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Chapter 1. Introduction 

1.1 Introduction 

1.1.1 Earthquake precursors 

Earthquakes form a considerable hazard to exposed populations and 
structures. As a result, effort is being invested internationally to investigate 
the “utilization of possible forerunners of large earthquakes to drive civil 
protection actions” [Jordan et al., 2011]. The current standard in earthquake 
predictability research consists of time-dependent earthquake hazard 
assessment, along with associated probabilities and errors [Tiampo and 
Shcherbakov, 2012]. At the same time, a variety of parameters appear in 
literature as potential earthquake precursors [Cicerone et al., 2009], often 
sparkling debate [1999]. The term “diagnostic precursor” refers to 
“observations and/or interactions of physical parameters which can be linked, 
above the levels of chance, to subsequent earthquake occurrence” [Jordan et 
al., 2011]. Diagnostic precursors, although extensively studied (see chapter 
2), are still poorly understood and their utility to produce short-term prediction 
schemes is very limited [Jordan et al., 2011]. However, more research on 
earthquake precursors could provide better understanding of earthquake-
related processes and potentially support physical-based seismicity models.   
 
Potential precursors include, among others, hydro-geochemical changes in 
groundwater aquifers [Ingebritsen and Manga, 2014, Du et al., 2010], 
ionospheric perturbations [Pulinets, 2004, De Santis et al., 2015],  
electromagnetic variations [Cicerone et al., 2009] and temperature increases 
[Tronin, 1996].  

1.1.2 Thermal earthquake precursors 

This thesis is triggered by the idea that some of the stress building up during 
the interaction of tectonic plates, could be expressed shortly before an 
earthquake as radiation of thermal energy (as explained in detail in [Freund, 
2003]).  
 
Reports have appeared in literature in the last forty years on anomalies in 
surface temperature retrievals, ground-based measurements, top-of-
atmosphere satellite observations and numerical simulations [Shen et al., 
2013, Tronin, 2010, Tramutoli et al., 2015, Pulinets and Dunajecka, 2007, 
Wang and Zhou, 1984]. These studies describe emissions prior to earthquakes 
in occurring worldwide, including Japan, Kamchatka, Central Asia, India, China, 
Greece, California (USA) and Iran. If such observations were proven to be 
related to earthquake occurrence and could be traced by satellite sensors, the 
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synoptic coverage of satellites will provide a tool to monitor earthquake-prone 
areas worldwide. 
However, in literature related to earthquakes, the definition of the term 
'thermal anomaly' is broad and not systematic. Researchers have adopted 
different views of what is normal and what is anomalous. As phrased by 
Tramutoli et al. [2015], “a clear definition of anomaly as well as a clear 
description of the processing phases which could isolate anomalies connected 
with seismic activities from any other cause, is very hard to find”. The 
methodologies range from visual inspection of a few satellite images [Saraf et 
al., 2008] to complicated image processing procedures [Ouzounov et al., 
2006]. The same methodology is often applied using different parameters and 
settings without sufficient explanation for the choices made [Saradjian and 
Akhoondzadeh, 2011]. As a result, reported findings on the same earthquake 
often contradict. Given the different settings, one cannot determine the cause 
of these differences. Furthermore, reported anomalies may be located 
hundreds of kilometers away from the earthquake and not even cover the 
epicenter [Zhang et al., 2010], challenging the existence of links between 
earthquakes and observed anomalies. Anomalies are often identified based on 
short time periods, covering two-three months around the earthquake with 
only a few images [Dey and Singh, 2003]. This does not allow an examination 
of possible anomalies without earthquake occurrence. As a result, other 
potential causes of observed anomalies (diurnal or seasonal variations, 
geomorphological features) are not considered and a statistical evaluation of 
the findings is often missing [Eneva et al., 2008]. 
 
Extracting the part of the data that relates to a specific process requires good 
knowledge of the process. However, processes that may cause thermal 
emissions due to pre-earthquake stress built-up are not well understood 
[Bhardwaj et al., 2017, Ouzounov and Freund, 2004]. This implies that any 
anomaly detection procedure would need to be designed without a priori known 
physical constraints on the characteristics of a typical earthquake-related 
anomaly. The challenge is extended by the fact that earthquake-related 
temperature fluctuations may not stand out than temperature fluctuations 
caused by other mechanisms. An earthquake is the result of natural processes 
and any earthquake contribution to the recorded emissions can overlay other 
signatures, potentially not increasing the signal enough to be considered 
abnormal. 

1.2 Problem statement 
To address the limitations above, there is a need for: 
 
1. a consistent a priori definition of anomaly, keeping in mind that there is no 

proven theory to constrain its physical characteristics; 
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2. an analysis of spatially and temporally extended datasets to account for 
periods/areas affected and not affected by earthquakes; 

3. an analysis of different earthquake cases in different areas, to address 
potential links between earthquake characteristics and anomalous signals; 

4. a detailed description of the spatial characteristics of detected anomalies, 
including their extent and distance from earthquakes; 

5. a consideration of other potential effects on the data, like seasonal and 
climatic influences that may be changing with time; and 

6. a comprehensive statistical evaluation of analysis results. 
 
This thesis is aimed at addressing the above limitations in order to answer the 
following research questions: 
 
1. Are there anomalous signals in thermal IR satellite sensor data, which 

uniquely coincide, spatially and temporally, with the occurrence of 
earthquakes? 

2. When do such anomalies appear, where do they appear, and how do they 
change when earthquakes have different magnitude, focal depth or focal 
mechanism? 

1.3 Research objectives 
General objective:  
Evaluate if there are thermal IR anomalies, detectable from a satellite, which 
can be spatially and temporally linked to earthquake occurrences.   
 
Specific objectives: 
1. Formulate a suitable methodological approach in order to isolate spatially 
and temporally limited (localized) signal fluctuations. 
 
2. Analyse multiple earthquakes at different locations to determine potential 
relations between observed anomalies, earthquakes and local conditions. 
 
3. Statistically evaluate the occurrence (space, time) of potential anomalies in 
relation to magnitude, mechanism and location of earthquakes.  

 
Hypothesis 1: Pre-earthquake processes, and/or the earthquake itself, have 
a traceable contribution to the thermal emissions from the earth surface which 
are recorded by satellite sensors.  

This hypothesis is supported by literature concluding on the existence 
of earthquake-induced thermal emissions which can be detected prior 
to earthquakes, see for example Tronin [2000] and the literature 
review in Chapter 2. 
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Hypothesis 2: More anomalies are expected to appear before/during the date 
of the earthquake; at closer distance to the location of the epicentre; and only 
in the year when an earthquake takes place.  

This hypothesis is supported by published research which applies 
criteria of spatial proximity and temporal coincidence to isolate 
earthquake-related anomalies (for example, Qin et al.,[2013]) and 
reports less pronounced presence of anomalies in years without 
earthquakes (for example, Tramutoli et al. [2005]). 
 

Hypothesis 3: More anomalies are expected to appear before shallower 
earthquakes or earthquakes of higher magnitude. 

This hypothesis is supported by research concluding that increasing 
magnitude and decreasing depth result in more easily observed 
anomalies [Xiong and Shen, 2017]. 

1.4 Structure of the thesis 
Chapter 2 is a literature review on pre-earthquake thermal anomalies. 
Comparisons are made among findings published for the same earthquake, 
and differences are traced back to the applied methodologies. The study of 
published research leads to a detailed identification of the challenges related 
to the research objective, and informs methodological choices in the chapters 
to follow. 
 
Chapter 3 contains an introduction and test of a methodology, building on 
kernel-based image processing approaches. Because there is no physically 
derived description of an earthquake-induced thermal anomaly, the 
methodology instead suppresses commonalities between observations in order 
to highlight local differences. As a result, seasonal and spatially extended 
patterns are not misinterpreted as potential earthquake-induced effects.  
 
Chapter 4 presents a first real-life application of the methodology to monitor 
known volcanic targets using Land Surface Temperature (LST) data. This 
serves as a proof of concept for the performance of the methodology. 
Moreover, it has its own merit in the field of satellite volcanology: it facilitates 
the utilization of imagery which was previously not widely applicable for 
hotspot detection. Application of the methodology of chapter 3 highlights 
volcanic signatures in LST data, it allows utilization of 30-year-long longwave 
infrared (LWIR) archives to study volcanic dynamics in longer time series. It 
can complement analysis based on existing hotspot detection.  
 
Chapter 5 describes an earthquake-anomaly related study of LST datasets 
around the world. Areas are examined at times with and without an earthquake 
occurrence. The methodology provides a constraint on the spatial extent of 
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detected anomalies. A statistical evaluation investigates if there are significant 
differences between the anomaly density calculated before, after or during 
earthquakes, at different distances from the earthquake epicenter. 
Meteorological information and the Weather Forecasting and Research model 
(WRF) are applied to examine atmospheric influences on the results of 
detection. 
 
In Chapter 6, uncertainty information of LST products is utilized to quantify 
error propagation through the processing chain. The results are used to 
evaluate the effect of LST retrieval uncertainty on the anomalies detected in 
the previous chapter. Finally, the results of all chapters are synthesized and 
concluded in Chapter 7, which also includes suggestions on further research. 

1.5 Data sources, satellite sensors, abbreviations 
Throughout this thesis different types of input, data sources and satellite 
sensors are mentioned. These are shortly presented here for reference. 
 
Data sources 
 
Satellite sensors record the relative intensity of emissions from the earth 
surface and the atmosphere as digital numbers, which are converted to 
radiance units during radiometric preprocessing. The sensors mentioned in this 
thesis are summarized, along with their spatial and temporal resolution, in 
Table 1.1. 
 
Reanalyses. A climate reanalysis gives a numerical description of the recent 
climate, produced by combining models with observations. Reanalyses provide 
an estimate of atmospheric and surface parameters such as air temperature, 
pressure and wind at different altitudes [Dee et al., 2011,Dee et al., 2014, 
Smith et al., 2001]. The reanalyses, and the temporal and spatial resolution of 
the data used in the publications and the tests mentioned in this thesis, are 
shown in Table 1.2. 
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Table 1.1. Satellites and sensors mentioned in this thesis, and their temporal and spatial 
resolution.  

Satellite/sensor Temporal Resolution Spatial resolution 

FY-2/VISSR every 3hrs 0.1o 
NOAA/AVHRR daily (2.5o)/  2.5o (before 2006)/  

twice per day (1o) 1o (after 2006) 

AQUA/AIRS twice per day 1o  

AQUA-TERRA/ MODIS four times per day 1km  

Meteosat First Generation 
(MFG)/ MVIRI 

every half hour 5km 

Meteosat Second Generation 
(MSG)/ SEVIRI 

every 15min 3km 

GOES hourly 4km 

GMS-5/VISSR Every half hour 5km 
Landsat TM Every 16 days 60m 

AMSR-E Twice daily 45km, 5.4km 
(resampled) 

SSM/I Twice daily 25km, 12.5km 

 
Table 1.2 Reanalyses mentioned in this thesis, and their temporal and spatial 
resolution. 

Reanalysis Maximum Temporal 
Resolution 

Maximum Spatial 
resolution 

NCEP/NCAR every 3 hours 1.9ox1.9o 

NCEP/FNL every 6 hours 1ox1o 

ERA-Interim every 6 hours 79 km 

ERA-5 every hour 31 km 

 

Data types 
 
Top-of-Atmosphere (ToA) or more accurately, at-sensor radiance is converted 
to Brightness Temperature (BT), the equivalent blackbody temperature in 
Kelvin, following Plank’s equation. The BT mentioned in this thesis are derived 
from radiance recorded either in the Infrared bands (TIR, else longwave 
infrared, LWIR, with wavelength range 8-12μm; and midwave infrared, 
MWIR, with wavelength range 3-5 µm) or in the microwave bands (MW, 
typical frequency range 0.4-35 GHz) of passive satellite sensors.  
 
Outgoing Longwave Radiation (OLR, W/m2), represents electromagnetic 
radiation emitted from earth and its atmosphere out to space at wavelengths 
between 4 and 100μm. OLR is the result of processes of absorption, scattering, 
and emissions from atmospheric gases, aerosols, clouds and the surface. OLR 
is not a measurable observation; it is derived from satellite radiance using 
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algorithms based on multispectral regression models [Ellingson et al., 1989, 
Lee, 2014] or from reanalysis. 
 
Surface Latent Heat Flux (SLHF, W/m2) is an atmospheric parameter 
representing flux of heat from the earth's surface to the atmosphere due to 
phase transitions of water. SHLF can be calculated from ground-based 
measurements or satellite observations of wind speed, air humidity and surface 
temperature [Schulz et al., 1997]. Alternatively, it can be derived from 
numerical assimilation as a reanalysis product. 
 
Land Surface Temperature (LST) is the directional radiometric temperature of 
the land surface, used as a best approximation to the thermodynamic 
temperature[Norman and Becker, 1995]. It is estimated from Top-of-
Atmosphere brightness temperatures registered in the infrared spectral 
channels of satellite sensors, after application of radiometric and atmospheric 
corrections and temperature-emissivity separation. Surface temperatures can 
also be approximated by reanalysis products as Skin Temperatures (Tskin). 
However, it should be noted that LST and Tskin are in principle different 
variables, calculated in very different ways and representing different 
quantities. 
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Chapter 2. Anomalous pre-earthquake thermal 
emissions reviewed 

2.1 Introduction 
Remote sensing has been reported as a tool for the study of earthquakes 
[Tronin, 1996,2010]. The first remote sensing reports on pre-earthquake 
thermal anomalies appear as early as 1988 ([Gorny et al., 1988], in [Tramutoli 
et al., 2015, Tronin, 2000b, Blackett et al., 2011]).  Since then researchers 
reported thermal anomalies studying different parameters, satellite-based, 
numerically retrieved or measured on-site. These parameters are Top-of 
Atmosphere observations in the longwave thermal bands (TIR) of satellite 
sensors; satellite-based Land Surface Temperature (LST) retrievals; satellite-
based or numerical retrievals of Surface Latent Heat Flux (SLHF); ground-
based, near-surface air temperature measurements (usually at 2m above the 
surface) or soil temperature measurements; and satellite-based or numerical 
retrievals of Top-of-Atmosphere Outgoing Longwave Radiation (OLR) [Shen et 
al., 2013, Tronin, 2010, Tramutoli et al., 2015, Pulinets and Dunajecka, 2007, 
Wang and Zhou, 1984].  
 
Observations that are referred to as ‘anomalies’ are described as short-term, 
sudden increases in signal [Tramutoli et al., 2015]. They may appear a few 
hours [Akhoondzadeh, 2013b] to a few years [Yao, 2010] prior to an 
earthquake and they sometimes reappear shortly after an earthquake [Tronin, 
2000a]. Such anomalies are reported worldwide, including Japan, Russia, 
countries in Central Asia, India, China, Greece, California (USA) and Iran. Most 
literature is focused on shallow depth earthquakes (focal depth < 35km) with 
magnitudes above Mw 4.  
 
Different theories have been put forward to explain the potential physical link 
between the appearance of anomalies and processes that take place prior to 
an earthquake. These include the expulsion of warm gases and/ or liquids from 
stressed rock; the generation and propagation of electric currents with 
subsequent electromagnetic emissions; air ionization, water vapor 
condensation and latent heat release [Freund, 2011, Pulinets and Ouzounov, 
2011, Hamza, 2001, Saraf et al., 2009, Liperovsky et al., 2008, Tramutoli et 
al., 2013]. Whereas some theories have been tested in laboratory conditions 
[Freund, 2011, Freund, 2003a, Freund, 2003b, Takeuchi et al., 2006, Wu et 
al., 2006, Zhang and Liu, 2011, Umarkhodgaev et al., 2012], none of them 
has been proven to relate universally to precursory observations in the field 
[Bhardwaj et al., 2017, Ouzounov and Freund, 2004, Ouzounov et al., 2006]. 
Since there is no physically-based description of the characteristics of 
earthquake-related thermal emissions, anomalies are identified in literature 
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based on different definitions with the application of different methodologies at 
different locations. This hinders the comparability of results and a quantitative 
validation of observed anomalies [Jiao et al., 2017]. 
 
Some earthquakes have been the subject of more than one study. In such 
cases, itis possible to compare the studies based on the same earthquake and 
examine commonalities and differences in their findings. This would allow a 
better understanding of applied methodologies and provide direction for future 
study. This chapter focuses on the two widely studied earthquakes, in terms of 
thermal anomaly-related literature: the Wenchuan, China (2008) earthquake, 
appearing in 11 studies and triggering a dedicated review [Ma and Wu, 2012] 
and the Gujarat, India (2003) earthquake, which is studied in 9 articles. First, 
an inventory of published reports on each earthquake is compiled (Tables 2.1 
and 2.2). The results of the studies are presented and discussed, and an 
analysis follows on potential similarities and differences examined in relation 
to the applied methodologies.  

2.2 Compilation of thermal anomalies linked to the 
Wenchuan and Gujarat earthquakes 

2.2.1 Wenchuan (China, 2008) 

The Mw 7.9 earthquake of Wenchuan occurred on May 12, 2008 at a focal 
depth of 19km [Hayes et al., 2017]. It generated a 240km-long, right-lateral 
oblique faulting surface rupture zone along the Beichuan fault, and a 72km-
long, dip-slip reverse faulting surface rupture zone along the Pengguan fault 
[Xu et al, 2009]. Among the first ones to report on thermal anomalies are Yang 
and Mi [2009], who use NCEP-NCAR reanalysis data at a spatial resolution of 
1.9o latitude by 1.9o longitude over an area of 66ox78o. The authors study daily 
surface upward longwave radiation flux (ULWRF), soil temperature at 10-20cm 
depth (Tsoil) and air temperature at 2 meters above the ground (T2m).They 
calculate the 20-year mean and standard deviation for each day as a reference 
background. 
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Table 2.1 Research on Wenchuan earthquake. Compilation of published thermal 
anomalies related to the earthquake of Wenchuan, 2008. Hyphens are placed when 
information is not available. 
Study Data type Spatial 

resolution 
Reported 
duration 
of study 

Methodology First appearance 
of anomaly 
(days 
 related to 
earthquake) 

Last 
appearance 
of anomaly 
(days  
related to 
earthquake)

Max. 
duration 
(days) 

Max. 
Extent 
(km2) 

Yang et al 
[2009] 

Reanalysis 
ULWRF 

1.9x1.9o 

130 days 

Difference from 
long-term 
reference 

-60, several 10 - - 

Yang et al 
[2009] 

Reanalysis 
Soil temp. 
at 10-20cm 

131 days -120, several - 15 - 

Yang et al 
[2009] 

Reanalysis 
Air Temp. 

132 days -60, several 10 - - 

Wei et al 
[2009] 

FY-2 TIR BT

- 

80 days Difference from 
one reference 

image 

-55, several - 13 160x104 

Singh et al 
[2010] 

Microwave 
SSM/I BT 25x25km 

- 

visual 
inspection 

 

-18 - - - 

Singh et al 
[2010] 

Air Temp. 
AIRS - 

90 days -15 - - - 

Singh et al 
[2010] 

Humidity 
AIRS - 

- -11 - - - 

Zhang et al 
[2010] 

FY-2 TIR BT
5x5km 

2.5 years
wavelet and 

RPS 

-11 - 60 - 

Xiao et al 
[2010] 

FY-2 OLR 
5x5km 

3 years 
wavelet and 

RPS 

-8 
maximum +5 

- 45 1200 

Yao et al 
[2010]  

 - 
- 

- visual 
inspection 

-52  - - 450x104 

Yao et al 
[2012]  

 - - - visual 
inspection 

-years - - 450x104 

Wu et al 
[2012]  

FY-2 OLR 
0.1x0.1o 

- 

deviation from 
long-term 

reference and 
criteria of 
spatial/ 

temporal 
coincidence 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

no - - - 

Wu et al 
[2012]  

NOAA-
AVHRR OLR 2.5x2.5o 

1x1o 

- no - - - 

Wu et al 
[2012]  

AQUA-AIRS 
OLR 1x1o 

- -6 - - - 

Wu et al 
[2012]  

FY-2 TIR BT
5x5km 

- no - - - 

Wu et al 
[2012]  

reanalysis 
skin temp. 

1.9x1.9o 

- -6 - - - 

Wu et al 
[2012]  

reanalysis 
Air Temp. 

- -6 - - - 

Wu et al 
[2012]  

reanalysis 
daily Temp. 
Range 

- -6 - - - 

Wu et al 
[2012]  

reanalysis 
SHLF 

- no - - - 



12 

Table 2.1, continued 

Study Data type Spatial 
resolution 

Reported 
duration 
of study 

Methodology First appearance 
of anomaly 
(days 
 related to 
earthquake) 

Last 
appearance 
of anomaly 
(days  
related to 
earthquake)

Max. 
duration 
(days) 

Max. 
Extent 
(km2) 

Qin et al 
[2013] 

same as 
Wu et al 
[2010] 

 

- 
Same as 

Wu[2012] plus 
quantify criteria 
in a reliability 

index 

- - - - 

Jing et al 
[2013] 

NOAA-
AVHRR OLR 2.5 x 2.5o 

1 x 1o 

- 

deviation from 
long-term 
reference 

 

 
-2 months 
-13 days 

-1 2  2x104 

Jing et al 
[2013] 

reanalysis 
SLHF 

1.9 x1.9o 
 

- -1 - - - 

Jing et al 
[2013] 

reanalysis 
air Temp 

- -10 - - - 

Jing et al 
[2013] 

reanalysis 
air pressure

- -14 - - - 

Jing et al 
[2013] 

reanalysis 
relative 
humidity 

- -10 - - - 

Wei et al 
[2013] 

FY-2 TIR BT 5x5km 5 years 
wavelet and 

RPS 

-4 - 80 - 

 
Anomalies are reported as deviations from the 20-year maximum, minimum 
or mean, or as exceedance of twice the 20-year standard deviation. The 
authors find that, in the two months preceding the earthquake, ULWRF 
exceeded the 20-year maximum three times and also reached the 20-year 
minimum another three times. ULWRF values above the 20-year maximum 
persisted for ten days after the earthquake. ULWRF values for the rest of the 
year are not discussed.  Tsoil in the month preceding the earthquake is found 
to be close to the 20-year average. Anomalies are not present in the month 
before the earthquake, but the authors report 15 days with Tsoil above the 20-
year maximum occurring four months before the earthquake and more than 
30 days with Tsoil lower than the 20-year minimum occurring 3-2 months before 
the earthquake. Finally, the authors report several anomalies in Tair during the 
two months preceding the earthquake and the ten days after the earthquake.  
Again, there is no mention about Tair values in the rest of the year.  
 
Wei et al. [2009] study geostationary satellite-based TIR data (10.3-11.3μm) 
recorded up to 80 days prior to the earthquake over an area 25ox40o. They 
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choose one satellite image in February as reference image and report 
anomalies as deviations from this reference. They find the first anomalies 55 
days prior to the earthquake, when the temperature difference from the 
reference exceeded 10oC in an area 25x104 km2 located approximately 10o east 
and south of the earthquake. They report similar anomalies throughout the 
period of study and lasting up to 13 days, with an extent that covers almost 
the entire study area, where deviations >10oC extent 160x104 km2.  
 
Singh et al. [2010] study brightness temperatures derived from the Special 
Sensor Microwave Imager (SSM/I, ground resolution 25km), meteorological 
data from a ground-based station closest to the earthquake epicenter, and air 
temperature and relative humidity data derived from the Atmospheric InfraRed 
Sounder (AIRS) at different pressure levels. Results are shown for a period of 
one month before the earthquake until two months after. No specific anomaly 
definition is provided; instead, the authors describe increases in absolute 
values of the variables of interest, which they consider anomalous.  Such 
increases are reported 18 days prior to the earthquake for microwave BT; 11 
days prior to the earthquake for relative humidity; and 11-15 days prior to the 
earthquake for air temperatures at different levels. It should be noted that 
similar increases are visible on other dates throughout the year of data in the 
graphs provided.  
 
Zhang et al. [2010] use TIR BT values derived from the FY-2 geostationary 
satellite series (spatial resolution 5km). They use one night-time image per 24 
hours to construct a time series on which a wavelet transform is used to model 
its frequency components. They state that the basic earth temperature field 
and the annual variation temperature fields are removed by removing the 
wavelet seventh order part. Clouds and cold-heat air currents act on a short 
scale of several hours to several days, and their effects can be removed from 
the signal by rounding off the wavelet second-order part.  The authors then 
apply Fourier transform in order to perform power spectrum estimation. They 
study the frequency content of the signal in time windows of 64 observations 
and observe changes in dominant frequency among consequent windows. In 
their findings, the Wenchuan earthquake was preceded by anomalies eleven 
days before the earthquake, and anomalies are persistent until the end of the 
month following the earthquake.  
 
The same methodology is followed by Xiao et al. [2010] who use OLR data 
derived from two TIR and one water vapor channel of the FY-2 geostationary 
satellite series. The authors use three night images per 24 hours for a period 
of three years over an area of 50ox95o. The authors report that an anomaly 
lasting for 45 days appeared the month before the earthquake and affected an 
area of 1200 km2. The power spectrum showed a peak 8 days before the 
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earthquake and reached its three-year maximum amplitude five days after the 
earthquake.  
 
Yao and Qiang [2010] describe in the region between 28o–45oN, 70o–102oE a 
series of what they call thermal ellipses, designating areas of increased 
temperature that extended up to 3000km in length and 1500km in width. 
These areas were identified using visual inspection of FY-2 satellite imagery, 
but the analysis approach is not further described. The ellipses are suggested 
to connect the epicenters of the Wenchuan and Yutian earthquakes, located 
more than 2000km apart and occurring within a time interval of 52 days. In 
subsequent work [2012] and using surface temperatures derived from 
geostationary based FY-2 TIR observations, the same authors relate the 
appearance of such ellipses prior to the Wenchuan earthquake with the 
occurrence of another earthquake, which took place in Yushu, China, 2 years, 
1 month and 10 days later.  
 
Wu et al. [2012] use a multitude of data to investigate the presence of 
anomalies prior to the Wenchuan earthquake. These include geostationary- 
and polar- satellite-derived OLR, geostationary-based TIR BT observations, 
and NCEP-NCAR reanalysis-derived surface temperatures, air temperatures, 
SLHF and Diurnal Temperature range (DTR). Their study covers an 8ox12o area 
over the epicenter of the earthquake. They study a period three months before 
and one month after the earthquake, using reference values of 3-28 years 
depending on data source. They calculate the mean μ and standard deviation 
σ of reference years on the same dates and identify candidate anomalies when 
observations in the year of the earthquake exceed the μ+σ of the reference 
values. Anomalies are declared when (a) candidate anomalies appear over 
tectonic structures and active seismogenic zones of the area, and (b) candidate 
anomalies appear “at approximately the same time” when different input data 
are analyzed. Following this approach, the authors find anomalies close to the 
epicenter 6 days prior to the earthquake in four parameters: DTR, OLR from 
AQUA-AIRS, Air Temperature (at 500hPa) and skin temperature. SLHF, TIR BT 
from FY-2, and OLR from NOAA AVHRR and FY-2 did not show any anomaly. 
 
Qin et al. [2013] evaluate the results of Wu et al. [2012] by quantifying the 
reliability of an anomaly using three indices. The first index describes the 
degree of deviation of observations in the year of the earthquake from the 
long-term average (intensity of the anomaly). The second index describes the 
degree of spatial adjacency between the location of an anomaly and the 
earthquake epicenter or a seismogenic fault. The third index describes the 
spatial coincidence between the anomalies detected using different inputs, 
within a temporal window. The three indices are numerically combined to 
produce a reliability index. Using this approach, the authors calculate that the 
reliability index of the results reported in Wu et al. [2012] is 69.27%.  
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Jing et al. [2013] also use multiple data sources to detect anomalies prior to 
the earthquake of Wenchuan. They study NOAA-AVHRR OLR, and SLHF, air 
temperature, air pressure and relative humidity, derived from NCEP-NCAR 
reanalysis. The authors identify anomalies as deviations from long-term 
reference values. Using a year of monthly OLR data at 2.5ox2.5o spatial 
resolution, they report anomalies close to faults and the epicenter of the 
earthquake, starting two months before the earthquake, reaching a peak in 
the month of the earthquake and lasting until the end of the month after the 
earthquake. Using daily OLR data with 1ox1o spatial resolution, they report 
frequent 1-2 day long anomalies, appearing for the first time 13 days before 
the earthquake and extending over an area of 20.000km2. The last OLR 
anomaly is reported one day prior to the earthquake.  One SLHF anomaly is 
reported one day before the earthquake and another on the day of the 
earthquake, close to the epicenter. Using monthly and daily meteorological 
data of 38 years and 30 days respectively, from two gridcells, the authors find 
that high air temperature (but not the highest) and the lowest air humidity 
appear together ten days and one day before the earthquake; and air pressure 
drops 14 days and 7 days before the earthquake.    
 
