and the 
factor maps used, and their temporal variation are equally important to 
consider.  
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Chapter 7 
 

Tree growth anomalies induced by landslides: 
Insight from high-density airborne laser 

scanning data* 

7.1 Introduction 
Landslides play a significant role in short- and long-terms geomorphic 
evolution and hillslope morphology in mountainous landscapes. Landslides 
can be life threatening to inhabitants and cause damage to infrastructures. 
These mass-wasting processes also contribute to forest disturbances, and 
increase the heterogeneity of forest ecosystems in space and time (Frolking 
et al., 2009). It is important to document and map the extent of the slope 
failures, and analyse their activity. 
 
Landslide activity analysis is a crucial aspect of landslide inventory mapping 
and it is important for assessing landslide susceptibility, hazard, and risk. 
Modern remote sensing based approaches have revolutionized landslide 
hazard and risk assessment in mountainous regions. Remote sensing enables 
the parameterization of morphology, vegetation, and drainage conditions of 
the slopes (Soeters and Van Westen, 1996). In particular, vegetation 
characteristics are by far less investigated, because they are limited by the 
capability of remote sensing instruments to detect variability of the 3D-
forest-structure (Frolking et al. 2009).  
 

* This chapter is based on:- 
Razak, K.A., Bucksch, A., Damen, M., Van Westen, C.J.W., Straatsma, M.W., de Jong, 
S.M (2013) Characterizing tree growth anomaly induced by landslides using LIDAR. In: 
Landslide Science and Practice: Landslide Inventory, Susceptibility and Hazard Zoning, 
(Eds.) Margottini, C., Canuti, P., Sassa, K. Springer-Verlag Berlin Heidelberg, Germany, 
235-241.  
Razak, K.A., Bucksch, A. (2013) High density airborne lidar estimation of disrupted 
trees induced by landslides. In: Proceedings of IEEE International Geoscience and 
Remote Sensing Symposium, Melbourne, 21-26 July 2013.  
Gode, A., Razak, K.A., (2013). Characterization of forest canopy gaps caused by 
landslides using high density airborne laser scanning. In: Proceedings of International 
Symposium & Exhibition on Geoinformation (ISG 2013). Kuala Lumpur, Malaysia 24-25 
September 2013. 
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The characterization of tree growth anomalies caused by landslides is a key 
component in the assessment of landslide activity in forested mountainous 
landscapes. Parise (2003) described that trees can be good indicators of local 
deformation and different epochs of displacement. To relate tree anomalies to 
landslide occurrence and activity, the identification and characterization of 
disrupted trees in a rugged terrain is crucial. Landslide activity assessment is 
traditionally undertaken by comparing the morphological and vegetation 
characteristics from stereoscopic images of different years, in concert with 
field verification. Although field mapping yields greater accuracy, it is limited 
to smaller areas at the expense of high labor costs (Haneberg et al., 2009). 
Particularly identifying the location and geometry of affected trees is a major 
problem. Remote sensing based approaches are the only means for mapping, 
monitoring and characterizing landslides over larger and inaccessible areas. 
Airborne laser scanning (ALS) is among the growing topographic mapping 
techniques, but few attempts have been made to analyse vegetation 
indicators from ALS data as an indicators of landslide processes. Mackey et 
al. (2009) manually identified the location of individual trees from a single 
ALS image and five historical aerial photos. These trees were tracked to 
determine their displacement over 42 years in order to quantify decadal-scale 
slide deformation. The authors also remarked that a large number of trees 
could not be identified on ALS and aerial photos, due to canopy occlusions 
and low quality of data sources. Mackey and Roering (2011) objectively 
analyzed the local morphology of complex landslides using low density ALS 
data in a temperate environment region, and addressed the difficulty to 
distinguish landslide activity, i.e., active and dormant without additional 
information on feature activity.  
 
Van Den Eeckhaut et al. (2009) demonstrated the local reactivation due to 
landslide activity by observing tree distortions associated to dendrometry and 
dendrochronology studies. Dendrometry is the branch of botany that is 
concerned with the measurement of the various dimensions of trees, such as 
their diameter, size, shape, age, overall volume, thickness of the bark, as 
well as the statistical properties of tree stands (Wikipedia, 2013). 
Dendrochronology is the formal term for tree ring dating, the archaeological 
dating method that uses the growth rings of long-lived trees as a calendar. 
The method requires samples in the form of tree discs or cores. Discs are is 
used for recognizing locally missing tree rings, but are lethal for the tree, 
coring results in less destruction for the trees, but it provides less 
information. The quality and quantity of tree samples taken during the data 
acquisition are important aspects for acquiring reliable results (Braker, 2002; 
Stoffel and Bollschweiler, 2008). These methods, however, are time 
consuming and require an intensive field investigation and subsequent 
laboratory analysis, resulting in a relatively low number of samples, small 
examined area, and limitations with respect to tree species.  

120 



 

Biochemically, trees optimize the amount of light penetrating the 
photosynthetic active areas, which results in a vertical growth direction. Tree 
deformations induced by geomorphic processes have been discussed mostly 
related to irregularities in the tree-ring pattern caused by ecological and 
mechanical stress (Stoffel, 2006; Van Den Eeckhaut et al., 2009). The former 
describes the influence on the entire tree population in an area, whereas the 
latter gives insight into the individual trees affected by a particular 
geomorphic process.  
 
Various bioindicators for landslides exist, such as inclination and orientation 
of the tree trunk, canopy gaps, tree growth termination and suppression, 
asymmetric tree crown, root breakages, swelling, epicormic shoot, and 
branchiness (Shroder, 1978; Braam et al., 1987; Clark, 1990; Wiles et al., 
1996; Van Den Eeckhaut et al., 2009). Fantucci (1999) reported that stem 
tilting is one of most common effects as a result of landslide activity. The 
physical reactions can be used to describe a relationship of stressed 
vegetation and the different landslide types in the areas. Tilted trees were 
used to express the landslide type with a translational sliding, whereas 
bended trees are a result of rotational-slide type. Trees in rotated blocks or 
reverse slopes are often inclined upslope, toward the upper area. Disturbed 
trees attempt to recover a vertical growth direction after a tilting event 
(Mattheck 1993; Carrara and O’Neill, 2003; Stefanini, 2004). The reaction 
wood growth can be observed in the tree rings, and from the curvature of 
trunk. Further information on the typical tree response to earth surface 
processes, see Stoffel (2006) and Stoffel and Bollschweiler (2008) for an 
extensive review. The existence of forest canopy openings or small, local 
gaps is important in the study of forest ecosystems (Runkle, 1981).  
 
Forest canopy gaps can be defined depending on the causes of the gaps and 
types of detection methods used. However, there is no universal definition of 
what constitutes a canopy gap (Marthers et al., 2008). Runkle (1981) defined 
gaps in the field as the ground area of a canopy opening extending to the 
vertical projection of the canopy of the surrounding trees. Blackburn and 
Milton (1996) defined forest gaps in remote sensing imagery as an open 
space between high canopies, and above the low vegetation. Forest canopy 
gaps can also be defined in the context of small scale forest disturbances, as 
holes or opening in the forest canopy at a certain height, due to fall or death 
of one or more trees (Vepakomma et al., 2008; Frolking et al., 2009). Gaps 
are often defined either from field measurement or from remote sensing 
imagery (Broadbent et al., 2008). In practice, ground measurements are 
costly and time consuming, and the interpretation of spectral remote sensing 
imagery may be hampered by shadows, lack of contrast, or varying sun 
incidence angles (Runkle, 1991; Fox et al., 2000; Vepakomma et al., 2008; 
Koukoulas and Blackburn, 2004). Koukoulas and Blackburn (2004) developed 
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a method to detect gap features in a broad leaved deciduous forest, using an 
ALS-derived canopy height model (CHM). Zhang (2008) implemented a 
mathematical morphology-based approach for extracting gaps in mangrove 
forests using ALS data. Gap fraction has not been evaluated for forested 
landslides.  
 
A stand of trees displaced from their normal vertical alignment and/or tilting 
at various orientation angles is frequently referred to as so-called ”drunken 
trees” phenomenon (De Villiers, 2001; Alexandrowicz and Margielewski, 
2010). Typically, this phenomenon results from melting permafrost, frost 
heaving, forested active rock glaciers and earthquakes. However, few studies 
have been published related to landslide related “drunken tree” phenomena. 
So far, no literature was found that related laser-derived parameters to tree 
growth anomalies caused by landslides. 
 
Airborne laser scanning (ALS) data has been widely used for mapping, 
classifying, and characterizing landslides that are located in the areas 
sparsely or completely covered by dense vegetation (Schulz, 2007; Van Den 
Eeckhaut et al., 2007; Kasai et al., 2009; Chapter 3, 4). ALS has also been 
used in many studies of vegetation vertical structure, tree height, biomass 
and wood volume (Lefsky et al., 2002; Lowman and Rinker, 2004; Frolking et 
al., 2009). Few attempts have been made to utilize ALS data to represent 
tree structures that may be indicative of landsliding, because the required 
very high point density of ALS data and the relatively small market value of 
these stands.  
 
The objective of this study is to provide a better insight into the use of high 
density ALS (HDALS) data: (i) to accurately map different types of landslides 
and kinematic zones, (ii) to characterize disrupted trees induced by 
landslides, and (iii) to evaluate the statistical difference of relationship of 
ALS-derived disrupted trees in landslide and non-landslide areas. HDALS data 
was used to identify individual trees and to characterize: i) forest canopy 
gaps, ii) dissimilarities of tree height, and iii) single tree irregularities (e.g. 
tree inclination and orientation). We developed and tested the methodology 
over the forested landslides in the Bois Noir. A detailed description of the 
study area was given in Chapter 2. 

