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1. Introduction

The subject of this thesis is the interpretation of sun-induced chloro-

phyll fluorescence (SIF) that can be applied to monitoring vegetation photo-

synthesis from remote sensing techniques. In this introduction first a brief

review of remote sensing of SIF for photosynthesis is given. Next, challenges

in using SIF are reviewed. The motivation and objectives for writing this

thesis are summarized next and this chapter is concluded with a structural

overview of the remaining chapters.

1. Why monitoring plant photosynthesis?

Plants play a crucial role in our Earth system. They have shaped the

environment throughout history and turned our planet into a habitable place

(Berry, 2012). The astonishing diversity of plants profoundly molds Earth’s

climate, the evolutionary trajectory of life and our society.

Photosynthesis is one of the most fundamental processes on Earth

and makes plants essential to our world. Photosynthesis happens inside

chloroplasts that contain chlorophyll. Many chemical reactions in photo-

synthesis can be summarized by the classic chemical reaction equation:

CO2(Carbon dioxide) + H2O(Water)
Light−−−→ C6H12O6(Sugar) + O2(Oxygen).

The reaction converts light energy, water and carbon dioxide into energy-rich

organic compounds and oxygen fueling the organisms’ activities. The pho-

tosynthesis process consumes carbon dioxide (a significant greenhouse gas)

from the atmosphere and emits oxygen as a byproduct to the atmosphere

making a habitable planet for all living creatures.

Monitoring photosynthesis facilitates a better understanding of what

limits photosynthesis and to develop technologies for increasing photosyn-

thetic rate in crops for sustainable yield. Producing enough food to meet the

growing demand is a distinct challenge. In the past century, crop yields have

kept up with population growth under the effects of the ”Green Revolution”

which contains the application of knowledge in plant breeding and genetic

manipulation (Hawkesford et al., 2013). However, these effects of the ”Green

Revolution” are fading while the global population is growing (Godfray et al.,

2010). This raises concerns about future food security. Modern precision
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2. How to monitor plant photosynthesis?

agriculture is one way to ensure production. The essence of precision ag-

riculture is real-time monitoring and management of crops, in particular

photosynthesis. Moreover, the knowledge on optimizing photosynthesis is

crucial for enhancing crop yields. Crop yields have been increased throughout

history but there was no or little change in the rate of photosynthesis per unit

leaf area (Foyer et al., 2017). By measuring photosynthesis under various

environmental conditions, the optimal conditions for photosynthesis per leaf

can be determined for various crops.

The measurement of plant photosynthesis also plays an important

role in understanding ecological systems and climate changes. Tracking the

responses of photosynthesis to climatological variables at several scales will

help us to understand the interaction between plants and environment (Grace

et al., 2007), for example, effects of atmospheric CO2 enrichment on plant

growth (Idso et al., 1987; Ainsworth and Long, 2005; De Graaff et al., 2006),

and effects of plants on removal of CO2 (Farquhar et al., 1993). We will have

a better understanding of the response of natural ecosystems to the climate

change (e.g., rising atmospheric CO2 and global warming) and predict the

evolution of plants and ecosystems on Earth (Drake et al., 1997; Bazzaz,

1990).

2. How to monitor plant photosynthesis?

The conceptual basis for photosynthesis monitoring is to measure the

resources or products involved in this process. More specifically, tracking gas

exchange, water-related processes, light flows or organic compounds are the

ways to monitor photosynthetic activity and further compute gross primary

production (GPP) and net primary production (NPP) at various temporal

and spatial scales.

The first global map of photosynthesis was made by using an annual

measure of actual evapotranspiration (AET) (i.e. water loss) (Lieth, 1975)

in two simple steps. First, the annual AET was estimated from global tem-

perature maps extrapolated from the measurements from around a thousand

weather stations in the world. Second, a simple relationship between AET
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1. Introduction

and annual NPP was found and applied (Running et al., 2004).

NPP = 3000× {1− exp[−0.0009695(AET− 20)]} (1.1)

The measure of photosynthesis from AET is a rough estimation and it is

affected by many other processes on the surface. Gas exchange measurements

provide a direct measure of photosynthetic carbon assimilation, and this

method is nowadays preferred. Photosynthesis results in the exchange of

CO2 (gas) exchange between the atmosphere and plant, and the net rate at

which the gases are produced and consumed forms the basis of gas exchange

methods for measuring photosynthesis.

Two methods, chamber-based measurements and eddy covariance, are

employed to measure the CO2 exchange. In the chamber-based method, a

leaf or plant is enclosed in a transparent chamber, and the rate at which

the CO2 concentration changes in the chamber is monitored (Long et al.,

1996). The chamber can either be sealed without resupply with fresh air

or be provided with a constant flow of air, which refer to closed and open

systems, respectively. A series of commercial, portable, gas exchange systems

are available in the market (e.g. LI6400, LiCor Inc., USA; GFS-3000, Walz,

Germany). Results from the use of chambers the methods are mostly limited

to the levels of individual leaves or plants. Alternative chamberless methods,

particularly those involving eddy covariance (EC), are available and provide

an essential method for assessing the gas exchange of whole communities

(Goulden et al., 1996; Baldocchi, 2003). The EC towers offer unprecedented

opportunities to study the variability of photosynthesis on a large scale, but

their footprints are still limited and they do not give the complete picture of

terrestrial ecosystems.

In order to measure terrestrial photosynthesis regionally or globally and

continuously, regional and global networks of micrometeorological tower sites

that use eddy covariance methods to measure the exchanges of CO2 between

terrestrial ecosystems and the atmosphere have been established, such as

NEON (National Ecosystem Observatory Network, www.neonscience.org) in

the United States, ICOS (Integrated Carbon Observatory System, www.icos-
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2. How to monitor plant photosynthesis?

infrastructure.eu) in Europe and FLUXNET (http://fluxnet.ornl.gov). One

of the principal objectives and challenges for the EC network community

has been upscaling (Xiao et al., 2008; Jung et al., 2009; Xiao et al., 2012).

These tower-based observations need to be upscaled to regions, continents,

or the global scale. Although there are more than 500 tower sites around the

world that are operating on a long-term basis and the number is growing,

these towers are far from enough to cover the world or a continent. Besides

the limited footprints (several kilometers), the towers in the networks are

irregularly distributed, e.g. the towers in FLUXNET are heavily biased to

regions in the mid-latitudes of the northern hemisphere (Baldocchi et al.,

2001; Jung et al., 2009).

Attempts to estimate photosynthesis from remotely sensed data were

made after realizing that true global measurements could only be made

using satellite remote sensing. Satellite estimates of terrestrial GPP or NPP

commonly rely on the strong connection between photosynthesis and solar

light absorption (i.e. photosynthetically active radiation, PAR). Because

remote sensing provides a measure of the fraction of absorbed PAR (fPAR),

it is regarded as a promising technique for global photosynthesis monitoring.

However, not all the absorbed solar light is used for photosynthesis. The

conversion of absorbed PAR (APAR) to photochemistry is described by

the well-known photosynthetic light use efficiency (LUE) model for GPP

(Monteith, 1972). In this model GPP is expressed as a product of APAR

(=PAR× fPAR) and LUE.

GPP = PAR× fPAR× LUE (1.2)

Vegetation reflectance data from remote sensing are used to estimate

fPAR and thus APAR (Baret and Guyot, 1991). For example, vegetation

indices (VIs) such ratio vegetation index (RVI) (Pearson and Miller, 1972)

and normalized difference vegetation index (NDVI) (Rouse Jr et al., 1974)

are simple and effective estimates of canopy fPAR. Global products of fPAR

were generated from reflectance data of several satellites, such as MODIS

(Moderate Resolution Imaging Spectroradiometer) (Myneni et al., 2002) and
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1. Introduction

AVHRR (Advanced Very High Resolution Radiometer) (Los et al., 2000).

Absorption of PAR is evidently the dominant driver and the determining

factor for GPP. Provided with the remotely sensed APAR, one can have a

first approximation of GPP by assuming LUE to be constant.

The conversion efficiency of APAR (LUE) is nevertheless an essential

variable for GPP estimating too, because it varies widely with different

vegetation types and climatic conditions (Field et al., 1995; Turner et al.,

2003; Running et al., 2004). Spatial and temporal dynamics of biome APAR

and LUE are key variables for understanding the relationship between climate

drivers and global GPP. Simulations of global GPP were conducted in advance

with ecosystem models that estimate LUE for variations in vegetation types,

temperature and moisture stress (Turner et al., 2003; Running et al., 2004;

Heinsch et al., 2006). The general logic is first determining the theoretical

potential LUE values according to land cover and then adjusting LUE values

for the climatic conditions, such as air temperature and vapor-pressure deficit

(VPD). The resulting LUE values and the associated vegetation types and

climatic variables are organized as a biome parameter look-up table (BPLUT)

for the users (White et al., 2000; Running et al., 2000; Running and Zhao,

2015).

Reflectance signals are not directly related to LUE (Grace et al.,

2007). The LUE of photosynthesis responds to ambient conditions dynam-

ically, whereas reflectance is rather stable in a short term. Some chemical

reactions in photosynthesis may induce subtle changes in reflectance, how-

ever. The photochemical reflectance index (PRI) proposed by Gamon et al.

(1992) as the normalized difference of reflectance at 570 nm and 531 nm

((R570 − R531)/(R570 + R531)) shows some correlations with LUE (Nichol

et al., 2000; Barton and North, 2001; Nakaji et al., 2006). The correlations are

however complex and superimposed by many other factors and no conclusive

relationship has been presented yet.

Solar-induced chlorophyll fluorescence (SIF) has been considered as a

measure of photosynthesis over the past decades, but the detection of SIF

from satellites is of much more recent date. Guanter et al. (2014) compared
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3. Sun-induced chlorophyll fluorescence for photosynthesis

spaceborne SIF and GPP over cropland and grassland ecosystems and found

a significant correlation between them. This correlation was confirmed for

different ecosystems at various temporal scales (Yang et al., 2015; Sun et al.,

2017). The interest in the use of satellite data of SIF for photosynthesis

estimates is the basis of this thesis.

3. Sun-induced chlorophyll fluorescence for photosyn-
thesis

3.1 Chlorophyll fluorescence

Chlorophyll fluorescence (ChlF) occurs during photosynthesis. Light

energy absorbed by chlorophyll molecules can undergo one of three pathways:

it is used to drive photosynthesis, it is dissipated as heat or re-emitted as ChlF

(Maxwell and Johnson, 2000). ChlF is therefore defined as the re-emission of

radiation absorbed by chlorophyll (at a longer wavelength than the excitation

wavelength). It occurs within the waveband 640 - 850 nm and has peaks at

690 and 740 nm (Fig. 1.1). Photosynthetically active radiation (PAR) can

induce ChlF. ChlF induced by solar light is SIF (also called passive ChlF),

and ChlF induced by artificial light is often termed as active ChlF.

Figure 1.1: The emission of chlorophyll fluorescence of a leaf (Davidson et al.,
2003) and a typical fluorescence spectrum.

ChlF is a radiative flux and it is determined by the intensity of absorbed
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energy and the conversion efficiency between absorbed radiation (i.e. APAR)

and ChlF radiation (Eq. 1.3). This efficiency is called fluorescence emission

efficiency (εF ), fluorescence quantum efficiency or fluorescence quantum yield.

ChlF or SIF mentioned in this thesis refer to a flux in energy units unless

indicated otherwise:

ChlF = APAR× εF (1.3)

3.2 Connection between ChlF and photosynthesis

The existence of a functional relationship between ChlF and photosyn-

thesis has been elucidated by both laboratory and field experiments. ChlF

emitted by the photosynthetic machinery can provide a direct measure of the

actual functional status of vegetation (Schreiber et al., 1986; Genty et al.,

1989; Baker, 2008). Temporally averaged satellite-based ChlF data appear

to improve the estimation of GPP (Frankenberg et al., 2011; Guanter et al.,

2014; Migliavacca et al., 2017), and provide an indication of plant stress (Ač

et al., 2015; Rossini et al., 2015).

At photosystem level, the principle underlying the relationship between

ChlF and photosynthesis is straightforward by looking into the quenching

mechanisms of excited chlorophyll. Fluorescence reduces due to photochem-

ical quenching (PQ) and non-photochemical quenching (NPQ). Generally,

ChlF is inversely related to photosynthesis (PQ), except when NPQ of fluor-

escence (thermal dissipation) occurs (Pedrós et al., 2008). More specifically,

the process of ChlF emission, together with heat dissipation, competes with

photosynthesis for the same excitation energy, such that any increase in the

efficiency of one will result in a decrease in the summed efficiency of the other

two (Eq. 1.4). Therefore, by measuring the fluorescence emission efficiency

(εF ), information about changes in the efficiency of photochemistry and heat

dissipation (εH and εP ) can be obtained (Genty et al., 1989; Baker, 2008). It

is noted that εP is the fraction of absorbed light for photochemistry (unitless).

It can be converted to LUE with which this absorbed light is converted to
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3. Sun-induced chlorophyll fluorescence for photosynthesis

fixed carbon (i.e. production per absorbed energy).

εF + εH + εP = 1 (1.4)

The link between ChlF and photosynthesis on the canopy, regional or

ecosystem scale relies on the fact that both of ChlF and GPP are products

of absorbed radiation of vegetation canopies (Eqs. 1.2 and 1.3). ChlF is

determined by APAR and photosynthetic functioning and is a probe of

photosynthetic functioning (LUE) and light absorption (APAR), and thus

GPP.

3.3 Measurements of ChlF

Modern studies of ChlF started with the observation of the Kautsky

effect (ChlF induction curves) in 1931 by Kautsky, although the first record of

ChlF was as early as 1834 (Krause and Weis, 1991; Baker, 2008). This effect

describes the phenomenon of a typical variation on ChlF of dark-adapted

photosynthesizing cells that are illuminated with continuous light: ChlF first

increases to a peak and then decreases to a steady state.

More advanced understanding of ChlF and its relationship with pho-

tosynthesis is largely derived from studies using pulse-amplitude modulated

(PAM) fluorometry (Schreiber et al., 1986). In this instrument, a modulated

weak light is added on top of the ambient light (which can be either natural

light or artificial light), and the returning ChlF, which is also oscillating, is

detected. Because the intensity of the modulated light (i.e. APAR in Eq.

1.3) is held constant, the PAM ChlF signal is proportional to fluorescence

emission efficiency (εF ).

A saturating light source is used in the PAM fluorometry apart from

the modulated light. It provides a way to study the ChlF quenching. The

modulated light allows measuring steady-state εF (Ft), and the saturated light

allows measuring the maximal level of εF (Fm) by blocking the photochemistry

pathway (note: PAM measurements are usually represented by a symbol ’F ’).

It can be shown that the relative difference of ChlF measurements at the

two states (i.e. absence or presence of saturated light) is the photosynthetic
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efficiency (εP ). The analysis of the quenching of fluorescence leads to the

famous equation linking fluorescence with steady-state photosynthesis (Genty

et al., 1989).

εP = (Fm − Ft)/Fm (1.5)

PAM ChlF measurements are powerful tools to study photosynthetic

light partitioning and plant physiology at leaf level. However, the use of

artificial light (the modulated and saturating light) makes the PAM technique

unsuitable for remote sensing applications.

3.4 Remote sensing of SIF

With the development of instruments and improvements of retrieval

approaches, SIF has been measured from various remote sensing platforms

ranging from tower-based (Moya et al., 2004; Guanter et al., 2013) to aircraft-

based (Zarco-Tejada et al., 2009, 2012; Rascher et al., 2015) and satellite-based

platforms (Joiner et al., 2011, 2013; Guanter et al., 2016). Global maps of SIF

have been measured by the Greenhouse Gases Observing Satellite (GOSAT)

(Frankenberg et al., 2011), the Global Ozone Monitoring Experiment-2 satel-

lite (GOME-2) (Joiner et al., 2013) and the Orbiting Carbon Observatory

satellite (OCO-2) (Frankenberg et al., 2014). Additionally, the FLuorescence

EXplorer (FLEX) satellite mission has been selected as the 8th Earth Ex-

plorer mission of the European Space Agency (ESA). FLEX will be the first

satellite mission dedicated to SIF observation, and will allow retrieving the

full spectrum of fluorescence with high spatial resolution (Drusch et al., 2016,

2017).

The key of remote sensing SIF is to separate observed signals into a

reflected component and a fluorescence component. SIF is a weak flux and is

mixed with a reflected flux. It constitutes only a very small additive offset

(typically < 1% - 2%) to the overall reflected sunlight (Meroni et al., 2009;

Berry, 2012). It is challenging to differentiate SIF from reflected signals in

most bands. Fortunately, in the Fraunhofer lines (i.e. absorption features of

the optical spectrum of the sun) emitted fluorescence signals are enhanced
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with respect to reflected solar radiation, and thus SIF signals are relatively

amplified and can be retrieved. The commonly used atmospheric Fraunhofer

lines are two oxygen absorption features at 687 nm (O2-B) and 760 nm

(O2-A), representing red and far-red SIF.

Various methods have been developed to retrieve SIF from spectral

measurements. Most of the approaches in the literature on SIF retrieval are

based on the simplistic Fraunhofer Line Depth (FLD) principle (Plascyk,

1975), the modified FLD (3FLD) (Maier et al., 2003), the improved FLD

(iFLD) (Alonso et al., 2008). More advanced SIF retrieval methods such as

spectral fitting methods (SFM) have been proposed for a more robust and

accurate retrieval (Meroni et al., 2010; Guanter et al., 2010; Damm et al.,

2014).

SIF has been a widespread and exciting signal for monitoring vegeta-

tion. The availability, quality, and spatiotemporal coverage of SIF data are

expected to increase drastically over the next few years (Porcar Castell et al.,

2014). More SIF data from various platforms are available and need to be

explored. Models are needed for this purpose.

3.5 Modeling of SIF

Efforts on modeling SIF from photosynthetic level to leaf and canopy

level have been made along with observations. At photosynthetic level, the

efficiencies of the three pathways of absorbed energy are regulated by ambient

conditions and vary with plant functioning types. The photochemistry path-

way is well-studied earlier than ChlF by using the gas exchange techniques.

Nearly four decades ago Farquhar, von Caemmerer and Berry developed a

quantitative photosynthesis model for photosynthetic rates (the FvCB model)

(Farquhar et al., 1980). Thanks to PAM techniques, ChlF partitioning and

photosynthetic efficiency was later linked (Schreiber et al., 1986; Genty et al.,

1989). A semi-empirical photosystem based energy partitioning model was

later developed by (Rosema et al., 1998), in which fluorescence emission

efficiency and photosynthetic efficiency are functions of PAR. Van der Tol

et al. (2014) further explored the empirical relationship between fluorescence
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emission efficiency and photosynthetic efficiency and developed a more ad-

vanced photosystem energy partitioning model. This model simulates the

response of energy partitioning to various factors, including leaf temperature,

CO2 concentration, PAR and stomatal conductance.

Remote sensing only measures a portion of the total emitted SIF by

photosystems due to re-absorption and scattering effects. Considering these

effects, SIF observed from remote sensing can be expressed as

SIF = APAR · εF · σF . (1.6)

where SIF refers to remotely sensed signals and σF is scattering coefficient of

the emitted SIF and is the ratio between observed and emitted fluorescence

radiation. The efficiency can be predicted with the energy partitioning model

in photosystems, while the absorption of PAR and scattering of emitted SIF

are determined by the radiative transfer of incident light and emitted SIF,

respectively.

Radiative transfer models (RTMs) of SIF have been developed for

upscaling and downscaling fluorescence signals among photosynthetic level,

leaf, and canopy level. Most of these models are adaptations or extensions of

the existing RTMs for simulating reflectance and transmittance. Pedrós et al.

(2010) published FluorMODleaf simulating ChlF emission by plant leaves

and further improvements led to the Fluspect model (Vilfan et al., 2016).

The models are an extension of PROSPECT (Jacquemoud and Baret, 1990),

a widely used leaf optical properties model that simulates leaf reflectance

and transmittance. Meanwhile, Miller et al. (2005) developed FluorSAIL

that includes fluorescence radiative transfer in the classic canopy reflectance

model SAIL (Verhoef, 1984, 1985).

SCOPE (Soil-Canopy-Observation of Photosynthesis and Energy fluxes)

combines RTMs and biochemical models (Van der Tol et al., 2009). The basis

of SCOPE is the classic SAIL radiative transfer models originally published

by Verhoef (1984). The combination of the canopy SAIL model and the leaf

PROSPECT model yielded the well-known PROSAIL (Jacquemoud, 1993;

Jacquemoud et al., 1995; Jacquemoud et al., 2009). Further inclusion of
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fluorescence radiative transfer led to FluorMODleaf and FluorSAIL. The

modelling of thermal radiative transfer (Verhoef et al., 2007) allows imple-

menting an energy balance module in SCOPE that simulates the necessary

micrometeorological variables for driving the biochemical model of Van der

Tol et al. (2014). The partitioning of absorbed radiation of each individual

leaf can be computed and leaf fluorescence emission and photosynthesis can

be modeled. Aggregation of leaves’ photosynthesis yields canopy photosyn-

thesis, and top-of-canopy (TOC) SIF is predicted with the radiative transfer

of emitted fluorescence.

SCOPE is a 1D model that considers leaves in a canopy which have

identical optical properties. Recently, 3D models have also been developed

but are mere RTMs, e.g. the Discrete Anisotropic Radiative Transfer (DART)

(Gastellu-Etchegorry et al., 2017) and FluorFLIGHT (Hernández-Clemente

et al., 2017).

4. Challenges in photosynthesis monitoring from SIF

The existence of a functional relationship between SIF and photosyn-

thesis is definite. We, however, have to be aware that the SIF-photosynthesis

relationship is generally complex. The relationship between SIF from remote

sensing and GPP is merely empirical and the exact relationship remains

unclear. We are in a position to move beyond the mere empirical observation

of SIF-photosynthesis relationship and more work needs to be done to unravel

the full potential of SIF measurements.

The most obvious challenge is at mechanistic level: how εF is exactly

linked with εP . Their relationship is clear only if the third pathway (heat

dissipation) is known. In most studies on correlating SIF with GPP, εP

is assumed to be linear with εF (Guanter et al., 2014; Guan et al., 2016;

Migliavacca et al., 2017) due to lack of a mechanistic link between steady-state

εF and εP .

SIF is ought to be better interpreted before linked with photosynthesis.

SIF from remote sensing is the product of three processes: (1) the absorption

of PAR by chlorophyll (fPAR), (2) the re-emission of part of this absorbed
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radiation as fluorescence (εF ), and (3) the scattering and re-absorption of

fluorescence in the canopy (σF ). Of these three factors, (1) has a direct

relationship with GPP and indirectly regulates photosynthetic efficiency εP ,

(2) has a direct relationship with εP and indirectly regulates GPP, while (3)

is unrelated to either.

The key problem is the scattering of SIF in the canopy. The scattering

of SIF is an interference in the SIF-GPP relationship. GPP is functionally

related to SIF production of the whole canopy rather than TOC SIF, which

is only a portion of total SIF production. The use of SIF for photosynthetic

production (GPP) requires downscaling from remotely sensed SIF to canopy

SIF production. The main problem in this downscaling is how to quantify

the scattering of SIF from remote sensing measurements. Scattering of SIF

is determined by leaf optical properties and canopy structure, and sensitive

to sun-observer geometry (Porcar Castell et al., 2014). RTMs provide a way

to predict scattering, but only if the canopy and observational conditions

are pre-defined. Biophysical and biochemical variables of canopy usually are

desired parameters of remote sensing rather than input parameters.

The light absorption is another problem. Retrievals of physiological

functioning traits from SIF require removing the non-physiological regulation

from TOC SIF. Studies show that a substantial variability of SIF is due

to canopy structure and sun-observer geometry rather than physiological

variation (Porcar Castell et al., 2014; Van der Tol et al., 2016; Verrelst et al.,

2016; Liu et al., 2016). Fluorescence emission efficiency is a ’pure’ quantity

for photosynthetic functioning. The retrieval of this efficiency requires the

correction of the light absorption (process (1)) and scattering of emitted

SIF (process (3)). They are affected by canopy structure and sun-observer

geometry. Again, RTMs are useful to predict them, but the same problems

as discussed above exist. The difficult task is effectively analyzing the three

processes with remote sensing measurements (e.g. TOC reflectance and SIF).

In summary, the main challenges of using SIF for photosynthesis

monitoring are summarized as follows.

1. Quantification of the scattering of emitted SIF,
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2. Separation of non-physiological and physiological regulations on SIF,

3. Mechanistic link between fluorescence emission efficiency and photo-

synthetic efficiency.

5. Objectives and organization of the thesis

The main objective of this thesis is to quantitatively analyze the three

processes (i.e. light absorption, fluorescence emission and re-absorption of

fluorescence) that affect TOC SIF observations. Efforts on separation of

plant physiological and non-physiological regulation of SIF, and on radiative

transfer modeling are made to consolidate the interpretation of SIF. This

thesis aims to do this via the following steps:

1. Simulating the effects of light absorption and re-absorption of fluor-

escence by using the SCOPE model and reflectance data (Chapter

2),

2. Quantification of re-absorption and scattering of emitted SIF by using

reflectance (Chapter 3),

3. Separation of non-physiological and physiological regulations on SIF

by using a reflectance index (Chapter 4),

4. Improvement of SCOPE to better interpret SIF signals (Chapter 5).
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2Interpreting SIF measurements by
using radiative transfer models∗

−A case of heat wave study

∗This chapter is based on: Yang, P., van der Tol, C., Verhoef, W., Damm, A., Schickling,
A.,Kraska, T.,Muller, O.,Rascher, U., 2018. Response of Crops to a Heat Wave: Insights
from Airborne based Reflectance and Chlorophyll Fluorescence Measurements. Remote
Sensing of Environment, under review.
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Abstract

Weather extremes affect crop production and pose a threat to food

security. Crop monitoring and early plant stress detection can facilitate an

improved crop management, thus alleviating this threat. The growing availab-

ility of global measurements of sun-induced chlorophyll fluorescence (SIF) can

help improving crop monitoring in the near future, especially the monitoring

of photosynthetic activity. In this study, we quantitatively analyzed airborne

(HyPlant) reflectance and SIF data acquired over an agricultural farm in

Germany on two days, before and during a heat wave in summer 2015 with

maximum temperatures of 26◦C and 34◦C, respectively. Reflectance spectra

and SIF responded to the high temperature differently across investigated

crops. Inversions with the combined photosynthesis and energy balance model

SCOPE showed that these responses were due to changes in canopy structure,

leaf water content and photosynthetic functioning. We demonstrate that

the use of reflectance data and radiative transfer models provides a way to

disentangle structural and physiological responses of vegetation. This opens

new pathways to compensate for vegetation structural effects on TOC SIF,

and thus track photosynthesis functioning status in response to heat stress.

The combination of reflectance and SIF enables the early detection of can-

opy structural and plant physiological response to environmental conditions.

This provides valuable information to advance analysis of environmental

stress response of vegetated ecosystems, in particular, their response to rising

temperature.
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1. Introduction

Early detection of high temperature stress of vegetation is crucial

for precision agriculture and global food security. High temperatures and

associated effects such as water deficit and excessive radiation levels may

affect plant development (Levitt et al., 1980; Chaves et al., 2002; McDonald

and Paulsen, 1997). A study by Reyer et al. (2013) found a substantial

impact of extreme temperature events on plant phenology and an increased

vulnerability of plant-water relations. Reduced ecosystem productivity has

been reported during the heat wave in Europe in 2003 (Ciais et al., 2005;

Reichstein et al., 2007). Time series analysis (Rahmstorf and Coumou, 2011)

and climate modelling (Vasseur et al., 2014) show that an increase in the

frequency and severity of heat waves across the globe is a component of

present climate change.

Remote sensing provides the technology to identify stress at large scales

before the weather extremes cause irreversible damages to crops (Carter and

Miller, 1994; Dobrowski et al., 2005; Zarco-Tejada et al., 2009). Information

can be retrieved from reflected solar and emitted radiation (sun-induced

chlorophyll fluorescence (SIF) or thermal (TIR)). These signals are determined

by the biochemical, structural and functional properties of the plants (Grace

et al., 2007; Zarco-Tejada et al., 2009). It is well known that the reflectance

of stressed plants is qualitatively and quantitatively different from that of

healthy plants (Carter and Miller, 1994; Dobrowski et al., 2005). Further, it

has been found that SIF signals emitted at both 687 nm and 760 nm, known

as red and far red SIF, and observed with remote sensing techniques vary in

response to crop stress (Ač et al., 2015; Rossini et al., 2015).

The key to linking SIF and reflectance to photosynthesis and stress

is to separate the effects of canopy structure (the spatial organization of

leaves, i.e. the ’architecture’ of the plants) from those of leaf physiology. SIF

depends on a number of factors: photochemistry in the leaf, canopy structure,

the sun-observer geometry and incident light intensity (Porcar Castell et al.,

2014; Rascher et al., 2015). The challenge is to identify which parameter or
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process is responsible for an observed change in SIF.

The different factors that determine SIF may be quantified with radi-

ative transfer models (RTMs) for vegetation. These models offer an explicit

connection between top-of-canopy (TOC) reflectance and SIF observations

and vegetation variables (Houborg et al., 2007). A number of RTMs are cap-

able of simulating the interaction of incident and fluorescence radiance with

the leaf (Pedrós et al., 2010; Vilfan et al., 2016) and canopy (Zarco-Tejada

et al., 2006; Van der Tol et al., 2009; Gastellu-Etchegorry et al., 2017; Yang

et al., 2017; Hernández-Clemente et al., 2017).

Sensitivity analyses of RTMs show that the effect of canopy structural

parameters on SIF is substantial (Koffi et al., 2015; Verrelst et al., 2016), and

combined field measurements and modelling confirm that seasonal variations

in SIF are largely driven by canopy structure (Van der Tol et al., 2016;

Migliavacca et al., 2017). While simply normalizing SIF by PAR removes the

effects of variation in incident light (Daumard et al., 2012), it is insufficient

to separate canopy structure from leaf physiological effects on SIF.

RTMs require canopy structure and leaf properties as input, which

are generally not known a priori. Therefore, model inversion (or retrieval) is

needed to obtain required canopy structure and leaf properties needed for

the simulation of SIF (Jacquemoud, 1993; Darvishzadeh et al., 2008). For

example, Verhoef et al. (2018) retrieved canopy biophysical parameters from

synthetic (i.e. simulated) top-of-atmosphere (TOA) radiances by inverting

the SCOPE model (’Soil-Canopy Observation of Photosynthesis and Energy

fluxes’) of Van der Tol et al. (2009). With a similar approach, Van der Tol

et al. (2016) retrieved key biophysical and biochemical parameters from the

visible and near-infrared (i.e. 400 - 900 nm) reflectance data of rice and

alfalfa canopies. Both studies show that the use of the reflectance spectrum

to parameterize a radiative transfer model for fluorescence, greatly improves

the interpretation of SIF.

