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Chapter 1 - Introduction 



Introduction 

2 

1.1 Slum upgrading 
Urbanization in developing countries is often paired with slum expansion, which 
is considered one of the main development challenges of our time. Target 11.1 
of the Sustainable Development Goals (SDGs) is directed at ensuring “access 
for all to adequate, safe and affordable housing and basic services and upgrade 
slums” (United Nations, 2015). An estimated one-quarter of the world’s urban 
population, 61.7% of the urban population in Africa, still live in slums (UN-
Habitat, 2015). The true count may even be higher as official population 
estimations often depend on household surveys which do not take slums into 
account (Carr-Hill, 2013).  
 
To establish an operational definition of slums, UN-Habitat defined a slum as 
having at least one of five characteristics: inadequate access to safe drinking 
water, inadequate access to sanitation, low quality of housing, overcrowding, 
and lack of tenure (UN-Habitat and Earthscan, 2003). The latter implies that 
all informal settlements – those lacking official tenure – are slums by definition, 
but not all slums are informal. The existence of this operational definition is 
valuable as it allows slums to be compared on a global level (Arimah, 2010). 
However, some critique this definition by stating that it is on household level 
without accounting for neighborhood characteristics (Jankowska, Weeks and 
Engstrom, 2012). Others indicate that it does not adequately capture the 
diversity of slums (Arimah, 2010), as even within a single city, slums may have 
differing characteristics (Sliuzas, Mboup and de Sherbinin, 2008; Jankowska, 
Weeks and Engstrom, 2012).  
 
By whatever name it is called, improving the deprived conditions in these areas 
is at the top of various development agendas (AUC, 2015; United Nations, 
2016; UN-Habitat III, 2017). Slum eradication is now considered to be 
ineffective as it treats the symptom rather than the underlying problems 
behind slum formation (Arimah, 2010). Instead, in situ slum upgrading 
projects which greatly reduce but do not eliminate the need to relocate 
inhabitants (UN-Habitat, 2012) are currently considered to be more 
appropriate (Abbott, 2002). These projects often focus on physical aspects 
such as: improving access to potable water and sanitation, provision of utilities 
such as electricity, and improving infrastructure such as roads and drainage 
(Turley et al., 2013). Some strategies focus on improving streets to encourage 
the commercial development within the area, promote safety, and increase the 
identification of people with their neighborhood which would translate to 
increased household investments (UN-Habitat, 2012). Other studies argue that 
slum upgrading projects should focus on improving (access to) employment 
opportunities (Cohen, 2013; Pugalis, Giddings and Anyigor, 2014) rather than 
such physical interventions. 
 



Chapter 1 

3 

The ‘best practice’ for slum upgrading projects remains subject to debate. Part 
of the reason behind such diverse strategies is the lack of systematic evidence 
regarding their impact. One study analyzed more than 1000 publications and 
reports to find conclusive evidence regarding the socio-economic impacts of 
physical slum upgrading projects (Turley et al., 2013). Improved water supply 
and sanitation improve public health in urban settings, but the results remain 
inconclusive. Due to the lack of concrete scientific evidence regarding the most 
effective interventions, and more importantly the great variety in slum 
characteristics and population needs, ‘best practices’ may focus on the 
methods rather than the specific goals. For example, a participatory approach 
to the upgrading process is strongly advocated (UN-Habitat and Earthscan, 
2003) as including local stakeholders and slum residents helps to identify the 
actual needs of the local population and promotes a more sustainable change 
(Wekesa, Steyn and Otieno, 2011; Pugalis, Giddings and Anyigor, 2014).  

1.2 Spatial information 
An accurate overview of the current situation of the slum (existing housing and 
infrastructure, services, environmental conditions, hazards, etc.) is needed to 
identify key problems and plan the upgrading process. Therefore, spatial data 
is considered essential for informal settlement upgrading projects (Abbott, 
2002; Kohli et al., 2013; Taubenböck and Kraff, 2014). Informal settlements 
are often both literally and symbolically “empty spots on the map” (Paar and 
Rekittke, 2011; Pugalis, Giddings and Anyigor, 2014). Obtaining an accurate 
base map of these areas provides a sound basis for designing technical 
interventions (Paar and Rekittke, 2011; UN-Habitat, 2012), as well as 
improving the communication between stakeholders (Barry and Rüther, 2005), 
and empowering local authorities and communities (Abbott, 2003).  
 
So how do we fill in these gaps on the map? Spatial data can be collected on 
the ground through field mapping exercises. A great benefit of this is the 
opportunity to involve the local residents in the mapping exercises. Another 
option is through the use of remotely sensed imagery, such as satellite or aerial 
imagery. This can speed up the mapping, collect information in areas with 
limited accessibility, allow experts off-location to be involved, and show 
evidence of the settlement at a certain timestamp. However, physical 
settlement conditions captured by remotely sensed imagery are not always 
representative of its current living conditions or other socio-economic aspects 
of the community (Taubenböck and Kraff, 2014). With this limitation in mind, 
satellite imagery supports informal settlement management through: 
identifying informal settlements, identifying changes in the boundaries of these 
settlements over time, generating surface data, classifying land use, 
identifying buildings and other objects for mapping purposes, and 
reconnaissance (Mason and Fraser, 1998). Remote sensing may play an 
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important role in providing information between censuses (Montgomery, 
2008), and identify trends not visible through other data collection methods. 
For example, by identifying increases in backyard shacks which are not 
identified through official household surveys (Kakembo and van Niekerk, 
2014). An overview of settlement characteristics which can be derived directly 
or indirectly from remotely sensed imagery is provided in Figure 1.1. 
 

 
Figure 1.1: Hierarchy of slum characteristics which can be identified through aerial 
imagery with sufficient spatial resolution. The general object types (2nd row) which make 
up a neighborhood, information which can potentially be derived from remotely sensed 
data (3rd row), and information which can be inferred with the support of auxiliary data 
(bottom row). 
 
There are a number of general characteristics of slums which make it especially 
difficult to extract geospatial information from remotely sensed imagery. Many 
studies characterize slums as having organic street patterns, high building 
densities, small building sizes, and a lack of open spaces (Baud et al., 2010; 
Kohli et al., 2012; Kit and Lüdeke, 2013; Kuffer, Pfeffer and Sliuzas, 2016). 
Continuous or even overlapping rooflines and heterogeneous roof materials 
also complicate the interpretation of satellite imagery (Owen and Wong, 2013). 
The advent of Very High Resolution (VHR) satellite imagery, has been an 
important development for this application. However, even having a spatial 
resolution of 50 cm is sometimes not enough for informal settlements (Kuffer, 
Pfeffer and Sliuzas, 2016). Aerial imagery is one option to obtain data with a 
higher spatial resolution, but costly. Especially for relatively small study areas, 
mobilizing an aircraft is impractical. 
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Elevation models are also important for upgrading projects. Overlapping aerial 
images of a slum can be used to obtain a Digital Surface Model (DSM). This 
provides the elevation as seen from overhead, i.e., the terrain height plus the 
height of the objects on top of it. Filtering out these elevated objects creates a 
Digital Terrain Model (DTM) which may be used for designing infrastructure 
and for identifying hazardous or flood-prone areas.  
 
In summary, both imagery and derived elevation models can be very useful 
for informal settlement upgrading projects. However, input data with a higher 
spatial resolution and more advanced information extraction algorithms are 
required to provide useful spatial information in the challenging settings that 
typify slums.  

1.3 Unmanned Aerial Vehicles (UAVs) 
UAVs, also known as drones, Unmanned Aerial Systems (UAS) or Remotely 
Piloted Aircraft Systems (RPAS), are defined as small aircraft operated without 
an onboard pilot (Nex and Remondino, 2014). The widespread availability of 
cheap, off-the-shelf UAV systems coupled with developments in automatic 
image processing from the field of computer vision has led to a surge in UAV 
applications over the recent years (Colomina and Molina, 2014; Nex and 
Remondino, 2014). 
 
For mapping applications, a UAV works in the same way as traditional aerial 
imagery. It flies a grid over an area, taking images at regular intervals. 
Photogrammetric software recognizes common points in each image, allowing 
the calculation of the interior and exterior camera parameters to calculate the 
relative position of each image and construct an initial 3D model of the area. 
The inclusion of Ground Control Points (GCPs) measured in the field allows for 
the positioning of this model in the real world. Dense matching can then be 
applied to obtain a detailed point cloud – i.e., a 3D model consisting of a much 
large number of points with X, Y, and Z coordinates as well as color 
information. A Digital Surface Model (DSM) can then be derived and an 
orthomosaic produced by stitching together parts of the original UAV images. 
 
Like traditional aerial imagery, the orthomosaics obtained from UAVs may 
reach a spatial resolution on the scale of a few centimeters (Nebiker et al., 
2008). This depends on the UAV flight parameters such as flight height, camera 
type, and image acquisition angle. Images may be taken at oblique angles may 
also provide detailed façade information in urban settings (Xiao, 2013). 
Another benefit is the ability of UAVs to fly under clouds (although rain is still 
a problem), which is a recurring problem for optical satellite imagery. The 
DSMs obtained from UAVs may reach an accuracy level to rival that of field 
measurements with a DGPS (Haarbrink and Eisenbeiss, 2008; Harwin and 
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Lucieer, 2012), although this accuracy depends highly on the flight 
parameters, image quality, and GCPs. 

1.4 Machine Learning 
Information can be extracted from data through machine learning. For 
example, supervised classification methods can be used to recognize patterns 
in data from some labeled training samples, enabling a class label to be 
assigned to new data. The first step in supervised classification is usually to 
define relevant features which describe the data. For images, such features 
can be color and texture (Nichol, 2009). For point clouds, 3D features which 
describe the shape of neighboring points (Chehata, Guo and Mallet, 2009; 
Weinmann et al., 2015), or height differences over larger areas can be used 
(Serna and Marcotegui, 2014). A set of training samples consisting of a class 
label and the corresponding features values is determined. It is important that 
the samples capture all the variations in one semantic class over the entire 
dataset. These training labels are then used to train the classification model 
which can later be applied to assign a class label to new data. Training samples 
can be costly to obtain as they often imply manual labeling.  
 
A large variety of supervised classification models exist. The most suitable 
model for different classification tasks depends on elements such as required 
accuracy, number of features, availability of labeled training samples, and 
hardware capacity.  Random Forests are made up of a large number individual 
classification trees which are each trained individually using random feature 
and training sample subsets (Breiman, 2001). These methods are therefore 
particularly robust to errors in the training labels (Frenay and Verleysen, 2014; 
Maas, Rottensteiner and Heipke, 2016), but require a large number of training 
samples.  
 
Support Vector Machines (SVMs) are robust classifiers that are particularly 
suited to high dimensional feature spaces, have been proven to obtain high 
classification accuracies in remote sensing applications (Bruzzone and Persello, 
2010), and can perform well with a limited number of training samples. SVMs 
map the training samples into a nonlinear feature space and construct class 
boundaries which maximize the margins between labels from different classes 
while minimizing the number of training errors. Kernels, such as the non-linear 
Radial Basis Function (RBF) kernel, are used to describe the distance between 
samples. Although often the same kernel is used for all features, Multiple 
Kernel Learning (MKL) defines many kernels with different parameters.  
Features are first divided into groups, and each group is assigned a kernel with 
different parameters, these kernels can then be combined into a single kernel 
to perform SVM. Using multiple kernels has been shown to outperform single-
kernel strategies on some tasks (Gönen and Alpaydın, 2011) such as when 
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using features from LiDAR and multispectral satellite imagery for urban scene 
classification (Gu et al., 2015). 
 
More recently, deep learning has gained popularity due to unprecedentedly 
high classification accuracies on very difficult benchmark datasets in the 
computer vision community (Krizhevsky, Sutskever and Hinton, 2012; 
Simonyan and Zisserman, 2014; He et al., 2016). For example, Convolutional 
Neural Networks (CNNs) use convolutional layers which apply a number of 
filters to an input patch to recognize patterns, nonlinear activation functions to 
learn complex representations, and pooling layers to generalize and prevent 
overfitting. By stacking these layers, deep networks can be constructed which 
are quite successful in image labeling tasks (Krizhevsky, Sutskever and Hinton, 
2012; He et al., 2016) and DTM extraction (Hu and Yuan, 2016). Fully 
Convolutional Networks (FCNs) are more suitable for pixel-wise classification 
tasks common to remote sensing, as they avoid redundant calculations and 
are more memory efficient (Shelhamer, Long and Darrell, 2017). Despite rapid 
developments in this field, limitations of this method include the considerable 
amount of training samples needed as well as substantial computing costs and 
associated hardware requirements. 

1.5 Research Gap 
The context of this work is two-fold. On the one hand, we see a clear need for 
high-quality, up-to-date information on slums to support upgrading projects. 
Understanding the present situation of the slum, identifying key problem areas, 
enabling stakeholders to visualize priorities and plan interventions together, 
the engineering of suitable upgrading measures – all steps require accurate 
spatial information. In this sense, slums are particularly challenging due to the 
lack of available data. Updating this information through remote sensing is also 
challenging due to typical slum characteristics: small buildings, narrow 
footpaths, irregular buildings, heterogeneous roof materials, and possibly even 
the environment such as the location on steep slopes. Geoinformatic methods 
for deriving information from imagery, such as classifying buildings and 
vegetation or the extraction of the underlying terrain, are typically developed 
on benchmark data from developed countries. For example, most DTM-
extraction algorithms have been tested on relatively easy datasets 
(Tomljenovic et al., 2015) and have difficulties in sloped urban environments 
and densely built-up areas characteristic of slums. In sum, not only is it 
important to acquire relevant spatial information to support upgrading 
projects, but the locations themselves challenge existing geoinformatic 
algorithms. 
 
On the other hand, UAVs are booming. The global market may reach an 
estimated value of seven billion USD in 2020 (Thibault and Aoude, 2016). Their 
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agility as a data platform enable a user to quickly acquire images with a very 
high spatial and temporal resolution. The straightforward way to extract 
information from UAV data products would be to process the orthomosaic as 
you would a satellite image. However, we argue that one of the main 
opportunities of UAVs is the simultaneous acquisition of imagery and the 3D 
information. Identifying possible synergies between the 2D image-based 
information and the 3D geometric information should not be overlooked and is 
a recurring theme throughout the research presented in this dissertation. 
 
The main focus of this research is on the use of machine-learning methods. 
Machine learning methods were flagged as an appropriate methodology for 
identifying slums from remotely sensed imagery (Kuffer, Pfeffer and Sliuzas, 
2016). In the domain of computer vision, deep learning methods have been 
breaking records for a wide range of applications. Here, we consider the 
implications and required adaptations of successful machine learning methods 
to emerging data acquisition platforms (UAVs) for extracting information from 
challenging datasets (slum areas). 
 
Finally, the importance of reflecting on the social and ethical aspects of 
scientific research is often forgotten (Flipse, van der Sanden and Osseweijer, 
2013). Researchers’ tendency to over-simplify the underlying social processes 
may deter the adoption of technological innovations (Pannell et al., 2011). 
Regarding UAVs, some concerns have been voiced regarding the ethics of their 
usage (Haarsma, 2017) and the potential misuse of potentially sensitive 
information they capture (Culver, 2014). Specific concerns depend on the UAV 
operations (Finn and Wright, 2016) as well as the cultural context (Ordnance 
Survey, 2015) of the application in question. Potential benefits of geospatial 
information, such as urban governance and empowerment of deprived 
populations (Pfeffer et al., 2013), obtained through the UAVs and negative 
externalities should be balanced. However, empirical research regarding the 
perceptions of the public towards UAV flights and the obtained geospatial 
information, as well as concrete investigations regarding how the obtained 
geospatial information can be used by local stakeholders is lacking. 

1.6 Research Objectives 
The main objective of the proposed research is to analyze the potential of UAVs 
to support informal settlement mapping projects. This is done through the 
following sub-objectives: 
 
1) Identifying synergies between 2D and 3D information provided by UAVs 

To develop accurate classification models, the scene must be described by 
adequate features which are capable of distinguishing the different classes 
of interest. Informal settlements are often characterized by narrow 
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footpaths, irregular shapes, heterogeneous construction materials, and a 
large amount of clutter, which makes it difficult to distinguish these 
classes. For example, the color of a roof may be similar to the color of the 
ground. The simultaneous provision of highly detailed imagery and point 
clouds by the UAV enables users to benefit from advancements in both 2D 
image- and 3D scene-understanding. In this objective, we therefore 
compare which features are useful for describing buildings, vegetation, 
terrain, structures, and clutter in different informal settlements.  

 
2) Adapting supervised classification methods to deal with heterogeneous 

data 
The 2D and 3D feature sets correspond to different “views” of the same 
settlement. Therefore, the features are likely to have different statistical 
characteristics and should be considered differently by the classification 
model. Previous studies indicate that MKL indeed obtains better results 
than single kernel SVM for heterogeneous data. This objective investigates 
whether the same is true for the classification of UAV data. MKL literature 
describes different methods for combining kernels with different 
parameters. However, little attention is given to which features should be 
grouped and described by the same kernel.  

 
3) Analyzing how reliable training labels can be obtained from existing 

geospatial data 
The accuracy of a supervised classification model depends not only on the 
features and classification algorithm but also on the training samples used 
to train the model. The labeled samples must adequately describe the 
common characteristics and variations of the object in question. 
Unfortunately, it is generally costly and time-consuming to obtain such 
labels. Although many informal settlements remain unmapped, 
sometimes vector data is available from previous mapping efforts. In this 
case, there will be differences between the vector outlines and the newly 
acquired (UAV) imagery due to (1) changes in the scene itself such as 
building construction or demolition, and (2) misalignments due to 
digitization at a lower spatial resolution or other geo-referencing issues. 
This objective uses existing maps to provide training labels and then 
analyses how to automatically flag samples which are likely to be 
mislabeled and remove them from the training set. 

 
4) Analyzing how to extract Digital Terrain Models in challenging settings 

Informal settlement characteristics such as steep topography and a high 
building density are also challenging for DTM extraction algorithms. Deep 
learning could be utilized to learn these complex relations but must be 
adapted to the application of DTM extraction. In this context, we consider 
three specific research questions. The first challenge is how to acquire a 
large number of labeled samples to train the network in a fast and cheap 
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manner. Secondly, existing DTM algorithms often assume that ground 
samples are the lowest points within a local neighborhood. The size of this 
neighborhood must be larger than the largest elevated object in the scene. 
The size of objects such as buildings in the real world (in the order of 
meters) compared to the resolution of UAV imagery (centimeters) means 
that very large neighborhoods would need to be considered, which 
increases the computing costs of the deep learning algorithm. Therefore, 
avenues must be explored to increase the area under consideration by the 
algorithm while avoiding unnecessary increases in the computational 
costs. Thirdly, using only 3D information may not be enough to distinguish 
ground from non-ground in cases such as buildings on sloped terrain. 
Therefore, we again consider how interactions between 2D and 3D 
information may be exploited to improve DTM extraction. 

 
5) Identifying opportunities of UAVs to support urban upgrading workflows 

Moving away from a machine learning approach of analyzing what 
information can be obtained from UAV imagery, it is important to consider 
how the images are actually used and perceived to be useful in a local 
context. To this end, we analyze how UAV imagery is used to support an 
upgrading project in Kigali, Rwanda and what the perceived utility is of 
the images for various stakeholders. Practical barriers towards the wide-
scale utilization of UAVs at the time are also identified. 

 
6) Analyzing the social impacts of using UAVs in the context of urban 

upgrading projects 
Apart from the perceived benefits of using UAVs to support urban 
upgrading projects, there are also widespread concerns regarding the 
ethical implications of acquiring such high-resolution images over urban 
settlements. In some cases, individuals may be recognized in the imagery 
as well as visualization of private spaces such as backyards. Therefore, 
issues such as privacy and possible misuse of the data may be a concern. 
The last objective is to consult the opinions of residents in informal areas 
regarding which information captured by the imagery they consider 
sensitive or private. This can then be used for further studies regarding 
how the use of UAVs aligns with other social values and ‘best practices’ 
advocated for upgrading projects. 

 
The main study area for the current research was in Kigali, Rwanda. The 
researchers were provided with a very unique opportunity as the University of 
Twente / Faculty ITC funded the UAV data to be collected in 2015 at the same 
time and place as an urban upgrading project was being initiated by the City 
of Kigali – One Stop Centre in collaboration with the Rwanda Housing Authority 
and the World Bank. To examine the transferability of the methods and 
observations to other informal settlements, some chapters include UAV 
datasets from Tanzania, Uruguay, and Italy. 
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1.7 Outline 
The framework of this dissertation can be seen as a set of concentric circles 
(Figure 1.2). We first analyze the implications of using UAVs for supervised 
classification tasks in a strictly algorithmic sense, then analyze how to 
practically obtain derived geospatial information products such as DTMs, and 
finally place the use of UAVs into the societal context of urban upgrading 
projects. 
 

 
Figure 1.2: Organization of research topics in the dissertation. 
 
More specifically, the organization of the chapters is as follows: 
 
Chapter 1 – introduces and motivates the work and describes the research 
objectives. 
 
Chapter 2 – provides an overview of feature sets described in the scientific 
literature for urban classification using images (2D), DSMs (2.5D), and point 
clouds (3D). Various feature sets are combined to identify buildings, 
vegetation, terrain, structures, and clutter in two informal settlements (Kigali 
and Maldonado) using a SVM classifier. A detailed analysis of the results 
indicates which feature sets are especially useful for the identification of the 
different objects. 
 
Chapter 3 – investigates how MKL can be optimized for the classification of 
UAV data. Using feature sets identified in Chapter 2, a data-driven MKL feature 
grouping strategy is developed which helps a user decide how to best employ 
MKL for their dataset. The proposed grouping strategy is compared with a priori 
and random feature grouping strategies through various MKL workflows on the 
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Kigali dataset. The results are also compared to standard (single-kernel) SVM 
and random forests. 
 
Chapter 4 – presents an iterative technique to exploit existing base map data 
to provide labels for the newly acquired UAV imagery. An approach is proposed 
which utilizes global and local contextual cues to automatically remove 
unreliable samples from the training set and thereby develop an accurate 
classification model. The method is tested for the Kigali and Dar es Salaam 
datasets, and a sensitivity to the initial level of label noise is provided. 
 
Chapter 5 – introduces the proposed methodology for DTM extraction. A 
review of existing DTM-extraction methods is provided as well as an overview 
of data and scene characteristics which are challenging for these algorithms. A 
new deep-learning based approach is proposed, which exploits simple rules to 
label training data – thus bypassing the costly process of manually labeling 
samples. The relatively shallow network is presented, and compared to both 
deeper deep learning networks and other reference DTM extraction approaches 
for three challenging datasets in Kigali, Dar es Salaam, and Lombardia. 
 
Chapter 6 – considers the observed utility of the UAV imagery for upgrading 
projects. After distributing the UAV images to the upgrading project in Kigali, 
this chapter analyses how the images were used by various stakeholders and 
how they considered it to be useful. It also identifies some of the current 
constraints regarding the wide-spread usage of UAVs in these projects. 
 
Chapter 7 – considers the ethics regarding the usage of UAVs as a geospatial 
collection tool to support urban upgrading projects. Stakeholder interviews in 
Kigali and Dar es Salaam describe their perceptions towards UAVs and identify 
which objects are considered to be private by the residents whose property is 
captured by the imagery. The ability of UAVs to contribute towards (or against) 
social values such as participation, empowerment, accountability, 
transparency, and equity are described. 
 
Chapter 8 – synthesizes the results of the results of the individual chapters. 
Reflections on the work and future outlook are also provided. 
 
It should be noted that chapters 2 through 7 are based on published scientific 
articles. There may therefore be some overlap in the introduction and 
motivation of the various chapters. However, this design enables each chapter 
to be considered individually, allowing a reader to focus on the areas which are 
of particular interest to him or her. 
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Chapter 2 – Classification Using Point-cloud 
and Image-based Features from UAV Data1 
 

  

                                               
1 This chapter is based on: 
 
Gevaert, C.M., Persello, C., Sliuzas, R., and Vosselman, G. (2017) ‘Informal Settlement 
Classification Using Point-cloud and Image-based Features form UAV Data’, ISPRS 
Journal of Photogrammetry and Remote Sensing, 125, pp. 225-236. doi: 
10.1016/j.isprsjprs.2017.01.017. 
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Abstract 
Unmanned Aerial Vehicles (UAVs) are capable of providing very high resolution 
and up-to-date information to support informal settlement upgrading projects. 
To provide accurate basemaps, urban scene understanding through the 
identification and classification of buildings and terrain is imperative. However, 
common characteristics of informal settlements such as small, irregular 
buildings with heterogeneous roof material and large presence of clutter 
challenge state-of-the-art algorithms. Furthermore, it is of interest to analyze 
which fundamental attributes are suitable for describing these objects in 
different geographic locations. This work investigates how 2D radiometric and 
textural features, 2.5D topographic features, and 3D geometric features 
obtained from UAV imagery can be integrated to obtain a high classification 
accuracy in challenging classification problems for the analysis of informal 
settlements. UAV datasets from informal settlements in two different countries 
are compared to identify salient features for specific objects in heterogeneous 
urban environments. Findings show that the integration of 2D and 3D features 
leads to an overall accuracy of 91.6% and 95.2% respectively for informal 
settlements in Kigali, Rwanda and Maldonado, Uruguay. 
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2.1 Introduction 
Informal settlements are a growing phenomenon in many developing 
countries, and the effort to promote the standard of living in these areas will 
be a key challenge for the urban planners of many cities in the 21st century 
(Barry and Rüther, 2005). These settlements refer to urban areas which lack 
legal tenure (Kuffer, Pfeffer and Sliuzas, 2016), and are often characterized by 
dense housing and sub-standard living conditions. The term is closely related 
to the term ‘slums’, referring to settlements which may lack legal tenure, lack 
access to water or sanitation, suffer from overcrowding and/or are 
characterized by non-durable housing (UN-Habitat, 2012). In the present 
study, we utilize the term informal settlement as it is more commonly used in 
the remote sensing community (Kuffer, Pfeffer and Sliuzas, 2016) and due to 
the possible negative connotations of the term ‘slum’ (Gilbert, 2007). The 
planning and execution of informal settlement upgrading projects with the 
purpose of ameliorating these conditions require up-to-date base maps which 
accurately describe the local situation (UN-Habitat, 2012). For example, the 
identification of buildings gives an indication of the population in the area, 
classifying terrain identifies footpaths for accessibility and utility planning or 
free space for the location of infrastructure. However, such basic information 
is often lacking at the outset of upgrading projects (Pugalis, Giddings and 
Anyigor, 2014), thus hindering the amelioration of the impoverished conditions 
in these areas. To create such base maps, satellite imagery is a powerful source 
of information regarding the physical characteristics of an informal settlement 
(Taubenböck and Kraff, 2013). However, as slums are often characterized by 
high building densities, small irregular buildings, and narrow footpaths, the 
spatial resolution provided by sub-meter satellite imagery is usually not 
sufficient (Kuffer, Barros and Sliuzas, 2014). Photogrammetric workflows can 
extract 2D orthomosaics, 2.5D Digital Surface Models (DSMs) and 3D point 
clouds from overlapping aerial imagery. Although this can be done from aerial 
or satellite imagery, UAVs have lower operational costs and allow for flexible 
and fast data acquisition (Nex and Remondino, 2014). This combination of 
flexible data acquisition and high spatial resolution of the acquired products 
motivate the use of UAVs to support urban planning in dense and dynamic 
areas such as informal settlements. Disadvantages of the use of UAVs include 
the limited spatial extent of UAV flights and the data processing requirements. 
Therefore, we consider them to be more adequate at a (settlement upgrading) 
project level where more detailed spatial information is required, rather than 
e.g. at a city level for the distinction between informal vs. formal settlements. 
The remaining question is then how to optimally integrate the information 
contained in the orthomosaic, DSM and point cloud in order to accurately 
classify these complex areas. 
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A well-known problem of classifying urban areas is the high within-class 
variability and low between-class variability of spectral signatures of the 
relevant classes. Also, when using very high-resolution (VHR) imagery, the 
objects to be classified are generally larger than the pixel size, which is 
problematic for purely pixel-based classification strategies (Blaschke, 2010). 
The classification of sub-decimeter orthomosaics in informal settlements can 
be expected to face similar problems. In the remote sensing community, a 
common strategy to address this issue is to include spatial-contextual features 
in the classification problem in addition to the spectral image attributes. 
Spatial-contextual information can also be incorporated through Object Based 
Image Analysis (OBIA), which is also currently the most common strategy for 
the classification of slum areas (Kuffer, Pfeffer and Sliuzas, 2016). Such 
approaches depend on adequate segmentation parameters, which may be 
difficult to transfer between study areas (Hofmann et al., 2008) or even to 
represent different classes within the same study area (Myint et al., 2011). 
Alternatively, a multilevel strategy to incorporate contextual features can be 
adopted by combining the radiometric characteristics at a pixel level with 
attributes of larger image segments and thus avoiding the need to define one 
set of optimal segmentation parameters (Bruzzone and Carlin, 2006). Their 
approach focusses on the spectral and spatial features at the different 
contextual levels, but could be extended to include texture features as these 
have proven to be an important supplement to spectral features in urban scene 
classification (Puissant, Hirsch and Weber, 2005; Tong, Xie and Weng, 2014). 
 
Furthermore, the availability of 3D data are an important supplement to the 
orthomosaic as the inclusion of height information has been shown to greatly 
increase classification accuracy of urban scenes (Priestnall, Jaafar and Duncan, 
2000; Hartfield, Landau and Leeuwen, 2011; Longbotham et al., 2012). 
Especially the extraction of a normalized DSM (nDSM), which gives the 
elevation of pixels above the terrain, is useful for identifying elevated objects 
in urban scenes (Weidner and Förstner, 1995) and distinguishing between low 
vegetation and high vegetation (Huang et al., 2008). A recent overview of 
building detection methods based on aerial imagery and LiDAR data indicates 
that state-of-the-art techniques which have access to both imagery and height 
information can identify large buildings with a very high correctness and 
completeness (Rottensteiner et al., 2014). However, these building detection 
algorithms face difficulties when the buildings are relatively small (i.e. less than 
50 m²), or when the height of the terrain is not uniform on all sides of the 
building due to sloped terrain. Unfortunately, informal settlements are often 
characterized by these challenging conditions, which emphasizes the need to 
investigate the synergies between 2D and 3D features to fully exploit the 
available UAV data and obtain a high classification accuracy. 
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Existing strategies regarding the combination of 2D and 3D features are often 
based on the integration of LiDAR with multispectral aerial imagery. (Yan, 
Shaker and El-Ashmawy, 2015) cite a number of studies where nDSM data 
derived from LiDAR was combined with vegetation indices from multispectral 
imagery to classify urban scenes (e.g. Hartfield et al., 2011). Other methods 
make use of elevation images which directly project the 3D points onto a 
horizontal plane without taking into account interpolation techniques which are 
typically applied for DSM extraction. Processing this summarized information 
in 2D space rather than the original 3D space can decrease computing costs 
(Serna and Marcotegui, 2014). In another example, (Weinmann et al., 2015) 
describe a generic framework for 3D point cloud analysis which includes spatial 
binning features or accumulation maps, which are similar to elevation images. 
They define a horizontal 2D grid and calculate: the number of points within 
each bin, maximum height difference and standard deviation of height 
difference within each cell. (Serna and Marcotegui, 2014) use elevation maps 
to define the: minimum elevation, maximum elevation, elevation difference, 
and number of points per bin as a basis for detecting, segmenting and 
classifying urban objects. However, this method assumes the ground is planar. 
(Guo et al., 2011) combined geometrical LiDAR features and multispectral 
features from imagery to analyze which features were most relevant to classify 
an urban scene into: building, vegetation, artificial ground, and natural ground. 
They use elevation images to include the inclination angle and residuals of a 
local plane, but found that the maximum height difference between a LiDAR 
point and all other points within a specified radius was the most relevant 
feature.  
 
There are two main limitations of the previous methods. Firstly, most methods 
explicitly or inherently assume the terrain to be planar. Attributes such as the 
maximum absolute elevation or height above the minimum point within a 
horizontal radius, which are often considered to be the most relevant features 
(Guo et al., 2011; Yan, Shaker and El-Ashmawy, 2015), will not serve to 
distinguish between buildings and terrain in a settlement located on a steep 
slope. Secondly, the methods generally focus on pixel-based features, or local 
neighborhood features. However, other research indicates that segment-based 
point cloud features provide important supplementary information to pixel-
based attributes (Vosselman, 2013; Xu, Vosselman and Oude Elberink, 2014). 
Similarly, 2D object-based attributes significantly improve the classification of 
urban scenes from VHR satellite imagery (Myint et al., 2011). Studies 
investigating the importance of features for urban scene classification should 
therefore consider segment-based features as well as point-based features. 
 
The objective of this paper is to integrate the different information sources (i.e. 
UAV point cloud, DSM, and orthomosaic) and to analyze which 2D, 2.5D, and 
3D feature sets are most useful for classifying informal settlements, a setting 
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which challenges the boundaries of existing building detection algorithms. In 
an effort address the challenge of identifying salient features in various 
conditions, UAV datasets over informal settlements in two different countries 
are compared. Feature sets describing 2D radiometrical and textural features 
from the orthomosaic, 2.5D topographical features from the DSM, and 3D 
features from the point cloud are selected from literature. Both pixel- or point-
based features and segment-based features are included. The suitability of the 
feature sets for classifying informal settlements are tested through their 
application to two classification problems. The classification is performed using 
Support Vector Machines (SVMs), which have been shown to be very effective 
in solving nonlinear classification problems using multiple heterogeneous 
features. The first classification problem identifies major objects in the scene 
(i.e. buildings, vegetation, terrain, structures and clutter), whereas the second 
attempts to describe semantic attributes of these objects such as roof material, 
types of terrain, and specific structures such as lamp posts and walls. The 
results presented here are an extension of previous research regarding the 
suitability of various features sets for the classification of an informal 
settlement in Kigali, Rwanda (C. M. Gevaert et al., 2016) in two significant 
ways. Firstly, the suitability of the feature sets in a different setting is analyzed 
through the application of the same framework to an informal settlement in 
Maldonado, Uruguay. Secondly, we provide an extensive analysis of the most 
suitable features per class, which supports other researchers in identifying 
which features could be most relevant for their specific classification problem. 

2.2 Methodology 

2.2.1 Data sets 

Two UAV datasets of informal settlements were utilized in the current study. 
For each dataset, ten disjoint 1000 x 1000 pixel tiles were manually labelled 
into ten classes: three different types of roof material, high vegetation, low 
vegetation, bare surface, impervious surface, lamp posts, free-standing walls, 
and clutter (Table 2.1). The roof materials included a class for low-quality 
corrugated iron roofing, and two classes of high-quality material which 
depended on the dataset. The clutter class consists of temporary objects, such 
as cars, motorbikes, clothes lines with drying laundry, and other miscellaneous 
objects. These ten class labels were aggregated into a 5-class problem to 
identify the major objects in the informal settlement (buildings, vegetation, 
terrain, structures, and clutter) as indicated in Table 2.1. For pixels where the 
orthomosaic clearly indicated terrain, but the type of terrain was unknown (e.g. 
due to shadows), the pixels were labelled as terrain in the reference data of 
the 5-class but not included in the 10-class problem. The training data for the 
supervised classifier consisted of 200 samples for each of the ten classes, 
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randomly extracted from the labelled pixels. In the following sections, both 
study areas will be briefly described. 
 
Table 2.1: Classes defined in the 5-class and 10-class set-up. 

5-class 10-class  
Building Corrugated Iron roofs (low quality) 
 High quality roof material I 
 High quality roof material II 
Vegetation High vegetation 
 Low vegetation 
Terrain Bare surface 
 Impervious surface 
Structures Lamp posts 
 Free-standing Walls 
Clutter Clutter 

 
2.2.1.1 Kigali, Rwanda: A DJI Phantom 2 Vision+ UAV was utilized to obtain 
imagery over an unplanned settlement of 86 ha in Kigali, Rwanda in May, 2015. 
The characteristics of the settlement include small buildings (41% are smaller 
than 50 m²), often separated by narrow footpaths. Typical roof materials are 
corrugated iron sheets, and tile- or trapezoidal-shaped galvanized iron sheets 
that are often cluttered with objects such as stones. The area itself is located 
on a steep slope, and trees partially cover the roofs in many areas. The UAV 
was mounted with a 14 Megapixel RGB camera with a fish-eye lens (FOV = 
110°). Each individual image has a resolution of 4608 x 3456 pixels, and they 
were acquired with approximately 90% forward- and 70% side-overlap. The 
images were processed with Pix4D software to obtain a point cloud with a 
density of up to 1014 points/m2. A DSM and an 8-bit RGB orthomosaic with a 
spatial resolution of 3 cm were also obtained. The DSM was interpolated from 
the point cloud using the Inverse Distance Weighting (IDW) option in Pix4D. 
The main benefit of this technique is the preservation of smooth building 
outlines, avoiding a common speckled effect in areas where, for example, 
interpolation between points on overhanging roofs and the ground below may 
cause artefacts in the DSM and resulting orthomosaic. However, a 
disadvantage of this interpolation method is a slight rounding of roof corners 
in some areas. 
 
2.2.1.2 Maldonado, Uruguay: This dataset was obtained by UAV 
Agrimensura, who utilized a microdrone md4-1000 quadcopter sporting a 24 
Megapixel SONY Nex7 camera. Flights were planned at a height of 80 m with 
80% forward- and 60% side-overlap. The flights were originally designed to 
cover 11.6 ha of the San Antonio settlement in Maldonado, Uruguay, to support 
urban projects by the Government of Maldonado. The settlement itself is also 
characterized by dense housing and low-quality corrugated iron roofs. The 
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terrain is flatter than the Kigali dataset, and there is more vegetation (both 
large trees overhanging the buildings and low vegetation in open areas). As 
with the Rwanda dataset, the images were processed with Pix4D to obtain the 
point cloud (123 points/m2) and a 3 cm DSM (again using IDW) and 
orthomosaic. Details regarding the image acquisition can be found in (Birriel 
and González, 2015).  

2.2.2 2D and 2.5D feature extraction from the orthomosaic and 
DSM 

2D radiometric, textural, and segment-based features were extracted from the 
orthomosaic, and 2.5D topographical features were extracted from the DSM 
(see the overview in Table 2.2). Note that we refer to the DSM as being 2.5D 
as it is in the form of a raster and only assigns one value for the height 
information to each cell. This also underlines the distinction between the 
features extracted from the DSM and the 3D features extracted from the point 
cloud. The radiometric features consisted of the input R, G, and B color 
channels as well as the normalized values r, g, and b (calculated by dividing 
the color channel by the sum of all three channels per pixel). Vegetation indices 
(VIs) are typically used to identify vegetation, but are often dependent on the 
reflectance in the NIR spectrum which is not available in the UAV datasets 
employed in this study. (Torres-Sánchez et al., 2014) compared a number of 
vegetation indices obtained from RGB UAV imagery and found that the excess 
green (ExG(2)) vegetation index (Woebbecke et al., 1995) compared favorably 
to other indices for vegetation fraction mapping from UAV imagery. ExG(2) can 
be calculated using the normalized r, g, and b values as follows: 
 

ሺ2ሻܩݔܧ ൌ 2݃ െ ݎ െ ܾ (2-1) 

In the absence of a Digital Terrain Model (DTM) which would allow calculating 
the height of objects above the ground, morphological filters can be applied to 
the DSM to identify how high a pixel is compared to its neighbors. More 
specifically, applying a top-hat mathematical morphological filter to a DSM will 
give the height of a pixel above the lowest point within the area delimited by 
a certain structuring element. Although there are more advanced methods for 
extracting a DTM, the combination of steep slopes and densely built structures 
in the Kigali dataset hindered an accurate extraction of the terrain. 
Furthermore, by using structuring elements of various sizes, we are able to 
identify the radius of the extracted object as well as the height above the 
surrounding area. This is because the size of the structuring element must be 
large enough to cover the entire object in question, but small enough to 
maintain the variation present in surface topography (Kilian, Haala and Englich, 
1996). This size can be set in an automatic way based on granulometry to 
target a specific type of object such as buildings (Li et al., 2014). However, as 
the present classification problem targets objects of varying sizes, multiple 
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circular top-hat filters are applied using structuring elements of varying radii: 
from 0.25 to 1.0 m at 0.25 m intervals, and from 1 to 10 m at 1 m intervals. 
Previous research has shown such an approach of using multi-scale DSM top-
hat features to be successful in classifying urban scenes (Arefi and Hahn, 
2005).  
 
Table 2.2: List of extracted features used in the classification problem. Dim. = 
dimension of input data, where 2D indicates the ortho-image, 2.5D indicates the DSM, 
and 3D indicates the point cloud. See the text for a details. 
Dim Code Features  Description 

2D R Radiometric Input RGB values, normalized color 
channels and vegetation index 

 T Textural LBPu,iri and VARu,iri features 

summarized over a local window  
 2S 2D segment Radiometric features averaged over 

mean-shift segments 
2.5D D Topographic Top-hat filters over DSM with various 

disk-shaped structuring elements 
3D 3B Spatial binning  Spatial binning to summarize 3D 

points in image grid 
 3S Planar segments Planar segment features from point 

cloud 
 3P Point-based 3D Point-based features 

 
Textural features from the orthomosaic are described by Local Binary Patterns 
(LBP) (Ojala, Pietikainen and Maenpaa, 2002). LBP texture features have 
compared favorably to, for example, texture features based on Gray-Level Co-
Occurrence Matrices (GLCM) (Doshi and Schaefer, 2012). Furthermore, LBP 
features are rotationally invariant, which is important in aerial image 
applications as, for example, roof textures will not always be oriented in the 
same cardinal direction. The algorithm works as follows. It first analyses the N 
neighboring pixels at a radius R from the center pixel. Each neighbor is 
assigned the value of 1 if its grayscale value is higher than that of the center 
pixel and 0 if it is lower. This results in a binary code of N bits. Rotational 
invariance is achieved by applying a circular shift, or bitwise rotation, to the 
code to obtain the minimal binary value. For example, let’s say we are 
considering the 8 directly neighboring pixels (R=1, N=8), so the texture will 
be described as a binary code where the first bit represents the neighbor 
directly above the pixel in question, and the remaining 7 bits represent the 
other neighbors in a clockwise direction. If for pixel A the neighbors in the first, 
third, and fourth positions have higher values than A and the others have lower 
values, it results in the binary code: 10110000. If pixel B has higher neighbors 
in the third, fifth and sixth slots, we obtain 00101100. By applying a bitwise 
rotation, we are essentially removing the zeros at the right. Thus 10110000 
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and 00101100 will both result in 00001011, indicating that pixels A and B both 
have the same rotationally-invariant texture. To reduce the number of unique 
codes, uniform patterns are defined as the codes containing a maximum of two 
binary 0/1 transitions. This allows for the definition of N+2 uniform, 
rotationally-invariant binary patterns, each of which can be assigned a unique 
integer. These LBP features are denoted as ܤܮ ேܲ,ோ

௨ଶ (where ‘riu2’ refers to the 
rotationally invariant, uniform patterns). Due to the binary nature of these 
patterns, they fail to capture the contrast between the center pixel and its 
neighbors. Therefore, it is recommended to combine various ܤܮ ேܲ,ோ

௨ଶ operators 
with a variance measure ܸܴܣே,ோ (2-2), which compares the grayscale values of 
each neighbor (gN) to the average grayscale value in the local neighborhood 
(µ) (Ojala, Pietikainen and Maenpaa, 2002). 
 