7.2 Materials and methods 
This section describes the data and methods to link vegetation anomalies to 
landsliding. The methods comprise of four major components (Fig. 7.1): data 
acquisition (ALS and field), landslide topographic analysis, extraction of ALS-
derived disrupted trees, statistical tests of each tree growth anomaly and 
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activity assessment with the support of, morphological changes (2007-2009 
ALS data) and field evidences. 

7.2.1 Airborne laser scanning measurement 
Using the RIEGL laser system, the HDALS dataset was acquired in July 2009 
in Bois Noir (Table 7.1). The ALS campaign was carried out by the Helimap 
company using a helicopter flying about 300 m above the ground. Data were 
acquired in several flight lines over the same area to increase the point 
density of the ALS data. We obtained about 214 million points with a mean 
point density of 170 points m-2.  
 
Table 7.1: Characteristics of the high density airborne laser scanning campaign in Bois 
Noir, France 

Acquisition (month/year) 
 

July 2009 

Laser Scanner 
 

Riegl VQ480i 

IMU system  iMAR FSAS  
(record data at 100Hz) 

GPS system  Topcon Legacy  
(record data at 5 Hz) 

Laser pulse repetition rate 300 kHz 
Measurement rate Up to 150 kHz 
Beam divergence 0.3 mrad 
Field of view 60o 
Scanning method Rotating multi-facet mirror 
Point density 170 points m2 

7.2.2 Landslide DTM and inventory mapping 
The DTM for the study areas was generated using the method described in 
Chapter 3. The DTM, with a 25 cm cell size, was visualized in stereo, overlaid 
with the topographic openness map. As indicated in Chapters 3 to 5, the 
interpretation of slope movements from ALS-derived images was based on 
manual identification of elements associated with slope movements and 
interpretation of their significance to the slope instability process. ALS-
derived images were evaluated at scales ranging from 1:30000 to 1:2000 
and the mapping was executed at scales 1:3000 to 1:5000. We also used an 
existing landslide inventory in Bois Noir (Thiery et al., 2003, 2004) for 
reference, which was made through air-photo interpretation (1:25000-scale), 
field surveys (2002, 2003) and historical records. ALS-derived landslide map 
was verified in the field. The landslide and non-landslide zones were used to 
analyze the statistical significance of differences in extracted tree growth 
anomaly parameters. 
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7.2.3 Field data collection  
Field campaigns were carried out in June 2009, June 2010, and September 
2011 to measure biometric data of 560 individual trees. We applied a 
purposive sampling scheme, because neither a random nor a systematic 
scheme proved feasible given the ruggedness and poor accessibility of the 
terrain. About 60% of the tree samples were collected on landslides, the 
remainder was located on the stable areas nearby. The measured single tree 
attributes consisted of location (x, y, z), tree height (TRH), tree inclination 
(TRI), tree orientation at breast height (TRO), diameter at breast height 
(DBH), tree canopy width (TCW), and forest canopy gaps (FCG).   
 
Geolocation of trees 
Accurate geolocation of reference data was required to link field 
measurements to ALS-derived products. In order to accurately position 
individual trees, a combination of differential GPS (Leica GPS system 1200) 
and total station (Sokkia reflectorless SET4130R3) was used. We utilized 
different GPS techniques i.e. real-time kinematic (RTK), rapid-static and 
static, depending on the density of the vegetation cover. A local surveying 
scheme using a total station was established to measure trees with a dense 
canopy.  
 
Two available permanent GPS stations of RENAG (REseau NAtional GPS) and 
two geodetic reference stations established in the Bois Noir catchment were 
used to create local geodetic stations. Geodetic reference stations were setup 
and used as control stations at a catchment scale, whereas local geodetic 
stations were setup for small study plots. Partly open sky view of their 
locations was chosen for acquiring optimal reception of the GPS signals and 
reducing multi-path effects. An observation of 6-12 hours for each geodetic 
station was required. Post-processing on the GPS data was performed by 
using the coordinate references from the RENAG stations. Horizontal and 
vertical precision of geodetic stations were on average 8 and 13 mm, 
respectively.  
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Fig. 7.1: A methodological flow-chart for assessing landslide activity using ALS-derived 
disrupted vegetation with supportive data. 
 
The canopy density limited the reception of the GPS signal, which made the 
time required for geolocation very long. Therefore, a total station was set up 
in an open spot. Position and northing of the total station was determined 
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using the GPS. Geolocation of individual trees was subsequently carried out 
with the total station. All the coordinates were projected onto the Lambert 
zone III using Lambert Conformal Conic with the NTF (Nouvelle Triangulation 
de France) datum.  
 
Measurements of tree attributes 
Each measured single tree was characterized by 13 attributes (Table 7.2). 
Tree height was measured using a Nikon handheld laser range finder. Several 
readings of the crown apex were taken for each single tree. The mean of the 
tree heights was subsequently logged. Only dominant trees were considered 
because the fieldwork in September 2011 was taken two years after the ALS 
flight campaign, and rapid development of undergrowth vegetation during 
this time would complicate the analysis. We measured the inclination and 
orientation at a height of 1.3 m. Also measurements of tree diameter were 
made at 1.3 m height (so called breast height). Tree inclination was 
measured ranging between 0 (straight) and 90 degrees (fallen tree). A field 
compass was used to measure the orientation of disturbed trees (0-360o).  
 
For sampling forest canopy gaps, field measurements were carried out 
following the procedure given by Runkle (1992). We measured along 25 m 
line transects and gap positions were recorded using GPS and total station. 
The length of major and minor axis of gaps was measured using a measuring 
tape, and fish-eye photos were taken for each gap as reference (Fig. 7.3). 
Later the area of canopy gaps was computed based on the aforementioned 
parameters collected in the field. The gaps should have sky exposed between 
the tree crowns. We determined the canopy gaps in the field based on two 
thresholds: height of understory should not exceed 5 m and the vegetation in 
the vicinity has to be higher than 7 m. In total, we collected 43 FCG in 10 
transects covering both landslides and non-landslide areas.  

7.2.4 Extraction of tree height and gap fraction from ALS 
data 

We utilized the TreeVaW (Tree Variable Window) software, an integrated ALS 
processing software package for detecting dominant single trees and 
estimating tree height and crown width (Popescu et al., 2002; Popescu and 
Wynne, 2004). TreeVaW requires a gridded canopy height model (CHM), that 
spatially explicit represents the vegetation height above the ground. The CHM 
was computed by subtracting the digital terrain model (DTM) from the digital 
surface model (DSM), the highest return per pixel, which represents the top 
of the canopy. All the models were generated with a 0.15 m cell size. Given 
the fact that HDALS data was used in this study, the error in the rasterization 
(conversion from point data to regular grids) is expected to be small given 
the high point density. 
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Table 7.2: Tree variables measured in the landslide and non-landslide sites (N/C: N: 
numerical data; C: categorical data) 

Variable Unit N/C Method 
Tree location (TRL) Local coordinate 

system (m) 
N dGPS and total station 

Tree height (TRH) m N Nikon handheld laser range-
finder 

Tree crown width (TCW) m N Measuring tape 
Tree diameter at breast 
height (DBH) 

cm N Calliper 

Tree inclination (TRI) degree N Suunto PM5 clinometer 
Tree orientation (TRO) degree N Suunto KB-14 azimuth 

compass 
Forest canopy gaps 
(FCG) - location 

Local coordinate 
system (m) 

N GPS, total station  

Forest canopy gaps - 
major and minor axis 

m N Measuring tape 

Forest canopy gaps - 
neighbouring trees  

- N Determined in the field 

Tree species - C Expert knowledge 
Plot location Landslide, non-

landslide  
C Determined in the field 

Landslide types and 
activity 

Classification by 
Varnes (1978) 

C Determined in the field 

 
TreeVaW carries out a single tree delineation using an adaptive technique for 
local maximum focal filtering. This technique works on the assumption that 
the highest point in a local neighbourhood constitutes the highest leaf or twig 
in the crown apex. The algorithm reads the height value at each pixel and 
calculates dynamically the variable window size to search the local maximum 
based on biometric relationship between tree height and crown size, i.e., the 
higher the tree the larger the crown width. Outputs are delivered as position 
(x, y) of single trees, tree height, and crown radius. 
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Fig. 7.2: Field photos showing the data collection for tree inventories related to 
landslides. A) GPS observation in Bois Noir , B) Tree height measurement using a laser 
range finder, C) Single tree irregularity (inclination and orientation) measurement, E) 
Geolocation of trees using a total station, F) Canopy gaps identification in Bois Noir 
area.  
 

 
Fig. 7.3: Forest canopy gaps across the healthy and disturbed forests. A) Canopy gaps 
are relatively small in the stable area. B) Large gaps created in the landslide area. 
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TreeVaw tree height prediction was evaluated against field measured tree 
heights for 560 trees by means of a linear regression analysis. Tree position, 
crown width and height were used in the evaluation, and the closest trees 
from the field data were chosen. TreeVaw tree height was used as 
independent variable, and field tree height was the dependent variable. The 
root mean square error (RMSE), and the coefficient of determination (R2) 
(Mayer and Butler, 1993) are presented, where RMSE provides an estimate of 
the overall error, and R2 provides the strength of the linear relationship. 
 
Analyzing forest canopy gaps induced by landslides 
To identify forest canopy gaps, we used gap indicator function G for a given 
cell at (x, y) on the CHM (Vepakomma et al., 2008) defined as (Eq. 7.1): 

otherwise
ayxCHMif

yxG
),(,

),( 1
0  (7.1) 

where a = 5 m was set as height threshold.  
 