Once the canopy structure effects of (re-)absorption of SIF are ’re-

moved’ (corrected for) by means of model simulation, the SIF signal is scaled

to the level of a photosystem (Grace et al., 2007; Baker, 2008; Meroni et al.,
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2009), and the efficiency of the emission of fluorescence by chlorophyll in

photosystems can be estimated. This efficiency scales inversely with the

efficiency of energy dissipation by photochemistry (εP ) and heat dissipation

(εH). Hence, by measuring the fluorescence emission efficiency (εF ), informa-

tion about the efficiencies εP and εH can be obtained (Baker, 2008; Van der

Tol et al., 2016).

This study aims to assess and demonstrate the sensitivity of remote

sensing approaches to track canopy structural and leaf photochemical re-

sponses of crops to heat stress. We use a unique airborne dataset comprising

observations of canopy reflectance and SIF took before (June 30th) and

during (July 2nd) a heat wave in 2015 with the HyPlant system. HyPlant

(Rascher et al., 2015) is a novel airborne spectrometer system dedicated to

vegetation functional monitoring. Two spectrometers allow the estimation of

red SIF at 687 nm and far red SIF at 760 nm, and reflectance from 400 nm

to 2500 nm. The measurements of reflectance provide the opportunity for

mapping canopy structure and leaf properties. The canopy structure and leaf

properties are further used to compensate canopy structural effects on SIF by

using SCOPE, and thus physiology parameters of vegetation are retrieved.

2. Materials and methods

2.1 Overview and workflow

Our approach is to use reflectance to quantify photosynthetic light

absorption and the scattering and re-absorption of SIF, whereafter the meas-

ured SIF can be used to estimate the emission efficiency εF , defined as the

fraction of absorbed radiation by chlorophyll that is emitted as fluorescence

by both photosystems.

For this purpose we express TOC SIF radiance (Wm−2µm−1sr−1) as:

LF =
1

π
PAR× Γrt × εF (2.1)

where Γrt ( sr−1) quantifies the canopy structural contribution to SIF. Γrt

is the product of the fraction of absorbed PAR (fPAR), and scattering of
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SIF (σF ) (i.e. Γrt = fPARσF ). Following Eq. 2.1, the scattering of SIF σF

is by definition the ratio of observed directional radiation (πLF ) over the

total emitted fluorescence (fPAR× PAR× εF ) .

Because Γrt accounts for the radiative transfer of the incident light

(i.e. PAR absorption) and emitted SIF, it is called the ’radiative transfer

factor’ in this study. The efficiency εF is referred to as the ’physiological

factor’, because it represents the efficiency of dissipation pathways in both

photosystems.

The approach to estimate Γrt and εF is illustrated in Fig. 2.1. We

first retrieve vegetation parameters from TOC reflectance by inverting the

combined RTM and energy balance model SCOPE. Next, we use the model

and retrieved parameters to simulate the canopy structural contribution (Γrt)

to the SIF measurements. This finally enables us to solve εF from measured

SIF (LF ), measured PAR, and Eq 2.1.

Reflectance
400 - 2500 nm

SCOPE
(reflectance)

Vegetation
parameters

SIF
687 nm, 760 nm

Structural con-
tribution to SIF

(Γrt)

SCOPE
(SIF)

Physiological con-
tribution to SIF

(εF )

retrieve

simulateremove

Figure 2.1: Workflow of interpretation of HyPlant reflectance and SIF data
by using SCOPE.

2.2 Study area

The study area is located in the agricultural experimental research

station Campus Klein Altendorf of the University of Bonn, Germany (50◦37’

N, 6◦59’ E). The average altitude of the field is 65 m above mean sea level.

The mean annual precipitation is 603 mm and the mean annual temperature

is 9.4◦C. All analyses were performed in a 3 ha (100 m × 300 m) experimental
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field (Fig. 2.2). The study area faced a heat wave during July in 2015 (Dong

et al., 2016) with severity comparable to the summer Europe heat waves in

2003 and 2010 (Beniston, 2004; Barriopedro et al., 2011; Christidis et al.,

2015). The heat wave started on July 1st and lasted to July 5th in 2015 with

maximum temperatures exceeding 30◦C on each of these days.

Figure 2.2: Overview of the study area and the flight plan before (June 30th,
day 1) and during (July 2nd, day 2) the heat wave. The crops investigated
in the study and three reference panels are marked with polygons. The
background image was acquired on 24th August 2016 (from Google Earth).

At the study site, four crop types, notably corn (Zea mays L.), winter

wheat (Triticum aestivum L.), winter barley (Hordeum vulgare L.) and rape-

seed (Brassica napus L.), were grown using common field rotation practices.

These four crops are the main crop types across western Germany. The soil

and crops were treated according to the agricultural practices of the region

with the aim to provide a spatially homogeneous plot design. Three (black,

grey and white) reference panels were placed next to the experimental field.

2.3 Airborne experiment

The airborne campaigns were conducted on June 30th (day 1, one

day before the heat wave) and July 2nd (day 2, during the heat wave). The

air temperature was 26.6◦C on day 1 and 33.7◦C on day 2 during data

acquisition. Both flights were carried out between 15:00 and 16:00 (local

time, UTC+2) under perfectly clear sky conditions, at an altitude of 512 m

above sea level. Flights were carried out at similar solar zenith angles (i.e.

38◦ and 34◦). Incident photosynthetically active radiation (PAR) was similar

as well (i.e. 278 and 297 W m−2).
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The used HyPlant sensor was designed for vegetation monitoring

(Rascher et al., 2015). It consists of the dual-channel (DUAL) module and

the fluorescence (FLUO) module. The DUAL module measures contiguous

spectra from 380 to 2500 nm with a spectral resolution of 3 nm in visible

and near infrared region, and 10 nm in short-wave infrared region. The

FLUO module measures in 1024 contiguous spectral bands from 670 to

780 nm, with a spectral resolution of 0.25 nm. A set of representative

measurements from the two modules is shown in Fig. 2.3. Both DUAL

and FLUO module (i.e. two imagers), together with the thermal camera

Variocam (InfraTec, Germany), were mounted on a single platform with

the mechanical capability to align the field of view (FOV). The thermal

camera was connected to a laptop via GigaEthernet and approached with

the IRBIS R©3 software (Infratec, Germany), which allows real-time tracking

of the measurements and correction of the absolute temperature by setting of

emissivity, background temperature, ambient air temperature, air humidity

and objects distance.
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Figure 2.3: Representative radiance measurements of vegetation from the
DUAL (black) and the FLUO (red) module, respectively.

Supporting atmospherical parameters were acquired with the sun pho-

tometer MICROTOPS II (Solar Light, the USA) every 5 minutes during the

time of overflights and were later used for atmospheric correction. Additional

recorded meteorological parameters are listed in Table 2.1.
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Table 2.1: The meteorological conditions during the airborne campaigns
before and during the heat wave.

Parameters 30th June (Day 1) 2nd July (Day 2)
DOY (day of year) 182 184
Acquisition time (local) 15:51 15:16
Solar zenith (θs, degree) 38 34
Solar azimuth (ψs, degree) 237 224
Air temperature (Ta, ◦C) 26.6 33.7
Shortwave radiation (W m−2) 756 808
Wind speed (m s−1) 3 2
Air pressure (hPa) 997 996

2.4 Calculation of reflectance and SIF

Reflectance was calculated from data of the DUAL module, and SIF

from data of the FLUO module. The detailed processing has been described

in Rascher et al. (2015), details of the fluorescence retrieval can be found in

Damm et al. (2014) and Wieneke et al. (2016). In the following, we outline

the main procedure.

Data preprocessing included several steps: Measured raw data (digital

numbers) of both modules were converted to calibrated at-sensor radiance

data using the radiometric calibration coefficients provided by the manufac-

turer. Resulting at-sensor radiance images were then geometrically rectified

using navigation data recorded by the GPS/IMU unit and resized to a spatial

grid of 0.5 m × 1 m. DUAL data were atmospherically corrected using an

atmospheric and topographic correction approach for flat terrain (ATCOR-4)

(Richter and Schlapfer, 2012). ATCOR-4 is based upon the atmospheric

radiative transfer code MODATRAN-5 (Berk et al., 2005) to pre-calculate

look-up tables (LUT) of atmospheric functions such as transmission, spherical

albedo, path scattered radiance. The atmosphere type and aerosol model

were set to mid-latitude summer and a rural aerosol model. Solar position,

ground elevation, and sensor elevation were parameterized to the actual

measurements during data acquisition. This parameterization was combined

with estimates of atmospheric water vapor and aerosol optical thickness from

MICROTOPS II to account for atmospheric absorption and scattering effects
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and eventually retrieve TOC radiance and TOC reflectance.

TOC fluorescence at 687 nm (F687) and at 760 nm (F760) were retrieved

from at-sensor radiance measured by the FLUO module. The fluorescence

retrieval was based on the iFLD method introduced by Alonso et al. (2008)

as a modification of the original FLD method (Plascyk, 1975). For this study,

we exploited the two oxygen absorption lines (i.e. O2-A and O2-B) located at

687 nm and 760 nm and further updated the method to make it applicable

for airborne use. The main update comprises of the use of non-fluorescent

reference surfaces to correct potential inaccuracies in estimated atmospheric

functions. Such errors can occur if atmospheric parameters are not exactly

known or slight sensor artifacts remain (cf. Damm et al. (2014) and Wieneke

et al. (2016) for details). Accurate fluorescence retrievals from airborne

remote sensing measurements are challenging but the reliability of obtained

SIF using this method was confirmed by validation activities considering

ground fluorescence measurements (Rossini et al., 2015; Rascher et al., 2015)

Normalized difference vegetation index (NDVI) (Rouse Jr et al., 1974)

and photochemical reflectance index (PRI) (Gamon et al., 1992), as proven

non-invasive early indication of plant stress, were computed from the reflect-

ance data as follows:

NDVI =
R780−785 −R680−685

R780−785 +R680−685
(2.2)

PRI =
R531 −R570

R531 +R570
. (2.3)

where R refers to reflectance and numbers indicate wavelength in nanometres.

2.5 Models

SCOPE consists of one leaf RTM, three canopy RTMs, a biochemical

model, a soil reflectance model and an aerodynamic model. These models

are internally connected. We briefly introduce the models (combinedly) used

in this study. The details of soil reflectance model have been described

in Verhoef et al. (2018), details of the biochemical model can be found in
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Table 2.2: The ranges and initial values of the key parameters used in SCOPE
.

Parameter Interpretation Unit Range Initial value
Soil: BSM (Verhoef et al., 2018)

B Soil brightness - 0-0.9 0.5
latitude (ϕ) Soil spectral latitude - 10-60 45
longitude (λ) Soil spectral longitude - 10-50 40
SMp Soil moisture volume percentage - 5-55 20

Leaf model: Fluspect (Vilfan et al., 2016)
Cab Chlorophyll a+ b content µg cm−2 0-80 40
Cdm Leaf mass per unit area g cm−2 0-0.02 0.01
Cw Equivalent water thickness cm 0-0.1 0.02
Cs Brown pigments a.u. 0-1 0.5
Cca Carotenoid content µg cm−2 0-30 10
N Leaf structure parameter - 0-3 1.5
εF Fluorescence emission efficiency - 0-0.1 0.01

Canopy models: RTMo and RTMf (Van der Tol et al., 2009)
LAI Leaf area index m2 m−2 0-7 3
LIDFa Leaf inclination determination a - −1-1 −0.35
LIDFb Leaf inclination determination b - −1-1 −0.15

Van der Tol et al. (2014), the leaf RTM can be found in Vilfan et al. (2016)

and the canopy RTMs can be found in Van der Tol et al. (2009).

2.5.1 BSM soil reflectance model

Brightness-Shape-Moisture (BSM) model simulates soil reflectance.

It is an adaptation and extension of the ’Global Soil Vector’ (GSV) model

(Chongya Jiang, 2012), which fits any given dry soil reflectance spectrum

by using several ”basis spectra”. BSM separates soil brightness effects, soil

moisture effects and spectral shape effects on soil reflectance (Verhoef et al.,

2018). The model requires soil brightness (B), soil moisture (SMp), and two

spectral-shape related parameters (ϕ and λ) (Table 2.2).

2.5.2 The biochemical model

The biochemical model developed by Van der Tol et al. (2014) model is

a photosynthetic energy distribution model, and is based on the conventional

Farquhar et al. (1980) and Collatz et al. (1992) photosynthesis model. It

simulates the efficiency (ε) of fluorescence emission (F), photochemistry (P)

and heat dissipation (H). The efficiencies are determined by (1) absorbed

PAR, (2) leaf temperature, (3) the maximum rate of carboxylation (Vcmax),
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and (4) other ambient environmental conditions, such as air pressure and

concentration of O2 and CO2 in the leaf boundary layer.

2.5.3 Fluspect model

Fluspect (Vilfan et al., 2016), which is based on PROSPECT (Jac-

quemoud and Baret, 1990), simulates leaf reflectance, transmittance, and

fluorescence emission of both forward (shaded) and backward (illuminated)

side.

In order to simulate leaf reflectance and transmittance, one needs

to provide chlorophyll content (Cab), carotenoid content (Cca), leaf water

content (Cw), dry matter content (Cdm), brown pigment content (Cs), and

leaf structure parameter (N) as input. These inputs are identical to those

in PROSPECT. Simulation of SIF emission of a leaf requires the input of

incident radiation to the leaf and fluorescence emission efficiency (εF ). The

efficiency is spectral dependent ranging from 640 nm to 850 nm and its

distribution in wavelength (i.e., its integration over wavelengths is unity)

is calibrated to leaf-level measurements (Vilfan et al., 2016) (see Fig. S1

in the supplementary materials). The overall efficiency is estimated with

the semi-empirical model of Van der Tol et al. (2014) and distributed over

different wavelengths following Vilfan et al. (2016).

2.5.4 Canopy radiative transfer models

At the canopy level, RTMo, RTMf and RTMt, which are three SAIL

(Verhoef, 1984) based models, compute the radiative transfer of incident

radiation, emitted fluorescence and thermal radiation, respectively. RTMo

and RTMf will be introduced since they are sufficient to interpret TOC

reflectance from 400 nm - 2500 nm and SIF measured by HyPlant.

RTMo calculates the fate of incident radiation and absorbed radiation

of each leaf within a canopy. It provides TOC reflectance simulations, and

absorbed PAR of each leaf orientation class in different position in the

canopy. The number of leaf orientation classes considered is 468, comprising

the combinations of 13 leaf’s normal zenith angles, 36 leaf’s azimuths with
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respect to the sun. The leaf inclination distribution is parametrized with

two (a, b) parameters, which control the mean leaf zenith angle and the

bimodality of the distribution (Verhoef, 1984). Average leaf angle (ALA) can

be calcuated from leaf inclination distribution function parameter a (LIDFa)

(Verhoef, 1998).

ALA◦ = 45− 360× LIDFa
1

π2
(2.4)

SIF emission from each individual leaf can be simulated by Fluspect,

using leaf APAR from RTMo and fluorescence emission efficiency from the

biochemical model. Note that simulation of the efficiency requires leaf

temperature as input which is predicted by an energy balance routine that

includes RTMt and the aerodynamic model. RTMf simulates radiative

transfer of emitted SIF by leaves in a canopy and TOC SIF.

2.6 Approach of retrieving vegetation parameters from TOC
reflectance

2.6.1 Retrieval of base soil properties

We retrieved soil properties of the study area from reflectance spectra

of bare soil. Some of the retrieved parameters were used as prior information

in the retrieval of vegetation parameters from TOC reflectance to reduce the

ill-posedness of the retrieval problem. In principle, it is possible to retrieve leaf

and canopy parameters, and soil parameters together from TOC reflectance

of vegetation (Verhoef et al., 2018), but due to the large number of free

parameters, the model inversion may not effectively separate the contribution

from soil and from vegetation to TOC reflectance. We assumed reflectance

of soil beneath the canopies differentiate from each other by soil moisture

(SMp). The soil parameters B, ϕ and λ were kept to the values retrieved

from the reflectance of bare soil. In this way, we reduced the uncertainty in

retrieving vegetation parameters.

Twenty soil spectra were taken from the images on each day as shown

in Fig. 2.4. For the retrieval of soil parameters from each of these reflectance

spectra, we used the Numerical Optimization (NO) method. The NO method
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aims at minimizing a cost function, which quantifies the difference between

measured and simulated signals by successive changing the values of the

input parameters. For the retrieval from soil reflectance, the BSM model was

iteratively executed, each time with different parameter values and stopped

until obtaining a satisfying fitting to the measured soil spectra. The cost

function is

fsoil = (Rs −Rm)T (Rs −Rm) (2.5)

where Rs is simulated (soil) reflectance, and Rm is the measured (soil)

reflectance in all bands of the spectra between 400 and 2500 nm (i.e. 623

bands). We used the function ’lsqnonlin’ of the optimization toolbox of

Matlab R2017a, selecting a Trust Region algorithm for updating parameter

values after each iteration step, and iteration stopped when the improvement

of the cost function (fsoil) was less than 10−3. The ranges and initial values

used are shown in Table 2.2.

Figure 2.4: Bare soil reflectance on day 1 and on day 2. The buffers represent
variation (i.e. standard deviation) in the selected pixels.

2.6.2 Retrieval of vegetation parameters

We retrieved leaf biophysical parameters and canopy structure para-

meters from TOC reflectance spectra of vegetation canopies on both days.

Retrievals from reflectance before and during the heat event were conducted

independently. For inversion, we again used the NO method and minimized
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the cost function (Eq. 2.5), but now using the reflectance of vegetation

canopies and the canopy reflectance model (RTMo).

The reflectance simulation requires the parameters listed in Table 2.2

except for fluorescence emission efficiency. Besides these parameters, TOC

reflectance is also affected by the sun-observer geometry and the fraction of

direct solar light of the total incident radiation. The solar zenith angles were

calculated according to the acquisition time and location, which was 38◦ for

day 1 and was 34◦ for day 2. We assumed the sensor view angle as spatially

constant on the image and in nadir direction although the HyPlant field of

view ranges from +/- 14◦. For a nadir view, the azimuth angle is arbitrary.

The spectra of incoming direct solar light and diffuse light were obtained

from MODTRAN 5. The freedom of the optimization was further reduced

by using the retrieved soil properties (B, ϕ and λ). Therefore, fitting one

reflectance spectrum requires tuning 10 parameters (SMp, Cab, Cdm, Cw,

Cca, N , LAI, LIDFa and LIDFb).

We selected several representative measurements from reflectance and

SIF images to performance the retrieval as the NO method is computationally

demanding. The average of reflectance or SIF within a randomly selected

patch consisting of 5 × 5 pixels was taken as one measurement of a crop. We

sampled 16 patches for every crop except wheat, for which only 8 patches

were chosen due to the small size of the wheat field.

2.7 Separation of canopy structure and plant physiology effects
on SIF

Fluorescence emission efficiency (εF ) and radiative transfer factor (Γrt)

of the vegetation canopies represent the plant physiological contribution and

canopy structural contribution to TOC SIF, respectively. Both fPAR and

the scattering of SIF (σF ), and thus Γrt are determined by vegetation canopy

structure (including leaf properties), while εF is regulated by photosynthetic

mechanisms. The fluorescence emission efficiency is especially useful for

picking up variations in the ’condition of the canopy’, in relation to stresses,

and relating these variations to the capacity of the canopy photosynthesis.
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We simulated canopy structural contribution to TOC SIF by using

the SCOPE model. The leaf parameters and canopy structure retrieved

from TOC reflectance were sufficient to calculate the quantity Γrt. We

first simulated TOC SIF with from RTMf for a given fluorescence emission

efficiency (εF ) and incident PAR, and then obtained Γrt by normalizing the

simulated SIF by this efficiency and incident PAR according to Eq. 2.1. The

values used for the efficiency was 0.01 and for the incident PAR 250 W m−2.

The efficiencies at 687 nm and 760 nm were 1.76×10−4 nm−1 and 5.03×10−5

nm−1, respectively. The values were not relevant to the simulation of canopy

structural contribution since they cancelled out in the normalization. The

fluorescence emission efficiency of the crops was finally obtained by removing

the canopy structural contribution from TOC SIF, by dividing measured SIF

by Γrt (Eq. 2.1). The obtained value of εF is an effective value for the whole

canopy.

2.8 Model sensitivity and error propagation

The Jacobians of SCOPE for reflectance and Γrt were computed to

(1) understand the relationships between the measured reflectance and the

vegetation variables and Γrt; (2) identify parameters of the model that cause

significant variety in reflectance and in Γrt; (3) assess the ill-posedness in

estimation of Γrt. Jacobians (JR and JΓ) were computed for each set of

optimized parameters and for each crop as:

JR =

∂Rλ1
/∂p1 . . . ∂Rλ1

/∂pn
... . . .

. . .
...

∂Rλb
/∂p1 . . . ∂Rλb

/∂pn

 (2.6)

JΓ =

∂Γ640/∂p1 . . . ∂Γ640/∂pn
... . . .

. . .
...

∂Γ850/∂p1 . . . ∂Γ850/∂pn

 (2.7)

where JR is the local model sensitivity of reflectance at each wavelength

of the b bands of the HyPlant DUAL module (b = 623) to each of the 10

optimized parameters, and JΓ is the local model sensitivity of Γrt spectra at

each fluorescence wavelength (i.e. 640nm - 850 nm, 1 nm resolution) to each
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parameter. In total, we had 56 reflectance (i.e. 16 for rapeseed, barley and

corn, and 8 for wheat) spectra on each day, and thus 56 sets of optimized

parameters and Jacobians. We analysed the Jacobians for measurements on

day 1 only, because the Jacobians on day 2 were very similar to those on day

1.

We estimated the propagation of noise in the measured reflectance

spectra to the uncertainty (i.e., the standard deviation) in model parameters.

The model is described with a locally linear approximation by ∆R = JR∆p,

where p is a matrix of the model parameters and R is reflectance spectra.

Because JR is not a square matrix, it does not have an inverse. The inverse

model is

∆p = (JT
RJR)−1JT

R∆R. (2.8)

Therefore, a covariance matrix of p as a result of noise in can be obtained

as:

E(∆p∆pT) =E[(JT
r JR)−1JT

R∆R∆RTJR(JT
RJR)−1]

=(JT
RJR)−1JT

RE(∆R∆RT)JR(JT
RJR)−1

(2.9)

where E(∆R∆RT) is the covariance matrix of the reflectance measurements.

We assumed this covariance matrix is diagonal and uniform (all diagonal ele-

ments equal), characterized by a variance σ2
R, and compuated the covariance

matrix of the retrieved parameters due to measurement noise as:

E(∆p∆pT) = (JT
RJR)−1σ2

R (2.10)

For the noise of reflectance measurements σR we used the spectrally

averaged standard deviation of reflectance measurements of each reference

panel (black, grey and white) (see Fig. S2 in the supplementary materials)

(σR = 0.012). This uncertainty was comparable to the averaged change of

reflectance of these panels in the two days, which was 0.014. This provides

reflectance uncertainty due to instrumental noise, but it does not represent

the total measurement uncertainty (Van der Tol et al., 2016)
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We further estimated the propagation of uncertainty in the retrieved

parameters caused by noise in reflectance into model simulation of Γrt.

E(∆Γ∆ΓT) = E(JΓ∆p∆pTJT
Γ ) = JΓE(∆p∆pT)JT

Γ

= JΓ(JT
RJR)−1JT

Γσ
2
R

(2.11)

The standard deviation (uncertainty) of the simulated radiative transfer

factor (σΓ) were then found as the square roots of the diagonal elements of

this matrix (E(∆Γ∆ΓT)).

2.9 Simulation of photosynthetic response to high temperature

We simulated the photosynthetic response of the crops to high tem-

perature by using a biochemical model as a validation of our retrieved εF on

the two days.

We modelled the photosynthetic efficiency (εP ), fluorescence emission

efficiency (εF ) and heat dissipation efficiency (εH) for both C3 and C4

plants. Of the investigated crops, corn has C4 photosynthetic pathway and

the other three crops have C3 pathway. C3 and C4 plants have different

photosynthetic regulation mechanisms, which are considered and implemented

in the biochemical model. For the simulations, we used standard model input:

Vcmax = 30 µmol m−2 s−1 and 70 µmol m−2 s−1 for C3 and C4 plants

respectively, based on tabled values of Wullschleger (1993). The absorbed

PAR by chlorophyll (APARchl) was roughly approximated based upon the

incident PAR, and was set to 250 W m−2. The leaf temperature was set

from 10◦C to 40◦C with a step of 1◦C.

3. Results

3.1 Mapping the effects of the heat wave on SIF

Temperature of the canopies significantly increased during the heat

wave (2 July 2015, ’day 2’) compared with the temperature shortly before

the heat wave (30 Jun 2015, ’day 1’) (Fig. 2.5 and Table. 2.3). On day 1,

corn had the highest temperature (average temperature was 33.0◦C) during

the flight. However, it increased the least (3.7◦C) among the four crops
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when the air temperature changed from 27◦C to 34◦C. Barley and wheat

had increases more than 6◦C, which was very close to the change of the air

temperature (7◦C). Comparing air temperature with canopy temperature,

Table. 2.3 shows that the canopy temperature (Tc) of the four crops was all

higher than the air temperature (Ta) on both days from 2.1◦C to 6.4 ◦C. The

variability of Tc − Ta on the two days (3.4 ◦C) was highest in corn among

the four crops.
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Figure 2.5: RGB, temperature, SIF at 687 nm F687 and at 760 nm F760

images of the experiment area before and during the heat wave. Crops are
marked in the RGB image: 1: rapeseed; 2: corn; 3: barley; 4: wheat.

Fig. 2.5 and 2.6 show that TOC SIF responded to the heat event

differently for the four crops. Rapeseed, wheat, and barley showed decreased

SIF values while SIF in corn increased. Red SIF (F687) decreased by about

4.2% in rapeseed, 19.9% in barley and 10.9% in wheat. In contrast, in corn

F687 increased by about 18.0%. Far red SIF (F760) decreased by about 16.0%,

13.7% and 2% for rapeseed, barley and wheat, respectively. Again, corn

showed an increase of 17.0%. Both the decrease in rapeseed, barley and
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2. Interpreting SIF measurements by using radiative transfer models

Table 2.3: Temperature of the canopies (Tc) on day 1 and on day 2, and
difference in canopy and air temperature (Tc − Ta).

Temperature (◦C) rapeseed corn barley wheat
Tc (day 1) 31.2±0.2 33.0±0.7 30.7±0.3 31.8±0.4
Tc (day 2) 35.8±0.2 36.7±0.5 36.8±0.3 38.1±0.6
∆Tc 4.6±0.3 3.7±0.7 6.1±0.4 6.3±0.6
Tc − Ta (day 1) 4.6 6.4 4.1 5.2
Tc − Ta (day 2) 2.1 3.0 3.1 4.4

wheat, and the increase in corn were statistically significant (p-value < 0.001),

although F687 and F760 were broadly scattered. Comparing SIF at the two

wavelengths, F760 was much higher than F687, and there was the slightly

higher pixel variation in F687. SIF values of bare soil pixels and reference

panels were minimal compared to the values of vegetative pixels.

3.2 Effects of extreme temperature on canopy reflectance,
NDVI and PRI

Reflectance spectra of crops taken before and during the heat wave

differently changed across crops (Fig. 2.7). In the all visible region, rapeseed,

wheat and barley showed an increased reflectance by 0.01 - 0.04 (relatively

10% - 104%). Corn showed a different behaviour than the other three crops:

its visible reflectance slightly decreased during the heat wave by around 5%,

where greatest decreases happened in the red spectrum (Fig. 2.7H) reaching

21.4% at 670 nm (i.e. the region of red chlorophyll absorption). This decrease

of red reflectance was most likely related to the ongoing canopy growth and

increase of LAI in corn, thus corn continued to grow despite the heat event.

Near infrared (NIR) reflectance decreased in rapeseed and wheat. It increased

by 4.2% in corn and 7.5% in barley. Short-wave infrared (SWIR) reflectance

increased in rapeseed, wheat and barley by 12.6%, 13.0% 30.7%, respectively,

but decreased by 7.4% in corn (Fig. 2.7D).

NDVI changed less than 0.04 for the four crops (Fig. 2.8A). It increased

by 5% in corn and decreased in barley by 8%. The change of the average

PRI in barley, wheat and rapeseed was all less than 0.01 while the change in

corn was more than 0.03. PRI of the corn canopy was much higher on day 2
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Figure 2.6: Red fluorescence (F687) and far red fluorescence (F760) on day 1
(before the heat wave) and day 2 (during the heat wave). The horizontal and
vertical error bars represent the standard deviation of measurements at day
1 and day 2, respectively.
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Figure 2.7: Reflectance measurements before (day 1) and during (day 2) the
heat wave in the spectral region of 400 − 2500 nm and of 400 − 700 nm.
The buffers represent the standard deviation of the measurements.

than on day 1 while that of barley and wheat was lower on day 2 (Fig. 2.8B).

There was a slight increase of PRI of rapeseed.
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Figure 2.8: Normalized difference vegetation index (NDVI) and photochemical
reflectance index (PRI) before (day 1) and during (day 2) the heat wave.
The horizontal and vertical error bars represent the standard deviation of
measurements at day 1 and day 2, respectively.

3.3 Parameter retrievals from reflectance spectra

Fig. 2.9 and 2.10 show the simulated (fitted) reflectance of the crops

before and during the heat wave, along with the measured reflectance. In

general, the model reproduced the measured TOC reflectance well (RMSE

between 0.006 and 0.01). The residuals were within ±0.02, except in the

spectral regions of 1400 - 1500 nm and 1800 - 1900 nm (i.e., water absorption

bands), where spectral shifts in surface reflectance between the model simu-

lations and field measurements were found. The discrepancy could be caused

by the atmospheric correction, or by a limitation of the model representation.

Compared to the standard deviation of the measurements of reflectance (in

the 16 or 8 patches), the residuals were lower except for several spectral

regions.
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Figure 2.9: Upper panels: Measured (blue) and modelled (black) reflectance
spectra of the four crops before the heat wave (day 1). Lower panels: the
residual after spectral fitting (line) (i.e., the difference between measured
and simulated apparent reflectance ), and the standard deviation of the
measurements (grey area).

Figure 2.10: Upper panels: Measured (black) and modelled (blue) reflectance
spectra of the four crops during the heat wave (day 2). Lower panels: the
residual after spectral fitting (line) (i.e., the difference between measured
and simulated apparent reflectance), and the standard deviation of the
measurements (grey area).

Table 2.4 lists the retrieved key parameter values. The use of model

inversion allows retrieving the whole reflectance spectra (rather than few

bands used to calculate indices) to vegetation properties. In the two days,

LAI changed less than 0.1. Both soil moisture (SMp) and leaf water content

decreased (Cw) in rapeseed, barley and wheat, while in the corn canopy they

slightly increased. Leaf chlorophyll content decreased in rapeseed, barley

and wheat, while increased in corn. Again, this decrease of chlorophyll was
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2. Interpreting SIF measurements by using radiative transfer models

Table 2.4: The retrieved values of soil moisture (SMp) leaf chlorophyll content
(Cab), leaf water content (Cw), canopy LAI and canopy average leaf angle
(ALA) before and during the heat wave.

