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Summary  
Soil moisture is a key variable in the water cycle and it plays an important role in the 

exchanges of energy, water and gasses between land surface and atmosphere. The 

availability of soil moisture information leads to a better understanding of biology, 

hydrology, meteorology and climatology. The most suitable frequency band to retrieve 

soil moisture data is considered to be the L band, since it can partially penetrate 

vegetation and is marginally affected by clouds. Numerous studies show that both 

active and passive microwave observations are sensitive to soil moisture and can be 

used to retrieve soil moisture information. However, vegetation influence and 

roughness effect form the main obstacles for soil moisture retrieval in, respectively, 

the passive and active configuration. As passive and active microwave observations 

differ in sensitivity to the relevant factors, combined use of both these observations is 

beneficial when studying soil moisture.  

This dissertation contributes to a better estimation of soil moisture through synergetic 

use of active and passive observations from Aquarius, which is the first satellite to 

have both an L-band radiometer and a scatterometer onboard. The Tibetan Plateau has 

been selected as study area since it covers a large area with different climates, 

including humid, semi-arid and arid regions from east to west. Moreover, large 

amounts of in-situ data have been recorded across this area since 2008, providing 

ancillary data for the validation of soil moisture estimations.   

Aquarius observations are firstly analyzed for one of the Tibetan Plateau observatory 

sites, Maqu, in chapter 3. This confirms that both the Aquarius radiometer and 

scatterometer observations show a response to soil moisture variation across Maqu, 

especially when the soil moisture is less than 0.30 m3 m-3. Moreover, the Microwave 

Polarization Difference Index (MPDI) is investigated and shows that the derived 

vegetation optical depth (τ) is in line with the vegetation dynamics. However, even 

though the Radar Vegetation Index (RVI) might capture the seasonal dynamic change 

of vegetation, the accuracy is insufficient from a meaningful signal-to-noise point of 

view. 

In chapter 4, a discrete electromagnetic model developed by the Tor Vergata 

University of Rome (hereafter, Tor Vergata-discrete electromagnetic model, TV-DEM) 

is used to simulate both active and passive L-band responses and then compared with 

Aquarius observations from a view angle of 28.7° over Maqu, using a single set of 

input parameters. Litter biomass, litter moisture, plant moisture and standard deviation 

of height variations (s) in the TV-DEM are calibrated by minimizing the difference 

between the observed and simulated emissivity and backscattering coefficient from the 

warm seasons of 2012 and 2013. The calibrated parameters are used to reproduce the 
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brightness temperature and backscattering coefficient in the warm seasons of 2014 and 

2015, to validate the model’s performance. Furthermore, the soil moisture retrieval 

based on the TV-DEM is carried out and compared with the current single channel 

algorithm (SCA) retrieved soil moisture. Results present an unbiased root means 

square difference (ubRMSD) of 0.021 and 0.026 m3 m-3, as well as a coefficient of 

determination of 0.76 and 0.79 (-), for TV-DEM based soil moisture retrieval and SCA 

retrieval, respectively, with respect to the in-situ measurements.  

Chapter 5 follows up on the results of chapter 4 and introduces an algorithm for 

retrieving soil moisture at plateau scale, combining the use of Aquarius active and 

passive L-band observations. Look-Up-Tables (LUTs) are generated through forward 

modeling of the TV-DEM by varying LAI and soil moisture while keeping litter 

biomass, litter moisture, plant moisture and surface roughness the same as the 

calibrated parameters. By searching for the minimum squared difference between the 

emissivity and backscattering coefficient observed by Aquarius and the simulations 

included in the LUT, the corresponding soil moisture is derived. The soil moisture 

retrievals are assessed at footprint scale with respect to the in-situ measurements 

collected at three regional scale networks across the Tibetan Plateau. An inter-

comparison is also conducted among the TV-DEM retrieval, passive-only Aquarius, 

Metop-A Advanced SCATterometer (ASCAT) soil moisture L2 product, and the soil 

moisture of global atmospheric reanalysis (ERA-Interim) generated by the European 

Center for Medium-Range Weather Forecasts (ECMWF) on a point-scale. 

Furthermore, the spatial distribution of these four soil moisture retrievals is verified, 

alongside complementary rainfall (Climate Hazards Group Infrared Precipitation with 

Station data (CHIRPS)) and evapotranspiration (Surface Energy Balance System 

(SEBS)) products. 

In conclusion, this dissertation confirms that soil moisture retrieval through the 

synergetic use of passive and active observations in the TV-DEM framework is 

comparable with those by the passive only Aquarius operational product, the C-band 

ASCAT product and the re-analysis ECMWF soil moisture product. Moreover, TV-

DEM soil moisture retrieval scheme can be applied at plateau scale and the TV-DEM 

retrieval can capture the spatial distribution of soil moisture at plateau scale, opening 

up new opportunities in general for hydrology, meteorology and climatology.
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Samenvatting  
Bodemvocht is een belangrijke variabele in de waterkringloop en speelt een 

