UNIVERSITY OF TWENTE.

MODERN WEB CARTOGRAPHY AT ITC-UNIVERSITY OF TWENTE

(ENSCHEDE, THE NETHERLANDS)

Gateway to international knowledge exchange focusing on capacity building and institutional development

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

FACULTY ITC UNIVERSITY OF TWENTE

In 2010 ITC became a faculty of the University of Twente (UT)

- Distinctive character and mission is preserved
- More firmly embedded in Dutch academic education system
- It will lead to innovative research and education in different areas

UNIVERSITY OF TWENTE

- An entrepreneurial campus university established in 1961
- More than 10,000 students
- 3,300 staff members

Enschede

- A distinctive modern and lively university town
- At the Eastern border of the Netherlands
- Surrounded by remarkable spots of natural beauty and tranquility

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

UNIVERSITY OF TWENTE.

ITC ESTABLISHED IN 1950

BY MINISTER WILLEM SCHERMERHORN

1950

International Training Centre for Aerial Survey, ITC

1968

International Institute for Aerial Survey and Earth Sciences, ITC

1985

International Institute for Aerospace Survey and Earth Sciences, ITC

2002

International Institute for Geo-Information Science and Earth Observation, ITC 2010

Faculty of Geo-Information Science and Earth Observation, ITC University of Twente

WHAT'S ITC ALL ABOUT?

GEO-INFORMATION MANAGEMENT, WORLDWIDE AND INNOVATIVE

- One of the world's foremost education and research establishments in geo-information science and earth observation
- A wide range of disciplines and activities in this field
- Contribute to capacity building in developing countries and emerging economies
- Solving real world problems
- Multicultural environment with staff and students from over 175 countries

KEY FIGURES 2013

- 939 newly registered students
- 348 degrees/diplomas/certificates awarded
- 161 registrants for the graduate programme (31 December)
- 44 external projects
- More than 20,000 alumni from 175 countries

SIX SCIENTIFIC DEPARTMENTS

OPERATING AS CENTRES OF EXCELLENCE

- Covering the different fields of disciplinary interest that encompass ITC's core mission:
 - Earth Observation Science
 - Earth Systems Analysis
 - Geo-information Processing
 - Natural Resources
 - Urban and Regional Planning and Geo-information Management
 - Water Resources

GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

Combination of tools and methods for the

- collection
- storage and
- processing

of geo-spatial data and for the dissemination and use of these data and of services based on these data

- Focus on tools and methods and on application of these in:
 - food security
 - water management
 - urban planning
 - Iand administration
 - disaster management
 - strengthening civil society
 - earth sciences
 - environmental management and biodiversity

ITC'S CORE ACTIVITIES

UNIVERSITY OF TWENTE.

Education

Research

Capacity development

12

TARGET GROUP

- Young and mid-career professionals and scientists
- From developing and emerging countries
- Increasingly professionals from industrialized countries

COURSES IN THE DEGREE AND DIPLOMA PROGRAMMES

Geo-information science and earth observation for

- Applied Earth Sciences
- Geoinformatics
- Land Administration
- Natural Resources Management
- Urban Planning and Management
- Water Resources and Environmental Management
- Environmental Modelling and Management
- Geographical Information Management and Applications

RESEARCH SPACE FOR GLOBAL DEVELOPMENT

CAPACITY DEVELOPMENT

IN THE FRAMEWORK OF INTERNATIONAL DEVELOPMENT COOPERATION

PROJECT SERVICES

TAILORED TO THE NEEDS OF OUR CLIENTS

- Institutional development
- Advisory services
- Contract training
- Contract research and development

EDUCATION PARTNERSHIPS

An interactive Carto Dashboard for Distributed Statistical Data in an SDI

what is it?
where did it come from?
how does it work?
how does it ACTUALLY work?

An interactive Carto Dashboard for Distributed Statistical Data in an SDI

An interactive Carto Dashboard for Distributed Statistical Data in an SDI

a system that can consume a combination of statistical data from the SDI, and cartographically integrate them, so that visual comparison of data from different providers or different data from a single provider is optimized. The Carto Dashboard can be considered as a "smart data viewer"

A new role for the cartographer

providing (cartographic knowledge for) tools that implement cartographic intent:

"code that thinks like a cartographer"

Cartography from Code...?

"how I learned to stop worrying and love coding in cartography"

Barend Köbben ITC – Universiteit Twente b.j.kobben@utwente.nl – @barendkobben

My tools once were these:

...but now look like this:

Computers gave me this at first:

SYMAP line printer output (1965, by Howard Fisher)

...but have been improving since:

...and now allow me to do really nice interactivity:

Perceived distances 1977-1981 and 2013

Students situate Eastern-European cities too far and Southern-European to close.

Click the buttons to see the differences between factual locations (and order) and how they were perceived by Geography students...