ே,ோܴܣܸ ൌ
ଵ

ே
∑ ሺ݃ே െ ሻଶேିଵߤ
ேୀ , ߤ	݁ݎ݄݁ݓ ൌ

ଵ

ே
∑ ݃ே
ேିଵ
ேୀ  (2-2) 

The application of LBP features to the orthomosaic involve converting the RGB 
image into a grayscale image, and calculating the ܤܮ ேܲ,ோ

௨ଶ pattern for each pixel. 
It should be noted that it is also possible to calculate such texture features 
separately per spectral band. However, in the present classification problems, 
the texture of the grayscale image provides sufficient discriminatory power. 
For example, the texture of corrugated iron roofs is caused by the shadows 
cast by the undulated shape of the roof and is therefore irrespective of the 
roofs’ color. Next, a sliding window is applied to the orthomosaic to compute 
the normalized histogram. Thus, each ܤܮ ேܲ,ோ

௨ଶ feature results in N+2 features 
representing the relative presence of this pattern in the local neighborhood.  
Here, we apply two sliding windows, one of 3x3 pixels and the other 10x10 
pixels. For this analysis, three LBP variations: ଼ܲܤܮ ,ଵ

௨ଶ, ܤܮ ଵܲ,ଶ
௨ଶ, ܤܮ ଶܲସ,ଷ

௨ଶ, and the 
corresponding VAR features were utilized. 
 
The orthomosaic was segmented using the mean shift algorithm (Comaniciu 
and Meer, 2002) implemented in the EDISON toolbox. The algorithm 
transforms the RGB color values into L*u*v color space, and applies a kernel 
function to identify modes in the data. The algorithm requires two parameters 
to define the kernel bandwidths: hs which represents the spatial dimension, 
and hr which represents the spectral dimension. These parameters were set to 
20 pixels and 5 grey levels respectively, based on experimental analysis. The 
segment features included in the classification consisted of the pixel-based 
radiometric features (i.e. R, G, B, r, g, b and ExG(2)) averaged over each 
segment.  

2.2.3 3D feature extraction from the point cloud 

Three types of 3D features were projected from the point cloud into 2D space: 
spatial binning features, planar segment features, and 3D-neighborhood based 
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features. Spatial binning features, similar to elevation images, can be used to 
project each 3D point into a horizontal 2D plane which is divided by a grid into 
equally sized bins. In this application, the geographical grid of orthomosaic is 
used to define the bins, so that each bin is exactly aligned to an image pixel. 
In this way, the 3D features can be directly combined with the 2D image-based 
features in the classification step. Three characteristics of the 3D points were 
calculated for each pixel: (i) the number of points per bin, (ii) the maximal 
height difference, and (iii) the standard deviation of the heights of all the points 
falling into the bin. To reduce the number of empty bins, the attributes of each 
point were assigned to the eight directly neighboring pixels as well as the pixel 
directly under it.  
 
However, such spatial techniques greatly simplify important geometrical 
characteristics of objects in 3D space. Therefore, we also take into account 
features obtained from planar segments and the local neighborhood in 3D 
space. To integrate these features into a 2D space, the attributes of the highest 
3D point for each pixel (or bin) was utilized. This was based on the premise 
that if there are multiple layers in a point cloud (terrain and an overhanging 
roof, for example), it is the highest point in the point cloud (i.e. corresponding 
to the roof) which will be visible in the orthomosaic. 
 
Planar segments in point clouds have demonstrated their usefulness in the 
identification of building roofs and walls in urban scenes (Vosselman, 2013). 
Here, planar segments were obtained by applying a surface growing algorithm. 
The surface growing algorithm starts with a seed point within the point cloud, 
and selects the k nearest neighbors (10 in this case). If the group is sufficiently 
homogenous according to a defined attribute, then it is accepted as a segment. 
Here, planarity was utilized and the acceptance criterion was based on the sum 
of the squared residuals of the ten selected points to a local plane. The 
maximum residual error threshold was set to 0.30 m. If a group of points meets 
the requirements, it is accepted as a segment, and begins to ‘grow’. 
Neighboring points within a defined radius (here 1.0 m) and maximum distance 
from the plane (again 0.30 m) are included in the segment and the planar 
coefficients of the segment are then recalculated. This process is repeated until 
no additional points are added to the segment, and then the same is done for 
the next seed point. A greedy approach is utilized in the segment growing 
process, which signifies that if a point is candidate for multiple segments that 
it is assigned to the segment for which it has the smallest residual error. After 
performing the surface growing algorithm, four segment features were 
calculated: (i) the number of points per segment, (ii) the average residual, (iii) 
the inclination angle of the plane, and (iv) the maximal height difference 
between the segment and directly neighboring points. To define the latter, the 
height difference map obtained for the spatial binning features was utilized. 
Pixels pertaining to the same segment were identified, and the maximal height 
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difference values of these pixels was assigned to all pixels pertaining to the 
same 3D segment. The four segment features were only calculated for 
segments which were identified at least once as being the highest segment in 
a bin, but all of the segment points pertaining to that segment were included 
in the calculation of the segment features. 
 
The final step was to add more descriptive 3D-shape attributes from the point 
cloud into the image. Weinmann et al. (2015) present a set of 21 generic point 
cloud features. Point attributes are calculated by taking a local neighborhood 
into account. The size of this neighborhood will influence the characteristics of 
the calculated features. For example, in the context of informal settlements, a 
rock on a roof will display spherical characteristics if a very small neighborhood 
is taken into account, but planar characteristics if the neighborhood includes 
roof points over an extended area. This problem can be addressed by defining 
a different neighborhood size for each specific point (Demantké et al., 2012; 
Weinmann et al., 2015). This ‘optimal neighborhood’ is based on the 
normalized eigenvalues (e1, e2, and e3, where e1 ≥ e2 ≥ e3) of 3D matrix giving 
the X,Y,Z coordinates of the 3D points in the defined neighborhood. The ratio 
of these eigenvalues describe the general shape of the 3D points (Chehata, 
Guo and Mallet, 2009). For example, if the first eigenvalue is significantly larger 
than the others, the points are distributed linearly. If the first two are 
approximately equal, then the points describe a planar surface, and if all three 
are similarly sized than the points are scattered. The ‘optimal neighborhood’ 
size is defined by iteratively increasing the number of selected neighbors 
around a point through either a k-nn search (Weinmann et al., 2015) or 
increasing radius size (Demantké et al., 2012) and determining at which size 
the Shannon entropy (2-3) is minimized. 
 

ఒܧ ൌ 	െ݁ଵ lnሺ݁ଵሻ െ ݁ଶ lnሺ݁ଶሻ െ ݁ଷln	ሺ݁ଷሻ (2-3) 

It is suggested to restrict the optimal neighborhood search to a minimum of 
10 and a maximum of 100 neighbors (Weinmann et al., 2015). However, in 
the case of UAV point clouds such as those used in the current application, the 
density of the points implicates that even the 100 nearest neighbors may span 
less than 0.10 m2 when point density is 1014 points per m2. This could be 
insufficient to detect the geometry of larger objects, especially in the presence 
of clutter. Alternatively, utilizing a fixed radius to define the neighborhood may 
lead to computational difficulties due to the large number of points. Therefore, 
the 3D point features are calculated for the highest points per pixel in the dense 
point cloud, but the nearest neighbors are selected from a filtered point cloud 
which is subsampled to a 0.5 m 3D grid. Experimental results indicated that 
this greatly increased the computation speed while maintaining the features’ 
discriminatory power. 
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After determining the optimal neighborhood for all the highest points per pixel, 
the 3D geometric, 3D shape, and 2D shape features were calculated based on 
the framework of 21 features (Weinmann et al., 2015). The 3D geometric 
features consisted of the maximum altitude difference and standard deviation 
of the height values of neighboring points. The absolute maximum altitude 
feature was excluded, as the study area is sloped. From the 3D covariance 
matrix, combinations of the normalized eigenvectors are used to describe the 
linearity ܮఒ (2-4), planarity ఒܲ (2-5), scattering ఒܵ (2-6), omnivariance ఒܱ (2-
7), anisotropy ܣఒ (2-8), eigenentropy ܧఒ (2-9), sum eigenvalues Σఒ (2-10), and 
change of curvature ܥఒ (2-11).  
 

ఒܮ ൌ ሺ݁ଵ െ ݁ଶሻ/݁ଵ		  (2-4) 

ఒܲ ൌ ሺ݁ଶ െ ݁ଷሻ/݁ଵ			  (2-5) 

ఒܵ ൌ ݁ଷ/݁ଵ (2-6) 

ఒܱ ൌ ඥ݁ଵ݁ଶ݁ଷ
య  (2-7) 

ఒܣ ൌ ሺ݁ଵ െ ݁ଷሻ/݁ଵ (2-8) 

ఒܧ ൌ 	െ∑ ݁ െ ln	ሺ݁ሻ
ଷ
ୀଵ  (2-9) 

Σఒ ൌ ݁ଵ  ݁ଶ  ݁ଷ (2-10) 

ఒܥ ൌ ݁ଷ/ሺ݁ଵ  ݁ଶ  ݁ଷሻ (2-11) 

Elongated rectangular planes, such as fences along plot boundaries, 
normalization of the planarity Pλ by e1 (2-5) may have low values (Vosselman, 
2013). As an alternative, normalization using e2 is proposed: 
 

ܲ2ఒ ൌ ሺ݁ଶ െ ݁ଷሻ/݁ଶ (2-12) 

This alternative was included in the 3D feature set. Furthermore, the sum and 
ratio of eigenvalues in the 2D covariance matrix obtained by projecting the 
points in the neighborhood to a local plane were calculated. The spatial binning 
features described by the framework were not applied, as they are similar to 
those calculated previously.  

2.2.4 Feature selection and classification 

The feature sets are compared through supervised classification using a SVM 
classifier with a Radial Basis Function (RBF) kernel implemented in LibSVM 
(Chang and Lin, 2011). SVM classifiers maximize the margins between classes 
while minimizing training errors, a method which is proven to obtain high 
classification results and generalization capabilities even when few training 
samples are utilized (Bruzzone and Persello, 2010). To train the SVM 
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classifiers, all the features were normalized to a 0-1 interval. Then, a 5-fold 
cross-validation was used to optimize the values of the soft margin cost 
function C from 2-5 to 215 and the spread of the Gaussian kernel γ from 2-12 to 
23 on the training set. 
 
Five feature sets are compared (Table 2.3). The first feature set (RT) consists 
exclusively of 2D features, namely the radiometric and texture features 
calculated from the input orthomosaic. The second feature set (RD) simulates 
situations in which the DSM is also available, a 2.5D approach using radiometric 
and topographic features. The third set (R2ST) again consists of exclusively 2D 
features, but includes the mean shift segments, which are used to summarize 
the radiometric and textural features. The fourth set (R2ST3), includes the 
features which are directly obtained from the point cloud (spatial binning, 
planar segment, and point-based 3D features), again summarized over the 
mean shift segments.  
 
To reduce the computational cost and prevent over-fitting the classifier, a 
feature selection method was applied to create the fifth feature set (FS). 
Feature selection methods consist of a search strategy and criterion function. 
In this case, the Sequential Forward Floating Search (SFFS) search strategy 
(Pudil, Novovičová and Kittler, 1994) was applied using the Hilbert-Schmidt 
Independence Criterion (HSIC) (Gretton et al., 2005) for the criterion function. 
SFFS is based on Sequential Forward Search (SFS), a bottom-up feature 
selection method which starts with an empty set of selected features. The 
unselected features are iteratively evaluated using the criterion function. The 
feature which maximizes the criterion function is defined as the most significant 
feature and is added to the set of selected features. This process of evaluating 
the criterion function by iteratively evaluating the unselected features and 
adding the most significant feature is continued until the feature set reaches a 
pre-defined size. One main problem of SFS is the ‘nesting’ effect, which means 
that once a feature is selected, it can no longer be discarded from the final set 
of selected features. To avoid this issue, after the addition of each additional 
feature, SFFS backtracks to check if the removal of any features from the 
selected set increases the criterion function. More specifically, SFFS consists of 
three steps (Pudil, Novovičová and Kittler, 1994). The first step is inclusion, 
where SFS is applied to select the most significant candidate feature to add to 
the set. Secondly, conditional exclusion is applied by individually removing 
each feature and calculating the criterion function. If the removal of any feature 
except the one which was just added results in a higher criterion function, then 
this feature is removed from the set. The continuation of conditional exclusion 
iterates this procedure, iteratively searching for the least significant feature in 
the set and removing it if: (i) the feature set will still contain more than two 
features and (ii) the criterion function of the new subset is higher than the 
previously obtained subset containing the same number of features.  
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Regarding the criterion function, a number of methods such as Correlation-
based Feature Selection (Hall, 1999) and Minimal-Redundancy-Maximal-
Relevance (Hanchuan Peng, Fuhui Long and Ding, 2005) focus on maximizing 
the predictive power of the selected features towards the classification label 
while minimizing the similarity between the selected features. However, such 
methods rely on linear relations between features. As the current application 
utilizes a SVM classifier, it is important to select features based on non-linear 
relations. Therefore, the HSIC is utilized for the criterion function, which has 
successfully been used for feature selection methods in the transfer learning 
domain (Persello and Bruzzone, 2016). This measure evaluates the similarity 
between an input kernel K and a kernel L representing an ideal output kernel 
where samples adhering to similar class labels are assigned a value of 1 and 
samples adhering to different classes are assigned the value 0. It can be 
calculated as follows: 
 

ܥܫܵܪ ሺܺ, ܻሻ ൌ
ଵ

మ
 ሻ (2-12)ࡴࡸࡴࡷሺݎܶ

where n is the total number of samples, and Tr indicates the trace. H is the 
centering matrix: ࡴ ൌ ߜ െ ሺ1/݊ሻ, where ߜ equals 1 when samples i and j 
adhere to the same class, and 0 otherwise. The SFFS feature selection strategy 
with HSIC criterion function was used to select the 60 most relevant features 
out of the entire 2D, 2.5D, and 3D feature set. The feature selection is applied 
separately for each of the three datasets and for both the 5-class and 10-class 
problem. 
 
Supplemental experiments were conducted to identify which of the 3D features 
are most relevant for the different classes. To this end, the labelled samples of 
each of the ten classes were selected individually from the training dataset 
used in the classification. Each sample adhering to the selected class was set 
to a label of ‘1’ and all other training samples were set to a value of ‘2’. Then, 
the SFFS feature selection was applied to select the three most relevant 3D 
features. This additional analysis allows to (i) identify which 3D features are 
most informative for each of the specific classes and (ii) to compare whether 
the same features are informative for similar objects in different informal 
settlements.  
 
The classification results of the five different feature sets are compared using 
the Overall Accuracy (OA) of the prediction maps compared to the reference 
data. The reference data created manually by digitizing over the UAV 
orthomosaics. Furthermore, confusion matrices as well as the correctness (2-
13) and completeness (2-14) are used to compare the relations between 
number of true positives (TP), false negatives (FN) and false positives (FP). 
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ݏݏ݁݊ݐܿ݁ݎݎܥ ൌ
்

்ାிே
 (2-13) 

ݏݏ݁݊݁ݐ݈݁݉ܥ ൌ
்

்ାி
	 (2-14) 

2.3 Results 
The RT feature set has the worst performance for all experimental set-ups, and 
the highest performing feature set was always a combination of 2D and 3D 
features (RT2S3 and FS) according to the OA (Table 2.4), completeness, and 
correctness (Tables 2.5 and 2.6). Sample classification results consisting of 
one of the ten tiles for each dataset are presented in Figures 2.1 and 2.2. RT 
does achieve an OA of 80.8% in Maldonado, which is possibly due to the 
prominence of terrain in the form of low vegetation rather than reddish soils 
which facilitates the distinction between buildings and terrain based only 
exclusively spectral properties. The RT2S3 feature set achieves very high 
accuracies for both study areas from 91.6% to 95.2% in the 5-class problem 
and 86.1% to 92.2% in the 10-class problem. The high performance of the FS 
feature set is important to note, as it indicates that the improved performance 
of RT2S3 over RT2S is not solely the utilization of more features (117 instead 
of 60), but also due to the combination of 2D and 3D features.  
 
Table 2.3: Description of the feature sets used for the classification experiments. See 
Table 2.2 for a description of the feature set codes, FS indicates feature selection was 
applied. N indicates the number of features in the set.  

Feature set 2D   2.5D 3D N 
 R T 2S D 3  
RT X X    61 
RD X   X  20 
R2ST X X X   68 
R2ST3 X X X  X 117
FS X X X X X 60 

 
Table 2.4: Overall Accuracies (OA) achieved by the five feature sets for both study 
areas. 

 5-class OA (%) 10-class OA (%) 
 RT RD RT2S RT2S3 FS RT RD RT2S RT2S3 FS 

Kigali 74 87 90 92 91 52 79 85 86 84 
Maldonado 81 91 95 95 95 57 83 91 91 92 
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Table 2.5: Completeness and correctness of selected feature sets for the 5-class 
problems.  

 
Kigali 

Completeness 
 Building Vegetation Terrain Structures Clutter 
RT 0.693 0.941 0.797 0.460 0.239 
RD 0.847 0.952 0.919 0.699 0.207 
RT2S 0.901 0.949 0.909 0.826 0.718 
RT2S3 0.916 0.964 0.922 0.769 0.676 
FS 0.910 0.954 0.921 0.846 0.721 
Correctness 
 Building Vegetation Terrain Structures Clutter 
RT 0.911 0.892 0.726 0.032 0.153 
RD 0.979 0.904 0.835 0.092 0.271 
RT2S 0.986 0.939 0.944 0.123 0.315 
RT2S3 0.987 0.952 0.930 0.169 0.327 
FS 0.985 0.939 0.942 0.165 0.324 

 
Maldonado 

Completeness 
 Building Vegetation Terrain Structures Clutter 
RT 0.699 0.901 0.787 0.710 0.584 
RD 0.926 0.892 0.918 0.780 0.874 
RT2S 0.907 0.965 0.955 0.957 0.978 
RT2S3 0.944 0.958 0.951 0.941 0.960 
FS 0.917 0.968 0.959 0.920 0.975 
Correctness 
 Building Vegetation Terrain Structures Clutter 
RT 0.889 0.973 0.749 0.026 0.053 
RD 0.957 0.977 0.825 0.125 0.207 
RT2S 0.982 0.990 0.907 0.163 0.169 
RT2S3 0.974 0.992 0.910 0.182 0.456 
FS 0.969 0.989 0.924 0.232 0.161 

 
Furthermore, we see that the RT2S feature set which only utilizes features 
obtained from the 2D orthomosaic has a higher performance than the RD 
feature set which includes features from the DSM. For example in Kigali, the 
OA increases from 86.7% (RD) to 90.4% (RT2S). This is largely due to a 
decrease in the confusion of building and terrain, which increases the 
completeness of buildings from 0.847 to 0.901 and correctness of terrain from 
0.835 to 0.944. For example, Figure 2.1 displays how a building (marked with 
a yellow box), located on a steep slope where the roof is almost equal to the 
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terrain above it, is captured by RTST but not RD. In Maldonado, the improved 
classification accuracy of RT2S as opposed to RD is mainly due to the improved 
classification of vegetation vs. terrain, where the completeness of vegetation 
improves from 0.892 to 0.965. 
  
The 10-class problem focused on the ability to distinguish between different 
types of objects. Regarding buildings, there were difficulties in distinguishing 
between older corrugated iron sheets and new, grey iron sheets due to similar 
texture and coloring. However, the completeness of the different building roof 
types was still above 0.849 and correctness above 0.796 for both datasets 
using the RT2S3 feature set. The corrugated iron sheets also displayed 
confusion with the bare surface class. The ability to distinguish high- and low-
vegetation also had the best results for RT2S3, showing gains in correctness 
and completeness for both classes as opposed to RT2S or RD. the most notable 
exception is the decrease in the correctness of low vegetation in the Uruguay 
dataset from 0.873 (RT2S) to 0.839 (RT2S3), although feature selection again 
improves the correctness to 0.895. Bare surfaces displayed a higher confusion 
with corrugated iron roofs than impervious surfaces, again likely due to the 
similar spectral properties. Regarding the terrain classes, results indicate that 
for all feature sets, there was much confusion between bare terrain and 
impervious surfaces. This is a common problem in remote sensing, as shadows 
from surrounding buildings and spectral similarity with pervious surfaces 
hinders the identification of impervious surfaces (Weng, 2012). The most 
difficult classes in the current setup are the structure classes of free-standing 
walls and lamp posts. Although the inclusion of point cloud features greatly 
improved the classification of walls and lamp posts, these classes were still 
over predicted, resulting in low correctness values. 
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(a) 

 
 (b)  

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 Buildings   Vegetation   Terrain 

 Structures   Clutter   Unlabeled 

Figure 2.1: Classification results (5-class) for one of the tiles in the Kigali dataset: input 
RGB image (a), reference data (b), RD prediction (c), R2ST prediction (d), R2ST3 
prediction (e), and FS prediction (f). The yellow box indicates a building roof which is not 
captured in the RD feature set due to the steep slopes, but well captured in the RT2S, 
RT2S3, and FS sets.  
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(a) 

 
(b)  

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 Buildings  Vegetation  Terrain 

 Structures  Clutter  Unlabeled 

Figure 2.2: Classification results (5-class) for one of the tiles in the Maldonado 
dataset: input RGB image (a), reference data (b), RD prediction (c), R2ST prediction 
(d), R2ST3 prediction (e), and FS prediction (f). 
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As the results indicate the importance of including 3D features from the point 
cloud, it is interesting to analyze which 3D features (i.e. spatial binning, 
segment, or point-based features) are the most relevant for the various 
classes. Table 2.7 presents the results of the SFFS feature selection, identifying 
the most relevant 3D features for the ten different classes of both datasets. 
The most commonly selected 3D features are: the ratio of the 2D eigenvectors 
(selected 14 times), this ratio summarized over the mean shift segments (9 
times), the standard deviation of the points per bin (8 times), the maximal 
height difference between a segment and the surrounding points (6 times), 
and the latter summarized over mean shift segments (6 times). Images 
displaying the values of these features are presented in Figure 2.3. It is 
interesting to note that the most common features represent point-based, 
spatial binning, and planar-segment based features respectively. With regard 
to buildings, the maximal height difference per planar segment, either pixel-
based or averaged over mean shift segments, was selected as the most 
relevant feature five out of six times. The second most important feature was 
the ratio of 2D eigenvalues. Regarding the vegetation class, there was little 
consensus regarding the most important feature for high vegetation, whereas 
the maximal height difference per planar segment was selected as most 
important for low vegetation. The latter feature was also most important for 
identifying terrain, followed by the ratio of 2D eigenvalues and standard 
deviation per bin. The number of points per planar segment was important for 
both walls and street lights, whereas the features selected for the clutter class 
differed greatly between the both datasets. 

2.4 Discussion 

2.4.1 Importance of summarizing texture and 3D features over 
mean-shift segments 

Out of all the feature sets, those which used a mean-shift segmentation to 
summarize texture or 3D features greatly increased the classification accuracy. 
As the extent of the moving window is fixed, it will summarize the textures of 
distinct classes at object borders, whereas this problem is avoided when using 
segments to summarize textural information. The discriminative power of the 
LBP texture features summarized per segment is possibly due to the high 
resolution of the UAV imagery, in which the texture of the corrugated iron roofs 
is clearly visible. Summarizing the 3D features over the segments also serves 
to decrease noise in the point cloud, such as outliers formed by dense matching 
errors. The R2ST3 feature set proves the utility of integrating both 2D and 3D 
features, especially in the context of the 10-class problem. In light of this 
observation, further research could, for example, summarize the 2D texture 
features over the planar 3D segments in order to reduce the misclassification 
of narrow corrugated iron sheets on roofs as walls.  
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2.4.2 Propagation of errors when using DSM features 

Regarding the pixel-based methods, the suite of DSM top-hat filters allows for 
the distinction of objects of various sizes, which could be used to target 
elevated objects of uniform size. However, errors in the DSM are then 
propagated to the classification. For example, the Kigali and Maldonado 
datasets utilized an IDW interpolation incorporated to create the DSM, which 
causes the terrain next to or footpaths between buildings to be misclassified 
as building or vegetation since these pixels are falsely assigned a higher 
elevation value. This effect is more pronounced if training samples are not 
obtained from these locations. This hinders the suitability of the classification 
for upgrading projects, which requires the delineation of individual buildings or 
identification of footpaths to analyze accessibility in the settlement. As the 
building outlines are clearly visible in the orthophoto, the mean-shift 
segmentation improves the delineation of building outlines compared to relying 
on the DSM, especially when combined with 3D features. 
 
This again emphasizes the advantage of 3D features summarized per image 
segment over the features extracted from a DSM. This advantage is 
accentuated if one takes into account that the manner in which the reference 
data was created, which was done manually over the orthophoto, favors 
features extracted from the imagery. Some objects, such as overhanging 
electricity wires or some poles, are not visible in the orthomosaic. They may 
therefore be labelled as ‘terrain’ in the reference data although they contain 
the 3D characteristics of a structure. Misalignment of the 3D point cloud and 
orthomosaic, although minimal in the current application as both products were 
derived from the same imagery, should be considered more carefully when 
utilizing the present methods to combine aerial imagery and LiDAR data.   
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2.4.3 Comparison of the three sets of 3D features 

Three groups of features were derived from the point cloud to represent 3D 
attributes: spatial binning, planar segment features, and 3D point features. 
Results suggest that the three forms of 3D features are complimentary, as all 
three types are represented by the three most commonly selected features 
over all the classes. In the first place was the selection of the ratio of 
eigenvalues of the points within the optimal neighborhood projected into a 2D 
horizontal plane. Low values indicate that points are more evenly distributed 
on the horizontal plane (e.g. terrain and roofs), whereas higher values indicate 
a more linear structure (e.g. walls). The second feature was the standard 
deviation of points falling into the same bin. This feature indicates the different 
vertical layers of objects within the scene, as it will be lower at planar roofs or 
terrain, but higher for walls, lamp posts, and high vegetation. Regarding the 
third feature, in informal settlements, a single roof may consist of patches of 
materials displaying heterogeneous characteristics causing an over-
segmentation of the mean shift based on radiometric features. However, these 
different materials may still generally lie on the same plane, allowing the 3D 
planar segments to summarize information over a larger area of the roof. The 
propagation of the maximal height difference with surrounding points over the 
entire planar segment is especially important for buildings and terrain. 
However, errors in the point cloud segmentation, such as building roofs and 
terrain being assigned to the same plane in sloped areas, caused visible 
artefacts in the classification. It is moreover interesting to observe that a 
number of 3D features averaged over mean shift segments were selected for 
the Kigali dataset, but not for the Maldonado dataset. It is unclear whether this 
would change if the mean shift segmentation parameters would be specifically 
tuned for each dataset, as the classification accuracies obtained with the 
current settings are still quite high.  
 
In general, we can observe that some object classes such as buildings and 
terrain prioritize similar 3D features for both datasets. Others, such as clutter 
and vegetation display more variety. This is logical as different types of 
vegetation display different geometric characteristics and the lack of a NIR 
spectral band make it difficult to distinguish based on radiometric 
characteristics, though in this case the vegetation index and normalized green 
features provide adequate discriminative power. The clutter class is obviously 
more difficult to classify as it represents a wide range of objects with different 
spectral and geometrical properties. 

2.4.4 Settlement heterogeneity and future applications 

One of the main objectives of the current study is to analyze not only how to 
combine the 2D and 3D features, but also to investigate the transferability of 
these features to other settlements. The results indicate that despite the 
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different characteristics of the settlements, the classification accuracies using 
the different feature sets are comparable – that is to say that for both areas, 
the integration of 2D and 3D features achieves a high classification 
performance. Also, for all datasets the structure classes are over predicted, 
and there is difficulty in correctly classifying clutter, impervious surfaces, and 
bare surfaces.  
 
Finally, it is important to consider the parameter tuning requirements. Many of 
the features require the definition of parameters: number of neighbors and 
radius for the texture features, structural element of the DSM top-hat features, 
planarity definitions in the surface growing for the planar segments, spatial 
and spectral bandwidths for the mean shift segmentation, etc. In the present 
analysis, these parameters were experimentally defined for the Kigali dataset, 
and the same values were utilized for the Maldonado dataset. This indicates 
that even without fine-tuning each of the parameters, high classification 
accuracies can be obtained. Applications to other study areas could use the 
values presented here as a starting point. SFFS could be applied to a training 
set to identify which of the features are most relevant for the new dataset, 
which could then be extracted to classify the entire study area. If the user 
would like to start fine-tuning the parameters, it is recommendable to give 
priority to the definition of the mean shift segmentation parameters, which 
must be lax enough to accommodate the spectral variability of, for example, 
the corrugated iron roofs, but fine enough to distinguish between building roofs 
and terrain.  

2.5 Conclusions and Recommendations 
This work illustrates the importance of integrating 2D radiometric, textural, 
and segment features, 2.5D topographical features, and 3D geometrical 
features for informal settlement classification. Through the integration of these 
features, a high classification accuracy can be obtained, despite the challenging 
characteristics of informal settlements, which often consist of small buildings 
with a mix of poor quality roof materials with clutter and possibly located on 
steep slopes. Various feature sets were applied to a 5-class problem: buildings, 
vegetation, terrain, structures (free-standing walls and lamp posts), and 
clutter (cars, laundry lines, miscellaneous objects on the ground); and a 10-
class problem which distinguished roof material, high/low vegetation, 
pervious/impervious surfaces, and type of structure. Two informal settlements 
located in different settings were compared. Results indicate that using 2D 
radiometric features together with a series of top-hat morphological filters 
applied to the DSM had the highest accuracy of all pixel-based feature sets. 
However, inaccuracies in the DSM are propagated into the classification. 
Summarizing texture features over mean-shift segments obtains an improved 
classification even though it only requires the 2D RGB image as input. The high 



Classification Using Point-cloud and Image-based Features from UAV Data 

40 

spatial resolution of the UAV imagery allowed the texture features to capture 
typical corrugated iron roof patterns. However, the best results are obtained 
when integrating 3D features from the point cloud with image-based 
radiometric and texture features summarized over segments. The most 
relevant 3D features over the different datasets were: the ratio between the 
eigenvalues of the X,Y coordinates of a neighborhood of 3D points, the 
standard deviation in the height of points falling into the same bin of a defined 
grid, and the maximal height of a planar segment above neighboring points. 
 
The observation that the highest classification accuracies were obtained by 
combining both 2D and 3D features for two datasets obtained from the same 
images demonstrates that both feature spaces contain complimentary 
information. As UAV imagery provides both a dense 3D point cloud and a high-
resolution orthomosaic, both can be exploited to improve scene understanding. 
This is especially important in challenging scenes such as informal settlements, 
where many assumptions fundamental to building extraction algorithms (such 
as ground planarity and free-standing buildings) do not hold. Here, we 
demonstrate which feature sets can be combined to provide an accurate, up-
to-date classification map of informal settlements, which is essential for 
upgrading projects. It also demonstrates the importance of using 3D features 
directly. Other studies can use the current findings to direct their attention to 
certain 3D features according to the target classes of their specific classification 
problem. Further research could focus on an analysis of how to fine-tune these 
features to enhance the recognition of various objects and materials in informal 
settlements. The application of this framework to multi-temporal settings could 
also be analyzed, as UAVs facilitate frequent image acquisition and may 
therefore be very useful for monitoring project implementation and impacts. 
Classification post-processing, which was considered outside the scope of the 
present study, could also reduce the presence of small pixel groups and 
improve the classification results. 
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Chapter 3 – Optimizing Multiple Kernel 
Learning for the Classification of UAV Data2 
 

                                               
2 This chapter is based on: 
 
Gevaert, C.M., Persello, C., and Vosselman, G. (2016) ‘Optimizing Multiple Kernel 
Learning for the Classification of UAV Data’, Remote Sensing, 8, pp. 1025, 
doi:10.3390/rs8121025. 
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Abstract 
Unmanned Aerial Vehicles (UAVs) are capable of providing high-quality 
orthoimagery and 3D information in the form of point clouds at a relatively low 
cost. Their increasing popularity stresses the necessity of understanding which 
algorithms are especially suited for processing the data obtained from UAVs. 
The features that are extracted from the point cloud and imagery have different 
statistical characteristics and can be considered as heterogeneous, which 
motivates the use of Multiple Kernel Learning (MKL) for classification problems. 
In this paper, we illustrate the utility of applying MKL for the classification of 
heterogeneous features obtained from UAV data through a case study of an 
informal settlement in Kigali, Rwanda. Results indicate that MKL can achieve a 
classification accuracy of 90.6%, a 5.2% increase over a standard single-kernel 
Support Vector Machine (SVM). A comparison of seven MKL methods indicates 
that linearly-weighted kernel combinations based on simple heuristics are 
competitive with respect to computationally-complex, non-linear kernel 
combination methods. We further underline the importance of utilizing 
appropriate feature grouping strategies for MKL, which has not been directly 
addressed in the literature, and we propose a novel, automated feature 
grouping method that achieves a high classification accuracy for various MKL 
methods. 
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3.1 Introduction 
Unmanned Aerial Vehicles (UAVs) are gaining enormous popularity due to their 
ability of providing high-quality spatial information in a very flexible manner 
and at a relatively low cost. Another considerable advantage is the 
simultaneous acquisition of a photogrammetric point cloud (i.e., a 3D model 
consisting of a collection of points with X, Y, Z coordinates) and very high-
resolution imagery. Due to these reasons, the use of UAVs for a wide range of 
applications is being analyzed, such as agriculture (Zhang and Kovacs, 2012; 
Gevaert et al., 2015), forestry (Wallace et al., 2012), geomorphology (Tarolli, 
2014), cultural heritage (Remondino and Campana, 2014) and damage 
assessment (Anand Vetrivel et al., 2015). Furthermore, the potential cost savings, 
improved safety and prospect of enhanced analytics they provide are being 
increasingly recognized as a competitive advantage from a business perspective 
(Thibault and Aoude, 2016). 
 
Similar to traditional aerial photogrammetry, UAV imagery is processed to 
obtain a dense point cloud, Digital Surface Model (DSM) and orthomosaic. In 
(Nex and Remondino, 2014), the general workflow of utilizing UAVs for 
mapping applications is described. UAVs are generally mounted with a camera 
and fly over the study area to obtain individual overlapping images. Flights are 
planned according to the camera parameters, UAV platform characteristics and 
user-defined specifications regarding the desired ground sampling distance and 
image overlap. The acquired images are then processed using photogrammetric 
methods, for which semi-automatic workflows are currently implemented in 
various software (Sona et al., 2014). Key tie points are identified in multiple 
images, and a bundle-block adjustment is applied to simultaneously identify 
the camera parameters of each image, as well as the location of these tie points 
in 3D space. Note that this step usually requires the inclusion of external 
ground control points for an accurate georeferencing. Dense matching 
algorithms, such as patch-based (Furukawa and Ponce, 2010) or semi-global 
(Hirschmüller, 2008) approaches, are then applied to obtain a more detailed 
point cloud. The point cloud is filtered and interpolated to obtain a DSM that 
provides the height information for the orthomosaic derived from the UAV 
images. Thus, geospatial applications making use of UAV imagery have access 
to the information in a point cloud, DSM and orthomosaic for subsequent 
classification tasks. 
 
Much research regarding the classification of urban areas from aerial imagery 
still relies on features from either only the imagery or the imagery and DSM. 
For example, the orthomosaic can be divided into tiles and Linear Binary 
Pattern (LBP) texture features can be utilized to propose class labels that are 
present in that area (Moranduzzo et al., 2015). Randomized Quasi-Exhaustive 
(RQE) feature banks can also be used to describe texture in UAV orthomosaics 
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for the purpose of classifying impervious surfaces (Tokarczyk et al., 2015). 
Others use radiometric and Gray-Level Co-Occurrence Matrix (GLCM) texture 
features to identify inundated areas (Feng, Liu and Gong, 2015). The inclusion 
of elevation data greatly improves image classification results in urban areas 
(Hartfield, Landau and Leeuwen, 2011; Longbotham et al., 2012). Indeed, a 
comparison of building extraction methods using aerial imagery indicates that 
the integration of image- and DSM-based features obtains high accuracies for 
(large) buildings (Rottensteiner et al., 2014). However, combining the features 
derived from both the imagery and the point cloud directly (rather than the 
DSM) has been shown to prove beneficial for classification problems in the 
fields of damage assessment (A. Vetrivel et al., 2015) and informal settlement 
mapping (Gevaert et al., 2017). 
 
Combining features from multiple sources or from different feature subsets 
pertains to the field of multi-view learning (Xu, Tao and Xu, 2013). For 
example, in this case, point-cloud-based and image-based features could be 
considered as different views of a study area. Although both are obtained from 
the same data source (UAV images), the point-cloud represents the 
geometrical properties of the objects in the scene, whereas the orthoimagery 
contains reflectance information (i.e., color). Three types of multi-view 
learning can be distinguished (Xu, Tao and Xu, 2013): co-training, sub-space 
learning and Multiple Kernel Learning (MKL). Co-training generally consists of 
training individual models on the different views and then enforcing the 
consistency of model predictions of unlabeled data. However, such methods 
require sufficiency, i.e., that each model is independently capable of 
recognizing all classes. This is not always the case, for example different roof 
types may be differentiated based on textural features from the imagery, but 
not geometrically distinguishable in the point cloud. Sub-space learning uses 
techniques, such as Canonical Correlation Analysis (CCA), to recover the latent 
subspace behind multiple views. The representation of samples in this 
subspace can be used for applications such as dimensionality reduction and 
clustering. MKL can be used in combination with kernel-based analysis and 
classification methods. Support Vector Machine (SVM) is a successful 
classification algorithm that utilizes a kernel function to map training sample 
feature vectors into a higher dimensional space in which the data are linearly 
separated. As a single mapping function may not be adequate to describe 
features with different statistical characteristics, MKL defines multiple mapping 
functions (either on different groups of features or the same group of features, 
but using different kernel parameters). A number of studies show that MKL 
achieves higher classification accuracies than single-kernel SVMs (Gönen and 
Alpaydın, 2011). For example, for the integration of heterogeneous features 
from LiDAR and multispectral satellite for an urban classification problem (Gu 
et al., 2015). Although, as opposed to the integration of LiDAR and satellite 
imagery, the UAV point cloud and orthoimagery are obtained from a single set 
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of cameras and sensors, we could expect MKL to have a similar beneficial 
effect. 
 
In this paper, we illustrate how the utilization of classification algorithms that 
are specifically tailored to the integration of heterogeneous features is more 
appropriate for exploiting the complementary 2D and 3D information captured 
by UAVs for challenging classification tasks. The objective of this paper is two-
fold. Firstly, we demonstrate the importance of using classification algorithms, 
such as MKL, which support the integration of heterogeneous features for the 
classification of UAV data. Secondly, we describe various feature grouping 
strategies, including a novel automatic grouping strategy, and compare their 
performances using a number of state-of-the-art MKL algorithms. The methods 
are compared through a multi-class classification task using UAV imagery of an 
informal settlement in Kigali, Rwanda. 

3.2 Background 
Support Vector Machines (SVMs) are robust classifiers that are particularly 
suited to high dimensional feature spaces and have proven to obtain high 
classification accuracies in remote sensing applications (Bruzzone and Persello, 
2010). These discriminative classifiers identify the linear discriminant function 
that separates a set of n training samples ሼܠ, ሽୀଵݕ  representing two classes 
ݕ ∈ ሼെ1,1ሽ based on their respective feature vectors ܠ in a non-linear feature 
space obtained by a mapping function ߶ሺܠሻ: 
 

݂ሺܠሻ ൌ 	 〈ሻܠϕሺ,ܟ〉  ܾ, (3-1) 

where b is a bias term and w is the vector of weight coefficients, which can be 
obtained by solving a quadratic optimization problem defined as: 
 

min
ଵ

ଶ
ଶ‖ܟ‖

ଶ  ܥ ∑ ߦ

ୀଵ , (3-2) 

ܟ:ݐ	ݐܿ݁ݏ݁ݎ	݄ݐ݅ݓ ∈ Թ,  ∈ Թା
୬ , ܾ ∈ Թ				  

:ݐ	ݐ݆ܾܿ݁ݑݏ 〈ሻܠΦሺ,ܟ〉ሺݕ  ܾሻ  1 െ ݅∀	ߦ ൌ 1,… , ݊. 

where C is a regularization parameter representing the relative cost of 
misclassification, ߦ represent the slack variables associated with training 
samples, and q is the dimensionality of the feature space obtained by ߶ሺܠሻ. 
Rather than calculating the mapping function ߶ሺܠሻ, the kernel trick can be 
employed to directly obtain a non-linear similarity measure between each pair 
of samples ݇൫ܠ, ൯ܠ ൌ 	 〈߶ሺܠሻ, ߶ሺܠሻ〉. The optimization function is then solved 
using the Lagrangian dual formulation as follows: 
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	ݐ	ݐ݆ܾܿ݁ݑݏ ∑ yߙ ൌ 0
ୀଵ 	ܽ݊݀	0  ߙ  ݅	∀	ܥ ൌ 1,… , ݊  

where ߙ are the Lagrangian multipliers. Various kernel functions are described 
in the literature, such as the common (Gaussian) Radial Basis Function (RBF) 
kernel: 

݇ோி൫ܠ, ൯ܠ ൌ expቆെ
ฮܠିܠೕฮమ

మ

ଶఙమ
ቇ ൌ exp ቀെߛฮܠ െ ฮଶܠ

ଶ
ቁ. (3-4) 

The RBF kernel function has one parameter, ߪ (often replaced by ߛ ൌ  ,(ଶߪ1/2
which represents the bandwidth of the Gaussian function. The bandwidth 
parameter can be determined by heuristics, such as the median distance 
between samples (Gretton et al., 2006) or cross-validation (Tuia et al., 2010; 
Gu et al., 2015). 
 