Finally, Wei et al. [2013] study the Wenchuan earthquake using five years of 
TIR BT recorded in FY-2 geostationary satellite sensors at a spatial resolution 
of 5km. The authors average five night-time images per 24 hours and apply 
the wavelet transform (WT) and relative power spectrum (RPS) estimation as 
described in Zhang et al [2010] and Xiao et al [2010]. The authors report an 
anomaly that reached a peak 4 days before earthquake and lasted 80 days. 

2.2.2 Gujarat (India, 2003) 

The Mw7.6, earthquake of Gujarat took place within the continental crust of 
the Indian plate on January 26th, 2001 at a focal depth of 17km, and was the 
result of shallow oblique reverse faulting [Hayes et al, 2017]. The first study 
on this earthquake is published by Dey and Singh [2003], who use SLHF data 
from the NCEP/NCAR reanalysis because they claim that SLHF is related to the 
increases in TIR and LST which appear prior to earthquakes. Their study area 
has a spatial extent of approximately 12°x12° and a spatial resolution of 
1.9°x1.9°. The authors study daily SLHF data of one month before and one 
month after the earthquake. Monthly means are calculated and subtracted 
from daily SLHF with the intention to remove seasonality. An anomaly is 
declared when the result of this subtraction exceeds the μ+1.5σ of the same 
date in ten previous years. Anomalies over the epicenter are shown 25, 4 and 
2 days prior to the earthquake, as well as 3 days after. Spatially, the detected 
anomaly, at its maximum extent, is shown to affect approximately half of the 
12°x12° image. It is interesting to note that the resolution of the images shown 
in the article do not seem to correspond with the spatial resolution of the 
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product: in some gridcells, the anomaly appears to cover only part of that 
gridcell.  
 
Table 2.2 Research on Gujarat earthquake. Compilation of published thermal anomalies 
related to the earthquake of Gujarat, 2003. Hyphens are placed when information is not 
available. 
Study Data type Spatial 

resolution 
Reported 
duration 
of study 

Methodology First 
appearance 
of anomaly 
(days related 
to 
earthquake)

Last 
appearance 
of anomaly 
(days related 
to 
earthquake)

Max. 
duration 
(days) 

Max. 
Extent 
(km2) 

Dey and 
Singh 
[2003] 

Reanalysis 
SLHF 

1.9x1.9o 
 

60 days Difference de-
seasonalized 
data from 
long-term 
reference 

-25, several +3 - - 

Ouzounov 
and Freund 
[2004] 

MODIS LST 1x1km 90 days Difference 
spatially 
averaged LST 
from reference 
year 

-6 - - 104 

Ouzounov 
et al 
[2006] 

METEOSAT TIR 4x4km - Regression 
slopes for 
night cooling 

-1 - 2 - 

MODIS LST 1x1km 85 days Difference 
spatiotemporal 
averages from 
reference 

-6 +2 - - 

Ouzounov 
et al 
[2007] 

Reanalysis OLR 2.5x2.5o 

1x1o 
60days Difference 

spatiotemporal 
averages from 
reference  

-18 - - - 

Saraf et al 
[2005a,b] 

NOAA-AVHRR 
LST 1.1x1.1km 

7 images 
77 days 

 Visual 
inspection 

-12 - - - 

Cervone et 
al [2005] 

Reanalysis 
SHLF 

1.9x1.9o 
 

5 years Wavelet 
transform and 
spatial 
constraints 

-3 +5 - - 

Genzano et 
al [2007] 

METEOSAT TIR 
BT 

5x5km 2 months RETIRA index 
and 
spatiotemporal 
constraints 

-15 - - - 

Blackett et 
al [2011] 

MODIS LST 1x1km 6 years Differencing as 
in Ouzounov 
[2004] and 
RETIRA as in 
Genzano 
[2007] 

no - - - 

 
A report on thermal anomalies preceding this earthquake appears in 2004 by 
Ouzounov and Freund [2004]. The authors use MODIS LST data with spatial 
resolution of 1km over an area of 100x100km. They study a period of two 
months before and one month after the earthquake, in the earthquake year 
and in the following year. They calculate the daily mean LST, spatially averaged 
over the whole study area, in both years. They define an anomaly as a 
deviation of the earthquake year daily mean from the non-earthquake daily 
mean. Following this approach, they identify the highest positive deviation 6 
days before the earthquake. In their findings, anomalies appear also after the 
earthquake. Ouzounov et al. [2006] continue to study the same earthquake by 
applying two approaches. In the first approach, they use night-time 
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geostationary-based TIR observations (spatial resolution 4km, temporal 
resolution 30min) to calculate regression slopes during the night. Anomalies 
are identified when night-time warming (positive slopes) are observed, instead 
of the expected night-time cooling. Following this approach, anomalies are 
found on the night before the earthquake and persist on the night of the 
earthquake. In the second approach, the authors use the MODIS LST product 
(1km spatial resolution) and define a 100x100km area around the earthquake 
epicenter. In this area they calculate the square root of the spatial average of 
LST2 of all pixels. They further average this quantity (a) daily and (b) for the 
whole duration of the dataset. The authors define an anomaly as the difference 
between the daily and full-length-dataset average ΔLST. Following this 
approach, the authors show anomalies 6 days before the earthquake and 2 
days after. The temporal length of the dataset is 85 days. Finally, Ouzounov et 
al. [2007] study the same earthquake using OLR data. Anomaly detection is 
performed using monthly means of 2.5o spatial resolution in an area of 5o x 5o 
over the earthquake epicenter, and a gridcell with 1o spatial resolution centered 
on the earthquake location. In monthly data, the authors subtract from the 
epicentral gridcell, the average value of four adjacent gridcells. These 
differences are used for anomaly definition. Using daily data, the spatial 
average of the gridcells in a 10o x 10o area over the epicenter is subtracted 
from the epicentral gridcell value. This is calculated for each day and as a five-
year average. An anomaly is defined as a deviation of the difference between 
the daily value and its five-year average, when the deviation exceeds +1σ of 
the differences of the year of the earthquake. Anomalies are shown 5, 10, 16, 
26, 32, 38, 48 days before, and 2 and 4 days after the earthquake. Results are 
shown only for the month of the earthquake and one month before. 
 
Saraf and Choudhury [2005a, 2005b] recognize anomalies prior to the Gujarat 
earthquake by  visual inspection of LST images. The authors derive LST data 
from NOAA Top of Atmosphere TIR observations at a nominal spatial resolution 
of 1.1km. For their analysis, they use a total of 7 images recorded over a period 
of 77 days around the earthquake, and they identify anomalies applying user-
defined thresholds which are not further described. The authors report that the 
first anomalies appeared on the image recorded 12 days before the earthquake 
and their amplitude was +5-7oC. When the same approach is applied on the 
same period for other years, similar anomalies are not found.  
 
Cervone et al. [2005] apply a 1D Wavelet transformation on the reanalysis-
based Surface Latent Heat Flux (SLHF) dataset of NCEP/NCAR, at a spatial 
resolution of 1.9ox1.9o. The transformation is intended to isolate wavelet 
maxima which propagate from finer to coarser scales. These maxima are 
identified as anomalies when they occur at the same time (within 2 days) and 
when their spatial distribution coincides with local geological features, e.g. 
continental boundaries or faults. The authors mention that, due to the complex 
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geology of the area, they constrain the spatial continuity of earthquake-related 
anomalies using previously published reports rather than by local geological 
features. They report that within the year of the earthquake, four anomalous 
signals had the same geometric path, and they estimate the significance of 
their findings using statistics based on 5 years of data. Of these anomalous 
signals, one appeared 3 days prior to the earthquake of Gujarat and one 
appeared 5 days after. The authors do not describe the characteristics of 
anomalies they found within or outside of the geographical areas pre-defined 
as related to the earthquake. They mention that the highest anomalies are 
found over the ocean close to the epicenter, because SHLF values are low over 
land in this time of year.  
 
Genzano et al. [2007] study the same earthquake by applying an anomaly 
detection methodology based on the RETIRA-index introduced by Tramutoli et 
al. [2001]. The index is calculated by subtracting the spatial average of an 
undefined number of observations in the neighborhood of a pixel (ΔΤ), from 
the current observation on that pixel; then subtracting the temporal average 
of ΔΤ of previous years, on the same location and date; and finally dividing 
that difference by the standard deviation of the ΔΤ of previous years, on the 
same location and date. The authors use METEOSAT TIR data, with a spatial 
resolution of 5x5km and a sampling frequency of one night image per 24 hours. 
They use five years of data to construct reference fields and perform anomaly 
detection in a period of two months: the month of the earthquake and the 
month that follows. The analysis is repeated in the same two months in a year 
without Mw>5.5 earthquake. In the year of the earthquake of Gujarat, the 
authors report anomalous pixels appearing 15 days before the earthquake. The 
number of anomalous pixels reaches its peak four days before the earthquake 
and then slowly decreases, but anomalies are present also after the 
earthquake. The authors use a criterion of space-time persistence to 
distinguish which of these anomalies are significant. The criterion is based on 
expert opinion and is broadly defined as a requirement for anomalies to be 
'spatially extended and persistent in time, together with high intensity'. Using 
visual inspection, the authors also exclude sequences of anomalies that may 
be contaminated by clouds. On this basis, the authors identify three meaningful 
sequences of anomalies. One appearing at sea at 11 days before the 
earthquake, and reappearing in the same area 5 days before the earthquake; 
one that appears in the Himalayas the day before the earthquake and lasts 
until four days after; and one in central India, with anomalies detected within 
15 to 5 days before the earthquake, which according to the authors may also 
be related to cloud cover. None of the anomalous sequences described in this 
study are found over the epicentral area of the earthquake. Their spatial extent 
is variable and not clearly defined.  
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Finally, the Gujarat earthquake is studied by Blackett et al [2011]. Their study 
is based on the LST product of MODIS, at a km spatial resolution and for a 
continuous record of 6 years. The authors apply the same differencing method 
as Ouzounov and Freund [2004] but on longer time series. They compare not 
only observations of the earthquake year with observations of one non-
earthquake reference year, but they apply the same differencing technique by 
pairing observations between all available years, to better understand the 
normal thermal variability in the area. They repeat the analysis in two areas, 
100x100km and 15001500km, and they additionally use the same RETIRA-
based methodology as Genzano et al [2007]. Their findings show that 
observations, which are identified as anomalous in the analysis of Ouzounov 
and Freund [2004], appear to fall within the range of natural variability when 
longer time series are considered using the same methodology. The authors 
do identify anomalies using the RETIRA-based analysis. However, they also 
find that these anomalies are not related to the earthquake, but are caused by 
data gaps due to cloud masking and image mosaicking. The authors conclude 
that there is no evidence to support the presence of thermal anomalies prior 
to the earthquake and recommend caution in anomaly detection procedures, 
including the use of long time series and the examination of the effect of 
missing values, cloud masking and data mosaicking.   

2.3 Comparisons and discussion 
This section presents an analysis of the observations listed above in both 
earthquake cases, with special focus on issues related to methodology. 
 
Different authors have used a variety of inputs with different spatial and 
temporal resolution, and with the application of different methods. The extent, 
duration and time of appearance of reported anomalies vary greatly among 
methodologies and data. Anomalies reported for the Wenchuan earthquake, 
for example, cover areas that range among different studies between 1200km2 
and 450x104 km2. Their first appearance is reported from years to only one 
day before the earthquake, and it also happens [Xiao et al, 2010] that the 
largest anomaly appears after the earthquake. Wu et al. [2012] find anomalies 
in OLR data from AIRS but not from NOAA-AVHRR (which are of the same 
spatial resolution), even though these data are studied with the same 
methodology over the same area and for the same time period. When the same 
methodology is followed, the use of (slightly) longer datasets leads to different 
characteristics of the detected anomalies. For example, comparing the work of 
Zhang et al [2010], Xiao et al [2010] and Wei et al. [2013], who used the 
same wavelet transform-based approach to study the Wenchuan earthquake 
on datasets of slightly different duration, find anomalies 11, 8 and 4 days 
respectively prior to the event. The reported duration of anomalies is different 
(from 45 to 80 days) as well as the amplitude. The influence of the length of a 
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data time series is clearly shown in the study of Blackett et al [2011]. With the 
use of the same methodology on the same data as Ouzounov and Freund 
[2004], but including more years in the analysis, it is concluded that (1) 
anomalies that were identified before appear to fall within the natural variation 
and (2) observations which seemed anomalous actually appear quite often 
without the presence of an earthquake. The above indicate that the results of 
anomaly detection are not robust and they are sensitive to the duration of the 
analyzed dataset.  
 
Below, the reasons behind the disagreement of these findings are traced back 
to methodological choices, which are earthquake independent. The studies are 
compared in terms of their data, the spatial extent of study areas and detected 
anomalies, the temporal extent of study areas and detected anomalies, the 
methodological approach and the statistical evaluation. The data from all 
reviewed studies are summarized in Tables 2.1 and 2.2. Limitations in current 
research are identified to identify choices in future research. 

2.3.1 Data 

The choice of data is a factor that affects detection results. The spatial and 
temporal resolution of the data affects the detail in which the anomalies can 
be characterized, especially in their relation to earthquakes. The parameter 
used for anomaly detection, the related product uncertainties, and missing 
values affect the uncertainty on detected anomalies. 
 
Earthquake-related processes develop at a scale of kilometers (a study of 
statistical physics of earthquake-related processes can be found, for example, 
in Kawamura [2012]), and therefore need to be studied using data of a spatial 
resolution corresponding to that scale. The use of input data with coarse spatial 
resolution (of 1o-2.5o) in literature does not provide sufficient information on 
anomaly location, anomaly extent and the spatial relation between anomalies 
and earthquakes. A strong anomaly of limited spatial extent, averaged over a 
gridcell of 2o, could show similar to a weak anomaly extending to the whole 
gridcell. An anomaly in a gridcell of 2o over the earthquake epicenter may be 
located at the epicenter or more than 200km away. Coarse input with spatial 
resolution in the scale of degrees latitude/longitude is used in nine of the 
twenty reviewed studies, and there are also cases in which finer resolution data 
are spatially averaged to coarser resolution [like in Ouzounov et al, 2004; 
2006].  
 
In earthquake-related literature, reported anomalies can have a duration as 
short as only a few hours up to one day [Akhoondzadeh, 2013, Cervone et al., 
2006]. Three of the reviewed studies are based on monthly or yearly averages. 
With these data it is not possible to know if anomalies appear two hours or 
twenty days prior to the earthquake. Two studies are using one image every 
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~10 days [Saraf et al 2005a,b], with which it is challenging to support that a 
detected anomaly persists between two subsequent images. Of the remaining 
studies, three are using daily averages, six are using one image per 24 hours 
and only three are using 2-5 images per 24 hours. The use of data with a 
temporal resolution higher than in the reviewed studies would be necessary to 
capture transient anomalies, to sufficiently describe the duration of an 
anomaly, and to specify the time of appearance of an anomaly relative to the 
occurrence of an earthquake. 
 
All types of data used in the reviewed studies suffer from the effect of clouds, 
cloud cover and cloud remnants. The opacity of clouds for TIR sensors can 
obscure transient anomalies, and introduces gaps in the dataset thereby 
reducing the temporal resolution. This problem is inherent to the wavelength 
of TIR sensors, and can only be mitigated with the application of cloud masking. 
There are studies which do not apply cloud removal on the data, assuming that 
cloud presence can be sufficiently modelled by wavelet components [Zhang et 
al, 2010; Xiao et al., 2010; Wei et al, 2013]. However, in most other reviewed 
studies, it is recognized that cloud removal is an intricate procedure and cloud 
presence affects the results of detection [e.g. Blackett et al, 2011; Genzano et 
al., 2007]. Passive microwave sensors (used in Singh et al., 2010) can register 
radiance regardless of the presence of clouds, however even in that case clouds 
have a cooling effect and reduce observed emissions.  
 
Artifacts in the data may be introduced due to image mosaicking, viewing angle 
and geolocation errors. These affect primarily observations of polar-orbiting 
sensors [Blackett et al., 2011; Tramutoli et al., 2001], which are used in half 
of the reviewed studies. Geostationary sensors are less affected by geolocation 
errors [Aliano et al, 2008]. There are still geolocations errors due to satellite 
movement, but the viewing angle is stable in this case, as opposed to orbiting 
satellites. Data from geostationary sensors are used in eight of the reviewed 
studies. Another six studies use NCEP reanalysis data as input. The concern in 
this case, as brought up by Zhang et al [2013], is that the NCEP reanalysis 
system, although consistent, has evolved through time and the data accuracy 
is time dependent. In particular surface fluxes are heavily dependent on the 
model and may contain regional biases. None of the reviewed studies 
quantified the uncertainty that is related to the input. 
 
In some of the studies, basic information on the type of data used, the duration 
or the total extent of the dataset or the characteristics of detected anomalies 
is completely missing [e.g. Yao et al, 2010].  

2.3.2 Spatial extent 

Eleven of the twenty reviewed studies do not provide information on the extent 
of study area. For the other nine studies, the area ranges from 10x100km to 
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55x95o. Similarly, the spatial extent of detected anomalies is provided in only 
five cases, ranging from 1200km- 450x104 km among different studies. The 
extent of the study area is, first of all, relevant for methods which include 
spatial averages. For example, in the calculation of the RETIRA index, the 
results are influenced by scene statistics [Bhardwaj et al., 2017b, Bhardwaj et 
al., 2017a]. Secondly, sufficient area should be included to allow for an 
examination of the spatial extent of observed anomalies. In some of the 
reviewed studies, the analysis is confined to a few pixels over the earthquake 
epicenter [Ouzounov and Freund, 2004] or even along a tectonic feature 
[Cervone 2005]. In such cases, there is not enough information to describe the 
full extent of a detected anomaly. It is also not possible to examine the 
potential presence of the anomaly over areas unaffected by the earthquake. In 
terms of the distance between anomalies and earthquakes, it can sometimes 
be noted that anomalies are described in locations thousands of kilometers far 
from the earthquake which do not cover the epicenter [Zhang et al, 2010; Wei 
et al, 2009]. This makes it challenging to physically explain the link between 
the observed anomalies and earthquakes. Piroddi and Ranieri [2012] argue 
that observable phenomena further than 60km from the earthquake, even if 
they were associable to the seismic event, would not be practically useful as 
precursors because the potential alarm areas would be too big.  

2.3.3 Temporal extent  

The majority of the studied articles analyze only a few days of data before and 
after the earthquake. Ten of the reviewed studies have a duration of a 1-3 
months, and in two of the studies [Saraf et al., 2005a,b] a tested period of 77 
days is represented by only seven images. Anomalies are also commonly 
reported after the earthquakes [Saraf et al, 2005a,b; Xiao et al, 2010], and it 
would be interesting to see if they actually disappear or that they are a 
recurrent, unrelated phenomenon. Testing only short time windows in the year 
of the earthquake leaves the question whether the reported anomalies would 
be present at times without earthquake occurrence. Only two of the studies 
repeat the analysis in years without earthquake occurrence [Blackett et al, 
2011; Genzano et al, 2007], and in both studies anomalies are found also in 
years without earthquakes.  

2.3.4 Methodological approach 

The methods applied in the reviewed studies fall into five broad categories: 
differencing from a reference background [Yang et al., 2009; Wei et al., 2009], 
Visual inspection [Yao et al., 2010; Singh et al., 2010; Saraf et al., 2005a,b], 
Time-frequency analysis with wavelet transform [Zhang et al., 2010; Cervone 
et al., 2005], anomaly indices [Genzano et al., 2007; Qin et al., 2013] and 
modeling the rate of night cooling [Ouzounov et al., 2006]. Anomaly definitions 
vary among these methodologies. Due to these differences, quantitative 
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comparisons of the findings are difficult, not only among results of analysis in 
different earthquakes but also among results on the same case study [Wu et 
al, 2012]. For example, the amplitude of anomaly that is calculated by 
differencing observations from long-term averages of reference years cannot 
be compared to the amplitude of a peak in the power spectrum or to the value 
of an anomaly index. There are cases where an explicit anomaly definition is 
missing [Singh et al, 2010] or is based on subjective decisions without further 
justification [Yao et al, 2010; Saraf et al, 2005a,b].  
 
The most common approach is differencing from, or comparing to, a long-term 
reference of historical observations. A crucial issue, both for anomaly detection 
and for comparability of results, is the length of the chosen reference dataset. 
Two studies use 20-year averages, another two use 6-year averages, one uses 
10-year averages and one uses 3-year averages as a reference. In two of the 
studies, the reference was only one image [Ouzounov et al., 2006; Wei et al., 
2009], and in another, the reference consisted of images of a few days 
[Ouzounov et al., 2004]. Furthermore, reference fields are calculated in 
monthly/daily/yearly averages which follow the formal calendar. Seasonal 
patterns, however, do not necessarily follow the civil calendar. In fact, as found 
by Eneva et al [2008], the change to a moving average-based calculation 
affects detection results. Additionally, comparisons with previous years do not 
account for interannual variations and longer term trends. NASA's Goddard 
Institute for Space Studies (GISS) in 2015 declared the first six months of 
2015 as the warmest since 1880; this statement was reviewed when 2016 
became the new warmest of the record. Comparing an earthquake month of 
2016 with a reference month of preceding years might therefore result in an 
anomalous warm period unrelated to any potential earthquake activity. 
Comparison based studies should therefore account for climatic and 
meteorological variation before considering potential earthquake warming 
effects. 
 
The reviewed methods often depend on choices that are not necessarily based 
on, or backed by, physical evidence. The lack of quantitative physical 
understanding of the phenomena underlying the appearance of thermal 
phenomena prior to earthquakes could justify exploratory studies testing 
different detection thresholds [Jiao et al., 2017]. However, some of the choices 
made in the reviewed studies are neither exploratory nor backed by evidence. 
For example, in the case of time-frequency analysis, the ‘rounding-off’ of the 
second-order wavelet part is claimed to remove all weather effects, including 
clouds, rain and air currents [Zhang et al, 2010; Xiao et al., 2010; Wei et al, 
2013]. It is not clear why the presence of clouds, air currents and precipitation 
can be described by the same wavelet order since they can have very different 
time scales and are not necessarily correlated to each other (only a small 
amount of all clouds leads to rain). Jiao et al. [2017] comment that the 
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wavelet-based approach has a certain arbitrariness and requires gap-filling of 
missing values, which introduces further uncertainty. Other approaches involve 
complex spatio-temporal averaging procedures [Ouzounov et al 2006, 2007], 
which is not based on physical characteristics of an expected anomaly, nor on 
a statistical distribution of the data. Moreover, in some of the reviewed studies 
[Cervone et al, 2006; Genzano et al, 2007; Wu et al, 2012; Qin et al, 2013], 
detected ‘candidate’ anomalies are declared as actual anomalies only if they 
fulfill specific criteria which are often subjective, vary among researchers and 
not physically backed. For example, Genzano et al [2007] use expert 
judgement to discard anomalies related to so-called ‘spurious effects’ and keep 
only anomalies with spatial and temporal persistence not further defined. 
Expert interpretations may be subjective, especially when they are not well 
defined, and as a result this work cannot be reproduced.  
 
Weather and meteorological influences could affect detection but are rarely 
considered in the reviewed studies. Genzano et al [2007] and Blackett et al 
[2011] specifically do mention the effect of clouds in the results of detection. 
Such effects should be considered, as in earthquake related literature [Qu et 
al., 2006, Jie and Guangmeng, 2014] pre-earthquake anomalies are reported 
to be linked with meteorological effects (temperature inversions, presence of 
clouds) rather than earthquakes.  

2.3.5 Statistical evaluation 

Years without earthquakes are, when they are considered, mostly used as a 
reference but not for checking if anomalies also occur in these years. Statistical 
evaluation of results  in general, and over multiple years in particular, is not 
commonly applied [Eneva et al., 2008]. Statistical analyses in the reviewed 
articles are mostly used to describe the significance of detected anomalies 
[Cervone et al, 2005; Wu et al, 2012] or to evaluate relations between 
earthquake characteristics and detected anomalies [Dey and Singh, 2003]. 
None of these studies discusses the actual distribution of SLHF or Brightness 
Temperature values and if it can support the use of the given Confidence 
Intervals or the chosen significance tests. Genzano et al [2007] examine the 
case of years without earthquakes for confutation reasons. They do find 
anomalies in periods without earthquakes but they describe them as sporadic 
and not persistent. The criteria of spatial and temporal persistence of a reliable 
anomaly, however, are based on expert opinion and are not described in the 
study.  

2.4 Conclusions and implications for future 
research  

The literature review on thermal anomalies preceding two widely studied 
earthquakes showed large discrepancies in the characteristics of reported 
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anomalies. Findings are often conflicting and that questions the robustness of 
results. Anomalies are not well defined and sufficient description of the applied 
data processing is sometimes lacking. Large scale, recurrent patterns in the 
data are either not addressed or are tackled with procedures that depend on 
the duration and spatial extent of the chosen datasets. Data uncertainty 
propagation is not considered in anomaly detection, and the spatial and 
temporal resolution of data is in certain studies coarse and does not allow for 
detailed examination of the spatiotemporal relation between earthquakes and 
detected anomalies. In most reviewed studies, other potential causes of the 
detected anomalies are not taken into account, periods and areas without 
earthquakes are not examined, and the detection results are not statistically 
evaluated.  
 
Future research should be based on spatially and temporally extended datasets 
to allow for examination of non-earthquake affected areas and periods. Full 
years should be examined, including all seasons and including years without 
earthquakes. Data of high temporal resolution should mitigate data gaps due 
to cloudiness, address seasonal and other recurrent components of the signal 
which change with time, capture transient anomalies, and resolve the temporal 
relation between earthquakes and detected anomalies. Input of spatial 
resolution in the order of kilometers, rather than degrees latitude/longitude 
leading to tens of kilometers, would allow to characterize the extent of 
anomalies and their distance from earthquakes. The choice of data should 
involve a consideration on the effect of clouds, observational and processing 
errors, and the propagation of data uncertainties should be accounted for.  
 
Anomaly definition should be based on well described criteria, consistently 
applied in the whole study area. Earthquakes do not occur at known 
periodicities and their effects are spatially finite. Thus, recurrent temporal 
patterns (for example, seasonality) and patterns extending in the whole study 
area (for example, extended weather fronts) should be addressed in the 
methodology. Ideally, anomaly detection would consider the context of each 
data instance and not only its historical values. This would reduce the 
sensitivity of the detection procedure to changes in the length of the datasets. 
Finally, research should be extended to multiple earthquake case studies to 
study the effect of different magnitude, source mechanisms and epicentral 
depth, and the findings should be statistically evaluated.  
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Chapter 3. Finding a needle by removing the 
haystack: A spatio-temporal normalization 
method for geophysical data1 

3.0 Abstract 
We introduce a normalization algorithm which highlights short-term, localized, 
non-periodic fluctuations in hyper-temporal satellite data by dividing each pixel 
by the mean value of its spatial neighbourhood set. In this way we suppress 
signal patterns that are common in the central and surrounding pixels, utilizing 
both spatial and temporal information at different scales. We test the method 
on two subsets of a hyper-temporal thermal infra-red (TIR) dataset. Both 
subsets are acquired from the SEVIRI instrument on board the Meteosat-9 
geostationary satellite; they cover areas with different spatiotemporal TIR 
variability. We impose artificial fluctuations on the original data and apply a 
window-based technique to retrieve them from the normalized time series. We 
show that localized short-term fluctuations as low as 2 K, which were obscured 
by large-scale variable patterns, can be retrieved in the normalized time series. 
Sensitivity of retrieval is determined by the intrinsic variability of the 
normalized TIR signal and by the amount of missing values in the dataset. 
Finally, we compare our approach with widely used techniques of statistical 
and spectral analysis and we discuss the improvements introduced by our 
method. 