Parameter Rapeseed Barley Wheat Corn
day 1 day 2 day 1 day 2 day 1 day 2 day 1 day 2

SMp(%) 14.6 12.5 14.0 10.8 14.0 9.4 6.7 9.4
Cab (µg cm−2) 22.9 21.7 32.6 27.4 50.2 49.4 41.0 48.9
Cw (cm−1) 0.070 0.065 0.040 0.036 0.038 0.036 0.022 0.027
LAI 4.1 4.0 4.3 4.3 3.7 3.6 2.9 3.0
ALA (◦) 51.6 58.0 64.8 67.0 66.3 69.1 70.9 66.1
RMSE of refl 0.01 0.01 0.008 0.006 0.007 0.006 0.007 0.006

consistent with the decrease of red reflectance in corn, and was most likely

related to the ongoing canopy growth. Changes in retrieved LIDFa revealed

that ALA of rapeseed, barley and wheat increased 2.2◦ - 6.4◦, but it reduced

from 70.9◦ to 66.1◦ in the corn canopy.

3.4 Canopy structure and plant physiology effects on SIF

Fig. 2.11 shows canopy structural contribution to TOC SIF (radiative

transfer factor of SIF, Γrt) estimated from SCOPE, provided leaf optical

properties and canopy structure parameters before and during the heat event.

The radiative transfer factor was spectrally dependent and the spectra were

similar to vegetation reflectance: lower values in the red region and much

higher values in the NIR region. It increased in barley, wheat and corn, and

the increase was much more significant in the NIR region than in the visible

region. The changes of canopy structural contribution to TOC SIF (∆Γrt) in

barley, wheat and corn were significant compared to the uncertainty in the

model prediction (σΓ) caused by the reflectance measurements noise (σR).

The change in rapeseed was in the same magnitude of uncertainty.

Fig. 2.12 shows physiological contribution to TOC SIF in form of

fluorescence emission efficiency (εF ) estimated from measured F687 and F760.

Despite red SIF was much lower than far red SIF for every crop, the retrieved

efficiency at 687 nm (εF687) was much higher than that at 760 nm (εF760).

The former ranged from 1×10−4 to 5×10−4 nm−1, while εF760 ranged from

5× 10−5 to 1× 10−4 nm−1. The ratio between εF687 and εF760 ranged from
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Figure 2.11: Upper panels: canopy structural contribution to TOC SIF
(radiative transfer factor of SIF, Γrt) estimated from SCOPE before (day
1) and during (day 2) the heat wave of the four crops. Middle panels: the
difference of Γrt before and during the heat wave (∆Γrt). Lower panels:
the uncertainty of Γrt (σΓ) caused by the uncertainty in the reflectance
measurements. The buffers represent the standard deviations of the 16 or 8
patches.

2.8 to 3.8 for all the pixels on day 1 and day 2. This ratio was close to the

ratio used in SCOPE, which is 3.6 (i.e. 1.76×10−4 nm−1/ 5.03×10−5 nm−1).

The efficiency of rapeseed, barley and wheat decreased at both wavelengths,

while it slightly increased in corn.
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Figure 2.12: Retrieved values of fluorescence emission efficiency (i.e. photo-
synthetically determinative factor of the TOC SIF) at 687 nm (εF687) and 760
nm (εF760) before and during the heat wave of the four crops. The horizontal
and vertical error bars represent the standard deviation of measurements at
day 1 and day 2, respectively.
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Table. 2.5 shows the changes in measured fluorescence, estimated Γrt

and εF before and during the heat wave. εF estimated from F687 and F760

each increased about 9.6% and 2.1% respectively in the corn canopy but

decreased in the the other three crops (i.e. ranging from 2.6% to 29.8%).

Table 2.5: Relative changes (%) in TOC SIF measurements at 687 nm and
760 nm (F687 and F760), in fluorescence emission efficiency (εF ) retrieved
from F687 and F760, in radiative transfer factor of SIF (Γrt) at these two
wavelengths before and during the heat wave for the crops. The sign ’-’
indicates a decrease on day 2 (during the heat wave).

Changes (%)
Γrt εF TOC SIF

687 nm 760 nm 687 nm 760 nm 687 nm 760 nm
Rapeseed -0.4 -0.7 -3.0 -2.6 -4.2 -16.0
Barley 23.1 8.3 -29.8 -2.6 -19.9 -13.7
Wheat 3.9 1.9 -6.3 -11.9 -10.9 -2.0
Corn 20.7 15.6 9.6 2.1 18.0 17.0

Fig.2.13 shows that vegetation canopy structure, physiology and in-

cident light all significantly contributed to observed changes in measured

SIF. The changes in canopy structure including leaf angle, sun position,

leaf pigments and leaf water content accounted for 8% to 58% of changes

in measured SIF. Differences of SIF values between both days caused by

incident light intensity were about 12% to 64%. Eventually, 20% to 56%

of the observed variation in TOC SIF was caused by the photosynthetic

regulation. Most change of TOC SIF in corn was induced by the change of

incident light intensity. The canopy structure contributed less than 20% of

the variation of TOC SIF. The canopy structure had significant effects on

change of SIF in rapeseed.

3.5 Modelling the impact of extreme temperature on
photosynthetic light partitioning

Fig. 2.14 shows the simulations from the biochemical model of Van der

Tol et al. (2014). The efficiencies of both fluorescence emission, photosynthesis

and heat dissipation responded to high temperature (> 32◦C) differently for

C3 and C4 crops: C3 plants reduced in both, while in C4 plants they slightly

increased. The heat dissipation of C3 plants increased with leaf temperature
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(> 32◦C), but it decreased in C4 plants. The maximum photosynthetic

efficiency occurred when the leaf temperature was 28◦C for C3 plants and

was 35◦C for C4 plants.
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Figure 2.13: Relative contribution of canopy structure, plant physiology and
incident light intensity to the changes in TOC SIF measurements (F687 and
F760) before and during the heat wave.
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Figure 2.14: The efficiencies of three pathways of absorbed energy in pho-
tosystems changing with leaf temperature from 15 to 40 ◦C: fluorescence
emission εF , photochemistry εP , and heat dissipation εH .

4. Discussion

4.1 Structural and physiological effects on SIF

Most physiological stress regulating mechanisms in both photosystems

will affect the fluorescence emission at photosystem level (Rascher et al.,

2015), which can be measured with remote sensing techniques. However,

TOC SIF signals are determined by canopy structure and incident light

intensity besides of plant physiology (Eq. 2.1). Consequently, variations in

TOC SIF cannot be directly interpreted as photosynthetic changes because

of the contribution of canopy structure and incident light intensity, which

are related to PAR absorption and SIF re-absorption.

The use of reflectance and RTMs provides a way to quantify and
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compensate for vegetation structural effects on TOC SIF (Γrt), and thus

obtain the efficiency of fluorescence (εF ) at photosystem level, which is an

indicator of the status of the light reactions of photosynthesis.

Despite the ill-posedness in the retrieval of vegetation parameters

from reflectance, estimates of canopy structural contribution to SIF (Γrt) is

reliably possible. What matters is the sensitivity of Γrt to reflectance, and

the uniqueness of the relationship between reflectance and Γrt, rather than

the sensitivity of reflectance to the individual model parameters. Indeed

some parameters have little influence on reflectance, and these parameters

cannot be retrieved accurately. However, it appears that these parameters do

not affect Γrt either. For example, the accuracy in retrieval of leaf properties

Cs and Cca and canopy structure parameter LIDFb from reflectance is not

guaranteed as TOC reflectance is not sufficiently sensitive to these parameters

(Jacquemoud et al., 1995; Jacquemoud et al., 2009), but SIF is not sensitive

to these parameters either (Verrelst et al., 2016; Van der Tol et al., 2016), and

thus uncertainties of these parameters will have little effect on uncertainties

in Γrt. In contrast, SIF is more sensitive to LAI, Cab, average leaf angle;

parameters for which retrievals are usually reliable (Jacquemoud et al., 1995;

Weiss et al., 2004; Houborg et al., 2007; Darvishzadeh et al., 2008). It should

be noted that even the retrieval of these parameters can be ill-posed. Van der

Tol et al. (2016) showed that the effect of Cdm and LAI on reflectance is

complementary in the VNIR region. However, these parameters have a similar

complementary effect on Γrt, and this further reduces the uncertainty in Γrt.

Indeed, reflectance and Γrt are quite similar in terms of spectral shape (Fig.

2.11): both scattering of SIF (σF ) and reflectance are lower in the visible

bands and higher in the near-infrared bands (Porcar Castell et al., 2014;

Yang and van der Tol, 2018).

Further indication that the estimates of Γrt are reliable are the realistic

values of the resulting values for εF in the two O2 absorption bands. The

ratio between εF687 and εF760 matches well with the prior ratio as used in

SCOPE, which is calibrated to leaf-level fluorescence measurements.

45



2. Interpreting SIF measurements by using radiative transfer models

4.2 Monitoring crops response to heat temperature

The dataset used in this study is unique: It consists of simultaneously

measured reflected radiance, fluorescence and land surface temperature shortly

taken before and during a heat wave. The dataset and our approach discussed

above allow monitoring the responses of crops to the heat wave.

In this study both F687 and F760 for rapeseed, barley and wheat

decreased (Fig. 2.5 and 2.6), despite the higher irradiance on day 2 (i.e. more

light available for fluorescence). This decrease of SIF has two causes: (1) the

reduction of fluorescence emission efficiency (Fig. 2.12) and (2) a decrease in

the fraction of absorbed photosynthetic active radiation (fPAR). The latter

has been frequently reported during heat events (Jolly et al., 2005; Reichstein

et al., 2007), and this was also the case in our study (as a result of changes

in canopy structure).

The interpretation of the observations from the RTM promotes a

better understanding of SIF signals. The physical, physiological, and method-

ological factors jointly control fluorescence (Porcar Castell et al., 2014; Damm

et al., 2015b). Observed significant variation in TOC SIF measurements do

not necessarily indicate significant changes in plant functional status (e.g.

rapeseed, barley and corn at 760 nm in Table. 2.5). Reversely, changes

in εF may not result in a change of measured SIF (wheat in Table. 2.5).

The separation of structural and physiological factors provides insights into

short-term responses crops to temperature extremes.

The changes in reflectance were converted into changes in canopy

structure (e.g. ALA), and leaf properties (e.g. leaf water content) by using

model inversion (Fig. 2.2). The increase of ALA in rapeseed, barley and wheat

during the heat event is a protective leaf movement from excessive radiation.

It matches with the earlier observation elsewhere that ALA increases during

drought stressed soybeans (Biskup et al., 2007). The decrease of surface soil

moisture and leaf water content in rapeseed, barley and wheat during the

heat event is consistent with our expectation: no rain occurred between the

days while the evaporative demand was high. The increase of soil moisture
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in corn seems unrealistic. Most likely the model was not able to effectively

separate canopy water from soil moisture. The increase of leaf water content

due to ongoing growth of corn was apparent in the canopy reflectance, but

due to ill-posedness it may (partly) be attributed to soil moisture in the

retrieval. Other limitations of the SCOPE model representation of the crops

may also have played a role in this study. For example, the ear and awns

development in barley that occurred during this time of the season is not

considered in the model. The bright ears and long highly reflective awns

accounted for the great change in barley’s visible reflectance. The use of

SCOPE in this kind of canopy may lead to uncertainties in interpretation of

reflectance measurements.

More interestingly, we found that fluorescence emission efficiency (εF )

reduced in rapeseed, barley and wheat while increased in corn. This complies

with the simulations from the biochemical model (Fig. 2.14). During the

heat event when the leaf temperature was higher than 32◦C, the C3 crops

(rapeseed, barley and wheat) were presumably under stress as manifested by

a significant reduction of (simulated) photosynthetic efficiency and retrieved

fluorescence emission efficiency (εF ) . The simulations show a similar effect of

temperature on fluorescence emission efficiency and photochemistry efficiency,

and thus a decrease of εF directly indicates a decrease of εP . The relationship

between εF and εP is regulated by the third pathway of absorbed radiation,

non-photochemical quenching NPQ (εH). An independent remotely sensed

measure of εH will provide a quantitative measurement of εP without the

need to rely on model simulations.

PRI provides a potential way to estimate εH , and further prospect for

monitoring and quantifying photosynthetic functioning remotely (Garbulsky

et al., 2011). PRI correlates with the short-term reversible xanthophyll

pigment changes and with the efficiency of photosynthesis (Gamon et al.,

1992). A low PRI indicates a pigment composition that is associated to a high

partitioning of excess energy to heat dissipation (high εH). The significant

increase of PRI in corn implies a reduction in εH , and a concurrent increase in

εP and in εF . This is consistent with the retrieved εF change in corn and with
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the model simulations. Although it is well known that a correlation between

PRI and εH exists, the quantification of εH from PRI or other reflectance

information is still not consolidated. This is an important line to follow for

monitoring photosynthesis from space.

4.3 Implications

High temperatures during a heat wave affect the photosynthetic func-

tions of plants by changing the rate of chemical reactions and functional

organization (Berry and Bjorkman, 1980; Pastenes and Horton, 1996). The

higher vapour pressure deficit associated with heat also affects the transpira-

tion rate. These changes provoke plant responses to balance the investment in

the resources of energy, water and carbon dioxide, and maintain co-limitated

of photosynthesis by different resources (Bloom et al., 1985; Field et al.,

1995; Goetz et al., 1999). Responses include pigment and structural changes

such as chloroplast avoidance movement and changes in leaf inclination. The

reduced light harvest and the dissipation of absorbed radiation as heat, helps

to avoid potential damage caused by excess radiation (Björkman and Powles,

1984; Long et al., 1994; Kasahara et al., 2002; Zygielbaum et al., 2009)

It is well known that the optimum temperatures for a range of im-

portant physiological processes are different for C3 and C4 crops. In the C4

pathway, dark and light reactions are separated, and the carboxylation takes

place under a high CO2 concentration. This strongly suppresses photores-

piration in C4 vegetation, resulting in a higher water use efficiency and

lower sensitivity to heat and high vapour pressure deficit than C3 vegetation

(Ehleringer and Björkman, 1977; Collatz et al., 1992). The fact that the in-

crease of canopy temperature was the smallest in corn among the investigated

crops (Table 2.3) indicates a high evaporation rate on both days (Jackson

et al., 1981), and a limited effect of heat on stomatal aperture. This again

is consistent with the increase in SIF and PRI in corn, and with the known

resilience of vegetation of the C4 photosynthetic pathway to high temperature

(Sage and Kubien, 2007; Yamori et al., 2014). It is worth noting that although

we find clearly different responses of the three C3 crops (rapeseed, wheat and
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barley) and C4 crop (corn) to the heat wave, we are not certain that these

are only caused by their different photosynthetic pathways because of other

superimposing factors, such as different leaf age, different phenological stage

and irrigation history (Berry and Bjorkman, 1980).

5. Conclusion

We demonstrate that different responses of vegetation to high temper-

ature can be detected using the complementary information of hyperspectral

reflectance and fluorescence. The combination of reflectance and SIF provides

a comprehensive set of information to assess crop condition in presence of heat

waves considering physiological, biochemical, and structural adaptations. The

airborne HyPlant sensor allows for spatially representative, non-intrusive de-

tection of these characteristics. This is relevant for determining the optimum

growth conditions of crops and early stress detection. Solving confounding

and superimposing effects of physiology biochemistry and structure on stress

indicator retrieved from remote sensing data remains a challenge and requires

further attention.
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3Linking canopy scattering of SIF
with reflectance ∗

∗This chapter is based on: Yang, P., van der Tol, C., 2018. Linking canopy scatter-
ing of far-red sun-induced chlorophyll fluorescence with reflectance. Remote Sensing of
Environment 209, 456 - 467.
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Abstract

Remotely sensed sun-induced chlorophyll fluorescence (SIF) has been

used as an indicator of global terrestrial vegetation photosynthesis. The

connection between SIF and photosynthesis allows its use for improving

estimates of gross primary production (GPP) and monitoring plant stress. In

these analyses, up-scaling of the relationship between SIF and photosynthesis

from the photosynthetic level to the canopy, regional or global scale has been

one of the main challenges. The scaling is strongly affected by the radiative

transfer of emitted SIF, notably scattering and re-absorption of SIF. It is

essential to understand these processes in order to differentiate effects of

canopy structural variation from effects of photosynthesis functional variation

on SIF. In this study, we derive the relationship between canopy scattering

of SIF and top-of-canopy (TOC) reflectance analytically, by investigating

the radiative transfer of incident light and emitted SIF. The similarity of

radiative transfer of intercepted incident light and emitted SIF results in

a simple relationship between reflectance and canopy scattering of SIF. In

particular, we find that the ratio of far-red reflectance (R) to the product

of canopy interceptance (i0) and leaf albedo (ω) is an accurate estimate of

canopy scattering of far-red SIF (i.e., σFC = R
i0ω

). SCOPE model simulations

are used to validate our findings. The relationship we found provides an easy

and accurate approach for rapid decoupling canopy structural and functional

regulation of SIF, and correction of SIF for bidirectional effects. This will

improve estimates of canopy photosynthesis from SIF.
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1. Introduction

Sun-induced chlorophyll fluorescence (SIF) is a novel remote sensing

signal for monitoring vegetation photosynthesis. It takes place in the pigment

beds of photosystems, and SIF is an indicator of the efficiency by which

photons are transmitted to photochemical reaction centers (Grace et al., 2007;

Meroni et al., 2009). It is therefore closely related to the light harvesting

process and responds timely to rapid changes in photosynthesis (Krause

and Weis, 1991; Baker, 2008). In recent studies SIF was used to estimate

vegetation photosynthetic capacity (Zhang et al., 2014) and for tracking

dynamic changes of photosynthesis (Rossini et al., 2015). The connection

between SIF and photosynthesis allows its use for improving the estimation

of global or regional gross primary production (GPP) (Frankenberg et al.,

2011; Guanter et al., 2014), and as an early warning signal of vegetation

stress (Ač et al., 2015).

Apart from photosynthetic activity, SIF observations from remote

sensing are strongly affected by the structure of vegetation canopies (Grace

et al., 2007; Migliavacca et al., 2017; Damm et al., 2015a). SIF observed at top

of canopy is only a portion of the total emitted SIF, due to re-absorption and

scattering (i.e., they are complementary to each other) (Porcar Castell et al.,

2014). The scattering and re-absorption of SIF from the moment of emission

to the moment of escape from the canopy in observation direction, is (among

other factors) sensitive to canopy leaf area index (LAI) and leaf orientation

(Verrelst et al., 2015; Verrelst et al., 2016). Scattering and re-absorption

effects are spectrally dependent. SIF at 760 nm (far-red SIF) is scattered

more and re-absorbed less than SIF at 687 nm (red SIF) (Porcar Castell

et al., 2014) and therefore the portion of SIF reaching the sensor is higher

for far-red SIF than for red SIF. As a result, the ratio of red and far-red

SIF from canopy observation differs from that of leaf-level measurements

(Fournier et al., 2012; Cendrero-Mateo et al., 2015).

Understanding of canopy scattering of SIF is crucial, especially when a

quantitative link between SIF and photosynthesis is desired for GPP estimates.
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3. Linking canopy scattering of SIF with reflectance

In a regional SIF to GPP comparison, Guanter et al. (2014) assumed a canopy

scattering coefficient of unity (i.e. no absorption) of far-red SIF due to lack

of effective ways to quantify the scattering, but acknowledged the potential

importance of accurate estimates of this process. Simulations with radiative

transfer models (RTMs) confirmed that the scattering is an important aspect:

They show that the relation between photosynthetic activity and SIF is

canopy structure dependent (Damm et al., 2015a; Verrelst et al., 2016)

and that a substantial portion of the variability of SIF at different spatial

and temporal scales is due to canopy structure rather than photosynthetic

functioning (Koffi et al., 2015; Van der Tol et al., 2016; Migliavacca et al.,

2017).

One way to study the effect of the scattering is to compare leaf-level

and canopy-level measurements. Cendrero-Mateo et al. (2015) found that top-

of-canopy (TOC) fluorescence of a wheat canopy measured in a growing season

differed from leaf-average fluorescence, and that they developed differently

over the growing season. The asymmetric evolution of leaf and canopy

SIF may be attributed to seasonal changes in the scattering of fluorescence.

Spectral differences between leaf and canopy SIF have also been reported.

Fournier et al. (2012) reported that the ratio of red to far-red SIF of grass

decreased by a factor of two from the leaf to the canopy level. This confirms

that canopy scattering for the red and far-red SIF are different.

The empirical method (i.e. comparing leaf and canopy measurements)

can reveal the magnitude of the effect of scattering in specific cases, but it is

challenging to generalize the results. The need to sample a representative

number of leaves that account for the variability of incident light and leaf

properties makes the method labour intensive (Zarco-Tejada et al., 2003;

Cendrero-Mateo et al., 2015). Furthermore, it is not easy to control the

experiment and to identify and isolate the different effects on scattering, such

as those of soil background, viewing and solar illumination angles.

RTMs offer a comprehensive complementary method to investigate

the effects of canopy structure on TOC SIF. They provide an estimation of

canopy scattering of SIF by simulating the light-canopy interaction. The
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SCOPE model (Van der Tol et al., 2009) simulates leaf fluorescence emission

and TOC SIF, reflectance and photosynthesis of homogeneous canopies,

while the mSCOPE model (Yang et al., 2017) simulates these for vertically

heterogeneous canopies. For more complex canopies, 3D models have been

developed, such as the DART (Gastellu-Etchegorry et al., 2017), FluorWPS

(Zhao et al., 2016), and FluorFLIGHT (Hernández-Clemente et al., 2017).

All these models require prior inputs of canopy structure and leaf properties.

These are unknown in most remote sensing applications, but they can be

retrieved by means of inverting a RTM using measured reflectance data

(Houborg et al., 2007; Jacquemoud et al., 2009). The retrieved properties can

then be used in a fluorescence RTM to quantify the SIF scattering. In this

way, RTMs for reflectance and fluorescence can be used to interpret observed

SIF signals.

Van der Tol et al. (2016) retrieved key biophysical and biochemical

parameters from the reflectance data of rice canopies, and applied these

parameters to simulate TOC SIF by using SCOPE. Such retrievals have

a number of limitations: They are computational demanding. Both the

retrieval of properties and prediction of SIF scattering are model dependent,

and uncertainties in the estimation of canopy properties may be introduced

due to ill-posed retrievals that may propagate into error in the prediction

of canopy scattering of SIF. Nevertheless, Van der Tol et al. (2016) found

that most of the variability of SIF could be reproduced after retrieval of

parameters from reflectance. This not only confirms the dominating role

of canopy scattering on seasonal variations of SIF, but also suggests that

reflectance data can be used to estimate this scattering.

The idea that reflectance can explain the canopy scattering of SIF is

promising. Reflectance data are widely available as many satellites have the

capability to detect vegetation reflectance in many bands. The quantification

of SIF scattering through reflectance measurements provides a way to decouple

canopy structural and photosynthetic regulation effects on remotely sensed

SIF.

Two recent studies provide experimental evidence of a close link

55



3. Linking canopy scattering of SIF with reflectance

between canopy scattering of SIF and reflectance. Badgley et al. (2017)

reported that far-red reflectance times NDVI strongly correlates with SIF

through the vegetated fraction of the surface. Liu et al. (2016) reported a

bidirectional effect on SIF measurements that was similar to the effect on

reflectance.

In the present study, we aim to link reflectance and canopy scattering

of SIF by investigating the radiative transfer of incident light and emitted

fluorescence with a minimum set of assumptions about the representation of

canopies in models. We provide a detailed derivation of the canopy scattering

of SIF and its relation to TOC reflectance. SCOPE model simulations are

used to validate our findings. The relationship we found will allow rapid

decoupling of canopy structural and functional regulation of SIF, which is

useful for improving estimates of canopy photosynthesis from SIF.

2. Theoretical basis

2.1 Definitions and aim of study

The objective of the study is to relate the scattering of SIF (σFC) to

TOC (directional) reflectance (R). R and σFC describe, respectively, the

scattering of incident light and that of total emitted SIF to the viewing

direction. They are defined as:

R = πLo/E (3.1)

σFC = πLFo /EF (3.2)

where Lo and LFo are the radiance of observed reflected solar radiation and

of observed fluorescence at top of canopy, respectively, and E and EF are the

irradiance of incident flux at top of canopy and emitted fluorescence from

all the leaves in the canopy (i.e., fluorescence emission), respectively. Note

that an observation is always the sum of Lo and LFo , and in remote sensing

applications, they need to be separated with for example the FLD method
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(for a review, see Meroni et al., 2009). In radiative transfer modelling, they

are separately simulated.

As mentioned, our objective is to express the canopy scattering of SIF

σFC as a function of reflectance R:

σFC = f(R) (3.3)

Reflectance and canopy scattering of SIF, and their relationship can

be obtained if we know the observed radiance (Lo), observed fluorescence

radiance (LFo ), incident irradiance (E) and canopy total fluorescence emission

(EF ). The incident irradiance is known in most cases either from measure-

ments or from atmosphere radiative transfer models (e.g. MODTRAN (Berk

et al., 2005)), but EF cannot be estimated easily.

In what follows, we derive an explicit expression of Eq. 3.3 in four steps,

the final result of which is Eq. 3.12. First, we explain the interaction between

incident flux and a vegetation canopy. Second, we provide an expression

of canopy fluorescence emission. Third, we compare the equation for the

observed reflected flux to that of the observed fluorescence flux. Finally, we

link canopy scattering of SIF to TOC reflectance (Eq. 3.12).

2.2 Flux interaction with vegetation canopy

Photons entering the canopy from the top will either go through

the canopy via gaps or interact with leaves (or needles). The portion of

photons from the incident beam that will not interact with leaves is known as

the zero order transmittance (t0). The complementary portion, the canopy

interceptance (i0), is the portion of photons that will interact with leaves

(Smolander and Stenberg, 2005; Huang et al., 2007) (Fig. 3.1). The sum

of the zero order transmittance and canopy interceptance is unity. The

interception is the first order interactions between incident light and the

canopy.

In the first order interactions, photons can either be scattered or

absorbed by a leaf, depending on leaf albedo (ω), which is the sum of leaf

reflectance (ρ) and transmittance (τ). Photons in the photosynthetically
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3. Linking canopy scattering of SIF with reflectance

Figure 3.1: The interaction between incident light and canopy. The ellipses
represent leaves in the canopy, and red edges indicate the leaves are illumin-
ated directly by the light from the top of the canopy. The fluorescence flux
and scattered flux are represented by the red and black curve. The plus and
minus signs indicate backward and forward side of a leaf, respectively.

active radiation (PAR) range (i.e., from 400 to 750 nm) that hit the leaf, may

also excite fluorescence photons in the wavelength range from 640 to 850 nm.

After the first order interactions, photons are scattered and fluores-

cence photons are emitted from the leaves that are illuminated directly by

the (solar or diffuse) incoming light (Fig. 3.1). These photons interact with

or escape from the canopy, and part of them will eventually be observed by

a sensor at the top of canopy. The probability that photons will be observed,

depends on the location of leaf, the direction of flux and wavelength of the

photons, but it is independent of the origin of the photons (i.e., an emission

or a scattering event). The equality of the radiative transfer of the scattered

flux and emitted fluorescence after the first order interactions is the essence

of the correlation between TOC reflectance and fluorescence scattering.

Fig. 3.2 summarizes the complete flux interactions with a canopy,

starting from the first order interactions (in the middle of the figure). Emis-

sion and scattering events occur during the first order interactions (e1 and

s1). Part of the scattered and emitted (fluorescence) photons may interact
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Figure 3.2: Flux and vegetation canopy interaction diagram. The rectangles
refer to scattering or fluorescence emission events. The circles refer to fluxes
generated from the events. The arrows indicate changes of fluxes. E refers
to the incident light. i0 is the canopy interceptance, and thus i0E is the
light interacting with the canopy. i0E will first be involved in scattering and
emission event (s1 and e1), resulting scattered flux and SIF flux, respectively.
Part of the fluxes will be observed fluxes by sensor (Lo and LFo ). The resulted
scattered flux and SIF flux will be involved in scattering and emission events
again (s2, s3, e2, e3), and further contribute to the observed fluxes.

with the canopy for multiple times before escaping from the canopy. The

multiple interactions can be divided into four classes: (1) scattered (fluor-

escence) photons are scattered again (s2), (2) emitted fluorescence photons

are scattered (s3), (3) scattered photons excite fluorescence (e2), (4) emitted

fluorescence photons excite fluorescence (e3).

The total fluorescence emission of the canopy is formed by all the

interactions of PAR photons with the leaves (e1, e2 and e3). We found that

for obtaining an explicit expression for σFC = f(R), it is both necessary

and justified to approximate that the canopy scattering of total emitted SIF

(σFC) can be represented by the canopy scattering of SIF from the first order

interactions (σ1
FC), which means that excitation by scattered photons (e2)

and excitation by fluorescence photons (e3) are not considered. The rationale
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3. Linking canopy scattering of SIF with reflectance

for this assumption is twofold. First, most of the fluorescence is generated

by sunlit leaves and shaded leaves exposed to the the sky, which are both

involved in the first order interactions. Second, the canopy scattering (i.e., a

coefficient) of SIF from multiple interactions (e2, e3) (σmFC) is comparable

with, and therefore can be approximated by σ1
FC . Further evidence justifying

the approximation is provided in the results section.

2.3 Calculating fluorescence emission from the first order
interactions

The fluorescence emission at a certain wavelength is excited by photons

of different (i.e., shorter) wavelengths interacting with leaves. The relation

between excitation of a leaf and emission of fluorescence is described by a

so-called excitation-emission matrix, that quantifies the emission spectrum

as a function of the excitation spectrum. This matrix depends on the

radiative transfer within the leaf, and it can either be measured with dedicated

equipments or simulated with leaf RTMs. In the model Fluspect (Vilfan

et al., 2016), for example, the relationship between excitation and fluorescence

emission is described by a 350 by 211 matrix M of 1 nm resolution values,

with excitation wavelengths on rows and emission wavelengths on columns.

The fluorescence emission from the first order interactions is expressed as

EF (λf ) = i0

∫ 750

400

M(λf , λe)E(λe)dλe = i0ME (3.4)

where i0E(λe) is the irradiance of PAR photons that are involved in the first

order interactions, and M(λf , λe) is the excitation-emission matrix. The

wavelengths of the excitation and fluorescence emission are λe ranging from

400 to 750 nm and λf ranging from 640 to 850 nm, respectively. Note that ME

is matrix product that forms a vector. We take the inner product of one row

of the matrix M with of the incident irradiance spectrum (EF (λf ) = i0ME)

to describe the emission at a certain wavelength.

2.4 Observed flux and observed SIF flux

In order to calculate the canopy observed reflected flux and SIF flux,

we first provide an expression for the fluxes originating from a single leaf,
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and then integrate the contributions of all the leaves over the canopy.

