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Summary 
Time series of optical, thermal and soil moisture observations contain 

valuable information about vegetation properties and functioning (i.e., canopy 
photosynthesis and evapotranspiration). This study investigates how this 
information can be retrieved from such time series observations by means of 
quantitative approach in order to estimate vegetation properties and 
functioning under normal and dry conditions. This is important to better 
understand the potential of multiple observations to quantify plant carbon and 
water cycle feedback to climate change. 

The dissertation is composed of six chapters. Chapter 1 is introductory and 
describes the importance of plant functioning, drought effects, the applications 
of remote sensing observations, the soil moisture dataset, methods for plant 
functioning assessment, the proposed coupled modeling approach and the sub-
objectives of this research.  

Chapter 2 explores the information content of hyperspectral optical 
reflectance observations in the context of an artificial laboratory drought 
experiment. The chapter first focuses on visual signs of water stress on grass 
properties and top-of-canopy reflectance spectra. Second, it investigates some 
of the widely-used water stress related vegetation indices to examine their 
performance to detect drought effects and trends in their changes during the 
course of the experiment. In addition, the chapter addresses the application of 
a radiative transfer model (i.e., the optical radiative transfer routine RTMo) in 
the ‘Soil-Canopy Observation of Photosynthesis and Energy fluxes’ (SCOPE) 
model and its inversion against hyperspectral data collected during the 
experiment to retrieve vegetation biophysical and biochemical properties (i.e., 
Leaf Area Index, leaf chlorophyll content, leaf water content, leaf dry matter 
content, senescent material content and the leaf inclination distribution 
function) and analyze their trends within two groups (i.e., a well-watered 
control group and a group subjected to water stress). Overall, it is shown that 
the spectroscopic techniques, statistical methods, and RTMo model inversion 
have a promising potential to exploit hyperspectral observations in the optical 
domain and detect water stress effects on the spectral reflectance and 
vegetation properties. Spectroscopic techniques can assist to identify the time 
and location where the first stress signs take place. Statistical methods can be 
useful to identify the most promising water stress-related vegetation indices 
for early stress detection. RTMo model inversion can be of great help to retrieve 
vegetation properties information and, therefore, follow their evolution during 
a drought episode. 

Chapter 3 describes an approach to exploit Landsat satellite (TM5 and 
ETM7) optical information to full extent under normal and dry conditions, and 
provides an outline of the relevant up-scaling from the laboratory experiment 
discussed in Chapter 2 into a regional scale grassland ecosystem using 
multispectral optical observations in a Mediterranian type annual C3 grassland 
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site, called the Vaira site (US-Var), located in California. The chapter first 
describes a proposed forward modeling top of the atmosphere radiance 
approach to accurately simulate an annual time series of Landsat optical data. 
Verifying the performance of different components of the coupled set of models 
(i.e., the brightness – shape – moisture (BSM) soil reflectance model, RTMo, 
and the ‘MODerate resolution atmospheric TRANsmission’ (MODTRAN) 
atmosphere model) it is proven that together they can fairly well reproduce 
moist soil reflectance, anisotropic vegetation reflectance spectra and the 
observed top of atmosphere radiance spectra during a normal-to-dry episode. 
We accommodated the surface anisotropic reflection in the coupled modeling 
and also for the first time defined a novel anisotropy index to quantitatively 
express the importance of this phenomenon in satellite image analysis. Finally, 
the chapter investigates the inversion of the proposed set of coupled models 
to retrieve vegetation properties from the optical domain during the episode 
by means of a numerical optimization technique and analyzes their evolution 
during the episode. It is shown that the coupled use of radiative transfer 
models, in a “bottom-up” approach, can be considered as a proper tool to 
simulate time series of satellite optical radiance observations under normal and 
dry conditions. Further, the inversion of the coupled system is suitable for 
successful retrieval of vegetation properties from time series of satellite top of 
atmosphere radiance data to produce maps of land surface properties. This is 
a step forward to monitor vegetation properties variations in an operational 
way. The approach can also be easily adapted for conducting multi-sensor time 
series studies. 

Chapter 4 concentrates on integrating satellite optical and thermal 
observations to maximize the information one can obtain for estimating 
vegetation functioning under normal and dry conditions. The chapter first 
describes an inversion of the energy balance and thermal radiative transfer 
routine RTMt in the SCOPE model by means of a look-up table approach against 
Landsat satellite thermal observations. This resulted in the retrieval of extra 
information about vegetation (i.e., the maximum carboxylation capacity and 
stomatal conductance) and soil (soil surface resistances and soil boundary 
resistance) properties during a normal-to-dry episode. Second, the chapter 
focuses on estimating vegetation daily functioning by integrating vegetation 
properties information retrieved from the optical and thermal domains, 
including soil information obtained from the thermal domain, together with 
locally measured weather variables, through forward modeling with SCOPE. 
Comparison between model estimations and Vaira site measurements shows 
that most drought effects on photosynthesis and transpiration are ‘visible’ in 
the Landsat optical bands. However, the accurate estimation of stomatal 
effects and soil evaporation requires thermal information. Overall, the results 
indicate that the combined use of optical and thermal radiative transfer models, 
in addition to an energy balance model, provides a useful tool to exploit 
satellite optical and thermal observations to full extent under normal and dry 
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conditions. Optical radiative transfer model inversion assists to obtain 
vegetation properties from radiance data in the optical domain. Further, 
inverting thermal and energy balance models can offer valuable information 
regarding soil surface resistance and carboxylation capacity from radiance data 
in the thermal domain. Integrating all retrieved information from both optical 
and thermal domains could capture drought effects on the vegetation canopy 
in terms of reductions in daily vegetation functioning. 

Chapter 5 investigates the added value of combining optical and soil 
moisture observations for estimating vegetation functioning under water stress 
condition. The chapter first proposes a simple extension to the SCOPE model 
which allows combining optical and soil moisture observations. This resulted in 
a soil moisture integrated version of the model, called SCOPE-SM. The 
extended model simulates additional state variables: vapor pressure both in 
the soil pore space and the leaf stomata in equilibrium with liquid water 
potential, maximum carboxylation capacity by a soil moisture dependent stress 
factor and soil surface resistance through approximation by a soil moisture 
dependent hydraulic conductivity. Second, the chapter focuses on the 
assessment of the SCOPE-SM model performance to estimate vegetation 
functioning at the Vaira site in 2004. Assessing vegetation functioning using 
the SCOPE-SM model, in which Landsat retrieved optical properties, modeled 
vapor pressure, maximum carboxylation capacity and soil surface resistance 
are used, constitutes a significant improvement. Finally, the chapter compares 
vegetation functioning assessments in which thermal and soil moisture data 
are used separately. For evapotranspiration estimations, the results show that 
there is more information embedded in the soil moisture dataset in comparison 
to the thermal information. The results reveal that the combined modeling of 
optical radiative transfer and soil moisture in SCOPE provides a useful tool to 
exploit optical radiance and soil moisture observations under normal and dry 
conditions. Optical radiance data carry valuable information about canopy 
transpiration and photosynthesis processes. In addition, soil moisture contains 
significant information that can be used to better estimate soil evaporation and 
carboxylation capacity during a normal-to-dry episode. Combining these two 
sources of information has a great potential to estimate daily vegetation 
functioning in water limited regions. 
In Chapter 6, the main objective of this dissertation and how it was achieved 
is discussed. Four suitable approaches are discussed to exploit hyperspectral 
and multispectral satellite observations, to integrate optical and thermal data, 
and to combine optical and soil moisture observations for monitoring 
vegetation functioning variations in a normal-to-dry episode. This makes it 
possible to combine various observations from multiple sensors (e.g., satellite 
optical/thermal observations and in-situ data) in a consistent way, avoiding 
empirical approaches (e.g., utilizing only a few spectral bands in vegetation 
indices), and to eventually improve the remote assessment of vegetation 
functioning.  The obvious way forward recommended by the author is to use 
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optical, thermal as well as soil moisture data in a synergistic and 
complementary way, supported by coupled RT models in time-series studies 
using data from multiple sensors, thus creating a much denser temporal 
sampling than would be possible for separate single sensors. 
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Samenvatting 
Tijdreeksen van optische, thermische en bodemvochtwaarnemingen 

bevatten informatie over vegetatieeigenschappen en het functioneren van de 
vegetatie (de fotosynthese en de gewasverdamping). In deze studie is 
onderzocht hoe die informatie uit de tijdreeksen gehaald kan worden, om zo 
de vegetatieeigenschappen te kunnen volgen tijdens een periode van droogte. 
Dit is van belang voor een beter begrip van de potentie van veelsoortige 
waarnemingen voor het kwantificeren van de cycli van koolstof en water en 
hun terugkoppeling naar klimaatverandering.  

De dissertatie bestaat uit zes hoofdstukken. Hoofdstuk 1 is een inleiding 
en beschrijft het belang van gewasfunctioneren, droogte-effecten, remote 
sensing waarnemingen, de bodemvocht gegevens, methoden voor het bepalen 
van de gewasgesteldheid, de voorgestelde benadering om modellen te 
koppelen en tenslotte de subdoelen van dit onderzoek. 

Hoofdstuk 2 verkent de informatie-inhoud van hyperspectrale optische 
reflectiewaarnemingen binnen de context van een kunstmatig droogte-
experiment in het lab. Eerst worden de tekenen van watergebrek op de 
zichtbare eigenschappen van gras en de bijbehorende reflectiespectra belicht. 
Ten tweede wordt onderzocht hoe een aantal veelgebruikte vegetatie-indices 
die wijzen op watergebrek presteren in het detecteren van droogte-effecten en 
wat hun trends zijn gedurende het verloop van het experiment. Bovendien 
behandelt dit hoofdstuk de toepassing van een gewasreflectiemodel (nl. de 
optische stralingstransportmodule RTMo) in het ‘Soil-Canopy Observation of 
Photosynthesis and Energy fluxes’ (SCOPE) model en het inverteren hiervan 
tegen hyperspectrale data verzameld gedurende het experiment voor het 
schatten van biofysische en biochemische eigenschappen van het gewas (nl. 
de ‘leaf area index’ LAI, bladchlorofyl, bladwatergehalte, drogestofgehalte, 
bruine pigmenten en de bladstandverdeling) en voor het analyseren van hun 
trends binnen twee groepen (een goedbewaterde controlegroep en een groep 
met watergebrek). Samengevat wordt getoond dat spectroscopische 
technieken, statistische methoden en RTMo modelinversie veelbelovende 
hulpmiddelen zijn voor een effectief gebruik van hyperspectrale metingen in 
het optische domein en voor het detecteren van de effecten van watergebrek 
op de spectrale reflectie en de gewaseigenschappen. Spectroscopische 
technieken kunnen de tijd en de locatie van de eerste tekenen van stress 
helpen vaststellen. Statistische methoden kan men gebruiken om de 
meestbelovende watergebrek-gerelateerde vegetatie-indices voor vroege 
stressdetectie te identificeren. RTMo modelinversie kan van grote waarde zijn 
voor het bepalen van gewaseigenschappen en daardoor ook voor het volgen 
van hun evolutie gedurende een droogteperiode.  

Hoofdstuk 3 beschrijft een benadering om optische informatie van de 
Landsat satellieten (TM5 and ETM7) ten volle te benutten onder normale en 
droge omstandigheden, en schetst een draaiboek voor het opschalen van het 
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laboratoriumexperiment uit Hoofdtuk 2 naar de regionale schaal van een 
grasland ecosysteem door het gebruik van multispectrale optische 
waarnemingen van een mediterraan type meetveld met éénjarig C3 grasland, 
nl. op de Vaira site in Californië. Eerst wordt beschreven hoe een voorgestelde 
voorwaartse modeleringsaanpak die resulteert in top-of-atmosphere (TOA) 
radianties kan worden ingezet om een tijdreeks van optische Landsatbeelden 
nauwkeurig te simuleren. Door het bevestigen van de prestaties van de 
verschillende modelcomponenten (nl. het ‘brightness-shape-moisture’ (BSM) 
bodemreflectiemodel, RTMo en het atmosfeermodel MODTRAN) wordt 
aangetoond dat zij tezamen de reflectie van vochtige bodems, de anisotropie 
van gewasreflectiespectra en de gemeten TOA radiantiespectra behoorlijk goed 
kunnen reproduceren gedurerende een periode met een overgang van normale 
naar droge condities. De anisotrope reflectie van het oppervlak is hierbij 
meegenomen in de voorwaartse modelering, en ook is voor het eerst een 
nieuwe index voor deze anisotropie gedefinieerd om het belang van dit 
verschijnsel voor de analyse van satellietbeelden kwantitatief tot uitdrukking 
te brengen. Tenslotte onderzoekt dit hoofdstuk de inversie van de voorgestelde 
keten van modellen om gewaseigenschappen af te leiden uit optische data 
gedurende de episode van droogte door middel van een numerieke 
optimalisatietechniek, en wordt hun evolutie gevolgd. Getoond wordt dat men 
met gekoppelde stralingsinteractiemodellen, in een ‘bottom-up’ benadering, 
een geschikt gereedschap in handen heeft om tijdreeksen van 
satellietwaarnemingen in het optische domein te simuleren onder zowel 
normale als droge omstandigheden. Verder is de inversie van de hele 
modelketen geschikt voor het succesvol afleiden van gewaseigenschappen uit 
tijdseries van TOA radiantiedata afkomstig van satellietbeelden en voor het in 
kaart brengen van de eigenschappen van het landoppervlak. Dit is een stap 
voorwaarts naar het operationeel monitoren van variaties in vegetatie-
eigenschappen. Deze benadering kan ook gemakkelijk worden aangepast voor 
het uitvoeren van tijdserie-analyses met meerdere sensoren.   

Hoofdstuk 4 concentreert zich op het integreren van optische en 
thermische satellietdata om de hoeveelheid informatie over het functioneren 
van de vegetatie onder natte en droge condities te maximaliseren. Eerst wordt 
de inversie met opzoektabellen van de SCOPE routines voor de energiebalans 
en voor thermische straling (RTMt) op basis van Landsat thermische beelden 
beschreven. Dit resulteerde in het afleiden van extra informatie over  de 
vegetatie (nl. de maximale carboxylatiesnelheid en de huidmondjesgeleiding) 
en de bodem (bodem oppervlakteweerstand en bodem grensweerstand) 
gedurende een overgang van normale naar droge omstandigheden. Ten 
tweede richt dit hoofdstuk zich op het inschatten van het dagelijks functioneren 
van de vegetatie door het integreren van infomatie over gewaseigenschappen 
afgeleid uit optische metingen, inclusief bodeminformatie verkregen uit 
thermische metingen, en met ter plekke gemeten weervariabelen, via 
voorwaarste modelering met SCOPE. Vergelijking tussen modelvoorspellingen 
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en de Vaira site veldmetingen laat zien dat de meeste droogte-effecten op de 
fotosynthese en transpiratie ‘zichtbaar’ zijn in de Landsat optische spectrale 
banden. Echter, een nauwkeurige schatting van stomatale effecten en 
bodemverdamping vereist thermische informatie. Over het algemeen geven de 
resultaten aan dat het gecombineerde gebruik van optische en thermische 
stralingsinteractiemodellen, samen met een energiebalansmode, bruikbaar 
gereedschap verschaft voor het volledig exploiteren van optische en 
thermische satellietwaarnemingen onder normale en droge omstandigheden. 
Inversie van een optisch reflectiemodel helpt bij het verkrijgen van 
gewaseigenschappen uit radiantiegegevens in het optische domein. Verder kan 
inversie van thermische en energiebalansmodellen waardevolle informatie 
verschaffen over de bodemweerstand en de carboxylatiesnelheid uit 
thermische radiantiedata. Door het integreren van alle afgeleide informatie uit 
het optische en het thermische domein kunnen droogte-effecten op gewassen 
en op de achteruitgang in hun dagelijks functioneren goed worden vastgelegd. 

Hoofdstuk 5 onderzoekt de toegevoegde waarde van het combineren van 
optische en bodemvochtmetingen voor het bepalen van het 
vegetatiefunctioneren onder droogtegebrek. Er wordt eerst een eenvoudige 
uitbreiding in het SCOPE model voorgesteld die het combineren van optische 
en bodemvochtwaarenemingen toestaat. Dit resulteeerde in een bodemvocht-
geïntegreerde versie van het model, geheten SCOPE-SM. Het uitgebreide 
model simuleert additionele toestandsvariabelen: de dampdruk, zowel in de 
bodemporiën als in de bladhuidmondjes, in evenwicht met de waterpotentiaal, 
maximum carboxylatiesnelheid via een bodemvochtafhankelijke stressfactor 
en de bodemoppervlakteweerstand, door het benaderen hiervan via een 
bodemvochtafhankelijke hydraulische geleiding. Daarnaast richt dit hoofdstuk 
zich op het bepalen van de modelprestaties van SCOPE-SM t.a.v. het 
inschatten van het functioneren van de vegetatie op de Vaira site in 2004. Het 
onderzoeken van het functioneren van de vegetatie met het SCOPPE-SM 
model, waarbij met uit Landsat afgeleide optische eigenschappen, 
gemodeleerde dampdruk, Vcmax, en de bodemoppervlakteweerstand worden 
gebruikt, betekent een significante verbetering. Tenslotte worden in dit 
hoofdstuk methoden vergeleken voor het bepalen van vegetatiefunctioneren 
op grond van thermische en bodenvochtgegevens apart. Voor het schatten van 
evapotranspiratie laten de resultaten zien dat er in bodemvochtgegevens meer 
informatie zit dan in thermische informatie. De resultaten onthullen dat het 
gecombineerd modeleren van optisch stralingstransport en bodemvocht in 
SCOPE een bruikbaar gereedschap oplevert voor het beter exploiteren van 
optische radiantie en bodemvochtgegevens onder normale en droge condities. 
Optische radiantiegegevens bevatten waardevolle informatie over 
gewastranspiratie en het proces van de fotosynthese. Bovendien bevat 
bodemvocht significante informatie die kan worden gebruikt om de 
bodemverdamping en de carboylatiesnelheid beter te kunnen bepalen 
gedurende een overgang van normale naar droge omstandigheden. Het 
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combineren van deze twee bronnen van informatie houdt een groot potentieel 
in voor het inschatten van het functioneren van de vegetatie in gebieden met 
watertekort. 

In hoofdstuk 6 wordt het voornaamste doel van deze dissertatie, en hoe 
dat is bereikt, besproken. Vier geschikte benaderingen om hyperspectrale en 
multispectrale satellietwaarnemingen te exploiteren, om optische en 
thermische data te integreren, en om optische en bodemvochtmetingen te 
combineren voor het monitoren van variaties in het functioneren van de 
vegetatie, worden er besproken. Dit maakt het mogelijk om allerlei 
waarnemingen gedaan door een veelvoud van sensoren (bijv. 
optische/thermische satellietwaarnemingen en in situ data) op een consistente 
manier te combineren, waarbij empirische benaderingen (die bijv. maar enkele 
spectrale banden gebruiken in de vorm van een vegetatie-index) worden 
vermeden, en om uiteindelijk het onderzoeken op afstand van het functioneren 
van de vegetatie te verbeteren. De voor de hand liggende weg vooruit die 
wordt aanbevolen door de auteur ligt in het gebruik van optische, thermische, 
alsmede bodemvochtgegevens op een synergistische en complementaire 
wijze, ondersteund door gekoppelde stralingsinteractiemodellen in tijdserie-
analyses met data van meerdere sensoren, waardoor een veel dichtere 
bemonstering in de tijd mogelijk wordt dan met afzonderlijke sensoren.  
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The core idea of this dissertation is to exploit multiple observations 
including time-series of optical, thermal (TIR) and soil moisture data for remote 
sensing of vegetation properties and functioning under normal and dry 
conditions. It is significant to investigate the information content of such 
observations and quantify the impact of their synergistic use to explain drought 
effects on vegetation functioning. Therefore, understanding how much 
information one can get from different sensors (e.g., optical, TIR and soil 
moisture) to see vegetation (here for annual C3 grasses) properties and 
functioning (notably canopy photosynthesis [gross primary production (GPP)] 
and evapotranspiration (ET)) variations during a drought episode and whether 
combined use of this information can enhance vegetation functioning 
estimations is of great interest. This chapter gives a short general introduction 
and describes the importance of plant functioning, drought effects, application 
of remote sensing and in-situ observations, methods for plant functioning 
assessment, the proposed coupled modeling approach and the sub-objectives 
of this dissertation.  

1.1. Why estimating vegetation functioning 
Plants are key components of nearly all terrestrial ecosystems. Water and 

carbon exchanges between plants and the atmosphere are two fundamental 
traits of vegetation functioning (Y. Zhang et al., 2016), which support life on 
our planet. On the one hand, gross primary productivity GPP, as a primary 
driver of the carbon cycle, is the initial carbon fixed by vegetation through 
photosynthesis (Anav et al., 2015; Y. Zhang et al., 2016). GPP controls some 
of the crucial functions in the ecosystem, such as respiration and growth. It 
demonstrates the efficiency of the exchange of carbon dioxide (Running et al., 
1989) and sustains the food web by providing the total carbohydrate matter 
(Beer et al., 2010; Running, 2012) and, therefore, plays an essential role for 
human life. On the other hand, ET, as the main component of the water cycle, 
contains plant transpiration (T), soil evaporation (E) and evaporation of 
intercepted precipitation  (Fang et al., 2016; Wilcox, 2010). ET provides the 
primary linkage between energy and hydrologic flux in the ecosystem. It 
controls basin surface water sources (Bosch and Hewlett, 1982; Sun et al., 
2011) and affects regional rainfall patterns (Koster et al., 2004; Seneviratne 
et al., 2006a) due to the fact that it is the source of water for the atmosphere. 
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Figure 1.1. Stomatal control of photosynthesis and transpiration (source: NASA) 
 

The two processes of GPP and T are linked through the plant stomata (Fig. 
1.1). The plant takes in the CO2 needed for photosynthesis by opening the 
stomata (Sadava et al., 2009). Such an opening will release H2O from the 
tissue around the stomata to the atmosphere as a side-effect of photosynthesis 
(Sadava et al., 2009). The carbon and water cycles are thus very closely linked 
via stomatal gas exchange. Particularly relevant is how vegetation regulates 
the CO2 assimilation and its transpiration, and the atmospheric feedbacks. Not 
only climate influences this vegetation functioning, but the plant also affects 
the climate through these processes. For instance, the climate controls rainfall 
patterns, solar radiation, and CO2 concentration, which considerably influence 
the vegetation community (Bonan, 2015). However, vegetation can affect the 
fluxes of water, carbon, and heat to the atmosphere through vegetation 
processes (Adams, 2009; Bonan, 2015). Although much research has been 
carried out to study GPP and ET as two separate processes, monitoring both of 
them (as plant functioning) together can help to better understand land-
atmosphere interactions in earth system dynamics, and provide insights into 
climate change effects on the ecosystems and vegetation response to climate 
variations. In addition, the partitioning of net radiation into canopy 
transpiration, soil evaporation, and canopy photosynthesis is crucial for the 
accurate representation in climate and crop models. 

1.2. Drought effects on vegetation functioning 
Drought events are expected to increase in both frequency and severity in 

nearly all ecosystems especially in arid and semi-arid regions (Wolf et al., 
2013; Zhou et al., 2013). The term ‘drought’ does not have a unique definition. 
In this study we adopted the definition of ecological drought as “an interval of 
time, generally of the order of months or years in duration, during which the 
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actual moisture supply at a given place rather consistently falls short of the 
climatically expected or climatically appropriate moisture supply” quantified by 
the widely-used Palmer Drought Severity Index, PDSI, (Alley, 1984; Palmer, 
1965). Ecological drought or soil moisture deficit is the result of either below-
average rainfall or above-average evaporation (Dai, 2011). Although extensive 
research has been conducted to quantify the severity of droughts (Dai, 2011; 
Heim, 2005, 2000; Sheffield et al., 2009; Sheffield and Wood, 2008), their 
impacts on vegetation functioning, especially at daily basis, are not well 
understood yet (Gang et al., 2016) and, therefore, our knowledge about those 
aspects is still limited (Vicca et al., 2016). Thus, a detailed understanding of 
drought effects on vegetation daily functioning is required by both social and 
academic sectors (Lewinska et al., 2016). 

Vegetation in the ecosystem copes with and responds to drought. 
Therefore, vegetation canopy properties become altered and, as a 
consequence, both GPP and ET will be affected. In a drought episode, the 
vegetation tends to close its stomata in order to prevent internal water lose, 
e.g., T reduction, which in turn interferes with the carbon flux and causes GPP 
reduction (Lee et al., 2016). In fact, drought influences vegetation in several 
ways: (1) stomatal effects which change the intrinsic water use efficiency and, 
therefore, the ratio of photosynthesis to transpiration, and (2) non-stomatal 
effects which change the photosynthetic capacity of the vegetation (Zhou et 
al., 2013). Both of these effects have been modeled and understood well using 
local experimental data sets (Egea et al., 2011; Keenan et al., 2010a; Zhou et 
al., 2013). However, a joint effort is still needed to understand such drought 
effects at larger scales (i.e., regional and ecosystem levels) during a prolonged 
soil moisture deficit episode.  

1.3.  How to estimate vegetation functioning 
Traditionally, GPP and ET are measured using various direct and indirect 

techniques. Regarding GPP, there is no direct measurement method to follow 
since there are no observation techniques to quantify GPP at the right scale 
(Anav et al., 2015). GPP can only be estimated from measurements of net 
carbon exchange between terrestrial ecosystem and the atmosphere (Aubinet 
et al., 2012; Reichstein et al., 2005). However, applying such methods (such 
as leaf cuvettes and whole-plant chamber) to obtain net carbon exchange may 
cause some biases and artifacts since physical placement of tools and 
controlling environmental conditions of gas exchange chambers are difficult 
tasks (Baldocchi, 2003). Moreover, ground-based measurements of ET include 
various methods such as water balance, energy balance, and Bowen ratio, 
weighing lysimeters, aerodynamic methods, sap flow method and chamber 
systems (Rana and Katerji, 2000). Rana and Katerji (2000) discussed the 
advantages and disadvantages of these methods in details. Further, detailed 
reviews of ground-based measurement (direct or indirect) methods of GPP and 
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ET can be found in the studies of Anav et al (2015) and Allen et al (2011), 
respectively.  

The method that is nowadays the standard, the eddy covariance 
techniques, enables the quantification of both GPP and ET processes. The eddy 
covariance enables the estimation of net carbon exchange (NPP), from which 
GPP can be derived after flux partitioning, and latent heat flux (LE), from which 
ET can be derived. Flux tower networks consist of more than 600 stations (Anav 
et al., 2015), that are measuring carbon dioxide, water vapor, and energy 
fluxes between vegetation and the atmosphere over time (Baldocchi et al., 
2001). The eddy covariance technique provides a direct measurement of 
ecosystem functioning, multi-temporal resolution observations (from hour to 
year) and a reasonable representation of the flux footprint, just to name a few 
advantages. However, the eddy covariance method has also some limitations. 
The applicability of the method is limited to flat terrains and steady-state 
environmental conditions (Baldocchi, 2003), and the equipment and field work 
required for long-term measurements of water flux (ET) and carbon flux (GPP) 
is expensive. This limits the size of the network and thus the spatial coverage. 
The measured GPP and ET usually represent small samples in space and time 
(Anav et al., 2015) and, therefore, scaling up beyond the sample area to a 
regional and global scale is still challenging.  

The spatio-temporal coverage provided by remote sensing observations 
can considerably overcome the majority of these deficits. When monitoring 
vegetation processes and their responses to stressors (e.g., drought) at 
different scales is of interest, satellite observations provide cost-efficient 
information. Satellite observations can offer a unique opportunity to estimate 
spatial variations of optical properties which are directly related to vegetation 
status and environmental conditions. The question is: Can we detect these 
effects of drought on GPP and transpiration (T), but also on soil evaporation 
(E), by means of satellite optical observations? What would be the added value 
of extra information (e.g., TIR and soil moisture observations)? We assume 
that in vegetation most of the non-stomatal effects are due to browning and 
defoliation (Vicca et al., 2016), which are visible in the optical spectra. 
However, stomatal effects and soil evaporation become manifest in the TIR 
domain (Anderson et al., 2007a, 2007b; Crow et al., 2008) and soil moisture 
data.  

1.4. Remote sensing observations  
Nowadays, eco-hydrology is progressively entering the new era of satellite 

“big data” (Reichstein et al., 2014). Exploring the information content of such 
valuable remote sensing datasets at various time and space scales can open 
new opportunities for vegetation functioning estimations. Vegetation 
appearance (i.e., canopy radiance) contains useful information related to 
energy and mass transfer (Olioso et al., 1999). The observed spectra have 
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valuable information about the biophysical and biochemical properties of the 
leaf composition and the canopy structure (Barton, 2011). Acquisition of 
canopy spectra to assess their patterns over time and translating them into 
the time series of biophysical and biochemical properties of interest, which are 
linked to GPP and ET, are main aspects of vegetation remote sensing (Meroni 
et al., 2004). During a drought episode, while it is progressing and, therefore, 
the soil is drying, gradual changes take place in vegetation biophysical and 
biochemical properties. Drought can cause loss of water content in leaves and 
the whole canopy, resulting in a change in spectral signatures. Thus, 
radiometric observations might be a valuable tool in assessing drought-induced 
changes on vegetation properties (Barton., 2011; De Jong et al., 2012; Suárez 
et al., 2009) and linking them to vegetation processes.  

Although remote sensing can make spatially-temporally distributed and 
cost-efficient measurements of various vegetation appearance, it cannot 
provide direct information on the vegetation properties, the total fluxes and 
physical processes using radiation alone. In order to fully exploit and make 
effective use of the available remote sensing dataset, coherent algorithms and 
models are needed for (1) translating the observed top-of-atmosphere (TOA) 
radiance spectra into biophysical and biochemical properties on the one hand 
and (2) simulating water and carbon fluxes (ET and GPP) as a function of 
estimated vegetation properties on the other.  

1.5. Coupled modeling approach 
For exploring remote sensing observations, the ideal case is to exploit all 

available spectral data together (in optical/TIR domains) through detailed 
radiative transfer (RT) models (Dorigo et al., 2009; Jacquemoud et al., 1995; 
Kuusk, 1998; Verhoef and Bach, 2007, 2003a). However, using only RT models 
is insufficient to estimate vegetation biophysical and biochemical processes 
(like GPP and ET). In addition, so-called the Surface-Vegetation-Atmosphere 
Transfer (SVAT) models are needed (Norman, 1979) to represent the physical 
processes involved in GPP and ET. SVAT models make it possible to model the 
coupled transport of radiation, heat, and carbon within the vegetation canopy 
(Brunsell and Gillies, 2003; Sellers et al., 1997; Tuzet et al., 2003; Verhoef 
and Allen, 2000). Therefore, the coupled use of detailed RT models, 
biochemical and energy balance through SVAT models seems to be a feasible 
avenue to exploit time series of various satellite observations to the full extent 
and unlocking the informative power of combined earth observation data 
regarding vegetation properties and processes in different environmental 
conditions. 

SVAT models usually do not include a detailed RT scheme. This means 
using those SVAT models without a RT link, one cannot utilize all available and 
up-coming satellite datasets effectively. The model CUPID (Kustas et al., 2007; 
Norman, 1979) is the first proposed SVAT model in which a reasonable RT 
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model is implemented, although it only distinguishes between the VIS, NIR and 
TIR radiation domains. Since different biophysical and biochemical properties 
of vegetation contribute to the canopy reflectance (Asner, 1998), a detailed RT 
scheme is required to retrieve such properties from optical and thermal remote 
sensing. Regarding the choice of RT models, using complex models, like 
Discrete Anisotropic Radiative Transfer (DART) (Gastellu-Etchegorry, 2008; 
Gastellu-Etchegorry et al., 1996, 2004), may generate more accurate results 
due to a higher level of realism, they require a large number of input 
parameters, and this limits their applicability. Medium complexity RT models 
(e.g., PROSPECT (Jacquemoud and Baret, 1990) leaf and SAIL (Verhoef et al., 
2007; Verhoef, 1984, 1985) canopy models) coupled in a SVAT model can be 
considered proper candidates to enable estimation of  GPP and ET from remote 
sensing observations. One of such SVAT models we selected for this research 
is the Soil-Canopy-Observation of Photosynthesis and the Energy fluxes 
(SCOPE) model (Van der Tol et al., 2009b). SCOPE includes relatively simple 
RT models at high spectral resolution and broad coverage, making it possible 
to use hyperspectral observations.  

SCOPE is a vertical (1-D) integrated model of soil-canopy spectral 
radiances, photochemistry and energy balance which is based on radiative 
transfer theory, plant physiology science, and micro-meteorology. It includes 
three radiative transfer models, one photosynthesis model and one energy 
balance model. The radiative transfer models of the SCOPE cover the complete  
0.4 to 50 µm wavelength range. RTMo, which is mainly based on the Fluspect 
(Vilfan et al., 2016) and SAIL (Verhoef, 1984, 1985) models, is the radiative 
transfer model in the optical domain (0.4 – 2.5 µm) and it simulates canopy 
reflectance and radiation distribution inside a canopy. RTMt is the radiative 
transfer model in the thermal domain (2.5 – 50 µm). Another radiative transfer 
model is RTMf that simulates canopy fluorescence (0.64 – 0.85 µm).  

SCOPE spectral outputs have sampling intervals of 0.001 µm in the optical 
domain, 0.1 µm in the thermal domain, and 1 µm in the longwave domain.  

Further, in SCOPE, a canopy is divided into 60 leaf layers assuming a 
maximum LAI of 0.1 per layer, and one soil surface is defined under the 
vegetation layers. There are 468 classes of leaf orientation, composed of all 
combinations of 13 leaf zenith angles and 36 leaf azimuth angles. The leaf 
orientations are of great importance because solar flux interception and 
scattering by leaves is a function of their orientation relative to the sun’s 
position.  

RTMo computes the radiation that interacts with each leaf and the 
scattered and absorbed radiation. Likewise, RTMt simulates the distribution of 
thermal emitted radiation within the canopy. The net radiation outputs of RTMo 
and RTMt are used as an input to the energy balance module to estimate skin 
temperature, while the computed skin temperature from the energy balance is 
in turn an input of RTMt. The final skin temperature is solved by iteration of 
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RTMt and the energy balance module. Such an iteration continues until the 
energy balance is closed for all the elements described above. 

Both the aerodynamic and stomatal resistances are modified during the 
iteration due to the fact that atmospheric stability and vegetation 
photosynthesis are influenced by leaf temperatures. The aerodynamic 
resistance depends on the LAI, canopy height, wind speed and the atmospheric 
stability (Wallace and Verhoef, 2000), whereas the stomatal resistance 
depends on net assimilation rate of the leaves, vapor pressure deficit in the 
ambient air and air pressure. Furthermore, the photosynthesis of C3 (Farquhar 
et al., 1980), C4 vegetation (Collatz et al., 1992), stomatal resistance (Collatz 
et al., 1992, 1991) and chlorophyll fluorescence (Van der Tol et al., 2009a) are 
computed by the biochemical routine of the model.  

The primary purpose of the model was to provide a tool that connects 
different parts of optical and thermal radiation ranging from visible to infrared 
domain (0.4 – 50 µm) with the purpose of estimating land surface processes 
(mainly ET, GPP, and chlorophyll fluorescence). The main advantages of SCOPE 
model are: (1) it is a suitable option to fill the observational gaps between 
satellite and flight overpasses to monitor carbon and water fluxes, (2) it has a 
great potential for validation of energy balance models as a ground truth (for 
instance validation of SEBS (Timmermans et al., 2013)) and (3) it can be used 
to derive chlorophyll fluorescence from visible parts of the spectrum (Van der 
Tol et al., 2009b). To the best of our knowledge, the potential of SCOPE model 
to estimate daily GPP and ET in a wet-to-dry episode has not been explored 
before. This thesis encompasses efforts to constrain the SCOPE model with 
optical/TIR and soil moisture observations to simulate vegetation functioning 
variations over a prolonged drought episode and evaluate the model 
performance.  

1.6. Objectives  
The main objective of this dissertation is to exploit the information 

contained in the optical and TIR domains of remote sensing data and additional 
soil moisture observations to detect daily vegetation functioning (i.e., GPP and 
ET) variations under normal and dry conditions.  

To achieve this main objective, four sub-objectives have been defined, as 
listed below. Further, each of these sub-objectives is tackled in various 
chapters of this dissertation. 

1. Exploiting hyperspectral measurements in a laboratory drought 
treatment to detect vegetation responses to stress by using statistical and 
physical models (Chapter 2) 

2. Exploiting multispectral Landsat satellite observations in a drought 
episode to detect vegetation properties changes by coupling radiative transfer 
models (Chapter 3) 
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3. Integrating Landsat satellite optical and thermal observations for
improving ecosystem functioning estimations in a drought episode by using the 
SCOPE model (Chapter 4) 

4. Extending the SCOPE model to combine optical reflectance and soil
moisture observations to detect ecosystem functioning variations during a 
drought episode (Chapter 5) 

1.7. Dissertation outline 
This dissertation consists of six chapters following the objectives. Besides 

the “general introduction (Chapter 1)” and “concluding remarks and prospects 
(Chapter 6)”, four chapters are published in peer-reviewed ISI journals as 
four papers. Moreover, all these four chapters have been presented in four 
international remote sensing related conferences. Each of the published 
chapters addresses one of the research sub-objectives described above. 

In Chapter 2, the RTMo model is inverted against time series of canopy 
hyperspectral measurements collected in a laboratory drought experiment to 
retrieve vegetation properties [notably Leaf Area Index (LAI), leaf chlorophyll 
content (Cab), leaf water content (Cw), leaf dry matter content (Cdm), the leaf 
inclination distribution function (LIDF) and the senescent material content 
(Cs)]. Further, the trends of vegetation properties changes in two groups, 
control and unstressed treats, are investigated, and the first signal of water 
stress in both spectra and vegetation properties is detected. Moreover, widely-
used vegetation indices are computed to better understand the water stress 
effects. 

In Chapter 3, a forward modeling TOA radiance approach is proposed to 
accurately simulate an annual time series of Landsat (TM5 and ETM7) data and 
to retrieve vegetation properties during a drought episode in space and time. 
Various RT models are coupled to describe the surface-atmosphere system. 
Inversion of such coupled models resulted in detecting vegetation properties 
variations during a drought episode in a Mediterranean grassland. 

In Chapter 4, Landsat optical and TIR observations are integrated to 
improve vegetation functioning estimations in a drought episode in a 
Mediterranean grassland. To this end, we used the retrieved vegetation 
properties of optical bands (from chapter 3) and inverted RTMt and the energy 
balance model of SCOPE through a look-up table approach against Landsat TIR 
radiance data.  

In Chapter 5, a simple extension for the SCOPE model, SCOPE-SM, is 
proposed which combines optical reflectance observations and soil moisture 
data for improving daily GPP and ET estimations in water-limited ecosystems. 
This is significant since relying on optical information in the original SCOPE 
model will lead to significant bias of estimates when water availability becomes 
the primary limiting factor for vegetation. 
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In Chapter 6, concluding remarks and prospects related to this 
dissertation are described. It provides the main conclusions, implications, and 
recommendations for further research. 
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Chapter 2  Exploiting hyperspectral reflectance 
observations using statistical and physical 
models*  

* This chapter is based on:
Bayat, B., Van der Tol, C., Verhoef, W., 2016. Remote Sensing of Grass Response to 
Drought Stress Using Spectroscopic Techniques and Canopy Reflectance Model 
Inversion. Remote Sensing, 2016, 8, 557, https://doi.org/10.3390/rs8070557. 

