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Summary

The main objective of this thesis was to quantify the propagation of
uncertainty in a layered processing system as applied in Processing and
Archiving Facilities (PAF). A framework is presented that is suited for the
purpose. Practical uncertainty estimates are then obtained in estimating a
reflectance product using three parameters: Column Water Vapour (CWV),
Aerosol Optical Depth (AOD), and the adjacency range. We demonstrate
the propagation of uncertainty from the reflectance product to application
products, by focusing on unmixing i.e. retrieving materials and their
proportional abundances present in each pixel. The thesis is divided into six
chapters.

After the first introductory chapter, the second chapter introduces uncertainty
and the framework.

The third chapter presents a generic method to quantify the sensitivity of
reflectance to CWV concentration, AOD, and adjacency range parameters
via the atmospheric correction modelling (AC). The approximate dispersion
in reflectance estimates was related to the contribution of each parameter by
performing a Sensitivity Analysis (SA) using a Fourier Amplitude Sensitivity
Test (FAST). We studied the effects of surface albedo on Sensitivity Indices
(SI) for three target surfaces in the spectral range 0.42–0.96 µm: a dark target
(water), a bright target (bare soil), and a target with a low albedo in the
visible and a high albedo in the near infrared range (vegetation). For AOD,
high (≈ 0.9) SI values were observed at the non-water absorption wavelengths.
For CWV concentration, high SI values were observed at wavelengths with
strong absorption features and if the surface albedo was high. For the dark
target, the effect of AOD was prominent throughout the spectral range. We
found that the sensitivity of reflectance to CWV concentration and AOD is a
function of the wavelength, strength of the absorption features, and surface
albedo. Such information provided a greater insight into how to deal with
absorption, scattering, and adjacency range type parameters.

The fourth chapter presents a generic method for a qualitative and
quantitative analysis of uncertainty propagation from values of the CWV
concentration and AOD to the fractional abundances derived from unmixing.
Both Fully Constrained Least Squares (FCLS) and FCLS with Total
Variation (FCLS-TV) were applied to estimate abundance maps. We used
five simulated datasets contaminated by various noise levels. Three datasets
cover two spectral scenarios with different endmembers. On those a
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Summary

univariate and a bivariate analysis were carried out on CWV concentration
and AOD. The other two datasets were used to analyse the effect of surface
albedo. The analysis identified trends in performance degradation caused by
the gradual shift in parameter values from their true value. The maximum
achievable performance depends upon spectral characteristics of the datasets,
noise level, and surface albedo. As expected, under noisy conditions
FCLS-TV performs better than FCLS. This experiment helped in addressing
various concerns pertaining to quantifying the propagation of uncertainty
like identifying the best ways to report the propagation of uncertainty.
Propagation of uncertainty was expressed both by measuring various
quantities at pixel level and at scene level. In addition, we addressed the
question on how to incorporate the effect of noise and surface albedo. We
found that unmixing provided a greater insight into how to incorporate a
wider range of applications to the propagation framework.
The fifth chapter presents a generic method to estimate and calibrate
concentration of CWV under uncertainty. The method iteratively estimates
the concentration of CWV from the pre-estimates of target surface
reflectances. The method was free from assumptions, in contrast to at-sensor
radiance based CWV concentration estimation methods. We considered two
cases: (a) CWV concentration was incorrectly estimated in a processing
chain; (b) CWV concentration was not estimated in a processing chain. To
solve (a) we used the incorrect estimations as initial values to the proposed
method during calibration, whereas for (b), CWV concentration was
estimated without initial information. Next, we combined the two scenarios,
resulting in a generic method to calibrate and estimate CWV concentration.
We utilised the Hyperspectral Mapper (HyMap) and Airborne Prism
EXperiment (APEX) instruments for the synthetic and real data
experiments, respectively. Noise levels were added to the synthetic data to
simulate real imaging conditions. For performance assessment, we compared
the proposed method with two state-of-the-art methods. The developed
method performed better than the two methods used for comparison. The
developed method minimised the absolute error close to zero, within only
8–10 iterations. It thus suits existing PAFs where the number of iterations is
an important consideration. Finally, the method is simple to implement and
can be extended to address other atmospheric trace gases.
The sixth chapter presents a generic method to estimate AOD under
uncertainty. AOD was estimated using the pre-estimates of surface
reflectance. Assumptions concerning retrieval uncertainty and instrumental
errors were less influential than for methods based upon the at-sensor
radiance. Using simulated data from HyMap instruments and real data from
Apex instruments, this resulted in an iterative pixelwise estimation of AOD
from estimates of reflectance. Noise levels were added to the simulated data
to simulate real imaging conditions. Results show that the proposed method
requires 6–8 iterations. It thus suits existing PAFs where the number of
iterations is an important consideration. Further, the method is free from
assumptions for the at-sensor radiance based estimation methods. Finally,
the method is simple to implement, it reduces the processing time in PAFs,
and it can be extended to address other AC parameters.
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Samenvatting

Het centrale doel van dit proefschrift was het ontwikkelen van een methode
voor onzekerheidspropagatie in een gelaagde beeldverwerkingsketen zoals
toegepast in Processing & Archiverings Faciliteiten (PAF). Een kader wordt
gepresenteerd dat geschikt is voor dat doel. Onzekerheids schattingen
worden verkregen als een reflectieproduct geschat wordt. Hierbij worden drie
parameters gebruikt: de Kolom Water Damp (CWV), de Aerosol Optische
Diepte (AOD) en de mate van aangrenzing (adjacency). Dit proefschift laat
de voortplanting van onzekerheid zien waarbij de focus ligt op ontmrnging,
d.w.z. het terugvinden van materialen en hun proportionele gehaltes die in
ieder pixel voorkomen. Het proefschrift is verdeeld in zes hoofdstukken.

Na het eerste inleidende hoofdstuk beschrijft het tweede hoofdstuk het kader
en de onzekerheden.

Het derde hoofdstuk presenteert een generieke methode om de gevoeligheid
van reflectie voor CWV concentratie, AOT en de mate van aangrenzing te
kwantficieren via atmosferische correctie modellering. De reflectie is in
verschillende mate gevoelig voor de verschillende onzekerheden in AC
parameters. Voor de bestudering van de impact van deze parameters op
reflectanctie en applicatie producten, heb ik op basis van een
gevoeligheidssanalyse prioriteiten toegekend aan de parameters. De Fourier
Amplitude Sensitivity Test (FAST) is gebruikt voor de gevoeligheidsanalyse
waarmee sensitiviteits indices (SI) bepaald kunnen worden. Hierbij is het
effect van albedo op de parameters in het golflengtegebied 0.42 tot 0.96 µm
bestudeerd voor drie oppervlakken: een donker oppervlak (water), een helder
oppervlak (bodem) en een oppervlak met een laag albedo in het visuele en
een hoog albedo in het nabij-infrarode golflengte gebied (vegetatie). Voor
AOD zijn hoge SI waarden (≈ 0.9) geobserveerd bij de niet-water absorptie
banden. Voor CWV concentratie zijn hoge SI waarden waargenimen met
sterke absorptie verschijnselen en bij een hoog oppervlakte albedo. Voor het
donkere oppervlak is een prominent AOD effect waargenoimen over het hele
spectrale interval. De gevoeligheid van de reflectie voor CWV concentratie
en AOT is daarmee een functie van de golflengte, de sterkte van de absorptie
eigenschappen en het oppervlakte albedo. Zulke informatie geeft meer
inzicht in hoe we om kunnen gaan met absorbtie, verstrooiing en parameters
die de mate van aangrenzing beschrijven.

Het vierde hoofdstuk beschrijft een generieke methode voor een kwalitatieve
en kwantitatieve analyse voor de voortplanting van onzekerejheid van de
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Samenvatting

waarden van CWV concentratie en AOD naar de fractionele gehaltes die zijn
bepaald via ontmenging. Zowel kleinste kwadraten met een volledige
bepering (FCLS) als FCLS met totale variatie zijn gebruikt om kaarten van
de gehaltes te verkrijgen. We hebben vijf gesimuleerde gegevensbestanden
gebruikt die voorzien zijn van verschillende mates van ruis. Drie bestanden
hebben betrekking op twee spectrale scenarios met verschillende
eindelementen. Hierop zijn een univariate en een bivariate analyse
uitgevoerd op CWV concentratie en AOD. De twee andere bestanden zijn
gebruikt zijn gebruikt om de effecten van het oppervlakte albedo te
analyseren. De analyse toonde verschillende trends aan in de afname van het
succes, veroorzaakt door de graduele verandering in de waarden van de
parameters t.o.v. de ware waarden. Het hoogst haalbare prestaties zijn
afhankelijk van de spectrale kenmerken van de bestanden, het ruis niveau en
oppervlakte-albedo. Zoals verwacht presteert FCLS-TV presteert beter dan
FCLS in situaties met veel ruis. Dit experiment heeft geholpen bij het
adresseren van verschillende aandachtspunten bij het kwantificeren van de
verspreiding van onzekerheid, zoals het identificeren van de beste manieren
om de voortplanting van onzekerheid te rapporteren. Voortplanting van
onzekerheid is enerzijds uitgedrukt door verschillende hoeveelheden op
pixelniveau te meten en op scneniveau. Anderzijds hebben we gekeken hoe
het effect van ruis en oppervlakte albedo kan worden gentegreerd. We
ontdekten dat onmenging een groter inzicht bood in hoe een breder scala
aan toepassingen kan worden geingtegreerd binnen een voortplantings kader.
Het vijfde hoofdstuk presenteert een generieke methode om de CWV
concentratie te schatten en te valideren onder onzekerheid. De methode
voert een iteratieve schatting uit van de CWV concentratie uit de
pre-schattingen van het doeloppervlak reflecties. De methode is vrij van
aannames, in tegenstelling tot de op-sensor-straling gebaseerde
CWV-schattingsmethoden voor concentraties. We onderscheiden twee
situaties: (a) CWV-concentratie is onjuist geschat in een verwerkingsketen;
(b) CWV-concentratie is niet geschat in een verwerkingsketen. Voor het
oplossen van (a) hebben we de onjuiste schattingen als initile waarden
gebruikt bij de voorgestelde methode tijdens kalibratie, terwijl voor (b) de
CWV-concentratie is geschat zonder initile informatie. Vervolgens hebben
we de twee scenario’s gecombineerd, resulterend in een generieke methode
om de CWV-concentratie te kalibreren en te schatten. Voor de experimenten
met de synthetische en de echte gegevens hebben we respectievelijk de
Hyperspectral Mapper (HyMap) en Airborne Prism EXperiment (APEX)
instrumenten gebruikt. Ruis van verschillend niveau is toegevoegd aan de
synthetische gegevens om echte beeldvormingsomstandigheden te simuleren.
Voor het beoordelen van de prestaties hebben we de voorgestelde methode
vergeleken met twee standaard methoden. De ontwikkelde methode
presteerde beter dan deze twee: de absolute fout is geminimaliseerd tot bijna
nul, binnen 8 tot 10 iteraties. Het is geschikt voor de bestaande PAFs waar
het aantal iteraties is een belangrijke overweging. Ten slotte is de methode
eenvoudig te implementeren en kan deze worden uitgebreid in de richting
van andere atmosferische sporengassen.
Het zesde hoofdstuk presenteert een generieke methode om AOD te
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schattenin de aanwezigheid van onzekerheid. AOD is geschat met behulp van
de pre-schattingen van het oppervlak reflectie. Aannames met betrekking tot
de onzekerheid in het terugvinden en het instrument fouten zijn minder van
invloed dan die op basis van de op-sensor-straling. Gebruik van gesimuleerde
gegevens van HyMap-instrumenten en echte gegevens van
Apex-instrumenten resulteerde in een iteratieve pixelwise schatting van
AOD bij reflectie schattingen. Ruis van verschillend niveau is toegevoegd
aan de synthetische gegevens om echte beeldvormingsomstandigheden te
simuleren. Resultaten tonen aan dat de voorgestelde methode 6 tot 8
iteraties vereist. Het past dus binnen bestaande PAFs waar het aantal
iteraties een belangrijke aandachtspunt vormt. Verder is de methode vrij van
aannames voor de schattingsmethoden die gebaseerd zijn op-sensor-straling.
Tenslotte is de methode eenvoudig te implementeren, het vermindert de
verwerkingstijd in PAFs en kan worden uitgebreid in de richting van
AC-parameters.
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1Introduction

1.1 General Introduction

Advanced hyperspectral instruments such as the Airborne Prism EXperiment
(APEX) [1] are able to cover the wavelength region from 0.4 to 2.5 µm
using more than 300 spectral channels at a spectral resolution of 4–10 nm
(depending upon the spectral region). The wealth of spectral information
available from such advanced hyperspectral imaging instruments has opened
new perspectives in many applications and research domains, resulting in
the development of several analytical tools that aid decision making. These
apply to developing policies related to various applications such as social and
economic, agriculture, and ecological activities. For instance, various methods
and techniques have been developed for urban mapping and vegetation stress
monitoring, envisaged under the large umbrella of on going Environmental
Mapping and Analysis Program (EnMAP), a German hyperspectral satellite
mission that aims at monitoring and characterising the Earth's environment
on a global scale [2].

At the same time, a dedicated processing facility or operational chain is
required to transform the wealth of spectral information to some meaningful
products such as reflectance products, NDVI maps, and maps depicting an
atmospheric condition parameter, such as aerosol optical depth.

An operational processing chain consists of a multitude of methods and models.
An underlying assumption governing the operational chain is often that
processing the raw data, i.e. sensor calibration to geometric and atmospheric
correction, has successfully been corrected for all the anomalies present in
the raw datacube. Each pre-processed pixel vector of a reflectance datacube
thus comprises only the response of an underlying surface. From the lens of
uncertainty the pixelwise true values of an estimate are unavailable because
of limited cognition and the limited granularity of the surface reflectance.
Uncertainty as defined by ISO guides to the expression of uncertainty [3, 4]
doubts the validity of measurements. It is an inherent property of any
estimation and cannot be eliminated completely. The ISO definition is abstract
and it has been elaborated in Chapter 2, to be used in this research. Further,
a key principle of uncertainty is that it propagates. For instance, during
atmospheric correction (AC), uncertainty from the AC parameters propagates
to a reflectance product and from there to an application using reflectance as
input. Quantifying the uncertainty offers confidence bounds for data analysis
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and decision making, information that a user for example would rely on to
analyse the data.
The missing uncertainty information in hyperspectral remote sensing products
is a major scientific gap and well recognised by many international initiatives.
In Europe, as identified during the Seventh Framework Program (FP7),
Hyperspectral Remote Sensing in Europe [5], the lack of quality information
associated with hyperspectral imagery hampers the use of hyperspectral data
in Europe. The Committee on Earth Observation Satellites (CEOS) and the
Quality Assessment Framework for Earth Observation (QA4EO) state that
“Quality Indicators (QIs) should be attributed to data and, in particular, to
delivered information products, at each stage of the data processing chain
from collection and processing to delivery. A QI should provide sufficient
information to allow all users to readily evaluate a product's suitability for
their particular application, i.e. its fitness for purpose” [6].
Further, acknowledging and addressing the uncertainty is both useful to
users and to the operational processing facilities. Image processing modules
can be improved using knowledge about the sources of uncertainty. For
example, in atmospheric correction, knowing the sources of uncertainty and
their contribution, methods can be improved to obtain products of a higher
quality.

1.2 Problem Statement

In the presence of the Earth’s atmosphere the apparent reflectance differs from
the target reflectance. This is primarily caused by the complex interaction
of the surface reflected radiation with the atmospheric constituents while
propagating along the path from the target surface to the sensor and by
atmospheric scattered radiance path radiance, entering the Instantaneous
Field Of View (IFOV) of the sensor. The interaction generates two main
atmospheric effects: absorption by atmospheric gases, in particular water
vapour and ozone, aerosols in the visible and near infrared spectral range
and scattering by aerosols and molecules.
In radiative transfer based AC, used in this research, target surface
reflectance is estimated assuming a plane parallel geometry of the
atmosphere, whereas the viewing and illumination geometry and total
optical depth of the atmosphere are known. For a reliable estimate of
reflectance, the concentration of the atmospheric condition parameters,
scatterers and absorbers, should be available at the time of imaging. Both
absorbers, such as water vapour and scatterer i.e. aerosols and molecules,
are highly varying in space and time. Thus, they are often estimated directly
from satellite or airborne (remote) observations. For an area observed in
several flight lines, multiple datacubes from each flight line are available
because each flight observes the area with different illumination and viewing
geometry. Applying an image based method on the observed datacubes
results into multiple realisations of a parameter. Further, additional
processing to mitigate say noise effect by averaging the data, say over 10× 10
pixels, requires a significantly larger data volume for analysis. In addition,
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the uncertainty induced by such processing is often ignored or impossible to
model. Further, most estimation methods rely upon surface characteristics.
For instance, the MODIS science team [7] has developed the dense dark
vegetation (DDV) method to estimate AOD that is further developed in [8].
The suitability of such methods is limited to pixels with dense vegetation.
For scenes with DDV pixels that are clustered at a few locations, pixelwise
estimation of parameter is challenging. These limitations, reasonable as they
are, cause uncertainty in the estimation of the parameters using image based
methods, which likely propagates to reflectance estimates.
Acknowledging the uncertainty is a first step. The next basic question is how
to quantify the propagation of uncertainty in an operational chain. A common
practise is to quantify the propagation of uncertainty with a set of relevant
parameters, as can be seen in the works of [9–18] that successfully used an
uncertainty analysis. [11] showed the effect of the azimuthal look up table
assumptions on the pre-processing of images, [12] showed the effect of sensor
noise, aerosol and other pre-processing steps contributing to the uncertainty.
[19] investigated how DEM uncertainty propagates to the geometrically
corrected product and [16] focused on incorporating uncertainty in a decision
tree. Finally, [13] focused on handling uncertainties in image mining for
remote sensing studies.
An operational chain which deals with multitude of applications, requires a
framework as a support structure providing a basis for implementation of
uncertainty quantification methods, allowing interactions of the involved
parameters, and help in analysing and presenting the propagation of
uncertainty. In addition, an operational chain can not readily adapt to the
pace with which new methods or models emerge. It is because the
dependency structure of various applications on existing methods or models
may be demolished as new methods or models do not necessarily developed
as a replacement of the existing methods or models.
The Guide to the expression of Uncertainty in Measurement (GUM) [4], is a
key document describing a set of frameworks to express and quantify the
propagation of uncertainty. The frameworks described there, however, are
abstract and provide a broad view on acknowledging and quantifying the
uncertainty. For an operational chain, a detailed framework concerned with
remote sensing and its applications are required. For instance, it should
express how different surface types, categorised as dark and bright surfaces,
affect the propagation of uncertainty. [18] provides a Data Uncertainty
Engine (DUE), which gives insight into a requirement of having a framework
for uncertainty assessment. Currently spatial and temporal patterns of
uncertainty (autocorrelation), as well as cross correlations between related
inputs, can be incorporated into an uncertainty analysis. Alongside expert
judgement, sample data may be used to help estimate uncertainties, and to
reduce the uncertainty of the simulated output by ensuring that each
realisation reproduces the sample data. The DUE serves as an external
support where a limited uncertainty assessment can be performed within a
Processing and Archiving Facilities (PAF). For an operational chain,
however, a framework integrated with an operational chain is required. The
integration ensures that the framework is scalable to incorporate various
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scene scenarios, noise effects, and sources of uncertainty, whereas it allows
optimisation of parameters under uncertainty.

The focus of this thesis was to develop a framework facilitating the
quantification of uncertainty as an integral part of a PAF. The main
objective was to develop a methodology for uncertainty propagation in a
layered processing system. This should enable the assessment of the
uncertainty from an application point of view.

1.3 Scope of this work: the opted operational chain
and the parameters

This research is performed using the processing and archiving facility of the
Flemish Institute for the Technological Research (VITO) i.e. Central Data
Processing Center (CDPC) [20]. The airborne data processing facility of the
CDPC estimates hemispherical directional reflectance factor (HDRF) product.
The HDRF product is a suitable option as the IFOV of airborne sensors
is usually very small, for instance, 0.129○ for the Hyperspectral Mapper
(HyMap) airborne hyperspectral scanner [21].

Within the CDPC, the MODerate resolution atmospheric TRANsmission
version 4.1 (MODTRAN 4) [22] radiative transfer code is used to determine
the sources of radiations and the MODTRAN 4 interrogation technique is
used for applying the atmospheric correction. In radiative transfer modelling,
the surface reflectance can be estimated assuming a plane parallel geometry
of the atmosphere, whereas the viewing and illumination geometry and the
total optical depth of the atmosphere are known. For a reliable estimate of
reflectance, the concentration of the atmospheric scatterers and absorbers
should be available at the time of imaging.

The viewing and illumination geometry is an outcome of the orthorectification
process. In the CDPC, for the estimation of the atmospheric scatterers and
absorbers, key parameters are the visibility and amount of column water
vapour. To estimate these parameters, estimation of visibility and column
water vapour were integrated [8, 23].

Hyperspectral datacubes are geometrically corrected using accurate and
precise Differential Global Positioning System (DGPS)/Inertial
Measurement Unit (IMU) measurements. With the current camera systems,
and the current quality of Digital Elevation Model (DEM) products, the
uncertainty introduced by the geometric correction is limited and has no
severe impact on further processing for flat terrain [19].

The impact of the uncertainty of atmospheric condition parameters on the
reflectance product is not well known. This concerns especially uncertainty
related to the adjacency effect, amount of water vapour, and aerosol optical
depth. We quantify the propagation of uncertainty that originates from
these three atmospheric condition parameters to the reflectance product via
atmospheric correction modelling. Further, to demonstrate the propagation
of uncertainty from the reflectance product to application products, we
used unmixing as an application where the focus is on retrieving fractional
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abundances of materials present in each pixel. As unmixing requires a high
quality of spectral information, this application is well suited to study the
impact of uncertainty in the three atmospheric condition parameters.
When using atmospheric correction modelling, we generally have hundreds
of atmospheric condition parameters representing the imaging conditions.
We have selected three parameters: column water vapour, aerosol optical
depth, and adjacency range. The goal was to develop a generic framework
that quantifies the propagation of uncertainty in an operational processing
chain. To develop such a framework, this thesis focused on different types of
parameters instead of having multiple parameters of the same type.
A basic hypothesis is that an analysis with, say, column water vapour renders
an insight to deal other atmospheric absorption parameters. For instance,
an absorption parameter distorts a spectrum at absorption features where
strength of the absorption feature, a function of wavelength, is important. To
quantify the propagation of uncertainty requires a probability distribution for
the parameter. Because of wavelength wise variation in the strength of the
absorption feature some strong absorption features are used to obtain realistic
probabilistic information. For simplicity, an absorption feature with a low
number of channels is better than a channel with a large number of channels.
Such information, which can be extracted by analysing one absorption type
parameter, is useful to build a framework that quantifies the propagation of
uncertainty from an absorption parameter to reflectance. For instance, the
method which can quantify uncertainty due to column water vapour is also
applicable for ozone. For an airborne sensor, however, not all trace gases are
important.
Uncertainty analysis informs users about the quality of the products. Two
ways of uncertainty propagation are distinguished: Taylor Series (TS) and
Monte Carlo simulations. Radiative transfer based AC, includes factors like
the internal sources of variation and relations between parameters that are
too complex to fully explore. Thus, TS simulations are unsuitable. Monte
Carlo simulations treat a model as black box, ans is thus better suited to
quantify uncertainty propagation for radiative transfer based AC. Further,
Monte Carlo simulations allow an explicit probability distribution to all input
quantities based upon information concerning these quantities. In this way
the impact of larger variations of AC parameters can be studied.

1.4 Research Objectives

The main objective of the thesis was to develop a methodology for uncertainty
propagation originating from atmospheric condition parameters to reflectance
and unmixing products in a layered processing system.
To achieve the main objective the thesis is divided into four sub-objectives
as below:

1. To quantify the importance of the absorption effect due to water vapour
concentration and the importance of the scattering effect due to aerosols
in terms of aerosol optical thickness in estimating reflectance via the
atmospheric correction modelling (AC).
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2. To provide a qualitative and quantitative analysis of uncertainty
propagation from values of the AC parameters to the fractional
abundances derived from unmixing.

3. To estimate and calibrate column water vapour under uncertainty.

4. To estimate aerosol optical depth under uncertainty.

This study was performed using the Central Data Processing Center
(CDPC) at VITO and thus to assess the propagation of uncertainty under
real operational conditions.

1.5 Thesis Structure

The dissertation comprises seven chapters including four technical chapters,
which have been published or have been submitted to peer reviewed ISI
journals. Chapter 1 gives an introduction and the scope of the dissertation.
It provides the relevance of the research, the problem statement, research
objectives, and thesis structure.
Chapter 2 presents a theoretical background of this research. Several
overlapping components are included in this chapter. In addition, datasets
used in this research are presented in this research.
Chapter 3 presents a sensitivity analysis to quantify the importance of the
absorption effect due to water vapour concentration and the importance of
the scattering effect due to aerosols in terms of aerosol optical thickness in
estimating reflectance via Atmospheric Correction (AC).
Chapter 4 illustrates the propagation of uncertainty from column water
vapour (CWV) and aerosol optical depth (AOD) towards abundance maps
obtained by means of spectral unmixing. Both Fully Constrained Least
Squares (FCLS) and FCLS with Total Variation (FCLS-TV) are applied. We
use five simulated datasets contaminated by various noise levels.
Chapter 5 presents a method to estimate CWV iteratively from target surface
reflectances. The method is free from assumptions for at-sensor radiance based
CWV estimation methods. We consider two cases: (a) CWV is incorrectly
estimated in a processing chain; (b) CWV is not estimated in a processing
chain. To solve (a) we use the incorrect estimations as initial values to the
proposed method during calibration. To solve (b), CWV is estimated without
initial information. Next, we combined the two scenarios, resulting in a
generic method to calibrate and estimate CWV.
Chapter 6 explores the use of pre-estimates of surface reflectance where
assumptions pertaining to surface, sensor noise, and instrument
characterisation are less influential than for methods based upon at-sensor
radiance. Using simulated and real data, we present an iterative pixelwise
estimation of AOD from estimates of reflectance.
Chapter 7 synthesises the results produced during this research, a discussion
on their specific relevance to the research problem. It also links the main
conclusion of the research and its relevance to scientific knowledge. Finally,
an outlook to new research topics is provided.
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2Theoretical background and
datasets

This chapter introduces a number of key terms, their definitions, and their
mathematical relations, which will be referred to in most of the subsequent
chapters. Section 2.1 defines and describes the term uncertainty for the three
atmospheric condition parameters. It is followed by a section on the framework
i.e. Section 2.2 as the backbone of many methodological choices in this thesis.
Section 2.3 describes basic atmospheric effect modelling and presents some
equations for the transfer of the radiation through the Earth’s atmosphere. A
relationship between aerosol optical depth and visibility is explained in Section
2.4. This relationship is essential when setting the atmospheric scattering
conditions due to aerosols in the radiative transfer code as used in this thesis.
In Section 2.5 various types of datasets are described that have different
spatial configurations and spectral characteristics of the underlying surface.

2.1 Uncertainty

The aim of this section is to present the definition of uncertainty for the three
atmospheric condition parameters. In the literature, the term uncertainty
is defined in a number of ways for various applications [3, 6, 9, 14–19,24–28].
The definition of uncertainty adopted in this research is from the guide to
the expression of uncertainty [3]. According to this guide, uncertainty means
doubt, and thus in its broadest sense uncertainty of measurement means
doubt about the validity of measurement.