To identify forest canopy gaps, a multi-step approach (segmentation, and 
classification, reshaping) was used in eCognition Developer 8, which is 
object-based image analysis software (Baatz and Schäpe, 2000). The first 
was to separate forested areas from non-forested areas, because large gaps 
may also be caused by roads, or other land non-forested land cover. The 
chessboard segmentation was applied to the CHM to create homogeneous 
segments. The segments were classified into forested (including gaps), and 
non-forested (i.e., gullies, roads, meadows, and bare-soils) using a 
classification algorithm so called an assign class. The removal of non-forested 
areas was done using the remove objects algorithm in a reshaping step. 
Forested segments with a height of less than 5 m were classified as a gap. 
This led to elongated gap shapes in case a small opening between two trees 
linked two larger gaps. To remove these links between two gaps the gap map 
was filtered using a morphological opening filter, followed by a morphological 
closing filter. In the next step, canopy gaps classes were merged into a single 
class using the merge region algorithm. A detailed parameterization of rule 
sets is given in Gode (2012). In ArcGIS, we produced vector outlines of the 
gaps and computed gap area using standard GIS routines. Gaps smaller than 
1 m2 in size were eliminated, based on the assumption that smaller gaps 
could be the result of penetration of the laser pulse into the tree crowns.  

7.2.5 Tree inclination and orientation from 
skeletonization 

Tree inclination and orientation were calculated by skeletonizing the point 
cloud of a single tree using the SkelTre software (Bucksch et al., 2010; 
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Bucksch, 2011). A skeleton is a 3D line topology describing the tree shape, 
and consists of the trunk and braches of the tree (Fig 7.4). Ideally, the 
skeleton is centered within tree trunk and branches and is connected 
whenever the tree is connected. Skeletonizing is achieved by creating a 
octree, which subdivides the point cloud into cubical octree cells (not shown 
in Fig. 7.4). Each octree cell encloses a subset of the original point cloud. 
Further information about the octree is given in Bucksch et al. (2010). The 
face dual of the octree cells is the octree-graph to be retracted to the 3D 
topology of the skeleton (Fig. 7.4B). The required input parameter is the 
minimum cell size to terminate the octree subdivision, set to 1 m in this 
study. The retraction process is driven by the selection of suited vertex pairs 
to be averaged by a set of rules until the final skeleton is derived (Bucksch et 
al., 2010). The output of SkelTre is a graph consisting of vertices and edges 
(Fig. 7.5a). Each vertex is embedded into a local weighted center of gravity 
of the point cloud and is associated with a Cartesian xyz-coordinate in an 
Euclidean space. The neighborhood relation between the vertices is 
expressed by linking neighboring vertices with an edge (Bucksch et al., 2010; 
Bucksch, 2011). The skeleton graph is rooted at the vertex having the lowest 
z-coordinate value (Fig. 7.5a), which is assumed to be the start of the tree 
trunk on the ground. 
 

 
Fig. 7.4: A delineated HDALS tree (A) and the derived SkelTre-Skeleton (B) used to 
access point cloud points at predefined height levels along the tree trunk. 
 
Skeltree did not have a single tree delineation algorithm included, and 
required a point cloud of a single tree as input. Different automatic single 
tree delineation methods were tested to generate input for SkelTre: the 
normalized cut segmentation (Reitberger et al., 2009), and TreeVaW 
(Popescu et al, 2002). However, these algorithms did not provide 3D point 
clouds that represented only a single tree, as these methods assumed the 
trees to be near vertical. Because tilted trees did not meet this requirement 
many additional laser points would be included for a delineated tree. These 
additional points strongly influenced the derived skeleton. Therefore, we 
manually delineated a set of 560 trees in Quick Terrain Modeler software. 
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This manual step rules out the application to large areas, but for the goal of 
this research it suffices. 
 
The inclination (TRI) and orientation (TRO) of the tree were determined from 
the skeleton at 1.3 m height to match the height these parameters were 
measured in the field. The inclination is the angle derived from analysing the 
edge e crossing the 1.3 m tree height from the root vertex. Edge e connects 
vertices v1 and v2, where the z-value of v1 is smaller than the z-value of v2. 
The vector me = (v2 –v1) is taken to compute the inclination of the tree trunk 
as the deviation from the vertical in degrees (Fig. 7.3a). The orientation 
angle is derived from the parallel projection of me onto the xy-plane of the 
same edge. The angle between the projected vector me in the direction of the 
negative y-axis is taken as the orientation angle (Fig. 7.3b), which coincides 
with the northing on a compass.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.5 (a) A schematic skeleton graph of a delineated tree. The edge e connecting the 
vertices v1 and v2 around 1.30 m height is shown in green and a single tree 
orientation is computed as a direction from the root to the crown top vertices. (b) 
Calculation of the inclination and orientation angles. 
 
Predictive quality of the SkelTre-derived inclination and orientation was 
determined using linear regression. Field reference data were used as 
dependent variable and SkelTre output as independent variable. The 
regression computations were taken into consideration the directional and 
scalar data types. We also reported the RMSE and the R2 in the result section.  

7.2.6 Indication of landslide activity  
This section describes the statistical tests of each ALS parameter indicative to 
landslide activity. To support the landslide activity assessment, we used 
morphological changes between 2007 and 2009 from ALS data. The historic 
forest-landslide archive, as presented in Chapter 2 gives a good overview of 
events, but these are not georeferenced in any way.  
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The effect of landslides on tree growth anomalies was assessed based on the 
field measurements of the tree data, and based on the HDALS-derived 
metrics of the trees, subdivided in two classes: landslide, and non-landslide. 
These classes were used in an independent-samples Mann-Whitney U test. 
Our hypothesis is that, the trees in landslide areas differ in tree height, gaps, 
inclination and orientation compared to the trees in the stable terrain. In one 
of the study sites in Bois Noir (see the location in Fig. 2.4), stable and 
unstable areas were mapped by means of expert-based visual analysis.  
 
Morphological changes also indicate landslide activity. Therefore, we used 
two ALS DTMs (2007, 2009) over the Bois Noir area, and analysed changes in 
terrain height in the overlapping area. The ALS data acquired in 2007 had 
about 0.9 million points with a mean point density of 1 points m-2. The 
subtracted height differences were used to quantitatively investigate the 
surface deformation which can provides clues on landslide activity in the 
study area. 

7.3 Results 

7.3.1 Morphological characterization of landslide zones  
Interpretation of the 2009 DTM revealed that nearly all hill slopes appear to 
have been affected by mass-movements, as most slopes show typical micro-
morphology related to landslide activity. Stereoscopic ALS-derived images 
were used to map and classify a large number of landslides in the Bois Noir 
area (Fig. 7.6).  
 
About 60% of the total area showed clear signs of recent slope instability. 
Rock falls and debris flows are prevalent in the southern part of the 
catchment, whereas the rest of the study area is largely dominated by slide- 
and flow type movements. HDALS data was used to update the existing 
landslide inventory that was based on aerial photographs and satellite images 
in Bois Noir catchment (e.g. Thiery et al., 2004, 2007). It allowed a much 
better recognition of the individual morphological components of landslides as 
the HDALS data represents the terrain in a lot of detail whereas the optical 
data has serious limitations in densely forested areas. 
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Fig. 7.6: Landslides and non-landslide areas with indication of different types of slope 
failures as revealed by HDALS data in Bois Noir, Barcelonnette. 
 
Analyzing altitude differences using ALS data from different years 
ALS data from two years (2007 and 2009) were used to generate two DTMs, 
for the Bois Noir area which were subsequently subtracted in order to be able 
to detect displacements (Fig. 7.7). The overlap area of the two DTMs was 
smaller than the 2009. The altitude difference between the two years ranged 
between -5.9 and 6.6 m. The largest elevation difference that can be 
observed in the area was in the accumulation area of a flow-type mass 

133 



 

movement, where up to 6.6 meters of landslide materials were deposited. 
Flow-type behaviour was largely found in the eastern part of the study area 
and often characterized by lobes with concentric ridges and cracks. Lopez 
Saez et al. (2011) indicated that most of the landslide features in Bois Noir 
appear rather fresh and they show signs of recent landslide activity.  
 
The difference map also shows signs of misalignment of the two DTMs. An 
example can be seen in the north (see red arrows in the Fig. 7.7), where 
negative differences show on the west facing slope, and positive differences 
on the east face. Both slopes were classified as non-landslide areas (Fig. 
7.6). A sharp boundary separated the two regions. This implies east to west 
misalignment between the two flight strips that covered this area. The 
alteration of positive and negative differences was less visible in other 
regions.  

7.3.2 Field data analysis 
The distribution of tree species in the Bois Noir area based on the field data 
collection was about 75% (420) Pinus uncinata, 15% (82) Pinus sylvestris, 
and 10% (58) Larix decidua. Larix decidua is relatively taller with large 
diameter breast height (DBH) compared to other tree species. The 
descriptive statistics of the field data collected in Bois Noir show that 
landslides affect the tree metrics (Table 7.3).  
 
Trees in the landslide areas are relatively lower, have smaller crowns and 
diameter breast height, and are more inclined. In the Bois Noir area, large 
canopy gaps were presented in the landslide area, with a mean canopy gap 
area of 65 m2, whereas the value was only 16 m2 in the non-landslide areas. 
All tree parameters indicative to landslides in Bois Noir are significantly 
different at 95% confident level, with exception of tree crown width and 
diameter breast height. Both parameters showed -values higher than 0.05 
(see Table 7.3).  
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Fig. 7.7: Spatial height difference map computed from ALS DTM 2009 and 2007 in Bois 
Noir area, Barcelonnette France. See text for explanation. 