Bayat, B., Van der Tol, C., Verhoef, W., 2016. Monitoring Soil Moisture Deficit Effects on 
Vegetation Parameters Using Radiative Transfer Models Inversion and Hyperspectral 
Measurements under Controlled Conditions. Living Planet Symposium 2016, Prague, 
Czech Republic, 9–13 May 2016. 
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ABSTRACT  

The aim of this study was to follow the response to drought stress in a 
Poa pratensis canopy exposed to various levels of soil moisture deficit. We 
tracked the changes in the canopy reflectance (450–2450 nm) and retrieved 
vegetation properties [Leaf Area Index (LAI), leaf chlorophyll content (Cab), 
leaf water content (Cw), leaf dry matter content (Cdm) and senescent material 
(Cs)] during a drought episode. Spectroscopic techniques and radiative 
transfer model (RTM) inversion were employed to monitor the gradual 
manifestation of drought effects in a laboratory setting. Plots of 21 cm × 14.5 
cm surface area with Poa pratensis plants that formed a closed canopy were 
divided into a well-watered control group and a group subjected to water 
stress for 36 days. In a regular weekly schedule, canopy reflectance and 
destructive measurements of LAI and Cab were taken. Spectral analysis 
indicated the first sign of stress after 4–5 days from the start of the 
experiment near the water absorption bands (at 1930 nm, 1440 nm) and in 
the red (at 675 nm). Spectroscopic techniques revealed plant stress up to 6 
days earlier than visual inspection. Of the water stress-related vegetation 
indices, the response of Normalized Difference Water Index (NDWI_1241) 
and Normalized Photochemical Reflectance Index (PRI_norm) were 
significantly stronger in the stressed group than the control for short and 
long-term effects detection, respectively. To observe the effects of stress on 
grass properties during the drought episode, we used the RTMo (RTM of solar 
and sky radiation) model inversion by means of an iterative optimization 
approach. The performance of the model inversion was assessed by 
calculating coefficient of determination (R2) and the Normalized Root Mean 
Square Error (NRMSE) between retrieved and measured LAI (R2 = 0.87, 
NRMSE = 0.18) and Cab (R2 = 0.74, NRMSE = 0.15). All properties retrieved 
by model inversion co-varied with soil moisture deficit. However, the first 
strong sign of water stress on the retrieved grass properties was detected as 
a change of Cw followed by Cab and Cdm in the earlier stages. The results from 
this study indicate that the spectroscopic techniques and RTMo model 
inversion have a promising potential of detecting stress on the spectral 
reflectance and grass properties before they become visibly apparent. 
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2.1. Introduction 
Plants are subjected to various harsh environmental conditions (i.e., abiotic 

stresses) in their ecosystems, which affect vegetation structure, functioning, 
growth and yield (Reddy et al., 2004; Zhang et al., 2013). Thus, environmental 
stresses trigger various plant responses. Among such stresses, prolonged soil 
moisture deficit or “ecological drought” is the most important one in many 
ecosystems—especially in arid and semi-arid regions (Lidon and Cebola, 2012; 
Wolf et al., 2013). In these ecosystems, plants often suffer from moisture-
induced stress. Although there might be other stressors in the ecosystem, their 
impacts are frequently modulated by the effect of soil moisture deficit (Laio et 
al., 2001). For instance, heat or radiation stress usually appears after the 
cooling effect of transpiration has been reduced as a result of soil moisture 
deficit (Laio et al., 2001; Larcher, 2003). Drought stress is a complex feature 
and it has a significant impact on plant growth. Three main mechanisms that 
alter plant growth, and therefore reduce crop yields by soil moisture deficit in 
a drought episode, are: (1) reducing canopy absorption of incident 
photosynthetically active radiation (PAR); (2) reducing light use efficiency 
(LUE), and (3) reducing harvest index (HI) (Earl and Davis, 2003). It is quite 
important to monitor water stress impacts on vegetation community over time 
in a drought episode (Dorman et al., 2015, 2013; Zhao et al., 2015). 

Traditionally, stress-induced changes in plants have been mainly 
investigated by visual inspection or detected after extensive analysis of 
destructive samplings during the growth period (Chaerle and van der Straeten, 
2001; Fedotov et al., 2016). However, effective remote detection methods and 
spectroscopic techniques which allow near real-time detection of stress 
impacts, even before visual symptoms appear and adverse effects take place, 
are emerging as promising tools. There is valuable information in the 
reflectance spectra which relates to the biophysical and biochemical 
parameters of both the leaf composition and the canopy properties (Barton, 
2011). Collecting vegetation canopy spectra to monitor their changes over 
time, translating them into biophysical and biochemical parameters of interest, 
and relating these parameters to environmental limiting factors are three main 
aspects of vegetation remote sensing (Meroni et al., 2004). 

While drought is progressing and, therefore, the soil is drying, changes 
gradually take place in vegetation biophysical and biochemical properties. 
Drought can cause loss of water content in leaves and canopy, resulting in a 
change in spectral signatures. Thus, radiometric observations in the optical 
domain and spectroscopic techniques are valuable tools in assessing drought-
induced changes on plants (Barton, 2011; De Jong et al., 2012; Suárez et al., 
2009), especially when the early detection of stress signs is desirable. 

Among radiometric observations, hyperspectral measurements have 
capabilities for estimating vegetation’s biophysical and biochemical properties 
(Serbin et al., 2015, 2014; Ustin et al., 2009). These capabilities give 
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hyperspectral data potential for monitoring drought impacts on vegetation 
(Asner et al., 2004; Coates et al., 2015). To translate hyperspectral remote 
sensing data into information about vegetation biophysical and biochemical 
properties, specialized algorithms and approaches are needed. Two common 
approaches are the statistical approach (Ceccato et al., 2002; Chávez et al., 
2013; Darvishzadeh et al., 2011; Houborg et al., 2007; Verrelst et al., 2008; 
Zarco-Tejada et al., 2013) and physical modeling (Berjón et al., 2013; 
Bicheron and Leroy, 1999; Clevers et al., 2010; Darvishzadeh et al., 2008; 
Dorigo et al., 2009; Duan et al., 2014; Houborg et al., 2007; Jacquemoud et 
al., 1995; Laurent et al., 2011a; Schaepman-Strub et al., 2006; Verhoef, 1984, 
1985; Verhoef and Bach, 2007, 2003a). Statistical approaches include spectral 
vegetation indices computation and regression model application. In many 
studies, plant stress effects have been analyzed by regression against 
vegetation indices (De Jong et al., 2012; Govender et al., 2009; Yi et al., 2012; 
Zhang et al., 2013). The physical approach consists of applying radiative 
transfer (RT) models that are based on physical laws. They are highly suited 
for studying the relationship between biophysical variables and reflectance 
spectral data (Atzberger et al., 2011; Clevers et al., 2010) since they are not 
site-, sensor- and species-specific and offer an explicit relationship between 
spectral signature and vegetation properties. Physical approaches have been 
widely used to retrieve vegetation properties from various types of remote 
sensing data. Physically based models of vegetation remote sensing signals 
provide the links that exist between vegetation biophysical and biochemical 
properties on the one hand and the leaf and canopy spectral reflectance on the 
other. 

In this study, analysis of collected spectra during a drought episode was 
performed to understand drought-induced impacts on different parts of the 
spectrum over time. We investigated some of the widely used water stress-
related vegetation indices to follow their behavior in the stress period and to 
identify the most sensitive one(s). Afterwards, physical approaches have been 
employed to retrieve the biophysical and biochemical properties of grass (Leaf 
Area Index (LAI), leaf chlorophyll content (Cab), leaf water content (Cw), leaf 
dry matter content (Cdm) and senescent material (Cs)) from hyperspectral 
measurements by inversion of RTMo module in the Soil Canopy Observation of 
Photosynthesis and the Energy balance (SCOPE) model (Van der Tol et al., 
2009b). RTMo includes the widely used PROSPECT (Jacquemoud and Baret, 
1990) and SAIL (Scattering by Arbitrarily Inclined Leaves) (Verhoef, 1984, 
1985) models. This assisted in estimation of grass properties, following their 
changes over time, finding the first signs of stress on grass properties. To our 
knowledge, this study is the first to use spectroscopic techniques and radiative 
transfer model inversion to quantify drought impacts on grass canopy 
reflectance, as well as biophysical and biochemical properties in a controlled 
laboratory experiment. The main advantage of conducting such a controlled 
experiment is that error sources could be narrowed down considerably, 



Chapter 2 

15 

resulting in a greater confidence in the measurements. Uncontrollable events 
(e.g., rainfalls) could be prevented and the need for pre-processing of 
observations (e.g., performing atmospheric correction) could be eliminated. 
The specific objectives of this study were: 

(1) To follow the spectral (450–2450 nm) signs of canopy exposed to 
various levels of water stress in different parts of the spectrum (from visible 
(VIS), near-infrared (NIR) to short-wave infrared (SWIR)) over time to identify 
the time and spectral location of the first change. 

(2) To compute widely used water stress-related vegetation indices to 
identify the most sensitive ones for water stress detection during the drought 
episode. 

(3) To execute a sensitivity analysis of the RTMo model to quantify the 
sensitivity of canopy reflectance to input parameters. 

(4) To estimate grass biophysical and biochemical properties by RTMo 
inversion using an iterative optimization approach. 

(5) To follow the estimated grass properties changes over time to identify 
the first sign of stress on grass properties. 

To meet these objectives, we conducted a laboratory experiment in which 
20 pots with a Poa pratensis grass canopy equipped with recording soil 
moisture sensors were monitored with frequent spectroradiometer 
measurements at the canopy level. 

2.2. Materials and methods 

2.2.1.  Experimental design/setup 
A greenhouse experiment was conducted from 10 August 2014 until 27 

October 2014 in the garden of the ITC Faculty of the University of Twente, the 
Netherlands. A commercially grown grass lawn (of Poa pratensis) was cut into 
50 rectangles and transplanted into 21 cm × 14.5 cm pots with a depth of 12 
cm, all filled with an organic soil. All 50 pots were watered regularly until the 
canopy height was about 15 cm (on 14 September 2014), after which they 
were placed in a greenhouse. The greenhouse shielded the vegetation from 
rainfall, but temperature, irradiance and humidity were not controlled. We 
selected grass for our experiments because of its rapid response to soil 
moisture deficit, and because the requirements for applying a 1-D turbid 
medium model like SAIL (Verhoef, 1984, 1985) are more easily met for 
relatively small canopies. The pots were divided into two equally sized groups: 
(1) a group under the well-watered condition and (2) a group that was not 
irrigated at all. Ten pots in each group were equipped with calibrated soil 
moisture sensors (Em50 Series, Decagon Devices, Inc., Hopkins Court 
Pullman, WA, USA). The well-watered pots were irrigated weekly with 200–250 
mL water, such that the volumetric soil moisture content fluctuated around 
30%–40%. The pots subject to no water treatment were not irrigated at all 
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(started from 14 September 2014) to expose them to maximum water stress 
conditions. The greenhouse was fitted with removable plastic covers as walls, 
which were left open during daytime and closed during the night and rainfall 
events. Figure 2.1 shows the greenhouse setup for the experiment, plants in 
the groups and soil moisture sensors connected to the data loggers. 

(a)  (b) 

Figure 2.1. Experimental setup. (a) Plant pots, soil moisture sensors and data loggers to 
record soil moisture status continuously; (b) Closed greenhouse during the night and 
rainfall events. 

2.2.2. Instrumentation and measurements 

2.2.2.1. Canopy and soil spectral measurements 

Canopy spectra of all pots were measured in a dark room located in a 
remote sensing laboratory using the Analytical Spectral Devices (ASD), 
FieldSpec® 3 Hi-Res Portable Spectroradiometer in Full Range (ASD Inc., 
Boulder, CO, USA) that acquires continuous spectra in the VIS, NIR and SWIR 
regions (350 to 2500 nm). The plants were illuminated by four tungsten 
halogen quartz lamps of 100 W, each installed to be pointing in four azimuth 
directions, each under a 45° zenith incidence angle. These lamps were 
mounted about 80 cm above the plants (Figure 2.2a) to provide sufficient light 
to receive significant signal for accurate spectral measurements but without 
doing heat damage to the plant during the short measurement time. In this 
manner, we achieved a constant illumination. Measurements were done at the 
sampling intervals of the instrument (1.4 nm—VIS and NIR; 2 nm─SWIR) and 
were resampled by the instrument automatically into 1 nm intervals using 
linear and polynomial interpolations (Borzuchowski and Schulz, 2010). The 
fiber-optic cable was placed in a pistol and mounted on a stand (Figure 2.2b). 
In the setting, under 22.55 cm height and 25° field of view (FOV), the 
spectrometer scanned a diameter of 10 cm on the pot surface with the nadir 
point at the center of the circle. We made sure that the FOV of the sensor was 
fully covered by the plants. Every start of the measurements was preceded by 
a warming up time of the ASD for about 60 min (as recommended by the 
manuals). Before every target measurement, the ASD spectroradiometer was 
optimized for the illumination conditions using a spectralon white (BaSO4) 
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reference panel. The ASD spectrometer was set to take 60 samples and 
compute the average value before storing these data (to reduce the noise in 
the spectral measurements). Each sample was transferred from greenhouse to 
the laboratory and placed in the measurement setup. After each measurement 
of spectral reflectance from the target sample pot, a photo was also taken by 
a digital camera (EOS 400D, Digital Rebel XTi, Melville, NY, USA) installed on 
the stand in the setup (Figure 2.2). Finally, the pot was moved back to the 
greenhouse. 

 (a)  (b) 

Figure 2.2. Experimental laboratory setup for canopy and soil reflectance measurement. 
(a) One of the grass sample pots; (b) Close-up photo of camera and ASD fiber-optic 
cable (placed in a pistol grip) mounted on the stand. 

Since the measurement of soil spectra is needed to be used as the 
background reflectance of the grass target samples in the RT model inversion 
(Bach and Verhoef, 2003), the reflectance of the background soil containing 
various values of soil moisture content was also measured. At the end of the 
experiment, the biomass of 10 samples was completely harvested to take soil 
reflectance measurements on a set of soil samples having a range of soil 
moisture (from dried soil to completely saturated soil). To measure volumetric 
soil moisture content of each sample, the pots were weighed in the laboratory 
both before and after drying (48 h, 45° Celsius), the difference being the mass 
of water originally in the sample. Then, volumetric soil moisture of soil samples 
was calculated by Equation (2.1): 

)(
w

b
gv 

  (2.1) 

where θv is volumetric soil moisture (m3 m−3), θg is gravimetric soil 
moisture (wet mass of soil—dry mass of soil/dry mass of soil) (g g−1), ρb is soil 
bulk density and ρw is the density of water (g cm−3). 

In this experiment, in addition to canopy and soil reflectance 
measurements, some direct measurements of LAI and Cab of the grass were 
measured in the laboratory during the stress episode for model validation 
purposes. This enabled the comparison of the destructive laboratory 
measurements of parameters with corresponding properties as retrieved from 
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spectral readings. The measured parameters are described in the following 
subsection. 

2.2.2.2. Leaf area index and leaf chlorophyll content 

LAI was measured directly during the experiment at different dates (having 
various soil moisture contents) by harvesting the pot samples which did not 
have a soil moisture sensor. Leaf area was measured at a representative sub-
sample in the pot and related to its dry mass (oven dried at 65 °C for 48 h). 
To determine the leaf area, leaf samples were placed carefully on a sheet of 
paper and then were scanned with a flatbed scanner (the Xerox ColorQube 
9301, Woerden, The Netherlands). The projected area was calculated using the 
ImageJ (the National Institutes of Health, Montgomery, AL, USA) software 
program. In all cases, we made sure that the leaves were not curled up or 
overlapping and tried to position the leaves to be as flat as possible in the 
position. We calibrated the area meter by using pieces of known area before 
measuring leaves and always checked that the whole leaves were positioned 
within the scanning area. The ratio of leaf area to leaf dry mass, known as 
specific leaf area (Vile et al., 2005), was calculated in cm2 g−1. Finally, the total 
dry mass of leaves collected within the pot surface area was converted into LAI 
by multiplying by the specific leaf area. 

To take measurements of leaf chlorophyll content, we used the SPAD 
502Plus leaf chlorophyll meter (Konica Minolta Sensing, Inc., Sakai, Osaka, 
Japan). We took ten chlorophyll samples from each pot during one 
measurement located in the field of view of the canopy reflectance 
measurements and used the average value. The relative values of the SPAD 
were converted into absolute amount of chlorophyll using a widely used 
calibration curve (Equation (2.2)) from the literature (Markwell et al., 1995): 

0265.0

10SChl  94.02 R (2.2) 

where Chl is the absolute amount of chlorophyll in µmol m−2 and S is the 
unitless value of the SPAD readings. Then, by considering the molecular mass 
of Chla and Chlb, unit conversions were made from μmol m−2 to μg cm−2. 

 2.2.2.3 Visual inspection 

To monitor visible changes in the plants undergoing various treatments, we 
installed a digital camera on the stand (Figure 2.2) to take a photo of each 
sample after measurement of target spectral reflectance. In this manner, we 
could follow the changes of plant status over time by naked eye. The most 
important changes might be detected by visual observation including the 
decoloration of the leaves, the shape of the leaves and the openness of the 
canopy (De Jong et al., 2012). 
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2.2.3. Spectral acquisition 
The grass spectra were measured six times during the experiment. There were 
ten pots in each measurement. In total, 108 spectra were collected in the 
stressed and control group. They were averaged to reduce noise and to 
enhance the representativeness of spectra for a specific day of measurement. 
As a result, six average spectra for the stressed and control group were 
investigated. To analyze the impacts of moisture deficit on different parts of 
the spectra, canopy spectral changes to different levels of moisture deficit 
during the experiment were plotted. To find the time of the first signs of stress 
in the reflectance spectra, we followed (De Jong et al., 2012), and Pearson’s 
correlations were computed between the averaged spectra measured at the 
beginning and those of the measurements during the experiment over time, 
i.e., the other five averaged spectra, in each group. This indicated the degree
of changes in the shape of the reflectance spectra over time. Afterwards, the 
ratio was computed between the averaged spectra measured at the beginning 
and those of the measurements during the experiment to find the relative 
changes as a function of the spectral position and time. 

2.2.4. Water stress-related vegetation indices 
Some of the widely used water stress-related vegetation indices were 
computed for the stressed and control group over time. Computed vegetation 
indices were categorized in three groups depending on the spectral information 
they use (Table 2.1). They can provide valuable information about water stress 
using just a few individual wavelengths. Normalized differences were found 
between the stressed and control groups for each of the computed indices. We 
performed a linear regression over the time series of the control group, then 
calculated the standard deviation of the residual of the data of the control 
group and the regression line, and used this standard deviation to normalize 
the differences between the two groups (control and stressed). The normalized 
values account for the variability in the control group. Selected vegetation 
indices were investigated during the drought episode to find the most sensitive 
indices for the stress detection in the early stages. A selection of the stress 
indices was made based on the literature. 
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Table 2.1. List of the widely used water stress-related vegetation indices reviewed from 
the literature and used throughout this study. Rxxx indicates the reflectance at a specific 
wavelength 

Spectral Index Equation Eq. Reference 
1.VIS region (450–700)

Blue/Red pigment Index 2 BRI2 = R450/R550 (2.3) 
(Zarco-

Tejada et 
al., 2005) 

Blue/green pigment Index RGI = R690/R550 (2.4) 
(Zarco-

Tejada et 
al., 2005) 

Photochemical Reflectance 
Index PRI = (R570 – R531)/(R570 + R531) (2.5) (Gamon et 

al., 1992) 

Normalized Photochemical 
Reflectance Index 

PRI (norm) = PRI/[((R800 − 
R670)/sqrt (R800 + R670)). 

R700/R670] 
(2.6) 

(Zarco-
Tejada et 
al., 2013) 

2.NIR region (700–1300)

Normalized Water Index 1 NWI1 = (R970 − R900)/(R970 + R900) (2.7) (Babar et 
al., 2006) 

Carter Index 2 CTR2 = R695/R760 (2.8) (Carter, 
1994) 

Normalized Difference Water 
Index 1241 

NDWI_1241 = (R857 − R1241)/(R857 + 
R1241) (2.9) (Gao, 

1996) 

Water Band Index WBI = R900/R970 (2.10) 
(Penuelas 

et al., 
1995) 

Three-band ratio 975 
RATIO975 = 2 ∑(R960:R990)/( 

∑(R920:R940)+ ∑(R1090:R1110)) (2.11) (Pu et al.,
2003) 

Three-band ratio 1200 

RATIO 1200 =  
2 ∑(R1180:R1220)/( 

∑(R1090:R1110)+ ∑(R1265:R1285)) (2.12) (Pu et al.,
2003) 

3.NIR/SWIR region (1300–
2450) 
Normalized Difference Water 
Index 1640 

NDWI_1640 = (R857 − R1640)/(R857 +
R1640) (2.13) (Chen et 

al., 2005) 
Normalized Difference Water 
Index 2130 

NDWI_2130 = (R857 − R2130)/(R857 + 
R2130) (2.14) (Chen et 

al., 2005) 

Moisture Stress Index MSI = R1599/R819 (2.15) 

(Ceccato 
et al., 
2001; 
Hunt Jr 

and Rock, 
1989) 

Normalized Difference 
Infrared Index 

NDII = (R819 − R1649)/(R819 + 
R1649) (2.16) (Jackson et

al., 2004) 

2.2.5. Radiative transfer (RT) models  
Implementations of the well-known and widely used PROSPECT 

(Jacquemoud and Baret, 1990) and SAIL (Verhoef, 1984, 1985) radiative 
transfer models were selected for physically based leaf and canopy parameter 
retrieval. We used the RTMo model, which is a version of the four-stream SAIL 
model for the radiative transfer of incident light in canopies as used in the 
SCOPE model (Van der Tol et al., 2009b). RTMo is a combination of the “4SAIL” 
model (Verhoef et al., 2007), with a few additions, and the leaf radiative 
transfer model “Fluspect” which is basically the “PROSPECT5” model with a few 
modifications and additions. The main differences between RTMo (4SAIL + 
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Fluspect) and PROSAIL (SAILH + PROSPECT4) are: (1) The leaf angle 
distribution in RTMo is described with two parameters; the mean leaf inclination 
parameter (LIDFa) and the bimodality of the leaf inclination distribution 
(LIDFb), while PROSAIL uses only the Mean Leaf Inclination Angle (MLA); (2) 
the fraction of diffuse incoming solar radiation in RTMo is spectrally dependent, 
whereas in PROSAIL it is considered as a constant value. Retrieval of canopy 
parameters from hyperspectral canopy level measurements was performed by 
inverting the RTMo model. The PROSPECT5 model (Jacquemoud et al., 1996; 
Jacquemoud and Baret, 1990) calculates the leaf hemispherical reflectance and 
transmittance as a function of four input parameters: (1) the leaf structural 
parameter N (unitless); (2) the leaf chlorophyll a + b concentration Cab (μg 
cm−2); (3) the dry matter content Cdm (g cm−2); and (4) the water 
concentration of the leaves Cw (g cm−2). In Fluspect, also brown pigment 
concentration, i.e., Cs (arbitrary unit), is included. The 4SAIL model (Verhoef, 
1984, 1985) is a one-dimensional bidirectional quasi-turbid medium radiative 
transfer model since leaf size is considered for the hot-spot effect. It defines 
the canopy as a horizontally homogeneous layer that consists of small, flat 
leaves. In addition to leaf reflectance and transmittance, the RTMo model 
requires some other input parameters to simulate the top-of-canopy 
bidirectional reflectance. These are the sun zenith angle, θs (deg); the sensor 
viewing angle, θo (deg); the relative azimuth angle between sensor and sun, 
ψ (deg); spectra of solar irradiance, Esun; sky irradiance, Esky, background 
reflectance (soil reflectance), rsl; LAI (m2 m−2); the hot-spot size parameter, 
defined as the ratio between the average width of the leaves and the canopy 
height (Verhoef and Bach, 2007), and the leaf inclination distribution function 
(LIDF). 

2.2.6. Local sensitivity analysis of RTMo 
By performing a sensitivity analysis for a model, the most (and least) 

important input parameters and, therefore, their roles in explaining the 
variance in the model output can be identified (Bowyer and Danson, 2004; 
Saltelli et al., 2000). At the canopy level, local sensitivity analysis (LSA) was 
executed to find the influence of small changes in RTMo input parameters on 
different parts of the reflectance spectrum. In this study, LSA relies on the 
Jacobian J, which is the matrix of first partial derivatives of the relative model 
output. To improve the comparability of the various model parameters, the 
Jacobian was calculated by varying each parameter by 1% of its range and 
recording the corresponding reflectance difference. This reflectance difference 
equals: 

100
minmax PP

Jr


 (2.17) 

where J is the corresponding element of the Jacobian matrix. Pmax is the 
maximum and Pmin is the minimum value of input parameter P. To evaluate the 



Exploiting hyperspectral reflectance observations… 

22 

influence of the parameters k over the entire spectrum and to find the most 
(and least) influential parameters, the indicator αk was defined as: 





n

i
kiJ

n
k

1

2
,

1 (2.18) 

2.2.7. Inversion of RTMo 
Inversion of a physical reflectance model aims at finding the set of input 

parameters which leads to the best match between simulated spectra by the 
model and observed spectra by the sensor. We used an iterative optimization 
technique for model inversion. The iterative optimization technique searches 
for the best fit between the simulated and the measured reflectance spectra 
by iteratively running the canopy reflectance model (Figure 2.3) for different 
values of the input variables. The minimization of a cost function that accounts 
for the differences between the simulated and the measured reflectance 
spectra is used as a stopping criterion for this optimization problem. There are 
several studies that used different mathematical and statistical approaches to 
find the minimum (Dorigo et al., 2007). 

Figure 2.3. Conceptualization of the iterative optimization technique used in this study. 
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Table 2.2 shows the initial guesses of input parameters used during the 
model inversion. To consider the contribution of the background soil reflectance 
in the model inversion, we changed the model soil spectra based on the value 
of soil moisture recorded in the pot for which canopy reflectance was taken. 

Table 2.2. Initial guess of parameters for retrieval and their status in the model 
inversion. 

Parameter Abbr. in 
Model Unit Initial 

Guess 
Parameter 

Status 
Leaf chlorophyll content Cab μg cm−2 40 Tuned 
Leaf water content Cw g cm−2 0.009 Tuned 
Carotenoids  Cca μg cm−2 5 Fixed
Leaf dry matter content Cdm g cm−2 0.012 Tuned 
Senescent material Cs - 0 Tuned
Leaf structural parameter N - 1.5 Fixed
Leaf area index LAI m2 m−2 1 Tuned
Leaf inclination distribution 
function LIDFa - −0.35 Tuned

Bimodality of the leaf 
inclination LIDFb - −0.15 Tuned

Hot-spot size parameter hot m m−1 0.05 Fixed 
Solar zenith angle θs deg 45 Fixed
Observation zenith angle θo deg 0 Fixed
Relative Azimuth Angle ψ deg 0 Fixed

The “Trust Region” algorithm implemented in the MATLAB (the MathWorks, 
Inc. Natick, MA, USA) function “lsqnonlin” was used to minimize the cost 
function. The cost function calculated was simply the sum of the squared 
differences over the whole wavelength range of the measured reflectance. 
From the result, the Root Mean Square Error (RMSE) between measured and 
simulated spectra was calculated. To avoid local minima, we did the 
minimization in numerous loops starting with various initial values. We 
changed the model initial values and simulated the canopy spectra. The results 
(data not shown) showed no significant effects of initial value choices on the 
retrieved properties and the calculated RMSE between measured and simulated 
spectra. 

2.2.8. Inversion performance evaluation (statistics of errors) 
Table 2.3 presents a list of goodness-of-fit measures used in this research 

to indicate the agreement between simulated and observed values of LAI and 
Cab. Error indices (category 1 in Table 2.3) quantify the deviation of modeled 
from observed values. The statistics therefore describe the departure of model 
estimations from the one-to-one line (Richter et al., 2012). The main 
advantage of calculating these error indices is that they represent the simple 
or squared differences between observed and simulated data. Correlation-
based measures (category 2 in Table 2.3), have the advantage of being 
bounded (for R2 between 0 and 1), and, therefore, are independent of the unit 
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of the parameter. The two most often used and traditional measures from 
category 1 and 2 (i.e., RMSE and R2, respectively) are often seen as insufficient 
for model validation purposes (Atkinson et al., 2012; Richter et al., 2012). 
Instead, there are some dimensionless statistics (category 3) proposed in 
many studies, such as relative and normalized variations of the RMSE (i.e., 
RRMSE and NRMSE, respectively). The particular advantage of RRMSE and 
NRMSE is that the actual error can be calculated without being affected by the 
data unit. 

Table 2.3. Statistical measures used for evaluation of RTMo model inversion results. 
Statistical Measure Equation Eq. Unit/Range 
(1) Error Indices 

Root Mean Square 
Error ܴܧܵܯ ൌ ඩ

1
݊
ሺ ܸ௦௧

 െ ܸ௦
 ሻ



ୀଵ

ଶ

(2-19) Data unit 

(2) Correlation-
Based Measure 
Coefficient of 
Determination ܴଶ ൌ 1 െ

∑ ሺ ܸ௦
 െ ܸ௦௧

 ሻଶ
ୀଵ

∑ ሺ ܸ௦
 െ തܸ௦ሻଶ


ୀଵ

 (2-20) 0 to 1 

(3) Dimensionless 
Error Indices 

Normalized RMSE ܴܰܧܵܯ ൌ
ܧܵܯܴ

ܴܽ݊݃݁ ሺݏܾሻ
(2-21) 0 to ∞ 

Relative RMSE ܴܴܧܵܯ ൌ 100 ൈ
ܧܵܯܴ

݊ܽ݁ܯ ሺݏܾሻ
(2-22)      0 to ∞ 

2.3. Results 

2.3.1. Visual inspection 
Grass responses to soil moisture deficit were tracked visually during the 

drought episode by analysis of their pictures. The visible signs of stress were 
increasing with time when moisture deficit progressed. The leaves turned from 
shiny to dull, decoloring to brown at the first signs of stress on day 10–11 of 
the experiment. Afterwards, by progress of stress, leaves started curling, 
shrinking, losing their color, allowing the brown leaves to dominate. At the end 
of the experiment in severe water stress, plants permanently wilted, all the 
leaves were discolored and the plants dried out completely and died. 

2.3.2. Shape of reflectance spectra 
The changes in the shape of reflectance spectra for the selected grass, Poa 

pratensis, in response to the soil moisture deficit is illustrated in various ways. 
First, we visualized the effects of specific moisture deficit on the collected 
spectra to interpret the moisture-induced impacts on the shape of the 
reflectance curve on both canopy and soil from 450–2450 nm. Then, relative 
changes of the canopy reflectance values over time were analyzed to find the 
position and the time of the first sign of stress. Figure 2.4a shows selected 
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measured spectra collected over the experiment in different soil moisture 
content. This result confirms that the stress affected all parts of the spectrum 
(either directly or indirectly) at the canopy level. Some parts of the spectrum, 
like 800–1100 nm, show a distinct decrease of reflectance values during the 
drought episode in case the plant is under stress. However, this is not the case 
under normal conditions in which the plant is not under stress (e.g., soil 
moisture contents ≥0.3, in the first days of the experiment). For instance, the 
reflectance in the region 800–1100 nm at a soil moisture of 0.02 m3 m−3 is 
lower than the canopy reflectance collected under other stress conditions (e.g., 
soil moisture contents 0.2, 0.15, 0.10 and 0.05 m3 m−3). The water absorption 
bands at 1450 and 1940 nm showed the strongest response by an increase of 
the reflectance. The visible green and visible red show smaller albeit distinct 
changes. 

(a)   (b)   

Figure 2.4. The changes in the shape of reflectance spectra in responses to drought. (a) 
Canopy spectra change at different levels of soil moisture (SM) deficit; (b) Soil 
reflectance changes under different soil moisture conditions. 

The spectra collected in the first stages of the drought episode (with soil 
moisture content of 0.3 (m3 m−3)) had low reflectance values in the visible part 
of the spectrum due to high concentrations of leaf chlorophyll. However, a 
decrease in chlorophyll concentration as a result of water stress increased the 
visible reflectance. Canopy reflectance of vegetation also depends on the 
reflectance properties of the underlying soil (Huete, 1987). Figure 2.4b 
illustrates how soil reflectance changed due to different soil moisture contents 
in the experiment. 

To find the time when the first drought-induced changes take place, we 
computed Pearson’s correlation [as in (De Jong et al., 2012)] between the 
mean spectrum taken at the beginning of the experiment and those of the 
measurements during the experiment over time in both stressed and control 
treatments (Figure 2.5a). Values smaller than 1.0 indicate that the shape of 
the spectral curve changed compared to the first measurement taken at the 
beginning of the experiment in the stressed and control groups. This analysis 
showed that on 17 September 2014 the first sign of stress occurred since the 
reflectance of Poa pratensis started deviating from the first measurement as 
early as day 4 and, therefore, the correlation of the stressed group started 
declining at this time. To identify the spectral position in which the first signs 
of stress could be detected, we calculated the ratio between reflectance values 
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collected at day 11 and day 4 for the stressed group expressed as a percentage 
change (Figure 2.5b). The first considerable responses could be seen at the 
major water absorption bands, especially at 1930 nm (62%) and 1440 nm 
(29%). Furthermore, distinct changes were detected around 550–700 nm with 
a maximum at 675 nm (31%). However, the minor water absorption bands 
around 970 nm and 1200 nm did not show different responses from the 
surrounding wavelengths and were not recognizable in the graph. 

(a)   (b)   

Figure 2.5. Spectral changes due to soil moisture deficit. (a) Pearson’s correlation of the 
mean spectra taken at the beginning of the experiment and those of the measurements 
during the experiment over time in both stressed and control treatments; (b) Relative 
changes (%) between the first measured spectra at day 4 and the spectra measured at 
day 11. 

2.3.3. Spectral indices 
To find the most sensitive spectral indices for detection of water stress in 

the early stages, we computed the widely used indices related to water stress. 
The selected indices showed different behaviors over time during the 
experiment. The normalized differences of the index values in the stressed 
group compared to the control group are displayed in Figure 2.6. To find the 
normalized differences of the index values, first a linear regression was 
performed over the time series of the control group. Second, the standard 
deviation of the residual of the data of the control group with respect to the 
regression line was calculated, as a measure for the variability in the control 
group. This standard deviation was used to normalize the differences between 
the two groups (control and stressed). The threshold of two times the response 
of the control group, suggested in previous studies (De Jong et al., 2012), was 
used to decide whether the stress index actually detected the stress or not. 
Based on this threshold, the majority of selected indices could detect the stress 
in the early stages (Figure 2.6a). The results showed that the NDWI_1241 was 
the best stress detector by exceeding the threshold. The response of the 
NDWI_1241, RATIO1200, BGI2 and NDWI_2130 were 10, 8.7, 8.6 and 8.2 
times stronger for the stressed group than for the control group, respectively 
(Figure 2.6a). 

The MSI, NDII, NWI_1, and WBI indices also showed a stronger response 
(greater than six times the one of the control group) to the stress in the early 
stages. However, PRI_norm showed no detectable response to the stress since 
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its response stayed below the defined threshold. The vegetation indices 
responses to long-term stress, at the end of the experiment, showed that all 
of the selected indices detected the stress (Figure 2.6b). The results showed 
that the PRI_norm was the best detector of long-term stress conditions. The 
response of the PRI_norm, CTR2, BGI2 and NDWI_1241 to long-term stress 
were 76, 53, 51 and 44 times stronger for the stressed group than for the 
control group respectively (Figure 2.6b).  

 
(a)

(b)

Figure 2.6. Normalized changes of vegetation indices in the stressed group (compared 
to the control group). (a) At day 11 (short-term stress); (b) At day 36 (long-term stress). 
 

Figure 2.7a,b shows the development over time for the two best-
performing stress indices (NDWI_1241 and RATIO1200) in response to short-
term stress (at day 11). Figure 2.7c,d shows the development over time for 
the two best-performing stress indices (PRI_norm and CTR2) in response to 
long-term stress (at day 36). As expected, indices in the control group did not 
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change over time, except for small variations that might be explained by the 
noise level of the index (De Jong et al., 2012). 
 

(a)  (b)

(c) (d)

Figure 2.7. Trend of the best indices during the stress episode. (a) NDWI_1241 at day 
11; (b) RATIO1200 at day 11; (c) PRI_norm at day 36; (d) CTR2 at day 36. 
 

NDWI_1241, the best performing index for short-term stress (at day 11) 
showed a downward trend over time during the experiment, whereas 
RATIO1200, PRI_norm and CTR2 showed upward trends. In addition, we found 
that BGI2 and NDWI_1241 had detectable and strong responses for both short-
term and long-term stress. 

2.3.4. Radiative transfer modeling 

2.3.4.1. RTMo sensitivity analysis results 

We changed all the parameters (Cab, Cdm, Cw, Cs, LAI, and LIDFa) by 1% of 
their total range (Table 2.4) and then determined the reflectance differences 
(Figure 2.8). This shows the influence of each parameter in a comparable way. 
The normalized derivative demonstrated two clearly indicated peaks in the 
reflectance response to Cab change at 557 nm and 710 nm (Figure 2.8a). The 
second peak was the most sensitive one of the entire spectrum and the visible 
region was indicated as the most sensitive to Cab change. In contrary, the small 
variation in Cw was expressed most strongly in the SWIR (Figure 2.8b). The 
greatest sensitivity to variation in Cw was exhibited at 1400, 1870, 1516, 2225 
nm. Variation in Cw also contributes significantly in the NIR, especially at 1198 
and 976 nm. Variation in the Cdm was expressed most strongly in both the NIR 
and the SWIR (Figure 2.8c). It showed pronounced peaks at 916, 1075, 1272, 
1719, 2182 and 2273 nm. Two clearly indicated peaks are observed in the 
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reflectance response to Cs change at 551 nm and 748 nm. However, the NIR 
and SWIR parts did not respond to changes of the Cs parameter (Figure 2.8d). 
Although variations in LAI and LIDF triggered the reflectance response at 
similar spectral wavelengths (910, 1081, 1279, 1681, 1827 and 2221 nm), the 
LIDF response was quite weak compared to the one of LAI (Figure 2.8e,f). 

(a)  (b)

(c) (d)

(e) (f)

Figure 2.8. The partial derivative of canopy reflectance simulated by RTMo to change of 
each input parameters (by one percent of their total range). (a) Cab; (b) Cw; (c) Cdm; (d) 
Cs (e) LAI; (f) LIDFa. 

The computed αk values (Table 2.4) showed that the most influential 
parameters over the entire spectrum were LAI and Cw with αLAI and αCw values 
of 0.0231 and 0.0039. Thus, by having a small change in these parameters, 
the reflectance will respond relatively stronger in comparison to the other ones. 
The least influential parameters identified were Cab and Cs. 
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Table 2.4. Variation range of parameters for sensitivity analysis and the computed αk. 