cruciale rol bij de uitwisseling van energie, water en gassen tussen het 

landoppervlak en de atmosfeer. De beschikbaarheid van bodemvochtinformatie 

kan helpen bij het beter begrijpen van processen die worden onderzocht in de 

biologie, hydrologie, meteorologie en klimatologie. L-band wordt beschouwd 

als de meest geschikte frequentieband voor het bepalen van 

bodemvochtgegevens uit satellietwaarnemingen, omdat deze gedeeltelijk door 

vegetatie heen kan kijken en marginaal beïnvloed wordt door wolken. Talrijke 

studies tonen aan dat zowel actieve als passieve microgolfwaarnemingen 

gevoelig zijn voor bodemvocht en daarom ook gebruikt kunnen worden om het 

bodemvochtgehalte te kwantificeren. Echter, vegetatie- en 

oppervlakteruwheidseffecten vormen de belangrijke obstakels bij het bepalen 

van bodemvocht uit zowel passieve als actieve gegevens. Aangezien passieve 

en actieve microgolfobservaties verschillende gevoeligheden hebben voor de 

relevante omgevingsfactoren (bodemvocht, vegetatie en ruwheid), kan het 

gecombineerde gebruik van beide soorten waarnemingen gunstig zijn voor de 

betrouwbaarheid van bodemvocht bepaald uit satellietdata. 

Dit proefschrift draagt bij aan een betere schatting van bodemvocht door 

synergetisch gebruik van actieve en passieve waarnemingen verkregen met de 

NASA-CONAE Aquarius satelliet, de eerste met zowel een L-band radiometer 

als een scatterometer aan boord. Het Tibetaanse plateau is geselecteerd als 

studiegebied omdat het een groot gebied bestrijkt met verschillende klimaten, 

met in het oosten humide gebieden dat verandert tot aride in het uiterste westen. 

Bovendien zijn op diverse plekken op het Tibetaans Plateau sinds 2008 grote 

hoeveelheden in-situ metingen verzameld, die kunnen dienen als referentie voor 

de validatie van de bodemvochtschattingen. 

Als eerste zijn in hoofdstuk 3 de Aquarius waarnemingen geanalyseerd voor één 

van de sites op het Tibetaanse plateau, die Maqu wordt genoemd. De resultaten 

van dit onderzoek laten zien dat zowel de Aquarius radiometer- als 

scatterometerwaarnemingen beide veranderen als gevolg van veranderingen in 

bodemvochtgehalte, met name als het vochtgehalte minder dan 0,30 m3 m-3 is. 

De Microwave Polarization Difference Index (MPDI) is bovendien onderzocht 

en de hieruit afgeleide vegetatie optische diepte (τ) komt overeen met de 

verwachte vegetatiedynamiek. De Radar Vegetation Index (RVI) bepaald uit 

Aquarius’ scatterometerwaarnemingen laat een vergelijkbaar seizoensgebonden 
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tendens zien, maar de signaal-ruis verhouding is onvoldoende om betrouwbaar 

relaties te kunnen bepalen.  

In hoofdstuk 4 wordt het discrete elektromagnetische model ontwikkeld door de 

Tor Vergata Universiteit van Rome (hierna Tor Vergata-discreet 

elektromagnetisch model, TV-DEM) gebruikt om zowel actieve als passieve L-

band signalen te simuleren. De modelsimulaties zijn vervolgens vergeleken met 

de Aquariuswaarnemingen gemaakt over het Maqu studiegebied vanuit een 

28.7° kijkhoek. De biomassa en het vochtgehalte van het strooisel op de grond, 

het plantvochtgehalte en de standaarddeviatie van de hoogtevariaties van het 

oppervlakte zijn parameters van het TV-DEM die zijn gekalibreerd door de 

verschillen tussen de Aquarius waargenomen en gesimuleerde actieve als 

passieve microwave signalen te minimaliseren voor de warme seizoenen van 

2012 en 2013. De gekalibreerde parameterwaarden zijn gevalideerd voor de 

warme seizoenen van 2014 en 2015. De bodemvochtgehaltes geschat door het 

gekalibreerde TV-DEM te inverteren en door toepassing van het veel gebruikte 

single channel algoritme (SCA) zijn vergeleken met gemeten bodemvochtdata 

resulterend in unbiased root mean squared differences (ubRMSDs) van 0.021 en 

0.026 m3 m-3, en determinatiecoëfficiënten (R2) van 0.76 en 0.79 (-), 

respectievelijk.  

Hoofdstuk 5 bouwt voort op de resultaten van hoofdstuk 4 op en introduceert 

een algoritme voor het afleiden van het bodemvochtgehalte op het Tibetaanse 

plateau uit de combinatie van Aquarius actieve en passieve waarnemingen. 

Look-Up-Tables (LUT's) zijn gegeneerd met TV-DEM simulaties met 

verschillende Leaf Area Index (LAI)-waarden en bodemvochtgehaltes terwijl de 

overige parameters constant zijn. Het algoritme leidt het bodemvochtgehalte af 

door binnen de LUT op zoek te gaan naar het minimale gekwadrateerde verschil 

tussen de Aquarius waarnemingen en de TV-DEM simulaties. De 

bodemvochtschattingen zijn gevalideerd voor individuele Aquarius 

waarnemingen door middel van in-situ metingen verzameld bij drie regionale 

netwerken verspreid over het Tibetaanse plateau. Daarnaast is op puntschaal een 

vergelijking gemaakt met verschillende bestaande producten, namelijk het 

officiële Aquarius L2 bodemvochtproduct gebaseerd op alleen de passieve 

waarnemingen, het Metop-A Advanced SCATterometer (ASCAT) L2 

bodemvochtproduct, en het ‘global atmospheric reanalysis’ bodemvochtproduct 

(ERA-Interim) van de European Center for Medium-Range Weather Forecast 

(ECMWF). De ruimtelijke bodemvochtverdelingen in kaart gebracht door de 

vier bodemvochtproducten is geanalyseerd door vergelijking met 



  

Samenvatting 

xv 

 

complementerende neerslag (Climate Hazards Group Infrared Precipitation with 

Station data, CHIRPS) en evapotranspiratie (Surface Energy Balance System, 

SEBS) data.  