The incident radiation that hits a leaf EL(λ) depends on the location

of the leaf (x, y, z), leaf orientation (ϕl, θl), direction and intensity of the

incident light (ϕl, θl), and is given as

EL(λ) = Ps(x, y, z)fs(ϕl, θl, ϕs, θs)E(λ) (3.5)

where Ps is a boolean function that indicates whether the leaf is lit by the

incident light directly (Ps = 1) or not (Ps = 0). The projection of a leaf into

the direction of the incident light is established by fs, which is a function of

the azimuth (ϕ) and zenith (θ) angles of the leaf (l) and of the incident solar

light (s) (Verhoef, 1984, 1985).

Assuming that both sides (i.e., the backward side and forward side)

of the leaf are Lambertian, the fluxes from each side are isotropic. The

photons emanating from the leaf thus consist of transmitted τEL and reflected

radiation ρEL, backward emission ρfMEL and forward emission τfMEL, as

shown in Fig. 3.1. The quantities ρf and τf describe the relative partitioning

of the fluorescence emission over the backward and forward side, and the

sum of them is unity in each wavelength (i.e., ρf (λ) + τf (λ) = 1).

Part of the fluxes scattered from or emitted by the leaves during the

first order interactions will be observed by the sensor at top of canopy. For

one side of a leaf, the probabilities of the scattered fluxes and of the emitted

fluxes from this side that will be observed by the sensor are the same. It is

because that the probability that a photon from a leaf at location (x, y, z)

will be observed depends on its wavelength and direction rather than its

origin (i.e., emission event or scattered event). Therefore, the contribution of

a leaf to the observed radiance and to observed fluorescence radiance can be

expressed in a similar way.

∆Lo(λ) =
EL
π

[ρfo(x, y, z, λ,ΩL → Ωo)+τfo(x, y, z, λ,−ΩL → Ωo)] (3.6)

∆LFo (λ) =
MEL
π

[ρffo(x, y, z, λ,ΩL → Ωo) + τffo(x, y, z, λ,−ΩL → Ωo)]
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(3.7)

where fo(x, y, z, λ,ΩL → Ωo) and fo(x, y, z, λ,−ΩL → Ωo) are the probability

of observation of a flux from the leaf’s backward and forward side, respectively.

From hereon, they are represented by f+ (backward) and f− (forward) for

convenience. The wavelength-dependence of the probabilities f− and f+ is

due to the involvement of the wavelength-dependent multiple scattering.

The total observed radiance is the sum of the contributions of all

the leaves in the canopy (assuming a non-reflecting background). After

substituting EL with Eq. 3.5, this sum is:

Lo(λ) =
E

π

∑
leaves

[Psfsρf+ + Psfsτf−] (3.8)

LFo (λ) =
ME

π

∑
leaves

[Psfsρff+ + Psfsτff−] (3.9)

2.5 Linking SIF scattering with reflectance

Using the observed radiances as in Eqs. 3.8 and 3.9, and incident

irradiance E and SIF emission (i0ME, Eq. 3.4), the reflectance and canopy

scattering of SIF, as defined earlier in Eqs. 3.1 and 3.2 can be expressed as:

R(λ) =
∑
leaves

[Psfsρf+ + Psfsτf−] (3.10)

σFC(λ) =
1

i0

∑
leaves

[Psfsρff+ + Psfsτff−] (3.11)

where the variables in front of and behind the plus signs represent contribution

of backward and forward side to Lo or to LFo . It is noticed that both TOC

reflectance and canopy scattering of SIF are a combination of Psfsf+ and

Psfsf−. This provides the possibility to link them.

Finally, we are interested in the relationship between R and σFC .

Although reflectance and canopy scattering of SIF are expressed similarly,
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the exact relation is still muddled. There is complexity in the seemingly

simple equations 3.10 and 3.11, caused by two facts: (1) A leaf does not

scatter photons equally in both directions (forward and backward) and the

probability of these photons emanating from these directions to reach the

sensor is unequal, (2) Ps, fs, f+ and f− are different for each leaf, and different

for different canopies. Therefore, the exact quantification of the relationship

between σFC and R requires detailed radiative transfer modelling.

However, there are cases in which the relationship between σFC and

R can be greatly simplified. First, if f+ = f−, using that ω = ρ + τ and

1 = ρf + τf , we obtain

σFC(λ) =
1

i0ω
R(λ) (3.12)

Second, if the relative partitioning of the scattered radiation over the two sides

of the leaves equals to the relative partitioning of the emitted fluorescence

radiation over the two sides of the leaves, such that:

ρ

τ
=
ρf
τf
, (3.13)

we also obtain the relationship as shown in Eq. 3.12 (i.e., from Eq. 3.13, we

know that ρ
ρf

= τ
τf

= ω).

In the far-red region (for the far-red SIF), the two conditions mentioned

above are both reasonable, such that the relationship between σFC and R

in Eq. 3.12 may exist. First, the difference between f+ and f− is smaller

in the far-red region than in the red region. Emanating photons in this

spectral region are normally involved in multiple interactions. With increasing

interaction order, photons tend to ’forget’ from which side of the leaf they

originate (Mõttus and Stenberg, 2008). Second, Van Wittenberghe et al.

(2015) compared the ratio of the backward and forward emission with the

ratio of leaf reflectance and transmittance of a number of leaves from 4

species. They found a linear relationship between ρ
τ and

ρf
τf

in the far-red

region. These two arguments strongly support the validity of the relationship

in Eq. 3.12 in the far-red region.

On the contrary, the two conditions mentioned above may not be true

in the red region (for the red SIF). First, the contribution of photons from
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the first order interactions in the red region to Lo or LFo is mainly from direct

observation instead of observation after multiple interactions. As a result, the

difference between f+ and f− caused by the different origins (i.e., backward

or forward side) is more in the red than in the far-red region. Second, an

exponential decay function between
τf
ρf

and 1
τ was found in the red region

(Van Wittenberghe et al., 2015). In fact, the ratios on both sides of Eq.

3.13 are very sensitive to pigment pool of the leaf in the red region. The

validity of neither the condition in Eq. 3.13 nor the condition that f+ = f−

is guaranteed in the red region. Therefore, the relationship between σFC and

R of Eq. 3.12 may not hold for red SIF.

3. SCOPE simulation method

We tested the relationship between canopy scattering of SIF (σFC)

and TOC reflectance (R) as shown in Eq. 3.12 by using simulations with the

SCOPE model (Van der Tol et al., 2009) for a number of scenarios. Several

assumptions were also tested by using SCOPE simulations. In total, 1800

scenarios of combinations of different leaf properties, canopy structure or sun

zenith angles were generated.

We first studied the spectra of canopy scattering of SIF (σFC) and

tested the sensitivity to changing of LAI and leaf chlorophyll content, which

are two key canopy properties. Further, we focused on the results for canopy

scattering of SIF at 687 nm and 760 nm (F687 and F760), representing the

red and far-red fluorescence used in remote sensing of vegetation (Meroni

et al., 2009).

3.1 SCOPE model

SCOPE is a model for homogeneous vegetation and consists of a leaf

RTM, several canopy RTMs and an energy balance model. At the leaf level,

Fluspect (Vilfan et al., 2016), which is based on PROSPECT (Jacquemoud

and Baret, 1990), simulates leaf reflectance (ρ), transmittance (τ), and

fluorescence emission of the both forward and backward side. At the canopy

level, RTMo and RTMf, which are two SAIL (Verhoef, 1984) based models,
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compute the radiative transfer of incident radiation and emitted fluorescence,

respectively.

SCOPE provides the necessary output to test the relationship we

found. TOC reflectance (R) and fluorescence (LFo ) are two direct outputs of

SCOPE. Canopy fluorescence emission (EF ) is computed by SCOPE, but it is

not stored as output. We modified SCOPE version 1.70 to store it as output.

We computed the canopy scattering of SIF for each scenario according to

Eq. 3.2. Canopy interceptance (i0) is a spectral invariant determined by

canopy LAI and leaf inclination distribution (Smolander and Stenberg, 2005).

The literature about the spectral invariant theory provides equations for i0,

(e.g., Smolander and Stenberg, 2005; Huang et al., 2007). In SCOPE, it is

calculated as 1 − exp(−kL), where k is the extinction coefficient and L is

canopy leaf area index. The extinction coefficient is determined by sun zenith

angle and leaf inclination distribution. We used the canopy interception as

simulated by SCOPE, and modified the code to save it as output. For leaf

albedo, we used the sum of leaf reflectance and transmittance as simulated

by Fluspect.

3.2 Database generation

The input of SCOPE for the 1800 scenarios comprises of 60 combina-

tions of leaf properties, 10 combinations of canopy structure parameters, and

3 sun zenith angles (Table 3.1). The values of parameters for leaf properties,

canopy structure and sun position were chosen within the recommended

ranges in SCOPE (Van der Tol et al., 2009; Yang et al., 2017) with non-linear

steps. The viewing zenith angle was 0◦ (i.e. at nadir), and a non-reflecting

background and a typical incident irradiance spectrun were used (i.e., default

setting in the SCOPE model, see supplementary materials).

TOC reflectance, TOC SIF, and total SIF emission of the 1800 scen-

arios were simulated with SCOPE. Leaf reflectance (ρ), transmittance (τ),

fluorescence emission on the backward and forward side, and thus ρf and τf

were simulated for the 60 leaves.
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Table 3.1: Summary of SCOPE inputs applied for the generation of the
database

Parameter Explanation Unit Values
Cab Chlorophyll a+ b content µg cm−2 5, 10, 20, 40, 80
Cdm Leaf mass per unit area g cm−2 0.01, 0.02
Cw Equivalent water thickness cm 0.015, 0.03
N Leaf structure parameter - 1, 1.5, 2
LAI Leaf area index - 0.5, 1, 2, 3, 6
LIDFa Leaf inclination function parameter a - -0.5, 0.5
θs sun zenith angle ◦ 30, 45, 60

3.3 Testing the assumptions

The assumption that the canopy scattering of SIF (σFC) can be

approximated by scattering of SIF from the first order interactions (σ1
FC)

was tested by using SCOPE simulations. We also compared ρ
τ and

ρf
τf

from

Fluspect simulations.

To test the two statements in section 2.2 that 1) the observed SIF from

canopy scattering is most from the first order interactions, and 2) scattering

of SIF from first order interactions (σ1
FC) and multiple interaction (σmFC) are

comparable, two sets of simulations were conducted. In these simulations,

SIF emission from the first order interactions (E1
F ) and from the multiple

interactions (EmF ) of the 1800 scenarios were separately simulated as well as

the correspondingly observed SIF (LF1
o and LFmo ) and scattering coefficients

(σ1
FC and σmFC). This was done by modifying the input to RTMf in the code

of SCOPE, notably by removing the scattered light and the direct incident

light distributed in the canopies in RTMf, respectively. The light distribution

inside the canopy was simulated in RTMo and later used as input of RTMf for

fluorescence simulations. SIF emission during the first order interactions was

excited by the direct solar flux (i.e., we used the direct solar beam as incident

light). Therefore, by removing the scattered light in the input of RTMf, we

obtained SIF emission from the first order interactions, and the corresponding

SIF observed at top of canopy and thus computed σ1
FC . Conversely, SIF

emission from the multiple interaction was excited by the scattered light.

By removing direct light distributed in the canopy in RTMf, we obtained

EmF , LFmo and σmFC . We compared the canopy SIF emission from the first
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order interactions and from the multiple interactions of the scenarios as well

as TOC SIF observed as simulated with SCOPE. Further, σ1
FC and σmFC

were compared. The simulated results of the 1800 scenarios were grouped

by canopy LAI. There were 360 simulations for each unique LAI value. The

mean and standard derivation of each group were computed and compared.

It should be noted that SCOPE simulates fluorescence excited by scattered

photons (e2 in Fig. 3.2), but it neglects the much smaller flux of fluorescence

excited by fluorescence photons (e3).

To test the condition that ρ
τ =

ρf
τf

in section 2.4, we compared the

two ratios simulated from Fluspect for the 60 leaves comprising all the

combinations of the leaf parameters in Table. 2.2. Leaf reflectance and

transmittance were direct outputs of Fluspect, and
ρf
τf

were computed as the

ratio between backward and forward fluorescence emission of the leaves.

3.4 Validation of the relationship between reflectance and
canopy scattering of SIF

To test whether ρ
τ =

ρf
τf

(Eq. 3.13) is a sufficient condition of the

relationship between σFC and R in Eq. 3.12, two types of simulations

were carried out, each consisting of the 1800 scenarios described above

(3600 simulations in total). In the first group of 1800 simulations (group-

1), we modified the Fluspect output of the 60 leaves in such a way that

the assumption in Eq. 3.13 was fulfilled. The leaf albedo of the 60 leaves

was calculated as the sum of reflectance and transmittance, and likewise,

fluorescence emission was calculated as the sum of the forward and the

backward emission. Leaf reflectance and transmittance were then recalculated

as ω/2 each, and likewise, forward and backward fluorescence as half of the

total fluorescence each (i.e., ρ = τ = ωL/2 and ρf = τf=0.5). Note that

taking equal ρ and τ , and ρf and τf is a special case among all cases that

comply with Eq. 3.13. These leaves are considered as synthetic leaves. In

the second group of simulations (group-2), the manipulations above was

not carried out, and leaf reflectance and transmittance, and forward and

backward emission as simulated by Fluspect were used directly. These leaves
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are considered as Fluspect leaves.

We validated the relationship of canopy SIF scattering and reflectance

in Eq. 3.12 for both red and far-red SIF. Both the group-1 and group-2

simulations from SCOPE were used to evaluate the relationship.

4. Simulation results

4.1 Canopy scattering of SIF

The canopy scattering of SIF (σFC) was spectrally dependent (Fig.

3.3). The value of σFC was much higher in the near-infrared region than

in the red region. Furthermore, it increased with LAI in the near-infrared

region, but decreased in the red region.
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Figure 3.3: The canopy scattering of SIF (σFC) in the spectral region from
640 nm to 850 nm simulated by using SCOPE. In the simulations, LAI was
set to 0.5, 1, 2, 3 or 6. Leaf chlorophyll Cab = 40 µg cm−2. Leaf structure
parameter N = 1.5. Leaf mass Cdm = 0.01 g cm−2. Equivalent water
thickness Cw = 0.015 cm. LIDFa = -0.5. Sun zenith angle θs = 30◦.

Leaf chlorophyll content strongly affected σFC in the red region, but

had almost no impact on σFC in the near-infrared region (Fig. 3.4). The

higher leaf chlorophyll content resulted in lower σFC in the red region.
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Figure 3.4: The canopy scattering of SIF (σFC) in the spectral region from
640 nm to 850 nm simulated by using SCOPE. In the simulations, Leaf
chlorophyll Cab was set to 5, 10, 20, 40 or 80 µg cm−2. LAI = 3. Leaf
structure parameter N = 1.5. Leaf mass Cdm = 0.01 g cm−2. Equivalent
water thickness Cw = 0.015 cm. LIDFa = -0.5. Sun zenith angle θs = 30◦.

4.2 SIF from first order and multiple interactions

Fig. 3.5 shows that the SIF emission from the first order interactions

between the incident light and canopies was much higher than SIF emission

from the multiple interactions (i.e., emitted by scattered PAR photons) at

both 687 nm and 760 nm. SIF observed at the top of the canopies was also

mostly from the first order interactions at both 687 nm and 760 nm (Fig. 3.6).

Both canopy emitted SIF and observed SIF increased with the increasing

LAI at both 687 nm and 760 nm.
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3. Linking canopy scattering of SIF with reflectance
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Figure 3.5: SIF emission at 687 nm and 760 nm from all the interactions,
the first order interactions and multiple interactions changing with LAI. The
error bars represent the total range of variation of the 360 scenarios with
the same LAI but different leaf properties, leaf orientations or sun zenith
angles. Note: SIF from the first order interactions refers to the fluorescence
emission by incident light directly. SIF from the multiple interactions is the
fluorescence emission excited by scattered light.
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Figure 3.6: Radiance of top-of-canopy (TOC) SIF observed at 687 nm and
760 nm from all the interactions, the first order interactions and multiple
interactions changing with LAI.
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The scattering of whole canopy SIF (σFC) closely matched with the

scattering of SIF from the first order interactions alone (σ1
FC) (Fig. 3.7).

The difference between σ1
FC and σmFC was less than 30%. Canopy scattering

of far-red SIF increased but that of red SIF decreased with LAI as also shown

in Fig. 3.3.
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Figure 3.7: Canopy scattering of SIF at 687 nm and 760 nm from all the
interactions, the first order interactions and multiple interactions changing
with LAI.

4.3 Radiation distribution over two sides of leaves

The distributions of scattered and emitted photons over the two sides

of the leaf as simulated with Fluspect were similar in the far-red spectral

region, but this symmetry was much less for red region (Fig. 3.8). Both

ρ/τ and ρf/τf were sensitive to leaf structure (N) at 760 nm. The pigments

content had no impact on ρ/τ at 760 nm. On the contrary, the two quantifies

at 687 nm were sensitive to both leaf structure and pigments content.

4.4 Relationship between TOC reflectance and canopy
scattering of SIF

Fig. 3.9 shows that σFC predicted from canopy reflectance (i.e., σFC

= R
i0ω

) from the group-1 simulations was in almost perfect agreement with

σFC simulated with SCOPE at both 687 nm and 760 nm, with both R2
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3. Linking canopy scattering of SIF with reflectance
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Figure 3.8: The comparison of partitioning of scattered radiation (ρ/τ) and
partitioning of emitted SIF (ρf/τf ) over the two sides of leaves at 687 nm and
760 nm simulated with Fluspect. Simulations with the same leaf structure
parameter (N) are marked with the same colour.

= 0.98. Small excursions from 1-1 line were found in only few of the 1800

scenarios.

Fig. 3.10 shows that the correlation between σFC and R
i0ω

was stronger

for 760 nm than for 687 nm when the Fluspect leaves were used (group-

2 scenarios). For the far-red SIF (F760), σFC and R
i0ω

showed significant

positive correlation with R2=0.772. This was obviously lower than for group-1

simulations, but still significant. The correlation was poor for red SIF (F687).

Although σFC and R
i0ω

were still positively correlated, the excursions from

the 1:1 line were substantial in many scenarios. However, for a individual

leaf, σFC and R
i0ω

were also linear when canopy structure (LAI and LIDFa),

and sun zenith angle were changing. The slope of the relationship between

σFC and R
i0ω

was leaf dependent. In Fig. 3.10, we only randomly marked

three individual leaves for readability of the figure (for the correlation of

individual leaves, see the supplementary material).
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Figure 3.9: The correlation between canopy scattering of SIF (σFC) and R
i0ω

at 687 nm and 760 nm for the group-1 (synthetic leaves) scenarios. Each point
represents one scenario. Every leaf in the group had equal reflectance and
transmittance (ρ = τ = ω/2), and equal backward and forward fluorescence
emission. Note: R is canopy reflectance, i0 is the canopy interceptance and
ω is the leaf albedo.
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Figure 3.10: The correlation between canopy scattering of SIF (σFC) and
R
i0ω

at 687 nm and 760 nm for the group-2 (Fluspect leaves) scenarios.
Each point represents one scenario. Simulations of scenarios that have the
same leaf are highlighted with the same colour. Three individual leaves
are respectively marked as red, blue and green for illustration, while the
remaining 57 leaves are marked as gray. Note: R is canopy reflectance, i0 is
the canopy interceptance and ω is the leaf albedo.
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3. Linking canopy scattering of SIF with reflectance

5. Discussion

5.1 Interpretation by using spectral invariant theory

The analogy of radiative transfer of intercepted incident light and

emitted SIF allowed us to derive the relationship between reflectance (R) and

canopy scattering of SIF (σFC), merely by reasoning rather than detailed

modelling. The relation in Eq. 3.12 can also be obtained from existing

spectral invariant recollision theory, as follows.

Smolander and Stenberg (2005) introduced the recollision probability

p to calculate total scattering s(λ) of a canopy (bounded underneath by a

non-reflecting surface):

s(λ) = i0
(1− p)ω(λ)

1− pω(λ)
(3.14)

where the recollision probability p is defined as the probability that a photon,

after having survived an interaction with a canopy element, will interact with

the canopy again.

A second spectral invariant, the directional escape probability ρ(Ω),

quantifies the portion of scattered photons that escapes via gaps in the

direction of viewing (Huang et al., 2007). Canopy directional reflectance can

be expressed as (Schull et al., 2007; Köhler et al., 2018):

R = i0ρ(Ω)
ω(λ)

1− pω(λ)
(3.15)

Canopy scattering of SIF can be expressed by using the spectral

invariants as well. A TOC SIF observation includes contributions from

a series of progressively smaller components: 1) emitted SIF photons that

directly escape and are observed by the sensor (ρ(Ω)); 2) emitted SIF photons

that interact once with the canopy before escaping and being observed

(pω(λ)ρ(Ω)); 3) emitted SIF photons that interact twice before escaping and

being observed (p2ω(λ)2ρ(Ω)), etc. The total canopy scattering of SIF is the
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5. Discussion

sum of the contributions, which is given as a geometric series:

σFC(λ) = ρ(Ω) + pω(λ)ρ(Ω) + p2ω(λ)2ρ(Ω) + ... =
ρ(Ω)

1− pω(λ)
(3.16)

Note that both ρ(Ω) and p are spectral invariant and depend on

canopy structure. Dividing Eq. 3.16 by Eq. 3.15 eliminates ρ(Ω) and p, and

results in Eq. 3.12.

Eq. 3.12 can thus be obtained from spectral invariant theory as well,

but the theoretic derivation in section 2 is more general. In the spectral

invariant theory, leaf single scattering is quantified by leaf albedo (ρ + τ),

while ρ and τ are not considered separately. However, the difference ρ− τ

appears to be essential: The asymmetry of leaf scattering explains why the

simple relationship between TOC reflectance and scattering of SIF is valid

for the far-red region, but not for red region.

The canopy scattering of SIF is also linked with the directional area

scattering factor (DASF) (Knyazikhin et al., 2013), which is a combination

of the three spectrally invariant parameters (i.e., i0, p and ρ).

DASF =
ρ(Ω)i0
1− p

(3.17)

DASF is the TOC directional reflectance if the foliage does not absorb

radiation (i.e., ω = 1). At weakly absorbing wavelengths, for example, in

near-infrared region, σFC can be approximated by DASF/i0 or by R/i0 (i.e.,

DASF = R, when ω = 1).

5.2 Canopy scattering of SIF and reflectance

Canopy scattering of SIF and reflectance are affected by leaf properties

and canopy structure in a comparable way. The pigments content in a leaf

mostly affects σFC in the red region, but not in the near-infrared region. For

example, σFC in the near-infrared region does not change with leaf chlorophyll

content (Fig. 3.4). Likewise, near-infrared reflectance is not sensitive to leaf

chlorophyll content (Jacquemoud et al., 2009). Both σFC (Fig. 3.2) and R

(Jacquemoud et al., 2009) respond to canopy LAI differently in the red and

near-infrared region: they increased with LAI in the near-infrared region,
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3. Linking canopy scattering of SIF with reflectance

but decreased in the red region. For the red SIF, the signal at top of canopy

is mainly from the emitted SIF from leaves that are directly observed via

gaps. The contribution from emitted SIF after interacting with leaves again is

rather small. Higher LAI normally associates with lower canopy gap fraction.

Therefore, a smaller portion of the emitted SIF will be observed, and thus

a smaller σFC . On the contrary, far-red SIF observed strongly affected by

multiple scattering, which increases with LAI. The sensitivity of σFC and

R to canopy structure and leaf properties is, however, not exactly the same.

For example, the red reflectance is less sensitive to LAI than the scattering of

red SIF comparing Fig. 3.3 to Fig. 3 in Jacquemoud et al. (2009) or to Fig.

2d in Jacquemoud (1993). It is because that σFC in this region is mostly

determined by the canopy gap fraction, while TOC reflectance is determined

jointly by the light interception (i0) and gap fraction. Although lower canopy

fraction results in a better chance of the radiation from leaves been observed,

it also results in a smaller i0. The smaller i0 and higher gap fraction have an

opposite effect on the TOC red reflectance, which counteracts the impact of

LAI on red reflectance.

5.3 Validity of the relationship between canopy scattering of SIF
and reflectance

The relationship between σFC and TOC reflectance relies on the ana-

logy of radiative transfer of intercepted incident light and emitted SIF. It

has a physical basis. In our derivation, it is important to separate the first

order interactions and multiple interactions. The first order interactions are

the interception of incident light, which results in the scattered radiation

and fluorescence emission. Further scattering by subsequent interactions

determines the probability that the photons resulting from the first order

interactions can be observed at the top of canopy from a specific direction.

This further scattering is indifferent to the source of the photons (i.e. scat-

tering or emission), and this is the basis for the relationship between SIF

scattering and reflectance, namely that the scattering of SIF is proportional

to the ratio of reflectance to the product of the canopy interceptance and
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the leaf albedo (R = i0ωσFC).

Several assumptions underlay our derivation. In deriving the equations

for reflectance and SIF scattering (Eqs. 3.10 and 3.11), we neglected two

sources of fluorescence produced in higher order interactions, notably the

excitation of fluorescence by scattered light and the excitation of fluorescence

by fluorescence photons (e2 and e3 in Fig. 3.2). This simplification appears

to be justified: the scattering of SIF as simulated by SCOPE matches

closely with the scattering of SIF from the first order interactions (σ1
FC) (Fig.

3.7). Although SCOPE also neglects the (very small) flux of excitation of

fluorescence by fluorescence photons (e3), it does account for the excitation

of fluorescence by scattered light (e2). In the development and validation of

the relationship, we did not consider the soil background effects. There are

scattering effects from soil (indirect contribution) and direct contribution to

observed signals. The soil background has the identical scattering effects on

observed flux and on SIF as included in f+ and f−. This makes no change

to the relationship we found. However, the sunlit soil directly contributes to

observed flux, but not directly contribute to observed SIF (i.e., it does not

emit SIF photons). The direct contribution of sunlit soil to TOC reflectance

(Eq. 3.10) can be expressed as (1−i0)rsPo, where (1−i0) is the probability of

photons will go through the canopy directly (zero order transmittance, t0), rs

is soil reflectance and Po is the probability that the soil will be observed. This

contribution may affect the relationship and change with canopy coverage,

but for the exact impact we need further investigations.

More critical is the directionality (i.e., forward or backward) of the

fluxes generated by leaves in the first order interactions. If the distribution

of scattered light over reflection and transmission is different from the dis-

tribution of emitted fluorescence over the two sides of the leaf, then our

simplified relation of Eq 3.12 does not hold, because forward and backward

propagated light scatter differently in subsequent interactions. In that case,

no simple mathematical expression can describe the relationship between

fluorescence scattering and reflectance. The asymmetry between the distribu-

tion of scattered and emitted photons over the two sides of the leaf, combined
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3. Linking canopy scattering of SIF with reflectance

with the fact that the canopy scattering f− and f+ are unequal in the red

region, make the relationship between canopy scattering of fluorescence and

reflectance deviate from the general form of Eq. 3.12. This relation is leaf

property dependent in the red region and may depend on the arrangement

of pigments in the leaf (Vogelmann and Han, 2000).

Interestingly, R
i0ω

and σFC are still proportional in the red (but not

equal) for individual leaves in the 30 simulated canopies, but the slope of

the relationship varies with leaf structure and pigment composition (see

supplementary information). A more general expression for the scattering

of fluorescence in the red region would require the inclusion of scattering

within the leaf in the analysis, which would be an extremely useful line to

investigate further.

In the derivation of Eq. 3.12, we did not parameterize the structure

of the canopy (such as leaf shape and leaf inclination distribution, fractional

cover), and thus, did not make assumptions on the form and representation of

the canopy in a model. This makes our results generic, and Eq. 3.12 should

be applicable to a wide range of canopies. For the validation of the equation,

we used a turbid canopy model (SCOPE) in which Ps, fs, f+ and f− are

functions of the vertical position of the leaf in the canopy (in units of LAI),

but are independent to the horizontal position (x, y), but the applicability of

Eq. 3.12 is not limited to canopies that can be considered as a turbid medium.

The fact that the same relationship can be derived using spectral invariant

theory supports the potential application in needle forest (Rautiainen and

Stenberg, 2005) and clumped canopies (Stenberg and Manninen, 2015). We

even expect that the relationship is more promising for needle forest, since

the asymmetry in needles is less obvious than in leaves. However, the general

relationship of Eq. 3.12 relies on the assumption that leaves have equal

properties in the whole canopy. Although this is a common assumption in

many radiative transfer models, it could be relaxed in some detailed radiative

transfer models for further testing of the relationship between SIF scattering

and reflectance.
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5.4 Validation of the relationship

Direct validation of the relationship in Eq. 3.12 requires the meas-

urements of TOC reflectance, canopy interceptance, leaf albedo and canopy

scattering of SIF. The last one (σFC) can be computed knowing the total

emitted SIF of the canopy and TOC SIF observed. Canopy SIF measurements

are retrieved from various platforms by using the FLD method. It is also

possible to measure total emission by using some dedicated instruments, such

as FluoWAT (Van Wittenberghe et al., 2012; Cendrero-Mateo et al., 2015),

but a representative number of leaves needs to be measured. Besides of the

labor consuming, the requirement of simultaneous measurements of leaf SIF

and canopy SIF makes the direct validation difficult.

Indirect validation by looking into the directional effects on SIF and

reflectance is more practical. According to the relationship we found, the

viewing angle effects on TOC SIF and reflectance are analogous. SIF observed

from different angles differs from each other due to the different canopy

scattering of the emitted SIF. The variation in view angles does not affect

the total emission, but only the canopy scattering of SIF which is linked

with reflectance (Eq. 3.12). Field measurements presented in Liu et al.

(2016) provides evidence for the similar viewing angle effects on SIF and on

reflectance. A demonstrative simulation with SCOPE confirms the identical

viewing zenith angle effects on SIF and on reflectance, at both 687 nm and

760 nm (Fig. 3.11). A recent study by Köhler et al. (2018) also reported

a similar but not identical directional effects on GOME-2 far-red SIF and

near-infrared reflectance. The difference was caused by the variation of solar

angle. In Köhler et al. (2018) study, both solar angle and viewing angle varied

(i.e., their changes were quantified by the phase angle). In contrast to viewing

angle, the effect of solar zenith angle is not identical for reflectance and SIF.

The solar zenith angle affects the incident light intensity and the canopy

interception of the incident light (i0), and thus SIF emission. Therefore, the

sun zenith angle effects the slope of SIF versus reflectance via incident light

condition, according to Eq. 3.12.
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Figure 3.11: View zenith angle (VZA) effects on reflectance and SIF at 687
nm and 760 nm simulated with SCOPE. Negative values of the VZA represent
the backward direction, and positive values represent the forward direction.
The key model parameters were set as follows: sun zenith angle θs = 30◦,
relative azimuth angle between sun and view Ψ = 0◦, chlorophyll content Cab
= 40 µg cm−2, leaf structure parameters N = 1.5, LAI = 3, leaf inclination
parameters LIDFa = 0.5 and LIDFb = 0.5.