Parameter Abbreviation in 
Model Unit Variation 

Range αk 

Leaf chlorophyll content Cab mg 
cm−2 0–100 0.0008 

Leaf water content Cw g cm−2 0–0.05 0.0039 
Leaf dry matter content Cdm g cm−2 0–0.02 0.0016 

Senescent material Cs - 0–0.3 0.0002
Leaf area index LAI m2 m−2  0–6 0.0231 

Leaf inclination distribution 
function LIDFa - −1–+1 0.0012 

2.3.4.2. RTMo inversion results 

The RMSE of measured and simulated spectra was employed as the 
criterion of the RTMo model inversion performance. Figure 2.9a,c shows two 
representative examples (at days 11 and 36) for spectra goodness of fit. 
Further, the difference between two simulated and measured canopy spectra 
on different days (days 11 and 36) of the experiment is shown in Fig. 2.9b,d. 
These examples represent the performance of the inversion since good quality 
of spectral fit achieved.  

(a)  (b)

(c) (d)

Figure 2.9. Left panels show the goodness of fit for the spectra obtained between 
measured reflectance (shown as red solid lines) and the simulated reflectance spectra 
(shown as blue dashed lines) on different days of the experiment; (a) day 11 and (c) 
day 36, and right panels show the difference between two simulated and measured 
reflectance spectra at (b) day 11; (d) day 36. 

Furthermore, the distribution of RMSE between measured and simulated 
canopy reflectance spectra during the drought experiment for all simulations 
(under various soil moisture conditions) is presented in Figure 2.10. The small 
error in the model inversion (0.002 < RMSE < 0.009) showed that the model 
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was able to accurately reproduce all observed reflectance spectra under 
different soil moisture contents during the experiment. 

Figure 2.10.The distribution of RMSE between measured and simulated spectra for all 
simulations. 

In addition, the inversion results were also evaluated in their accuracy 
(deviations from the measured parameter values). In Figure 2.11, the 
retrieved and measured LAI and Cab are illustrated in the form of scatter plots 
and deviations from the one-to-one line. 

For the retrieved and measured properties, statistical measures were 
calculated. Varying statistical performances are given for the two variables 
(i.e., LAI and Cab; Table 2.5). RMSE and R2 calculated 0.75 (m2 m−2), 0.87 for 
LAI and 4.61 (µg cm−2), 0.74 for Cab estimation. Because of the different units, 
we also calculated NRMSE and RRMSE, which are dimensionless and suitable 
measures for comparisons between LAI and Cab variables. The calculated 
NRMSE (LAI: 0.18, Cab: 0.15) and RRMSE (LAI: 24.8%, Cab: 19.8%) are 
presented in Table 2.5. 
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(a) (b)

Figure 2.11. Retrieved versus measured vegetation parameters. (a) Cab; (b) LAI. 

Table 2.5. Evaluation of RTMo model inversion results for LAI (n = 8) and Cab (n = 
95) estimation.

Statistical Measure LAI Unit Cab Unit
RMSE 0.75 m2 m−2 4.61 µg cm−2 

R2 0.87 - 0.74 -
NRMSE 0.18 - 0.15 -
RRMSE 24.8 % 19.8 %

2.3.4.3. Trend of the retrieved grass properties 

Retrieved properties variations over time during the experiment are plotted 
in Figure 2.12. This way, we could follow the trend of changes and detect water 
stress impacts on the retrieved properties. We presented the properties 
changes over time in separated stressed and control groups derived from the 
averaged spectra of all measurements from the same day. In almost all cases, 
the value of the control group displayed, as expected, a horizontal course 
indicating that vegetation properties did not change much during the 
measurement period. However, water stress affected all grass properties in the 
stressed group during the drought episode. The maximum value retrieved for 
the Cab at the first measurement (day 4) was about 22 (ug cm−2), which then 
decreased during the experiment and reached the minimum value of 3.6 on 
the last measurement (day 36). The Cw changed from 0.006 to 0.001 (g cm−2) 
from the beginning of the experiment to the end. Following the responses of 
Cdm and Cs to the stress over time showed a different trend in comparison to 
the other properties since they deviated away from the horizontal control line 
upward. The minimum value for Cs was retrieved on day 4 while the maximum 
value recorded at the end of experiment on day 36. LAI responded to the stress 
during the experiment and decreased from 2.3 (m2 m−2) at the beginning to 
1.5 (m2 m−2) at the end of the experiment. In addition, the results showed that 
LAI and Cs responded to the stress relatively late (after day 11) compared to 
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the other properties such as Cw, Cdm and Cab which responded in the early 
stages (day 4). 

(a)  (b)

(c) (d)

(e) (f) 

Figure 2.12. Trend of the retrieved properties. (a) Cab, (b) Cw, (c) Cdm (d) Cs, (e) LAI 
changes over time. Further, the normalized differences and relative changes of the 
properties is shown during the experiment (f). The normalized values account for the 
variability in the control group. 

To compare the effects of stress on various retrieved properties and detect 
the order of grass responses during the experiment, we normalized the 
differences for each of the properties between the stressed and the control 
group. The normalized values account for the variability in the control group. 
The relative changes of the properties in early stages of the stress (Fig. 2.12f) 
demonstrate that the first effects of stress on the grass properties are the 
change of Cw and Cab, followed by Cdm and Cs. These properties started 
responding to stress in the earlier stages of stress. LAI and Cs did not respond 
to the stress until 15 days after the start of the experiment. Almost all grass 
properties responded to the stress at the end of the experiment. The strongest 
response at the end of the experiment compared to the control group was the 
change of Cs, followed by Cab, Cw, Cdm and LAI, respectively. 
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2.4. Discussion 
We conducted a drought experiment to follow water stress impacts on 

grass reflectance and properties over time. This experiment lasted for 80 (35 
+ 36 + 9) days. In the first 35 days, all plants were watered regularly until the 
canopy height was about 15 cm and the maximum growth reached. In the next 
36 days, the canopy spectral measurements were collected in the stressed and 
control group. In addition, direct measurements of LAI and Cab were taken 
during this period. In the last nine days, soil reflectance measurements under 
various moisture conditions were taken. After the experiment, all of the plants 
ultimately died except for the control group. 

2.4.1. Visual interpretation of the stress effects 
The visible signs of stress on the plants, including curling and shrinking of 

the leaves, becoming fragile, turning from shiny to dull and finally some leaves 
decoloring, were observed first after 10–11 days from the start of the drought. 
From day 19 onwards the proportion of dry leaves increased rapidly. The visible 
signs of stress were increasing by the time the moisture deficit progressed. 
This confirms other studies revealing similar results. For instance, De Jong et 
al reported the first visible sign of different stresses (water saturation, light 
deprivation, water deprivation, heat and chlorine poisoning) for Buxus 
sempervirens on average after 15 days for all stresses and after 13 days for 
water deprivation (De Jong et al., 2012). They also found that the analysis of 
the infrared photos collected during the stress did not provide additional 
information after the visual inspection of the plants. An interpretation of the 
canopy reflectance responses to soil moisture deficit revealed that the stress 
affected all parts of the spectrum. In particular, changes were detected in the 
450–700 nm and 1300–2500 nm ranges (Figure 2.4), which can be explained 
by the role of the concentrations of pigments and water, respectively. These 
findings are in full agreement with Carter (Carter, 1991), Zarco-Tejada et al 
(Zarco-Tejada et al., 2003) and Chavez et al (Chávez et al., 2013), who 
demonstrated two effects of water stress on the reflectance spectra; direct 
(primary) effects and indirect (secondary) ones. ”Direct effects” are the 
primary impacts of water stress (dehydration) on vegetation which resulted 
solely from the spectral properties of water (this gives changes of the 
reflectance in the range of 1300–2500 nm because of less absorption by 
water). The “indirect effects” are secondary impacts that could not be 
explained solely by the spectral properties of water (manifested by changes of 
the reflectance in the range of 400–700 nm because of more cell wall–air 
interfaces within the leaf tissue as well as the effect of dehydration on the 
concentrations of pigments). Canopy spectral reflectance in the NIR region 
(750–1300 nm) initially increased but, in later stages of water stress, it 
decreased. This pattern can be explained by the consequence of the 
deterioration of cell walls (Knipling, 1970), loss of leaves and the changes in 
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LIDF (Asner, 1998). Our findings of NIR responses to water stress support 
previous studies (Chávez et al., 2013; Clevers et al., 2010; Hunt Jr and Rock, 
1989).  

2.4.2. First sign of the stress 
The analysis of the collected spectra over time showed that the first 

considerable responses could be seen near the major water absorption bands 
especially at 1930 nm and 1440 nm (Figure 2.5b). In addition, distinct changes 
were detected around 550–700 nm with a peak value located at 675 nm. We 
did not detect significant changes at the location of the minor water absorption 
bands at 970, 1200, and 1770 nm, which is in agreement with previous studies 
(De Jong et al., 2012). Based on Pearson’s correlation analysis, the correlation 
of the stressed group started declining from day 4, thereby showing the first 
sign of the stress visible in the spectra. Pearson’s correlation computation 
between the spectra proved a valuable way to detect subtle spectral changes 
and to identify the moment in time of the stress-induced spectral changes of 
the plant. The spectroscopic signs of stress were detectable 6 days before the 
visible signs. Thus the use of spectroscopic techniques allows a much earlier 
detection of plant stress than visible inspection. 

2.4.3. Water stress-related vegetation indices 
The vegetation indices that best illustrated the stress effects in the earlier 

stages in our experiment were the NDWI_1241 and RATIO1200. These two 
spectral indices, using the reflectance in NIR and SWIR around 857, 1241, 
1180–1220, 1090–1110, 1265–1285 nm, were the most sensitive ones among 
the examined indices. This is in agreement with Ceccato et al (Ceccato et al., 
2001) who concluded that a combination of SWIR and NIR is necessary to 
improve the accuracy in estimating vegetation water content at the leaf level 
from optical observations. Our study showed that the response of the 
NDWI_1214 was ten times as strong for the stress group as for the control in 
the early stages of the stress. This index is a measure of liquid water molecules 
in vegetation canopies that interacted with the incoming solar radiation. This 
is in agreement with Gao (Gao, 1996) who demonstrated the sensitivity of 
NDWI to the total amounts of liquid water in stacked leaves. He explained the 
reasons of sensitivity of NDWI by the location of the selected channels, their 
negligible or weak absorption properties and less sensitivity to atmosphere 
effects, although atmospheric effects are not relevant in the present study. The 
spectral indices that best illustrated the development of water stress over time 
during the experiment were PRI_norm and CTR2. PRI_norm is normalized by 
both structure and by the red edge chlorophyll-related index. Zarco-Tejada et 
al (Zarco-Tejada et al., 2013) concluded that PRI_norm is a more linearly 
related index for reading canopy chlorophyll content levels than the standard 
PRI index, due to its good performance. CTR2 uses the wavelength 760 (NIR 
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shoulder) in combination with a spectral band in the red edge at 695 nm, which 
is sensitive to chlorophyll, to compute the index value. Our results match other 
studies which identified CTR2 as one of the best stress indicators (Carter and 
Miller, 1994; De Jong et al., 2012; Noomen et al., 2008). 

2.4.4. RTMo sensitivity analysis 
Local sensitivity analysis provided useful insights about the parameter 

changes’ influences on the simulated reflectance. The results showed the ability 
of the RTMo model to link variations of reflectance to variations of grass 
properties. Small changes in Cw resulted into strong responses in the SWIR 
part of the spectrum. The importance of Cw in accounting for variance in the 
SWIR supports previous studies (Ceccato et al., 2002, 2001; Tucker, 1980). 
The variation in Cdm showed significant responses in the SWIR and NIR part. 
This is in agreement with other studies as well (Bowyer and Danson, 2004; 
Ceccato, 2002). The main cause of the strong response in the NIR part might 
be explained by the absorption of Cdm since it is the only absorber in most of 
the NIR region and tends to increase with the age of the leaf (Merzlyak et al., 
2002). The response of reflectance to a small variation in LAI and LIDF was 
detected at similar wavelengths in the NIR and SWIR. This is in agreement 
with other studies which reported similar effects of LAI and LIDF in PROSAIL 
model sensitivity analysis (Jacquemoud et al., 2009). Reflectance in the green 
(557 nm) and red edge (710 nm) responded clearly to changes of Cab. This 
result confirms other studies explaining the relationship between reflectance 
and Cab (Daughtry, 2000). 

2.4.5. RTMo retrieval 
A physical approach was adopted in this research to retrieve grass 

properties from spectroradiometer measurements. This has many advantages, 
as it is based on physical laws, use of all spectral bands, the least reliance on 
in-situ measurements and it gives generalizable results, just to name a few 
(Atzberger et al., 2015, 2011). However, use of this approach (i.e., radiative 
transfer models) is more complex than a simple statistical method (i.e., 
vegetation indices). Several studies have demonstrated that vegetation 
properties retrieval using radiative transfer models yields more accurate 
results compared to that of vegetation indices. For instance, Atzberger et al 
compared physical and statistical-based retrieval methods to map grassland 
LAI using airborne imaging spectroscopy (Atzberger et al., 2015). They 
concluded that RTM inversion based on a look-up table approach and predictive 
equations yields a higher accuracy with a normalized RMSE of 0.18 and 0.38 
respectively for LAI estimation. In our experiment, although we inverted the 
RTMo model by means of an optimization algorithm, the results for LAI retrieval 
are in good agreement with the findings of Atzberger et al. The calculated 
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normalized RMSE for LAI retrieval in our experiment is 0.18 (Table 2.5) which 
is in agreement with their studies (Atzberger et al., 2015). 

Simulated spectra fitted well with measured spectra collected at different 
soil moisture deficit conditions during the drought experiment. Low RMSE 
between measured and simulated spectra (ranging from 0.002 to 0.009) for a 
variety of soil moisture conditions confirmed that the inversion was successful 
for all spectra collected in the entire episode. We conclude that there was a 
positive significant relationship between retrieved and measured properties. 
Nevertheless, the variation in properties, (i.e., the range of values) especially 
in Cab, showed that retrieved values had a smaller range than the destructive 
measurements. This might be explained by two facts: (1) the RTMo model uses 
one Cab value for all leaves in the pot, but measurements taken from individual 
leaves are more variable; and (2) to convert the relative values of the 
measured chlorophyll by SPAD 502 into the absolute values we used a 
calibration curve from the literature (Markwell et al., 1995). Changes of Cw and 
Cab were found as the first signs of stress on vegetation properties. Other 
researchers concluded that changes in canopy reflectance due to water stress 
were mostly explained by equivalent water thickness and LAI (Chávez et al., 
2013). We found that all vegetation properties responded to stress at the end 
of the experiment. The strongest response at the end of the experiment 
compared to the control group was the change of Cs, followed by Cab, Cw, Cdm 
and LAI. Our experiment shows that soil moisture deficit stress impacts can be 
tracked in a drought episode over time using remote sensing methods. 
Spectroscopy is a valuable technique to detect stress effects on the reflectance 
spectra in an early stage. 

2.5. Conclusions 
In this study, we investigated in the laboratory the grass response to water 

stress in a Poa pratensis canopy exposed to various levels of soil moisture 
deficit. We used spectroscopic techniques, to observe the stress impacts on 
canopy reflectance, and radiative transfer model inversion, to detect stress 
effects on grass properties. These techniques have a promising potential of 
detecting the drought-induced effects on grass reflectance and properties 
during a drought episode. Sensitivity analysis of simulated reflectance to a 
small change of its input parameters shows that changes in LAI, Cw and Cdm 
trigger a stronger response in the reflectance compared to the other 
parameters. The RTMo inversion shows that Cw, Cab and Cdm respond strongly 
to short-term moisture-deficit stress, while LAI and Cs changes are the main 
responses of vegetation to long-term stress. Spectral measurements allow 
moisture stress detection up to six days earlier than visual naked-eye 
observations. The first spectral signs of stress are detectable near the major 
water absorption bands. Among grass properties, the first signs of moisture 
stress are changes of Cw and Cab. The most promising water stress-related 
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vegetation indices for early stress detection are NDWI_1241 and RATIO1200 
since their responses to the stress were significantly stronger in the early 
stages for the stressed group. In addition, for the entire drought episode, 
PRI_norm and CTR2 are identified as the best ones for stress detection. This 
research demonstrated that spectroscopic techniques and RTMo inversion allow 
presymptomatic monitoring (early detection) of changes in the canopy 
reflectance and biophysical properties non-destructively. Beyond the scale and 
plant species of this study, it is unclear how broadly applicable this approach 
will be and to what extent these findings could be generalized, since this would 
require applying the proposed approach in the “real world” using satellite 
observations. It is currently under investigation by the authors to upscale the 
results obtained in this study to field conditions. We expect that spectral 
analysis and the RTMo model inversion against satellite images would enable 
the detection of water stress impacts on vegetation properties in the 
ecosystem.  



39 

Chapter 3  Exploiting multispectral satellite radiance 
observations by coupling radiative transfer models* 

* This chapter is based on:
Bayat, B., Van der Tol, C., Verhoef, W., 2018. Retrieval of Land Surface Properties from 
an Annual Time Series of Landsat TOA Radiances during a Drought Episode using 
Coupled Radiative Transfer Models. Remote Sensing of Environment, 2018, 
https://doi.org/10.1016/j.rse.2018.09.030. 

Bayat, B., Verhoef, W., Van der Tol, C., 2017. MOD-PROSAIL: a Coupled Atmosphere-
canopy Radiative Transfer Model for the Retrieval of Vegetation Properties from Remote 
Sensing Observations with Application to Drought Effects Detection. The 5th International 
Symposium on Recent Advances in Quantitative Remote Sensing RAQRS'V 2017, 
Valencia, Spain, 18–22 September 2017. 
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ABSTRACT  

The accurate retrieval of land surface vegetation properties under varying 
environmental conditions from time series of moderately high spatial resolution 
satellite observations is challenging. By coupling various Radiative Transfer 
(RT) models one can describe the soil, vegetation and the atmosphere 
contributions in a “bottom-up” approach and, thereby, simulate top-of-
atmosphere (TOA) spectral radiance data comparable to satellite-observed 
TOA radiances. This makes it possible to retrieve vegetation properties directly 
from TOA radiances rather than from atmospherically corrected top-of-canopy 
(TOC) reflectance data. The advantages of this approach are that a separate 
atmospheric correction of the satellite images is not necessary, and that the 
anisotropic surface reflection can also be taken into account effectively. In this 
study, we coupled various RT models, including the brightness – shape – 
moisture (BSM) reflectance model of the soil, the optical radiative transfer 
(RTMo) model of vegetation and the ‘MODerate resolution atmospheric 
TRANsmission’ (MODTRAN) model of the atmosphere, to simulate an annual 
time series of Landsat satellite TOA radiances observed during a drought 
episode in California Mediterranean grasslands in 2004. The inversion of this 
coupled system through an optimization technique against Landsat TOA 
radiances resulted in direct retrieval of vegetation properties. We 
accommodated the surface anisotropic reflection in our coupled modeling and 
also defined a novel anisotropy index to quantitatively express the importance 
of this phenomenon in satellite image analysis for the first time. Our study 
showed that the coupled use of RT models was able to accurately reproduce 
the time series of observed TOA radiances collected under varying soil moisture 
contents during drought episode. The proposed coupling approach is useful for 
successful retrieval of vegetation properties from time series of satellite TOA 
radiance data to produce maps of land surface properties and monitor 
vegetation properties variations in an operational straightforward way. The 
approach can also be easily adapted for conducting multi-sensor time series 
studies, creating a much denser temporal sampling than would be possible for 
separate single sensors. 
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3.1. Introduction 
Satellite time series observations, when combined in a quantitative 

modeling approach, can provide a unique opportunity for operational 
monitoring of land surface (i.e., vegetation) properties under various 
environmental and atmospheric conditions. There are mainly two quantitative 
data processing approaches which have been employed for translating satellite 
observations into vegetation properties information (as shown in Fig. 3.1). The 
first is to use vegetation indices (VIs) in a statistical approach (Ceccato, 2002; 
Chávez et al., 2013; Darvishzadeh et al., 2011; Houborg et al., 2007; Zarco-
Tejada et al., 2013) and the second is to use a vegetation radiative transfer 
(RT) model in a physical modeling approach (Bayat et al., 2016b, 2016a; 
Bicheron and Leroy, 1999; Clevers et al., 2010; Darvishzadeh et al., 2008; 
Dorigo et al., 2009; Duan et al., 2014; Houborg et al., 2007; Jacquemoud et 
al., 1995; Laurent et al., 2011a; Schaepman-Strub et al., 2006; Verhoef and 
Bach, 2007, 2003b; Zhang et al., 2005). VIs have the advantage that they can 
be applied very easily and that they can have a reasonable correlation with 
vegetation properties, such as leaf area index (LAI) and leaf chlorophyll content 
(Cab) (Darvishzadeh et al., 2011). However, VIs may be affected by several 
factors simultaneously, which implies that the explored relationships between 
VIs and surface properties are species and observation specific and thus cannot 
be applied universally. In addition, computation of VIs is based on employing 
only a few of the available bands. As a consequence, valuable pieces of 
information embedded in the other bands are ignored. The alternative of using 
physical vegetation RT models has the advantages that; (1) they offer explicit 
relationships between the whole spectrum and vegetation properties 
(Atzberger et al., 2011; Clevers et al., 2010), (2) often yield a more accurate 
estimation of vegetation properties compared to VIs (Le Maire et al., 2011) 
and, (3) produce more generalizable outputs while being less dependent on in 
situ measurements (Atzberger et al., 2011; Baret and Buis, 2008). Thus, using 
a canopy RT model, albeit more complicated, is considered a better way to 
explore satellite observations efficiently and retrieve vegetation properties 
more accurately. 

Most vegetation RT models produce surface or top of canopy (TOC) 
reflectance, and are therefore suitable to retrieve vegetation properties from 
TOC observations (the ‘TOC approach’). This approach has been applied in 
many studies successfully, resulting in the retrieval of vegetation properties 
with acceptable accuracy. However, satellite observations are originally 
recorded at the top of the atmosphere (TOA), so that still an atmospheric 
correction is required to obtain the TOC reflectance from the observed TOA 
radiances. Applying a reliable atmospheric correction to satellite observations 
to obtain the TOC reflectance, however, is still a challenging and cumbersome 
task (Laurent et al., 2011b), posing considerable limitations especially when 
the analysis of time series of images is desired. Further, the retrieval of 
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vegetation properties might be subject to errors not only due to modeling 
uncertainty but also to errors in the computed TOC reflectance caused by 
inaccurate atmospheric correction assumptions. On the other hand, Level-2 
surface reflectance products, which are already corrected atmospherically, are 
not commonly (or at least not freely) available for new sensors, and the fact 
remains that the quality of such products is still questionable since they are 
based on the assumption that both target and surroundings are Lambertian 
(isotropic) reflectors, which is inconsistent with what is known about the 
anisotropy in the reflectances of vegetation, bare soil and water bodies. 

Since considerable limitations of the TOC approach are related to 
performing the atmospheric correction to convert TOA radiance to TOC 
reflectance, this appears to be unsuitable as a feasible and operational set-up 
for time series analysis. An alternative is to use the TOA radiance data directly 
for the retrieval (Verhoef et al., 2018; Verhoef and Bach, 2003a). This requires 
simulation of the surface - atmosphere system by coupling a set of physical RT 
models describing various objects from soil, to leaf, canopy, and to the 
atmosphere. Such a coupling approach has the crucial advantage that one can 
also take the anisotropic surface reflection into account in the forward RT 
modeling. This is important due to the fact that the majority of vegetation 
canopies are clearly non-Lambertian (Verhoef et al., 2018). Therefore, the 
forward modeling of this coupled RT system will produce more accurate TOA 
radiance results. Further, since the coupled system produces the TOA radiance, 
which is indeed the same physical quantity as observed by the satellite sensors, 
justice is done to the actual physics of the observations. By including specific 
information about particular satellite sensors (e.g., spectral bands, spectral 
response function, spectral resolution) in the modeling, the simulated TOA 
radiance data are directly comparable to the ones observed by the satellite 
sensor (Verhoef and Bach, 2003b). Thus, by the coupled use of an atmospheric 
RT with a vegetation RT and a soil reflectance model, one may simulate TOA 
radiance and retrieve land surface properties directly by inversion of such a 
coupled model (Verhoef et al., 2018). 
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Figure 3.1. Quantitative modeling approach for mapping spatio-temporal variations of 
vegetation properties. The hatched boxes represent the approach adapted in this study. 

Several efforts have been made towards accomplishing such a coupling 
approach to simulate TOA radiance images for different sensors (Börner et al., 
2001; Faurtyot and Baret, 1997; Gastellu-Etchegorry et al., 2004; Laurent et 
al., 2011b, 2011a; Rahman et al., 1993; Verhoef et al., 2018; Verhoef and 
Bach, 2012, 2007, 2003b). Among them, Verhoef and Bach (2003b) coupled a 
leaf model (PROSPECT), a canopy two-layer model (GeoSAIL) and the 
MODerate resolution atmospheric TRANsmission (MODTRAN) model to 
simulate hyperspectral and directional radiance images over vegetated areas 
and bare fields (Verhoef and Bach, 2003b). Similarly, Verhoef and Bach (2007) 
coupled the soil-leaf-canopy (SLC) model to MODTRAN4 in order to simulate 
the hyperspectral multi-angular surface reflectance and TOA radiance for the 
multi-angular CHRIS sensor (Verhoef and Bach, 2007). They compared the 
simulated surface reflectances with the ones observed with the CHRIS sensor 
for soil, maize, dense and less dense forest pixels, and concluded that spectral-
directional observations of CHRIS could be reproduced by the SLC model with 
good accuracy. Furthermore, Verhoef and Bach (2012) coupled the models SLC 
(for modeling soil and vegetated pixels), WASI (for modeling inland water 
pixels) and MODTRAN4 (for modeling atmospheric effects) to simulate TOA 
radiance spectra of Sentinel-3 observations (Verhoef and Bach, 2012). A 
similar combination of SLC and MODTRAN was inverted against CHRIS multi-
angular TOA radiances on three Norway spruce stands (Czech Republic) to 
retrieve forest variables in 2006 (Laurent et al., 2011a). Most recently, Verhoef 
et al (2018) used a novel set of coupled RT models of the soil (brightness - 
shape - moisture (BSM) model), canopy (the Soil-Canopy Observation 
Photosynthesis and Energy fluxes (SCOPE) model) and atmosphere (MODTRAN 
model) to simulate TOA radiance data of several optical sensors of the 
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Fluorescence Explorer (FLEX)/ Sentinel-3 (S3) tandem mission (Verhoef et al., 
2018). They concluded that one can retrieve surface fluorescence and 
vegetation biophysical properties simultaneously and with remarkable 
accuracy from TOA radiance data. 

The main focus of the described studies was to chain different RT models 
to simulate the TOA directional radiance of an image at a specific time (as a 
snapshot) and, therefore, (1) the background soil reflectance contribution was 
considered relatively stable, and did not vary due to the fact that soil properties 
(e.g., soil moisture content) were fixed, (2) the input parameters of the 
vegetation RT models were obtained either from a land cover map plus ground 
measurements at the desired time (day), or by running RT models in forward 
mode and making a database of reflectance, (3) the atmospheric properties 
(e.g., visibility, water vapor and aerosol models) did not vary much because 
of the relatively stable atmospheric conditions over a short period (one day) 
and (4) the radiance of an airborne hyperspectral image or future planned 
satellite mission could be simulated. Therefore, in the majority of the previous 
studies, the coupled models were applied to simulate a specific satellite or 
airborne hyperspectral image for a single flight path. However, the potential of 
such a coupled model for wider and operational applications is still unexplored 
and has not been dealt with in depth. Monitoring the effects of soil moisture 
deficit on vegetation properties during a prolonged drought episode, for 
example, requires time series of high spatial resolution observations over a 
relatively long period. In this situation, not only environmental (soil and 
vegetation properties) but also atmospheric conditions [visibility (Vis) and 
aerosol models (Aer)] may vary day by day, which consequently stresses the 
need to consider soil, vegetation, and atmospheric variations, sufficiently. In 
other words, there is still an interest in exploring this TOA coupling approach 
for analyzing time series of available satellite observations, acquired during a 
longer episode in which the soil, vegetation, and atmospheric properties are all 
changing. The current study is focused particularly on this aspect. 

We examine the ability of coupled RT models to capture changes in the 
soil-vegetation-atmosphere system over time to produce accurate and 
consistent results during a longer episode. Furthermore, we intend to 
investigate the importance of taking surface anisotropic reflection into account 
since more recent evidence (Verhoef et al., 2018) demonstrates the 
importance of non-Lambertian surface reflection. In this context, not only have 
we considered surface anisotropic reflection in our coupled model, but we also 
defined a novel anisotropy index to express the importance of this 
phenomenon. We incorporate this anisotropy effect in time series image 
analysis quantitatively applied to satellite data for the first time. The 
combination of RT models we used to describe the soil – vegetation – 
atmosphere system in a bottom-up approach, comprises the BSM soil 
reflectance model, the vegetation optical radiative transfer (RTMo) model of 
the SCOPE and the MODTRAN version 5.2.1 atmospheric RT model. The canopy 
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RT model produces four anisotropic surface reflectance factors, and the 
sensor’s spectral sampling is incorporated in the forward RT modeling as well. 
The best match obtained between simulated TOA radiances and satellite-
observed TOA radiances resulted in the direct retrieval of vegetation properties 
[notably LAI, Cab, leaf water content (Cw), leaf dry matter content (Cdm), the 
senescent material content (Cs) and the leaf inclination distribution function 
(LIDF)] by model inversion through optimization. We applied this approach to 
a time series of twenty-four Landsat (TM5 and ETM7) observations acquired 
during a prolonged drought episode in California Mediterranean grasslands in 
2004 to map spatio-temporal variations of vegetation properties and explore 
the trend of retrieved properties during this episode.  

3.2. Data 

3.2.1. Site description 
The study focused on the Vaira Ranch (US-Var) Fluxnet site (Fig. 3.2), 

hereafter called Vaira site, in the United States of America (Baldocchi et al., 
2004; Ma et al., 2011; Xu and Baldocchi, 2004), which is an open grassland, 
in a Mediterranean climate at 129 m altitude near the foothills of the Sierra 
Nevada mountain range in California (38.4133◦ N; 120.9508◦ W).  

Figure 3.2. Study site (Vaira Ranch, in California) representing the footprint of Landsat 
images (WRS-2 path/row: 043/033). The Landsat image acquired on 15 March 2004 
(color composite of red = band 5, green = band 4 and blue = band 3) is shown in the 
right panel in which the Vaira site location is indicated by a red square. The Vaira site 
and its surroundings, exported from the Google Earth images, is also shown in the 
bottom left panel. 

!

114° W117° W120° W123° W

42
° 

N
39

° 
N

36
° 

N
33

° 
N

>

<



Exploiting multispectral satellite radiance observations… 

46 

The mean annual temperature and precipitation in the region are 16.6°C 
and 559 mm, respectively. A prolonged drought occurred at the site in 2004, 
and it was reported as one of the driest years there (Ma et al., 2007). The soil 
moisture content declined 10-fold from 0.3 to 0.03 m3 m-3 during a period of 
220 days (Fig. 3.3). Further, The NOAA's National Centers for Environmental 
Information (NCEI) reported variations from 0.44 to �3.25 for the Palmer 
Drought Severity Index (PDSI) at the Vaira site in 2004 
(www.ncdc.noaa.gov/temp-and-precip/drought/historical-palmers). PDSI 
values suggest near-normal conditions at the site from the first of January 
(DOY 1) until the end of February (DOY 60), while drought levels with 
increasingly higher severity, i.e., mild, moderate and severe, were recorded 
from the first of March (DOY 61) till the end of August (DOY 220), as shown in 
Fig. 3.3.  

3.2.2. Vegetation characteristics at the site 
The land cover of the Vaira site is cool-season C3 (corresponding to the 3-

carbon photosynthetic pathways) grass with the dominant species of 
Brachypodium distachyon, Erodium cicutarium, Bromus hordeaceous, 
Hypochaeris glabra, Trifolium dubium Sibth, Trifolium hirtum, Erodium botrys 
and Dichelostemma volubile (Xu and Baldocchi, 2004). The grass species 
composition might vary slightly from one year to another based on the climatic 
conditions (i.e., precipitation and temperature) of the area (Heady, 1958; 
Jackson, 1985; Pitt and Heady, 1978). The grassland is physiologically 
functioning from the autumn (e.g., November) to the next spring (e.g., May), 
with the peak growth period in late February to early April. In this period, the 
Vaira site contains multiple species belonging to various functional groups (i.e., 
grasses, forbs and nitrogen fixers) (McNaughton, 1968) which make up a 
closed canopy (Baldocchi et al., 2004). The average height of the grass during 
the season was recorded as 0.3 m from 2001 to 2004, while, the maximum 
grass height may reach 0.55 ± 0.12m. 

3.2.3. Remote sensing observations 
Twenty Landsat TM5 and four Landsat ETM7 observations (WRS-2 

path/row: 043/033), hereafter all termed Landsat, were selected such that a 
soil moisture deficit episode was covered (Fig. 3.3). The cloud-free Landsat 
data used in this study were standard L1T products in DN format obtained from 
the US Geological Survey (USGS) website (https://glovis.usgs.gov/).  
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Figure 3.3. Satellite overpass during the soil moisture deficit episode. Landsat TM5 (thick 
red lines from top) and Landsat ETM7 (thick blue lines from top) observations covering 
a soil moisture deficit (black curve) episode at the Vaira site. The episode is divided into 
four periods (separated by dotted green lines) indicating normal, mild stress, moderate 
stress, and severe stress conditions. These periods within the time series are based on 
the Palmer Drought Severity Index (PDSI) data set published by NOAA's National Centers 
for Environmental Information (NCEI). 

3.2.4. Ground measurements 

3.2.4.1. Soil moisture measurements 

Volumetric soil moisture (SM) was measured at the site with a frequency-
domain reflectometer probe (ML2x, Delta-T Devices, Burwell, Cambridge, UK) 
at 2, 10 and 20 cm depths. These sensors were automatically sampled by data 
loggers (CR10X or CR23, Campbell Scientific, Inc., Logan, Utah, USA) every 
10 seconds, and their half-hour averages were recorded. In this study, we used 
time series of soil moisture content measured at 2 cm depth.  

3.2.4.2. LAI measurements 

LAI was measured destructively with intervals of 2 – 3 weeks during this 
drought episode. Grass was collected from three sample plots (0.2 m × 0.2 m) 
in the prevailing direction of the eddy covariance flux system. All grass leaves 
were separated from the stem and litter components, and the green areas were 
measured by running through a leaf area meter (Li-Cor 3100, Lincoln, NE, USA) 
(Ma et al., 2017).  

3.3. Methods 
Fig. 3.4 shows schematically how various RT models were coupled in order 

to retrieve and map vegetation properties during this drought episode from 
Landsat TOA radiance data. There were four main steps in our study. First, we 
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made use of MODTRAN to obtain the best fitting atmospheric properties over 
a lake nearby the study site. This resulted in finding the best visibility and 
aerosol model for various conditions by means of a look-up table (LUT). 
Second, we ran MODTRAN with the retrieved best fitting properties of the 
atmosphere beside the other needed inputs one more time to generate the 
time series of atmospheric transfer functions (for all overpass days). In parallel 
and as the third step, we used the BSM model to scale the dry soil spectrum 
using measured soil moisture contents during the episode in order to obtain 
realistic soil reflectance spectra over time. This scaled soil reflectance was used 
as an input besides the other needed ones to RTMo to generate surface 
reflectance factors. Fourth, we coupled the MODTRAN generated atmospheric 
transfer functions with the RTMo generated surface reflectance factors to 
simulate Landsat TOA radiances during the episode. This assisted in mapping 
vegetation properties through model inversion by means of numerical 
optimization. We explain all the applied models with sufficient details including 
the needed input values in the following sections.  
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Figure 3.4. Flowchart of the TOA approach used in this study to show how various RT 
models were coupled to retrieve and map vegetation properties during the drought 
episode from Landsat TOA radiance data 

3.3.1. Radiative transfer models  

3.3.3.1. MODTRAN model 

MODTRAN is an atmospheric RT model and the successor of the LOWTRAN 
model (Kneizys et al., 1988). MODTRAN includes a detailed spectral database 
of solar irradiance plus the absorption of all important atmospheric gases at a 
fine spectral resolution (Verhoef and Bach, 2003b). In our study, we used 
MODTRAN version 5.1.2 (Berk et al., 2008). To run MODTRAN, several input 
parameters describing the real atmospheric and sensor geometric conditions 
should be prepared (Table 3.1). In this study we used MODTRAN mainly for 
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two purposes: first to construct a Look up Table (LUT) by varying the aerosol 
types (3 cases as rural, maritime and urban) and visibility (5 to 100 km with a 
step of 5 km) for all days (Table 3.1) to compute surface reflectance over a 
water body. For every Landsat image a separate input file was prepared by 
adjusting the local atmospheric conditions, geometric variables and a LUT 
containing 60 scenarios for various visibility and aerosol models for that 
specific run of MODTRAN. This resulted in obtaining the best combinations of 
visibility and aerosol model for all days during this drought episode. Second, 
we executed MODTRAN for each day separately by preparing an input file 
including the best visibility and aerosol model (obtained in the previous step) 
with two runs at the bottom of atmosphere for albedo values of 0.5 and 1, and 
two runs at TOA for albedo values of 0 and 1. This resulted in obtaining the so-
called T-18 atmospheric transfer functions (Verhoef et al., 2018), using the 
latest version of the MODTRAN Interrogation Technique (MIT) (Verhoef and 
Bach, 2012) to convert reflectance factors simulated by the RTMo canopy 
model to TOA radiances. We obtained one set of T-18 transfer functions for 
each day and 24 T-18 files in total during the episode. Table 3.1 presents the 
most important inputs used for such MODTRAN runs. 

 
Table 3.1. Input parameters used to construct separate LUTs in this study for MODTRAN 
5 simulations 

Parameter Unit Value/Range Parameter 
Status 

Aerosol Model - Rural, Maritime, 
Urban 

Varied (per 
image) 

Visibility km 5–100 (5 km 
increment) 

Varied (per 
image) 

Atmospheric profile - Mid Latitude 
Summer Fixed 

DISORT number of 
streams - 8 Fixed 

Concentration of CO2 ppm 390 Fixed 

water vapor column g 
cm−2 Appendix A. Fixed 

ozone DU Appendix A. Fixed 

sun zenith angle degr
ee Appendix A. Fixed 

sun azimuth angle degr
ee Appendix A. Fixed 

Surface height m 129 Fixed 

Sensor Height km 705 Fixed 
Molecular band model 
resolution cm−1 1 Fixed 

Start, ending wavelength nm 400 - 2400 
(optical) Fixed 

 
The atmospheric water vapor column (H2O) data were obtained from the 

NASA Giovanni platform (http://giovanni.sci.gsfc.nasa.gov/), the ozone (O3) 
data obtained from NASA ozone products 
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(https://ozoneaq.gsfc.nasa.gov/data/ozone/). Geometric variables (i.e., sun 
zenith angle [SZA] and sun azimuth angle [SAA]) are extracted from satellite 
image metadata. It is shown that the difference between calculated geometric 
variables at the Vaira site (representing a pixel) and those extracted from the 
image metadata (representing the whole image) was quite small for a specific 
day at the time of satellite overpass (see Appendix A). 

In the first phase of the MODTRAN simulations, to obtain the best visibility 
and aerosol model above a lake, the MIT was applied for each scenario by using 
surface albedo values of 0.0, 0.5 and 1.0 (Verhoef and Bach, 2003b). The 
MODTRAN .tp7 output file can be used in the MIT to derive three relevant 
MODTRAN parameters [i.e., path radiance (L0), gain factor (G) and spherical 
albedo (S)]. These three parameters are spectrally variable and changing with 
atmospheric conditions (Verhoef and Bach, 2003b). The spectral response 
functions (SRFs) of the Landsat bands were convolved with spectra of the 
MODTRAN parameters to compute the mean path radiance, gain factor and 
spherical albedo for every Landsat band in the optical domain.  