Intuitively, one can understand that not all features may be best represented 
by the same kernel parameters. Instead, Multiple Kernel Learning (MKL) 
utilizes P independent input kernels, which allow nonlinear relations between 
training samples to be described by differing kernel parameters and/or 
differing input feature combinations. The calculation of the similarity between 
each pair of training samples using different kernel functions results in P 
different kernel matrices ࡷ	that are then linearly or non-linearly combined 
into a single kernel ࡷఎ for the SVM classification: 
 

,ܠఎ൫ࡷ ൯ܠ ൌ ఎ݂ ቀ൛ࡷ൫ܠ
, ܠ

൯ൟ
ୀଵ


ቚࣁቁ.		 (3-5) 

There are a number of advantages of MKL compared to standard SVM methods. 
Firstly, as it allows kernel parameters to be adapted towards specific feature 
groups, it may enhance the class separability. Secondly, the combined kernel 
 ఎ can be constructed by assigning various weights to the input kernels, thusࡷ
emphasizing more relevant features. In extreme cases, certain feature kernels 
may be assigned a weight of zero, thus causing the MKL to act as a feature 
selection method. Due to these characteristics, MKL is an appropriate 
classification method for combining features from heterogeneous data sources. 
 
Much of the research regarding MKL for classification focusses on the strategies 
that are used to combine the input kernels. For example, a fixed rule can be 
adopted, where each kernel is given an equal weight (Pavlidis et al., 2001). 
Alternatively, the individual kernel weights could then be determined based on 
similarity measures between the combined kernel and, for example, an optimal 
kernel (ࡷ௬ ൌ  .which perfectly partitions the classes. Niazmardi et al ,(்ܡܡ
(Niazmardi et al., 2016) refer to these as two-stage algorithms, as opposed to 
single-stage algorithms that optimize the kernel weighting and SVM 
parameters simultaneously. Although the latter group of methods, including 
SimpleMKL (Rakotomamonjy et al., 2008) and Generalized MKL (Varma and 
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Babu, 2009), are more sophisticated and may potentially achieve higher 
classification accuracies, they often imply a higher computational complexity. 
 
In fact, a review of MKL methods (Gönen and Alpaydın, 2011) suggests that 
although MKL leads to higher classification accuracies than single-kernel 
methods, more complex kernel combination strategies do not always lead to 
better results. Rather, simple linear combination strategies seem to work well 
for non-linear kernels, such as RBF kernels. Others reached similar conclusions, 
stating that “baseline methods”, such as averaging or multiplying kernels, 
reach similar accuracies as more complex algorithms, but at a much lower 
computational complexity (Gehler and Nowozin, 2009). 
 
Considering that one of the main motivations behind MKL is the ability to adapt 
kernel parameters for the various features, it is surprising that little work has 
been done regarding how to divide features into groups so they optimally 
benefit from the tailored feature mappings. Various MKL studies report 
different grouping strategies, but none of them seem to compare a wide range 
of grouping strategies and compare the influence of the grouping strategies on 
the classification accuracy. Intuitively, such an optimal feature grouping 
should: (i) group features that are optimally represented by the same kernel 
parameters; and (ii) group features in a way that allows less or  
non-relevant features to be suppressed by the kernel weighting strategy. The 
main difficulty is that measures used to determine the latter, i.e., feature 
relevance, through non-linear similarity measures often depend on the former, 
i.e., the chosen kernel parameters. At the same time, the optimal values for 
these kernel parameters depend on which features are included in the group. 
 
In practice, some studies assign each feature to a unique kernel (Tuia et al., 
2010). This allows the optimal kernel parameters to be defined per feature and 
a feature selection to be introduced through MKL methods promoting sparsity. 
Alternatively, a multi-scale approach can be adopted (Yeh et al., 2012; Gu et 
al., 2015) which defines a range of r bandwidth parameters for each feature f 
out of a total of nf input features to create a total of r∙nf kernels as the input 
for the MKL. However, such approaches may fail to describe the complex 
relations between features and suffer an increased computational complexity 
due to the presence of more kernels. Another grouping strategy depends on 
the origins of the image features. In this case, separate kernels are defined for 
spectral or spatial features, or multi-spectral and radar imagery, and have been 
shown to outperform assigning features to individual kernels (Tuia et al., 
2010). In an effort to define the groups automatically, one could consult the 
literature on view construction for co-training, the first multi-view learning 
technique. In general, co-training seems to work well when the different views 
provide complementary information (Xu, Tao and Xu, 2013). This is similar to 
the observations of Di and Crawford (Di and Crawford, 2012), who found that 
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using the “maximum disagreement” approach to spectral bands performed 
better than uniform or random sampling for hyperspectral image classification. 
 
However, a direct comparison of different grouping strategies for MKL using 
heterogeneous features is still lacking. This paper addresses this issue and 
proposes an automatic algorithm that extracts potential kernel parameters from 
the training data and performs a backward feature-selection strategy to 
determine which features should be included in each kernel. It thus 
simultaneously functions as both a feature grouping and feature selection 
method. 

3.3 Materials and Methods 
Multiple kernel learning can be applied to UAV data through the workflow 
presented in Figure 3.1. Based on the input data, such as point clouds and 
imagery, the first step consists of extracting the relevant features from the 
input data. This may be supplemented by a feature selection strategy if 
desired. The next step is to divide the features into groups to define the input 
kernels, which are then combined into a single kernel that is used to define the 
SVM classifier. Depending on which MKL method is employed, the parameters 
for kernel weighting and SVM may be optimized jointly or separately. In the 
following section, we describe the heterogeneous features utilized in this study 
for the classification (Section 3.3.1), various feature grouping strategies 
(Section 3.3.2) and the multiple kernel learning algorithms utilized to classify 
the data (Section 3.3.3). 

3.3.1 Feature Extraction from UAV Data 

Four types of features were derived from the orthomosaic and point cloud: 14 
image-based radiometric features, 54 image-based texture features, 22 3D 
features per pixel and 22 3D features averaged over image segments (Table 
3.1). The image-based radiometric features consist of the original R, G, B color 
channels of the orthomosaic, their normalized values (r, g, b) and the ExG(2) 
vegetation index: ExGሺ2ሻ ൌ 2g െ r െ b (Woebbecke et al., 1995), at the pixel-
level and averaged over image segments. Here, the segments were obtained 
through a mean shift segmentation (Comaniciu and Meer, 2002) with a spatial 
bandwidth of 20 pixels and a spectral bandwidth of five gray values. 
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Figure 3.1: An illustrative example of the multiple kernel learning workflow for UAVs: 
first, features must be extracted from the orthomosaic and the point cloud; then, the 
features are grouped, and the ࡷ input kernels are constructed. MKL techniques are 
used to combine the different input kernels into the combined kernel ࡷఎ, which is used 
to construct the SVM and perform the classification. 
 
The image-based texture features are represented by Local Binary Pattern 
(LBP) features (Ojala, Pietikainen and Maenpaa, 2002). These rotationally-
invariant texture features identify uniform patterns, such as edges and corners, 
based on a defined number of neighboring pixels (N) at a distance (R) from 
the center pixel. The relative presence of each N + 2 texture pattern in the 
local neighborhood can be summarized by constructing a normalized histogram 
for each mean shift segment, where the frequency of each bin is used as a 
feature. 
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Table 3.1: A list of the features extracted from the point cloud and orthomosaic in the 
current study. N refers to the number of features in the group 

Type of 
Feature 

N Source Description 

Radiometric 14 Image 

Pixel-based 
Color (R, G, B) 

Normalized color (r, g, b) 
Vegetation index (ExG(2)) 

Segment-
based 

Color (R, G, B) 
Normalized color (r, g, b) 
Vegetation index (ExG(2)) 

Texture 54 Image 
Local Binary 

Patterns 

LBPR=1,N=8 

LBPR=2,N=16 
LBPR=3,N=24 

3D features 22 
Point 
cloud 

Spatial 
binning 

Points per pixel 
Max. height difference 

Height standard deviation 

Planar 
segments 

Number of points 
Average residual 
Inclination angle 

Max height difference 

Local 
neighborhood 

Linearity, planarity, 
planarity (2), scattering, 

omnivariance, anisotropy, 
eigenentropy, sum of 

eigenvalues, curvature, 
maximum height, range of 

height values, standard 
deviation of height values, 

inclination angle, sum of 2D 
eigenvalues, ratio of 2D 

eigenvalues 

3D features 
per image 
segment 

22 Both 
Same as point cloud features, but averaged 

over image segments 

 
The third type of features consist of 3D features extracted from the point cloud: 
spatial binning features, planar segment features and local neighborhood 
features. Spatial binning features describe the number of 3D points 
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corresponding to each 2D image pixel, as well as the maximal height difference 
and height standard deviation of these points. Planar segment features are 
obtained by applying a surface growing algorithm to the point cloud 
(Vosselman, 2012). The algorithm calculates the planarity of the 10 nearest 
neighbors for each seed point and adds points within a radius of 1.0 m, which 
are within a 0.30-m threshold from the detected plane. The latter threshold is 
relatively high compared to the spatial resolution as in the informal settlement, 
there are often objects, such as rocks or other clutter, on top of roofs. This 
could result in non-planar objects, such as low vegetation, being considered as 
planar. However, such class ambiguities may be rectified through the other 
features included in our feature set. From each planar segment, four features 
were extracted: the number of points per segment, average residual to the 
plane, inclination angle and maximal height difference to the surrounding 
points. The local neighborhood features are based on the observation that the 
ratio between the eigenvalues of the covariance matrix of the XYZ coordinates 
of a point’s nearest neighbors can represent the shape of the local 
neighborhood (Demantké et al., 2012). For example, the relative proportions 
between these eigenvalues may describe the local neighborhood as being 
planar, linear or scattered. More specifically, we consider an optimal 
neighborhood around each 3D point to define the covariance matrix and extract 
the 3D features described in the framework (Weinmann et al., 2015). To assign 
3D features calculated in the point cloud to 2D space, the attributes of the 
highest point for each pixel in the orthomosaic were assigned to the pixel in 
question. We thus obtain 3D features (spatial binning, planar segment and 
neighborhood shape) for each pixel. 
 
The fourth and final type of features consist of averaging these pixel-based 3D 
features over the image segments. For a more detailed description of how the 
various features were extracted, the reader is referred to Gevaert et al. 
(Gevaert et al., 2017). All feature values are normalized to a scale between 0 
and 1 before feature grouping and classification. 

3.3.2 Feature Grouping Strategies 

3.3.2.1 Reference Feature Grouping Strategies: After calculating the input 
features, each feature f in the complete set of features S (݂ ∈ ܵ), where nf 
indicates the total number of features, must be assigned to a group Gm, m = 
1,…, P, where each group will form an individual input kernel Km. Seven MKL 
grouping strategies are compared based on: (i) individual kernels; (ii) prior 
knowledge; (iii) random selection; (iv) feature similarity; (v) feature diversity; 
(vi) the kernel-based distance between samples; and (vii) a novel multi-scale 
Markov blanket selection scheme. In Case (i), each feature is assigned to an 
individual input kernel, so 112 features result in 112 input kernels Km. The 
prior knowledge strategy of Case (ii) consists of four kernel groups according 
to feature provenance: image-based radiometric features, image-based 
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texture features, 3D features per pixel and 3D features averaged over image 
segments (i.e., the four types of features listed in Table 3.1). In Case (iii), the 
random selection strategy divides the features arbitrarily into a user-defined 
number of features groups. For Case (iv) the similarity strategy is represented 
by a kernel k-means clustering (Schölkopf, Smola and Müller, 1998) over the 
feature vectors, thus grouping them into clusters that expose similar patterns 
in the input data. Di and Crawford (Di and Crawford, 2012) found that such an 
approach worked better than uniform or random feature grouping for multi-
view active learning in hyperspectral image classification tasks. 
 
For Case (v), diverse kernels are obtained by solving the Maximally-Diverse 
Grouping Problem (MDGP) through a greedy construction approach (Gallego et 
al., 2013). The basic idea of the approach is to iteratively select one unassigned 
feature, calculate the value of a disparity function considering the assignation 
of this feature to each feature group Gm and appoint the feature the group to 
which its membership would maximize the disparity. To do this, the user first 
defines the desired number of groups P, as well as the minimum (a) and 
maximum (b) number of features per group. The population of each group Gm 
is started by randomly selecting one of the features in the feature set S. The 
remaining features in the set of variables not yet assigned to a group are 
iteratively assigned to one of the groups Gm. One feature fi is selected at 
random, and the disparity function ܦ,ீ (6) is calculated considering its 
inclusion into each group, which has not yet reached the minimal number of 
features (i.e., |Gm| < a). Once each group has reached the minimal number of 
features, each group that has not yet reached the maximum (i.e., |Gm| < b) is 
considered. Here, the disparity function describes the normalized sum of the 
distances between features:  
 

,ீܦ ൌ
ஊೕ∈ಸௗೕ
|ீ|

, (3-6) 

where |Gm| is the number of elements in group Gm and the distance ݀ is 
obtained from the Sample Distance Matrix (SDM). In this case, the SDM is an 
nf × nf matrix where the element SDMi,j gives the ℓଶ-norm of the difference 
between features fi and fj. In other words, the disparity function is defined as 
the sum of the Euclidean distance between all of the features within a group 
over all of the samples divided by the number of features within the group. 
 
Allowing kernel parameters to be set differently for various groups of features 
has been mentioned as one of the benefits of MKL. Furthermore, the mean 
distance between training samples is sometimes used as a heuristic for the 
bandwidth parameter of an RBF kernel (Gretton et al., 2006). Therefore, we 
also analyze the utility of grouping features based on the distance between 
samples. For Case (vi), we consider using the median (a) within-class vs. (b) 
between-class distances, as well as (c) a combination of both distances to 
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group the features. To implement this, an SDM is constructed for each single 
feature. Note that here, the SDM is a ݊௦	ݔ	݊௦ matrix representing the distance 
between the samples as opposed to the feature distance matrix described in 
the previous paragraph. The median within-class and between-class distances 
for each class is obtained by finding the median of the relevant SDM entries 
and using this median as a feature attribute. For example, the within-class 
distance of class u is the median of the SDM entries of all rows and columns 
representing samples belonging to class u. Similarly, the between-class 
distance of class u is the median of all entries corresponding to rows of samples 
labeled as u and columns of all samples not labelled as u. Note that the median 
is used instead of the mean to reduce the effect of possible outliers. A 
classification problem with Q classes will thus result in Q feature attributes 
representing within-class distances, and Q attributes representing between-
class distances. These are simply concatenated to Q + Q attributes for the third 
approach (i.e., within- and between-class distances). These feature attributes 
are then used as the input for a kernel k-means clustering. Thus, features that 
have similar  (within- or between-class) sample distances and that may thus 
be best represented by the same bandwidth parameter will be grouped 
together. 
 
3.3.2.2 Proposed Feature Grouping Strategy: For the final method (vii), 
we propose an automatic grouping strategy. Remember that the benefits of 
applying MKL rather than single-kernel SVM models include feature weighting 
and the use of different kernel parameters for various feature groups. 
Regarding the former, MKL allows some feature groups to be given more 
emphasis; in some cases, it may even assign certain kernels a weight ηm of 
zero, thus suppressing noisy or irrelevant feature groups. However, MKL can 
only suppress certain input kernels and, therefore, can only function as a 
feature selector if each feature is indeed assigned to a unique kernel, as in 
Case (i) above. This may fail to account for non-linear relationships that would 
be identified if features are combined in the same kernel. The second potential 
benefit of MKL was to allow different kernel mappings for the different feature 
groups.  
 
Gu et al. (Gu et al., 2015) even recommended using different bandwidths for 
the same feature groups, allowing similarities between samples to be 
recognized along multiple scales. They used pre-defined bandwidth intervals 
from 0.05 to 2.0 in intervals of 0.05. Yeh et al. (Yeh et al., 2012) also construct 
multiple input kernels for each feature by selecting different bandwidth 
parameters, defining a ‘group’ as the conjunction of different kernel mappings 
of a single feature. MKL is applied to ensure sparsity amongst features, thus 
functioning as a feature selection method. Unlike (Gu et al., 2015), they select 
the bandwidth parameters in a data-driven manner based on the standard 
deviation of the distance between all training samples. Although both methods 
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enable a multi-scale approach to define optimal feature representations using 
multiple bandwidth parameters, both methods pre-define which features will 
be grouped together in the input kernels. This could potentially lose non-linear 
relations between different features. 
 
A good feature grouping strategy should therefore remove irrelevant features 
before kernel construction and allow features to be grouped according to 
optimal kernel parameters. The novel feature grouping algorithm we propose 
here does this by first analyzing the dataset to identify candidate bandwidth 
parameters, performs a feature ranking for each candidate bandwidth and 
restricts the features within each group according to a pre-defined threshold. 
The latter can be based on either defining the number of features per kernel 
or by defining a limit to the cumulative feature relevance. This simultaneous 
feature grouping and feature selection workflow consists of three steps: (i) 
selecting candidate bandwidth parameters; (ii) ranking the features using each 
parameter; and (iii) defining the cut-off criterion that selects the number of 
features per group (Figure 3.2). An additional benefit of the method is that it 
provides a heuristic for choosing the bandwidth parameter for the RBF kernel. 
 

 
Figure 3.2: A graphical illustration indicating how the automatic feature grouping strategy 
works. Step 1 consists of proposing a number of bandwidth parameters for the RBF kernel; 
in Step 2, a feature ranking is done using backwards-elimination and a kernel-class 
separability measure with the assigned γ to determine the relative relevance of each nf 
features; in Step 3, a feature set is selected for each kernel based on (i) using a fixed 
number of features per kernel, e.g., six in the illustrated example, or (ii) a minimum 
cumulative feature relevance level, which may result in different numbers of features 
per kernel.  
 
In the first step, potential bandwidth parameters are identified by selecting the 
median between-class distances for each feature. These between-class 
distances are obtained by selecting all entries of the SDM that correspond to 
two samples from different classes. A histogram of these between-class 
distances is constructed, from which automatic methods can be used to select 
the potential bandwidth parameters (Figure 3.3a). Here, we simply select 
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histogram bins associated with local maxima, i.e., which have a higher 
frequency than the two neighboring bins. Each of the bins corresponds to a 
potential bandwidth parameter; thus, different bandwidths are used for the 
various kernel groups and capturing data patterns at multiple scales. If the 
histogram does not present local peaks, other strategies could be considered, 
such as taking regular intervals over the possible between-class distances. 
 

 
(a) (b) 

Figure 3.3: The proposed feature selection method, first using peaks in the between-
class distance histogram to identify candidate bandwidth parameters (a); and then using 
the feature ranking to determine which features to include in each group (b). The dashed 
red lines indicate the cut-off thresholds according to either a maximal number of features 
per kernel (f20) or relative HSIC value (99%). Note that the graphs represented here do 
not reflect the exact data from the experiments, but have been slightly altered for 
illustrative purposes. 
 
In the second step, a feature selection method based on a kernel-based class 
separability measure and backwards-elimination (Strobl and Visweswaran, 
2014) is employed to determine which features to include in each kernel. The 
idea is to use a supervised strategy to identify the Markov blanket of the class 
labels (Strobl and Visweswaran, 2014). That is to say, we attempt to identify 
which features are conditionally independent of the class labels given the 
remaining features. These conditionally independent features therefore do not 
influence the class labels and may be removed. By using kernel class 
separability measures, we can identify non-linear class dependencies in the 
reproducing kernel Hilbert space. This is implemented by constructing a kernel 
using all of the features and the candidate bandwidth in question and 
calculating the class separability measure for an ideal kernel. One by one, the 
features are removed, and the measure is calculated again. The feature whose 
removal results in the lowest decrease in class separability is considered to be 
the least relevant and is removed from the set. The process is repeated until 
all features are ranked from most to least relevant for each candidate 
bandwidth. The method would work with any kernel-based class separability 
measure. 
 
Finally, the user must define the cut-off metric of which features to select in 
each kernel based on the provided feature ranking for each bandwidth. In this 
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case, the user can choose to either define the maximal number of features per 
kernel or to use a cumulative relevance metric, such as selecting the number 
of features that first obtain 99.9% of the maximum cumulative similarity 
measure provided by the feature ranking (Figure 3.3b). It should be noted that 
this feature grouping strategy also allows for a single feature to be included in 
various kernels. In theory, this could result in two groups containing identical 
features, but represented by different bandwidth parameters. The proposed 
methodology also potentially functions as a feature selection method, as 
irrelevant or redundant features are likely to be at the bottom of the feature 
ranking and may therefore not be included in any of the input kernels. 

3.3.3 Kernel Weighting Strategies 

3.3.3.1 Class Separability Measures and Ideal Kernel Definition: Various 
studies report that there are no large differences in different multiple kernel 
learning methods in terms of accuracy (Gönen and Alpaydın, 2011). 
Furthermore, two-stage algorithms that update the combination function 
parameters independently from the classifier have a lower computational 
complexity (Niazmardi et al., 2016). Therefore, we hypothesize that the use of 
kernel class separability measures, or kernel alignment measures, between the 
individual kernels and an ideal kernel will provide an advantageous trade-off 
between computational complexity and classification accuracy. The ideal target 
kernel represents a case of perfect class separability, where kernel values for 
samples from the same class maximal and samples from different classes have 
minimal kernel values. Therefore, the similarity of an input kernel ࡷ to a 
target ideal kernel ࡷ௬ provides an indication of the class separability given the 
input kernel. Such measures may be used to optimize kernel parameters or to 
define the proportional weights of the various feature kernels in the weighted 
summation. In this case, named class-separability-based MKL (CSMKSVM), the 
class separability measure ࣬ of each individual kernel ࡷ	and an ideal kernel 
  :is calculated, and then, a proportional weighting is applied as follows	௬ࡷ
 

ߟ ൌ
࣬ሺࡷ,ࡷሻ

∑ ࣬ሺࡷ,ࡷሻ
ು
సభ

	∀݉, (3-7) 

Qiu and Lane (Qiu and Lane, 2009) used a similar heuristic based on the kernel 
alignment measure (Cristianini et al., 2002). Here, we compare four class 
separability measures found in the literature: the square Hilbert-Schmidt norm 
of the cross-covariance matrix (HSIC) (Gretton et al., 2005; Persello and 
Bruzzone, 2016) (8); (ii) Kernel Alignment (KA) (Cristianini et al., 2002) (9); 
(iii) Centered-Kernel Alignment (CKA) (Cortes, Mohri and Rostamizadeh, 2010) 
(10); and (iv) Kernel Class Separability (KCS) (Ramona, Richard and David, 
2012) (11). 
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where ࡴ ൌ ߜ െ ሺ
ଵ


ሻ, ߜ being the Kronecker delta and having a value of 1 if i 

and j adhere to the same class and 0 if they have different class labels, Tr(.) 
indicates the trace function, n is the total number of samples, ݊ଵ is the number 
of samples in the first class, ݊ொ is the number of samples in class Q, 〈ࡷ௫,ࡷ௬〉ி ൌ

	∑ ,࢞௫ሺࡷ ,࢞௬ሺࡷሻ࢞ ሻ࢞
ೞ
,ୀଵ  and  is an n × 1 vector of ones. ࡷ௫ is any input kernel 

and could therefore corresponds to either ࡷ or ࡷఎ depending on whether the 
class separability measure is being calculated for the input kernel or combined 
kernel, respectively. 
 
3.3.3.2 Comparison to Other MKL Methods: Once the most adequate 
kernel class separability measure and ideal kernel definition have been 
selected, the following experiments serve to compare the proposed method to 
benchmark MKL methods and the influence of the various feature grouping 
strategies. Six benchmark Multiple Kernel SVM (MKSVM) methods are selected 
from the MATLAB code provided by Gönen and Alpaydin (Gönen and Alpaydın, 
2011) (https://users.ics.aalto.fi/gonen/) and compared to the kernel Class-
Separability method (CSMKSVM) described previously. They consist of 
methods using a Rule-Based linearly-weighted combination of kernels 
(RBMKSVM), Alignment-Based methods based on the similarity of the weighted 
summation kernel and an ideal kernel (ABMKSVM) and methods that initiate a 
linearly (Group Lasso-based MKL (GLMKSVM) and SimpleMKL) or nonlinearly 
(Generalized MKL (GMKSVM) and Non-Linear MKL (NLMKSVM)) combined 
kernel and use the dual formation parameters to iteratively update the weight. 
The first, RBMKSVM, is a fixed-rule method in which each kernel is given an 
equal weight 1/ܲ, and the resulting combined kernel is therefore simply the 
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mean of the input kernels. This is followed by CSMKSVM, where the weights 
are defined by the proportional class separability measure as described in the 
previous section. The second reference method, ABMKSVM, forgoes the use of 
a class separability measure, but rather optimizes the difference between the 
combined kernel and ideal kernel directly. This optimization problem can be 
solved as follows: 
 

	݁ݖ݅݉݅݊݅݉ ∑ ∑ ி〈ࡷ,ࡷ〉ߟߟ െ 2∑ ி〈௬ࡷ,ࡷ〉ߟ

ୀଵ


ୀଵ


ୀଵ ,					 (3-12) 

ߟ	ݐ	ݐܿ݁ݏ݁ݎ	݄ݐ݅ݓ ∈ Թା
				ݐ݆ܾܿ݁ݑݏ	ݐ	Σୀଵ

 ߟ ൌ 1. 
 
Other methods use the SVM cost term, rather than the distance to an ideal 
kernel, to update the weights. This can be done by initiating the kernel weights 
 .to obtain a single combined kernel and performing the SVM on this kernel ࣁ
The results of the SVM are then used to update the kernel weights. For 
example, recognizing the similarity between the MKL formulation and group 
lasso (Bach, 2007), Xu et al. (Xu et al., 2010) update the kernel weights 
according to the ℓ-norm. For GLMKSVM, we use the ℓ-norm, which results in 
using (13) to update the kernel weights. 
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Similarly, SimpleMKL (Rakotomamonjy et al., 2008) uses a gradient decent on 
the SVM objective value to iteratively update the kernel weights. The combined 
kernel is initiated as a linear summation where the weight of each kernel is 
defined as 1/ܲ. The dual formulation of the MKL SVM is solved (15), and the 
weights ࣁ are optimized using the gradient function provided in (16). 
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Varma and Babu (Varma and Babu, 2009) use a similar gradient descent 
method for updating the weights (17), but perform a nonlinear combination of 
kernels (18), rather than a weighted summation of kernels, as  
in SimpleMKL. 
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Here, the regularization function r(∙) is defined as 1/2 ቀࣁ െ ଵ
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ቁ. NLMKSVM 

also presents a non-linear combined kernel, namely the quadratic kernel 
presented in (19); where the weight optimization is defined as a min-max 
problem (Cortes, Mohri and Rostamizadeh, 2009) (20) and the weights defined 
as a ℓଵ-norm bounded set ࣧ (21) with ߟ = 0 and Λ = 1 in the present 
implementation. 
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3.3.4 Experimental Set-up 

Remote sensing is a valuable tool for providing information regarding the 
physical status of informal settlements, or slums. Although many studies make 
use of satellite imagery, even sub-meter imagery may not be sufficient to 
distinguish between different objects, such as buildings, and to identify their 
attributes (Kuffer, Pfeffer and Sliuzas, 2016). This motivates the use of UAVs, 
which are capable of providing images at a higher spatial resolution, thus 
enabling improved detection and characterization of objects, as well as more 
detailed elevation information than is available from satellite imagery. The 
flexible acquisition capabilities also facilitate the acquisition of recurrent 
imagery to monitor project implementation, especially in the context of slum 
upgrading projects. These are some of the incentives that motivate the use of 
UAVs for informal settlement mapping. 
 
The UAV dataset used for the experiments consists of a point-cloud and RGB 
orthomosaic of an informal settlement in Kigali, Rwanda, which was acquired 
using a DJI Phantom 2 Vision + quadcopter in 2015. The UAV acquired 
images with the standard 14 megapixel fish-eye camera (110° FOV) at an 
approximate 90% forward- and 70% side-lap. The images were processed 
using the commercial software Pix4D Mapper (Version 2.0.104). The point 
cloud densification was performed using the ‘Low (Fast)’ processing option, a 
matching window size of 7 × 7 pixels and only matching points that are present 
in at least four images. The DSM was constructed using the Inverse Distance 
Weighting (IDW) interpolation, with the noise filtering and surface smoothing 
options enabled. The resulting 8-bit orthomosaic has a spatial resolution of 3 
cm. The average density of the utilized point clouds is 1031 points per m2. This 
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density depends on the data processing parameters, as well as the 
characteristics of the land cover type. For this application, the point density 
ranges between 796 and 1843 points per m2 according to the land cover (see 
Table 3.2). 
 
The study area itself is characterized by small, irregular buildings, narrow 
footpaths and a steep topography. Ten thematic classes are defined for the 
classification problem: three different types of building roofs (corrugated iron 
sheets, galvanized iron with a tile pattern and galvanized iron with a 
trapezoidal pattern), high vegetation, low vegetation, bare surfaces, 
impervious surface, lamp posts, free-standing walls and clutter. The latter class 
may consist of, for example, laundry hung out to dry, the accumulation of solid 
waste on the streets, passing cars and pedestrians. Reference data were 
defined by visual interpretation and manually labelling pixels in the 
orthomosaic (based on the results of the over-segmentation and manually 
adjusting segment boundaries if necessary). 
 
Table 3.2: Number of labelled pixels and point cloud density for each thematic class. 

Semantic class Average Point Cloud Density  
(Points per m2) 

Roof Type I (R1) 1843 
Roof Type II (R2) 994 
Roof Type III (R3) 796 
High Vegetation (HV) 1367 
Low Vegetation (LV) 951 
Bare Surface (BS) 946 
Impervious Surface (IS) 970 
Walls (W) 1164 
Lamp posts (L) 1561 
Clutter (C) 1157 
Total 1031 

 
Ten sets of training data (n = 2000) were extracted from the Kigali dataset. 
Five sets followed an equal sampling strategy (nc = 200), and five sets followed 
a stratified sampling strategy, which allows an analysis to be made regarding 
the sensitivity of kernel class separability measures to unequal class sizes. A 
set of 5000 samples was extracted for testing. The first set of experiments 
(Experiment I.A. and Experiment I.B.) compared the class separability 
measures and ideal kernel definitions using the prior knowledge (Case (ii)) 
feature grouping. The average Overall Accuracy (OA) for each of the folds, 
along with the standard deviation, is provided for the equal and stratified 
sampling training sets separately. In Experiment I.A. the class separability 
measures are used to define the optimal bandwidth parameter for each input 
RBF kernel Km. Experiment I.B., on the other hand, uses the class separability 
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measure both to optimize the bandwidth parameter of Km and to perform the 
proportional kernel weighting in (7) to obtain the kernel weights ࣁ. In both 
cases, the search space of the bandwidth parameter was defined by first 
defining the bandwidth parameter as the mean intra-class ℓଶ-norm and 
defining a range of ߛ as 2−5- to 25-times this mean bandwidth. For these 
experiments, three different ideal kernel definitions are compared: assigning 
values of 1, 1/nc and 1/nc2 to samples belonging to the same class, where nc 
represents the number of samples within that specific class. 
 
The second set of experiments analyzed both the influence of feature grouping 
and MKL methodology. Regarding the feature grouping strategy, the 
random-, similarity-, diversity- and class-difference-based methods require 
the user to define the number of desired kernels. For these experiments, six 
kernels were defined, as this is the number of kernels identified by the 
automatic feature grouping method. For the novel feature grouping strategy, 
we use the results of Experiment I to select the best class separability measure 
(the HSIC). Furthermore, we report the results of using two different cut-off 
metrics to define how many features to include in each kernel: we report the 
results when defining a maximum of 45 features per kernel (HSIC-f45) and 
when using the 99.9% cumulative relevance cut-off per kernel (HSIC-99.9%). 
These thresholds were selected based on the results of the feature ranking 
(e.g., Figure 3.3b). The minimum (a) and maximum (b) number of features 
per group using the diverse kernel strategy were set to a = 5 and b = 70 based 
on experimental analyses. 
 
MKL was performed on these feature kernels using the seven algorithms 
described above. Note that the grouping strategy was applied separately for 
each fold, so the feature groups will not by definition be the same for each 
training set. Once the groups were identified, the same feature kernels were 
used as input for each MKL method. 
 
The methods were again compared by computing the mean overall accuracy 
over each of the 10 folds with reference to the same 5000 sample test set. The 
error matrix of the CSMKSVM method using the HSIC-f45 feature grouping 
strategy is also presented, as well as the correctness (22) and completeness 
(23) for each of the 10 thematic classes. 
 

ݏݏ݁݊ݐܿ݁ݎݎܥ ൌ ܶܲ/ሺܶܲ   ሻ (3-22)ܲܨ

ݏݏ݁݊݁ݐ݈݁݉ܥ ൌ ܶܲ/ሺܶܲ   ሻ (3-23)ܰܨ
 
where TP indicates the number of true positives per class, FP is the number of 
false positives and FN is the number of false negatives. 
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Furthermore, the MKL methods were compared to two baseline classifiers: a 
standard SVM classifier, implemented in LibSVM (Chang and Lin, 2011), where 
all features are combined in a single kernel, and a random forest classifier. For 
the SVM, RBF bandwidth parameter ߛ was defined as described previously, and 
the regularization parameter C was optimized through a 5-fold cross-validation 
between 2−5 and 215. Regarding the random forest classifier, the number of 
trees was optimized between 100 and 1500 in steps of 100. 
 
In a final step, we provide classification maps of 30 × 30 m subsets of the 
Kigali dataset. Similar to the other experiments, 2000 labelled pixels were 
extracted from ten tiles representing the different characteristics of the study 
area through stratified sampling. These pixels were used to construct a single-
kernel SVM, and CSMKSVM using the HSIC-f45 feature grouping strategy. 
Classification maps of three of the tiles are provided to illustrate the results. 

3.4 Results and Discussion 

3.4.1 Class Separability Measures and Ideal Kernel Definition 

Kernel class separability measures require the definition of a target kernel. If 
each class has a similar number of samples, i.e., equal sampling, then the 
value assigned to the ideal kernel for samples adhering to the same class (ݕ ൌ
 .) does not have to be adjusted for the class size (Tables 3.3 and 3.4)ݕ
However, this is not the case when there are large differences in the number 
of training samples per class, which may occur in stratified sampling, which is 
common to the processing of remotely-sensed images. The class separability 
measure used to define kernel weights will target the most common class, and 
therefore, results can be improved when the value is normalized by the number 
of samples per class (Table 3.3). 
 
When the class separability measure is used both to define the bandwidth of 
the RBF kernel, as well as to define the relative kernel weights, this effect is 
minimized, and simply assigning a value of ‘1’ to samples of the same class 
appears to be adequate (Table 3.4). Regarding the comparison between the 
various class separability measures, the HSIC outperformed KA, CKA and KCS 
through both a higher and more stable OA for the stratified samples, although 
KA performed slightly better in the case of equal sampling. Due to these 
observations, the subsequent analyses were carried out using the HSIC class 
separability measure and an ideal kernel where samples adhering to the same 
class are assigned a value of ‘1’ and ‘0’ otherwise, which is used both to 
optimize the kernel parameters and for the proportional kernel weighting. The 
HSIC is therefore also used as the kernel-based class separability measure for 
the proposed feature grouping strategy in the next experiments. 
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Table 3.3: The overall accuracy obtained for Experiment I.A.: optimizing the bandwidth 
parameters γm for each input kernel Km using various kernel class separability measures 
and ideal kernel definitions. nc indicates the number of samples for a specified class. 
CKA, Centered-Kernel Alignment; KCS, Kernel Class Separability. 

Value ࢟ ൌ  HSIC KA CKA KCS ࢟

Equal sampling (5 folds) 

1 89.5 ± 0.46 89.3 ± 0.43 89.1 ± 0.66 88.8 ± 1.13 
1/nc 89.5 ± 0.46 89.3 ± 0.43 89.1 ± 0.66 88.8 ± 1.13 
1/nc2 89.5 ± 0.46 89.3 ± 0.43 89.1 ± 0.66 88.8 ± 1.13 

Stratified sampling (5 folds) 

1 86.6 ± 0.59 86.8 ± 0.53 86.9 ± 0.45 86.8 ± 0.53 
1/nc 86.9 ± 0.38 86.8 ± 0.54 86.7 ± 0.42 86.8 ± 0.53 
1/nc2 87.2 ± 0.45 86.9 ± 0.54 87.1 ± 0.44 86.8 ± 0.53 

 
Table 3.4: The overall accuracy obtained for Experiment I.B.: optimizing both the 
bandwidth parameters γm for each input kernel Km and the relative kernel weights ࣁ using 
various kernel class separability measures and ideal kernel definitions. nc indicates the 
number of samples for a specified class. 

Value ࢟ ൌ  HSIC KA CKA KCS ࢟

Equal sampling (5 folds) 

1 90.3 ± 0.40 90.6 ± 0.53 89.2 ± 0.81 86.7 ± 0.67 
1/nc 90.3 ± 0.41 90.6 ± 0.53 89.2 ± 0.81 86.7 ± 0.67 
1/nc2 90.3 ± 0.41 90.6 ± 0.53 89.2 ± 0.81 86.7 ± 0.67 

Stratified sampling (5 folds) 

1 87.2 ± 0.38 82.7 ± 1.06 86.1 ± 0.48 80.8 ± 0.71 
1/nc 87.0 ± 0.81 84.1 ± 0.75 85.3 ± 0.52 80.8 ± 0.71 
1/nc2 87.0 ± 0.57 86.0 ± 0.71 84.2 ± 0.86 80.8 ± 0.71 

3.4.2 Comparison of Feature Grouping and Kernel Weighting 
Strategies  

The first observation from the results of the various feature grouping and 
kernel weighting strategies (Table 3.5) is that almost all MKL methods perform 
better than a standard SVM where all features are described by a single kernel, 
which achieves an accuracy of 85.4%. Only some of the rule-based mean 
kernel weighting (ABMKSVM) classification results and GLMKSVM using 
individual features perform worse than the standard SVM. Furthermore, we see 
that most of the MKL implementations perform better than the random forest 
classifier, which has an average accuracy of 86.5%. A McNemar test with the 
continuity correction (Foody, 2004) indicates that the improved classification 
accuracy of the HSIC-f45 CSMKSVM method is significant compared to both 
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the results of the single-kernel SVM (p-value of 0.0021) and random forest 
classification (p-value of 0.0032). 
 
Regarding feature grouping strategies, the HSIC grouping strategy proposed 
in this paper obtains the highest accuracy for most MKL algorithms, where all 
methods except ABMKSVM achieve an accuracy above 90%. Furthermore, the 
results suggest that the high accuracy is more stable than other grouping 
methods. Both stopping criteria (either by selecting a fixed number of features 
per kernel or thresholding the cumulative cost function) have a similar 
performance. The OA is also quite robust to the cut-off metrics. Selecting 45 
features (HSIC-f45) obtains the highest accuracy of 90.6% when combined with 
the CSMKSVM method, though using 30 or 60 features only lowered this 
accuracy by 0.1% and 0.2%, respectively. Similarly, the 90.5% accuracy 
achieved with HSIC-99.9% was only 0.2% higher than the accuracy obtained 
by HSIC-99.7%. Further analysis of the two methods indicated that a feature 
selection was indeed performed. HSIC-f45 selected an average of 78 features 
out of the 107 per fold, and HSIC-99.9% selected an average of 70 features 
per fold. This could advocate thresholding the cumulative feature relevance 
rather than fixing the number of features per kernel, as it is more suited in 
automatic workflows and uses a lower number of features while achieving a 
similar accuracy. The grouping strategy utilizing prior knowledge (i.e., feature 
provenance) also performs well for the CSMKSVM and NLMKSVM methods. The 
individual kernel grouping strategy works well for the NLMKSVM method. This 
is not entirely surprising, as NLMKSVM is a nonlinear kernel combination 
method and may therefore mimic the nonlinear similarity, which is achieved 
when various features are grouped into an input kernel through a non-linear 
mapping function. 
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Similar to the results of previous studies (e.g., (Gönen and Alpaydın, 2011)), 
we observe a similar performance between the results obtained by the various 
MKL algorithms to combine the kernels. In this case, simply taking the mean 
of the input kernels (ABMKSVM) consistently performs worse than the other 
MKL algorithms. However, there is not one single algorithm that consistently 
outperforms the others. For the prior knowledge-based feature grouping 
strategy, the best OAs are achieved by the proposed proportional HSIC-
weighting measure (CSMKSVM) with 90.2% and the nonlinear NLMKSVM 
method with 90.7%. Regarding the proposed feature grouping strategy, 
CSMKSVM also obtains slightly better results than the other MKL methods at 
90.6% when utilizing 45 features per kernel. 
 
The ability of the selected features to distinguish between the different land 
cover classes will also depend on the study area. For example, vegetation will 
be more difficult to distinguish for study areas in which it is not always green 
(for example, the leaf-off season in temperate climates, ripening agricultural 
crops or arid climates). It is possible that some of the 3D features will capture 
the geometric traits of vegetation in these situations. However, the extent to 
which this is possible will greatly depend on the characteristics of the study 
area. Furthermore, the UAV flight parameters and data processing options will 
influence the suitability of the 3D features. Low texture, pixel saturation or 
mismatch in the scale of objects in the UAV images may cause artefacts in the 
point cloud, such as irregular elevation values. This, in turn, influences the 
quality of the 3D features, such as planar segments. Similarly, the (textural) 
characteristics of different land cover types will influence the point cloud 
density and affect the suitability of 3D features. For a more detailed analysis 
of the interaction between different features from UAV images and why these 
features were selected, the reader is referred to (Gevaert et al., 2017). 
 
A visual analysis of the results is presented in Figure 3.4, which compares the 
classification maps of a standard SVM and the proposed HSIC-f45 CSMKSVM 
method. The results indicate the standard single-kernel SVM is noisier than the 
MKL methods. Although MKL performs better than the standard SVM method, 
there are still difficulties in distinguishing between bare versus impervious 
surfaces, surfaces versus clutter, building roofs versus clutter and building roofs 
versus walls (Table 3.6). 
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(a) 

 
 (b)  

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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(g) 

 
(h) 

 Buildings   High vegetation  Bare Surface Clutter 

      

 Structures   Low vegetation  Impervious surface Unlabelled 

 
Figure 3.4: Sample classification results of two image tiles, with the input RGB tile in 
the first row (a,b); followed by the classification results using a standard single-kernel 
SVM (c,d); the classification results using the proposed CSMKSVM measure and the 
HSIC-f45 feature grouping strategy (e,f); and the reference classification data (g,h). 