The SCOPE simulations and the spectral invariant theory support the

relationship we derived. The relationship between σFC and R was developed

analytically in section 2. It was confirmed by SCOPE simulation. SCOPE

has a fundamentally different basis of radiative transfer compared to the

theory presented in section 2. In the simulations, a wide range of scenarios

were tested, including various canopy structure, leaf properties and sun

zenith angles. Obviously, the validation is limited for canopies that can

be represented by SCOPE, but the presented relationship is more general.

Furthermore, the alternative approach to derive Eq. 3.12 by means of the

widely used spectral invariant theory contributes to the confidence in our

derivation.

5.5 Implications for remote sensing

The presented relationship between canopy scattering of SIF and

reflectance has potential applications in remote sensing. The relationship

we found can be used to correct the directional effect on SIF. Eq. 3.12

explains the similarity of the directional effects of SIF and of reflectance. The

proportionality between R and σFC with the ratio (i.e., i0ω in the far-red

region) that is independent to view angles results the same directional effects
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of SIF and reflectance. Normalizing TOC SIF by reflectance may be an

approach to correcting the viewing angle effects on SIF.

Eq. 3.12 also makes it possible to estimate the total emitted SIF

using directional measured SIF and reflectance. A requirement is that the

canopy interceptance and the leaf albedo are known. Canopy interceptance

is a widely used spectral invariant that only depends on the canopy structure

and sun position (Huang et al., 2007; Smolander and Stenberg, 2005). It

can either be computed giving the canopy structure and sun zenith angle

(Stenberg and Manninen, 2015), or estimated from canopy reflectance (Asrar

et al., 1986; Bartlett et al., 1989). Leaf albedo in the far-red region is close

to unity due to the strong scattering within the leaf. Nevertheless, it is

necessary to estimate its value in order to apply Eq. 3.12, which means that

inverse radiative transfer modelling may still be required in order to obtain ω.

Once ω and i0 are known, canopy scattering of far-red SIF can be estimated

from reflectance data, and the canopy structural and functional regulation

on far-red SIF decoupled. Several studies interpret SIF observation from

satellite by normalizing the cosine of solar zenith angle as a better indicator of

plant physiology changes (Frankenberg et al., 2011; Joiner et al., 2011). This

normalization accounts for the solar zenith angle dependence of the incoming

solar irradiance, but does not account for spatial or temporal variations in

fraction of absorbed PAR (FAPAR) and σFC (Joiner et al., 2011). Cosine of

solar zenith angle is related to i0 (Stenberg and Manninen, 2015). Normalizing

TOC SIF by cosine of solar zenith angle and TOC reflectance may partially

correct the variation of σFC .

It is promising to consider the canopy structure effects on FAPAR

together with σFC . Canopy structure effects on SIF observations include the

impact on the process of light absorption and the process of scattering of

emitted SIF. By ’removing’ these effects from the observed SIF, we are able

to estimate the fluorescence emission efficiency, which is a ’pure’ functional

trait directly linked to photosynthetic efficiency. The fluorescence emission

efficiency can be computed as the normalization of SIF by the product of

σFC and absorbed PAR. In this study, we propose an approach for estimating
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canopy scattering of SIF from TOC reflectance, canopy interceptance and

leaf albedo. The fraction of absorbed PAR can be also estimated by using

leaf albedo and spectral invariants (Fan et al., 2014). Considering absorption

of incident light and scattering of emitted light together, we may quantify

the total effects of canopy structure on SIF observations only by using TOC

reflectance.

6. Conclusion

Separation of canopy structural and photosynthesis functional regula-

tion on SIF observations is crucial for estimating photosynthesis from SIF.

The analogy of the radiative transfer of emitted SIF and intercepted incid-

ent light allows linking canopy scattering of SIF to reflectance observations.

By comparing their radiative transfer, a theoretical relationship between

reflectance and canopy scattering of SIF was found: Canopy scattering of

far-red SIF can be expressed as a simple function of canopy interceptance,

TOC reflectance and leaf albedo. The equation is valid if the directionality

of leaf fluorescence emission is similar to the directionality of leaf scattering,

a condition that is met in the far-red region, but not in the red region of the

electromagnetic spectrum. The relationship we presented provides an easy

and accurate approach for decoupling the canopy structural and directional

effects on far-red SIF measurements. The relationship between canopy scat-

tering of SIF and reflectance explicates that reflectance and SIF observations

combined can provide a diagnose of photosynthetic functioning.
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4Canopy structure effects on SIF∗

∗This chapter is based on: Yang, P., van der Tol, C., Verhoef, W., 2018. FCVI: A
vegetation reflectance index for interpreting sun-induced chlorophyll fluorescence. Remote
Sensing of Environment, under review.
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Abstract

Attempts of using sun-induced chlorophyll fluorescence (SIF) for track-

ing plant photosynthetic activity have been made in the past decades. SIF

shows potential for improving estimation of gross primary productivity (GPP)

and detecting plant stress. However, remote sensing of photosynthesis from

SIF is still challenging because their relationship is superimposed by many

other factors. It is particularly difficult to quantify and correct for the effects

of canopy structure and sun-observer geometry on SIF. In this study, we

propose a physically-based vegetation reflectance index to normalize SIF for

these effects. The fluorescence correction vegetation index (FCVI) as a differ-

ence between near-infrared and broadband visible (400 - 700 nm) reflectance

quantifies the effects of light absorption and SIF re-absorption (and scatter-

ing) on observed SIF signals. Simulations from a radiative transfer model

(SCOPE) reveal that FCVI estimates canopy structure and sun-observer geo-

metry effects on near-infrared SIF with R2 > 0.98. Normalizing SIF by FCVI

and photosynthetically active radiation (PAR) results in the ’fluorescence

emission efficiency’ (εF ) at photosynthetic level: a diagnosis of the energy

distribution in photosystems. The FCVI derived from MODIS is further used

to compute εF at the global scale at monthly time steps for the past 10 years

from GOME-2 SIF measurements. The results show that the normalization

is successful: retrieved εF is uncorrelated with NDVI (r = −0.04), whereas

SIF and NDVI are correlated (r = 0.64). Moreover, the response of nor-

malized SIF from GOME-2 data to illumination intensity matches well with

existing knowledge. These findings suggest that FCVI effectively separates

canopy structure and plant functional traits from SIF signals. SIF and FCVI

can be used together to assess the photosynthetic functioning of vegetation

ecosystems.
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1. Introduction

Photosynthesis as one of the most fundamental processes on Earth

provides all of the organic compounds and oxygen for humans and anim-

als. Tracking photosynthesis from space is crucial for understanding climate

change and ensuring the supply of food for the growing global population.

Sun-induced chlorophyll fluorescence (SIF) is closely related to the light

harvesting process of photosynthesis and responds nearly instantaneously to

rapid changes in photosynthesis (Grace et al., 2007). Spatial and temporal

measurements of SIF provide information about the gross primary productiv-

ity (GPP) of terrestrial ecosystems (Guanter et al., 2014; Migliavacca et al.,

2017) and reveal plant stress (Ač et al., 2015; Rossini et al., 2015).

SIF can be measured from space using high spectral resolution and

signal-to-noise ratio sensors covering Fraunhofer Lines in the fluorescence

emission spectral range (i.e. 640 - 850 nm) (Meroni et al., 2009). Global

maps of SIF have been retrieved from radiance spectra measured by onboard

spectrometer of the Greenhouse Gases Observing Satellite (GOSAT) (Joiner

et al., 2011; Frankenberg et al., 2011) and of the Global Ozone Monitoring

Experiment-2 satellite (GOME-2) (Joiner et al., 2013; Köhler et al., 2015;

Khosravi et al., 2015; Guan et al., 2016), and of the Orbiting Carbon Obser-

vatory satellite (OCO-2) (Frankenberg et al., 2014; Sun et al., 2015). Sentinel

5P TROPOspheric Monitoring Instrument (TROPOMI) (Guanter et al.,

2015) and TanSat (Xu et al., 2018) have the potential to measure SIF from

space as well. Additionally, the FLuorescence EXplorer (FLEX) satellite

mission has been selected as the 8th Earth Explorer mission of the European

Space Agency (ESA). FLEX will be the first satellite mission dedicated to

SIF observation, and will allow retrieving the full spectrum of fluorescence

with high spatial resolution (Drusch et al., 2016).

The connection between fluorescence and photosynthesis has been ex-

plored by using leaf-level fluorescence measurements with the PAM technique

(Baker, 2008). The quenching of fluorescence is a measure of photosynthetic

efficiency (Genty et al., 1989). Temporally averaged satellite-based SIF data
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appear to correlate strongly with GPP (Frankenberg et al., 2011; Joiner

et al., 2014; Guanter et al., 2014; Migliavacca et al., 2017). However, studies

show that a substantial variability of SIF is due to canopy structure and

sun-observer geometry (Porcar Castell et al., 2014; Van der Tol et al., 2016;

Verrelst et al., 2016; Liu et al., 2016). It is explained by a conceptual formula

for SIF measured by a sensor.

SIF =
1

π
PAR · fPAR · εF · σF . (4.1)

The SIF observed is determined by three processes and each of the

processes corresponds to one quantity in the above equation.

1. Absorption of incident photosynthetically active radiation (PAR) by

chlorophylls in plants. The ratio between absorbed PAR by chlorophylls

and incident PAR is fraction of absorbed PAR (fPAR).

2. Excitation of fluorescence in photosystems. The yield of fluorescence

production to the absorbed PAR is fluorescence emission efficiency (εF ,

the subscript F refers to fluorescence), and thus PAR·fPAR · εF is the

total emitted fluorescence radiation.

3. Scattering and re-absorption of the emitted SIF. The ratio between

observed and emitted fluorescence radiation is scattering of SIF or

escape probability of SIF (σF ).

Among these processes, the emission of fluorescence reflects the ox-

idation status of the photosystems. The emission efficiency is inversely

proportional to the sum of photochemical and non-photochemical quenching

(Van der Tol et al., 2014). Its link with the light use efficiency of photosyn-

thesis makes εF is a suitable indicator of plant stress (Ač et al., 2015). In

contrast, the interactions between incident light and canopy, and between

emitted SIF and canopy (i.e. the first and third process) are determined by

canopy structure, leaf optical properties and sun-observer geometry. These

two processes are related to the radiative transfer of the incident light and

emitted SIF, and their product is called the ’radiative transfer factor’ (i.e.,

Γrt = fPAR× σF ).
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Simply normalizing SIF by absorbed PAR (APAR) has been regarded

as the light use efficiency of fluorescence of the canopy (Daumard et al.,

2012; Miao et al., 2018). This is a reasonable first order approximation. He

et al. (2017) shows that angular normalization of SIF measurements is better

linked with GPP than SIF itself. It suggests the needs of considering the

sun-observer geometry. However, these cases only correct partially canopy

structure and sun-observer geometry effects. Neither SIF/APAR nor angular

normalization of SIF is sufficient to reveal the photosynthetic functioning.

Accurate quantification of both fPAR and σF by using radiative trans-

fer models (RTMs) requires knowledge of the canopy structure and leaf

properties. RTMs simulate the light interaction with the canopy, including

the absorption of incident light, and scattering and re-absorption of fluores-

cence emanated by photosystems. In remote sensing applications, the canopy

structure and leaf properties are mostly unknown. It is possible to retrieve

the required vegetation variables from top-of-canopy (TOC) reflectance meas-

urements by using model inversion (Van der Tol et al., 2016). However, this

procedure has several drawbacks: 1). Retrieval of vegetation parameters in

most cases requires spectral reflectance in the whole optical region instead

of just reflectance of a few bands; 2). Model inversion is usually ill-posed

(Verrelst et al., 2014) and the accuracies of the vegetation variables retrieved

are not guaranteed; 3). Using either look-up tables or numerical optimization

for the retrieval process is time and computation consuming.

In our previous study (Yang and van der Tol, 2018), we analytically

linked canopy scattering of SIF with TOC reflectance. The canopy scattering

of far-red SIF is expressed as a function of TOC reflectance, leaf albedo and

canopy interceptance (i.e., the portion of incident light will not go through the

canopy directly). TOC reflectance is one of the most common remote sensing

observations, but leaf albedo and canopy interceptance are not. Besides this

limitation, the within-leaf scattering of SIF has not been considered in our

previous study.

Accurate estimation of fPAR is also challenging. There are several

approaches to estimate fPAR. The use of normalized difference vegetation
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index (NDVI) is a well-accepted approach (Myneni et al., 2002; Paruelo et al.,

1997). Near-linear relations between NDVI and fPAR have been reported

by many studies (Rouse Jr et al., 1974; Viña and Gitelson, 2005), because

their functional response to leaf area, leaf orientation, sun zenith angle and

atmospheric optical depth is similar (Myneni et al., 2002). However, the

empirical parameters (or coefficients) for this approach are limited to specific

cases (e.g. a regional area or at a certain period). Alternatively, fPAR

can be estimated from TOC reflectance data by inverting a RTM, but this

approach has the problems mentioned before. Fan et al. (2014) proposed an

approach for fPAR modelling by using spectral invariants. This last approach

is an interesting line to follow, but it still requires the leaf albedo, canopy

interceptance as inputs, which are difficult to estimate.

In this study, we quantify the absorption of PAR, and the re-absorption

and scattering of emitted fluorescence by using spectral invariant theory

(Stenberg et al., 2016). We propose a physically-based model for fPAR,

and a reflectance index to approximate canopy structure and sun-observer

geometry effects on SIF (Γrt) such that fluorescence emission efficiency

(εF ) can be estimated from SIF using only reflectance and SIF data. We

first give the theoretical basis for fPAR model and the reflectance index

FCVI (i.e. fluorescence correction vegetation index) and evaluate them by

using simulations from a radiative transfer model SCOPE (Soil Canopy

Observation, Photochemistry and Energy fluxes) (Van der Tol et al., 2009).

Further evaluation is conducted by applying FCVI to GOME-2 SIF products.

We use global maps of FCVI derived from MODIS reflectance products

(Justice et al., 1998) to normalize GOME-2 SIF products for the effects of

canopy structure and sun-observer geometry. Global maps of the fluorescence

emission efficiency, which is directly linked to photosynthetic efficiency, are

produced. The fluorescence emission efficiency data are also verified by

comparing them with simulations from a biochemical model.
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2. Theoretical basis

The proposed fluorescence correction vegetation index (FCVI) for the

radiative transfer factor is given by

FCVI = Rnir −Rvis (4.2)

where Rnir is the near-infrared (NIR) reflectance and Rvis is the broadband

visible (VIS) reflectance (from 400 - 700 nm).

The derivation of the index can be achieved with two steps: calculation

of scattering of SIF (σF ) and calculation of fraction of absorbed photosyn-

thetically active radiation (fPAR). In our previous study (Yang and van der

Tol, 2018), we derived the relationship between canopy scattering of far-red

SIF (σFC) and TOC reflectance analytically, by investigating the radiative

transfer of incident light and emitted SIF. In the following, we first briefly

explain the relationship by using the spectral invariant theory (Stenberg

et al., 2016) and include the within-leaf scattering of SIF. Further, we give

the theoretical basis for our fPAR model and for FCVI.

2.1 A short review of spectral invariant theory

The spectral invariant approach allows for a very accurate paramet-

rization of the canopy scattering, absorption, TOC directional reflectance

by using the wavelength dependent leaf albedo ω (i.e., the sum of leaf re-

flectance and transmittance) and three spectrally invariant and structurally

varying parameters: canopy interceptance (i0), recollision probability (p) and

directional escape probability (ρ(Ω), Ω indicates the viewing direction).

The theory describes radiative transfer of incident photons with can-

opies in a simple way. Photons coming from the top of a canopy will either go

through the canopy via gaps or interact with leaves (or needles). A portion

of the photons is intercepted by the canopy and this portion is defined as the

canopy interceptance (i0) (Smolander and Stenberg, 2005; Schull et al., 2007;

Knyazikhin et al., 2013). As a result of an interaction, photons can either be

scattered or absorbed by a leaf, depending on the leaf (or needle) albedo. The

scattered photons interact with leaves in the canopy again with a probability.
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The probability that a photon, after having survived an interaction with a

canopy element, will interact with the canopy again is called the recollision

probability (p). Smolander and Stenberg (2005) expressed absorption a(λ)

and total scattering s(λ) of a canopy at wavelength of λ (bounded underneath

by a non-reflecting surface).

a(λ) = i0
1− ω(λ)

1− pω(λ)
(4.3)

s(λ) = i0
(1− p)ω(λ)

1− pω(λ)
(4.4)

The scattered photons can escape the vegetation canopy through

various directional paths including the upper and lower boundary. Remote

sensing normally detects signals from one direction above the upper boundary

of canopy. In order to predict the directional signals, another spectral

invariant, called directional escape probability (ρ(Ω)), was introduced (Huang

et al., 2007). The portion of scattered photons that escapes via gaps in the

direction of viewing is ρ(Ω), the directional escape probability. Canopy

directional reflectance can be expressed as

R = i0ρ(Ω)
ω(λ)

1− pω(λ)
(4.5)

2.2 Linking SIF scattering with reflectance

Canopy scattering of SIF can be expressed by using the spectral

invariant theory as well (Yang and van der Tol, 2018). A TOC SIF observation

includes contributions from: 1) emitted SIF photons from leaves that directly

escape via ρ(Ω); 2) emitted SIF photons that interact with leaves in the

canopy again (one order) and escape and are observed via pω(λ)ρ(Ω); 3)

the scattered SIF photons have the second interaction and escape and are

observed via p2ω(λ)2ρ(Ω), etc. The total canopy scattering of SIF is the sum

of the contributions, and is given as a geometric series

σFC(λ) = ρ(Ω) + pω(λ)ρ(Ω) + p2ω(λ)2ρ(Ω) + ... =
ρ(Ω)

1− pω(λ)
(4.6)
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Comparing Eq. 4.5 and Eq. 4.6, we obtain the relationship.

σFC(λ) =
R(λ)

i0ω(λ)
(4.7)

It is important to note that spectral invariant theory ignores the

difference between leaf reflectance and transmittance (ρl − τl), and only uses

the sum of them (ρl + τl = ω) for the scattering of a leaf. The simplification

is reasonable in the near-infrared region, but not in the visible region. For a

more generic derivation of the relationship (Eq. 4.7), the reader is referred

to Yang and van der Tol (2018).

The total scattering of SIF includes scattering in a canopy (σFC)

disscued above and the scattering within a leaf (σFL). The scattering of

SIF within the leaf may be approximated by the leaf albedo. We obtain the

scattering of SIF including within-leaf scattering

σF (λ) = σFC × σFL =
R(λ)

i0
(4.8)

2.3 Estimating fPAR from reflectance

The fraction of absorbed photosynthetically active radiation fPAR is

the fraction of incoming solar radiation that is absorbed by vegetation in

the spectral range from 400 to 700 nm. By definition, fPAR the fraction of

absorbed PAR and can be expressed as

fPAR =

∫
400−700nm

a(λ)E(λ)dλ∫
400−700nm

E(λ)dλ
(4.9)

where E is the incident irradiance, and λ is the wavelength.

In order to using reflectance to estimate fPAR, we express canopy

absorption as a function of reflectance by comparing Eq. 4.5 and Eq. 4.3.

a(λ) = i0 −
1− p
ρ(Ω)

R(λ) (4.10)

The term after the minus sign equals to the canopy scattering (s), and this

equation is equivalent to a(λ) = i0−s(λ). 1−p and ρ(Ω) are the probabilities

of photons survived an interaction, will escape the canopy from all directions

and from the viewing direction (Ω), respectively.
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Introducing Eq. 4.10 into Eq. 4.9 yields

fPAR =i0 −
1− p
ρ(Ω)

·

∫
400−700nm

R(λ)E(λ)dλ∫
400−700nm

E(λ)dλ

=i0 −
1− p
ρ(Ω)

Rvis

(4.11)

where Rvis is the broadband visible reflectance ranging from 400 to 700 nm.

We notice that the quantity i0ρ(Ω)
1−p is the so called directional area

scattering factor (DASF = i0ρ(Ω)
1−p ), which is a parameter that describes

reflectance of nonabsorbing canopies, and is independent of the choice of

leaf albedo (Knyazikhin et al., 2013). Using this definition, Eq. 4.11 can be

written as

fPAR = i0[1− Rvis
DASF

] (4.12)

DASF is almost proportional to and may be approximated by NIR

reflectance (Knyazikhin et al., 2013). From Eq. 3.15, we obtain

1/Rnir =
1

DASF
+

1− ωnir
i0ρ(Ω)ωnir

(4.13)

Combining Eq. 4.12 and Eq. 4.13, we obtain

fPAR = i0
Rnir −Rvis

Rnir
+
Rvis(1− ωnir)
ρ(Ω)ωnir

(4.14)

In the NIR spectral region, because both Rvis and (1-ω) are small

values, the term after the plus sign is negligible. Finally, fPAR can be

expressed as

fPAR = i0
Rnir −Rvis

Rnir
(4.15)

This new fPAR model is similar to NDVI (i.e. Rnir−Rvis
Rnir+Rvis ) in term of the

use of NIR and VIS reflectance, but our model requires canopy interceptance

as an input.
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2.4 Reflectance index for the radiative transfer factor

Both the scattering of SIF and fPAR are approximated as a function

of canopy directional reflectance and the canopy interceptance. The radiative

transfer factor of SIF, as a product of them, are further expressed as

Γrt = fPAR× σF = Rnir −Rvis (4.16)

The radiative transfer factor is simply approximated by the difference

of NIR reflectance and broadband VIS reflectance. Note that the unknown

i0 is eliminated from this equation.

3. Evaluation of fPAR model and FCVI

We evaluate our fPAR model, and the relationship between canopy

structure and sun-observer geometry effects of SIF (Γrt) and reflectance

(Rnir − Rvis) as shown in Eq. 4.16 by using simulations from the SCOPE

model (Van der Tol et al., 2009) for a number of scenarios. Further, we apply

FCVI to the GOME-2 SIF data to estimate fluorescence emission efficiency.

We evaluate the index by means of analysing the resulted fluorescence emission

efficiency data.

3.1 Evaluation by using simulations from SCOPE model

3.1.1 Model description

SCOPE is a model for homogeneous vegetation and consists of a leaf

RTM, three canopy RTMs and an energy balance model. At the leaf level,

Fluspect (Vilfan et al., 2016), which is based on PROSPECT (Jacquemoud

and Baret, 1990), simulates leaf reflectance, transmittance, and fluorescence

emission of the both forward and backward side. At the canopy level, RTMo

and RTMf, which are two SAIL (Scattering by Arbitrarily Inclined Leaves)

based models (Verhoef, 1984), compute the radiative transfer of incident

radiation and emitted fluorescence, respectively (i.e., the letter ’o’ in RTMo

refers to optics and ’f’ in RTMf refers to fluorescence).

RTMo calculates the fate of incident irradiance and absorbed radiation

of each leaf within the canopy. It provides the TOC reflectance simulations,
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and absorbed PAR (APAR) of each leaf orientation class in different po-

sition of the canopy. The number of leaf orientation classes considered is

468, comprising the combinations of 13 leaf’s normal zenith angles and 36

leaf’s azimuths with respect to the sun. The leaf inclination distribution is

parametrized with two (a, b) parameters, which control the mean leaf zenith

angle and the bimodality of the distribution (Verhoef, 1984).

The energy balance model predicts temperature of each leaf in the

canopy. The vegetation RTMs and canopy energy balance model interact

with each other, and update leaf temperature prediction. The calculated

absorbed (PAR) radiation and leaf temperature are required for simulating

the fluorescence emission efficiency in a biochemical model (Van der Tol et al.,

2014). Further, RTMf simulates the radiative transfer of emitted fluorescence

to obtain the TOC fluorescence.

3.1.2 Database generation and simulation method

We first generated 10800 scenarios. The input of SCOPE for the

scenarios comprises 60 combinations of leaf properties, 15 combinations of

canopy structure parameters, and 12 combinations of sun-observer geometry

(Table 4.1). The values of parameters for leaf properties, canopy structure

and sun position were chosen within the recommended ranges in SCOPE

(Van der Tol et al., 2009; Yang et al., 2017) with non-linear steps. LIDFa

determined the average leaf angle (i.e., ALA◦ = 45 - 360
π2 LIDFa) (Verhoef,

1998). The combinations of sun-observer geometry not only include nadir

observations (i.e., θo = 0◦), but also the observations in the hot spot (i.e.,

θo = θs = 30◦ and ψ = 0◦) and cold spot direction (i.e., θo = θs = 30◦ and

ψ = 180◦). A typical incident irradiance spectrum was used in the scenarios

(see supplementary materials). In the theoretical derivation, non-reflecting

soil background is assumed. To evaluate the soil effects on the performance of

the fPAR model and FCVI, simulations of the 10800 scenarios were conducted

both on a non-reflecting background (i.e., soil reflectance was set to zero)

and on a real soil background (i.e., for the reflectance see supplementary

materials).
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Table 4.1: Summary of SCOPE inputs applied for the generation of the
database

Parameter Explanation Unit Values
Cab chlorophyll a+ b content µg cm−2 5, 10, 20, 40, 80
Cdm leaf mass per unit area g cm−2 0.01, 0.02
Cw equivalent water thickness cm 0.015, 0.03
N leaf structure parameter - 1, 1.5, 2
LAI leaf area index - 0.5, 1, 2, 3, 6
LIDFa leaf inclination function parameter a - -1, 0, 1
θs sun zenith angle ◦ 30, 45, 60
θo viewing zenith angle ◦ 0, 30
ψ difference between sun and viewing azimuth angle ◦ 0, 180

We then simulated TOC directional SIF and TOC directional reflect-

ance for each scenario. In the simulations, εF (nm−1) was given as shown in

Fig. 4.1. Its integration over the whole spectral region results in fluorescence

emission efficiency of photosystem I and II, which was 0.024. The values of

εF at 740 nm and at 760 nm were 8.51×10−5 nm−1 and 5.03×10−5 nm−1,

respectively. Besides fluorescence emission efficiency, PAR was also kept

constant at 175 W m−2. Both fluorescence emission efficiency and incident

PAR are required as model inputs, but are not relevant to Γrt which is only

determined by the canopy structure, leaf optical properties and sun-observer

geometry.

650 700 750 800 850
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Figure 4.1: Fluorescence emission efficiency used as input of the SCOPE
model in the spectral region from 640 nm to 850 nm. The markers indicate
locations of 740 nm and 760 nm.
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3.1.3 Evaluation of the new fPAR model

We first evaluate the fPAR model by using the SCOPE simulations.

The model we developed as shown in Eq. 4.15 requires canopy interceptance

(i0), NIR and broadband VIS reflectance as inputs. The fraction of absorbed

photosynthetically active radiation (fPAR) is computed by SCOPE and

stored directly as an output for the 10800 scenarios. Canopy interceptance

(i0) is calculated as 1− exp(−kL), where k is the extinction coefficient and L

is canopy leaf area index (Stenberg and Manninen, 2015; Yang and van der

Tol, 2018). The extinction coefficient is determined by sun zenith angle and

leaf inclination distribution. i0 is computed by SCOPE directly, but it is

not stored as an output. We modified SCOPE version 1.70 to store it as an

output.

We compared the performance of the new model to NDVI. NDVI

has been used as a semi-empirical reflectance index for estimating fPAR for

decades. In this study, we calculated NDVI of the scenarios as Rnir−Rvis
Rnir+Rvis by

using the simulated TOC reflectance. We compared NDVI and our model

with fPAR for the 10800 scenarios in order to benchmark the performance of

our model.

3.1.4 Evaluation of FCVI

We evaluate the index FCVI for the radiative transfer factor (Γrt)

at 740 nm and at 760 nm. The two wavelengths were chosen for meeting

the needs of remote sensing applications. The retrieval of SIF relies on the

solar or telluric atmospheric absorption lines (also called Fraunhofer Lines)

(Meroni et al., 2009). The two O2 absorption features at 687 nm and 760 nm

have been widely used in SIF retrieval. The wavelength of 680 nm was not

tested because the index is not applicable at this wavelength. In Yang and

van der Tol (2018), we have discussed that there was not a simple relationship

between canopy scattering of red SIF (687 nm) and TOC reflectance. The

index was tested at wavelength of 740 nm as a preparation for the further

application to GOME-2 SIF products, which is at 740 nm.
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FCVI of the scenarios was simply calculated as the difference between

NIR and broadband VIS reflectance as shown in Eq. 3.12. In practice,

the average value of visible reflectance at each wavelength can be used,

because the difference between average and broadband VIS reflectance is

rather small and negligible. For instance, the maximum difference between

average VIS reflectance and broadband VIS reflectance of the 10800 scenarios

simulated by SCOPE was 4.1%. For NIR reflectance, we took the reflectance

at 770 nm mainly considering the data availability in the remote sensing

campaigns and missions. This reflectance is normally available in campaigns

or satellites dedicated to SIF measurements and yet not too close to the

absorption feature at 760 nm, where SIF has an apparent enhancement on

reflectance. Reflectance from 750 nm to 900 nm may be used in practice,

because vegetation NIR reflectance changes slightly from 750 nm to 900 nm.

For example, the largest variation of reflectance in this spectral region of the

scenarios as simulated by SCOPE was less than 0.1.

Γrt was computed from simulated TOC observed SIF, LFo (W m−2

nm−1 sr−1) of the scenarios and several inputs, notably, incident PAR (W

m−2) and fluorescence emission efficiency at the studied wavelengths, εF

(nm−1). It is expressed as

Γrt =
πLFo

PAR · εF
(4.17)

After obtaining Γrt and FCVI of the scenarios, we studied the sensit-

ivity of Γrt to increasing LAI in the spectral region of 640 nm - 850 nm, and

to change of various vegetation properties at 760 nm. A ’base’ scenario was

assigned: LAI = 3, leaf chlorophyll Cab = 40 µg cm−2, leaf structure para-

meter N = 1.5, leaf mass Cdm = 0.01 g cm−2, equivalent water thickness Cw

= 0.015 cm, LIDFa = 0, sun zenith angle θs = 30◦ and viewing zenith angle

θo = 0◦. In these analysis, a non-reflecting soil background was used. Finally,

the simulated fPAR was compared with our fPAR model, and the simulated

Γrt was compared with FCVI for all the scenarios. Linear regressions were

used to analyse their relation. The effects of background (i.e., non-reflecting

and reflecting surface) were examined.
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3.2 Evaluation by using GOME-2 SIF data

We further evaluate FCVI by applying to GOME-2 SIF data and

analysing the resulted fluorescence emission efficiency. The efficiency was

calculated as:

εF =
πSIFGOME

PAR · FCVI
. (4.18)

Note the retrieved fluorescence emission efficiency was only in one band since

the SIF observations were at one band (i.e. 740 nm).