To collect path radiance, gain factor, and spherical albedo, we need mainly 
two outputs of the MODTRAN .tp7 file. These are called “SOL_SCAT” (the solar 
multiple-scattered radiance term of the path radiance) and “GRND_ RFLT” (the 
total ground reflected radiance). 

After obtaining G, L0, and S for all cases in the LUT, we employed deep 
water bodies present in the study area and computed water reflectances (at 
bottom of atmosphere) for all cases in the LUT as follows (Berk et al., 2008; 
Verhoef and Bach, 2012): 

 
TOAm

0
TOAm

0

 

  (  )

L L
R

G S L L




 
 (3.1) 

 
where R is the water reflectance, LTOAm is the TOA radiance (Wm−2 sr−1 

µm−1) observed by the sensor for the darkest pixel in a window of 25 by 25 
pixels extracted from the deepest part of the clear water of the biggest nearby 
lake, located in the south part of the image and with a distance of about 25 
km from the Vaira site.  

We retrieved the best atmospheric properties (L0, G and S) and, therefore, 
obtained the corresponding visibility and aerosol model, by selecting the path 
radiance which gave a reflectance closest to zero from the LUT, since we 
assumed that the reflectance of clear water is negligible in all visible bands. 

To collect the T-18 atmospheric functions, we need seven outputs of the 
MODTRAN .tp7 file called “TOT_TRANS” (total transmittance), “PTH_THRML” 
(thermal emission), “SURF_EMIS” (surface emission directly transmitted to the 
sensor), “SOL_SCAT” (the solar multiple-scattered radiance term of the path 
radiance), “GRND_RFLT” (the total ground reflected radiance), “DRCT_RFLT” 
(the direct solar contribution) and “TOASUN” (top-of-the-atmosphere solar 
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irradiance). The white reference solar radiance spectrum at TOA is placed in 
T1, while T2 – T14 describe the optical transfer functions of the atmosphere and 
T15 – T18 describe four thermal transfer functions of the atmosphere. In our 
study, we used T1 – T14 in order to reproduce the TOA radiances from RTMo 
simulated TOC reflectance factors considering the anisotropic surface 
reflection. More details about using these transfer functions are provided in the 
next section.  

3.3.1.2. RTMo model 

The optical radiative transfer routine (RTMo), taken from the SCOPE model 
(Van der Tol et al., 2009b), is basically a combination of the PROSPECT5 leaf 
model (Jacquemoud and Baret, 1990) and the 4SAIL canopy reflectance model 
(Verhoef et al., 2007; Verhoef, 1984, 1985). Table 3.2 shows the input 
parameters of the RTMo model. 

 
Table 3.2. Input parameters needed for the RTMo model.  

Parameters 
Abbr. in 

model 
Unit 

Leaf chlorophyll content Cab μg cm−2 

Leaf water content Cw g cm−2 

Leaf dry matter content Cdm g cm−2 

Senescent material Cs - 

Leaf area index LAI m2 m−2 

Leaf inclination distribution function a LIDFa - 

Bimodality of the leaf inclination b LIDFb - 

Carotenoids Cca μg cm−2 

Leaf structural parameter N - 

Hot-spot size parameter c hot m m−1 

Solar zenith angle θs deg 

Observation zenith angle θo deg 

Relative Azimuth Angle ψ deg 

Spectra of solar irradiance  Esun  Wm-2 μm-1 

Spectra of sky irradiance  Esky  Wm-2 μm-1 
a,b These two parameters of the LIDF (i.e., LIDFa and LIDFb) are utilized to describe the 
(cumulative) probability distribution function of leaf inclination angles mathematically 
(Verhoef, 1998). LIDFa describes the average leaf inclination, where a value of �1 indicates 
the erectophile (mean leaf angle MLA of 81.48°) and a value of +1 indicates the planophile 
(MLA = 8.52°) distribution, while LIDFb describes the bimodality of the distribution, and is 
proportional to the standard deviation of the distribution. 
c This parameter is approximated as the ratio between the average width of the leaves and the 
canopy height (Verhoef and Bach, 2007) 
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The anisotropic reflectance factors generated by the RTMo model are 
coupled with the T-18 atmospheric functions generated by MODTRAN to obtain 
the TOA radiance as follows: 
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where rso is the directional reflectance factor for direct solar incidence (or 
the bi-directional reflectance factor, BRF), rdo is the directional reflectance 
factor for diffuse incidence, rsd is the hemispherical reflectance factor for direct 
solar incidence and rdd is hemispherical reflectance factor for diffuse incidence, 
all simulated by the RTMo model. 

The Ti are components of the T-18 atmospheric transfer functions derived 
from the MODTRAN5 .tp7 output file using the MIT technique: one of the most 
important ones, T1 describes the extraterrestrial solar irradiance (Wm−2 sr−1 
µm−1), T2 the bidirectional atmospheric reflectance at the top of the 
atmosphere (for a black earth surface) and T3 the bi-hemispherical reflectance 
at the bottom of the atmosphere (spherical albedo). For more details on these 
atmospheric transfer functions, the reader is referred to Table 3.3 in (Verhoef 
et al., 2018). The over bars in Eq. 3.2 indicate a spatial filtering over the 
surrounding areas of the target pixel (about 1 km radius, with a kernel that is 
strongly peaked in the center) to describe the adjacency effect. In this study, 
we ignored the over bars and used the output of RTMo (rsd and rdd) directly 
since we assumed that the Landsat pixel was taken from a relatively 
homogeneous area.  

To quantify the surface anisotropy effect and demonstrate its importance, 
we proposed and computed a novel simple index for the first time, called 
Anisotropy Index (AI). This index, which is based on the RTMo simulated 
reflectance factors, is defined as: 
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The index works similar to a normalized vegetation index (difference over 

sum), and it can be computed for all wavelengths. It should be noted that the 
second terms in Eq. 3.3 compute the average of three reflectance factors. In 
this study, we computed the AI from 400 – 2400 nm. In case of a Lambertian 
surface, the anisotropy index would be zero at all wavelengths, since all four 
reflectance factors are equal for a Lambertian surface. However, if the surface 
is non-Lambertian, which is usually the case for vegetation canopies, then the 
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reflectance factors are not equal anymore and, therefore, the anisotropy index 
would not be zero. Due to the fact that most canopies are non-Lambertian, it 
is crucial to differentiate among these four reflectance factors and consider the 
anisotropy effect in the RT modeling.  

3.3.1.3. BSM model 

To consider the effects of the soil background on the simulated spectra, we 
incorporated the BSM soil reflectance model. The BSM model is based on the 
library of global soil vectors (GSV) proposed by (Chongya and Hongliang, 
2012), extended with a brightness-shape transformation and a soil moisture 
effect to describe soil spectra. The model contains the following parameters: 
(1) the soil brightness parameter, B (dimensionless); (2) the spectral shape 
“latitude”, Lat (deg); (3) the spectral shape “longitude”, Lon (deg); and (4) 
the soil’s moisture volume percentage, SMp (%). This model can be used as 
an alternative for providing a measured soil’s spectrum as input. However, if 
the dry soil reflectance is available, which was the case in our study, one can 
invert the BSM model and derive the BSM parameters (B, Lat and Lon) from 
the given soil reflectance spectrum. In the BSM model, one can also scale the 
dry soil spectrum by the measured soil moisture value and produce realistic 
soil reflectance spectra for wet soils up to 55% soil moisture content in the top 
soil layer. For more details on the BSM model, the reader is referred to (Verhoef 
et al., 2018). 

3.3.2. Parameter retrieval from TOA radiance spectra 

3.3.3.2. An overview of the algorithm 

The observed TOA radiance by Landsat can be compared to the simulated 
TOA spectra by the coupled RT model. We used Numerical Optimization (NO) 
to invert the coupled model, similar to (Bayat et al., 2016a; Van der Tol et al., 
2016; Verhoef et al., 2018), against the time series of Landsat-observed TOA 
radiance and, consequently, to retrieve one set of vegetation properties 
separately for each of the observation days during the episode. We ran the 
model in MATLAB iteratively, with specific vegetation properties (see Table 3.3) 
in order to minimize a normalized cost function C as: 
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where LTOAm is the Landsat-observed TOA radiance (Wm−2 sr−1 µm−1), the 

LTOAs is the model simulated TOA radiance (Wm−2 sr−1 µm−1), the σ is 
uncertainty (i.e., standard deviation) of the observed TOA radiance (see 
section 3.2.4), i indicates the Landsat optical band number (ranges from 1 to 
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6), the p are the current and µ are the priori values of the vegetation 
properties, the σp0 is the assumed uncertainty of the a priori values of each 
property (see section 3.2.3) and the j indicates the 7 retrieved parameters 
(Table 3.3).  

We made use of the MATLAB built-in function “lsqnonlin” from the 
optimization toolbox, selecting a Trust Region algorithm in order to update the 
values of properties after each iteration step. The stopping criterion for the 
iteration was fulfilled when the improvement of the cost function was less than 
10-3, similar to (Van der Tol et al., 2016; Vilfan et al., 2016). The starting 
values, also called the initial guess (IG), the a priori values (µ) and their 
uncertainties (σp) of the input parameters for the retrieval algorithm are 
presented in Table 3.3.  

 
Table 3.3. Tuned vegetation properties, their lower boundaries (LB), upper boundaries 
(UB), initial guess (IG), a priori values (µ) and assumed standard deviation (σp0) used 
in this study for the retrieval. 

Parameter LB UB IG µ σp0 

Cab 0 100 40 50 28.8 
Cdm 0 0.02 0.005 0.01 0.01 
Cw 0 0.05 0.02 0.025 0.01 
Cca 0 25 10 12.5 7.22 
Cs 0 1.5 0.1 0.75 0.43 
Transformed LAIa 0 0.7 0.4 Measured Measured 
LIDFa + LIDFba −1 +1 − 0.5 0 0.58 
LIDFa - LIDFba −1 +1 − 0.2 0 0.58 

a These parameters are transformed to new ones (see section 3.2.2) 
 
The choice of values for LB, UB and IG were adapted from the previous 

studies (Bayat et al., 2016a; Van der Tol et al., 2016; Verhoef et al., 2018). 
Although the IG is necessary for NO as the starting point, the choice of their 
values is subjective but does not affect the results (Bayat et al., 2016a; Vilfan 
et al., 2016). The use of uncertainties [i.e., standard deviations (σp0 and σ)] 
to normalize the cost function and the a priori values is an effective 
regularization approach applied in NO (Dorigo et al., 2007; Verhoef et al., 
2018) to reduce numeric ill-posedness [i.e., multiple solutions yielding the 
same spectrum (Combal et al., 2003)], since in the case of ill-posedness the 
solution is automatically driven in the direction of the a priori values. In 
addition, for the N and hot parameters we considered fixed values of 1.5 and 
0.05 based on previous studies (Bayat et al., 2016a; Haboudane et al., 2004; 
Houborg et al., 2007). The dry soil parameters for the BSM soil reflectance 
model were obtained by their retrieval from a nearby bare soil pixel (as B = 
0.55, Lat = 19.50 and Lon = 49.46) at the end of the episode when the soil 
was completely dry. For the rest of the time series, we used the measured 
surface soil moisture values collected on various days as a priori information 
to scale the dry soil spectra for moist conditions during the episode and, 



Exploiting multispectral satellite radiance observations… 

56 

therefore, to take into account the soil moisture effects on dry soil spectra, 
keeping B, Lat and Lon at the above mentioned values.  

3.3.2.2. Transformed parameters 

Some input parameters in RTMo were transformed in the inversion process, 
notably LAI, LIDFa and LIDFb. LAI was transformed to a new parameter 1 – exp 
(–0.2 LAI) to improve the linearity of the model. The value of 0.2 ensures a 
more linear response of the reflectance in near-infrared part, which is the most 
sensitive part of the spectrum to high values of LAI (Verhoef et al., 2018). 
Moreover, LIDF parameters were transformed because LIDFa and LIDFb are 
restricted by the condition |LIDFa| + |LIDFb| <= 1. By constructing two 
transformed variables, via summation (LIDFa + LIDFb) and subtraction (LIDFa 

– LIDFb) and attaching –1 and +1 as their LB and UB, one can ensure that the
constraint of |LIDFa | + |LIDFb | <= 1 is effectively fulfilled in an automatic way 
(Verhoef, 1998).  

3.3.2.3. Including the a priori information and uncertainties 

For the a priori values, we used measured LAI information during this 
drought episode for the case of LAI in the retrieval. This is useful to constrain 
the inversion and to reduce the volume of parameter space. However, we did 
not know any a priori values for the other properties (Cab, Cw, Cdm, Cs and LIDF) 
on the ground during the episode. Thus, for these cases, we used the mid of 
the total range [i.e., (LB + UB)/2] as the a priori values, similar to (Verhoef et 
al., 2018). Furthermore, for the a priori uncertainties, we assumed uniform (a 
priori) distributions over the range between LB and UB of the vegetation 
properties. Assuming uniform prior distributions over LB and UB resulted in 
values of uncertainties equal to 1/√12 ≈ 0.3 times the range of each property. 
Moreover, we used measured SM values as a priori information to scale the dry 
soil spectra for moist conditions during this drought episode. 

3.3.2.4. Sensor noise  

We considered the digitization noise as a rough estimate of sensor noise 
and, therefore, the source of uncertainty for Landsat-observed TOA radiances. 
It is necessary to obtain reasonable estimates for sensor noise in different 
Landsat bands, and one may assume that digitization noise in each band has 
been designed to be in proportion to actual sensor noise. Maximum digitization 
noise may be considered equal to 1 DN count in each band of Landsat, because 
the maximum amplitude of the coherent noise in Landsat sensor is equal to 1 
DN (USGS, 1998). Consequently, assuming uniform (a priori) distributions over 
range of 0 – 1 DN leads to the uncertainty of 0.3 DN for each band of Landsat. 
Thus, we converted 1 DN in each band of Landsat into TOA radiance values 
and computed their uncertainties as shown in Table 3.4. 
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Table 3.4. Digitization noise in Landsat TM5 and ETM7 and assumed standard deviation 
(σ) used in this study for different bands. 

bands 

Digitization noise 
[Wm−2 sr−1 µm−1] 

σ 

[Wm−2 sr−1 µm−1] 

TM5 ETM7 TM5 ETM7 

1 0.766 0.779 0.230 0.234 

2 1.448 0.799 0.434 0.240 

3 1.044 0.622 0.313 0.186 

4 0.876 0.640 0.263 0.192 

5 0.120 0.126 0.036 0.038 

7 0.066 0.044 0.020 0.013 

3.3.2.5. Error propagation analysis 

The propagation of sensor noise in the Landsat-observed TOA radiances 
into errors in the retrieval of vegetation properties is estimated by: 

 
T 1 T( )P L L L iJ J J   (3.5) 

 
The σp is the uncertainty in the vegetation properties propagated from the 

sensor noise (σi) and JL is the Jacobian of the model computed for each set of 
optimized vegetation properties expressed by: 
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 (3.6) 

 
The Jacobian JL is a matrix containing the first partial derivatives of the 

relative model output (Bowyer and Danson, 2004; Saltelli et al., 2000). We 
changed vegetation properties by a small step (10-6) and recorded the 
response in the simulated TOA radiances to such a small change. This is 
basically the local sensitivity analysis of the radiance L at each wavelength ߣi 

of the 6 Landsat optical spectral bands (rows, Table 3.4) to each of the 7 input 
parameters (columns, Table 3.3). The computed Jacobian was then utilized to 
relate the observed spectra (Table 3.4) to uncertainty in the retrieved 
properties (Figure 3.17).  
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3.4. Results 

3.4.1. Landsat observed TOA radiance variations over time 
Three representative examples (on DOYs = 59, 75 and 203) of the TOA 

radiance observed by Landsat (in various soil moisture conditions) during this 
drought episode are presented in Fig. 3.5. These images clearly highlight that 
not only the vegetation properties are changing significantly during the 
developing drought episode, but that the background soil contribution varies 
over time as well. For instance, there is more contribution from the vegetation 
at DOY 75 (the middle of the episode (Figure 3.5b)), whereas there is more 
contribution from the soil at DOYs 59 (early in the episode (Figure 3.5a)) and 
203 (the end of the episode (Figure 3.5c)).  

 

Figure 3.5. TOA radiance images observed by Landsat TM5 (red = band 5, green = band 
4, blue = band 3) for (a) DOY 59 (SM = 26%) (b) DOY 75 (SM = 19%) and (c) DOY 203 
(SM = 2.2%) in 2004. The white circle shows the location of the Vaira site. 
 

To better understand the trends in the observed radiances during this 
drought episode, we analyzed the radiance changes at the Vaira site over time 
(Fig. 3.6). The radiance in bands 1, 2, 3, 5 and 7 increased over time (Fig. 
3.6bc). However, the radiance in band 4 initially increased considerably (until 
DOY 80), decreased in the middle period (DOY 80 - 112) and was almost stable 
afterwards (≥ DOY 112) (Fig. 3.6bc). Radiance increase of the red band (band 
3) was the strongest, the difference between the radiance spectra at the 
highest (DOY 3) and the lowest soil moisture (219) was significant for almost 
all bands (Fig. 3.6a). All bands showed mid-event fluctuations (between DOYs 
90 – 120).  

 

 (a) (b) (c)
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(a) 

(b) 

(c)

Figure 3.6. Time series of Landsat TOA radiance spectra observed at the Vaira site during 
the 2004 drought episode. Radiance variations observed on (a) different days as a 
function of wavelength and (b) different bands as a function of time (DOYs). The 
logarithms of Landsat TOA radiance variations are shown (c) as a function of time (DOYs) 
to better detect the relative changes. 
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3.4.2. MODTRAN model 

3.4.2.1. MODTRAN parameter variations  

MODTRAN parameters (i.e., L0, G and S) resampled to the Landsat bands 
shown for various atmospheric aerosol types (rural, maritime and urban) for a 
fixed visibility of 25 km on 16 April 2004 (DOY 107) are presented in Fig. 3.7. 
The atmospheric L0 shows the case when there is no reflectance from the 
surface and, therefore, the total radiance comes from atmospheric scattering 
alone. As Fig. 3.7 shows, L0 follows a downward trend with wavelength in the 
solar reflective domain. This is due to the fact that the atmosphere scatters 
much more at shorter wavelengths (band 1) than at longer wavelengths (band 
7). The G, which includes the extraterrestrial solar irradiance and the total two-
way transmittance in the atmosphere, roughly follows the shape of the solar 
irradiance spectrum. However, similar to the L0, the S shows a smooth 
downward trend over wavelength. The L0, G and S variations are not only a 
function of wavelength and visibility, but also of the aerosol type. In general, 
the urban aerosol model had a stronger absorption and, therefore, in all cases 
showed lower values compared to the other two aerosol models. Moreover, the 
L0, G and S variations show a stronger spectral slope for the rural case 
compared to the maritime.  

(a) (b) (c)

Figure 3.7. MODTRAN parameters spectra variations at a fixed visibility of 25 km over 
various aerosol types over the Vaira site for DOY 107 in 2004. (a) Path radiance (L0), (b) 
Gain factor (G) and (c) Spherical albedo (S) for DOY 107 in 2004. 

 
The variations of the L0, G and S on 16 April 2004 (DOY 107), for a range 

of haze conditions (i.e., visibilities of 5, 15, 30 and 100 km) and three aerosol 
models (rural, maritime and urban) are presented in Fig. 3.8.  

As Fig. 3.8a-c shows, the atmospheric L0 for the rural (Fig. 3.8a) and 
maritime (Fig. 3.8b) aerosol cases had higher ranges of variation than that of 
the urban aerosol case (Fig. 3.8c). In addition to the dependency of the L0 on 
aerosol types, the results show the effects of visibility: the lower visibility, the 
higher L0, and vice versa. Fig. 3.8d-f show that the G in rural (Fig. 3.8d) and 
maritime (Fig. 3.8e) aerosol had a higher range of variations compared to that 
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of urban aerosol case (Fig. 3.8f), similar to the atmospheric L0. In addition, the 
G spectra in the urban aerosol case respond more strongly to increasing 
visibilities compared to rural and maritime aerosol types. The G changes 
directly with visibility conditions: the lower visibility, the lower G, and vice 
versa. Fig. 3.8g-i shows that the S in rural (Fig. 3.8g) and maritime (Fig. 3.8h) 
aerosol had a higher range of variations compared to that of urban aerosol 
case (Fig. 3.8i), similar to the atmospheric L0. Moreover, the S spectra in the 
rural and maritime aerosol case, corresponding to various visibilities showed 
larger deviations compared to the urban aerosol type. In addition to the 
dependency of the S to aerosol types, the results show again the effect of 
visibility: the lower visibility, the higher S and vice versa. 

 
Rural case Maritime case Urban case 

(a) (b) (c) 

(d) (e) (f) 
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(g) (h) (i) 

Figure 3.8. MODTRAN parameters (i.e., path radiance (L0), gain factor (G) and spherical 
albedo (S)) spectra variations at various visibilities (5, 15, 30 and 100 km) and aerosol 
types (rural, maritime and urban cases) for DOY 107 at Vaira site. Left panels (a, d, g) 
show the rural case. Middle panels (b, e, h) show the maritime case and right panels (c, 
f, i) show the urban case. 

 
A wrong assumption on visibility or aerosol type will produce a wrong 

computation of the TOA radiances and consequently, vegetation properties 
retrieval will be biased, especially for urban (G, S), rural (S) and maritime (S) 
cases.  

3.4.2.2. The best fitting atmospheric properties  

We compared the surface reflectance generated by the retrieved best 
atmospheric properties (MODTRAN generated reflectance) over a lake with the 
Landsat surface reflectance products obtained from USGS ESPA on-demand 
system (http://espa.cr.usgs.gov/) at the same dates (as for Landsat radiance 
data in Fig. 3.3) in our study site.  

The results demonstrated that the extracted values from the USGS Landsat 
surface reflectance products were relatively far from zero over a clear water. 
Although slightly positive values are acceptable, negative reflectance values 
are definitely due to atmospheric correction errors in the USGS products and 
will cause problems in quantitative analysis. Three representative examples of 
the reflectance values extracted by a window of 5 by 5 pixels from USGS 
Landsat products over a deep water body on various days are presented in 
Table 3.5. Our MODTRAN best fitting parameters were forced to generate 
reflectances of zero over the same lake on the same dates.  
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Table 3.5.The reflectance in various bands extracted by a window of 5 by 5 pixels from 
USGS Landsat surface reflectance products over a water body during this drought 
episode for (a) DOY 59, (b) DOY 75 and (c) DOY 203 in 2004. 

Bands 
DOY 59 DOY 75 DOY 203 

Darkest 
 pixel 

mean std 
darkest 
pixel 

mean std 
darkest 
pixel 

mean std 

1 0.028 0.034 0.003 0.028 0.031 0.003 0.023 0.027 0.002 

2 0.009 0.019 0.004 0.014 0.020 0.003 0.014 0.015 0.002 

3 0.012 0.014 0.004 0.008 0.013 0.002 0.007 0.009 0.001 

4 0.011 0.012 0.002 0.011 0.013 0.002 0.008 0.011 0.001 

5 -0.005 0.001 0.003 -0.004 0.003 0.002 -0.001 0.003 0.002 

7 -0.007 0.001 0.004 -0.001 0.002 0.003 -0.001 0.003 0.002 

3.4.2.3. T-18 atmospheric transfer functions 

Fig. 3.9 presents two representative examples of the spectra of the 
generated functions T2 – T14 over the wavelength range of 400 – 2400 nm for 
DOY 66 (Fig. 3.9a, Vis = 65 km and aerosol type = urban) and DOY 107 (Fig. 
3.9b, Vis = 25 km and aerosol type = maritime). 
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(a) 

(b)  

Figure 3.9. Atmospheric spectral transfer functions T2 – T14 generated for (a) DOY 66 
(Vis = 65 km and aerosol type = urban) and (b) DOY 107 (Vis = 25 km and aerosol type 
= maritime) in 2004 at the Vaira site.  

 
Although almost similar spectral shapes were obtained for the T2 – T14 

system for DOYs 66 and 107, their magnitudes and range of variations were 
clearly different. The lower visibility on DOY 107 gives lower transmittances 
and higher scattering, which is confirmed by the lower levels of functions T4, 
T6 and T8, and the higher levels of the other T-functions on DOY 107.  

3.4.3. Coupled model inversion against TOA radiance  
Three representative examples of simulated TOA radiance images by the 

coupled model and the residual maps of spectral fitting (i.e., the differences 
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between the Landsat-observed TOA radiance and the simulated TOA radiance) 
are presented in Fig. 3.10. 
 

(a)

 

(b) (c)

 
 (d) 

 

 (e)  (f) 

 
Figure 3.10. Simulated TOA radiance images (red = band 5, green = band 4, blue = 
band 3) by RTMo model for (a) DOY 59, (b) DOY 75, (c) DOY 203 in 2004 and the residual 
maps of spectral fitting (i.e., the differences between the observed TOA radiance and the 
simulated TOA radiance over the spectra) for (d) DOY 59, (e) DOY 75, (f) DOY 203. The 
white circle shows the location of the Vaira site. 

 
The smallest error (RMSE) between observed and simulated TOA radiance 

was used as a measure of the model inversion performance. Fig. 3.11 
illustrates the time series coupled model fittings at the Vaira site obtained 
through the optimization, between observed spectra (by Landsat) and 
simulated spectra (by model) in a window of three by three pixels around the 
flux tower at the site on various days. Overall, the small error in the model 
inversion (0.006 < RMSE < 2.2 Wm−2 sr−1 µm−1) shows that the model was 
able to accurately reproduce the observed optical spectra under different soil 
moisture conditions during the whole observation period.  
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Figure 3.11. The goodness of fit for the spectra obtained between observed TOA 
radiances (at Landsat optical bands; shown as red solid lines) and the simulated TOA 
radiances (resampled to Landsat optical bands by Landsat SRFs; shown as blue dashed 
lines) on 24 different days at the Vaira site during the 2004 drought episode.  

 
As discussed in section 3.2, we scaled the dry soil spectrum based on the 

measured surface soil moisture and used them in the RTMo model. Fig. 3.12 
illustrates the fixed dry soil spectrum in red and the scaled soil reflectance for 
various days at the Vaira site in blue dashed lines. This results showed that the 
dry soil spectrum provides a realistic case for DOYs ≥ 98. 
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Figure 3.12. Soil reflectance simulations with BSM model. The dry soil reflectance (at 
Landsat optical bands; shown as red solid lines) were scaled to obtain realistic spectra 
(at Landsat optical bands; shown as blue dashed lines) on different days at the Vaira site 
during the episode. Dry soil spectrum provides a realistic case for DOYs ≥ 98.  
 

Fig. 3.13 illustrates the time series of computed anisotropy index spectra 
at the Vaira site on various days during the episode. Considering the variation 
of the computed index (−0.1 < AI < 0.28), it is clear that the grass canopy is 
non-Lambertian and, therefore, it is relevant to consider the anisotropy effect 
for simulating surface reflectance, TOA radiance and consequently for the 
retrieval of vegetation properties. As the anisotropy index spectra show, 
canopy anisotropy has to be taken into account in all parts of the spectrum 
during the whole episode from normal condition to severe stress. However, the 
largest effects of canopy anisotropy are observed from DOY 3 to DOY 123 
(during the near normal and mild stress period). So, anisotropy appears to 
reduce under dry conditions. 
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Figure 3.13. Anisotropy index computed from the best simulated reflectance factors on 
different days at the Vaira site during the episode. It should be noted that the vertical 
axis range varies for different time periods. 
 

We present the anisotropy index variations for all DOYs together in Fig. 
3.14. In general, from the middle of the episode, when soil moisture and 
vegetation coverage decreased, the surface anisotropy effect decreased as 
well. Considering that the RTMo model includes the assumption of a Lambertian 
soil background, it is not surprising that the modeled anisotropy decreases 
when more soil becomes exposed.  
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Figure 3.14. Anisotropy index computed from the best simulated reflectance factors for 
all days at the Vaira site during the episode. It should be noted that 4 subplots (each 
row) of Fig. 3.13 are shown by an identical color but with different line styles. 

We compared the retrieved LAI values with those of measured LAI collected 
during this drought episode (Fig. 3.15). The model inversion gives a prediction 
of LAI within the measured LAI ± the uncertainties. We expected the retrieved 
values to match with measured LAI well since the measured LAI was used to 
constrain the model inversion. Except for very low LAI values, the results 
fulfilled our expectations. 

Figure 3.15. The measured and retrieved LAI during the episode at the Vaira site in 2004. 
An ellipse is containing "too low" LAI values. 

However, overestimation of LAI at the end of the episode (for lower LAI 
values) can be attributed to the fact that the measured LAI only refers to the 
green LAI and, therefore, the brown leaves inside the sample plots are ignored. 
In the RTMo model, only the effective (total) LAI is considered, which results 
in higher values of LAI at the end of episode where fewer green leaves, but 
still many brown leaves, are present.  
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3.4.4. Retrieved properties variations during the episode 

3.4.4.1. Spatio-temporal changes 

Maps of the retrieved vegetation properties were generated for all the 
observations during the developing drought episode. Three representative 
examples of the retrieved maps for three days (DOY 59, 75 and 203) during 
the episode are presented in Fig. 3.16. 

 
 (a)   (b)   (c)  

 (d)   (e)   (f)  

 (g)   (h)   (i)  
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 (j)  (k)  (l)  

 (m)  (n)  (o) 

 (p)  (q)  (r) 

Figure 3.16. Landsat maps of retrieved properties for three days during this drought 
episode: (a,b,c) LAI; (d,e,f) Cab; (g,h,i) Cw; (j,k,l) Cdm; (m,n,o) Cs; (p,q,r) LIDFa. Left 
panels (a, d, g, j, m, p) show the retrieved properties maps for DOY 59; middle panels 
(b, e, h, k, n, q) show the retrieved properties maps for DOY 75 and right panels (c, f, i, 
l, o, r) show the retrieved properties maps for DOY 203 in 2004. The black circle shows 
the location of the Vaira site. The reader is referred to Table 3.2 for the definitions of the 
surface properties.   

To better understand the trend of retrieved vegetation properties during 
the drought episode, we analyzed their changes over time at the Vaira site 
(Fig. 3.17). LAI, Cab, and Cw showed an initial increase in normal conditions to 
the middle of mild stress period (DOY 90) during the episode, but a decrease 
afterwards (from the middle of mild stress period to severe stress). Maximum 
LAI, Cab and Cw were retrieved at the middle of the mild stress period, as 
expected for the normal phenological cycle, while the minimum values for 
these properties were obtained both in the beginning (the normal period) and 
during the later severe stress period due to drought. 
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Cdm and Cs showed the opposite trend compared to LAI, Cab and Cw: they 
decreased first, reaching minimal values in the middle of mild stress period 
and increased later, reaching a maximum at the end of the episode when the 
stress was severe. The opposite trend of properties between the first group 
(LAI, Cab and Cw) and the second group (Cdm and Cs) could be expected. When 
the vegetation is functioning well (i.e., photosynthesis rates are high), it 
produces more green leaves resulting in higher LAI and, in general high Cab 
and Cw values, while the opposite is true at the end of episode when the brown 
leaves are dominant and one can observe higher values for Cdm and Cs. Despite 
a few local fluctuations in LIDFa, it showed an overall declining trend during the 
early normal period of the episode indicating more erectophile leaves. 
However, an opposite trend (i.e., upward) in the mild and moderate period of 
the episode is observed which indicates more planophile leaves. The maximum 
values of LIDFa at the end of drought episode indicate that horizontally-
oriented (planophile) leaves were dominant, while they were more vertically-
oriented (erectophile) leaves in the middle of the episode, albeit with some 
fluctuations.  
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(a) (b)

 (c)  (d) 

 (e)  (f) 

Figure 3.17. Landsat retrieved properties variations at the Vaira site during the selected 
drought episode: (a) LAI; (b) Cab; (c) Cw; (d) Cdm; (e) Cs; (f) LIDFa. Error areas show the 
uncertainty (standard deviation) in the vegetation properties caused by the uncertainty 
of the Landsat-observed TOA radiance. Various drought conditions (i.e., normal, mild 
stress, moderate stress and severe stress) are separated by the color dotted lines. 
 

As presented in section 3.2.5, we used the Jacobian J of the model to 
investigate the error propagation of TOA radiance observations into the 
retrieved vegetation properties. The uncertainty in the retrieved properties 
(LAI, Cab, Cw, Cdm, Cs and LIDFa) originating from the uncertainty in the 
radiance measurements and propagated to the properties, is small (error 
regions in Figure 3.17), which could be expected since LAI was known from 
measurements. 

3.5. Discussion 

3.5.1. Time series of TOA radiance observations 
The most striking result to emerge from the time series of the observed 

TOA radiance data is that all spectral bands of Landsat are sensitive to a soil 
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moisture deficit (water stress) over time during the episode (Fig. 3.6), and 
therefore investigation of the whole spectrum, by means of RT modeling, is 
required to exploit the full potential of the spectral information (Bayat et al., 
2016a; Carter, 1991; Chávez et al., 2013; Zarco-Tejada et al., 2003). This 
indicates that, although extracting the information content from parts of the 
spectrum by means of VIs can assist in detecting stress signals to some extent, 
it is more advantageous to exploit all the information in the spectra by using 
the RT modeling approach.  

Water stress effects on TOA radiance spectra can be explained from two 
stages, notably direct effects, also termed primary impacts, and indirect 
effects, also termed secondary impacts. Direct effects are considered as the 
impacts of water shortage (dehydration) on vegetation properties related to 
the spectral properties of water (this gives an increasing reflectance mostly in 
the short wave infrared (SWIR) part because of less absorption by water). The 
indirect effects are considered as the impacts that cannot be explained by the 
spectral properties of water alone, but that are also related to other changes 
of canopy and leaf structure and the effects of dehydration on pigment 
concentrations and defoliation. Both types of impacts are observed in our 
study. Moreover, as Fig. 3.6 shows, the observations acquired in the first part 
of the episode show a low radiance in the visible (VIS) and SWIR parts of the 
spectrum, because of relatively high concentrations of Cab and Cw, respectively. 
Our findings are in agreement with the findings of previous studies at leaf 
(Genc et al., 2013) and canopy level (Bayat et al., 2016a; Elmetwalli et al., 
2012). Canopy TOA spectral radiance in band 4 of Landsat [i.e., the near 
infrared (NIR)] initially increased, but in more severe stages of water stress it 
decreased. Such a pattern could be explained as a result of cell wall 
deterioration (Knipling, 1970), loss of plant leaves and the changes in the 
average leaf angle (Asner, 1998). Radiance increases in the VIS parts of the 
spectrum, i.e., in bands 1-3, could be well explained by Cab reductions due to 
the water stress. An increase in radiance in the SWIR parts of the spectrum, 
bands 5 and 7, occurred due to the decline of Cw. Our findings of various 
spectral changes due to water stress support previous studies (Asner, 1998; 
Chávez et al., 2013; Clevers et al., 2010; Hunt Jr and Rock, 1989). For detailed 
discussions about vegetation properties changes, radiance variation, and 
plant-water relations in various conditions (i.e., stressed and normal), the 
reader is referred to (Damm et al., 2018).   

3.5.2. Coupling RT models 
TOA radiance observations by satellites above a vegetated surface are 

basically influenced by three main factors: (1) atmospheric conditions, (2) 
canopy and leaf properties and (3) understory background or soil 
characteristics (Verhoef and Bach, 2007). Reliable models describing each of 
these three factors are required to simulate the atmosphere – surface system 
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and to obtain accurate retrievals of vegetation properties. In our study, we 
considered all of these three contributions in our modeling effort.  

We applied the MODTRAN atmospheric, RTMo canopy and BSM soil 
reflectance models as tools to describe the atmosphere – surface system to 
simulate TOA radiance observations in a time series and, therefore, to 
retrieve/map vegetation properties directly. Using this physically-based 
approach has many advantages, as it is based on physical laws, use of all 
spectral bands, the least reliance on in situ measurements, and it gives 
generalizable results (Atzberger et al., 2015, 2011). By combining the outputs 
of MODTRAN to the surface reflectance simulated by the RTMo and BSM 
models, one can simulate TOA radiance and eliminate the need to perform 
traditional atmospheric correction. This is significant since even in the best 
case of atmospheric correction performance, its result is a surface reflectance 
that is still dependent on atmospheric conditions and the solar zenith angle, 
unless the surface is both uniform and Lambertian over a large area, but this 
will never be the case in practice. The retrieval of surface properties by model 
inversion of TOA radiance data, instead of using surface reflectances obtained 
after atmospheric correction, is the best way to remove systematic effects 
related to the solar zenith angle and the atmospheric conditions, since RT 
models can take these effects implicitly into account. Thus, the proposed TOA 
approach can narrow down the error sources due to the atmospheric correction 
but also does justice to the actual physics of the satellite observations by 
simulating the same quantity as observed by the satellite. We used the 
combination of 3 RT models to retrieve vegetation properties directly from the 
time series of Landsat images observed during a prolonged drought episode in 
which soil moisture content declined 10-fold from 0.3 to 0.03 m3 m-3 during a 
period of 220 days. This episode provided a suitable case to investigate the 
performance of MODTRAN – RTMo – BSM, since during this episode both 
atmospheric (different months) and environmental (drought and soil moisture 
deficit stress) conditions were affecting the vegetation canopy. We can 
attribute the success of the combined models to their capability of capturing 
variations of atmospheric conditions (considering various aerosol types and 
visibilities) and environmental conditions (considering various soil moisture 
and vegetation properties) using the Landsat optical bands. Landsat time series 
have been selected for this research mainly because of their great potential 
due to the spatial and spectral resolution, the foresighted acquisition and global 
image archive (Wulder et al., 2012), freely available archived and new data 
sets (Loveland and Irons, 2016), the continuity of the observations (Loveland 
and Dwyer, 2012) and the ever increasing range of users and applications 
(Wulder et al., 2008).     

To find out the best fitting atmospheric properties one needs to compare 
the computed surface reflectance of the LUTs with the ground measured 
reflectance (as ground truth). Since we did not have such ground truth data 
for 2004, we employed lakes as dark pixels in the Landsat image near the 
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study site. However, it would be possible to invert the coupled set of MODTRAN 
– RTMo – BSM models when more spectral data are available (e.g.,
hyperspectral images) as well. This would eliminate the need for either ground 
spectral measurements or dark water bodies in the image. The comparison of 
generated surface reflectance, from the MODTRAN best fitting parameters over 
a lake, with the USGS surface reflectance products (http://espa.cr.usgs.gov/) 
over a lake, has further strengthened our confidence in the atmospheric 
properties retrieval accuracy. We found negative water reflectances in the 
USGS surface reflectance products over a lake (Table 3.5), which indeed is due 
to possible errors in the atmospheric correction and can be attributed to 
overestimations of the local atmospheric path radiance. Negative reflectance 
values are physically impossible and can no longer be used as an input for 
model inversion to retrieve surface properties.  