Tot slot, dit proefschrift bevestigt dat het afleiden van bodemvocht uit een 

combinatie van passieve en actieve waarnemingen met behulp van het TV-DEM 

simulaties vergelijkbare resultaten oplevert als de hierboven genoemde 

bestaande bodemvochtproducten. Bovendien kan het algoritme gebaseerd op het 

TV-DEM toegepast worden voor het in kaart brengen van bodemvocht op 

plateau schaal wat nieuwe onderzoeksmogelijkheden biedt voor de hydrologie, 

meteorologie en klimatologie op het Tibetaans plateau.  
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Chapter 1 Introduction  

1.1 Soil moisture, a key variable in water cycle 

Soil moisture is a crucial variable in the water cycle; it controls 

evapotranspiration as well as sensible and latent heat fluxes, thus having an 

impact on surface runoff, which could then lead to floods and droughts. 

Moreover, it directly affects plant growth and ultimately influences agriculture 

and biogeography. Consequently, accurate soil moisture information is 

important for better understanding the land surface processes as well as 

exchanges of energy, water and gases between land surface and atmosphere.  

Traditional approaches such as gravimetric sampling and automatic probes are 

able to accurately obtain soil moisture information, however, the spatial 

resolution is limited to a point scale and it is labor intensive as well. Probes 

(resistive, capacitive, time domain reflectometry, etc.) can be used to measure 

soil moisture automatically with a larger coverage, however, these methods are 

limited to sites where careful maintenance can be achieved (Bircher et al., 2013). 

As soil moisture varies significantly in space and time, remote sensing 

techniques, which can monitor soil moisture on a large scale at reasonable time 

intervals, either using aircraft or satellites, should be taken into consideration.  

1.2 Remote sensing of soil moisture  

Soil moisture estimation by remote sensing can be performed in different ways. 

Numerous studies (Kaleita et al, 2005; Lesaignoux et al., 2013; Fabre et al., 

2015) have been conducted to analyze spectral reflectance and establish 

empirical relationships between the spectral reflectance and soil moisture 

content. However, optical signals are affected by atmospheric effect as well as 

by cloud and vegetation coverage, which limits the application of spectral 

reflectance based approaches. As land surface temperature is sensitive to soil 

moisture in conditions with bare soil or sparse vegetation cover, scholars (Pratt 

and Ellyett, 1979; Verstraeten et al., 2006; Matsushima et al., 2012) have 

made an effort to estimate soil moisture by calculating the thermal inertia. 

However, this approach is limited to bare soil or only partly vegetated soil, 
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since the signal is affected by atmospheric effect, cloud cover and vegetation 

cover. However, microwave measurements, with their low frequency signal, 

are barely influenced by the weather (the atmosphere or the clouds); the signal 

is able to partially penetrate vegetation (Ulaby et al.,1986) and is not affected 

by the time of day/night (Srivastava et al., 2015). Therefore, microwave 

remote sensing is regarded as the preferable approach for large scale soil 

moisture estimation. 

The basis for soil moisture estimation by microwave has been formed by the 

large contrast between the dielectric constant of dry soil (between 3 and 5) and 

water (80). This was first discussed by Ulaby (1974), drawing the attention of 

the hydrology, meteorology and other communities and providing a way to 

study soil moisture. Since then, numerous investigations (Jackson, 1993; 

Wagner et al., 1999; Owe et al.,2001) have been conducted by scholars 

involving soil moisture estimation through microwave remote sensing, either 

using passive (radiometer) or active (scatterometer/radar) observations. 

Schmugge et al. (1974) analyzed the brightness temperature captured by 

airborne microwave radiometers over a non-vegetated terrain and found that a 

linear relationship existed between brightness temperature and soil moisture at 

a wavelength of 21 cm. A model with roughness considered for describing 

microwave emission from soil was developed by Choudhury et al. (1979). Mo 

et al. (1982) proposed a radiative transfer model for simulating brightness 

temperature over a vegetated surface with vegetation optical depth (τ) and 

single scattering albedo (ω) included, which is known as the τ-ω mode and 

provides the basis for soil moisture estimation with passive configuration. 

Jackson (1993) proposed a single channel algorithm (SCA) to estimate soil 

moisture using horizontally polarized brightness temperature; this algorithm is 

widely used with different satellite observations (e.g. SMOS, Aquarius). Owe 

et al. (2001) developed a land parameter retrieval model (LPRM) to retrieve 

soil moisture through a radiative transfer equation by using Scanning 

Multichannel Microwave Radiometer (SMMR) brightness temperature, which 

has later also been used for the Special Sensor Microwave Imager (SSM/I), 

Tropical Rainfall Measuring Mission’s (TRMM) Microwave Imager (TMI) 

(TRMM-TMI) as well as the Advanced Microwave Scanning Radiometer for 

EOS (AMSR-E).  