3.1 Introduction 
Short-term, localized, non-periodic fluctuations in hyper-temporal 
measurements are often obscured by background patterns in the data. The 
terms ‘short-term’ and ‘localized’ respectively refer to duration and spatial 
extent considerably smaller than the rest of the dataset. Such fluctuations are 
often of interest for geoscience applications based on detection of extremes 
and/or environmental monitoring. Potential examples include fires, volcanic 
and geothermal activity, fluctuations of climatic variables, urban heating 
incidents, leakage of pollutants, abrupt changes in vegetation, irrigation 
leakages, and weather extremes. All these phenomena would be recorded as 
fluctuations in a satellite signal. They may be expressed in different parts of 
the spectrum, evolve in different spatiotemporal scales, and they can influence 
the original signal without exceeding the range of normal values. They may 
occur regularly or unexpectedly, in known or unknown locations. 
 
                                          
1 Pavlidou, E., van der Meijde, M., van der Werff, H. M. A., & Hecker, C. A. [2016]. 
Finding a needle by removing the haystack: a spatio-temporal normalization method for 
geophysical data. 90(A), 78-86. DOI: 10.1016/j.cageo.2016.02.016 
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Usually, there is not enough information available on a fluctuation of interest 
to facilitate its isolation. In such cases, local fluctuations can be made more 
visible by suppressing patterns that are common to the majority of the dataset. 
Patterns may be suppressed by explicitly modelling and removing signal 
components, if characteristics of these components are a priori available. An 
alternative option would be the application of normalization techniques, which 
rescale the data, provide adjustment for overall patterns and allow the data to 
become internally comparable. 
 
Popular choices to identify and remove general trends and periodic signal 
components, include autoregressive and ordinary regression models, filtering 
and decomposition techniques (for example, [Cleveland et al., 1990, West, 
1997, Jonsson and Eklundh, 2002, Grieser et al., 2002, Alegana et al., 2013, 
Wang et al., 2014]). Wavelets and Fourier transforms are widely used to define 
signal patterns of different periodicity in a variety of geophysical applications, 
ranging from climatic studies to hazards and environmental research (e.g. 
[Meyers et al., 1993, Kumar and Foufoula-Georgiou, 1997, Ghil et al., 2001, 
Sajda et al., 2002, de Jong and van der Meer, 2004, Labat, 2005, Scharlemann 
et al., 2008, Humlum et al., 2011, Pyayt et al., 2013, Tary et al., 2014, Qader 
et al., 2015]). Randolph [2005] describes typical methods to normalize signals 
and/or images; the adjustments presented in his work include corrections for 
constant and non-constant shifts, scaling, and combinations thereof. 
Adaptations of the Standard Normal Variate method he mentions are often 
applied in geosciences to identify extremes (for example, [Tramutoli, 1998, 
Jiménez-Muñoz et al., 2013, Jiménez-Muñoz et al., 2015]).  
 
These methods face three possible limitations. First of all, they cannot easily 
define signal components with a period longer than the temporal length of the 
available dataset.  Secondly, large-scale patterns which are changing through 
time may still obscure fluctuations of very small intensity. A third limitation 
arises because existing methods rely only on the temporal dimension of the 
measurement. This is an issue especially relevant for research based on 
multidimensional data, as is the case of hyper-temporal satellite 
measurements. Satellite sensors provide synoptic, time-synchronous and 
consistent sampling of geophysical para- meters over large areas and over long 
periods of time; both the temporal and spatial characteristics of the data are 
needed to extract fluctuations of these parameters from a complicated mix of 
different influences and noise. As noted by Tary et al. [2014] multidimensional 
geophysical data are traditionally analysed individually in a one-dimensional 
manner, but it would be very important to consider more dimensions in the 
analysis. 
 
Spatial information is commonly used in satellite image processing. Such image 
processing techniques have been applied, among others, for feature extraction 
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e.g. van der Werff et al. [2006], Soto-Pinto et al. [2013]; change detection, 
e.g. Coppin et al. [2004], Canty and Nielsen [2012]; normalization of specific 
influences in the satellite signal, for example in Yang and Lo [2000], Canty and 
Nielsen [2008], Ulusoy et al. [2012]; active fire monitoring [Giglio et al., 1999, 
Giglio et al., 2003, Ichoku et al., 2003, Stolle et al., 2004, Kuenzer et al., 2007, 
Kuenzer et al., 2008, Calle et al., 2008, Xu et al., 2010, Wooster et al., 2012], 
and studies of volcanic and geothermal activity[Coolbaugh et al., 2007, Ganci 
et al., 2011, Koeppen et al., 2011, Murphy et al., 2011, Steffke and Harris, 
2011, Vaughan et al., 2012, Blackett, 2014, Blackett, 2015, van der Meer et 
al., 2014, Gutiérrez et al., 2012]. A main aim is often the selection of an 
optimum background: this is used to contrast with an expected change or to 
describe a representative average state of a given neighbourhood. Subsequent 
processing and statistical analyses vary depending on the field of application. 
 
Our work is a modification on aforementioned attempts to apply normalization 
for spatial data. We build on kernel-based approaches (for an overview see, 
e.g., [Canty, 2010]). We use a deconvolution matrix to select a pixel's spatial 
neighbourhood and normalize every pixel by the mean value of its 
neighbourhood set. In this way, patterns that are present in the central as well 
as the surrounding pixels are suppressed, and localized fluctuations are made 
more visible. We then apply a window-based retrieval technique to isolate 
these fluctuations in the normalized time series.  
 
The added value of this approach is that spatial and spectral techniques are 
combined in a single algorithm and in a non-application-driven manner. The 
normalization can suppress regionally extended patterns at different time-
scales (diurnal, seasonal, yearly etc.), based on both spatial and temporal 
components of the original data, and independently of the length of the 
dataset. Processing is run uniformly in the whole dataset and can isolate 
fluctuations which are not expected or known in advance. The processing chain 
is at the same time generic and flexible enough to be applied in different 
domains, and may be applied in near real-time mode. 
 
We demonstrate our approach on a hyper-temporal geostationary thermal 
infra-red (TIR) dataset, recorded by the SEVIRI sensor onboard the Meteosat-
9 satellite, and subset over two areas of different TIR variability in time and in 
space. We choose to base our case study on TIR data because of the wide 
range of earth-science related TIR applications: monitoring of fire and volcanic 
activity, geothermal exploration, and others [Sobrino et al., 2013; Ulusoy et 
al., 2012]. The resolution of the sensor (3×3 km spatial, 15-min temporal) 
supports temporally intensive monitoring. In real-life applications, it rarely 
happens that the same well-known fluctuation is repeated in different 
conditions. Thus, to be able to evaluate the performance of our algorithm in 
different contexts and with better control, we carry out experiments with 
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known synthetic fluctuations imposed in real data. We increase a small number 
of consecutive brightness temperature (BT) values in the original data and 
show that the normalization makes these increases more visible. We retrieve 
the fluctuations in the normalized time series and evaluate retrieval in 
reference to the intrinsic signal variability. 
 
We then compare our findings with results of the application of widely used 
statistical and spectral methods. We decompose the TIR signal using Seasonal-
Trend Decomposition based on LOESS (STL), following Cleveland et al. [1990] 
and Hafen [2010]. In this way we remove the dominant daily and seasonal 
component of the data and we try to detect the artificially imposed fluctuation 
in the remainder. As an alternative, we use Fast Fourier Transform to define 
all principal frequencies of the signal. Similar work has been done, for example, 
by Humlum et al. [2011] to study periodic oscillations in climatic records and 
by Wang et al. [2014] to study water level fluctuations. We remove the defined 
patterns and re-construct the signal based on the remaining frequency 
components, in order to trace the imposed fluctuation there. Finally, we apply 
the Standard Normal Variate method version which Jimenez-Munoz et al. 
[2013, 2015] used to detect anomalous thermal episodes over the Amazon. 
The technique rescales the data using their mean and standard deviation; 
thresholds are then applied to detect anomalous standardized values. The 
comparison between results of the different approaches concludes the 
performance evaluation of our method. 

3.2 Methodology 
In the first part we present our method. We then shortly present the three 
spectral and statistical approaches we applied to evaluate its performance. 

3.2.1 Proposed method 

Our proposed method consists of three steps: pre-processing, normalization 
and retrieval (Figure 3.1). 

 
Pre-processing  
Image pre-processing is intended to discard measurements that have been 
disturbed by factors other than the variable of interest. This step requires 
consistently defined a priori knowledge on the presence of disturbances. Pre-
processing is specific to each application and dataset, and is not covered here 
in detail. In the case of most satellite imagery- based studies, the main factor 
interfering with the signal from the earth’s surface is the atmosphere, and 
especially the presence of cloud cover. 
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Normalization 
In this step we use spatial information to suppress temporal patterns common 
between a pixel and its neighbourhood, without explicitly modelling them. As 
a result, fluctuations which affect only the central pixel stand out. 
 
We define a square, single-pixel-wide frame of neighbouring pixels (from here 
on, “neighbourhood set”, see Figure 3.1A). The neighbourhood set lies at a 
defined distance around a central pixel (Figure 3.1A, details on choosing the 
distance are provided later). The inside of the frame is not included in the 
neighbourhood set. The underlying assumption is that a localized fluctuation 
has a spatial extent smaller than the area framed by the neighbourhood set; 
it is thus contained in the central pixel, but not in its neighbours. We divide the 
central pixel value by the average value of the neighbourhood set (Figure 
3.1B). The process is repeated for all time-steps and results in a spatially based 
normalized time-series, which retains the temporal resolution and serial 
dependence of the original time-series. 
 

 
 
Figure 3.1. Methodology. (A) With normalization, every pixel value in the image is 
divided by the average value of a frame of neighbouring pixels. The pixels between 
the frame and the central pixel are not included to ensure that a localized fluctuation 
is not averaged out. (B) Original time series from central Pixel Y (black line) and the 
average value of its neighbourhood set (red line), with offset for clarity. (C) The 
same series after normalization. The daily pattern common in the central and 
neighbouring pixels is no longer dominant in the data. During retrieval, normalized 
values above the threshold are flagged. A temporal moving window counts the 
number of flags within a specific time period. 
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The normalized time series shows the degree of dissimilarity between a pixel 
and its surroundings. In that sense, it expresses local heterogeneity and the 
way this changes over time. When the central and neighbouring pixels are 
similar, the expected normalized value is approximately 1 and constant 
throughout time (Figure 3.1C). Normalized values deviate from 1 as the 
differences between the central pixel and the frame increase. These differences 
reflect the natural variability in the signal, which may be due to differential 
heating of the earth surface, atmospheric effects, differences in 
reflective/emissive properties of different land covers, soil moisture etc. An 
anomalous fluctuation in this context is defined as an unusual change in the 
relation between the pixel and its surroundings. This translates to normalized 
values largely deviating from the series mean. 
 
Natural variability of the signal is statistically described by its standard 
deviation (σ). Normalization is designed to minimize this natural variability by 
suppressing signal patterns which are common between the pixel and its 
neighbours. Short-term localized anomalous fluctuations are better visible 
when the rest of the normalized series has minimal variability. We thus use σ 
of the normalized series to evaluate performance of normalization and to 
choose the distance between the normalization frame and the central pixel. 
The σ of the normalized series is used to evaluate performance of normalization 
and to choose the distance between the normalization frame and the central 
pixel. We first calculate σ for each normalized time series separately. We then 
calculate the average σ of all normalized series in the dataset to describe 
variability for the whole study area (σdataset). We choose as optimal the 
normalization distance which results to the lowest σdataset. Once set, the 
distance between central pixel and frame remains the same for all the pixels 
of the dataset. This setting is not built-in the code because every study area 
has different natural variability, potentially changing through time. By allowing 
the distance to be user-defined, we ensure flexibility of the method. 
 
The statistical metric of σdataset is the main criterion to choose frame size in the 
case of unknown fluctuations. However, it should be critically assessed as well, 
especially if there is more information available on an expected fluctuation. 
The distance between central pixel and frame should be large enough that a 
localized fluctuation is not included in the neighbourhood set. If the aim is to 
detect an oil spill extending over hundreds of km2, it would be pointless to 
choose a 1-km distance (even if this resulted to the lowest σdataset). Larger sets 
increase statistical consistency in the normalization process and may decrease 
the variability. However, if the size of the set is so large that the central pixel 
and its neighbours are incomparable (for example, if they belong to different 
climatic regions), there may be hardly any common patterns left for the 
normalization to suppress. In the cases mentioned above, the optimal choice 
would be the set which fulfils all provisions: lowest σdataset possible; and, frame 
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size larger than the expected spatial extent of the fluctuation but within the 
limits of the same climatic region. 
 
Data availability may influence the result of normalization. In each time-step 
different parts of the normalization set may be missing. In case of extensive 
cloud cover there is a possibility that the few pixels remaining after cloud-
masking are not representative of the complete neighbourhood set. A threshold 
is set to ensure that normalized values of consequent time-steps are 
comparable. The threshold discards normalized values which have been 
calculated with less than a specific portion of the pixels of the neighbourhood 
set. This threshold is optional. Statistical testing is applied to evaluate if its 
application is needed and to define its level. 
 
Retrieval 
Retrieval highlights and temporally isolates periods in time when the 
normalized signal is dominated by values strongly deviating from the mean. 
Fluctuations which are not only localized but also temporally persistent are 
retrieved using a window-based approach. A temporal moving window can 
locate fluctuations in time and its application is independent of the process that 
may be generating the fluctuation [Chandola et al., 2012]. 
 
A mean + 2σ threshold is applied on the normalized time series to distinguish 
the values which most strongly deviate from the mean. All values exceeding 
this threshold are flagged (Figure 3.1C) and from here onwards they will be 
referred to as anomalies. Consequently, a temporal moving window 
counts the anomalies falling within the specified duration of the window 
(Figure 3.1C). The temporal length of the moving window is defined by the 
user, depending on the application, the temporal resolution of the sensor and 
the desired level of detail in temporally locating the fluctuation. The resulting 
time series consists of the total number of anomalies per window and 
represents temporal clustering of highly deviating normalized values. 
 
Also for this step the results of retrieval may be affected by data availability. 
Lack of data within the temporal window may result in low numbers of flags; 
these may be mistakenly considered to reflect low values in normalized data. 
To compensate for this effect, the number of anomalies in the temporal window 
is divided by the ratio existing observations/theoretical number of 
observations. Furthermore, a threshold is used to discard values which were 
calculated with less than a minimum number of available observations. This 
threshold is optional. Statistical tests determine if its application is needed and 
define its level (see following sections for more details). 
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3.2.2 Traditional methods applied for evaluation 

We apply three commonly used spectral and spatial approaches. 
 
First we use the Seasonal-Trend decomposition by LOESS (STL) [Cleveland et 
al., 1990; Hafen, 2010; Wang et al., 2014] which defines the daily and yearly 
components in the data. These components are subtracted by the original 
values. The remainder is examined to detect the imposed +3 K fluctuation. 
 
We then apply Fast Fourier Transform (FFT) to define all principal frequency 
components in the dataset [Humlum et al., 2011; Wang et al., 2014]. FFT 
requires continuous series; Singular Spectrum Analysis (SSA) is used to 
eliminate missing data. This is a gap-filling method which preserves periodic 
patterns of the signal [Buttlar et al., 2014; Korobeynikov, 2010; Kondrashov 
and Ghil, 2006]. After performing forward-FFT, we remove the most dominant 
frequencies and use inverse-FFT to reconstruct the signal. We expect to detect 
the imposed +3 K increase in the reconstructed signal. 
 
Finally, a version of Standard Normal Variate method is applied, as recently 
presented in Jimenez-Munoz et al. [2013, 2015]. Following this approach, 
standard scores are calculated from original values to show how many standard 
deviations is the distance between each observation and the mean of the 
series: 

ܤ ௦ܶ௧௔௡ௗ௔௥ௗ௜௭௘ௗ ൌ
ܤ ௢ܶ௥௜௚௜௡௔௟ െ ܤ ௠ܶ௘௔௡

ߪ
 

 

The authors classify standard scores to the following levels of warming 
(standardized score range in brackets): abnormal [+0.5, +0.8], moderate 
[+0.8,+1.3], severe [+1.3,+1.6], extreme [+1.6, +2.0] and exceptional [+2.0 
and higher]. The probability of a score being anomalous is up to 57.6% for the 
abnormal warming level, up to 80.4% for moderate, up to 86% for severe, up 
to 95.4% for extreme and more than 95.4% for exceptional warming levels 
[Jimenez-Munoz et al., 2015].  
 
We apply this method in the three recommended scales: monthly (June), 
seasonal (May, June and July), and yearly (2011). 
 

3.3 Application and evaluation 
In the first part of this section we demonstrate application of our method on 
two spatial subsets of a year-long satellite TIR dataset. The two subsets 
represent study areas of different homogeneity (e.g. in local weather, land 
cover, and anthropogenic activities, see Figure 3.2). We impose in both 
datasets artificial fluctuations in the form of increased brightness temperatures 
(see Table 1 for details). We describe how we defined the settings for the 
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processing. We evaluate the choices in terms of their effect on single-series σ 
and σdataset. We then retrieve the imposed anomalies and evaluate performance 
of the method. In the second part of the section we process the same data 
with three traditional approaches and compare results with our method to 
evaluate it further. 

3.3.1 Input 

We used TIR imagery acquired from the Spinning Enhanced Visible and Infra- 
Red Imager (SEVIRI) onboard EUMETSAT’s Meteosat-9 geostationary satellite, 
positioned at 0o /36,000 km. The instrument has a nominal spatial resolution 
of 3x3km2 at nadir and a sampling rate of 15 minutes in the TIR channels. We 
used two spatial subsets of a year-long (2011) whole-disk dataset from 
channel 9, registered at a wavelength range of 9.8-11.8 µm (λcent = 10.8µm). 
Original top-of-atmosphere radiance values are converted to Brightness 
Temperatures (BT, in K, following Clerbaux [2006]). The first study area 
(spatial extent: 327x303 km, or 109x101 pixels) is located in the desert in 
Niger, and serves as an example of a homogeneous background with low 
spatial and temporal variability in the TIR. The second study area is located in 
Kenya (spatial extent 309x318 km, or 103x106 pixels) and is very diverse in 
terms of geomorphology and land cover, representing a very heterogeneous 
background. 

3.3.2 Pre-processing 

We masked cloud-affected pixels using masks of EUMETSAT's Climate-
Monitoring Satellite Application Facility (CM-SAF). This dataset was produced 
with software of the Nowcasting SAF [Derrien and Le Gléau, 2005]. We 
excluded cloud-filled and cloud-contaminated pixels from further processing. 
As some of the clouds in the dataset were not detected by the available masks, 
we further discarded remaining pixels with values lower than the lowest 
recorded temperatures in historical archives. 
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3.3.3 Results and evaluation of our method 

We first present and evaluate the choice of settings applied in the processing; 
then we evaluate performance of retrieval. All the performed tests are 
described in Table 3.1. Experiments 1–4 (Table 3.1) were designed to test 
the following settings: size of the neighborhood set, data availability 
thresholds, and length of retrieval window. These settings are application-
dependent; the choices we present are specific for this case study. Experiments 
5–8 (Table 3.1) were designed to test performance of normalization and 
retrieval of synthetic fluctuations. 
 
Settings 
The first parameter to test was the optimal size of the normalization set 
(Experiment 1, Table 3.1). We performed normalization with different sizes of 
neighborhood sets, their frame sides ranging from 9 to 73 pixels (respectively 
12–108 km shortest distance between each side and the central pixel). We 
selected the size with the minimum σdataset. For Niger and Kenya the statistics 
were different but in both cases we had minimum σdataset when applying a 57-

Figure 3.2. Study areas. Natural color RGB images from the study areas in Niger (A) and
Kenya (B). The area in Niger is almost completely covered by desert consisting of sand
and gravel, with the exception of the rock formations in the NE corner of the image. 
Kenya has a more complex cover including bare soil, vegetated land, rock formations,
water bodies, urban areas and mountains. The main feature is Mount Kenya circled in
blue, in this image partly covered by clouds (white and turquoise). 
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pixel frame side. The σdataset was increased from 0.001 (57-pixel frame side) to 
0.003 (9-pixel frame side) in Niger, and from 0.003 to 0.006 respectively in 
Kenya (Fig. 3.3A). 
 
Table 3.1 Experiments and related choices 

Objective Experimental setting 

Choice of settings  

1. Size of normalization set: Prefer the 
size which results to normalized series 
with the lowest standard deviation 

Use frame side of 9, 17, 25, 33, 41, 49, 57, 
65, 73 pixels, corresponding to approximate 
radii ranging between 13 and 108 km. 

2. Retrieval with temporal windows of 
different length: Prefer windows of 
similar duration as the fluctuation of 
interest 

5-day long artificial fluctuation retrieval 
with 2-, 4-, 7-, 10- and 20-day windows. 

3. Data availability threshold for 
normalization: Choose the minimum 
data availability that preserves the 
distribution of values in the set 

Normalize with sets of minimum 30%, 50%, 
60%, 70%, 75%, 80%, and 100% data 
availability. Record standard deviation and 
distribution of values within the set. 

4. Data availability threshold for 
retrieval: Choose the minimum data 
availability that preserves the 
distribution of values in the series 
leaving enough data for analysis 

Retrieval with minimum 10%, 20%, 30%, 
35%, 40%, 50%, 60%, and 80% of data 
available. 

Experiments on normalization and 
retrieval  

5. Spatial extent of fluctuations 
suppressed by the normalization 

Impose +3 K fluctuation in (a) 1 pixel, (b) 
10 pixels and (c) 7411 pixels (67% of the 
image). 

6. Evaluate intensity of retrieved 
fluctuations 

Impose and retrieve fluctuations of +1, 2, 
3, 4, 5, and 6 K. 

7. Retrieve fluctuations in different 
locations in the image and in the time 
series 

Impose and retrieve the same +3 K 
fluctuation. (a) In timeslots with/without 
gaps (February, June, September, and 
November) (b) At locations with high/low 
variability in the normalized series. 

8. Effect of clouds on normalization Process data with and without cloud 
masking. 
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We tested retrieval of a 5-day artificial fluctuation using temporal windows of 
2–20 days. The fluctuation was retrieved as an anomaly in all of the cases. The 
main differences in retrieval were the timing, the width and the size of the 
resulting peak. For all windows the anomaly starts to be visible at the same 
time, but the center of the peak shifts to later times for larger windows. The 
peak is higher for longer windows since more anomalous values are captured 
in a single window. The optimum window length is roughly the same as the 
anticipated length of the anomaly. If this is not known in advance, it is 

 
Figure 3.3. Effect of algorithm settings and missing data. (A) Effect of frame size. The 
panel shows the result of normalization of series with different imposed fluctuations, 
using different frame sizes, in both study areas. The series are displayed with offset 
for clarity. Normalized series in the heterogeneous area of Kenya (first two rows) are 
more variable than in homogeneous Niger (last two rows). Imposed fluctuations of 
+(3–5) K exceed the detection threshold regardless of frame size, and are more 
visible when the variability is low. Artificial fluctuations increase linearly the 
normalized values. (B) Effect of clouds and missing data. The presence of clouds 
increases variability in the original time series (grey dashed line); even after cloud 
masking (black line), cloud remnants introduce spikes. Lack of data in the 
neighborhood set also increases variability of cloud-masked normalized series. In 
contrast, the series normalized with at least 75% of the data available (red solid line) 
is the least variable. 
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recommended to test multiple windows and assess the persistence of peaks 
between short(er) and long(er) windows. 
 
The application of data availability thresholds is not relevant for datasets which 
are not affected by missing values. We calculated the σdataset at different data 
availability levels to see if the use of these thresholds would be needed in this 
study. We found that a 20% decrease in data availability doubled the σdataset of 
Niger; in Kenya the corresponding σdataset became five times higher. We thus 
decided that it would be relevant to apply the thresholds in order to minimize 
this variability. The choice on these thresholds is based on two criteria: (a) 
preserve the distribution of values in the normalization set/temporal window 
and (b) make sure that enough data remain for analysis. We decided that a 
minimum of 75% data was needed for normalization, and a corresponding 25% 
for retrieval. The reduction in variability of normalized series after application 
of a 75% threshold can be seen in Fig. 3.3B. 
 
The examples we show in the figures are obtained with the following optimal 
settings: a normalization set of a 57-pixel frame side, with at least 75% of the 
pixels present; and a 7-day long temporal window, with at least 25% of the 
observations present. 
 
Retrieval performance 
With Experiment 5 (Table 3.1) we tested the hypothesis that fluctuations of 
extent smaller than the normalization set are detectable. We imposed the same 
+3 K fluctuation in areas of different spatial extent. As expected, the 
fluctuation was visible when its extent was smaller than the area framed by 
the normalization set but not when its extent was larger. In Fig. 3.4, artificial 
fluctuations of +3 K which cover both the central pixel, coincide after retrieval 
with the +0 K imposed fluctuation (black line). 
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In Experiment 6 (Table 3.1) we imposed fluctuations of magnitude (+1) to 
(+6) K in the data (Fig. 4 for Niger). Regardless of the size of the fluctuation, 
higher fluctuations linearly increased normalized values (Fig. 3.3A). In the 
retrieval the effect was non-linear. The smallest imposed fluctuations we could 
retrieve, under conditions of high variability and low data availability, were 
+2 K in Niger and +3 K in Kenya (Fig. 3.4). 
 
We imposed fluctuations in different locations in space and in time, to examine 
cases with higher and lower variability and with more or less missing values 
(Experiment 7, Table 3.1). Retrieved anomalies had different amplitudes 
when the same fluctuation was imposed in different times. Peaks were in 
general larger when the variability of the time series was lower and data 
availability was higher. As a result, we cannot quantify that a specific 
fluctuation will be always retrieved as an anomaly of corresponding amplitude; 
this should be evaluated in the context of each study area. 
 
Our last experiment (Experiment 8, Table 3.1) tested the effect of cloud 
masking. Cloud masking reduced the variability of the normalized series 
approximately by a factor of 4 (Fig. 3.3B). The value of σdataset changed from 
0.020 to 0.005 after cloud masking in Niger and from 0.037 to 0.009 in Kenya. 
In contrast, the increase of σdataset that was caused by localized fluctuations, 
like the ones we imposed in both datasets, was of the order of 10−4. This shows 
the importance of removing disturbances from the data prior to processing. 
 

 
 
Figure 3.4 Detection of synthetic anomalies of different magnitude (Niger). Localized 
artificial fluctuations are retrieved as peaks of different magnitude. 
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3.3.4 Comparison with other methods 

We used the original dataset from Niger and imposed a +3 K 5-day increase in 
BT in June 2011. This had proven straightforward to retrieve with our method, 
so we tested detecting it with others. 

 

 
 
Figure 3.5 Comparisons between detection methods. Application of different methods 
to detect a synthetic +3 K 5-day BT increase imposed in the Niger dataset. A1: Original 
time series, with the imposed anomaly in red. The imposed anomaly does not stand 
out from the rest of the data. A2: the same (detail). B1: Remainder of STL 
decomposition of the original series. The anomaly is not distinguishable. B2: The same 
(detail). C1: FFT-reconstruction of the original series, after removing the three 
dominant frequency components (yearly, daily and twice-per-day). The impose 
anomaly does not stand out. C2: The same (detail). D1: Time series of the standard 
scores calculated from the original year-long dataset. The green dashed line designates 
extreme values, and the green solid line shows values which are classified as 
exceptional. The imposed BT increase is classified as anomalous but cannot be 
distinguished from the rest of the extreme/exceptional standardized values in the 
dataset. D2: The same but in monthly scale. E1: The methodology described in this 
paper clearly identifies the imposed anomaly as the single highest peak in the dataset. 
E2: Normalized dataset (detail). The imposed anomaly stands out in the normalized 
series, largely exceeding the detection threshold (in green). 
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Results from the application of all methods are summarized in Figure 3.5. The 
first row shows the original series with the imposed fluctuation. The second 
row shows the remainder of STL decomposition. This is the result of subtracting 
the seasonal and daily patterns from the original series. The artificial 
fluctuation (in red) is contained in the remaining values, but cannot be 
distinguished from the rest of the data (Figure 3.5B1,2). In the case of FFT, 
the dominant frequency components identified are yearly, daily, and twice-per-
day. These components are removed and the signal is reconstructed using 
inverse FFT. The imposed anomaly does not stand out in the reconstructed 
signal (Fig.3.5C1,2). 
 
Detection with standardized scores in a yearly scale yields extreme and 
exceptional anomalies throughout the period between mid-April to October 
(Figure 3.5D1). Standardized data retain the seasonal pattern of the original 
dataset. The imposed fluctuation is included in the values which are considered 
extreme/exceptional, but so were many other values. As a result, the imposed 
anomaly does not stand out. Similar results are obtained with analysis on 
seasonal and monthly scale (Figure 3.5D2). 
 