Despite the majority of atmospheric correction methods which assume a 
Lambertian surface for vegetation canopies, our results indicate that most 
vegetation canopies are non-Lambertian and this would affect the spectral 
radiance captured by a remote sensing instrument under different conditions, 
in particular solar zenith angles. Consequently, the retrieval of vegetation 
properties would be influenced considerably. Our findings of canopy surface 
reflectance anisotropy are in agreement with generally recognized non-
Lambertian characteristics of natural surfaces (Gerstl and Simmer, 1986). 
Further, the change of the computed anisotropy index during the course of this 
research (Fig. 3.13 and 3.14) reveals the fact that surface anisotropy has to 
be taken into account not only in normal periods, when vegetation components 
are dominant but also during drought conditions (from mild to moderate and 
severe stress), when the soil background and plant senescence materials are 
dominant in the field. However, the largest effects of surface anisotropy are 
observed when the vegetation is in maximum growth conditions in the middle 
of the episode. Later it decreased by the decline of soil moisture content and 
vegetation coverage. For instance, comparing the trends in retrieved 
vegetation properties (Fig. 3.17) and the computed anisotropy index (Fig. 
3.14), one can follow how vegetation properties are related to the canopy 
anisotropy changes during the episode. For instance, the maximum values of 
LAI, Cab, and Cw were retrieved at the middle of the mild stress period when 
higher values of anisotropy index are observed, while the minimum values of 
LAI, Cab and Cw were obtained later at severe stress period when lower values 
of the index are observed. From a modeling perspective, a canopy consisting 
solely of horizontal leaves is Lambertian if the soil is Lambertian as well, so the 
LIDFa parameter would generate the greatest anisotropy when it would become 
considerably less than unity. In Fig. 3.17 we observe that the retrieved LIDFa 
is minimum on DOY 60, at the beginning of the mild stress period when LAI, 
Cab and Cw are still high. 

 Lower residuals after spectral fitting for TOA radiance (0.006 < RMSE < 
2.2 Wm−2 sr−1 µm−1 for all cases) demonstrate the capability of the coupled 
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model to reproduce the observed spectra under different environmental 
conditions (Fig. 3.11). Overall, a remarkable correspondence was observed 
between time series of simulated and observed TOA radiances during the 
episode. This can be explained by the fact that (1) we scaled the dry soil 
spectra by means of measured soil moisture values to give a realistic soil 
reflectance for different days (Fig. 3.12) and, therefore, the background 
contribution was effectively taken into account; (2) we used the a priori 
information (e.g., LAI and soil moisture) to constrain the inversion, reducing 
the size of parameter space and ill-posedness; (3) we considered anisotropy 
effects in the forward modeling instead of assuming a Lambertian surface (Fig. 
3.13 and Fig. 3.14), highlighting the anisotropy influence and canopy non-
Lambertian behavior. This offers indisputable and very powerful evidence for 
taking the anisotropic surface reflection into account in time series image 
analysis and RT modeling; and (4) we found the best fitting atmospheric 
properties during the episode for different days with different magnitudes of 
the atmospheric transfer functions (T-18 system) for different atmospheric 
conditions (Fig. 3.9). A wrong assumption about atmospheric properties will 
result in the wrong computation of TOA radiance data and, consequently, 
possible errors in spectral fit and the biased retrieval.  

3.5.3. Time series of retrieved properties  
Visual inspection of the retrieved properties trend during this drought 

episode reveals that all vegetation properties responded to drought stress, but 
in different ways, with two general categories. For instance, retrieved LAI, Cab 
and Cw showed upward trends from normal condition up to the middle of mild 
stress period during the episode, while downward trends were observed for the 
rest of the episode (i.e., moderate and severe stress period). This pattern was 
opposite for Cdm, Cs and LIDF, which decreased initially in the normal condition 
up to the middle of mild stress, reached to minimal values in the middle and 
increased afterwards in moderate and severe stress period. The trend of 
vegetation properties observed during this episode is in agreement with a 
water stress laboratory experiment conducted by Bayat et al (Bayat et al., 
2016a) who demonstrated similar responses of grass to drought stress and 
reported considerable grass response to a drought experiment as an increase 
of Cdm and Cs, followed by a declining Cab, Cw and LAI. Moreover, the error 
propagation analysis demonstrated that the possible digitization (sensor) noise 
embedded in the TOA radiance data does not have significant effects on the 
retrieved properties. In other words, this analysis indicated that the retrieval 
results were reliable due to the small error propagated from the assumed 
sensor noise. 

In addition, comparing the trend over time of the retrieved vegetation 
properties with the trend of measured soil moisture decline during the drought 
episode demonstrates that there was a time delay in vegetation response (i.e., 
16 days for LAI, 31 days for Cab and 41 days for Cw) to the soil moisture deficit 
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since the soil moisture started declining from DOY = 59 while vegetation 
properties decline observed from DOY 75 (LAI), DOY 90 (Cab) and DOY 100 
(Cw). Furthermore, the Cdm and Cs started increasing from DOY 100 (Fig. 3.17). 
This may be attributed to the fact that vegetation stress does not manifest 
when soil moisture deficit is below a certain limit or that water is available 
deeper in the root zone, but as water stress intensifies the plants will be 
affected.  

It should be noted that the available dataset does not allow us to separate 
soil moisture deficit effects from those of senescence or the phenological cycle, 
following the natural vegetation growth cycle, since that seems not to be 
possible in the absence of a reliable reference (unstressed) case. Doing so 
would require repeating the analysis for multiple years and retrieving long-
term time series of vegetation properties. In this way, one will be able to 
identify anomalies due to soil moisture deficit (water stress) from the “average” 
phenology.   

3.5.4. Implications for multi-sensor time series synergy 
studies 

We coupled various RT models in a bottom-up TOA approach in order to 
simulate time series of Landsat (TM5 and ETM7) TOA radiances and directly 
retrieve and map land surface properties. The results look promising and 
demonstrate the potential of our approach for simulation of time series of other 
satellite sensors data where the environment, atmospheric and canopy 
characteristics are varying. The coupled RT model could capture these effects 
from time series of the observations adequately. For instance, in our case the 
soil moisture deficit effects on TOA radiances and vegetation properties could 
be detected in a prolonged drought episode using the coupled RT models. 
However, there is potential to improve the resolution (spatial, temporal and 
spectral) and, therefore, to gain more information from the Sentinel missions 
using our approach. Sentinel-2 provides optical information in 13 bands 
(covering VIS, NIR and SWIR regions) with spatial resolutions of 10, 20 and 
60 m and an average revisiting frequency of 5 days (Drusch et al., 2012). 
Thus, it offers a unique opportunity to use more of the information together by 
applying our coupled approach in an operational way to deliver high spatial 
resolution (of 10 and 20 m) maps of water stress effects on vegetation 
properties over time. This can be beneficial for both academic (e.g., remote 
sensing, eco-hydrology, and plant physiology communities) and application 
oriented (e.g., agriculture and farming) sectors to understand vegetation 
response to climate change.  

The proposed approach may seem to be complex for operational 
application at first glance. However, to ensure some levels of realism, one has 
to consider the surface – atmosphere system carefully by coupling a set of RT 
models to allow the retrieval of surface properties directly from TOA radiance 
data. The most important advantages of this approach are that (1) a separate 
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atmospheric correction of the satellite images is not necessary, (2) the 
anisotropic surface reflection can be taken into account effectively and (3) the 
original observations of satellites (Level-1, which are freely available even for 
new sensors) can be utilized directly. From our point of view, these advantages 
can pave the way for the operational application of our approach for large 
multi-scene areas, albeit considering the computation time. The NO approach 
for the inversion of the proposed coupled model takes about four seconds per 
pixel on a normal PC. This computation time can be reduced considerably using 
supercomputer facilities. 

In addition, our findings have an important implication for multi-sensor 
time series synergy studies. The coupled RT model used in this study produces 
the atmospheric transfer functions and surface reflectance factors in the optical 
domain from 400 nm to 2400 nm with a spectral resolution of 0.1 or 1 cm�1 in 
wavenumber units (determined by MODTRAN), which at 1000 nm means 0.01 
nm or 0.1 nm in wavelength units, respectively. This provides the user with 
the opportunity to resample the spectra into multiple sensors bands based on 
known sensor’s spectral response functions. In other words, there is no need 
to make major changes and apply a different modeling approach in case of 
using various sensor data sets. The only difference is in the last step where the 
user needs to resample the models outputs based on specific spectral response 
functions. We believe that this can be considerably beneficial for multi-sensor 
approaches as well as time series studies in different applications. 

3.6. Conclusions 
A forward modeling TOA radiance approach has been applied to accurately 

simulate an annual time series of Landsat (TM5 and ETM7) data and to retrieve 
vegetation properties during a drought episode in space and time. Verifying 
the performance of different components of the coupled model proves that 
BSM is able to fairly well reproduce the moist soil reflectance, RTMo is able to 
reproduce anisotropic TOC vegetation reflectance spectra and MODTRAN is 
able to accurately reproduce the observed TOA radiance spectra during this 
drought episode. Thus, it is concluded that the coupled use of these RT models, 
in a “bottom-up” approach, could be considered as a proper alternative for 
traditional “top-down” TOC approaches making use of atmospheric correction. 
The optimization approach for the inversion of the proposed coupled model 
takes about four seconds per pixel on a normal PC which can be reduced 
considerably using supercomputer facilities. The proposed approach is relevant 
for time series image analysis. Certainly in time series of satellite observations 
over a given target, the dependence of the target’s reflectance on the solar 
zenith angle may interfere with the correct retrieval of true surface properties 
as a function of time. In addition, variations of the aerosol load in the 
atmosphere induce variable fractions of diffuse incident sky radiation, for which 
the target has its own reflectance, the hemispherical-directional reflectance 
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factor (HDRF). This means that in time series analyses, also the atmospheric 
variability as a function of time has to be taken into account. Even with the 
best possible atmospheric correction, the assumption of isotropic surface 
reflectance would be inconsistent with RT models that predict anisotropic 
reflectance behavior. The computed anisotropy index highlights the importance 
of taking the surface anisotropic reflection into account for simulation of TOA 
radiance data and provides further evidence that the vegetation canopy is non-
Lambertian. Moreover, simulated TOA radiance spectra can be sampled by the 
spectral response functions of arbitrary hyperspectral and multispectral sensor 
in space. This means that a multitude of optical sensors can give their 
combined inputs for time series of retrieved biophysical surface properties, 
thus creating a much denser temporal sampling than would be possible for 
separate single sensors. This is a key requirement to enable exploring time 
series of various satellite observations to full extent, unlocking the informative 
power of combined earth observation data, expanding the number of potential 
earth observation data users, and allowing earth observation data to become 
an essential asset for environmental monitoring purposes. Overall, the 
proposed TOA approach lowers the barrier to time series analysis of satellite 
images and allows users to obtain desired surface information directly and 
quickly to support the utilization of the growing volume of earth observation 
data. From an operational point of view, our TOA approach can be of great help 
for embedding the time series of available (and also upcoming) satellite 
observations in operational programs to support management objectives, 
enable reporting, to inform decision (policy) makers and hopefully benefit our 
society. 
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Appendix A. Atmospheric, sensor geometric and satellite image properties 
Table 3.6. Input parameters used in this study to describe the real atmospheric and 
sensor geometric conditions for MODTRAN 5 simulations. 

DOY Sensor H2O [g cm−2] O3 [DU] 
SZA [degree] SAA [degree] 

Imagea Vairab Imagea Vairab 

3 ETM7 0.58 0.29 65.7 65.6 155.5 154.8 

11 TM5 1.7 0.29 65.9 64.9 151.9 153.4 

35 ETM7 1.2 0.31 60.5 60.3 150.4 149.6 

43 TM5 0.82 0.31 59.2 59.2 146.6 145.7 

59 TM5 1.02 0.32 53.9 53.9 143.9 142.9 

66 TM5 1.75 0.32 51.4 50.7 142.8 143.4 

75 TM5 1.36 0.33 48.1 48.0 141.2 140.1 

83 ETM7 1.37 0.33 43.3 43.6 142.9 141.8 

91 TM5 1.37 0.34 41.9 41.9 138.3 137.5 

98 TM5 2.01 0.34 39.4 58.7 136.9 137.0 

107 TM5 1.19 0.34 36.7 36.9 134.9 133.3 

114 TM5 0.85 0.34 34 33.4 133.1 133.6 

123 TM5 1.44 0.34 31.6 31.7 130.5 128.7 

130 TM5 1.8 0.34 29.9 29.3 128.4 128.8 

139 TM5 1.62 0.33 28.3 28.5 125.6 123.6 

146 TM5 2.02 0.33 27.4 26.6 123.4 123.7 

163 TM5 1.67 0.32 25.1 25.3 122.0 120.2 

171 TM5 1.35 0.32 26.4 26.7 118.4 116.5 

179 ETM7 1.96 0.31 25.6 25.8 120.5 118.7 

187 TM5 2.62 0.30 27.4 27.7 118.7 116.8 

195 TM5 1.31 0.30 27.2 27.3 122.1 120.4 

203 TM5 2.1 0.30 29.2 29.5 121.9 120.0 

211 TM5 1.6 0.30 29.59 29.7 126.4 124.7 

219 TM5 1.57 0.29 31.9 32.1 127.3 125.6 
a These values are extracted from Landsat image metadata file. 
b These geometric variables are calculated for time of satellite overpass at the Vaira site by using 
NOAA Solar Calculator (https://www.esrl.noaa.gov/gmd/grad/solcalc/). 
c This represents “best quality” in Landsat image metadata files. 
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Chapter 4  Integrating satellite optical and 
thermal radiance observations using the 
SCOPE model*  

* This chapter is based on:
Bayat, B., Van der Tol, C., Verhoef, W., 2018. Integrating Satellite Optical and Thermal 
Infrared Observations for Improving Daily Ecosystem Functioning Estimations during a 
Drought Episode. Remote Sensing of Environment, 2018, 209, 375-394, 
https://doi.org/10.1016/j.rse.2018.02.027.   

Bayat, B., Van der Tol, C., Verhoef, W., 2018. Estimation of Vegetation Functioning in a 
Drought Episode from Optical and Thermal Remote Sensing. IEEE International 
Geoscience and Remote Sensing Symposium IGARSS 2018, Valencia, Spain, 22–27 July 
2018. 
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ABSTRACT  

Satellite optical and thermal infrared (TIR) spectra are linked to vegetation 
properties and, therefore, carry valuable information needed for estimating 
vegetation functioning as expressed in canopy photosynthesis [gross primary 
production (GPP)] and evapotranspiration (ET). Joint effort is required to fully 
exploit this satellite spectral information and to demonstrate its capability to 
reveal ecosystem functioning in various environmental conditions. We 
investigated the relationship between Landsat (TM5 and ETM7) optical/thermal 
data and canopy daily functioning of annual C3 grasses at a Fluxnet site (US-
Var) during a prolonged drought episode. By using the ‘Soil-Canopy 
Observation of Photosynthesis and Energy fluxes’ (SCOPE) model, reference 
GPP and ET were simulated via locally measured weather data, and then actual 
GPP and ET were simulated twice: first using the vegetation properties 
retrieved only from the optical bands, and second using information from both 
the optical and thermal domains. The output of last two simulations were 
compared to flux tower measurements. For the first simulation, we used the 
Landsat optical retrieved vegetation properties from Chapter 3 [notably Leaf 
Area Index (LAI), leaf chlorophyll content (Cab), leaf water content (Cw), leaf 
dry matter content (Cdm), the leaf inclination distribution function (LIDF) and 
the senescent material content (Cs)] covering the period from January to 
August 2004. All the retrieved vegetation properties were linearly interpolated 
over time and were used, together with locally measured weather variables, to 
simulate GPP and ET at half-hourly time steps with SCOPE. For the second 
simulation, we additionally used TIR information to retrieve the maximum 
carboxylation capacity (Vcmax), the Ball-Berry stomatal conductance parameter 
(m) and soil surface and boundary resistances (rss and rbs) by inversion of the 
energy balance and thermal radiative transfer routines of SCOPE, RTMt. The 
comparison between simulations and measurements shows that most drought 
effects on ET, GPP and transpiration are ‘visible’ in the Landsat optical bands. 
However, the accurate simulation of soil evaporation requires TIR information. 
The results from this study indicate that the integration of optical and TIR 
information has a great potential to capture the drought effects on the grass 
canopy in terms of reductions in daily GPP and ET. Further, it is found that 
integrating optical and TIR information not only could capture the lower values 
of GPP and ET during severe drought but also, mapped much higher spatial 
variability during mild drought. 
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4.1. Introduction 
Exploiting information contained in both the optical and TIR domains of 

satellite observations to full extent can assist in detecting daily ecosystem 
functioning – canopy photosynthesis [gross primary production (GPP)] and 
evapotranspiration (ET) – variations during a drought episode. This is needed 
by both social and academic sectors (Lewinska et al., 2016) to better 
understand the carbon and water cycle feedbacks to climate change (Dong et 
al., 2015). 

Drought influences vegetation in several ways: (1) stomatal effects which 
change the intrinsic water use efficiency and, therefore, the ratio of 
photosynthesis to transpiration, and (2) non-stomatal effects which change 
photosynthetic capacity of the vegetation (Zhou et al., 2013). Both of these 
effects have been modelled and understood well using experimental data sets 
(Egea et al., 2011; Keenan et al., 2010a; Zhou et al., 2013). However, the 
question is: can we detect these effects of drought on GPP and transpiration 
(T), but also on soil evaporation (E), by means of satellite observations? We 
assume that in grass most of the non-stomatal effects are due to browning and 
defoliation (Vicca et al., 2016), which are visible in the optical spectra. 
However, stomatal effects and soil evaporation become manifest in the TIR 
domain (Anderson et al., 2007a, 2007b; Crow et al., 2008).  

Two approaches to estimate GPP from satellite data are widely used: (1) 
using the Monteith production efficiency concept (Monteith, 1972), in which 
GPP is linked to the absorbed amount of photosynthetically active radiation 
(APAR) and (2) using empirical models, in which the relationship is explored 
between ground measured GPP and satellite observed spectral information 
(Song et al., 2013). Regardless of the methodological differences between 
these approaches, the remote sensing information has been used in both by 
means of Vegetation Indices (VIs), mostly by, but not limited to, the Enhanced 
Vegetation Index (EVI) and Normalized Differences Vegetation Index (NDVI). 
For instance, Dong et al (2015) investigated the performance of four EVI-based 
models to estimate GPP in one grassland and two croplands (maize and 
soybean) in the US. They examined the relationship between two vegetation 
indices (NDVI and EVI) and measured GPP under two different conditions; non-
drought and drought years. They concluded that satellite information, obtained 
as EVI and NDVI, could capture GPP changes at different sites, however, the 
EVI explained more variance of GPP in both non-drought and drought 
conditions (Dong et al., 2015). In another study, Vicca et al (2016) extracted 
the information content of MODerate-resolution Imaging Spectroradiometer 
(MODIS) reflectance spectra to identify drought effects on GPP. They examined 
MODIS-derived EVI, NDVI, Simple Ratio (SR), Global Environmental Monitoring 
Index (GEMI), Normalized Differences Water Index (NDWI) and Photochemical 
Reflectance Index (PRI) in detecting severe drought effects on annual GPP in 
a beech forest, an evergreen broadleaved oak forest and a grassland. They 
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concluded that the majority of long-term drought effects on GPP could be 
detected by EVI and the normalized PRI at the beech forest site and the 
evergreen broadleaved oak forest, while all of the examined indices captured 
the drought effects at the grassland site. Overall, the above-mentioned and 
many more studies (Dong et al., 2015; Gitelson et al., 2014; Maselli et al., 
2009; Peng et al., 2011; Verma et al., 2015; Wagle et al., 2015, 2014, Wu et 
al., 2011, 2009, Xiao et al., 2004a, 2004b) demonstrated the capability of 
information from optical bands to estimate GPP. 

Similarly, two widely-used approaches to estimate ET using satellite 
information are (1) using the surface energy balance (SEB) approach, in which 
the land surface temperature (LST) information from TIR bands is used and 
(2) using empirical models, in which the statistical relationship is explored 
between ground measured ET and satellite observed optical bands (K. Zhang 
et al., 2016). The first approach (SEB) makes use of the fact that LST is 
determined by the partitioning of available energy into latent (LE) and sensible 
heat flux (H). This approach has been widely used in previous studies to 
estimate ET. For instance, Su et al (2005) reported that the accuracy of The 
SEB System (SEBS) model in estimating ET could reach 10 – 15% of in-situ 
measurements for range of evaporation fraction from 0.5 – 0.9 (Su et al., 
2005). In addition, The SEB algorithm for land (SEBAL) has been applied to 
estimate ET under various climatic conditions at the field scale and good 
accuracy has been reported for daily (85%) and seasonal (95%) estimations 
(Bastiaanssen et al., 2005; Bastiaanssen, 2000). Based on the SEBAL method, 
Allen et al proposed the Mapping EvapoTranspiration with high Resolution and 
Internalized Calibration (METRIC) model in which ground-based ET is used to 
calibrate the SEB internally resulting in computational bias reduction (Allen et 
al., 2007). How to determine the hot and cold pixels, which are needed for 
both SEBAL and METRIC, are also discussed in previous studies (Long and 
Singh, 2012). In another study, Gonzalez-Dugo et al (2009) compared the 
performance of the Two-Source Model (TSMN), that proposed by Norman et al 
(Norman et al., 1995), with two one-source SEB model in estimating ET over 
rain-fed corn and soybean in central Iowa. They concluded that although all 
three models could estimate ET with reasonable accuracy, the TSMN model was 
performed the best (with the lowest RMSE) compared to the ground 
measurements (Gonzalez-Dugo et al., 2009). Considerable research has been 
conducted to improve the TSMN (Kustas and Norman, 1999, 1996; Li et al., 
2005; Norman et al., 2000; Sánchez et al., 2008). Many more studies used the 
above-mentioned SEB models and, therefore, estimated ET variations from 
satellite TIR data with acceptable accuracy (as reviewed in (Glenn et al., 2007; 
Liou and Kar, 2014; K. Zhang et al., 2016)). In the second approach to 
estimate ET, the optical spectral bands are utilized to relate them to flux tower 
measurements of ET. For instance, Nagler et al (2005) established a 
relationship between MODIS-derived EVI, NDVI and ground measured ET 
collected at four flux towers at different riparian sites over 4 years located in 
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New Mexico. They have demonstrated that EVI and NDVI were fairly correlated 
with ET (Nagler et al., 2005). In another study, Cleugh et al (2007) used 
MODIS-derived NDVI together with meteorological inputs to estimate ET in two 
various ecosystems in Australia. They established a relationship between 
remote sensing and ground measurements, showing their method’s validity 
over regional scales (Cleugh et al., 2007). Overall, there are numerous similar 
studies using satellite optical data to estimate ET variations in croplands and 
natural environments (as reviewed in (Glenn et al., 2010)).  

As described above in both cases (GPP and ET estimation), only a fraction 
of the available satellite data, either from optical or TIR domain, is employed 
in order to explain the changes in carbon and water fluxes. On the one hand, 
the models simulating GPP and ET from satellite optical data mostly use VIs. 
These are simple to compute and provide useful information about 
physiological processes (Glenn et al., 2008). However, there are three 
limitations for using such VIs; (1) They are only based on a few individual 
bands located in the optical domain and by adopting them, as a consequence, 
important pieces of information in the other bands is ignored; (2) the majority 
of VIs do not include information from the TIR domain and (3) the empirical 
models which are based on VIs have shown acceptable accuracy only at a time 
scale of weeks to years and, therefore, are unable to capture ecosystem 
functioning variations with acceptable accuracy at time scales of days or 
shorter (Glenn et al., 2007; Liou and Kar, 2014). On the other hand, although 
the models estimating ET from satellite TIR data through SEB approach showed 
acceptable performance, the lack of a one-to-one correspondence between the 
surface temperature and H due to mainly the wind and aerodynamic resistance 
causes considerable uncertainty in the LE flux derived with this method (Glenn 
et al., 2008). 

Thus, the potential of utilizing the full spectral information, from the optical 
and TIR domains together, is still unexplored. An alternative method is to 
exploit the information from all available optical and TIR spectral bands in a 
consistent way by means of Radiative Transfer (RT) models and to simulate 
vegetation functioning by means of a Soil-Vegetation-Atmosphere Transfer 
(SVAT) model. Limited work has been done in this direction and we address 
this gap in our study. 

Hence, this study intends to use Soil-Canopy Observation of 
Photosynthesis and Energy fluxes (SCOPE) (Van der Tol et al., 2009b) to 
exploit the information contained in Landsat optical and TIR images to full 
extent in order to estimate daily GPP and ET simultaneously in a drought 
episode. This way, it is possible to assess the information of all bands together, 
and to analyze which drought effects can be observed using optical information 
offered by a remote sensing satellite and what would be the added value of 
using TIR data.  
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4.2. Data 

4.2.1. Site description 
The study focussed on the Vaira Ranch (US-Var) Fluxnet site, hereafter 

called Vaira site. It is an open grassland (see Fig. 3.2 in chapter 3), in a 
Mediterranean climate, at 129 m altitude at the foothills of the Sierra Nevada 
in California (38.4133◦ N; 120.9508◦ W), in the USA (Baldocchi et al., 2004; Ma 
et al., 2016, 2007; Xu and Baldocchi, 2004). Most rainfall events occur from 
October to May. The mean annual temperature and precipitation in the region 
are 16.6◦C and 559 mm, respectively. The species composition varies per year 
as a function of rainfall and air temperature (Ma et al., 2011). The grassland 
is physiologically functioning from September to May, with the peak growth 
period in late February to early April. In this period, the maximum grass height 
reaches 0.55 ± 0.12m. The soil type is silty loam (30/57/13% sand/silt/clay). 
A prolonged drought occurred at the site in 2004 and it was reported as one of 
the driest years at the site (Ma et al., 2007). 

4.2.2. Drought severity data  
We defined drought based on the Palmer Drought Severity Index (PDSI), 

in which drought is considered as a prolonged and abnormal soil moisture 
deficiency (Alley, 1984; Palmer, 1965).  

 In this study, the time series of the PDSI dataset were obtained from a 
monthly database of the NOAA's National Centers for Environmental 
Information (NCEI), (www.ncdc.noaa.gov/temp-and-
precip/drought/historical-palmers), in which various drought conditions have 
been identified at the site using long-term PDSI. More details are presented in 
the results section. 

4.2.3. Remote sensing observations 
In the current study we used time series of Landsat-retrieved vegetation 

properties from optical domain (described in Chapter 3, Fig. 3.17) during the 
selected period at the Vaira site. In addition, Landsat TIR band information is 
used to constrain the SCOPE model. Fig. 4.1. shows the Landsat TIR images 
we used during the drought episode. For the days with a satellite overpass, the 
retrieved properties were used. For the other days during the episode in which 
Landsat observations were not available, a linear interpolation was applied and, 
therefore, a continuous set of needed vegetation properties obtained for all 
days during the episode. The Landsat data used in this study were contained 
in standard L1T files obtained from the US Geological Survey (USGS) website 
(http://glovis.usgs.gov/).  
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Figure 4.1. Daily time series of the surface soil moisture at the study site in 2004. The 
red lines show the imaging times of Landsat TIR observations. 

4.2.4.  Ground measurements 
We used half-hourly scale ground measurements of solar radiation fluxes, 

air temperature, relative humidity, air pressure, volumetric surface soil 
moisture content (at 2 cm depth) and wind speed. Radiation fluxes were 
measured above grass canopies using upward and downward facing quantum 
sensors; (PAR Lite, Kipp and Zonen, Delft, Netherlands), a pyranometer (CM 
11, Kipp and Zonen, Delft, Netherlands), and one net radiometer (NR Lite, Kipp 
and Zonen, Delft, Netherlands). Temperature and relative humidity were 
collected using a resistance thermometer and solid-state humicap (model HMP-
45A, Vaisala, Helsinki, Finland). Air pressure was measured by capacitance 
barometers (model PTB101B, Vaisala, Helsinki, Finland). Volumetric soil 
moisture content was measured by an array of calibrated frequency domain 
reflectometry sensors at depths of surface, 2, 10 and 20 cm (Theta Probe 
model ML2-X, Delta-T Devices, Cambridge, UK), calibrated by gravimetric 
measurements. Fluxes were measured with an Eddy Covariance (EC) system 
(Wind master Pro, Gill Instruments, Lymington, UK plus LI-7500, LICOR, 
Lincoln, NE, USA), as reported by Baldocchi et al (2004) and Ma et al (2007). 
Moreover, LAI was measured periodically from canopy peak growth to the end 
of the drought episode at intervals of 2–4 weeks. Grass was collected from 
three sample plots (0.2 m × 0.2 m) in the prevailing direction of the eddy 
covariance flux system. Then all grass leaves were separated from the stem 
component and their green areas were measured by a leaf area meter (Li-Cor 
3100, Lincoln, NE, USA). 

4.3. Methods 
There were four phases in this study. In the first phase, the best fitting 

atmospheric [notably Visibility (Vis), and Aerosol model (Aer)] and vegetation 
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properties [notably Leaf Area Index (LAI), leaf chlorophyll content (Cab), leaf 
water content (Cw), leaf dry matter content (Cdm), the leaf inclination 
distribution function (LIDF) and the senescent material content (Cs)] obtained 
by coupled use of the MODTRAN and RTMo models from optical domain of 
Landsat observations (this is described in Chapter 3). In the second phase, the 
retrieved vegetation properties were linearly interpolated over time and then 
used with half-hourly scale weather inputs in the SCOPE model to simulate 
daily time series of GPP and ET. The results were compared to the field 
measurements to assess the information content from the optical bands 
regarding drought effects on GPP and ET. In the third phase, we added new 
information from the TIR domain to the simulations. For this purpose, we 
inverted the energy balance and thermal radiative transfer routines of SCOPE, 
RTMt, and retrieved time series of the maximum carboxylation capacity Vcmax, 
the Ball-Berry stomatal parameter m, soil surface resistance for evaporation 
rss and soil boundary resistance rbs during the episode. Next, by using the best 
fitting parameters from both optical and TIR domains, we simulated daily GPP 
and ET with the SCOPE model. To eliminate the effect of fluctuations in weather 
conditions, we normalized GPP and ET to reference GPP and ET of unstressed 
hypothetical green grass in order to obtain crop factor. The main phases of the 
methodology are shown in Fig. 4.2. 
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Figure 4.2. Flowchart of the adapted approach 

The first phase, obtaining the best fitting atmospheric (Vis, Aer) and vegetation 
properties (LAI, Cab, Cw, Cdm, LIDF, Cs), is presented in chapter three of this 
dissertation in details. Before proceeding to the second, third and fourth phase to 
simulate fluxes with SCOPE model, it is required to perform atmospheric correction for 
the TIR band of Landsat.  
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4.3.1. Atmospheric correction of TIR band 
Atmospheric correction for the TIR domain (band 6 of Landsat), was carried 

out with MODTRAN simulations. The TOC surface radiance for the TIR band 
was computed as (Verhoef and Bach, 2012): 

 


 )()1()(TOA bLtLL

L aa
s


  (4.1) 

where Ls is the TOC surface radiance (Wm−2 sr−1 µm−1), LTOA is the observed 
TOA radiance by the sensor (Wm−2 sr−1 µm−1), La (t) is the TOA radiance for 
zero surface albedo (Wm−2 sr−1 µm−1), La (b)  is the radiance from the bottom 
of the atmosphere for a surface albedo of one (Wm−2 sr−1 µm−1),   is direct 
transmittance in the direction of observation, ε is surface emissivity which was 
estimated for different days during the episode based on the NDVI Thresholds 
Method (Sobrino et al., 2008) as follows: 
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where εv and εs are vegetation and soil emissivity, respectively, Pv is the 
proportion of vegetation which is also termed as fractional vegetation cover 
(FVC), NDVI is the normalized difference vegetation index calculated from red 
and near infrared bands of Landsat, NDVIv and NDVIs are referred to as the 
NDVI of a vegetated pixel and a soil pixel. We considered 0.98, 0.94 for εv and 
εs in our study (Sobrino et al., 2008; Valor and Caselles, 1996). In addition, 
the maximum and minimum NDVI values computed for the selected episode 
(0.79 and 0.25) were used for NDVIv and NDVIs.  

4.3.2. Simulation of fluxes with SCOPE 
The SCOPE model differentiates shaded and sunlit parts in 60 leaf layers 

and the soil. Leaf orientations are described by the zenith (with a distribution 
provided as input) and azimuthal angles (assumed uniformly distributed) of 
the leaf’s normal. The wavelength range of radiative transfer computations in 
the model is from 0.4 to 50 µm, with different sampling intervals in the optical 
(0.4 – 2.5 µm), thermal (2.5 – 15 µm) and longwave regions (15 – 50 µm) of, 
respectively, 0.001, 0.1 and 1 µm.  In the energy balance module of the model, 
an energy budget and the surface temperature are solved for each sunlit leaf 
zenith and azimuth class in each layer, for each layer in the shaded parts, and 
for sunlit and shaded soil. SCOPE iterates between a RTM for thermal radiation, 
and a micro-meteorological scheme for turbulent fluxes until energy balance 
closure is achieved for all these elements. The model computes the leaf CO2 
assimilation rate and gas exchange for C3 and C4 vegetation (Collatz et al., 
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1992, 1991). The main parameters considered in calculating the aerodynamic 
resistance of the soil and the canopy are LAI, canopy height, wind speed and 
the atmospheric stability according to (Wallace and Verhoef, 2000).  

In this study, the Landsat optical domain retrieved vegetation properties 
(Fig 3.17, chapter 3) and the half-hourly scale meteorological variables, i.e., 
TOC incoming shortwave radiation from 0.3 to 2.5 μm (Rin), TOC incoming long 
wave radiation from 2.5 to 50 μm (Rli), air pressure (p), air temperature (Ta), 
actual vapor pressure (ea), and wind speed (u) were used as inputs for the 
SCOPE model to quantify the time series of canopy functioning (fluxes). In 
addition, the SCOPE partitions canopy transpiration (T) and soil evaporation 
(E). Besides the retrieved vegetation properties from the Landsat optical 
bands, there are four other parameters relevant for the SCOPE model that 
cannot be retrieved from optical domain directly. These are the Ball-Berry 
stomatal parameter m, the maximum rate of carboxylation Vcmax (μmol m-2 s-

1), the soil resistance for evaporation from the pore space, rss; and soil 
boundary layer resistance, rbs (both in s m-1). However, one can get an 
estimation for these parameters if the TIR domain information is also provided.  

To analyze the added value of Landsat information from both domains, we 
ran SCOPE version 1.61 with four different scenarios. In the first scenario, 
called “Reference”, we did not use the time series of retrieved properties from 
Landsat. Instead, we followed the “FAO-56” (Allen et al., 1998) definition for 
the hypothetical reference grass as much as possible to simulate canopy 
reference GPP and ET. Further, we consult with the literature to obtain other 
needed parameters (Table 4.1). This way, we can monitor vegetation 
functioning changes in an unstressed reference grass when the only limiting 
factor is irradiance and atmospheric demand. In the second scenario, called 
“Landsat Optical Info”, we used all the retrieved vegetation properties from the 
optical bands, i.e. time series of LAI, Cw, Cab, Cdm, Cs and LIDF. In this scenario 
we used a typical value of Vcmax = 58 umol m-2 s-1 (Baldocchi and Meyers, 
1998; Wullschleger, 1993); for m, a constant value of 10 (Wolf et al., 2006; 
Xu and Baldocchi, 2003); for rss and rbs, the default values in the SCOPE model 
of 2000 and 10 (s m-1), respectively (Van der Tol et al., 2009b). In the third 
scenario, called “Landsat optical info/Vcmax = f (Cab)”, we had almost the same 
settings as for the second scenario except for Vcmax. Instead of considering a 
fixed typical value for Vcmax, we estimated its time series variation based on an 
empirical equation proposed between Vcmax and satellite retrieved Cab (Houborg 
et al., 2013). The goal was to see the changes of vegetation functioning when 
we are still relying on optical domain information both directly (from retrieved 
properties) and indirectly (from empirical relationships). In the last scenario, 
called “Landsat Optical/TIR Info”, we added new information from the TIR 
domain to the simulations. For each day during the drought episode, a Look 
up Table (LUT) was generated with 28980 entries, of which the 5% were 
selected that matched best with the Landsat atmospherically corrected 
radiance in the TIR band. Each LUT consisted of values of Vcmax (from 1-110 
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µmol m-2 s-1 with 5 increment), m (from 1-20 with 1 increment), rss (values of 
100, 200, 500, 1000, 2000, 5000, 50000 s m-1) and rbs (values of 1, 10, 50, 
100, 150, 200, 250, 300, 500 s m-1). The model was run for all parameter 
combinations (23×20×7×9 = 28980 simulations) with all other meteorological 
inputs and parameters values of the overpass time, and the Landsat TIR 
radiance was simulated using the spectral response function of the Landsat 
thermal band. The average of the 5% best performing combinations of 
parameters was used as retrieved parameters rather than the single best, 
following Cambal et al (2003). Finally, we ran the SCOPE model using the 
interpolated parameters from the TIR data combined with the parameters 
retrieved from the optical domain, thus using all the information obtained from 
both optical and TIR to simulate daily GPP and ET.  

 
Table 4.1. Vegetation properties obtained from literature to simulate daily GPP and ET 
for “Reference” scenario. 
Parameters Unit Value References 

LAI m2 m−2 2.88 (Allen et al. 1998) 

Cab μg cm−2 49.66 (Darvishzadeh et al. 2008) 

Cw g cm−2 0.02 (Darvishzadeh et al. 2008) 

Cdm g cm−2 0.005 (Darvishzadeh et al. 2008) 

Cs - 0.02 (Bayat et al., 2016a) 

LIDFa - -0.35 (Van der Tol et al. 2009) 

LIDFb - -0.15 (Van der Tol et al. 2009) 

Vcmax umol m-2 
s-1 

98.27 (Houborg et al., 2013) 

m - 10 (Xu and Baldocchi, 2003) 

rss s m-1 500 (Van der Tol et al. 2009) 

rbs s m-1 10 (Van der Tol et al. 2009) 

rwc s m-1 70 (Allen et al. 1998) 

hc m 0.12 (Allen et al. 1998) 

4.3.3. Crop factors  
We used the SCOPE model to compute a time series of reference ET (ETRef) 

following mostly the “FAO-56” (Allen et al., 1998) definition for reference 
hypothetical grass and also previous studies (Table 4.1). In addition, we 
defined and computed the reference value for GPP (GPPRef) from the same 
simulation, to establish the photosynthesis rate in the reference grass when 
there are no restrictions other than atmospheric demand. In fact, we used the 
same tool (SCOPE model) and, therefore, similar formulations for simulating 
ETRef and GPPRef as the actual ET and GPP. The difference between the reference 
and actual quantities (ET and GPP) is due to the inputs we used in the SCOPE 
model for each case. For the case of reference ET and GPP, we used inputs 
describing the reference hypothetical grass extracted from “FAO-56” and 



Chapter 4 

95 

literature (Table 4.1), however, for the case of actual ET and GPP we used 
Landsat derived information as the SCOPE inputs. We considered the net 
canopy photosynthesis An as a proxy for flux tower footprint GPP, thus ignoring 
some conceptual differences between canopy photosynthesis and flux-
partitioned GPP. This is reasonable since previous studies have shown that the 
GPP estimated with the flux partitioning approach produced estimates that 
were fairly close to the canopy photosynthesis (Wohlfahrt and Gu, 2015). 
Finally we computed the crop coefficients as:  

f
cET ET

ET
K

Re

  (4.4) 

f
cGPP GPP

GPP
K

Re

  (4.5) 

where ܭୡ	 and ܭୡ	ୋ are the crop factors (unitless) calculated for ET and GPP, 
respectively. 