Chapter 3 

69 

 
 

Ta
b

le
 3

.6
: 

Er
ro

r 
m

at
ri
x 

of
 t

he
 H

S
IC

-f
45

 C
S
M

K
S
V
M

 m
et

ho
d;

 n
um

be
rs

 in
di

ca
te

 t
he

 t
ot

al
 n

um
be

r 
of

 p
ix

el
s 

ov
er

 t
he

 1
0 

fo
ld

s.
 T

he
 f
in

al
 

co
lu

m
n 

pr
ov

id
es

 t
he

 c
om

pl
et

en
es

s 
(C

om
p.

) 
of

 e
ac

h 
cl

as
s,

 a
nd

 t
he

 f
in

al
 r

ow
 p

ro
vi

de
s 

th
e 

co
rr

ec
tn

es
s 

(C
or

r.
).

 R
1,

 R
2 

an
d 

R
3 

co
rr

es
po

nd
 t

o 
3 

ty
pe

s 
of

 r
oo

f m
at

er
ia

ls
; 

H
V
 =

 h
ig

h 
ve

ge
ta

ti
on

, 
LV

 =
 lo

w
 v

eg
et

at
io

n,
 B

S
 =

 b
ar

e 
su

rf
ac

e,
 I

S
 =

 im
pe

rv
io

us
 s

ur
fa

ce
, 

W
 =

 w
al

l 
st

ru
ct

ur
es

, 
L 

=
 l
am

p 
po

st
s,

 C
 =

 c
lu

tt
er

. 

 
P

re
d

ic
te

d
 C

la
ss

 L
ab

el
 

C
o

m
p

. 
(%

) 
R

1
 

R
2

 
R

3
 

H
V

 
LV

 
B

S
 

IS
 

W
 

L 
C

 
Reference class label 

R
1

 
20

48
 

55
 

0 
0 

0 
0 

0 
3 

0 
24

 
96

.2
 

R
2

 
21

5 
19

96
8 

7 
29

 
3 

29
3 

29
9 

32
1 

0 
40

5 
92

.7
 

R
3

 
0 

21
 

17
59

 
9 

0 
5 

10
 

9 
0 

7 
96

.7
 

H
V

 
2 

10
 

0 
33

51
 

19
2 

16
 

2 
17

 
0 

30
 

92
.6

 

LV
 

2 
8 

0 
67

 
15

95
 

7 
0 

0 
0 

1 
94

.9
 

B
S

 
0 

69
 

10
 

66
 

19
 

73
46

 
40

3 
14

4 
1 

18
2 

89
.2

 

IS
 

9 
92

 
26

 
14

 
17

 
45

3 
57

38
 

22
8 

15
 

19
8 

84
.5

 

W
 

1 
27

 
1 

11
 

0 
69

 
32

 
10

86
 

0 
73

 
83

.5
 

L 
0 

0 
0 

0 
0 

0 
0 

0 
10

20
 

0 
10

0 

C
 

16
 

69
 

0 
24

 
6 

13
9 

10
5 

12
9 

1 
13

71
 

73
.7

 

C
or

r.
 (

%
) 

89
.3

 
98

.3
 

97
.6

 
93

.8
 

87
.1

 
88

.2
 

87
.1

 
56

.1
 

98
.4

 
59

.8
 

O
A
 =

 9
0.

6 
 



Optimizing Multiple Kernel Learning for the Classification of UAV Data 

70 

3.5 Conclusions 
In this paper, we demonstrate the suitability of MKL as a classification method 
for integrating heterogeneous features obtained from UAV data. Utilizing a 
novel feature grouping strategy and a simple heuristic for weighting the 
individual input kernels (CSMKSVM), we are able to obtain a classification 
accuracy of 90.6%, an increase of 5.2% over a standard SVM implementation 
and 4.1% over a random forest classification model. These improvements are 
statistically significant with a p-value <0.005, which indicates strong 
evidence as standard tests use confidence levels of 0.05 or 0.01 to indicate 
significant differences. A series of experiments reinforces observations by other 
researchers that complex kernel weighting strategies do not seem to perform 
significantly better than simple heuristics, such as a proportional weighting 
based on the HSIC class separability measure. 
 
Furthermore, we observe that much of the literature on MKL classification has 
focused on ways to weigh the kernels, but not how to group the features 
appropriately. Experiments demonstrate the importance of the latter to 
effectively apply MKL. In this application, satisfactory results are obtained 
when grouping features based on their provenance (i.e., radiometric, texture 
or 3D features). A novel, automated grouping strategy is also proposed, which 
consistently obtains high classification accuracies for all seven MKL methods 
that were tested here. Furthermore, for most MKL methods, the proposed 
feature grouping strategy performed better than when using individual kernels 
for each feature. This underlines the importance of proper feature grouping, 
which not only produces a high and stable overall accuracy, but also reduces 
the number of input kernels for the MKL and, thus, reduces the computational 
complexity. These observations support a deeper understanding of MKL for 
classification tasks. Future applications of classification tasks with 
heterogeneous features are recommended to start by grouping features 
according to the proposed automated method and to use CSMKSVM to weight 
the input kernels for the SVM classification. Finally, this manuscript 
demonstrates that features extracted from point clouds and orthoimagery 
derived from UAVs are suitable for land cover classification. Additional research 
would be needed to analyze to what degree the features are sensitive to the 
type of UAV, flight parameters and algorithms utilized to produce the point 
clouds and orthoimagery. 
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Chapter 4 – Context-based Filtering of Noisy 
Labels for Automatic Basemap Updating from 
UAV Data3 
 

                                               
3 This chapter is based on: 
 
Gevaert, C.M., Persello, C., Oude Elberink, S., Vosselman, G., and Sliuzas, R. (2017) 
‘Context-Based Filtering of Noisy Labels for Automatic Basemap Updating From UAV 
Data’, IEEE Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing, pp. 1-11. doi: 10.1109/JSTARS.2017.2762905. 
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Abstract 
Unmanned Aerial Vehicles (UAVs) have the potential to obtain high-resolution 
aerial imagery at frequent intervals, making them a valuable tool for urban 
planners who require up-to-date basemaps. Supervised classification methods 
can be exploited to translate the UAV data into such basemaps. However, these 
methods require labeled training samples, the collection of which may be 
complex and time consuming. Existing spatial datasets can be exploited to 
provide the training labels, but these often contain errors due to differences in 
the date or resolution of the dataset from which these outdated labels were 
obtained. In this paper we propose an approach for updating basemaps using 
global and local contextual cues to automatically remove unreliable samples 
from the training set and thereby improve the classification accuracy. Using 
UAV datasets over Kigali, Rwanda and Dar es Salaam, Tanzania, we 
demonstrate how the amount of mislabeled training samples can be reduced 
by 44.1% and 35.5% respectively, leading to a classification accuracy of 92.1% 
in Kigali and 91.3% in Dar es Salaam. To achieve the same accuracy in Dar es 
Salaam, between 50000 and 60000 manually labeled image segments would 
be needed. This demonstrates that the proposed approach of using outdated 
spatial data to provide labels and iteratively removing unreliable samples is a 
viable method for obtaining high classification accuracies while reducing the 
costly step of acquiring labeled training samples. 
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4.1 Introduction 
The utilization of geospatial information to support urban planning is becoming 
common practice worldwide. A fundamental building block is the basemap (or 
topographic map), which provides information regarding the location of 
elemental objects of the urban fabric. As a foundation for many urban planning 
activities, it is imperative that this basemap provides accurate and up-to-date 
information. This is not always the case, as changes in an urban setting may 
occur more rapidly than the updating of such basemaps, which traditionally 
occurs through the manual digitization of satellite or airborne imagery. This is 
particularly relevant for informal settlements, which tend to be very dynamic 
urban environments. 
 
Recent technological developments regarding data acquisition platforms such 
as Unmanned Aerial Vehicles (UAVs), also known as Remotely Piloted Aerial 
Systems (RPAS), display potential for quickly delivering high-quality spatial 
data for geomatics applications (Nex and Remondino, 2014). UAVs are capable 
of bringing imagery with a spatial resolution of mere centimeters and accurate 
3D information to urban planners at a low cost. However, the area which can 
be covered by a single flight is currently limited due to the technical 
characteristics of the type of UAVs commonly used for mapping activities (Nex 
and Remondino, 2014) and national legislation often limits the maximum area 
that can be covered by a single flight (Stöcker et al., 2017). UAVs are therefore 
especially suited for mapping tasks which require multiple acquisitions over a 
limited study area, such as incremental map updating. 
 
In order to exploit the information contained in remotely sensed imagery, the 
images are usually translated into vector-based semantic information such as 
the basemaps mentioned previously. In many situations, basemap updating 
through UAV imagery is performed through manual digitization of new features 
(Koeva et al., 2016), possibly even involving stakeholders through a 
participatory mapping approach (Ramani Huria, 2016). An alternative strategy 
to digitization is the extraction of semantic information through supervised 
image classification methods.  
 
Supervised classification methods make use of representative training samples 
to characterize the common characteristics and variability of objects pertaining 
to each semantic class. Based on the observed distributions of the samples in 
a defined feature space, a classification model is constructed. This model allows 
labels to be assigned to new, unlabeled samples. Supervised classification 
algorithms have been successfully applied in a number of studies to extract 
semantic information from UAV imagery of urban scenes. Some studies divide 
the orthoimagery into a grid of coarser resolution, and use a pre-trained library 
to propose which urban objects may be present within each grid cell 
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(Moranduzzo et al., 2015). Other studies include 3D features from the point 
cloud or Digital Surface Model (DSM) to support the image-based features, e.g. 
(Chen et al., 2016; Gevaert et al., 2017). The application of morphological 
filters of adaptive sizes on the DSM result in useful features for identifying 
urban objects with differing scales and can complement the information 
contained in the imagery (Zhang et al., 2015).  
 
One of the main difficulties in classifying sub-decimeter resolution imagery 
obtained through UAV platforms is the spectral and spatial variability of urban 
objects (e.g. (Moranduzzo et al., 2015; Zhang et al., 2015)). It is possible to 
address the spectral variability by clustering all the pixels in an unsupervised 
manner and using a majority voting of the reference labels per cluster to label 
the pixels (Senthilnath et al., 2017).  Unfortunately, the collection of these 
reference labels is expensive, time consuming, and requires a relatively high 
level of knowledge to ensure that they are representative of the class 
distributions.  
 
Rather than manually labelling training samples, it is also feasible to use 
existing spatial datasets to provide the labels. For example, vector data from 
existing basemaps or sources such as OpenStreetMap could be used (Mnih and 
Hinton, 2012; Chen and Zipf, 2017). However, there are likely to be changes 
in the scene if there is a time lapse between the collection of the vector data 
at t0 and the newly acquired UAV imagery at t1. Furthermore, the existing 
vector information may have been digitized over imagery of a lower spatial 
resolution, causing misalignments when superimposed over the UAV imagery. 
Therefore, if existing spatial data is utilized to provide the training samples, it 
must be taken into account that a number of the training labels are likely to 
be incorrect. 
 
Various strategies have been developed to deal with such errors in the training 
sample labels, i.e. label noise. A recent overview of the effect of label noise on 
classification algorithms (Frenay and Verleysen, 2014) observed that there are 
three main strategies to address this issue: (i) utilizing noise-robust 
classification algorithms, (ii) data cleansing to remove potentially noisy labels 
from the training data, and (iii) explicitly modelling label noise. Other strategies 
have been developed to specifically combat label noise for remote sensing 
applications. For example, by modelling label noise by combining noise robust 
logistic regression and Conditional Random Fields (CRFs) for updating 
geospatial databases (Maas, Rottensteiner and Heipke, 2016); or by using the 
contextual information in a semi-supervised setting in order to assess the 
reliability of training samples and obtain a classification algorithm that is more 
robust to mislabeled training samples (Bruzzone and Persello, 2009).  
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In this paper, we utilize a data cleansing strategy which exploits context to 
identify samples which are likely to have an incorrect label. Research from the 
fields of computer vision (Galleguillos and Belongie, 2010) and the human 
visual system (ten Oever et al., 2016) indicate that both global and local 
contextual cues are important for object recognition. Global context has to do 
with the statistics of the image as a whole. The underlying idea is that similar 
but disjoint objects in a single study area will have similar variations. So, by 
using existing labels over the entire scene, the classifier uses global statistics 
of the study area to identify the common variations of these objects in a feature 
space. Objects which are mislabeled are likely to fall outside of these common 
variations, causing the classifier to be uncertain about the output label. Local 
context has to do with the similarity of neighboring samples. Generally 
speaking, neighboring pixels or segments which have similar characteristics 
could be expected to belong to the same semantic class (Schindler, 2012). This 
forms the basis of the contrast-sensitive Potts model which is commonly used 
in image analysis techniques such as CRFs to ensure a smooth labeling (e.g. 
(Shotton et al., 2009)).  
 
Object- or segment-based labeling, as opposed to pixel-based labelling, gives 
a single label to a group of pixels. Such a contiguous group of pixels with similar 
characteristics, is known as an image segment. This technique forms the basis 
of Object Based Image Analysis (OBIA) (Blaschke, 2010), and could also be 
interpreted as a way to ensure smooth labels (Schindler, 2012). It has been 
advocated that OBIA is especially suitable for remote sensing applications 
where the object of interest is larger than the spatial resolution of the image 
(Blaschke, 2010). It has been one of the most common techniques for slum 
identification from high resolution satellite imagery, though parameter tuning 
is important to avoid over- or under-segmentation (Kuffer, Pfeffer and Sliuzas, 
2016). In light of the difficulty of tuning image segmentation parameters, 
super-pixels could be used (Achanta et al., 2012). These are in essence an 
over-segmentation of the image. Super-pixel based image analysis lowers the 
data redundancy and can speed up classification tasks compared to pixel-based 
strategies, while avoiding errors due to undetected object boundaries in cases 
of under-segmentation. 
 
The main motivation behind this work is to combine both the global contextual 
uncertainty (i.e. class representation and object variability within the scene) 
with the local contextual consistency (i.e. similar neighbors having similar 
classes) to automatically identify and remove noisy labels from training data. 
By iteratively training supervised classifiers and removing potentially 
mislabeled samples after each iteration, the training sample set is iteratively 
cleaned and the accuracy of the classification model is improved. This allows 
existing vector outlines to be exploited as labels for newly-acquired UAV 
imagery, thereby reducing the need for the collection of costly training samples 
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and speeding up the basemap updating workflow. The adopted methodology 
combines various aspects of the state-of-the-art in remote sensing of urban 
areas and image processing, such as Object-Based Image Analysis, the 
integration of 2D and 3D features, and the inclusion of contextual information 
to improve classification accuracies.  
 
The proposed technique is demonstrated through two applications. The first 
uses recently acquired UAV imagery and outdated building outlines of an 
informal settlement in Kigali, Rwanda. The second application demonstrates 
how the same method can be applied to improve the accuracy of crowd-
sourced data. More specifically, to verify the building outlines of an informal 
settlement in Dar es Salaam, Tanzania which were digitized by community 
members using OpenStreetMap. Various experimental setups demonstrate the 
necessity of using both global and local contextual cues, the sensitivity of the 
proposed method to the proportion of training labels which are incorrect, and 
approximate the number of training samples which would need to be manually 
labelled in order to obtain the same classification accuracy as the automated 
workflow.   

4.2 Proposed Method 
The proposed method takes image segments with descriptive features from 
the newly acquired dataset and an initial class label obtained from the outdated 
basemap data as input. Then, it applies three steps to identify samples with 
unreliable labels and remove these from the training set. These three steps 
(steps 4 to 6 in Figure 4.1) are: pre-filtering the image segments based on the 
uniformity of noisy labels acquired at t0 for each segment from the images at 
t1, performing a supervised classification, and finally removing unreliable 
training samples. Here, uniformity refers to the percentage of pixels in an 
image segment which are assigned the label of the most prominent class within 
that segment. Label reliability is based on the label consistency, local 
contextual consistency, and global contextual uncertainty. The last two steps 
(classification and removing unreliable training samples) are repeated 
iteratively to improve the classification model. This improved classification 
model can then be used to assign a class label to each image segment and 
obtain a classified map.  
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Figure 4.1: Workflow of the proposed method for automatically identifying unreliable 
labels when using existing spatial data to provide training labels for the classification of 
UAV data. 
 
In the following section, we explain how the proposed method works. We use 
the notation ܵ ൌ ሼݏଵ, ,ଶݏ …  ሽ for the ݊ segments in the image acquired at t1 andݏ
ܴ ⊆ ܵ to the set of segments which are used to train the classifier. Each image 
segment ݏ has an area ܣ, a feature vector ܠ୧ obtained from the image dataset 
at t1, and a class label ܿ where k refers to the iteration. For example, ܿ 
indicates the class label of ݏ according noisy labels acquired at t0, and ܿଵ	refers 
to the label assigned to ݏ after the first iteration of the algorithm. ܧ refers to 
the set of all image segments adjacent to ݏ and ݈, refers to the length of the 
shared border between ݏ and ݏ ∈  . Pseudocode for the algorithm is providedܧ
in Algorithm 1. Please note that this section describes the general workflow of 
the proposed method whereas the exact implementation employed for our UAV 
datasets (including image segmentation and feature extraction) is described in 
Section III B. Experimental Analysis. 
 
Algorithm 1: iterRF-LG 
Inputs: ܵ ൌ ሼݏଵ, ,ଶݏ … , ܴ ,ሽ image segments with features from t1ݏ ⊆ ܵ subset 
of segments which are used as training samples, ܥ ൌ ൛ܿଵ

, ܿଶ
, … , ܿൟ	segment 

labels at iteration k, user-defined number of iterations ݇௫, local contextual 
consistency threshold min , global contextual uncertainty threshold ߠ. 
Procedure: 

1. Set ܴ ൌ ܵ and initialize ܥ with noisy training labels from t0  
2. If uniformity(ݏሻ < minimum uniformity criterion, remove ݏ from ܴ 

For  ൌ :  ࢞ࢇ
3. Train a random forest classifier using segments in ܴ and labels from 

 ିଵܥ
4. Apply the classification model to ܵ and update ܥ. 
5. If ܿ ് ܿ

ିଵ OR min i  OR ߠ ൏  ܴ  fromݏ , removeߠ
Outputs: improved segment labels ܥೌೣ  

 
The reasoning behind the pre-filtering step (i.e. step 4 in Figure 4.1) is that 
the building outlines at t0 may not always align with the image segments 
obtained from the imagery at t1, causing these image segments to contain 
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conflicting labels. Therefore, as an initial simple filtering mechanism, only 
“pure” segments where the percentage of labels from a single class meets a 
user-defined threshold are selected for the training set ܴ used to develop the 
classification model. The segments which do not meet this purity criterion are 
only incorporated at the end of the workflow, when the final classification 
model is used to classify the entire image and obtain the final classification 
map. 
 
For the supervised classification step, we propose to use random forests 
(Breiman, 2001) as they have been demonstrated to be more robust to label 
noise compared to other classification methods (Folleco et al., 2008; Frenay 
and Verleysen, 2014) and they can easily deal with large numbers of training 
samples, which is useful as all the segments are labeled in this application of 
map updating. Furthermore, it is intuitive to derive a confidence measure for 
the prediction, which is needed for the global contextual uncertainty criterion.  
 
Then, the label consistency, local contextual consistency, and global contextual 
uncertainty are used to remove unreliable training samples. Label consistency 
implies that the label of a training sample is consistent with the label assigned 
at the previous iteration, i.e. ܿ 

 ൌ ܿ
ିଵ. For example, if one segment represents 

a building at t1, it may be non-building according to the outdated basemap 
labels at t0. However, as the features of the segment are likely to be similar to 
other buildings in the area, it could feasibly be classified as building in the 
second iteration. Therefore, segments where a label is inconsistent causes it 
to be removed from the training set. This strategy has been previously 
employed for data cleansing techniques (Thongkam et al., 2008; Jeatrakul, 
Wong and Fung, 2010), but may be dangerous when used on its own as it may 
also remove potentially informative samples (Matic et al., 1992; Guyon, Matic 
and Vapnik, 1996). 
 
The underlying idea of the second criterion, local contextual consistency, is 
that if there are misalignments in the object boundaries at t0 and at t1, then 
the correctly labeled parts of the object may be used to identify neighboring 
mislabeled segments (see the example in Figure 4.2a). This is implemented by 
comparing the labels of neighboring pixels or image segments, and introducing 
a penalty for neighbors which have different labels but similar feature vectors. 
We exploit the idea of edge potentials commonly adopted in CRFs, and define 
our contextual consistency criterion using a contrast-sensitive Potts model 
(Boykov and Jolly, 2001): 

 

߶൫ܿ
, ܿ

, ,୧ܠ ୨൯ܠ ൌ ቊexp	ሾെߚฮܠ୧ െ ୨ฮܠ
ଶ
ሿ

1
		
݂݅	ܿ

 ് ܿ


݂݅	ܿ
 ൌ ܿ

		, (4-1) 
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where ܿ and ܿ
 indicate the class labels and ܠ୧ and ܠ୨ the feature vectors of 

two neighboring image segments ݏ and ݏ. This assigns a value of 1 to edges 
between neighbors of the same class, and exp	ሾെߚฮܠ୧ െ ୨ฮܠ

ଶ
ሿ to edges between 

neighbors adhering to different classes, where β equals the average square 
gradient between all neighboring segments as in (Shotton et al., 2009). The 
local contextual consistency index of segment ݏ (ψi) is the weighted sum of 
(1) for all neighboring segments: 
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k
j

k
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where wi,j is the relative weight of the neighboring segment ݏ. The relative 
weight (wi,j) of each neighbors’ edge potential is normalized by border length 
and relative size of the neighbors (Gould, Fulton and Koller, 2009) as follows:  

 

 





iji jji

jji
ji

Al

Al
w

),( ,

,
, . (4-3) 

 
This increases the influence of neighboring segments which share a longer 
border and larger neighboring segments, as larger segments are presumed to 
provide more stable feature values. Note that i  penalizes similar segments 

with different labels, but it doesn’t indicate which of the two neighbors is likely 
to be correct and which is likely to have the noisy label. Therefore, we only 
remove the samples for which both the local contextual consistency and the 
classifier uncertainty fall below a defined threshold. Furthermore, it is 
important to note that (1) only looks at neighboring segments which have 
different labels. This is useful for updating building outlines, but not in 
detecting new objects which are isolated. For example, if a building appears at 
t1 in the middle of an area which was entirely labelled as non-building at t0, i  

will not be suitable for identifying mislabeled training samples (i.e. Figure 
4.2e). 
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Figure 4.2: Illustrative examples from the Kigali dataset showing the interplay between 
the local contextual consistency (b,e) and global contextual uncertainty criteria (c,f). The 
local contextual consistency is especially useful for updating object boundaries (a-c), 
whereas the global contextual uncertainty is required to capture new objects (d-f). 
 
In such situations, mislabeled training samples can be identified by taking into 
account the global contextual uncertainty of segment ݏ (θi). That is to say that 
the classification model describes the statistical attributes of the objects 
outlined by the outdated vector data at t0 in the feature space derived from 
the imagery at t1. If a sample is mislabeled by the provided labels, then it is 
likely to lie closer to its true label in the feature space and may therefore cause 
the classifier to be uncertain about the assignation of the label. If a group of 
neighboring segments consistently have a high uncertainty according to the 
classification model, they are likely to be mislabeled. Therefore, we calculate 
the weighted average of the classifier uncertainty over all neighboring 
segments:     
 

 


jji

k
jjii uw

),( , , (4-4) 

 
where wi,j is again the relative weight between neighboring segments ݏ and ݏ 
as defined in (2) (i.e. the same weights are used for both the local contextual 
consistency and global contextual uncertainty) and ݑ is the classifier 

uncertainty for segment ݏ at iteration k. Note that although both ψi and θi 
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change at each iteration, we omit the superscript k in order to simplify the 
notation.  
 
We propose utilize random forests for the supervised classification task. 
Random forests consist of a group of classification trees, where each tree is 
trained using a random subset of the training samples and each decision node 
depends on a random subset of the features (Breiman, 2001). In the testing 
stage, a sample passes through each tree and each tree casts a vote for the 
label of the most prominent class of training samples which ended up at that 
leaf. The final label of the sample is determined through a majority voting of 
the results of each tree in the forest. The uncertainty can easily be calculated 
as the fraction of reference samples of the leaf which have the most prominent 
label multiplied for each tree in the forest. For binary classification problems, 
ݑ
 ranges from 0.5 to 1 with higher values representing more confident 

predictions. 
 
In the proposed method, the steps of supervised classification and removing 
the unreliable training samples using the three consistency criteria are 
repeated iteratively. The number of iterations could be fixed by the user. 
Alternatively, the user could automatically stop the iterations by tracking the 
number of samples removed from the training set or the number of samples 
which have are assigned different labels compared to the previous iteration. 
The accepted classification model can then be used to classify the entire image. 

4.3 Experimental Analysis 

4.3.1 Data sets 

4.3.1.1 Kigali, Rwanda: The first study area concerns an informal settlement 
in Kigali, Rwanda (Figure 4.3a). In 2015, a DJI Phantom 2 Vision+ UAV was 
flown over the study area. The images were processed with Pix4Dmapper 
which provided a Digital Surface Model (DSM) and a true-color orthomosaic 
with a spatial resolution of 3 cm and point cloud with a density of up to 1014 
points/m². Further details regarding this dataset can be found in (Gevaert et 
al., 2017). A subset of 150 m x 150 m was selected for the present analysis. 
The outdated building outlines were provided by the local government as vector 
data, which was initially digitized over a 2008 orthomosaic of 22 cm and 
partially updated using 2014 Pléiades satellite imagery resampled to 50 cm 
pixels (Bachofer, 2016). True reference data was obtained by manually 
digitizing the building outlines of the UAV orthomosaic. Around 11% of the 
segment labels provided by the existing outlines are incorrect according to this 
reference data. 
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4.3.1.2 Dar es Salaam, Tanzania: The second dataset was obtained by the 
Dar Ramani Huria project with the support of the World Bank4. This project 
mobilizes community members and university students to map flood-prone 
areas of the city. The results are used to support disaster response and are 
made available to the public through OpenStreetMap. To support these 
mapping activities, UAV flights were undertaken with a SenseFly eBee mounted 
with a 14MP Canon Powershot RGB camera. The images were again processed 
with Pix4Dmapper to obtain a point cloud with an average density of 50 
points/m², and a 5 cm DSM and orthomosaic. A 300 m x 300 m subset located 
in the Tandale ward was used for the present analysis (Figure 4.3b).  
 
For this dataset, the ‘noisy’ labels consist of the building outlines which were 
digitized over the 2015 imagery within the Ramani Huria project. Similar to the 
Kigali dataset, the true reference data was manually digitized over the subset 
for the purposes of the present study. Although most objects were correctly 
digitized by the Ramani Huria project, a label noise of about 10% is observed.  
 

 
Figure 4.3: The Kigali (a) and Dar es Salaam (b) datasets used in the present study. 
The building outlines (i.e. noisy labels) from t0 are displayed in yellow over the images 
acquired at t1. 

4.3.2 Experimental Set-up 

4.3.2.1 Image Segmentation: To segment the orthomosaic, the SLIC super-
pixel algorithm was used (Achanta et al., 2012). SLIC first defines a regular 
grid over the image, where the grid interval is based on a user-defined target 
super-pixel size. These samples are used to initialize a k-means clustering, 
where each pixel in the image is assigned to the nearest cluster center. The 

                                               
4 http://ramanihuria.org/ 
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proximity to cluster centers is calculated in a five-dimensional space which 
consists of spectral (L, a, b, values of the pixel in CIELAB colorspace) and 
spatial (the x,y image coordinates) components. After all pixels are assigned 
to a super-pixel, the cluster centers are updated by averaging the Labxy values 
of all pixels within the super-pixel, and the process is repeated. In our 
experimental analysis, the target super-pixel size was set to approximately 0.5 
m² (i.e. 555 pixels for the Kigali dataset and 200 pixels for Dar es Salaam). 
However, it was noted that a number of very small segments were still present, 
which could unnecessarily slow down the image processing workflow. 
Therefore, all segments with an area less than 0.05 m² (i.e. 55 pixels for the 
Kigali dataset, 20 for Dar es Salaam) were merged with the most similar 
neighboring segment larger than 0.05 m². This segmentation strategy resulted 
in a total of 59812 image segments for the Kigali dataset and 103227 segments 
for Dar es Salaam. 
 
4.3.2.2 Feature Extraction: For each segment, the average R, G, B color 
values, normalized r,g,b, and the ExG(2) vegetation index (Woebbecke et al., 
1995) were calculated, as well as a normalized histogram displaying the 
relative frequency of Local Binary Pattern (LBP) texture patterns (Ojala, 
Pietikainen and Maenpaa, 2002) within each segment. Features from the point 
cloud were also included in the classification: the number of points falling into 
the spatial extent of each pixel, as well as the range and standard deviation in 
the elevation values of these points. Planar segment and local neighborhood 
features of the highest point per pixel were also assigned to each image pixel. 
Planar segments were obtained through a surface-growing algorithm 
(Vosselman, 2012) and the number of points, average residual, inclination 
angle, and maximum height difference of the plane above neighboring points 
from different segments were included as features. The local neighborhood 
features were calculated according to the framework proposed by (Weinmann 
et al., 2015). The values of each 3D feature per pixel was averaged over the 
image segments. These image-based and point-cloud based features together 
form the set of features used for the classification task. A more comprehensive 
overview of the utilized features is provided in (Gevaert, Persello and 
Vosselman, 2016). 
 
4.3.2.3 Initial Training Labels: The vector data from the existing basemap 
are first rasterized using the same grid as the UAV orthomosaic. Next, a 
majority voting is used to assign a binary label (building vs. non-building) to 
each SLIC segment, which represents the outdated label at t0. The true labels 
at t1, which are used for the performance assessment, were obtained by 
manually digitizing the building outlines in the UAV orthomosaic, and assigning 
them to the image segments in the same way. 
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4.3.2.4 Pre-filtering: The previous processing steps yield: the input feature 
data consisting of segments which are described by radiometric, textural and 
geometric features derived from the UAV data, the outdated building vs. non-
building labels at t0, and true reference labels from the UAV data at t1. In the 
pre-filtering step, only segments for which at least 60% of the segment had 
the same label were retained. Experimental results using a threshold of 0% 
(i.e. not applying the pre-filtering) and 100% (i.e. only including ‘pure’ 
segments in the classification) are also provided in the results section to 
indicate the importance of this pre-filtering step. 
 
4.3.2.5 Iterative Supervised Classification: The next step performs the 
iterative classification with a random forest classifier. The number of trees is 
optimized through cross-validation, by randomly selecting 500 training 
samples, training forests with up to 200 trees, and selecting the number of 
trees with the lowest cross validation error. This optimal number of trees was 
then used to train the random forest classifier using all the training samples 
which was subsequently used classify the entire dataset. 
 
4.3.2.6 Removal of Unreliable Training Samples: Four strategies are 
applied to illustrate the importance of combining both local and global 
contextual cues for identifying unreliable labels. The first method, iterRF, does 
not take any contextual criteria into account and simply uses the label 
consistency criterion. The second method, iterRF-L, removes samples for which 
the local contextual consistency index ψi is lower than the threshold value of 
0.7. Whereas iterRF-G only employs the global contextual uncertainty index θi 
and the same threshold value. Finally, the proposed method iterRF-LG uses 
both local contextual consistency and global contextual uncertainty criteria. For 
all four methods, 15 iterations (of steps 5 and 6 in Figure 4.1) were performed. 
 
4.3.2.7 Assessment: The four strategies are compared through the Overall 
Accuracy (OA) of all the segments, the OA of only the originally mislabeled 
segments, the number of false positives and false negatives in the training set, 
and the percentage of mislabeled samples in the training set. Note that the 
underlying idea of the proposed method is to eliminate the need of collecting 
labelled training data by exploiting existing geospatial information. Therefore, 
in order to compare the proposed method to the traditional method of manually 
labelling training samples for the classifier, we provide an experiment which 
indicates how many (correct) training sample labels would need to be collected 
in order to obtain the same classification accuracy. This is done by randomly 
selecting ten folds of a set number of reference samples at t1, constructing a 
random forest classifier, and obtaining the OA. Finally, we also present the 
results of a sensitivity analysis. This was performed by taking the true labels 
of the Kigali dataset, and randomly changing training sample labels to induce 
a noise level of 0%, 5%, 10%, 20%, 30%, 40% or 50%. Using these labels, 
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iterRF-LG was again performed for 15 iterations. The average OA over three 
trials is reported for each iteration and noise level.  

4.4 Results and Discussion 
Table 4.1 provides the OA of the four different strategies for removing label 
noise from the training set after 15 iterations. The iterRF strategy, which only 
takes label consistency into account, does not improve the results significantly. 
The number of mislabeled and the classification accuracy is relatively stable 
after the first 15 iterations (Figure 4.4). The local contextual consistency 
(iterRF-L) and global contextual uncertainty (iterRF-G) achieve a similar 
accuracy for the Dar es Salaam dataset, correctly classifying about 90.4% of 
the image segments. Although a comparable number of noisy labels remain in 
the training set after 15 iterations (Figure 4.4), iterRF-L (91.2%) outperforms 
iterRF-G (90.1%) for the Kigali dataset. However, it is clear that the proposed 
method which combines all three criteria, iterRF-LG, obtains the best 
performance. For both datasets, a McNemar test with continuity correction 
(Foody, 2004) indicates that the results between iterRF-LG and the three other 
methods are statistically significant (p-value of < 0.001). The proposed method 
correctly classifies 92.1% of the segments for the Kigali dataset, corresponding 
to an improvement of 3.3% compared to using the initial, noisy training labels. 
This improvement was 1.7% for the Dar es Salaam dataset. The improvement 
is more visible when we consider only the segments which were mislabeled in 
the noisy training labels: the proposed method increased the accuracy of these 
segments from 6.6% to 47.9% in the Kigali dataset, and 8.5% to 41.1% in the 
Dar es Salaam dataset. Finally, the success of the method in removing 
unreliable labels is visible through the reduction of the fraction of mislabeled 
samples in the training data. This was effectively reduced from 11.1% to 6.2% 
in the Kigali dataset (effectively removing 44.1% of the mislabeled samples 
from the training set), and from 10.0% to 6.4% in the Dar es Salaam dataset 
(removing 36.0% of the mislabeled samples). 
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Table 4.1: Accuracy measures of the proposed iterative strategies after 15 iterations. 

Data 
cleansing 
strategy 

OA (%) 
All 

segments 

OA (%) 
Mislabeled 
segments 

False 
positives 

(%) 

False 
negatives 

(%) 

Percentage 
of 

mislabeled  
samples in 
training set 

Kigali dataset:    
Using noisy 

labels 88.2 6.6 3.27 8.54 11.1 

iterRF 88.9 7.3 2.94 8.15 11.0 
iterRF-L 91.2 32.2 1.49 7.30 8.3 
iterRF-G 90.1 23.6 2.14 7.79 9.1 
iterRF-LG 
(proposed 
method) 

92.1 47.9 1.00 6.91 6.2 

iterRF-LG (no 
pre-filtering) 91.2 46.8 1.08 6.74 5.9 

iterRF-LG 
(only uniform 

segments) 
92.2 54.0 0.84 6.96 4.3 

Dar es Salaam 
dataset:    

Using noisy 
labels 89.0 8.5 3.73 7.28 10.0 

iterRF 89.6 8.6 3.45 6.92 10.0 
iterRF-L 90.4 24.6 2.85 6.78 8.45 
iterRF-G 90.4 24.7 3.33 6.31 8.23 
iterRF-LG 
(proposed 
method) 

91.3 41.1 2.82 5.92 6.45 

iterRF-LG (no 
pre-filtering) 91.1 37.2 2.95 5.98 6.52 

iterRF-LG 
(only uniform 

segments) 
90.3 52.0 2.86 6.83 3.45 
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Figure 4.4: The number of noisy training samples remaining in the set of samples used 
to train the classifier after each iteration (a) and the resulting Overall Accuracy for the 
Kigali dataset using the four different methods for filtering the training labels (b). 
 
The influence of the pre-filtering step on the results of iterRF-LG is also visible 
in Table 4.1. Increasing the uniformity criterion results in a decrease in the 
number of mislabeled segments in the training data and a more accurate 
classification of the mislabeled segments for both datasets. Using only pure 
segments (i.e. a uniformity of 99%) in the pre-filtering stage improves the OA 
of the entire Kigali dataset by 0.1%, but decreases the accuracy of the Dar es 
Salaam dataset by 1.0%. The results therefore suggest that increasing the 
uniformity criterion in the pre-filtering stage reduces the number of noisy labels 
in the training set and improves the classification accuracy of mislabeled 
samples. However, using a strict uniformity criterion may decrease the 
classification accuracy of the entire dataset, perhaps due to the exclusion of 
informative training samples. 
 
The improved results of iterRF-LG compared to the other three methods is also 
visible in the output classification maps (Figure 4.5). For example, there is a 
notable reduction in false positives in the Kigali dataset. A building missed in 
the manual delineation of the buildings in Dar es Salaam (Figure 4.5c, top left), 
is correctly identified through the iterRF-LG method (Figure 4.5d). In the Kigali 
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dataset, a number of roofs are still not recognized by the classification model, 
remaining false negatives in the iterRF-LG method (Figure 4.5b). A visual 
analysis of the image indicates that many of these errors are in locations where 
the building extensions have been covered with a different roofing material 
than the (correctly labelled) adjacent construction. This causes a difference in 
the feature vectors of neighboring segments, and may therefore mislead the 
local contextual consistency criterion. If this is coupled to a consistent change 
in the representation of objects between t0 and t1 – for example if building 
extensions consist of a new type of roofing material which is not well-
represented by the existing labels – then the global contextual uncertainty may 
also fail. Note that in (1), the all segment features are weighted equally when 
determining the similarity between neighboring segments. Further research 
could consider incorporating more advanced techniques to select or weight the 
different features as previous research indicated that considering 3D and 2D 
features separately may improve image classification results (Gevaert, Persello 
and Vosselman, 2016). 
 
Another set of experiments compared the proposed workflow with a traditional 
workflow, where image segments must be labeled manually. Experimental 
analysis indicates that approximately 600 correctly labeled training samples 
would be needed in the Kigali dataset to obtain the same accuracy as iterRF-
LG after 15 iterations (Figure 4.6a). For the Dar es Salaam dataset, this is 
much higher, and between 50,000 and 60,000 training samples would be 
needed (Figure 4.6b). This could be due to the spectral similarity of building 
roofs and ground in the Dar es Salaam dataset. Furthermore, the slightly lower 
spatial resolution of the Dar es Salaam dataset makes it difficult to capture the 
texture of the corrugated iron roofs, which proved to be an important 
distinguishing attribute for the Kigali dataset (Gevaert et al., 2017).  
 
The large number of training samples required for the Dar es Salaam dataset 
can easily be dealt with by a random forest classifier. Other supervised 
classification methods, such as SVM also achieve high accuracies in remote 
sensing applications (Bruzzone and Persello, 2010). Future investigations 
regarding the use of SVM instead of random forests for the proposed iter-LG 
method would require two adaptations. Firstly, the number of training samples 
would need to be reduced by sampling or using an SVM variant which is capable 
of dealing with large numbers of training samples such as DC-SVM (Hsieh, Si 
and Dhillon, 2014). Secondly, a classifier uncertainty measure (ݑ) would need 
to be assigned to each training sample to calculate the global contextual 
uncertainty. SVM does not directly provide a probability for the classification 
output, although strategies exist which use proxies to indicate the classification 
certainty, e.g. (Demir, Persello and Bruzzone, 2011). 
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Figure 4.5: Results of the classification using the noisy labels (a,c) and after the 
fifteenth iteration of iterRF-LG (b,d) for the Kigali (a,b) and Dar es Salaam (c,d) datasets. 
 
Finally, the results of the sensitivity analysis for the Kigali dataset are 
presented in Figure 4.7. The results indicate that after 15 iterations the 
classification accuracy is above 93% for noise levels of up to 30%. In these 
experiments, the noise is introduced by switching the labels of randomly 
selected training labels. It is possible that the label noise in practical 
applications is more systematic (e.g. new constructions make use of a different 
roofing material, or a concentration of adjacent mislabeled samples), which 
may have a more significant impact on the results of the proposed method. 
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Figure 4.6: A comparison between the Overall Accuracy achieved through iterRF-LG 
after 15 iterations (red dashed line) and the mean Overall Accuracy achieved by 
randomly selecting a set number of training samples with true labels (black line) for the 
Kigali (a) and Dar es Salaam (b) datasets.  
 
 
 

 
Figure 4.7: Overall Accuracy of iterRF-LG for the Kigali dataset after 15 iterations with 
initial label noise levels ranging from 0% to 50%. 
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4.5 Conclusions 
In this paper, we utilize two datasets to demonstrate how existing spatial data 
may be exploited to obtain labeled training samples for the application of 
supervised classification algorithms to UAV data. Considering that a number of 
labels provided by this outdated spatial data will be erroneous, local and global 
image cues are used to filter out unreliable training samples. The local 
contextual criterion encourages neighboring image segments to have 
consistent labels. At the same time, a global contextual criterion uses the entire 
scene to capture the distribution of the semantic classes in the feature space, 
and is suitable for identifying isolated new objects. Sensitivity analyses show 
that classification accuracies of 93% or more are achieved, even in presence 
of up to 30% erroneous training samples. There are two main implications of 
these results. The first is that the proposed method may lead to a considerable 
speed-up in the implementation of supervised classification methods for base-
map updating by reducing the need of manually labelling image segments to 
train the classifier. Secondly, the interaction between the local and global cues 
emphasizes that the inclusion of spatial contextual information is beneficial for 
data cleansing techniques in geomatics applications. 
 