In contrast, after applying the normalization described in this study, the 
imposed +3 K 5-day increase is detected as the single most prominent peak in 
the whole dataset (Figure 3.5E1.). The majority of anomalous values exceeds 
the detection threshold already in the normalized series (Figure 3.5E2). 

3.4 Discussion 
Fluctuations of geophysical parameters are of interest in applications ranging 
from climatic studies to hazard monitoring. Detection of such fluctuations is 
often a complicated task, even with the variety of available satellite sensors. 
Depending on the parameter of interest, input from multiple parts of the 
spectrum may be needed; issues of saturation may arise in different scales; 
and fluctuations may be obscured by predominant patterns. 
 
Localized fluctuations of interest may remain within the expected range of 
original values. In such cases, pixel values are normal in absolute value, and 
the fluctuation is easily obscured by predominant (daily, seasonal) patterns of 
the signal. Such fluctuations can be detectable with examination of each value 
in its spatial context [Byun et al., 2007]. For example, a forest fire which would 
saturate the TIR channels of high-resolution sensors, may increase the pixel 
value of low-resolution TIR imagery only by a few degrees Kelvin [Wooster et 
al., 2005]. This increase is localized and alters the usual relationship between 
the affected pixel and its surroundings. Our methodology targets such 
fluctuations by identifying anomalies as deviations from the usual relation 
between a pixel and its spatial neighbourhood. This approach facilitates 
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detection of contextual anomalies which remain within the normal range of 
values. Furthermore, it allows detection of fluctuations over constantly 
elevated or constantly low background. This could be the case, for example, of 
temporally variable volcanic activity in a permanent lava lake. 
 
Considering the spatial context of an anomaly offers another advantage: it 
constrains its occurrence locally, providing insight on the relation between the 
anomaly and the potential underlying causes. An anomaly that extends in 
thousands of km2 can most likely not be attributed to a spatially limited 
process. In that respect, the shape of the normalization frame serves as an 
upper boundary for the areal extent of a detected anomaly. The use of an open 
frame ensures that only a spatially limited fluctuation is detectable: if the 
fluctuation was included in the normalization set, it would be averaged out 
when the value of an anomalous pixel is divided by the value of its equally 
anomalous surroundings. As shown in Experiment 5, anomalies are only 
detected when they are not covered by the frame.  
 
In terms of the temporal dimension of the data, our method suppresses 
patterns not by modelling past observations, but by identifying the 
commonalities between signals of neighboring areas in the time when they 
emerge. This is especially important because predominant patterns, like 
seasonality, often vary in time. For example, weather extremes are becoming 
more frequent [Easterling et al., 2000]; by using the approach described in 
this Chapter, a short-lived localized Brightness Temperature increase caused 
by spatially finite surface processes can be distinguished from a short-term, 
unusually warm period affecting the whole TIR image.  Present-time 
normalization of commonalities allowed the methodology of this Chapter to 
outperform approaches which do not fully address predominant patterns or 
rely on past observations to suppress them. Another advantage is that 
processing can take place in near-real-time mode. Additionally, by defining the 
temporal occurrence of an anomaly, it is possible to better evaluate its relation 
with potential causative processes. 
 
Rather than pre-defining the settings of our method, we statistically determine 
specific criteria for the choices. In this way we ensure flexibility of the method 
and optimal application in study areas with different local conditions. 
Information on the characteristics of the fluctuation of interest can be used to 
constrain application of the methodology, but it is not required to have a priori 
knowledge of the expected fluctuation or the predominant patterns in the 
signal. Settings are applied uniformly to the whole dataset, and retrieval is 
automated, supporting objectivity and comparability of the results. The 
mean+2σ threshold that isolates anomalies is based on each single-pixel time 
series; that has the advantage that anomaly detection is performed 
considering the local conditions. Normalized series of high variability have 
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higher mean+2σ threshold; then, values need to be higher before they are 
declared anomalous. Datasets of long duration are recommended, to better 
describe the usual relation between a pixel and its surroundings. 
 
Our results show that the proposed methodology can detect short-term (lasting 
1.4% of the duration of the dataset), localized (affecting only one pixel) and 
low- intensity anomalies (as low as 0.7% of the signal, which was the case of 
+2 K over a 300 K background in Niger). This facilitates use of low spatial 
resolution sensors for detection of small-scale environmental changes, even 
with only one band available. The case study presented as an example was 
based on geostationary TIR input. Geostationary products offer the advantage 
of high temporal coverage, which is important for timely monitoring of 
extremes [Giglio et al., 2003]. The use of hyper-temporal datasets is further 
emphasized because temporal resolution is required to detect short-lived 
fluctuations. The approach, however, is not restricted to the input of our 
example; it may be applied at different scales and different types of 
spatiotemporal data. Higher spatial resolution may also provide more detail in 
locating a potential source of anomaly. 

3.5 Conclusions 
We focus on unexpected, localized, short-term signal fluctuations and propose 
a methodology to detect them using single-band input. Our normalization 
procedure suppresses spatially extended, large-scale temporal patterns in 
single-pixel time series without having to explicitly model them. Data are 
brought to scale and localized fluctuations with an extent smaller than the 
defined become more obvious, regardless of the underlying causative 
processes. The fluctuations are distinguished from large-scale periodical 
patterns by analysing both the spatial and temporal dimensions of geophysical 
data. This can serve a wide spectrum of applications and facilitate monitoring 
of extremes. 
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Chapter 4. Study of Volcanic Activity at 
Different Time Scales Using Hypertemporal 
Land Surface Temperature Data2 
 

4.0 Abstract 
We apply a method for detecting subtle spatiotemporal signal fluctuations to 
monitor volcanic activity. Whereas midwave infrared data are commonly used 
for volcanic hot spot detection, our approach utilizes hypertemporal longwave 
infrared‐based land surface temperature (LST) data. Using LST data of the 
second‐generation European Meteorological Satellites, we study (a) a 
paroxysmal, 1 day long eruption of Mount Etna (Italy); (b) a prolonged, 
6 month period of effusive and lateral lava flows of the Nyamuragira volcano 
(Democratic Republic of Congo); and (c) intermittent activity in the permanent 
lava lake of Nyiragongo (Democratic Republic of Congo) over a period of 
2 years (2011–2012). We compare our analysis with published ground‐based 
observations and satellite‐based alert systems; results agree on the periods of 
increased volcanic activity and quiescence. We further apply our analysis on 
mid‐infrared and long‐infrared brightness temperatures and compare the 
results. We conclude that our study enables the use of LST data for monitoring 
volcanic dynamics at different time scales, can complement existing 
methodologies, and allows for use of long time series from older sensors that 
do not provide midwave infrared data. 

4.1 Introduction 
In this work we explore the utility of land surface temperature data, retrieved 
from longwave infrared (LWIR) records of geostationary satellites, to detect 
different types of volcanic activity. For this purpose we apply a recently 
published methodology [Pavlidou et al., 2016], which builds up on kernel‐based 
image processing approaches, to allow utilization of satellite LWIR archives for 
long‐term volcanic monitoring. 
 
Monitoring of remote inaccessible volcanic areas at different timescales has 
been made possible by the availability of synoptic satellite coverage, leading 
to the gradual development of the quantitative discipline of satellite 
volcanology [Ramsey and Harris, 2013, Blackett, 2014]. Infrared (IR) 
observations from volcanic targets are reported since the 1960s [Wooster and 

                                          
2 Pavlidou, E., Hecker, C., van der Werff, H., & van der Meijde, M.[2017]. Study of 
volcanic activity at different time scales using hypertemporal land surface temperature 
data. Journal of Geophysical Research: Solid Earth, 122. DOI:  10.1002/2017JB014317 
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Rothery, 2000, Wright et al., 2004]. Instruments of different dynamic range, 
spatial and temporal resolutions have been utilized for volcanic studies 
[Donegan and Flynn, 2004, Pieri and Abrams, 2004, Watson et al., 2004, 
Blackett, 2014]. Technical characteristics of thermal sensors commonly used 
in volcanic applications can be found, for example, in Pieri and Abrams [2004]; 
Blackett [2014], [Blackett, 2017]; Ramsey and Harris [2013].   
 
The theoretical base of volcanic IR remote sensing stems from the relationship 
between the kinetic temperature of an object and its spectral radiance (energy 
radiated from the object per unit of wavelength), as expressed by Planck’s 
Function [Blackett, 2017, Wooster and Rothery, 2000]: 
 

Lλ(T)= 
ଶ௛௖మ

஛ఱ	ሺୣ୶୮ሺ
೓೎
ಓౡ౐

ሻିଵሻ
 × 10−6  (Eq.4.1) 

 
where: 

λ : wavelength (m),  
T : temperature (K),  
L : spectral radiance (W /m² /sr /μm),  

 h = 6.6 × 10-34 Js (Planck’s constant) 
 k = 1.38 × 10−23 J/k (Boltzmann’s constant) 
 c = 3 × 108 m/s (velocity of light in vacuum) 
 
An implication of Eq.1 is that the emittance of warmer objects peaks in shorter 
wavelengths (known as Wien’s law, e.g. in Wooster and Rothery [2000]). 
Active lava flows have an average temperature in the range of 500-1000 K and 
their thermal emissions are stronger in shorter infrared wavelengths. The 
midwave infrared part of the spectrum (MWIR, 3-5 µm) is particularly suitable 
for detection of volcanic features, as it is less affected by solar irradiance than 
daytime shortwave IR and allows detection of a wider range of volcanic activity 
[Blackett, 2013]. Wright et al. [2002] report an example of 200% increase in 
spectral radiance measured in the 4µm region (MWIR) in the presence of 
magmatic material as opposed to the less pronounced channel response (up 
to 1% increase) in the 11µm region (longwave infrared, LWIR). As a result, 
mainstream remote sensing methods for volcanic hotspot detection utilize 
MWIR input.  
 
Recent overviews of volcanic hotspot detection and monitoring of volcanic 
activity can be found, for example, in Harris et al. [2016] and Blackett [2017]. 
Steffke and Harris [2011] classify relevant algorithms in three main categories. 
In the first category, fixed threshold/spectral techniques utilize the difference 
in MWIR-LWIR band sensitivity to temperatures of molten material. A 
characteristic example of dual-band approach is MODVOLC, an automated 
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hotspot detection algorithm based on input from the Moderate Resolution 
Imaging Spectroradiometer (MODIS). MODVOLC (accessible through 
modis.higp.hawaii.edu) has been a point of reference for more than a decade, 
issuing near-real time alerts on a global scale [Wright et al., 2002, Wright, 
2015]. It flags thermally anomalous pixels based on the Normalized Thermal 
Index (NTI) which is the ratio between the difference and the sum of MWIR 
and LWIR radiances [Wright et al., 2004, Wright, 2015]. Also based on MWIR 
input, the MIROVA system provides near-real time monitoring and radiative 
power time series using MODIS data (Coppola et al. [2016]; accessible through 
www.mirovaweb.it). The HOTVOLC system uses METEOSAT data for 
monitoring lava, ash and SO2 (Gouhier et al. [2016]; accessible through 
hotvolc.opgc.fr). In the second category, contextual approaches detect 
hotspots by comparing target pixels to a non-volcanic background. An early 
example in this category is the VAST method introduced by Harris et al. [1995]. 
Flasse and Ceccato [1996], Murphy et al. [2011],  Blackett [2013] and Carr et 
al. [2016] follow similar approaches. In the third category, temporal (or time-
series based) methods statistically identify anomalies using past observations 
of the same pixel (see, for example, Di Bello et al. [2004] and Pergola et al. 
[2004]). Hybrid approaches have been developed to increase performance and 
provide better description of lava flows in terms of emplacement and radiative 
power. Examples include the work of Higgins and Harris [1997]; Kervyn et al. 
[2008]; Koeppen et al. [2010]; Ganci et al. [2011]. 
 
Even though the first space-borne volcanic observation was registered by the 
MWIR channel of the Nimbus-1 meteorological satellite in 1964 [Wooster and 
Rothery, 2000], MWIR observations are not always available [Blackett, 2014]. 
Meteorological satellites did not routinely provide MWIR coverage until the late 
1990s. In order to obtain information from older generation sensors, LWIR data 
can be used instead. Moreover, as mentioned by Carter et al. [2008], LWIR 
input can be used to monitor subtle radiance changes over time, especially 
where it comes to cooler volcanic features. The spectral response of cooler 
features is more pronounced in longer wavelengths. Reath et al. [2016] for 
example, combine LWIR data from different sensors (Advanced Very High 
Resolution Radiometer-AVHRR and Advanced Spaceborne Thermal Emission 
and Reflection Radiometer-ASTER) to detect subtle thermal output preceding 
effusive and explosive eruptions in Kamchatka. Wessels et al. [2013] used, 
among others, ASTER-derived atmospherically corrected at-surface LWIR 
radiance and surface kinetic temperature data to detect thermal unrest prior 
to the 2009 eruption at Redoubt volcano. Still, atmospheric influences need to 
be addressed because they might obscure subtle anomalies [Watson et al., 
2004, Blackett, 2014, Carr et al., 2016]. 
 
We study volcanic events at different timescales without MWIR input, based 
entirely on LWIR-derived Land Surface Temperature data (LST). This is 
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particularly relevant in view of the availability of a consistent LWIR-based LST 
dataset retrieved from the European Meteorological Satellites’ (METEOSAT) 
geostationary set of sensors [Duguay-Tetzlaff et al, 2015]. LST data derived 
from geostationary satellite input have high temporal resolution (24- 192 
images daily depending on the sensor and the period), and are corrected for 
atmospheric effects and clouds. Because of the coarse spatial resolution of the 
geostationary sensor (3-5 km at nadir, depending on the sensor), the 
emittance of subpixel volcanic targets is averaged over larger areas and 
saturation of the recorded signal is not common. Furthermore, METEOSAT 
sensors have been in operation already for more than 30 years covering half 
of the planet. These characteristics allow for the construction of time series 
which (a) are hypertemporal, thus suitable for monitoring transient volcanic 
events, and (b) span over decades, thus being more useful to study long-term 
characteristic volcanic cycles. 
 
The spatial resolution and the lower sensitivity of LWIR to volcanic material 
require the use of a detection method able to distinguish subtle signal 
variations; such variations should be detected also in case of constant activity. 
To achieve these, the method described in Chapter 3 is applied. It combines 
time series analysis with contextual approaches, allowing for site-specific 
detection. It normalizes pixel values by their spatial neighbours, suppressing 
spatially extended patterns at the time they emerge, independently of past 
observations. As a result, subtle variations in the signal are visible even in case 
of persistent activity. 
 
We show the applicability of this approach using hypertemporal LST datasets 
which cover three different volcanic events. The first is the short paroxysmal 
Mount Etna (Italy) eruption of August 12th, 2011. The second event is a series 
of lava flows from Nyamuragira volcano and the third, volcanic activity the 
permanent lava lake of Niyragongo; both are located in Virunga National park 
(Democratic Republic of Congo) and the sequence of volcanic activity took 
place between November 2011 and April 2012. This choice of events allows us 
to test activity evolving in different timescales. The findings are validated using 
satellite and ground-based studies and reports. Finally, the same methodology 
is applied on non-atmospherically-corrected at-sensor Brightness 
Temperatures (BT), derived from METEOSAT MWIR (Channel 4) and LWIR 
(Channel 9) data over Mount Etna. The findings are intended to explore 
atmospheric effects on the detection and complementarity in the use of 
different wavebands. 
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4.2 Materials and Methods 

4.2.1 Data 

We use the LST product of the Land Surface Analysis Satellite Application 
Facility of EUMETSAT (LSA-SAF) [Trigo, 2009]. The SEVIRI sensor onboard the 
METEOSAT Second Generation (MSG) geostationary satellites has a 3x3km 
nominal spatial resolution and sampling frequency of four images per hour. 
The LSA-SAF team retrieve LST based on clear-sky measurements following 
the Generalized Split-Window (GSW) algorithm [Wan and Dozier, 1996]. First, 
they perform cloud masking using software of the Nowcasting Satellite 
Application Facility (NWC SAF). Then, as described by Trigo et al [2009] they 
use an adjusted version of the GSW algorithm to correct the data for 
atmospheric effects based on the differential absorption in two LWIR bands, 
centred at 10.8μm and 12μm. The LST product comes with pixel-by-pixel 
information on estimated uncertainties of LST values. LST data are available 
at three levels of confidence based on these uncertainties: above nominal 
(estimated uncertainty less than 1K), nominal (uncertainty between 1 and 2K) 
and below nominal (uncertainty above 2K).  
 
For our analysis we only use only pixels with nominal or above-nominal 
uncertainty levels (2 K) are used for analysis in this study. LST data are subset 
over the two study areas. The first is located in Sicily, Italy and covers 66x65 
pixels over the volcano of Mount Etna (Figure 4.1a). The dataset is one-month 
long (August 2011) and covers a paroxysmal episode that took place on Mount 
Etna, on the 12th August 2011. The second area (122x108 pixels of the image) 
is subset over the Virunga mountain range National park and includes two 
major active volcanoes on the African continent: shield volcano Nyamuragira 
and stratovolcano Nyiragongo, which hosts a permanent lava lake (Figure 
4.1b). This dataset extends over two years (January 2011- December 2012) 
and covers the Nyamuragira eruption period between November 2011 and April 
2012. In this period lava flows and activity in the lava lake took place, as 
described in the reports of the Global Volcanism Program (GVP) of the 
Smithsonian Institution [GVP 2011a-d; 2013; 2014a-b]. The spatial extent of 
the subsets is chosen to completely contain the corresponding volcanic targets, 
including also non-affected areas. 
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Figure 4.1. Study areas over Mount Etna (panel a) and Virunga National Park, D.R.Congo
(panel b), with the general location indicated by the insets. In both panels, the images
on the left ae natural color RGB color composites from SEVIRI, while on the right the
Landsat ETM+ color composite images show the volcanic targets with more spatial detail.
High resolution imagery is only available at infrequent intervals (once every ~16 days).
Green colors show vegetated areas, brown refers to bare soil, black to water bodies,
white to cloud cover. The presence of lava is shown in bright red in the Landsat image
over Congo, the only high-resolution image available from that period of activity
(February 2012). The parallel black lines in the Landsat imagery are scan line corrector
errors. Landsat imagery courtesy of USGS; SEVIRI imagery courtesy of EUMETSAT.  
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With this choice of events we test three types of volcanic activity, with different 
duration and spatial extent, and with different degree of ground-based 
monitoring. First, the paroxysmal eruption of 12th August 2011 in Mount Etna 
lasted 33hrs and comprised of Strombolian activity, lava fountaining and lava 
flows [Ganci et al., 2013].  Ganci et al. [2013] report ground-based 
observations covering the whole duration of the event, which was the strongest 
of the year. They use data acquired from a permanently installed thermal 
camera to estimate a total lava flow area of 1.3x106 m2, where temperatures 
developed between 400-1200 K during three phases (flow onset, fountaining 
and cooling). Secondly, the flank eruption of Nyamuragira is examined. There, 
for the period starting 6th November 2011 and lasting through to April 2012, 
the Global Volcanism Program report details volcanic activity which started as 
fissures and fountaining in early November. New cone formation took place in 
early December 2011, fissures and extended flows were registered throughout 
January. Finally the GVP report lava flows, degassing and lake formation in 
February which lasted until April 2012, with continuous degassing until June. 
The third volcanic target is the case of the 1200m-wide summit crater of 
Niyragongo. There, a lava lake of average diameter of 244m according to Burgi 
and colleagues [2014], shows frequent fluctuations of the level of its lava 
surface. It is also characterized by rapid fissure eruptions, lava fountaining, 
overflows, and movement of cooled lava plates within the lake [Burgi et al., 
2014]. This area is studied for the years 2011-2012. Concerning the period 
between January and June 2011, the reports of GVP detail that the level of lava 
in the lake was stable and there was no lava overflow. In the period 30th May-
9th June 2011, Burgi et al. [2014] conducted a field campaign in the area of 
the lake. Late on June 3rd, an inward drainage took place, and the surface of 
the lava lake was falling between 4-6th June. Spampinato et al. [2013] visited 
Nyiragongo in March 2012 and used a ground-based thermal camera to make 
approximately one-hour-long recordings of the activity in the lake for three 
consecutive days. They report mean apparent temperatures of 800-820K on 
9th March; 740-808K on 10th March; and 730-824K on 11th March. They 
estimate that the mean radiative power varied between 1.00-1.20GW, 0.60-
1.00GW and 0.60-1.10GW on the respective days. More detailed ground 
information is not available; in Congo, ground-based monitoring of both 
volcanic targets of this study is not systematic. On the contrary, Mount Etna is 
being regularly monitored from the ground [GVP, 2013].  
  



Volcanic case study  

52 

4.2.2 Image processing and hotspot detection 

The method described in Pavlidou et al.[2016] applies a contextual approach 
to suppress patterns common between each pixel and its surroundings. Pixel 
values are divided by the average value of a square open frame of neighbouring 
pixels (normalization, see Figure 4.2). In this way, we highlight localized 
fluctuations that are present in the central pixel but not in the surrounding 
frame. Thereby, predominant patterns extending over the image are 
suppressed, including seasonal effects and unusual weather conditions. 
Normalization is run spatially, for all the pixels in the image and consequently 
for all images in the data set. 

 
After the normalization, each pixel is analysed in its time series profile. In the 
normalized series, local fluctuations are flagged as anomalous in case they 
exceed a mean+2σ threshold [Pavlidou et al., 2016]. The threshold is 
calculated for every pixel’s normalized time series. Thus, it is adjusted to each 
specific location and thereby facilitates detection over constantly elevated 
backgrounds, which is important for active volcanic areas [Koeppen et al., 
2010]. A moving window runs through each pixel-based time series to count 
the number of anomalies that fall within the window (Figure 5.3, panel c). This 
procedure isolates values that exceed the set threshold and cluster in time, 
and it allows us to examine the temporal coincidence between a localized 

 

Figure 4.2. Methodology. (a) Every pixel Y is normalized by the average of the 
neighbourhood pixels X1–X32. (b) The original time series from the central pixel 
(black line) and the average value of the frame pixels (red line). (c) In the normalized 
series resulting by the division of central pixel/frame time series, values exceeding 
the mean + 2σ threshold (dashed blue line) are considered anomalous. A moving 
temporal window (hashed grey box) counts how many anomalous values coincide 
within the same time period. The procedure is carried out for every pixel time series. 
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anomaly and the potential underlying causative process. The analysis is carried 
out in every pixel of the study area, in all images of all timeslots. This allows 
for monitoring of unknown eruptions.  
 
Following the procedures described in Pavlidou et al. [2016] we decide on the 
settings applied for processing (see Appendix 1). We set the length of 
normalization frame side to five pixels (~15 km based on the nominal spatial 
resolution of the sensor). This choice minimizes the variability of the 
normalized series in both study areas. It also ensures that the frame is wider 
than the maximum possible spatial extent of a potential anomaly, as described 
in the ground‐based reports. Concerning the choice of temporal window, we 
show results with windows both smaller and larger than the events of interest. 
In particular, in Mount Etna, where the paroxysmal episode of 12 August lasted 
33 h [Ganci et al., 2013], we present analysis with a 1 day temporal window. 
In Congo, where volcanic activity was more prolonged and was dominated by 
flank eruptions of variable duration (from few hours to days), we use a 5 day 
temporal window.  

4.2.3 Validation 

We validate our findings with ground-based reports of the Global Volcanism 
Program [2011a-d; 2013; 2014a-b]; with the studies of Burgi et al. [2014] 
and Spampinato et al. [2013] for Congo; and with the study of Ganci et al. 
[2013] for Mount Etna. Radiant heat flux data were kindly provided by the 
authors. In the comparisons, priority is given to ground-based reports 
whenever they are available; satellite-based evidence is used as 
complementary. Agreement is considered between the available reports and 
our results, where (a) peaks are detected when activity is reported, (b) no 
peaks are detected when quiescence is reported, and (c) when detected peaks 
temporally coincide with reported increases in apparent temperatures and/or 
radiative heat flux, assuming that such increases would lead to higher numbers 
of detected anomalies. Findings are further compared to the MODVOLC alerts 
issued for the periods of interest. In this case, agreement is considered if 
detected peaks coincide temporally with issued alerts.  

4.2.4 Application on MWIR and LWIR at-sensor Brightness 
Temperatures 

We apply same methodology is applied in the study area of Mount Etna, Sicily, 
using as input brightness temperatures (BT) derived (a) from the MWIR band 
(channel 4, centred at 3.9μm) and (b) from the LWIR band (channel 9, centred 
at 10.8 μm) of the SEVIRI sensor. The temporal and spatial resolution of the 
data is the same as in the case of LST, as is the study area definition and the 
duration of the dataset.  MWIR and LWIR BT data are neither atmospherically 
corrected nor cloud-masked. This analysis investigates atmospheric effects on 
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the result of detection and comparability and complementarity of the different 
inputs.  

4.3 Results 
Results of the analysis of datasets from both study areas are presented in 
Figures 4.3-4.6. The peaks correspond to numbers of anomalies clustered 
within the moving temporal window. Comparisons are provided against 
MODVOLC alerts, published measurements of radiant heat flux and ground-
based information on reported activity or inactivity.   
 
In the case of Mount Etna, the eruption of the 12th of August is detected as 
the largest peak in the LST dataset; this is visible only in the two pixel time 
series affected by the flow and is approximately four times as large as the next 
highest peak in amplitude (Figure 4.3, Panel a). The peak coincides with 
MODVOLC alerts and with paroxysm #10, as reported by the GVP[Wang et al., 
2016]. The paroxysm of August 12th was the largest of 2011 [Ganci et al., 
2013]. Ganci et al. [2013] report a short period of increasing heat flux in the 
morning of the 12th of August, followed by a rapid increase during the main 
fountaining activity and a period of waning heat flux during cooling. These can 
be seen in both curves reported by the authors: they calculate the first using 
ground measurements and for the second they use METEOSAT MWIR 
observations (Figure 4.3, panel b). The detected peak is in agreement with 
both curves. The event is also detected when using MWIR (Figure 4.4, panel 
a2) and LWIR (Figure 4.4, panel b2) BT input. MWIR data saturate during the 
paroxysms (Figure 4.4, panel a1). The result of MWIR-based detection shows 
that paroxysm #9 is the largest one (Figure 4.4, panel a2), even though the 
ground reports describe that paroxysm #10 was instead the largest of the year. 
This issue is not present in LWIR-based results (Figure 4.4, panel b2). 
 
Smaller paroxysms in the same month took place between 5-6th of August 
(#9), on the 20th of August (#11) and around the 29th of August (#12), 
according to the ground-based reports. The first two events included extensive 
ash emissions (dense plumes of ash and tephra). These resulted in missing 
values in LST data and impeded detection (Figure 4.3, panel a); similarly, they 
masked event #11 in LWIR data (Figure 4.4, panels b1, b2). MWIR data were 
less affected by the plumes and the event is detected as a peak (Figure 4.4, 
panel a2). Paroxysm #12 was preceded by an explosion and a series of ash 
emissions, between August 27-28th; these were not classified as paroxysms 
by GVP. The onset of the event of 29th of August (paroxysm #12) was detected 
as a small peak in the LST-based analysis, but it was also followed by a gap in 
the data when reported ash emissions took place (Figure 4.3, panel a). LWIR-
based analysis shows a peak on August 27th and smaller peaks on the following 
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days. In MWIR-based analysis only the most intense event is visible as a peak 
on August 29th. 

  

 
 
Figure 4.3. Hotspot detection at Mount Etna. Panel (a) shows detection results for the 
whole month of August 2011 from a pixel at the New SE crater of Mount Etna. Vertical 
red bars denote MODVOLC alerts. Periods of activity (paroxysms #9 to #12,) reported 
by the Global Volcanism Program and Ganci et al (2013), are shown in red horizontal 
lines. Blue lines correspond to periods of inactivity throughout August 2011. Results 
calculated with more than 75% data missing are shown with a dashed black line. Panel 
(b) shows the peak of August 12 (paroxysm #10) in comparison to the radiant heat 
fluxes calculated by Ganci et al (ground-based, in gray; and SEVIRI-based, in dashed 
brown). 
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In Congo there were two different types of activity: a series of effusive lava 
flows on the flanks of Nyamuragira and a permanent lava lake in Nyiragongo 
(Figures 4.5 and 4.5).  
 