7.3.3 Tree height and canopy gaps 
The single tree delineation using TreeVaW resulted in about 80,000 individual 
trees. Prediction of field-measured tree height with linear regression showed 
a coefficient of determination of 0.80, with a RMSE of 1.4 m (Fig. 7.7a). 
TreeVaW under-predicts the tree height at tree heights between 5 to 12 m. 
Overall, this result is comparable to those presented by Popescu et al. 
(2002), who predicted dominant tree height, with R2 value of 0.84 in the 
healthy forest characterized by gentle slopes. 
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Table 7.3: Descriptive and Mann-Whitney U statistical tests of field-measured individual 
trees in landslide and non-landslide zones in the Bois Noir area, Francea 
 No. TRH TCW DBH FCG TRI TRO 

 
Landslide 
plots 

340 9.5 4.0 6.4 65.3 64 25 

Non-
landslide 
plots 

220 13.2 4.2 7.0 16.4 5.5 65 

-value 0.001 0.080 0.110 0.005 0.008 0.011 
 

a with TRH = Tree height in m, TCW = Tree canopy width in m, DBH = Diameter breast 
height cm, FCG = Forest canopy gaps in m2, TRI = Tree inclination in degree, TRO = 
Tree orientation in degree.  
 

 
Fig. 7.8: Scatter plots of ALS-derived tree growth anomalies versus field-derived data 
in the Bois Noir area. A) Tree height (TRH). B) Tree inclination (TRI). C) Tree 
orientation (TRO). D) Forest canopy gaps (FCG). Dashed lines represent y = x, solid 
lines give the regression lines. 
 
Forest canopy gaps were extracted using an object oriented method. Fig. 
7.8D shows the scatter plot of ALS-derived canopy gaps versus field canopy 
gaps. The coefficient of determination for canopy gaps was 0.798, with gaps 
were under-predicted across the study area. In the field, we observed that 
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the shapes of canopy gaps varied depending on the landslide types. For 
example, rock falls resulted in gaps that are elongated in the downslope 
direction, whereas complex landslides (e.g. rotational slide followed with 
earthflow) are likely to produce small gaps that are scattered over the area.  

7.3.4 Tree inclination and orientation 
Tree inclination (TRI) was predicted using the SkelTre skeletonization. The 
inclinations of the edges at 1.3 m correlated well with the reference data. The 
linear regression showed a coefficient of determination of 0.77 with a RMSE 
of 8.37  (Fig. 7.8B). The slope of the regression line was close to 1 indicating 
no bias in the method. Relatively few trees had inclinations between 10  and 
40 . In this range field inclinations were higher than the prediction of 
SkelTre. The tree orientation at breast height (TRO) was also compared 
against the field reference data (Fig. 7.8C).  
 
To visualize the joint distribution of the orientation and inclination of a set of 
trees we used a stereoplot (Fig. 7.9). A stereoplot shows the orientation of a 
tree as the northing. The inclination is indicated by the distance to the origin 
of the graph, with the origin giving a horizontal tree, and the edge of the plot 
giving a vertical tree. In the field, we observed drunken trees in a long and 
narrow landslide transport zone of a complex earthflow (see the location in 
Fig. 2.4; Chapter 2). Fig 7.9 presents a stereoplot of drunken trees in the 
active landslide area in Bois Noir with indication of tree point clouds. Fig. 
7.9B shows irregular trees oriented predominantly towards the North-East. 
Given a single tree delineation method that produces clean points 
representing tilted trees, this method can be applied over larger areas and 
linked vegetation to different landslide types.  

7.3.5 Disrupted trees and landslide activity 
Statistical tests of ALS-derived disrupted trees 
In order to analyze whether the tree characteristics measured from HDALS 
data are significantly different for active landslide zones and non-active 
landslide zones, statistical Mann-Whitney U tests were carried out. The 
results are shown in Table 7.4. Mean rank refers to mean rank score for each 
group of data and the significance of the difference is implied when the p 
value is below 0.05. The results show that all four forest parameters related 
to landslide disturbances have significant differences between active landslide 
zone and non-landslide zones. Trees in active landslide areas are more 
inclined than in the stable areas, smaller, and the forest has larger gaps than 
in the neighbouring non-landslide areas at the 95% confidence level. The 
hypothesis that no differences are present was refuted. This result for ALS-
based bio-indicators of landslide presence confirms the field-based relations 
presented in Table 7.3. 
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Fig. 7.9: Drunken trees characterized by HDALS. A) Point cloud of disrupted trees. B) A 
stereoplot showing the disrupted trees oriented at different angles. 
 
Table 7.4: Mann-Whitney U tests for tree structural parameters associated to landslide 
disturbance 

Parameter Landslide area Non-landslide area p-value 
n Mean rank N Mean rank 

Tree height 340 396.42 220 186.93 0.001 
Forest canopy gaps 25 27.02 18 16.03 0.002 
Tree inclination 340 375.85 220 210.17 0.011 

7.4 Discussion  
In the Bois Noir area, HDALS data were used to identify and map landslides 
beneath dense vegetation resulting in a more accurate representation of 
slope failures as compared to a previous landslide inventory based on aerial 
photographs and satellite images (Thiery et al., 2004, 2007). It allowed a 
better recognition of kinematic zones of a complex landslide. The rate of 
erosion and accumulation over a period of two years was measured using two 
HDALS data sets from different years. This analysis allowed to quantify the 
surface displacement and to correlate this with the vegetation anomalies.  
 
Individual tree delineation using the TreeVaW software, based on the variable 
window filter algorithm, was capable to identify the individual trees above a 
threshold of 3 meters, and to estimate the tree height and crown width. The 
tree detection and height estimation results are comparable to those reported 
by Popescu et al. (2002), who predicted dominant tree height, with value of 
0.84 in the healthy forest characterized by gentle slopes. The accuracy of the 
estimated tree heights in this study (R2 = 0.80) was slightly lower, because 
most of the trees are located on undulated terrain, with slope angles up to 50 
degrees and surface roughness of up to 0.40 m.. Both from the HDALS 
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dataset as well as from the field measurements we measured that a large 
number of trees are disrupted, irregular (e.g. tilted or bended) and often 
tend to entangle their crown areas. These factors have direct impact in 
reducing the accuracy of tree height estimation from ALS data in landslide 
prone areas. The tree height measurements, using a laser range-finder, may 
also introduce a considerable error, as it is often difficult to identify the apex 
of the tree crown from a distance inside a forested area. In the Bois Noir 
area, the tree density is very high coupled with a steep topography, which 
negatively affected the tree height readings.  
 
In this study, we presented an object-oriented image analysis method to 
extract the forest canopy gaps, resulted with a R2 of 0.79 compared to the 
field observations. Our results are slightly less accurate compared to the 
studies by Gaulton and Malthus (2010) who reported an overall accuracy of 
88% in Picea sitchensis plantation in the UK and Vepakomma et al. (2008) 
with an accuracy of 96% in mature forests in Canada. Both studies were 
carried out in managed forests with a relatively flat terrain and the canopy 
gaps are caused by different disturbance agents such as forest fires, spruce 
budworm outbreaks, wind-throw, and tree-falls. However, in our study area, 
a complex interaction between the landslide processes and the forest 
ecosystem made the canopy gaps detection rather difficult. The canopy gaps 
have no consistent shape as several reactivations of landslides may took 
place. Future research may be directed towards the link between gaps, 
landslide types, and tree species.  
 
In the field, we observed that the trees in landslide affected areas are 
significantly lower, and more inclined, while the gaps between them were 
larger. Based on HDALS data in Bois Noir, the SkelTre skeletonization method 
was capable to extract the tree inclination and orientation with an R2 of 0.77 
and 0.83, respectively. The quality of the estimated tree irregularity is 
influenced by the quality of delineated single trees. The number of ALS points 
representing the tree stem is also crucial. The SkelTre software provided 
better results when more points represented the tree structure. Inaccurate 
results were derived if the data input had insufficient number of points on the 
trunk, especially at the lower tree stem. In this respect, the best results were 
found for Pinus uncinata, the dominant tree species. This species has a clear 
trunk and big branches, in contrast to Larix decidua, which has a low canopy 
base height, irregular twigs, and heavy leaves on branches. Insufficient 
points on the stem contributed to large residuals in the tree inclination and 
orientation predictions. Also, disrupted trees located on steep slopes or areas 
with a high local surface roughness are relatively difficult to delineate, which 
limited the performance of the SkelTre-skeletonization method. For large 
scale application of this method a preprocessing step would be required to 
clean point clouds of individual trees.  

139 



 

Statistical tests of ALS-derived disrupted vegetation characteristics (tree 
height, forest canopy gaps, tree inclination and orientation) proved that there 
are clear differences between the extracted parameters in active landslide 
and non-landslide zones across the study areas at the 95% confidence level. 
The results were very similar to those reported by Van Den Eeckhaut et al. 
(2009), who statistically analyzed variables related to dendrometry data.  
 
In this study, it was shown that landslides have a clear effect on tree 
irregularity, and gap size. This is the first study that showed that inclination 
and orientation can be extracted from ALS data. The next step would be to 
develop a predictive model that incorporates these parameters in the 
prediction of landslide activity. A number of challenges remain that need to 
be tackled before operationalizing such a model. Firstly, automation SkelTre 
input generation to enable application of the skeletonization to larger areas. 
Secondly, patterns of irregular trees need to be pinned to specific processes. 
In addition to landsliding, trees may also be affected by illness, snow 
pressure, avalanches, wind fall, rock fall, debris flows, or selective logging. If 
each dominant and subdominant tree were to be skeletonized and attributed 
with characteristics, the spatial patterns in these characteristics can be used 
in a predictive model. Thirdly, the point density of this study (170 points m-2) 
is not yet mainstream in large area ALS campaigns. High point densities will 
be required whenever the skeletonization is used as a method. 