2.1.1 Random error, bias, and precision

All measurements have measurement errors. An error is defined as the
difference between the true value of a physical quantity and its measurement.
Thus, if one has the true value, an error can be measured using individual
measurement without requiring a statistical or probability model. An error
is a quantity that has a particular sign and magnitude and can be removed
by correction. If the true value is not known, then an error has an unknown
sign and magnitude. For the unknown error, a data analyst may wish to
determine the range defining the confidence bounds within which the true
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value of a quantity falls. An analysis of unknown errors is broadly
characterised as uncertainty analysis. It defines a range within which the
actual but unknown value of the quantity lies [26].
A measurement error has two components: a systematic error and a random
error. The systematic error or bias is the constant error i.e. for repeated
measurement, each measurement has the same bias. Unlike error, bias is a
statistical expectation of over- or under-estimation of the true value based
upon a statistical model and is often estimated by the mean error. Random
error or noise, is seen in repeated measurements that have variation due to
various sources [27].
A key element in the quality of the data is precision, which is related to
the random error and is determined using a measure of the spread of errors
around the mean error, for example, the standard deviation of the error [29].
A measurement is considered as accurate when it is precise and there is no
bias.
The uncertainty of a physical quantity implies that the true value of the
quantity is not known and instead it lies within a confidence bounds. This
definition comprises the uncertainty due to the random error. It may be the
case that the confidence interval does not contain the true value. This occurs
if the bias is larger than the width of the confidence interval. The bias cannot
be determined unless the measurements are compared with the true value
of a quantity. For atmospheric correction, the true values of the involved
physical quantities are often unknown for individual pixels, even if a highly
accurate device is used to measure a quantity on ground. It is because ground
measurements are limited to a few pixels of an image whereas for pixelwise
measurement of the physical quantity, numerous ground measurements are
required. Alternatively, image based methods can be used. For image based
methods also the granularity of the quantity causes uncertainty. This applies
for instance, to the amount of water vapour measured over a scene which
is observed by two different satellites. The sensors altitude, the spatial and
spectral resolution of the sensors, and the viewing and illumination geometry
can cause variation in the measurement of amount of water vapour over
the area. It is impossible to determine which satellite measurement of water
vapour concentration should be considered as true measure and alternative
ways have to be chosen as is done in this thesis.

2.1.2 Sources of uncertainty

The source of uncertainty relevant in this thesis originates mainly from column
water vapour, aerosol optical depth, and adjacency range parameters. Those
are among hundreds of parameters used to define the state of atmosphere
at the time of imaging. It is not feasible to measure column water vapour
concentration and aerosol optical depth values for each pixel coinciding with
image acquisition. As an alternative, image based methods are used. The
adjacency range parameter determining the background contribution will
be based upon the atmospheric scattering and on the semi variogram. An
estimation of each parameter is based upon either the at-sensor radiance
or the estimates of reflectance. As a source of uncertainty, processing noise,
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random noise, and illumination and viewing geometry are identified.
For an area observed from several flight lines, multiple datacubes from each
flight line are obtained because each flight observes the area with different
illumination and viewing geometry. Applying an image based method on
the observed datacubes results in multiple realizations of an atmospheric
condition parameter, say aerosol optical depth. Multiple realisations of AOD
result in multiple estimates of reflectance via atmospheric correction. The
question is which reflectance estimate is closest to the true value and should
be used as input to an application.
This example can be extended to reflectance estimates where other
atmospheric condition parameters, such as column water vapour, are
estimated using an image based method resulting in multiple realisations. In
this context, the uncertainty of a parameter at each pixel is caused by a
dispersion in the parameter’s value due to different viewing and illumination
geometry. This measurement is further influenced by sensor noise and
processing noise.
Structure uncertainty considers the question, what atmospheric correction
structure should be used. This is another important source of uncertainty. The
parameter uncertainty and structure uncertainty can be grouped under model
uncertainty. In this thesis, we use Monte Carlo Simulations to quantify the
propagation of uncertainty, where uncertainty arising from model structure
is not specifically analysed. Parameter uncertainty and uncertainty due to
noise will be used to estimate uncertainty in reflectance.
Further, the definition of uncertainty is elaborated to incorporate two
scenarios: scene based parametrisation and pixelwise parametrisation. Scene
based parametrisation is useful to the methods that depend upon surface
characteristics to estimate a parameter value. For instance, the dense dark
vegetation (DDV) method to estimate visibility relies upon the presence of
DDV pixels in a scene. For non-DDV pixels, visibility cannot be estimated.
For a scene with a low number of DDV pixels clustered at a few locations,
pixelwise estimation of visibility is determined through an interpolation
method. Interpolation methods, however, can induce additional uncertainty,
requiring a separate analysis. In this research, for such methods, uncertainty
in a parameter is defined at the scene level. The challenge to handle scene
wise uncertainty is in dealing with the spatial variation of a parameter. The
spatial variation in a parameter is attributed to two components: (a) the
natural spatial variation due to the physical processes and (b) the inherent
noise. To handle the natural spatial variability, a sub scene covering a small
area of the full scene is considered. From our experience working with the
real images in the CDPC, we found that the spatial variability of a
parameter within a sub scene of size 75 × 75 pixels or 100 × 100 pixels with
spatial resolution of 4 m is lower than the uncertainty caused by the noise
and viewing and illumination geometry. Thus, the images considered in this
research are of those sizes.
For pixelwise parametrisation, the spatial variability of a parameter is not
considered as relevant. The spatial variability becomes relevant for pixels
when interpolation is required to estimate a parameter’s value at other
pixels. To handle the spatial variability for such scenarios, like scene based
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parametrisation, a small sub scene is used. In addition, an interpolation
method is developed that is based upon the adjacency range parameter.
Because uncertainty for the adjacency range parameter is analysed here,
uncertainty due to the developed interpolation method is tractable.
Scenario based approaches to define uncertainty ensure that the methodologies
to quantify the propagation of uncertainty are scalable and inclusive. Under
such scenarios a large number of methods employed in parameters estimation
can be included.

2.1.3 The importance of uncertainty

In uncertainty propagation, within a larger framework of PAFs, we work
with models and methods used for correction and calibration, parameter(s)
estimation, and for various applications.
By their intrinsic nature, the outcomes of these models and methods are
uncertain. An uncertainty analysis of outcomes offers confidence bounds
for data analysis and decision making, information that a researcher for
example would rely on to use the data. It is then often necessary to know if a
model or a method is uncertain as concerns its output. Such questions are of
fundamental concern in this research and have been addressed in this thesis.
Further, the structure of models and methods is often considered as certain
i.e. we generally have a specific estimate of parameters resulting in a specific
outcome. The net implication is that the models and methods are operating
in different settings and often do not acknowledge uncertainty. For this reason
it is interesting to see how close models and methods are to acknowledge
uncertainty. In view of this, the scope of the research is to maintain the
existing models and methods. It is more important to develop a practical
methodology to reason about uncertainty in existing models and methods
within PAFs. In addition, the thesis develops a methodology to transform
the existing methods to acknowledge uncertainty.

2.2 The importance of framework

Remote sensing products generated using methods and models within a PAF
are rarely certain. This causes propagation of uncertainty within a layered
processing chain where an outcome of methods and models from one level
are used as input to methods and models at another level. For instance, the
outcome of atmospheric correction, e.g. a reflectance product is used in
unmixing algorithms for extracting materials present in a scene. An
acknowledgement and quantification of uncertainty is important in such
layered processing of data for measuring the quality of decisions that are
informed by data. It is also important for establishing the causes of
uncertainty in PAF and for directing resources towards improving data
quality. In recent years, various approaches have emerged to quantify the
propagation of uncertainty. From the lens of PAF, applying these approaches
implies quantifying the propagation of uncertainty within a specific level of a
PAF. For a PAF, it is important to quantify the propagation of uncertainty
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Figure 2.1: A generic form of the developed framework.

originating at a physical quantity to methods and models at various levels
and to the final product. For instance, quantifying the propagation of
uncertainty from the amount of column water vapour to reflectance product
to abundance map of materials. This involves methods, models, and physical
quantities of different types. Quantifying the propagation of uncertainty for
PAF is, therefore, challenging.

These scientific gaps has motivated us to develop a framework that works
as a support structure providing a basis for implementation of uncertainty
quantification methods, allowing interactions of the involved parameters,
and analysing and presenting the propagation of uncertainty in a PAF. The
framework can be applied at a range of different levels of processing from
correction and calibration of images to application levels.

Figure 2.1 illustrates a generic framework for estimating the propagation of
uncertainty from atmospheric condition parameters to reflectance products
and further, to application maps. The boxes in green indicate the various
modules developed in the thesis. For a Monte Carlo based assessment of
uncertainty, the number of runs, the probability distribution of the parameters,
and sampling methods are crucial. Further, the relationships between the
three atmospheric condition parameters are shown as dotted lines. The
modules related to these techniques are discussed in Chapter 3.

There are various methods to represent the propagation of uncertainty at
reflectance level and at abundance maps level. These methods are discussed
in Chapter 4. The framework has a module to quantify the sensitivity of each
parameter to the reflectance product. This module aids in prioritising the
relative contribution of the parameters to the reflectance estimates. Further,
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the module describing estimation and calibration of the parameters values
under uncertainty is discussed in the Chapters 5 and 6.
Varying spectral characteristics and spatial configuration of datasets have
been used to perform different types of experiments in the thesis. The links
between the characteristic of data with the parameters and the application
are shown in Figure 2.1. Details about these datasets are given in Section 2.5.
Further, Figure 2.1 shows that of particular interest in this framework are
the three atmospheric condition parameters, the reflectance product, and the
abundance maps. This specific framework is a generic framework that provides
a general and integrated view to quantify the propagation of uncertainty
involving similar parameters and applications. For instance, the method
developed to quantify the propagation of uncertainty from column water
vapour to abundance map is also applicable for other absorption gases such
as ozone gas.

2.3 Basic atmospheric effect modelling

The surface reflects a fraction ρt of the total irradiance at the surface Eg.
This fraction depends upon the type of surface, the sun zenith and azimuth
angle θs and ψs respectively, the viewing zenith and azimuth angle θv and
ψv respectively and wavelength λ. On the path of the beam to the sensor
other radiation components are added to the radiance reflected by the surface
(Lt(λ)) due to atmospheric scattering. We distinguish four contributions to
the at-sensor radiance (Lrs,t(λ)):

Lrs,t(λ) = Lt(λ) +Lpa(λ) +Lpb(λ) +Lb(λ). (2.1)

Lt(λ) contains the target surface information, Lpa(λ) and Lpb(λ) are path
radiance and background path radiance, respectively, that enter the IFOV
of the sensor due to scattering and Lb(λ) is the background radiance, or
adjacency effect, being the average radiance of the surrounding surface.
For a target surface with reflectance ρt(λ) and background reflectance ρbck(λ),
the path radiance, the background path radiance, background radiance, and
target radiance are:

Lpa(λ) =
1

π
R(θv, θs, ψv − ψs) cos(θs)F (2.2)

Lpb(λ) =
1

π
ρbck(λ)T +diff(τ, θv, λ)Eg(λ), (2.3)

Lb(λ) =
1

π
ρbck(λ)T +dir(τ, θv, λ)Eg(λ), (2.4)

Lt(λ) =
1

π
ρt(λ)T +dir(τ, θv, λ)Eg(λ), (2.5)
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where function R(θv, θs, ψv − ψs) describing the reflection of light by the
atmosphere, T +diff and T +dir expresses upward diffuse and direct transmittances
respectively, and F is the extraterrestrial solar irradiance [30]. Let the residual
terms in (2.1) be denoted as:

Lrs,b(λ) = Lpa(λ) +Lpb(λ) +Lb(λ). (2.6)

Then the background reflectance can be retrieved as

ρbck(λ) =
Lrs,b(λ) −Lpa(λ)

cos(θs) T
+

tot(τ, θv, λ) T
−

tot(θs, λ) F

π
+ S[Lrs,b(λ) −Lpa(λ)]

(2.7)

Here S is the spherical albedo for illumination from below of the atmosphere,
T +tot(τ, θv, λ) is the sum of T +diff(τ, θv, λ) and T +dir(τ, θv, λ), likewise T −tot

expresses total downward transmittance from the sun to surface. Substituting
the expression for ρbck(λ), the target reflectance equals

ρt(λ) =
Lrs,t(λ) −Lpa(λ) + [Lrs,t(λ) −Lrs,b(λ)] T+dir(τ, θv, λ)

T+
diff

(τ, θv, λ)

cos(θs) T
+

tot(τ, θv, λ) T
−

tot(θs, λ) F

π
+ S[Lrs,b(λ) −Lpa(λ)]

. (2.8)

The basic atmospheric effect model is well described in [30–34]. We use
MODerate resolution atmospheric TRANsmission version 4.1 (MODTRAN 4)
[22] to estimate the radiance components in (2.8). It represents the computing
of absorption and scattering in the terrestrial atmosphere at high spectral
resolution [35] and is treated in this thesis as a black box. It allows one to
pixelwise solve the DIScrete Ordinate Radiative Transfer (DISORT) [36] for
accurate computations of atmospheric multiple scattering. In an operational
processing chain, however, the considerable execution time to do so is a
problem. Thus, MODTRAN 4 is executed for a uniform Lambertain surface
reflectance with a spectrally flat surface albedo of App = 0, App = 0.5,
and App = 1.0, to determine the various radiance components for a given
atmospheric state and angular geometry. This is called the MODTRAN
interrogation technique that has been used in operational processing chains
to derive the same radiance component as in (2.8) [37]. MODTRAN 4 provides
four radiance components

1. the total radiance as measured by the sensor, Lrs,t(λ),
2. the total path radiance Lpath(λ) that consists of the light scattered in

the path,

3. the total ground radiance that consists of all the light reflected by the
surface and travelling directly towards the sensor, Lgnd(λ),

4. the direct ground reflectance, Ldir(λ) as a fraction of Lgnd(λ) resulting
from direct illumination of the ground surface.

The four components are then linked to various radiance components in (2.8).

2.4 The relation between AOD and visibility

In an operational processing chain, true aerosol optical depth values that
coincide with image acquisition are unavailable [38]. As an alternative, image
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2. Theoretical background and datasets

Figure 2.2: Relation between visibility and aerosol optical depth in (a)
and effect of visibility on atmospheric transmittance in (b). Standard
MODTRAN 4 mid latitude summer model with the rural aerosol model
is used while sensor altitude is approximately 3 km and column water vapour
equals 2.0 g cm−2 and other MODTRAN 4 parameters are at their default
values.

based methods measuring visibility are often used to set aerosol optical
profiles [32,39] where visibility measure in km, is the horizontal distance over
which contrast transmittance at 550 nm reduces to 2%. We specify aerosol
optical depth values and their corresponding visibility values so that it is
useful to the remote sensing communities dealing with both quantities.

In MODTRAN 4, visibility scales the aerosol content in the atmosphere,
whereas AOD specifies extinction due to aerosols at wavelength λ and is the
product of the extinction coefficient Ext(λ) and the path length. Aerosol
optical depth decreases with increasing visibility. At 550 nm the contributions
of molecular depth, ozone depth, and trace gases usually are small and
aerosol optical depth is the main contributor to the total optical depth of the
atmosphere i.e. Ext(550) is directly related to aerosol optical depth. A high
precision in aerosol optical depth can be achieved by subtracting the Rayleigh
scattering coefficient and a very small trace gas depth from a known total
optical depth. In MODTRAN 4, for λ = 550 nm and for a geographic region
at mid latitude during the summer season, visibility is related to aerosol
optical depth (Figure 2.2) as,

visibility = ln(50)
Ext(550) + 0.01159

, (2.9)

where, 0.01159 km−1 is the surface Rayleigh scattering coefficient for
λ = 550 nm. Therefore, visibility is given as a parameter for transmittance
simulations for a given illumination and viewing geometry. This leads to a
look up table of visibility against transmittance. The relation between
visibility and aerosol optical depth, jointly with the effect of visibility on
atmospheric transmittance, are illustrated in Figure 2.2.
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2.5. Datasets used

2.5 Datasets used

Hyperspectral remote sensing and its applications, deals with multitude
of scenes depicting enormous spatial configuration of materials with their
distinct and similar spectral characteristics. The spatial configurations and
the spectral characteristics of the underlying surface are very crucial for the
analysis of the propagation of radiation through the atmosphere, which is the
central idea of this Ph.D. One of the prominent characteristics of datasets
required for such analysis are datasets comprising scenes that are juxtaposing
spatially and spectrally to cover relevant cases. For instance, to analyse the
absorption and scattering of the radiation reflected from dark and bright
materials, respectively, a set of scenes comprising bright and dark materials
are required. Such scenes may exist in nature but remote observation of only
bright or dark targets in a scene through an airborne campaign is quite rare.
Thus, we generated a few datasets with physically plausible materials to
cover such important cases.
In addition, we selected some real scenes that are relevant to understand the
impact of atmospheric parameters on estimates of reflectance and unmixing
of materials with those estimates under real imaging conditions.
To generate and select a set of suitable datasets, we characterised scenes
comprising: 1) spectrally similar and distinct targets, 2) dark and bright
surfaces, 3) homogeneous and heterogeneous background, 4) structured versus
more natural (continuous) class configurations, 5) inland surfaces for the
image based estimations of column water vapour and visibility.

2.5.1 Simulated dataset: the geological scenario datasets

We generated two datasets for a geological scenario using two Spectral
Scenarios (SS): SSa with spectrally distinct endmembers in a scene; SSb
with spectrally similar endmembers in a scene. The two geological datasets
are generated using the MATLAB Hyperspectral Imagery Synthesis tools,
available online [40]. They contain two distinct sets of five endmembers,
collected from the USGS spectral library [41]. We use the following
spectrally distinct endmembers to generate the first geological dataset:
Buddingtonite, Alunite, Montmorillonite, Jarosite, and Rivadavite
(Figure 2.3). The spectrally similar endmembers, used to generate the
second geological dataset, are signatures of a single mineral, Nontronite, to
address endmember variability (Figure 2.4). All endmember spectra were
resampled to the central wavelengths of the HyMap airborne hyperspectral
sensor [42]. Each dataset contains 128 × 128 pixels on 126 spectral bands
with the spatial resolution of 2.5 m along track and 2.0 m across track.

2.5.2 Simulated dataset: the vegetation scenario datasets

We generated two datasets for a scenario containing vegetation. The first
dataset is a hyperspectral image cube of 75 × 75 with 126 spectral bands.
There are five endmembers present in the scene: leather oak, dry grass, sandy
loam, construction concrete, and asphalt. These endmembers were obtained
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2. Theoretical background and datasets

Figure 2.3: Pixelwise fractional abundances of the five (spectrally distinct)
endmembers (a)–(e) and their corresponding spectral signatures (f) generating
the first geological dataset.

Figure 2.4: Pixelwise fractional abundances of the five (spectrally similar)
Nontronite (Non.) types (a)–(e) and their corresponding spectral signatures
(f) generating the second geological dataset.

as follows: dry grass and leather oak spectra from the database of Jasper
Ridge, spectral library [43] and construction, sandy loam, and asphalt from
the database of the Johns Hopkins University Spectral Library [44]. All
endmember spectra were resampled to the central wavelengths of the HyMap
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Figure 2.5: Spectral signatures of the five materials used to generate the first
vegetation dataset.

airborne hyperspectral sensor (Figure 2.5). This vegetation dataset contains
square regions of 5 × 5 pixels, which are spectrally homogeneous, and all
pixels within a square region have the same reflectance values. Figure 2.6
depicts spatial arrangement of the homogeneous regions and ground truth
fractional abundance maps.
The second vegetation dataset is a hyperspectral image that contains 100 × 100
pixels generated using nine endmembers, namely: leather oak, sandy loam,
concrete, dry grass, lime stone, pine wood, red brick, terracotta tiles, and
tumble weeds. These endmembers were selected as follows: dry grass and
leather oak spectra were obtained from the database of Jasper Ridge, spectral
library [43] available in ENVI software [45] whereas construction, sandy loam,
and asphalt spectra were obtained from the database of the Johns Hopkins
University Spectral Library [44]. All endmember spectra were resampled to the
central wavelengths of the HyMap airborne hyperspectral sensor [42]. Hence,
the data contain 126 spectral bands (Figure 2.7a). The two vegetation
datasets obey the linear mixture model, which satisfies both the sum to
one and the non-negativity constrains and are piecewise smooth, i.e., they
are smooth with sharp transitions, as shown in Figure 2.7b. The resulting
observations exhibit spatial homogeneity as described in Figure 2.8, which
shows the true abundances of the endmembers.

2.5.3 Variability of surface albedo (dark and bright surfaces)

The surface albedo influences the quality of the spectra retrieved via
atmospheric correction (AC), independently from the effects of the
uncertainty in the AC parameters. Aerosol optical depth is particularly
important in this respect, as it influences the amplitude of the spectra in a
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Figure 2.6: Spatial arrangement of the homogenous regions (a) and ground
truth fractional abundance maps (b)–(f). The square regions at the top
are pure and correspond to the five endmembers. The other square regions
are mixed with the number of endmembers ranging between two and five.
The remaining pixels (image background) contain a mixture of the five
endmembers in which the abundance fractions were randomly fixed to 0.5130,
0.1476, 0.1158, 0.1242 and 0.0994, respectively.

large range of wavelengths. This case study analyses the effect of surface
albedo on reflectance and abundance estimates with two datacubes
comprising dark and bright targets separately. The bright target datacube is
generated using spectra of five minerals: Albite, Ammonio Illite, Ammonio
Alunite, Muscovite, and Topaz. The dark surface is generated mainly using
man made materials: Black tar paper, Cinders, Construction asphalt,
Reddish asphalt, and Bornoite (mineral). Each dataset contains 128 × 128
pixels with 126 spectral bands and the spatial resolution of 2.5 m along
track and 2.0 m across track. The spectra of these materials are presented in
Figure 2.9.

2.5.4 Addition of noise to the simulated datasets

Sensor noise and processing noise are major sources of distortion. Sensor
noise refers to the random electronic noise like dark current, processing noise
occurs due to the final pre-processing steps on the reflectance datacube,
e.g. spectral smoothing. We added the two types of noise to the datasets at
two stages: sensor noise to the radiance cube and processing noise to the
estimated reflectance cube. In order to observe the effect of the different
noise levels we considered three levels of the correlated processing noise, with
signal to noise ratios (SNR): 30, 40, and 50 dB, respectively. All correlated
noise levels were generated from independent, normally distributed noise by
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2.5. Datasets used

Figure 2.7: Spectral profiles of the endmembers (a) used to generate the
second vegetation dataset (b).

Figure 2.8: True fractional abundances of the endmembers in the second
vegetation dataset.
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Figure 2.9: Spectra of the materials used to generate the bright surface in (a)
and spectra of the materials used to generate the dark target surface in (b).

Figure 2.10: Band at (2.2 µm) of the pixelwise reflectance estimate with
30 dB (a), 40 dB (b), 50 dB (c), and 60 dB (d) noise levels. The noise levels
strongly distort the reflectance image.

low pass filtering with a normalised cut off frequency of 8⋅π
B

for each SNR,
where B is the number of channels.

Figure 2.10 shows four estimates of band 100 (2.2 µm) of the reflectance
cube when random (white) sensor noise with SNR: 30, 40, 50, and 60 dB is
added to the at-sensor radiance. True AC parameters were employed and no
correlated noise was added to the reflectance cube. From visual interpretation
we conclude that sensor noise with SNR = 6 dB is a realistic choice as the
other noise levels severely distort the images when other errors are missing.
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Figure 2.11: HyMap sensor image of the Millingerwaard area in the
Netherlands acquired in 2004. Three target surfaces: water (dark target),
bare soil (bright target), and forest (dark in visible and bring in the NIR
spectral region). The mean value, from the 16 pixels (4 × 4 window), was
used for each target surface.

2.5.5 Real Data

We used three real datasets in our experiments. Two datasets are used as
input to AC to illustrate propagation of uncertainty. As first dataset, we
used at-sensor radiance obtained from the airborne hyperspectral HyMap
sensor data of the Millingerwaard area in The Netherlands acquired in 2004,
shown in Figure 2.11. The spatial resolution of the image is 2.5 m along
track and 2.0 m across track. The 128 spectral bands are divided into four
wavelength ranges with each 32 bands (0.45–0.89 µm, 0.89–1.35 µm, 1.4–
1.8 µm and 1.95–2.48 µm). The second dataset is a scene of the Airborne
Prism EXperiment (APEX) sensor [1] datacube (2014) over the Liereman
area (within 51.33816○ N, 4.984975○ E and 51.30653○ N, 5.013669○ E ) in
Belgium, shown in Figure 2.12(a). To approximate the size of the simulated
image the real scene is cropped into a sub scene shown in Figure 2.12(b),
which is exactly the size of the simulated image (100 × 100).

The image of the Liereman area comprises 302 spectral bands between
0.4 and 2.5 µm with a spectral resolution between 4–10 nm depending upon
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2. Theoretical background and datasets

Figure 2.12: True color representation of the real APEX RGB image (a) and
the sub scene used in the experiment (b) for the Liereman area, Belgium.
The full scene covers 7.5 km2 of area.

the spectral region. Prior to the analysis, bands contaminated by water
absorption and bands with low SNR were removed, resulting in 227 spectral
bands.
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3Sensitivity of reflectance to water
vapour and aerosol optical
thickness

Abstract

The atmospheric condition parameters used in the radiative transfer
based atmospheric correction (AC) are often uncertain. This
uncertainty propagates to the estimated reflectance. The reflectance,
is, however, not equally sensitive to all the parameters. A Sensitivity
Analysis (SA) helps in prioritising the parameters. The objective of
this study was to perform a SA of reflectance to water vapour
concentration (CWV) and Aerosol Optical Thickness (aerosol optical
depth) (set by visibility). SA was performed using the Fourier
Amplitude Sensitivity Test (FAST) method, which computes
sensitivity indices (SI) of these parameters. Besides variation in the
two parameters, we also studied the effect of surface albedo on the SI
by quantifying SI for three target surfaces (in the spectral range
0.44–0.96 µm: a dark target (water), a bright target (bare soil) and a
target having low albedo in the visible and high albedo in near
infrared range (forest).

For aerosol optical depth, high (≈ 0.9) SI values were observed at
the non-water absorption wavelengths. For CWV, high SI values were
observed at wavelengths where strong absorption features are located
and when the surface albedo was high. For the dark target, the effect of
aerosol optical depth was prominent throughout the spectral range. We
found that the sensitivity of reflectance to CWV and aerosol optical
depth is a function of wavelength, strength of the absorption features,
and surface albedo. We conclude that aerosol optical depth is a more
important parameter for dark targets than CWV even at the principal
absorption feature. For bright targets the importance of CWV and
aerosol optical depth depends upon the strength of the absorption
feature.