The Nyamuragira lava flows affected mostly six pixels (shaded white in the left 
panel of Figure 4.5b). We present results of the detection for all of these pixels 
in Figure 4.5a, using different colors. In all pixels we detect a series of peaks 
which are up to 6 times larger than the rest of the dataset, and they 
distinctively cluster in the period of volcanic activity described in the GVP report 
(Figure 4.5a). A high number of MODVOLC alerts were also issued during that 
period. The compilation of results from neighboring pixels provides insight in 
the spatiotemporal evolution of the event. For example, as seen in more detail 
in Figure 4.5b, a peak appears first in pixel 5 and then moves N-NE to 
neighboring pixel 4; this in in agreement to the flow described by the GVP 
report. Such peaks were not visible in pixels unaffected by volcanic activity 
(Figure 4.5c). 

 
 
Figure 4.4. Analysis of data from different wavebands over the Mt.Etna study area. 
Original Brightness Temperature (BT) time series from METEOSAT MWIR band (panel 
a1), are compared with LWIR BT (panel b1) and LWIR-based LST time series (panel 
c1). Detection results are shown correspondingly in panels (a2)-(c2). Periods of 
reported activity are shown as paroxysm numbers.
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Figure 4.5. Hotspot detection in Virunga National park, D.R.Congo. Panel (a) shows 
detection results for the complete period 2011-2012. The number of anomalies 
detected in the pixels covering lava flows is shown in different color for each pixel. The 
location of the pixels is shown in the Landsat image of panel b. These were pixels with 
maximum counts of detected anomalies. The period of volcanic activity reported by 
the Global Volcanism Program [2014a] is denoted with a red horizontal line. Red 
vertical bars correspond to issued MODVOLC alerts. The period of reported inactivity 
is shown with a blue horizontal line. Panel b shows a detail from a Landsat ETM+ color 
composite image of the flows superimposed by an image showing the location of the 
largest peaks we detected in each pixel time series. Pixels 1-6 show the highest peaks, 
are shaded white and coincide with the area of fresh flows. Pixel 7 covers the lava lake 
of Nyiragongo. Pixel 8 is used as a reference pixel, not affected by lava flows, plotted 
here to show lack of variation in non-affected pixels. Panel c shows in more detail, 
peaks detected in pixels 4 and 5 of panel b. Peaks that are detected in pixel 5 (for 
example, see Dec.15th), move temporally to pixel 4 (in the same example, Dec.18th), 
indicating N-NE movement of the flows as described in the Global Volcanism Program 
report [2014a]. Landsat imagery courtesy of USGS.
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In Nyiragongo MODVOLC alerts are present throughout the dataset, as would 
be expected for a permanent lava lake. The work carried out for this chapter 
indicates the periods when activity was more intense (Figure 4.6). The findings 
show quiescence between January and July 2011. Activity during this period is 
sporadic and of low intensity. This is followed by an increase in activity that 
culminated in September 2011; other periods of intense activity include the 
first days of March 2012 and November 2012. The GVP reports that the levels 
of lava in the lake were stable in the period January-June 2011 in agreement 
with our observations. Burgi and colleagues report an incident of convective 
inward drainage of the lake and a total drop of the lava surface by 33m during 
3rd-6th June, 2011. The event did not involve overflows nor outward activity 
and no peak was detected with our analysis either.  Spampinato et al. [2013] 
carried out SEVIRI-based calculations of radiative power, using the HOTSAT 
system between January and June 2012.  The highest mean monthly radiative 
power values of this period were recorded in March. Increased hourly values 
were more specifically present in the beginning of March; these coincide with 
the highest peak we detect in March (Figure 4.6, shown with an asterisk). The 
authors subsequently report an oscillating falling trend in their ground-based 
measurements of apparent temperatures between 9th March-11th March, and 
that is consistent with the decreasing, low numbers of anomalies detected in 
these days by the analysis described in this chapter. The largest peak was 
detected over the lava lake was early on the 13th of September 2011, and such 
a peak was not present in neighboring pixels. Cloud cover was increased in this 
period but throughout the study area. This peak, and the rest of the detection 
results in Nyiragongo, could not be validated due to lack of ground-based 
information. 

4.4 Discussion 
MWIR data are commonly used in many volcanic applications and hotspot 
detection approaches. Still, the study of volcanic activity could benefit from the 
utilization of LWIR-based, archived observations. Relevant datasets are 
becoming increasingly available. For example, Duguay-Tetzlaff et al. [2015] 
report on the quality of a 30+ year-long, LWIR-based LST climate record 
recently compiled by EUMETSAT. GlobTemperature, an initiative of the 
European Space Agency, aims among others at the production and 
dissemination of long-term satellite LST products (http:// 
www.globtemperature.info/). This study was intended to test such datasets in 
volcanic applications, using a recently published approach sensitive to subtle 
localized signal fluctuations. 
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The challenges involved in existing hotspot detection include algorithm 
transferability to areas with different prevailing conditions, particularly when 
fixed thresholds are used; and detection of subtle anomalies, commonly 
obscured by atmospheric conditions [Watson et al., 2004, Ganci et al., 2011, 
Blackett, 2014, Wright, 2015]. The temporal component of the input contains 
useful information for the isolation of extreme events, but detection cannot be 
based only on statistical characterization of past observations [Koeppen et al., 
2010] especially where anomalies are obscured by predominant, temporally 
varying patterns. The approach described in Pavlidou et al [2016] combines 
contextual and temporal methods to suppress large scale patterns at the time 
they emerge, highlighting subtle fluctuations. The detection threshold is 
dynamically determined for every pixel time series. As a result, detection is 
inherently considering local conditions. The settings of the method are 
adjustable to the desired timescale and the characteristics of the volcanic 
target of interest (see also supplement for details). For example, if the aim is 

 
 
Figure 4.6 Detection results from the lava lake of Nyiragongo. MODVOLC alerts can 
be seen as red vertical lines and are present throughout the series, as would be 
expected in the case of a permanent lava lake. Our detection denotes the periods with 
highest activity levels. Available reports of inactivity are denoted by blue horizontal 
lines. Mean monthly values of radiative power, as reported by Spampinato et al 
(2013), are shown in the figure with brown circles. The black asterisk shows the peak 
that corresponds to the highest hourly radiative power values of March 2012 as 
calculated by the same authors. 
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to resolve short-term activity, shorter temporal windows can be applied as 
demonstrated over Mount Etna. In the case of permanent intermittent volcanic 
unrest, where volcanic activity is always present but at times low and at other 
periods high, the use of a lower threshold would describe both lower- and 
higher intensity events and result in a continuous series of hotspots. This is 
avoided in the lava lake in Nyiragongo by highlighting more intense events. It 
is thus possible to trace increased activity through time. Additionally, the 
methodology is applied uniformly with the same settings across the dataset. 
Unexpected fluctuations can therefore be detected even in parts of the image 
not known a priori, as is the case of flank eruptions in a wider volcanic area.  
 
Our input is LST retrieved from geostationary satellite LWIR data. The 
advantage of geostationary sensors is that they provide frequent temporal 
coverage and are thus able to capture short-lived, transient events [Ganci et 
al., 2011, Ramsey and Harris, 2013]. Geostationary-based observations are 
already available for decades, supporting the possibility for long-term studies 
of volcanic dynamics. The datasets used are atmospherically corrected and 
cloud-masked. Still, the quality of addressing the prevailing atmospheric 
conditions remains as a limitation in volcanic monitoring; especially in the case 
of misclassified clouds and volcanic ash.  
 
Cloud coverage could obscure a short-lived event. The effect of this influence 
is decreased in the case of geostationary-derived input, because of the 
frequency of sampling; however, when there is persistent cloud cover during 
an eruption, a transient event will not be captured. Furthermore, if clouds 
remain in the data there is a possibility of false detection. When frame values 
are very low due to the presence of clouds, the normalized value of the central 
pixel will be very high. This could be the case, for example, of the minor 
detections appearing on August 15-16th in MWIR and LWIR-based results 
(Figure 4, panels a2 and b2). Atmospherically-corrected LST rather than at-
sensor LWIR BT are preferred as input to minimize such effects.  
 
Cloud remnants may also affect LST retrievals. The cloud-mask used for the 
production of the dataset has a reported percentage of max.4% of missed 
cloud identification, mostly due to cloud edges and thin low clouds at night 
(see for details Trigo et al [2009]). LST retrievals are similarly affected by the 
amount of total column water vapour in the atmosphere, and possibly by the 
turbulent conditions prevailing over volcanic targets in unrest. These effects 
are partly reflected in the quality information of the LST product and partly 
remain in the data. For this analysis such remnants would lead to peaks non-
related to volcanic activity. To minimize such effects, only LST data of at least 
nominal confidence level are included in the study. Any peaks resulting from 
non-addressed atmospheric influences, if present in the results, are not 
comparable to the size of the ones caused by volcanic flows. It can be argued 
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that the atmospheric corrections in the analysis, especially with the strict 
quality constraints imposed, obscured targets of interest. This is true, 
considering that in the case of Mount Etna, the same analysis with non-
corrected LWIR BT input could detect all reported events, whereas minor 
events under thick ash emissions were missed using LST input. By choosing 
LST input, however, false detections caused by cloud remnants and 
atmospheric effects can be avoided, even at the expense of missing events of 
smaller intensity. This may be of importance for detecting activity in low-
temperature targets. 
 
Volcanic ash can also interfere with the registration of an event in the data. 
Watson et al. [2004] mention that the presence of SO2, principal component 
of volcanic plumes, attenuates the recorded IR signal. Even though an SO2 
plume may not mask out radiating basaltic pixels completely, as seen in the 
results from MWIR input, it can still attenuate the signal registered in the LWIR 
and is more pronounced when the plumes are thicker and contain water 
vapour. This is visible when comparing MWIR and LWIR data (Figure 4.4). Such 
attenuation in the analysis would result in a peak appearing smaller than it 
would be in clear sky conditions. LST retrievals do not address the potential 
presence of volcanic plumes. However, in spite of attenuation, detected peaks 
in the results could be clearly distinguished from quiescence.  
 
Thicker ash plumes, or plumes which act as condensation nuclei and facilitate 
formation of ice clouds in their upward movement through the atmosphere, 
could lead to missing values in LST data. Such could be the case of the small 
paroxysm #9 in Mount Etna: the GVP reported gas emissions during the event, 
and in the dataset missing values did not allow detection. The percentage of 
missing values in the temporal window affects the size of the detected peaks. 
When the temporal window/normalization frame only include a few 
observations it is not certain that these observations are representative, and 
this introduces sampling uncertainty in the results. It would be thus possible 
to set a threshold to discard results calculated with relatively incomplete 
normalization frames or temporal windows. However, considering that 
degassing is commonly present and can be an indicator of volcanic activity (as 
seen also in MWIR and LWIR BT input), no data availability threshold is applied 
in the processing. This allows to make the most of the available data and to 
utilize indirect evidence of degassing. The quantification of the effect of 
turbulent atmospheric conditions and volcanic emissions in the future could 
eliminate such sources of uncertainty in LST-based results.  
 
MWIR-based detection is not as affected by the plumes as is LWIR-based 
analysis. For example, paroxysm #11 is detected only using MWIR input. On 
the other hand, MWIR BT data reaches saturation easier and the result of the 
analysis does not represent the relative magnitude of the events correctly: 



Volcanic case study  

62 

paroxysm #9 appears larger than #10, which is not the case according to 
ground-based observations. LWIR BT- based analysis is more sensitive to 
events of lower intensity, like the ones preceding paroxysm #12. These 
comparisons showed that it is possible to implement the methodology using 
different wavebands. This supports application of the approach further than 
just for utilization of LWIR LST archives. Results of analysis of different 
wavebands can complement each other or be used in combination with 
mainstream methodologies.    

4.5 Conclusions 
We test a recently developed hot spot detection methodology to study volcanic 
activity. This methodology suppresses predominant patterns and detects 
temperature anomalies. Our analysis is done with hypertemporal LWIR‐based 
LST data, which facilitates volcanic studies when MWIR information is not 
available, for example, in older sensors. The hypertemporal component of the 
approach allows for studying the dynamic development of volcanic activity at 
different timescales, from transient 1-day long events (for example in the case 
of Mount Etna) to longer eruptive sequences (for example in the case of 
Nyamuragira). The method is applied on input from different wavebands. It is 
adapted to local conditions by using dynamic thresholds, and as a result it can 
be used in different volcanic regions globally. Fluctuations in volcanic activity 
are detected systematically even where they occur in parts of the image not 
previously active and/or in areas with constant volcanic activity (for example 
in the case of Congo). The main findings are in agreement with the available 
satellite- and ground-based information. It is concluded that the approach can 
be applied to successfully detect subtle signal fluctuations; it can support the 
use of LST data for studies of volcanic activity; it can complement mainstream 
MWIR/LWIR methodologies, and it can prove useful when it comes to thermal 
targets which are not (or cannot be) sufficiently monitored from the ground.  
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Chapter 5. Time series analysis of Land 
Surface Temperatures in 20 earthquake cases 
 

5.0 Abstract 
Earthquakes are reported to be preceded by anomalous increases in satellite-
recorded thermal emissions, but published results are often contradicting 
and/or limited to short periods and areas around the earthquake. We apply a 
methodology that allows to detect subtle, localized spatio-temporal 
fluctuations in hyper-temporal, geostationary-based Land Surface 
Temperature data. We study ten areas worldwide, covering twenty large 
(Mw>5.5) and shallow (<35km) land-based earthquakes. We compare years 
and locations with and without earthquake, and we statistically evaluate our 
findings with respect to distance from epicentra and temporal coincidence with 
earthquakes. We detect anomalies throughout the duration of all datasets, at 
various distances from the earthquake, and in years with and without 
earthquake alike. We find no distinct repeated patterns in the case of 
earthquakes that happen in the same region in different years. We conclude 
that earthquakes do not have a significant effect on detected LST anomalies. 

5.1 Introduction 
Observations that are referred to as ‘thermal anomalies’ have been reported 
to precede earthquakes worldwide since the 1980’s [Tramutoli et al, 2015]. 
Numerous reports describe sudden increases in Brightness Temperatures (BT) 
recorded by satellite sensors [Lisi et al., 2010, Ouzounov et al., 2006, 
Tramutoli et al., 2001]; surface temperatures derived using either satellite 
observations [Baral et al., 2016, Lisi et al., 2015, Akhoondzadeh, 2013b] or 
numerical simulations [Alvan et al., 2014, Qin et al., 2012a]; air temperatures 
recorded with ground-based meteorological stations [Pulinets and Dunajecka, 
2007, Panda et al., 2007]; satellite-based Outgoing Longwave Radiation (OLR) 
[Lu et al., 2016, Ouzounov et al., 2007], Surface Latent Heat Flux (SLHF) 
[Cervone et al., 2006, Dey and Singh, 2003]; and increases in soil 
temperatures measured on-site [Rezapour et al., 2010, Liu et al., 1999]. 
Definitions of what is actually an earthquake related thermal anomaly vary 
among researchers and differ among applied methodologies. Observed 
anomalies also seem to differ for the same earthquake: they may appear a few 
hours [Akhoondzadeh, 2013b] to a few years [Yao, 2010] prior to an 
earthquake, and they might reappear shortly after an earthquake [Tronin, 
2000a]. The spatial resolution of the data used can be as limited as point 
observations from a meteorological station [e.g. Jie and Guangmeng, 2013] or 
as coarse as gridcells of 2ox2o [e.g. Singh et al., 2010]. Datasets are often 
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confined to limited areas and short periods of time around the earthquake [e.g. 
approximately one month and only in the pixel covering the earthquake 
epicenter in Akoondzadeh, 2013, Ouzounov et al., 2004]. Such settings do not 
allow for detailed examination of the spatiotemporal coincidence of 
earthquakes with detected anomalies and do not permit to detect false 
positives. Furthermore, statistical evaluation of the results is often missing 
(relevant discussion can be found in Eneva [2008]).  
 
The objective of this study is to examine the presence of thermal anomalies 
shortly before large, shallow, land-based earthquakes. We consider that an 
earthquake is large when it has magnitude larger than Mw 5.5 and is shallow 
when it has focal depth <35 km. Thermal anomalies may appear for a variety 
of reasons other than earthquakes, including spatiotemporal variations of 
surface spectral emissivity [Tramutoli et al., 2005] and local atmospheric 
conditions, like atmospheric inversions [Qu et al., 2006]. We test the 
hypothesis that more anomalies would be detected at closer distances to the 
earthquake, shortly prior or during the earthquake, and only in years with 
earthquake occurrence. This hypothesis is supported by published research 
concluding that anomalies increase with increasing earthquake magnitude; 
anomalies are found predominantly near the epicenter, one day before and on 
the day of the earthquake; and anomalies are more easily observed during 
shallow earthquakes than the deep ones [Xiong and Shen, 2017]. We study 
twenty large, shallow, land-based earthquake cases in ten study areas around 
the world, with different local environmental and climatic conditions. We apply 
a recently published methodology which suppresses large-scale patterns in the 
satellite signal time series [Pavlidou et al., 2016]. This methodology isolates 
only spatially localized anomalies and determines the time of their occurrence. 
We statistically evaluate our findings, taking into account the spatial and 
temporal occurrence of detected anomalies and earthquakes. Other influences 
that may be related to the detected anomalies are also examined to support 
the results. 

5.2 Datasets 
5.2.1 Parameter of interest 

Land Surface Temperatures (LST) derived from geostationary satellite sensors 
are often considered as preferred input parameter for earthquake-related 
studies [Jiao et al., 2017; Lisi et al., 2010]. LST products are derived from 
Top–of-Atmosphere Brightness Temperatures after cloud-masking and 
application of atmospheric corrections. As a result, they are less affected by 
artefacts of atmospheric origin [Lisi et al., 2010]. A review of LST retrieval 
algorithms can be found in Li et al. [2013]. Operational LST products of 
improved accuracy, compared to previous decades [Li et al., 2013, Prata et al., 
1995], are consistently calculated at a near-global scale and accompanied by 
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uncertainty estimates [Wan, 2014, Freitas et al., 2013, Trigo et al., 2011, 
Freitas et al., 2010]. Geostationary sensors offer high temporal resolution, 
which can resolve the duration and timing of thermal anomalies. Furthermore, 
the spatial resolution of these sensors is higher than the spatial resolution of 
surface temperatures and other parameters derived from atmospheric 
reanalysis. Therefore, geostationary satellite-derived LST is also chosen as 
input for our study.  

5.2.2 Raw data 

We use the Copernicus Land Surface Temperature (LST) dataset 
(http://land.copernicus.vgt.vito.be), which is produced with the application of 
atmospheric corrections and cloud masking on Top-of-Atmosphere 
observations of three geostationary satellites (METEOSAT, GOES, MTSAT). The 
product is available at a nominal spatial resolution of 5 km. Its temporal 
resolution is 24 images per day, with the exception of the first six months of 
2010 (8 images daily) [Freitas et al., 2013]. Its spatial coverage is near-global 
(no coverage over Central Asia and northern latitudes) and, at the time of 
acquisition, data were available for the period 2010-2016. The product is 
delivered ready to use and free of charge through the Copernicus network 
(Copernicus Global Land Services, https://land.copernicus.eu/ 
global/index.html) along with uncertainty information in the form of error 
margins. Quality information is also provided based on total column moisture 
content and satellite positioning.  

5.2.3 Earthquake catalogue 

The study involves all the large, shallow-focus, land-based earthquake cases 
occurring in the temporal and spatial domain of the available Copernicus LST 
dataset, according to the USGS online earthquake catalogue (https:// 
earthquake.usgs.gov/earthquakes/search/). All events with magnitude >5.5, 
registered in the same study area within a 24-hr window, are grouped 
together. Each of these earthquakes is covered by one year-long LST dataset, 
and all study areas are also tested in a year without earthquakes. When more 
years without earthquakes are available, we choose a year common for many 
study areas for practical reasons. All study cases are presented in Table 5.1, 
along with their magnitude, focal depth and focal mechanism, whenever 
available. 
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Table 5.1. Earthquake events studied in this work and the corresponding study areas. 
The spatial extent is given in km2 based on the nominal spatial resolution of the LST 
dataset. Earthquakes occurring within 24hours are grouped together. The climate 
classification is based on Peel et al [2007]. The earthquake information is taken from the 
online earthquake catalogue of USGS (https://earthquake.usgs.gov/ 
earthquakes/search/). 

Earthquake Date  Mw Focal 
depth 
(km) 

Focal 
mechanism

EQ 
year 

Control
year 

Study 
area 
code 

 Areaextent 
(km2) 

Climate 

1. Ahar, Iran 11.8.2012 6.2 12 strike‐slip 2012 2011 IR 415x530 Continental 
2. Ahar, Iran 11.8.2012 6.4 11 strike‐slip 2012 2011 415x530 Continental 
3. Baja California, 
Mexico 

4.4.2010 7.2 10 strike‐slip 2010 2016 MX 1705x1665 Arid 
4.4.2010 5.7 10 thrust 2010 2016   

4. Ocotillo, Mexico 15.6.2010 5.7 8.7 strike‐slip 2010 2016 1705x1665 Arid 
5. Yunnan, China 10.3.2011 5.5 10 strike‐slip 2011 2012 CH 840x550 Temperate 
6. Shwebo, 
Myanmar 

11.11.2012 6.8 13.7 strike‐slip 2011 2012 MS 665x550 Tropical 
11.11.2012 5.8 6 strike‐slip 2011 2012   
11.11.2012 5.5 28.4 strike‐slip 2011 2012   

7. Burma, 
Myanmar 

24.3.2011 6.9 8 strike‐slip 2011 2012 MB 1505x455 Tropical 
23.3.2011 5.7 10 strike‐slip 2011 2012   

8. Christchurch, 
NZ 

14.2.2016 5.8 7.6 thrust 2016 2012 NZ 
 

1350x1400 Temperate 

9. Kaikoura, NZ 13.11.2016 7.8 15 thrust 2016 2012 1350x1400 Temperate 
13.11.2016 6.5 10 thrust 2016 2012   
13.11.2016 6.2 10 strike‐slip 2016 2012   
13.11.2016 6.1 14 strike‐slip 2016 2012   
13.11.2016 5.5 10  2016 2012   
14.11.2016 6.5 9 strike‐slip 2016 2012   

10. Amberlay, NZ 22.11.2016 5.5 10 strike‐slip 2016 2012 1350x1400 Temperate 
11. Canterboury, 
NZ 

3.9.2010 7 12 thrust/ 
strike‐slip 

2010 2012 1350x1400 Temperate 

12. Van, Turkey 23.10.2011 7.1 18 thrust 2011 2012 TR 465x530 Continental 
23.10.2011 5.9 5 thrust 2011 2012   
23.10.2011 5.7 5  2011 2012   
23.10.2011 5.6 9  2011 2012   
23.10.2011 5.6 5  2011 2012   

13. Van, Turkey 24.5.2011 5.6 14 thrust 2011 2012 TR 465x530 Continental 
14. Emilia 
Romagna, Italy 

20.5.2012 6 6.3 thrust 2012 2011 IT 655x655 Temperate 

15. Emilia 
Romagna, Italy 

29.5.2012 5.8 10.2 thrust 2012 2011 655x655 Temperate 
29.5.2012 5.5 6.8 thrust 2012 2011   

16. Norcia/ 
Amatrice, Italy 

24.8.2016 6.2 4.4 normal 2016 2011 655x655 Temperate 
24.8.2016 5.6 3.2 normal 2016 2011   

17. Norcia/ Visso, 
Italy 

26.10.2016 6.1 10 normal 2016 2011 655x655 Temperate 
26.10.2016 5.5 6 normal 2016 2011   

18. Norcia, Italy 30.10.2016 6.6 8 normal 2016 2011 655x655 Temperate 
19. Oklahoma, 
USA 

3.9.2016 5.8 5.6 strike‐slip 2016 2012 UO 1100x1100 Temperate 

20. Oklahoma, 
USA 

6.11.2011 5.7 5.2 strike‐slip 2011 2012 1100x1100 Temperate 

21. Louisa, USA 23.8.2011 5.8 0.02 thrust 2011 2012 UL 1155x955 Continental 

5.3 Methodology 
The approach followed in this study consists of the following steps: pre-
processing, normalization, anomaly detection, and calculation of numbers of 
anomalies at different time periods and distances from the earthquake. 
Statistical analysis is performed to examine if more anomalies are detected 
prior to earthquakes, and closer to earthquakes in space. 
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5.3.1 Preprocessing 

The study involves only pixels with at least nominal quality (i.e. with estimated 
errors lower than 2K). Clouds, missing observations, water bodies and pixels 
with error margin >2K appear as missing data. The data are spatially subset 
ensuring that the study areas fully cover the earthquake-struck areas and 
provide reference of the signal of non-earthquake struck regions at the same 
time period. In total, ten study areas are defined. Following the Koeppen-
Geiger climate classification [Peel et al., 2007], in four of the study areas the 
climate is temperate; in three, continental; in one, arid, and in two tropical. 
After spatial subsetting, images are stacked sequentially to construct time 
series. Missing images are included as gaps in the dataset. One-year datasets 
are constructed including all available timeslots throughout the day, allowing 
to consider annual, seasonal and daily fluctuations. Stacks of the same area 
are prepared in years with and without occurrence of large earthquakes. Years 
are chosen to cover all main events in the same area separately, so for example 
there are three datasets covering Italy: one for year 2012 (Emilia-Romagna 
earthquakes), one for year 2016 (Amatrice/Norcia events) and one for year 
2011 (reference year, no large earthquake).   

5.3.2 Normalization 

The normalization step suppresses patterns common between the central pixel 
and an open frame of neighbouring pixels. Such patterns could be the diurnal 
cycle, seasonal effects, humid conditions extending in large areas or a heat 
wave. Every pixel value is divided by the average value of a frame of 
neighbours (Figure 5.1). The process is repeated for every pixel of every image 
of the dataset. After normalization, only localized fluctuations remain and are 
highlighted in the resulting normalized time series. 
 
An identical frame size is used in all study areas to obtain comparable results. 
The assumption is that anomalous thermal emissions caused by stress 
accumulation would be more pronounced over a stressed area. We therefore 
use larger frames than that area to highlight potential anomalous emissions by 
applying the normalization. Following Saradjian and Akhoondzadeh [2011a], 
the area of stress accumulation is estimated based on the definition of 
earthquake preparation area given by Dobrovolsky et al. [1989]. Dobrovolsky 
et al. [1989] describe a spherical ‘region of earthquake preparation’ defined as 
a function of the magnitude of an impending earthquake. Rupture length is 
also taken into account for the decision on frame size, because it could give a 
first indication of the spatial extent of stress accumulation. Moment magnitude 
can be used to approximate rupture length based on empirical relationships 
[Wells and Coppersmith, 1994], even though this relationship may vary across 
different locations. 
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We set the frame size based on the largest event in our earthquake list: the 
Kaikoura Mw 7.8 thrust rupture in New Zealand. Its preparation area according 
to Dobrovolsky et al. [1989] has a diameter of 68km, slightly smaller than 14 
pixels in our image datasets. The calculated rupture length based on Wells and 
Coppersmith [1994] is 113km (~23 pixels), and is reported for this particular 
earthquake by  Shi et al. [2017]as approximately 116km on-land, estimated 
across at least 12 major fault sections. The frame is therefore chosen to have 
a side length of 29 pixels (145km), which exceeds the extent of both the 
estimated earthquake preparation area and the rupture length in all 
earthquake cases of this study. 

5.3.3 Anomaly detection 

In the normalized time series, values which exceed or are equal to a threshold 
equal to the mean plus twice the standard deviation of the series (μ+2σ) are 
flagged as anomalies. This definition is consistently applied in all datasets. 
 
The choice of μ+2σ threshold is in accordance with previous research on 
detection of earthquake-related anomalies [Daneshvar et al., 2014, Ouzounov 
et al., 2006, Qin et al., 2009, Tronin et al., 2002]. The threshold is determined 
by each pixel’s series separately, and is thus dynamically adjusted to the local 
conditions. Furthermore, it is applied uniformly in the whole image, allowing 
for detection of anomalies without a priori knowledge on where anomalies may 
appear. Sensitivity analysis of the original method showed that this threshold 

 
Figure 5.1. An example of anomaly detection. The value of every pixel of the image is 
divided by the average of an open frame of neighboring pixels (panels a, b). The 
procedure is repeated for all images of the dataset, resulting in a normalized time series 
for every pixel (panel c, black solid line). Then a mean+2sigma threshold (blue dashed 
line, panel c) is applied to each pixel’s normalized time series to distinguish extreme 
values that are then regarded as anomalies.
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could capture fluctuations as low as +2K/+3K compared to surroundings of 
lower/higher background variability [Pavlidou et al, 2016]. To control for the 
possibility that this threshold may also capture lesser environmental influences 
distorting the statistical evaluation of the results, we repeat the same analysis 
with a stricter μ+3σ threshold.  