7.5 Conclusions 
In this study, we showed the utilization of HDALS data for accurately 
mapping complex landslides and characterizing disrupted trees caused by 
landslides in a temperate environment. The methods were developed in the 
Bois Noir area characterized by Callovo-Oxfordian marls in the Barcelonnette 
Basin (Southern French Alps). High density ALS has proven to be a very 
important data source to physically characterize complex structural 
vegetation attributes. With a substantial point density across the forested 
landslides, we presented results based on methods developed using pixel-, 
object oriented-, and point cloud-based techniques. These techniques were 
used to retrieve tree height, canopy gaps, inclination and orientation, which 
are associated to growth disturbance. Field validation and ALS-derived data 
distinctly separated the signature of tree anomalies in the landslide area 
compared to healthy forests.  
 
The extraction of tree irregularities induced by landslides was performed by 
analyzing the tilting and bending of disturbed trees, as affected trees attempt 
to regain the geotropic growth resulting with externally visible evidence. 
Based on field data, significant differences exist between landslide and non-
landslide areas with a 95% confidence interval for tree height, inclination, 
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orientation, and forest canopy gaps. Canopy width and diameter at breast 
height were not significantly different at 95%. Here the first successful 
extraction of tree inclination and orientation from ALS data was presented. 
Based on analysis of the ALS data significant differences were found for tree 
height, inclination, orientation, and forest canopy gaps as well. Still the 
challenges here are to (1) produce high quality single tree delineation 
method and an automatic processing module involving the SkelTre 
skeletonization, and (2) analyse patterns in tree irregularities to pin these 
patterns to specific processes. These are subject to future research works.  
 
Tree growth disturbances can be caused by other earth surface processes 
such as pressure of snow-pack, prevailing winds, extremely meteorological 
conditions, competition or disposal of neighbouring trees, presence of heavy, 
branches higher on the stem, and root penetration (Shroder, 1978; Van Den 
Eeckhaut et al., 2009; Lopez Saez et al., 2011). Differentiating the tree 
shape in response to the aforementioned of earth surface processes in a 
larger area can also be a subject of future research. 
 
We conclude that high density ALS is state-of-the-art for geometrically 
retrieving vegetation structures subjected to forest disturbances (e.g. 
landslides) in a forested mountainous region. It is a promising tool to 
remotely characterize the tree growth anomalies induced by complex 
landslides. Quantification of landslide activity analysis from a single ALS is a 
possible follow up. This should include setting up and testing a predictive 
model. 
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Chapter 8 
 

Synthesis and conclusion 
 
The increasing availability, quality and affordability of airborne laser scanning 
(ALS) data have triggered this research on the suitability of ALS for the 
assessment of landslide inventories, hazards and risks. This study 
investigated the possibilities to identify and survey landslides in temperate 
and tropical environments using ALS data. Emphasis was put on landslide 
mapping in areas partially or completely covered by forest. This chapter 
presents a synthesis: main research objectives, results and conclusions are 
presented together with recommendations for further research. 

8.1 Landslide DTM quality and interpretability  
DTM quality of forested landslides 
The possibilities to generate a suitable high-quality DTM for mapping and 
classification of forested landslides in temperate and tropical environments 
using ALS data were investigated. Expert knowledge was required for 
parameterizing the ALS DTM filter suitable for landslide mapping. We 
developed an iterative approach based on the hierarchical robust 
interpolation (HRI as embedded in SCOP++), and compared it to standard 
parameterizations available in the SCOP++ software, and one default filter 
from the progressive TIN densification (PTD) method. The newly developed 
filter, called HRI-landslide filter, was developed for a temperate pine forest in 
Bois Noir, France, and an ALS point density of 140 points m-2. The landslide 
filter parameterization was subsequently adapted for a study in the tropics 
(Cameron Highlands, Pahang, Malaysia). The modification of filter 
parameterization was needed to adapt to a point density of 1.8 points m-2, 
more complex vegetation, and the ruggedness of the terrain. Table 8.1 
summarizes the results of the DTM vertical accuracy assessment for two 
study areas (Bois Noir in France and Cameron Highlands in Malaysia) and 
compares the results with values reported in the literature.  
 
The vertical accuracy of the DTM varied between 0.28 and 0.34 m for Bois 
Noir using the landslide filter (Chapter 3). In the Cameron Highlands the 
overall RMSE varied between 4.20 and 0.89m (Chapter 4) based on a 
modified version of the landslide filter to adapt to denser vegetation and a 
lower point density. The obtained accuracies are a slight improvement 
compared to the studies reported in the literature (Table 8.1). The 
preservation of small diagnostic features for landslide classification, i.e. 
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primary and secondary scarps, cracks, and displacement structures, is 
challenging and essential for accurate landslide mapping.  
 
Table 8.1: Comparison of the results of DTM vertical accuracy assessment 

Study area Forest type Filter type No of 
data 

RMSE 
(m) 

Reference 

Bois Noir, Francea Pine  HRI-landslide 332 0.33 Chapter 3 
Bois Noir, Francea Pine  TIN 

densification 
332 0.28 

 
Chapter 3 

Bois Noir, Francea Pine  HRI-default 332 0.34 Chapter 3 
Bois Noir, Francea Pine  HRI-forest 332 0.34 Chapter 3 

Cameron 
Highlands, 
Malaysia 

Tropical  Modified HRI- 
landslide 

448 0.89 Chapter 4 

Vienna, Austria - Robust 
interpolation 

466 0.57 Kraus and 
Pfeifer (1998) 

North Carolina Deciduous 
and pine  

- 1470 0.46 Hodgson et 
al. (2003) 

Western 
Washington State 

Conifer  - 347 0.32 Reutebuch et 
al. (2003) 

North East Costa 
Rica  

Tropical Local 
minimum 

3859 2.29 Clark et al. 
(2004) 

a values taken from Table 3.3, ground surface under forested terrain. The RMSE for 
scarps, cracks and rocks is up to 0.2 m higher.  
 
DTM quality for geomorphological interpretation 
In Bois Noir, various types of DTMs were produced and their usefulness for 
visual interpretation was qualitatively evaluated. Expert knowledge was 
applied to evaluate the interpretability of the DTM in terms of 
geomorphological features and to create landslide inventory maps. The best 
interpretation was based on a stereoscopic visualization of the topographic 
openness on top of the bare earth model. In the Cameron Highlands, the 
interpretability of the DTM in geomorphological terms was determined by the 
point density of the original data, vegetation density, DTM filter algorithm 
and parameterization, and interpolation from point data to raster-based end 
products. The density information of ALS points (before-and-after filtering) 
and vegetation cover played a crucial role in generating an optimal DTM for 
landslide mapping.  
 
A clear trade-off was found between removal of vegetation points and 
preservation of important terrain points belonging to landslide morphological 
features. The selection of an appropriate filter algorithm and its 
parameterization is pertinent and depends on the type and complexity of the 
landscape (Sithole and Vosselman, 2004). Results indicated that, to produce 
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the best ALS-based DTM for landslide interpretation, it is necessary to use a 
combination of filtering steps, especially in forested mountainous areas. The 
quantitative and qualitative assessment clearly indicated that a purely 
quantitative error assessment, e.g. vertical accuracy did not lead to the best 
DTM for landslide inventory mapping (Chapter 4). Visual interpretation of 
distinct landslide geomorphology is one of the preferable quality evaluation 
methods. No single best and holistic method for DTM production exist for 
different types of landslides and for different environmental conditions.  
 
Minimum and optimal point density for mapping landslides  
The dependence of the interpretability of the DTMs on the point density of 
the original point cloud was assessed for the Bois Noir study area by thinning 
out the point cloud. Major geomorphological indicators of landslides were 
easily distinguished at a point density of 1.69 points m-2. However for a 
detailed analysis of morphological features for landslide activity assessment a 
point density of 6 points m-2 or better is required. In the Cameron Highlands, 
low density ALS data (1.8 points m-2) was used for extracting ground points 
associated to landslides and DTM generation for landslide mapping. The 
quality of the DTM is substantially improved if the point densities increase 
three times or more, especially in rugged and forested mountainous areas. In 
spite of the good results it remains difficult to accurately map, classify and 
characterize old tropical landslides. Re-activation of landslides, erosional 
processes, anthropogenic activity and vegetation growth is hampering 
observations and increase the uncertainty of landslide inventory maps.  

8.2 Uncertainty in ALS-based landslide inventory 
maps 

Landslide inventory maps provide essential information for landslide 
susceptibility, hazard and risk assessment. For operational use the quality of 
these maps must be known. Four different inventories were generated by 
different experts using visual analysis of ALS images and compared to 
reference data (Chapter 5). 
 
Methods for quantitative map comparison of landslide inventories  
To quantify the uncertainty of landslide maps, an experimental study of map 
correctness and completeness was organised. No single standard exists for 
determining the accuracy of landslide maps (Galli et al., 2008). Moreover, 
large errors are expected in the areas with old, dormant landslides, intensive 
terrain modification by farming activity and areas covered by dense 
vegetation in tropical areas (Carrara et al., 1992).  
 
The error in ALS-derived landslide maps was computed using positional 
mismatch (mapping error) and frequency-size distribution analysis. For the 
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evaluation of the mapping error overlapping areas were determined and 
divided by the total landslide area. This was carried out for three land cover 
classes. The analysis of the frequency-size distribution gives insight in the 
completeness of landslide maps. Creating reference data to support the 
positional mismatch method was a major challenge. Reference maps were 
created for forests, agriculture and for tea plantations. The reference maps 
were produced by dedicated interpreters using a variety of ALS images. 
 