The proposed method may also be used for a number of other applications. For 
example, it could be used in a quality control application to verify the accuracy 
of volunteered geographical information such as OpenStreetMap. Furthermore, 
it could be used in a domain adaptation application, where the training labels 
are obtained from a classification model trained on a certain study area could 
be applied to a similar study area for which no data is available, rather than 
outdated spatial data. The main caveat of this method is that it assumes that 
the noisy data labels provided by the outdated spatial data cover all the 
representations of the semantic classes in the new UAV imagery. Therefore, if 
an entirely new variation of an object appears between t0 and t1, for example 
if an alternative type of roof material is only used in new constructions, the 
mislabeled segments will not be filtered by the proposed method. Further 
developments could explore active learning methods (Persello, 2013) to target 
such segments and potentially improve the classification accuracy, though this 
would require (limited) manual labelling. 
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Chapter 5 – A Deep Learning Approach to 
DTM Extraction from Imagery Using Rule-
based Training Labels5 
  

                                               
5 This chapter is based on: 
 
Gevaert, C.M. , Persello, C., Nex, F, and Vosselman, G. (2018) ‘A deep learning 
approach to DTM extraction from imagery using rule-based training labels’ ISPRS 
Journal of Photogrammetry and Remote Sensing, 142, pp.106-123. doi: 
10.1016/j.isprsjprs.2018.06.001 
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Abstract 
Existing algorithms for Digital Terrain Model (DTM) extraction still face 
difficulties due to data outliers and geometric ambiguities in the scene such as 
contiguous off-ground areas or sloped environments. We postulate that in such 
challenging cases, the radiometric information contained in aerial imagery may 
be leveraged to distinguish between ground and off-ground objects. We 
propose a method for DTM extraction from imagery which first applies 
morphological filters to the Digital Surface Model to obtain candidate ground 
and off-ground training samples. These samples are used to train a Fully 
Convolutional Network (FCN) in the second step, which can then be used to 
identify ground samples for the entire dataset. The proposed method 
harnesses the power of state-of-the-art deep learning methods, while showing 
how they can be adapted to the application of DTM extraction by (i) 
automatically selecting and labelling dataset-specific samples which can be 
used to train the network, and (ii) adapting the network architecture to 
consider a larger surface area without unnecessarily increasing the 
computational burden. The method is successfully tested on four datasets, 
indicating that the automatic labelling strategy can achieve an accuracy which 
is comparable to the use of manually labelled training samples. Furthermore, 
we demonstrate that the proposed method outperforms two reference DTM 
extraction algorithms in challenging areas. 
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5.1 Introduction 
Airborne Laser Scanning (ALS), satellite imagery, and aerial or UAV imagery 
can provide a Digital Surface Model (DSM) which describes the elevation of the 
Earth’s surface. This model describes the elevation of the top of objects,  i.e. 
the elevation of the ground plus the height of objects such as buildings and 
vegetation which is on top of the surface. However, many applications actually 
require a model where these elevated objects are removed, i.e. a Digital 
Terrain Model (DTM), as depicted in Figure 1. The difference between the DSM 
and DTM is referred to as a normalized Digital Surface Model (nDSM), and gives 
the height of the elevated objects. The conversion of a DSM to a DTM is known 
in literature as DTM extraction, bare-ground extraction, or point cloud filtering. 
This process generally consists of two phases: first selecting pixels or points 
which represent the ground and then using these points to interpolate a surface 
model of the terrain. 
 

 
Figure 5.1: Given a scene with the ground and objects such as buildings (a), the Digital 
Surface Model (DSM) provides the height of the ground plus any objects on top of it (b), 
the Digital Terrain Model (DTM) filters off-ground objects and therefore provides the 
elevation of only the ground surface (c), and the normalized Digital Surface Model 
(nDSM) represents the difference between the DSM and DTM, essentially giving the 
height of the objects on top of the terrain (d).  
 
Most DTM extraction algorithms have been tested on relatively easy datasets 
(Tomljenovic et al., 2015). However, we can identify a number of specific 
scenarios which present difficulties for DTM extraction from point clouds of 
urban areas (Figure 5.2). A number of difficulties arise due to errors inherent 
in the data itself. For example shadows cause difficulties for dense matching 
algorithms, resulting in noise in the point cloud (Figure 5.2a). Also, lack of 
texture or unsatisfactory camera calibration may cause noise or outliers in the 
point cloud (Figure 5.2b). The DSM interpolation step may also cause errors, 
such as increasing the extent of elevated objects when using Inverse Distance 
Weighting (Figure 5.2c) or artefacts along overhanging objects when using 
Delaunay triangulation (Figure 5.2d). Other sources of difficulties for DTM 
extraction algorithms are due to the characteristics of the scene itself. For 
example, sloped surfaces may cause a step-like pattern where ground and off-
ground cannot be distinguished (Figure 5.2e) or off-ground objects to be co-
planar with the ground (Figure 5.2f). Finally, elevated objects which are 
significantly larger than the other objects in the scene (Figure 5.2g) or 
agglomerations of neighboring objects (Figure 5.2h) form contiguous off-
ground areas which affects the size of the local neighborhood which must be 
considered to identify ground points as most algorithms somehow assume that 
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ground points will locally be the lowest point. In our approach, we demonstrate 
how complementary information from the imagery can be included to 
successfully extract a DTM in these challenging areas. 
 

 
Figure 5.2: An overview of sources of errors in DTM extraction algorithms. The data 
itself has errors, such as shadows (a) and outliers (b) which are byproducts of the 
photogrammetric workflow. Also, DSM interpolation methods such as Inverse Distance 
Weighting (IDW) (c) and Delaunay Triangulation (d) create artifacts in the DSM. Scene 
characteristics such as sloped environments (e and f) and contiguous off-ground areas 
due to exceptionally large buildings (g) or connected buildings (h) also cause difficulties. 
 
Existing algorithms for DTM extraction from DSMs or point clouds can be 
roughly divided into five groups: (i) morphological filtering, (ii) progressive 
densification, (iii) surface-based, (iv) segment-based, and (v) deep learning 
methods. In morphological filtering, the ground is defined as the lowest point 
within a specified neighborhood. Variations of this method include: making the 
threshold dependent on the distance to the center point (Sithole and 
Vosselman, 2005) or adapting the filter to the slope calculated from an existing 
DTM (Sithole and Vosselman, 2005; Debella-Gilo, 2016). Morphological 
methods are very sensitive to the size of the search neighborhood. For 
example, if the element is too small, it may cause elevated objects slightly 
lower than the surrounding objects to be mistakenly labelled as ground (e.g. 
Figure 5.2h). To avoid this, some approaches use neighborhoods of various 
sizes. For example, Kilian et al. (1996) use structuring elements of various 
sizes and then link the likelihood of a point being considered ground with the 
size of the structuring element for which the point is labelled as ground. 
Similarly, Mongus et al. (2014) use morphological profiles of various sizes, and 
record: the largest response, the size of the structuring element at the first 
response, and the cumulative sum of responses up to the largest response as 
three features. These are said to reflect the height of features compared to the 
direct surrounding, planimetric size of the elevated object, and estimation of 
the height of the object.  
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After the ground points are obtained through the filtering, an interpolation can 
be performed to obtain the DTM surface. For example, a Triangulated Irregular 
Network (TIN) represents the surface through a series of triangles where the 
vertices are the ground points. This can be done through a Delaunay 
triangulation, which constructs a TIN in such a way that no points are within 
the circumcircle of one of the surface triangles, and the vertices of all triangles 
are maximized (Lawson, 1972). This is a common method, and a wide range 
of adaptations have been developed to optimize it (Tsai, 1993). Another 
interpolation method is Inverse Distance Weighting (IDW), where all points 
within a given neighborhood are utilized as input for the surface, but nearer 
points are given more weight on the surface estimation than further points 
(Hohn, 1991). The performance of the interpolation algorithms depends on e.g. 
surface characteristics and dataset density (Chaplot et al., 2006). However, in 
the current study we focus on the correct identification of ground points, and 
a further comparison of interpolation methods is not considered. 
 
Progressive densification methods select a number of ‘seed’ points which are 
likely to represent the ground, and then successively add points to those 
classified as ground. For example, Axelsson (2000) used a grid to select the 
lowest points which are then used to construct an initial TIN model. This TIN 
is progressively densified by adding points which are less than a user-defined 
distance from an existing TIN face, and form an angle less than a user-defined 
threshold with the three vertices of this face. With a total error of 11.2% 
algorithm had comparatively good results on the ISPRS benchmark set (Sithole 
and Vosselman, 2004); though it is said to have difficulties in identifying cliffs 
and sharp ridges (e.g. Mongus et al., 2014; Zhang et al., 2016). 
 
Surface-based or interpolation methods estimate a surface from all the input 
points and suppress the influence of off-ground points on the interpolation. For 
example, at the first iteration, a surface can be interpolated using all available 
points. One can then assume that points on the ground are likely to be below 
the interpolated surface. These lower points are then assigned a higher weight 
in the interpolation for the next iteration(Kraus and Pfeifer, 1998). 
Alternatively, an active shape method can be applied, which describes the 
surface as a rubber cloth and forms it to the laser points in a bottom up fashion 
(Elmqvist et al., 2001). The surface is adjusted iteratively using an energy 
function which weighs the ‘stiffness’ of the interpolated surface (internal force) 
against the individual point observations (external force). Zhang et al. (2016) 
propose a similar approach based on ‘cloth simulation filtering’ to identify 
potential ground points. Surface-based methods experience difficulties in areas 
with steep slopes (Liu, 2008), which may require explicit post-processing (e.g. 
Zhang et al., 2016). 
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Segment-based methods generally consist of 3 steps: (1) the segmentation of 
a point cloud or DSM, (2) the classification of the segments as ground or non-
ground, and (3) the interpolation of the DTM from ground segments (Beumier 
and Idrissa, 2016). Point cloud segmentation may use profiles (Sithole and 
Vosselman, 2005) or region-growing techniques. For the latter, local minima 
are often used to obtain seed points, which are densified through e.g. planar 
segmentation (Pérez-Garcia et al., 2012), or similarity of normal vectors 
(Tóvári and Pfeifer, 2005). For 2D raster methods, slope is often used to define 
segmentation boundaries. For example, Hingee et al. (2016) calculate the 
slope of the DSM, which is used to segment the raster. Segments where 
majority of pixels are flowing ‘in’ are candidates for ground, then surface fitting 
is applied. Tomljenovic et al. (2016) also uses slope to delimit segments, the 
largest segment is considered to be the ground. Note that Mongus et al. (2014) 
mention that slope-based filtering doesn’t work well in sloped study areas. Yan 
et al. (2012) use a locally lowest points to initiate the region growing 
segmentation, where slope is used to determine whether pixels are included in 
the segment or not. They define a segment as terrain or non-terrain based on 
the signed height differences between neighboring segments. Beumier and 
Idrissa, (2016) use a maximum height difference and two-step connected 
component algorithm to define the segments, and additionally define a 
minimum region size parameter. Segment size and its relative elevation to the 
neighboring segments are used to identify ground segments. Segment-based 
methods may speed up processing compared to pixel- or point-based methods 
and reduce sensitivity to noisy data, though the quality of the results is heavily 
dependent on the quality of the segmentation to begin with.  
 
Finally, deep learning algorithms have recently been improving accuracies on 
a wide range of supervised classification tasks (e.g. He et al., 2016; Krizhevsky 
et al., 2012; Simonyan and Zisserman, 2014). In computer vision applications, 
Convolutional Neural Networks (CNNs) were used to give a single semantic 
label to an entire image patch. CNNs consist of a combination of: convolutional 
layers which apply a series of filters to the input image, nonlinear activation 
layers which allow complex representations to be learned, and pooling 
components to help prevent overfitting. CNNs have been very successful in 
classification tasks which require assigning a label to an image patch or scene 
(Krizhevsky, Sutskever and Hinton, 2012; He et al., 2016). More recently, Fully 
Convolutional Networks (FCNs) have been developed for tasks which require 
assigning a label to each pixel within an image, i.e. semantic segmentation 
(Shelhamer, Long and Darrell, 2017). They are more efficient for semantic 
segmentation than conventional CNNs as they avoid redundant calculations, 
improve memory efficiency and incorporate more training data into the 
optimization of the weights. Furthermore, a significant benefit of FCNs is that, 
unlike patch-based CNNs, they can be easily applied to images with different 
dimensions. 
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Due to the convincing results achieved on computer vision benchmarks, CNNs 
(Hu et al., 2015; Romero, Gatta and Camps-Valls, 2016; Zhang, Zhang and 
Du, 2016) and FCNs (Sherrah, 2016) are also increasingly being applied to 
classify satellite and aerial imagery in remote sensing applications. For 
example, some studies utilize networks trained on computer vision datasets 
(Audebert, Saux and Lefèvre, 2016) or synthetic multispectral imagery 
(Kemker and Kanan, 2017), and fine-tune the weights using real aerial 
imagery. Deep learning has also been applied for DTM extraction from point 
clouds, where Hu and Yuan (2016) recently achieved state-of-the-art results 
on the ISPRS benchmark dataset using a CNN. The authors first convert the 
point cloud into a 2D grid consisting of three attributes: the minimum, 
maximum and mean height per grid cell. More than 17 million pre-labelled 
training samples were then used to train a CNN capable of distinguishing 
ground vs. non-ground points. The method obtained accurate results, but 
required a large amount of labelled data. 
 
We foresee that there are three main concerns which must be overcome in 
order to efficiently exploit the power of deep learning for DTM extraction. 
Firstly, the collection of a sufficient amount labelled training data for training 
the networks is costly and time-consuming. In some cases, such labeled data 
may be available due to extensive manual labor, but here we consider cases 
where such labeled data is not available. Secondly, previous DTM extraction 
algorithms indicate that it is important to consider elevation differences over a 
local neighborhood which exceeds the size of the largest off-ground object in 
the scene. However in the case of DTM extraction from extremely high 
resolution UAV data products, covering such an extensive area would require 
very large image patches as input for a FCN. The challenge is therefore how to 
consider the information over a large area while limiting the number of network 
parameters which must be tuned as well as the size of the input patch used to 
train the network. Thirdly, even if a network is correctly tuned, there are still 
cases in which using only the elevation information is not enough to distinguish 
ground from off-ground samples (e.g. Figure 5.2e,f). 
 
In the field of large-scale urban scene reconstruction, researchers have shown 
how incorporating both 3D and 2D information is beneficial. For example, to 
jointly perform image segmentation and dense stereo reconstruction. This can 
be done by jointly optimizing the random field formulations of both problems 
(Ladický et al., 2012). At an object level, learning the mean shape of an object 
from 3D scans can be combined with image-based cues of anchor points to 
improve the accuracy of multiview stereo workflows (Bao et al., 2013). 
Probabilistic models (Ulusoy, Black and Geiger, 2017) or 3D deep learning 
strategies (Riegler et al., 2017) can learn object shapes to support 3D 
reconstruction in occluded or texture-less areas. Classification problems on a 
larger scale also benefit from the integration of 2D and 3D information. For 
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example, a voxel’s preference for a certain semantic class (image-based cues) 
can be supplemented by the likelihood of certain surface orientations (3D 
geometric cues) (Hane et al., 2013). Smart strategies using hierarchical voxel 
schemes can be used to maintain a high classification accuracy while reducing 
the memory and computational times enormously (Blaha et al., 2016). Other 
workflows combine an even wider range of data sources: from OpenStreetMap, 
LiDAR, aerial photography and semantic data for large-scale scene 
reconstruction (Cabezas, Straub and Fisher, 2015). Although scientific 
research displays great potential for this field of large-scale 3D scene 
reconstruction and semantic interpretation, we acknowledge that a number of 
applications simply require an input DTM. The purpose of this manuscript is 
therefore to exploit these observations of synergies between information 
contained in the visual and geometric information of a scene, but applied to a 
simpler task of DTM extraction with more conservative computational and data 
requirements. 
 
More specifically, this paper proposes the use of deep learning in the form of a 
FCN for DTM extraction. DSMs derived from photogrammetric point clouds and 
the corresponding true-orthophotos are used as input. The utilization of both 
sources of information is one of the main points of our approach, and is key to 
DTM extraction in challenging areas. Our method uses a simple rule-based 
mechanism to automatically identify ground and off-ground samples which are 
then used to train the network, thus eliminating the need to collect large sets 
of manually labelled training data. Secondly, the network takes a large surface 
area into account by considering topographic features derived from DSM 
(which summarize the height of a pixel to the local topographical tendencies) 
and by applying dilated filters in the network architecture. Finally, difficult 
scenarios which may confuse existing DTM methods are solved by exploiting 
the RGB information obtained from the UAV imagery in conjunction with the 
DSM. In the following manuscript we describe the proposed method for DTM 
extraction and demonstrate its accuracy using three challenging datasets. The 
use of the three different datasets attests to the versatility of the method for 
VHR aerial imagery due to the dataset characteristics (i.e. two were acquired 
with a UAV and one through aerial imagery and all three have different spatial 
resolutions) and scene characteristics. 
 
The proposed methodology is assessed by casting it as a binary classification 
problem (i.e. ground vs. off-ground). We illustrate the importance of combining 
image-based and DSM-based features by performing sets of FCN experiments 
using differing input features. Furthermore, we perform experiments using the 
ground-truth labels vs. the rule-based training labels to support the claim that 
simple morphological rules are a viable alternative to manually labelling the 
large number of training samples required to train deep networks for DTM 
extraction. Further experiments compare the proposed network architecture to 
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deeper networks, apply the algorithm to the ISPRS benchmark data, and 
consider the possibility of direct regression-based DTM prediction. 

5.2 Proposed method 
The proposed methodology consists of two steps (Figure 5.3). The first step is 
a rule-based selection of a set of candidate ground ( ܵ) and off-ground (ܵ) 
training samples. The idea is that if a supervised classification will follow the 
initial rule-based method, it is not necessary to label all of the pixels as ground 
or off-ground. Rather, it suffices to have a large number of confident samples. 
In this case, simple morphological filters are applied to the DSM to select the 
training samples, as the filters can be executed quickly and the algorithm 
parameters are intuitive to the user (i.e. neighborhood search window clearly 
corresponds to the expected size of the object in the scene). 
 

 
Figure 5.3: Workflow of the proposed methodology. The first step consists of applying 
top-hat filters to the DSM to select and label initial training samples. The second step 
combines the RGB channels of the orthomosaic with features derived from the DSM 
together with the labeled samples from the first step to train a FCN. This FCN is then 
applied to the entire dataset to identify the ground samples, which can then be used to 
create a DTM through interpolation. 
 
The second step consists of a supervised classification combining radiometric 
features from the imagery with geometric features from the DSM to refine the 
initial labeling. Image-based classification in urban settings can be challenging 
due to high within-class variability (e.g. different roof materials and colors as 
well as the presence of clutter on roofs) and low between-class variability (e.g. 
especially when ground and roof pixels appear similar in true color). Contextual 
features such as texture can improve the separability of these two classes 
(Gevaert et al., 2017), but hand-crafting informative texture features can be 
challenging. Therefore, we use a FCN as a classifier. In addition to the recent 
success of deep learning methods for various image classification tasks, their 
ability to learn powerful contextual features from the data itself supports the 
development of automatic workflows. Once the pixels corresponding to ground 
samples have correctly been identified, the final DTM can be interpolated. In 
the following sections, we describe both steps in more detail. 
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5.2.1 Rule-based training sample selection using morphological 
filters 

Let us define ߛ௪ೞ
ሺܯܵܦሻ as a morphological top-hat filter on the DSM. This filter 

returns the height of the central point above the lowest point in a disk-shaped 
neighborhood ws with a radius of s. However, rather than utilizing multiple 
scales (Mongus, Lukač and Žalik, 2014), we utilize only two neighborhoods: 
wsmall and wbig. The first filter, wsmall, is used to identify off-ground objects. The 
idea is that pixels which are higher than their direct neighbors provides a set 
of confident off-ground samples (i.e. the filter indicates that the pixel is higher 
than neighbors within a small neighborhood), and that these selected samples 
will be representative of the image-based characteristics of off-ground objects 
within the dataset. Problems with contiguous elevated objects (e.g. Figure 5.2g 
and h) are addressed as we assume that pixels along the edges of elevated 
objects (such as roofs in the figure) will have a similar appearance in the image 
as pixels in the interior of these roofs.  
 
The set of off-ground training samples is defined as: 
 

ܵ ൌ ൛ߛ௪ೞೌ
ሺܯܵܦሻ  ߬ൟ, (5-1) 

where ߬ represents the threshold in meters which defines the minimum height 
difference between a DSM pixel and its neighbors to be considered as off-
ground. Later experiments on the ISPRS benchmark indicated that datasets 
containing large buildings with flat roofs, unique roofing material and located 
on flat terrain (e.g. industrial areas) are not always captured by the rule in (1). 
These areas can therefore benefit from an additional criterion to select off-
ground samples: ሺܯܵܦ െ ௪ೞೌߞ

ሺܯܵܦሻሻ  ߬, where ߞ is a morphological erosion 
filter. 
 
Similarly, we can consider that ground pixels have a minimal response to 
௪್ߛ

ሺܯܵܦሻ. That is to say, a ground point is likely to be lower than pixels within 
a larger neighborhood. As with other morphological methods, this search range 
should be large enough to extend over large objects in the scene, yet not too 
large as this will be problematic in sloped areas. The set of ground training 
samples ܵ is then: 
 

ܵ ൌ ቄߛ௪್
ሺܯܵܦሻ ൏ ߬ቅ. (5-2) 

In practice, we set ߬ ൌ 0.5 ∙ ߬ which reduces the number of parameters to be 
tuned by the user. Thus, ground and off-ground samples are selected and 
labeled automatically for each dataset through two simple rules which require 
the user to tune only three intuitive parameters: wsmall, wbig, and ߬. 
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5.2.2 Fully convolutional neural networks 

The selected training samples are used to train a FCN. Detailed descriptions 
are available regarding the applications of CNN (Castelluccio et al., 2015; Hu 
et al., 2015), and FCNs (Sherrah, 2016; Persello and Stein, 2017) for image 
classification tasks in remote sensing. When applying a FCN to DTM extraction 
applications, especially when utilizing data with an extremely high spatial 
resolution such as those acquired with UAVs, one of the main concerns is how 
to consider a large spatial extent without increasing the computational costs of 
the network. Considering contextual information over a large spatial extent is 
important for DTM extraction algorithms. For example, the search 
neighborhood in morphological filtering methods should be larger than the 
largest off-ground object. Similarly, when using a FCN for DTM extraction, the 
receptive field of final layer should be large enough to capture relative elevation 
differences between off-ground pixels and the surrounding ground pixels. We 
do this in two ways: by adapting the network architecture and through the use 
of specialized feature inputs. 
 
Both CNNs and FCNs can be defined as a sequence of layers which generally 
consist of convolutional, nonlinear activation, and pooling components. Using 
the same notation as (Volpi and Tuia, 2017), the convolutional layers consist 
of a set of K’ filters with a size of M×M×K, where M is the width and height of 
the square filter and K corresponds to the number of input channels of the 
previous layer. For example, for an RGB image this K would have a value of 
three. Each filter is convolved over the input layer ࢞, producing a response  ࢞୧୨୩ᇱᇱ  
for the k’th filter at row i and column j of the output layer ࢞′ as follows: 
 

୧୨୩ᇱ࢞
ᇱ ൌ 	∑ ∑ ∑ ࢝ ∙ ࢞  ܾெ

ୀଵ ,ெ
ୀଵ


ୀଵ  (5-3) 

where ࢝ is the filter value of row p, column q, and channel k of the input 
layer and b are the bias parameters which are learned by training the network. 
One of the main advantages of the convolutional layers is that, once optimized 
in the training stage, the weights of the filter are fixed as it passes over the 
image in the testing stage. This not only decreases the number of parameters 
to be learned, but also introduces translation invariance. The dimensions of ࢞′ 
depend on the stride (s) and padding (z). The stride is the interval for which 
each convolution is calculated. A stride equal to one indicates that the 
convolution is calculated for each pixel of ࢞ whereas values higher than one 
indicate that pixels are skipped and ࢞′ will therefore be downsampled. The 
padding indicates the number of zeros added to the border of the input image 
to enable pixels along the edges of ࢞ to be processed. The receptive field of a 
filter refers to the area of the original input image which affects the filter 
response. This can be increased by applying multiple convolutional layers, 
increasing the size of the filters, or increasing the stride. Another way to 
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increase the receptive field without increasing the number of variables to be 
tuned is by inserting a defined number (d) of 0s between weights of ࢝. This 
technique is known as the atrous method (Chen et al., 2015) or dilation (Yu 
and Koltun, 2015). For an input layer ࢞ with dimensions W × H × K, the 
dimensions of ࢞′ will then be: ቀௐାଶ௭ିெሺௗିଵሻିଵ

௦
ቁ ൈ	ቀ

ுାଶ௭ିெሺௗିଵሻିଵሻ

௦
ቁ ൈ    .′ܭ

 
Convolutions are generally followed by a nonlinear activation, which introduces 
non-linearity into the system thus allowing more complex representations to 
be learned. One of the most common methods currently used is the Rectified 
Linear Unit (ReLU), defined as ࢞ᇱᇱ ൌ max	ሺ0,  ᇱሻ (Nair and Hinton, 2010). This࢞
function is capable of efficient network training and it avoids the vanishing 
gradient problem (He et al., 2015). 
 
The third main component of FCNs are the pooling layers. The purpose of 
pooling layers is to summarize the filter responses and improve translation 
invariance (Krizhevsky, Sutskever and Hinton, 2012). A common strategy is 
max-pooling, which returns the highest response over a small window 
(generally 2 x 2 or 3 x 3). Pooling layers commonly utilize a stride set equal to 
the pooling size window. This returns a single value for each (e.g. 2 x 2) 
window and thus downsamples the image. In semantic segmentation 
applications, the final output layer should have the same dimensions as the 
input layer. Therefore, the network may make use of deconvolutional layers 
which again upsample the features at a later stage in the network (Shelhamer, 
Long and Darrell, 2017; Volpi and Tuia, 2017). Alternatively, it is possible avoid 
downsampling in the pooling layer by avoiding pooling layers altogether or by 
using pooling layers with a stride equal to one (Sherrah, 2016). Results of the 
ISPRS 2D semantic labelling contest6 suggest that the latter strategy is 
competitive with more complex deconvolutional strategies (Volpi and Tuia, 
2017). 

5.2.3 Proposed network 

In our proposed network, we therefore utilize a FCN with no downsampling to 
ensure that the output ground prediction map will automatically have identical 
dimensions as the input dataset. The network consists of three convolutional 
layers (Table 5.1). The first two are followed by ReLUs, and a max-pooling with 
no downsampling. As there is no downsampling, no deconvolutional layers are 
needed to ensure the output map has the same dimensions as the input map. 
This strategy has been previously used by FCN architectures for the 
classification of satellite imagery (Sherrah, 2016; Persello and Stein, 2017). 
The receptive field is increased greatly in the second convolutional layer 
through the use of dilated filters. The use of dilated filters also introduces a 

                                               
6 http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html  
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multi-scale effect, which is typically achieved through downsampling. However, 
the use of dilated filters as opposed to downsampling has the additional benefit 
that fewer parameters are required, thus speeding up training and reducing 
potential overfitting (Yu and Koltun, 2015). The architecture used here also 
reduces overfitting by introducing a batch normalization (Ioffe and Szegedy, 
2015) after each convolution and dropout (Srivastava et al., 2014) after the 
final convolution. 
 
Table 5.1: An overview of the FCN network architecture utilized for the DTM 
extraction.  

Layer Filter 
size ࡹ 

(pixels)

Filter 
dilation 

 ࢊ
(pixels) 

Number 
of filters

 ′ࡷ

Padding
 ࢠ

(pixels)

Receptive 
field size 
(pixels) 

Convolutional1 
Batch 

normalization 
ReLU 

5 x 5 1 16 2 5 x 5 

Pooling1 3 x 3 - - 1 7 x 7 
Convolutional2 

Batch 
normalization 

ReLU 

9 x 9 6 16 24 55 x 55 

Pooling2 3 x 3 - - 1 57 x 57 
Convolutional3 

Batch 
normalization 

Dropout 

1 x 1 1 2 0 57 x 57 

 
The second manner to increase the extent under consideration by the FCN is 
by incorporating DSM feature which describe the topography over a large area 
as input channels for the network. We choose to include these DSM features 
as they allow the network to consider topographical variations over an 
extended area without increasing the computational costs of training the 
network. I.e., while the utilization of dilated kernels may reduce the number 
of parameters to be tuned, it still requires a larger input patch for training the 
network and thereby increases the memory requirements. Remember that 
existing DTM extraction methods indicate that the relative height must be 
considered over an area larger than the largest elevated object (i.e. Figure 5.2 
g,h). If a dataset has a spatial resolution of 3 cm, then it requires a receptive 
field of for example 667 x 667 pixels in order to take a 20 x 20 m area into 
account, which is considerably larger than the patch size of the current 
network. Therefore, we include features which describe the surface topography 
over a larger area as input for the FCN. These features are inspired by DTM 
extraction methods which take an existing DTM into account (Sithole and 
Vosselman, 2005; Debella-Gilo, 2016) and the surface-based or interpolation 
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methods (Kraus and Pfeifer, 1998). Namely, we define a grid over the DSM 
and select the point with the elevation which corresponds to the lowest 10% 
of the pixels in the cell. We avoid selecting the lowest point per cell as 
photogrammetric point clouds may contain many outliers which could 
negatively affect the interpolation (Nex and Gerke, 2014). A bicubic 
interpolation is then applied to these lowest points. In addition to the original 
DSM, we utilize two grids: one of 1 x 1 m to preserve local topographical details 
and the other of 20 x 20 m to describe the general surface topography. The 
combination of these three features representing the absolute height forms 
one feature set (Z). Another feature set simulates the height of objects above 
these surfaces and consists of the difference between the DSM and the two 
interpolated height features (nZ). An overview of these feature sets is given in 
Table 5.2. 
 
Table 5.2: Description of the different feature sets used to train the FCN. 

Feature 
set name 

Data 
source(s) 

Number of 
channels 

Description 

RGB Image 3 Red, green, blue color channels 

Z DSM 3 DSM 

Local topography: interpolation 
of lowest elevation decile every 

1 m 

General topography: 
interpolation of lowest elevation 

decile every 20 m 

nZ DSM 2 DSM – Local topography 

DSM – General topography 

DTM DSM 1 An approximated DTM formed 
by interpolating a surface from 

all pixels labeled as ground. 

nDSM DSM 1 An approximated normalized 
DSM formed by subtracting the 
DTM above from the input DSM. 
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5.3 Experimental analysis 

5.3.1 Data sets 

 
Figure 5.4: Images of the Kigali (a), Dar es Salaam (b), and Lombardia (c) datasets, 
and their respective DSMs (d-f) and manual reference data (g-i). 
 
5.3.1.1 Kigali, Rwanda: The first dataset consists of UAV imagery collected 
over an informal settlement in Kigali, Rwanda (Figure 5.4a,d). Images were 
collected with a DJI Phantom 2 Vision+ quadcopter and processed with 
Pix4Dmapper to obtain a DSM and true-color orthomosaic with a spatial 
resolution of 3 cm. A subset of 5000 x 5000 pixels (150 x 150 m) was selected 
which contains densely grouped buildings separated by narrow footpaths which 
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are often shadowed. The terrain of the lower part of the image contains steep 
slopes, making it a challenging scene for DTM extraction algorithms. More 
information regarding the UAV data collection and processing can be found in 
Gevaert et al., (2017). The reference data (Figure 5.4g) was manually created 
by visual interpretation. 
 
5.3.1.2 Dar es Salaam, Tanzania: The second dataset consists of UAV 
imagery over Dar es Salaam, Tanzania (Figure 5.4b,e). The images were 
collected in 2015 with a SenseFly eBee mounted with a 14 MP Canon Powershot 
RGB camera in the context of a World Bank project (Dar Ramani Huria7). These 
images were processed with Pix4Dmapper to obtain a DSM and true-color 
orthomosaic with a spatial resolution of 5 cm. A subset of 6000 x 6000 pixels 
(300 x 300 m) was selected for the current analysis. The area again covers an 
informal settlement. Although the area is not as steeply sloped as in Kigali, the 
area also challenging due to the presence of contiguous off-ground areas and 
spectral similarity between the ground and off-ground objects. Reference data 
for the ground and off-ground object classes was again manually digitized over 
the orthomosaic (Figure 5.4h). 
 
5.3.1.3 Lombardia, Italy: The third dataset was obtained over Lombardia, 
Italy with a Vexcel UltraCam Xp on May 29, 2015. The aerial images were 
processed to obtain an orthomosaic and DSM with a Ground Sampling Distance 
(GSD) of 20 cm. A subset of 5000 x 5000 pixels (1000 x 1000 m) was selected 
for the experimental analyses. The area consists of a residential area, river, 
dense forests, agricultural fields and a dike (Figure 5.4c,f). A DTM of this area 
was obtained by the Compagnia Generale Ripreseaeree (CGR S.p.A.) by 
manually editing the DSM. Therefore, the reference data for the classification 
part of the experimental analyses was determined by classifying all pixels 
where the difference between the DSM and DTM was greater than 50 cm as 
off-ground, and pixels where they were equal as ground. Pixels where the 
difference was between 0 and 0.5 m were left unlabeled (Figure 5.4i). 
 
5.3.1.4 ISPRS Benchmark Dataset: The proposed method was also tested 
on the ISPRS 2D Semantic Labelling dataset of Vaihingen8. The dataset 
consists of 33 tiles, for which  orthophotos and DSMs with a spatial resolution 
of 9 cm are provided. Sixteen tiles have reference labels corresponding to six 
semantic classes: impervious surfaces, buildings, low vegetation, trees, cars 
and clutter/background. In accordance with the benchmark, a 3x3 erosion filter 
was used on these reference data to remove border pixels from the quality 
analyses. It should be noted that while it is useful to test the algorithm using 
an existing benchmark, it is not the optimal dataset to demonstrate the utility 

                                               
7 http://ramanihuria.org/ 
8 http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html 
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of DTM-extraction techniques such as ours which targets two classes: ground 
and non-ground. We therefore consider the ISPRS class “impervious surfaces” 
to equate ground, whereas non-ground consists of the ISPRS classes: 
buildings, trees, and cars. The ISPRS classes low vegetation and clutter are 
not considered in our accuracy analysis due to inconsistencies. For example, 
the “low vegetation” class contains both shrubs (off-ground) and grass 
(ground) pixels. 

5.3.2 Experimental set-up 

5.3.2.1 Setting up the proposed network – feature sets, reference 
labels and dilation: For each of the three datasets, experiments were 
conducted which trained a FCN with randomly selected patches and utilizing 
either the true reference labels or the labels assigned through the proposed 
morphological rule-based method. Ideally, the classification accuracy of the 
training samples labelled through the proposed rule-based method should 
approximate the accuracies obtained when using the manually labelled 
reference data. Furthermore, we motivate the use of dilated filters in the 
network architecture by providing the results of a FCN in which no dilation is 
applied in the second convolutional layer. 
 
The parameter values for the rule-based method were tuned on the Kigali 
dataset, and the same parameters (ݓ௦ ൌ ݓ ,6݉ ൌ 20݉, ߬ ൌ 1.0݉, and ߬ ൌ
0.5݉) are applied to the Dar es Salaam and Lombardia datasets. Experimental 
analyses indicated that slight variations in wsmall (0.2 – 1m), wbig (10 – 20 m), 
and ߬ (0.4 – 1 m) did not significantly change the results for these three 
datasets. Given the feature sets described in Table 5.2, experiments were 
performed using FCNs exploiting only the imagery (RGB), only the DSM (Z and 
nZ), or both imagery and DSM (RGBZ, RGBnZ, RGBDTM, RGBnDSM). Note that 
the DTM feature sets, obtained by interpolating the elevation values of pixels 
labelled as ‘ground’, were calculated separately for both the true reference 
labels and the labels assigned through the rule-based method. All features 
were normalized according to the maximum and minimum values of the 
respective dataset. 
 
For each of these combinations, three folds of 2000 randomly selected patches 
of 167 x 167 pixels were used to train a FCN using stochastic gradient descent 
(SGD) with momentum (Krizhevsky, Sutskever and Hinton, 2012) and a batch-
size of 32. The networks were trained with a learning rate of 0.0001 for 30 
epochs followed by another 10 epochs with a training rate of 0.00001. Weights 
for all convolutional layers were initialized using the improved Xavier 

initialization to ට ଶ

ெమ∙ᇱ
ࣨሺ0,1ሻ (He et al., 2015). The dropout rate of the final 
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convolution as 0.5, and a batch size of 32 was used. The network was 
implemented in MatConvNet9. 
 
The accuracy assessment is conducted using the mean Producer’s Accuracy 
(mPA) and mean User’s Accuracy (mUA), providing the average and standard 
deviation across the three folds of randomly selected samples. The mPA (Eq 5-
4.) and mUA (Eq. 5-5) are calculated using the true positives (TP), true 
negatives (TN), false positives (FP) and false negatives (FN) of the ground 
class. 
 

ܣܲ݉ ൌ
൬ቀ ು

ುశಷಿ
ቁାቀ

ಿ
ಿశಷು

ቁ൰

ଶ
 (5-4) 

ܣܷ݉ ൌ
൬ቀ ು

ುశಷು
ቁାቀ

ಿ
ಿశಷಿ

ቁ൰

ଶ
 (5-5) 

5.3.2.2 Comparison with deeper network architectures: The proposed 
method utilizes a much smaller network than those which are proposed for 
other deep learning tasks. This was a conscious choice, as deeper networks 
also have more parameters and therefore require more sophisticated hardware 
and longer training times than smaller networks. In this study, a preference 
was given to smaller networks, as the network is trained and tested separately 
for each dataset. However, we provide comparisons with deeper network 
architectures in order to justify this decision. For this purpose we select three 
FCNs with Dilated Kernels (DK) which were specifically designed for remote 
sensing applications (Persello and Stein, 2017). Table 5.3 displays the network 
architecture, where three networks with varying depths were tested: FCN-DK4, 
FCN-DK5, and FCN-DK6. These networks have 4, 5, and 6 convolutional layers 
respectively (e.g. FCN-DK5 contains all of the layers DK1 – DK5 in Table 5.4 
but not DK6). Similar to the proposed network, the FCN-DK networks consist 
of modules of a convolutional layer followed by batch normalization, a non-
linear activation function (in this case leaky Rectified Linear Units or lReLU) 
and a max-pooling layer with no downsampling. Dilated convolutions are used 
to increase the receptive field size while limiting the number of parameters. 
Experiments were run using the rule-based reference labels and the RGBnZ 
feature set and the same three folds of training samples. All networks were 
trained with 150 epochs at a learning rate of 10-6 followed by another 20 
epochs with a learning rate of 10-7. Shallower network architectures may 
require less epochs, but using the same hyper-parameters for all four network 
architectures enables a fairer comparison. 
 
  

                                               
9 http://www.vlfeat.org/matconvnet/  
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Table 5.3: An overview of the layers for the three FCN network architectures FCN-DK4, 
FCN-DK5, FCN-DK6. ܯ is the filter size in pixels, ݀ is the filter dilation in pixels, ܭ′ is the 
number of filters, ݖ is the padding in pixels, and ݎ gives the dimensions of the receptive 
field in pixels. 

Name Layer ࡹ ࢊ ′ࡷ ࢠ  ࢘

DK1 Convolution1 
Batch normalization 
lReLU 

5 x 5 1 16 2 5 x 5 

Pooling1 5 x 5 - - 2 9 x 9 
DK2 Convolution2 

Batch normalization 
lReLU 

5 x 5 2 32 4 17 x 17 

Pooling2 9 x 9 - - 4 25 x 25 
DK3 Convolution3 

Batch normalization 
lReLU 

5 x 5 3 32 6 37 x 37 

Pooling3 5 x 5 - - 6 49 x 49 
DK4 Convolution4 

Batch normalization 
lReLU 

5 x 5 4 32 8 65 x 65 

Pooling4 5 x 5 - - 8 81 x 81 
DK5 Convolution5 

Batch normalization 
lReLU 

5 x 5 5 32 10 101 x 101 

Pooling5 5 x 5 - - 10 121 x 121 
DK6 Convolution6 

Batch normalization 
lReLU 

5 x 5 6 32 12 145 x 145 

Pooling6 5 x 5 - - 12 169 x 169 
Classification Convolution7 

Dropout 
Loss 

1 x 1 1 2 0 169 x 169 

 
Table 5.4: An overview of which layers are included in each of the three FCN network 
architectures FCN-DK4, FCN-DK5, FCN-DK6. 

Name Included in FCN-

DK4 DK5 DK6

DK1 x x x 
x x x 

DK2 x x x 
x x x 

DK3 x x x 
x x x 

DK4 x x x 
x x x 

DK5  x x 
 x x 

DK6   x 
  x 

Classification x x x 
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5.3.2.3 Comparison with existing DTM extraction methods: The 
proposed method is compared to two existing DTM extraction algorithms, 
namely LAStools10 which implements a variation of progressive densification 
DTM extraction (Axelsson, 2000) and gLidar11 which is based on differential 
morphological profiles (Mongus, Lukač and Žalik, 2014). There are three 
parameters for the LAStools implementation: the step size, bulge, and 
standard deviation. The step size indicates the dimensions of the grid used to 
select the initial ground samples. This parameter was optimized for each 
dataset by trying a step size of 5 m to 40 m at 5 m intervals. The bulge 
parameter refers to the height in meters that the TIN is allowed to go up during 
the refinement stage. Values from 0.3 to 1.8 m in steps of 0.3 were tested for 
each dataset. The final parameter refers to the maximal standard deviation for 
planar patches, values from 0 to 40 centimeters were tested in steps of 10 cm.  
All parameter combinations were tested for the three datasets, and the 
combination which maximized the mPA regarding the true reference data are 
reported. For the gLidar implementation, parameter settings described in the 
work by Mongus et al. (2014) were set to: ܵ ൌ 50	݉, ݇ ൌ 0.01, ݊ ൌ 0.10, and ܾ ൌ
0.5. A detailed description of the meaning of these parameters can be found in 
the original presentation of the algorithm (Mongus, Lukač and Žalik, 2014). 
Finally, we also compare the proposed method to the manually generated DTM 
for the Lombardia dataset. The pixels which were labelled as ground by the 
proposed method were selected and a bilinear interpolation was performed to 
construct a DTM. The cumulative error between the predicted and reference 
DTMs for the pixels labelled as ground are provided. 
 
5.3.2.4 Performance on the ISPRS benchmark: The sixteen labelled tiles 
of the ISPRS benchmark were used to test the performance of our proposed 
algorithm. Although good results were obtained with the parameter settings 
used for the previous datasets (ݓ௦ ൌ ݓ ,6݉ ൌ 20݉, ߬ ൌ 1.0݉, and ߬ ൌ
0.5݉), the presence of larger buildings and a relatively flat terrain in the ISPRS 
benchmark dataset caused slightly better results to be obtained with ݓ௦ ൌ
3݉ and  ݓ ൌ 30݉. As the roofing material of these larger buildings was also 
different from the surrounding buildings, the additional criterion for off-ground 
samples mentioned in Section 2.1 was implemented. Conform to the 
benchmark, the User’s Accuracy (precision), Producer’s Accuracy (recall), and 
F1-scores are provided as quality metrics for the ground (impervious surfaces) 
and non-ground (buildings, trees, and cars) classes. 
 