3.2.1 Satellite data

The global SIF data were retrieved from GOME-2 level 1B data

produced by Joiner et al. (2013) (http://avdc.gsfc.nasa.gov). The GOME-

2 spectrometer measures the Earth’s backscattered radiance with a high

spectral resolution (around 0.5 nm from 240 - 790 nm) and high signal-to-

noise ratio. The overpass time of GOME-2 is 9:30 (local time) (Joiner et al.,

2013). It has a viewing swath width of 1920 km (Munro et al., 2016). The

GOME-2 SIF products include level 2 (orbital) and level 3 (weekly and

monthly) starting from 2007. We took the monthly averaged GOME-2 SIF

(version 2.6) observations from the MetOp-A satellite at 740 nm in the past

10 years (2007 - 2016). The monthly averaged data has been gridded to a

spatial resolution of 0.5◦×0.5◦.

Atmospherically corrected surface reflectance data of MODerate resol-

ution Imaging Spectroradiometer (MODIS) on the NASA Earth Observing

System (EOS) Terra satellite were used to calculate FCVI instead of reflect-

ance from GOME-2, because the reflectance from GOME-2 data are not

atmospheric corrected. The standard MOD09 reflectance products, which

is not BRDF (bidirectional reflectance distribution function) adjusted, were

used. The overpass time of Terra is approximately at 10:30 (local time). It has

a viewing swath width of 2330 km (Justice et al., 2002). Terra products were

used to minimize the mismatches of sun-observer geometry between MODIS

reflectance and GOME-2 SIF observations caused by their different overpass

time and swath width. We took the MODIS reflectance observation at bands
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1, 2, 3, 4 (centred at 648 nm, 858 nm, 470 nm and 555 nm). The averaged

reflectance at bands 1, 3 and 4 was used for representing the broadband

VIS reflectance, and reflectance at band 2 was used for representing NIR

reflectance. The MODIS measurements were re-sampled to 0.5 by 0.5 degree

and monthly averaged for consistency with the GOME-2 SIF data. Several

thresholds were applied to filter non-vegetation pixels. We used NDVI>0

and SIF>0 for both GOME-2 SIF, PAR, and NDVI data.

3.2.2 PAR calculation

The bottom of atmosphere (BOA) PAR for a clear sky was estimated

by using a simple analytical formula proposed by Frouin et al. (1989).

PAR =PAR0 cos θs

· exp[−(a+ b/V )/ cos θs]

1− r(a′ + b′/V )

· exp[−av(Uv/ cos θs)
bv ]

· exp[−ao(Uo/ cos θs)
bo ].

(4.19)

Where PAR0 is the monochromatic extraterrestrial solar PAR (Wm−2)

and θs is the sun zenith angle. This formula accounts for the most important

processes occurring within the atmosphere: scattering and absorption by

molecules and aerosols; absorption by water vapor; absorption by ozone,

corresponding to the three terms in Eq. 4.19. V , Uv and Uo refer to visibility,

total water vapor and total ozone amount, respectively. cos θs is one of the

auxiliary data included in GOME-2 SIF products. r is the average reflectance

in the PAR region. a, b, a′, b′, av, bv, ao and bo are fitting coefficients. The

values in the equation are shown in Table 4.2 as recommended in Frouin et al.

(1989). These coefficients were kept constant for all the data, and only sun

zenith angles derived the variation of TOC canopy incident PAR. This was

a first order approximation, and for advanced use of the index, it may be

improved by using more accurate incident PAR data.
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Table 4.2: Parameters used in the analytical estimation of bottom of atmo-
sphere PAR.

PAR0 Wm−2 V km Uv gcm−2 Uo atm cm r a b
400 23 1.4 0.34 0.1 0.078 0.882

a′ b′ av bv ao bo
0.123 0.594 0.002 0.87 0.052 0.99

3.2.3 Evaluation of normalized GOME-2 SIF

We evaluated the fluorescence emission efficiency maps in several ways.

We first examined the spatial pattern of the fluorescence emission efficiency

maps in comparison to NDVI, SIF and PAR data. The correlations between

each two of SIF, NDVI, εF and PAR were calculated and compared. Further,

we investigated the correlation between incident light intensity (PAR) and

εF retrieved from GOME-2 SIF. The ’light response’ of εF retrieved from

satellite data was compared with the simulated response from the biochemical

model of Van der Tol et al. (2014).

We obtained the relationship between light intensity and the then

years of fluorescence emission efficiency from GOME-2 SIF data. The range

of incident PAR (0 to 350 W m−2) was binned with a interval of 8.7 W

m−2 (50 µmol m−2s−1). Further, the average values for the pixels in given

illumination conditions were computed and analysed with the PAR. Because

few SIF measurements were available at low light intensity (<50 W m−2),

the response of εF to the low light was not investigated from the satellite

data.

Van der Tol et al. (2014) model is a photosynthetic energy distribution

model, and is based on the conventional Farquhar et al. (1980) and Collatz

et al. (1992) model. It simulates the efficiency of fluorescence emission,

photochemistry and heat dissipation. The efficiencies are determined by

(1) absorbed PAR (APAR), (2) leaf temperature, (3) the maximum rate of

carboxylation (Vcmax), and (4) other ambient environmental conditions, such

as air pressure and concentrations of O2 and CO2 in the leaf boundary layer.

Model simulations were used to provide general knowledge of the light

response of εF . In the then years of global fluorescence emission efficiency
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data, vegetation types, environmental conditions covered almost all the

possible cases on Earth. Corresponding to the biochemical model, it means

that apart from the illumination condition, εF was also regulated by other

environmental conditions (e.g., temperature, CO2 concentration) and also

the plant functional traits (e.g., the maximum rate of carboxylation Vcmax,

photosynthetic pathways) that all vary between pixels and among months

and years. We only presented the case of Vcmax was 20, 60 and 100 µmol

m−2s−1.

4. Results

4.1 Performance of the new fPAR model

There is a positive correlation between NDVI and fPAR with r = 0.88

and p < 0.001 for the scenarios with real soil. A simple linear regression is

applied to predict fPAR based on NDVI. A significant regression equation is

found fPAR = 1.16NDVI - 0.07 for the 10800 scenarios bounded underneath

by a real soil surface, with an R2 of 0.66 (Fig. 4.2). NDVI performs poorly in

the 10800 scenarios bounded underneath by a non-reflecting surface. RMSE

is 0.41 and R2 is only 0.20. In these cases, the values of NDVI range from

0.35 to 1, whereas the values of fPAR range wider from 0.15 to 1.

The model we proposed performs much better than NDVI in estimat-

ing fPAR among the simulated scenarios (Fig. 4.2). They are also positively

correlated, but with a higher correlation (r = 0.98, p < 0.001). Regres-

sion equations are found fPAR = 0.94i0
Rnir−Rvis

Rnir
+ 0.12 for the scenarios

bounded underneath by a real soil surface, with an R2 of 0.98, and fPAR

= 1.06i0
Rnir−Rvis

Rnir
+ 0.02 for the scenarios bounded underneath by a non-

reflecting surface. The fPAR values of the scenarios with non-reflecting

surface are better predicted by our model than those with a reflecting surface

as indicated in RMSEs (0.06 and 0.25). For both simulations of reflecting

and non-reflectance scenarios, all the data are slightly above the 1-to-1 line.
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4. Canopy structure effects on SIF

Figure 4.2: Comparison between NDVI and fPAR, and between i0
Rnir−Rvis

Rnir

and fPAR for the 10800 scenarios with real soil and non-reflecting soil. The
colours represent the number of scenario in a 0.01 by 0.01 grid.

4.2 Radiative transfer factor

The radiative transfer factor is spectrally dependent (Fig. 4.3). The

spectra of Γrt are similar to vegetation reflectance with lower values in the

red region and much higher values in the NIR region. FCVI values (i.e. the

dashed lines in Fig. 4.3) are similar to those of Γrt in the near-infrared region,

and obviously not in the red region. Both Γrt and the difference between Γrt

and FCVI in the near infrared increase with LAI.

Fig. 4.4 shows that Γrt at 760 nm is more sensitive to canopy structure

(ALA and LAI) than to leaf properties. The non-linear change of Γrt to LAI,

as well as to ALA is shown in the sensitivity analysis. Γrt is sensitive to leaf

chlorophyll content, especially when the chlorophyll content is low.
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Figure 4.3: The radiative transfer factor of fluorescence (Γrt = fPAR×σF ) in
the spectral region from 640 nm to 850 nm simulated by using SCOPE. The
dashed lines are the values of FCVI for the five scenarios bounded underneath
by non-reflecting surface.
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Figure 4.4: Spider plot for sensitivity analysis of the radiative transfer factor
of SIF (Γrt) at 760 nm. The base values were set as follows. LAI = 3. Leaf
chlorophyll Cab = 40 µg cm−2. Leaf structure parameter N = 1.5. Leaf mass
Cdm = 0.01 g cm−2. Equivalent water thickness Cw = 0.015 cm, LIDFa = 0.
Sun zenith angle θs = 30◦. viewing zenith angle θs = 0◦.

4.3 Performance of FCVI

Fig. 4.5 shows that the reflectance index FCVI appears to be a good

predictor of Γrt at both 760 nm and 740 nm. The values of most Γrt at

both wavelengths range from 0 to 0.5. The correlation between FCVI and
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4. Canopy structure effects on SIF

Γrt is 0.96 (p < 0.001) at 760 nm and 0.97 (p < 0.001) at 740 nm for both

non-reflecting and reflecting surface. FCVI slightly underestimates Γrt in

most scenarios when the real soil is used. When Γrt is close to 0, FCVI is

also close to 0 in the simulations with non-reflecting soil, whereas the values

of FCVI are from 0.07 to 0.1 in those with real soil. According to RMSE,

FCVI performs better when non-reflecting soil is used, but the performance

is still satisfactory when real soil is used.

Figure 4.5: Comparison between SCOPE simulated fluorescence correcting
vegetation index (FCVI) with the radiative transfer factor of fluorescence
(Γrt) at 760 nm and 740 nm for the 10800 scenarios with real soil and non-
reflecting soil. The colours represent the number of scenario in a 0.005 (FCVI)
by 0.005 (Γrt) grid.
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4.4 Mapping global GOME-2 SIF, NDVI, PAR and fluorescence
emission efficiency

Fig. 4.6 shows the fluorescence efficiency map (εF ) for June 2014 as

one example of the 120 calculated efficiency maps (10 years × 12 months).

The spatial patterns of εF , NDVI and SIF are different from each other. SIF

and NDVI are spatially correlated, but the correlations are degraded because

SIF is affected by incoming PAR whereas NDVI is not. For example, SIF

at the southern hemisphere is lower than SIF at the northern hemisphere

in areas with similar NDVI. Areas with low NDVI normally show low SIF,

but not necessarily low εF . In fact, εF does not correlate with NDVI. εF

nevertheless has some correlation with PAR. This is visible in the Amazon

region, where εF is higher in the southern part than in the northern part,

and the incident PAR is lower in the southern part.

The scatter plots (Fig. 4.7) from the data shown in Fig. 4.6 confirm

that NDVI is correlated to SIF, but not to εF . A positive correlation between

NDVI and SIF is found. Low NDVI is associated with low SIF, and high

NDVI is more likely associated with high SIF. On the contrary, NDVI has

no clear correlation with εF .

Fig. 4.8 summarizes the correlations between SIF, NDVI, εF and PAR

of the 10 years of monthly measurements. It shows that SIF is significantly

correlated with NDVI (r = 0.64, p < 0.001), and has some correlations with

PAR (r = 0.37, p < 0.001). εF appears to be independent of vegetation

greenness as expressed by NDVI and does not have a significant relationship

with PAR (r = −0.22, p < 0.001).
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Figure 4.6: Globe maps of NDVI (a), GOME-2 SIF at 740 nm (b), fluorescence
emission efficiency εF at 740 nm (c) and PAR (d) in June 2014.

107



4. Canopy structure effects on SIF

Figure 4.7: Comparison between NDVI with SIF and εF in June in 2014.
The colours represent the number of measurements of which the x and y
values in a small grid.
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Figure 4.8: Correlations between monthly mean values gridded at 0.5 degrees
by 0.5 degrees resolution of SIF, NDVI, εF and PAR computed for 10 years
of global measurements (2007-2016). The arrows indicate the drivers (e.g.
PAR is one of the drivers of SIF).

4.5 Light response of normalized GOME-2 SIF

Fig. 4.9 shows that the light response of the GOME-2 derived εF is

consistent with existing studies that show that fluorescence efficiency decreases

with incoming light (Genty et al., 1989; Rosema et al., 1998; Van der Tol

et al., 2014). The model simulations obviously do not cover all possible cases,

but the light response curves of the three cases with different Vcmax follow

a similar pattern: εF decreases with incoming light intensity for PAR > 50

Wm−2. This is shown for the GOME-2-derived εF , but not for SIF/PAR

which shows increasing values for 140 Wm−2 < PAR < 240 Wm−2 and then
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decreasing values for 240 Wm−2 < PAR < 270 Wm−2. The patterns of

SIF/PAR changing with light intensity is similar to that of FCVI (PAR >

140 Wm−2). In fact, SIF/PAR and FCVI are significantly correlated with

r=0.98, p <0.001.

Figure 4.9: Light response of the fluorescence emission efficiency at 740 nm
from GOME-2 SIF data (A) and from Van der Tol et al. (2014) model (B).
The light responses of FCVI, πSIF/PAR retrieved from MODIS reflectance
data and GOME-2 SIF data from 2007 to 2016 are presented as well (A).
FVCI is shown in the inset in the upper right corner and πSIF/PAR is shown
with dashed grey line. The grey area in (A) indicates the relative probability
distribution function (PDF) of the pixels at various light intensities.

5. Discussion

The study is a follow-up and extension of Yang and van der Tol (2018),

in which we analytically link canopy scattering of SIF with TOC reflectance
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4. Canopy structure effects on SIF

and canopy interceptance. The further quantification of fPAR by using TOC

reflectance and canopy interceptance results a simple index for correcting

canopy structure and sun-observer geometry effects on SIF.

We use the combination of reflectance index (Rnir−Rvis

Rnir
) and a canopy

spectral invariant (i0) as a measure of fPAR. Our approach offers a much

better estimation of fPAR than NDVI. The derivation of our index is based on

a radiative transfer theory, namely the spectral invariant theory. We assume a

non-reflecting background in the vegetation canopy. This allows the derivation

of a simple formula for canopy absorption, scattering and TOC reflectance by

using the spectral invariant theory (Smolander and Stenberg, 2005; Huang

et al., 2007). Even with the assumption of non-reflecting background, the

performance of our model is satisfying. Actually, not only fPAR is affected

by soil background, but also TOC reflectance. The use of TOC reflectance

to estimate fPAR may partially account for the soil background effects. A

slight underestimation of the fPAR model is mainly due to neglecting the

term after the plus sign in Eq. 4.14.

The model is a potentially useful tool for better estimation of fPAR,

and this is an important line to follow. One of challenges of estimating

fPAR with the spectral invariant theory is the measurement of canopy

interceptance. Canopy interceptance can be estimated from the canopy LAI

and leaf orientation (Stenberg and Manninen, 2015), or by inverting a RTM

and retrieving reflectance data or by using LiDAR measurements (Liu et al.,

2018).

On the other hand, we find that the canopy interceptance is eliminated

in the product of fPAR and σF , resulting in and a very simple reflectance

index (FCVI). The physically-based reflectance index FCVI offers a promising

way to quantify the effects of canopy structure and sun-observer geometry

on far red SIF, thus separate SIF into a structural and a photochemical

part. FCVI as an accurate estimator of Γrt with R2 > 0.96, yet being

practically easier than any other SIF normalization so far, which provide

only partial normalization of SIF. SIF/PAR (Amorós-López et al., 2008) is

an estimation of fluorescence light use efficiency of a whole canopy or leaf,
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but not of photosystems. Normalizing SIF by absorbed PAR (APAR) (Moya

et al., 2004) takes account the absorption of incoming light, but not the

re-absorption and scattering of the emitted fluorescence. Therefore, neither

SIF/PAR or SIF/APAR directly reveals light use efficiency at photosynthetic

level. In contrast, FCVI quantifies the absorption of incoming light, and

re-absorption and scattering of fluorescence.

FCVI only requires the commonly used vegetation VIS and NIR reflect-

ance. Both of them are available from most optical spectral measurements

as well as from many satellite missions, such as the National Aeronautics

and Space Administration (NASA) Terra and Aqua satellites, the European

Space Agency (ESA) Sentinel missions and the upcoming ESA FLuorescence

EXplorer (FLEX) mission (Drusch et al., 2017). For instance, we used the

NIR reflectance from MODIS (from Terra mission) to calculate FCVI and

applied it for normalizing GOME-2 SIF data.

In applying FCVI, one should pay attention that the sun-observer

geometry in the reflectance and SIF measurements are similar. The index is

derived for identical geometries of reflectance and SIF, and deviations in the

sun-observer geometry between reflectance and SIF could compromise the

applicability. There is one-hour difference in overpass between the MODIS

Terra and GOME-2 MetOp-A satellite, causing slight mismatch of sun-

observer geometry in reflectance and SIF measurements and thus affecting

the normalization. Better results will be obtained using instrumentation on

the same satellite. Fortunately, most satellites for SIF detection measure

both VIS and NIR reflectance, such that they will have identical geometry.

For example, the FLEX satellite will carry the FLORIS instrument with two

spectrometers: one for the Oxygen absorption bands, and another covering

the full VIS and NIR spectral regions (Drusch et al., 2017). Copernicus

Sentinel-3, with which FLEX will fly in tandem, will have close observation

geometry to FLEX as well and offer further optical and thermal sensors.

FCVI has great potential for interpreting the remotely sensed SIF

data. Normalizing SIF by FCVI and PAR results in a quantity that is much

less dependent of vegetation leaf optical properties and canopy structure
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than SIF. As a result, the correlation between the 10 years of εF and NDVI

is very low (i.e. r = −0.04). The complementarity of NDVI, εF and SIF can

be understood as follows. NDVI is an indicator of vegetation coverage and

’greenness’ (Grace et al., 2007), whereas εF reveals the energy distribution

in the photosystems. SIF, as a more integrated signal, is a function of εF ,

canopy structure, and irradiance as explained in detail by Porcar Castell

et al. (2014).

εF reveals the photochemical response to meteorological conditions.

The correlation between εF and illumination that we found is still low

(r = −0.22) due to fact that most of the available measurements are at high

light condition where the relation between εF and PAR is relatively flat, as

shown in Fig. 4.7. However, an evaluation of the shape of the light response

of the normalized SIF (εF = πSIF
PAR·FCVI ) confirms that εF computed is indeed

the fluorescence emission efficiency of photosystems. The vegetation εF of

the biosphere decreases with increasing PAR in the range of 50 to 250 Wm−2.

This response matches well with model simulations.

Interestingly, FCVI plotted versus irradiance (Fig. 4.9) peaks at a

higher irradiance (about 240 Wm−2) than εF (50 W m−2). Note that FCVI

may be considered as the result of accumulated growth and development

of the vegetation, rather than the instantaneous functional condition: The

difference between NIR and VIS reflectance has been regarded as an indicator

of canopy greenness in the literature before (Knipling, 1970; Peñuelas and

Filella, 1998). The peak at 240 Wm−2 indicates that at this irradiance

intensity, the areas under this illumination condition are most vegetative. In

contrast, the peak of εF at 50 W m−2, indicates that at this irradiance, the

’pressure’ on the photochemical apparatus peak due to the interplay between

photochemical and non-photochemical quenching mechanisms (Van der Tol

et al., 2014) .

The retrieved εF from GOME-2 SIF (Eq. 4.18) is lower than, but still

comparable to existing knowledge as consolidated in models. The default

value in SCOPE is 8.51×10−5 nm−1 at 740 nm, and the values retrieved

range from 0 to 1×10−4 nm−1 with an average of 2×10−5 nm−1. There are

112



6. Conclusions

several possible causes for this mismatch: 1) underestimation of SIF signal

of GOME-2 SIF product, 2) overestimation of bottom-of-atmosphere PAR

as a clear sky PAR was used, 3) uncertainties of reflectance products from

satellite-based MODIS data, 4) the uncertainties due to assumptions in our

index. The exact reasons require further investigation.

FCVI as an index for decoupling the canopy structural and plant

physiological effects on SIF, opens possibilities to further study photosynthetic

efficiency. Photosynthetic efficiency and fluorescence emission efficiency

respond to many environmental factors in a similar way (Van der Tol et al.,

2014). Retrieval of fluorescence emission efficiency thus allows for monitoring

the photosynthetic functioning directly from remotely sensed data. This is

relevant for determining for example the optimum growth conditions of crops

and early stress detection.

6. Conclusions

We have proposed a physically-based model for fraction of absorbed

photosynthetically active radiation (fPAR) by using the spectral invariant

theory. Simulations from a radiative transfer model reveal that our model

provides a better accuracy than NDVI. The model has potential to improve

the estimation of fPAR from remotely sensed data.

We have also proposed a physically-based reflectance index (FCVI)

to quantify the canopy structure and sun-observer geometry effects on near-

infrared SIF. The index as the difference between near-infrared and broadband

visible reflectance accounts the photosynthetic light absorption, and re-

absorption and scattering of fluorescence in canopies.

SIF normalized by FCVI and PAR yields the fluorescence emission

efficiency. The efficiency may allows for the investigation of the energy

partitioning in photosystems. The fluorescence emission efficiency directly

linked to photosynthetic efficiency is expected to be an informative quantity

for detecting plant stress through remote sensing. Application to GOME-2

SIF observation yields the first fluorescence emission efficiency map. The

vegetation fluorescence emission efficiency response to light from GOME-2
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SIF is consistent with expectations. The index will be important as improved

data sets become available from sensors such as the Sentinel 5P TROPOMI

and FLEX. It is hoped that one can monitor photosynthetic functioning at

regional and global scales with our approach.
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model: A simple adaptation to the SCOPE model to describe reflectance, fluorescence and
photosynthesis of vertically heterogeneous canopies. Remote Sensing of Environment 201,
1 - 11.
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Abstract

The vertical heterogeneity of leaf biophysical and biochemical proper-

ties may have a large effect on the bidirectional reflectance and fluorescence

of vegetation canopies. This has implications for the interpretation of re-

mote sensing data. We developed a model for light interaction and energy

balance in vegetation canopies in which leaf biophysical and biochemical

properties vary in the vertical. The model mSCOPE is an extension of

the Soil-Canopy Observation of Photosynthesis and Energy fluxes (SCOPE)

model, which simulates spectral and bidirectional reflectance, fluorescence,

and photosynthesis of vertically heterogeneous vegetation canopies. The

modelling of radiative transfer in mSCOPE is based on the classical SAIL

theory. A solution to the radiative transfer equation for multi-layer canopies

is given, which allows calculating top-of-canopy (TOC) reflectance and the

flux profile. The latter is used for the simulation of fluorescence emission

and photosynthesis of every leaf through the leaf radiative transfer model

Fluspect and a biochemical model. The radiative transfer of fluorescence

in multi-layer canopies is solved numerically in mSCOPE to obtain TOC

bidirectional fluorescence. The significant effect of vertical heterogeneity

of leaf properties on TOC reflectance, fluorescence and photosynthesis is

demonstrated by different scenarios with customized vertical profiles of leaf

chlorophyll content and leaf water content, and also with measured vertical

profiles of leaf chlorophyll content in corn canopies. A preliminary validation

of the reflectance calculating routine of mSCOPE is conducted by comparing

measured and simulated TOC reflectance spectra of the corn canopies. We

conclude that it is important to consider the vertical heterogeneity of leaf

properties for the prediction of reflectance, fluorescence and photosynthesis.

The model mSCOPE could serve as a tool to better understand vertically

heterogeneous vegetation canopies.
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1. Introduction

Vegetation models are powerful tools to understand a variety of plant

physiological processes. Radiative transfer models (RTMs), as a major

class of vegetation models, are widely used in remote sensing applications

because they offer an explicit connection between the top of canopy (TOC)

observations and vegetation properties (e.g., chlorophyll, leaf area index)

(Houborg et al., 2007; Ustin et al., 2009). Vegetation models that simulate

photosynthesis (De Wit, 1962; Myneni, 1991) include, besides an RTM, also

a leaf photosynthesis model such as Farquhar et al. (1980) or Collatz et al.

(1992). The RTM simulates the light distribution within the canopy, while

the photosynthesis model simulates the energy partitioning in photosystems.

SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes)

is an integrated radiative transfer and energy balance model (Van der Tol

et al., 2009) that simulates the spectrum of TOC reflected radiation, fluor-

escence emission in the viewing direction and photosynthesis as functions

of leaf properties, vegetation structure, and micro-meteorological conditions.

The model has been widely applied to enhance the understanding of remotely

sensed data and canopy photosynthesis, and to support the quantitative

use of reflectance and fluorescence for estimation of plant functional traits

(Zhang et al., 2014; Damm et al., 2015a; Van der Tol et al., 2016; Drusch

et al., 2017).

The SCOPE model assumes that vegetation canopies are vertically

homogeneous and horizontally infinite, as its radiative transfer routines are

based on the classical 1-D SAIL model (Verhoef, 1984, 1985). However,

in reality, canopies generally exhibit large vertical heterogeneity of both

biophysical and biochemical properties (Dreccer et al., 2000; Valentinuz and

Tollenaar, 2004; Ciganda et al., 2008). Vertical heterogeneity of chlorophyll

and leaf water has been found in winter wheat (Liu et al., 2015; Zhao et al.,

2017), corn (Ciganda et al., 2008) and beech tree (Wang and Li, 2013). A

multi-layer structure of vegetation canopies is very common, for example,

forests with a grass or bush layer, field crops with a weed layer and vegetation
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in the senescent stage (Kuusk, 2001; Verhoef and Bach, 2007; Ciganda et al.,

2008; Liu et al., 2015).

The vertical heterogeneity in canopies has been included in some

models, and simulations with these models show that its effect on top of

canopy (TOC) reflectance is not negligible (Kuusk, 2001; Verhoef and Bach,

2007; Wang and Li, 2013). However, the effect of vertical heteorgeneity on

photosynthesis and fluorescence is unknown. It is expected that the vertical

distribution of leaf properties can affect the light distribution in the canopy,

and thereby fluorescence emission and photosynthesis of leaves. The vertical

heterogeneity may also influence the re-absorption and scattering (radiative

transfer) of the emitted fluorescence and thus directly affect TOC fluores-

cence. The simplification of vertically complex canopies to homogeneous

canopies, with either mean values of phytometric and optical parameters

of all leaves, or values of upper leaves, may lead to bias in the prediction

of reflectance, fluorescence and photosynthesis by SCOPE. The inclusion

of vertical heterogeneity of leaf properties in SCOPE will promote a better

understanding of the link between remote sensing observations and plant

functional traits.

This study presents a multi-layer reflectance, fluorescence and photo-

synthesis model based on SCOPE, called mSCOPE. The model mSCOPE

considers the vertical variation of leaf biochemical and biophysical prop-

erties. The analytical solution of radiative transfer of the incident fluxes

in SAIL (Verhoef, 1984) and the numerical solution of radiative transfer

of the emitted fluorescence in SCOPE (Van der Tol et al., 2009) are not

applicable in mSCOPE, because the assumption of the vertical homogeneity

of canopy components (leaves) does not hold in mSCOPE. Therefore, we

briefly introduce the theory of mSCOPE by giving the solutions of radiat-

ive transfer of incoming radiation and emitted fluorescence in multi-layer

canopies. Several example simulations are presented to illustrate the effects

of vertical heterogeneity of leaf chlorophyll and leaf water content on TOC

reflectance, fluorescence and canopy photosynthesis. The model mSCOPE is

also preliminary validated.
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2. Description of mSCOPE

2.1 Overview

The model mSCOPE extends the 1-D model SCOPE for a homogen-

eous canopy to a vertically heterogeneous vegetation canopy. It has the same

architecture of SCOPE: leaf and canopy RTMs combined with an energy

balance model. At leaf level, Fluspect (Vilfan et al., 2016) is used to simulate

leaf reflectance, transmittance, and fluorescence. At canopy level, RTMo

and RTMf (Van der Tol et al., 2016), which are two SAIL based models,

compute the radiative transfer of incident radiation and emitted fluorescence,

respectively. All the four models (Fluspect, RTMo, RTMf, and the energy

balance model) are internally connected. Fluspect provides necessary input

for canopy RMTo and RMTf. RTMo predicts the distribution of irradiance

and net radiation over surface elements (leaves and soil), which are inputs to

the energy balance module and RTMf.

Table 5.1: Main input parameters of SCOPE

Parameter Explanation Unit Standard value Range
Cab Chlorophyll a+ b content µg cm−2 40 0-100
Cdm Leaf mass per unit area g cm−2 0.01 0-0.02
Cw Equivalent water thickness cm 0.015 0-0.05
Cs Senescence material (brown pigments) fraction 0.1 0-1
Cca Carotenoid content µg cm−2 10 0-30
Nl Leaf structure parameter - 1.5 1-3
LAI Leaf area index - 3 0-6
LIDFa Leaf inclination function parameter a - -0.35 -1-1
LIDFb Leaf inclination function parameter b - -0.15 -1-1
ε1 fluorescence efficiency of photosystem I - 0.004 0-0.01
ε2 fluorescence efficiency of photosystem II - 0.02 0-0.05
θs sun zenith angle ◦ 45 0-90
ψ relative azimuthal angle ◦ 0 0-360
PAR photosynthetically active radiation µmol m−2s−1 1200 0-2200

Table 5.2: Extra input parameters of mSCOPE compared with SCOPE

mSCOPE SCOPE
layer index 1 2 ... N
leaf properties v(1) v(2) ... v(N) vcanopy
LAI L(1) L(2) ... L(N) Lcanopy
Note: leaf properties parameters include Cab, Cdm, Cw, Cs, Cca and Nl.

The model mSCOPE retains the assumption of homogeneity in the

119



5. Radiative transfer in multi-layer canopies

horizontal direction in SCOPE, but it incorporates vertical heterogeneity of

leaf properties. The type of input parameters in mSCOPE is the same as in

SCOPE (Table 5.1). The difference is that mSCOPE accepts different values

of leaf properties for up to 60 layers (Table 5.2). In other words, the user

is allowed to deviate from the default, uniform profile of the leaf properties,

and specify vertical profiles. The operational efficiency of mSCOPE is similar

to that of SCOPE, and the same output variables are generated.

2.2 Radiation fluxes

In order to calculate photosynthesis and fluorescence, the radiation

distribution in the canopy is required. In mSCOPE, this is computed using

the classical SAIL 4-stream theory. The radiative transfer of the direct

solar flux (Es), downward diffuse flux (E−), upward diffuse flux (E+) and

flux in the viewing direction (Eo), is analytically represented by four linear

equations:

dEs
Ldx

= kEs (5.1a)

dE−

Ldx
= −sEs + aE− − σE+ (5.1b)

dE+

Ldx
= s′Es + σE− − aE+ (5.1c)

dEo
Ldx

= wEs + vE− + v′E+ −KEo (5.1d)

where x is the vertical relative height to the canopy bottom surface, and

L is canopy LAI. The extinction coefficients (k and K) depend on canopy

structural characteristics (i.e., LAI and leaf angle distribution) and sun-

observer geometry. The scattering coefficients (s, a, σ, s′, w, v, v′) depend on

canopy structural characteristics, sun-observer geometry and the optical

characteristics (i.e., leaf reflectance ρ and transmittance τ) of foliar elements.