Positional mismatch and completeness of landslide maps produced by 
multi-scale visual analysis of stereoscopic ALS images 
The geometrical accuracy of the landslide inventories was computed by 
comparing the positional mismatch in a pair wise manner (Tables 5.6-5.8; 
Chapter 5). When compared to the reference maps, the best ALS-derived 
inventory map had a mismatch of 93% for forest, 82 % for tea plantations, 
and 85 % for agricultural areas. The worst mismatches were 99, 99, and 
93% for forest, tea plantations, and agricultural area, respectively. However, 
these results were obtained for different inventories. When compared to the 
existing landslide inventory (Map 7, Tables 5.6-5.8) even larger mapping 
errors (98 to 100%) were found for the ALS-based inventories. This can be 
explained by the fact that the existing inventory contains far less landslides 
than the reference inventories and hence map comparison results in very 
large discrepancies. A true reliable reference map is difficult to produce and 
this hampered accuracy estimates of ALS-derived maps. 
 
This study provided a first indication on mapping errors of landslide maps in 
tropical regions. At first sight, the reported mapping errors seem very high, 
but errors in the same order of magnitude were found by Van Den Eeckhaut 
et al. (2007) for a temperate region. They reported 50-93% mapping errors 
for an area in the Flemish Ardennes, Belgium. For the Apennines, Ardizzone 
et al. (2002) reported positional mismatches up to 80%. Our lowest mapping 
error is above the arbitrary 70% mapping error, defined as a standard 
mapping error by Van Den Eeckhaut et al. (2007).  
 
Frequency-size distribution analysis was used here to quantify the 
consistency of landslide maps produced by the expert interpreters (Figs. 5.5 
and Table 5.9). For the reference data the landslide areas varied with four 
orders of magnitude (105 to 102 m2) while Maps 1 to 4 had a smaller range. 
The rollover ( ) point indicates the size, below which landslides are missing 
from the inventory. The reference maps had a rollover point ranging from 
400 to 800 m2, while the other inventories showed rollover points between 
1000 to 12000 m2. The assessment revealed that Maps 1 to 3 consisted of 
fewer landslides, generally larger than 104 m2, while Maps 4 to 6 reports a 
larger number of slope failures. Only the reference maps portrayed slope 
failures consistently for landslide sizes larger than the rollover point.  
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Comparison of ALS-derived landslide inventories containing 
landslides of varying age 
Differentiating between historic landslides, and landslides that occurred under 
different environmental conditions is important in landslide susceptibility 
mapping (Brabb, 1984). ALS-derived images proved suitable for detailed 
mapping of landslides, but it remained unclear whether all the mapped 
landslides have occurred under similar environmental conditions as the actual 
situation. Dating older landslides in the Cameron Highlands would be an 
important next step. The mapping error between the historic landslide 
inventory and the ALS inventories proved to be almost 100%. This suggests 
that a larger part of the area might be susceptible to landsliding, and that the 
effect of road cuts and deforestation in the future is difficult to assess. 

8.3 Landslide susceptibility mapping based on ALS 
data 

Several studies have been carried out to model landslide susceptibility in 
Malaysia (Pradhan, 2010; Pradhan et al., 2010; Pradhan and Lee, 2010a). 
Predicting areas that are susceptible to landslides requires insight in the 
process-controlling factors, the geo-environmental conditions, the availability 
of a historic record and an indication of the accuracy of these data. ALS 
products were evaluated to deliver these data. 
 
Accuracy of ALS-factors maps for landslide susceptibility mapping 
This research investigated the possibilities to derive landslide conditioning 
factor maps for susceptibility analysis from ALS data. Four major categories 
of causal factors were identified and can potentially be derived from ALS: 
topographic factors (elevation, slope gradient, slope aspect, and plan 
curvature), hydrological factors (sediment transport index, topographic 
wetness index, and distance to drainage network), anthropogenic factors 
(land-cover and road-cut), and structural geological factors (distance to 
lineament). 
 
The topographic and hydrologic factor maps (7 maps in total) are relatively 
easy to produce in a GIS and the DTM from which these maps were 
generated is accurate (0.866 m vertical accuracy; Chapter 4; Table 8.1). The 
anthropogenic and structural geological factor maps (3 maps in total) are not 
straightforward to produce and required more efforts. They were generated 
using an ALS-derived DTM, with 1 m resolution, with the support of ALS-
derived surface models (DSM) and canopy models (CHM). Derivative maps 
such as land cover, roads, and buildings were generated. 
  
Land cover derived from low density ALS data had an average accuracy of 
89% and is more accurate than the published land cover map based on a 
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SPOT image. Vegetation characteristics extracted from ALS data are 
optionally useful information next to the normalized difference vegetation 
index map (NDVI) widely used in landslide susceptibility studies. Buildings 
and roads were also extracted from ALS data and independently evaluated 
for elements-at-risk mapping. Buildings were identified at 81% accuracy 
compared to stereoscopic DSM visual analysis. The completeness and 
correctness was 88.6% and 90% respectively. The extracted roads had an 
increment of 58% compared to the existing road map (Pradhan and Lee, 
2009), with a RMSE of 0.68 m. Furthermore, the ALS-derived images 
revealed four times more geological lineaments (predominantly covered by 
vegetation) compared to the published national geological map (Chow et al., 
2003). The ALS-derived neotectonic data indicate that some landslides might 
have been triggered by earthquakes (Chapters 4 and 5). 
 
Additional required data 
The causal factor maps used in landslide susceptibility assessment were 
generated from a 1 m resolution DEM. For more complex combinations of 
conditions between the controlling factor maps and historic landslide 
distribution, it is relevant to incorporate factor maps related to lithology, 
weathering, soil types and soil depth. ALS can also be a source to derive 
these factor maps when combined with field information and geostatistical 
analysis.  
 
Susceptibility mapping and the effect of historic landslides in the 
landslide inventory map 
Two landslide inventory maps were used in logistic regression analysis, which 
resulted in two susceptibility maps. The ALS-based inventory was correctly 
predicted for 59%, whereas the historic inventory was 90% correct. The 
resulting susceptibility maps (Fig. 6.5, Chapter 6) showed very different 
patterns. Interestingly, no single landslide recorded in the historical database 
occurred in the forested area, which is explained by the fact that landslides 
under forest could not be mapped using aerial photo-interpretation. If a new 
road would be constructed in areas now indicated with low landslide 
susceptibility, this would change the initial conditions leading very probably 
to the initiation of landslides. Despite the advantages of ALS imagery to 
identify and map landslides beneath forests, the complex characteristics of 
each landslide and the unknown age make it necessary to apply tuned 
approaches for susceptibility analysis. The temporal aspects of both the 
landslide inventories and factors maps play a crucial role in landslide 
susceptibility prediction.  
 
The choice of the landslide inventory map as dependent variable in the 
logistic regression strongly affected the outcome. The existing landslide map 
contains the historical events that occurred in the recent past, such as those 

148 



 

along the main roads, or the ones that caused fatalities. In contrast, the ALS-
derived landslide inventory map includes slope failures of both historic and 
unknown ages. It also contains different landslide types, which may result 
from specific combinations of causal factors (different slope classes, 
topographic conditions and land cover classes). This study recommends to 
produce landslide susceptibility maps using the historic landslide inventory as 
a basis for statistical analysis, and next use the ALS-based inventory as a 
separate legend class in the susceptibility map. It is important to account for 
older landslides and for changing environmental conditions over time.  

8.4 Vegetation as bio-indicators of landslides 
Landslides are one of the contributors to forest disturbances (Frolking et al. 
2009). Landslides may affect tree height, density, orientation, inclination, 
and bending. Forest gaps may differ between stable and unstable areas. In 
Chapter 7 the use of tree properties as bio-indicators for landslide activity 
was evaluated. A method was presented to derive these parameters from 
ALS for the Bois Noir area, in France. The low point density of the ALS data in 
the Cameron Highlands prohibited the application of the method in that 
region. 
 
Field-based bio-indicators for slope stability 
The properties of 560 individual trees were collected though field 
measurements in the Bois Noir area. About 60% was collected on the 
landslide area and 40% on the stable areas nearby. The tree species 
composition is about 75% (420) Pinus uncinata, 15% (82) Pinus sylvestris, 
and 10% (58) Larix decidua. Trees disturbed by landslides are lower and 
more inclined, while the forest canopy gaps are larger and the gap frequency 
is higher for landslide areas as compared to stable areas (Table 7.3). 
Differences were significant at the 95% confidence level.  
 
ALS-based bio-indicators for slope stability 
A method was developed using pixel-, object oriented-, and point cloud-
based techniques to retrieve tree height, canopy gaps, inclination and 
orientation from ALS data. The detection of individual trees and estimation of 
tree height was done using TreeVaW software. The estimated tree heights 
had an overall accuracy of 0.80 R2 (1.43 m RMSE) compared to field 
observations.  
 
An object-oriented image analysis method was used to extract forest canopy 
gaps, resulted with an overall accuracy of 0.79 R2 (110.140 m2 RMSE) 
compared to the field data. Gaulton and Malthus (2010) reported better 
accuracy (88%) in a Picea sitchensis plantation in the UK. Vepakomma et al. 
(2008) obtained an accuracy of 96% in mature forests in Canada. Both 
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studies were carried out in managed forests with a relatively flat terrain and 
where the canopy gaps are caused by different processes such as forest fires, 
spruce budworm outbreaks, wind-throw, and tree-falls.  
 
Tree irregularity (inclination and orientation) is retrieved from high density 
ALS data. The SkelTre-skeletonization method was used to extract the tree 
inclination and orientation (Chapter 7). The current limitation of the 
algorithm lies on the quality of delineated single trees. The method provided 
good results if sufficient laser points represented the tree structure, but 
results became less accurate when only few points represented the position 
of the tree. Undulated terrain or high ruggedness further complicates the 
delineation and characterization of the trees and their position. This study 
showed that ALS-derived disrupted vegetation characteristics (tree height, 
forest canopy gaps, tree inclination and orientation) show differences 
between active landslide and non-landslide zones, indicating the potential to 
use vegetation as bio-indicator for landslides.  
 