As observations from spaceborne radiometers have a low spatial resolution, 

many researchers (Ulaby et al., 1982; Wagner et al., 1999; Wagner et al., 2013; 
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Brocca et al., 2017) rely on active observations (scatterometer/radar) in their 

effort to estimate soil moisture. Ulaby et al (1974) refer to the radar response to 

soil moisture in experiments using a truck-mounted radar scatterometer. Later, 

numerous investigations were carried out to analyze the relationship between 

soil moisture and radar observations by aircraft as well as satellite. Meanwhile, 

other researchers (Ulaby et al., 1982; Fung,1992; Wu and Chen, 2004) applied 

physical laws to attempt to establish theoretical scattering models, such as 

geometrical optical model (GOM), and the physical optics model (POM), and a 

small perturbation model (SPM) (Ulaby et al., 1982). However, GOM, POM 

and SPM are valid in great, intermediate and small roughness, respectively, 

with no single model being applicable to all types of surface roughness. 

Therefore, Fung (1992) proposed an integral equation method (IEM), a surface 

scattering model, which uses a wider applicable range of surface roughness 

conditions as it is based on an approximate solution of a pair of integral 

equations for the tangential surfaces. However, the absolute phase terms of 

Green’s function (Arfken et al., 2012) were neglected for simplicity in the 

mathematic computation. Later, Wu and Chen (2004) developed an advanced 

IEM (AIEM) including more terms of Green’s function as well as a transition 

model to obtain a continuous Fresnel reflection, which allows a precise 

calculation of scattering for a surface with a wider range of dielectric properties 

and surface roughness conditions. However, both the IEM and the AIEM are 

only valid for bare soil and sparsely vegetated areas since vegetation produces 

complex volume scattering behaviors that reduce the sensitivity of radar signals 

to soil moisture. To this end, Attema and Ulaby (1978) described vegetation as 

a water cloud, for which the droplets are held in vegetative matter, while 

Bracaglia et al. (1995) proposed a discrete electromagnetic model to calculate 

the backscattering coefficient of agricultural fields. 

As both active and passive observations are sensitive to soil moisture, 

numerous scholars have put their efforts into comparing soil moisture 

estimations based on these two types of observations (Liu et al., 2011; Fascetti 

et al., 2016). Liu et al (2011) concluded that the Vrije Universiteit Amsterdam 

(VUA) and NASA (VUA-NASA) passive microwave product performed 

better over sparsely vegetated regions, whereas the change detection based 

Metop Advanced Scatterometer (ASCAT) product showed better agreement 

with in-situ measurements for regions of moderate vegetation density. Fascetti 

et al. (2016) concluded that a determination coefficient of 0.66 (-) is found 

between the Soil Moisture and Ocean Salinity (SMOS) and ASCAT soil 

moisture products.  
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Other scholars (Njoku et al., 2002; Das et al., 2011; Akbar and Moghaddam, 

2015) focused on the combined usage of active and passive observations, 

either employing statistical or physical based methods. In the statistical 

direction, Njoku et al. (2002) found that brightness temperature and 

backscattering coefficient show similar sensitivities to soil moisture spatial 

distributions by using a Passive and Active Land S-band airborne sensor 

(PALS). Based on the results, a change detection method for estimating soil 

moisture through the combined usage of radar and radiometer observations 

was proposed. Furthermore, Piles et al. (2009) indicated that by using a change 

detection method including both active and passive observations, the soil 

moisture estimation is improved by 2% compared to when only passive soil 

moisture observations are used. Following the investigation of Piles et al. 

(2009), Das et al. (2011) developed a disaggregation algorithm to merge soil 

moisture active passive (SMAP) radiometer and radar data for high resolution 

soil moisture retrieval by assuming that a linear relationship exists between 

radiometer and radar data with the same resolution, which is considered to be 

the baseline for SMAP high resolution soil moisture retrieval.  

Apart from the efforts described above, several researchers attempted 

implementing physical models by combining the usage of active and passive 

observations for soil moisture estimation on the basis that the emissivity 

(observed from passive microwaves) of a rough surface can be related to the 

backscattering coefficient (observed from active microwaves) of the same 

surface by energy conservation (Peake, 1959). Chauhan et al. (1994) used a 

discrete electromagnetic model to simulate both the active and passive 

microwave response for corn, including morphology information. O’Neill et al. 

(1995) retrieved soil moisture from the τ-ω model with the transmissivity and 

single scattering albedo estimated by applying the discrete electromagnetic 

model by Chauhan et al. (1994). Della Vecchia et al. (2006) investigated the 

geometrical factors of the discrete electromagnetic model. Dente et al. (2014) 

investigated the C-band Metop Advanced Scatterometer (ASCAT) and the 

Advanced Microwave Scanning Radiometer (AMSR-E) observations in the 

Maqu, China, area with a discrete electromagnetic model developed by 

Bracaglia et al. (1995) and concluded that a single model can simulate the 

satellite active and passive observations properly.  
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1.3 Thesis objective and proposed approach 

Following the context described above, the main objective of the research in 

this thesis is to develop an algorithm to improve the accuracy of current soil 

moisture estimation through the combined usage of active and passive 

observations from the same Aquarius satellite. As a starting point, the Maqu, 

China, network was selected as the study area, because soil moisture 

measurements have been collected in this area since July, 2008. With the 

ground truth and satellite dataset available, the following three objectives of 

this research can be formulated. 

The first objective of this research is: Do Aquarius active and passive 

observations reveal sensitivity to soil moisture? To this end, Aquarius 

satellite observations of brightness temperature as well as the backscattering 

coefficient were investigated and compared with the soil moisture of in-situ 

measurements of the Maqu network to prove the feasibility of combined usage 

of the Aquarius active and passive datasets for later soil moisture estimation. 