These nine coefficients, first defined by Verhoef (1984), are given in Appendix

A.

In mSCOPE, due to the consideration of vertical leaf properties het-

erogeneity, leaf reflectance, transmittance and the scattering coefficients may
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2. Description of mSCOPE

vary vertically. This has no impact on the extinction coefficients (K and k).

Therefore, only the calculation of the diffuse fluxes (E− and E+) needs to be

adapted in mSCOPE, while the calculation of the directional fluxes remains

the same as in SCOPE (i.e., Eq. 5.1a and 5.1d).

The vegetation layer’s scattering matrix is given by
τss 0 0 0
τsd τdd ρdd 0
ρsd ρdd τdd 0
ρso ρdo τdo τoo

 =

[
Td Rb
Rt Tu

]
(5.2)

where the subscripts attached to the vectors in the left matrix refer to the

direct solar (s) flux, diffuse (d) flux and flux in the observer’s (o) direction,

and the subscripts attached to the right matrix denote downward (d), upward

(u), top (t) and bottom (b). ρx1x2 and τx1x2 (i.e., x1 and x2 are s, d or

o) are reflectance and transmittance of the layer for the case of flux x1 to

flux x2. Rt and Rb are the reflectance at top and bottom of the vegetation

layer, respectively. Td and Tu are the downward and upward transmittance,

respectively.

The vegetation layer is normally on top of a reflecting surface (e.g.,

soil). The surface bidirectional reflectance (Rbottom) is described by[
Rsd Rdd
Rso Rdo

]
= Rbottom (5.3)

For a vertically homogeneous canopy (as in SCOPE), the analytical

solution to the canopy scattering matrix (Eq. 5.2) is first solved, then the TOC

reflectance and flux profile are computed (Verhoef, 1984, 1985). However,

for a vertically heterogeneous canopy (as in mSCOPE), it is difficult to get

an analytical solution to the canopy scattering matrix: For each vegetation

layer, the scattering matrix is different due to heterogeneous leaf properties.

Therefore, in mSCOPE, we avoid the calculation of canopy scattering matrix.

Instead, we developed a new strategy. The main idea comes from the adding

method originally developed to simulate TOC reflectance in heterogeneous

canopies (Cooper et al., 1982; Verhoef, 1985). In mSCOPE, we extended it

to the calculation of the flux profile and TOC fluorescence.
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5. Radiative transfer in multi-layer canopies

The procedure is summarized as follows: 1. divide the vertical het-

erogeneous layer into several homogeneous layers; 2. start from the bottom

homogeneous layer, calculate the surface reflectance of the combined system

of the bottom surface (e.g., soil) and this layer; 3. add a new homogeneous

vegetation layer above the surface of the previous system in step 2, and

calculate the surface reflectance of the new system; 4. repeat step 3 until

all homogeneous layers are added. 5. once the surface reflectance at each

vertical level is obtained, the fluxes profile can be computed from top to

bottom, given the incident flux at top of the canopy.

In mSCOPE, the properties of a user defined N-layer canopy (where

N<=60) are distributed over 60 sublayers. The use of 60 sublayers is similar

to SCOPE, and it is necessary for computational reasons: Sufficiently thin

sublayers of no more than 0.1 units of leaf area index (LAI) are needed to avoid

problems in the numerical discretization of the differential equations. We use

the term ’layers’ for a layered canopy (such as understory and overstory),

and the term ’sublayers’ for the numerical discretization of the canopy.

In a heterogeneous 60-sublayer system that is bounded by a surface

at the bottom, we distinguish the 60 sublayers by numbers from 1 to 60, and

the fluxes at the bottom and the top of the system by the numbers 1 and 61.

The levels at the interfaces between neighbouring sublayers are numbered

from 2 to 60. Using this numbering for sublayers and their interfaces, the

following set of equations describe radiative transfer in the whole system:

Eu(1) = RbottomE
d(1) (5.4a)

[
Ed(1)
Eu(2)

]
=

[
td(1) rb(1)
rt(1) tu(1)

] [
Ed(2)
Eu(1)

]
(5.4b)

...

[
Ed(60)
Eu(61)

]
=

[
td(60) rb(60)
rt(60) tu(60)

] [
Ed(61)
Eu(60)

]
(5.4c)
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2. Description of mSCOPE

where

Ed =

[
Es
E−

]
;Eu =

[
E+

Eo

]
(5.5)

Except for the bottom reflectance Rbottom, all reflectance and transmit-

tance matrices here refer to all the sublayers. These are therefore represented

by lower case letters (i.e., t and r).

If only the downward fluxes at the top of the system are given, by the

elements of the vector Ed(61), all other flux vectors can be derived. To this

end, we first solve the combination of the bottom with sublayer 1, which is

given by the equations (i.e., from Eq. 5.4a and 5.4b)

Eu(1) = RbottomE
d(1) (5.6)

Ed(1) = td(1)Ed(2) + rb(1)Eu(1)

= td(1)Ed(2) + rb(1)RbottomE
d(1)

= [I − rb(1)Rbottom]−1td(1)Ed(2)

(5.7)

Eu(2) = rt(1)Ed(2) + tu(1)Eu(1)

= rt(1)Ed(2) + tu(1)RbottomE
d(1)

(5.8)

Here we introduced a new quantity X = (I − rbRbottom)−1td, which is

called the effective downward transmittance, since it describes the relationship

between the downward fluxes at successive levels while taking into account

the multiple reflections with the thick layer under the level of interest. Eq.

?? and Eq. 5.8 are expressed as:

Ed(1) = X(1)Ed(2) (5.9)

Eu(2) = [rt(1) + tu(1)RbottomX(1)]Ed(2) (5.10)
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5. Radiative transfer in multi-layer canopies

Eq. 5.10 gives the calculation of the upward flux at the top of sublayer

1. From Eq. 5.10, we obtain a new effective surface reflectance matrix at the

top of sublayer 1, given by

R(2) = rt(1) + tu(1)RbottomX(1) (5.11)

In the following, we will use capital letters to indicate quantities that

refer to all levels from the bottom (level 1) to the level of interest, and lower

case letters to indicate quantities that only refer to a single thin sublayer.

Thus, we may also identify Rbottom as R(1), which is usually given as an

input (e.g., soil reflectance).

In this way we obtain a recursive rule that can be extended up until

the top of the whole system of sublayers. We use the equations

X(j) = [I − rb(j)R(j)]−1td(j) (5.12)

R(j + 1) = rt(j) + tu(j)R(j)X(j) (5.13)

The matrices X(j) are derived in Appendix B and written as

X(j) =

[
τss(j) 0

τsd(j)+τss(j)Rsd(j)ρdd(j)
1−ρdd(j)Rdd(j)

τdd(j)
1−ρdd(j)Rdd(j)

]
=

[
Xss(j) 0
Xsd(j) Xdd(j)

]
(5.14)

The part 1/(1− ρddRdd) includes the repeated reflections of radiation

between a surface and the bottom of a vegetation layer in the radiative

transfer. By going from bottom to top, the final result obtained is the surface

reflectance matrix at the top of all sublayers, R(61).

After completion of the first loop, and since each X matrix connects

the downward fluxes at level j to those at the next higher level j + 1, we may

start at the top level, for which the downward incident fluxes are given, and

then derive the downward fluxes at all successive deeper levels by employing

the previously stored X matrices. At the same time, one can derive the

upward fluxes by using the stored R matrices. The equations used here are

Ed(j) = X(j)Ed(j + 1) (5.15)
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2. Description of mSCOPE

Eu(j) = R(j)Ed(j) (5.16)

With all scattering and extinction coefficients in Eq. 5.1 defined

per unit of LAI, we can write for each sublayer with a small LAI (∆L,

1/60 of total canopy LAI). We can establish the scattering and extinction

coefficients for all sublayers, and convert them into thin layer reflectances

and transmittances:

τss(j) = 1− k(j)∆L (5.17a)

τdd(j) = 1− a(j)∆L (5.17b)

τsd(j) = s′(j)∆L (5.17c)

ρsd(j) = s(j)∆L (5.17d)

ρdd(j) = σ(j)∆L (5.17e)

A complete algorithm to calculate the flux profile in a whole canopy

layer of vertically heterogeneous vegetation is summarized as:

For sublayer j = 1 to 60 (bottom to top)

Xss(j) = τss(j) (5.18a)

Xsd(j) =
τsd(j) + τss(j)Rsd(j)ρdd(j)

1− ρdd(j)Rdd(j)
(5.18b)

Xdd(j) =
τdd(j)

1− ρdd(j)Rdd(j)
(5.18c)

Rsd(j + 1) = ρsd(j) + τdd(j)[Rsd(j)Xss(j) +Rdd(j)Xsd(j)] (5.18d)

Rdd(j + 1) = ρdd(j) + τdd(j)Rdd(j)Xdd(j) (5.18e)

For sublayer j = 60 to 1 (top to bottom)

Es(j) = Xss(j)Es(j + 1) (5.19a)

E−(j) = Xsd(j)Es(j + 1) +Xdd(j)E
−(j + 1) (5.19b)

E+(j) = Rsd(j)Es(j) +Rdd(j)E
−(j) (5.19c)
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5. Radiative transfer in multi-layer canopies

Es(61) and E−(61) refer to incident direct solar flux and diffuse flux,

which are Esun and Esky. The hemispherical fluxes E−, E+ profiles and

hemispherical reflectance factors Rdd and Rsd are computed.

2.3 The observed radiance

The adding method can be used to calculate the flux in the observer’s

direction Eo and the directional reflectance factors Rso and Rdo. However,

the hot spot effects on Rso and Eo are not considered in this method. Thus,

Rso and Eo is given separately by solving Eq. 5.1d.

In a leaf canopy with finite leaf size the solar flux is described statistic-

ally, using the probability of sunshine and its complement, the probability of

being in the shade. The probability of sunshine is described with a Poisson

model as:

Ps(j) = ek∆L(j−60) (5.20)

The gap probability Ps controls the probability of sunshine. For

example, at sunlit locations the solar flux equals to the solar flux incident

at the top of the canopy, Es(61) or Esun (i.e., incident direct solar flux).

The probability for leaves in sublayer j (i.e., j from 1 to 60) or the soil (i.e.,

j = 0) of being observed through direct line-of-sight by an observer above

the canopy is expressed by a similar function:

Po(j) = eK∆L(j−60) (5.21)

The observed radiance contributed by the leaves is obtained by nu-

merically solving Eq. 5.1d:

Eleaveso (61) = ∆L

60∑
j=1

[w(j)Es(j) + v(j)E−(j) + v′(j)E+(j)]Po(j)

= ∆L

60∑
j=1

[w(j)EsunPs(j) + v(j)E−(j) + v′(j)E+(j)]Po(j)

= ∆L

60∑
j=1

{w(j)EsunPs(j)Po(j) + [v(j)E−(j) + v′(j)E+(j)]Po(j)}

(5.22)
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2. Description of mSCOPE

In order to take proper account of the hot spot effects, the product

of the correlated probabilities PsPo , which indicates the joint probability

of directly observing, through gaps in the canopy, sunlit phyto-elements or

sunlit soil, must be replaced by the so-called bi-directional gap probability

Pso (Verhoef, 1998; Van der Tol et al., 2009), which is given in Appendix C.

Therefore we write

Eleaveso (61) = ∆L

60∑
j=1

{w(j)EsunPso(j) + [v(j)E−(j) +v′(j)E+(j)]Po(j)}

(5.23)

The contribution from the soil is given by.

Esoilo (61) = EsunPso(0)Rso(1) +Rdo(1)E−(1)Po(0) (5.24)

where Rso(1) and Rdo(1) are the directional reflectance factors of the back-

ground (Rbottom).

For the total TOC radiance (times π), we find in the general case

πLo = Esoilo (61) + Eleaveso (61) (5.25)

The reflectance of canopy observed by a sensor is given by

ρ =
πLo

Esun + Esky
(5.26)

where Esun and Esky are given as input or simulated from atmosphere

radiative transfer models, such as MODTRAN (Berk et al., 2005).

The directional reflectance factors Rso and Rdo are computed by using

Eq. 5.26 setting Esky or Esun to 0 (i.e., when Esky = 0, ρ = Rso).

2.4 Photosynthesis

Once the fluxes profile is computed, the radiation absorbed by the

foliage can be calculated. The radiation absorbed by chlorophyll is used

for photosynthesis, fluorescence and heat dissipation (Baker, 2008). Pho-

tosynthesis is then calculated as a product of the absorbed radiation and

photosynthetic efficiency. The efficiencies of photosynthesis and fluorescence
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5. Radiative transfer in multi-layer canopies

emission are simulated by a biochemical model as functions of the absorbed

light, leaf temperature and CO2 concentration and other factors (Van der

Tol et al., 2014).

To calculate the total photosynthesis, the canopy has to be divided

into multiple (e.g., 60 in mSCOPE) thin sublayers, as described in section 2.2.

Leaves in a thin sublayer are assumed to have the same ambient conditions

including temperature and humidity, while the incident light on individual

leaf in the thin layer may be different. Sunlit and shaded leaves are considered

separately, in terms of the efficiencies of photosynthesis and fluorescence. For

shaded leaves which are only illuminated by diffuse light, their efficiencies

depend on their vertical relative height (j), expressed as εF (j) and εP (j).

For sunlit leaves which are illuminated by both direct solar light and diffuse

light, their efficiencies depend on their orientation (leaf zenith angle θl,

azimuth angle ϕl) and vertical relative height (j), expressed as εF (j, θl, ϕl)

and εP (j, θl, ϕl). Fluorescence and photosynthesis of the sunlit leaves are

calculated for each specific leaf orientation. Numerically, 13 discrete leaf

inclinations θl are used as in mSCOPE inherited from SCOPE and SAIL, and

the uniform leaf azimuth ϕl distribution is also discretized to 36 angles of 5,

15,..., 355o relative to solar azimuth. At each sublayer, the leaf inclination

distribution is described by using mathematical functions (LIDF) (De Wit,

1965; Verhoef and Bunnik, 1975) which quantify the probability of each leaf

orientation class.

Canopy net photosynthesis (A, µmol CO2 m−2s−1) is then expressed

as:

A = ∆L

60∑
j=1

{[1−Ps(j)]·Ah(j)+
∑

36ϕl,13θl

Ps(j)·P (ϕl, θl)·As(j, ϕl, θl)} (5.27)

where Ps is the probability of sunlit leaves and (1-Ps) is the probability of

shaded leaves in sublayer j. Ah(j) is the photosynthesis of shaded leaves in

sublayer j per unit leaf area. As(j, ϕl, θl) is photosynthesis of sunlit leaves in

sublayer j with the leaf orientation of (ϕl, θl) per unit leaf area. P (ϕl, θl) is

the probability of leaves with given leaf orientation (ϕl, θl), which has 13×36

classes in the model. P (ϕl, θl) given by LIDF is identical for each sublayer
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2. Description of mSCOPE

in the canopy, because LIDF does not vary vertically in mSCOPE.

2.5 Fluorescence

Similar to SCOPE, the emission and radiative transfer of fluorescence

are both modelled in mSCOPE. However, the vertical heterogeneity of leaf

properties, have made the previous equations not applicable in this scenario.

To account for this, new equations and solutions have been implemented in

mSCOPE. To model the radiative transfer of fluorescence, we use a similar

strategy as the adding method used in modelling of fluxes profile, described

in section 2.2.

Fluorescence emitted by the foliage only consists of diffuse fluxes.

Only radiative transfer of the upward and downward diffuse fluxes should be

described. This can be established similarly to Eq. 5.4 and shown as follows.

E−F (j) = τdd(j)E
−
F (j + 1) + ρdd(j)E

+
F (j) + F−em(j) (5.28a)

E+
F (j) = ρdd(j)E

−
F (j + 1) + τdd(j)E

+
F (j) + F+

em(j) (5.28b)

where F−em and F+
em are the downward (’+’) and upward (’-’) diffuse hemi-

spherical emitted fluorescence of a sublayer. They are excited by the direct

solar flux (Es), upward (E+) and downward (E−) diffuse light at each

spectral band (λe) from 400 to 700 nm.

F−em(j) =∆L

∫ 700

400

[s
′

f (j)Es(j + 1) + σ
′

f (j)E−(j + 1) + σf (j)E+(j)]dλe

(5.29a)

F+
em(j) =∆L

∫ 700

400

[sf (j)Es(j + 1) + σf (j)E−(j + 1) + σ
′

f (j)E+(j)]dλe

(5.29b)

where ∆L is LAI of a thin sublayer which is 1/60 of canopy LAI. The emission

coefficients (with subscript f) are determined by sun-observer geometry,

canopy structure, leaf optical properties and fluorescence emission efficiency

of photosystems and given in Appendix A. The emission efficiencies in Eq.

5.29 are effective values for a sublayer, in which fluorescence emission is
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5. Radiative transfer in multi-layer canopies

considered separately for sunlit and shaded leaves due to their different

fluorescence emission efficiencies.

The flux at the top of an ensemble of sublayers may contain reflected

downward flux as well as upward emitted flux, called U . Therefore we write

E+
F (j) = Rdd(j)E

−
F (j) + U(j) (5.30)

There is no upward emitted flux from the soil, thus U(1) = 0. For the

reflection of fluorescence by the soil we write

E+
F (1) = Rdd(1)E−F (1) (5.31)

Substituting Eq. 5.30 into Eq. 5.28a gives

E−F (j) =
τdd(j)E

−
F (j + 1) + ρdd(j)U(j) + F−em(j)

1− ρdd(j)Rdd(j)
(5.32)

This can be written as

E−F (j) = Xdd(j)E
−
F (j + 1) + Y (j) (5.33)

where

Y (j) =
ρdd(j)U(j) + F−em(j)

1− ρdd(j)Rdd(j)
(5.34)

Substituting Eq. 5.30 into Eq. 5.28b we obtain

E+
F (j+1) = ρdd(j)E

−
F (j+1)+τdd(j)[Rdd(j)E

−
F (j)+U(j)]+F+

em(j) (5.35)

Substituting Eq. 5.33 into Eq. 5.35 we obtain

E+
F (j + 1) = ρdd(j)E

−
F (j + 1) + τdd(j){Rdd(j)[Xdd(j)E

−
F (j + 1) + Y (j)] + U(j)}+ F+

em(j)

= [ρdd(j) + τdd(j)Rdd(j)Xdd(j)]E
−
F (j + 1) + τdd(j)[Rdd(j)Y (j) + U(j)] + F+

em(j)

= Rdd(j + 1)E−F (j + 1) + τdd(j)[Rdd(j)Y (j) + U(j)] + F+
em(j)

(5.36)

Comparing Eq. 5.36 with Eq. 5.30, we obtain

U(j + 1) = τdd(j)[Rdd(j)Y (j) + U(j)] + F+
em(j) (5.37)

A complete algorithm to calculate the fluorescence profile in a vertically

heterogeneous canopy is summarized as:
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For sublayer j = 1 to 60 (bottom to top)

Xdd(j) =
τdd(j)

1− ρdd(j)Rdd(j)
(5.38a)

Y (j) =
ρdd(j)U(j) + F−em(j)

1− ρdd(j)Rdd(j)
(5.38b)

Rdd(j + 1) = ρdd(j) + τdd(j)Rdd(j)Xdd(j) (5.38c)

U(j + 1) = τdd(j)[Rdd(j)Y (j) + U(j)] + F+
em(j) (5.38d)

After application of these equations from the bottom to the top of

the canopy, the following two equations can be applied to calculate the

hemispherical fluorescence fluxes from top to bottom:

For sublayer j = 60 to 1 (top to bottom)

E−F (j) = Xdd(j)E
−
F (j + 1) + Y (j) (5.39a)

E+
F (j) = Rdd(j)E

−
F (j) + U(j) (5.39b)

Where E−F (61) =0, U(1) = 0 and Rdd(1) is given in the soil reflectance

matrix.

2.6 The observed fluorescence

The fluorescence observed at top of canopy has four contributions:

1. fluorescence emitted by sunlit leaves and directly observed via Pso(j),

2. fluorescence emitted by shaded leaves and directly observed via Po(j), 3.

diffuse fluorescence flux scattered in the canopy and observed via Po(j), 4.

diffuse fluorescence flux reflected by the soil and observed via Po(0).

Similar to Eq. 5.29, the emitted fluorescence for each sublayer is given

as:

F oem(j) = ∆L

∫ 700

400

[wf (j)Es(j) + vf (j)E−(j) + v
′

f (j)E+(j)]dλe (5.40)

The emitted fluorescence of sunlit leaves per unit layer F soem(j) is

distinguished from that of shaded leaves by Fhoem(j). The four contributions
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5. Radiative transfer in multi-layer canopies

are given by

πL1
F =

60∑
j=1

F soem(j)Pso(j) (5.41a)

πL2
F =

60∑
j=1

Fhoem(j)[Po(j)− Pso(j)] (5.41b)

πL3
F =

60∑
j=1

[v(j)E−F (j) + v′(j)E+
F (j)]Po(j) (5.41c)

πL4
F = E−F (1)Rdo(1)Po(0) (5.41d)

The total observed fluorescence (LF ) is summed by:

LF = L1
F + L2

F + L3
F + L4

F (5.42)

3. Materials and Methods

3.1 Synthetic dataset of two-layer canopies

First, synthetic datasets was used to evaluate the vertical heterogeneity

effect on TOC fluorescence, TOC reflectance and canopy photosynthesis. In

the current experiment, scenarios for two-layer canopies have been simulated.

A two-layer canopy is one of the simplest multi-layer canopies and it has

also been used in several heterogeneous reflectance models, including the

two-layer canopy reflectance model (Kuusk, 2001) and 4SAIL2 (Verhoef and

Bach, 2007).

Table 5.3: Input parameters of vertical leaf chlorophyll (Cab, µg cm−2) and
equivalent water thickness (Cw, cm) profile in six two-layer canopy scenarios.

Scenario upper layer lower layer
Cab Cw Cab Cw

S0 40 0.015 40 0.015
S1 60 0.02 20 0.01
S2 20 0.01 60 0.02
S3 40 0.015 0 0.01
S4 40 0.015 20 0.02
S5 40 0.015 60 0.03

Specifically, six scenarios were generated from different combinations

of leaf chlorophyll Cab and leaf water content Cw (Table 5.3). These six
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scenarios can be considered as two groups of canopies. In the first group, the

three scenarios (S0, S1, S2) had the same canopy averaged Cab and Cw, which

were 40 µg cm−2 and 0.015 cm, respectively, while the vertical distributions

of Cab and Cw were different. In the second group, the four scenarios (S0,

S3, S4, S5) had the same Cab and Cw of leaves in the upper layer, while Cab

and Cw varied in the lower layer. In all the scenarios, LAI of both two layers

was 1.5 (total canopy LAI was 3). The other model parameters were set to

the ’standard’ values (Table 5.1). It should be noted that S0 was a scenario

of homogeneous canopy that served as a reference.

3.2 Field measurement dataset of corn canopy

To further investigate the effects of vertical heterogeneity, reflectance,

fluorescence and photosynthesis were simulated with field measured data as

input. The field experimental data was acquired from a corn canopy, where

synchronous seasonal measurements of vertical profiles of leaf chlorophyll

content and LAI, TOC reflectance from 400 to 900 nm were available (Gitelson

et al., 2003, 2006; Ciganda et al., 2008). The measurements on 3 days in the

early, middle and end of the growing season were selected, which were on

DOY (day of year) 173, 206 and 259 in 2005, as shown in Fig. 5.1 and Fig.

5.2.
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Figure 5.1: Canopy reflectance observations on DOY 173, 206 and 259 in the
growing season and soil reflectance (DOY, day of year).
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Figure 5.2: Vertical profile of leaf chlorophyll content (Cab) and LAI in the
field datasets acquired on three days in the corn growing season. (Note, y
axis represents leaf position. The collar or ear leaf was labelled as leaf 0. The
leaves above or below leaf 0 were identified with a ’+’ or ’-’ sign, respectively,
with the corresponding position number. For example, the first leaf above
the collar or ear leaf was identified as +1, the first leaf below the collar or
ear leaf was identified as -1; DOY, day of year).

We first approximated the canopy structure and leaf properties from

TOC reflectance by inverting the reflectance calculating routine in RTMo of

SCOPE. The numerical optimization method (Nocedal and Wright, 2006)

was used to retrieve the parameters Cab, Cdm, Cw, Cs, Cca, Nl, LIDFa and

LIDFb by minimizing a cost function:

C =

n∑
i=1

[Rm(i)−Rs(i)]2 (5.43)

where Rm and Rs were measured and simulated TOC reflectance, and i

represented a band in the reflectance measurements. In the retrieval, LAI

was fixed to the measured canopy LAI, which was 1.63, 5.23 and 3.77 on the

three days.

Reflectance, fluorescence and photosynthesis were simulated for each

canopy from both SCOPE and mSCOPE. In the SCOPE simulation, the

retrieved parameters were used except for chlorophyll content, for which
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canopy mean values measured (50.2, 41.2, 7.8 µg cm−2) were used. In the

mSCOPE simulations, the measured leaf chlorophyll profiles and the retrieved

canopy ’effective’ values of other properties were used as input. The canopy

had 12, 17 and 19 leaves on DOY 173, DOY 206 and DOY 259, respectively.

Chlorophyll of each leaf was measured (Fig. 5.2). Regardless of the different

vertical complexity of the corn canopy on three days, the vertical profiles of

Cab of the canopy were implemented in mSCOPE in three ways, notably with

3, 7, and 11 layers. Leaves that had similar values of chlorophyll content were

merged into one layer and the mean chlorophyll content of the leaves was

assigned to the merged layer. Incident PAR was set to 1200 µmol m−2s−1 as

shown in Table 5.1.

3.3 Evaluation and validation

The simulation results of the six scenarios in the synthetic dataset were

compared to evaluate how the vertical heterogeneity of chlorophyll and water

content affects the canopy reflectance, fluorescence and photosynthesis. First,

simulated TOC reflectance (nadir, 400-2400 nm) and TOC fluorescence (nadir,

650-850 nm) from S1-S5 were visually compared to the homogeneous scenario

S0. Then, one visible band (550 nm) and one near-infrared water absorption

band (1200 nm) were selected for quantitative evaluation. Fluorescence at

687 nm and 760 nm (F687 and F760) were also compared, representing the

red and far-red fluorescence used in remote sensing of vegetation (Meroni

et al., 2009; Rascher et al., 2015). Further, simulations of net photosynthesis,

absorbed photosynthetically active radiation (aPAR) and photosynthetic light

use efficiency (LUE = A/aPAR) were compared and evaluated. SCOPE and

mSCOPE were crossed validated by comparing their respective simulation

results of the homogeneous scenario.

For the field corn dataset, simulations of TOC reflectance from

mSCOPE were compared with the field measurements, to validate the ac-

curacy of mSCOPE. Also, simulation results from mSCOPE were compared

with results from SCOPE, to evaluate the effects of vertical distributions of

Cab on TOC reflectance, fluorescence and canopy net photosynthesis.
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5. Radiative transfer in multi-layer canopies

4. Results

4.1 Simulation results of synthetic two-layer canopies

TOC reflectance, TOC fluorescence and canopy photosynthesis of the

six synthetic scenarios were simulated from mSCOPE. The results of the

heterogeneous scenarios (S1-S5) and the comparison reference homogeneous

scenario (S0) are shown in Fig. 5.3.
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Figure 5.3: Simulation results for the six synthetic scenarios from mSCOPE.
a), b) nadir reflectance spectra; c), d) nadir fluorescence spectra (Note, S0 is a
homogeneous scenario, S1-S5 have different vertical distribution of chlorophyll
content (Cab) and leaf water content (Cw) ). Reflectance spectra from 500
to 650 nm were enlarged in the grey boxes.

Modelled reflectance was different for each group-1 scenario (S0, S1 and

S2), despite having equal total canopy Cab and Cw (Fig. 5.3a). The difference

was especially obvious in the visible region from 400 to 700 nm. Modelled

reflectance also varied significantly among group-2 scenarios (S0, S3, S4 and

S5), where upper layer had the same Cab and Cw while lower layer Cab and

Cw increased from S3 to S5. The differences were obvious in both the visible

and infrared region (700-2400 nm). Especially, the disparity of infrared
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reflectance among group-2 scenarios was much higher than the disparity

among group-1 scenarios. Simulated reflectance was clearly the highest in

S3 among the group-2 scenarios. Reflectance at 550 nm of S3, S4 and S5

differed by 34%, 9% and 5% respectively, compared with the reflectance of

the homogeneous canopy S0, and reflectance at 1200 nm differed by 2%, 2%

and 6%, respectively.

Fluorescence of the six scenarios also varied (Fig. 5.3c and 5.3d).

In group-1 scenarios, at 687 nm (F687), S1 and S2 differed 3% and 10%

respectively, compared to the homogeneous canopy S0; while at 760nm (F760),

the difference of S1, S2 with S0 is marginal. In group-2 scenarios, at 687 nm

(F687), S3, S4, and S5 differed 23%, 7%, and 2% respectively, compared to

the homogeneous canopy S0; while at 760nm (F760), the difference to S0 was

33%, 6% and 2% respectively.

Table 5.4: Photosynthetically active radiation absorbed (aPAR), net photo-
synthesis (A) and light use efficiency (LUE) simulated from mSCOPE of the
six synthetic scenarios.

Scenario aPAR A LUE
(µmol m−2s−1) (µmol CO2 m−2s−1) (mol CO2 mol−1photon)

S0 943.02 25.17 0.027
S1 973.07 25.07 0.026
S2 842.40 24.78 0.030
S3 788.28 20.47 0.026
S4 922.50 24.85 0.027
S5 951.64 25.28 0.027

The results of net photosynthesis (A), absorbed photosynthetically

active radiation (aPAR) by all phyto-elements and light use efficiency (LUE

= A/aPAR) varied in the six scenarios (Table 5.4). In group-1 scenarios

(S0, S1 and S2), canopies with the same total Cab and Cw had a similar

photosynthesis, but different aPAR and LUE. The S1 canopy absorbed more

light than the S0 and S2 canopies, but had the smallest LUE. In group-2

scenarios (S0, S3, S4 and S5), aPAR and A increased with increasing total

Cab, but differences among scenarios in LUE were minor.
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5. Radiative transfer in multi-layer canopies

4.2 Simulated and measured results of field corn canopy

The retrievals of canopy structure and leaf properties from measured

reflectance (Table 5.5) show that the relative senescence material Cs of corn

was 0 in the early and middle growing season (DOY 173, DOY 206), but

0.4 in the senescent stage (DOY 259). Both leaf water content (Cw) and

carotenoid content (Cca) were the lowest on DOY 259. The retrieved Cab

was close to measured canopy mean Cab on DOY 173 and 206 (50.2 and 41.2

µg cm−2), but it was three times as high as measured canopy mean Cab on

DOY 259 (7.5 µg cm−2).