Required point density for bio-indicator mapping with ALS data 
HDALS data were used here to map and characterize bio-indicators induced 
by landslides in Bois Noir, France. Extraction of tree inclination and 
orientation requires very high density point clouds, particularly with sufficient 
hits on the tree stem. The point density of ALS data varies per tree species 
due to their shape and form, e.g. Pinus uncinata is likely to provide much 
more points on the tree stem than Larix decidua, which tends to have more 
data on the tree crown area and branches. The methods used to extract the 
indicators would require a lower point density, if a canopy height model can 
be used. An experimental assessment done by Hatami (2012) in Bois Noir 
suggested that a point density of about 30 points m2 is needed to achieve 
height accuracy estimation of about 0.73 R2 and 1.8 m RMSE. The success of 
canopy gap extraction depends on the quantity of points representing the 
shape of tree crowns. Single tree analysis in the tropics remains very 
challenging given the complexity and irregularity of tropical vegetation.  

8.5 Research challenges and future research 
direction 

In conclusion, the emergence of ALS for investigating geomorphic processes 
and activities has improved our ability to map, monitor and model the 
topographic terrain signature and the landslide-induced vegetation 
anomalies. ALS is an important new data source to characterize landslides in 
complex landscapes. The increased availability of modern ALS systems and 
advanced point cloud processing software have led the way to improve future 
landslide maps and subsequently reduce possible landslide risks in a 
changing environment. Possible future research directions include: 
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i. An object-oriented and transferable model for tropical or sub-tropical 
landscapes could be developed to automate the creation and updating of 
landslide inventory maps. This might be faster, and easier to reproduce, 
but the drawback is the development of a rule set that can take the 
variety of shapes into account. 

 
ii. Dating of the abundant and apparently old landslides in the tropics could 

give insights in the climatological conditions that caused these events. A 
dendrogeomorphological study could be used to assess the recurrence of 
events, the timing, the movement rates, and the magnitude of events.  
 

iii. Understanding the neotectonic features and their activity found in the 
tropics could provide input for ongoing regional seismotectonic study.  

 
iv. Establish a relationship between the velocity of slow moving landslides 

and tree deformations. 
 
v. A single tree analysis using SkelTre-skeletonization should be 

investigated for handling structurally complex tropical trees and their 
undergrowth.  

 
vi. Spatiotemporal analysis of multi-temporal laser scanning data can be 

performed for understanding and quantifying surface changes associated 
with hillslope processes and anthropogenic activity.  
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Summary 
Landslide hazard and risk have increased over the last decades and pose a 
significant threat to modern society. Despite remarkable efforts of compiling 
and updating landslide maps at regional, national or global scales, the 
number of landslide events is often underestimated, especially in forested 
areas where the vegetation obscures the geomorphic features indicative of 
landsliding. The primary objective of this study was to investigate the 
suitability of an active remote sensing technique, airborne laser scanning 
(ALS), for mapping and classifying landslides in temperate and tropical forest 
environments. The methods were developed in two study areas: (1) the Bois 
Noir area in France (Southern French Alps), (2) the Cameron Highlands in 
Malaysia (tropical rainforest region). The French study area consisted of 
mixed temperate forest with high density ALS data available, whereas the 
Cameron Highlands was covered with tropical forests, agricultural terraces, 
and tea plantations and the ALS data was much less dense. 
 
ALS-derived digital terrain models (DTMs) were assessed using quantitative 
and qualitative methods for both temperate and tropical areas. An optimal 
DTM for landslide mapping was produced using hierarchical robust filtering in 
an iterative way with more stringent settings for each iteration. Vertical 
terrain accuracy was 0.30 (m RMSE) for the high density ALS (HDALS) data 
and decreased to 0.89 (m RMSE) for the low density data in the tropics. The 
error was not evenly distributed across the landscape. In the Cameron 
Highlands, 64% of the landslides occur in areas with a terrain slope between 
21 and 40o, and showed an overall RMSE of 0.87 m. Interestingly, the 
filtering output with the lowest error did not lead to the best landslide 
interpretability for producing landslide maps. A combination of filtering 
results gives interpreters the best insight in the landslide morphology. Multi-
scale visual analysis of stereoscopic ALS images unveiled 10 times more 
landslides compared to the 21 years archived landslide map and resulted in 
newly found neotectonic features. An important question answered in this 
study is the choice on the required point density for future landslide mapping. 
A point density of more than 6 points m 2 proved suitable for a detailed 
landslide morphological analysis in our case studies.  
 
To understand the uncertainty of tropical landslide inventory maps (LIMs), 
this study quantifies the positional mismatch and completeness of six LIMs 
produced by expert image interpreters. The interpretations based on the 
highest and most diverse input were assumed to represent the truth. The 
other interpretations and the existing LIM were compared to the reference 
data. The lowest positional mismatch was 93, 85, 82% for forested, 
agricultural and tea plantation area, respectively. The completeness and 
consistency of each LIMs and reference maps were evaluated using 
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frequency-size distribution analysis. The expert-based analysis of ALS data 
with low point density should be carried out by dedicated and skilful landslide 
interpreters, using a series of ALS-derived products that take sufficient time 
for interpretation. This study provided a first indication on mapping errors 
and completeness assessment of landslide inventory maps in tropical regions. 
 
In support of a predictive modelling of landslide hazard, this study 
investigated the suitability of ALS data for creating landslide susceptibility 
maps (LSMs). Landslide susceptibility mapping was carried out with landslide 
conditioning factor (LCF) maps based solely on ALS data. Twenty-two LCF 
maps were created, categorized in topographic-, hydrologic-, anthropogenic-, 
and geological factors. The LCF maps were subsequently used in a 
multivariate logistic regression analysis to predict landslide occurrence. One 
of the LCF maps, land cover, showed an overall classification accuracy of 
88.5%. The elements at risk, notably the buildings and roads were 
independently assessed resulting in 81% overall classification accuracy.  
 
Two LIMs were used as independent variables in the regression analyses: (1) 
the existing LIM based on historic data and traditional remote sensing 
products, and (2) a LIM based on manual interpretation of the ALS data, 
which also included prehistoric landslides. The landslide susceptibility map 
(LSM) based on historical was predicted better than the LSM derived from 
ALS data. The historical LIM contains substantially less landslides with 
smaller sizes, whereas the ALS-derived LIMs contain many more landslides 
without information on the relative age. The results showed the choice of the 
landslide inventory maps as dependent variables in the statistical modelling 
strongly affected the produced LSMs. It is important to use the quality of the 
input data (landslide inventory and factor maps) and their temporal variation. 
Moreover, a higher accuracy indicator of a LSM, e.g. a higher value of the 
AUC, is not an absolute indicator for the quality of the map. With combination 
of good historical information, ALS-derived LIM and factor maps data can be 
an important contribution in landslide susceptibility assessment.  
 
As a key component in the assessment of landslide activity, this study 
evaluates the possibility of HDALS to characterize disrupted trees. With an 
average point density of 170 points m-2 across the Bois Noir and Trieves 
study areas, we evaluated pixel-based, object oriented, and point cloud-
based techniques to retrieve vegetation characteristics, such as tree height 
dissimilarity, forest canopy gaps, inclination and orientation that are 
associated to growth disturbance. Field validation and ALS-derived data 
distinctly indicated the signature of tree anomalies in the landslide area 
compared to the forest on stable ground nearby. The variable window filter 
algorithm was used to identify 80000 individual trees and to estimate the 
tree height. The ALS-derived tree heights had an overall accuracy of 0.80 R2 
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compared to field observations. An object-oriented image analysis coupling to 
spatial GIS analysis was used to extract the forest canopy gaps induced by 
landslides, resulting with an overall of 0.79 R2. Tree inclination and 
orientation were calculated by skeletonizing the point cloud of a single tree 
using the SkelTre-skeletonization method. The result depicted a high 
predictive quality for tree inclination and orientation with an average R2 of 
0.77 and 0.83, respectively.  
 
Statistical tests of ALS-derived disrupted vegetation characteristics proved 
that there are clear differences between the extracted parameters in 
landslide and non-landslide zones at the 95% confidence level. This 
difference was present in both the field data as well as the HDALS data: 
landslide trees are lower, more dissimilar in height, and more inclined and 
dispersed at different orientations. With respect to vegetation anomalies, the 
drunken tree phenomenon was characterized as a result of tilted and bended 
trees with peculiarity of tree orientation. ALS-derived vegetation 
characteristics provide informative clues to landslide activity in a rugged 
vegetated terrain. 
 