5.3.2.5 Regression-based DTM experiments: An interesting question is 
whether the proposed method can be altered to directly predict the DTM using 
regression-based deep learning rather than using first classifying the ground 

                                               
10 https://rapidlasso.com/lastools/ 
11 https://gemma.feri.um.si/gLiDAR/index.html 
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pixels and then interpolating the DTM (as proposed above). Such a regression-
based method would consist of five steps. The first step is the rule-based 
identification of ground vs. off-ground samples using the same methodology 
as defined in Section 2.1. Secondly, a nDSM can be approximated by 
calculating the difference between the input DSM and an initial DTM obtained 
by interpolating the pixels labelled as ground in the previous step. The third 
step then consists of training a regression FCN rather than the classification 
FCN proposed in Section 2.2. Changing the classification FCN to a regression 
FCN can be done by replacing the soft-max loss function with a ℓ2 loss function 
to minimize the squared Euclidean distance between the height predicted by 
the network and the nDSM created from the rule-based labels in the previous 
step. The fourth step then consists of applying this trained (regression) FCN to 
the entire dataset to obtain a complete nDSM. Finally, the fifth step then 
consists of subtracting the FCN-nDSM from the input DSM to obtain the DTM 
of the entire area. This method was tested for the Kigali and Dar es Salaam 
datasets. The Mean Error (ME) and Root-Mean-Square Error (RMSE) for the 
entire scene as well as only the ground pixels are presented as quality metrics. 

5.4 Results 

5.4.1 Feature sets, reference labels and dilation 

The results obtained by the proposed FCN according to various combinations 
of training labels and input channels is presented in Table 5.5 and Figures 5.5-
5.7. The first observation is that networks which utilize both image-based and 
DSM-based input channels (i.e. RGBZ, RGBnZ, RGBDTM and RGBnDSM) 
outperform networks which utilize only DSM-based (Z, nZ) channels for the 
Kigali and Dar es Salaam datasets. Using only image-based (RGB) channels as 
input obtains good results for the Kigali dataset, though the inclusion of 
elevation information clearly improves the results in Dar es Salaam and 
Lombardia. When true reference labels are available, the RGBnDSM method 
has the highest performance. This is logical as the nDSM input channel 
constructed using the true reference labels essentially defines the height of 
objects above the ground. However, the nDSM feature constructed using the 
rule-based training labels is an imperfect representation as these rule-based 
training labels may be erroneous or incomplete thereby causing the nDSM 
feature to be inaccurate. 
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(a) 
 

(b) 

(c) 
 

(d) 
  True positive (=ground)  False positive  Unlabelled  
        
  True negative(=off-ground)  False negative    
Figure 5.5: Classification maps of the Kigali dataset for the rule-based training labels 
(a), FCN-RGBnZ (b), gLidar (c) and Lastools (d). 
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(a) 
 

(b) 

(c) 
 

(d) 
  True positive (=ground)  False positive  Unlabelled  
        
  True negative(=off-ground)  False negative    
Figure 5.6: Classification maps of the Dar es Salaam dataset for the rule-based training 
labels (a), FCN-RGBnZ (b), gLidar (c) and Lastools (d). 
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(a) 
 

(b) 

(c) 
 

(d) 
  True positive (=ground)  False positive  Unlabelled  
        
  True negative(=off-ground)  False negative    
Figure 5.7: Classification maps of the Lombardia dataset for the rule-based training 
labels (a), FCN-RGBnZ (b), gLidar (c) and Lastools (d). 
 
Rather, the RGBDTM input channels achieve the highest mPA when using the 
rule-based training labels for the Kigali dataset. In this case, using only image-
based features (RGB) works quite well for the Kigali dataset which may be due 
to the fact that the ground and elevated objects are more easily distinguished 
using spectral features in this dataset and that the topographic information is 
less informative due to the steep slopes in the area. Some of the errors in the 
top left corner (Figure 5.5b) are due to inconsistencies in the UAV flight 
operations, resulting in a blurring of the orthomosaic and a loss of texture. 
Previous research indicated that texture was an important cue for 
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distinguishing building roofs from ground (C. Gevaert et al., 2016). One of the 
assumptions of our method is that the pixels along the edges of contiguous 
elevated objects will have a similar appearance as the central parts of those 
objects. This example in the top-left part of the Kigali dataset is a case where 
this assumption does not hold, as some pixels in the central parts of the 
contiguous buildings have a blurred texture (unlike the pixels along roof 
edges). This may cause errors in the classification results and interpolated 
DTM. The RGBnZ works best for the Dar es Salaam and Lombardia datasets. 
For the Lombardia dataset, using the Z channels as input for the FCN slightly 
outperforms the sets using both image-based and DSM-based combinations. 
Most of the errors in the Lombardia dataset are due to the assignation of 
incorrect labels to an elevated road during the rule-based label assignation 
which are used to train the FCNs (Figure 5.7a), causing systematic mislabeling 
of this road as off-ground (Figure 5.7b). Furthermore, there are some errors 
in the vegetation in the lower left corner, where errors in the rule-based labels 
caused by systematic tree height differences are propagated in the 
classification and interpolated DTM. The proposed FCN-RGBnZ method 
performs better than gLidar in these areas, although Lastools appears to 
perform best in this particular situation. The large extent of contiguous off-
ground objects (forests) and relatively flat terrain in the Lombardia dataset 
suggests that increasing wbig could achieve better results. 
 
These results indicate that although there are slight differences according to 
the scene characteristics of the various datasets, the RGBnZ input channels 
generally achieve a high and reliable classification accuracy when using the 
rule-based initialization of training labels. Indeed, some errors in the initial 
labelling of the Kigali dataset (Figure 5.5a) are corrected in the FCN-RGBnZ 
output (Figure 5.5b). This indicates that the proposed FCN does more than ‘fill 
in the gaps’ by relearning the top-hat heuristic used to generate the training 
labels. We furthermore see that for all three datasets, the network which does 
not include the dilation in the convolutional layers performs worse than the 
proposed network when using RGBnZ features. Using this proposed strategy 
with rule-based training labels RGBnZ features and dilated convolutional 
layers, we can accurately classify ground vs. off-ground objects with an mPA 
of 92.8% to 95.0% and a mUA of 83.9% to 93.7% for the three datasets. 
These results, which exploit simple rules to label the training samples, have an 
mPA of only 1.8% (Kigali), 1.1% (Dar es Salaam), and 2.5% (Lombardia) lower 
than FCNs trained using manually-labelled training samples. 

5.4.2 Comparison with deeper network architectures 

Results indicate that adding additional convolutional layers in this application 
does not lead to an increased accuracy. Table 5.6 displays the average 
accuracies obtained for each of the three folds of the Kigali, Dar es Salaam, 
and Lombardia datasets. The mean producer’s accuracy remains around 93.4% 
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for Kigali, 95.8% for Dar es Salaam, and 94.8% for Lombardia. The differences 
in the accuracies reported in Table 5.6 and Table 5.5 are due to changes in the 
training rate and number of epochs. Table 5.7 presents the number of false 
positives and negatives. The networks generally show similar tendancies for 
the three datasets – Kigali has a larger number of false positives than false 
negatives, whereas Lombardia has relatively more false negatives. The 
additional depth of FCN-DK4, FCN-DK5 and FCN-DK6 comes with higher 
computing requirements, as illustrated in Table 5.8. The FCN-DK6 network has 
120 000 parameters which require 462 KB of memory which takes around 5.42 
hours to train. However, the FCN-RGBnZ network requires only 23 000 
parameters which require 90 KB of memory and 1.92 hours of traning time. 
The smaller network can achieve a slightly higher accuracy than the deeper 
architectures in only 35% of the time. 
 
Table 5.6: The OA, mPA and mUA of FCN-RGBnZ (the proposed network), FCN-DK4, 
FCN-DK5, and FCN-DK6 for Kigali (K), Dar es Salaam (D), and Lombardia (L). 

FCN Network OA (%) mPA (%) mUA (%) 
K D L K D L K D L 

FCN-RGBnZ (proposed) 93,5 97,6 95,1 93.5 95.9 94.9 83.7 95.3 94.2 

FCN-DK4 93,4 97,8 94,7 93.4 96.0 94.7 83.5 95.9 93.7 

FCN-DK5 93,6 97,8 94,8 93.6 95.6 94.7 83.9 96.3 93.9 

FCN-DK6 93,2 97,9 94,7 93.2 95.6 94.7 83.0 96.4 93.8 

 
Table 5.7: The number of false negatives and false positives of FCN-RGBnZ (the 
proposed network), FCN-DK4, FCN-DK5, and FCN-DK6 for the three datasets. 

FCN 
Network 

Kigali Dar es Salaam Lombardia 
FN FP FN FP FN FP 

FCN-RGBnZ 
(proposed) 

152887 979921 269509 345090 752471 456848 

FCN-DK4 142741 1005187 278738 284432 845153 455564 

FCN-DK5 152936 961631 312670 241046 800301 468322 

FCN-DK6 155716 1040235 320196 226908 832636 456014 

 
Table 5.8: Characteristics of the four FCN network architectures.  

FCN Network FCN-
RGBnZ 

FCN-DK4 FCN-DK5 FCN-DK6 

Number of parameters 23 000 67 000 92 000 120 000 
Memory requirement for 
parameters (KB) 

90 260 361 462 

Average training time 
(hours) 

1.92 3.35 4.33 5.42 

Final receptive field size 
(pixels) 

57 x 57 81 x 81 121 x 121 169 x 169 
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5.4.3 Comparison with existing DTM extraction methods 

The proposed method also clearly outperforms the reference methods both 
visually (Figures 5.5-5.7) and quantitatively (Table 5.9). Note that two 
accuracy measures are provided for the rule-based labels in Table 5.9. As the 
morphological selection method does not label the entire image, we provide 
the accuracy of the labeled samples, and the accuracy where unlabeled 
samples are considered as errors in parentheses. The proposed method 
outperforms the reference methods for all three datasets with a single 
exception. LAStools slightly outperforms the automated method for the 
Lombardia dataset. However, it should be noted that the LAStools parameters 
were optimized separately for each dataset to maximize the accuracy on the 
testing data, whereas the proposed method utilized the same parameters for 
all datasets and is therefore more easily implemented in automatic workflows. 
The proposed method outperforms LAStools in the Kigali (increasing the mPA 
by 8.4% and mUA by 16.6%) and Dar es Salaam (increasing the mPA by 
11.2% and mUA by 21.6%) datasets. In the Kigali dataset, both LAStools and 
gLidar clearly suffer from the steep slopes in the lower half of the image, where 
parts of the roofs are misclassified as terrain (Figure 5.5c,d) in a clear example 
of the problem illustrated in Figure5.2e. This effect is clearly lower using the 
proposed FCN-RGBnZ method, illustrating the importance of including RGB 
information in areas where the surface topography is complicated (Figure 
5.5b). Indeed, when using only the height information (i.e. Z and nZ feature 
sets in Table 5.5), LAStools and gLidar outperform the FCN in Lombardia and 
have a higher mPA in Kigali and Dar es Salaam. In the Dar es Salaam dataset, 
contiguous roof-tops (Figure 5.2 g,h) appear to cause many problems errors 
for gLidar and LAStools (Figure 5.6c,d). In the Lombardia dataset, the 
proposed method outperforms the two reference methods in the correct 
classification of forested areas as off-ground. These areas in the bottom left 
and top right corners of the image are clearly visible as false positives in the 
gLidar results (Figure 5.7.c). However, the Lombardia dataset also clearly 
illustrates how samples on the elevated road crossing the center of the dataset 
were mislabeled in the first rule-based step (Figure 5.7a), causing systematic 
errors in the prediction map obtained by the proposed method (Figure 5.7b). 
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Table 5.9: The mPA and mUA of LAStools, gLidar, the rule-based labels (Step 1), and 
FCN-RGBnZ (Step 2) for Kigali (K), Dar es Salaam (D), and Lombardia (L). For the rule-
based labels, we provide the mPA of the training samples which were labeled, and the 
mPA penalizing unlabeled pixels as classification errors in parentheses. 
DTM extraction 

algorithm 
mPA (%) mUA (%) 

K D L K D L 
LAStools 84.41 83.82 98.13 67.31 74.12 97.73 
gLidar 85.3 85.7 93.1 66.2 75.5 94.4 
Rule-based 
labels (Step 1) 

95.1 
(71.3) 

96.2 
(68.6)

97.7 
(75.5)

90.8 
(56.6

)

97.4 
(65.3) 

97.4 
(96.6) 

FCN-RGBnZ 
(Step 2) 

92.8 95.0 94.7 83.9 95.7 93.7 

1 The best LAStools results for the Kigali dataset were obtained using a step of 20 m, 
bulge of 0.3 m, and standard deviation of 30 cm. 
2 Using a step of 20 m, bulge of 0.3 m, and standard deviation of 40 cm. 
3 Using a step of 40 m, bulge of 1.8 m, and standard deviation of 0 cm. 

 
A comparison between the DTM obtained through the proposed method and a 
manual editing is provided in Figure 5.8. Considering only areas labelled as 
ground by the proposed method, there was a mean error of 0.16 m and a mean 
absolute error of 0.18 m compared to the manually edited DTM. This indicates 
that there is a small bias of less than one GSD in results of the proposed 
method, which is slightly higher than the reference DTM provided. 93.1% of 
the pixels have an absolute difference of less than 10 cm in the two DTMs – 
which is less than half the GSD – and 96.9% have an absolute difference of 
less than 0.5 m (Figure 5.8b).  
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(a) 

 

(b) 

Figure 5.8: A visualization of the predicted DTM (DTMp) minus the manual DTM (DTMm) 
for the Lombardia dataset (a), and the cumulative probability of this difference for pixels 
classified as ground by the proposed algorithm (b). 

5.4.4 Results on the ISPRS benchmark dataset 

Table 5.10 displays the quantitative accuracies of FCN-RGBnZ applied to the 
ISPRS benchmark. Impervious surfaces are classified as ground with a User’s 
Accuracy of 92.2% and a Producer’s Accuracy of 74.5%. The three ISPRS 
classes of buildings, trees, and cars are classified as off-ground objects with a 
User’s Accuracy of 87.4% and Producer’s Accuracy of 96.9%. These results 
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indicate that there are more false negatives than false positives in the results, 
which can also be observed visually (see Figure 5.9). Some of these errors can 
be attributed to inconsistencies in the benchmark labels. For example, the 
central area of Figure 5.9c indicates false positives in the central area, where 
the ISPRS reference label is tree (Figure 5.9a). However, a visual analysis of 
the image (Figure 5.9b) suggests that these pixels could indeed be ground in 
between the trees. The results in Table 9 indicate a relatively large error due 
to pixels labelled as impervious surfaces to be classified as off-ground (i.e. 
false negatives). A visual analysis of the results indicates that such false 
negatives (Figure 5.9g) often occur in shadowed streets, where the reference 
label indicates impervious surface (Figure 5.9f), but the DSM actually shows 
relatively high elevation values (Figure 5.9e) and there are few visual cues in 
the image due to the shadows (Figure 5.9d).  The different semantic labels and 
inconsistencies between the reference labels and input data make it difficult to 
compare the results of the FCN-RGBnZ method proposed for DTM extraction 
with the other contributions to the ISPRS benchmark. 
 
Table 5.10: The User’s Accuracy (=precision), Producer’s Accuracy (=recall), and F1-
scores for the FCN-RGBnZ algorithm applied to the ISPRS benchmark dataset. The top 
row presents the average percentage for all sixteen tiles, the rows below indicate the 
results of a tile with a high accuracy and lower accuracy. 

 

Ground (impervious 
surfaces) 

Off-ground (buildings, 
trees, and cars) 

UA 
(%) 

PA 
(%) 

F1 
score 

UA 
(%) 

PA (%) 
F1 

score 
All tiles with 
reference labels 

92.2 74.5 82.0 87.4 96.9 91.8 

Tile with high 
accuracy (N° 34) 

92.9 88.1 90.4 95.7 97.1 96.1 

Tile with lower 
accuracy (N° 21) 

91.0 71.5 80.1 87.1 96.5 91.5 

 
DTM extraction algorithm mPA (%) mUA (%) 

K D L K D L 

LAStools 84.41 83.82 98.13 67.31 74.12 97.73 
gLidar 85.3 85.7 93.1 66.2 75.5 94.4 
Rule-based labels (Step 1) 95.1 (71.3) 96.2 

(68.6)
97.7 

(75.5)
90.8 

(56.6)
97.4 

(65.3) 
97.4 

(96.6) 
FCN-RGBnZ (Step 2) 92.8 95.0 94.7 83.9 95.7 93.7 
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(a) (b) 

 
(c) 

  
(d) (e) (f) (g) 
   
ISPRS benchmark legend Results legend 
      
 Impervious surfaces   True positive (=ground) 
      
 Building   True negative(=off-ground) 
      
 Low vegetation   False positive 
      
 Tree   False negative 
      
 Car   Unlabelled 

 
Figure 5.9: Input ISPRS reference labels (a) and false-color images (b), and the FCN-
RGBnZ results (c) of tile 34. The bottom row presents an example of causes of false 
negatives in tile 05. Note the narrow streets which are labelled as impervious surfaces 
in the reference data (f), but are classified as off-ground by our algorithm (g) due to the 
combination of shadows in the imagery (d) and elevated values in the DSM (e). 
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5.4.5 Results of the regression-based DTM experiments 

The error metrics in Table 5.10 indicate that the nDSM returned by the 
regression-based FCN are an average of 23 cm higher in the Kigali dataset 
than the reference nDSM values. This is 46 cm in the Dar es Salaam dataset. 
One difficulty in DTM prediction is that it isn’t clear which ‘terrain’ height to 
assign to the terrain under building located on a slope. I.e. would it be correct 
to interpolate the height of the surrounding terrain, or should we assume the 
floor is flat and assign the elevation of the lowest floor to the entire building 
footprint? Due to such confusions, we also include error metrics of the nDSM 
predictions for pixels labelled as ground in the reference data. Table 5.10 
indicates that the ME of the ground pixels is actually much higher than the 
global average, overestimating the reference elevation data by 1.74 m in Kigali 
and 2.18 m in Dar es Salaam. The RMSE of the ground pixels is also higher 
than that of the entire dataset in both cases. Further investigations indicated 
that although the average nDSM values of the predicted and reference datasets 
were similar, the variance of the predicted nDSM was much lower than that of 
the reference data. In essence, all height values are therefore closer to the 
mean nDSM value of the dataset. This in turn causes the overestimation of the 
height of ground pixels.   
 

Dataset 
ME1 (m) 
Entire 
dataset 

RMSE (m) 
Entire 
dataset 

ME (m) 
Only 
ground 

RMSE 

(m) 
Only 
ground 

Kigali 0.23 1.62 1.74 1.85 
Dar es Salaam 0.46 1.53 2.18 2.21 
1The ME is calculated as the predicted nDSM minus the reference nDSM. 
Positive values therefore indicate that the predicted elevation overestimates 
the reference values.  

Figure 5.10: ME and RMSE of the nDSM predictions obtained with the regression-based 
FCN calculated over the entire dataset (i.e. both ground and off-ground objects) or only 
the pixels labelled as ground. All values are in meters. 

5.5 Discussion 
In UAV applications, variations in flight heights and camera parameters are 
likely to cause a wider diversity in the spatial resolution of datasets. The 
representation of off-ground objects in datasets with a spatial resolution of 3 
cm, 5 cm, or 20 cm for example, will be quite different. It is unclear how this 
wide variation of spatial resolution in UAV datasets will influence the 
parameters learned by a FCN. Hu and Yuan (2016) address this problem by 
summarizing the elevation information contained by point clouds in a grid of a 
fixed spatial resolution. Although this allows the utilization of a single FCN 
trained for various study areas and datasets, this strategy will not exploit the 
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full information contained in a dataset which has a higher point density (or 
spatial resolution) than the trained network. Therefore, an important 
characteristic of the method proposed here is that it demonstrates that it is 
feasible to train and apply a FCN on each dataset independently. The present 
manuscript demonstrates this using datasets from UAV or aerial imagery, but 
the method is not limited to these types of images. It would also be possible 
to apply the proposed method to satellite imagery with a lower spatial 
resolution and a larger extent. Applications which intend to cover a larger 
extent may benefit from larger sample sizes to train the network – this stresses 
the advantage of using the rule-based strategy to provide labels for training. 
The labelling and selection of training samples is completely automated in the 
proposed methodology. It is therefore in principle extendible to very large 
datasets. Furthermore, although training is time-consuming, FCNs are very 
fast in the testing phase and would therefore be a viable option in the 
classification of ground over large extents. 
 
Although the point clouds obtained from dense matching tend to contain more 
random noise errors than LiDAR point clouds (Nex and Gerke, 2014), the 
simultaneous acquisition of both elevation and radiometric information can be 
seen as an advantage of UAV datasets and aerial photogrammetry in general. 
Making use of the complementary information in imagery may help distinguish 
ground from off-ground areas when the elevation information itself is not 
sufficient. However, it is important to note that the rule-based selection of 
training samples is only an estimation, and that mislabeled samples may cause 
systematic errors in the output of the FCN. For example, when considering 
scenes with steep slopes where ground and off-ground objects present a step-
like pattern (i.e. Figure 5.2e), the rule-based selection of training samples 
based on morphological filters will not be able to distinguish between ground 
and off-ground objects. However, if such geometrically ambiguous areas form 
a minority in the dataset, then a sufficient number of correct ground vs. off-
ground training samples can be collected. If a sufficient number of correct 
samples are captured and utilized to train the supervised classifier, and 
presuming the radiometric information from the imagery is capable of 
distinguishing between the ground and off-ground objects, then these initial 
errors may be corrected in the second step.  
 
This second step, the exploitation of deep learning methods refers to a field of 
research which is currently developing rapidly. It is likely that emerging 
network architectures developed in the near future may further increase the 
accuracy of the proposed method. However, the observations of the present 
paper may serve to guide users towards the selection of a suitable network 
architecture. Firstly, one important issue is the redundancy of calculations 
when performing a pixel-based classification or semantic segmentation as it is 
known in the computer vision community. This motivated the selection of a 
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FCN architecture rather than a CNN architecture in the current paper. Other 
emerging options such as PixelNet (Bansal et al., 2017) could be considered in 
the future. Similarly, due to the high spatial resolution compared to the size of 
off-ground objects, it is important to increase the receptive field of the 
network. In the present case, this was done through the use of dilated filters 
and adjusted DSM features. Alternative strategies could include multi-scale 
approaches (Farabet et al., 2013) or skip-architectures (Song, Herranz and 
Jiang, 2017). Thirdly, the depth of the network architecture, or number of 
layers should also be considered. In general, the success of deep architectures 
may be attributed to their ability to learn complex patterns in very difficult 
classification tasks.  
 
Network architecture may also be one of the underlying reasons behind the 
high errors obtained in the regression-based experiments. The main problem 
was the lower variance of the output nDSM predictions, causing the elevation 
of ground pixels to be overestimated. One hypothesis is that this has to do 
with the ℓ2 loss function which penalizes outliers. In the case of DTM extraction, 
small errors overestimating the height of bare ground may be more concerning 
than larger errors underestimating the height of buildings. Further experiments 
could try using other loss functions such as the Huber loss (Huber, 1964) or 
Tukey’s biweight function (Belagiannis et al., 2015) which others have found 
to be less sensitive to outliers when tuning deep regression networks. Another 
strategy could be the introduction of skip connections, which proved to be key 
to obtaining realistic height estimations from monocular imagery (Mou and 
Zhu, 2018). Further experimental analysis could focus on such direct height 
estimations to complement classification-based DTM extraction techniques 
such as the methodology proposed here. 
 
In this application of DTM extraction, we are not interested in separating 
numerous abstract classes associated with complex appearance features like 
in other computer vision problems. In the considered application, the network 
should be able to capture features from both ground and non-ground, 
integrating radiometric and geometric variables. Results show that shallow 
networks with large receptive fields perform as good or better than deeper 
networks. On the other hand, shallower networks have less parameters, are 
easier and faster to train, less prone to overfitting, and generally more robust 
to different radiometric/geometric characteristics of the data set. The 
applicability of developments regarding the further reduction of parameters in 
deep learning networks could be analyzed in future works.  
 
Furthermore, the DTM extraction algorithm proposed here has been designed 
to be trained and tested on a single dataset – focusing on UAV datasets which 
may have a limited extent and therefore limited number of training samples. 
If one were to instead combine UAV data from a large number of sources, 
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which may become feasible in the near future due to the wider availability of 
UAV imagery, e.g. OpenAerialMap, using a deeper network architecture trained 
on all of these images could be an alternative strategy. In this case it would be 
important that the selected datasets represent challenging situations (such as 
those depicted in Figure 5.2) in order to ensure that the network is able to 
handle them. Again, it depends on whether the user would like to have a quick 
DTM extraction tailored specifically to a single (UAV) dataset (i.e. the purpose 
of the current manuscript), or a general deep network trained applicable to a 
larger spatial extent. 
 
Finally, another important consideration is how to assess the quality of a DTM 
extraction algorithm. In this case, we define the DTM as a classification 
problem, similar to Sithole and Vosselman (2004). Other studies use the 
vertical accuracy of a DTM compared to Ground Control Points (GCPs) collected 
in the field with GPS (Höhle and Höhle, 2009; Hugenholtz et al., 2013). 
However, we should remember that the final product is an interpolated DTM 
surface. As such, false positive rates which introduce errors into the 
interpolation could be more malign than false negatives which lower the detail 
of the reconstructed surface. Further research could consider how to assess 
the quality of DTM extraction methods without the presence of alternative 
DTMs or the costly collection of GCPs in the field. 

5.6 Conclusions 
Existing algorithms for DTM extraction still face difficulties due to data outliers 
and geometric ambiguities of the scene due to contiguous off-ground areas or 
sloped environments. This work postulates that in such cases, the radiometric 
information contained in aerial imagery may be leveraged to distinguish 
between ground and off-ground objects. This is particularly relevant for, but 
not limited to, UAV datasets which simultaneously acquire both elevation and 
radiometric information. 
 
The proposed method uses two simple rules based on morphological filters to 
select examples of ground and off-ground objects using the DSM. The 
underlying idea is not to use these rules to label the entire dataset, but rather 
to select reliable samples which together describe the variability in the 
geometric and radiometric attributes of both classes. These samples are then 
used to train a supervised classifier, which labels each pixel in the entire scene 
and may correct errors in the initial labelling. We propose using a FCN, as deep 
learning methods are currently state-of-the-art in supervised classification 
problems. Improvements to deep learning methods are rapidly evolving, 
therefore it is plausible that the network architecture presented here could be 
improved according to the continued developments in this field.  
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In this research we address a number of issues which are important when 
adapting deep learning methods to DTM extraction. Firstly, we bypass the 
costly requirement of large amounts of training data by employing simple rules 
to automatically select and label representative samples from the dataset itself. 
By training the FCN for each dataset, we can account for both differences in 
the spatial resolution of different datasets as well as the natural variability of 
objects in different parts of the world. Secondly, we illustrate how FCNs can be 
adapted to consider the topographical variations over a larger area without 
increasing the computational complexity of the algorithm. This is done both by 
considering dilated filters in the network architecture and through the inclusion 
of feature channels which summarize variations in the elevation over larger 
areas. 
 
The proposed method is successfully tested using three photogrammetric 
datasets with different spatial resolutions and covering scenes containing areas 
which challenge DTM extraction methods, as well as the ISPRS benchmark 
dataset. The datasets used for testing are relatively small but the results can 
easily be applied to larger study areas, or imagery and DTMs with a lower 
spatial resolution. We demonstrate the improvements of the proposed method 
with respect to two reference DTM extraction algorithms. 
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Chapter 6 – Opportunities for UAV Mapping to 
Support Unplanned Settlement Upgrading12 
 

                                               
12 This chapter is based on: 
 
Gevaert, C.M., Sliuzas, R., Persello, C., and Vosselman, G. (2016) ‘Opportunities for UAV 
mapping to support unplanned settlement upgrading’, Rwanda Journal, 1(1S), 
doi:10.4314/rj.v1i1S.4D 
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Abstract 
The effort to improve sub-standard living conditions in unplanned settlements 
is often hindered due to a lack of adequate spatial information describing the 
baseline situation and changes occurring during and after the upgrading 
process. Low-cost Unmanned Aerial Vehicles (UAVs) could provide very 
detailed, up-to-date spatial information for small unplanned areas as and when 
required. To investigate the utility of such platforms in settlement upgrading, 
UAV flights were conducted over approximately 150 ha of unplanned 
settlements in the City of Kigali in May and June 2015. These activities were 
supplemented by an analysis of the spatial information needs of various 
stakeholders involved in the upgrading project. In the context of the upgrading 
project, the UAV imagery has four significant benefits: it could replace the 2008 
25 cm ortho-imagery by up-to-date 3 cm imagery in current workflows for map 
updating. Moreover, it enables the extraction of additional information which 
was previously unavailable, such as detailed elevation data to support surface 
water runoff analysis and drainage capacity calculations. Additionally, it speeds 
up field work and provides a foundation for communication between different 
stakeholders. 
 
When using UAVs it is also important to take many practical considerations, as 
well as the societal and ethical contexts, into account. The technological 
limitations, the requirement for specialized knowledge, and heavy computing 
requirements of data processing are factors to be addressed when using UAV 
technologies in this setting. First experiences in Kigali have indicated that while 
not generally perceived as a problem by the local population, fear of forced 
displacement and expropriation may raise concerns amongst the residents. 
Communication with the population before and during flights, and sharing the 
benefits of the acquired information are important to mitigate these fears. 
Moreover, the resolution and quality of the images is such that privacy 
concerns and issues such as their potential to be used to the detriment of 
residents of such areas should not be ignored.  
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6.1 Introduction 
Spatial data is considered essential for unplanned settlement upgrading 
projects (Abbott, 2002; Kohli et al., 2013; Taubenböck and Kraff, 2014). 
Obtaining an accurate base map of these areas provides a sound basis for 
designing technical interventions (Paar and Rekittke, 2011; UN-Habitat, 2012), 
as well as improving the communication between stakeholders (Barry and 
Rüther, 2005), and empowering local authorities and communities (Abbott, 
2003). 
 
Remotely sensed imagery is a key source of spatial information, as it can 
provide an objective, up-to-date overview of the physical situation in the 
settlement (Taubenböck and Kraff, 2014). Seven important roles of satellite 
imagery for unplanned settlement management can be identified: identification 
of unplanned settlements, identifying changes in the boundaries of these 
settlements over time, generation of surface data, land use classification, 
extraction of buildings and other objects for mapping purposes, and 
reconnaissance (Mason and Fraser, 1998). However, small buildings and 
narrow footpaths characteristic of unplanned settlements may hinder the 
interpretation of commercial satellite imagery with half-meter resolution 
(Kuffer, Barros and Sliuzas, 2014).  
 
UAVs, also known as drones, Unmanned Aerial Systems (UAS) or Remotely 
Piloted Aircraft Systems (RPAS), are defined as small aircraft operated without 
an onboard pilot (Nex and Remondino, 2014). Similar to traditional aerial 
image acquisition, a UAV is mounted with a camera which takes images of the 
study area as it flies over. The individual images can be stitched together to 
create a 3D model in the form of a point cloud, as well as obtain a high-
resolution Digital Surface Model (DSM) and orthomosaic. The orthomosaics 
obtained from the UAV imagery can reach a resolution of a few centimeters 
(Nebiker et al., 2008). Although this is similar to the resolution which can be 
obtained by aerial photography, UAVs cost less and, at least for relatively small 
areas, are more flexible in acquiring data (Nex and Remondino, 2014). As such, 
this possibility of obtaining high-resolution spatial data in a relatively cheap 
and dynamic manner could be a practical approach to provide essential 
baseline information in unplanned settlement upgrading projects.  
 
However, for a UAV to be useful for unplanned settlement mapping, the 
workflow must not only meet the technical requirements of the user, but the 
new technology must fit into the local context (Pannell et al., 2011) and its use 
should be ethical and provide adequate protection of the privacy of those 
whose properties and even their bodies, are recorded on the images. It is 
therefore important to analyze the spatial information requirements of the 
potential end-users as well as the social context. The main users of UAVs for 
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unplanned settlement mapping are likely to be governmental institutions or 
organizations operating on their behalf as partner or consultant. Unfortunately, 
studies from cities in six different developing countries indicated that spatial 
data collection and products are often restrained to experts in the governing 
body and private sectors and that data sharing is limited (Baud et al., 2014). 
Dependency on spatial technology may therefore increase social exclusion 
(Pfeffer et al., 2013). It is important to analyze how the benefits of the UAV 
imagery may not only serve the governing bodies, but also how they may be 
distributed amongst stakeholders, in particular the local population as in the 
case of informal settlements they tend to be the most disadvantaged and 
vulnerable members of society  
 
The objective of this paper is to analyze the potential of UAVs to support 
unplanned settlement upgrading projects, to describe the first perceptions of 
various stakeholders, to identify important factors which should be taken into 
account for the diffusion of this technology and its benefits amongst 
stakeholders, and to underline the ethical concerns of privacy and possible 
misuse of the obtained information. The paper is based on the results of UAV 
image acquisition in the context of upgrading projects in the City of Kigali, 
Rwanda in May/June, 2015. After a brief introduction to the UAV data 
acquisition workflow, this paper provides an overview of the context of the case 
study, and the UAV flights conducted over the area. Next, the spatial data 
requirements of upgrading projects are analyzed, and four key benefits of using 
UAV data are identified. The practical considerations and social and ethical 
context are then described. Finally, a discussion leads to the identification of 
key factors which should be taken into account to support the diffusion of UAVs 
and their related information extraction techniques, for unplanned settlement 
upgrading. 

6.2 UAV data acquisition workflow 
The process of using UAV for mapping purposes has been well documented 
(Colomina and Molina, 2014; Nex and Remondino, 2014). In general terms, 
we could summarize that the UAV information acquisition workflow consists of: 
(i) flight planning and execution, (ii) ground control point (GCP) acquisition, 
and (iii) data processing. The flight planning consists of, for example, selecting 
the UAV platform and defining the flight parameters. Depending on the 
available budget, project area and required image resolution, a suitable UAV 
platform and payload can be selected. For example, a fixed wing (airplane-like) 
UAV may cover a larger area with one flight, but requires an extended take-off 
and landing zone. On the other hand, rotary wing systems which are powered 
by vertically oriented propellers, or rotors, require more battery power which 
reduces their flight time. However, rotary-wing UAVs are capable of taking off 
and landing vertically, and are more agile in their image acquisition. Some 
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UAVs have a fixed payload (such as a built-in camera), whereas others allow 
the user to change the payload, thus giving the user more control of the 
spectral or spatial resolution of the acquired data products. After the platform 
is selected, the flight path must be defined. Many consumer-grade UAVs are 
capable of automatic flight planning, where a grid pattern is automatically 
generated from the flight height and overlap defined by the user. The flight 
height and payload will influence the spatial resolution of the output 
orthomosaic, whereas the overlap influences the quality of the data products. 
Finally, before executing flights one must first check the UAV flight regulations. 
In Rwanda, flight permission falls under the domain of the Rwanda Civil 
Aviation Authority (RCAA). At the time of publication, UAV regulations for the 
country of Rwanda are being drafted.  
 
Secondly, most UAV systems require GCPs to improve and verify the geometric 
accuracy of the orthomosaic, DSM, and point cloud obtained from the UAV 
images. The precision of the GPS utilized must conform to the high spatial 
resolution of the UAV data products. The GCPs may be collected during the 
UAV flights by placing targets on the ground before the flights so they are 
visible in the UAV images, and measuring their coordinates. Alternatively, GCPs 
can be added afterwards by obtaining the coordinates of permanent structures 
which can also be identified in the UAV imagery. 
 
Finally, the data processing stage converts the raw images into useable data 
products. There are a number of documents which provide theoretical (Hartley 
and Zisserman, 2003) or more practical (Nex and Remondino, 2014) 
explanations of this process. First, a unique descriptor is used to identify pixels 
from various images which represent the same object. After these so-called tie 
points are listed, the camera calibration and image orientation are performed 
through a bundle block adjustment. This identification of the interior and 
exterior image parameters is also known as “structure from motion”. In this 
step, the GCPs can be added to improve the geometrical accuracy and verify 
the quality of the parameter estimations. The sparse 3D point cloud obtained 
from this step is then enriched through dense matching algorithms (Remondino 
et al., 2014). Next, a DSM is interpolated from this point cloud. The original 
images are stitched together, using the elevation information from the DSM to 
form an orthomosaic. Various photogrammetric software are available which 
can execute the process from images to dense point cloud, DSM, and 
orthomosaic semi-automatically. Comparisons of such software have been 
researched (Remondino et al., 2014; Sona et al., 2014). 
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6.3 Study Area 
In 2000, the Government of Rwanda established the Rwanda Vision 2020 
(Rwanda, 2000). Kigali played a key role in this plan, which aimed to modernize 
the city and transform it into an important global city. A Conceptual Master 
Plan for the City of Kigali was developed in 2007 and updated by a detailed 
Kigali City Master Plan (KCMP) in 2013. In this plan, some unplanned 
settlements must be moved to make space for business districts, while others 
should be improved to meet the Kigali City Master Plan guidelines. A 
partnership was formed between the Rwanda Housing Authority (RHA), 
Affordable Housing Unit of the City of Kigali One Stop Center (CoK-OSC), and 
the Nyarugenge District OSC to conduct an upgrading project in Nyarugenge 
District. It is a pilot project which aims to not only identify infrastructure 
improvements in the area, but also to develop successful strategies for 
participatory engagement and designing slum upgrading projects in Kigali and 
the secondary cities of Rwanda. The study area covers parts of Agatare, 
Rwampara, Biryogo and Kiyovu cells of the Nyarugenge District in Kigali. The 
project targets issues including: storm water drainage, sewerage, drinking 
water supply, roads, electricity and public lighting, and housing improvement. 
The project area is roughly 86 ha in size, with an estimated 3,977 households 
and 18,914 individuals (GISTech Consultants LTD, 2015). The houses are 
generally made of mud and wood with corrugated iron roofs. A few localized 
improvements have previously been made regarding access and drainage, but 
the current project aims to provide a more comprehensive improvement. The 
project started on in December 2014 and the intervention design and cost 
plans were provided at the end of June, 2015. As of November 2015, activities 
in the project area include environmental and social safeguards reporting and 
a detailed design of the prioritized interventions. 
 
In May 2015, a number of UAV flights were conducted in Kigali by the 
University of Twente – Faculty ITC with the support of CoK-OSC, the RCAA, 
and village representatives. The UAV was a DJI Phantom 2 Vision+  quadcopter 
(i.e. a rotary-wing UAV with four rotors) with a 14 Megapixel RGB camera with 
a fish-eye lens (FOV = 110°). Eighty-nine flights were made in total, taking 
more than 15,000 images to cover approximately 150 ha of unplanned 
settlements (Figure 6.1). Examples of some derived products, the dense point 
cloud and ortho-image, are given in Figures 6.2 and 6.3 respectively. The UAV 
orthomosaics were provided to the CoK-OSC and were used by the safeguard 
and detailed design consultants to carry out their activities. The orthomosaics 
were also made available at village level offices where they could be viewed 
and used by citizens engaged in public participation processes. This provides 
the opportunity to observe how the UAV images are actually used by various 
project stakeholders. 
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Figure 6.1: The project areas covered by UAV flights over the three districts of Kigali in 
May 2015. 

 
Figure 6.2: Sample of the ortho-image obtained from the UAV data over the Nyarugenge 
project area. 
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Figure 6.3: Sample of the 3D model (mesh) obtained from the UAV data over the 
Nyarugenge project area. 
 
Interviews were also conducted with both institutional and local stakeholders 
to identify important spatial information requirements for the upgrading 
projects, the perceived use of UAV for these activities, and to assess the 
attitudes of the local population towards the usage of UAV. 

6.4 GIS requirements for upgrading projects 

6.4.1 Information requirements for upgrading projects 

An upgrading project consists of a number of phases: feasibility studies, 
detailed studies, developing project options, detailed design and project 
implementation (Davidson and Payne, 1983). The first two stages require 
information which describes the project area on four aspects: population and 
housing needs, the conditions of the project site, assessment of the current 
site development, and finally the institutional and financial framework. 
Although much of the socio-economic information required for upgrading 
projects may be stored in GIS databases, remotely sensed data such as 
airborne imagery or UAVs are limited to describing the physical characteristics 
of the settlement. We therefore restrain our analysis to the physical spatial 
information requirements which excludes the information regarding population 
and housing needs and the institutional and financial frameworks. However, 
remotely sensed data can provide enormous benefits in describing the physical 
characteristics of the project site environmental conditions (i.e. topography, 
vegetation, presence of hazards) and especially in describing the existing site 
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development. The latter includes characterizing the existing buildings, house 
layouts, plot coverage, land use, and accessibility. More extensive lists 
recommending which type of information should be collected for informal 
settlement upgrading projects have been published (Davidson and Payne, 
1983; Goicoechea, 2008).  
 
More specifically, we can focus on the information requirements defined by the 
case study area in Kigali. As the Nyarugenge upgrading project is intended to 
be a pilot project, there was not a well-established methodology regarding 
spatial data norms for upgrading projects in the City of Kigali. The spatial data 
requirements were therefore not clearly defined at the start of the feasibility 
and detailed design project which was completed in July 2015. Rather, they 
were based on the recommendations of a World Bank consultant (Banes, 
2015), and were further specified in an interactive manner during the project 
execution by the contracting authorities (RHA, CoK-OSC, Nyarugenge District) 
and consultants. Table 6.1 lists the spatial data collected by the consultants, 
which could be equated to the current spatial data requirements. Initially the 
spatial information collected for the project was either: (i) provided by 
authorities, (ii) digitized from the 2008 ortho-imagery, or (iii) collected in field 
with a GPS. The collection of the spatial information was supported by Rapid 
Planning, a project supported by the German Federal Ministry for Education 
and Research and UN-Habitat to develop a trans-sectoral urban infrastructure 
planning methodology, for which Kigali is one of the three case cities 
(Consortium, 2015).  
 
Table 6.1: Spatial information collected by GIS Consultants for the Nyarugenge District 
Upgrading Project 
Spatial Layer Source 
Aerial imagery / 
Elevation 

A 25 cm orthophoto from 2008 and DTM points at 10 
m intervals provided by Rwanda Natural 
Resources Authority (RNRA) 

Building 
Footprints 

Footprints were digitized from satellite imagery and 
roof material was obtained by sampled 
questionnaires with the support of Rapid Planning, 

Roads (type and 
material) 

Digitized from satellite imagery, GPS in field 

Drainage Digitized from satellite imagery, GPS in field 
Power lines Provided by the power company, GPS in field 
Water pipelines Provided by the water utility company 
Land use Digitized from aerial photos, field survey 
Services GPS in field 
Parcels Provided by RNRA 
Administrative 
boundaries 

Provided by National Institute of Statistics Rwanda 
(NISR) 
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6.4.2 Opportunities of UAV to provide the required information 

Previously, upgrading projects relied on the availability of satellite or airborne 
imagery. The benefits of UAV imagery as opposed to conventional imagery can 
be categorized into four main aspects: (i) by providing more accurate 
information through direct replacement of conventional imagery in existing 
workflows, (ii) by providing additional, previously inaccessible, information, 
(iii) by reducing field work, and (iv) by providing a basis for communication 
amongst stakeholders. 
 