Table 5.5: The parameters of canopy structure and leaf properties of the
corn canopy retrieved from the TOC reflectance measurements.

Parameter DOY 173 DOY 206 DOY 259
Cdm (g cm−2) 0.01 0.04 0.005
Cw (cm) 0.04 0.05 0.01
Cs 0 0 0.4
Nl 1.5 1.7 1.4
Cca (µg cm−2) 5.6 3.7 1.4
Cab (µg cm−2) 55 38 25
LIDFa -0.79 -0.97 -1
LIDFb 0.21 0.03 0

The retrieved values (except Cab) were further input into mSCOPE

and SCOPE for forward simulations. Modelled TOC reflectance and fluores-

cence from mSCOPE and SCOPE, as well as measured TOC reflectance are

presented in Fig. 5.4, and simulated photosynthesis in Table 5.6. SCOPE

and mSCOPE (3, 7 or 11 layers) produced similar reflectance simulations,

and they were all close to the measured reflectance on both DOY 173 and

DOY 206. However, the simulations for DOY 259 diverged. Compared to

SCOPE, mSCOPE performed much better in terms of reflectance simulation

in the visible spectral region. Reflectance from SCOPE was clearly lower

than reflectance from mSCOPE in the range of 570 to 700 nm. However,

fluorescence (650 to 850nm) from SCOPE was much higher than fluorescence

from mSCOPE at DOY 259. The number of layers in mSCOPE had negligible

impact on the modelling results. Simplification of the corn canopy into 3,

7 or 11 layers, all produced similar fluorescence. Photosynthesis simulation

with SCOPE and mSCOPE were very similar for DOY 173 and DOY 206.
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Figure 5.4: Simulation results of the corn canopy on three days in the growing
season. upper panel: comparison among measured, mSCOPE modelled, and
SCOPE modelled reflectance; lower panel: comparison between mSCOPE
modelled and SCOPE modelled fluorescence (Note: the vertical profile of
Cab for each canopy was simplified as 3, 7, and 11 layers and implemented in
mSCOPE. DOY, day of year).

Howver, a notable difference was found in the results on DOY 259, when the

homogeneous SCOPE model produced a much higher (more than three-fold)

photosynthesis than mSCOPE.

Table 5.6: Net photosynthesis simulated from mSCOPE and SCOPE of the
corn canopy on the three days.

Photosynthesis (µmol CO2 m−2s−1)
DOY 173 DOY 206 DOY 259

SCOPE 23.8 37.7 27.9
mSCOPE-3 23.9 37.1 6.7
mSCOPE-7 23.9 37.0 5.9
mSCOPE-11 23.9 37.0 5.9
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5. Discussion

5.1 Model validation

The performance of mSCOPE has been tested in two ways: by analys-

ing the differences with SCOPE, and by comparing simulated to measured

reflectance of corn. For a homogeneous canopy, SCOPE and mSCOPE pro-

duce identical output (results not shown). If the vertical heterogeneity of

the canopy is limited, such as in the corn canopy data used in this study on

DOY 173 and DOY 206, then mSCOPE and SCOPE produce very similar

reflectance, fluorescence and photosynthesis simulations.

5.2 Effects of vertical heterogeneity on TOC reflectance,
fluorescence and photosynthesis

The modelled results from the six synthetic scenarios showed noticeable

effect of vertical heterogeneity on canopy TOC reflectance, which confirms

findings in previous modelling studies (Kuusk, 2001; Widlowski et al., 2007;

Wang and Li, 2013; Zhao et al., 2017). Furthermore, significant effect of

canopy heterogeneity on simulated TOC fluorescence and photosynthesis

was demonstrated in this study (Fig. 5.3c, 5.3d). TOC reflectance and

fluorescence vary with different vertical distribution of Cab and Cw, even

if the canopies have the same total Cab and Cw (Fig. 5.3a and 5.3c). The

lower leaves in a canopy with LAI=3 still has a noticeable impact on TOC

reflectance and fluorescence (Fig. 5.3b and 5.3d). It is worth noting that

canopy openness plays an important role in relative contribution of upper

and leaves in the canopy signal (Martens et al., 1993; Chen and Cihlar, 1995;

Nascimento et al., 2007). The lower leaves in canopies with low LAI have a

better chance (Po in Eq. 5.21) to be observed than those with high LAI.

The differences in fluorescence were mainly caused by the distribution

of Cab, and the effect of Cw was very small. Different Cab distribution led to

different aPAR (Jacquemoud et al., 2009), resulting in different fluorescence

emission. The effects of vertical heterogeneity of leaf properties on the fluor-

escence appear to be wavelength-dependent. F760 and F687 varied differently
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among the synthetic scenarios (Fig. 5.3d). This wavelength dependence is

caused by reabsorption: F687 has higher re-absorption and lower scattering

than F760.

The results of the corn canopy demonstrate that neglecting vertical

heterogeneity of Cab may lead to significant biases in prediction of TOC

reflectance, fluorescence and canopy photosynthesis in the senescent stage.

The biases of vegetation models as a result of simplifications depend on the

complexity of the canopies in reality, which was also demonstrated for TOC

reflectance by Wang and Li (2013). In the senescent stage of crops, canopies

usually have large vertical heterogeneity of leaf properties (Verhoef and Bach,

2007; Ciganda et al., 2008; Liu et al., 2015). Compared to SCOPE, mSCOPE

provided a closer prediction of TOC reflectance to the field measurement in the

visible region due to the consideration of the vertical heterogeneity of Cab (Fig.

5.4c). SCOPE produced considerably higher estimates of both fluorescence

and photosynthesis in the senescent stage when average Cab is used as input

(Fig. 5.4f and Table 5.6) compared to mSCOPE. Although simulations of

a multi-layer canopy are different from a single layer canopy, the number

of layers does not need to be large: The three simplifications in mSCOPE

(mSCOPE-3, mSCOPE-7 and mSCOPE-11) yield similar results. Thus,

the three-layer simplification (mSCOPE-3) appears a sufficiently detailed

representation of the vertical heterogeneity of the senescent corn, and adding

layers does not affect the results significantly in this case. The fact that three

layers is sufficient may be due to the ’bell-shape’ profiles (Ciganda et al.,

2008) of chlorophyll (Fig. 5.2), which can easily be approximated by three

layers. However, a single layer as in SCOPE may be an oversimplification.

From the above analysis, the effects of considering canopy vertical

heterogeneity on reflectance, fluorescence and photosynthesis has been demon-

strated. However, our experimental setup was rather simple compared to

complex canopies in reality. In the synthetic scenarios, two layer canopies

were generated, and only Cab and Cw were varied vertically. In the corn

canopy, only vertical variation of Cab was considered. The lack of measure-

ments of fluorescence and photosynthesis of the corn canopies also limited
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the validation of the full model. Since the main focus of this paper is to

introduce the mSCOPE model, only a simplified validation and evaluation

were conducted.

5.3 Implications

The model mSCOPE is an extension of SCOPE to include canopy

vertical heterogeneity of leaf biophysical and biochemical properties. It

simulates reflectance, fluorescence and photosynthesis of multi-layer canop-

ies. Vegetation reflectance models for heterogeneous canopies have been

developed. There are two-layer (Kuusk, 2001), multi-layer (Wang and Li,

2013) and 3-D models, such as DART (Gastellu-Etchegorry et al., 1996)

and Raytran (Govaerts and Verstraete, 1998). DART recently included the

fluorescence simulation (Gastellu-Etchegorry et al., 2017) to promote a better

understanding of remote sensed signals and plant physiology. The model

mSCOPE benefits from the original SCOPE model which incorporates the

energy balance model. The energy balance model allows predicting the

response of vegetation to the ambient conditions, such as temperature and

humidity (Van der Tol et al., 2014).

The adding concept applied in mSCOPE has potential in radiative

transfer modelling. It was originally used for the calculation of TOC reflect-

ance (Cooper et al., 1982; Verhoef, 1985). We have extended the adding

method to the calculation of vertical flux profiles incorporating the radiation

emission (fluorescence) in multi-layer canopies. These have been summarized

in Eq. 5.18, 5.18 and in Eq. 5.38, 5.39 (with fluorescence emission). Our

approach can be applied in mediums other than vegetation, such as water and

atmosphere which have a clear multi-layer structure. Moreover, it can also

be used for the calculation of thermal fluxes in various mediums as similar to

the calculation of fluorescence fluxes. The detailed mathematical explanation

in section 2 will allow applying our approach in the potential applications

mentioned above.
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6. Conclusion

Vegetation canopies generally exhibit vertical heterogeneity in leaf

properties. Homogeneous models are in some cases insufficient in their

representation of the canopy for understanding the remote sensing signal of

reflectance, fluorescence and canopy photosynthesis. An integrated model of

radiative transfer and energy balance that addresses vertical heterogeneity

of leaf biophysical and biochemical parameters within the canopy has been

proposed. The model mSCOPE simulates TOC reflectance, fluorescence and

photosynthesis, for vertically heterogeneous canopies. It could provide a

better understanding of remote sensing signals and plant physiology.

7. Appendices

Extinction, scattering and emission coefficients

Leaf reflectance and transmittance (ρ and τ) are simulated by leaf

RTMs (i.e., FLUSPECT in mSCOPE). The reflectance of both the adaxial

and abaxial sides of leaves is assumed to the same in the model. Leaf angle is

characterized by leaf zenith angle (θl) and azimuth angle (ϕl). Numerically,

13 discrete leaf inclinations are used as in mSCOPE inherited from SCOPE

and SAIL, and the uniform leaf azimuth distribution is now also discretized

to 36 angles of 5, 15,..., 355o relative to solar azimuth. The leaf inclination

distribution is described by using mathematical functions (LIDF) (De Wit,

1965) which quantifies the probability of each leaf orientation class. Sun-

observer geometry is determined by the sun and observer’s zenith angle (θs

and θo), and the relative azimuth angle (ψ, the absolute difference between
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their azimuth angles). The coefficients are expressed as follows:

fs = cos θl + tan θs sin θl cosϕl (5.44a)

fo = cos θl + tan θo sin θl cos(ϕl − ψ) (5.44b)

k = |fs| (5.44c)

K = |fo| (5.44d)

s =
1

2
[|fs|(ρ+ τ) + fs cos θl(ρ− τ)] (5.44e)

s′ =
1

2
[|fs|(ρ+ τ)− fs cos θl(ρ− τ)] (5.44f)

σ =
1

2
[(ρ+ τ) + (ρ− τ) cos2 θl] (5.44g)

a = 1− 1

2
[(ρ+ τ)− (ρ− τ) cos2 θl] (5.44h)

v =
1

2
[|fo|(ρ+ τ) + fo cos θl(ρ− τ)] (5.44i)

v′ =
1

2
[|fo|(ρ+ τ)− fo cos θl(ρ− τ)] (5.44j)

w =
1

2
[|fsfo|(ρ+ τ) + fsfo(ρ− τ)]. (5.44k)

The nine emission coefficients (those with subscripts of f) are determ-

ined both by sun-leaf-observer geometry, which is characterized by the zenith

angles of the sun (θs), leaf (θl) and observer (θo), the leaf azimuth angle (ϕl)

and the relative azimuth angles between the sun and the observer (ψ), and

by the leaf excitation-emission matrices at the backward and forward side
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(Mb and Mf ) (Vilfan et al., 2016). For individual leaves, they are given by

fs = cos θl + tan θs sin θl cosϕl (5.45a)

fo = cos θl + tan θo sin θl cos(ϕl − ψ) (5.45b)

sf =
1

2
[|fs|(Mb +Mf ) + fs cos θl(Mb −Mf )] (5.45c)

s′f =
1

2
[|fs|(Mb +Mf )− fs cos θl(Mb −Mf )] (5.45d)

σf =
1

2
[(Mb +Mf ) + (Mb −Mf ) cos2 θl] (5.45e)

σ′f =
1

2
[(Mb +Mf )− (Mb −Mf ) cos2 θl] (5.45f)

vf =
1

2
[|fo|(Mb +Mf ) + fo cos θl(Mb −Mf )] (5.45g)

v′f =
1

2
[|fo|(Mb +Mf )− fo cos θl(Mb −Mf )] (5.45h)

wf =
1

2
[|fsfo|(Mb +Mf ) + fsfo(Mb −Mf )]. (5.45i)

The excitation-emission matrices (Mb and Mf ) are functions of fluor-

escence emission efficiency and thus are determined by the net radiation. It

is noted that the matrices are dependent on the illumination conditions of

the individual leaf.

Effective downward transmittance X

I − rbR =

[
1 0
0 1

]
−
[

0 0
ρdd 0

] [
Rsd Rdd
Rso Rdo

]
=

[
1 0
0 1

]
−
[

0 0
ρddRsd ρddRdd

]
=

[
1 0

−ρddRsd 1− ρddRdd

] (5.46)

Therefore, we find

(I − rbR)−1 = (1− ρddRdd)−1

[
1− ρddRdd 0
ρddRsd 1

]
(5.47)
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Post-multiplication by td then gives

X =(I − rbR)−1td

=(1− ρddRdd)−1

[
1− ρddRdd 0
ρddRsd 1

] [
τss 0
τsd τdd

]
=

[
τss 0

τsd+τssRsdρdd
1−ρddRdd

τdd
1−ρddRdd

] (5.48)

where only Rsd and Rdd refer to thick layer extending from the bottom to

level j, which means that one can write

X(j) =

[
τss(j) 0

τsd(j)+τss(j)Rsd(j)ρdd(j)
1−ρdd(j)Rdd(j)

τdd(j)
1−ρdd(j)Rdd(j)

]
=

[
Xss(j) 0
Xsd(j) Xdd(j)

]
(5.49)

Bi-directional gap probability

For sublayer j, the vertical relatively coordinate is given by

x = (j − 60)/60 (5.50)

and the bi-directional gap probability of the sublayer is given by Verhoef

(1998)

Pso(j) = exp{(K + k)x+
√
Kk

sl
a

[1− exp(xa/sl)]} (5.51)

where sl is the hot spot size parameter, approximated as

sl =
wl
h

2

K + k
(5.52)

where wl is the average leaf width and h canopy height, and the factor

2/(K + k) accomplishes a correction for leaf projection area on a horizontal

plane. The function a depends only on the sun-target-sensor angular geometry,

and is given by

a =

√
tan2 θs + tan2 θo − 2 tan θs tan θo cosψ (5.53)
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Monitoring terrestrial vegetation photosynthesis is a key to understand

and predict carbon dynamics and the adaptation of ecosystem functions to

environmental changes. Remote sensing of sun-induced chlorophyll fluores-

cence (SIF) is a promising way to monitor vegetation photosynthesis. With

the increased availability of SIF data, the use of SIF-based approaches is in-

creasing to obtain an insight into the functional aspects of plant communities.

Three processes determine SIF observed by remote sensors: photosynthetic

light absorption, conversion of absorbed light to fluorescence, re-absorption

and scattering of emitted fluorescence. It is essential to separate these

three quantitatively to move beyond the mere empirical observation of the

SIF-photosynthesis relationship.

1. Conclusions and implications

1.1 Summary of conclusions

The key to using SIF is not to use it as a proxy of photosynthesis

directly, but to use it together with the reflectance spectrum. Only then the

effects of APAR, physiology and scattering on SIF can be separately quantified.

While radiative transfer models can serve for this purpose (Chapter 2), it is

also possible to derive a relationship between the scattering of fluorescence

and reflectance analytically (Chapter 3), as:

σF =
Rnir
i0ω

(6.1)

This relationship explains the similarity between the viewing angle

dependence of SIF and reflectance reported in the literature. Moreover, it

provides a way to correct the process of scattering of emitted SIF that is

unrelated to photosynthesis, and allows downscaling TOC SIF to canopy

emitted SIF.

In Chapter 4, combining the relationship found in Chapter 3 and a

new model for fPAR (Eq. 6.2), a simple reflectance index (FCVI, fluorescence

correction vegetation index) is proposed (Eq. 6.3).

fPAR = i0
Rnir −Rvis

Rnir
(6.2)
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FCVI = Rnir −Rvis (6.3)

FCVI as a difference between near-infrared and broadband visible

(400 - 700 nm) reflectance quantifies the effects of light absorption and SIF

re-absorption (and scattering) on observed SIF signals. It allows downscaling

TOC SIF to fluorescence emission efficiency. Applying this index to GOME-2

SIF measurements, global fluorescence emission efficiency maps are obtained.

In Chapter 5, a model for light interaction and energy balance in multi-

layer canopies is developed. The mSCOPE model simulates SIF, reflectance

and photosynthesis in multilayer vegetation canopies. The modelling ap-

proaches described can be used in radiative transfer of emitted SIF, scattered

radiation and thermal radiation in water, vegetation and atmosphere. This

adaptation of SCOPE is particularly useful in vegetation with a strong

vertical gradient of pigments, such as senescent vegetation.

1.2 Implications

The approaches proposed and models developed in this thesis are

expected to play an important role in a better interpretation of SIF signals

for remote sensing of photosynthesis. By accounting for scattering effects,

TOC SIF is converted to canopy emitted SIF. By further consideration of

photosynthetic light absorption, fluorescence emission efficiency is retrieved.

The correction of scattering effects on SIF yields canopy fluorescence produc-

tion, which is directly linked with GPP. The correction of non-physiological

regulation of SIF yields fluorescence emission efficiency, which is directly

linked with photosynthetic efficiency. This can both be done with RTMs

(Chapter 2) and with the analytical function and index (Chapter 3 and 4).

It is worth noting that the RTM-based approach in Chapter 2 quantifies the

three process over the whole spectral region (i.e. 640 - 850 nm), while the

approaches in Chapter 3 and 4 are developed and valid only for far-red SIF.

This thesis demonstrates that canopy reflectance is essential to estim-

ate the effects of canopy structure, leaf properties and observational condition
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on SIF and disentangle physiological regulation of SIF. Both the RTM-based

approaches (Chapter 2) and the approaches in Chapter 3 and 4 rely on

reflectance data. In the RTM-based approaches reflectance allows retrieving

of vegetation variables by inverting RTMs which can be used to predict light

absorption and scattering of SIF. In Chapter 3 and 4, both scattering of SIF

(σF , for far-red SIF) and photosynthetic light absorption (fPAR) are directly

approximated by using simple functions of canopy reflectance.

Radiative transfer models are important tools for the interpretation

of optical remote sensing signals (e.g. reflectance and fluorescence). They

provide the physical relations among remotely sensed signals, vegetation

properties and observational conditions. By means of RTMs one is able

to explain the relationship between canopy structure, leaf properties and

sun-observer geometry and canopy reflectance. RTMs of fluorescence provide

exciting opportunities for the quantitative use of SIF signals. The inclusion

of SIF in the leaf RTMs connects fluorescence at photosynthetic level and

at leaf level. Canopy SIF RTMs further connects leaf-level fluorescence to

SIF actually observed from remote sensing techniques. The SCOPE and

mSCOPE model can serve as a tool to better understand reflectance and SIF

signals.

2. Further challenges on the way ahead

Several technical and scientific challenges were encountered, but not

resolved in this thesis. First, the RTM-based approach provides explicit qual-

ification of the photosynthetic light absorption and fluorescence re-absorption

process, but it is computationally more expensive because of the necessary

retrieval of vegetation variables from reflectance by using model inversion.

Moreover, the retrieval of vegetation variables from reflectance is sometimes

ill-posed and the uncertainty has not been fully quantified. Second, the

method of using reflectance for scattering of SIF only works in the near-

infrared region, but not in the red region. The asymmetric distribution of

scattered radiation and emitted SIF radiation over the two sides of a leaf in

the red region is the main cause of the complex relationship of scattering of
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SIF and reflectance. The comparison of distribution of scattered radiation

and emitted SIF radiation relies on the understanding of radiative trans-

fer within a leaf. Further studies on leaf radiative transfer may provide a

complete picture of the scattering effect on red SIF. Alternative option is

generating an empirical relationship between within-leaf scattering of SIF

and leaf reflectance and transmittance from leaf-level measurements, and

upscaling the relationship to canopy through radiative transfer.

Several approaches have been proposed and discussed to interpret

SIF measurements, but SIF has not been yet connected with photosynthesis

mechanistically. We have moved beyond empirical relationships by quantitat-

ively separating non-physiological and physiological regulation mechanisms

on TOC SIF. This implies that the total emitted SIF of a canopy and fluor-

escence emission efficiency of photosystems can be obtained from TOC SIF

observations. The next question that has not been answered in this thesis, is

how fluorescence emission efficiency is related to photosynthetic efficiency.

In this respect, we are still at the point of Van der Tol et al. (2014), namely

an empirical model. Mechanistically linking fluorescence emission efficiency

with photosynthetic efficiency is the biggest challenge ahead.

One possible way is to independently measure NPQ (heat dissipation)

from reflectance. It is well-known that dynamic NPQ associates with changes

in carotenoid pigments (e.g. xanthophyll pigments) in live foliage. Moreover,

it is evident that NPQ regulations affect visible reflectance. Therefore, it may

be possible to estimate NPQ or even the efficiency of heat dissipation from

reflectance data. For example, PRI computed as the normalized difference of

reflectance at 531 nm and 570 nm has been shown to be correlated with NPQ.

Quantification of the efficiency of heat dissipation requires more mechanistic

approaches rather than the semi-empirical indices. Modelling efforts to link

NPQ and visible reflectance have been made (Vilfan et al., 2018). The

first attempt on estimating NPQ from reflectance spectra is ongoing. It is

promising to retrieve the efficiency of heat dissipation from reflectance data.

With fluorescence emission efficiency retrieved from TOC SIF measurements,

one may eventually quantify photosynthetic efficiency from remote sensing
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data.

Another option is looking at the dynamic response of SIF to cli-

matic variables, notably temperature and light intensities. Both SIF and

photosynthesis respond to ambient environmental conditions dynamically.

Their responses to certain environmental factors (e.g. light intensity and

temperature) have specific patterns. By looking into the patterns in the

response of fluorescence, one may be able to reveal photosynthetic traits. For

example, the light saturation point in the fluorescence-light response curve is

closely related to the maximum rate of carboxylation (see Fig. 4. 9). With

the increase of high temporal resolution SIF data, we can fully explore the

potential of SIF.

In conclusion, this thesis provides several ways to interpret TOC SIF

measurements and solve several problems in a remote sensing perspective.

With the future work on the mechanistic link between fluorescence and

photosynthesis, it is hoped that one can quantitatively monitor photosynthesis

at regional and global scales from remote sensing data.
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Köhler, P., Guanter, L., Joiner, J., 2015. A linear method for the retrieval

of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY

data. Atmospheric Measurement Techniques 8 (6), 2589.
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7Summary

Plants are a dynamic part of our planet. They have made the world

habitable and formed the climate, through a fundamental process, photosyn-

thesis. Photosynthesis absorbs energy from the sun, removes CO 2 from the

atmosphere and records it, and creates O 2 for life on Earth. Tracking the

speed of photosynthesis via Earth observation is needed to better understand

the interactions of different processes in the environment, and it is essential

from the point of view of food safety. It is not feasible to obtain a global

and continuous time series of photosynthesis by measuring the exchange of

gases alone. Earth observation with satellites offers a possible outcome, but

measuring reflection with satellites offers no more than a rough estimate of

photosynthesis. The sunlight-induced fluorescence of chlorophyll in plants

(SIF) is a promising candidate to fill this gap. Measurements of SIF con-

tain information about both the collection of sunlight, the energy source of

photosynthesis, and the efficiency with which the captured light is used for

capturing carbon. During the past decades SIF has been used as a direct

measure for primary production (GPP), but also as an imposed restriction

on models for GPP. The main challenges in the use of SIF for photosynthesis

are: 1) obtaining quantitative information on parameters related to photo-

synthesis from measurements of SIF above the crop via model inversion, and

2) quantifying the mechanisms by which SIF and photosynthesis are linked

to each other at the sub-cellular level of photo systems. This dissertation

examines the first problem, and aims to deepen the understanding of SIF

as measured above the vegetation. The three processes that are responsible
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7. Summary

for SIF are quantified in this study, namely the absorption of sunlight, the

emission of fluorescence, and the (re) absorption of fluorescence. By sep-

arately quantifying these three processes, SIF can be corrected for the (re)

absorption in the vegetation. The resulting signal is a better measure for

photosynthesis than the uncorrected SIF. Further normalization through the

light absorption provides information about the efficiency of the emission: a

measure for the distribution of the energy in the photo systems over various

processes, including photochemistry. The study uses models for radiation

transport (RTMs) for the interpretation of simultaneous measurements of

SIF and reflection above the vegetation. The approach proved to be well

suited for evaluating the effects of the absorption of sunlight and fluorescence.

It turned out to be possible to trace the functional response of various agri-

cultural crops to a heat wave from measurements with the HyPlant sensor

on an airplane. After analysis of the radiation transport, it was possible

to estimate the scattering and reabsorption of the fluorescence from the

reflection by means of a simple comparison. This simple comparison makes

it possible to calculate the total produced fluorescence in the vegetation

from the measured SIF and reflection. A new model for fPAR has emerged

from a further analysis of the absorption of sunlight (fPAR). This model for

fPAR, combined with the equation for total fluorescence, resulted in a very

simple reflection index, FCVI, for both the absorption of sunlight and the

scattering of fluorescence. FCVI is the difference between the near infrared

and the panchromatic visible reflection. With this index, measurements of

SIF with the satellite GOME-2 were subsequently corrected, resulting in

global time series of the efficiency of the emission of fluorescence. The final

part of this thesis describes a general radiation model for vegetation with a

complex composition, modeled in the mSCOPE model. This model simulates

the interaction of light and the energy balance in vegetation consisting of

several layers. This model will also contribute to the interpretation of SIF

measurements. This thesis contains a number of suitable approaches to

interpret SIF measurements and to use them well. The measured SIF can

be converted into an estimate of the total production of fluorescence in the
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vegetation and the efficiency of that production. This makes it possible to go

beyond the empirical correlation between SIF and photosynthesis that until

recently was common. Future studies should show how fluorescence depends

on photosynthesis at the level of photo systems.
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8Samenvatting

Planten vormen een dynamisch onderdeel van onze planeet. Zij hebben

de wereld bewoonbaar gemaakt en het klimaat gevormd, door middel van

een fundamenteel proces, fotosynthese. Door fotosynthese wordt energie

van de zon opgevangen, CO2 uit de atmosfeer gehaald en vastgelegd, en

O2 gevormd voor het leven op Aarde. Het bijhouden van de snelheid van

fotosynthese via aardobservatie is nodig voor beter begrip van de wissel-

werkingen van verschillende processen in het milieu, en het is essentieel uit

het oogpunt van voedselveiligheid. Het is ondoenlijk om een mondiale en

ononderbroken tijdserie van fotosynthese te verkrijgen door alleen het meten

van de uitwisseling van gassen. Aardobservatie met satellieten biedt een

mogelijke uitkomst, maar het meten van reflectie met satellieten biedt niet

meer dan een ruwe schatting van de fotosynthese. De door zonlicht opgewekte

fluorescentie van chlorofyl in planten (SIF) is een veelbelovende kandidaat

om dit hiaat op te vullen. Metingen van SIF bevatten informatie over zowel

het opvangen van zonlicht, de energiebron van fotosynthese, als de efficintie

waarmee het ingevangen licht gebruikt wordt voor het vastleggen van kool-

stof. Gedurende de afgelopen decennia is SIF gebruikt als een directe maat

voor de primaire productie (GPP), maar ook als een opgelegde beperking

aan modellen voor GPP. De grootste uitdagingen bij het gebruik van SIF

voor fotosynthese zijn: 1) het verkrijgen van kwantitatieve informatie over

parameters gerelateerd aan de fotosynthese uit metingen van SIF boven het

gewas via modelinversie, en 2) het kwantificeren de mechanismes waarmee

SIF en fotosynthese aan elkaar gekoppeld zijn op het sub-cellulaire niveau
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8. Samenvatting

van fotosystemen. Dit proefschrift gaat in op het eerste probleem, en beoogt

het begrip van SIF als gemeten boven de vegetatie te verdiepen. De drie

processen die verantwoordelijk zijn voor SIF zijn in deze studie gekwanti-

ficeerd, namelijk de absorptie van zonlicht, de emissie van fluorescentie, en

de (her)absorptie van fluorescentie. Door het afzonderlijk kwantificeren van

die drie processen, kan SIF worden gecorrigeerd voor de (her)absorptie in de

vegetatie. Het resulterende signaal is een betere maat voor de fotosynthese

dan de ongecorrigeerde SIF. Verdere normalisatie door de lichtabsorptie levert

informatie over efficintie van de emissie: een maat voor de verdeling van

het de energie in de fotosystemen over verschillende processen waaronder de

photochemie. De studie maakt gebruik van modellen voor stralingstransport

(RTMs) voor de interpretatie van gelijktijdige metingen van SIF en reflectie

boven de vegetatie. De benadering bleek goed geschikt voor het evalueren

van de effecten van de absorptie van zonlicht en fluorescentie. Het bleek

mogelijk om de functionele reactie van verschillende landbouwgewassen op

een hittegolf te achterhalen uit metingen met de HyPlant sensor op een

vliegtuig. Na analyse van het stralingstransport bleek het goed mogelijk om

de verstrooiing en herabsorptie van de fluorescentie te schatten uit de reflectie

door middel van een eenvoudige vergelijking. Deze eenvoudige vergelijking

maakt het mogelijk om de totale geproduceerde fluorescentie in de vegetatie

te berekenen uit de gemeten SIF en reflectie. Uit een verdere analyse van de

absorptie van zonlicht (fPAR) is een nieuw model voor fPAR voortgekomen.

Dit model voor fPAR, gecombineerd met de vergelijking voor de totale fluor-

escentie, resulteerde in een zeer eenvoudige reflectieindex, FCVI, voor zowel

de absorptie van zonlicht en de verstrooiing van fluorescentie. FCVI is het

verschil tussen de nabij infrarode en de panchromatische zichtbare reflectie.

Met deze index zijn vervolgens metingen van SIF met de satelliet GOME-2

gecorrigeerd, en dit resulteerde in mondiale tijdseries van de efficintie van

de emissie van fluorescentie. Het laatste deel van dit proefschrift beschrijft

een algemeen stralingsmodel voor vegetatie met een complexe samenstelling,

vormgegeven in het model mSCOPE. Dit model simuleert de interactie van

het licht en de energiebalans in vegetatie die uit meerdere lagen bestaat.
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Ook dit model zal bijdragen aan de interpretatie van metingen van SIF. Dit

proefschrift bevat een aantal geschikte benaderingen om SIF metingen te

interpreteren en goed te gebruiken. De gemeten SIF kan worden omgezet in

een schatting van de totale productie van fluorescentie in het de vegetatie en

de efficintie van die productie. Dit maakt het mogelijk om verder te gaan

dan de empirische correlatie tussen SIF en fotosynthese die tot voor kort

gebruikelijk was. Toekomstige studies moeten uitwijzen hoe fluorescentie

afhangt van fotosynthese op het niveau van fotosystemen.
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