We also computed the dual crop factor and separate soil evaporation from 
canopy transpiration: 
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where Kcb is the basal crop coefficient (unitless) and describes the canopy 
transpiration, Ke is the soil evaporation (unitless) describing the evaporation 
component, T is simulated transpiration (mm d-1), TRef is simulated reference 
transpiration (mm d-1), E is simulated evaporation (mm d-1) and ERef is 
simulated reference evaporation (mm d-1). For comparison, we also calculated 
ETRef with the proposed model by FAO Penman-Monteith (PM) for the reference 
grass (Allen et al., 1998). 

4.3.4.  Model performance evaluation 
The goodness-of-fit measures of R2 (coefficient of determination) and 

RMSE (root mean squared error) used for assessing model inversion 
performance. In addition, Taylor diagram (Taylor, 2001), was employed to 
evaluate the agreement between simulated and measured GPP, ET, Kc GPP and 
Kc ET in details. It is worth noting that in a Taylor diagram only two components 
of the error budget (the difference of the standard deviations and the 
correlation) are addressed and, therefore, the bias of the mean values is still 
missing. To consider also the bias, we decomposed the MSE (mean squared 
error) into three contributions, due to 1) unequal standard deviations, 2) a lack 
of (positive) correlation and 3) the bias in the mean values, as expressed in 
Eq. 4.8 and also shown in previous studies (Gupta et al., 2009). 
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  22 )(12)( gsRMSE gsgs   (4.8) 

where ߪs, ߪg are standard deviations of the simulation and ground 

measurement, R is the correlation coefficient, s and g are the means of model

simulation and ground measurement.  
This decomposition has a considerable advantage. It expresses well that 

only positive correlations can contribute to accomplishing a lower MSE, 
whereas for instance R2 can also be high if the correlation is negative, so R2 
alone is not a good measure of the correspondence between model and 
measurement. 

4.4. Results 

4.4.1.  Drought status at the site  
At the site, the monthly PDSI ranges between 0.44 to -3.26 from January 

to the end of August (Table 4.2). Several drought conditions, i.e. mild, 
moderate and severe, have been identified in the selected episode. PDSI values 
suggests near-normal conditions at the site from the first of January (DOY 1) 
until the end of February (DOY 60). During this near-normal period, grasses 
remained low in photosynthesis due to low temperatures. Drought with more 
severity, i.e., mild, moderate and severe were recorded from the first of March 
(DOY 61) till the end of August (DOY 244).  

Table 4.2. PDSI variation for the selected episode at Vaira site 
DOY PDSI Drought Status 

1 - 31 0.44 
Normal 

Near normal 

32 - 60 0.64 Near normal 

61 - 91 -1.09 

Drought 

Mild drought 

92 - 121 -1.83 Mild drought 

122 - 152 -2.5 Moderate drought 

153 - 182 -3 Severe drought 

183 - 213 -3.26 Severe drought 

214 - 244 -3.25 Severe drought 

4.4.2. TIR radiance variations 
The atmospherically corrected TIR radiance variation during the selected 

episode is presented in Fig. 4.3. Radiance in TIR band shows a global upward 
trend over time (from DOY 3 to DOY 187). However, at the end of the episode 
(from DOY 187 to DOY 219), TOC radiance of the TIR band started declining. 
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Figure 4.3. Landsat TOC radiance changes during drought episode as a function of time. 

4.4.3.  Vegetation functioning (GPP and ET) variations 
Fig. 4.4 illustrates the daily GPP and ET variations in the selected episode 

at the site. GPP and ET followed almost the same trends in the episode. They 
are increasing initially (from DOY 1 till 90) and decreasing afterwards (from 
DOY 91 till 220). The minimum (0.0 µmol m-2 s-1) and the maximum (8.8 µmol 
m-2 s-1) GPP values were recorded at DOYs 150 - 220 and 91, respectively. 
Thus the range of GPP was 8.8 (µmol m-2 s-1). The minimum value of ET (0.023 
mm day-1) was recorded at the end of the episode, while the maximum value 
(3.12 mm day-1) was recorded at DOY 101. Thus, the range of ET was 3.1 mm 
day-1.  

 
Figure 4.4. Vegetation functioning variations during the selected episode 

4.4.4. SCOPE (RTMt + energy balance) inversion against TIR 
spectra 

To measure the SCOPE model inversion performance in the TIR domain, 
the smallest squared error (SE) between the observed and simulated TIR band 
was used. Fig. 4.5 illustrates the observed TIR band (by Landsat) and the 
simulated one (by the SCOPE model) in a window of three by three pixels 
around the flux tower at the site on various days. The small squared error 
(1.909 < SE < 0.001) obtained through the LUT inversion showed that the 
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SCOPE model was able to reproduce the observed TIR band with reasonable 
accuracy under different soil moisture conditions during the episode, although 
the last four simulations underestimated the observations. 

 

 
Figure 4.5. SCOPE simulated and Landsat observed TIR band at a 3×3 window around 
the flux tower at the site on different DOYs. 

4.4.5. TIR domain retrieved properties variations 
The variations of the retrieved vegetation properties from TIR domain 

during the episode are presented in Fig. 4.6. The results of retrieved properties 
from the TIR band showed a maximum value for Vcmax at the middle of the 
episode (DOY 100) and the minimum values obtained for the start and the end 
of the episode, while rss showed the opposite trend compared to Vcmax: it 
decreased first, was almost stable in the middle and increased at the end. 
Maximum rss was obtained at the end of the episode from DOY 120 till 219, 
while the minimum values were observed at the middle (DOYs 66 and 107). 
Although the m parameter did not show a clear trend during the episode, some 
spikes observed in the middle of the season. The rbs parameter, increased first 
(DOY 3 till DOY 35), declined in the middle (from DOY 35 till DOY 66) and 
slightly increased at the end of episode (from DOY 66 till DOY 219). Moreover, 
comparing the trends of derived properties from the TIR domain (Vcmax, m, rss 
and rbs), indicates that rss, rbs and m started declining first (from DOY 35) while 
Vcmax peaked later in the season (DOY 100).  
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 (a)  (b) 

(c)  (d)

Figure 4.6. Landsat TIR domain retrieved properties variations during selected drought 
episode: (a) Vcmax; (b) m; (c) rss; and (d) rbs. 

4.4.6. Vegetation daily functioning simulation 

4.4.6.1. Daily GPP 

Simulated actual GPP (with the inclusion of Landsat retrieved information) 
and reference GPP (GPPRef) are presented in Fig. 4.7. As expected, GPPRef, 
which represents GPP of hypothetical unstressed grass, increases throughout 
the season during the whole episode. The simulated actual GPP matched with 
the observed GPP for a part of the episode from DOY 1 to 70 when the 
information retrieved from optical domain of Landsat was used. For the rest of 
the episode the simulated GPP was underestimated (from DOY 70 till DOY 100) 
or overestimated (from DOY 110 till DOY 200) due to the fact that in SCOPE 
simulations a constant m, Vcmax and rss were applied. Estimating Vcmax changes 
as a function of Cab, did not improve the results except for a small part of the 
episode (from DOY 120 till 190). However, the results of GPP simulations for 
almost the whole episode improved considerably when the retrieved 
information from the TIR band of Landsat was added. In other words, inclusion 
of time series information of Vcmax, m, rss and rbs makes the model better 
capture the GPP variation at the drought episode. 
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Figure 4.7. Time series of measured and simulated GPPs (actual and reference) at the 
site. 

4.4.6.2. Daily ET 

Simulated actual ET (with the inclusion of Landsat optical and TIR derived 
information) and reference ET (ETRef) are presented in Fig. 4.8. Similar to 
GPPRef, the ETRef increases throughout the season during the whole episode. 
We also found good agreement between ETRef simulated with SCOPE and ETRef 
simulated with the FAO-PM model for the same period at the site (results not 
shown). For the actual ET, an acceptable match is observed between the 
simulated and measured ET for a part of the episode from DOY 1 to 70 when 
the information retrieved from the optical bands of Landsat was used. For the 
rest of the episode (DOY 70 to 220) the simulated ET was overestimated. Using 
Landsat retrieved properties from the optical bands plus Vcmax = f(Cab), resulted 
in small differences in ET compared to the situation when we used only 
information from the optical bands and fixed the Vcmax value. The results 
improved considerably when the retrieved information from the TIR band of 
Landsat was added. However, adding TIR information did not improve the first 
part of the simulations (from DOY 1 to 110) and in some cases it made the 
match poorer. In summary, adding TIR information made the match better 
from DOY 110 to 220, it caused a slight underestimation from DOY 1 to 60 and 
overestimation from DOY 60 to 110.  
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Figure 4.8. Time series of measured and simulated ET (actual and reference) at the site 
 

An important aspect is the separation of transpiration T and evaporation E 
in SCOPE. The simulated TRef shows an upward trend throughout the season, 
whereas the simulated actual T, within various scenarios, shows a peak in the 
middle of season from DOY 70 to DOY 110 (Fig 4.9a). Moreover, the simulated 
ERef, actual E using Landsat optical information and actual E using Landsat 
optical information plus Vcmax = f(Cab) show upward trends during the whole 
episode (Fig. 4.9b) due to the fact that we kept the soil surface resistance for 
evaporation rss constant while LAI decreased (and thus net radiation of the soil 
increased) during the drought episode.  
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(a) 

(b) 

Figure 4.9. Time series of TRef, T, ERef and E; (a) Simulated T, (b) Simulated E. 

However, when we added Landsat TIR information and, therefore, 
retrieved rss, rbs, Vcmax and m parameter values, the simulated E started 
declining from DOY 110-220. Thus constraining the SCOPE model by both 
optical and TIR information, the simulated E shows a peak in the middle of 
season from DOY 70 to DOY 110 (Fig 4.9b). 

4.4.6.3. Daily Crop factors (Kc) 

Simulated crop factors (Kc GPP and Kc ET) are presented in Figs. 4.10 and 
4.11. The advantage of using crop factors is that drought effects appear more 
pronounced, thanks to the normalization by the reference scenario. The results 
show that the optical bands of Landsat could only explain a small part of the 
variations of Kc GPP (Fig 4.10), and for most of the period, Kc GPP was 
overestimated. This overestimate could not be alleviated by making Vcmax a 
function of Cab (Fig 4.10) following Houborg et al (2013), which brings about 
only a slight improvement. This shows that the direct effect of the RTMo 
parameters (in SCOPE) cannot explain all drought effects on GPP. However, 
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adding TIR information to the simulation, made substantial improvements in 
the model fit of Kc GPP during the drought episode. 

Figure 4.10. Time series of measured and simulated daily Kc GPP. 

Likewise a good match is observed between simulated and measured Kc ET 
(Fig. 4.11a) when we used both optical and TIR information during the drought 
episode. The benefit of using the TIR information is apparent at the end of 
drought episode when the water stress was most severe and the overestimate 
of Kc ET that occurs when only optical information is used, is alleviated. Making 
Vcmax a function of Cab following Houborg et al (2013), brings about a slight 
improvement of Kc ET (Fig. 4.11a). 

 The causes for the overestimate of Kc ET using optical information come 
from both soil evaporation (Ke, Fig. 4.11c) and transpiration (Kcb, Fig. 4.11b). 
Clearly, the TIR information provided the necessary means to constrain the 
energy partitioning in the SCOPE model, after canopy structure (LAI and LIDF) 
and leaf composition (Cab, Cs, Cw and Cdm) had been retrieved from optical 
data. It should be noted that no separate measurements of soil evaporation 
and transpiration were available, since flux tower measurements provide only 
the sum (Fig. 4.11bc).   
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(a)

(b) 

(c) 

Figure 4.11. Time series of measured and simulated Kc in drought conditions. (a) 
Measured and simulated Kc ET; (b) Measured Kc ET and simulated Kcb and (c) Measured Kc 
ET and simulated Ke 

4.4.7. Intercomparison (GPP, ET and Kc) 
The statistics of the model fit for GPP, ET and Kc are shown in Taylor 

diagrams in Fig. 4.12 and Table 4.3. Taylor diagrams illustrate that simulated 
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daily GPP using Landsat optical information and optical plus Vcmax = f(Cab), 
show a correlation coefficient (R) of 0.78 and 0.80, RMSE of 1.79 and 1.71 
µmol m-2 s-1 and a ߪ of 2.11 and 2.19 µmol m-2 s-1. This shows that including 
Vcmax information as a function of Cab causes a ߪ that is closer to that of the 
measurements, a slightly lower (better) RMSE, and a higher (better) R. The 
Houborg et al (2013) model (B in Fig. 4.12a) could slightly better capture both 
the range of values and the day-to-day variations. The simulated GPP using 
optical and TIR information shows a high correlation (R = 0.98), low RMSE 
(0.55 µmol m-2 s-1) and variation range very close to that of measured GPP (ߪ 
= 2.55 µmol m-2 s-1). This indicates that combined use of optical/TIR 
information (C in Fig. 4.12a) causes not only a ߪ very close to that of the 
measurements, but also improves the R and RMSE considerably. Similar 
patterns are obtained for the simulated Kc GPP (Fig. 4.12b). Simulated Kc GPP for 
different scenarios, i.e., optical, optical/Vcmax = f(Cab) and optical/TIR indicate 
a high R (0.834, 0.835 and 0.988), low RMSE (0.229, 0.227 and 0.07) and low 
 .compared to the measured Kc GPP (1, 0 and 0.4) (and 0.36 0.30 ,0.29) ߪ
Simulated daily ET using Landsat optical information and optical plus Vcmax = 
f(Cab), shows a low R of 0.6 and 0.72 compared to the measured ET during the 
drought episode (Fig. 4.12c), due to the earlier mentioned increase in 
simulated E. Including Vcmax information as a function of Cab, causes a lower 
(better) RMSE of 0.7 compared to 0.82 mm day-1, and a higher (better) R of 
0.72 compared to 0.6. In addition, the ET simulation in which we used both 
optical and TIR information (C in Fig. 4.12c) shows improvements in R (0.91) 
and RMSE (0.54 mm day-1) compared to those of measured ET. Furthermore, 
simulated Kc ET for different scenarios, i.e., optical, optical/Vcmax = f(Cab) and 
optical/TIR indicate similar patterns to ET with slightly different values of R 
(0.85, 0.88 and 0.94), RMSE (0.17, 0.15 and 0.14) and the variation range (ߪ 
= 0.26, 0.26 and 0.4) compared to the measured Kc ET in the drought episode. 
In summary, both the Houborg et al (2013) model (B in Fig. 4.12d) and the 
combined use of optical/TIR information (C in Fig. 4.12d) improved the relation 
between the measured and simulated Kc ET. 
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(a) (b)

(c) (d)

Figure 4.12. Taylor diagram illustrating the statistics between the observed (measured) 
and the simulated GPP, ET and Kc during drought episode; (a) Measured and simulated 
GPP; (b) Measured and simulated Kc GPP; (c) Measured and simulated ET; (d) Measured 
and simulated Kc ET.  
 

In addition, the results of computed MSE indicate that adding Vcmax time 
series information, as a function of Landsat retrieved Cab, slightly reduces the 
deviation of simulated from measured values in all scenarios (Table 4.3). The 
results show that the combined use of Landsat optical and TIR information 
gives an obvious reduction of the MSE, confirming a good agreement between 
the simulated and the measured variables (GPP, ET and Kc). Amongst all 
simulations, the dimensionless NRMSE (RMSE/range) show that the combined 
usage of Landsat optical and TIR information yields the best results for daily 
GPP and Kc GPP simulations (NRMSE of 0.06 and 0.063, respectively).    
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Table 4.3. Statistical measures used for evaluation of simulation results 

Variable Scenario 

MSE contributions  

RMSE NRMSE Unequal  
standard  
deviations 

Lack of  
(positive) 
correlation 

Bias  
of mean 
 values 

Total  
MSE 

GPP Landsat optical info 0.61 2.62 1.15 4.38 2.09 0.23 

Landsat optical/Vcmax = f (Cab) 0.48 2.46 0.39 3.32 1.82 0.20 

Landsat optical + TIR info 0.11 0.19 0.00 0.31 0.55 0.06 

ET Landsat optical info 0.03 0.65 1.96 2.64 1.63 0.51 

Landsat optical/Vcmax = f (Cab) 0.05 0.43 1.51 1.99 1.41 0.45 

Landsat optical + TIR info 0.07 0.23 0.06 0.36 0.60 0.19 

Kc GPP Landsat optical info 0.013 0.040 0.018 0.071 0.266 0.224 

Landsat optical/Vcmax = f (Cab) 0.010 0.042 0.005 0.057 0.239 0.201 

Landsat optical + TIR info 0.002 0.004 0.000 0.006 0.074 0.063 

Kc ET  Landsat optical info 0.003 0.026 0.084 0.113 0.336 0.282 

Landsat optical/Vcmax = f (Cab) 0.003 0.020 0.064 0.087 0.295 0.247 

Landsat optical + TIR info 0.007 0.015 0.005 0.027 0.164 0.137 

 
The MSE decomposition results demonstrate that adding TIR information 

reduced the error in all components including standard deviation differences, 
lack of correlation and bias of the mean values in GPP and Kc GPP considerably. 
However, the dominant error contributor (relatively to total MSE) in GPP and 
Kc GPP simulation, which was lack of (positive) correlation, remained relatively 
similar  in different scenarios, i.e. optical, optical/Vcmax = f (Cab) and optical/TIR 
in GPP (with values of 2.62, 2.46 and 0.19) and Kc GPP (with values of 0.04, 
0.042 and 0.004) simulations. 

The MSE components of the ET and Kc ET simulations showed that, although 
adding TIR information to the simulations reduced the error of correlation and 
bias of the mean values, the standard deviation error slightly increased for ET 
(from 0.03 to 0.07) and for Kc ET (from 0.003 to 0.007). Moreover, the 
dominant error contributor to the total MSE in ET and Kc ET simulation was the 
bias of the mean values in case only the optical information was used. The bias 
of mean values still remained the dominant one when additional information of 
Vcmax as a function of Cab was added, however, its value reduced for ET (from 
1.96 to 1.51) and for Kc ET (from 0.084 to 0.005). In the third scenario, when 
TIR information added to the ET and Kc ET simulations, the lack of (positive) 
correlation dominated as the main error contributor. 

4.4.8. Spatio-temporal variations of GPP and ET 
Fig 4.13. present three representative maps of GPP generated by SCOPE 

model using optical and TIR information during the selected episode (for DOYs 
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59, 75 and 203). At first glance, one can claim that the GPP maps generated 
by the SCOPE in which both optical and TIR information is used, could capture 
much higher spatial variability of GPP (Fig. 4.13b,d) in comparison to those 
generated from optical information through SCOPE (Fig. 4.13a,c). Moreover, 
the integrated use of optical and TIR information could map the low values of 
daily GPP in severe drought condition (DOY 203) compared to GPP map 
generated using only optical information (Fig. 4.13e,f). 

 
(a) (b)

(c) (d)
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(e) (f)

Figure 4.13. Daily GPP maps generated by use of optical and TIR information through 
SCOPE model during the selected episode on DOYs 59 (a, b), 75 (c, d) and 203 (e, f) at 
Vaira site in 2004. The left panels (a, c, e) show GPP maps generated from optical 
information in SCOPE and the right panels (b, d, f) show GPP maps generated from 
optical and TIR information in SCOPE. The black circle inside the maps show the location 
of Vaira Fluxnet site. 
 

Similarly, Fig 4.14. present three representative maps of daily ET 
generated by SCOPE model using optical and TIR information during the 
selected episode (for DOYs 59, 75 and 203). As can be seen from these maps, 
the ET maps generated by the SCOPE in which both optical and TIR information 
is used could capture much higher spatial variability of ET (Fig. 4.14b,d) in 
comparison to those generated from optical information (Fig. 4.14a,c). In 
addition, the combined use of optical and TIR information could map the low 
values of daily ET in severe drought conditions (DOY 203) compared to ET map 
generated by SCOPE (Fig. 4.14f,e).  
 

(a) (b)
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(c) (d)

(e) (f)

Figure 4.14. Daily ET maps generated by use of optical and TIR information through 
SCOPE model during the selected episode on DOYs 59 (a, b), 75 (c, d) and 203 (e, f) at 
Vaira site in 2004. The left panels (a, c, e) show ET maps generated from optical 
information in SCOPE and the right panels (b, d, f) show ET maps generated from optical 
and TIR information in SCOPE. The black circle inside the maps show the location of Vaira 
Fluxnet site. 

4.5. Discussion 

4.5.1. TIR canopy spectra variation 
The TIR surface radiance increased under stress conditions especially from 

DOY 100 to 220 in our study site (Fig. 4.3), due to the seasonal cycle of land 
surface temperature and the partitioning of available energy to sensible and 
latent heat fluxes. The latter clearly reduced due to the decline in soil moisture 
(Mira et al., 2007) during the drought episode. Reduced transpiration is 
indirectly related to leaf optical reflectance via the (loss of) leaf water (Buitrago 
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et al., 2016). Indeed the progressive decline of leaf water content (chapter 3, 
Fig. 3.17c) is consistent with the decline in the soil moisture content observed 
at our study site. Our results are also in line with previous studies in which 
strong positive relationships were reported between leaf water content and the 
TIR radiance for different species under stress conditions (Buitrago et al., 
2016; Fabre et al., 2011; Gerber et al., 2011; Ullah et al., 2012).  

4.5.2. Canopy properties and functioning variations 
Model inversion results indicate that the SCOPE model can reproduce TIR 

data under various soil moisture conditions with acceptable accuracy. Visual 
inspection shows that the retrieved Vcmax correlates better with retrieved Cw 

(chapter 3, Fig. 3.17c) than with other retrieved properties from the optical 
bands during the drought episode. The relationship between Vcmax and Cw may 
be indirect: the leaf Vcmax is related to the leaf nitrogen content and fraction of 
leaf nitrogen in Rubisco (Evans, 1989; Xu and Baldocchi, 2003) and a 
significant relationship has been reported between leaf nitrogen content and 
leaf Cw during the plant developmental stage in grass species. Thornton et al 
(1999) concluded that the decline in nitrogen concentration of M. caerulea, 
during a growth period, when dry mass was increasing, could mainly be 
explained by changes of Cw (Thornton et al., 1999). Thus, the higher the Cw, 
the higher the leaf N and, consequently, the higher the leaf Vcmax will be and 
vice versa.  

Furthermore, soil resistance-related parameters (rss and rbs) reached the 
maximum values at the end of the episode when drought became severe. The 
soil boundary resistance rbs may change when vegetation structure changes, 
whereas rss is primarily a function of soil water potential. The increase in 
retrieved rss can obviously be explained by the fact that the soil was extensively 
dry at the end of the episode. The fact that we included both resistances may 
cause the retrieval to be ill-posed (as the two resistances operate in series). 
We overcame this problem by selecting the best multiple solutions from the 
LUT by computing the average of 5 percent best solutions in the LUT.  

Simulated daily GPP using Landsat optical bands (Fig. 4.7) could capture 
strong reductions in measured GPP during the drought episode. This can be 
explained by the reductions in the retrieved vegetation properties, especially a 
decline of LAI and Cab, which together determine the light absorbed by 
photosystems (sometimes referred to as ‘green fAPAR’ in the literature). These 
reductions are not related to Vcmax or stomatal regulation, which are often 
considered in models as the main regulation mechanisms of GPP (Egea et al., 
2011; Keenan et al., 2010a; Zhou et al., 2013). The effect of introducing Vcmax 
= f (Cab) is small. Note that we used the relationship of Houborg et al (2013) 
outside the range for which it was calibrated (at Cab < 10 ug cm-1, Vcmax 
becomes negative). Our results suggest that Vcmax is better correlated to Cw 
than to Cab. 
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Combined use of optical and TIR domain information improved the daily 
GPP simulation considerably at the last part of the drought episode. In our case 
study (at Vaira grassland), the TIR information constrains soil evaporation, 
which cannot be estimated from optical information if the soil is covered with 
vegetation, and transpiration via Vcmax. However, the dominant mechanisms to 
reduce evaporation and transpiration might be different in other ecosystems.   

The overestimation of simulated actual ET in severe drought conditions 
when only optical information is used (Fig. 4.8) can be explained by the fact 
that in SCOPE, soil evaporation is parameterized with a single surface 
resistance value (2000 sm-1 in our simulation), and an aerodynamic resistance 
that depends on LAI, vegetation height, stability of the atmosphere and wind 
speed. SCOPE does not include a model for the unsaturated zone. The 
simplicity of the soil evaporation module also has an advantage: it makes it 
possible to retrieve the surface resistance from TIR data. This overestimation 
of ET disappeared almost completely when TIR domain information was added 
to the simulations (Fig. 4.8). 

Overestimation of daily GPP and ET using optical data in our results 
matches with other studies which reported overestimation of water and carbon 
fluxes under severe water stress conditions. For instance, Gilabert et al (2015) 
estimated daily GPP in Mediterranean ecosystems in Spain (Las Majadas de 
Tietar site) using an optimized version of Monteith’s approach with and without 
the inclusion of the water stress period in 2008-2011. They reported an 
overestimation of GPP from DOY 180 to DOY 300 when the water stress played 
a more important role. They came to the conclusion that the correlation 
between modelled and measured GPP decreases as water stress increases 
(Gilabert et al., 2015).  

Spatio-temporal maps of GPP and ET generated by SCOPE model using 
optical and TIR information during the selected episode demonstrate that the 
maps generated by the SCOPE in which both optical and TIR information is 
used, could capture much higher spatial variability compared to those 
generated by optical provided information. Further, the integrated use of 
optical and TIR information could map the low values of ecosystem functioning 
in severe drought condition (DOY 203) compared to the map generated using 
only optical information.  

Overall, the results of our study show that for estimating vegetation daily 
GPP and ET during a drought episode with good accuracy, we need to consider 
the effects of four major factors: (1) increased radiance over the whole 
spectrum, resulting in a reduced net radiation, (2) reduced absorbed 
photosynthetically active radiation by chlorophyll, and therefore a reduced 
photosynthesis and stomatal conductance, (3) reduced photosynthetic 
capacity Vcmax, and (4) reduced soil evaporation. Previous studies emphasized 
the necessity to consider stomatal, non-stomatal responses (Egea et al., 2011; 
Keenan et al., 2010a; Zhou et al., 2013) and soil evaporation reduction 
(Gökmen et al., 2012) when water and carbon fluxes are estimated under dry 
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conditions. Here we show that the reduction in GPP and transpiration is not 
due to a change in the Ball-Berry parameter, but mainly because of a reduction 
in photosynthesis due to greenness and leaf area (optical data) and Vcmax (TIR 
data).  

The availability of a model like SCOPE that combines the optical and the 
thermal part of the spectrum with a SVAT scheme makes it possible to exploit 
the full potential of the optical and TIR domains of remote sensing 
observations, which is an advancement over the empirical use of VI’s. 

A limitation to the applicability of our approach to other ecosystems is that 
the RT scheme of the SCOPE model, which is essentially the PROSAIL (a well-
established combination of PROSPECT leaf and canopy SAIL model), is a 1-D 
(vertical) RT model. This means that inhomogeneities in vegetation properties 
such as LAI in the horizontal direction within a pixel are not represented. The 
applicability of the model is therefore limited to homogeneous vegetation 
cover, where vertical variations in radiative and energy fluxes are much higher 
than the horizontal ones. The same holds for the thermal radiative transfer and 
the aerodynamic resistance scheme, which consider multiple sources (sunlit 
and shaded soil and vegetation), but is nevertheless 1-D. Therefore, we expect 
our approach to work for closed vegetation covers (e.g., grasslands, croplands, 
forest ecosystems) but in incomplete vegetation covers (e.g., row crops in an 
early growth stage, savanna ecosystems with closed understory and scattered 
trees, and boreal forest) our model representation may not be accurate. 

4.5.3. Operational use of Sentinel observations 
The results of this study have shown that from Landsat optical and TIR 

bands we can extract valuable information on canopy T, soil E and GPP 
reductions. However, there is a great potential to improve the resolution 
(spatial, temporal and spectral) and, therefore, obtain details information, by 
exploiting the spectral data offered by the Sentinel-2 and 3 missions. Sentinel-
2 provides optical spectral information in 13 bands (covering VIS, NIR and 
SWIR regions) with spatial resolutions of 10, 20 and 60 meters and an average 
revisiting frequency of 5 days. Moreover, the Sentinel-3 provides optical and 
TIR spectral information through Sea and Land Surface Temperature 
Radiometer (SLSTR) covering 9 spectral bands (covering VIS - SWIR (6 bands) 
and TIR (3 bands) regions), with spatial resolutions of 500 (for VIS and SWIR 
bands) and 1000 (for TIR bands) meters and an average revisiting frequency 
of 1 day. Thus, our proposed approach is useful for estimation of vegetation 
properties and functioning changes from time series of sentinel-2 and 3 
spectral data in an operational multi-sensor way. 

4.6. Conclusions 
The present analysis shows the potential of Landsat observations to reveal 

drought not only expressed as vegetation stomatal and non-stomatal effects, 
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but also by its effect on soil evaporation. Non-stomatal effects could be 
revealed from the information provided by optical bands, but to reveal also 
stomatal effects and those of soil evaporation, the information contained in TIR 
bands is relevant. To exploit such spectral information in depth, specific tools 
are needed. In this study we used the SCOPE land surface model to enable the 
full exploitation of optical and TIR data from Landsat to simulate daily GPP and 
ET changes during a drought episode. The comparison between the simulated 
daily GPP and ET with those of the measured ones show evidence of a good 
agreement when optical and TIR spectral information are integrated. 
Therefore, the SCOPE model appears to be capable of estimating GPP and ET 
consistently during a prolonged drought episode when constrained with both 
satellite optical and TIR information. Moreover, our results also suggest that 
we can not only derive crop factors for ET but also for photosynthesis (GPP). 
This is possible when the SCOPE model is used since it enables to simulate 
photosynthesis for the hypothetical reference grass defined by FAO. In 
addition, retrieved vegetation properties from the optical and TIR domains of 
Landsat revealed that making Vcmax a function of Cab during a drought episode 
only gave slight improvements of the GPP and ET simulations. This might be 
improved if Vcmax is linked to Cw and/or to TIR spectra instead of to Cab. 
Furthermore, generated time series of GPP and ET maps demonstrated that 
integrating optical and TIR information could map much higher spatial 
variability of GPP and ET in comparison to those using only optical information 
in mild stress. Integrating optical and TIR, could also capture the low values of 
daily GPP and ET in moderate and severe drought conditions. This study 
presents a promising approach in order to explore remote sensing observations 
in depth and underlines the feasibility of estimating substantial drought effects 
on ecosystem functioning. Although this study used Landsat optical and TIR 
observations to capture drought effects on grassland functioning only in 
California, we expect that such results will also be relevant for other closed 
vegetation covers (e.g., grasslands, croplands, forest ecosystems) during 
droughts mainly due to the RT scheme of the SCOPE model. 
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Chapter 5  Combined use of optical reflectance and 
soil moisture observations using SCOPE-SM model*  

* This chapter is based on:
Bayat, B., Van der Tol, C., Yang, P., Verhoef, W., 2018. Extending the SCOPE model to 
combine optical reflectance and soil moisture observations for remote sensing of 
ecosystem functioning under water stress conditions. Remote Sensing of 
Environment, 2018, 221, 286-301, https://doi.org/10.1016/j.rse.2018.11.021. 

Bayat, B., Van der Tol, C., Verhoef, W., Raj, R., 2018. Spatio-temporal Estimation of 
Daily Photosynthesis in Drought Conditions using Remote Sensing Observations and In-
situ Measurements, the 3rd Integrated Carbon Observation Science ICOS 2018, Prague, 
Czech Republic, 11–13 September 2018. 
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ABSTRACT 

The model Soil-Canopy-Observation of Photosynthesis and Energy fluxes 
(SCOPE) relates remote sensing signals with plant functioning (i.e., 
photosynthesis and evapotranspiration). Relying on optical remote sensing 
data, the SCOPE model estimates photosynthesis and evapotranspiration, but 
these ecosystem-level fluxes may be significantly overestimated if water 
availability is the primary limiting factor for vegetation. In such cases, 
additional data sources are needed. In this study, we propose considering 
water stress in SCOPE by incorporating soil moisture in the model, besides 
using satellite optical information, to better capture vegetation functioning 
variations under drought conditions. A functional link between soil moisture, 
soil surface resistance, leaf water potential and carboxylation capacity is 
introduced as an extra element in SCOPE, resulting in a soil moisture integrated 
version of the model, SCOPE-SM. The modified model simulates additional 
state variables: (i) vapor pressure (ei), both in the soil pore space and leaf 
stomates in equilibrium with liquid water potential, (ii) the maximum 
carboxylation capacity (Vcmax) by a soil moisture dependent stress factor and 
(iii) the soil surface resistance (rss) through approximation by a soil moisture 
dependent hydraulic conductivity. The new approach was evaluated at a 
Fluxnet site (US-Var) with dominant annual C3 grasses and covering a wet-to-
dry episode from January to August 2004. By using the original SCOPE (version 
1.61), we simulated half-hourly time steps GPP and ET via locally measured 
weather data and time series of Landsat (TM and ETM) retrieved vegetation 
properties from Chapter 3 [notably Leaf Area Index (LAI), leaf chlorophyll 
content (Cab), leaf water content (Cw), leaf dry matter content (Cdm), the leaf 
inclination distribution function (LIDF) and the senescent material content (Cs)] 
after linear interpolation over time. Then, SCOPE-SM was applied to simulate 
half-hourly photosynthesis and evapotranspiration three times: first using time 
series of Landsat retrieved vegetation properties and modeled ei, second using 
Landsat retrieved properties, modeled ei and modeled Vcmax and third using 
Landsat retrieved properties, modeled ei, modeled Vcmax and modeled rss. The 
outputs of all these four simulations (i.e., one original SCOPE and three SCOPE-
SM simulations) were compared to flux tower photosynthesis and 
evapotranspiration measurements. The results indicate a significant 
improvement proceeding from the first to the fourth case in which we used 
both optical observations and soil moisture data. Our results show that the 
combined use of optical reflectance and soil moisture observations in SCOPE 
has great potential to capture variations of photosynthesis and 
evapotranspiration during drought episodes. Further, we found that the 
information contained in soil moisture observations can describe more 
variations of measured evapotranspiration compared to the information 
contained in thermal observations described in Chapter 4. 
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5.1. Introduction 
Process-based vegetation models are indispensable tools for 

understanding the link between vegetation appearance (i.e., canopy spectra) 
and ecosystem functioning (i.e., photosynthesis [gross primary production 
(GPP)] and evapotranspiration (ET)). Vegetation appearance can be described 
in a physically consistent way using different radiative transfer (RT) models 
(Jacquemoud and Baret, 1990; Verhoef, 1984, 1985) as a function of 
vegetation properties (e.g., leaf area index, leaf water, and chlorophyll 
content). In addition, coupled use of a leaf photosynthesis (Collatz et al., 
1992; Farquhar et al., 1980) and an energy balance approach (Glenn et al., 
2007; Liou and Kar, 2014; K. Zhang et al., 2016) besides the RT models 
allows to describe vegetation functioning variations through process-based 
descriptions. A process-based model can assist considerably to understand 
the light distribution within the canopy (by means of the RT module), the 
available energy consumption in photosynthesis (by means of the 
photosynthesis module) and partitioning of the energy into latent, sensible 
and ground heat fluxes (by means of the energy balance module). 

Several process-based models have been applied for GPP (Cuddington et 
al., 2000; Mäkelä et al., 2000; Morales et al., 2005; Raj et al., 2018) and ET 
(Glenn et al., 2007; Liou and Kar, 2014; K. Zhang et al., 2016) estimation. 
The model CUPID (Kustas et al., 2007; Norman, 1979) is maybe the first one 
in which a reasonable RT model is implemented. Other remote sensing based 
models for ET or GPP typically do not include such detailed radiative transfer 
(reviews, see (K. Zhang et al., 2016) and (Anav et al., 2015)). 

SCOPE (Soil-Canopy-Observation, Photochemistry, and Energy fluxes) is 
one of the process-based models which integrates soil-canopy spectral 
radiances, photosynthesis, and energy balance models (Van der Tol et al., 
2009b) and, therefore, provides a valuable means to study the link between 
vegetation appearance and ecosystem functioning. Thus, in this study, the 
focus is on this model. SCOPE simulates canopy reflectance and fluorescence 
spectra in the observation direction, as well as photosynthesis, and 
evapotranspiration as functions of leaf optical properties, canopy structure, 
and weather variables. SCOPE has been widely used in various applications, 
all attempting to contribute to a better understanding and interpretation of 
remote sensing signals over vegetation by (1) quantifying and interpreting 
sun-induced chlorophyll fluorescence (Damm et al., 2015; Koffi et al., 2015; 
Verrelst et al., 2015; Yang and van der Tol, 2018; Zhang et al., 2014), (2) 
simulating multiple satellite radiances through coupling with atmosphere RT 
model (Bayat et al., 2018; Verhoef et al., 2018), (3) retrieving biophysical 
and biochemical properties (Bayat et al., 2016a; Van der Tol et al., 2016), (4) 
investigating directional effects of radiation in thermal infrared domain 
(Duffour et al., 2016, 2015), (5) estimating vegetation functioning variations 
and their biases (Bayat et al., 2018; Timmermans et al., 2013; Verrelst et al., 
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2016). In addition, recently further extensions were proposed for the SCOPE 
model to advance its performance both at the leaf (Vilfan et al., 2018, 2016) 
and canopy (Yang et al., 2017) levels.    

One shortcoming of SCOPE is that it does not keep track of the water 
budget in soil and vegetation, and does not contain an explicit parametrization 
of effects of soil moisture on the photosynthesis or stomatal parameters. 
Therefore, soil moisture effects are only manifest if the lack of soil moisture 
affects the optical or thermal appearance of the vegetation. The change of 
vegetation optical appearance as a result of soil moisture variations can only 
explain a small portion of the soil moisture effects (as described in chapter 4) 
and, therefore, the estimations of GPP and ET are considerably biased in water 
limited conditions. This makes a challenge for using SCOPE especially in 
ecosystems where water availability is the primary limiting factor for 
vegetation functioning, for instance, those located in arid and semi-arid areas. 
This challenge becomes even more relevant due to the fact that soil moisture 
deficit or “ecological drought” is expected to increase in both frequency and 
severity at nearly all ecosystems around the world (Wolf et al., 2013; Zhou et 
al., 2013). For instance, the impacts of seasonal stress as a result of soil water 
deficit are also reported in Mediterranean ecosystems (Jung et al., 2007; Ma 
et al., 2007; Morales et al., 2005; Xu and Baldocchi, 2003). 

Remedying this shortcoming (i.e., biased estimations of GPP and ET) 
requires feeding additional and complementary information into SCOPE. 
Besides optical data sets, we need thermal observations or soil moisture 
information to effectively constrain canopy photosynthesis, transpiration and 
soil evaporation in water-limited ecosystems.  

Integrated use of optical and thermal information in SCOPE has been 
addressed (in chapter 4) to estimate vegetation functioning during a drought 
episode. The energy balance and thermal radiative transfer routines of SCOPE, 
RTMt, have been inverted to retrieve the most sensitive parameters of SCOPE 
in the thermal domain [notably the maximum carboxylation capacity (Vcmax), 
the Ball-Berry stomatal conductance parameter (m), soil surface resistances 
(rss) and boundary resistances (rbs)] by means of look-up tables. Based on this 
approach, there is no need for extra modifications of the original SCOPE 
(version 1.61) since it is already simulating thermal signals and, therefore, 
making a look-up table for the thermal simulations is sufficient. 