5.3.4 Anomaly density calculations 

This step includes counting the number of anomalies per unit time, for four 
spatial zones describing different distances from an earthquake epicenter, and 
for different time periods (see Table 5.2 for spatial and temporal details).   
 
A distinction between pre-, post- and co- seismic periods is suggested by 
previous research, especially considering the co-seismic period [Eneva et al., 
2008]. Pre-seismic periods are considered as a time of stress accumulation. 
Potential anomalies related to this stress accumulation are expected to appear 
closer to the time of the rupture [Barkat, 2018, Xiong and Shen, 2017]. A co-
seismic period is considered to be the time of rupture and stress release. 
Thermal anomalies appearing in this time would be related more to friction and 
the rupture itself rather than stress accumulation. Post-seismic periods follow 
the rupture and have less stress than the pre-seismic periods, since part of the 
accumulated stress has been released during the rupture. We define co-seismic 
periods as 24 hours before and 24 hours after an earthquake. All events of 
Mw>5.5 that happen more than 24 hours after another event are seen, in this 
definition, as separate. Pre- and post- seismic periods of equal duration (two 
months) are defined for comparability and based on literature on the 
appearance of earthquake-related anomalies [e.g. Qin et al., 2013; Wei et al., 
2009; Wu et al., 2008]. In periods later and earlier than these, earthquake 
related anomalies should be unlikely.  
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Table 5.2 Definitions of spatial zones, temporal periods and adjusted co-
seismic periods applied for anomaly density calculations. 

Spatial zones

Zone  Zone definition

Zone 1  within a radius of 7 pixels (35km) from the epicenter  
(up to half the frame side) 

Zone 2  A concentric ring with a radius between 7 and 14 pixels 
(35‐70km) from the epicenter 
(half the frame side until the edge of the frame side) 

Zone 3  A concentric ring with a radius between 14 and 28 
pixels (70‐140km) from the epicenter 
(between one and two times the frame side) 

Zone 4  Rest of the study area with a radial distance larger than 
28 pixels (>140km) from the  epicenter  
(larger than twice the frame side) 

Temporal periods

Period  Period definition

Period 1 (pre‐
earthquake) 

beginning of the dataset until 2 months prior to the co‐
seismic period 

Period 2 (2month pre‐
earthquake) 

two months before the co‐seismic period

Period 3 (co‐seismic)  24 hours before and 24hrs after the earthquake 

Period 4 (2month post‐
earthquake) 

two months after the co‐seismic period

Period 5 (post‐
earthquake) 

two months after the co‐seismic period until the end of 
the dataset 

Extended co‐seismic periods

Earthquake sequence  Duration of adjusted co‐seismic period

Canterbury, New 
Zealand [Quigley et al., 
2016] 

2/9/2010‐31/12/2010

Kaikoura, New Zealand 
[Shi et al., 2017] 

12/11/2016‐31/12/2016

Baja California, Mexico 
[Hauksson et al., 2011] 

3/4/2010‐16/6/2010

Italian sequence of 2016 
[Chiaraluce et al., 2017] 

23/8/2016‐31/10/2016

Van, Turkey [Doğan and 
Karakaş, 2013, Elliot et 
al., 2011] 

22/10/2011‐10/11/2011

Emilia‐Romagna, Italy 
[Govoni et al., 2014] 

19/5/2012‐30/5/2012
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This study includes earthquakes which may be considered as parts of longer 
earthquake sequences. The sequences are characterized by a higher frequency 
of low-medium magnitude events than in the rest of the earthquake catalogue. 
It could be argued that, in these cases, stress is being released not in a single 
rupture but through a sequence of ruptures. To account for such prolonged 
sequences, the analysis is done twice: once with a 48hr-long co-seismic period 
and once with a prolonged co-seismic period, adjusted to cover the duration 
and spatial extent of each sequence. When prolonged co-seismic periods are 
used, distance zones are defined with regard to the ruptured area, which 
includes the ruptured fault and epicentres of all large earthquakes in the 
sequence (Figure 5.2). Analysis is performed on both standard and adjusted 
co-seismic periods in the cases described in Table 5.2. 
 
The total number of anomalies in each zone and period is divided by the total 
number of available observations in the corresponding zone/period. The result 
is anomaly density in different periods at different distances from each 
earthquake. The same processing (normalization-anomaly detection-
calculation of anomaly density) is repeated in years with and without 
earthquake occurrence. 

 
 
Figure 5.2. Definition of distance zones in the case of Baja California, Mexico. The 
images show the Copernicus LST image of April 4th, 2010, 09:00 hrs (day of the 
earthquake).  Without adjustment of the co-seismic period, earthquakes which occur 
more than 24 hours apart are considered separate events. For example, panel a shows 
definition of distance zones based only on the earthquake of April 4th. The distance 
zones (dashed lines) are defined around the epicenter. When the whole earthquake 
sequence is considered (in the case of California, one day before the Apr.4th event 
until one day after the June 15th event), distance zones are defined with regard to 
the ruptured area, which includes the ruptured fault and the epicentres of all large 
earthquakes in the sequence (panel b).  The size of the normalization frame is shown 
with squares in both panels. 
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5.3.5 Statistical analysis 

Statistical analysis follows to evaluate detection results based on the 
hypothesis that a higher anomaly density should be found in areas spatially 
closer to the earthquake, and in periods shortly before or during the 
earthquake and only in the years with an earthquake. 
 
A three-way mixed Analysis Of Variance (ANOVA) analysis allows to test for 
significant combined effects among three factors of interest: time period, 
distance zone and earthquake/no earthquake year. The analysis is repeated 
for the following experimental configurations: use of different thresholds and 
with/without adjustment of the co-seismic period. 
 
There are several possible outcomes of such an analysis. One is that there is a 
statistically significant combined effect of time period and distance zone only 
in the earthquake year. This is expressed as a significant three-way interaction 
effect between time period, distance zone and earthquake year. Such a finding 
can confirm the hypothesis only if the interaction between them shows that 
there is a higher anomaly density before or during the earthquake. If the three-
way interaction shows a higher anomaly density after the earthquake, then the 
hypothesis is rejected and anomaly density cannot be considered as a 
precursory or co-seismic phenomenon. If no significant three-way interaction 
is found, the hypothesis is rejected. Another possible outcome is that there is 
a statistically significant combined effect of any two factors, regardless of the 
third factor. For example, the combination of time period and distance zone 
may have a statistically significant effect also in the non-earthquake year. Such 
an effect may be present for reasons other than an earthquake occurrence, 
and as a result this finding does not confirm the hypothesis. This condition is 
expressed as a two-way interaction effect, only between two factors. A third 
possible outcome is that any of the factors (time period, distance zone, 
earthquake year) separately affect anomaly density, regardless of the effect of 
their combination. For example, anomaly density may differ between time 
periods in the whole study area, regardless if there is an earthquake or not. 
This is expressed as a statistically significant simple main effect, separately for 
each factor. Such effects indicate that the period, the year and/or the location 
affect anomaly density regardless of earthquake occurrence, and as a result 
this finding does not confirm the hypothesis. The last possible finding is that 
there is no statistically significant interaction between the factors (they have 
no combined effect on anomaly density) or that there is no significant simple 
effect of each factors separately. The absence of simple and/or two-way 
interaction effects does not provide information for the hypothesis. The only 
meaningful finding that can confirm or reject the hypothesis is the presence or 
absence of a significant three-way interaction.  
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5.4 Results 

5.4.1 Anomaly detection 

This section presents results of the anomaly detection. Examples, highlighting 
the results of the spatial and temporal processing, are shown for the 
earthquakes of Emilia Romagna, Italy, in 2012 (Figure 5.3) and Baja California, 
Mexico in 2010 (Figure 5.4). These results are compared to results of the same 
periods and regions in 2011 and 2016, respectively, when no earthquakes of 
Mw>5 are recorded in these areas.  

5.4.1.1 Spatiotemporal distribution of anomalies 

The spatial distribution and the number of anomalies detected in the co-seismic 
period of the first earthquake of 2012 (19th-21st May, 48 time observations in 
total, see details in Table 5.1) is shown in Fig. 5.3a. The earthquake epicentres 
of Emilia Romagna are shown with red stars in the north. The cluster of 
anomalies closest to the earthquake epicenter appears around 50km to the 
east. This cluster (designated pd in Figure 5.3) is approximately 100km long 
and 50km wide. The highest number of anomalies in this cluster, for the whole 
co-seismic period, is six of a total of 48 observations. The anomalies of this 
cluster appear in the morning and early afternoon, mostly between 07:00 and 
14:00hrs and then disappear. Scattered anomalous pixels can be seen at the 
same distance from the earthquake, but towards the west. At a distance of 
around 180 km to the northeast of the earthquake epicenter, another, less 
spatially extended, cluster of anomalies (u) can be seen. The core of this cluster 
covers 25x25km and has the highest number of anomalies in time for the whole 
study area (8 anomalies in 48 observations). More clusters of anomalies appear 
towards the south of the earthquake. One cluster (ab) appears at 
approximately 330 km SE of the epicenter, close to the area where the 
earthquakes of Norcia, Visso and Amatrice occur over four years later (shown 
in Figure 5.3 with 3 red stars in the south). The highest number of anomalies 
in cluster (ab) is also 6 out of 48 observations, like in the cluster closest to the 
earthquake. At 500 km SE of the earthquake, a more extended complex of 
clusters (n) is visible with a high number of anomalies (8 anomalies in the 48 
observations, the highest of the whole study area). Finally, a cluster of 
anomalies (c) appears on the southwestern end of the island of Corsica, 
approximately 600 km SW of the earthquake epicenter. It has less anomalies 
(4 in 48 observations) and extends to an area as big as the cluster closest to 
the earthquake.  
 
When the detection threshold is increased to μ+3σ (Figure 5.3b), only the 
highest normalized values are considered anomalous and less anomalies 
overall are detected. Smaller clusters of anomalies are visible in the study area. 
The cluster (pd) closest to the earthquake epicenter is still visible and has 4 
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anomalous values in 48 observations, similar to the clusters of Corsica (c) and 
central Italy (ab) which are located further than 300km from the earthquake 
epicenter. The highest number of anomalies recorded in time is 5 anomalies in 
48 observations and can be found in cluster (n), 500 km SE from the 
earthquake. Cluster (u) is not visible. 
 
When a longer co-seismic period is considered (19th-31st May, using the μ+2σ 
threshold), to cover all earthquakes of the 2012 sequence, more anomalies are 
detected (Figure 5.3c). The previously identified clusters (pd), (c), (n), (u) 
remain but are now more spatially extended. The most extended, and new, 
cluster is located 200 km northwest of the earthquake epicenter. This cluster 
(m) shows the highest number of anomalies in the image, 42 in the 240 
observations compared to the up to 26 anomalies out of 240 observations close 
to the epicenter. An area of anomalies (shown as pv, with 200km maximum 
length and 500km maximum width) connects clusters (m) and (pd). More 
clusters of anomalies appear along the east (ap, r, tv) and the west (am) coast 
of Italy, and on the islands of Corsica (c) and Sardinia (just south of cluster c).   
 
When the same processing is applied for the co-seismic period of 19th- 21st May 
in a year without large earthquakes (2011, Figure 5.3d), similar patterns are 
observed as compared to the year with earthquake (2012, Figures 5.3a,c). 
Previously identified clusters in the north and south (m, pd, u, n) are again 
visible. The anomalies in the north are connected in an extended cluster with 
maximum length of ~100km and a width of ~500km (pv). Clusters appear in 
the centre of Italy (at) and at the east coast (at, am). Scattered smaller 
clusters are visible throughout central Italy. The maximum number of 
anomalies in the year without earthquake is higher than in the year of the 
earthquake (17 out of 48 observations in 2011, compared to 8 out of 48 
observations in 2012) and is found in cluster (m).  
 
Anomalies have been reported to appear earlier than one day before the 
earthquake. For the earthquakes of the example from Italy, Qin et al [2012] 
report “local temperature enhancements around the epicentres on the night of 
May 12, 2012, i.e., 8 days before the May 20, 2012 earthquake”. They present 
an anomaly on an image corresponding to 20:00hrs on May 12th 2012 (shown 
in Figures 5.3e-g as the shaded area). They find anomalies at the same location 
in an image showing daily average temperatures of May 12th, 2012. We detect 
no anomalies in the image of 20:00hrs (Figure 5.3f). In terms of daily 
averages, Figure 5.3e shows the total numbers of anomalies we detected for 
the full day of May 12th, 2012. A cluster of anomalies (pd) is visible close to 
the earthquake epicenter, which is the most spatially extended cluster in the 
image. Half of the area of the cluster coincides spatially with the anomaly 
reported by Qin et al [2012]. The highest number of anomalies in this cluster 
(but not in the whole image) is six out of a total of 24 observations, and all six 
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appear between the morning and the early afternoon. A cluster of anomalies 
of the same intensity but covering a slightly smaller spatial extent than the 
one close to the earthquake, is visible in Figure 5.3e, over the island of Corsica 
(c). Clusters (n) and (ab) are also visible but have smaller spatial extent than 
in the co-seismic period. The highest number of anomalies in the image, that 
is seven out of a total of 24 observations, appears in cluster (mp) on the west 
coast of Italy. 
 
Cluster (pd), which is visible to the east of the earthquake epicentres in the 
pre- and co- seismic period of 2012, is also visible in other years and days. An 
example from a post-seismic period (27th of September 2011) is shown in 
Figure 5.3g. On that day the cluster covers the earthquake epicenter and 
partially coincides with the area where Qin et al [2012] found an anomaly in 
2012.  Clusters (m), (at), (pv), (u), (at) and (c) are also visible.  
 
We aggregate and plot numbers of anomalies for longer periods to show how 
detected anomalies vary with time during the year. An example is shown in 
Figure 5.4 for the study area of Baja California. In the figure, anomalies are 
presented as three-month averages for two years: 2010 (year of the 
earthquake) and 2016 (year without earthquake). The area (c) closest to the 
earthquake shows higher numbers of anomalies between April and June. This 
happens in the earthquake year 2010 (earthquake epicenter shown with a red 
star) and also in year 2016 with no M>5.5 earthquake. The mountainous areas 
(a) in Arizona (Grand Canyon, Mongolon Rim) show a higher numbers of 
anomalies from the beginning of the year until June, in both years (less 
pronounced in 2016). The mountain range of the Sierra Madre Occidental (b) 
produces anomalies throughout the year, most prominently between 
September and December.  
 
In the examples above, but also in all studied areas, localized anomalies are 
found throughout the duration of the datasets and throughout the spatial 
extent of the study areas. Clusters of anomalies with high intensity are present 
in the years with and without an earthquake, and at different periods of the 
year. 
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Figure 5.3. Anomalies detected in the study area of Italy.  Earthquake epicentres 
(stars) in the north correspond to the Italian Mw>5 earthquakes of 2012. Earthquake 
epicentres (stars) in the southeast correspond to the Italian Mw>5 earthquakes of 
2016.  Panel (a): detection results for 19th -21st May 2012 (co-seismic period, 
earthquake year) using a μ+2σ detection threshold. Panel (b): the same as in (a) but 
using a μ+3σ threshold. Panel (c): detection results for 19th -30th May 2012 (prolonged 
co-seismic period, earthquake year). Panel (d): detection results for 19th -21st May 
2011 (year without earthquakes). Panel (e): detection results for the whole day of May 
12th, 2012. Panel (f): detection results for May 12th, 2012, 20:00hrs, when an anomaly 
is reported by Qin et al. [2012] (shaded area in the North). Panel (g): detection results 
for the 27th of September, 2011 (year with no earthquakes). 
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5.4.1.2 Anomaly density 

We calculate anomaly density values for each spatial zone and period, to have 
comparable results in periods of different duration (for example, the co-seismic 
period of 48 hours and the pre-seismic period of 2 months). Anomaly density 
values for all earthquakes are provided in Appendix 2. The mean anomaly 
density of spatial zones further from the earthquake (distance >70km) is 
higher than in zones closer to the earthquake (Figure 5.5a,b). In terms of time, 
post-earthquake periods have the highest mean anomaly density and the co-
seismic period has the lowest (Figure 5.5c-f). 
 
5.4.2 Statistical analysis 

Statistical analysis is performed to conclude if there is a significant relation 
between the occurrence of earthquakes and detected anomalies. Such a 
relation would be established only if anomaly density is higher close to 
earthquake epicentres, before/during the earthquake and only in the years 
with an earthquake. The analysis is repeated for the following experimental 
configurations: use of different thresholds and with/without adjustment of the 
co-seismic period. Additionally, the analysis shows the statistical significance 
of the differences of average anomaly density between different zones/periods 
(Fig. 5.5). Table 5.3 presents the results of each ANOVA test, in the different 
experimental configurations. A technical description of the tests is provided in 
Appendix 3. 

 
Figure 5.4. Per pixel numbers of anomalies, averaged every three months, in the study 
area of Baja California (details in Table 5.1) for the years 2010 (upper row, with 
earthquake) and 2016 (lower row, without earthquake). Areas with higher numbers of 
anomalies are shown in white tones. The red star denotes the epicentre of the 2010 
earthquake. 
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In all experimental configurations, there is no statistically significant three-way 

  

 
Figure 5.5 Anomaly density for all studied earthquakes in earthquake and no-earthquake years, summarized by 
distance zone (panels a,b) and by period (panels c,d,e,f). Results are shown for all different configurations (μ+2σ 
and μ+3σ threshold; with and without adjustment of the co-seismic period).
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interaction between earthquake year, period and distance zone (Line 1, Table 
5.3). This means that there is no significant difference in anomaly density 
found only in the year of the earthquake. It is thus not possible to say that 
there are more anomalies close to the earthquake, before/during the 
earthquake, and only in the year of the earthquake. Any differences between 
the anomaly density in different zones and periods are present in earthquake 
and no-earthquake years alike, and they cannot be attributed to the occurrence 
of the earthquake. This is the only statistical result related to the hypothesis 
that there is a relation between earthquakes and anomalies, and the findings 
reject the hypothesis.  
 
Statistical analysis further provides indications of how anomaly density differs 
in different years, locations and periods, regardless of the earthquake (Lines 
2-7 of Table 5.3). Regardless of the experimental configuration, location 
relative to the earthquake epicentre does not affect anomaly density at any 
time (lines 2, 4). Distance from the earthquake by itself has no significant 
effect on anomaly density (line 6). Anomaly density differs with period and 
year, depending on the experimental configuration (line 3). Period by itself has 
a statistically significant effect in anomaly density of different years and 
distance zones (line 5). This effect is found in all cases except when an adjusted 
co-seismic period is applied with a μ+3σ threshold. Year by itself has a 
significant effect on anomaly density only when adjusted co-seismic periods 
are applied in combination with a μ+3σ threshold (line 7).  
 
Overall, the result of the statistical analysis is that regardless of the applied 
threshold and the definition of the co-seismic period, there is no significant 
effect of the earthquakes in the anomaly density measured across distance 
zones and periods.  
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Table 5.3. Summary of the results of ANOVA statistical tests. F-values show to what 
extent the variance observed in the sample results from a specific effect/interaction, 
rather than from chance. The p-value shows the probability of obtaining the calculated 
values in the absence of a specific effect/interaction. Lower p-values show higher 
probability that an effect/interaction is statistically significant. In the Table, “NONE” 
denotes that no statistically significant effect/interaction is found; “YES” shows that a 
statistically significant effect/interaction is found. Significance levels for these effects are 
denoted with *(p<.05) or ** (p<.001). Partial η2 is a measure of the size of an observed 
statistically significant effect, and denotes how much the effect contributes to the total 
variation in the sample. More information on ANOVA can be found, for example, in 
Maxwell and Delaney [2004]. 
 μ+2σ threshold μ+3σ threshold 

Effect/ 
interaction 

48‐hr co‐
seismic 
period  

Adjusted co‐
seismic period 

48‐hr co‐
seismic 
period 

Adjusted co‐
seismic period 

Effect of 
earthquake 
across 
distance 
zones and 
periods 

NONE 
F(6.094, 
134.060)=.162,  
p = .987,  
partial η2= .007 

NONE 
F(6.767, 121.798) 
= .596,  
p= .753,  
partial η2= .032 

NONE 
F(5.210,    
116.355) = .148, 
p = .983, 
partial η2= .007 

NONE 
F(8.507, 155.958) 
= .422,  
p = .915, 
 partial η2= .022 

Interaction 
effect of 
period and 
distance, 
regardless 
of year 

NONE 
F(8.914,196.116
) = 1.645,  
p = .106,  
partial η2= .070 

NONE 
F(6.832, 122.971) 
= .574,  
p = .772, 
partial η2= .031 

NONE 
F(8.905,198.888
) = 1.224,  
p = .282,  
partial η2= .052 

NONE 
F(7.604,139.413) 
= .788,  
p = .608, 
partial η2=.041 

Interaction 
effect of  
period and 
year, 
regardless 
of distance 

NONE 
F(2.031, 66) = 
.959,  p = .387,  
partial η2= .014 

YES** 
F(2.256,54) = 
6.954, p = .001,  
partial η2 = .114 

NONE 
F(1.737, 67) = 
.934, p = .384, 
partial η2= .014 

YES** 
F(2.836, 55) = 
6.485, p< .001, 
partial η2= .105 

Interaction 
effect of 
year and 
distance, 
regardless 
of period 

NONE 
F(3,66) = .844,   
 p = .475,  
partial η2= .037 

NONE 
F(3,54) = 2.279,  
p = .090,  
partial η2= .112 

NONE 
F(3,67) = .008,  
p = .999,  
partial η2 < .001 

NONE 
F(3,55) = .626,  
p = .601,  
partial η2= .033 

Simple 
effect of 
period 

YES** 
F(2.971,196.116
) = 11.738,  
p <.001, 
partial η2= .151 

YES* 
F(2.277, 122.971) 
= 4.787,  
p=.007,  
partial η2= .081 

YES** 
F(2.968,116.355
) = 9.927,   
p<.001,  
partial η2 = .129 

NONE 
F(2.535, 139.413) 
= 6.631, p < 
.001, partial η2= 
.108 

Simple 
effect of 
distance 

NONE 
F(3, 66) =.333, 
 p =.801,  
partial η2=.015 

NONE 
F(3,54) =.060,  
p=.980, 
 partial η2= .003 

NONE 
F(3, 67) =.084,  
p =.969, 
 partial η2= .004 

NONE 
F(3,55) =.468, 
p=.706,  
partial η2= .025 

Simple 
effect of 
year 

NONE 
F(1, 66) =.284, 
p=.596,  
partial η2= .004 

NONE 
F(1, 54) =1.967, 
p=.167,  
partial η2= .035 

NONE 
F(1, 67) =1.834, 
p=.180,  
partial η2= .027 

YES** 
F(1, 55) = 
14.914, p<.001,  
partial η2= .213 
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5.5 Discussion  

5.5.1 Spatial extent of anomalies 

In published research, the spatial extent of detected anomalies is often not 
clear. For example, Akhoondzadeh [2013a,b] and Pulinets et al. [2014] study 
the 6.4Mw earthquake of Ahar, NW Iran (2012) using data from meteorological 
stations. Such data have very limited spatial cover and cannot describe the full 
extent of detected anomalies. Even when Akhonzadeh et al [2013b] use 
satellite data (MODIS LST), they confine their anomaly detection to an area 
5x5km over the earthquake epicenter. Other researchers study larger areas 
using data with coarse spatial resolution. For example, Alvan et al. [2014], 
who study the event of Baja California (2010), report anomalies in gridcells of 
a spatial extent of 2°x2°. For the same event Jie and Guangmeng [2013] find 
anomalies in an area of 1ox1o over the epicenter. Qin et al [2012a, b] and Wu 
et al [2012], who report anomalies in New Zealand (2010) and Italy (2012), 
use data with a 2ox2o spatial resolution. When reported anomalies extend to 
degrees latitude/longitude, it is not possible to trace back in detail their exact 
origin and their spatial relation to faults and other potential causative 
processes. Anomaly detection in this study is based on gridded satellite data 
of 5x5km spatial resolution, which allows a more detailed description of the 
location of anomalies with respect to the earthquake. For example, reported 
anomalies in Italy and Mexico, with an extent of 2ox2o [Qin et al., 2012; Jie 
and Guangmeng, 2013] spatially coincide in our results with anomalies 
scattered over different locations. The finer spatial resolution allows for a better 
understanding of potential causative phenomena of the detected anomalies, 
like the existence of wetlands or agricultural areas (Figure 5.3).  
 
Furthermore, the normalization procedure we apply ensures that detected 
anomalies have a spatial extent less than the normalization frame (up to 
18225km2). It is possible to distinguish localized anomalies from larger-scale 
weather patterns and climatic trends. That could explain the cases when other 
researchers find anomalies and our results show none. In our findings, 
extended patterns, like the thermal inversion described by Qu et al [2006] as 
a more probable reason for the appearance of a pre-earthquake anomaly in 
Mongolia, are suppressed. An unusually warm day in the whole study area is 
not linked to the earthquake, and anomalies are not masked by unusually cold 
days.   

5.5.2 Distance between anomalies and earthquakes 

In early literature on the topic, this distance was not taken into account; 
anomalies were traced as far as 500km away from the epicenter [Tronin, 2000] 
or further [Tramutoli et al., 2005, Qiang et al., 1997]. Piroddi and Ranieri 
[2012] argue that observable phenomena further than 60km from the 
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earthquake, even if they were spatially associable to the seismic event, they 
would not be practically useful as precursors because the potential alarm areas 
would be too big. Yang and Guo [2010] trace anomalies in the range of 65-
100km from the epicenter of a past earthquake and state that, if thermal 
anomalies are to be used to estimate a possible future epicenter, the biggest 
error will be less than 100 km. We address the issue of the distance between 
anomalies and epicentres by classifying all detected anomalies in four different 
spatial zones, based on their distance from the earthquake. The two zones 
closest to the earthquake correspond to the suggestion of Piroddi and Ranieri 
[2012] and are used to distinguish areas in the more or less immediate vicinity 
of the earthquake. In our study areas, anomaly density is on average higher 
in zones further away from the earthquake, and the analysis shows that even 
this difference is not statistically significant. In our results, no difference is 
found in anomaly density between the zones. The location of the earthquake 
has no effect on anomaly density. 

5.5.3 Temporal resolution 

Previous studies use daily averages or one image per 24 hours for detection 
[e.g. Zhang et al., 2010; Akhoondzadeh, 2013a, b]. We use one image every 
hour and construct hyper-temporal time series to allow the study of transient 
anomalies. The temporal persistence of an anomaly can provide information to 
explore potential causes of the anomaly. In the example of Italy, the anomaly 
closest to the earthquake is found only in six images in the co-seismic period 
of 48 observations. It appears early in the day (between 07:00 and 14:00) and 
it is recurrent in different days and years. There is no physical evidence to 
support why earthquake effects appear, disappear and reappear within hours 
at preferred times of the day, and persist in years without an earthquake. An 
alternative explanation for fluctuations at this scale could be evaporation 
supported by increasing incoming solar radiation at the beginning of the day 
and/or early morning ground fog, which in the specific example is plausible 
because the anomaly is located over the intensely cultivated delta of a river.   

5.5.4 Temporal coincidence with the earthquakes 

We examine complete years, and the same area is examined with and without 
earthquake occurrence. This allows us to test for presence of anomalies in 
periods without earthquakes.  Previous studies test a variety of periods just 
before and after the earthquake but often not full years [Alvan et al., 2014, Jie 
and Guangmeng, 2013, Akhoondzadeh, 2013a]. This leaves the possibility that 
similar anomalies may be occurring regularly throughout the year(s) without 
any earthquake effect, as found by Blackett et al. [2011]. Our results show 
that anomalies in the vicinity of earthquake epicentres, as well as everywhere 
in the study areas, appear throughout the years, regardless of an earthquake 
occurrence. 
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5.5.5 Statistical analysis 

We investigate the link between earthquakes and anomalies with the 
application of statistical analysis following the suggestions of Eneva et al. 
[2008]. We take all anomalies into account. The statistical analysis shows that 
detected anomalies appear regardless of earthquake occurrence, in terms of 
time and of distance from earthquake epicenter. These results are in 
agreement with Eneva et al. [2008], who applied a similar statistical design 
reaching the same conclusions. Zhang et al. [2013], following a different 
statistical scheme, and also conclude that in their data the correlation between 
occurrence of earthquakes and detected anomalies was very low. Changing the 
anomaly threshold or the period of investigation (to a larger co-seismic period) 
in our work, does not change the results. Furthermore, no recognizable 
patterns are found in the case of earthquakes that repeatedly appear in similar 
locations (Italy, New Zealand and Oklahoma).  