This chapter is based upon the following paper
N. Bhatia, V. A. Tolpekin, I. Reusen, S. Sterckx, J. Biesemans and A. Stein, “Sensitivity of
Reflectance to Water Vapour and Aerosol Optical Thickness,”in IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 6, pp. 3199-3208,
June 2015.
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3.1 Introduction

Airborne hyperspectral imaging sensors record radiance, called at-sensor
radiance, in narrow contiguous spectral bands as a hypercube. In the absence
of the Earth’s atmosphere, the at-sensor radiance allows to perform spectral
analysis of a target surface in the Instantaneous Field Of View (IFOV). In
the presence of the Earth’s atmosphere, however, the spectral analysis is
challenging because of scattering and absorption of radiation caused by the
atmospheric gases and aerosols. When radiation interacts with an atmospheric
particle, electric charges in the particle start oscillating, which causes the
electric charges to radiate in all directions [46]. It is this radiation which
is called scattered radiation. The scattering reduces the radiant energy of
radiation passing through the atmosphere and thus distorted surface reflected
radiation reaches to the sensor. Also, due to scattering, the diffuse solar
radiation enters into the IFOV of a sensor which is called path radiance.
Furthermore, the scattering causes radiation reflected from the background of
the target surface to enter into the IFOV of a sensor [47]. In the presence of
the atmosphere, at-sensor radiance is composed of three radiance components:
distorted surface reflected radiance, path radiance, and background radiance.
Another process that distorts the at-sensor radiance is absorption. Like
scattering, absorption is a function of wavelength. However, unlike scattering,
absorption represents a transformation of the radiation into another form of
energy [48]. The spectral ranges at which radiation is absorbed by atmospheric
constituents are known as absorption features. Light in a strong absorption
feature cannot penetrate the atmosphere, thus, can not reach to a sensor.
An atmospheric correction process is used to retrieve surface reflected
radiation from at-sensor. Our focus is on a radiative transfer based
atmospheric correction (AC). Radiative transfer based AC, first, simulates
transmission of radiation through the atmosphere. These simulations are
then used to estimate atmospheric correction parameters such as path and
background radiances. The estimated path and background radiance are
used to estimate surface reflectance from the at-sensor radiance [30]. In AC,
the transmission simulations are based on a state of the atmosphere
represented by the atmospheric condition parameters which define scattering
and absorption. Here the challenge is to know the amount and type of the
condition parameters present in the atmosphere at the time of imaging. As
these parameters are variable in space and time they can not be measured
locally. Here, uncertainty refers to dispersion in the values of the condition
parameters. Uncertainty in the condition parameters propagates to the
estimated target reflectance via the AC of a processing chain (i.e. a set of
atmospheric correction processes that produce reflectance product from
at-sensor radiance).
This study focuses on two atmospheric condition parameters and measures
their importance in the atmospheric correction process. The two condition
parameters are: scattering due to aerosols in terms of aerosol optical thickness
(aerosol optical depth) that measures the degree to which aerosols impede
the transmission of radiation, and absorption due to water vapour. Water
vapour is an absorbing gas that effects the transmission of the radiance by
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absorbing the radiation at water absorption features. Alternatively, values
of these condition parameters are estimated by image based methods [8, 23].
These methods often use interpolation and mathematical assumptions to infer
pixel-wise values. Therefore, the two condition parameters are uncertain. The
uncertainty in aerosol optical depth and water vapour refers to the degree to
which their true value and concentration are known at the time of imaging,
respectively.
The objective of this study is to quantify the importance of the absorption
effect due to water vapour concentration (CWV) and the importance of the
scattering effect due to aerosols in terms of aerosol optical thickness (aerosol
optical depth) in estimating reflectance via the AC.
In the literature, [16] focused on incorporating uncertainty at various levels of
the decision tree for image classification. In [49], the estimation of uncertainties
in satellite derived inherent optical properties was investigated, whereas [19]
investigated the propagation of Digital Elevation Model uncertainty to the
geometrically corrected product. In [11] the effect of uncertainty propagation
from aerosol optical thickness, due to a simplification of azimuth angle, to
the surface reflectance was studied. In [50] the dependence of aerosol optical
thickness on wavelength was studied. In [51], the retrieval of aerosol optical
thickness and its sensitivity to surface albedo were studied. In [52], a sensitivity
analysis was performed using synthetic MERIS data to investigate the impact
of atmospheric state, the target elevation or the surface roughness on aerosol
optical depth, and column water vapour. To our knowledge, previous studies
did not provide quantitative information on the importance of the condition
parameters in the AC.

3.2 Methods

The importance of the two condition parameters was quantified using a
sensitivity analysis (SA). A SA provides information on the contribution
of sources of variation to dispersion in the output. A SA is used as well to
investigate the importance of parameters to a model [53]. Two types of SA are
commonly distinguished: a local and a global SA. A local SA perturbs each
parameter with respect to its baseline value. Usually, a local SA is carried out
by determining partial derivatives and evaluating them within an interval.
The interval is usually small which does not cover a range of uncertainty
in a parameter. Thus, this method partially covers parameter uncertainty.
Further, a local SA is unfeasible to implement for a processing chain because
of complexity of the processing chain, it is unfeasible to compute its partial
derivatives. On the contrary to a local SA, a global SA perturbs parameters
by exploring their probability distributions that cover a whole range of
parameter uncertainty. A global SA allows a simultaneous perturbation of the
parameters. Besides, a global SA facilitates a vast range of implementation
methods and sampling strategies, like Monte Carlo Simulation (MCS) and
latin hypercube simulation. Further, a global SA can be implemented without
knowing the structure of a model. This makes a global SA more robust and
useful for complex modelling.
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For MODTRAN 4, factors, such as the internal sources of variation, relations
between parameters are too complicated to fully explore. Therefore, we
consider MODTRAN 4 as a black box model. For such a model, a SA methods
such as a local SA or a global SA such as [54] and [55] can not be used because
these methods assume that a model structure is known. In [56], ANOVA
based SA techniques were discussed which assume no model structure, thus,
we found them the most suitable for MODTRAN 4. Two classes of ANOVA
based SA are found in the literature [53]: the Sobol method [57] and the
Fourier Amplitude Sensitivity Test (FAST) method [58]. The disadvantage of
the Sobol method is its computational inefficiency. It requires a large number
of model evaluations that is a serious concern for the complex MODTRAN 4
model. In contrast, the FAST method is computationally more efficient, it
computes the sensitivity index (SI) of parameters to a model as indicators of
the parameters importance. Thus, in this research we used the FAST method
to measure the importance of the two condition parameters.
The two condition parameters, column water vapour and aerosol optical
depth (set by visibility (in km), refer to Section 2.4), are derived in the
CDPC from image based methods [8, 23].

3.2.1 Dataset used

As an input to the atmospheric correction process we used at-sensor
radiance obtained from the airborne hyperspectral HyMap sensor data of
the Millingerwaard area in The Netherlands acquired in 2004, shown in
Figure 2.11.

3.2.2 SA Implementation

The FAST method was originally developed within the Monte Carlo
Simulation (MCS) framework. Thus, an initial step in the FAST method is
to develop a joint distribution of parameters and then sample multiple (m)
parameters values from the joint probability distribution. For the m
parameters values m outputs are generated. A Fourier analysis is applied to
a set of model output to compute the proportion of the output uncertainty
contributed by each parameter. This proportion of uncertainty is defined as
the sensitivity index (SI). In this study, the simulation of multiple
atmospheric transmittances from m samples of CWV and visibility were
used to estimate m realisations of the target reflectance
(ρt,1(λ), . . . , ρt,m(λ)). We have summarised the above process in Figure 3.1.
We are now going to explain the methodology in detail.

Step 1: Develop a joint distribution P(CWV, visibility): Here, we
studied two test cases that were based on the possibility of two types of
joint distribution for the condition parameters. The goal was to study
the effect of the joint distribution on the FAST sensitivity index. The
two cases are as follows:

� Case 1: Uniform joint distribution. We obtained ranges of CWV
and visibility derived from the image based methods. Using the
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Figure 3.1: The process of quantifying the sensitivity indices is depicted in
the block diagram.

ranges of the condition parameters we developed a joint uniform
distribution.

� Case 2: The probability densities of CWV and visibility, and
their statistical relation were used to derive their joint distribution.
We developed marginal distribution of each parameter. Besides
the marginal distributions, we also studied the statistical relation
between the condition parameters. Aerosols and water vapour
interact in the atmosphere. Many studies have explained the effect
of water vapour on the size distribution and optical characteristics
of the atmospheric aerosols [59,60]. The variation in CWV, thus,
affects aerosol optical depth. Therefore, we considered a statistical
relation between these parameters while developing their joint
distribution. For this purpose, we analysed their scatter plot,
measured the correlation and the p values.

Step 2: Sample m values of CWV and visibility from P(CWV,
visbility): For sampling, simultaneous perturbation to the condition
parameters is used. This was achieved by using the FAST search curve.
The basic idea of the FAST search curve is to transform a
n-dimensional parameters space into a 1-dimensional s space, such
that variation in s generates a search curve that traverses P(CWV,
visibility) and generates multiple CWV and visibility samples.

Here, we represent the two condition parameters as (kl) (with l = 1 for
CWV and l = 2 for visibility). For the two parameters, the equation of
the search curve can be written as

kl =
1

2
+ 1

π
arcsin(sinωls), (3.1)
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Table 3.1: Values of ΩN and dh used to calculate frequencies in the FAST
method are shown for N = 1,2,3,4. The N refers to an interference factor
that determine the number of Fourier coefficients retained in calculating
partial variance (SI) due to k1 and k2

.

N ΩN

1 0

2 3

3 1

4 5

h dh

1 4

2 8

3 6

4 10

where ωl is a frequency assigned to each parameter. The frequencies
used in the FAST search curve were obtained following [61],

⎧⎪⎪⎨⎪⎪⎩

ωl = ΩN with N = 4 for l = 1,

ωl = ωl−1 + dh with h = (n + 1) − l for l = 2.
(3.2)

We usedN = 4, as recommended by [61] and [62], which is an interference
factor that determines the number of Fourier coefficients retained in
calculating the partial variance (SI) due to k1 and k2. Thus, according
to Table 3.1, ωl = 5 for l = 1 and ωl = 9 for l = 2.

The number of samples is a critical parameter in MCS based SA
as it determines the number(m) of times a model is evaluated. The
calculation of m in the FAST method is based on the Nyquest criterion
and gives the relation between the maximum frequency assigned to
parameters and m. Here, for reference, we have included the formula
to calculate m [58],

m = (2 ⋅N ⋅ ωlmax) + 1, (3.3)

with ωlmax the maximum of ωl. For the FAST method,

ωlmax = 9, thus, m = 73.

Thus, using the FAST search curve we obtained 73 samples of the two
condition parameters, which we used to propagate the two condition
parameters to the reflectance via AC.

Step 3: Perform m evaluations of an AC for m values of CWV
and visibility to obtain ρt,1(λ), . . . , ρt,m(λ). This resulted in 73
realizations of the estimated reflectance.

To study the effect of the surface albedo and wavelength on the SI,
three target surfaces were utilised. The three targets were: 1) a low
reflectance, dark target (water), 2) a high reflectance, bright target
(bare soil), and 3) a surface with low reflectance in the visible and high
reflectance in the near infrared range (forest). The location of the pixels
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used to represent the three surfaces is depicted in the Figure 2.11. We
used the mean value of pixels in a 4 × 4 window for each of the target
surfaces.

Step 4: Quantify the sensitivity indices of ρt,1(λ), . . . , ρt,m(λ) to
variation in CWV and visibility: The multiple target reflectance
were Fourier analysed using the frequencies (ωl) assigned to kl to
calculate the Fourier coefficients. From the Fourier coefficients
sensitivity indices of kl were calculated using the method [58],

SIωl =
σωl
σ
, (3.4)

where σ is the total variance of the output indicating the dispersion
in ρt,1(λ), . . . , ρt,m(λ) due to uncertainty in both the parameters k1

and k2, σωl indicates the partial variance due to parameter kl. The
indices SIωl

are the first order sensitivity indices that correspond to
the main effect. They represent the contribution of CWV and visibility
to ρt,1(λ), . . . , ρt,m(λ).

In this section we have presented the SA methodology that is based on
the FAST method. The FAST method can compute the first order indices
(SI) that corresponds to the main effect, however, it can not compute the
total sensitivity index (TSI). The TSI is considered as a better measure of
sensitivity of a parameter than SI as it also measures the effect of parameters
interaction [53]. In [62], the extended FAST (e-FAST) technique is proposed
that preserves the computational efficiency of the FAST and can quantify
the TSI. Therefore, we also performed the SA using the e-FAST method and
quantified the TSI to compare the FAST and e-FAST methods.

3.3 Results And Discussion

In this section, we present and discuss the results achieved for the two cases.

Step 1: Develop the joint distribution P(CWV,visibility): For Case
1, we obtained the ranges of the condition parameters from the image
based methods. For the HyMap image of the study area, in total, 1420
observations of visibility were obtained, however, CWV was observed at
each pixel (7.87 × 105). The ranges of the two parameters observed were
1.6–2.9 g cm−2 for CWV and 20–120 km for visibility. The sampling
region for Case 1 is the entire range of these parameters.

For Case 2, we first analysed the scatter plot and measured the
correlation coefficient and p value to investigate a relation between the
two parameters. Here we only used 1420 observations of CWV that
corresponds to pixels for which visibility was measured. Therefore, the
range of CWV shown in Figure 3.2 is different from the range used in
Case 1. The scatter plot in Figure 3.2, suggested no direct evidence for
any relations between the parameters. From the correlation test we
found a low value (−0.0184) of the correlation between the two
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parameters. From the p value test we obtained p = 0.5144. From the
scatter plot and the statistical tests we observed no relation between
the parameters. Because no statistical relation between the condition

Figure 3.2: The plot depicts three informations: scatter plot between
estimated visibility and the corresponding CWV values, histogram of CWV
and visibility, and the sampling region as indicated by a high density region.

parameters was found, we focused on marginal distributions of the
condition parameters to develop the joint distribution. For this
purpose, we first examine the histogram of the two parameters. In
Figure 3.2, the histograms of the two parameters are shown. The
histogram of CWV (Figure 3.2 (x-axis)) indicates that a normal
Gaussian distribution closely represents the marginal distribution of
CWV. The histogram of visibility (Figure 3.2 (y-axis)) suggests that
visibility is having a large number of occurrences far from the mean of
the distribution. Statistically, this indicates a long tail distribution.
Thus, we used a log-normal distribution to represent the marginal
distribution of the visibility. In Figure 3.2, the sampling region for
Case 2 is indicated by the high density region.

We now discuss the relevance of considering the two cases for this study.
Case 1 represents a situation when one does not have information
about the probability density or the statistical relation of CWV and
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visibility. In this situation, one can assume a uniform distribution
in a reasonable range. This range can be presumed on the basis of
historic data, expert’s opinion on similar areas, weather conditions etc.
Here, we obtained the range of CWV and visibility from the image
based methods. Whereas, Case 2 considers a situation in which one
has a detailed knowledge about the probability densities and statistical
properties of CWV and visibility. The knowledge about CWV and
visibility is used to develop P(CWV, visibility). The two cases provide
ample opportunity to investigate the significance of probability densities
of CWV and visibility in quantifying their importance in the AC.

Step 2: Sample m values of CWV and visibility from P(CWV,
visibility): In Figure 3.2, the sampling region for Case 2 is indicated
by the high density region. In this step, we discuss the performance of
the search curve in terms of how effectively it can sample the sampling
region of the joint distribution.

An important characteristic of the search curve is that it perturbs the
parametric space simultaneously and passes through each point in the
parametric space such that the path of the search curve corresponds to
a joint probability density of parameters [58]. This can be achieved if
the frequencies chosen are incommensurate. For implementation point
of view commensurate frequencies (integer frequencies) are used instead
of incommensurate frequencies. Due to the use of integer frequencies
two type of errors arise: 1) the search curve is not space filling, which
means it does not pass through each point in P(CWV,visibility), 2) the
interference effect—the Fourier coefficients. We, however, observed that
the reflectance was not sensitive to small variation in CWV and visibility.
The fact that the search curve is not space filling, therefore, does not
effect the SA and the density of points sampled by the search curve is
appropriate for the SA. This implies that the use of integer frequencies
does not affect the joint probability density of the parameters. The
parameter N in (3.3) is used to avoid the interference of the Fourier
coefficients.

In Figure 3.3, the scatter plot and the histogram of the sampled values
of CWV and visibility are for Case 1 and Case 2. Comparing the
range of the sampled values with the range of the sampling region of
P(CWV,visibility) indicated with high density region in Figure 3.2 we
observed that the sampling is effectively performed from the required
region of the joint probability of the two parameters. Also, comparing
the histogram of the measured CWV and visibility with the histogram
of the sampled values of these parameters, we observed that they are
similar. This shows that the FAST samples match to the two parameters
probability distribution and that the FAST search curve is an effective
sampler.

Step 3: Perform 73 evaluations of an AC for CWV and visibility
to obtain ρt,1(λ), . . . , ρt,m(λ) and

Step 4: Quantify the sensitivity indices of ρt(λ) to variation in
CWV and visibility:
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(a)

(b)

Figure 3.3: The samples obtained from the FAST search curve for the two
cases: scatter and histogram plots of FAST samples for Case 1 (a) and scatter
and histogram plots of FAST samples for Case 2 (b). From these samples, we
observed that the sampling is effectively performed from the required region
as per P(CWV, visibility). Also, comparing the histogram of the measured
CWV and visibility with the histogram of the sampled values, we observed
that they are similar.

The atmospheric correction is performed on the HyMap images for
the spectral range 0.44–0.96 µm. The HyMap bands close to the water
vapour absorption features are located at 0.58, 0.65, 0.72, 0.82, 0.94
µm. The equations given in Section 2.3 express the relation between
the atmospheric state, the correction parameters, and the estimated
reflectance. The outcome of 73 atmospheric correction simulations are
depicted in Figure 2.11 for the three surface albedo. From these results,
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we observed that the estimated reflectance at 0.94 µm showed largest
variations. In the design of our experiments sources of variation other
than CWV and aerosol optical depth were considered as constant, thus,
the variation in the reflectance at the principal absorption feature can
be attributed to column water vapour and aerosol optical depth. This
variation near the principal water absorption feature (0.94 µm) is often
termed as over and under estimation of reflectance. The over and under
estimation occur because of uncertainty in column water vapour and
aerosol optical depth. This indicates that the reflectance is sensitive
to variations in column water vapour and aerosol optical depth. These
results, however, are only a qualitative indicator of the sensitivity.

Figure 3.4: The sensitivity indices for the three target surface for the two
cases: a)–c) depicts results from Case 1 for water, forest, and bare soil targets,
respectively; d)–f) illustrate results from Case 2 for water, forest, and bare
soil targets, respectively.

We now discuss the results of the importance of the two parameters
quantified by their sensitivity index (SI) presented in Figure 3.4. The
results in Figure 3.4 (a–c) are results from Case 1. The results in
Figure 3.4 (d–f) are results from Case 2. Here, we are discussing the
two cases separately.

� Case 1: From the indices shown in Figure 3.4 (a–c) we observe
that in the spectral range 0.44–0.96 µm, aerosol optical depth
remains an important parameter, as its sensitivity indices are
high (>0.9). The aerosol optical depth indices, however, vary at
the water absorption features (0.58, 0.65, 0.72, 0.82, 0.94 µm).
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Likewise, indices of CWV were high at the absorption features.
At the weak absorption features such as at 0.58 and 0.65 µm the
aerosol optical depth indices only slightly decreased whereas the
CWV indices showed very small increase. From these results we
concluded that the influence of aerosol optical depth in the spectral
range 0.44–0.96 µm, also depends on the strength of the absorption
feature. This implies that in the non-absorbing wavelengths and
at the weak absorption features, the aerosol optical depth plays an
important role, which can be observed from high sensitivity index
values for aerosol optical depth in these wavelengths. Likewise,
for strong absorption features the importance of CWV was larger
than the scattering effect, resulting in low indices for the aerosol
optical depth.
Besides the strength of the absorption features, another important
factor that affects the sensitivity of the two parameters is the
surface albedo. From Figure 3.4(a–c), we observed that for the
low albedo target the effect of scattering was more prominent
in the entire spectral range. Even at the principal absorption
feature (0.94 µm), the sensitivity indices for aerosol optical depth
and CWV are almost equal. The difference in sensitivity indices
over bright and dark targets is primarily due to the difference in
radiation energy reflected by the bright and the dark targets. The
bright target reflects more radiation energy than the dark target.
Thus, for the bright target the majority of the at-sensor radiance
consists of photons that are not scattered. In contrast, above the
dark target most of the photons are scattered, which results in
strong sensitivity to aerosol optical depth [63]. For the bare soil
and the forest pixels which are bright (reflectance in the range of
0.4–0.7) at 0.94 µm, the CWV sensitivity indices were high and
the SI of aerosol optical depth was low. The forest pixel, has low
reflectance in the visible region (0.45–0.69), therefore, the effect
of CWV at the absorption features 0.58 and, 0.65 µm was weak
compared to the bare soil CWV sensitivity indices. The forest and
water pixels sensitivity indices are, therefore, similar in the visible
region. At bands with moderate absorption features, 0.72 and
0.82 µm, the dark target radiance is dominated by the scattering
effect and the effect of CWV is low. For the bright target, however,
at these wavelengths the scattering and absorption effects are
nearly equal. This implies that at these wavelengths for bright
target the scattering and absorption effect are both important.
From these results we conclude that the influence of aerosol optical
depth on the reflectance in the spectral range (0.44–0.96) µm, also
depends on the surface albedo.

� Case 2: Here we only discuss those results which are relevant for
the comparison between Case 1 and Case 2. From the indices shown
in Figure 3.4 (d–f) we observed that for Case 1, the sensitivity
indices of aerosol optical depth in the spectral range 0.44–0.96 µm
are high (>0.9). The aerosol optical depth indices, however, vary
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at the water absorption features (0.58, 0.65, 0.72, 0.82, 0.94 µm).
This variation, however, is lower than in Case 1. Even at the
principal absorption feature, SI indices for CWV remain lower
than aerosol optical depth SI for all the surface albedo as in Case
1. Like, Case 1, the effect of surface types is noticeable. The reason
for the difference in SI for the surface types has already been
discussed for Case 1.

In both cases, the objective was to quantify the importance of the
CWV and aerosol optical depth. We, however, observed that when
the joint distribution was built using the probability densities and
the relation between CWV and visibility (Case 2), the importance
of the parameters, measured in terms of SI, is influenced by
aerosol optical depth. The primary cause of this influence is high
variability in visibility values. To measure the variability of CWV
and visibility we used the Coefficient of Variation (CV). The CV
represents the ratio of the standard deviation to the mean. The
CV is a useful statistic to measure the relative variability for
comparing different data series. From the image based methods, in
total, 1420 observations of visibility were obtained, however, CWV
was observed at each pixel (7.87 × 105). The CV of CWV and
visibility was 4.83% and 50.07%, respectively. The CV of the two
parameters indicates that variability in visibility values is larger
than CWV. There can be two reasons for the large variability in
visibility measurements. First, compared to CWV, visibility was
observed at lower number of pixels. Second, the performance of
the visibility estimation method is influenced by the viewing and
illumination geometry, and spatial heterogeneity. This happens
because the image based method is based on dense dark vegetation
technique (DDV) and uses radiance values of pixels in red and
NIR bands to search for the dense dark vegetation pixels.

To summarise, in this section we have presented and discussed the
sensitivity of the two atmospheric condition parameters as a function of
wavelength, strength of the absorption feature, parameters uncertainty,
and surface albedo. In the Method section, we indicated that for a
comparison purpose we also quantified total sensitivity indices (TSI)
using the e-FAST method. The TSI is considered as a better estimation
of sensitivity of parameters. However, on the basis of the results obtained
from the e-FAST method, we observed that the difference between
the two methods, as measured from their respective indices, were
minor (<0.05). A possible explanation is the sensitivity of the condition
parameters is captured by the first order Fourier coefficients, thus, the
higher order terms that are calculated to quantify TSI does not carry
much information about sensitivity to the parameters. This is because
in this study only two parameters were used. For more parameters the
effect of higher order indices might be more useful. In [62], describing
the e-FAST method, the dependence of the interaction terms (higher
order) to the number of factors is mentioned. The larger the number of
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factors, the higher the likelihood of substantial higher order terms. We
have, therefore, not reported the results from the e-FAST method in
this chapter.

3.4 Conclusions

In this chapter, we have presented a methodology to quantify sensitivity of
the estimated surface reflectance to water vapour concentration (CWV) and
aerosol optical thickness (aerosol optical depth) in the atmospheric correction
process. Besides quantifying the sensitivity indices, we also focused to analyse
the effect of parameter’s uncertainty, wavelength and surface albedo on these
indices. Our approach was based on the Fourier Amplitude Sensitivity Test
(FAST) method that was implemented in a Monte Carlo Simulation (MCS)
framework. The methodology was applied to a hyperspectral image (HyMap)
of the Millingerwaard area, The Netherlands. The atmospheric correction
was performed with the Central Data Processing Center (CDPC) which is
an airborne processing chain at the Flemish Institute for the Technological
Research (VITO).
The results of the SA, expressed as sensitivity indices, were presented for
three surface albedo in the spectral range 0.44–0.96 µm. The sensitivity of
the estimate reflectance to CWV and aerosol optical depth depends on the
wavelength, strength of the water absorption feature, parameters uncertainty,
and on surface albedo.

1. Surface albedo: for the dark target, the estimated reflectance was
more sensitive to aerosol optical depth compared to CWV over the
0.44–0.96 µm spectral range with exception of the bands near the
0.94 µm water absorption feature, where the effect of CWV and aerosol
optical depth is almost similar.

2. Strength of the absorption feature: for the bright targets the sensitivity
of the estimated reflectance to CWV increases with the strength of the
water absorption feature. For a dark target, however, except for the
principal absorption feature near band 0.94 µm CWV indices did not
increase much compared to indices for bright targets.

3. Parameter uncertainty: if one parameter is more uncertain than the
other, the SI is influenced by the more uncertain parameter. For instance
aerosol optical depth’s uncertainty was higher than CWV’s.

Therefore, aerosol optical depth is an important parameter for dark targets
for atmospheric correction, more important than CWV even at the principal
absorption feature. For bright targets the importance of CWV and aerosol
optical depth depends upon the strength of the absorption feature. aerosol
optical depth sensitivity indices were high for the non-absorption water bands.
We conclude that at the non-absorption water bands aerosol optical depth is
a more important parameter compared to CWV.
As an outlook from the study, we recommend to include the impact of
uncertainty in the aerosol type in the sensitivity analysis. Like CWV and
aerosol optical depth, knowledge about the type of atmospheric aerosol at
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the time of imaging is challenging to obtain. Often, expert judgement is
used to select the appropriate aerosol type for the atmospheric correction
process. Therefore, it would be interesting to quantify the effect of the choice
about the aerosol type on the estimated reflectance. Also, it might be more
interesting to collectively study the impact of uncertainty in aerosol type,
aerosol optical depth, and CWV by simultaneously varying them.
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4Propagation of uncertainty in
atmospheric parameters to
hyperspectral unmixing

Abstract

Atmospheric correction (AC) is important in pre-processing of airborne
hyperspectral imagery. AC requires knowledge on the atmospheric
state expressed by atmospheric condition parameters. Their values are
affected by uncertainties that propagate to the application level. This
study investigates the propagation of uncertainty from column water
vapour (CWV) and aerosol optical depth (AOD) towards abundance
maps obtained by means of spectral unmixing. Both Fully Constrained
Least Squares (FCLS) and FCLS with Total Variation (FCLS-TV)
are applied. We use five simulated datasets contaminated by various
noise levels. Three datasets cover two spectral scenarios with different
endmembers. A univariate and a bivariate analysis are carried out
on CWV and AOD. The other two datasets are used to analyse the
effect of surface albedo. The analysis identifies trends in performance
degradation caused by the gradual shift in parameter values from
their true value. The maximum achievable performance depends upon
spectral characteristics of the datasets, noise level, and surface albedo.
As expected, under noisy conditions FCLS-TV performs better than
FCLS. Our research opens new perspectives for applications where
estimation of reflectance is so far considered to be deterministic.