In conclusion, the emergence of ALS for investigating geomorphic processes 
and activities has improved our ability to map, monitor and model the 
topographic terrain signature and landslide-induced vegetation anomalies. 
This study explicitly proved that ALS can be a very important new data 
source and mapping tool to characterize landslides even in a complex 
environment. The increased prevalence of modern ALS system and advanced 
point cloud processing had led the ways to improve future landslide maps 
and subsequently reduce landslide risk. Given the complexity of the terrain, 
automating the inventorization will still be challenging in the tropics with 
extensive anthropogenic activity, and differentiating the vegetative reaction 
in response to different earth surface processes requires further research. 
Airborne remote sensing is a critical and supportive tool for better 
understanding of landslide geomorphology in a changing environment. 
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Samenvatting 
De kans op aardverschuivingen en het risico van schade en slachtoffers dat 
de samenleving daarmee loopt is de laatste tientallen jaren toegenomen en 
vormt een belangrijke bedrijging. Ondanks de moeite die wordt gedaan voor 
het karteren van aardverschuivingen op regionale, nationale, of wereldwijde 
schaal wordt het aantal aardverschuivingen onderschat. Vooral beboste 
aardverschuivingen worden vaak gemist, omdat de vegetatie de 
geomorfologische signatuur verdoezelt die inzicht biedt in het onderliggende 
proces. Het doel van deze studie was om de geschiktheid van laseraltimetrie 
te onderzoeken voor het karteren en klassificeren van aardverschuivingen in 
gematigde en tropische gebieden. De methoden zijn ontwikkeld in twee 
studiegebieden: (1) het Bois Noir gebied in de Alpes de Haute Provence in 
Frankrijk en (2) de Cameron Highlands in Maleisië. De vegetatie in Bois Noir 
bestond uit gemengd bos, representatief voor een gematigd alpien klimaat, 
contrasterend met de tropische vegetatie, landbouw terrassen en 
theeplantages in de Cameron Highlands. De laseraltimetriedata in Bois Noir 
bestond uit 170 punten per vierkante meter, en was daarmee honderd keer 
hoger dan de puntdichtheid van de data in de Cameron Highlands. 
 
De laseraltimetriepuntenwolk is omgezet naar een digitaal terrein model 
(DTM) dat de hoogte van de bodem beschrijft. Hiervoor zijn verschillende 
verschillende methoden gebruikt. De kwaliteit van de DTMs is bepaald aan de 
hand van quantitatieve en kwalitatieve methoden. Een optimaal DTM is 
gevonden door het iteratief gebruik van hierarchical robust filtering, een 
filtermethode die is geïmplemteerd in de SCOP++ software. In iedere iteratie 
werd strenger geselecteerd om uiteindelijk te komen tot het beste terrein 
model. De vertikale nauwkeurigheid van het DTM was 0.30 m (RMSE) voor 
Bois Noir en 0.89 m (RMSE) voor de Cameron Highlands, maar de fout was 
niet gelijk verdeeld over het landschap variëerde met de helling van het 
terrein. In de Cameron Highlands komt 64% van de aardverschuivingen voor 
bij een helling tussen de 21 en 40o. De fout in de terreinhoogte was 0.87 m 
voor deze hellingsklasse. Wat opviel was dat het terrein model met de 
kleinste vertikale fout niet de beste mogelijkheid gaf tot visuele interpretatie 
van het terrein. Een combinatie van de uitkomst van de verschillende 
iteraties gaf het beste inzicht in de morfologie van de aardverschuivingen in 
de Cameron Highlands. De visuele interpretatie van de stereoscopische DTMs 
leidde tot tien keer meer gekarteerde aardverschuivingen in vergelijking met 
de bestaande kaart die is gebaseerd op een inventarisatie van 
gebeurtenissen in de afgelopen 21 jaar. Daarnaast kwamen er nieuwe 
neotectonische landschapselementen aan het licht die tot nu toe onbekend 
waren. Voor toekomstige campagnes voor het inwinnen van 
laseraltimetriedata voor morphologische interpretatie raden we een 
puntdichtheid aan van zes punten per vierkante meter. 
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De aardverschuivingskaart (landslide inventory map of LIM) op basis van een 
handmatige kartering bevat fouten ten gevolge van de arbitraire keuzes die 
de cartograaf maakt. In deze studie zijn voor de Cameron Highlands de 
kaarten (LIMs) van zes verschillende kaartenmakers vergeleken met 
betrekking tot (1) de fout in de overlap tussen de aardverschuivingen en (2) 
de volledigheid van karteren van alle aardverschuivingen. Aangezien er geen 
LIM bestond die foutvrij en volledig was, is de referentiekaart gebaseerd op 
de interpretatie door de twee meest ervaren kaartenmakers die werkten op 
basis van de beste data en de meeste tijd gespendeerd hebben aan de 
interpretatie. De vier andere interpretaties en de bestaande LIM zijn 
vergeleken met de referentiekaart. De laagste fout in de overlap was 93, 85, 
en 82% voor respectievelijk bos, landbouw en theeplantages. De volledigheid 
van deze kaarten is bepaald aan de hand van de relatie tussen de grootte 
van de aardverschuivingen en het aantal aardverschuivingen met die grootte. 
De referentiekaart toonde een veel completere inventarisatie dan de andere 
vier LIMs. Op basis van deze eerste quantitatieve vergelijking van LIMs in 
tropisch gebied was de conclusie dat een interpretatie alleen betekenisvol 
gedaan kan worden door ervaren kaartenmakers die genoeg tijd uittrekken 
voor de kartering en gebruik kunnen maken van een serie afgeleide 
bestanden van de laseraltimetriedata. 
 
Ter ondersteuning van het voorspellen van de kans op een aardverschuiving 
is in deze studie gekeken naar geschiktheid van laseraltimetriedata voor het 
leveren van input voor het maken van een gevoeligheidskaart voor 
aardverschuivingen (landslide susceptibility map; LSM). De gevoeligheid is 
bepaald door het toepassen van een multivariate logistische regressie, 
waarbij de 22 onafhandelijke variabelen zijn geextraheerd uit de 
laseraltimetriedata. Deze 22 variabelen kunnen worden gegroepeerd in vier 
klassen: topografie, hydrografie, antropogeen, en geologisch. Landgebruik 
was een van de klassen en de algemene classificatienauwkeurigheid was 
88.5%. Gebouwen en wegen werden geclassificeerd met een algemene 
nauwkeurigheid van 81%. De andere variabelen zijn niet gevalideerd. De 
afhankelijke variabele in de logistische regressie was een LIM. Twee 
regressieanalyses zijn uitgevoerd. Bij de eerste is de bestaande LIM gebruikt 
als onafhankelijke variabele en bij de tweede is de referentiekaart gebruikt 
van de handmatige interpretatie van de aardverschuivingen. De laatste 
bevatte ook de prehistorische aardverschuivingen die sinds lange tijd bebost 
zijn. De resultaten lieten zien dat de historische LIM beter werd voorspeld 
dan de LIM op basis van de laseraltimetriedata en dat het voorspelde patroon 
sterk afhing van de LIM die als afhankelijke variabele werd gebruikt. Een 
reden van de hogere nauwkeurigheid bij het voorspellen van de bestaande 
LIM is dat grootte van de aardverschuivingen groter was bij deze kaart en dat 
het landgebruik een directe relatie heeft met het ontstaan van de 
aardverschuiving. Voor de prehistorische aardverschuivingen was geen 
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datering aanwezig, en er is geen relatie tussen het huidige tropische 
volwassen bos en de aardverschuivingen. Een hogere nauwkeurigheid in de 
voorspelling is ook niet de enige indicator voor de kwaliteit van de LSM. De 
combinatie van goede historische informatie en laseraltimetriedata voor het 
bepalen van de LIMs en de afgeleidde onafhankelijke variabelen kan een 
belangrijke bijdrage leveren aan het karteren van de gevoeligheid van het 
terrein voor aardverschuivingen.  
 
De activiteit is een belangrijke karakteristiek van een aardverschuiving, 
welke zich bij beboste aardverschuivingen uit in deformatie van de 
boomstammen. In deze studie evalueerden we de mogelijkheden om 
laseraltimetriedata met hoge puntdichtheid te gebruiken voor het karteren 
van boomdeformatie in Bois Noir. Gebruik makend van technieken op basis 
van rasters, objecten, en puntenwolken is de vegetatie gekarakteriseerd met 
betrekking tot variatie in boomhoogte, openingen in het bladerdak, inclinatie 
en orientatie van individuele bomen. Een algoritme op basis van een 
variabele venstergrootte identificeerde 80000 individuele bomen en 
voorspelde de boomhoogte met een verklaarde variantie van 0.80 in 
vergelijking met veld data. Een object-georienteerde analyse van de 
openingen in het kroondek verklaarde 79 procent van de variatie die we in 
het veld maten. Boominclinatie en –orientatie zijn berekend aan de hand van 
een skeletrepresentatie van de puntenwolk per boom met behulp van de 
SkelTre applicatie. Dit resulteerde in een hoge verklaarde variantie van 
respectievelijk 0.77 en 0.83. Zowel uit de veldmetingen, als uit de afgeleide 
data uit de laseraltimetrie, bleek een significant verschil in 
vegetatiekarakteristieken tussen beboste aardverschuivingen en de stabiele 
helling in de buurt met een betrouwbaarheid van 95%. Bomen op 
aardverschuivingen waren lager, meer gevariëerd in hoogte, stonden over 
het algemeen schuiner, en lieten een grotere variatie in oriëntatie zien. 
Vegetatiekarakteristieken die relevant zijn voor de activiteit van 
aardverschuivingen kunnen dus uit laseraltimetrie bepaald worden. 
 
Concluderend kunnen we stellen dat laseraltimetrie bijdraagt aan het 
karteren, monitoren, en modelleren van relevante karakteristieken van zowel 
de geomorphologie als van de vegetatie in het kader van aardverschuivingen. 
Deze studie heeft bewezen dat laseraltimetrie een belangrijke databron kan 
zijn voor het karakteriseren van aardverschuivingen, zelfs in complex terrein. 
Voor tropisch bos is nog meer onderzoek nodig naar het effect van 
bewegingen van de grond op de vegetatie, en de automatisering van de 
complete data-analyse geeft ook een uitdaging voor de toekomst. De 
toegenomen beschikbaarheid van laseraltimetrie-instrumenten en 
geavanceerde algoritmes voor de analyse van de puntenwolken kan een 
bijdrage leveren aan de inventarisatie van aardverschuivingen en de reductie 
van de schade en slachtoffers als gevolg van aardverschuivingen. 
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Laseraltimetrie biedt een belangrijk stuk gereedschap voor beter begrip van 
aardverschuivingen in een veranderende omgeving. 
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