Following on from this investigation, the second objective of this research 

arises, which is: Can a single discrete electromagnetic model be used to 

reproduce both Aquarius active and passive microwave signals? To 

address this objective, the Tor Vergata Discrete Electromagnetic Model (TV-

DEM), which can calculate emissivity as well as backscattering coefficients, is 

selected to reproduce the Aquarius brightness temperature and backscattering 

coefficient. Moreover, the estimation of soil moisture by inverting the model is 

discussed and validated using in-situ measurements from the Maqu area.  

The third objective of this research is contained in the question: Can we 

develop an algorithm to retrieve soil moisture based on a single discrete 

electromagnetic model by using Aquarius active and passive observations? 

To achieve this objective, an algorithm for retrieving soil moisture is 

developed based on TV-DEM simulations. This algorithm is verified using 

measurements from two other networks.  

1.4 Thesis outline 

The dissertation consists of 6 chapters, starting with this introductory Chapter 

1. The study area and the satellite data as well as the ancillary remote sensing 

data are described in detail in Chapter 2. A description is included of the soil 
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moisture-soil temperature network, which forms the foundation for this 

research. The Aquarius satellite brightness temperature and backscattering 

coefficient are analyzed in Chapter 3 and the sensitivity of Aquarius 

observations to soil moisture is investigated here as well. In Chapter 4, a 

discrete electromagnetic model, which was developed at the Tor Vergata 

University of Rome (TV-DEM) and simulates emissivity and backscattering 

coefficient is selected to reproduce Aquarius observations. The approach to 

retrieve soil moisture based on this model is discussed and validated, using the 

in-situ measurements of the Maqu area as ground truth. An algorithm for the 

estimation of soil moisture through combined usage of Aquarius active and 

passive observations is developed in Chapter 5. A plateau scale soil moisture 

map is also generated with this method, and the retrieval of this approach is 

validated with Tibet Observatory measurements as well as compared to other 

available soil moisture products. Chapter 6 summarizes the findings of this 

research and presents recommendations for further study.
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Chapter 2 Study area and datasets 

2.1 Introduction 

Tibetan Plateau is characterized by its high elevation and it contains the largest 

reserve of fresh water outside the polar regions and is recognized as the third 

pole. As such, it plays an important role in Asian monsoon. Three networks 

are set up in this area to measure the soil moisture and soil temperature 

continuously to provide the basic information for calibration and validation of 

satellite and model products, named Maqu, Naqu and Ngari from east to west 

in humid, semi-arid and arid environment (Su et al., 2011). Fig.2.1 displays the 

location of the three monitoring networks overlain over a land cover map of 

Tibetan Plateau cropped from ESA GlobCover Version 2.3 2009 

(http://due.esrin.esa.int/page_globcover.php, accessed on April 1, 2017) with 

300 m resolution.  

 

Fig. 2.1. Land cover of Tibetan Plateau cropped from ESA GlobCover Version 2.3 2009 300m 

resolution Land Cover Map with the three networks (Maqu, Naqu and Ngari) are indicated with 

red circles  

http://due.esrin.esa.int/page_globcover.php
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2.2 Tibetan Plateau observatory  

2.2.1 Maqu site and network description 

Maqu region is located in the eastern part of Tibetan Plateau in the Yellow 

River Source Region. The elevation of this area is between 3,200 m and 4,200 

m above sea level. The weather category falls under the class of wet and cold 

climate according to the updated the Köppen-Geiger climate classification by 

Peel et al. (2007). Land cover of this region is dominated by alpine meadows 

with heights vary from 5cm to 15cm throughout the growing season due to 

intensive grazing by livestock (e.g. yaks and sheep). The prevailing soil types 

are sandy loam, silt loam and organic soil with on average 39.7 % sand, 

8.08 % clay and a maximum of 18.3% organic matter. Additional information 

on the study area and monitoring network can be found in Su et al. (2011), 

Dente et al. (2012) and Zheng et al. (2015). Fig. 2.2 shows a mosaic of 

Landsat 5 Thematic Mapper images acquired on 28 July, 2009, 6 August, 2009 

and 5 September, 2009 displayed as a false color composite. The figure 

illustrates the spatial distribution of the alpine meadows (light green), open 

water/wetland (dark/blue) and bare mountainous areas (magenta/brown). 

 

Fig. 2.2 Landsat 5 TM false composite (R: band5, G: band4, B: band3) of the Maqu study area, highlighting 

the location of the soil moisture/temperature stations and the footprints of three Aquarius beam (28.7°, 37.8°, 

45.6°). 
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Since 2008, the Maqu region holds a regional scale soil moisture/temperature 

monitoring network that includes 20 measurement locations and is situated in 

between 33°30′ - 34°15′ N latitude and 101°38′ to 102°45′ E longitude 

(WGS84). The locations of the stations are indicated in Fig.2.2 by red and blue 

dots. The red dots represent stations for which the soil moisture dataset is 

complete for the entire period from August 2011 to May 2013, while blue dots 

indicate stations for which the dataset is not complete. The in-situ network is 

designed in such manner that the stations are placed across a complete range of 

land covers and elevations varying from 3428 m to 3752 m above sea level (see 

Su et al. 2011).  