4.1 Introduction

Hyperspectral imaging sensors record the at-sensor radiance reflected from a
surface, for hundreds of narrow contiguous spectral bands. A recorded image
can thus be seen as a three dimensional cube with two spatial dimensions

This chapter is based upon the following paper
N. Bhatia, M. D. Iordache, A. Stein, I. Reusen, V. A. Tolpekin,”Propagation of uncertainty
in atmospheric parameters to hyperspectral unmixing“, Remote Sensing of Environment,
Volume 204, 2018, Pages 472-484, , https://doi.org/10.1016/j.rse.2017.10.008.
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and one spectral dimension. A pixel in such a cube usually covers an area
comprising several endmembers. These mixed pixels are in contrast with pure
pixels that cover a single endmember. The occurrence of mixed pixels is due
to two main reasons: i) the spatial resolution of a hyperspectral sensor is
relatively low, thus, several endmembers share the spatial extent of a pixel,
and ii) the underlying surface is a mixture of several materials.
As important information about the scene might reside in mixed pixels,
extraction of quantities of interest at the subpixel level is needed. Spectral
unmixing is a popular extraction method at the subpixel level. It exploits
spectral information to derive the endmembers in the scene, their spectral
signatures, and their fractional abundances, i.e. areas occupied by each
endmember in each pixel. For a comprehensive review of unmixing techniques,
see [64] and the references therein. In this study, we rely on the Linear Mixture
Model (LMM) [65]. It expresses the observed spectrum of a pixel as a linear
combination of the spectra of the endmembers weighted by their fractional
abundances.
Spectral unmixing using the recorded radiance is challenging in the presence
of the Earth’s atmosphere. This is primarily because of the interaction of the
surface reflected radiation with the atmospheric constituents while
propagating along the path from the target surface to the sensor [33]. The
interaction generates two main atmospheric effects: absorption by
atmospheric gases in particular water vapour and ozone and aerosols in the
visible and near infrared spectral range and scattering by aerosols and
molecules [66]. In addition, on the path of the beam to the sensor, reflection
by the surrounding area of the target pixel and radiance backscattered by
the atmosphere that did not interact with the surface distorts the at-sensor
radiance.
An Atmospheric Correction (AC) algorithm retrieves the surface reflectance
from the at-sensor radiance. AC algorithms can be divided into scene based
empirical algorithms and algorithms based on radiative transfer modelling.
We use the latter, as it is a mature approach for routine processing of
hyperspectral image data [67].
In radiative transfer modelling, the target radiance can be derived assuming
a plane parallel geometry of the atmosphere, whereas the viewing and
illumination geometry and total optical depth of the atmosphere are known.
For a reliable estimate of reflectance, the concentration of the atmospheric
scatterers and absorbers, i.e. the optical parameters, should be available at
the time of imaging. In this chapter, we analyse the effect of uncertainty in
estimations of atmospheric aerosol optical depth (AOD) and column water
vapour (CWV). Both CWV and AOD are highly varying in space and time.
Thus, they are estimated directly from satellite or airborne (remote)
observations. With knowledge of CWV and AOD, transmission of radiation
through the atmosphere can be simulated.
Estimation of CWV from at-sensor radiance consists of identification of
the measurement channels, identification of reference channels, and using a
relation between reference and measurement channels [68]. These methods
are limited with respect to several assumptions. First, surface reflectance
is assumed to vary with wavelength in a linear way; second, the effect of
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sensor noise is often not considered, and third, uncertainty emerging from
instrument characterisation is ignored [69,70].
Estimation of AOD consists of determining aerosol radiative properties
characterised by their shape, their size, their chemical composition, and
total amount [71]. The MODIS science team [7] has developed the dense
dark object method to estimate AOD that is further developed in [8]. The
limitation of such methods is their suitability for pixels with dense vegetation.
For scenes with dark pixels that are clustered at a few locations, pixelwise
estimation of AOD is challenging. Besides, at-sensor based inference of AOD
is adversely affected by noise of at-sensor radiance.
These assumptions and limitations, reasonable as they are, cause uncertainty
in the estimation of CWV and AOD which likely propagates to reflectance
estimates.
The objective of this chapter is to analyse the impact of uncertainty in
unmixing caused by CWV and AOD, given their specific influence on the
estimated reflectance spectra. A basic hypothesis of unmixing is that the
estimated reflectance spectra are free from atmospheric artefacts. By ignoring
uncertainty in the AC parameters, however, it is likely that this hypothesis
is violated. The chapter specifically focuses on an operational processing
chain. The operational processing chain is implemented in the multi mission
Processing, Archiving, and distribution Facility (PAF) for earth observation
products [39]. Experiments in this chapter are performed using the PAF
incorporated in the Central Data Processing Center (CDPC) [20] at the
Flemish Institute for Technological Research.

4.2 Theoretical Background: the linear mixture model
(LMM) and unmixing methods

Let y ∈ RB be the reflectance spectrum of one pixel, where B is the number
of spectral bands. According to the LMM, it can be expressed as a linear
combination of the spectra of the endmembers, weighted by their fractional
abundances:

y = A ⋅ x + n. (4.1)

Here, A ∈ RB×m is the set of endmembers in the scene serving as a spectral
library containing m pure spectra, x ∈ Rm is the vector of corresponding
fractional abundances compatible with A, and n ∈ RB is a noise vector. In
this paper, we assume that A is available a priori. Unmixing thus aims at
identifying the atoms of A which are active in each pixel and their respective
abundances. To solve (8), we consider the classical least-squares solution
obtained by solving:

min
x

1

2
∥A ⋅ x − y∥

2

2
. (4.2)

Two constraints, arising from the physical meaning of the fractional
abundances, can be imposed on (9): 1) the non-negativity constraint (ANC),
and 2) the sum-to-one constraint (ASC) [72].
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In addition, we take intrinsic spatial smoothness into account as an
important characteristic of natural scenes. We use the Sparse Unmixing via
Variable Splitting, Augmented Lagrangian and Total Variation
(SUnSAL-TV) [73] to obtain a solution with piece-wise smooth transitions of
the abundance fractions in neighbouring pixels. SUnSAL-TV solves the
optimisation problem:

min
X

1

2
∥AX − Y ∥2

F + λ1∥X∥1,1 + λTV TV(X), (4.3)

where

TV(X) ≡ ∑
{i,j}∈ ε

∥xi − xj∥1 (4.4)

is a vector extension of the non-isotropic TV [74] and ε denotes the set of
neighbours in the image. In (4.3), Y ∈ RL×n is the observed data matrix
with each column containing the observed spectrum at a pixel, X ∈ Rm×n is

the matrix of fractional abundances, ∥X∥F ≡
√

trace{XXT } represents the

Frobenius norm of X and ∥X∥1,1 ≡ ∑ni=1 ∥xi∥1, with xi denoting the ith column
of X. The first term in (4.3) measures the data misfit, the second term forces
the matrix of fractional abundances to be sparse, and the last term accounts
for spatial homogeneity of the abundance maps. The parameters λ1 ≥ 0 and
λTV ≥ 0 are regularisation parameters. SUnSAL-TV introduces a set of new
variables per regularizer and then uses the Alternating Direction Method
of Multipliers (ADMM) [75] to solve the resulting constrained optimisation
problem. In our experiments, we neglect sparsity as the spectral libraries
employed will contain a small number of endmembers. We use SUnSAL-TV
applying both ANC and ASC to solve both optimisation problems (4.2) and
(4.3), as follows:

� Fully constrained least squares (FCLS): no sparsity is enforced and no
spatial information is considered. This situation is encountered if the
regularisation parameters λ1 = 0 and λTV = 0;

� FCLS with Total Variation (FCLS-TV): Only spatial information is
considered in SUnSAL-TV by setting λ1 = 0 and λTV >0.

The ASC, often ignored due to signature variability [76] is used in this work
as we assumed the set of image endmembers to be known and hence no
sparsity is enforced on the vectors of fractional abundances.

4.3 Datasets

Three synthetic datasets are used where two datasets represent a geological
scenario and one dataset represents a scenario containing vegetation. Further,
we use two Spectral Scenarios (SS): SSa with spectrally distinct endmembers
in a scene; SSb with spectrally similar endmembers in a scene. The two
spectral scenarios are linked to the three synthetic datasets presented in
Figures(2.3–2.6), respectively.
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4.4 Experiments

Atmospheric correction, as a mathematical model of an atmosphere, returns
an estimate of reflectance for any physically realisable values of column water
vapour, aerosol optical depth and other parameters. In our experiments, the
other parameters are treated as constants. Column water vapour and aerosol
optical depth, however, should also have unique values during atmospheric
correction. In simulations, it may be necessary to vary them over a range
of values, where the distribution of values reflects the uncertainties of the
parameters. We use one at a time variation in aerosol optical depth and
column water vapour, i.e. univariate analysis, and their joint variation in a
bivariate analysis for the uncertainty analysis. A bivariate analysis permits
large deviations from the nominal parameter values, thus allowing evaluation
of atmospheric correction for various combinations of column water vapour
and aerosol optical depth. We use uniform probability distributions for the
two atmospheric parameters, resulting in equally probable samples.

4.4.1 The forward modelling

At-sensor radiance cubes are simulated using the forward radiative transfer
modelling using MODTRAN 4. Standard MODTRAN 4 mid latitude
summer model with the rural aerosol model is used and the sensor altitude
is approximately 3 km above sea level. In univariate and bivariate analysis
applied to the FCLS-TV algorithm, the regularisation parameter λTV is set
to values between 0 and 0.06 with a step size of 0.01, and the best
performance among all values is retained. Average performances over ten
runs are taken.

4.4.2 Experimental setup for univariate analysis

The univariate analysis experiments for aerosol optical depth consist of three
ranges: high to moderate (visibility: 4–26 km), moderate to low (visibility: 16–
45 km), and low (visibility: 45–72 km). From our experience with real images
processed in the CDPC, we observed that the reflectance is not sensitive
to visibility values above 60 km. Thus, the maximum value of visibility is
set to 72 km. Each visibility range is associated with an experiment given
in Table 4.1, where column water vapour is kept fixed to the value used in
the forward modelling. Likewise, the experiments for column water vapour
consist of two column water vapour ranges: low to moderate (0.1–1.0 g cm−2)
and moderate to high (1.0–2.25 g cm−2). Each column water vapour range
is associated with an experiment given in Table 4.2. In these experiments,
visibility is kept fixed to the value used in the forward modelling. We used the
same atmospheric settings to analyse the propagation of uncertainty to the
abundance maps. The unmixing performed using the FCLS and FCLS-TV is
repeated for noiseless data and correlated noise with SNR of 50 dB, 40 dB
and 30 dB.
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Table 4.1: visibility (km) and corresponding aerosol optical depth ranges
to generate various atmospheric combination to perform univariate analysis
of aerosol optical depth for geological scenario datasets with distinct and
similar endmembers, respectively. The sampling rate is 2 km and column
water vapour is fixed at 1.5 g cm−2.

scattering
condition

aerosol optical
depth range

true aerosol
optical depth

visibility
range

true
visibility

high to
moderate

1.42–0.28 0.47 4–26 15

moderate
to low

0.45–0.18 0.28 16–45 28

low 0.18–0.11 0.14 45–72 60

Table 4.2: Column water vapour ranges (g cm−2) to generate various
atmospheric combination to perform univariate analysis of column water
vapour for the geological datasets with distinct and similar endmembers. The
sampling rate is 0.05 g cm−2 and the visibility is fixed at 15 km (i.e. aerosol
optical depth equals 0.48).

absorption
condition

column water
vapour range

true column
water vapour

low to moderate 0.1–1.0 0.5
moderate to high 1.0–2.25 1.5

4.4.3 A univariate analysis of dark and bright targets

This experiment analyses the joint influence of aerosol optical depth
uncertainty and albedo amplitude on the spectral quality of the estimated
reflectance cube and on the fractional abundances derived from it.

For the forward modelling of dark and bright target surfaces, low scattering
(aerosol optical depth = 0.14) and high scattering (aerosol optical depth = 0.48)
are considered, whereas column water vapour is fixed to 1.5 g cm−2, resulting
in four at-sensor radiance cubes. AC is evaluated for two discrete sets of
samples of the aerosol optical depth in the ranges (1.42–0.28) and (0.16–0.13),
corresponding to visibility ranges 6–27 km and 51–69 km, respectively.

4.4.4 Experimental setup for a bivariate analysis

The bivariate analysis applied to the vegetation dataset analyses the joint
effect of column water vapour and aerosol optical depth on atmospheric
correction. Column water vapour and visibility are varied within the ranges
1.35–1.65 g cm−2 and 15–45 km, corresponding to aerosol optical depth values
between 0.48 and 0.18, with reference column water vapour and visibility
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set to 1.5 g cm−2 and 30 km, respectively. These experiments are repeated
for data without correlated noise and for data perturbed by correlated noise
with SNR of 50 dB, 40 dB, and 30 dB. This atmospheric setting is also used
to analyse the propagation of uncertainty to abundance mapping.

4.4.5 Uncertainty propagation

To quantitatively assess the propagation of uncertainty we use the signal to

reconstruction error SRE≡
E[∥x∥22]
E[∣x−x̂∥22]

for both the estimated reflectance and

fractional abundances. Here, x is the reference signal and x̂ is an estimation
of x. SRE provides more information on the power of the signal w.r.t. the
power of the error than, e.g., the Root Mean Squared Error (RMSE) [77]. In
all experiments, we report SRE measured in dB: SRE(dB)= 10log10(SRE).
In addition, to quantify the pixelwise uncertainty in the estimates of
reflectance and abundance maps, we measure two other quantitative errors:
Normalised Root Mean Square Error (NRMSE)= RMSE

max(x)−min(x)
and Mean

Absolute Percentage Error (MAPE) =
n

∑
t=1

∣xt−x̂t
xt

∣ × 100.

4.5 Experimental Results

4.5.1 Univariate analysis of aerosol optical depth

Figure 4.1 shows results of univariate analysis of aerosol optical depth for
the geological dataset with distinct endmembers with different degrees of
correlated noise added to the dataset. The maximum performance is achieved
if visibility is close to the true value. The rate of degradation in performance
is higher, shown by the steeper slope, if visibility is underestimated and is
smaller if overestimated. This performance trend is valid for all visibility
scenarios. The maximum achievable performance varies among the datasets
and depends upon the true value of visibility. For the true atmospheric
conditions, i.e. the same atmospheric conditions for forward and inverse
radiative modelling, the minimum performance is achieved if true visibility
equals 15 km, whereas the maximum performance is achieved if true visibility
equals 60 km. Ideally, the performances should not vary if atmospheric
conditions are kept constant for the forward and inverse radiative modelling.
This difference is attributed to surface albedo and is further investigated in
Section 4.5.3.
From Figure 4.1, it can be seen that the performance degrades if the data are
affected by noise. This observation is valid for all datasets, and the decrease
in the performance is stronger if the noise level increases. To quantify this
effect, we compute the ratio (R) between the maximum performance for
SNR = 30 dB and the maximum performance without correlated noise
(Table 4.3). A low ratio indicates a high degradation. Each noise level limits
the maximum achievable performance even at the true value of visibility.
This affects the slope between the performance achieved at the true value of
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Figure 4.1: SRE (dB) values for univariate analysis of aerosol optical depth for
the geological dataset with distinct endmembers with and without correlated
(corr.) noise, when the true visibility is set to: a) 15 km; b) 28 km, and c)
60 km.

Table 4.3: Performance ratios for the geological dataset with distinct
endmembers (Gdist.) and the geological dataset with similar endmembers
(Gsim.). P1 corresponds to noisy data with SNR = 30 dB, while P2 corresponds
to noiseless data. The lower the ratio values, higher the performance
degradation during the univariate analysis of the reflectance product.

label true visibility (km) P1 P2 ratio

Gdist. 15 29.94 48.95 0.612

Gsim. 15 29.98 56.87 0.527

Gdist. 28 29.99 56.39 0.532

Gsim. 28 30 58.88 0.51

Gdist. 60 30 59.21 0.507

Gsim. 60 29.98 59.70 0.502

visibility and at all other points. For instance, if the true visibility is 15 km
and without correlated noise the maximum performance is close to 49 dB and
the minimum performance is close to 20 dB, thus the slope is approximately
3.2. With 30 dB correlated noise, the maximum achievable performance is
limited to 30 dB and the slope is approximately 1.3. For the two geological
scenario datasets, performance of FCLS and FCLS-TV is quantified using
reference abundance cubes i.e. ground truth abundances used to generate
those datasets.

Figure 4.2 shows the performance of FCLS for noiseless data. Results reveal
that for both FCLS and FCLS-TV (not presented), the performance trend is
similar to that of reflectance estimates, but its magnitude is lower than the
reflectance estimates. The different spectral compositions of the scenes may
cause differences in performance between the geological datasets with distinct

46



4.5. Experimental Results

Figure 4.2: SRE(dB) values for FCLS with the geological dataset with distinct
endmembers (Gdist.) and the geological dataset with similar endmembers
(Gsim.) without correlated noise.

and similar endmembers. Another explanation may be the difference in surface
albedo between the datasets. Further, peak performances are observed at
the true value of visibility and at the next higher value of visibility i.e. the
performance is insensitive to visibility values between these two points. For
the geological dataset with similar endmembers, peak performances are not
available at the true values and appear at the next lower value of visibility.

Figure 4.3 shows the variation of SRE (dB) with respect to λTV for the
geological dataset with distinct endmembers for all scattering scenarios
affected by various levels of noise. For no correlated noise, 50 dB correlated
noise and 40 dB correlated noise, the performances of FCLS and FCLS-TV
are comparable, whereas FCLS-TV performs better with increasing noise
level.

To explore propagation of the uncertainty to the abundance maps, we quantify
NRMSE to generate various other results. First, in Figure 4.4 a bar graph
representing NRMSE of the geological dataset with distinct endmembers is
shown. Note, the larger errors are occurring for low visibility values.

Figure 4.5 shows propagation of uncertainty in terms of mean NRMSE
estimates of endmember-4 abundance maps obtained by varying visibility
between 6–26 km and their corresponding standard deviation maps. The
true visibility is set to 15 km. The mean NRMSE corresponds to a map with
the mean values at every pixel computed by an average of NRMSE at each
visibility value between 6 and 26 km, with a sampling rate of 1 km.
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Figure 4.3: Variation of SRE (dB) with respect to λTV values for FCLS-TV
in geological dataset with distinct endmembers for the true visibility equals
15 km (a), 28 km (b), and 60 km (c). The optimal value of λTV corresponds
to the maximum value of SRE (dB).

Figure 4.4: NRMSE for each endmember of the geological dataset with
distinct endmembers for a visibility range 6–26 km when the true visibility
is set to 15 km.
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Figure 4.5: Pixelwise mean NRMSE estimates of endmember 4 for no noise
(a), 50 dB noise in (b) and 30 dB noise in (c) obtained due to variations in
visibility between 6–26 km. The corresponding standard deviation are shown
in plots (d)–(f) for no noise, 50 dB, and 30 dB noise levels, respectively.

4.5.2 Univariate analysis for column water vapour

As for aerosol optical depth, the maximum performance is obtained at the
true value of column water vapour. Unlike for aerosol optical depth, however,
the performance degradation is sharp and less dependent upon column water
vapour overestimation or underestimation. For higher column water vapour
(> 2.0 g cm−2) the performance tends to saturate. Further, the maximum
attainable performance is independent of the true column water vapour
values. This is as expected and different from aerosol optical depth where
differences in performance are observed for visibility values of 15 km and
60 km. Performances are higher for geological scenario dataset with similar
endmembers. With the increase in noise level, the performance degrades
but the peak of the performance remains at the true values i.e. no shift is
observed.

For the two geological scenario datasets with distinct and similar endmembers,
and for both FCLS and FCLS-TV, the performance trend is similar to
that of reflectance estimate, whereas the magnitude of the performances is
lower. Unlike aerosol optical depth, no significant variation in performance is
observed due to changes in the spectral property i.e. changes of the datasets.

Figure 4.6 shows a reference spectrum and various spectra of the same
material, derived via AC that are distorted due to the uncertainty in visibility
and column water vapour. These results illustrate the effect of a parameters’s
deviation on the spectral quality and depict how deviation in the parameter
affect the shape of the spectra, which is an important input for unmixing.
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Figure 4.6: Deviation in the spectral quality due to the uncertainty in
visibility in (a) and CWV in (b). The visibility is varying between 6–26 km
with a true visibility at 15 km and CWV is varying between 1.0–2.25 g cm−2

with a true value at 1.5 g cm−2.

Table 4.4: Effect of dark and bright targets on the performance with true
visibility conditions for reflectance estimates.

Albedo
visibility

(km)
aerosol

optical depth
SRE
(dB)

NRMSE
MAPE

(%)

Dark 60 0.14 64 4.2e−04 3.8e−02

Bright 60 0.14 72 3.0e−04 9.4e−03

Dark 15 0.47 52 1.7e−03 1.6e−01

Bright 15 0.47 58 1.5e−03 5.7e−02

4.5.3 Univariate analysis of dark and bright targets

Table 4.4 shows results of the experiment related to the dark and bright
targets if no noise is added to the reflectance cubes. For illustration, only
performances for the true atmospheric conditions of 15 km and 60 km are
shown. At reflectance level, we noted that the performance for the dark targets
is lower than the one for the bright targets irrespective of the atmospheric
conditions. This trend propagates to the abundance level estimation as well,
as shown in Figure 4.7. As the unmixing performance follows the trend of the
SRE (dB) computed for reflectance, it can be concluded that the abundance
maps obtained via unmixing for bright scenes are less affected by uncertainty
in the atmospheric correction parameters than those obtained for dark scenes.

4.5.4 The bivariate analysis for column water vapour and aerosol
optical depth
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Figure 4.7: The NRMSEs (%) obtained for the five endmembers quantify
the effect of dark and bright targets with true visibility and column water
vapour conditions for abundance estimates.

The performance analysis for reflectance and abundance maps is given in
Figure 4.8. As observed from the univariate analysis experiments, high
performance around the true values of column water vapour and visibility is
obtained. If the values of the two parameters deviate from the true values,
the performance degrades. A general pattern is that the performance tends
to saturate, after a relatively low decrease, if visibility is higher than 30 km
(overestimation), whereas, if visibility is lower than 30 km (underestimation),
the performance sharply declines. For column water vapour, however,
performance declines sharply for both overestimation and underestimation.

Figure 4.8: SRE (dB) values for bivariate analysis of column water vapour and
visibility for reflectance estimates (a) and abundance estimates (b) without
correlated noise.
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Figure 4.9 shows SRE (dB) of reflectance estimates and abundance
estimates under high noise conditions, i.e. 30 dB correlated noise. This noise
level strongly influences the performance at both estimates in two ways: 1)
the overall amplitude of the performance degrades as compared to the
performances observed at 40 dB and 50 dB noise levels; 2) comparing the
trend of the performances with the noiseless case, the distinct peak of the
performances is not visible anymore i.e. the highest performance can be
obtained around the true values of the parameters and not necessarily when
the parameters are correctly set. These findings are more clearly visible for
unmixing estimates.

Figure 4.9: SRE (dB) for the vegetation dataset with correlated noise
(SNR = 30 dB) for reflectance estimate (a), for the abundance estimate
with FCLS solution (b), and with FCLS-TV solution (c) for variations in
column water vapour and visibility.

For correlated noise with SNR of 40 and 50 dB, the decrease in the
performances is smoother if column water vapour is overestimated as
compared to if it is underestimated. Further, the distinct peak of the
performances is also not achieved for 40 and 50 dB as compared to the
noiseless case.

A comparison between the unmixing solutions reveals that FCLS-TV is more
performant than FCLS in noisy scenes. The superior performance of FCLS-
TV is less important if noise decreases, confirming the previous results. This
is valid for all combinations of atmospheric parameters. The optimal λTV
values under various noisy conditions are given in Table 4.5.
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Table 4.5: Optimal λTV for different noise levels and for various combinations
of column water vapour and visibility.

Noise level (dB)
column

water vapour (g cm−2)
visibility (km)

Optimal
λTV

No noise 1.35–1.65 15–45 0
30 1.35 15 0.03
30 1.40–1.65 20–45 0.01
40 1.35 15 0.03
40 1.40–1.65 20–45 0.01
50 1.35–1.45 15 0.01
50 1.50–1.65 20–45 0

4.6 Discussion and Conclusions

This chapter aimed to quantify the uncertainty propagation from aerosol
optical depth (AOD) and column water vapour to the fractional abundance
estimates via reflectance estimates. It was applied to the HyMap
hyperspectral sensor and there is no reason why it should also not be
effective on other hyperspectral sensors. The method is simple to implement
and can be extended to encompass other atmospheric trace gases and other
atmospheric condition parameters.
One of the important contributions of this study is that the effect of
uncertainty was analysed and quantified. The results shown provide a useful
insight into how a given uncertainty affects the performance at reflectance
level and at subsequent applications (spectral unmixing). For instance, 30%
degradation in performance (SRE) was observed under the high scattering
conditions. This degradation came down to 6 % under the moderate
scattering conditions. The steepness in performance degradation significantly
changes when the noise corrupts the data, especially under the high noise
conditions. This indicates that the atmospheric settings, noise, and the
parameter’s deviation have a combined effect on the propagation of the
uncertainty. Thus, an in depth analysis of performance degradation due to
the uncertainty in aerosol optical depth and column water vapour was
performed for different atmospheric scenarios, covering low, moderate, and
high scattering and absorption conditions for various noisy setups. The
analysis identified performance degradation trends that were actually caused
by the gradual shift in parameter values from their true value within the
uncertainty limits (ranges) defined in the experiments.
We noted that the variability in aerosol optical depth influenced the amplitude
of the retrieved spectra. Its influence was not linear, in the sense that
deviations from the reference spectra depend upon the surface reflectance
of the target, the wavelength, and the scattering conditions [51]. This
observation is consistent with our previous work [78]. For high aerosol optical
depth values and high surface reflectance (> 0.3), the estimated reflectance
was higher than the reference reflectance, whereas for low surface reflectance
(<0.3) estimated spectra were lower than reference spectra. This consistently
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happened for spectra of all considered endmembers. An opposite pattern was
observed for low scattering conditions. In [79], a threshold Pc = AOD

ρt(λ)
was

introduced as a critical parameter to determine how the estimated reflectance
changes due to aerosol scattering. Applying this threshold we found that if Pc
> 1, then the estimated surface reflectance was underestimated, otherwise it
was overestimated. The changes in the estimated reflectance were negligible
when aerosol optical depth approaches the reflectance value.

Variation in column water vapour influenced the retrieved spectra mainly
in the bands around the atmospheric water vapour absorption features.
Uncertainty in column water vapour affected the performance more severely
than uncertainty in aerosol optical depth, because variation in column water
vapour significantly distorted the spectral shape. This was evident from the
low performance obtained for maximum deviation in aerosol optical depth as
compared to maximum deviation in column water vapour. The uncertainty
in aerosol optical depth, however, strongly influenced the quality of the
abundance maps if the endmembers were spectrally similar, especially if high
atmospheric scattering occurred.