Regarding the first aspect, the imagery obtained from UAVs could be directly 
integrated by replacing satellite imagery in the existing spatial data workflows 
of the upgrading project. However, as opposed to airborne or satellite imagery, 
UAVs are a more flexible information acquisition platform. This potentially 
allows data to be collected more frequently, whether it’s one large survey 
before a project starts or incremental surveys to observe and map changes 
during a project implementation phased over many years. Apart from the 
ability of providing up-to-date information, the spatial resolution of the UAV 
imagery is significantly better than that of conventional airborne imagery. 
Through direct replacement, rather than for example relying on an ortho-photo 
from 2008 with a 25 cm resolution, an up-to-date orthomosaic with a resolution 
of 3 cm could be used to digitize the objects of interest. This is apparent in 
Figure 6.4, which displays a part of the project area in the 2008 orthophoto 
(Figure 6.4a) versus the UAV orthophoto (Figure 6.4b). Notice how objects are 
more clearly visible in the UAV orthophoto, which facilitates digitization, and 
the appearance of new buildings, which increases the accuracy of the digitized 
information. 
 

(a) 
 

(b) 
Figure 6.4: The added value of the UAV data is clearly visible when comparing the 
information provided by the 2008 orthomosaic (a) to the 2015 UAV orthomosaic (b). 
Note the enhanced visibility of objects in the scene as well as the appearance of new 
structures. 
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The second main benefit is the provision of additional information. The higher 
spatial resolution of the orthomosaic as opposed to the aerial imagery allows 
for new objects of interest to be identified, such as lamp posts which indicate 
the presence of street lighting and the waste accumulation areas, which can 
be used to effectively plan waste collection points. Furthermore, more detailed 
attribute data of the existing objects can be obtained. For example, the roof 
material and condition of individual buildings can be observed and quantified. 
Such information may be used to monitor the implementation of the KCMP as 
well as provide baseline statistics describing the general conditions within the 
settlement. The 3D data obtained by the UAV provides information regarding 
building height and the local topography. Especially the latter may support the 
detailed design of interventions. For example, the drainage in the Agatare 
project area was mapped by GPS points in-field and measuring the width of 
the drain at regular intervals. Using the Digital Terrain Model (DTM) extracted 
from UAV imagery, the drainage capacity could be calculated more accurately 
(though still concealed in some areas by trees etc.), facilitating the design of 
more adequate interventions. In situations where the terrain isn’t visible due 
to concealment by trees or other structures (i.e. occlusions), terrestrial 
imagery may be integrated with the top-view imagery to provide a more 
complete 3D input for drainage models (Meesuk et al., 2015). 
 
The ability to provide up-to-date imagery and to identify additional objects and 
attributes was perceived by the consultants to be a large benefit for the existing 
workflow by reducing the time and cost of subsequent field verification. This is 
the third main advantage of the utilization of UAVs, namely the reduction of 
field work. On the one hand, the ability to obtain more accurate and detailed 
information reduces the amount of data which must be collected or corrected 
in the field. On the other hand, as the project members have access to an up-
to-date map, it is easier to plan their field work as the location of and 
accessibility to certain objects of interest are clearly visible. However, the 
reduction of the time required for the field work should be weighed against the 
time required to acquire and process the UAV imagery. 
 
Finally, the high detail of the data products provides an intuitive environment 
which facilitates discussions between project planners and the local population. 
The UAV orthomosaics, overlaid with the designated project interventions, 
were presented by project members to the sector offices during the monthly 
community meeting in October 2015. Project members mentioned that, due to 
the detail, many local inhabitants could recognize their houses and other 
landmarks. This helped them locate the proposed interventions, thus providing 
a foundation for discussions between stakeholders. Although the upgrading 
project aims to limit expropriation, the introduction of utilities and 
improvement of infrastructure will require extra space and almost certainly 
results in some expropriation. As the spatial layout of buildings is more clearly 
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visible in the UAV orthomosaic, planners are better able to explain why 
interventions are designed in certain positions, and as a result why specific 
structures are selected for relocation. The printed maps were left at the sector 
offices, and hardcopies of the orthomosaics are therefore directly available to 
the local population. This is a simple way through which the residents could 
also benefit from the UAV imagery. Further analysis should identify additional 
uses of the imagery by the local citizens and as well identify concerns of an 
ethical nature related to mission planning, the mapping process, data 
ownership, data use, marginalization etc. (Rambaldi, Chambers, et al., 2006) 
that may or have been recognized as problematic or potentially so. 

6.5 Potential bottlenecks regarding the use of UAV 

6.5.1 Practical considerations 

Although from a scientific perspective, UAVs appear to be a promising method 
for spatial data collection, there are also practical considerations regarding the 
technological limitations of UAV platforms, data processing, and specialized 
knowledge. The technological characteristics of the UAV platform also affect 
the utility of UAVs as a data acquisition tool. Firstly, imagery cannot be 
acquired during rainy or windy weather conditions. Secondly, the range of the 
platform limits the extent of area covered per flight, and requires the take-off 
location to be close to the flight area. This may be difficult in unplanned 
settlements, where dense construction, narrow footpaths and overhanging 
power lines or vegetation make it difficult to find adequate take-off locations 
and which may slow down data acquisition.  
 
Back in the office, there are also practical challenges to obtain the required 
information from the raw UAV images. Firstly, from a data quality perspective, 
a high image overlap, or redundancy, increases the quality of the 3D model. 
However, the large number of images may also incur data storage problems 
(Baiocchi et al., 2014). Furthermore, processing the imagery currently requires 
specialized software and advanced hardware requirements. In recognition of 
the data processing bottleneck which may impede the utility of UAVs for 
informal settlement upgrading, the University of Twente – Faculty ITC, the 
French Institut National de L’Information Géographique et Forestière, and the 
Netherlands eScience Center have initiated a project aimed at speeding up the 
open source photogrammetric processing software MicMac (NLeSC, 2015).  
When completed this project could speed up data processing within a software 
environment which does not have licensing fees as well as reduce hardware 
requirements. 
 
As with any new technology, there are costs associated with the initial adoption 
of UAVs for upgrading projects. Although the UAV itself may be relatively 
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inexpensive, there are additional expenses regarding obtaining the proper 
permissions and documentation, training the pilots, and training the GIS 
specialists and photogrammetrists who must then process the data. However, 
it should be noted that once the UAV imagery is collected for an upgrading 
project, there are many other sectors which may also benefit from the obtained 
data products. Examples include: updating existing (smaller scale or outdated) 
topographic map data, supporting cadaster, valuation for tax collection 
purposes, and inspection for the monitoring of illegal construction. 

6.5.2 Social considerations 

Such practical issues of technological limitations, data processing, and 
investment costs may be overcome. However, they overlook one of the most 
important stakeholders involved in UAV data acquisition – the inhabitants of 
the settlements being flown over and their privacy. Based on the experiences 
of flying the UAV in Kigali, the first observation was the interest of the 
inhabitants during the flights. Many people were curious, crowding around to 
watch the flights, taking pictures and asking questions. However, a number of 
people were also concerned. Most concerns were based on the fear that the 
UAV was being used to survey the area and plan for expropriation. In this 
particular project, there was a very limited time to execute the UAV flights 
after permission was obtained. There was therefore insufficient time to fully 
address such community concerns through proper planning and awareness 
raising (Rambaldi, Chambers, et al., 2006). However, an effort was made to 
mitigate their fears by answering questions and explaining the purpose of the 
activities during the flight acquisition. Furthermore, the village leaders were 
notified about the flight activities beforehand so they could communicate this 
to the local population and mitigate concerns. 
 
The utility of UAV data products, in the form of printed images, for the local 
residents was also analyzed through interviews. When shown some sample 
UAV images, a number of residents ‘recognized’ the images from previous land 
administration activities or the activities of the consultants involved in the 
Agatare project. Others indicated that it was very important to provide the 
users with some kind of training or explanation regarding how to interpret the 
images. 
 
According to interviews with residents, the images were mainly considered to 
be useful for the village leaders. The general population mentioned uses such 
as giving a friend directions how to find their house, or as a memory to show 
their grandchildren how the neighborhood used to look like. Others mentioned 
that you could compare your house to your neighbor’s house. This was also 
the most recurring theme in the utility of the images for village leaders. The 
UAV imagery was considered to be useful to identify which aspects (e.g. house 
typology) needed to be changed in order to comply with the KCMP. Village 
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leaders also mentioned that they could use the images to help explain the 
government plans to the population. These observations hint at the strength 
of the top down influence of the government in Rwanda, and to the extent to 
which plans such as the KCMP are communicated to the local leaders. As a 
hardcopy of the images is now available at the sector offices, future analysis 
may identify additional uses of the images by the local officials and citizens. 

6.6 Discussion 
Although there is a great enthusiasm regarding the detail of the imagery 
obtained from a UAV, practical aspects must be taken into account to 
determine which applications could maximally benefit from the UAV imagery. 
In the case of upgrading projects, the size of project areas and required level 
of detail appear to make it suitable for UAV image acquisition. However, the 
limited extent covered by the current UAV platform makes it less suitable for 
tasks which require covering large areas in a limited amount of time. Such 
applications could consider obtaining a UAV platform more suitable for the task 
in question, or smart sampling strategies. 
 
The potential use of the DSM obtained from the imagery should also be further 
investigated. Comparing the quality of DSMs extracted from UAV imagery to 
traditional surveying methods and LiDAR is a being researched (Haarbrink and 
Eisenbeiss, 2008; Harwin and Lucieer, 2012). If the quality is sufficient, it could 
provide an enormous benefit to the upgrading project in the terms of surface 
water drainage analyses and the detailed design of infrastructure. 
 
Currently the utility and adoption of UAVs for upgrading projects is limited by 
external factors. UAVs are an emerging technology, which are increasingly 
being used in developing countries for applications such as flood resilience in 
the Dar Ramani Huria project (http://ramanihuria.org/) and cadaster in the 
its4land project (http://www.its4land.com/) as well as unplanned settlement 
mapping.  Unfortunately, legislation and protocols to obtain flight permission 
are often cumbersome or ambiguous. To resolve this issue, it is important to 
develop clear policies, guidelines and standards regarding flight regulations. In 
the case of Rwanda, legislation regarding UAV flight permissions is currently 
being drafted. One of the objectives of the its4land project is also to identify 
current UAV flight regulations in East Africa and provide guidelines for their 
future development. On the other hand, the UAV pilots should operate safely 
and in compliance with these standards to help establish trust and 
transparency between the various parties. This could ensure UAV users have 
the freedom to conduct flights and extract high-quality information to support 
e.g. urban planning activities, while ensuring responsible flights and respecting 
public safety. 
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6.7 Conclusions and recommendations 
To conclude, a UAV has the potential to be a valuable tool in spatial information 
acquisition for urban upgrading projects. The provision of highly-accurate and 
up-to-date information allows for the mapping of the current situation in the 
area, including the identification of buildings, roads, land use, drainage, and 
other points of interest which are vital for upgrading projects. Using UAV 
imagery provides advantages on four fronts. Firstly, it allows more accurate 
information to be extracted by replacing conventional aerial or satellite imagery 
in existing project workflows. Secondly, UAV data products also have the 
potential to provide spatial information to the upgrading project which isn’t 
available through conventional image sources, such as providing high-
resolution elevation information for detailed drainage calculations and the 
design of implementation measures. Thirdly, the increased detail of the UAV 
imagery versus conventional satellite (or aerial) imagery saves time in field 
verification. Finally, the UAV images are also intuitively understandable by 
various project stakeholders, thus forming a foundation for effective 
communication of issues in the study area and planned interventions. Further 
analysis should investigate methods to obtain useful spatial information (i.e. 
semi-automatic classifications to identify different types of objects and their 
semantic attributes) from the data, which fit the needs of the stakeholders 
while taking local constraints into account. 
 
To maximally benefit from the potential advantages of UAVs as a data 
acquisition platform for upgrading projects, the practical aspects of UAV data 
collection must be contemplated. The spatial data requirements should be 
analyzed to enable the selection of a UAV platform, photogrammetric software, 
and hardware which is suited to the task at hand. Furthermore, effort should 
be made to explicitly consider the ethical issues involved with obtaining such 
high-resolution imagery over these impoverished and marginalized areas, and 
to stress the importance of sharing the benefits of the information obtained 
through the flights with the local population. 
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Chapter 7 – Evaluating the Societal Impact of 
Using Drones to Support Urban Upgrading 
Projects13 

  

                                               
13 This chapter is based on: 
 
Gevaert, C., Sliuzas, r., Persello, C., and Vosselman, G., (2018) ‘Evaluating the societal 
impact of using drones to support urban upgrading projects’, ISPRS International Journal 
of Geo-Information, 7(3), 91, doi: 10.3390/ijgi7030091 
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Abstract 
Unmanned Aerial Vehicles (UAVs), or drones, have been gaining enormous 
popularity for many applications including informal settlement upgrading. 
Although UAVs can be used to efficiently collect highly detailed geospatial 
information, there are concerns regarding the ethical implications of its usage 
and the potential misuse of data. The aim of this study is therefore to evaluate 
the societal impacts of using UAVs for informal settlement mapping through 
two case studies in Eastern Africa. We discuss how the geospatial information 
they provide is beneficial from a technical perspective and analyze how the use 
of UAVs can be aligned with the values of: participation, empowerment, 
accountability, transparency, and equity. The local concept of privacy is 
investigated by asking citizens of the informal settlements to identify objects 
appearing in UAV images which they consider to be sensitive or private. As 
such, our research is an explicit example of how to increase citizen participation 
in the discussion of geospatial data security and privacy issues over urban 
areas and provides a framework of strategies illustrating how such issues can 
be addressed. 
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7.1 Introduction 
Rapidly growing urban populations and an inability to meet affordable housing 
needs are some of the driving factors behind the emergence of informal 
settlements worldwide. It is estimated that 881 million people were living in 
slums in 2014, which corresponds to 29.7% of the urban population at that 
time (UN-Habitat, 2016). This proportion may be much higher nationally, as 
estimates of the urban population living in slum areas reaches 77% in Tanzania 
and 96% in Rwanda (UNHabitat, 2013). The need of improving these 
conditions is considered one of the main challenges in urban development 
(Barry and Rüther, 2005) and is a prominent issue on many urban agendas 
(AUC, 2015; United Nations, 2016; MININFRA, 2017; UN-Habitat III, 2017). 
The current paradigm regarding urban upgrading projects encourages in situ 
upgrading which aims to improve the living conditions within a neighborhood 
itself (Abbott, 2002; UN-Habitat, 2016; MININFRA, 2017) through the 
improvement of the physical infrastructure (Turley et al., 2013), while 
advocating effective participation of the local community (UN-Habitat, 2013). 
The design of these infrastructural improvements, as well as urban governance 
in general (Baud et al., 2014), requires geospatial information (Abbott, 2002; 
Sliuzas, 2003; MININFRA, 2017). This geospatial information generally 
consists of elements such as terrain elevation, building footprints, roads, 
drainage, power lines, water pipelines, land use, services, parcels, and 
administrative boundaries (Caroline Gevaert et al., 2016). Information 
pertaining to natural hazards such as natural drainage, landslides, and 
inundated areas may also be relevant (Ramani Huria, 2016). However, 
consistent and up-to-date geospatial information is often lacking (Ordnance 
Survey, 2015), especially for informal settlements. These are sometimes 
excluded from official data collection (Carr-Hill, 2013) and often remain ‘empty 
spots on the map’ (Paar and Rekittke, 2011). Although Remote Sensing has 
emerged as a useful tool for the provision of spatial information for informal 
settlement management (Kuffer, Pfeffer and Sliuzas, 2016), the spatial 
resolution provided by satellite imagery is sometimes not sufficient for e.g., 
the detection of individual houses, infrastructure, and details of environmental 
conditions. 
 
Unmanned Aerial Vehicles (UAVs), also known as drones or Remotely Piloted 
Aircraft Systems (RPAS), are a potential solution for this issue. A UAV equipped 
with a camera can take images of the area it flies over. These images can be 
used to obtain detailed elevation models and orthoimagery. UAVs have been 
gaining enormous popularity for many applications, from recreational uses by 
hobbyists to serving as a genuine data collection tool by businesses and local 
governments. Some projections estimate the global commercial UAV market 
to have a value of seven billion dollars in 2020 (Thibault and Aoude, 2016). 
Recently, there have been a number of projects using UAVs for mapping 
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informal settlements including in Rwanda (Caroline Gevaert et al., 2016), 
Tanzania (Minja, Iliffe and Anderson, 2016), Uruguay (Birriel and González, 
2015), and Albania (Kelm, Tonchovska and Volkmann, 2014).  
 
The main motivation for the use of UAVs in urban upgrading projects is the 
perceived utility of the geospatial information that they obtain. It is important 
to understand the range of (technical) benefits of this geospatial information 
as it is a strong driver behind the deployment of UAVs and therefore provides 
context to the social impact analysis. We distinguish three categories which 
describe how UAVs can provide geospatial data to support urban upgrading 
projects (Table 1). The first category is data which can be directly derived from 
UAV imagery. Objects such as roads and building footprints may be first 
digitized over imagery in the office, and later updated and verified during field 
visits. Satellite imagery or outdated aerial imagery is often used as a basis for 
digitization, but having access to recent UAV imagery may greatly speed up 
both the digitization and the field verification (Caroline Gevaert et al., 2016). 
The second category refers to spatial information for which the UAV imagery 
by itself cannot be used as a complete and accurate data source, but may be 
(partially) derived from the UAV data. This refers to the attributes of larger 
objects, such as identifying housing material which may be visible in some of 
the original UAV images. It also refers to objects which are relatively small 
(lamp posts) or sometimes lie below other objects (drains that run below 
covers or under roads). Other information can be derived from UAV data, but 
require advanced processing (e.g., the number of stories in each building can 
be approximated from the height difference between the ground and roofs) or 
local knowledge (e.g., water distribution points may be recognized by the piles 
of uniform water containers outside the building). Geospatial information in 
this second category can generally be used to support informed decision 
making when supplemented by additional data sources, advanced processing 
or local knowledge, but cannot by itself be used to provide the completeness 
and accuracy required for mapping. The local context greatly influences 
whether a certain type of information falls into the first (i.e., is clearly visible 
in the UAV data) or second category. Finally, the third category is geospatial 
data which cannot be identified from the UAV imagery. This can be ‘invisible’ 
data such as administrative boundaries which are social constructs and have 
no physical representation or information which may have a physical 
representation but are not visible in the UAV imagery, such as population 
counts. 
 
Although UAVs have great potential for the provision of geospatial information 
in upgrading projects (Caroline Gevaert et al., 2016), there are concerns 
regarding the ethical implications of their usage (Haarsma, 2017) and the 
potential misuse of data (Culver, 2014). Privacy is often stated as a concern 
as UAVs may infringe on: privacy of location when individuals can be identified 
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and located in the UAV images, privacy of behavior in a private space without 
being monitored by others, privacy of space as information is revealed 
regarding private areas such as back yards, privacy of association regarding 
group membership and affiliations, and privacy of data and image regarding 
the control of persons over images in which they are present (Finn, Wright and 
Friedewald, 2013). The perceptions of the local population (Sandbrook, 2015) 
are also a concern. Especially when flying over marginalized communities, it is 
important to notify citizens of the purpose of data collection, the rights to 
access, data processing and distribution (Pauner, Kamara and Viguri, 2015). 
The lack of a unified policy framework directing such practices leaves much of 
the responsibility to industry self-regulation, which may not sufficiently protect 
these marginalized communities (Clarke, 2014).  
 
However, the existence of such a ‘unified’ framework is questionable due to 
two specific challenges. Firstly, the ethical use of UAVs is dependent on the 
application for which it is used (Finn and Wright, 2016). For example, one 
ethical concern is inadvertently capturing imagery of persons or privates 
spaces. This risk is higher when using UAVs for real estate applications than 
pipeline monitoring (Finn et al., 2014). Especially in the case of the latter, 
ethical UAV operations can aim to avoid the inadvertent collection of persons 
in their data, but when using UAVs to videotape concerts for example this is 
unavoidable. On the other hand, as crowds at a concert are in a public space 
anyway, a “chilling effect” of being observed by the UAV will be limited (Finn 
et al., 2014). For journalism, context (e.g., what is the reason why a protesting 
crowd captured by UAV imagery is protesting?) and conflict of interest (e.g., 
should footage of potentially conflicting activities be turned over to law 
enforcement?) are important ethical concerns (Culver, 2014). These examples 
clearly illustrate how ethics are dependent on the application.  
 
Secondly, the concept of sensitive information or privacy may vary amongst 
people, groups, and cultures (Ordnance Survey, 2015). For example, a study 
of the privacy awareness behavior of almost 200,000 Facebook users from 30 
countries showed a strong correlation with cultural dimensions, even when 
corrected for socio-economic indicators (Reed, Spiro and Butts, 2016). In 
another example, a European study of seven countries indicated that younger 

Table 7.1: Examples of geospatial information derivable from UAV images 
Directly Derived 
from UAV Data 

Partially or Indirectly 
Derived from UAV Data 

Not Derived from 
UAV Data 

Buildings Attribute information 
(construction material, 
number of floors) 

Administrative 
boundaries 
Population count 
Household income Roads Utilities 

Vegetation Land use 
Elevation Solid waste dump sites 



Evaluating the Societal Impact of Using Drones to Support Urban Upgrading Projects 

152 

age groups have a lower privacy concern but higher data protective behavior 
than older groups (Miltgen and Peyrat-Guillard, 2014). At a policy level, 
research has related Hofstede’s concepts of “collectivist” and high “power 
distance” national cultures with a reluctance to implement open data initiatives 
(Saxena, no date). 
 
These challenges suggest a need to use a case-by-case method to weigh the 
infringement of (mainly individual) moral rights and ethical values against the 
assumed common good achieved through the use of UAVs for data acquisition 
and provision (Culver, 2014). Such qualitative research is important for the 
ethical usage of UAVs, but also to promote the continuation of similar efforts 
in the future (Sandbrook, 2015). Previous studies have made efforts towards 
the development of conceptual framework, for example an analysis of six 
different emerging technologies identified seven different concepts of privacy 
(Finn, Wright and Friedewald, 2013). This enables other studies to focus on a 
single aspect of privacy, such as the effect of the surveillance capability of 
UAVs on the behavior privacy (Clarke, 2014). Still, there is a lack of empirical 
knowledge investigating ethical concerns (Sandbrook, 2015). One 
comprehensive study in Europe provides an overview of the perceptions and 
practices of industry, regulators and civil society (Finn and Wright, 2016). 
Another study in Tanzania focused on the perceptions and concerns of various 
private and public parties regarding the usage of UAVs for mapping purposes 
(Eichleay et al., 2016), but does not analyze in detail the privacy concerns of 
the image products obtained from these flights and their potential distribution.  
The aim of this study is therefore to evaluate societal impacts of using UAVs 
for informal settlement mapping through two case studies in Eastern Africa. In 
analyzing their social impacts, we define ‘ethical usage’ of UAVs as the extent 
to which their use is aligned with the values of: participation, empowerment, 
accountability and transparency, and equity, as these values are characteristic 
of global policy frameworks regarding urban upgrading projects and urban 
governance in general. Specific emphasis is given to identifying if the local 
communities consider any of the objects captured by the UAV imagery to be 
sensitive.  
 
The remainder of the manuscript is organized as follows. Section 2 provides 
background information of the two case study areas and UAV acquisitions and 
describes the questionnaires used to interview the residents. Section 3 
summarizes and interprets the results of these questionnaires. In Section 4, 
these results are further interpreted by discussing the relations between UAV 
image acquisition to the values of privacy, empowerment, accountability, 
transparency, equity, and participation. Finally, Section 5 draws conclusions 
from these observations and analyses. 
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7.2 Materials and methods 
We utilize a comparative case study approach to compare the use and impact 
of UAV imagery for mapping impoverished settlements in two projects: an 
urban upgrading project in Kigali, Rwanda and a participatory mapping 
program aimed at improving urban resilience in Dar es Salaam, Tanzania. The 
projects have several similarities. In both cases, the deployment of the UAVs 
was not initiated by the residents, but rather by external institutions (the 
University of Twente in Kigali, and The World Bank in Dar es Salaam) in 
conjunction with the local governments. As far as the authors are aware, this 
was the first utilization of UAVs for mapping purposes over both locations. The 
maps derived from the imagery could be sensitive as, in both locations, some 
residents could be subject to displacement. In Kigali, some residents may be 
displaced to make space for new roads or other infrastructure. In Dar es 
Salaam, many residents of houses that are located on river floodplains are 
threatened with displacement.  
 
However, there are also some key differences between both case studies. The 
maps in Kigali were created by (foreign) engineering consultants and the local 
government, whereas a participatory mapping approach was adopted in Dar 
es Salaam. The distribution of the soft copies of the orthophoto mosaics and 
derived geospatial data was limited to the official project partners in Kigali, 
whereas in the case of Dar es Salaam they are freely accessible for the public 
through OpenStreetMap and a web portal (ramanihuria.org). The social context 
of both areas also differs, causing differences in the physical appearance of the 
informal settlements in the imagery as well as the local interpretation of objects 
and their significance by the residents. In the following section, both case 
studies are described in more detail.  

7.2.1 Case study I – Kigali, Rwanda 

After a city-wide inventory of the status of informal settlements in Kigali, the 
Agatare neighborhood was selected by national, municipal, and district 
authorities to serve as a pilot project for urban upgrading projects (GISTech 
Consultants LTD, 2015). The project employed a participatory approach to 
identify key issues in the neighborhood and propose infrastructural 
improvements. The methodology developed during this pilot project will serve 
to develop upgrading guidelines nation-wide (MININFRA, 2017). The project 
area is roughly 86 ha, with an estimated 3,977 households and 18,914 
individuals at the time of the pilot project (GISTech Consultants LTD, 2015). 
Field investigations indicated that approximately 24% of respondents have a 
member in the household who works in the formal sector such as government 
of NGOs, whereas 27% of the household are employed informally (vendors, 
mechanics, construction, etc.). Roughly 40% of the households had an income 
of less than 100 euros per month at the time (GISTech Consultants LTD, 2015). 
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During the pilot study in May/June 2015, UAV imagery was acquired over the 
project area through a collaboration of the University of Twente—Faculty ITC 
and the City of Kigali One Stop Center (CoK-OSC). The UAV was a DJI Phantom 
2 Vision+ quadcopter (i.e., a rotary-wing UAV with four rotors). Eighty-nine 
flights were made in total, taking more than 15,000 images. These images 
were then processed to obtain an orthomosaic with a spatial resolution of 3 
cm. More information regarding the UAV flights and data processing can be 
found in (Gevaert et al., 2017). Local village officials were notified when UAV 
flights would take place over their neighborhoods, with the idea that they would 
be able to further notify the residents of the area and answer any concerns 
they might have. 
 
The raw UAV data and point clouds remain in the hands of the organization 
executing the UAV flights (University of Twente / Faculty ITC). The orthomosaic 
was provided to the CoK-OSC, and has been used by various consultants to 
support the design of interventions in subsequent stages of the upgrading 
project. Consultants of the upgrading project in Kigali described how the UAV 
imagery was beneficial for: reducing the time needed to collect data, providing 
previously unavailable information (such as solid waste accumulation sites), 
improving field work efficiency, designing more appropriate infrastructure 
interventions, communication between stakeholders, and mitigating 
expropriation (Caroline Gevaert et al., 2016). Printed hardcopies of the UAV 
orthomosaic at scale of approximately 1:1000 overlaid with vector layers 
representing the planned project interventions and administrative boundaries, 
were also provided to the local sector offices by the CoK-OSC, where they are 
used by local officials and residents when discussing upgrading or general 
development issues.  

7.2.2 Case study II – Dar es Salaam, Tanzania 

Ramani Huria is a large-scale community mapping project in Dar es Salaam, 
funded by The World Bank and the United Kingdom’s Department for 
International Development (DFID) under the Tanzanian Urban Resilience 
Program. Its objective is to improve urban resilience to flooding by providing 
accurate spatial information to support planning decisions. The project started 
with the mapping of the Tandale Ward in 2015. In 2017, the project was scaled 
up with the intent of mapping the entire city of Dar es Salaam. Local university 
students are mobilized to digitize buildings and urban infrastructure from 
imagery, which is then refined and populated with detailed attribute 
information in the field through the engagement of community members. One 
important aspect of the community outreach is their involvement in mapping 
areas prone to flooding. 
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To support the mapping process, UAV flights were conducted over a large part 
of the city in 2015 using a Sensefly eBee. The images were processed to obtain 
orthomosaics with a spatial resolution of 5 cm. The orthomosaics were 
published online by the Tanzania Open Data Initiative. Vector layers of 
buildings, roads, drainage, and inundated areas are published in 
OpenStreetMap. An atlas was made which translates the Ramani Huria data 
into three maps for each ward: general topographic, drainage, and potential 
inundation. Local ward offices were also provided with printed maps of their 
ward and copies of the atlas. 

7.2.3 Methodology to analyze perceptions of the local community 

Data on the potential social impact on the community was collected via resident 
questionnaires. The questionnaires consisted of two parts. The first consisted 
of open questions regarding residents’ perceptions of the UAV flights and 
usefulness of the derived geospatial information. This part of the questionnaire 
aimed to answer the following questions: 
 
 Citizen perceptions to the UAV flights: Did you see the UAV flights? What 

did you think? 
 Citizen awareness of the implications of UAV flights: Have you seen other 

UAV flights and where? Have you seen aerial imagery before? What do you 
see in this example of aerial imagery? 

 Citizen ability to control possibly sensitive data captured in the imagery: 
Were you aware the flights would take place? Are you aware of any issues 
being discussed at neighborhood level regarding privacy? 

 The observed and perceived usage of UAV imagery and maps: Did you see 
the maps printed at the ward office? What were they used for and by 
whom? What do you think they could be used for? 

 
The second part of the questionnaire aimed to identify which objects are 
considered as sensitive due to possible privacy or security concerns of the 
residents at various levels of abstraction (Figure 7.1). It showed examples of 
UAV orthomosaics at full resolution (i.e., 3 cm in Kigali and 5 cm in Dar es 
Salaam), the degraded orthomosaics downsampled to 50 cm (i.e., similar to 
high-resolution satellite imagery), and vector maps derived from the UAV 
imagery. In Kigali, the residents were also displayed a raw UAV image and a 
3D mesh model. Such products were not available for Dar es Salaam. For both 
cities, an area of interest was selected which was representative of the 
settlement, and contained a clear view of resident’s back yard, people, and 
cars. In the case of Dar es Salaam the areas also contained visible open 
drainage and roofless toilets. For each data format, the resident was asked to 
imagine that they lived in the depicted area. Then they were asked which 
objects or places visible in the image they would consider to be sensitive if 
seen by (a) their neighbors; (b) village/ward leaders; (c) other institutions; or 
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(d) the public (i.e., published online). The intention being to investigate how 
privacy relates to the identity of the viewer. 
 
In Kigali, 54 interviews (57% female) were conducted in 2017 by selecting a 
section of the upgrading project area and interviewing residents who were 
home. Interviews were conducted in the local language (Kinyarwanda) by two 
local students and the support of one of the authors. The interviewers had 
experience in conducting questionnaires and were trained regarding the 
purpose of the study. The area was selected as: (i) it was subject to another 
set of UAV flights earlier the same year so perhaps more citizens have seen 
the flights; and (ii) it was transected by a new road which was implemented 
as part of the upgrading program. Interviews were conducted during working 
days and hours, the same as the UAV flights, in an effort to target parts of the 
population which were more likely to have seen the flights. 
 
In Dar es Salaam, a digital format of the questionnaire was developed in ODK 
Collect. University students used the questionnaire to interview 26 community 
members (39% female) who were recruited as part of the Ramani Huria 
community outreach activities. The interviews were again conducted during 
working days and hours for the same reasons stated above. The questionnaire 
was translated to the local language (Swahili), and interviews were conducted 
in the same. The students conducting the interviews had previously received 
extensive training in surveying and interacting with community members.  

7.3 Results 

7.3.1 Perceived and actual usage of UAV data 

Community members in both Kigali and Dar es Salaam could access the UAV 
products through hard copy maps distributed to local governmental offices. In 
Kigali, 41% of the respondents report seeing these maps at the sector offices. 
These maps were mainly being used by the sector officers for development, 
management, and explaining the Kigali City Master Plan to the local 
community. Only 18% of the reported cases mention to the maps being used 
by the general public. They mentioned using the maps for “locating” or “giving 
directions”. However, when asked about what they thought the maps could be 
useful for (i.e., perceived usage of UAV data products), this proportion went 
up to 55%; an improvement but still quite low. However, in both cities, it is 
uncommon for low income residents to have access and use maps on a regular 
basis. Respondents in Kigali also reported that the maps could be useful for 
businessmen or tax and land tenure purposes.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 7.1: The UAV orthomosaic (a), blurred orthomosaic (b); and vector map (c) 
images used for the Dar es Salaam questionnaire and the raw UAV image (d); UAV 
orthomosaic (e); blurred orthomosaic (f); vector map (g); and 3D mesh (h) images used 
for the Kigali questionnaire. 
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In Dar es Salaam, only 35% of the respondents reported seeing the maps at 
the ward office being used, and only 11% of the reported use cases refer to 
usage by the general public for locating purposes. However, when asked for 
the perceived usage, 29% of the reported the leader using the imagery for 
planning purposes, 46% mentioned the public using the imagery for locating 
or giving directions, 33% reported using the images for map making, and 13% 
reported using the imagery for educational purposes.  

7.3.2 Residents’ perceptions regarding UAV flights 

There are two main points of community members’ perceptions to UAV flights 
which are of interest for the current investigation. Firstly, what are the initial 
reactions or emotions of the community members to the UAV flights? Secondly, 
are the community members aware of the purpose of the flights, and the 
implications thereof?  
 
According to the questionnaires, 76% of the respondents saw UAV flights in 
Kigali, yet only one citizen reported knowing the flights would take place. In 
Dar es Salaam, only 31% of the respondents saw the flights, and 12% of the 
respondents were aware flights would take place. Few community members 
reported strong negative reactions when seeing the UAVs flying. Five 
respondents in Kigali reported negative reactions: believing that the UAV would 
destroy a building, spying, and two reported fear of expropriation. In Dar es 
Salaam, one respondent reported feeling afraid when seeing the flights, though 
it is unclear why. Fortunately, most respondents who saw the UAV flights had 
neutral or positive reactions. In Kigali, 59% thought the drone was taking 
pictures, 12% thought it was for the road construction, 17% mentioned other 
neutral reactions (e.g., “at first we thought they were toys”), and 7% 
mentioned other positive reactions (e.g., “we were happy to see a plane flying 
over our house” and “I was amazed”). In Dar es Salaam, 25% thought the UAV 
was taking pictures and 63% mentioned other neutral reactions. A study in 
Zanzibar similarly concluded that responses of the community to the UAV 
flights were generally positive, even if members were previously unaware of 
UAVs (Eichleay et al., 2016). 
 
The second question is whether community members perceived that the UAV 
was taking pictures or otherwise observing them. Seventy-six percent of the 
respondents in Kigali saw the UAV flying, and 59% of them realized that the 
UAV was capable of taking pictures or videos. In Dar es Salaam, 31% of the 
respondents saw the UAV, of which only 25% explicitly mentioned a camera. 
Thirty-eight percent recognized the UAV as a drone but did not specifically 
indicate that they were aware that it had a camera. It can be expected that as 
UAVs are becoming more prevalent in the general society, more community 
members will be aware that the UAVs flying overhead are likely to be observing 
them. For example, five respondents in Kigali reported seeing the use of a UAV 
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to capture videos of the Tour du Rwanda cycling event in 2016. In Dar es 
Salaam, half the respondents indicated seeing UAVs elsewhere such as 
weddings or concerts. The connection between UAVs and aerial photography 
will almost certainly become better known.  

7.3.3 Privacy 

Knowing that the UAV is observing the ground below is not the same as 
understanding the detail of the image products and the implications of its use 
for mapping. Regarding the five types of privacy discussed above, respondents 
did not list ‘people’ as being privacy sensitive even though the image samples 
used for the questionnaires in Kigali and Dar es Salaam were selected to 
include people. Upon further questioning, they reported that although the 
orthomosaics depicted persons, they could not be recognized and their visibility 
was not perceived as a cause of concern. This would indicate that privacy of 
location and privacy of association are not considered to be at risk in these 
specific locations and contexts. The privacy of space is relevant as the UAV 
images display private spaces such as backyards, which are not openly visible 
from the ground as the view is blocked by fences and walls. Similarly, the 
privacy of behavior is affected as objects in the backyard may shed light on 
the private activities performed by the household. The privacy of data and 
image is also relevant as the community members have little control over the 
usage of the data collected by the UAV.  
 
Results of the questionnaires shed more light on the privacies of space and 
behavior in the two case studies by allowing community members to list objects 
which they considered to be private. The privacy of data and image is 
addressed by asking the respondents for the sensitivity of these objects for 
use cases by various end-users. Questionnaire responses indicate that there 
are substantial differences between both case studies regarding the type of 
objects and types of data products which were considered sensitive or private. 
 
In Kigali, the main concern were old roofs, and ‘rubbish’ on roofs and in 
backyards (Figure 7.2a). Respondents did not wish these to be seen by the 
neighbors (13%), local leaders (11%), and other institutions (11%), whereas 
24% of the respondents wouldn’t like the orthomosaics showing these objects 
to be published online and available for the (international) public. In fact, 
although one respondent explicitly wished foreigners to see the old roofs, 
because “maybe they can provide help”, in general more respondents wished 
to hide the dirty roofs from the foreigners more than the neighbors, local 
leaders, or other institutions. When further questioning queried the apparent 
lack of sensitivity of objects such as laundry hanging out to dry and cars in 
driveways, respondents answered that such behavior was ‘normal’ and so what 
would be their concern if others were to see it? With the exception of a single 
respondent declaring old roofs in the blurred image being considered as 
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private, the respondents in Kigali indicated that sensitive objects were not 
clearly visible in the blurred orthomosaics (i.e., simulated high-resolution 
satellite images) or vector maps.  
 
Further investigation of the local context can help interpret the results of the 
questionnaire. First, the informal settlements in Kigali generally consist of 
multiple households on a single plot. Therefore, backyards are generally not 
considered as private spaces in these areas as many unrelated people are 
passing by on a daily basis. This explains why many objects on display in 
backyards are not considered to be sensitive if their visibility is shared with a 
wider public through the UAV data. On the other hand, the concern with the 
low-quality roofing or ‘rubbish’ indicates that the inhabitant of that house is 
deviating from the social norm of cleanliness. This causes a feeling of shame, 
as clearly indicated by one respondent: “It is embarrassing to show everyone 
that your house roof is old and dirty”. Another: “It may cause problems if 
everyone sees that the roof of my house is old.” The importance of ‘cleanliness’ 
is also emphasized by the government. For example, the Mayor of Kigali stated 

 
(a) (b) 

 

(c) (d) 

Figure 7.2: Percentage of questionnaire respondents considering an object visibly 
sensitive in: the high-resolution UAV orthomosaic in Kigali (a) and Dar es Salaam 
(b). The privacy sensitive objects in the blurred orthomosaic (c) and vector map (d) 
also provided for the Dar es Salaam case study. 
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“the development [in Rwanda] is very fast and the cleanliness is talked about 
the world over. Let everyone be responsible” (Kuteesa, 2016). This is 
reinforced by the legislation, as Article 107 of the Organic Law on Environment 
of 2005 states: “Any person who deposits, abandons or dumps waste [...] in a 
public or private place, is punished by a fine” (Rwanda, 2005). As such, the 
high-resolution orthomosaics may be evidence documenting which houses are 
not meeting the development or cleanliness aspirations of the local community 
and government and perhaps incur fines. 
 
Responses in Dar es Salaam were quite different (Figure 7.2b). Only three 
respondents listed rubbish in the orthomosaic as being a sensitive object. 
Rather, toilets were listed as the main sensitive object in the orthomosaic. Ten 
of the respondents would not like these to be seen by neighbors, local leaders 
or the general public, and four would rather they not be seen by other 
institutions. It should be noted that in this case, the roofless structures housing 
the toilets were shadowed and so persons or objects inside these structure 
could not be distinguished. Yet the idea of a UAV peering into the toilets was 
enough to make it considered sensitive, even in the blurred orthomosaic 
images.  
 
Other objects which were commonly named were wetland, drainage, and 
buildings (Figure 7.2d). Even in the vector map, 12–15% of the respondents 
did not want maps with these objects to be distributed. One interpretation of 
these results leads back to the flooding issues in the region. Flooding is a large 
problem in the city, and construction in the wetlands is restricted by the 
government. The delineation of buildings combined with the mapping of 
flooded areas is therefore an understandable cause of concern for the 
inhabitants of these buildings. 

7.4 Discussion 

7.4.1 Privacy, unintended usage, empowerment, and trust 

The results of the questionnaires illustrate the importance of local context 
regarding privacy issues. Both case studies appear quite similar—both are 
related to flying UAVs over deprived areas for mapping purposes. Yet the 
objects considered as private by the local communities are quite different. 
Some concerns regarding sensitive objects and data distribution are linked to 
unintended usage of the UAV data. Residents in Kigali are concerned with being 
confronted with ‘messy’ roofs and backyards and the shame associated with 
having such transgressions being available to the wider public. In Dar es 
Salaam and Kigali there are concerns regarding expropriation. These uses are 
not the direct motivation of the UAV mapping activities, but may be perceived 
as such. We identify three strategies for addressing sensitive objects in UAV 



Evaluating the Societal Impact of Using Drones to Support Urban Upgrading Projects 

162 

data products (i) avoidable; (ii) unavoidable but removable; and (iii) 
unavoidable and irremovable, and describe how these strategies are related to 
the potential misuse of the data (Table 7.2).  
 