5.5.6 Atmospheric and other environmental influences 

In our results, period affects anomaly density, even though this effect is 
present regardless of earthquake occurrence. A possible reason why time can 
affect anomaly density could be localized temporal variations of atmospheric 
parameters (as found, for example, by Jie and Guangmeng [2014]; Qu et al. 
[2006]). Water vapour, in particular, influences LST retrievals [Freitas et al., 
2010]. An atmospheric analysis can indicate potential relation of detected 
anomalies with local atmospheric influences, like water vapour and rain water. 
We discuss here, as example, the four earthquake cases with the highest 
magnitude, that belong to areas of different climates: (1) the Mw7.8, 2016 
earthquake in Kaikoura, New Zealand; (2) the Mw7.2, 2010 earthquake in Baja 
California, Mexico; (3) the Mw7.1, 2011 earthquake in Van, Turkey and (4) the 
M6.9, 2011 earthquake in Myanmar. We extract monthly data from the ERA5 
climate Reanalysis (https://climate.copernicus.eu/products/climate-
reanalysis, at hourly temporal resolution and at a spatial resolution of 31km) 
for the following variables: total column water vapour (TCWV), Total Column 
Rain water (TCRW), Air Temperature (Tair) and Surface Temperature (Tskin). We 
compare monthly reanalysis data with monthly numbers of anomalies detected 
over the epicentral areas. We observe an inverse relation between the monthly 
number of anomalies and total column rain water (TCRW) in all study areas 
(Figure 5.6). This could be because no TIR signal can be recorded by the 
satellite sensor while it is raining, and as a result no anomalies can be detected. 
In Mexico (Fig. 5.6b) and in Turkey (Fig. 5.6c), high numbers of anomalies 
appear in periods with high values of water vapour (TCWV) and high Skin and 
Air temperatures. In Myanmar, TCWV, Tskin and Tair are inversely related to the 
number of anomalies (Fig. 5.6d). This may indicate that increased water 
vapour or skin and air temperatures do not vary locally but in more extended 
spatial scales.  In the case of New Zealand (Fig. 5.6a) the relation between 
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Tskin, Tair, TCWV and number of anomalies is unclear because the latter is 
fluctuating throughout the year. Overall, these observations indicate a 
potential relation with localized atmospheric effects. With the exception of 
TCRW, these relations are site-specific and cannot be generalized. Other 
influences may also be present and should be considered in combination with 
atmospheric influences. For example, as seen in Figure 5.3, in the case of Italy, 
strong anomalies spatially coincide with wetlands, cultivated land, 
urban/industrial areas, river valleys and complex terrain (mountainous or 
mountainous and coastal areas). Further study of LST variability may provide 
more information but is out of the scope of this work.  

5.5.7 Limitations 

In order to set the detection threshold and to define co-seismic periods, we 
used information from literature on earthquake preparation area definition, 
fault lengths and earthquake sequences. However, we acknowledge that 
existing literature is still exploratory. To this moment, there is no physically-
based detection threshold or definition of a co-seismic period. In recognition of 
this, we test different settings to evaluate the sensitivity of our results to those 
settings. We find that the main results are robust to the use of different 
settings, and they remain the same regardless of the use of stricter detection 
thresholds or adjusted co-seismic period.  
 
Regarding the size of normalization frame, we set it based on literature on the 
earthquake preparation area. It may be argued, however, that there may be 
links between earthquakes and anomalies appearing hundreds of kilometres 
away from the earthquake without being present in the immediate proximity 
of the event, or that earthquake-related influences extend over areas larger 
than 140x140km. In such cases, the frame we applied may be considered too 
strict and a future researcher could choose to apply normalization frames of 
different sizes. To this moment, the theoretical background behind such 
occurrences is not yet established and their precursory value may be limited, 
as discussed earlier. 
 
We have examined 20 earthquakes. This collection is diverse in terms of fault 
mechanism, climatic conditions, topography and land cover, but it still is only 
a sample. An ideal sample would contain multiple similar large earthquakes 
with different focal mechanisms, in areas with different local conditions. Their 
occurrence should be covered by comparable satellite sensors and unperturbed 
years should be included for statistical analysis of anomaly occurrence. Further 
research, supported by the release of longer LST datasets, should be 
systematically extended to include more earthquake cases, of different 
characteristics and from different regions. This could increase 
representativeness of the sample and reduce the variability in the results of 
statistical analysis.     
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Figure 5.6. Relation between atmospheric parameters and anomalies in four study areas. 
The graphs show monthly values of Skin Temperature (Tskin), Air Temperature (Tair), 
Total column water vapour (TCWV), Total column rain water (TCRW) and Snow depth 
(SD) of ERA5 reanalysis (earthquake year); and monthly numbers of anomalies detected 
over the epicenter of the earthquakes of Kaikoura, NZ (panel a); Baja California, Mexico 
(panel b); Van, Turkey (panel c) and Burma, Myanmar (panel d). Numbers of anomalies 
are provided for the earthquake year (solid line) and the no-earthquake year (dashed 
line). The time of the earthquake event is shown with vertical purple dashed lines; there 
is no visible effect of the earthquake on the monthly numbers of anomalies.  
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5.6 Conclusions 
The study of hyper-temporal geostationary-based LST records to detect 
anomalies of spatial extent up to 18225 km2 in ten earthquake-prone areas, 
yields anomalies throughout the year-long datasets and throughout the study 
areas, regardless of the occurrence of an earthquake. The results show no 
statistically significant difference in anomaly density between years with and 
without earthquake, in the same location; and no difference among locations 
closer or further to the earthquake, within the same study area and year. No 
recognizable patterns are identified when earthquakes occur in the same 
region in different years. It can be concluded that the twenty earthquake 
events tested do not significantly affect LST. The findings suggest that any 
earthquake-related effect, if it exists, it is weaker than other environmental 
influences or spatially more extensive than what is tested.  
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Chapter 6. Uncertainty propagation in the 
normalization procedure 
 

6.1 Introduction 
“Assuming reality exists and is clearly defined, error is the difference between 
reality and our representation of reality” [G. Heuvelink, lecture notes on 
Uncertainty propagation]. Uncertainty is an expression of doubt in our 
representation of reality as a result of our limited knowledge and errors in 
measurements. All satellite measurements are affected by errors, which 
propagate through the process of estimating variables based on the satellite 
measurements. A full uncertainty budget considers different sources that may 
introduce error throughout the processing chain: physical effects (like the 
attenuation of emissions due to the presence of aerosols in the atmosphere), 
measurement/observational effects (related to the function or the positioning 
of the sensor), classification effects (for example, the classification of a pixel 
as cloud covered or clear-sky pixel) and effects introduced by the mathematical 
procedures of estimating derived parameters [Merchant et al., 2017].  
 
It is important to quantify how the uncertainty of the LST product propagates 
through our processing, and to understand potential factors which play a role. 
This can lead to more confidence that the results of anomaly detection are not 
caused by the uncertainty of LST retrievals. It can further provide insight on 
how input LST uncertainty may influence anomaly detection.  
 
This chapter provides a quantification of the uncertainty propagating through 
the normalization procedure described in Chapter 3, given the uncertainty 
estimates provided with the LST product. Uncertainty information is needed to 
determine the degree of confidence that the anomalies detected in the previous 
chapter do not fall within the limits of LST input uncertainty. Furthermore, it 
can support confidence in detection results based on the application of the 
normalization procedure on LST data in other case studies. 
 
We study LST uncertainty propagation in types of areas where the lowest 
accuracy of LST retrievals is reported [Freitas et al, 2010, Trigo et al. 2009], 
in order to quantify the highest expected uncertainties. Uncertainty 
propagation is quantified following three different approaches. The results are 
compared and potential influences on uncertainty are explored. Finally, an 
evaluation of detection sensitivity in view of the estimated uncertainties 
concludes the chapter. 
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6.2 Data  
In the earthquake case study, anomalies are detected in Land Surface 
Temperature data from the Copernicus Global Hourly Land Surface 
Temperature (CGH-LST) product. The CGH-LST product provides estimates of 
the radiative skin temperature over land at a 5km spatial resolution, using 
longwave infrared instantaneous satellite observations with atmospheric 
correction and cloud masking. The data are accompanied by estimates of 
standard uncertainty. These take into account error sources such as sensor 
noise,  effects of viewing geometry, total water vapour content (TCWV) and 
statistics of TCWV forecasts, and uncertainty in surface emissivity [Freitas et 
al., 2010, Trigo et al., 2009]. Uncertainty estimates are described as standard 
uncertainty (standard deviation) per pixel. According to the data provider, the 
types of regions of highest uncertainty in LST retrieval are arid areas, 
mountainous areas and areas at the edge of the METEOSAT swath [Trigo et 
al., 2009, Bento et al., 2017]. 
 
The LST value of each pixel can be described as LST±u, where u is the standard 
uncertainty. Four study areas are chosen because of reported high levels of 
uncertainty related to LST retrieval:  the El Oued desert, in Algeria (arid area); 
the Alps, over Trentino, Italy (a mountainous area); the area over Lake Van, 
Turkey (at the edge of the METEOSAT swath); and an active volcanic area over 
Mount Etna, Sicily, Italy. The latter is of interest because volcanic masks are 
not considered in the retrieval of LST in the product, and this may introduce 
additional uncertainty in LST retrievals because volcanic eruptions alter 
atmospheric conditions, including aerosol and water content. All temporal 
subsets cover a period of one year. Data from near-by ground-based 
meteorological stations, retrieved online from 
https://www.wunderground.com/ are used to examine the atmospheric factors 
that contribute to the estimated uncertainties.  

6.3 Methodology 
Both of the uncertainty propagation approaches described by Heuvelink [1999] 
are applied for estimating uncertainty of normalized values, namely a Taylor 
series method and a Monte Carlo method. These methods are used because 
they are relevant for studying spatiotemporal uncertainty propagation. Other 
methods for uncertainty estimation, like resampling [Theodorsson, 2017] are 
not considered because they are not applicable in the context of this research, 
as they are intended for calculations of uncertainty in measurements.  
Additionally, a fixed value analysis is applied similarly to Haywood et al. 
[2002]. This is not strictly a method for estimating uncertainty propagation but 
is used to create deterministic bounds of expected normalized values. Results 
of the three methods are compared, and finally the estimated uncertainty is 
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examined in relation to atmospheric effects and missing values in the 
normalization frame. 

6.3.1 Uncertainty of the normalization frame 

Normalized values are the result of dividing the value of the central 
pixel with the average of its neighbours, ௡ܶ௢௥௠ ൌ

௅ௌ்೎೐೙೟ೝೌ೗
௅ௌ்೑ೝೌ೘೐

 (Eq.6.1). The 

uncertainty of each pixel separately is readily available with the LST product, 
but the uncertainty of the frame of neighbouring pixels needs to be calculated. 
 
Let the uncertainty of the normalization frame be uf. The uncertainty of the 
normalization frame is calculated in all areas for a frame of eight pixels. This 
is the smallest possible frame that can be used for a normalization, and it 
consists of the immediate neighbours of a pixel. Adjacent pixels show high 
spatial correlation and the correlated uncertainty component is maximized. As 
a result, by studying a normalization frame of 8 pixels, we can quantify the 
highest expected levels of uncertainty.  
 
The number of pixels in the frame is N=Nex +Nmis =8, where Nex: existing pixels 
and Nmis: missing pixels. The variance of LST values of existing pixels in the 
frame is designated as VarLST. Let un=u1,2,…Nex the uncertainty of each of the 
existing pixels in the frame. The uncertainty of the frame (uf) consists of the 
contribution of the uncertainties of the frame pixels (un) and the sampling 
uncertainty usamp, which are calculated as follows: 
 
(a) the correlated uncertainties u of each of the frame pixels, with a total 

contribution of 

௖௢௥ݑ ൌ √
∑ ௨೙మ೐ೣ

ே೐ೣ
  [Farrance and Frenkel, 2012],  (Eq.6.2) 

 
and 
 

(b) the sampling uncertainty usamp which arises from the presence of missing 
values in the frame, and is estimated as 

௦௔௠௣ݑ ൌ
ே೘೔ೞ௏௔௥ಽೄ೅
ே೘೔ೞାே೐ೣିଵ

 [Dodd et al., 2016] (Eq.6.3) 

 
The two components described above are not correlated and can be therefore 
added in quadrature to provide the total uncertainty of the frame 
[Theodorsson, 2017]: 

௙ݑ ൌ ටݑ௖௢௥ଶ ൅ ௦௔௠௣ଶݑ  (Eq.6.4) 
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6.3.2 Taylor series method 

Following the Law of Propagation of Uncertainty (LPU, as presented in 
Theodorsson [2017]), the uncertainty of normalized values is expressed as a 
function of the uncertainties of the central pixel and the normalization frame. 
This function is approximated using a first order Taylor expansion [Coleman 
and Steele, 2009].  
Let the uncertainty of the central pixel be uc and of the frame, uf. The 
correlation coefficient between uc and uf is denoted as ρ and LST values of the 
central pixel and the frame are shown as LSTc and LSTf correspondingly. Using 
a first order Taylor series expansion, the variance τ2 of normalized values can 
be approximated as 
 

߬ଶ ൎ
௨೎మ

௅ௌ ೑்
మ ൅ ௙ݑ

ଶ ௅ௌ ೎்
మ

௅ௌ ೑்
ర െ ௙ݑ௖ݑߩ2

௅ௌ ೎்

௅ௌ ೑்
య   [Heuvelink, 1999] (Eq.6.5) 

 
The square root of this variance describes the standard uncertainty of each 
normalized value. The calculation is repeated for all normalized values of the 
pixel’s time series.  
6.3.3  Monte Carlo method 

According to this approach, the probability distribution of normalized values is 
obtained by performing m repetitions of normalization using a sample of 
random LSTframe  and LSTcentral , generated from the joint distribution of LSTframe 
and LSTcentral  [Heuvelink et al., 2010]. The previously estimated uc , uf and ρ  
are used for the calculations. For a bivariate normal joint distribution for 
LSTframe  and LSTcentral , it is X ~N2(μ,Σ), where μ is the vector of mean LSTframe 
, LSTcentral  and Σ is the 2x2 covariance matrix: 
 

ߤ ൌ ቂ
௙௥௔௠௘ߤ
௖௘௡௧௥௔௟ߤ

ቃ  , Σ=[ ௙ݑ
ଶ ௖ݑ௙ݑߩ

௖ݑ௙ݑߩ ௖ଶݑ
 ] [Heuvelink, 1999] (Eq.6.6) 

 
The simulation is performed with 40000 repetitions in each timeslot. The result 
provides information not only about the mean and the standard uncertainty, 
but also the full probability density function of the normalized values. 
6.3.4  Fixed value analysis  

We constrain the maximum and minimum limits within which the normalized 
values are expected to lie, given the previously calculated uc  and uf.  The limits 
are defined as follows:  
 

ݐ݈݅݉݅ݎ݁݌݌ܷ ൌ
௅ௌ்೎೐೙೟ೝೌ೗ା௨೎
௅ௌ்೑ೝೌ೘೐ି௨೑

ݐ݈݅݉݅ݎ݁ݓ݋ܮ         ൌ ௅ௌ்೎೐೙೟ೝೌ೗ି௨೎
௅ௌ்೑ೝೌ೘೐ା௨೑

 (Eq.6.7,6.8) 

 
The calculation is performed in every timeslot resulting in an upper-limit time 
series and a lower-limit time series. The boundaries are defined using the first 
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interquartile of the lower-limit series and the third interquartile of the upper-
limit series.  

6.4 Results and discussion 
Uncertainty estimates, following both the Taylor and Monte Carlo approaches, 
provide information on the uncertainty of normalized values. Fixed value 
analysis provides the limits within which normalized values are expected. The 
above are shown for all study areas in Table 6.1, where standard uncertainty 
is shown along with mean normalized values. 
 
Table 6.1. Results of the three methods. For the Taylor and Monte Carlo approaches, 
expected normalized values are given as mean ± standard deviation. For the fixed value 
analysis, the range of expected normalized values is provided. 
Area 1st order Taylor Monte Carlo Fixed value 

analysis 
Desert  0.999±0.0016 0.999±0.0030 [0.98, 1.03] 
Volcano 0.982±0.0045 0.983±0.0015 [0.94, 1.02] 
Mountain 0.991±4.04x10-7 0.991±1.38x10-7 [0.99, 0.99] 
Edge of swath 1.0±1.5x10-7 1.0±1.3x10-7 [0.99, 1.00] 

 
Detailed examination of results of all methods show low levels of uncertainty 
in normalized values and confirm that the highest uncertainties correspond to 
the volcanic and the arid study area. In these two cases also the boundaries of 
the fixed value analysis are wider than in the other two regions (Table 6.1).The 
differences between the uncertainty estimates resulting from different 
methods are minimal. In particular, the mountainous study area and the area 
at the edge of the swath, the differences between 1st Taylor approximation and 
Monte Carlo simulation are in the order of 10-7. Larger differences can be seen 
in the volcanic and arid study areas, but still in the order of 10-3. Agreement 
between methods could be further improved by using a 2nd order 
approximation in future work, but this is out of the context of this study. 
Uncertainty estimates fall within the bounds of the fixed value analysis in all 
cases except for the volcanic study area. This could be due to the missing 
values in the volcanic time series. Fixed value analysis is performed only on 
existing observations, and this may explain why the expected normalized 
values are higher in the fixed-value estimates than following the two 
uncertainty propagation approaches. 
 
A closer examination on the reasons that contribute to uncertainty shows 
correlation between monthly mean uncertainty and monthly missing 
values/monthly humidity, as recorded at ground-based meteorological stations 
covered by the study areas. An example is provided in Figure 6.1 for the case 
of the volcanic area, where uncertainty estimates where the highest. As seen 
in Figure 6.1, the correlation coefficient is 0.68 between monthly uncertainty 
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and missing values and 0.75 between monthly uncertainty and maximum 
humidity. Missing values lead to an increase in sampling uncertainty, while 
humidity increases the uncertainty of LST retrievals.  
 
Further study of Table 6.1 shows that the differences between the uncertainty 
estimates resulting from the 1st Taylor approximation and the Monte Carlo 
simulation are minimal. In the mountainous study area and the area at the 
edge of the swath, the differences are in the order of 10-7. Larger differences 
can be seen in the volcanic and arid study areas, but still in the order of 10-3. 
These differences could be addressed by a 2nd order approximation in future 
work. Given the low levels of calculated uncertainty, it is not considered 
necessary to further improve agreement between the methods. Uncertainty 
estimates fall within the bounds of the fixed value analysis in all cases except 
for the volcanic study area. This could be due to the missing values in the 
volcanic time series. Fixed value analysis is performed only on existing 
observations, and this may explain why the expected normalized values are 
higher in the fixed-value estimates than following the two uncertainty 
propagation approaches. 
 
A closer examination on the reasons that contribute to uncertainty shows 
correlation between monthly mean uncertainty and monthly missing 
values/monthly humidity, as recorded at ground-based meteorological stations 
covered by the study areas. An example is provided in Figure 6.1 for the case 
of the volcanic area, where uncertainty estimates where the highest. As seen 
in Figure 6.1, the correlation coefficient is 0.68 between monthly uncertainty 
and missing values and 0.75 between monthly uncertainty and maximum 
humidity. Missing values lead to an increase in sampling uncertainty, while 
humidity increases the uncertainty of LST retrievals.  
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An example of how LST input uncertainty propagates through the normalized 
series into the results of anomaly detection, is illustrated Figure 6.2. Panel (a) 
shows original LST series in the study area of Algeria with the uncertainty of 
the values shaded with blue. The normalized series is shown in panel (b), with 
uncertainty propagation estimated following the Taylor method (shaded blue). 
High levels of uncertainty can increase variability in the normalized signal, and 
this will increase the μ+2σ detection threshold (Chapters 3-5). The 
hypothetical thresholds shown in panel (b) demonstrate the potential impact 
of the uncertainty of normalized values on anomaly detection. Anomalies which 
would have been detected by an error-free threshold may be missed (**). 
Other anomalies may be detected because of their high uncertainty levels, but 
they do not correspond to values which would have been considered anomalous 
by an error-free threshold (*). This demonstration is based on hypothetical 
thresholds, because in our study the uncertainty estimates for normalized 
values were so low that they practically did not affect the detection thresholds.   
 
Overall, the estimated uncertainties are very low, reaching at most 0.5% of 
the mean of the normalized signal. The highest estimated uncertainty in the 
normalized series (.0045 in the volcanic case, following the 1st order Taylor 
approximation) reaches the levels of variability calculated in Chapter 3 for the 
TIR normalized series from Niger. Thus it would be expected that analysis with 
the use of LST data, even considering the highest estimated levels of 
uncertainty propagation, could reach a sensitivity comparable to the +2K that 
was estimated for synthetic anomaly detection in the case of Niger. 
 

 
Figure 6.1. Factors influencing uncertainty propagation. The graph shows the relation 
between monthly uncertainty in the normalized values (in black), the number of 
missing values in the frame (grey dashed line) and the maximum humidity (grey 
solid line). Uncertainty values are from the volcanic area (Taylor approximation 
method). Humidity values are measured at the meteorological station of Catania and 
retrieved from https://www.wunderground.com/ 
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6.5 Conclusion 
Uncertainty of LST retrievals propagates from the satellite input to the result 
of anomaly detection, which is based on the normalized time series. It is 
relevant to examine the uncertainty of normalized values, in order to see to 
what extent the anomalies detected in the previous chapter are caused by LST 
product uncertainty. The results of this study show that uncertainty estimates 
of normalized values are very low, even though they are calculated for 
conditions of highest expected variability (areas with high LST retrieval 
uncertainty, spatially correlated normalization frame and central pixel). This 
supports confidence that the anomalies detected in the previous chapter are 
related to physical phenomena rather than artefacts introduced by uncertainty 
in LST retrievals.  
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Figure 6.2. Uncertainty propagation. In panel (a), original LST values at the central 
pixel in the desert (Algeria) and their uncertainty uc (in blue). In panel (b), normalized 
values in the same pixel. Normalization is performed using an 8-pixel-sided frame 
(24km). The blue areas represent uncertainty estimates based on the Taylor 
approximation method. The solid horizontal line represents an ideal detection 
threshold, based on error-free normalized values. The dashed horizontal line is a 
hypothetical detection threshold based on normalized values with high levels of 
uncertainty. When uncertainty levels in normalized values are high, detected 
anomalies may not correspond to values which are anomalous in reality (examples 
shown as *) or actual anomalies may be missed (**). 
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Chapter 7. Synthesis and outlook 
This thesis investigates the relation between the occurrence of earthquakes 
and the presence of anomalies in satellite-based land surface temperature 
data. The challenge in this investigation is that there is no proven physical 
mechanism that describes and quantifies the effect of earthquakes on thermal 
emissions.  The hypotheses of this thesis are therefore formed based on the 
findings reported in current literature (as discussed in detail in Chapters 1 and 
2). The experiments are also designed based on literature and multiple 
detection settings are tested. 
 
The first hypothesis is that earthquakes have a traceable contribution to 
satellite-based LST. The second hypothesis is that more anomalies appear 
before/during the date of the earthquake, at closer distance to the location of 
the epicentre, and only on the year when the earthquake takes place. The third 
hypothesis is that more anomalies are expected to appear before shallower 
earthquakes or earthquakes of higher magnitude. These hypotheses imply that 
earthquake contributions to the thermal emissions recorded by the satellite 
sensor are (a) spatiotemporally finite, and (b) spatiotemporally coincide with 
the area of stress accumulation and the time before/during the earthquake. To 
detect anomalies with these characteristics, a suitable methodology had to be 
implemented that was different to the approaches previously followed in 
related published research. 
 
The following section summarizes the role of this methodological procedure for 
the earthquake study and for broader use. A reflection follows on the 
application of the methodology on volcanic monitoring, as a real-life test of the 
method and as a self-standing application. Then, the implications of the results 
of the earthquake case study are analysed in relation with the hypotheses 
underlying the research. Finally, an outlook is provided regarding the potential 
of using Land Surface temperature fluctuations, as earthquake precursors and 
for other applications.  

7.1 Normalization and anomaly detection 
Following the hypotheses of the study, anomaly detection should focus on 
spatially finite, localized patterns. As discussed in chapter 2, this was not 
possible using the approaches previously applied in published research on 
thermal earthquake precursors. Using traditional signal processing techniques, 
thermal emissions in any pixel of the image would be examined only based on 
their history. Daily/seasonal patterns which change with time would not be 
addressed. In contrast, the normalization procedure described in Chapter 3 
suppresses commonalities at the time they emerge. Furthermore, the open 
frame shape of the normalization procedure ensures that only spatially finite 



Synthesis 

98 

effects are isolated. Patterns that extend further than the normalization frame, 
like an extended heat wave, are suppressed, and will not be mistakenly 
considered as earthquake-induced anomalies.  
 
The methodology is tested with synthetic anomalies. This procedure allows for 
better control and quantification of how a well-defined anomaly is seen 
throughout the stages of anomaly detection. Anomaly detection is binary 
(normalized values exceed the threshold or not) and does not give any 
information as to how much the normalized values exceed the threshold. 
Synthetic testing is therefore necessary for linking the amplitude of detected 
peaks with the intensity of anomaly in the original signal. The use of the 
dynamic μ+2σ threshold has another implication: a part of the signal is always 
declared as anomalous. Detected peaks appear due to normal spatiotemporal 
variations of the signal, caused by local influences (more details in following 
sections) and highlighted by the normalization. The appearance of small 
numbers of anomalies throughout the dataset or peaks of similar size 
throughout the time series, should be interpreted as lack of an outstanding 
physical event. As shown in the synthetic testing, larger imposed anomalies 
are clearly discernible as peaks higher than in the rest of the image.    
 
The advantages of normalization are relevant for the earthquake-related study, 
and also for the detection of subtle anomalies in other applications. The method 
is suitable for a broader use. It can be applied with input data that have a 
spatial and a temporal dimension. Tools are provided to the user to assess the 
effect of missing values on the procedure, when and if this is relevant for the 
chosen input data (see the Data Availability Thresholds described in Chapter 
3). The normalization frame is adjustable to what may be considered as local 
in the scale of each study. For example, the detection of a burning oil spill that 
may reach an extent of 1500 km2 (like the Deepwater Horizon oil spill of 2010) 
would require a larger normalization frame than the frame necessary for 
monitoring the thermal emissions over the Jubail Industrial City in Saudi Arabia 
(spatial extent: 5km2 at the time of writing). Similarly, detection can be 
adjusted to the context of different applications: a moving temporal window 
may be used to visualize anomalies that coincide in a specific time interval, 
which may be meaningful for a particular study and not for others; and 
different thresholds can be used depending on the physical characteristics of 
target anomalies. For example, detection of slow-moving lava flows could be 
carried out with longer temporal windows than detection of explosive short-
lived strombolian eruptions; and with higher thresholds than monitoring of low-
temperature thermal fluctuations over lava domes. 
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7.2 Volcanic application 
The volcanic case study is an application of the methodology of chapter 3 on a 
real-life target event using different satellite-based data: MWIR, LWIR and 
Land Surface Temperatures (LST). On one hand, the volcanic case study 
demonstrates detection of subtle thermal signatures that can be verified with 
ground-based data. On the other hand, volcanic activity is in itself interesting 
as a monitoring target, because it is a potential hazard to exposed populations. 
The methodology of Chapter 3 allows use of relatively unexploited satellite 
resources, like LST, to complement mainstream use of MWIR for volcanic target 
monitoring. This can lead to (a) the construction of longer datasets for study 
of volcanic dynamics and (b) the study of low-temperature volcanic targets, 
like lava domes, because LST data are more sensitive to low temperature 
emissions.  
 