Further, the performance of reflectance estimates was always higher than
that of abundance estimates. This might be due to the inherent limitations
of the unmixing method and their numerical approximations. Without noise
FCLS and FCLS-TV are comparable because spatial homogeneity in the
datasets introduces only negligible improvements of the fractional abundance
values in noiseless scenes.

A difference in maximum attainable performance observed for high scattering
conditions could be attributed to the presence of bright and dark targets
in a scene. Bright targets reflect more radiation energy than dark targets.
Thus, the majority of the at-sensor radiance consists of photons that are
not scattered. In contrast, most of the photons for the dark targets are
scattered [63]. This contribution amplifies under high scattering conditions
resulting in performance degradation. In this chapter, we do not explicitly
explore the effect of albedo on the parameters estimation. From our experience
working with the real images in the CDPC, we found that surface albedo
affects the parameters estimation by widening the parameters uncertainty.
The surface albedo becomes a source of the parameters uncertainty. As an
outlook of this work, a sensitivity analysis can be performed to apportion
the contribution of sources of uncertainty to reflectance estimates.

Effective ranges of column water vapour and aerosol optical depth were within
the 90% confidence interval from their true values. Thus, for the bivariate
analysis, we varied visibility and column water vapour values within relatively
narrow ranges: 15–45 km and 1.35–1.65 g cm−2, respectively. Outside this
interval, the performance strongly degraded and saturated to a low value.
Such effective ranges could be a useful measure for calibrating the value of
the two parameters in optimizing the performance under uncertainty. Under
high noise conditions (SNR = 30 dB), both spectral quality and unmixing
performance are strongly degraded, whereas the effect of scattering becomes
less important. A high noise level therefore has a weaker influence on the
performance trend for column water vapour than for aerosol optical depth,
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resulting in a distinct peak of the performance. Thus, in the presence of high
noise in airborne data, uncertainty in atmospheric correction parameters and
data noise affect the final products jointly.
Care should be taken when using visibility as a substitute to aerosol optical
depth, especially under high scattering conditions where aerosol optical
depth is highly sensitive to visibility values (see Figure 2.2). Ideally,
estimation of aerosol optical depth can be obtained from the AErosol
RObotic NETwork (AERONET) stations [80]. However, most of the
airborne campaigns and many satellite images do not include an AERONET
site location. Alternatively, aerosol optical depth measurements can be taken
from handheld instruments. This requires ground measurements at the time
of satellite or airborne image acquisition, which is often hard to collect and
is impossible to obtain for archived imagery. Two measures that are often
used for visibility are horizontal extinction coefficients derived from the
horizontal visibility measured at airport stations and image based methods.
Horizontal based visibility estimation leads to inaccurate values because of
the dependency of estimates to the viewing direction. Lower values of
visibility are reported when looking in the direction of the sun due to the
strong forward scattering radiation [32]. It results in errors in horizontal
visibility that are significantly higher than those derived from image based
methods and standard satellite products. Airborne campaigns are also
normally not acquired under high scattering conditions. Therefore, errors
seen at 0–10 km visibility in [38] are unlikely to be experienced with
operational remote sensing.
The present study can be further extended to take other atmospheric
correction parameters into account. Effects of adjacency can be investigated
in scenes where heterogeneity and/or topographic effects are important to
include. It would be interesting to compare different unmixing methods
while considering the reflectance uncertainty due to atmospheric condition
parameters. Moreover, as uncertainties were also introduced by the applied
unmixing method, a comparison between unmixing methods can be
extended with inclusion of model uncertainty. Experiments with spectral
libraries containing a large number of spectral signatures are recommended,
as those were beyond the scope of the current study.
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5An Optimisation Approach to
Estimate and Calibrate Column
Water Vapour for hyperspectral
airborne data

Abstract

The chapter describes a novel approach to estimate and calibrate
Column Water Vapour (CWV), a key parameter for atmospheric
correction of remote sensing data. CWV is spatially and temporally
variable, and image based methods are used for its inference. This
inference, however, is affected by methodological and numeric
limitations, which likely propagate to reflectance estimates.
In this chapter, a method is proposed to estimate CWV iteratively
from target surface reflectances. The method is free from assumptions
for at-sensor radiance based CWV estimation methods. We consider
two cases: (a) CWV is incorrectly estimated in a processing chain; (b)
CWV is not estimated in a processing chain. To solve (a) we use the
incorrect estimations as initial values to the proposed method during
calibration. In (b), CWV is estimated without initial information.
Next, we combined the two scenarios, resulting in a generic method to
calibrate and estimate CWV.
We utilised the Hyperspectral Mapper (HyMap) and Airborne Prism
EXperiment (APEX) instruments for the synthetic and real data
experiments, respectively. Noise levels were added to the synthetic
data to simulate real imaging conditions. The real data used in this
research are cloud free scenes acquired from the airborne campaigns.
For performance assessment, we compared the proposed method with
two state of the art methods. Our method performed better as it
minimises the absolute error close to zero, only within 8–10 iterations.
It thus suits existing operational chains where the number of iterations
is considerable. Finally, the method is simple to implement and can be
extended to address other atmospheric trace gases.

This chapter is based upon the following paper
N. Bhatia, A. Stein, I. Reusen, V. A. Tolpekin,”An optimization approach to estimate and
calibrate column water vapour for hyperspectral airborne data“, International Journal of
Remote Sensing, Volume 39, 2018, Pages 2480–2505, doi: 10.1080/01431161.2018.1425565
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5.1 Introduction

A pixel of a three dimensional datacube recorded by a hyperspectral sensor
comprises radiation energy measured at-sensor level, at hundreds of
wavelengths. In the absence of the atmosphere, a reflectance obtained from
the recorded radiation would be the spectral signature that characterises the
underlying surface within the Instantaneous Field of View (IFOV) of the
sensor. In the presence of Earth’s atmosphere, however, the apparent
reflectance differs from the target reflectance. This is primarily because of
the complex interaction of the surface reflected radiation with the
atmospheric constituents while propagating along the path from the target
surface to the sensor. The interaction generates two main atmospheric
effects: absorption by atmospheric gases (in particular water vapour and
ozone) and aerosols (in the visible and near infrared spectral range) and
scattering by aerosols and molecules.
In addition, on the path of beam to the sensor two major scattering
components distort the at-sensor radiance: reflection by the surrounding
area of the target pixel and the radiance back scattered by the atmosphere
that did not interact with the surface.
An Atmospheric Correction (AC) algorithm is commonly applied to retrieve
the radiance reflected at the surface from the at-sensor radiance. AC
algorithms can be classified into scene based empirical algorithms and
algorithms based on radiative transfer modelling. A comprehensive review is
given in [34]. As radiative transfer modelling is mature for routine processing
of hyperspectral image data [67], we will use its algorithms in this chapter.
In radiative transfer modelling, the target reflected radiance can be derived
assuming a plane parallel geometry of the atmosphere, whereas the viewing
and illumination geometry and total optical depth of the atmosphere are
known.
For a reliable estimate of reflectance, the concentration of the atmospheric
scatterers and absorbers should be available at the time of imaging. We
consider estimation of the atmospheric Column Water Vapour (CWV) as the
principal absorbent in the atmosphere. As CWV is highly variable in space
and time, it is estimated from at-sensor radiance using image based methods.
Such inference is adversely affected by methodological or numeric limitations.
For instance, noise of at-sensor radiance is often poorly modelled. Besides, it
is often assumed that the spectral response of a target surface across water
absorption features exhibits a linear relation. Due to such limitations errors
in CWV estimates likely propagate to reflectance estimates. Even though
components of error have been evaluated and the appropriate corrections have
been applied, uncertainty remains about the correctness of CWV estimates
i.e. how well a CWV estimate represents the value of the actual CWV at the
time of imaging.
The aim of this chapter is to present a new method for obtaining pixelwise
CWV estimates. It specifically focuses on estimating CWV for an operational
processing chain. The operational processing chain is implemented in the
multi mission Processing, Archiving, and distribution Facility (PAF) for earth
observation products [20,39,47]
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Two scenarios are addressed: (a) CWV is incorrectly estimated in the chain
due to the methodological or numeric limitations of the existing methods; (b)
CWV is not estimated in the chain. This chapter presents a generic method
such that for (a) a CWV estimate is used as an initial estimate. For this
scenario, the CWV has to be calibrated. For (b), CWV is estimated without
initial estimate. Combining the two scenarios, this results into a generic
method to calibrate and estimate CWV as an augmented approach to existing
processing chains.

5.1.1 Water vapour absorption

The propagation of surface reflected radiation and its interaction with water
vapour in the atmosphere results in both absorption and scattering. During
absorption, a photon transfers its energy to an atom or a molecule and is
eventually removed from the radiation field.

For atmospheric correction of the image recorded by the sensor, CWV has
to be provided to the radiative transfer code to simulate transmittance due
to water vapour. The simulated water vapour transmittance is then used to
correct for the influence of water vapour gas absorption.

A popular technique to estimate CWV is to use the sensor recorded radiance
on a pixel by pixel basis. The technique consists of three steps: 1) identification
of the spectral location of water absorption features, the so called measurement
channels; 2) identification of the fraction of sensor recorded radiance without
absorption features from any trace gas, the so called reference channels; 3)
determination of CWV using a relation between reference and measurement
channels. See [23,32,68,81–83].

These methods are limited with respect to several assumptions. First, surface
reflectance is assumed to vary with wavelength in a linear way; second,
the effect of sensor noise is often not considered, and third, uncertainty is
ignored that emerges from instrument characterisation. Such characterisation
is generally performed in a laboratory prior to flight and includes linearity
of various detectors, gains and offset of the sensor, and spectral response of
the sensor channels. If any of the above assumptions fails then the resulting
estimation of CWV produces residual effects in the absorption features
[70]. This in turn prevents correct estimation of ρt(λ). In [69], some of
these limitations are highlighted. These assumptions are, however, quite
reasonable as including all the influencing factors to model at-sensor radiance
is analytically too complex and virtually impossible.

In this chapter, we estimate CWV from iterative estimations of target
surface reflectance instead of from the recorded sensor radiance. The
primary hypothesis of our approach is that a relation between estimates of
CWV and strength of an absorption feature is linear while using the
reflectance spectra. This linear relation facilitates pixelwise estimation of
CWV while solving the objective function.
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5.2 Estimation and Calibration Methodology

The methodology to estimate and calibrate CWV is based upon the estimates
of reflectance spectra. In a hyperspectral datacube each pixel is represented
with a vector of length B denoting the number of channels. Further, the
actual reflectance ρt of the underlying surface within the IFOV is affected
by atmospheric absorption and scattering. Then its estimate ρ̂t obtained via
AC is expressed as a linear model:

ρ̂t = C ⋅ ρt + n, (5.1)

where the matrix C ∈ RB×B, is assumed to be diagonal, stores coefficients
that model the deviation of ρ̂t from ρt and n is the noise effect.
If the coefficients of C approach 1 then the estimates of CWV approach the
actual CWV at the time of imaging, indicating a perfect match. If, however,
the coefficients of C deviate from 1, then the error in the estimates of CWV
increases.
Fitting the linear model (5.1) by least squares is equivalent to an l2-norm
optimisation problem where the deviation in the coefficients of C is minimised.
In fact, it minimises the sum of the squares of the differences between ρ̂t and
ρt:

min
C

1

2
∥C ⋅ ρt − ρ̂t∥

2

2
, (5.2)

where the l2norm equals ∥x∥2 =
√

Σi∣xi∣2.
While minimising the coefficients of C iteratively, indexed with k, we derive
an offset DCWVi,k,λ for a pixel i at an absorption feature λ such that

DCWVi,k,λ = 1 −C(i, k, λ). (5.3)

Note that DCWVi,k,λ <1 indicates that the estimate of CWV is lower than
the actual CWV value i.e. an underestimate of CWV, whereas DCWVi,k,λ >1
implies overestimation. We use this offset to derive a CWV estimate at the
next iteration as

CWVi,k+1,λ = CWVi,k,λ +DCWVi,k,λ . (5.4)

The CWVi,k+1 is used in turn to provide a new estimate ρ̂t,k+1. A fitting
coefficient of any feature is specific for each absorption feature. Therefore,
the proposed method may estimate multiple or incorrect values of CWV
following global least squares optimisation. To avoid this, we used local least
squares minimisation, i.e. limited to one specific absorption feature, namely
the principal water absorption feature located at a wavelength of 0.944 µm.
This feature affects only one channel, which makes the minimisation problem
relatively simple as compared to using absorption features which involve
multiple channels. In particular, (5.2) is iteratively solved until the coefficients
of C at water absorption wavelengths are close to one. We use the coefficient
range between 0.99–1.01 as a convergence criterion. The assumption here
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is that the sensor is sensitive to the CWV values within ± 0.01 g cm−2.
This is quite a strict assumption and will be invalid for most of the existing
hyperspectral sensors. The narrow range, however, allows estimating the
finest achievable CWV value of a sensor. Depending upon the end product
and sensor configurations, wider convergence ranges can be explored.
The parameter ρt is not known beforehand. Therefore, an estimate of ρt that
serves as a reference to solve (5.2) is required. The slope of the reflectance
spectra at the absorption feature located at 0.944 µm can be reconstructed
using spectra value at reference channels by means of interpolation. We used
cubic spline interpolation with cross validation between each pair of adjacent
points to set the degree of smoothing. For a simple dataset this is more
accurate than other polynomial interpolation methods [84]. A channel is
considered as the reference channel if its signal is not being influenced by any
atmospheric species and the signal to noise ratio is large.

5.3 Datasets

5.3.1 Synthetic and real surface reflectance data

The synthetic reflectance datacube is a hyperspectral image that contains
100×100 pixels shown in Figures 2.7–2.8 are used. In addition to the synthetic
dataset, real dataset used here is shown in Figure 2.12a. To approximate the
size of the simulated image the real scene is cropped into a sub scene shown
in Figure 2.12b, at the size of the simulated image (100 × 100).

5.4 Experimental Setup

5.4.1 Profile of the atmospheric condition parameters for the forward
modelling

To transform the synthetic surface reflectance image to at-sensor radiance,
the atmospheric scattering and absorption conditions must be specified to
the MODTRAN 4 radiative code. For this purpose we obtain Aerosol Optical
Depth (AOD) and CWV using image based methods [8, 23] applied on a
real APEX sensor datacube [1] flight. As an input to these methods, we
used three radiance cubes of the Coast of Belgium. The reason for using
the coastal area is its diversity, as the scene is covered by both sea and land.
These types of scenes are interesting in terms of determining the uncertainty
bounds of CWV and AOD for uncertainty exploration as over land and
sea these parameters show high variation. This gives us an opportunity to
validate the robustness of the proposed methodology for such complexity in
the scene.
Using the three radiance cubes, for various illumination and viewing geometry,
realistic uncertainty estimates of CWV and AOD are obtained. For CWV
we obtained a range of 1.35–2.25 g cm−2.
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5.4.2 Pixelwise parameter configuration for the forward modelling

From the ranges of visibility, CWV, and r, we now derive their spatial pattern
or variability over each pixel as we may and in real scenes for the forward
modelling. For the simulated dataset, we assumed a gradual increase in CWV
as we move row wise from the top of the simulated dataset to the bottom.
We assigned a value CWV = 1.35 g cm−2 to the central pixel of the first
row. The other pixels of this row received randomly sampled values from
the N (1.35, 0.02) distribution. Likewise, with a step of 0.00912 g cm−2 we
assigned values to pixels of each row. The resultant spatial variability of
CWV is shown in Figure 5.1a.

Figure 5.1: Spatial variability of CWV in (a), visibility in (b), and background
window in (c) of the simulated image.

A similar procedure was applied to visibility which varies between 15 km and
65 km corresponding to an AOD range 0.47–0.13. The direction of variation
is taken from the left of the simulated image to the right, i.e. column wise,
with a step size of 2 km. To each pixel in a column, randomly sampled values
from the logN (µ, 0.02) with µ = 15 km for the first column are assigned.
A log-normal distribution is used to approximate the actual distribution of
visibility, being a skewed normal distribution (Figure 5.2).

For the adjacency effect, we considered the spatial variability of the classes
present in the simulated image. From visual interpretation we found it
spectrally more homogeneous at the center of the image than at the edges.
Moving away from the center of the image, this homogeneity weakens
(Figure 2.7). As spectrally homogeneous pixels cause a low adjacency effect,
a significant influence on the center pixels can only come from pixels that
are far away from the center. To address this spatial variability we set a
large r = 91 pixels at the center of the image. The range gradually decreases
as we move away from the center of the image and to a minimum of 41
pixels (Figure 5.1c). This value was determined from the variogram analysis.

5.4.3 Performance Discriminators

The quantitative assessment of the propagation of uncertainty originating
from the AC parameters is measured by the signal to reconstruction error SRE
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Figure 5.2: Marginal kernel density of visibility estimated using all (≈ 80
thousand) measurements from the image based method. A bandwidth of 1.56
is used as a parameter for kernel density estimation.

≡
E[∥x∥22]
E[∥x−x̂∥22]

, where x is the reference signal and x̂ represents its estimation.

SRE provides information on the power of the signal with respect to the
power of the error [77]. In all experiments, we report SRE measured in dB:
SRE (dB)= 10log10(SRE). Together with the SRE, we also measured the
Root Mean Squared Error (RMSE) of the estimated and reference data.

5.5 Experimental Results

5.5.1 Experiments with simulated data

We first present the estimation results for CWV without considering noise,
visibility, and adjacency. To achieve this, reference values of visibility and
adjacency are used for each pixel (Figure 5.1b and Figure 5.1c).
First, the CWV is set equal to 1.6 g cm−2. At those pixels where this value
is used in forward modelling, reflectance estimation at absorption features
leads to a correct estimate (Figure 5.1a). For other pixels, CWV = 1.6
g cm−2 will either underestimate or overestimate the reflectance at water
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absorption features, depending upon whether it is smaller or larger than the
value used in forward modelling. In Figure 5.3 a spectral plot of the class
concrete from three different image regions is depicting correct, over-, and
under-estimation scenarios. The pixelwise coefficient values indicate correct

Figure 5.3: Overestimation (◻), underestimation ( ), and correction
estimation (△) of reflectance for pixels where the class concrete dominates
the initial water vapour value (1.6 g cm−2).

estimation, overestimation, and underestimation of reflectance at absorption
features as shown in Figure 5.4a. We observe coefficient values close to 1 at
those pixels for which 1.6 g cm−2 is used in forward modelling i.e. the correct
estimation of reflectance at the absorption feature. The robustness of our
method can be observed in Figure 5.4b where small or no changes in CWV
values are observed if their corresponding coefficients are close to one. For
the other pixels, CWV values lower and higher than 1.6 g cm−2 are set for
which the reflectance is over- or under-estimated, respectively.
From Figure 5.4c–d we observe small absolute errors between the previous
and new CWV values, and between the new and reference CWV values
if the reflectance is approximately correctly estimated. We observe large
absolute errors if the reflectance is either over- or under-estimated. Iteratively
estimating the CWV, we observe that the coefficients for each pixel are
approaching one and that errors tend to be small. This is confirmed from
Figure 5.5a–d, showing the CWV after 15 iterations.
Estimates converged after 20 iterations, as can be seen in Figure 5.6. As
is evident from these, CWV estimation improved after each iteration. This
implies that the solution is leading towards convergence. We already observed
convergence after the 15th iteration, followed by small improvements for higher
iterations.
Figure 5.7 presents the impact of CWV estimates on the reflectance
estimation. We observe convergence of estimation of reflectance after 10
iterations. Continuing CWV estimation for 12 iterations did not result in
any further improvement.
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Figure 5.4: Pixelwise coefficient values at 0.944 µm (a), new estimates of
CWV for each pixel (b), absolute difference between the new and previous
estimations of CWV (c), and absolute difference between the new and
reference CWV values (d) obtained after the first iteration.

Figure 5.5: Pixelwise coefficient values at 0.944 µm (a), new estimates of
CWV over each pixel (b), absolute difference between the new and previous
estimations of CWV (c), and absolute difference between the new and
reference CWV values (d) obtained after 15 iterations.

The objective of the second experiment was to include noise to the data and
to perturb the spatial variability of visibility and adjacency while estimating
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Figure 5.6: SRE (dB) and RMSE obtained during CWV estimation at
successive iterations.

Figure 5.7: SRE (dB) and RMSE computed for CWV estimates at reflectance
level for each iteration.

CWV. This scenario is similar to real imaging conditions. We applied
rotation to the reference values of visibility and the background window size
defined for each pixel (Figure 5.1b and Figure 5.1c). We also applied spatial
smoothing to visibility values at each pixel after the rotation (Figure 5.9)
and measured visibility and background window with diagonal spatial
variability Figure 5.10–5.12. The reason to rotate and smooth the reference
data and to realise diagonal variability, is to realise different ways to arrange
visibility and adjacency in the spatial domain.

From Figure 5.13, we observe that noise and the arbitrary setting of visibility
and the background window do not influence the estimation of CWV.

This experiment showed that the method presented in this chapter estimates
CWV correctly if no prior information about the CWV is present, using an
arbitrary value of 1.6 g cm−2 for CWV to start the estimation.
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Figure 5.8: Coefficients values for CWV estimation after 10 iterations.

Figure 5.9: Pixelwise perturbation to the spatial variability of visibility with
(a) 90 ○ rotation, (b) no rotation, (c) 180 ○ rotation, and (d) 270 ○ rotation.

5.5.2 A comparison study

For performance assessment, we compared the new method with two state of
the art methods. Method 1 (M1) [23] is currently implemented in the CDPC
and it estimates CWV using at-sensor radiance. Method 2 (M2) [69] uses
variations of a second order derivative algorithm (SODA) to assess the impact
of atmospheric residual features on calculated surface reflectance spectra after
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Figure 5.10: Pixelwise perturbation to the spatial variability of visibility with
diagonal variation (a) top left to bottom right, (b) bottom left to top right,
(c) bottom right to top left, (d) top right to bottom left.

Figure 5.11: Pixelwise perturbation to spatial variability of the background
window with no rotation (a) and 90 ○ rotation (b).

AC. Performance is assessed in two ways. First, computational efficiency
of the methods is compared with the proposed method, which is critical
in operational processing chains. Second, the accuracy of each method is
measured in terms of the absolute error.

M1 estimates CWV in five steps. In each step it generates a number of
synthetic at-sensor spectral signals each with a different amount of
atmospheric CWV. After applying scaling to the signals and to the actual
at-sensor radiance, it iteratively determines CWV values. These steps are
repeated until convergence is reached. Applying M1 on the synthetic image,
results in convergence in 5–6 iterations. The accuracy in terms of absolute
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Figure 5.12: Pixelwise perturbation to the spatial variability of the
background window with diagonal variation (a) top left to bottom right, (b)
bottom left to top right, (c) bottom right to top left, (d) top right to bottom
left.

Figure 5.13: SRE (dB) and RMSE values obtained during CWV estimation
for successive iterations with noise applied to the data and visibility and
background window incorrectly set.

error is shown in Figure 5.14 where the maximum absolute error equal to
0.42. This is a large value as compared to 0.015 of the proposed model
(Figure 5.15).

Method 2 calculates the surface reflectance multiple times using several
CWV values to obtain a complete set of SODA values corresponding to
the N surface reflectance values. This set is searched for the value that
yields the lowest SODA, which is assumed to be the true value of the
reflectance. Its corresponding CWV value is the estimated value. The
minimum recommended value of N for M2 is 50, e.g. M2 estimates CWV
with at least 50 iterations. The proposed method, however, requires 8–10
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Figure 5.14: Pixelwise estimation of CWV using the method described in [23]
(a) and in (b) the absolute error between the prior estimates of CWV in (a)
and the reference CWV is shown.

iterations for pixelwise estimate of CWV with the absolute error minimised
close to zero. Iteration times of M2 and the proposed method are comparable
because both use MODTRAN 4 to estimate various radiance components for
AC (2.8). Also, M2 first estimates CWV for a super pixel and in a later stage
only it calculates pixelwise CWV. This leads to additional computational
time that is critical within a processing chain.

5.5.3 Calibration of CWV

To analyze the performance of the proposed method while calibrating CWV,
we first applied the method described in [23] to obtain initial estimate on
CWV, shown in Figure 5.14. We then used these pre-estimates to our method.
In Figure 5.15, CWV values are shown after 8 iterations. We observe that
the proposed method successfully calibrates CWV.
An important observation during calibration and CWV estimation is that
small improvements in CWV estimation do not further improve reflectance
estimation after a relatively low number of iterations. The acceptable degree
of change, i.e. the tolerance limit, is quantified by assessing the coefficients
values at the 10th iteration (Figure 5.8). The CWV coefficients range between
0.9765 and 1.045. Using (5.3), we obtained a range of 0.0235–0.045 g cm−2,
specifying the tolerance limit in CWV estimation at the reflectance level.

5.5.4 Experiments for the real scene

For the real scene (Figure 2.12b), the range for CWV is between 1.5 and 2.4
g cm−2. To check robustness of the proposed method, we selected at random
CWV values within a narrow range of 1.5–1.6 g cm−2 for the first iteration.
This pixelwise assignment avoids any prior knowledge about the scene. In
Figure 5.16, the CWV values at each pixel are shown. For the real scene,
reference data are not available. Thus, to validate the results we computed
SRE (dB) and the RMSE at coefficient level for each pixel. The resultant
performance plot is shown in Figure 5.17. From Figure 5.17, we observe that
our method works well for the real dataset, as perceived from the coefficient’s
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Figure 5.15: Pixelwise coefficient values at 0.944 µm (a), new estimates of
CWV for each pixel (b), absolute difference between the new and previous
estimations of CWV (c), and absolute difference between the new and
reference CWV values (d) obtained after the 8th iteration.

Figure 5.16: Absence of spatial variability of CWV for each pixel during the
first iteration.

SRE and RMSE values. Also, we observe that the coefficients can be further
improved i.e. estimation of CWV can be improved with more iterations.
Performing seven iterations was sufficient, as applying more iterations show
no substantial improvement in the coefficients values.
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Figure 5.17: SRE (dB) and RMSE values using reference coefficients and
estimated fitting coefficients obtained after seven iterations.