Each station is composed of a Decagon (EM50) data logger that is set up to 

record a measurement every 15 minutes and EC-TM ECH2O capacitance 

probes that are connected to the EM50 logger and measure the dielectric 

constant or dielectric constant as well as temperature with a thermistor 

embedded within the probe. The volumetric soil moisture content is obtained 

through application of a calibration equation that describes the relationship 

between the probe reading and moisture content. Dente et al. (2012) reported on 

the development of a soil specific calibration for the Maqu network that leads to 

an accuracy of 0.02 m3 m-3. This has been applied to the measurements utilized 

for this study.  

Averages of the 5-cm soil moisture and temperature measurements from the 12 

stations that are available for the complete study period from August 2011 to 

May 2013 are utilized here as matchups for the Aquarius data. Fig. 2.3 shows 

time series of the mean and standard deviation calculated from the 12 

independent soil moisture and temperature measurements. The soil moisture 

plot illustrates that both the mean and standard deviation are lowest and fairly 

constant during the winter season. This can be attributed to the fact that in this 

time of the year soil in the Maqu region is primarily frozen (see also Fig.2.3b) 

and the EC-TM ECH2O probes measure the liquid water. Hence, low soil 

moisture contents are recorded across the Maqu region resulting in low mean 

values and low standard deviation.  

From the moment the temperatures rise above freezing point the mean soil 

moisture as well as standard deviation increase and remain throughout warm 

season at levels varying from 0.30 to 0.50 m3 m-3 and from 0.10 to 0.20 m3 m-3, 

respectively. The small fluctuations in the standard deviation during seasons 

indicate that the spatial variability is temporally stable and, thus, that the mean 
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captures the temporal soil moisture dynamics of the study area and can be 

assumed to be representative for the coarse Aquarius footprints (Vachaud et al. 

1985, Ryu and Famiglietti 2005, Cosh et al. 2008). Likewise, the mean soil 

temperature can be considered representative for the study area and 

radiometer/scatterometer footprint because the standard deviation is very low in 

general, 0.4 – 2.0 K, and displays little variation. 
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Fig.2.3. Top 5-cm soil moisture (a) and soil temperature (b) derived from in- situ measurements collected at 

12 stations of the Maqu network in the period from August 2011 to May 2013. 

2.2.2 Naqu network description 

Naqu network is located in the central part of Tibetan Plateau in the 

Naqu basin. The elevation of this area is more than 4500 m above sea 

level. According to the updated Köppen-Geiger climate classification by 

Peel et al. (2007), Naqu falls under the class of semi-arid and cold 

climate. Grassland and wetland are the most widely seen land cover over 

this region. Soil located in the area is characterized as sandy loam (70% sand 

and 10% silt) with a high saturated hydraulic conductivity above the 

impermeable permafrost layer. Additional information on the study area and 

monitoring network can be found in Su et al. (2011). Fig.2.4 shows the land 

cover of Naqu network overlaid over ESA GlobCover Version 2.3 land cover 

map for the Tibetan Plateau region 
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(http://due.esrin.esa.int/page_globcover.php, accessed on 1 April, 2017) with 

the stations are indicated with green circles. 

 

Fig.2.4. Land cover of Naqu area cropped from ESA GlobCover Version 2.3 2009 300m resolution Land 

Cover Map. Stations installed by ITC and ITP are indicated with green and red circles  

Naqu network includes five stations installed in July 2006 with an area of 10 x 

10 km and being used for validating of soil moisture retrieval algorithms (van 

der Velde et al. 2012a, 2012b). Four of the stations are located in a grassland 
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environment, while the land cover of the other station falls in the wetland group. 

Soil permittivity is recorded by the EM5b data logger connected with EC-10 

ECH2O probe inserted at depths of 2.5 to 60 cm, and a Root Mean Squared 

Difference (RMSD) of 0.029 m3 m-3 is achieved by comparing the 

gravimetrically determined against the 2.5-cm probe volumetric soil moisture in 

a well-defined linear relationship for calibrating the probe readings. 

Additionally, Yang et al. (2013) from Institute of Tibetan Plateau Research 

(ITP), Chinese Academy of Sciences (CAS) installed fifty-six  stations 

(represented by red circles in Fig 2.4) in a 100 x 100 km area nearby to enrich 

the soil moisture/temperature network in different scales (0.1°, 0.3°, 1°) for 

monitoring the freeze-thaw cycle of the third pole. With Yang’s stations, probes 

are located in the depth of 5-40 cm and record the soil moisture/temperature at a 

30 minute interval. Sensor calibration is conducted by the experimental analysis 

through comparing the soil moisture measured by the probe and gravimetric 

method, detailed information for this network can be found in Yang et al. 

(2013).  

2.2.3 Ngari network description 

Ngari network is located in the southwest part of Tibetan Plateau, including 

twenty soil moisture/temperature stations, which are installed in June 2010. 

Four of the twenty stations are in the neighborhood of Ngari Station for Desert 

Environment Observation and Research of the Chinese Academy of Sciences 

(NASDE/CAS), while other sixteen stations are near the Shiquanhe city 

covering a large soil moisture range depending on its distance to the 

Shiquanhe River, a tributary of the Indus. The elevation of this area is around 

4200-4300 m above sea level with the elevation variation is less than 100 m. 

According to the updated Köppen-Geiger climate classification by Peel et al. 