Table 7.2: Categories of sensitive objects and possible strategies to address residents’ 
concept of sensitive objects. 
Sensitive Object 
Characteristics 

Examples Privacy 
Protection 
Strategy 

Geodata 
Containing 
Objects 

Avoidable Rubbish 
Cars 

Notify residents 
before flights 
Notify residents of 
image capture 

None 

Unavoidable but 
removable 

Roof quality 
Toilets 

Blur orthoimagery Raw images 

Unavoidable and 
irremovable 

Houses in 
wetlands 

Identify/mitigate 
potential misuse 

All data 
products 

 
Some objects which are considered sensitive are avoidable. For example, the 
sensitivity of rubbish on roofs and in back yards in Kigali. The presence of these 
objects in the imagery can be controlled by the local residents if they are 
informed the flights will take place and have an understanding of the 
implications of the UAV flights. From both case studies, it was clear that very 
few residents were aware the flights occur. Fifty-nine percent of the residents 
who saw the flights in Kigali realized the UAV was taking pictures or videos, 
though this was only 25% in Dar es Salaam. Ensuring that residents 
understand the observation capabilities of UAVs and when flights will take place 
also empower them to control which objects are visible in the UAV image. This 
is also the best way to protect sensitive objects against unintended uses, as 
they are not captured by the camera in the first place. On the other hand, it 
could be argued that in this case the privacy of space is improved at the cost 
of the privacy of behavior as the form of overt surveillance stifles illegal or 
discouraged behavior (Clarke, 2014). 
 
In other cases, the sensitive objects are unavoidable but removable. Their 
presence in the images will be difficult to control by the local residents. Here, 
the privacy of the residents can be controlled through blurring certain parts of 
the image and / or restricting the data distribution. Indeed, there are reports 
of operators blurring people or cars in their UAV images before distribution, 
but coordinated efforts are difficult due to a lack of clear guidelines (Finn and 
Wright, 2016). The roofless toilets in Tanzania would fall into this category. 
This mode of respecting the privacy of the residents, however, depends on the 
ethical conduct of the UAV operators and requires trust between the 
institutions. It may also require a formal procedural check of image content to 
be made before public release and distribution. It has been noted that such 
self-regulation does not sufficiently protect the privacy of residents (Clarke, 
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2014). Limiting the distribution of data may serve to respect the privacy of the 
inhabitants and prevent misuse of the data for other purposes. However, the 
raw UAV data will likely be stored, and may therefore be (mis)used in the 
future for other purposes.  
The third category of sensitive objects are unavoidable and irremovable. Their 
presence may be considered as private even when presented in vector format. 
The presence of buildings in flood-prone areas of Dar es Salaam is the most 
prominent example. This is the most difficult category to address, as the 
objects considered as private are directly related to the objects of interest for 
the mapping activities. Due to the scale of these objects, this is not a problem 
specific to the use of UAV imagery, as the data could be obtained through high-
resolution satellite imagery or other participatory mapping applications. 
Indeed, the decision of which objects to put on a map may be a politicized 
decision. For example, informal settlements are sometimes purposefully 
excluded from official statistics (Carr-Hill, 2013). 

7.4.2 Collaboration, transparency, and accountability 

A map is politicized as there is always a person or body responsible for deciding 
which information is represented in the map. Once this information is 
categorized, it leaves little space for alternative interpretations. Imagery, 
however, can be interpreted in different ways. In the case of urban upgrading 
projects, the high-resolution imagery improved communication between 
stakeholders as it created a common visual format for communications. In 
Kigali, displaying the planned project interventions over the UAV imagery 
helped community members identify, locate and discuss issues in the area. 
Consultants could explain where planned project interventions are located and 
why, which improves the transparency behind the decisions of the upgrading 
interventions.  
 
As the appearance of the settlement changes with time, the imagery provides 
concrete evidence of a previous state of the settlement. For example, when 
there are legal frameworks which guarantee citizens a right to compensation 
in case of expropriation, the image proves the existence of a dwelling, enables 
its size to be measured, and perhaps conveys some information on its materials 
and quality. Any building or plot characteristics present in the image could be 
used for valuation purposes. In Kenya, a community-based enumeration 
campaign was initiated to provide slum dwellers with documentation to give 
them legal protection in the case of expropriation (SDI, 2016). It is easy to 
imagine an application where UAVs are utilized to provide such information at 
a larger scale. 
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7.4.3 Equity and participation 

An ‘ethical usage’ of UAV imagery depends not only on the mitigation of 
negative issues such as privacy, but also on a more equitable distribution of 
the benefits. Although geospatial technologies may support informed decision 
making regarding urban issues, it is important to ensure that those with no 
access to the knowledge nor the capacity to use it are not excluded (Pfeffer 
and Verrest, 2016).  
 
Providing hard copies of the UAV imagery to local governmental offices is a 
successful way to return the information to community members. In Kigali, 
70% of the interviewees could name a use case for the aerial imagery 
presented in the questionnaire. Out of these, 61% were examples of how the 
images could be used by businessmen or the general public. This means that 
43% of the community members interviewed in Kigali could think of how the 
images could be useful for the general population. In Dar es Salaam, 46% of 
the respondents named examples of how the images could be useful for the 
general public. However, 13% of the respondents also indicated that the 
community members should be trained to use the images. It remains a 
question to which degree such training should accompany the distribution of 
the hardcopy maps to the community.  
 
One key difference between the maps produced from the UAV imagery is how 
the map layers are generated. In Kigali, the GIS data was generated by 
institutions and consultants, whereas in Dar es Salaam the maps were created 
through Participatory GIS (PGIS) methods. The purpose of PGIS is to empower 
the community by providing them with control and access to spatial 
information (Rambaldi, Kyem, et al., 2006). For example, in Dar es Salaam it 
was observed that involving community members in the collection of the spatial 
information also increased the awareness and responsibility amongst 
community members regarding possible flood mitigation levels at a local level 
(Minja, Iliffe and Anderson, 2016). One of the main differences between PGIS 
and Volunteered Geographical Information (VGI) is that PGIS involves the 
community in the process acquiring geospatial knowledge, whereas VGI 
combines the data obtained by the community (Verplanke et al., 2016). As 
UAVs become more ubiquitous and cheaper, it is feasible to imagine 
community-based UAV mapping campaigns. This would involve community 
members in the process of UAV data capture, perhaps transferring some of the 
benefits of PGIS to UAV workflows.  

7.4.4 Implications for policy development 

The strategies identified in Table 2 can provide recommendations for policy 
development. Avoidable sensitive objects are closely related to residents being 
aware of the impending UAV activities and their implications. Relevant policy 
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therefore falls into the realm of legislation regarding UAV flight operations and 
the ethical responsibility of the pilot or organization responsible for the flights. 
Ethical policy frameworks and practices by the UAV operators themselves can 
(i) ensure that citizens are aware of the operations and consequences and (ii) 
limit the capture of unnecessary data—especially when this data is considered 
sensitive such as the inadvertent recording of persons. It is acknowledged that 
the former can be difficult in practice, in particular for large-scale UAV 
operations. Examples of these ethical practices are already included in UAV 
legislation in a number of countries (Stöcker et al., 2017) as well as unofficial 
recommendations and guidelines for UAV operators (Finn et al., 2014; 
UAViators, 2017).  
 
Unavoidable objects (both removable and irremovable) fall into the domain of 
data protection and distribution policies. Good practices include ensuring 
securing of the data and avoiding storing unnecessary private information (Finn 
et al., 2014). Cultural implications are likely to play a larger role in this group 
of policies compared to the operational policies discussed above. As illustrated 
by the two case studies presented here, the concept of which objects are 
considered as sensitive and which parties should have access to the data can 
differ greatly—even amongst seemingly similar situations. Sharing the data 
amongst multiple stakeholders can support the ethical values of transparency, 
accountability, and equity, though it is important to ensure that the voices of 
residents (the viewed) are incorporated in the decisions around exactly which 
stakeholders have access rights and what those rights entail. Due to the 
cultural nuances to the perceptions of data protection and sharing, it is 
important to include various stakeholders—especially the individuals whose 
persons or property is captured by the UAV data – to actively participate in the 
development of such policies.  

7.5 Conclusions 
The recognition of UAVs as a powerful geospatial information acquisition tool 
is ubiquitous. Concerns regarding their ethical usage are also on the rise. The 
social benefit of the high-resolution and comparatively low-cost geospatial 
information obtained through UAV platforms compared to more traditional 
methods must be weighed against social concerns such as privacy. This can be 
quite challenging depending on the degree to which the intentions of the 
mapping exercise are in conflict with objects considered as sensitive in the local 
context. Through an investigation of two case studies using UAVs to support 
urban upgrading projects, we contribute towards a better understanding of 
these issues and provide a framework with concrete ways of how to address 
them. 
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The use of two case studies illustrates the diversity of the concept of privacy 
in different contexts. You would expect similar questionnaire responses as both 
case studies use a UAV to map deprived areas for urban upgrading purposes 
in an East African context. However, the answers reveal that residents of both 
areas have strikingly different concepts of privacy—both regarding the objects 
which are considered sensitive as well as the level of abstraction in which these 
objects are still considered private. This underlines the importance of 
understanding the local context to respect the privacy. 
 
Residents’ privacy and the geospatial interests of the party collecting the UAV 
data do not necessarily need to cause problems. Avoidable objects which may 
be considered as private, such as rubbish on the roofs, may not necessarily be 
of interest for base-data collection in an informal settlement. If residents are 
notified of impending flights and aware that the flights imply the collection of 
images over their property, they have the power to move or cover these 
transient objects. Thus, they are empowered to control the collected data itself. 
Sensitive objects will not be captured in the raw data and the privacy is 
therefore ensured. This requires that residents understand that the UAV is 
collecting imagery. Although UAVs are a new technology, they are increasingly 
being used for various purposes; indeed the questionnaire results indicated 
that residents have already observed UAVs in multiple contexts. Therefore, it 
is expected that with time, citizens will become increasingly aware of the 
implications of a UAV flying over their property. 
 
Unavoidable but removable objects which are not of specific interest to the 
mapping activities may be blurred in the orthoimagery before distribution. 
Assuming that the party conducting UAV flights bears good will and that there 
is trust between residents and this party, it is feasible to mitigate privacy 
concerns by defining guidelines for the level of abstraction and distribution. For 
example, toilets could be considered as sensitive in the imagery, but not in a 
vector map (see Figure 2). It is clear that these preferences are greatly 
dependent on the local context. So, how many people would need to be 
interviewed? How can one ensure that the respondents will feel free to express 
their opinions? How many individuals must present a certain view in order to 
sway the blurring and distribution guidelines? The practical execution of this 
ethical strategy is challenging, though PGIS solutions could assist. 
 
The largest challenge is when unavoidable and irremovable objects of direct 
interest for the UAV mapping activities are those which are considered sensitive 
by the local population. For example, houses in wetlands may be considered 
sensitive even at a very high level of abstraction, such as a single point on a 
vector map. One could argue that, at least in these two study areas, such 
unavoidable and irremovable objects are so large that they are visible in 
satellite imagery anyway. As such, the sensitivity concerns are not limited to 



Chapter 7 

167 

the use of UAV imagery, but rather they apply to GIS data in general. 
Furthermore, in the present cases, the activities are considered sensitive by 
the locals because they oppose local (informal or formal) norms. Still, it is 
important to consider how to protect the residents’ concerns in such cases. 
One strategy is to identify likely threats of data misuse and ensuring protective 
governance frameworks. The potential threat of being mapped may turn into 
evidence for ensuring citizens’ rights in the presence of protective legislative 
guidelines. Furthermore, the increased availability of low-cost UAVs as well as 
further developments towards automated and open source photogrammetric 
software, such as OpenDroneMap, suggest that community-driven UAV 
mapping activities are feasible in the future. This would truly enable citizens to 
reap the benefits of the high resolution geospatial data for their own 
purposes—although legal flights will still be regulated by national authorities.  
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8.1 Conclusions per objective 
The main objective of this manuscript was to analyze the suitability of UAVs to 
support informal settlement mapping projects by: analyzing synergies between 
the 2D and 3D data it provides, adapting machine learning methods, extracting 
DTMs, observing its use in actual case studies, and discussing the social 
impact. The following section describes the main conclusions per objective, and 
the next section reflects upon the implications of this work and discusses future 
investigations.  
 
1) Identifying synergies between 2D and 3D information provided by UAVs 

Results indicated that the highest classification accuracies (above 90% for 
the selected datasets) were obtained when combining 2D features from 
the image with 3D features from the point cloud. Important image-based 
features included color and texture information summarized over image 
segments (super-pixels). The high spatial resolution of the UAV imagery 
was very beneficial here, as it captured the regular pattern of the roof 
materials (e.g., corrugated iron sheets). This allowed the classifier to 
correctly identify buildings, despite the differences in quality and color of 
roofs in the settlement. Important 3D features include: the ratio between 
the eigenvalues of neighboring pixels projected onto a 2D plane (low 
values indicate the points are more evenly distributed horizontally, 
whereas higher values suggest more linear structures such as walls); the 
variation of height of points in the same 2D neighborhood; and the 
maximum height of planar segments above neighboring points. The latter 
feature is important because of the heterogeneity of the roofs in informal 
settlements. Incremental roof upgrading may cause a single roof to have 
many different colored iron sheets. Image-based segmentation methods 
will not be able to capture the larger roof extent. However, if we look at 
the same building, a single roof will (usually) have a relatively planar 
structure. The 3D segmentation will therefore be more likely to include 
the entire roof as a single segment. Giving the maximum height above 
the surrounding neighbors is a good indicator of building roofs in sloped 
environments. Such planar segments can also be extracted from the DSM, 
but errors in the DSM interpolation are propagated to the classification 
results. The results of this chapter therefore show the usefulness of 
getting features directly from the point cloud.   

 
2) Adapting supervised classification methods to deal with heterogeneous 

data 
Chapter 3 clearly illustrates the suitability of MKL for the classification of 
heterogeneous features from UAV datasets. Furthermore, we address an 
important gap in MKL research. Whereas previous studies analyze how to 
weigh and combine the different kernels, there was little understanding 
regarding how to group the features appropriately. Our contribution 



Chapter 8 

171 

developed a data-driven, automatic grouping strategy, which had a higher 
performance than previous grouping strategies for six different MKL 
methods.  

 
3) Analyzing how reliable training labels can be obtained from existing 

geospatial data  
The experiments indicate that both local and global cues are important for 
identifying mislabeled training samples. A methodology was developed to 
remove unreliable training samples obtained from existing geospatial 
data. A local criterion penalizes image segments which have a similar 
appearance to their neighbors, but a different class label. This is especially 
useful for label errors due to misalignments between the outlines in the 
outdated data providing the labels and the newly obtained (UAV) imagery. 
Secondly, a global contextual criterion checks the similarity between a 
sample’s features and other such examples distributed over the entire 
dataset. This proves to be especially effective for errors caused by changes 
such as building construction or demolition. By combining both local and 
global cues, unreliable samples are flagged in classification results. These 
samples can be removed from the training set, leaving the more reliable 
samples to train another, improved, classification model. In this dataset, 
such a strategy showed that classification accuracies of above 90% could 
be obtained despite 30% of the initial training samples being mislabeled. 
These results implicate a considerable speed-up in the whole process of 
UAV image classification is possible by using outdated maps to provide 
training labels, and bypassing the need to manually label samples. Such 
strategies could also be used to control the quality of, e.g. large-scale 
digitization campaigns. 

 
4) Analyzing how to extract Digital Terrain Models in challenging settings 

A DTM extraction method specifically tailored to UAV datasets was 
developed. A rule-based labeling strategy was defined to automatically 
generate training labels from a dataset; this significantly speeds up the 
classification workflow while obtaining a similar final accuracy as when 
manually labeled samples are used. The deep learning architecture itself 
is fully convolutional and utilized dilated filters to consider a larger area 
while limiting the number of parameters to train. Even though the 
proposed network is shallower than those designed for other computer 
vision applications, it obtains similar performance while significantly 
lowering the training time. Furthermore, we again demonstrate how the 
integration of image-based information is a valuable addition to the 
geometric information. Indeed, the proposed method outperforms 
reference DTM extraction methods which only make use of geometric 
information and fail in the challenging informal settlement datasets. 
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5) Identifying opportunities of UAVs to support urban upgrading workflows 
Consultation with various stakeholders in the urban upgrading project in 
Rwanda indicated that even without any advanced machine learning 
techniques, the UAV images were highly valued. The detail of the imagery 
facilitated the digitization and mapping. Additional information required 
for upgrading projects which are not typically identifiable in high-
resolution imagery, such as solid waste accumulations, was visible. This 
greatly facilitated field work, by providing a more realistic and detailed 
view of the settlement and facilitating navigation of the complex network 
of footpaths. Finally, the images themselves were beneficial as a 
communication platform. More specifically, they facilitate engagement, 
interaction, and communication between the slum residents and other 
project stakeholders and the identification of vulnerable areas and 
prioritized interventions. 

 
6) Analyzing the social impacts of using UAVs in the context of urban 

upgrading projects 
Some concerns regarding the use of UAVs is the possible capture of 
objects considered as private in the imagery, the distribution of this 
sensitive information, and possible misuse of it. Indeed, investigations 
into two apparently similar projects indicate that perceptions are 
dependent on the local culture and context. In the ideal situation, the 
objects which are considered as sensitive can be removed or hidden by 
the residents themselves. This is the highest form of empowerment, 
allowing the citizens to control which data is captured. To support this, 
local leaders (e.g., Cell Executive Officers in Kigali and Ward Officers in 
Dar es Salaam) should be notified of upcoming flights and their purposes 
so they can communicate these to the residents. Bringing examples of 
imagery to the field when conducting the flights helps explain the purposes 
of the activities and alleviate some concerns. Other communication 
channels such as local radios can also be used to notify residents of 
upcoming flights so they can prepare accordingly. However, even if 
sensitive objects are captured in the imagery, the detail of the sensitive 
objects is not always needed for the objectives of the UAV flights. In this 
case, these objects could be blurred before distribution to other parties. 
Residents could then be involved in defining such data distribution rules. 
Adequate data distribution policies can support equity, as providing 
residents with access to the imagery is an opportunity for more equitable 
distribution of the benefits. For example, the field work in Kigali indicated 
that even if residents found it difficult to identify uses for the imagery 
when they were first collected in 2015, having access to the printed 
images at the cell offices enabled them to use the images for their own 
purposes. Two years later, residents were observed to be using these 
printed maps for some unanticipated purposes such as identifying 
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desirable areas to buy a house. Unfortunately, sometimes the objects 
considered as sensitive are exactly the information required by the 
upgrading project.  In these cases, it is important to understand the 
reasons behind the residents’ concerns and develop adequate protective 
policies. For example, some residents were concerned of expropriation if 
their houses were visible on a map. This underlines the need for suitable 
expropriation practices and not only data protection and distribution 
policies of the UAV imagery itself.  

8.2 Reflections and outlook 
The motivation behind the proposed research was, on the one hand, the 
extraction of geospatial information to support urban upgrading processes, and 
the second was on analyzing the suitability of UAVs as a data collection 
platform. The first aspect was addressed through detailed investigations using 
machine learning. A wide range of Machine Learning algorithms are available 
and have been addressed in this research. Understanding the strengths, 
weaknesses, and suitability of these algorithms for various applications is 
important. For example, SVM is especially suited for applications with many 
features, but relatively few samples are available or are costly to obtain. The 
use of MKL can make SVM especially suitable for heterogeneous datasets. This 
is why these were selected for the 2D vs. 3D feature analyses in Chapters 2 
and 3. On the other hand, random forests are more suitable when very large 
and noisy training datasets are available, and fast model training is required. 
This was the case when iteratively using classification results to remove 
potentially noisy labels in Chapter 4. Deep learning methods are proving to be 
extremely powerful classifiers, but are costly to train. These are then more 
applicable for situations where many labeled training samples are available and 
training time is less important such as the DTM extraction in Chapter 5. Further 
research may identify how more complex 3D characteristics (which were more 
accurate than using DSM-based geometric information in Chapter 2) can be 
integrated into deep learning methods. 
 
Taking a step back, how can we place this work on machine learning in society? 
The case studies in Chapters 6 and 7 indicated that the considered upgrading 
projects are still making use of manual digitization to map informal 
settlements. Why is this being done if the scientific research presented here 
and elsewhere claims that faster, (semi-)automatic methods are available 
which achieve accuracies of above 90%? In practice, machine learning requires 
more expertise and understanding than manual digitization. Skills which are 
not always available and even when they are, the produced maps are not 
always fit for purpose – even a 90% accuracy means that one in ten buildings 
will be incorrect. For applications such as cadaster or identifying which 
households must be expropriated, this is too high.  However, manually 
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correcting 10% of the building outlines will still be faster than mapping 
everything from scratch and it is still quite useful for getting an idea of how 
many buildings there are in a neighborhood at the onset of the project (if the 
FP and FN are in balance). Better access to machine learning methods as they 
become increasingly available in specialized and non-specialized software and 
web applications and the concurrent increase in public awareness of such 
automatic methods suggest that workflows which combine machine learning 
with manual digitization will become more common in the near future. 
 
Technological constraints such as limited flight times, legislative regulations 
such as within-line-of-sight constraints, and the big data challenges arising 
from the sheer size of the data captured at such a high resolution – all seem 
to indicate that UAVs are more suitable for limited study areas.  Indeed, one 
of the main assumptions underlying this research design was that UAVs are 
particularly useful for upgrading projects due to the limited extent of a project 
area. This may seem at odds with the focus on machine learning techniques, 
whose (limited) inaccuracies may not exploit the full advantage of the higher 
resolution. However, a trained machine learning algorithm could provide a 
quick overview of the settlement at the initial reconnaissance stage and for 
monitoring purposes. The diversity of settlement characteristics implies that 
models will likely need to be retrained for different study areas, using either 
defined rules (as in Chapter 5) or existing vector data (as in Chapter 4), to 
provide initial training samples. Also, recent projects (mainly using fixed-wing 
UAVs) are collecting imagery of entire cities or islands14 (Makoye, 2017). 
Research regarding how to efficiently process large UAV datasets is needed.  
Further investigations could also consider the interaction between manual 
methods, which enable a participatory approach and may provide a higher 
accuracy, and automatic methods which may be faster but currently require 
more expertise and are sensitive to hyperparameter tuning. Developments in 
large, holistic machine learning models using global training data coupled with 
widespread exposure to accessible GIS information (e.g., increased internet 
usage, mobile mapping, etc.) may bring such automated methods closer to the 
general community in the future. 
 
The second underlying objective of this research was to consider the suitability 
of UAVs as a data collection platform – both regarding the geospatial 
information it can provide as well as from a societal context. The simultaneous 
acquisition of 2D and 3D data is useful for classification (Chapter 2 and 3) and 
DTM extraction (Chapter 5). Observations from the use of the images in the 
case study areas indicate that they are perceived as very useful by experts and 
to a limited degree by the residents of the settlements (discussed in Chapters 
6 and 7). 

                                               
14 http://www.zanzibarmapping.com/ 
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Regarding the societal context, the UAV flights conducted in 2015 was amongst 
one of the first UAV activities in Rwanda. Collaborating with the upgrading 
project and the enthusiasm of the local stakeholders indicated some of the 
practical challenges. One is the lack of or too strict regulations. Legislation and 
best practices are in various stages of development, and national aviation 
agencies are making clear efforts to make citizens aware of the rules connected 
to the use of cheap, off-the-shelf UAVs which are often considered as toys. 
Another challenge is posed by the high computing requirements of processing 
the images. Although both proprietary and open source software are 
developing relatively automated workflows, image processing, and computing 
remains a challenge and will likely remain a bottleneck as the number and size 
of UAV datasets continues increasing. Further developments which utilize 
cloud-based services or other smart strategies to reduce the computing 
requirements are likely to remain important as project sizes increase.  
 
In sum, the contribution of this dissertation is two-fold. Firstly, it illustrates 
how machine learning methods can be manipulated to take advantage of UAV 
dataset characteristics and provide detailed, up-to-date geospatial 
information. Secondly, involvement with existing upgrading projects sheds 
light on the actual and perceived usage of the information provided by the UAV 
images as well as the societal context of using UAVs to map informal areas. As 
UAVs become cheaper, more automated and widespread; as the understanding 
of how to extract information from the data develops; and as the knowledge 
regarding UAV flight operations and relevant data processing workflows 
spreads – it is easy to imagine a future where UAVs play a more prominent 
role as a geospatial information acquisition tool to support urban upgrading 
projects. 
 
A number of investigations can be done to bring this future closer. Firstly, 
smart ways of processing and storing large UAV datasets are needed. As UAV 
platforms are improving and more sensors are being added, the legislative 
framework is slowly taking shape, and photogrammetric software is becoming 
more automated – one important remaining bottleneck is how to efficiently 
process datasets of increasing sizes, especially considering inconsistent 
internet connectivity and limited computing requirements which are (at the 
moment) still commonality in many developing countries. Secondly, repeated 
UAV acquisitions will require further investigations into change detection 
methods. Synergies between periodically acquired satellite imagery and 
targeted UAV image acquisitions are especially interesting. Thirdly, 
investigations can target the extraction of additional information from the 
imagery. For example, identifying areas where solid waste accumulates, 
existing utilities, Floor Area Ratios, housing construction material, and a 3D 
understanding of building usage (as opposed to land use). A list of such 
indicators is given in Figure 1-1, but now that the first practical examples of 
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the use of UAV images by urban planners and other stakeholders exist it would 
be an opportune moment to consult these stakeholders on actual and perceived 
usage and update this list. Finally, the integration of this additional information 
into GIS analyses and 3D visualizations may improve decision-making 
workflows. For example, identifying cars in UAV imagery can be used to induce 
and plan transportation networks, the solid waste accumulation can be used to 
plan more effective waste collection services, an understanding of plot 
characteristics and locally preferred building characteristics can help propose 
building designs to individual land owners. The results of such analyses can be 
put into 3D visualizations of the neighborhood to further encourage the dialog 
between residents, engineers, and planners and design more suitable 
upgrading measures. 
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Summary 
Informal settlements, or slums, are considered to be one of the major 
development challenges of our time. One of the major obstacles for slum 
upgrading projects is the lack of data regarding current slum conditions such 
as the existing housing situation, accessibility through road networks, and 
hazardous environments. Informal settlements are often literally and 
symbolically “empty spots on the map”. Unmanned Aerial Vehicles (UAVs) are 
capable of providing imagery at a higher resolution but lower cost than imagery 
from satellites or manned aircraft. The present research explores the use of 
this exciting new technology to help fill these gaps on the map. The work entails 
an exploration of how to tailor machine learning methods to the characteristics 
of UAV data and ensure their performance despite the challenging 
characteristics of informal settlements. By working in the field together with 
actual informal settlement upgrading projects, it is also possible to investigate 
how well UAVs match the practical needs of upgrading projects and understand 
its societal impact. 
 
The first part focusses on the use of machine learning methods. For example, 
supervised classification methods can be used to recognize patterns in data 
from some labeled training samples, enabling a class label to be assigned to 
new data. The first step in supervised classification is usually to define relevant 
features to describe the samples. The first objective aimed to identify 
synergies between 2D and 3D data provided by UAVs. Experiments using 
UAV data of unplanned settlements in Kigali, Rwanda and Maldonado, Uruguay 
indicated that buildings, roads, vegetation, structures and clutter could be 
discriminated with accuracies over 90% when combining 2D features from the 
imagery with 3D features from the point cloud.  
 
In recognition of the statistical differences between 2D and 3D features, the 
next step aimed to adapt supervised classification methods to deal with 
heterogeneous data. Support Vector Machines (SVMs) are a successful 
machine learning method but generally use a single kernel to describe the non-
linear similarity between training samples. Multiple Kernel Learning, however, 
uses different kernels for different feature groups which allows it to identify 
more subtle similarities and differences between samples. This manuscript 
presents an algorithm which can automatically group the features and provide 
tailored kernel parameters. Experiments show that the proposed MKL method 
achieves higher accuracies than conventional single-kernel methods applied to 
the 2D and 3D features while requiring less user-interaction than previous MKL 
methods.  
 
As supervised classification methods are improving, obtaining training samples 
is proving to be a bottleneck as it generally requires much manual work. 
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Therefore, research was done to analyze how reliable training labels can 
be obtained from existing geospatial data. Translating existing maps into 
training labels for newly-acquired UAV data will introduce errors due to (1) 
changes in the scene itself such as building constructions or demolitions, or (2) 
misalignments due to digitization at a lower spatial resolution or other geo-
referencing issues. Experiments demonstrate the effectiveness of using these 
‘noisy’ labels to train a classifier, remove samples with unreliable labels based 
on local and global contextual cues, train another classifier, etc. in an iterative 
process. An accuracy of above 90% could be obtained even if 30% of the initial 
training samples were mislabeled. This method can easily be applied to classify 
recurrent UAV imagery in projects which require frequent data coverage and 
check/improve the quality of manual digitization campaigns. 
 
In addition to maps, detailed elevation models are important sources of 
information to support urban upgrading projects. Overlapping aerial images 
can provide a Digital Surface Model (DSM) which describes the elevation of the 
tops of objects, whereas many planning activities require the Digital Terrain 
Model (DTM) which provides the elevation of the underlying terrain. 
Unfortunately, unplanned settlements are often characterized by densely built-
up areas and are often located in less desired areas such as steep slopes which 
cause difficulties. Therefore, it was also analyzed how to extract Digital 
Terrain Models in challenging settings. A method specifically tailored to 
aerial photogrammetric datasets was developed using cutting-edge deep 
learning techniques. Firstly, a simple rule uses the DSM to propose pixels which 
are likely to be ground or off-ground without any manual intervention. These 
samples are used to train a Fully Convolutional Network (FCN) specifically 
designed for this task, enabling it to differentiate between terrain and off-
ground objects using imagery and DSM-based features. The proposed method 
was shown to significantly outperform two reference DTM extraction 
techniques, thus enabling DTM extraction to be performed in challenging 
settings while eliminating the requirement of collecting costly training samples. 
 
Apart from generating maps automatically and extracting DTMs, the UAV data 
can be useful for upgrading projects in many ways. One task was to observe 
the use of the UAV data by stakeholders in Kigali, Rwanda to identify 
opportunities of UAVs to support urban upgrading workflows. 
Important observations included that even without advanced machine learning 
techniques, the images were considered to be highly valuable and were used 
by the upgrading projects in various ways. The higher resolution and recency 
of the imagery facilitated manual digitization exercises. Additional information 
required for upgrading projects which are not typically identifiable in satellite 
or aerial imagery, such as solid waste accumulations, was visible. The imagery 
enabled consultants to prepare better for the field and navigate the complex 
network of footpaths more effectively during operations. The data was also 
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valuable as a communications platform, enabling communication between 
stakeholders in understanding the existing situation and prioritizing 
interventions. 
 
Some concerns regarding the use of UAVs is the possible capture of objects 
considered as private in the imagery, the distribution of this sensitive 
information, and possible misuse of it. A final sub-objective was therefore to 
analyze the social impacts of using UAVs in the context of urban 
upgrading projects. Residents of unplanned areas in Kigali, Rwanda and Dar 
es Salaam, Tanzania which was subject to UAV flights were asked what their 
perceptions of the flights were. They were also asked to point out objects in 
the imagery and maps which they considered to be sensitive. These consisted 
of avoidable objects which could be removed by residents if they are aware 
UAV flights will take place, unavoidable but removable objects which are 
captured in the UAV imagery but can be blurred before distribution to other 
stakeholders, and unavoidable and irremovable objects. The later causes the 
most concern as the objects considered as sensitive are exactly those who are 
targeted by the UAV operations. For example, houses located in hazardous 
areas may be subject to expropriation. The research further illustrates the 
importance of local context regarding these concerns and which actions can be 
taken to ensure more ethical UAV operations and equitable distribution of the 
benefits. 
 
In sum, this manuscript illustrates how UAVs and machine learning methods 
can be manipulated to provide accurate and up-to-date geospatial information. 
The simultaneous provision of 2D imagery and 3D point clouds proves to be 
quite useful and stresses the importance of developing targeted geoinformatic 
workflows which make use of these synergies rather than applying standard 
algorithms developed for either imagery or point clouds. This enables 
automatic algorithms to return highly accurate maps, despite the challenging 
characteristics of unplanned neighborhoods. Secondly, involvement with 
existing urban upgrading projects throughout the research has enabled a 
unique view of the actual usage and effectiveness of the imagery for current 
urban upgrading projects by local governments, engineering consultants and 
residents. At the data collection phase, residents were intrigued but often 
unable to think of practical uses for the UAV imagery. Returning years later, it 
appeared that the images were being used for a wide range of unexpected 
applications. As UAVs becoming increasingly available and as data processing 
simplifies, it is feasible to imagine a future where UAVs become increasingly 
used to support urban upgrading projects. 
  



Summary 

198 

 



 

199 

Samenvatting 
Sloppenwijken worden beschouwd als één van de grootste uitdagingen van 
onze tijdperk. Eén van de grootste obstakels voor projecten met als doel deze 
wijken proberen te verbeteren is het tekort aan data omtrent de huidige 
situatie van een sloppenwijk. Voorbeelden hiervan zijn: de huidige bebouwing, 
toegankelijkheid met betrekking tot het wegennetwerk en gevaarlijke 
omgevingen. Sloppenwijken zijn vaak letterlijk en symbolisch “lege plekken op 
de kaart”.  Onbemande luchtvaartuigen, of drones, kunnen beelden nemen 
met een hogere resolutie tegen lagere kosten dan beelden van satellieten of 
bemande luchtvaartuigen. Het huidige onderzoek gaat na in hoeverre deze 
nieuwe technologie deze gaten in de kaart weet op te vullen. Het werk omvat 
hoe kunstmatige intelligentie algoritmes aangepast kunnen worden aan de 
kenmerken van data afkomstig van drones en hun nauwkeurigheid behouden, 
ondanks de moeilijke kenmerken van sloppenwijken. Door samenwerking met 
reële projecten is het ook mogelijk na te gaan tot hoeverre drones de 
praktische behoeftes van deze projecten kunnen voorzien, zowel de 
maatschappelijk impact van hun gebruik. 
 
Het eerste gedeelte onderzoekt het gebruik van automatische algoritmes. 
Classificatiemodellen kunnen patronen in data leren herkennen door het 
gebruik van monsters waarvan de klasse bekend is, die dan gebruikt kan 
worden om klassen toe te wijzen aan onbekende monsters. De eerste stap van 
dergelijke modellen is vaak het definiëren van de onderscheidende attributen. 
Het eerste doel is daarom het identificeren van synergiën tussen 2D en 
3D attributen afkomstig van drones. Experimenten met drone data van 
sloppenwijken in Kigali, Rwanda en Maldonado, Uruguay tonen aan dat 
gebouwen, wegen, vegetatie, structuren en rommel met een nauwkeurigheid 
van meer dan 90% kunnen worden herkend als zowel 2D attributen van de 
beelden en 3D attributen afkomstig van de puntenwolk.  
 
Omdat er statistische verschillen zijn tussen de 2D en 3D data, is de volgende 
stap om te onderzoeken hoe klassificatie algoritmes aangepast kunnen 
worden om met heterogeen data te werken. Support Vector Machine 
(SVM) is een succesvolle klassificatie methode. Echter maakt SVM gewoonlijk 
gebruik van een enkele kernelfunctie om de gelijkenis tussen monsters te 
bepalen. Multiple Kernel Learning (MKL), gebruikt, integendeel, verschillende 
kernelfuncties voor verschillende groepen attributen en kan zo meer subtiele 
gelijkenissen en verschillen vastleggen. Dit onderzoek presenteert een 
algoritme die automatisch attributen in toepasselijke groepen onderverdeeld 
en de gepaste kernelfunctie parameters bepaald. Experimenten tonen aan deze 
methode beter presteert dan de gebruikelijke enkel kernelfunctie SVM en 
tegelijkertijd minder invoer van de gebruiker nodig heeft als bestaande MKL 
werkwijzen. 
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Het verkrijgen van goede monsters om de modellen af te stemmen is moeilijk 
omdat ze vaak veel manuele interventie nodig hebben. Daarom werd er ook 
onderzoek gedaan naar hoe bestaande ruimtelijke data gebruikt kan 
worden om betrouwbare etiketten toe te wijzen aan monsters. De 
bestaande data kan fouten bevatten door (1) veranderingen in het landschap 
zelf zoals nieuwe of gesloopte gebouwen, en (2) verplaatsingen door het 
digitaliseren over beelden met een lagere resolutie of andere problemen met 
de georeferencing. Experimenten bewijzen dat de effectiviteit van deze 
werkwijze die de imperfecte etiketten te gebruiken, onbetrouwbare monsters 
wegnemen door gebaseerd op lokale en globale samenhorigheid, de 
betrouwbare monsters gebruiken om de classificatiemodel te verfijnen, enz. in 
een iteratief proces. Een nauwkeurigheid boven 90% kan worden verkregen, 
ook al hadden 30% van de initiële monsters een verkeerd etiket. Deze 
werkwijze kan gebruikt worden om herhaalde UAV beelden te classificeren in 
projecten die frequente beeldopnames eisen en om de kwaliteit van manuele 
digitaliserings-campagnes te verifiëren en verbeteren. 
 
Niet alleen kaarten, maar ook ruimtelijke hoogtemodellen zijn een belangrijke 
bron van informatie ter ondersteuning van stedelijke verbeteringsprojecten. 
Overlappende beelden kunnen een digitale oppervlaktemodel (DSM) 
opleveren, terwijl veel ruimtelijke ontwikkeling projecten juist een digitale 
terreinmodel (DTM) nodig hebben. Dichte bebouwing en minder gewenste 
omgevingen zoals steile hellingen zijn vaak kenmerkend van sloppenwijken en 
bemoeilijken het proces om DTMs uit DSMs te verkrijgen. Daarom werd er ook 
geanalyseerd hoe DTMs verkregen kunnen worden in uitdagende 
omstandigheden. Een methode die gebruik maakt van de laatste 
kunstmatige intelligentie technieken werd specifiek ontwikkeld om dit te doen 
voor luchtbeelden. De eerste stap gebruikt een eenvoudige regel om 
onderscheid te maken tussen pixels die waarschijnlijk terrein en bovengrondse 
objecten representeren. Deze monsters worden dan gebruikt om een unieke 
Fully Convolutional Network (FCN) te verfijnen, die dan gebruikt kan worden 
om de hele DSM te classificeren. Deze voorgestelde methode werkte duidelijk 
beter dan twee referentie DTM extractie methodes ondanks de uitdagende 
omstandigheden en elimineert tegelijkertijd de eis om dure monsters te 
verkrijgen. 
 
Naast het genereren van kaarten en digitale terreinmodellen, kan UAV data in 
verschillende aspecten nuttig zijn. Een taak was daarom ook om te observeren 
hoe de belanghebbende partijen in Kigali, Rwanda de data gebruiken om de 
mogelijkheden van UAVs om stedelijke verbeteringsprojecten te 
ondersteunen. Het werd bijvoorbeeld opgemerkt dat zelfs zonder 
geavanceerde kunstmatige intelligentie technieken, de beelden als zeer nuttig 
werden gewaardeerd en op verschillende manieren werden gebruikt. De 
hogere resolutie en actualiteit van de beelden vergemakkelijkten manuele 
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digitalisatie processen. Aanvullende informatie die voorgaand niet beschikbaar 
waren in satellietbeelden of luchtfoto’s, zoals ophopingen van afval, kunnen 
worden geobserveerd. De beelden lieten consultants zich ook beter 
voorbereiden op veldwerk en in het veld zelf de complexe netwerken van 
voetpaden te navigeren. De UAV beelden vergemakkelijkte ook de 
communicatie tussen verschillende belanghebbende partijen betreft het 
begrijpen van het huidige situatie en de prioriteren van interventies. 
 
Er zijn een aantal ethische zorgen betreft UAV beelden, zoals: het mogelijk in 
kaart brengen van objecten die als privaat beschouwd worden, de distributie 
van deze gevoelige informatie, en mogelijke misbruik ervan. Een laatste taak 
was dus om de sociale impact van het gebruik van UAVs in de context 
van sloppenwijk verbeteringsprojecten te analyseren. Inwoners van 
sloppenwijken in Kigali, Rwanda en Dar es Salaam, Tanzania waar UAV 
projecten plaatsvonden werden gevraagd betreft hun percepties van deze 
activiteiten. Ze werden ook gevraagd om objecten aan te wijzen in deze 
beelden die zij als gevoelig beschouwen. Deze objecten konden: vermijdbaar 
zijn die door de inwooners zelf weg genomen konden worden als ze 
voorafgaand zouden weten van de UAV vluchten en implicaties ervan, 
onvermijdbaar maar verwijdbare objecten die niet weggenomen kunnen 
worden maar wel in de beelden zelf vervaagd kunnen worden voor distributie, 
of onvermijdbaar en onverwijderbaar. Deze laatste groep behoort tot het 
meest verontrustende vanwege het feit dat deze objecten als privé beschouwd 
konden worden en precies degene zijn die door de vluchten als doel beschouwd 
worden. Bijvoorbeeld, huizen die in gevaarlijke gebieden liggen zouden 
onteigend kunnen worden. Het onderzoek toont ook aan hoe belangrijk de 
lokale context is zowel als welke acties ondernomen kunnen worden om het 
ethisch gebruik van UAVs en een gelijke distributie van de baten te verzorgen. 
 
Tot slot toont dit onderzoek aan hoe drones en artificiële intelligentie 
gemanipuleerd kunnen worden om actuele en gedetailleerde ruimtelijke data 
te verkrijgen. De simultane provisie van 2D beelden en 3D puntenwolken blijkt 
ontzettend bruikbaar te zijn en benadrukt het belang om doelgerichte 
geoinformatische processen te ontwikkelen. Deze moeten gebruik maken van 
de mogelijke synergiën in plaats van standaard algoritmes voor ofwel beelden 
ofwel puntwolken toe te passen. Zo kan men hoogwaardige kaarten verkrijgen 
door (grotendeels) automatische processen, ondanks de moeilijke kenmerken 
van sloppenwijken. Ten tweede, door samen te werken met echte sloppenwijk 
verbeteringsprojecten heeft men tijdens het onderzoek een uniek beeld 
kunnen verkrijgen betreft het daadwerkelijke gebruik van de data door de 
lokale overheden, ingenieurs, en bewoners. Bewoners van de sloppenwijken 
waren tijdens de data collectie geïntrigeerd, echter konden zij in de eerste 
instantie weinig praktische gebruik van deze beelden bedenken. Twee jaar 
later bleek, integendeel, dat de beelden gebruikt weerden voor verschillende 
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onverwachte toepassingen. Aangezien drones steeds toegankelijker worden, 
en het verwerken van hun data steeds eenvoudiger, wordt het ook steeds 
eenvoudiger om een toekomst voor te stellen waarin drones steeds vaker 
gebruikt worden om stedelijke ontwikkelingsprojecten te ondersteunen. 
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