 
It can be argued that the intensity of IR emissions during a volcanic eruption 
is such, that its signature does not qualify as a ‘subtle’ fluctuation in satellite 
data. However, this is true only for specific wavelengths. A volcanic eruption 
which is clearly visible in the midwave infrared band 4 (MWIR, 3.9μm) of the 
SEVIRI sensor onboard the geostationary MSG satellite, cannot easily be seen 
in the longwave infrared band 9 (LWIR, 10.8μm) (an example from an eruption 
of Mount Etna, Italy is shown in Figure 7.1). A pixel over an area covered by 
2% with a lava surface of 400K, as the ones reported by Ganci et al. [2013], 
shows an increase of approximately 3.5K in the Brightness Temperatures 
registered in band 9 (calculations based on the Thermal mixture radiance 
calculator of the USGS, https://astrogeology.usgs.gov/tools/thermal-radiance-
calculator/thermal_mixture_tool.html). Such increases were detected in LST 
data in chapter 4. Increases of similar amplitude, regardless of the cause of 

 
Figure 7.1. Comparison of midwave and longwave IR images. Volcanic eruption with
lava flows in Mount Etna, Sicily, Italy. In panel (a), midwave infra-red image of the
eruption registered by SEVIRI channel 4 (3.9μm). In panel (b), the same scene as
registered in the longwave-infrared channel 9 (10.8μm) of the same sensor. The insets
in each of the panels focus in the lava flow, which is more clearly visible in the midwave
infrared (panel a) than in the longwave (panel b).  
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the detected anomaly, should be therefore detectable in LST data in the 
context of other studies, like the earthquake case study. 
 
A final observation relates to the compensation for missing data in the temporal 
window, which is described in chapter 3. The volcanic case study is an example 
of an application where missing data may be physically linked to an event and 
the compensation may aid detection. However, it is important to note that this 
compensation introduces uncertainty in the detection and should be very 
cautiously applied in other studies, with the use of the data availability 
thresholds described in chapter 3. The compensation is in any case applied 
only in combination with the temporal moving window, which is an optional 
analysis tool and is not a general requirement for anomaly detection. 

7.3 Earthquake application 

7.3.1 Overview 

In the case of the earthquake case study, the LST dataset used as input is 
cloud-masked and atmospherically corrected. This reduces artefacts in the 
processing that would be caused by interferences of atmospheric origin 
(chapter 3). The data have high temporal and spatial resolution to allow for 
examination of the spatiotemporal relation between detected anomalies and 
the location and time of earthquake occurrence. The study includes 20 large, 
shallow, land-based earthquakes with different focal mechanisms, and from 
areas of different climatic zones. No a priori information is available for the 
physical characteristics or the timing of an earthquake-induced anomaly, so 
anomaly detection procedures are applied with the same settings for all pixels 
in the images. Similarly, all detected anomalies are considered in the analysis 
and included in the statistical evaluation. The study on LST retrieval 
uncertainty propagation (chapter 6) shows that very low levels of uncertainty 
propagate to normalized values, therefore detected anomalies are not likely 
linked to artefacts caused by input uncertainty. 

7.3.2 Hypotheses and evaluation of results 

7.3.2.1 Hypothesis: Earthquakes have a traceable contribution to 
LST  

The earthquake case study showed that there is no statistically significant 
relation between observed anomalies and earthquakes. This hypothesis is 
therefore rejected, as far as this study is concerned. Either there exists no 
earthquake contribution to surface emissions, registered by satellite sensors, 
or this contribution exists but could not be traced in this study. The latter 
implies that the assumption of spatiotemporally finite earthquake effects, 
coinciding with the earthquake, may be incorrect. Two potential reasons for 
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this are (a) that the earthquake effect is more spatially extended than 18225 
km2 and/or (b) that the earthquake effect is present not only in the months 
prior to the earthquake but throughout the year. Potential earthquake effects 
may be expressed throughout the process of stress accumulation in the crust. 
This process varies in time and in space [Ye et al., 2018], and it has been 
shown that an earthquake does not necessarily release all accumulated stress 
(see, for example, Elliot et al., 2011 for the earthquake of Van, Turkey). 
Earthquake variability may account for earthquake effects being traceable in 
some cases and not in others. 
 
Another potential reason why earthquake effects may remain undetected, is 
that earthquake effects may be much weaker than the rest of the factors 
influencing LSTs and the recorded TIR data. Such factors include 
spatiotemporal variations of surface spectral emissivity, which is highly 
variable over land; local geographical factors (altitude above sea level, solar 
exposure, geographic latitude) which lead to temporal and spatial variability in 
the TIR signal; and local atmospheric conditions, like humidity and aerosol 
content, which interfere with the registration of surface radiance by the sensor. 
Researchers suggest that this obstacle could be overcome by the study of 
anomalies in multiparametric time series, i.e. considering ionospheric 
perturbations and fluctuations of other parameters temporally coinciding with 
thermal anomalies [e.g. Pulinets, 2011]. However, the study of 
multiparametric time series has not proven so far the existence of pre-
earthquake thermal anomalies, and anomalies in other suggested parameters 
have also not been verified as precursors [Jordan et al., 2011]. Non-
earthquake interferences might be overcome if the physical mechanism of 
earthquake contributions is proven and quantified. In such a case, future 
anomaly detection algorithms could include physical constraints to filter only 
earthquake related effects. 

7.3.2.2 Hypothesis: There is a relation between earthquakes and 
observed anomalies (i.e. years with earthquakes and 
periods and locations closer to the earthquake show more 
anomalies) 

No statistical evidence was found to support this hypothesis. If there is any 
relation between earthquakes and anomalies, it is overshadowed by other 
influences and cannot be proven in the results of this thesis. The results of the 
earthquake case study show that the density of detected anomalies is 
statistically not related to the occurrence of earthquakes. Anomalies are 
detected throughout the study areas, throughout the study periods, in years 
with and without earthquake occurrence. No similar patterns are found in the 
case of similar earthquakes happening in the same area in different years. The 
findings persist regardless of the use of different thresholds or definitions of 
co-seismic period. The hypothesis is therefore rejected. 
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7.3.2.3 Hypothesis: more anomalies are expected to appear before 
shallower earthquakes or earthquakes of higher magnitude 

Anomaly density does not differ between years with and without earthquakes. 
No earthquake contribution to LST could be traced in this study (see Hypothesis 
1). Thus earthquakes, regardless of their magnitude and focal depth, do not 
affect the number of anomalies detected in this study. This hypothesis is 
therefore automatically rejected. 

7.3.3 Contribution of the study and potential for alternative 
application 

The contribution of this study is that it (a) excludes large-scale effects from 
anomaly detection, (b) provides fine-scale descriptions of the spatial and 
temporal occurrence of anomalies, relative to the time and location of 
earthquake occurrence, and (c) statistically evaluates the spatiotemporal 
coincidence of earthquakes and anomalies.  
 
The choices made in this work consider bibliographic information, for example 
on the spatial extent of earthquake preparation areas. When no 
recommendation is available (for example, in the definition of co-seismic 
period) more options are tested. Application of the approach is not restricted 
to the settings that are chosen in this thesis and can be repeated in the future 
using updated criteria. For example, if a physical mechanism suggests that 
only specific types of earthquakes could have traceable contributions, the 
statistical analysis could be adjusted to accommodate such classification. 

7.4 Outlook for future studies 

The findings show that, as far as this thesis is concerned, LST anomalies could 
not be used as a precursor of the twenty earthquakes studied. This result 
should be confirmed with more earthquake cases in the future, as a larger 
sample could better support the statistical analysis. Anomalies related to 
earthquakes were either not detected because they do not exist, or because 
they temporally extend throughout the years, or because they are spatially 
more extensive than tested, or because they are overshadowed by other 
influences. In any of these cases their utility as precursor is limited. To 
conclude on the existence of earthquake-induced thermal anomalies, which 
could not be detected in this study, the underlying physical background should 
be further studied and the suggested relations should be quantified. This would 
support the design of an anomaly detection methodology that excludes non-
earthquake related environmental influences on the recorded TIR emissions.  
 
The research carried out shows potential for studying spatiotemporal LST 
variability in applications not related to earthquakes. For example, the analysis 
of data in more than twenty locations worldwide showed that LST time series 
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over urban areas have high variability (see examples in the results section of 
chapter 5). Further time series analysis could thus be useful for urban heat 
island applications and epidemiological studies. Wetlands and coastal areas 
also show high variability. Application of the normalization described in chapter 
3 could highlight subtle, water-related fluctuations with potential utility in 
drought, agricultural and environmental monitoring. Finally, the 
methodological procedure itself could be improved in the future. For example, 
normalized values could be summed to produce an anomaly index that 
represents the intensity of an anomaly, rather than the binary presence-
absence information resulting from the application of a threshold. This option 
was briefly examined with good results in this work, but was not further 
explored due to time restrictions.  
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Summary 
This thesis describes the application of time series analysis to satellite-derived 
thermal infrared imagery, in order to determine if spatiotemporally limited 
anomalies can be linked to earthquake occurrence as has been suggested by 
literature. For this purpose, a methodology is applied that can suppress large-
scale patterns and highlight subtle localized fluctuations in hypertemporal 
satellite data. The methodology is tested on at-sensor longwave and midwave 
Thermal Infra-red (TIR) Brightness Temperature data and on TIR-derived Land 
Surface Temperature (LST) data. Experiments are first carried out to retrieve 
synthetic anomalies which are imposed in real-life datasets. The methodology 
is then applied for detection of volcanic activity, and the results are validated 
using published ground-based reports. The application of this methodology is 
found to facilitate utilization of longwave IR input for long-term volcanic 
monitoring, to complement existing hotspot detection techniques and to aid 
monitoring of lower temperature targets even in areas of constant activity. 
Finally, the methodology is applied to examine the presence of detectable 
localized (spatial extent up to 18225 km2) increases in LST prior to twenty 
large, shallow, land-based earthquakes worldwide.  The findings show that 
there is no statistically significant difference between the anomaly density 
detected at different distances from the earthquake, at different periods 
(before, during and after the earthquake), and in years with and without 
earthquake occurrence. It is not clear if the earthquakes have no influence on 
the LST registered by the satellite; if the influence exists but is overshadowed 
by local environmental and atmospheric influences; or if influences are linked 
to stress accumulation rather than stress release and therefore do not coincide 
with the earthquake. To clarify this, more research is required on the physical 
background behind the links between earthquakes and TIR anomalies which 
are suggested by literature. 
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Samenvatting 
Dit proefschrift betreft de toepassing van tijdreeksanalyse op thermische 
satellietbeelden, om te bepalen of spatiotemporeel beperkte anomalieën 
kunnen worden gekoppeld aan aardbevingen, zoals is gesuggereerd in de 
literatuur. Hiervoor is een methode toegepast, die grootschalige patronen in 
hypertemporele satellietgegevens onderdrukt en subtiele gelokaliseerde 
fluctuaties benadrukt. Deze methode wordt getest op at-sensor midde- en 
lange- golflengte thermisch infrarood (TIR) Brightness Temperature en op TIR-
afgeleide oppervlaktetemperatuur (LST) gegevens. Experimenten zijn eerst 
uitgevoerd voor de detectie van synthetische afwijkingen die worden opgelegd 
in real-life datasets. De methode is vervolgens toegepast voor de detectie van 
vulkanische activiteit en de resultaten zijn gevalideerd met behulp van 
gepubliceerde rapporten. Het blijkt dat de toepassing van deze methode het 
gebruik van lange-golflengte-IR-input voor langdurige vulkanische monitoring 
ondersteunt, zoals het waarnemen van vulkanische gebieden met lagere 
temperaturen of met constante activiteit. Ten slotte wordt de methode 
toegepast om de aanwezigheid van detecteerbare gelokaliseerde (ruimtelijke 
omvang tot18225 km2) verhogingen in het LST te onderzoeken voorafgaand 
aan twintig grote, oppervlakkige aardbevingen op het vasteland. De 
bevindingen tonen aan dat er geen statistisch significant verschil is tussen de 
waargenomen anomaliedichtheid op verschillende afstanden van de 
aardbeving, in verschillende perioden (voor, tijdens en na de aardbeving) en 
in de jaren met en zonder aardbevingen. Het is niet duidelijk of de 
aardbevingen geen invloed hebben op de door de satelliet geregistreerde LST; 
als die invloed bestaat, maar wordt overschaduwd door lokale omgevings- en 
atmosferische invloeden; of als die invloed verband houdt eerder met stress-
accumulatie dan met stress-vrijzetting en daarom valt deze niet samen met de 
aardbeving. Om dit te verduidelijken, is er meer onderzoek nodig over de 
fysieke achtergrond achter de door de literatuur gesuggereerde verbanden 
tussen aardbevingen en TIR-afwijkingen. 
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Appendix 1: Volcanic case study 
This Appendix details the algorithm settings tested for processing the data. In 
order to define optimum choices we tested different options.  We justify our 
final choices and provide evidence that different settings do not alter the main 
findings but rather optimize presentation of the results. Table A1.1 summarizes 
the tested settings and our final choice of settings. 
 
Table A1. Algorithm settings applied to produce the results. 
Algorithm setting Choice 
Normalization frame size Side length= 15km (5 METEOSAT NG 

pixels) 
Anomaly threshold mean+2σ 
Length of temporal window 1-day long (96 observations) in Italy;  

5-day long (480 observations) in Congo 
Data availability thresholds  
(optional) 

No data availability thresholds applied 

 

Choice of normalization frame size 
Frame size is chosen following the procedure described in Chapter 3. Time 
series variability is measured using the standard deviation sigma (σ). The 
average sigma (σ) of all-time series in the image is calculated and used as a 
metric for the choice of frame size for normalization: the frame size that 
minimizes the average σ is chosen. Different frame sizes are tested, with length 
of sides as follows: 
 

Congo: 9km (3px), 15km  (5px ), 27km  (9px ) and 51km  (17px); 
Mount Etna: 9km (3px), 15km (5px), 21km (7px), 33km (11px) and 51km 

(17px). 
 
Note that reference to length is based on nominal spatial resolution of the data, 
which is 3km at nadir. Congo is located almost at nadir; in the case of Etna 
ground pixel size would be in reality approximately 4km.  
 
In both study areas, an increase in frame size leads to an increase in average 
variability of the normalized series of the whole image (Figure A1.1a).  
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Figure A1.1. Detection using frames of different sides for normalization. Panel [a] shows 
the increase of variability (average σ of all normalized series in the image) due to the 
application of larger frames. Panels [b] and [c] show detection results from Mount Etna 
and Nyamuragira, respectively. Different colours correspond to the application of 
different sizes of normalization frames, and have been offset for clarity. 
 
Lava flows may reach lengths of 10-15km and thus may extend to two adjacent 
pixels. In this case a hotspot would be shared between the frame and the 
central pixel, and would consequently be suppressed in the normalization. The 
smallest size of frame (3-pixel side) is therefore excluded; the next best choice 
is the 5-pixel-side (15 km) frame, in both study areas. Figure A1.1, panels [b] 
and [c], show results of detection with different frames in both study areas. 
The same hotspots are visible regardless of the applied frame; the main 
differences are seen in the distribution and size of minor peaks. 
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Choice of anomaly threshold 
The methodology of Chapter 3 applies a mean+2σ threshold to define which 
normalized values are considered anomalous. Researchers have been using 
thresholds in previous work, although following different methodologies (see, 
for example, Blackett [2014]). It is often discussed that the choice of optimum 
threshold may differ between volcanic targets. In view of that, different 
thresholds are tested in both study areas, namely: mean+1.5σ, mean+2σ, 
mean+2.5σ, mean+3σ. Figure A1.2 shows the results obtained by using 
different thresholds for detecting anomalies. The largest confirmed hotspots in 
Mount Etna and Nyamuragira are clearly detected regardless of the applied 
threshold. Since there was no particular focus to events of higher or lower 
intensities, the mean+2σ threshold is used as initially defined. 

 

 
Figure A1.2. Detection with different thresholds in Mount Etna (Panel [a]) and 
Niyragongo (Panel [b]). The graphs are offset for clarity. Higher thresholds capture only 
the highest normalized values (see for example the case of mean+3σ threshold shown 
in blue in both areas). Lower thresholds capture also fluctuations of lower intensity (see 
the red line showing detection with a mean+1.5σ threshold).  
 
Choice of length of the temporal moving window 
Temporal moving windows of one and five days long are tested. These are 
respectively shorter and longer than the events reported in Mount Etna and 
Congo. The peaks that correspond to volcanic activity are in both cases 
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detected. When a window longer than the event is used, the resulting peak 
extends to a longer period in the results and thus the duration of the event is 
not easy to interpret from the graphs. For example, see in Figure A1.3a time 
series from Mount Etna processed with a 5-day window to detect a 33hr-long 
event. Results are therefore presented based on a 1-day long window for Mount 
Etna. On the other hand, windows shorter than the event display a large 
density of small peaks, and the result does not intuitively show the duration 
and intensity of the event in the graph. Such is the case of a 1-day window 
applied to detect lava flows in the 6-month active period in Congo, shown in 
Figure A1.3b. Results from the application of a 5-day long window are therefore 
presented in the case of Congo. 
 

Figure A1.3. Moving temporal windows are influenced by the length of time. Panel [a] 
shows results from Mount Etna; panel [b] shows results from Nyamuragira lava flows in 
Congo.  
 

Optional thresholds for data availability 
The original methodology allows to set thresholds for data availability. Data 
may be missing for three reasons: (a) the observation does not exist 
(registration issues with the satellite) (b) the LST value is not used because 
there was too much uncertainty calculated for its retrieval, (c) the observation 
has been masked as a cloud/water body. In this study, however, it is the case 
that volcanic activity may be related to missing data due to volcanic emissions; 



Appendices 

131 

data availability thresholds should thus not be used. This section describes the 
tests carried out to support this decision. 
 
Frames are tested that are at least 2%, 26%, 50%, 74% and 98% complete, 
without applying any threshold for the temporal windows. Stricter 
requirements for data availability in the frame introduce missing data in the 
results (Fig. A1.4, panel [a]). Time series from Nyiragongo are more heavily 
affected by missing data (Fig.5.6, panel [d]). For both Nyamuragira and Mount 
Etna missing data appear at the time of reported activity (Fig. A1.4, panels 
[b], [c]). The introduced missing data coincide with reported activity. This 
suggests there is a relation between volcanic activity and missing data and a 
data availability threshold for the normalization should not be used. This is 
further supported with examination of the MWIR dataset. In all tests, the main 
findings remain the same at least up to frames min.74% complete. 
 
Temporal windows are tested that are at least 1%, 25%, 50%, 75% and 99% 
complete, without applying any threshold for the normalization frames. 
Similarly as before, strict requirements for full windows introduce missing data 
in the final results (Fig. A1.5, panel [a]). In the case of Mount Etna, the main 
findings remain unchanged up to windows which are min.75% complete (Fig 
A1.5, panel [c]). In both cases in Congo, however, a requirement above 
min.25% full windows leaves less than 90% of the results for study (Fig A1.5, 
panels [b] and [d]). In both study areas, missing data introduced by the 
application of the data availability threshold coincide with times of reported 
volcanic activity. This suggests that missing data may be related to volcanic 
activity (degassing); data availability thresholds on the temporal window 
should thus not be used in this study.   
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Figure A1.4. Application of data availability thresholds on the normalization frame. Panel 
[a] shows the increase in missing data in the results with the application of stricter 
thresholds. Panels [b], [c] and [d] show results from Nyamuragira, Mount Etna and 
Nyiragongo respectively. No data availability threshold was used in the results presented 
in the paper. Each series graph is offset +15 (in Mount Etna) and +200 (in Congo) from 
its immediate neighbour for clarity. 
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Figure A1.5. Application of data availability thresholds on the temporal window. Panel 
[a] shows the increase in missing data in the results with the application of stricter 
thresholds. Panels [b], [c] and [d] show results from Nyamuragira, Mount Etna and 
Nyiragongo respectively. When graphs do not show, it is due to lack of data. Each series 
graph is offset +15 (in Mount Etna) and +200 (in Congo) from its immediate neighbor 
for clarity. 
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Appendix 2: Anomaly density 
The following tables show the anomaly density, calculated as number of 
anomalies per period per spatial zone, for all studied earthquakes and for all 
experimental configurations tested (μ+2σ anomaly detection threshold, μ+3σ 
anomaly detection threshold, 48-hr co-seismic period, adjusted co-seismic 
period). 
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Appendix 3: Statistical analyses 

Statistical analysis of anomaly density data, μ+2σ  threshold, no 
adjustment of the co‐seismic period 

In the data there were 14 outliers, as assessed by examination of studentized 
residuals for values greater than ±3. The outliers are traced back in the 
anomaly density of Myanmar (2012), Baja California (June 2010), and New 
Zealand (2010) and were spread across distance zones and periods. They were 
kept in the data because they did not materially affect the results as assessed 
by a comparison of the results with and without the outliers. Anomaly density 
was not normally distributed in all cases, as assessed by a Shapiro-Wilk’s test. 
Transformation of the data did not establish normality in all cases so analysis 
was performed on the original values. There was homogeneity of variances, as 
assessed by Levene's test for equality of variances (p> .05). Mauchly's test of 
sphericity indicated that the assumption of sphericity was violated for the two-
way interaction, χ2(9) = 113.503, p < .001. Thus, the Greenhouse-Geisser 
correction was applied (following Maxwell and Delaney [2004], ε<.75).  
 
No significant interaction was found between earthquake occurrence, period 
and distance from the earthquake, F(6.094, 134.060) = .162,   p = .987, 
partial η2 = .007. There was no statistically significant two-way interaction, 
F(8.914, 196.116) = 1.645, p = .106, partial η2 = .070 (between period and 
distance zone);  F(3,66) = .844,   p = .475, partial η2 = .037 (between 
earthquake year and distance zone); F(2.031, 66) = .959,  p = .387, partial 
η2 = .014 (between earthquake year and period).  There was a significant 
simple main effect of period, F(2.971, 196.116) = 11.738, p < .001, partial 
η2= .151 which was present regardless of location or earthquake occurrence. 
In particular, the 2-month post-earthquake period had the highest average 
anomaly density (.040±.026). The lowest mean anomaly density (.023± .021) 
was found in the co-seismic period. 
 
Average anomaly density from all earthquake cases is shown in Figure A3.1, 
grouped per period, zone and earthquake year.  
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Figure A3.1. Anomaly density using a μ+2σ threshold. Results from all earthquake cases 
grouped per time period, spatial zone and earthquake year. 

Statistical analysis of anomaly density data, μ+2σ  threshold, with 
adjustment of the co‐seismic period 

In the data there were 18 outliers, as assessed by examination of studentized 
residuals for values greater than ±3. The outliers are traced back in anomaly 
density of Myanmar (2012 and 2011), China (2010), Italy(2012) and New 
Zealand (2010) and were spread across distance zones and periods. They were 
kept in the data because they did not materially affect the results as assessed 
by a comparison of the results with and without the outliers. Anomaly density 
was not normally distributed in all cases, as assessed by a Shapiro-Wilk’s test. 
Transformation of the data did not establish normality in all cases so analysis 
was performed on the original values. There was homogeneity of variances, as 
assessed by Levene's test for equality of variances (p> .05). Mauchly's test of 
sphericity indicated that the assumption of sphericity was violated for the two-
way interaction, χ2(9)=82.177,   p< .001. Thus, the Greenhouse-Geisser 
correction was applied (following Maxwell and Delaney [2004], with ε<.75).  
 
No significant interaction was found between earthquake occurrence, period 
and distance from the earthquake, F(6.767, 121.798) = .596, p= .753, partial 
η2= .032. There was no statistically significant two-way interaction between 
period and distance zone, F(6.832, 122.971) = .574, p = .772, partial η2= 
.031; none between earthquake year and distance zone,  F(3,54) = 2.279, p 
= .090, partial η2= .112; and there was significant two-way interaction 
between earthquake year and period,  F(2.256,54) = 6.954, p = .001, partial 
η2 = .114 regardless of distance to the earthquake.  There was also a significant 
simple main effect of period, F(2.971, 196.116) = 11.738, p < .001, partial 
η2= .151. In particular, the post-earthquake period in no-earthquake years 
had the highest average anomaly density (.043±.026). The lowest mean 
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anomaly density (.019±.018) was found in the co-seismic period of no-
earthquake years.  
 
Average anomaly density from all earthquake cases is shown in Figure A3.2, 
grouped per period, zone and earthquake year.  
 

  
 
Figure A3.2. Anomaly density using a μ+2σ threshold with co-seismic period adjustment 
for long seismic sequences. Results from all earthquake cases grouped per time period, 
spatial zone and earthquake year. 

Statistical analysis of anomaly density data, μ+3σ  threshold, no 
adjustment of the co‐seismic period 

In the data there were 14 outliers, as assessed by examination of studentized 
residuals for values greater than ±3. The outliers are traced back in anomaly 
density of Myanmar (2012 and 2011), Baja California (June 2010), Van (2012) 
and Ahar (2011) and were spread across distance zones and periods. They 
were kept in the data because they did not materially affect the results as 
assessed by a comparison of the results with and without the outliers. Anomaly 
density was not normally distributed in all cases, as assessed by a Shapiro-
Wilk’s test. Transformation of the data did not establish normality in all cases 
so analysis was performed on the original values. There was homogeneity of 
variances, as assessed by Levene's test for equality of variances (p > .05) 
except for the case of the pre-earthquake period of non-earthquake years (p 
= .028). Mauchly's test of sphericity indicated that the assumption of sphericity 
was violated for the two-way interaction, χ2(9) = 188.861, p< .001. Thus, the 
Greenhouse-Geisser correction was applied (following Maxwell and Delaney 
[2004], with ε<.75).  
 
No significant interaction was found between earthquake occurrence, period 
and distance from the earthquake, F(5.210, 116.355) = .148, p = .983, partial 
η2= .007. There was no statistically significant two-way interaction, F(8.905, 
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198.888) = 1.224, p = .282, partial η2= .052 (between period and distance 
zone); F(3,67) = .008, p = .999, partial η2 < .001 (between earthquake year 
and distance zone); F(1.737, 67) = .934, p = .384, partial η2 = .014 (between 
earthquake year and period). There was a significant simple main effect of 
period, F(2.968, 116.355) = 9.927,   p < .001, partial η2 = .129 which was 
present regardless of location or earthquake occurrence. In particular, the 2-
month post-earthquake period had the highest average anomaly density 
(.0095±.0073). The lowest mean anomaly density (.0048±.0080) was found 
in the co-seismic period.  
 
Average anomaly density from all earthquake cases is shown in Figure A3.3, 
grouped per period, zone and earthquake year.  
 

   
Figure A3.3. Anomaly density using a μ+3σ threshold. Results from all earthquake cases 
grouped per time period, spatial zone and earthquake year. 

Statistical analysis of anomaly density data, μ+3σ  threshold, with 
adjustment of the co‐seismic period 

In the data there were 13 outliers, as assessed by examination of studentized 
residuals for values greater than ±3. The outliers are traced back in anomaly 
density of Myanmar (2012 and 2011) and Baja California (June 2010) and were 
spread across distance zones and periods. They were kept in the data because 
they did not materially affect the results as assessed by a comparison of the 
results with and without the outliers. Anomaly density was not normally 
distributed in all cases, as assessed by a Shapiro-Wilk’s test. Transformation 
of the data did not establish normality in all cases so analysis was performed 
on the original values. There was homogeneity of variances, as assessed by 
Levene's test for equality of variances (p > .05) except for the case of the pre-
earthquake period of non-earthquake years (p = .013). Mauchly's test of 
sphericity indicated that the assumption of sphericity was violated for the two-
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way interaction, χ2(9) = 49.772,   p < .001. Thus, the Greenhouse-Geisser 
correction was applied (following Maxwell and Delaney [2004], with ε<.75).  
 
No significant interaction was found between earthquake occurrence, period 
and distance from the earthquake, F(8.507, 155.958) = .422, p = .915, partial 
η2 = .022. There was no statistically significant two-way interaction between 
period and distance zone, F(7.604, 139.413) = .788, p = .608, partial η2 = 
.041 ; neither between earthquake year and distance zone F(3,55) = .626, p 
= .601, partial η2 = .033. There was a significant two-way interaction between 
earthquake year and period, F(2.836, 55) = 6.485, p< .001, partial η2 = .105. 
There was a significant simple main effect of period, F(2.535, 139.413) = 
6.631, p < .001, partial η2 = .108 which was present regardless of location or 
earthquake occurrence; and a simple main effect of earthquake year,  F(1, 55) 
= 14.914,   p < .001, partial η2 = .213. In particular, the post-earthquake 
period in no-earthquake years had the highest average anomaly density 
(.0097±.0062). The lowest mean anomaly density (.0036±.0045) was found 
in the co-seismic period of no-earthquake years.  
 
Average anomaly density from all earthquake cases is shown in Figure A3.4, 
grouped per period, zone and earthquake year.  
 

 
 
Figure A3.4. Anomaly density using a μ+3σ threshold after a co-seismic period 
adjustment for long seismic sequences. Results from all earthquake cases grouped per 
time period, spatial zone and earthquake year.  
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