However, the potential of a combined use of optical and soil moisture 
observations is still unexplored and has not been dealt with in depth. It is 
unclear how much information one can get from soil moisture observations to 
improve SCOPE estimations in water-limited ecosystems. More importantly, 
how different is the information in thermal observations from that of soil 
moisture provided. To address these questions, we need to add functional links 
between soil moisture and vegetation properties in SCOPE. We speculate that 
by the combined use of satellite optical information and soil moisture data, one 
can see the majority of drought effects on leaf photosynthesis, transpiration, 
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and soil evaporation respectively. In other words, incorporating water stress in 
the SCOPE model will allow to combine reflectance optical information and soil 
moisture data improving our understanding of GPP and ET variations in water-
limited ecosystems. 

The water stress (i.e., soil moisture deficit) has been incorporated in 
different photosynthesis-conductance models to enhance photosynthesis and 
transpiration estimation, using experimental data sets collected in a laboratory 
effort, field works and field campaigns. The inclusion of soil water constraints 
on photosynthesis parameters could lead to considerable improvements of 
photosynthesis and transpiration simulations (Egea et al., 2011; Keenan et al., 
2010a, 2009; Verhoef and Egea, 2014). Further, water stress was integrated 
into the widely-used energy balance SEBS [surface energy balance system (Su, 
2002)] model using soil moisture products to improve evapotranspiration 
estimations in water-limited regions in Turkey (Gökmen et al., 2012). 

In the current study, we propose a simple update for SCOPE, hereafter 
called SCOPE-SM, to allow us to use soil moisture data together with remote 
sensing optical observations in order to correct GPP and ET estimations under 
water stress conditions. In the SCOPE-SM model, the soil moisture information 
is taken into account through the formulation of canopy and soil heat fluxes 
(via vapor pressure parameter ei), leaf stomatal resistance (via maximum 
carboxylation rate parameter Vcmax) and soil surface resistance (via soil surface 
resistance parameter rss). The performance of SCOPE-SM was preliminarily 
evaluated by the comparison of its outputs with both the original SCOPE 
outputs and the field measurements during a wet-to-dry episode (from January 
to August 2004) at a Fluxnet site (US-Var). Next, the performance of SCOPE-
SM was compared with previous results (described in chapter 4) in which 
optical and thermal observations used to constrain SCOPE in a wet-to-dry 
episode to enhance vegetation functioning estimation. This is important since 
it can show the information content and possible differences of soil moisture 
data and thermal observations. 

The structure of this chapter is as follows. After this introduction (section 
5.1), a general overview of the SCOPE model is provided. Here, we briefly 
describe the methodology that SCOPE adopts to quantify GPP and ET (section 
5.2.1). Then, we provide insights into our proposed approach, SCOPE-SM, to 
correct GPP and ET estimations (section 5.2.2). In section 5.3, we evaluate the 
performance of both SCOPE and SCOPE-SM models at the Vaira Ranch site 
(section 5.3.1.2). Next, the GPP and ET simulation results from both models 
are presented and compared with those of measured GPP and ET (sections 
5.3.4.1, 5.3.4.2 and 5.3.4.3). The comparison of soil moisture and thermal 
information provided to constrain the SCOPE model is also presented (section 
5.3.4.4) and finally, the most important results are discussed and conclusions 
are drawn (section 5.4). 
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5.2. Model description 

5.2.1. SCOPE model brief overview 
SCOPE is an integrated soil-canopy spectral radiances, photochemistry and 

energy balance model (Van der Tol et al., 2009b) which combines radiative 
transfer theory with plant physiology and micrometeorological approaches. 
There are three radiative transfer models, one photosynthesis model and one 
energy balance model integrated into SCOPE. The radiative transfer models of 
SCOPE cover the 0.4 to 50 µm wavelength range. RTMo, which is mainly based 
on the Fluspect (Vilfan et al., 2016) and SAIL  (Verhoef, 1984, 1985) models, 
is the radiative transfer model handling the incident solar and sky radiation 
and it simulates canopy reflectance and radiation distribution inside a canopy. 
RTMt is the radiative transfer model in the thermal domain for internally 
emitted radiation (2.5 – 50 µm). Another radiative transfer model is RTMf that 
simulates canopy fluorescence (0.64 – 0.85 µm). SCOPE spectral outputs have 
sampling intervals of 1 nm in the optical domain, of 0.1 µm in the thermal 
domain, and of 1 µm in the longwave domain.  

Further, in SCOPE, a vegetation canopy is divided into 60 leaf layers 
assuming a maximum LAI of 0.1 per layer, and one soil surface is defined under 
the vegetation layers. There are 468 classes of leaf orientation, composed of 
all combinations of 13 the leaf’s normal zenith angles and 36 leaf azimuth 
angles. The orientations are of great importance because solar flux interception 
and scattering by leaves is a function of their orientation relative to the sun’s 
position.  

RTMo computes the radiation that interacts with each leaf and the 
scattered and absorbed radiation. Likewise, RTMt simulates the distribution of 
thermal emitted radiation within the canopy. The net radiation outputs of RTMo 
and RTMt are used as an input to the energy balance module to estimate skin 
temperature, while the computed skin temperature from the energy balance is 
an input of RTMt. The skin temperature is solved by iteration of RTMt and the 
energy balance module. Such an iteration continues until the energy balance 
is closed for all the elements described above. 

Both the aerodynamic and stomatal resistances are modified during the 
iteration due to the fact that atmospheric stability and vegetation 
photosynthesis are influenced by leaf temperatures. The aerodynamic 
resistance depends on the LAI, canopy height, wind speed and the atmospheric 
stability (Wallace and Verhoef, 2000), whereas the stomatal resistance 
depends on net assimilation rate of the leaves, vapor pressure deficit in the 
ambient air and air pressure. Furthermore, the photosynthesis of C3 (Farquhar 
et al., 1980), C4 vegetation (Collatz et al., 1992), stomatal resistance (Collatz 
et al., 1992, 1991) and chlorophyll fluorescence (Van der Tol et al., 2009a) are 
computed by the biochemical routine of the model.  



Chapter 5 

121 

In the original SCOPE model, one has to consider constant values for 
maximum carboxylation capacity, leaf water potential, soil water potential and 
soil surface resistance (these parametrizations are described in Appendix A). 
Considering constant values for such parameters in SCOPE works when soil 
moisture deficit is not the primary limiting factor (e.g., humid regions) for 
vegetation functioning or if its effect is known a-priori and specified as inputs. 
However, this is problematic for application in time series during drought 
conditions specifically or at water-limited ecosystems in general. Therefore, we 
proposed a simple extension for the SCOPE (section 5.2.2) to overcome this 
challenge mainly through three steps; (i) the maximum carboxylation capacity 
(Vcmax) is modeled by a soil moisture dependent stress factor, (ii) vapor 
pressure (ei) is modeled both in the soil pore space and leaf stomates in 
equilibrium with liquid water potential and, and (iii) the soil surface resistance 
(rss) approximated by a soil moisture dependent hydraulic conductivity. 
However, the Ball-Berry stomatal parameter is not modified compared to the 
original SCOPE model. The three steps are described in section 5.2.2. 

5.2.2. SCOPE-SM model 

5.2.2.1. Modeling maximum carboxylation capacity 

When estimating GPP during a drought episode by the original SCOPE 
model, using the set of formulations (i.e., given in Eqs. 5.A1 to 5.A5 in 
Appendix A), one has to consider a constant Vcmax as an input. In other words, 
regardless of water stress phase or even the seasonal cycle, Vcmax is always 
either kept as constant during the drought episode or prescribed as time series 
input. This will not only result in an overestimation of GPP directly but also 
make stomatal resistance and, consequently, transpiration estimation, biased. 
To tackle this issue, we propose to consider water stress level in the Vcmax 
parameter based on soil water availability to correct GPP estimation. We 
therefore defined a soil moisture (SM) dependent stress factor (SF) to modify 
Vcmax during the episode through an S-shaped membership function in MATLAB 
as follows: 

maxmax cc VSFV  (5.1) 
where: 
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where, a and b are the coefficients of the membership function corresponding 
to soil moisture at permanent wilting point and field capacity, respectively.  

The S-shaped membership function was selected because (1) in this 
function two coefficients (i.e., a and b) are used to locate the left and right 
extremes of the sloped portion of the curve. This provides a good fit to the 
conceptual framework for vegetation functioning in water-limited areas in 
which two thresholds (i.e., permanent wilting point and field capacity) are 
considered (Seneviratne et al., 2010, 2006b), and (2) by increase of SM values 
the function increases from 0 to 1. This reasonably scales Vcmax and, therefore, 
generate lower values for dry conditions (SM approaching 0) and higher values 
for wet conditions (higher SM).   

The coefficients (a and b) are soil dependent and can be obtained for a 
desired soil using a soil moisture retention curve. Paired measurements of 
pressure head and volumetric soil moisture content are needed to generate the 
soil moisture retention curve (Tuller and Or, 2004). We obtained 35 paired 
measurements at the Vaira site (Miller et al., 2010; Xu et al., 2004) and fitted 
the widely used parametric model proposed by Van Genuchten (1980) to such 
measurements. Then, we considered the pF (log of the negative water 
potential, in cm) of 2.6 (corresponding to a soil moisture of 0.29 m3 m-3) for 
the onset of water stress effects and pF of 4.2 (corresponding to soil moisture 
of 0.06 m3 m-3) for the permanent wilting point, following Feddes et al (1976). 
Thus, in our study a = 0.07 and b = 0.29 were obtained for the Vaira site.  

5.2.2.2. Modeling vapor pressure 

In the original SCOPE model, the vapor pressure in the stomatal pore space 
ei is considered to be in equilibrium with the liquid water potential of the leaf, 
and is, therefore, a function of temperature and water potential (see Eq. 5.A8 
in Appendix A). In practice, however, water potential has been set to zero and 
the humidity in the pore space to saturation, because the water potential is not 
calculated as a state variable. This is reasonable under conditions without 
water stress (e.g., soil moisture around field capacity), but in a dry episode 
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the leaf water potentials could be so low, that the assumption of saturation in 
the stomata is not justified anymore. To take this into account, we incorporated 
the water potential gradient from soil to leaf in SCOPE by describing the Soil-
Plant-Atmosphere Continuum (SPAC), the pathway for water movement from 
the soil through the plant to the atmosphere. The process of water movement 
can be divided into three sub-processes; (1) root extraction (from soil to root 
xylem), (2) plant water flux (from roots to leaves) and (3) transpiration (from 
leaves into the atmosphere).  The first two processes have been added to the 
model by using additional resistances for liquid flow (Fig. 5.1), root radial 
resistance (rr) and root axial resistance (rx).  

Figure 5.1. Simple Soil-Plant-Atmosphere Continuum (SPAC) scheme. The Ψs is soil water 
potential (m), rs is soil hydraulic resistance (s m-1), rr is resistance to water flow radially 
across the roots (s m-1), rx is plant axial resistance to flow from the soil to the leaves (s 
m-1), ei is leaf (soil) vapor pressure (hPa), rc  is leaf stomatal (soil surface) resistance (s 
m-1),  ra  is aerodynamic resistance (s m-1) and ea is atmospheric vapor pressure (hPa).  

We assumed that changes in storage (roots, xylem and leaves) are 
negligible, such that the fluxes (q) are equal: 

Ψs

ea

rs

rr

rx

rc

ra

ei
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lslrrs qqq ,,,  (5.3) 

where subscript l stands for leaf, r for root and s for soil. Therefore, the flux 
from soil to leaf qs,l can be described as: 
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ls rrr
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, (5.4) 

where Ψs is soil water potential (m), Ψl is leaf water potential (m), rs, rr and rx 
are soil hydraulic resistance (s m-1), resistance to water flow radially across 
the roots (s m-1) and plant axial resistance to flow from the soil to the leaves 
(s m-1), respectively. 

The liquid flow to the leaf is equal to the transpiration rate T, because we 
assumed that changes in leaf water storage are negligible.   

T (m s-1) can be obtained by the method of bulk vapor transfer (Deardorff, 
1978) as follows: 
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where ql and qa are specific humidity (kg kg-1) of leaf and the atmosphere, ρa 
is the density of dry air (kg m-3), respectively. The specific humidity is obtained 
from the vapor pressure as q = 0.622 / p × ei, where p is the atmospheric 
pressure and 0.622 the ratio of the molar mass of water to air. 

The relation between the liquid water potential and the atmospheric vapor 
gradient then becomes:    
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The term on the left side of Eq. (6) is called root extraction (S) and the 
right side term is transpiration (T). The coefficients ρa and ρw [the density of 
water vapour (kg m-3)] are considered as constant values, ea and p as inputs, 
rs, rr, rx  are parameterized, and Ψl, ra [aerodynamic resistance (s m-1)], rc [leaf 
stomatal resistance (s m-1)], and ei are solved by iteration of the energy 
balance calculation in the SCOPE model. It should be noted that a direct 
arithmetic solution for Ψl, is not possible. 

Ψs  is described as a function of soil moisture with Van Genuchten (1980): 
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where θ, θsat, and θr is soil moisture (m3 m-3), saturated soil moisture (m3 m-

3) and residual soil moisture content (m3 m-3), α and n are soil-dependent
parameters. We fitted the Van Genuchten model with the measurements and 
obtained 0.38, 0.0, 1.66 and 1.5 for θsat, θr, α, and n, respectively.   

rs can be obtained by (Reid and Huck, 1990): 
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B is the root length activity factor, K is hydraulic conductivity of soil (m s-1), LV 
is root density (m m-3), and ∆z is the thickness of the soil layer (m). B is 
calculated as: 
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where r is root radius (m). K is calculated as: 
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where Ksat is the hydraulic conductivity at air entry potential (m s-1), and l is 
an empirical pore-connectivity parameter. The other parameters are defined in 
Eq. 5.7 and 5.9. 

rr is estimated as (Reid and Huck, 1990): 
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where Pr is root radical resistivity (s m-1).  
The xylem resistance rx is estimated as (Klepper et al., 1983): 
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where Pa is root axial resistivity (s m-3), z depth of the midpoint of soil layer 
considered as 0.2, f is a fraction, and it is defined for a specific depth as the 
number of roots which connect directly to the stem base to total roots crossing 
a horizontal plane at that depth. We can consider it equals 0.22 based on 
(Klepper et al., 1983).  

The iteration to solve Ψl and ei uses an initial value of Ψl = Ψs. This value 
is recomputed after calculation of the transpiration flux, and this continues until 
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convergence of consecutive Ψl (a difference less than 1 cm). This iteration loop 
is nested in the energy balance loop that resolves leaf temperature.  

5.2.2.3. Modeling soil surface resistance 

In the original SCOPE model, there is another relevant parameter which 
controls the soil resistance to evaporation from soil pore space “rss”. This 
parameter is also considered as a constant value (the default value in the 
model is 500 s m-1 for moist conditions). In fact, the rss is used in Eq. (6A) 
instead of rc for the computation of soil latent heat flux. Thus, in the original 
model this parameter is parameterized for different conditions and, therefore, 
it does not respond to soil moisture conditions. To have a better estimation of 
rss, hydrological evaporation models might be used. However, this makes the 
study more complex and one has to introduce a substantial additional number 
of parameters into the SCOPE model. In this study, we propose to simply 
approximate the rss based on a soil moisture dependent hydraulic conductivity 
(Verhoef and Egea, 2014) as follows:  

)(min KKrr satssss     
(5.15) 

 
where rssmin is the minimum soil surface resistance for wet conditions (m s-

1), and the other parameters are defined before (in Eqs. 5.7-5.9 and 5.12). 

5.3. Evaluation of the model 
Time series of GPP and ET were simulated using both the original and the 

extended SCOPE model (Fig. 5.2). A number of parameters were retrieved 
from Landsat optical observations (described in chapter 3), and these were 
used in both versions of SCOPE, together with half-hourly time step weather 
inputs [notably TOC incoming shortwave radiation from 0.3 to 2.5 μm (Rin), 
TOC incoming long wave radiation from 2.5 to 50 μm (Rli), air pressure (p), air 
temperature (Ta), actual vapor pressure (ea), and wind speed (u)]. For the 
extended SCOPE, we further used the near-surface soil moisture as measured 
in the field.  
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Figure 5.2. The main phases of the methodology 

5.3.1. Study site and data 

5.3.1.1. Vaira Ranch (US-Var) Fluxnet site description 

The study site is an annual grassland known as Vaira Ranch (US-Var) in 
the Ameriflux and Fluxnet network, USA (Boden et al., 2013). The site is 
located on the lower foothills of the Sierra Nevada Mountains, California (Vaira 
Ranch, 38.4133° N; 120.9508° W) with an average elevation of 129 m (Xu et 
al., 2004). This study area often faces drought. One of the driest year in the 
site was 2004 according to the Palmer Drought Severity Index (PDSI) dataset 
(www.ncdc.noaa.gov/temp-and-precip/drought/historical-palmers) and a 
pervious on-site study (Ma et al., 2007). In our study, we focused on this driest 
year and used the months from January to August 2004 for modeling and 
validation purposes. The dominant grass species of the site include 
Brachypodium distachyon, Erodium cicutarium, Bromus hordeaceous, 
Hypochaeris glabra, Trifolium dubium Sibth, Trifolium hirtum, Erodium botrys 
and Dichelostemma volubile  (Xu and Baldocchi, 2004). They are all C3 plants 
and are originally from the Mediterranean basin (Xu and Baldocchi, 2004). 

5.3.1.2. Remote sensing observations 

Remote sensing optical observations can be used to retrieve vegetation 
properties to feed the SCOPE model together with locally measured weather 
data to simulate GPP and ET. In the current study we used time series of 
Landsat-retrieved vegetation properties (chapter 3, Fig. 3.17) during the 
selected period at the Vaira site. For the days with a satellite overpass, the 
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Landsat-retrieved properties were used. For the other days during the episode 
in which Landsat observations were not available, a linear interpolation was 
applied and, therefore, a continuous set of retrieved properties (LAI, Cab, Cw, 
Cdm, LIDF, and Cs) obtained for all days during the episode was used in SCOPE. 

5.3.1.3. Ground measurements 

Volumetric soil moisture data were collected by an array of calibrated 
frequency domain reflectometry sensors at three different depths of 2, 10 and 
20 cm (Theta Probe model ML2-X, Delta-T Devices, Cambridge, UK), calibrated 
by gravimetric measurements. In this study, we used soil moisture 
measurements at 10 cm depth. The required meteorological inputs, including 
solar radiation fluxes, air temperature, relative humidity, air pressure and wind 
speed, were collected with a half-hourly time step. 

Radiation fluxes were recorded above the canopy using upward and 
downward facing quantum sensors (PAR Lite, Kipp, and Zonen, Delft, 
Netherlands), a pyranometer (CM 11, Kipp and Zonen, Delft, Netherlands), and 
one net radiometer (NR Lite, Kipp and Zonen, Delft, Netherlands). 
Temperature and relative humidity were collected by a resistance thermometer 
and a solid-state humicap (model HMP-45A, Vaisala, Helsinki, Finland). Air 
pressure was recorded by capacitance barometers (model PTB101B, Vaisala, 
Helsinki, Finland). Furthermore, an Eddy Covariance (EC) system was used to 
measure fluxes (Wind master Pro, Gill Instruments, Lymington, UK plus LI-
7500, LICOR, Lincoln, NE, USA). For more details of these measurements, the 
reader is referred to previous studies (Baldocchi et al., 2004; Ma et al., 2007; 
Xu and Baldocchi, 2004). 

5.3.2. Error statistics 
Various error statistics were employed to investigate the performance of 

the SCOPE and SCOPE-SM models in simulating daily GPP and ET against the 
Vaira Fluxnet site derived GPP and ET. The coefficient of determination (R2), 
the root mean square error (RMSE) and the normalized root mean square error 
(NRMSE) were used to evaluate the agreement between simulated and 
measured GPP and ET in each case. Moreover, we decomposed the MSE into 
three components (Gupta et al., 2009) to describe the contributions due to 1) 
unequal standard deviations, 2) lack of (positive) correlation and 3) the bias in 
the mean values for SCOPE and SCOPE-SM simulations as follows: 
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where si and gi are the model simulation and the ground measurement, n is 
number of samples, gmax and gmin are maximum and minimum values of 
measurements, ߪs and ߪg are standard deviation of the simulation and ground 
measurement, the over bars represent the mean values of model simulation (

s ) and ground measurement ( g ) and R is the correlation coefficient.  

The advantages of MSE decomposition are that (1) one can investigate the 
bias in the mean values as well as the difference in the standard deviations 
between model simulations and ground measurements, and (2) one can better 
interpret the computed R2 due to the fact that only a positive correlation can 
contribute to accomplishing a low value of MSE. The first is relevant because 
in case of large difference in the standard deviations or in the mean values 
(bias), the MSE will still be high, even if the model correlates well with the 
measurements. The second is necessary to avoid misinterpretation of a higher 
R2 between model simulation and ground measurement in the case of a 
negative correlation.  

5.3.3. Information content of optical, thermal and soil 
moisture observations 

Similar error statistics (as of section 5.3.2) were utilized to compare the 
SCOPE (constrained only by optical observations), SCOPE-SM (constrained by 
optical and soil moisture observations), and SCOPE (constrained by optical and 
thermal observations) performances. Further, we used a crop factor analysis, 
described in chapter 4, to better interpret the added value of each observation 
(i.e., optical, thermal and soil moisture) for GPP and ET simulation and, 
therefore, to understand the differences between the information each 
observation can provide. The crop factor is the ratio of actual over potential 
(unlimited, defined for green grass with ample soil moisture) GPP and ET. 
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5.3.4. Simulation results 

5.3.4.1. Daily GPP simulation 

Simulated daily GPP results from the original SCOPE and the updated 
version of the model (SCOPE-SM) are presented in Fig. 5.3. In the original 
SCOPE case (Fig. 5.3a) we only used Landsat-retrieved information. As shown, 
the simulated GPP by the SCOPE model was in good agreement with the 
Fluxnet measured GPP only for a part of the selected episode from DOY 1 to 
70, when soil moisture was relatively high. However, there is considerable 
inconsistency in the simulated GPP compared to the measured one for the rest 
of the episode (e.g., DOY 100 till DOY 200). The SCOPE-SM simulation results 
showed that estimating Vcmax changes as a function of soil moisture 
accomplished a considerable improvement of GPP (Fig. 5.3c). In addition, the 
results showed that modifying ei and rss based on available soil moisture data 
(Fig. 5.3b and 5.3d) did not change GPP simulations. Overall, comparison of 
the original SCOPE performance (Fig. 5.3a) with that of SCOPE-SM (Fig. 5.3c) 
demonstrated the value of combining Landsat observations and soil moisture 
data in the accurate estimation of daily GPP.   

(a) (b) 

(c) (d) 

Figure 5.3. Model simulated and Fluxnet measured daily GPP at the Vaira site during the 
drought episode in 2004; (a) GPP simulated by original SCOPE using only Landsat 
retrieved vegetation properties, (b) GPP simulated by SCOPE-SM using Landsat retrieved 
properties and updated vapor pressure information, (c) GPP simulated by SCOPE-SM 
using Landsat retrieved properties, updated vapor pressure and Vcmax information, and 
(d) GPP simulated by SCOPE-SM using Landsat retrieved vegetation properties, updated 
vapor pressure, updated Vcmax and updated rss information. Figure insets represent the 
scatter plot between simulated and measured GPP for each case (for more details of 
error statistics see section 5.3.4.3). 
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5.3.4.2. Daily ET simulation 

Simulated daily ET results from the original SCOPE and the updated version 
of the model in this study are presented in Fig. 5.4. Similar to GPP estimation, 
we found good agreement between the SCOPE simulated ET, and Fluxnet 
measured ET (Fig. 5.4a) for the first part of the episode (i.e., from DOY 1 to 
70) in which soil moisture was relatively high. However, for the other days
during the episode (i.e., DOY 71 to 220) the simulated ET is considerably 
overestimated. Using information from Landsat plus soil moisture data in the 
form of updated ei through SCOPE-SM (Fig. 5.4b) did not improve ET 
simulations comparing to that of the original SCOPE (Fig. 5.4a). However, the 
performance of SCOPE-SM in estimating ET improved when we made Vcmax a 
function of soil moisture (Fig. 5.4c). Moreover, the results of ET simulations by 
SCOPE-SM significantly improved for the whole episode when the time series 
of rss information is also added (Fig. 5.4d). That is to say, the performance of 
SCOPE-SM improved for the whole episode when we combined Landsat 
information (in the form of retrieved vegetation properties) with soil moisture 
data (in the form of modified Vcmax and rss). 

(a) (b) 

(c) (d) 

Figure 5.4. Model simulated and Fluxnet measured daily ET at the Vaira site during the 
drought episode in 2004; (a) ET simulated by original SCOPE using only Landsat 
retrieved vegetation properties, (b) ET simulated by SCOPE-SM using Landsat retrieved 
vegetation properties and updated vapor pressure information, (c) ET simulated by 
SCOPE-SM using Landsat retrieved vegetation properties, updated vapor pressure and 
Vcmax information, and (d) ET simulated by SCOPE-SM using Landsat retrieved vegetation 
properties, updated vapor pressure, updated Vcmax and updated rss information. Figure 
insets represent the scatter plot between simulated and measured ET for each case (for 
more details of error statistics see section 5.3.4.3). 
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various dataset on simulated T and E separately. The results of canopy T and 
soil E are presented in Fig. 5.5. As can be seen from Fig. 5.5ab, satellite 
information could explain the majority of canopy T reduction at the end of the 
episode and, therefore, it peaked in the middle of the episode. However, 
canopy E showed an upward trend during the selected episode and, therefore, 
peaked at the end of episode, due to reducing LAI (Fig. 5.5ab). 

Moreover, simulation results of SCOPE-SM in which Vcmax is modified 
besides using updated ei and Landsat retrieved properties (Fig. 5.5c), reveal 
more drought effects on simulated canopy T, without affecting E. Making rss a 
function of soil moisture reduces E at the end of episode when soil moisture 
was lowest, so that E peaked in the middle and decreased at the end of the 
episode (Fig. 5.5d). 

 
(a) (b) 

(c) (d) 

Figure 5.5. Model simulated soil E and canopy T at the Vaira site during the drought 
episode in 2004; (a) E and T simulated by original SCOPE using only Landsat retrieved 
vegetation properties, (b) E and T simulated by SCOPE-SM using Landsat retrieved 
vegetation properties and updated vapor pressure information, (c) E and T simulated by 
SCOPE-SM using Landsat retrieved vegetation properties, updated vapor pressure and 
Vcmax information, and (d) E and T simulated by SCOPE-SM using Landsat retrieved 
vegetation properties, updated vapor pressure, updated Vcmax and updated rss 
information.  

5.3.4.3. Performance evaluation  

The results of performance evaluation for model simulations and ground 
measurements of GPP and ET are presented in Table 5.1. As can be seen from 
the table, the performance of SCOPE-SM for simulating GPP (i.e., RMSE = 0.6, 
MSE = 0.36, R2 = 0.98) was improved considerably compared to the original 
SCOPE (i.e., RMSE = 2.09, MSE = 4.38, R2 = 0.79) during the drought episode. 
The decrease of the MSE in GPP simulation during the drought episode by 
SCOPE-SM can be attributed to the lower (improved) value of standard 
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deviations error (from 0.61 to 0.13), lower (improved) value of lack of positive 
correlation (from 2.62 to 0.23), and a lower (improved) value of bias in the 
mean (from 1.15 to 0). Thus, all of the error contributions decreased and, 
therefore, resulted in a lower value of the total MSE. More importantly, the 
results indicate that the dominant error contributor (~ 60%) to total MSE for 
both cases (i.e, SCOPE and SCOPE-SM simulated GPP) was the lack of positive 
correlation. Therefore, the values of R2 for GPP simulations by both SCOPE and 
SCOPE-SM contribute considerably to the total MSE and, therefore, it can be 
considered a major source of error. This also means that using R2 as an error 
measure makes sense in this case and improving the correlation would be of 
great help to decrease total MSE. Similar contributions of error budgets 
detected for GPP simulation during the whole episode as well (see the values 
within parentheses in Table 5.1). 

Table 5.1. MSE components, RMSE, NRMSE and R2 comparison between the original 
SCOPE and SCOPE-SM performance for simulating daily GPP and ET. Model simulation 
results were compared with Vaira Fluxnet GPP and ET measurements. The table values 
without parentheses present the statistics only for drought conditions (from DOY 60 to 
220) while the values within parentheses present the statistics for the whole episode 
(i.e., from DOY 1 to 220) covering both near normal and drought conditions. Different 
configurations of SCOPE-SM are shown as (C1: Landsat information plus updated ei), 
(C2: Landsat information, updated ei, updated Vcmax) and (C3: Landsat information, 
updated ei, updated Vcmax and updated rss). The original SCOPE and SCOPE-SM (C3) 
statistics are shown in bold 

Variable Model 

MSE components 
Total  
MSE RMSE NRMSE R2 Unequal  

standard 
deviations 

Lack  
of positive 
correlation 

Bias  
in the 
mean  

GPP 

SCOPE 0.61  
(0.38) 

2.62 
(2.57) 

1.15 
(0.44) 

4.38 
(3.40) 

2.09 
(1.84) 

0.23 
(0.20) 

0.79 
(0.74) 

SCOPE-SM 
=> C1 

0.03 
 (0.01) 

3.49 
(3.48) 

3.33 
(1.67) 

6.84 
(5.16) 

2.62 
(2.27) 

0.29 
(0.25) 

0.78 
(0.72) 

SCOPE-SM 
=> C2 

0.14 
 (0.12) 

0.23 
(0.44) 

0.00 
(0.00) 

0.37 
(0.56) 

0.61 
(0.75) 

0.07 
(0.08) 

0.98 
(0.96) 

SCOPE-SM 
=> C3 

0.13  
(0.12) 

0.23 
(0.44) 

0.00 
(0.00) 

0.36 
(0.55) 

0.60 
(0.74) 

0.07 
(0.08) 

0.98 
(0.96) 

ET 

SCOPE 0.03 
 (0.04) 

0.67 
(1.05) 

1.93 
(0.79) 

2.63 
(1.89) 

1.62 
(1.37) 

0.52 
(0.44) 

0.59 
(0.44) 

SCOPE-SM 
=> C1 

0.00  
(0.15) 

0.91 
(1.26) 

2.77 
(1.21) 

3.68 
(2.62) 

1.92 
(1.62) 

0.62 
(0.52) 

0.55 
(0.42) 

SCOPE-SM 
=> C2 

0.02  
(0.00) 

0.12 
(0.36) 

0.59 
(0.22) 

0.73 
(0.57) 

0.86 
(0.79) 

0.28 
(0.24) 

0.93 
(0.77) 

SCOPE-SM 
=> C3 

0.02  
(0.01) 

0.12 
(0.14) 

0.00 
(0.00) 

0.14 
(0.16) 

0.37 
(0.40) 

0.12 
(0.13) 

0.95 
(0.92) 

Comparing ET simulations from SCOPE and SCOPE-SM demonstrated that 
the performance of SCOPE-SM for simulating ET (i.e., RMSE = 0.37, MSE = 
0.14, R2 = 0.95) was improved considerably compared to the original SCOPE 
(i.e., RMSE = 1.62, MSE = 2.63, R2 = 0.59) during the drought episode. Using 
SCOPE-SM, the lower (improved) MSE error for the ET simulation resulted from 
lower (improved) error budgets of MSE components including standard 
deviation differences (from 0.03 to 0.02), lack of correlation (from 0.67 to 
0.12), and bias of the mean values (from 1.93 to 0.0) during the drought 
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episode. Furthermore, the results indicated that the dominant error contributor 
(~ 73%) to total MSE for ET simulated by SCOPE was the bias in the mean. 
Therefore, the (relatively) lower value of R2 (0.59) for ET simulations by SCOPE 
contributed less to the total MSE (~ 25%) and therefore cannot be considered 
a major source of error. This also means that R2 as an error measure is rather 
meaningless in this case. Improving the correlation would not help much here 
since the greatest contribution to the MSE decomposition for SCOPE ET 
simulation originates from the bias in the mean values. However, the dominant 
error contributor (~ 85%) in total MSE for ET simulated by SCOPE-SM was the 
lack of positive correlation. The value of R2 for ET simulation by SCOPE-SM 
contributes considerably to the total MSE and, therefore, it can be considered 
a major determinant of the error. Thus, using R2 as an error measure does 
make sense in this case.  

Furthermore, NRMSE results showed that the performance of SCOPE in 
simulating daily GPP was better than ET (NRMSE of 0.23 compared to 0.52). 
Similar results were obtained for the case of SCOPE-SM for GPP and ET 
simulations (NRMSE of 0.07 compared to 0.12). This confirms that SCOPE (and 
also SCOPE-SM) performs more accurate simulations for GPP compared to ET. 

5.3.4.4. Comparison of optical, soil moisture and thermal information 
content 

As described in section 5.1, besides using the optical data sets, there are 
two other sources of information which can be employed to constrain the 
SCOPE model effectively, to estimate vegetation functioning in water-limited 
ecosystems: either using thermal observations or soil moisture data. To 
understand how the information in thermal observation is different from the 
information in the soil moisture, we compared these two simulations resulting 
from using various observations in Table 5.2. It should be noted that the GPP 
and ET simulations in which the optical and thermal observations were utilized 
are described in chapter 4. 

Table 5.2. Comparison of the information content of various observations to simulate 
GPP and ET using the SCOPE model. The statistical measures are obtained compared to 
the ground measured values of GPP and ET at the Vaira site. 

Variable Observations 

MSE components Total 
MSE 

RMSE R2 

Unequal  
standard  
deviations 

Lack  
of positive 
correlation 

Bias  
in the 
mean  

GPP 

Optical 0.61 2.62 1.15 4.38 2.09 0.79

Optical and thermal 0.11 0.19 0.00 0.31 0.55 0.96 

Optical and soil moisture 0.13 0.23 0.00 0.36 0.60 0.98 

Optical 0.03 0.67 1.93 2.63 1.62 0.59

ET Optical and thermal 0.07 0.23 0.06 0.36 0.60 0.83 

Optical and soil moisture 0.02 0.12 0.00 0.14 0.37 0.95 
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From Table 5.2 it can be seen that we do need to employ supplementary 
information besides using only optical observations to constrain the SCOPE 
model. Comparing the statistical measures for GPP simulations demonstrates 
that the combined use of optical and thermal observations can provide slightly 
more information (i.e., RMSE = 0.55, MSE = 0.31) compared to the combined 
use of optical and soil moisture observations (i.e., RMSE = 0.60, MSE = 0.36) 
to capture photosynthesis variations. This slight difference might be attributed 
to the seasonal variations of the maximum carboxylation capacity which 
apparently can better be captured by thermal observations. However, this is 
reverse for the ET simulations. The results of ET simulations show that the 
combined use of optical and soil moisture observations provides considerably 
more information (i.e., RMSE = 0.37, MSE = 0.14) compared to the combined 
use of optical and thermal observations (i.e., RMSE = 0.60, MSE = 0.36) to 
capture ET variations. This may be attributed to the fact that the soil surface 
resistance was approximated by a mechanistic model as a function of soil 
moisture content in SCOPE-SM, whereas in the original SCOPE this resistance 
was kept constant. 

Further, crop factor (Kc) analysis performed to show the differences 
between thermal and soil moisture provided data for simulating GPP (Fig. 5.6) 
and ET (Fig. 5.7) visually.  
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(a)  

(b)  

Figure 5.6. Time series of measured and simulated Kc GPP and ∆ Kc GPP in drought 
conditions. (a) Simulated and measured Kc GPP comparing the information content 
provided by each observation; (b) The difference between simulated and measured Kc 
GPP computed for each observation. 

The results of crop factor analysis for GPP simulation indicate that thermal 
observations could better capture the needed information for a part of the 
episode (e.g., DOY 90 to 110), while, for the rest of episode the information of 
this thermal observations are comparable with those of soil moisture data (Fig. 
5.6ab). However, crop factor analysis for ET shows different results. Except for 
a part of the episode (from DOY 120 to DOY 150) in which the same information 
was obtained from both thermal and soil moisture observations, for the rest of 
episode, soil moisture observations provided more information for ET 
simulation (Fig. 5.7ab).  
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(a)  

(b)  

Figure 5.7. Time series of measured and simulated Kc ET and ∆ Kc ET in drought conditions. 
(a) Simulated and measured Kc ET comparing the information content provided by each 
observation; (b) The difference between simulated and measured Kc ET computed for 
each observation. 

5.4. Discussion and conclusions 
Using the SCOPE model for estimating daily GPP and ET in semi-arid 

regions, experiencing prolonged drought episodes, is challenging because 
water availability is the primary limiting factor for vegetation. In such 
conditions, the GPP and ET simulated by SCOPE are often considerably 
overestimated. The SCOPE-SM model is proposed in this study to allow the 
combined use of satellite-derived optical information and a soil moisture 
dataset for improving daily GPP and ET estimations in water-limited 
ecosystems. Therefore, SCOPE-SM could alleviate the overestimation of GPP 
and ET during the stress period.  

Satellite optical information was used by radiative transfer model routines 
of SCOPE-SM to estimate net radiation similar to the original SCOPE model. 
This is a significant advancement of the SCOPE model since one can use its 
radiative transfer modules to exploit satellite observations to their full extent. 
SCOPE provides a powerful tool that enables using all bands information 
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together. However, supplementary soil moisture data were utilized in this study 
by SCOPE-SM to estimate time series of maximum carboxylation capacity, leaf 
and soil vapor pressure, and soil surface resistance during a drought episode. 
All these parameters are assumed constant in the original SCOPE model. This 
leads to substantial systematic errors of both GPP and ET simulations during 
the soil moisture deficit in a drought episode. The higher the soil moisture 
deficit is, the larger the errors of GPP and ET simulations in the original SCOPE 
will be.  

It was also shown that some of the soil moisture deficit induced changes 
can be seen in the Landsat optical bands through the SCOPE model. For 
instance, the decline of transpiration was observed in the case of using only 
Landsat information through original SCOPE (Fig. 5.5ab). However, soil 
moisture deficit effects on maximum carboxylation capacity and soil 
evaporation remain undetected using only the Landsat optical bands. This 
indicates the importance of using supplementary information to regulate leaf 
carboxylation capacity and soil evaporation. There are two possibilities to 
provide such supplementary information: (1) using thermal observations or (2) 
using a soil moisture dataset to constrain the SCOPE model. We described the 
option of using thermal observations, using Landsat thermal information (in 
chapter 4) to retrieve maximum carboxylation and soil resistance besides 
utilizing the optical bands information in the SCOPE model. We concluded that 
using thermal information can effectively constrain the SCOPE model for 
simulating GPP and ET in water-limited regions. However, the information in 
the soil moisture dataset had not been explored yet. This study was aimed at 
investigating the information content of the soil moisture dataset. The results 
show that the combined use of optical and soil moisture data can improve the 
GPP and ET simulations considerably. Our current study reveals that soil 
moisture data is another good supplementary source of information that can 
assist in regulating maximum carboxylation capacity and soil evaporation 
parameters with SCOPE-SM (Fig 5cd). Further, to understand the differences 
between thermal and soil moisture information in simulating GPP and ET, we 
compared the impacts of soil moisture information with those of thermal 
information through the crop factor method. Our comparison demonstrates 
that there is more information embedded in the soil moisture dataset compared 
to the thermal information for ET simulations in water-limited ecosystems. This 
can be explained by the fact that approximation of soil evaporation as a 
function of soil moisture is more efficient than its retrieval from thermal 
observations. However, crop factor results show that GPP estimates 
constrained by thermal data are slightly better than GPP estimates constrained 
by soil moisture data. This might be due to the efficiency of maximum 
carboxylation capacity estimation from thermal observations compared to soil 
moisture data. An obvious way forward is to use both soil moisture and thermal 
data in a synergistic and complementary way. Soil moisture observations can 
be used to constrain soil evaporation effectively and, therefore, improve ET 
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estimation, while thermal observations can constrain maximum carboxylation 
capacity effectively and improve GPP estimation. This is practically possible 
and promising due to the facts that (1) soil moisture information can be 
retrieved from contemporary satellite observations (e.g., Sentinel 1) in 
addition to the ground data which is routinely measured at flux tower sites, 
and (2) satellite thermal information is partly available (e.g., Landsat and 
Sentinel 3). The synergistic use also has an advantage for reducing the 
uncertainty in the retrieval process by avoiding ill-posedness [i.e., multiple 
solutions of the inversion which yield similar spectra (Combal et al., 2003)] in 
the retrieval of parameters from the thermal domain since some parameters 
can be estimated from soil moisture observations. 