(2007), Ngari falls under the class of arid and cold climate. Bare areas and 

grasslands are the most widely seen land cover over this region. Soil located in 

the area is characterized as sandy loam (85% sand and 12% silt) with high 

saturated hydraulic conductivity. The locations of the stations are indicated in 

Fig. 2.5 by red and red dots as well as the land cover in the Ngari/Ali area.  
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Fig.2.5. Land cover of Ngari/Ali area cropped from ESA GlobCover Version 2.3 2009 300m resolution Land 

Cover Map. Stations are indicated with red circles  

Each station is composed of a Decagon (EM50) data logger that is set up to 

record a measurement every 15 minutes and 5TM ECH2O capacitance probes 

that are connected to the EM50 logger and measure the dielectric constant or 

dielectric constant and soil temperature with a thermistor embedded within the 

probe. The probes are placed at the depths ranges from 5 cm to 80 cm below the 

surface, detailed information can be found in Su et al. (2011). The calibration 

was conducted and validated immediately after the installation with 

experimental work and a RMSD of 0.031 m3 m-3 was found for the 5-cm probe 

volumetric soil moisture.  
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2.3 Aquarius dataset 

Aquarius/ Satélite de Aplicaciones Científicas (SAC-D) was a joint National 

Aeronautics and Space Administration (NASA)-Comisión Nacional de 

Actividades Espaciales (CONAE) mission launched on 10 June 2011, which 

targeted the monthly measurement of the ocean’s Sea Surface Salinity (SSS) 

with the accuracy of 0.2 Practical Salinity Unit (PSU). Unfortunately, failures in 

the power-supply and altitude control system brought the Aquarius mission to 

an end on 8 June 2015. The satellite operated in a sun-synchronous orbit from a 

height of 657 km that crosses the equator at 6 pm (ascending) and 6 am 

(descending) local time, covering the globe every seven days. The Aquarius 

system consisted of three dual polarized L-band (1.413 GHz) microwave 

radiometers and a fully polarimetric L-band (1.26 GHz) scatterometer. Each 

radiometer had its own feedhorn, shared with the scatterometer, mounted at 

view angles of 28.7o (beam 1), 37.8o (beam 2) and 45.6o (beam 3) leading to 

footprints of 62 (along track) x68 (cross track) km, 68 x 62 km, and 75 x 100 

km, respectively, for the radiometers and of 76 x 94 km, 84 x 120 km and 96 x 

156 km, respectively, for the scatterometer. Table 2.1 summarizes several 

technical details about the Aquarius mission.  

Table 2.1 Aquarius satellite characteristics and parameters of the radiometer/scatterometer. 

Orbit 

Altitude 657 km 

Sun-synchronous 6 pm ascending and 6 am descending 

Inclination 98o 

Revisit time 7-day global coverage 

Swath 390 km 

Antenna 
Reflector diameter  2.5 m  

Incidence angle 28.7o, 37.8o, 45.6o 

Radiometer 

Frequency 1.413 GHz 

Polarization V and H 

Calibration stability for 7 days 0.13 K 

Resolution 62x68 km, 68x62 km, 75x100 km 

Scatterometer 

Frequency 1.26 GHz 

Polarization VV, HH, VH, HV 

Pulse repetition frequency 100 Hz 

Calibration stability for 7 days 0.1 dB 

Resolution 76x94 km, 84x120 km, 96x156 km 

 



 

Chapter 2 

15 

 

NASA Distributed Active Archive Center (DAAC) at National Snow & 

Ice Data Center (NSIDC) archives and distributes the data products from 

Aquarius SAC-D platform. The level 2 swath single orbit based dataset 

with 98 minute temporal resolution and level-3 gridded based data (soil 

moisture with 7 day, 1 month, 3 month and 1 year resolution) are 

available through https://nsidc.org/data/aquarius/data-sets.html. In this 

research, the level 2 swath single orbit data and level 3 gridded soil 

moisture data with 7 day revisit time observed with incidence angle 28.7° 

are used in chapter 4 and 5 for analysis since they have a better resolution 

compared with other two incidence angles.  

2.3.1 Aquarius level 2 brightness and backscattering coefficient 

dataset 

For the analysis presented in this research, we use the NASA Aquarius Level-2 

Sea Surface Salinity & Wind Speed Data version 2.0 which is available from 

ftp://podaac-ftp.jpl.nasa.gov/allData/aquarius/retired/L2/V2/ (last verified: 09 

January 2014) in chapter 3 and version 4.0 through ftp://podaac-

ftp.jpl.nasa.gov/allData/aquarius/L2/V4/ (last verified on 07 June 2015) in the 

chapter 4 and 5. The product is deduced from data collected in 1.44 s 

measurement sequences consisting of twelve blocks of 120 ms subsamples. Five 

data samples from each block are sent to ground segment along with internal 

calibration measurements as input for the offline Radio Frequency Interference 

(RFI) detection. Thus, 60 data samples are available within each 1.44 s 

sequence.  

RFI is flagged within the level-2 data using onboard and offline detection 

procedures as described in Aquarius Radiometer Post-Launch Calibration for 

Product Version-2 (Piepmeier et al., 2013) and Le Vine et al. (2014). The RFI 

detection is based on the glitch algorithm proposed by Misra and Ruf (2008), 

which identifies individual antenna temperature samples (or short 

accumulations) that deviate abnormally from the nearby samples. The 

parameters in RFI filter algorithm in version 4.0 have been updated to reflect 

differences in the algorithm for land and ocean compared with version 2 dataset. 