5.6 Discussion and Conclusion

This chapter presents a method that iteratively estimates CWV from
reflectance spectra. It was applied to two hyperspectral sensors and there is
no reason why it should also not be effective on other hyperspectral sensors.
The method is simple to implement and can be extended to encompass other
atmospheric trace gases. Its main benefit is that it is free from any
assumptions that are usually made for at-sensor radiance based CWV
estimation methods. For instance, it does not require the surface reflectance
to be linear across spectral absorption features, nor does the spectral
reflectance require pre-smoothing. A water profile obtained using the first
assumption is only applicable to scenes that show a linear surface behaviour
across different wavelengths. Such a linearity assumption is not valid for a
reflectance spectrum of a complex and variable surface. The study further
shows that the method works well under noisy conditions, i.e. if the second
assumption does not hold.
With the proposed method, noise and incorrect estimation of AOD and the
background window have little to no influence on CWV estimation. The
reason is that these perturbations affect the amplitude of the spectra of a
pixel and do not contribute to over- and underestimation of reflectance at the
absorption feature. These findings are, however, only valid for high visibility
values (<18 km). Under lower visibility conditions the effect of AOD on CWV
retrieval is significant [85] and might have influenced the retrievals. Airborne
campaigns, however, occur on clear days, that is when visibility is sufficiently
high. This is for example evident from the visibility range observed for
the real scene. These findings, well known from the literature, were helpful
in validating our method. Thus, for strong water absorption features, the
quality of CWV estimation is dominant over visibility, the adjacency effect
and noise correlation. Also, for higher visibility values (>18 km), estimation
of CWV can be performed without setting visibility and the background
window to their actual values. This is consistent with our previous work [78]
in which we found that CWV is the most important parameter at strong
absorption features.
We further observed that our method works well when calibrating the prior
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CWV estimates from the in built method to estimate CWV. From theoretical
considerations this is what we might expect assuming that our method works
well if prior estimates are available. We found that the number of iterations
required for calibration is less as compared those needed for CWV estimation.
For at-sensor based CWV estimation, influences of sensor noise and
uncertainty arising from instrument characterisation are generally estimated
in a laboratory prior to flight. Such estimation requires linearity of the
detectors, gains and offset of the sensor, and spectral response of the sensor
channels. If any of the above assumptions is not fulfilled, then the estimated
CWV contains residual effects in the absorption features. Such effects cause
the relation between CWV and the absorption feature to become non linear.
Due to non linearity, an absorption feature cannot be related with CWV, as
otherwise it will be prone to errors. In contrast to at-sensor based
estimation of CWV, our method does not require a separate modelling to
account for errors induced due to other influencing factors.
Estimating CWV based on reflectance spectra results into a linear relation
between residuals at absorption features and CWV. This is because reflectance
spectra are obtained after atmospheric corrections. It implies that all errors
are already modelled and show their effects as over- or under-estimation at
an absorption feature.
The pivot of the methodological choices in this chapter is its use in an
operational chain. From this point of view, we note that the processing time
to estimate CWV is low. In particular, the number of iterations to pixelwise
estimate CWV is between 8 and 10. The reason why we could estimate
CWV with less iterations is because for each iteration the new estimates
are fed back into atmospheric correction procedures. This is different from
estimation based upon reflectance spectra for a set of CWV values, followed
by value optimisation. See e.g. the SODA method described in [69]. Also,
solving CWV for each pixel for a set of CWV values in an operational chain
environment requires a much higher computing time.
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6Estimation of AOD under
uncertainty: an approach for
hyperspectral airborne data

Abstract

A key parameter for atmospheric correction (AC) is Aerosol Optical
Depth (AOD), which is often estimated from at-sensor radiance
(Lrs,t(λ)). Noise, the dependency on surface type, viewing and
illumination geometry cause uncertainty in AOD inference. We
propose a method that determines pre-estimates of surface reflectance
where effects associated with Lrs,t(λ) are less influential. The method
then identifies pixels comprising pure materials, the reference pixels,
from the pre-estimates of reflectance. AOD values at the reference
pixels are iteratively estimated by solving l2-norm optimisation
problem. Using the adjacency range function AOD is estimated at
each pixel. We utilised the Hyperspectral Mapper (HyMap) and
Airborne Prism EXperiment (APEX) instruments for the synthetic
data and real data experiments. To simulate real imaging conditions,
noise were added to the data. Our method minimises the estimation
error in terms of AOD to 0.06–0.08 with signal to reconstruction error
(SRE) equals 35 dB within 8–10 iterations. As AC is not sensitive for
such small difference in AOD. It thus suits existing operational chains
where the number of iterations are considerable. We compared the
proposed method with dense dark vegetation
based state-of-the-art method. With this reference method, large
variability in AOD estimates were observed at DDV pixels, resulting
in low SRE between 5–10 dB. For per pixel estimation of AOD, the
performance further degrades as the reference method depends upon
the number of DDV pixels in the scene. Finally, the proposed method
is simple to implement and can be extended to address other AC
parameters.

This chapter is based upon the following paper
N. Bhatia, A. Stein, I. Reusen, V. A. Tolpekin,”Estimation of AOD under uncertainty: an
approach for hyperspectral airborne data“, Submitted to special issue Remote Sensing,
special issue in uncertainty in remote sensing image analysis
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6.1 Introduction

A pixel of a three dimensional datacube recorded by a hyperspectral sensor
comprises radiation measured by the sensor, at hundreds of wavelengths. In
the absence of the Earth’s atmosphere, a reflectance obtained from the
recorded radiation is the spectral signature that characterises the underlying
surface within the Instantaneous Field of View (IFOV) of the sensor. In the
presence of Earth’s atmosphere, however, the apparent reflectance differs
from the target reflectance. This is primarily because of the complex
interaction of the surface reflected radiation with the atmospheric
constituents while propagating along the path from the target surface to the
sensor. The interaction generates two main atmospheric effects: absorption
by atmospheric gases (in particular water vapour and ozone) and aerosols
(in the visible and near infrared spectral range) and scattering by aerosols
and larger atmospheric gas molecules.
In addition, on the path of beam to the sensor two major scattering
components distort the at-sensor radiance: reflection by the surrounding
area of the target pixel and the radiance backscattered by the atmosphere.
An Atmospheric Correction (AC) algorithm is commonly applied to retrieve
the radiance reflected at the surface from the at-sensor radiance. AC
algorithms can be classified into scene based empirical algorithms and
algorithms based on radiative transfer modelling. A comprehensive review is
given in [34]. As radiative transfer modelling is mature for routine processing
of hyperspectral image data [67], we will use its algorithms in this chapter.
In radiative transfer modelling, the target reflected radiance can be derived
assuming a plane parallel geometry of the atmosphere, whereas the viewing
and illumination geometry are known while some inference of the total optical
depth of the atmosphere is required. For this inference, the concentration
of the atmospheric scatterers and absorbers should be available at the time
of imaging. Both absorbers, water vapour, and scatterer, aerosols and gas
molecules, are highly varying in space and time. Thus, they are often estimated
directly from satellite or airborne (remote) observations.
Despite substantial research efforts, pixelwise estimation of Aerosol Optical
Depth (AOD) is still a challenge within Processing and Archiving Facilities
(PAF). Most estimation methods use at-sensor radiance where inference of
AOD is affected by retrieval uncertainties of the observed surface, atmospheric
parameters, and instrumental errors. Additional processing to mitigate those
errors are required to have a reliable reflectance product [86]. For instance,
the use of reference pixels and averaging the data, say over 10 × 10 pixels,
to reduce the influence of noise, requires a significantly larger data volume
for analysis. In addition, the uncertainty induced by such processing is often
ignored or impossible to model. Further, those estimation methods rely upon
some surface characteristics. For instance, the dense dark vegetation (DDV)
method to estimate AOD that is further developed in [8] is limited to pixels
with dense vegetation. For scenes with DDV pixels that are clustered at
a few locations, pixelwise estimation of AOD is challenging. These effects
and limitations cause uncertainty in the estimation of AOD which likely
propagates to reflectance estimates.
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Uncertainty, acknowledging that the pixelwise true values of AOD are
unavailable because of limited cognition and of limited granularity, is an
inherent property of AOD estimation and cannot be eliminated completely.
With more information about estimated spectra over a scene and its
estimation conditions, however, we can minimise the uncertainty about
AOD. This chapter focuses on such minimisation and is a continuation to
our previous works [78], [87], [88]. We estimate AOD from estimates of
surface reflectance at pure pixels, covering a single endmember and
iteratively compare them with corresponding spectra stored in a library.
Besides, the other novelty of this research is that the proposed method
estimates AOD considering sensitivity of reflectance to AOD estimates
resulting in less processing time. This is in contrast to those methods which
focus on the estimation accuracy outside its sensitivity regime, such as the
method of visibility estimation in [39] which is implemented in Atmospheric
and Topographic Correction for Airborne Imagery (ATCOR 4) PAF of
German Aerospace Center (DLR).

6.2 Datasets: synthetic and real datasets

The synthetic reflectance datacube is a hyperspectral image shown in
Figure 2.7. The scene used in real data experiments is a scene of the APEX
sensor [1] datacube (2014) over the Liereman area in Belgium, shown in
Figure 2.12b. In order to observe the effect of the different noise levels we
considered adding two types of noise to the datasets at two stages, refer to
Section 2.5.4.

6.3 Experimental Setup

6.3.1 Profile of the atmospheric condition parameters for the forward
modelling

To transform the synthetic surface reflectance image to at-sensor radiance,
the atmospheric scattering and absorption conditions must be specified to
the MODTRAN 4 radiative code. For this purpose, column water vapour
value equals 2.0 g cm−2 are used and the sensor altitude is approximately
5 km above sea level resulting in pixel size of 4 m. We obtain Aerosol Optical
Depth (AOD) using [8] applied on a real APEX sensor datacube [1] flight.
As an input to these methods, we used three radiance cubes of the Coast of
Belgium. The reason for using the coastal area is its diversity, as the scene is
covered by both sea and land. These types of scenes are interesting in terms
of determining the uncertainty bounds of AOD for uncertainty exploration as
over land and sea AOD shows high variation. This gives us an opportunity
to validate the robustness of the proposed methodology for such complexity
in the scene.
Estimating the range of AOD is, however, not straightforward, because the
method in [8] provides visibility (in km) as an output. In an operational
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processing chain, true aerosol optical depth values that coincide with image
acquisition are unavailable [38]. As an alternative, image based methods
measuring visibility are often used to set aerosol optical profiles [8,20,32,37,39].
Here, we specify aerosol optical depth values and their corresponding visibility
values so that it is useful to the remote sensing communities dealing with
both quantities. Further, determining the range of visibility is challenging
because the method in [8] is based on the dense dark vegetation (DDV)
technique. One of its limitation is that visibility can only be estimated for
those pixels. This implies that interpolation is required to estimate visibility
for non-DDV pixels. Interpolation methods, however, can induce additional
uncertainty in the parameter estimation, requiring a separate analysis. To
avoid such uncertainty in further analysis, we first recorded all estimations
of visibility for the DDV pixels for the entire scene. We then estimated a
marginal density of those visibilities.

We used kernel methods to estimate the marginal density of visibility [89].
It is implemented using the kde function of the ks package [90] in R [91].
Parameters, e.g. bandwidth and number of modes, used to estimate the
marginal densities, are obtained from the h.crit and nr.modes functions as
illustrated in the silvermantest package [92, 93]. In Figure 5.2 (Chapter 5)
the estimated marginal density of visibility is shown.

From the marginal density, we observe a skewed distribution, which covers
the range between 15 and 120 km. From our experience with the optical
parameters in the CDPC, we realised that visibility >60 km has little impact
on the estimate of reflectance. Thus, we limit the possible range of visibility to
15 to 65 km, which is approximately equivalent to the AOD range 0.47–0.13.

To simulate the average background radiance for the forward modelling i.e. for
the adjacency effect, the spatial relationship is built upon the adjacency range
(r) values corresponding to the background effect modelling. The average
background radiance is as a function of: 1) the extent of the neighbourhood
(EN = (2r + 1,2r + 1) of pixels that can spatially influence the target pixel
and 2) a weight function within EN . Scattering conditions, spatial cross
correlation, and uncertainty in estimating r have an influence on pixel wise
estimation of EN . The optimal value of EN is determined in three steps.
First, the minimum value of EN (pre-estimates) is determined by means of
variogram fitting using the function vgram.matrix of the fields package in R.
Second, a Monte Carlo simulation of photon scattering yielded the relative
contribution of EN as a function of AOD, wavelength, aerosol Ångstrom
coefficient, anisotropy factor of the Henyey-Greenstein aerosol phase function,
the pre-estimated range, and sensor altitude. The photon simulation calculates
the cumulative histogram of the adjacency contribution as a function of the
distance. Third, using the cumulative histogram, the final EN is determined.
To determine the Ångstrom coefficient average AERONET measurements of
the Bruges area over the period 2014–2017 are used. Applying this method
to the simulated and real scenes, the minimum value of EN was obtained
as (41, 41) pixels. The maximum value was set to (91, 91) pixels. This limit
was enforced by the spatial extent of the simulated and the real sub image
(100 × 100 pixels).
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6.3.2 Pixelwise parameter configuration for the forward modelling

From the ranges of visibility and EN , we now derive their spatial pattern
or variability over each pixel as we may find in real scenes for the forward
modelling. For the simulated dataset, a gradual increase in visibility which
varies between 15 km and 65 km corresponding to an AOD range 0.47–0.13
was realised. The direction of variation is taken from the left of the simulated
image to the right, i.e. column wise, with a step size of 2 km. To each pixel
in a column, randomly sampled values from the log–normal(µ, 0.02) with
µ = 15 km for the first column are assigned. A log-normal distribution is
used to approximate the actual distribution of visibility, being a skewed
normal distribution (Figure 5.2). The resultant spatial variability of visibility
is shown in Figure 5.1b.
For the adjacency effect, we considered the spatial variability of the classes
present in the simulated image. From visual interpretation we found it
spectrally more homogeneous at the centre of the image than at the edges.
Moving away from the centre of the image, this homogeneity weakens
(Figure 2.7). As spectrally homogeneous pixels cause a low adjacency effect,
a significant influence on the centre pixels can only be caused by pixels that
are far away from the centre. To address this spatial variability we set a
large EN = 91 pixels at the centre of the image. The range gradually
decreases as we move away from the centre of the image and to a minimum
of 41 pixels (Figure 5.1c).

6.3.3 Performance Discriminators

The quantitative assessment of the propagation of uncertainty originating
from the AC parameters is measured by the

signal to reconstruction error SRE ≡
E[∥x∥22]
E[∥x−x̂∥22]

, where x is the reference

signal and x̂ represents its estimation. SRE provides information on the
power of the signal with respect to the power of the error [77]. In all
experiments, we report SRE measured in dB: SRE (dB) = 10log10(SRE).

6.4 Estimation Methodology

6.4.1 Linear model for calibration

In a hyperspectral datacube each pixel is represented with a vector of length
B denoting the number of channels. Further, the true reflectance ρt of the
underlying surface within the IFOV is affected by atmospheric absorption
and scattering. Then its estimate ρ̂t obtained via AC is expressed as a linear
model:

ρ̂t = C ⋅ ρt + n, (6.1)

where the matrix C ∈ RB×B, is assumed to be diagonal, stores coefficients
that model the deviation of ρ̂t from ρt and n is the noise effect.
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If the coefficients of C approach 1 then the estimates of AOD approach the
actual AOD at the time of imaging, indicating a perfect match. If, however,
the coefficients of C deviate from 1, then the error in the estimates of AOD
increases. Here, we assumed that the effect of other atmospheric parameters
such as column water vapour is absent.
Fitting the linear model (6.1) by least squares is equivalent to an l2–norm
optimisation problem where the deviation in the coefficients of C is minimised.
In fact, it minimises the sum of the squares of the differences between ρ̂t and
ρt:

min
C

1

2
∥C ⋅ ρt − ρ̂t∥

2

2
, (6.2)

6.4.2 Searching for reference library spectra

To generate pre-estimates of reflectance, we executed AC for k different
visibility values that generated k reflectance cubes. As ρt is not known a
priori, we need its estimation that serves as a reference to solve (6.2). Here,
we assume that the ρt contains materials that are available in a spectral
library, which is known a priori. Spectral unmixing of the k reflectance cubes
provides k abundance maps indicating the fractional coverage of material
present in each pixel. For unmixing realised through the linear mixture model,
ρt can be expressed as a linear combination of the spectra of the endmembers,
weighted by their abundances:

ρt = y = A ⋅ x +N. (6.3)

Here, A ∈ RB×m is the set of endmembers in the scene serving as a spectral
library containing m pure spectra, x ∈ Rm is the vector of corresponding
fractional abundances compatible with A, and N ∈ RB is a noise vector. In
this chapter, we assume that A is available a priori. Unmixing thus aims at
identifying the atoms of A which are active in each pixel and their respective
abundances. From the works of [73,87], we found that Sparse Unmixing via
Variable Splitting, Augmented Lagrangian and Total Variation (SUnSAL-
TV) [73] a better option than SUnSAL without TV [77] for unmixing in the
presence of noise. SUnSAL-TV takes intrinsic spatial smoothness into account
as an important characteristic of natural scenes. We thus use SUnSAL-TV to
obtain a solution with piece wise smooth transitions of the abundance fractions
in neighbouring pixels. SUnSAL-TV solves the optimization problem:

min
X

1

2
∥AX − Y ∥2

F + λ1∥X∥1,1 + λTV TV(X), (6.4)

where

TV(X) ≡ ∑
{i,j}∈ ε

∥xi − xj∥1 (6.5)

is a vector extension of the non-isotropic TV [74] and ε denotes the set of
neighbours in the image. In (6.4), Y ∈ RL×n is the observed data matrix
with each column containing the observed spectrum at a pixel, X ∈ Rm×n is
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the matrix of fractional abundances, ∥X∥F ≡
√

trace{XXT } represents the

Frobenius norm of X and ∥X∥1,1 ≡ ∑ni=1 ∥xi∥1, with xi denoting the ith column
of X. The first term in (6.4) measures the data misfit, the second term forces
the matrix of fractional abundances to be sparse, and the last term accounts
for spatial homogeneity of the abundance maps. The parameters λ1 ≥ 0 and
λTV ≥ 0 are regularisation parameters. SUnSAL-TV introduces a set of new
variables per regularizer and then uses the Alternating Direction Method
of Multipliers (ADMM) [75] to solve the resulting constrained optimisation
problem. In our experiments, we neglect sparsity as the spectral libraries
employed will contain a small number of endmembers. We use SUnSAL-TV
applying both the non-negativity constraint (ANC) and the sum to one
constraint (ASC) [72] to solve the optimisation problem (6.4). Only spatial
information is considered in SUnSAL-TV by setting λ1 = 0 and λTV >0. The
ASC, often ignored due to signature variability [76] is used in this work as
we assumed the set of image endmembers to be known and hence no sparsity
is enforced on the vectors of abundances. The sparsity indicates that only a
small number of endmembers are present inside a pixel and implies that only
a few endmembers contribute to y, which is true for high resolution images.

6.4.3 Generating first visibility estimate

The methods then identifies the locations of pure pixels in the k reflectance
cubes using the unmixing method discussed in Section 6.4.2. The retrieved
abundance maps are, however, contaminated by retrieval uncertainties of
the observed surface, atmospheric parameters, and instrumental errors. To
accommodate for these uncertainties we select pure pixels in the k reflectance
cubes with an abundance value between 1 − t1 and 1.0, where t1 indicates
a threshold value that can be set according to the target application and
the sensor configurations. The spectra of each pure pixel are then evaluated
for distortion in terms of shape as can be determined by the spectral angle
mapper. The smaller the spectral angle the more similar a pixel is to a given
library spectra. The corresponding visibility value providing the minimum
spectral angle value and minimising (6.2) in least square terms is considered
as estimates of visibility for the reference pixel.

6.4.4 Iterations

Using the pre-estimates of visibility, we re estimate ρ̂t by minimising the C
iteratively. We derive a new visibility value Dvisi,e+1,λ for pixel i as

Dvisi,e+1,λ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Dvisi,e,λ + q, if C(λ, i) < 1 − t2
Dvisi,e,λ − q, if C(λ, i) > 1 + t2
Dvisi,e,λ , otherwise

(6.6)

where e is the iteration, Dvisi,e,λ is incremented or decremented by q depending
upon the conditions whether C is greater or less than the threshold value set
by t2. In this way, (6.2) is iteratively solved unless coefficient of C are close
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to 1.0. We use the coefficient range between (1− t2)–(1+ t2) as a convergence
criterion.

6.4.5 Interpolation of visibility

Following step 6.4.4, we obtained visibility values for the reference pixels, a
spatial estimation method is applied to pixels that are spatially related to
the reference pixels. A choice of spatial estimation method depends upon
the type of surface, number of reference pixels, and size of the scene. The
optimal number of neighbouring points to be used for spatial estimation
depends upon the adjacency range (r) values corresponding to the background
effect modelling. Three cases are distinguished to take account of the spatial
locations of the reference pixels and to select spatial estimation method:

� Case 1: No overlapping of the neighbourhood. This case accounts for
the scenario when within the neighbourhood of the target reference
pixel ENtarget, no other reference pixel fall.

� Case 2: Overlapping of the neighbourhood. This case accounts for
scenarios when the neighbourhood of two or more reference pixels
overlaps with ENtarget. This occurs when two or more pixels falls
within ENtarget.

� Case 3: No reference pixel is available for spatial prediction. This case
account for the scenario when to estimate visibility at the unsampled
location, no reference pixel can be spatially linked using EN .

To solve Case 1, stationarity is assumed within ENtarget implying the
parameters, such as mean and variance, are same in all parts of ENtarget

and in all directions. Randomly sampled values from P (µ,σ) distribution
are used to assigned values within ENtarget. Here, µ is the value of visibility
at the reference pixel and σ is used to accommodate for the insignificant
spatial variability in visibility.
To solve Case 2, if w number of neighbourhoods EN1, . . . ,ENw are
overlapping then the pixels within EN1, . . . ,ENw are combined to create a
large field accommodating all the overlapping reference pixels. An
interpolation is then applied on this large field using values of visibility at all
the accommodated reference pixels as data points.
To solve Case 3, for a pixel that is spatially unrelated to any reference pixel,
visibility value is estimation using a method, which is called binning. Binning
comprises the following steps:

� step 1, find the spatial variation of visibility using values estimated for
Case 1 and Case 2. We distinguished three types of spatial variation in
visibility: a) vertical, b) horizontal, and c) diagonal. The specific
variation is obtained by evaluating histograms of visibility values from
line transects in vertical, horizontal, and diagonal directions. A
bimodality or multimodality of the histogram from a specific line
transect shows a strong variation of the visibility. For instance, if
visibility is vertically varying (column wise) then the histogram
obtained from the horizontal line transect shows bimodality or
multimodality,
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� step 2, the histogram that shows unimodality, that is direction of non-
variation of visibility, is used to generate the distribution P (µ,σ). For
instance, if visibility is vertically varying then histogram generated
from the values from vertical line transect are used to generate the
P (µ,σ),

� step 3, for vertical and horizontal variation, randomly sampled value
from P (µ,σ) is assigned to spatially unrelated pixel. If visibility is
diagonally varying then nearest neighbourhood method [94]S is used to
interpolate the missing value.

6.5 Experimental Results

6.5.1 Specific choices of methods and values

The value of k is set to three and visibility values, 35, 45, and 55 km that
generated three reflectance cubes are used. The values between 35 and 55 km
(AOD values between 0.22 and 0.14) corresponds to moderate scattering
conditions, which suits to the imaging conditions of airborne campaigns.
The value of t1 is set to 0.05 resulting in fraction between 0.95 and 1.0
as a criterion to select a pure pixel. From our experience with real images
processed through CDPC we learnt that a reflectance estimate is not sensitive
to visibility values that are less than 5 km. Therefore, to solve Case 1, we
set σ = 2.5. To solve Case 2, we used a weighted average inverse distance to
power method with power equal to 2 [94, 95]. To solve (6.6), we set q = 5
km as reflectance is sensitive to a difference of 5 km in visibility value. The
convergence criterion is set between 0.99 and 1.01 by setting t2 to 0.01. Such
a narrow range allows estimating the finest achievable visibility value of a
sensor. Depending upon the end product and sensor configurations, wider
convergence ranges can be explored.

6.5.2 Visibility estimation for the simulated dataset

In Figure 6.1, visibility estimations after six iterations with missing visibility
values and interpolated values using binning are shown. The spatial variability
of estimated visibility values is comparable to the reference spatial variability
as shown in Figure 5.1b.
We then estimated reflectance using visibility values for six iterations and
observed a significant improvement in the estimations from iteration 1 to
iteration 6. This is confirmed by the range of estimated visibility values in
Figure 6.1. We observed a performance (SRE) of 35 dB after six iterations.
After more iterations, however, further changes in visibility do not improve
reflectance estimations. The reason is that a distinction between 5 and 7 km
of visibility, which corresponds to AOD values between 0.06 and 0.08, is
difficult to observe from the coefficient values because of the relatively low
sensitivity of reflectance to variability in visibility. This is consistent with our
previous work [87]. The optimal value of λTV corresponds to the maximum
value of SRE (dB) is 0.01 for 30 dB noise case.
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Figure 6.1: Interpolated values of visibility for 30 dB correlated noise case
after the sixth iteration for the related pixels (a) and after binning for the
related pixels.

6.5.3 Visibility estimation for the real dataset

For the real dataset, we cannot evaluate the performance of the method
as there is no reference dataset available. Thus, we considered generating
a pseudo reference dataset. To achieve this, we perform additional pre-
processing on the available real reflectance cube (Figure 2.12b). The procedure
to generate the reference reflectance cube comprises the following steps:

1. From the real at-sensor radiance cube, a set of endmembers is manually
selected, whereas the corresponding pixels are called reference pixels.

2. Reflectance are estimated by performing AC using various pre-selected
combinations of the atmospheric condition parameters.

3. From the estimated reflectance cubes spectra of the reference pixels are
evaluated to check distortion in terms of shape (Section 6.4.2).

4. The reflectance cube that corresponds to the optimal combination
serves as the reference cube.

5. The reference cube is transformed to obtain a pseudo at-sensor radiance
cube using the MODTRAN 4 forward modelling simulations with the
same atmospheric conditions as used in the forward modelling of the
simulated dataset.

6. To the pseudo reference dataset we added 60 dB white Gaussian noise
at-sensor level and 30 dB correlated noise to the estimated reflectance
cube, as we did for the simulated dataset.

Figure 6.2 shows estimations of visibility after the second and fifth iterations.
After five iterations we observed a saturation in performance and observed
a performance (SRE) of 35 dB. We observed results of estimating visibility
which are similar to findings with the simulated dataset. The optimal value
of λTV corresponds to the maximum value of SRE (dB) is 0.01 for 30 dB
noise case.
For performance assessment, we compared our method with the DDV pixels
based visibility estimation method in [8]. Applying the DDV method on both
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Figure 6.2: Interpolated values of visibility with a correlated noise 30 dB
after the second iteration (a) and the fifth iteration (b) for the real dataset.

the datasets we obtained visibility at DDV pixels only. Further, the DDV
based method is highly effected by illumination and viewing geometry even
for the same flight line. We observed large variation in visibility estimation
for adjacent pixels. For instance, at one pixel the estimated value was 32 km
whereas at the next pixel it was 80 km. Because of large variation, low
SRE (between 5 and 10 dB) was observed at the DDV pixels. From these
results we conclude that the proposed method performs better than the
reference method.