Works in modern browsers supporting HTML5 (not IExplorer 8 and lower) [map made for paper: Oost-Europa bijft ver weg, de Pater et al, Geografie, 2014-03, pp.12-15]

A change in my world Both were constructed using software

this one was digitally drawn

this one was coded (programmed)

A new role for the cartographer

providing

tools that implement cartographic intent

A new role for the cartographer

providing (cartographic knowledge for) tools that implement cartographic intent

The new role of the cartographer

providing (cartographic knowledge for) tools that implement cartographic intent:

"code that thinks like an atlas"

Statistics Dashboard

Building further on the NATIONAL ATLAS IN SDI prototype

The Dutch National Atlas within SDI

details in Dresden paper: Cartographic Journal, 50 : 3, pp. 225—231

1st edition (1963–1978)

2nd edition (1989–1995)

after 1998 government involvement and funding ended => limited and fragmented academic projects to keep atlas alive

2000: digital facsimile of 2nd edition

Atlas as part of a Spatial Data Infrastructure

Atlas as part of a Spatial Data Infrastructure

presents a synthesis optimised for visualisation

Atlas as part of a Spatial Data Infrastructure

visualisation of separate data, not optimised for combinations (synergy)

Atlas as part of a Spatial Data Infrastructure

a combination of two different worlds

Mapping in a webservices environment

Mapping a webservices environment as part of

Mapping a webservices environment as part of

conceptual change needed

sub-optimal combination of arbitrary map layers

conceptual change needed

SDI node 2 DATA service Data integration & mapping component

sub-optimal combination of arbitrary map layers integrated mapping of data layers

Statistics Dashboard

Building further on the Atlas prototype

Specifically for Statistical Data From Statistics Netherlands (CBS)
Open Data, API using ODATA standard -To be combined with other SDI data

StatLine See

Search term

Q theme map

Population dynamics; birth, death and migration per region

June 16 2014 | more info

Statistics Dashboard UI setup

DEMO TIME!

Statistics Dashboard

Building further on the Atlas prototype

Specifically for Statistical Data

Concentrating on comparison tools:

in theme: same place and time, different variables in time: same variable, different times in space: same variable, different places/aggregation

Statistics Dashboard comparison tools

in theme: same place and time, different variables

Statistics Dashboard comparison tools in time: same variable, different times

Statistics Dashboard comparison tools

in space: same variable, different places/aggregation

Statistics Dashboard UI setup

SIDE BY SIDE

TRANSPARENCY

SWIPE

How does it ACTUALLY work?

THETECHNOLOGY

How does it ACTUALLY work?

THETECHNOLOGY

also is building further on the NATIONALATLAS IN SDI prototype

Architecture overview

use data services (WFS) requests
 GeoJSON output where possible

use data services (WFS or REST) requests
 GeoJSON or CSV data output

ATLAS utility services & basedata


```
"name": [
  "Bevolkings-dichtheid",
  "Population Density"
],
"data_unit": [
  "inwoners per km2",
  "inhabitants per km2"
],
"mapunits": [
  Ł
    "name": [
      "gemeente".
      "municipality"
    ],
    "mapdates": [
      {
        "date": "2011"
        "geo_data": 0,
        "attrib_data": 0,
        "FK": "GM_CODE",
        "attrib": "BEV_DICHTH",
        "label": "GM_NAAM"
      },{
        "date": "2013",
        "geo_data": 2,
        "attrib_data": 2,
        "FK": "GM_CODE",
        "attrib": "BEV_DICHTH",
        "label": "GM_NAAM"
      }
  3
],
"maptype": "area_value",
"classification": {
  "type": "manual",
  "colours": "Greens",
  "numclasses": "5",
  "classes": [0,400,800,1600,3200,6400],
```

```
"geo_sources": [
 {
   "unitname": [
     "gemeente",
     "municipality"
   ],
   "description": [
     "Gegeneraliseerde gemeentegrenzen afkomstig uit de Basis
     "Municipalities of the Netherlands, generalised from the
   ],
   "date": "2011",
   "FK_attrib": "GM_CODE",
   "source": [
     "Kadaster",
     "Kadaster"
   ],
   "serviceType": "localfile",
   "serviceURL": "./data/gemeenten/geo.topojson",
   "serviceTypeName": "",
   "serviceOutputFormat": "topojson"
 },
```

Atlas Viewer: - based on the Open Web Platform: HTML5 + SVG + CSS + JavaScript - uses D3 library

FUTURE WORK

Practical:

- make "compare to..." chooser context aware
- add more comparison methods
- add more Open Data connectors
- etc., etc...

FUTURE WORK

Practical:

- make "compare to..." chooser context aware
- add more comparison methods
- add more Open Data connectors
- etc., etc...

Theoretical:

 formalising map specifications for further automating thematic map creation

Thank you!

http://www.nationaleatlas.nl

Barend Köbben ITC – Universiteit Twente b.j.kobben@utwente.nl – @barendkobben