There are two relevant parameters in the (Farquhar-Ball-Berry type) 
photosynthesis-conductance module in SCOPE affecting the simulation of GPP 
and ET; (1) the maximum carboxylation (biochemical) parameter Vcmax and 
Ball-Berry (stomatal) conductance parameter m. The question is, which one 
plays a more important role in explaining drought effects on GPP and ET 
simulations; biochemical limitations (Vcmax decline) or stomatal limitation (m 
decline), or mesophyll conductance limitation, the latter of which is not 
parameterized in SCOPE. This is still a topic of discussion in the research 
community. On the one hand, the majority of studies suggest imposing the 
biochemical limitation in the model while considering a constant value for m to 
sufficiently capture water stress effects on the simulated GPP and ET. For 
instance, no trend (constant behavior) has been reported for m but a clear 
declining trend for Vcmax as soil moisture deficit develops (Colello et al., 1998; 
Sellers et al., 1996). This is confirmed later by follow-up investigations from 
both field and model experiments during water stress (Calvet et al., 2004; 
Gimeno et al., 2016; Keenan et al., 2009; Krinner et al., 2005; Moorcroft et 
al., 2001; Reichstein et al., 2002; Xu and Baldocchi, 2003). These findings are 
also consistent with a recently published study demonstrating no seasonal 
changes in m during water stress conditions using experimental data over a 
sunflower field (Miner and Bauerle, 2017) and, therefore, support the use of a 
constant value for m parameter during stress condition. Based on the 
conclusions from these studies, in case of not considering a Vcmax decline in 
water stress periods, the simulated photosynthesis will significantly be 
overestimated. On the other hand, a water stress response has been reported 
in some other studies mostly for m (Harley and Tenhunen, 1991; Heroult et 
al., 2013; Sala and Tenhunen, 1996) and, therefore, the possibility of 
considering less limitation of the biochemical parameter.  

Further, other studies suggested considering both limitations (i.e., 
stomatal and biochemical) together (Egea et al., 2011; Keenan et al., 2010b; 
Zhou et al., 2013). However, in these studies conflicting conclusions have been 
drawn on the highest limitation strength. For instance, one (Zhou et al., 2013) 
reported greater impacts of biochemical limitation compared to stomatal 
limitation, while, another (Egea et al., 2011) found greater impact of imposing 
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stomatal limitation compared to the biochemical. Keenan et al (2010a) 
reconciled these conflicting conclusions on the relative contributions of 
stomatal and biochemical limitations for carbon and water fluxes simulations 
at a Mediterranean Quercus ilex forest during a water stress episode, by 
attributing the stress effects to mesophyll conductance. They imposed 
limitations on biochemical, stomatal and mesophyll conductance through 
various scenarios to understand each contribution. They demonstrated that by 
considering only biochemical limitations one can reproduce drought effects on 
carbon and water fluxes accurately. Although neither stomatal nor mesophyll 
conductance limitations alone could reproduce carbon and water fluxes with 
acceptable accuracy, by posing limitations on both (stomatal and mesophyll 
together), the carbon and water fluxes during water stress were reproduced 
too (Keenan et al., 2010a). This reveals that posing limitation on biochemical 
parameters during water stress can produce equivalent results to that of posing 
limitation on both ‘stomatal and mesophyll conductance’ together.  

In our study, we have chosen the option (i.e., imposing a soil moisture 
limitation on the biochemical Vcmax parameter) that is most compatible with the 
original SCOPE, which does not include mesophyll conductance. This choice is 
also consistent with our previous results (described in chapter 4) in which both 
Vcmax and m were tuned against thermal data and only the Vcmax response to 
soil moisture deficit has been observed, while, no significant changes were 
observed for m during the stress episode. Similar trends were obtained for 
Vcmax (declining) and m (constant) in the field measurements for blue oak at 
same climatic region (Xu and Baldocchi, 2003) during a severe summer 
drought. They attributed their findings (of varying Vcmax and constant m) to the 
relation between photosynthesis demand and stomatal conductance.  

Our results showed that making vapor pressure a function of temperature 
and water potential did not bring improvements to the simulations of GPP and 
ET during the drought episode (Fig 5.3b and 5.4b). This can be explained by 
the variations (in both soil and leaf) of water potential and temperature during 
the drought episode. As one could expect, there is a direct relationship between 
vapor pressure and temperature. Therefore, an increase of temperature will 
result in a vapor pressure increase and vice versa. Similarly, the relation 
between vapor pressure and water potential is also direct, so that an increase 
of water potential will increase vapor pressure and vice versa. However, our 
analysis demonstrated that vapor pressure computation in the SCOPE model 
is more affected by temperature change than by water potential. For instance, 
the results show that a 5-degree increase in temperature produces a 35 
percent increase of vapor pressure, while a 5 m increase in water potential (of 
water or soil) gives only a 0.001 percent increase in vapor pressure. 
Consequently, making vapor pressure a function of temperature and water 
potential did not improve the GPP and ET simulations during this episode. 

The variable rss, which controls the evaporation rate, is better constrained 
by soil moisture than by thermal data. This was to be expected because the 
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evaporation rate is mostly controlled by water availability (supply) in drought 
conditions. Thus, soil moisture data has rich information to constrain the rss

parameter. This is in agreement with previous studies, for instance, Camillo 
and Gurney (1986) reported that considering a soil moisture-dependent 
resistance could remove overestimation of daily cumulative evaporation under 
soil moisture deficit conditions (Camillo and Gurney, 1986). It is stated that 
evaporation occurs at the potential rate following the atmospheric demand until 
soil moisture supply is depleted considerably and, therefore, surface resistance 
increases (Wetzel and Chang, 1987). Thus, considering a constant rss in SCOPE
for simulation of ET results in overestimation of soil evaporation (see Fig. 5.5 
abc). This upward trend of soil evaporation is due to the fact that we kept the 
rss parameter constant while LAI was decreasing during the episode. This 
caused an increase in net radiation over the soil, which later translated into a 
high latent heat value for soil in the simulation. This issue of soil E was solved 
when we made rss a function of soil moisture in SCOPE-SM by means of an 
approximation through soil hydraulic conductivity.  

We evaluated the performance of SCOPE-SM by comparing simulated GPP 
and ET with Vaira Fluxnet site GPP and ET measurements in 2004. Our results 
show remarkable agreement between SCOPE-SM model simulations and 
ground measured daily GPP and ET. SCOPE-SM better captured the low values 
of daily GPP and ET in moderate and severe drought condition than SCOPE did. 
The ability of SCOPE-SM to capture ET variations during a water stress period 
is in good agreement with Gökmen et al (2012) study who integrated soil 
moisture data into the SEBS model to better represent ET variations during 
water stress in Turkey. 

Overall, the idea of using soil moisture observations for improving the 
estimation of GPP and ET in dry conditions might be useful and can also be 
applied for other process-based models. However, the way which should be 
employed for such a model modification may vary from one model to another 
based on their specific parametrizations. For instance, water stress levels were 
implemented in the widely-used SEBS model (Su, 2002) in the computation of 
sensible heat flux by means of a modified kB−1 parameter, which controls 
aerodynamic resistance to heat transfer compared to momentum transfer 
(Gökmen et al., 2012). Thus, special attention should be paid to investigate 
the parametrization of a desired model to find the most important and sensitive 
parameter before implementing further modifications. 

The SCOPE-SM model offers the opportunity for continuous time-series 
estimation of GPP and ET variations in arid and semi-arid regions with a 
remarkable accuracy using various remote sensing optical observations, soil 
moisture products. This can contribute to a better understanding of carbon and 
water fluxes, vegetation functioning and water productivity in water-limited 
ecosystems. 

It should further be emphasized that the performance of the SCOPE-SM 
model in simulating GPP and ET was only preliminarily assessed at the Vaira 
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site. Thus, although we speculate that the model would have implications for 
its use with other closed vegetation covers (e.g., grasslands, croplands, forest 
ecosystems) in water-limited ecosystems, much effort is still needed to 
evaluate SCOPE-SM’s performance in other ecosystems, and also with different 
satellite data sets. 
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Appendix A. The main features of GPP and ET formulations in the SCOPE 
model. 

The C3 Photosynthesis is calculated in the SCOPE model as the minimum 
of two processes (Farquhar et al., 1980); (1) carboxylation rate limited by 
Ribulose biphosphate-carboxylase-oxygenase activity (known as Rubisco 
(enzyme)-limited, Vc, described in Eq. (5.A1)), or (2) carboxylation rate limited 
by Ribulose 1-5 bisphosphate regeneration rate (known as RuBP (electron 
transport/light)-limited, Ve, described in Eq. (5.A2)): 
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where Vcmax is the maximum carboxylation rate (µmol m-2 s-1), Ci is the internal 
CO2 concentration (µmol m-3),  * is the CO2 compensation point in the 
absence of mitochondrial respiration, Kc and Ko are the Michaelis-Menten 
constants for carboxylation and oxygenation, respectively (µmol m-3), Oi is the 
leaf internal oxygen concentration (µmol m-3) and J is the electron transport 
rate (µmol m-2 s-1), Cs is CO2 concentration in the boundary layer (µmol m-3), 
m is Ball-Berry parameter (unitless) and RH is relative humidity at the leaf 
surface (%). 

Furthermore, leaf stomatal resistance rc (s m-1) is calculated as: 
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where ρa is specific mass of air (kg m-3), Ma is molecular mass of dry air (g 
mol-1), and p is atmospheric pressure (hPa). 

Furthermore, the latent heat flux (LE) in the SCOPE model is calculated for 
leaf and soil elements as follows: 
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where ߣ is vaporization heat of water (J kg-1), qi is the humidity in stomata (in 
case of leaf) or soil pores (in case of soil) (kg m-3), qa is the humidity above 
the canopy (kg m-3), ra is aerodynamic resistance (s m-1) calculated based on 
the Wallace and Verhoef two-source model (Wallace and Verhoef, 2000) , rc is 
stomatal (eq. 5.A5) or soil surface resistance (s m-1). The qi for leaf and soil is 
obtained from: 
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where ei is vapor pressure (hPa) and Mw is molecular mass of water (g mol-1). 
The ei is computed as: 
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where esat is the saturated vapor pressure at temperature Ti (hPa), Ψ is the leaf 
and soil water potential (J kg-1), R is molar gas constant (J mol-1K-1), Ti is leaf 
and soil temperature (oC). 
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Exploiting the information content of available optical, thermal and soil 
moisture observations from different sensors to the full extent, and 
investigating the potential of combined use of such observations, can provide 
new opportunities to quantify ecosystem functioning variations during different 
environmental conditions. However, concerning satellite observations, two 
main challenges should be tackled: (1) translating the satellite radiance data 
to important surface properties information about the ecosystem, and (2) 
obtaining knowledge on biophysical, biochemical and biological processes that 
take place in the vegetated ecosystem. Thus, it is not enough to only retrieve 
surface optical properties from satellite TOA radiance data, but further a step 
is needed to relate these optical properties information to vegetation processes 
in the ecosystem. One potential approach adopted in this dissertation is the 
combined use of RT models with surface energy balance and photosynthesis 
models, through the SCOPE model, to fully exploit satellite spectral information 
and soil moisture observations describing vegetation functioning. 

6.1. Summary of conclusions 
Using RT models makes it possible to use all available data from different 

sensors in a consistent way and monitor vegetation properties variations in the 
ecosystem. RT model inversion against time series of hyperspectral data during 
a drought experiment in the laboratory is very promising to quantify drought 
effects. Further, the first spectral signs of stress in spectra and vegetation 
properties are detectable using spectroscopic techniques (Chapter 2).  

It is also possible to invert coupled RT models in the “real world” against 
satellite multispectral radiance observations to monitor vegetation properties 
in response to drought. By coupling various RT models, one can describe the 
soil, vegetation and the atmosphere contributions in a “bottom-up” approach 
and, thereby, simulate TOA spectral radiance data comparable to satellite-
observed TOA radiances. This makes it possible to retrieve vegetation 
properties directly from TOA radiances rather than from atmospherically 
corrected TOC reflectance data (Chapter 3). This is significant since (1) the 
retrieval of surface properties by model inversion of TOA radiance data, instead 
of using surface reflectances obtained by atmospheric correction, is the best 
way to remove systematic effects related to the solar zenith angle and the 
atmospheric conditions, since RT models can take these effects implicitly into 
account, (2) simulated TOA radiance spectra can be sampled by the spectral 
response functions for all the bands of arbitrary hyperspectral and 
multispectral sensor in space. This means that a multitude of optical sensors 
can give their combined inputs for time series of retrieved biophysical surface 
properties, thus creating a much denser temporal sampling than would be 
possible for separate single sensors, (3) the TOA radiance approach allows 
even taking into account the spatial structure of the Earth’s surface, since the 
forward modeling can include the simulation of the adjacency effect for the 
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assumed spatial distribution of surface properties, and (4) one can also take 
into account the surface anisotropy effect in time series image analysis  applied 
to satellite data. 

 Retrieval of vegetation properties from satellite observations (either from 
TOA radiance or atmospherically corrected TOC reflectance) is a challenging 
task mainly due to the ill-posedness problem (multiple sets of surface 
characteristics can explain the same observation) and high computational 
demands. However, a greater challenge, as compared to the retrieval, is how 
to obtain vegetation processes (i.e., GPP and ET) information from satellite 
optical and thermal observations. This is a fact that farmers and scientists are 
more interested in physical processes of the land surface and not only optical 
properties of surface and the atmosphere itself. Coupled use of a RT model and 
a SVAT model, like in SCOPE, makes it possible to obtain spatio-temporal 
variations of GPP and ET during different environmental conditions (Chapter 
4). By constraining the SCOPE model with the optical and thermal observations 
of various sensors one can consider the effects of four major factors: (1) 
increased reflectance over the whole spectrum, resulting in a reduced net 
radiation, (2) reduced absorbed photosynthetically active radiation by 
chlorophyll, and therefore a reduced photosynthesis and stomatal 
conductance, (3) reduced photosynthetic capacity Vcmax, and (4) reduced soil 
evaporation. The availability of a model like SCOPE that combines the optical 
and the thermal part of the spectrum with a SVAT scheme makes it possible to 
exploit the full potential of the optical and TIR domains of remote sensing 
observations, which is an advancement over the empirical use of vegetation 
indices. 

The majority of SVAT models like SCOPE does not take water stress 
explicitly into account due to the fact that they do not model the water balance. 
It is possible to simply extend such models to allow combined use of satellite 
optical data together with soil moisture products to improve their performance 
in water-limited ecosystems (Chapter 5). It is shown that using optical remote 
sensing data is an adequate approach to simulate physical processes via the 
SCOPE model if only the available energy is limiting vegetation functioning. 
However, the model does not perform well when water availability becomes 
the primary limiting factor for vegetation and, consequently, the estimations 
will be significantly biased. In this dissertation, we propose considering water 
stress in SCOPE by incorporating soil moisture in the model, besides using 
satellite optical information, to better capture vegetation functioning variations 
during drought conditions. Satellite optical information is used to estimate total 
net radiation, similar to the original SCOPE. However, the added soil moisture 
information is used to model (i) vapor pressure computation both in the soil 
and the leaf by taking water potential variations into account, (ii) the maximum 
carboxylation capacity by defining a soil moisture dependent stress factor and 
(iii) the soil surface resistance through approximation by a soil moisture 
dependent hydraulic conductivity. 
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6.2 Implications 
The adopted approaches and the extended SCOPE model (i.e., SCOPE-SM) 

described in this dissertation can play an important role to demonstrate the 
potential of combining data from different sensors (with different spatial, 
spectral and temporal resolution) and in-situ observations into higher-level 
surface products. This can be beneficial for both academic (e.g., remote 
sensing, eco-hydrology, and plant physiology communities) and application 
oriented (e.g., agriculture and farming) sectors to understand the vegetation 
response to climate change.  

By exploiting hyperspectral observations using RT model inversion and a 
statistical approach, the drought effects on vegetation properties and the 
spectra are detected. Further, spectroscopic techniques and RT model 
inversion show a promising potential of detecting stress on the spectral 
reflectance and vegetation properties before they become visibly apparent. 
This has an important implication for drought “early detection” purposes 
(Chapter 2).  

 A forward modeling TOA radiance approach can be used to accurately 
simulate satellite radiance data and directly retrieve vegetation properties in 
different environmental conditions in space and time. This approach is useful 
for successful retrieval of vegetation properties and to produce maps of land 
surface properties and monitor vegetation properties variations in a 
straightforward operational way. The approach can also be easily adapted for 
conducting multi-sensor time-series studies, creating a much denser temporal 
sampling than would be possible for separate single sensors. This has an 
important implication for multi-sensor time series synergy studies (Chapter 
3). 

This dissertation indicates that inverting RT models against TOA radiance 
spectra (Chapter 3) in the optical domain can provide insight into vegetation 
biophysical and biochemical properties (LAI, Cab, Cw, Cdm, LIDF and Cs) 
variations during a drought episode. However, it is still possible to add 
information from the thermal part of the spectrum in the SCOPE model to 
retrieve spatio-temporal maps of maximum carboxylation capacity and soil 
surface resistance to be used for land surface processes simulations. In other 
words, it is shown that non-stomatal effects could be revealed from the 
information provided by optical bands, but to reveal also stomatal effects and 
those of soil evaporation, the information contained in the TIR bands is 
relevant. This has an important implication for integrating optical and thermal 
sensor data to better capture drought effects on ecosystem functioning from 
space to benefit farmers (Chapter 4). 

Finally, the extended SCOPE model, SCOPE-SM, can serve as a tool which 
allows using soil moisture information together with remote sensing optical 
observations to correct GPP and ET overestimations under water stress 
conditions. This indicates that soil moisture data is another valuable 
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supplementary source of information that can assist in regulating maximum 
carboxylation capacity and soil evaporation parameters with SCOPE-SM.  

Comparing simulations in which thermal and soil moisture data are used 
separately demonstrates that there is more information embedded in the soil 
moisture dataset compared to the thermal information for ET simulations in 
water-limited ecosystems. SCOPE-SM has an important potential application in 
precision agriculture for providing continuous time-series mapping of 
ecosystem functioning variations in arid and semi-arid regions with remarkable 
accuracy (Chapter 5). 

6.3 Challenges and future research 
During the course of this research, several challenges were encountered. 

Although considerable efforts have been made to tackle them to a certain 
extent, they have not been resolved completely.  

First, the difficulty of obtaining ground data for validation of model 
simulations (e.g., soil evaporation, canopy transpiration, biophysical and 
biochemical properties) at both laboratory and field levels. Although 
destructive measurements have been conducted during the laboratory 
experiment for LAI and Cab (described in chapter 2), it was not an easy task to 
obtain all the needed measurements of other vegetation properties (i.e., Cw, 
Cdm, Cs, and LIDF) at such a small set for validation purposes. Further, it is 
interesting to take leaf spectral measurements for both reflectance and 
chlorophyll fluorescence as well in such a drought experiment to compare the 
leaf spectral behavior with those of the canopy.  

Second, the inversion of the coupled RT model against satellite TOA 
radiances provides a useful tool to accurately simulate time series of satellite 
data and to retrieve vegetation properties, but it may be considered 
computationally expensive (it takes about 4 seconds per pixel for Landsat 
images on a normal PC). There might be three solutions for reducing the time 
of computations in operational applications; (1) changing the inversion method 
from optimization to using look-up tables, (2) applying advanced statistical 
methods (e.g., emulators) and machine learning tools to generate acceptable 
results, (3) parallel processing or running the model on supercomputers. 
Moreover, retrieval of vegetation properties from satellite images may 
sometimes be ill-posed. Various methods (e.g., using a priori information, the 
mean of 5 percent best solutions in the look-up table method, and using a 
normalized cost function) were used in this research to stabilize the solutions. 
Also, the response of the inverse model to a possible change of the sensor 
signals by one standard deviation due to noise has been investigated. 
However, the retrieval uncertainty has not been fully quantified, which 
deserves further research. 

 Third, the integration of optical/thermal observations or combined use of 
optical and soil moisture observations to better simulate vegetation functioning 
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in a drought episode was only performed for a grassland site. Although we 
expect our approach to work for all closed vegetation covers (e.g., grasslands, 
croplands, forest ecosystems), its representation may not be accurate enough 
for incomplete vegetation covers (e.g., row crops in an early growth stage, 
savanna ecosystems with closed understory and scattered trees, and boreal 
forest).  

Fourth, it was shown that there is more information in the soil moisture 
observations than in thermal data for ET estimation. An obvious way forward 
is to use both soil moisture and thermal data in a synergistic and 
complementary way. In such a synergic approach, we suggest using thermal 
data to constrain maximum carboxylation capacity and soil moisture 
observations to constrain the soil surface resistance parameter in the SCOPE 
model.  

Fifth, this dissertation investigates the effects of water stress (drought) on 
vegetation functioning. It is also interesting to study the effects of radiation 
stress (direct and diffuse radiation variations) on vegetation functioning. This 
might be facilitated by designing different scenarios for the atmospheric 
conditions through RT models, for instance MODTRAN, and simulate the 
resulting radiation spectra. Then one can utilize these radiation spectra in 
SCOPE and simulate vegetation functioning variations.  

To conclude, this dissertation describes several approaches to exploit 
satellite optical/TIR observations and soil moisture dataset to quantify 
vegetation properties and functioning in a drought episode with remarkable 
accuracy. Further work may be directed to investigate the information content 
of the sun-induced chlorophyll fluorescence signal regarding photosynthesis 
and transpiration estimation in water-limited ecosystems. 
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هچكيد  
در مورد  مفيديبسيار سري زماني اپتيكي، حرارتي و رطوبت خاك حاوي اطلاعات  هايداده

به بررسي  رساله) گياهان هستند. اين 3(فتوسنتز، تبخير و تعرق تاج پوشش 2و عملكرد 1خصوصيات
سنجش از جهت  ،جديد كمّيبا استفاده از روش هاي  استخراج آنها يو نحوه اطلاعاتاين ماهيت 

دو وضعيت نرمال و خشك مي پردازد. اين مطالعه در جهت و عملكرد گياهان تحت  خصوصيات دور
اطلاعات اين هاي نوين استخراج و روش چندگانه سنجش از دور هايداده شناخت ظرفيت اطلاعاتي

  چرخه هاي كربن و آب به تغيير اقليم حايز اهميت بسزايي است.    واكنشارزيابي  به منظور
فصل تشكيل شده است. فصل اول توضيحات مقدماتي بوده كه در آن به از شش  حاضر رساله

و رطوبت  سنجش از دور هاي طيفيدادهاهميت عملكرد گياه، تاثيرات خشكسالي روي آن، كاربرد 
پيشنهادي  4، روش هاي ارزيابي عملكرد گياه، رويكرد مدل سازي تلفيقيخاك در بررسي عملكرد گياه

  و اهداف تحقيق پرداخته شده است.
در ناحيه اپتيك در قالب يك  5بازتابي ابرطيفي هايدادهفصل دوم به بررسي محتواي اطلاعاتي 

ابتدا علايم  قسمت از تحقيقاين  پردازد. درمي يآزمايشگاهمقياس دوره خشكسالي مصنوعي در 
سپس، بعضي از  شد.پوشش آن بررسي  گياه و طيف بازتابي تاج خصوصياتبصري تنش آبي بر 
هاي گياهي مرتبط با تنش آبي مورد بررسي قرار گرفتند تا كارايي آنها در پركاربردترين شاخص

به همچنين ها در دوره آزمايش سنجيده شود. آشكارسازي اثرات خشكي و روند تغييرات اين شاخص
مشاهده خاك "كه يك ماژول از مدل  RTMo(مدل  6انتقال تابش اپتيكي مدل معكوس سازي يك

هاي ابرطيفي جمع آوري ) مي باشد) در مقابل دادهSCOPE( "7تاج پوشش فتوسنتز و شار انرژي –
بيوفيزيكي و بيوشيميايي  خصوصياتتا بتوان به استخراج  شد دوره آزمايش پرداختهطول شده در 

، 11خشك ماده، مقدار 10گياه آب، مقدار 9برگ ، مقدار كلروفيل8برگ گياهان (شامل شاخص سطح
) و روند تغييرات آنها در دو گروه (كنترل و تحت تنش 13و تابع توزيع انحراف برگ 12مقدار فرتوتگي

هاي آماري و هاي طيف سنجي، روشكه تكنيك نتايج نشان دادآبي) دست يافت. به طور كلي، 
                                               
1 Properties 
2 Functioning 
3 Canopy 
4 Coupled modeling approach 
5 Hyperspectral reflectance 
6 Radiative transfer 
7 Soil-Canopy Observation of Photosynthesis and Energy fluxes 
8 Leaf area index 
9 Leaf chlorophyll content 
10 Leaf water content 
11 Leaf dry matter content 
12 Senescent material 
13 Leaf inclination distribution function 



 چكيده

153 

 هايدادههت بهره برداري از هاي نويد بخشي جاپتيكي انتقال تابش، پتانسيل 1معكوس سازي مدل
گياهان دارند.  خصوصياتابرطيفي در ناحيه اپتيك و شناسايي اثرات تنش آبي روي طيف بازتابي و 

هاي تنش هاي طيف سنجي مي توانند كمك شاياني در شناسايي زماني و مكاني اولين نشانهتكنيك
هاي گياهي مرتبط با تنش شاخصتوانند جهت شناسايي كاراترين هاي آماري ميآبي نمايند. روش

هاي انتقال معكوس سازي مدلهمچنين آبي به منظور تشخيص زودهنگام تنش بسيار مفيد باشند. 
دوره خشكي بسيار  طول يك گياهان و مطالعه مراحل تكاملي آنها در خصوصياتتابش براي استخراج 

  .استراهگشا 
و  TM5( اپتيكي ماهواره لندست هايدادهاز  استفادهفصل سوم يك روش جديد جهت 

ETM7( و خشك (بدون تنش آبي) نرمال در دو وضعيت )كند. اين را توصيف مي تنش آبي) تحت
هاي چند طيفي اپتيكي در سايت داده استفاده از و با الگوريتم پيشنهادييك فصل با استفاده از 

گياهان مي پردازد. به عبارتي اين فصل يك طرح  خصوصياتبه بررسي  در كاليفرنيا مديترانه اي وايرا
 (توصيف شده در فصل دوم) به يك اكوسيستم در مقياس منطقه يآزمايشگاهسطح تغيير مقياس از 

راديانس اتمسفر  تلفيقي مدل سازي پيشنهاد شده جهتاين فصل ابتدا روش در اي ارايه مي دهد. 
. راستي توصيف شده استهاي سري زماني سالانه اپتيكي ماهواره لندست براي شبيه سازي داده 2بالا

، مدل انتقال BSMشامل مدل بازتاب خاك كه عملكرد اجزاي مختلف اين مدل تلفيقي ( 3آزمايي
) ثابت مي كند كه باشدمي MODTRANو مدل انتقال تابش اتمسفر  RTMoتابش تاج پوشش 

، طيف ناهمسان در شرايط رطوبتي مختلفروش پيشنهادي قادر به شبيه سازي مناسب بازتاب خاك 
تا خشك است. بازتاب ناهمسان  نرمالو راديانس ثبتي اتمسفر بالا توسط ماهواره در دوره  4بازتابي گياه

توسعه  5اخص بديع ناهمسانيسطح در اين مدل پيشنهادي تلفيقي لحاظ شده و براي اولين بار يك ش
تا بتوان اهميت اين بازتاب ناهمسان را در پردازش تصاوير ماهواره اي به صورت كمي نشان  داده شد

جهت  6داد. در نهايت، معكوس سازي مدل پيشنهادي تلفيقي با استفاده از يك تكنيك بهينه سازي
اي و مطالعه روند تكاملي آنها در  هاي ماهوارهگياهان از محدوده اپتيكي داده خصوصياتاستخراج 

هاي انتقال تابش با نتايج نشان داد استفاده تلفيقي از مدل .طول دوره مرطوب تا خشك بررسي شد
سري زماني  هايدادهمي تواند به عنوان يك روش مناسب جهت شبيه سازي  7رويكرد پايين به بالا

علاوه بر اين، معكوس سازي . قرار بگيرد و خشك مورد استفاده نرمالتحت شرايط  ماهواره اپتيكي
گياهان از  خصوصياتاين سيستم تلفيقي روشي كارا در جهت استخراج اطلاعات كمي مربوط به 

                                               
1 Model inversion 
2 Top-of-atmosphere radiance 
3 Validation 
4 Anisotropic vegetation reflectance spectra 
5 Anisotropy index 
6 Optimization technique 
7 “bottom-up” approach 
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سري زماني راديانس ثبت شده با ماهواره در اتمسفر بالا ارايه مي دهد. اطلاعات استخراج هايداده
سطح زمين گردد. اين يك گام خصوصياتاني شده مي تواند منجر به توليد نقشه هاي زماني و مك

با استفاده ازگياهان و تغييرات آنها  خصوصياتعملياتي پايش  هاي سيستم توسعهمهم در جهت 
- سنجندهسري زماني هاي داده تلفيق به منظور كه مي تواند مي باشدهاي راديانس اتمسفر بالا داده

قرار گيرد. استفادهمورد بازبيني و به آساني  هاي مختلف
هااپتيكي و حرارتي ماهواره هايدادهادغام كردن يك روش جديد براي به معرفي فصل چهارم 

تخمين عملكرد گياهان تحت شرايط نرمال جهت به منظور افزايش اطلاعات مفيد قابل استخراج در
. اين فصل ابتدا به توضيح معكوس سازي مدل بيلان انرژي و انتقال تابش حرارتيي پردازدمو خشك 
RTMt  در مدل)SCOPE حرارتي ماهواره لندست با استفاده از روش جداول هايهداد) مقابل
مي پردازد. نتيجه اين معكوس سازي مدل منجر به استخراج اطلاعات بيشتر در مورد 1مرجع

) و خاك (شامل3و هدايت روزنه اي 2(شامل حداكثر ظرفيت كربوكسيلاسيون انگياه خصوصيات
) در طول دوره مرطوب تا5و شرايط مرزي براي عبور بخار آب از منافذ خاك 4خاك مقاومت سطحي

خصوصيات. سپس مراحل تخمين عملكرد گياه با استفاده از ادغام اطلاعات استخراج شده شدخشك 
تيك و حرارتي به همراه متغيرهاي اقليمي ثبت شده محلي به تفضيل بيانگياه و خاك از ناحيه اپ

در منطقه مطالعاتي زميني ثبت شده واقعيت شده است. مقايسه نتايج تخميني عملكرد گياه و مقادير
كه مقادير قابل توجهي از اثرات خشكي روي فتوسنتز و تعرق گياه را مي توان (سايت وايرا) نشان داد

اي و تبخير خاكها شناسايي كرد. در حاليكه تخمين دقيق اثرات روزنهاپتيكي ماهواره يهادادهدر 
هاي انتقالكه استفاده تركيبي از مدل دادنيازمند اطلاعات حرارتي است. به طور كلي، نتايج نشان 

تابش اپتيكي و حرارتي همراه با يك مدل بيلان انرژي يك ابزار قدرتمند و مفيد جهت بهره برداري
كند. معكوسها در شرايط نرمال و خشك فراهم مياپتيكي و حرارتي ماهواره هايدادهحداكثري از 

گياه با استفاده اتخصوصيبه اطلاعات مربوط به  سازي مدل انتقال تابش اپتيكي در جهت دستيابي
، معكوس سازيعلاوه بر ايننمايد. هاي راديانس ماهواره اي در ناحيه اپتيك كمك شاياني مياز داده

مدل انتقال تابش حرارتي و بيلان انرژي اطلاعات بسيار ارزشمندي درباره مقاومت سطح خاك و
اي در ناحيه حرارتي در اختياررههاي راديانس ماهواظرفيت كربوكسيلاسيون گياه با استفاده از داده

قرار مي دهد. ادغام همه اطلاعات استخراج شده از ناحيه اپتيك و حرارتي منجر به آشكارسازي
اثرات مخرب خشكي روي عملكرد روزانه گياهان مي گردد. موفقيت آميز

1 Look-up tables 
2 Maximum carboxylation capacity  
3 Stomatal conductance 
4 Soil surface resistances  
5 Soil boundary resistance 
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اپتيكي و رطوبت خاك براي  هايدادهدر فصل پنجم به بررسي ارزش افزوده تركيب كردن 
تخمين عملكرد گياه در شرايط تنش آبي پرداخته شده است. در اين فصل ابتدا به توصيف روش 

به منظور اضافه كردن قابليت استفاده تركيبي از  SCOPEجديد پيشنهادي جهت توسعه مدل 
 جديد ه ارايه مدلاپتيكي و رطوبت خاك پرداخته شده است. پياده سازي اين روش منجر ب هايداده

SCOPE-SM سري زماني رطوبت  هايدادههاي اپتيكي مي توان از شده كه در آن علاوه بر داده
اي و ماهواره هايبا استفاده از داده نيز بهره برد. مدل توسعه داده شده اي)(زميني و ماهواره خاك
 كند. اين متغيرهاسازي ميشبيه به منظور بهبود سنجش عملكرد گياهان  بيشتري، متغيرهاي زميني

هاي سطح برگ كه در تعادل با پتانسيل آب شامل فشار بخار آب در منفذ هاي سطح خاك و روزنه
رطوبت  هايدادهمايع قرار دارد، حداكثر ظرفيت كربوكسيلاسيون به وسيله يك فاكتور وابسته به 

رطوبت  هايدادهوابسته به  خاك و مقاومت سطح خاك با استفاده از تقريبي از هدايت هيدروليكي
براي سنجش از دور عملكرد گياه در سايت  SCOPE-SMتوانايي مدل همچنين خاك مي باشد. 

كه  SCOPE-SM. نتايج اين بررسي نشان داد استفاده از مدل ه استوايرا مورد ارزيابي قرار گرفت
اطلاعات مدلسازي فشار بخار آب، حداكثر ظرفيت  ماهواره و اپتيكي هاي دادهدر آن از 

رطوبت خاك استفاده شده است بهبود  هايداده حاصل ازكربوكسيلاسيون و مقاومت سطح خاك 
به منظور ارزيابي  ، در اين فصلقابل توجه و معني داري در تخمين عملكرد گياه ايجاد مي كند. نهايتا

 هاي دادهمقايسه تخمين هاي عملكرد گياهان كه در آنها از به  ها،منابع مختلف دادهاطلاعاتي ظرفيت 
مجزا استفاده شده بود، پرداخته شده است. براي تخمين  اپتيكي، حرارتي و رطوبت خاك به صورت

رطوبت خاك در مقايسه با هاي دادهكه اطلاعات بيشتري در  دادتبخير و تعرق، نتايج مقايسه نشان 
كه مدل سازي تركيبي انتقال  گر اين موضوع استنبيانتايج همچنين حرارتي وجود دارد.  هايداده

 هايدادهيك ابزار سودمندي فراهم مي كند تا بتوان  SCOPEتابش اپتيكي و رطوبت خاك در مدل 
قرار داد.  بهينهمورد بهره برداري  را به صورت تركيبي راديانس ماهواره در اتمسفر بالا و رطوبت خاك

راديانس در ناحيه اپتيك حامل اطلاعات ارزشمندي درباره فرايندهاي تعرق و فتوسنتز  هايداده
كه مي تواند  هستنداطلاعات قابل توجهي حاوي رطوبت خاك  هايداده، همچنينگياهان مي باشند. 

در جهت تخمين بهتر سري زماني تبخير از سطح خاك و حداكثر كربوكسيلاسيون در يك دوره 
بالايي  ظرفيت بسيار ،مرطوب تا خشك مورد استفاده قرار گيرد. تركيب كردن اين دو منبع اطلاعات

  در جهت تخمين عملكرد روزانه گياهان در مناطق كم آب دارد.
سه روش در فصل ششم هدف اصلي اين رساله و نحوه دستيابي به اين هدف ذكر شده است. 

(فصل دوم  اپتيكي ابرطيفي داده هاياز  بهينهبراي بهره برداري  ارايه شده كمّيجديد مدلسازي 
اپتيكي و حرارتي چند داده هاي ، ادغام (فصل سوم رساله) اپتيكي چند طيفي داده هاي ، رساله)
اپتيكي و رطوبت  هاي دادهتركيب  همچنين يك مدل جديد براي ، و(فصل چهارم رساله) طيفي
و عملكرد گياهان در يك دوره مرطوب تا  خصوصياتدر جهت تخمين  (فصل پنجم رساله) خاك
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امکان  رساله  این  در  پیشنهاد شده  مدل  و  ها  روش  است.  گرفته  قرار  بررسی  و  بحث  مورد  خشک 
استفاده و ترکیب دادههاي چندگانه از سنجندههاي مختلف (شامل دادههاي اپتیکی و حرارتی ثبت 
شده با سنجنده هاي ماهواره اي و دادههاي رطوبت خاك ثبت شده با سنجندههاي زمینی و ماهواره 
اي) را فراهم می نماید تا بتوان از روش هاي تجربی (که در آنها تنها از قسمت کوچکی از داده هاي 
از  باعث بهبود کاربرد تکنیک هاي کمّی سنجش  نهایت  موجود استفاده می شود) فراتر رفت و در 
دور در بررسی خصوصیات و عملکرد گیاهان شد. گام توصیه شده بعدي در این رساله، استفاده از 
دادههاي اپتیکی، حرارتی و همچنین دادههاي رطوبت خاك به صورت هم افزایی و مکمل با استفاده 
از مدل هاي تلفیقی انتقال تابش در مطالعات سري زمانی است. این شیوه امکان نمونه برداري زمانی 
نماید. می  فراهم  را  مجزا  صورت  به  سنجندهها  تک  دادههاي   با  مقایسه  در  متراکمتري 

    در پایان یادآور می شود که نتایج اصلی این رساله (فصلهاي دوم، سوم، چهارم و پنجم) در قالب 
المللی  8 مقاله علمی شامل 4 مقاله در ژورنالهاي برتر ISI و 4 مقاله در کنفرانسهاي معتبر بین 
به  مقالات،  این  جزئیات  مورد  در  بیشتر  اطلاعات  براي کسب  است.  رسیده  به چاپ  دور  از  سنجش 

فهرست پیوست (صفحات 179 تا 181) رساله مراجعه شود.
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