6.5.4 Experiment with spatial variability

This experiment aims to test the proposed method for different spatial
variability of visibility and adjacency range. The spatial variations in the
parameters are achieved by applying rotation to the reference values of
visibility and the background window size defined for each pixel in Figure 5.1b
and Figure 5.1c. We also applied spatial smoothing to visibility values at each
pixel after the rotation. In addition, visibility and background window are
varied diagonally, see Figures 5.9–5.12. The reason to rotate and smooth the
reference data and to realise diagonal variability, is to generate different ways
to arrange visibility and adjacency in the spatial domain. These variations
of the parameters cover some relevant variation scenarios as can be found
in real imaging conditions. These spatial variations are used in the forward
modelling as explained in Section 6.3.2 to obtain various at-sensor radiance
cubes. The proposed method is then applied on the at-sensor radiance cubes.
The measured SRE values are close to 35 dB. In addition, the number of
iterations to achieve convergence is between 5 and 7. This experiment showed
that the method presented in this chapter estimates visibility correctly for
various spatial variation of the parameters.
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6.6 Discussion and Conclusion

This chapter presents a method that iteratively estimates aerosol optical
depth (AOD) from the estimates of reflectance spectra. It was applied to a
hyperspectral sensors and there is no reason why it should also not be effective
on other hyperspectral sensors. The method is simple to implement and can
be extended to encompass other atmospheric parameters. In particular, the
number of iterations for a pixelwise estimation is between 6 and 8. The reason
why we could use less iterations is that for each iteration the new estimates are
fed back into atmospheric correction procedures where estimation converges
when reflectance becomes insensitive to changes in visibility.
The method was applied on a small sub scene to differentiate between
uncertainty and variability of the scene. This way larger real scenes divided
into smaller sub scenes can be processed. The only challenge there would be
to estimate background contribution for adjacency correction. It is because in
larger scenes background radiance can originate from pixels that are outside
the sub scene, especially for spaceborne data. This challenge can be resolved
by first estimating the background contribution over the full scene.
To generate first estimates of reflectance, we considered 35, 45, and 55 km
values of visibility for AC that generated three reflectance cubes. The values
between 35 and 55 km (AOD values between 0.22 and 0.14) is a good
preliminary range because airborne campaigns are often performed under
low to moderate scattering conditions. This value can, however, be adjusted
for space borne data or when the data is acquired under high scattering
conditions. The proposed method is flexible for such changes.
The interpolation method used in this study is weighted average inverse
distance to power method. This choice is based on the assumption that for a
small scene pixels that are close to the target pixel are contributing more to
the background radiation than those that are farther apart. Moreover, for
small area the choice of the interpolation method is not critical. Further, any
uncertainty arising from the interpolation method is tractable. It is because
the spatial extent of neighbouring pixels is based upon an adjacency range,
which is calculated using the three step process defined in Section 6.3.1. While
performing experiments for different spatial variations of the two parameters,
low performance was expected when visibility was diagonally varying. It is
because to solve Case 3, when visibility is diagonally varying we used nearest
neighbour method which could effect the performance of the method for
various diagonal variations (as shown in Figures 5.9–5.12. No notable variation
in the performance was observed. This is attributed to small area where
choice of the interpolation method was not critical. More experiments can be
performed to test the effect of spatial variation on the performance for larger
scenes. As for small area the choice of interpolation method is not critical,
the choice for the interpolation method made in this chapter is based upon
the speed of the methods. For instance, the nearest neighbour interpolation
method is faster than cubic or spline based interpolation methods.
The criterion to select the pure pixels is based upon the value of t2 and
the spectral angle values. To further automate this process factors such as
scattering conditions, scene heterogeneity, path length from surface to the
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sensor can be considered and more sophisticated methods that identifies
reference pixels under uncertainty can be developed.
Further, the performance reported in this chapter are globally calculated. It
is because the scattering conditions are set to moderate a suitable option for
airborne data. For high scattering conditions, AOD between 1.42 and 0.47
which is equivalent to visibility between 4 and 15 km, it is important to report
performance at each pixel. It is because for high scattering conditions, the
presence of bright and dark targets in a scene becomes relevant [87]. Bright
targets reflect more radiation energy than dark targets. Thus, the majority
of at-sensor radiance consists of photons that are not scattered. In contrast,
most photons for the dark targets are scattered. This contribution amplifies
under high scattering conditions, resulting in performance degradation for
dark targets.
Care should be taken when using visibility as a substitute to AOD, especially
under high scattering conditions where AOD is highly sensitive to visibility. As
long as airborne campaigns are not acquired under high scattering conditions,
errors seen at 0–10 km visibility in [38] are unlikely to be experienced with
operational remote sensing.
The present study can be further extended to take other atmospheric
correction parameters into account. Deeper effects of the Ångstrom
coefficient can be investigated. It would be interesting to use the proposed
method in an application where various methodological choices can be fine
tuned to suit the application. Experiments with spectral libraries containing
a large number of spectral signatures are recommended but those are
beyond the scope of the current study.
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7Synthesis

The goal of this chapter is to synthesise the key findings from this research
and put them into a broader perspective. The chapter begins with positioning
the developed framework. It is followed by answers on the aims and the
objectives and the conclusions. Finally, suggestions and recommendations for
future extension of this research are presented.

7.1 Positioning the research

The reflected radiance of a target surface measured by a sensor mounted
on a distant platform comprises of surface reflected radiation and radiation
components such as path radiance and background radiance. Measuring
the desired surface reflected radiance using at-sensor radiance can then
be formulated as an inverse problem. This consists of using the at-sensor
radiance to infer the values of the atmospheric condition parameters. These
characterise the interaction of surface reflected radiation with atmospheric
constituents to estimate surface reflected radiance. The inverse problem is
implemented by means of radiative transfer based atmospheric correction.

In an operational processing and archiving facilities (PAF) of satellite earth
observation systems, atmospheric correction has been important since the
products are typically used for the global and multi temporal estimation as
a time series analysis of the radiation budget, environmental parameters or
quantitative atmospheric remote sensing applications.

Airborne remote sensing has been used for recurrent conventional
photogrammetric mapping tasks resulting in mixed sensor type time series of
airborne imagery. Examples are agricultural acreage estimation, dry matter
productivity estimation and mapping of vegetation stress. The analytical
tools generating such products often need quantitative measurements. Also,
in applications where data from different sensor systems are to be fused,
surface reflected radiance is often used. As a consequence, atmospheric
correction has been increasingly important in airborne remote sensing PAFs.
It reduces the effects of scattering and absorption by gases and aerosols in
the atmosphere between the Earth’s surface and the sensor to estimate
surface reflectance from the observed signal. Depending upon the sensor
platform and product requirements, various types of reflectance products
can be generated using atmospheric correction. The airborne data processing
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facility of the CDPC estimates the hemispherical directional reflectance
factor (HDRF) product. The HDRF product is suitable to airborne sensors
as their IFOV is usually small, for instance, 0.129○ for the HyMap airborne
hyperspectral scanner.
When applying radiative transfer based atmospheric correction, reflectance
is estimated assuming a plane parallel geometry of the atmosphere, whereas
the viewing and illumination geometry and total optical depth of the
atmosphere are assumed to be known. For a reliable estimate of any
reflectance product, the concentration of the atmospheric scatterers and
absorbers, i.e. the atmospheric condition parameters, should be available at
the time of imaging.
The methodology implemented in the CDPC to quantify pixelwise water
vapour concentration is based upon [23]. It estimates column water vapour
concentration in five steps. Each step generates a number of synthetic at-
sensor spectral signals each with a different amount of atmospheric column
water vapour concentration. After applying scaling to the signals and to
the actual at-sensor radiance, it iteratively determines column water vapour
concentration values. These steps are repeated until convergence is reached.
The results of this methodology, are then used in the subsequent atmospheric
correction.
In the CDPC and other PAFs such as the Atmospheric and Topographic
Correction for Airborne Scanner Data (ATCOR) of the German Aerospace
Centre (DLR), the methodology implemented to quantify aerosol optical
depth is based upon [8]. It measures a parameter called visibility for
characterisation of aerosol optical depth. The method first retrieves at-sensor
radiance of dense dark vegetation pixels. It then estimates visibility over
those pixels using a relation between at-sensor radiance observed at the
shortwave infrared (SWIR) band, the red band, and the blue band. Visibility
is related with the aerosol extinction coefficient at 550 nm via (2.9). At 550
nm the contributions of molecular depth, ozone depth, and trace gases
usually are small and aerosol optical depth is the main contributor to the
total optical depth of the atmosphere, i.e. the extinction coefficient at 550
nm is directly related to aerosol optical depth. The sources of uncertainty in
the atmospheric condition parameters are discussed in Section 2.1.
Another important parameter is the adjacency range. This parameter
determines the contribution of the radiance originating from the background
of a target pixel in the observed target spectrum by means of atmospheric
scattering. The adjacency effect is prominent if the reflectance of
neighbouring surface deviates strongly from the reflectance of the target
surface. The additive effect of adjacency can be simulated by taking into
account a band specific average radiation of some neighbouring pixels. Here,
the average background radiance is a function of: 1) the extent of the
neighbourhood of pixels that can spatially influence the target pixel and 2) a
weight function within the neighbourhood. Scattering conditions, spatial
cross correlation, and uncertainty in estimating the adjacency range all
influence the pixelwise estimation of the extent of the neighbourhood. The
parameter with the highest uncertainty is given by the target specific kernel
size of the filter applied on the image. The adjacency kernel size can be
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adjusted by the CDPC operators. As a rule of thumb, the adjacency effect
can be simulated by a kernel covering a spatial extent of half the flight
height. Further, this kernel size can be fine-tuned if in-situ spectroradiometer
measurements are available. In Section 6.3.1, an approach to determine the
extent of the neighbourhood is presented. Uncertainty in the atmospheric
condition parameters, as formulated in Section 2.1, propagates to reflectance
estimates. As the uncertainty in the reflectance estimates further propagates
to application products, confidence bounds are required for a further data
analysis. The MODTRAN interrogation technique is used in the CDPC to
estimate various radiative components of (2.8) for atmospheric correction.
To execute this technique, atmospheric condition parameters such as
concentration of trace gases and amount of aerosol are required. In addition,
various other types of parameters are used to specify the imaging conditions.
For instance, 12 ambient band model species are included in MODTRAN 4,
such as water vapour, carbon dioxide, ozone, and oxygen and several heavy
molecular gases. Likewise, single scattering and multiple scattering options
and aerosol types that are related to aerosol settings have multiple options
to model radiative transfer. These parameters are linked to the background
processes through physical radiative transfer models. In this research, an
uncertainty free physical structure of the radiative transfer is assumed.
In MODTRAN 4, one way to model the aerosol loading is by specifying
visibility, selecting a specific aerosol model, and specifying how water vapour
influences aerosol. By selecting an aerosol type a pre-defined aerosol model is
used in the background processes assuming it is present in the atmosphere
at the time of imaging. For example, a rural aerosol model in MODTRAN
4 represents regions of the atmosphere not impacted by urban or industrial
processes. It is assumed to be composed of 70% water soluble material and
30% aerosol for a specific water vapour concentration. One may include
uncertainty about the ratio of water soluble material and dust by quantifying
it with Monte Carlo methods and using a probability distribution of each
aerosol component. To do so, either regional data measured in a study area,
or global data are required. With such data the aerosol loading can be directly
set in many radiative transfer models, e.g. using a multimodal log-normal
distribution. Besides, a separate uncertainty analysis of the ground measured
data would be required. A full uncertainty analysis might be interesting for
the future but is at present out of the scope of this research.
The three atmospheric condition parameters studied in this research i.e.
column water vapour, aerosol optical depth, and adjacency range cover the
absorption, the scattering, and the adjacency range type parameters. For the
developed framework, a large number of atmospheric condition parameters can
be processed to quantify the propagation of uncertainty, allowing scalability.
This implies that an analysis with, say column water vapour, provides insight
into handling other trace gases such as ozone and carbon dioxide. In this
way, the thesis allows to develop a framework that is scalable to incorporate
additional parameters and applications.
A peculiar aspect of this thesis is that it is concentrated on processing of
images within a PAF. A PAF cannot readily adapt to new methods or models
at the pace with which these emerge. In particular, existing relations between
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applications and methods or models may change or even disappear. The
framework presented in this thesis provides a basis for existing methods to
allow interactions with the involved parameters, and assists in analysing and
representing uncertainty propagation. In this way, such a framework is useful
for a PAF in the long run.
The developed framework comprises of methods to optimise uncertainty
of the parameters as described in Chapter 5 and Chapter 6. For a PAF
acknowledging and quantifying the uncertainty has been a challenge. One of
the important reasons has been the large data volume processed through a
PAF. Application of Monte Carlo based methods on a large data volume is
computationally intensive and time consuming. The methods developed in
this research to optimise the parameter’s uncertainty are, therefore, important
in a PAF.

7.2 General conclusions

The thesis has four components: atmospheric correction (AC), retrieval of
atmospheric condition parameters, unmixing as an application, and
propagation of uncertainty from the atmospheric condition parameters to
abundance maps. AC requires knowledge on the atmospheric state expressed
by parameters. Their values are affected by uncertainties that propagate to
the abundance maps via reflectance estimates. The thesis identifies trends in
performance degradation caused by the gradual shift in parameter values
from their true value. This relationship leads to quantifying the propagation
of uncertainty from the parameters to the abundance maps via reflectance
estimates. The general conclusions are the following.

1. Sensitivity analysis (SA) gives information on the contribution of sources
of variation to dispersion in the output. In Chapter 6 it was shown
that a distinction between 5 and 7 km of visibility, which corresponds
to AOD values between 0.06 and 0.08, is difficult to observe from the
coefficient values because of the relatively low sensitivity of reflectance
to variability in visibility. From these experiments, I conclude that
sensitivity of an application product to parameter uncertainty provides
a useful convergence criterion while estimating the involved parameters.

2. From the lens of uncertainty propagation, an estimate of an
atmospheric condition parameter using reflectance is more efficient
than using at-sensor radiance. I found that it is possible to establish a
linear relationship between reflectance and an atmospheric condition
parameter. This implies that the parameter’s estimation problem can
be solved with a linear equation as shown in Chapters 5 and 6.

3. Sources of uncertainty and propagation of uncertainty are useful
measures to determine the performance of a method or a model. As
shown in Chapter 4, deviation of a parameter value from its true value
due to uncertainty can cause deflection in the estimates of reflectance.
From this viewpoint, uncertainty analysis should be integrated to
assess the performance of a method or a model that uses reflectance as

92



7.3. Detailed conclusions

an input.

4. Surface albedo is an important source of uncertainty while quantifying
the propagation of uncertainty. Chapter 4 concludes that the surface
albedo influences the quality of the spectra retrieved via AC,
independently from the effects of the uncertainty in the AC
parameters and scattering conditions.

5. A SA of the sensor noise and processing noise is as important as a SA
of model parameters. Such an SA provides useful information whether
noise has any impact on the outcome or not, this further helps in
building an appropriate noise model. As shown in Chapter 5, for a
strong water absorption feature the effect of water vapour uncertainty
is higher than the effect of the processing noise. For such scenarios,
measuring the water vapour should be carried out in a more intensive
way than building a noise model.

7.3 Detailed conclusions

The main objective of this research was to develop a methodology for
uncertainty propagation originating from atmospheric condition parameters
to reflectance and to unmixing products in a layered processing system. To
achieve the main objective of this research, it is divided into four
sub-objectives.

7.3.1 Sub-objective 1

The first sub-objective aimed to quantify the importance of the absorption
effect due to water vapour concentration and the importance of the scattering
effect due to aerosols in terms of aerosol optical thickness in estimating
reflectance via the atmospheric correction modelling (AC).
The sensitivity of the estimated reflectance to water vapour and aerosol
optical depth depends upon the wavelength, strength of the water absorption
feature, parameter uncertainty, and surface albedo. Further, aerosol optical
depth is an important parameter for atmospheric correction. It is more
important than column water vapour even at the principal absorption feature.
For bright targets, the importance of column water vapour and aerosol optical
depth depends upon the strength of the absorption feature. Sensitivity indices
for aerosol optical depth were high for the non-absorption water bands.
To quantify the uncertainty propagation, a probability distribution for each
parameter was defined. To do so, I incorporated the Fourier Amplitude of
Sensitivity Test (FAST) and the extended FAST (e-FAST) methods. These
methods facilitate the use of a large range of probability distributions, a search
curve based sampling method, and calculation of Monte Carlo simulations.
This suits to scenarios that require expert knowledge on a parameter. They
also facilitate a sensitivity analysis of the output to each parameter. For
scenarios that require expert knowledge, the framework enables probability
distributions and sampling schemes defined by experts.
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These findings help in setting various components of the framework. For
instance, if an effect of an absorption parameter is a function of wavelength,
strong absorption features can be used to calculate probabilistic information.
This information is useful to build a method for another absorption parameter.
In addition, using the search curve, a method in the framework is devised
that provides interaction among the atmospheric condition parameters. For
instance, interaction between aerosols and water vapour in the atmosphere
can be modelled using the probability distribution of the parameters.

7.3.2 Sub-objective 2

The second sub-objective aimed to provide a qualitative and quantitative
analysis of uncertainty propagation from values of the AC parameters to the
fractional abundances derived from unmixing. It considered three atmospheric
condition parameters. The uncertainty propagation method was applied to
the HyMap hyperspectral sensor and there is no reason why it should also
not be effective on other hyperspectral sensors. The method is simple to
implement and can be extended to encompass other atmospheric trace gases
and other atmospheric condition parameters.
A useful insight was found into how a given uncertainty affects the
performance at reflectance level and at subsequent applications (spectral
unmixing). I found that the atmospheric settings, noise, and the parameter’s
deviation have a combined effect on the propagation of the uncertainty.
I further noted that the variability in aerosol optical depth influenced the
amplitude of the retrieved spectra. Its influence was not linear, in the sense
that deviations from the reference spectra depend upon the surface reflectance
of the target, the wavelength, and the scattering conditions. This observation
is consistent with the findings for sub-objective 1.
Uncertainty in column water vapour affected the performance more severely
than uncertainty in aerosol optical depth, because variation in column water
vapour significantly distorted the spectral shape. The uncertainty in aerosol
optical depth, however, strongly influenced the quality of the abundance maps
if the endmembers were spectrally similar, especially if high atmospheric
scattering occurred.
Further, the propagation of uncertainty was always higher for abundance
estimates than reflectance estimates. This might be due to the combined
uncertainty i.e. propagated uncertainty from the reflectance estimates and
the inherent limitations of the unmixing method and their numerical
approximations.
I found a difference in uncertainty propagation for high scattering conditions
due to the presence of bright and dark targets in a scene. Bright targets
reflect more radiation energy than dark targets. Thus, the majority of the
at-sensor radiance consists of photons that are not scattered. In contrast,
most of the photons for the dark targets are scattered. This contribution
amplifies under high scattering conditions resulting.
Effective ranges of column water vapour and aerosol optical depth were within
the 90% confidence interval from their true values. Outside this interval, the
performance strongly degraded and saturated to a low value. Such effective
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ranges could be useful for calibrating the value of the two parameters in
optimising the performance under uncertainty. Under high noise conditions
(SNR = 30 dB), both spectral quality and unmixing performance are strongly
degraded, whereas the effect of scattering becomes less important. A high
noise level therefore has a weaker influence on the performance trend for
column water vapour than for aerosol optical depth, resulting in a distinct
peak of the performance. Thus, in the presence of high noise in airborne data,
uncertainty in atmospheric correction parameters and data noise affect the
final products jointly.
These finding helped in addressing various fundamental concerns pertaining
to quantifying the propagation of uncertainty. For instance, finding the best
ways to report the propagation of uncertainty. To benefit various types of
applications and researchers, involved in a PAF, the propagation of
uncertainty was reported by measuring various quantities at pixel level and
at scene level. In addition, incorporating the effect of noise, surface albedo in
the propagation analysis, and including the unmixing application provided a
greater insight into how to incorporate an application to the propagation
framework.

7.3.3 Sub-objective 3

The third sub-objective was to estimate and calibrate column water vapour
under uncertainty. It aimed to develop a method to iteratively estimate column
water vapour from pre-estimates of reflectance spectra under uncertainty.
I found several benefits of estimating the column water vapour using pre-
estimates of reflectance than estimations based upon at-sensor radiance. This
is because a pre-estimated reflectance spectrum is obtained after atmospheric
correction where all errors are already modelled and show their effects as
over- or under-estimation at an absorption feature.
Further, I found that under the influence of noise and incorrect estimation of
aerosol optical depth and the background window have little to no influence
on column water vapour estimation. The reason is that these perturbations
affect the amplitude of the spectra of a pixel and do not contribute to over-
and under-estimation of reflectance at the strong absorption feature. These
findings are, however, only valid for low to moderate scattering conditions
(>15 km). Under high scattering conditions the effect of aerosol optical
depth on column water vapour retrieval is significant and have influenced the
retrievals. Airborne campaigns, however, occur on clear days, that is when
scattering conditions are moderate to low. Thus, for strong water absorption
features, the quality of column water vapour estimation is dominant over
visibility, the adjacency effect and the correlated noise.

7.3.4 Sub-objective 4

The fourth sub-objective was to estimate aerosol optical depth under
uncertainty. The objective aimed to iteratively estimate aerosol optical
depth from the estimates of reflectance spectra. I noted that the processing
time to estimate aerosol optical depth under uncertainty was low. It is
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because for each iteration the new estimates are fed back into atmospheric
correction procedures where estimation converges when reflectance becomes
insensitive to changes in visibility.
The method was applied on a small sub-scene to differentiate between
uncertainty and variability of the scene. This way larger real scenes divided
into smaller sub-scenes can be processed. The only challenge there would be
to estimate background contribution for adjacency correction. It is because
in larger scenes background radiance can originate from pixels that are
outside the sub scene, especially for spaceborne data. This challenge can be
resolved by first estimating the background contribution over the full scene.
To generate first estimates of reflectance, we considered 35, 45, and 55 km
values of visibility for AC that generated three reflectance cubes. The values
between 35 and 55 km (AOD values between 0.22 and 0.14) is a good
preliminary range because airborne campaigns are often performed under
low to moderate scattering conditions. This value can, however, be adjusted
for space borne data or when the data is acquired under high scattering
conditions. The proposed method is flexible for such changes.
The interpolation method used in this study is weighted average inverse
distance to power method. This choice is based on the assumption that for a
small scene pixels that are close to the target pixel are contributing more to
the background radiation than those that are farther apart. Moreover, for
small area the choice of the interpolation method is not critical. Further, any
uncertainty arising from the interpolation method is tractable. It is because
the spatial extent of neighbouring pixels is based upon an adjacency range,
which is calculated using the three step process defined in Section 6.3.1. While
performing experiments for different spatial variations of the two parameters,
low performance was expected when visibility was diagonally varying. It
is because to solve the case, when visibility is diagonally varying we used
nearest neighbour method which could effect the performance of the method
for various diagonal variations. No notable variation in the performance was
observed. This is attributed to small area where choice of the interpolation
method was not critical. More experiments can be performed to test the
effect of spatial variation on the performance for larger scenes. As for small
area the choice of interpolation method is not critical, the choice for the
interpolation method made in this thesis is based upon the speed of the
methods. For instance, the nearest neighbour interpolation method is faster
than cubic or spline based interpolation methods.
Care should be taken when using visibility as a substitute to AOD, especially
under high scattering conditions where AOD is highly sensitive to visibility. As
long as airborne campaigns are not acquired under high scattering conditions,
errors seen at 0–10 km visibility in [38] are unlikely to be experienced with
operational remote sensing.
The findings from sub-objective 3 and sub-objective 4 answered the question
whether uncertainty can be minimised. I found that with more information
about estimated spectra over a scene and its estimation conditions
uncertainty about the parameters can be minimised, called optimisation. In
addition, for uncertainty propagation, parameter estimates from the
pre-estimates of reflectance is more useful than using at-sensor radiance
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based parameter estimates. At-sensor based inference of a condition
parameter is affected by retrieval uncertainties and instrumental errors.
Additional processing to mitigate those errors is required to have a reliable
reflectance product. For instance, the use of reference pixels and averaging
the data, say over 10 × 10 pixels, to reduce the influence of noise, requires a
significantly larger data volume for analysis. In addition, uncertainty
induced by such processing is often ignored or impossible to model. Further,
most estimation methods rely upon some surface characteristics. Finally, I
found that the uncertainty propagation with the categorical parameters such
as aerosol type is challenging, because for a Monte Carlo analysis, sampling
of a categorical parameter is difficult to implement. The analysis in this
research is restricted to the absorption and scattering type parameters.
Nevertheless, I tested three of the four aerosol type aerosol models available
in MODTRAN 4: maritime, rural, and urban. An univariate analysis with
the three aerosol models under various atmospheric conditions gives nearly
identical uncertainty propagation results in the visible/NIR wavelength
region. This implies that the propagation of uncertainty under various
aerosol types and models does not influence the trend of the propagation of
uncertainty.

7.4 Outlook

This research can be useful to PAFs for integrating uncertainty propagation
into their processing chains. Within the scope of this research I found some
limitations of this research, which are discussed below. Some limitations are
due to limitations of the methods adopted while others are induced by the
scope of this research work within the given time frame.
In our experiments, the adjacency range has a negligible influence on
uncertainty propagation in the current setup. This might have been a
consequence of the size of the real and simulated images used. From our
experience, with real images non-negligible reflectance variations are mainly
detected for large variations in adjacency range e.g. in the order of hundreds
of pixels, for hyperspectral data with a spatial resolution similar to the
HyMap and APEX sensors. These variations are mainly triggered by
spectral heterogeneity or topographic characteristics of a scene. Integrating
these factors with uncertainty propagation is out of the scope of our
research. Thus, the adjacency effect can be further integrated with the
uncertainty propagation for scenes where heterogeneity and/or topographic
effects are important.
Ignorance of mutual interaction of atmospheric constituents i.e. how variation
(due to uncertainty) in the concentration of CWV affects the concentration
and behaviour of aerosol optical depth and adjacency range. I addressed such
interactions in all experiments by deriving a joint probability distribution
function (PDF) of column water vapour concentration and aerosol optical
depth. The method is explained in detail in Chapter 3. In short, I used
column water vapour and aerosol optical depth as obtained from the image
based methods to derive the joint PDF. Also, in MODTRAN 4, setting the
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parameter H2OAER (in Card 1A) to true, aerosol optical properties are
modified to reflect the changes from the original relative humidity profile
arising from the scaling of the water column. As the measurements of aerosol
optical depth and column water vapour concentration obtained from the
image based methods were not showing significant correlation, the actual
physical interaction between the parameters could not be realised. Thus,
more investigations to study the parameters interaction are required.
The presented study can be easily extended to take other atmospheric
correction parameters into account, like oxygen and ozone absorption.
Further, uncertainty arising from other pre-processing steps such as
removing shadow can be included in assessing uncertainty in reflectance
products.
Factors like the internal sources of variation and relations between parameters
are too complex to fully explore. Thus, model uncertainty, i.e. uncertainty
due to the internal structure of atmospheric correction, is not considered.
Instead, I assumed that the physical structure of the background processes
in a radiative transfer code and methods used to estimate the condition
parameters are certain. For further studies it may be important to include
the uncertainty associated with the physical structure of the background
processes.
It would be interesting to compare different unmixing methods while
considering the reflectance uncertainty. Moreover, as uncertainties are also
introduced by the specific unmixing method used, a comparison between
unmixing methods can be extended while considering the model uncertainty
at the unmixing level. Experiments with spectral libraries containing a large
number of spectral signatures are recommended to be carried out. Apart
from unmixing, other applications, e.g. environmental modelling, precision
agriculture and land cover monitoring, can benefit from the study presented
in this work.
Remote sensing products are used in many applications. To proliferate the
capabilities of the developed framework further, methods should be developed
to incorporate uncertainty arising from a time series of data for various
applications should be developed.

98



Bibliography

[1] M. E. Schaepman, M. Jehle, A. Hueni, P. D’Odorico, A. Damm,
J. Weyermann, F. D. Schneider, and et. al., “Advanced radiometry
measurements and Earth science applications with the Airborne Prism
Experiment (APEX),” Remote Sensing of Environment, vol. 158, pp.
207–219, 2015. [Online]. Available: Link

[2] T. Stuffler, K. Forster, S. Hofer, M. Leipold, B. Sang, H. Kaufmann,
B. Penne, and et. al., “Hyperspectral imaging-An advanced instrument
concept for the EnMAP mission (Environmental Mapping and Analysis
Programme),” Acta Astronautica, vol. 65, no. 7–8, pp. 1107–1112, 2009.

[3] JCGM, “JCGM 100: 2008 Evaluation of measurement data Guide to the
expression of uncertainty in measurement,” Joint Committee for Guides
in Metrology, Standard Guidelines 100, 2008.

[4] JCGM-guidelines, “JCGM 101: 2008 evaluation of measurement data
Supplement 1 to the Guide to the expression of uncertainty in
measurement Propagation of distributions using a Monte Carlo method,”
Joint Committee for Guides in Meteorology, Standard Guidelines 101,
2008.

[5] I. Reusen, M. Bachman, J. Beekhuizen, E. Ben-Dor, J. Biesemans, J. L.
Brenguier, P. Brown, and et. al., “Eufar goes hyperspectral in FP7,”
in 2009 First workshop on hyperspectral image and signal processing:
evolution in remote sensing, August 2009, pp. 1–4.

[6] N. Fox, “A guide to expression of uncertainty of measurements,”
Quality Assurance framework for Earth Observation, Technical Report
QA4EO-QAEO-FEN-DQK-006, 2010, last Accessed on 23/01/2018.
[Online]. Available: Link

[7] L. A. Remer, Y. J. Kaufman, D. Tanre, S. Mattoo, D. A. Chu, J. V.
Martins, R. R. Li, and et. al., “The MODIS aerosol algorithm, products,
and validation,” Journal of the Atmospheric Sciences, vol. 62, no. 4, pp.
947–973, 2005.

[8] R. Richter, D. Schlapfer, and A. Muller, “An automatic atmospheric
correction algorithm for visible/NIR imagery,” International Journal of
Remote Sensing, vol. 27, no. 10, pp. 2077–2085, 2006.

99

http://dx.doi.org/10.1016/j.rse.2014.11.014
http://qa4eo.org/docs/QA4EO-QAEO-GEN-DQK-006_v4.0.pdf


Bibliography

[9] G. Heuvelink, Error propagation in Environmental Modelling with GIS.
London: Taylor & Francies Ltd., 1998.

[10] G. M. Foody and P. M. Atkinson, Eds., Uncertainty in Remote Sensing
and GIS. Chichester: J. Wiley & Sons inc., 2002.

[11] C. H. Liu, “Error propagation in atmospheric correction due to azimuthal
angle simplification of lookup tables,” International Journal of Remote
Sensing, vol. 30, no. 3, pp. 275–282, 2010.

[12] M. S. Salama and A. Stein, “Error decomposition and estimation of
inherent optical properties,” Applied Optics, vol. 48, no. 26, pp. 4947–
4962, 2009.

[13] A. Stein, N. A. S. Hamm, and Q. Ye, “Handling uncertainties in image
mining for remote sensing studies,” International Journal of Remote
Sensing, vol. 30, no. 20, pp. 5365–5382, 2009.

[14] A. Lucieer, A. Stein, and P. Fisher, “Multivariate texture based
segmentation of remotely sensed imagery for extraction of objects and
their uncertainty,” International Journal of Remote Sensing, vol. 26,
no. 14, pp. 2917–2936, 2005.

[15] N. Castoldi, L. Bechini, and A. Stein, “Evaluation of the spatial
uncertainty of agro-ecological assessments at the regional scale: The
phosphorus indicator in northern Italy,” Ecological Indicators, vol. 9, pp.
902–912, 2009.

[16] D. E. van de Vlag and A. Stein, “Incorporating Uncertainty
via Hierarchical Classification Using Fuzzy Decision Trees,” IEEE
Transaction on Geoscience And Remote Sensing, vol. 45, no. 1, pp.
237–245, 2007.

[17] J. Beekhuizen, G. B. M. Heuvelink, I. Reusen, and J. Biesemans,
“Uncertainty Propagation Analysis of the airborne hyperspectral data
processing chain,” in 2009 First Workshop on Hyperspectral Image and
Signal Processing: Evolution in Remote Sensing, August 2009, pp. 1–4.

[18] J. D. Brown and G. B. M. Heuvelink, “The Data Uncertainty
Engine (DUE): A software tool for assessing and simulating uncertain
environmental variables,” Computers & Geosciences, vol. 33, no. 2, pp.
172–190, 2007.

[19] J. Beekhuizen, G. B. M. Heuvelink, J. Biesemans, and I. Reusen, “Effect
of DEM Uncertainty on the Positional Accuracy of Airborne Imagery,”
IEEE Transaction on Geoscience And Remote Sensing, vol. 49, no. 5,
pp. 1567–1577, 2011.

[20] J. Biesemans, S. Sterckx, E. Knaeps, K. Vreys, S. Adriaensen,
J. Hooyberghs, K. Meuleman, and et. al., “Image processing work flows
for airborne remote sensing,” in Proceedings 5th EARSeL Workshop
on Imaging Spectroscopy. European Association of Remote Sensing
Laboratories (EARSeL), April 2007.

100



Bibliography

[21] G. Schaepman-Strub, M. Schaepman, J. Martonchik, T. Painter, and
S. Dangel, The SAGE Handbook of Remote Sensing. London: SAGE
publication LTD., 2009, ch. 15. Radiometric and Reflectance: From
terminology Concepts to Measured Quantities.

[22] A. Berk, G. P. Anderson, P. K. Acharya, J. H. Chetwynd, L. S. Bernstein,
E. P. Shettle, M. W. Matthew, and et. al., “MODTRAN 4 user’s Manual,”
Air Force Research Laboratory, Hanscom AFB, MA, USA and Naval
Research Laboratory, Washington, DC, USA and Spectral Sciences,
Burlington, MA, USA, Tech. Rep., 2000.

[23] A. Rodger and J. M. Lynch, “Determining atmospheric column water
vapour in the 0.4–2.5 m spectral region,” in Proceedings of the AVIRIS
Workshop Pasadena, California. Jet Propulsion Laboratory (JPL)
publication, USA, March 2001.

[24] R. J. Moffat, “Contributions to the Theory of Single-Sample Uncertainty
Analysis,” Engineering-Transactions of the ASME, vol. 104, pp. 250–258,
1982.

[25] R. Abernethy, “Handbook on Uncertainty in Gas-Turbine Measurement,”
USAF AEDC-TR-73-5, Technical Report, 1973.

[26] H. Coleman and W. Steele, Experimentation, Validation, and
Uncertainty Analysis for Engineers. New Jersey: A John Willey and
Sons, Inc., 2009.

[27] G. Foody and P. Atkinson, Eds., Uncertainty in Remote Sensing and
GIS. West Sussex: John Wiley & Sons Ltd., 2002.

[28] G. B. M. Heuvelink, J. D. Brown, and E. E. van Loon, “A probabilistic
framework for representing and simulating uncertain environmental
variables,” International Journal of Geographical Information Science,
vol. 21(5), no. 5, pp. 497–513, 2007.

[29] J. Burt, G. Barber, and D. Rigby, Elementry Statistics for Geographer.
London: The Guilford Press, 2009.

[30] J. F. Haan and J. M. M. Kokke, “Remote sensing algorithm development
Toolkit I: Operationalization of atmospheric correction methods for tidal
and inland waters,” Netherlands Remote Sensing Board, Development
Toolkit NRSP-2 96-16, 1996.

[31] W. Verhoef, “Theory of radiative transfer models applied in optical
remote sensing of vegetation canopies,” Ph.D. dissertation, University
of Wageningen, Netherlands, 1998.

[32] D. Schlapfer, “Differential absorption methodology for imaging
spectroscopy of atmospheric water vapor,” Ph.D. dissertation, Remote
Sensing Laboratories, Department of Geography, Universiy of Zurich,
1998.

[33] W. Verhoef and H. Bach, “Simulation of hyperspectral and directional
radiance images using coupled biophysical and atmospheric radiative

101



Bibliography

transfer models,” Remote Sensing of Environment, vol. 87, no. 1, pp.
23–41, 2003.

[34] B. C. Gao, M. J. Montes, C. O. Davis, and F. H. Goetz, A., “Atmospheric
correction algorithms for hyperspectral remote sensing data of land and
ocean,” Remote Sensing of Environment, vol. 113, pp. S17 – S24, 2009,
imaging Spectroscopy Special Issue.

[35] K. Staenz, J. Secker, C. Gao, B., C. Davis, and C. Nadeau, “Radiative
transfer codes applied to hyperspectral data for the retrieval of surface
reflectance,” Journal of Photogrammetry and Remote Sensing, vol. 57,
no. 3, pp. 194 – 203, 2002.

[36] K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically
stable algorithm for discrete-ordinate-method radiative transfer in
multiple scattering and emitting layered media,” Applied Optics, vol. 27,
no. 12, pp. 2502–2509, June 1988.

[37] S. Sterckx, K. Vreys, J. Biesemans, M. D. Iordache, L. Bertels, and
K. Meuleman, “Atmospheric correction of APEX hyperspectral data,”
Miscellanea Geographica Regional Studies Development, vol. 20, no. 1,
2016.

[38] R. T. Wilson, R. J. Milton, and J. M. Nield, “Are visibility-derived
aot estimates suitable for parameterizing satellite data atmospheric
correction algorithms?” International Journal of Remote Sensing, vol. 36,
no. 6, pp. 1675–1688, 2015.

[39] R. Richter and D. Schlapfer, “Atmospheric/Topographic Correction for
Airborne Imagery (ATCOR-4 User Guide),” DLR-German Aerospace
Center, User Guide, 2007.

[40] Matlab-Toolbox, “Hyperspectral imagery synthesis (eias) toolbox,”
Grupo de Inteligencia Computacional, Universidad del Pas Vasco /
Euskal Herriko Unibertsitatea (UPV/EHU), Spain, The MathWorks,
Inc., Massachusetts, United States, Tech. Rep., 2012.

[41] R. F. Kokaly, R. N. Clark, G. A. Swayze, K. E. Livo, T. M. Hoefen,
N. C. Pearson, , and et. al., “USGS spectral library version 7,”
U.S. Geological Survey Data Series 1035, Tech. Rep., 2017. [Online].
Available: Link

[42] T. Cocks, T. Jenssen, A. Stewart, I. Wilson, and T. Shields, “The
hymaptm airborne hyperspectral sensor: The system, calibration and
performance,” in In Proceedings of the 1st EARSeL Workshop on
Imaging Spectroscopy, Zurich. European Association of Remote Sensing
Laboratories (EARSeL), October 1998, pp. 37–42.

[43] ENVI-Team, “ENVI Classic Tutorial: Vegetation Hyperspectral
Analysis,” Exelis Visual Information Solutions, Inc., Tech. Rep., 2014.

[44] A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER
spectral library version 2.0,” Remote Sensing of Environment, vol. 113,
no. 4, pp. 711 – 715, 2009.

102

https://pubs.er.usgs.gov/publication/ds1035


Bibliography

[45] ENVI-Guide, “ENVI EX Users Guide,” ITT Visual Information
Solutions, Tech. Rep., 2009.

[46] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by
Small Particles. Weinheim: Wiley & Sons, 2004.

[47] D. Burazerovic, R. Heylen, B. Geens, S. Sterckx, and P. Scheunders,
“Detecting the Adjacency Effect in Hyperspectral Imagery With Spectral
Unmixing Techniques,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 6, no. 3, pp. 1070–1078,
2013.

[48] S. Chandrasekhar, Radiative Transfer. New York: Dover Publication
Inc., 1960.

[49] M. S. Salama and A. Stein, “Error decomposition and estimation of
inherent optical properties,” Applied Optics, vol. 48, no. 26, pp. 4947–
4962, 2009.

[50] D. G. Kaskaoutis, H. D. Kambezidis, A. D. Adamopoulos, and P. A.
Kassomenos, “On the characterization of aerosols using the Angstrom,
exponent in the Athens area,” Journal of Atmospheric and Solar-
Terrestrial Physics, vol. 68, no. 18, pp. 2147–2163, 2006.

[51] F. C. Seidel, A. A. Kokhanovsky, and M. E. Schaepman, “Fast retrieval
of aerosol optical depth and its sensitivity to surface albedo using remote
sensing data,” Atmospheric Research, vol. 116, pp. 22–32, 2012.

[52] L. Guanter, L. Gmez-Chova, and J. Moreno, “Coupled retrieval of aerosol
optical thickness, columnar water vapor and surface reflectance maps
from envisat/meris data over land,” Remote Sensing of Environment,
vol. 112, no. 6, pp. 2898 – 2913, 2008.

[53] A. Saltelli, K. Chan, and E. M. Scott, Sensitivity Analysis. Chichester:
John Wiley & Sons Ltd., 2008.

[54] A. Saltelli, T. H. J. Andres, and T. Homma, “Sensitivity analysis of model
output An investigation of new techniques,” Computational Statistics &
Data Analysis, vol. 15, no. 2, pp. 211–238, 1993.

[55] A. Saltelli and J. Marivoet, “Non-parametric statistics in sensitivity
analysis for model output: A comparison of selected techniques,”
Reliability Engineering and System Safety, vol. 28, no. 2, pp. 229–253,
1990.

[56] G. E. B. Archer, A. Saltelli, and I. M. Sobol, “Sensitivity measures,anova-
like Techniques and the use of bootstrap,” Journal of Statistical
Computation and Simulation, vol. 58, no. 2, pp. 99–120, 1997.

[57] I. M. Sobol, “Sensitivity Estimates for Nonlinear Mathematical Models,”
Mathematical Modelling & Computational Experiment, vol. 1, no. 4, pp.
407–414, 1993.

[58] R. I. Cukier, H. B. Levine, and K. E. Shuler, “Nonlinear Sensitivity

103



Bibliography

Analysis of Multiparameter Model Systems,” Journal of Computational
Physics, vol. 26, no. 1, pp. 1–42, 1978.

[59] E. Shettle and R. Fenn, “Models for the aerosols of the lower atmosphere
and the effects of humidity variations on their optical properties,” Air
Force Geophysics Laboratory, USA, Technical Report, 1979.

[60] G. A. d’Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols
Global Climatology and Radiative Characteristics. Hampton: A. Deepak
Publishing, 1991.

[61] G. J. McRay, W. J. Tilde, and J. H. Seinfeld, “Global sensitivity analysis-
A computational implementation of the Fourier Amplitude Sensitivity
Test (FAST),” Computers & Chemical Engineering, vol. 6, no. 1, pp.
15–25, 1982.

[62] A. Saltelli, S. Tarantola, and K. P. S. Chan, “A quantitative Model-
independent method for global sensitivity analysis of model output,”
Technometrics, vol. 41, no. 1, pp. 39–56, 1999.

[63] R. Lindstrot, R. Preusker, H. Diedrich, L. Doppler, R. Bennartz, and
J. Fischer, “1D-Var retrieval of daytime total columnar water vapour
from MERIS measurements,” Atmospheric Measurement Techniques,
vol. 5, no. 3, pp. 631–646, 2012.

[64] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader,
and J. Chanussot, “Hyperspectral Unmixing Overview: Geometrical,
Statistical, and Sparse Regression-Based Approaches,” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 5, no. 2, 2012.

[65] N. Keshava, “A Survey of Spectral Unmixing Algorithms,” Lincoln
Laboratory Journal, vol. 14, no. 1, pp. 55–78, 2003.

[66] J. Lenoble, Atmopsheric Radiative Transfer. Virginia: A. Deepak
Publishing, 1998.

[67] B. C. Gao, C. Davis, and A. Goetz, “A review of atmospheric correction
techniques for hyperspectral remote sensing of land surfaces and ocean
color,” in 2006 IEEE International Symposium on Geoscience and
Remote Sensing, July 2006, pp. 1979–1981.

[68] V. Carrere and J. Conel, “Recovery of atmospheric water vapor total
column abundance from imaging spectrometer data around 940 nm –
sensitivity analysis and application to airborne visible/infrared imaging
spectrometer (AVIRIS) data,” Remote Sensing of Environment, vol. 44,
no. 2, pp. 179–204, 1993.

[69] A. Rodger, “SODA: A new method of in-scene atmospheric water vapor
estimation and post-flight spectral recalibration for hyperspectral sensors:
Application to the hymap sensor at two locations,” Remote Sensing of
Environment, vol. 115, no. 2, pp. 536–547, 2011.

[70] Z. Qu, B. C. Kindel, and A. F. H. Goetz, “The high accuracy atmospheric

104



Bibliography

correction for hyperspectral data (HATCH) model,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 41, no. 6, pp. 1223–1231, June
2003.

[71] J. Diner, D., V. Martonchik, J., R. A. Kahn, B. Pinty, N. Gobron, D. L.
Nelson, and B. N. Holben, “Using angular and spectral shape similarity
constraints to improve MISR aerosol and surface retrievals over land,”
Remote Sensing of Environment, vol. 94, no. 2, pp. 155–171, 2005.

[72] D. C. Heinz and C. I. Chang, “Fully constrained least squares
linear spectral mixture analysis method for material quantification in
hyperspectral imagery,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 39, no. 3, pp. 529–545, 2001.

[73] M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Total Variation
Spatial Regularization for Sparse Hyperspectral Unmixing,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 50, no. 11, pp.
484–4502, 2012.

[74] A. Chambolle, “An algorithm for total variation minimization and
applications,” Journal of Mathematical Imaging and Vision, vol. 20, pp.
89–97, 2004.

[75] E. Jonathan and D. P. Bertsekas, “On the douglas—rachford splitting
method and the proximal point algorithm for maximal monotone
operators,” Mathematical Programming, vol. 55, no. 1, pp. 293–318,
1992.

[76] C. A. Bateson, G. P. Asner, and C. A. Wessman, “Endmember bundles:
a new approach to incorporating endmember variability into spectral
mixture analysis,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 38, no. 2, pp. 1083–1094, March 2000.

[77] M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Sparse Unmixing
of Hyperspectral Data,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 49, no. 6, pp. 2014–2039, 2011.

[78] N. Bhatia, V. A. Tolpekin, I. Reusen, S. Sterckx, J. Biesemans, and
A. Stein, “Sensitivity of Reflectance to Water Vapor and Aerosol
Optical Thickness,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 8, no. 6, pp. 3199–3208, 2015.

[79] R. S. Fraser and Y. J. Kaufman, “The Relative Importance of Aerosol
Scattering and Absorption in Remote Sensing,” IEEE Transactions on
Geoscience and Remote Sensing, vol. GE-23, no. 5, pp. 625–633, 1985.

[80] B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer,
E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu,
I. Jankowiak, and A. Smirnov, “AERONET–A federated instrument
network and data archive for aerosol characterization,” Remote Sensing
of Environment, vol. 66, no. 1, pp. 1 – 16, 1998.

[81] B. G. Gao and A. F. H. Goetz, “Column atmospheric water vapor and

105



Bibliography

vegetation liquid water retrievals from airborne imaging spectrometer
data,” Journal of Geophysical Research: Atmospheres, vol. 95(D4), pp.
3549–3564, 1990.

[82] Y. J. Kaufman and C. Gao, B., “Remote sensing of water vapor in the
near IR from EOS/MODIS,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 30, no. 5, pp. 871–884, 1992.

[83] C. Gao, B. and Y. J. Kaufman, “Water vapor retrievals using moderate
resolution imaging spectroradiometer (MODIS) near-infrared channels,”
Journal of Geophysical Research: Atmospheres, vol. 108(D13), 2003.

[84] D. S. Fung, “Methods for the estimation of missing values in time
series,” Master’s thesis, School Of Mathematics and Engineering, Edith
Cowan University, Perth, 2006. [Online]. Available: Link

[85] P. Chylek, C. C. Borel, W. Clodius, P. A. Pope, and A. P. Rodger,
“Satellite-based columnar water vapor retrieval with the multi-spectral
thermal imager (MTI),” IEEE Transactions on Geoscience and Remote
Sensing, vol. 41, no. 12, pp. 2767–2770, Dec 2003.

[86] M. S. Rahman, L. Di, R. Shrestha, E. G. Yu, L. Lin, L. Kang, and
D. M., “Comparison of selected noise reduction techniques for modis
daily ndvi: An empirical analysis on corn and soybean,” in 2016 Fifth
International Conference on Agro-Geoinformatics, July 2016, pp. 1–5.

[87] N. Bhatia, M. D. Iordache, A. Stein, I. Reusen, and V. A. Tolpekin,
“Propagation of uncertainty in atmospheric parameters to hyperspectral
unmixing,” Remote Sensing of Environment, vol. 204, pp. 472–484, 2018.

[88] N. Bhatia, A. Stein, I. Reusen, and V. A. Tolpekin, “An optimization
approach to estimate and calibrate column water vapour for
hyperspectral airborne data,” International Journal of Remote Sensing,
vol. 39, no. 8, pp. 2480–2505, 2018.

[89] B. W. Silverman, Density Estimation for Statistics and Data Analysis.
London: Chapman and Hall/CRC, 1986.

[90] T. Duong, ks: Kernel Smoothing, 2016, R package version 1.10.3.

[91] R Development Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2008.

[92] B. W. Silverman, “Using Kernel Density Estimates to investigate
multimodality,” Journal of the Royal Statistical Society, vol. 43, no. 1,
pp. 97–99, 1981.

[93] P. Hall and M. York, “On the calibration of Silvermans test for
multimodality,” Statistica Sinica, vol. 11, pp. 515–536, 2001.

[94] J. Li and A. D. Heap, “Spatial interpolation methods applied in the
environmental sciences: A review,” Environmental Modelling & Software,
vol. 53, pp. 173–189, 2014.

106

http://ro.ecu.edu.au/theses/63


Bibliography

[95] O. Babak and C. V. Deutsch, “Statistical approach to inverse distance
interpolation,” Stochastic Environmental Research and Risk Assessment,
vol. 23, no. 5, pp. 543–553, July 2009.

107





Biography

Nitin Bhatia was on 10th October 1982 in New Delhi,
India. In 2003, he received a diploma in electrical
engineering from Aryabhat Polytechnic (Aryabhatt
Institute Of Technology), Delhi. In 2006, he received
his engineering degree in computer science (IT)
from Indraprastha University (GGIPU), Delhi. He
received his M.Sc. degree in Geo-information Science
and Earth Observation in 2010 from Department of
Earth Observation Science (ITC), Enschede, The
Netherlands in collaboration with Indian Institute
of Remote Sensing (ISRO), India. In the meantime,
he worked as a software developer in the period
of 2006–2008 and as a catastrophic modeller in
the period of 2010-2011. He then began to pursue
the present Ph.D research, which is a collaboration between Flemish
Institute of Technological Research (VITO), Belgium, and Department of
Earth Observation Science, Faculty of Geo-Information Science and Earth
Observation of the University of Twente, The Netherlands. He is currently
employed as a research officer in Australian research council (ARC), center of
excellence for coral reef studies. His current research focuses on processing of
the remote sensing data to analyse the spatial resilience in social-ecological
systems. His research interests includes uncertainty and sensitivity analysis
of remote sensing products developed in remote sensing processing chain,
atmospheric correction, statistical analysis of remotely sensed images, and
spatial resilience in social-ecological systems.

109





Author publications

7.4.1 ISI journals

1. N. Bhatia, V. A. Tolpekin, I. Reusen, S. Sterckx, J. Biesemans, and
A. Stein.,“Sensitivity of reflectance to water vapour and aerosol optical
thickness”, in IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 8, no. 6, pp. 3199–3208, 2015.

2. N. Bhatia, M. D. Iordache, A. Stein, I. Reusen, and
V. A. Tolpekin,“Propagation of uncertainty in atmospheric parameters
to hyperspectral unmixing”, in Remote Sensing of Environment,
vol. 204, pp. 472–484, 2018

3. N. Bhatia, A. Stein, I. Reusen and V. A. Tolpekin, “An optimization
approach to estimate and calibrate column water vapour for
hyperspectral airborne data”, in International Journal of Remote
Sensing, vol. 39, no. 8, pp. 2480–2505, 2018.

4. N. Bhatia, A. Stein, I. Reusen and V. A. Tolpekin, “Estimation of
AOD under uncertainty: an approach for hyperspectral airborne data”,
Submitted to special issue Remote Sensing, special issue in uncertainty
in remote sensing image analysis.

7.4.2 Conference proceedings

1. M. D. Iordache, N. Bhatia, J. M. Bioucas-Dias, A. Plaza,“Uncertainty
propagation from atmospheric parameters to sparse hyperspectral
unmixing”, in IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), pp. 6133–6136, Beijing, 2016.

2. N. Bhatia, J. Biesemans, V. Tolpekin, I. Reusen, S. Sterckx and A.
Stein,“Global sensitivity analysis of water vapour and visibility for
atmospheric correction”, in 6th Workshop on Hyperspectral Image and
Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1–4,
Lausanne, 2014.

3. N. Bhatia, J. Biesemans, V. Tolpekin, I. Reusen, S. Sterckx and A.
Stein,“Optimizing the range of atmospheric condition parameters to
avoid over and under-estimation of uncertainty”, in 6th Workshop
on Hyperspectral Image and Signal Processing: Evolution in Remote
Sensing (WHISPERS), pp. 1–4, Lausanne, 2014.

111



Author publications

7.4.3 Oral and posters presentations

1. N. Bhatia, V. A. Tolpekin, J. Biesemans, I. Reusen, S. Sterckx, and A.
Stein,“Exploration of the correlation structure of the atmospheric
condition parameters in support of the design of uncertainty
propagation methods for hyperspectral image processing workflows”,
Poster presentation, EARSeL conference, Nantes, 2013.

2. N. Bhatia, J. Biesemans, V. A. Tolpekin, I. Reusen, S. Sterckx, and
A. Stein,“Optimizing atmospheric condition parameters range to avoid
over/under-estimation of uncertainty”Poster presentation in in 6th

Workshop on Hyperspectral Image and Signal Processing: Evolution in
Remote Sensing (WHISPERS), Lausanne, 2014.

3. Bhatia N., Biesemans J., Tolpekin V.A., Reusen I., Sterckx S., Stein
A.,“Global Sensitivity Analysis of Water vapour concentration and
Visibility for Atmospheric correction”, Oral presentation in in 6th

Workshop on Hyperspectral Image and Signal Processing: Evolution in
Remote Sensing (WHISPERS), Lausanne, 2014.

112


	Contents
	Acknowledgements
	Summary
	Samenvatting
	Introduction
	General Introduction
	Problem Statement
	Scope of this work: the opted operational chain and the parameters
	Research Objectives
	Thesis Structure

	Theoretical background and datasets
	Uncertainty
	The importance of framework
	Basic atmospheric effect modelling
	The relation between AOD and visibility
	Datasets used

	Sensitivity of reflectance to water vapour and aerosol optical thickness
	Introduction
	Methods
	Results And Discussion
	Conclusions

	Propagation of uncertainty in atmospheric parameters to hyperspectral unmixing
	Introduction
	Theoretical Background: the linear mixture model (LMM) and unmixing methods
	Datasets
	Experiments
	Experimental Results
	Discussion and Conclusions

	An optimisation approach to estimate and calibrate CWV
	Introduction
	Estimation and Calibration Methodology
	Datasets
	Experimental Setup
	Experimental Results
	Discussion and Conclusion

	Estimation of AOD under uncertainty
	Introduction
	Datasets: synthetic and real datasets
	Experimental Setup
	Estimation Methodology
	Experimental Results
	Discussion and Conclusion

	Synthesis
	Positioning the research
	General conclusions
	Detailed conclusions
	Outlook

	Bibliography
	Biography
	Author Publications