To be noticed, RFI flagged observations for level 2 product is removed for later 

analysis in this research  

https://nsidc.org/data/aquarius/data-sets.html
ftp://podaac-ftp.jpl.nasa.gov/allData/aquarius/retired/L2/V2/
ftp://podaac-ftp.jpl.nasa.gov/allData/aquarius/L2/V4/
ftp://podaac-ftp.jpl.nasa.gov/allData/aquarius/L2/V4/
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2.3.2 Aquarius level 3 soil moisture dataset 

NASA Goddard Space Flight Center's Aquarius Data Processing Segment 

(ADPS) produced the global soil moisture derived from Aquarius observation. 

The soil moisture is derived from the horizontally polarized brightness 

temperature through application of SCA (Jackson, 1993; Bindlish et al., 2015) 

and distributed by NASA NSIDC DAAC. Initial assessment is carried out for 

this dataset and results show a good performance by the algorithm with Root 

Mean Square Error (RMSE) of 0.031 m3 m-3 is achieved with respect to the in-

situ measurement in two watersheds (Bindlish et al., 2015). Various temporal 

resolutions (daily, weekly, monthly, seasonal, annual) of the soil moisture 

product are available during the period from 25 August 2011 to 7 June 2015.  

In this study, the L3 gridded 1° grid Aquarius/SAC-D soil moisture (Version 4, 

http://nsidc.org/data/docs/daac/aquarius/aq3-sm/, accessed on 1 February, 

2017) is used, it is hereafter referred to as official Aquarius. This data is 

generated by resampling the Aquarius Level-2 swath single orbit soil moisture 

Data (version 4.0) product in to a 1° x 1° grid by using local polynomial fitting 

algorithm (Fan and Gijbels, 1996; Lilly and Lagerloef, 2008). Observations 

flagged for Radio Frequency Interference (RFI) or collected in the freezing 

period (when the surface temperature obtained from NCEP GFS GDAS 

product is lower than 273 K, Aquarius level-2 data product, 2015) are 

excluded from this research.  

2.4 Other soil moisture datasets 

2.4.1 TU-Wien ASCAT 

ASCAT on-board Metop-A is a real aperture radar aboard the Meteorological 

Operational Platform and records the σ0 in VV polarization in C band (5.255 

GHz) since October 2006. The three scatterometer radar beams look sideways at 

45° (fore), 90° (mid), and 135° (aft) with respect to the satellite flight direction, 

resulting incidence angles ranging from 18° to 59°. It was designed to monitor 

wind speed and direction over the ocean, but can be also used to monitor the 

soil moisture. The ASCAT soil moisture product is generated by a change 

detection algorithm originally proposed by Wagner et al (1999) and 

subsequently assessed by various investigators (Brocca et al., 2010; Matgen et 

al., 2012; Wagner et al., 2013). The validation results show that the correlation 
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coefficient for the soil moisture was higher than 0.8 when compared to the in-

situ measurement as well as a RMSE is around 0.04 m3 m-3 except forest 

coverage. Details about the change detection algorithm can be found in the 

Algorithm Theoretical Baseline Document (ATBD) Surface Soil Moisture 

ASCAT NRT Orbit 

(http://hsaf.meteoam.it/documents/ATDD/ssm_ascat_nrt_o_atbd.pdf). 

In this research, the Metop-A ASCAT soil moisture L2 product developed by 

Vienna University of Technology (TU-Wien) at 12.5 km Swath Grid 

(https://eoportal.eumetsat.int, accessed on 15 February, 2017) is used. This 

product provides an estimate of the water saturation of the 5 cm topsoil layer, 

with its value ranges between 0 and 100 [%]. For later comparison, this is 

converted into volumetric soil moisture (m3 m-3) by using the global soil 

porosity map provided on the ESA-CCI website (http://www.esa-soilmoisture-

cci.org/, accessed on 15 February, 2017). 

2.4.2 ERA-Interim  

The European Centre for Medium-Range Weather Forecasts (ECMWF) 

provides a global atmospheric reanalysis data from 1979 to present, ERA-

Interim (Dee et al., 2011). It is generated by a data assimilation system to 

estimate the state of global atmosphere and surface by using a forecast model 

and prior information with 12-hourly analysis cycles. The data assimilation 

system starts with computing a 4-dimentioanl variational analysis (4D-Var) of 

basic upper-air atmospheric fields, followed by separate analysis of near-surface 

parameters, soil moisture, soil temperature, snow and ocean waves. This 

analysis is used to initialize a short- range model forecast to provide prior state 

estimation for next analysis cycle.  

ERA-Interim dataset can be downloaded through 

(http://apps.ecmwf.int/datasets/data/interim-full-daily/, accessed on 10 

February, 2017) with the spatial resolution ranges between 0.125° and 3° (the 1° 

dataset is used in this research). The ERA-Interim products are updated once 

per month regularly and a delay of two months can happen for quality assurance 

and for correcting technical problems with the production. Soil moisture is 

recorded in four layers of 0-0.07 m, 0.07-0.28 m, 0.28-1.00 m and 1.00-2.89 m 

together with the corresponding soil temperature ERA-Interim dataset. The 

performance of ERA-Interim soil moisture is assessed by numbers of scholars 

https://eoportal.eumetsat.int/
http://www.esa-soilmoisture-cci.org/
http://www.esa-soilmoisture-cci.org/
http://apps.ecmwf.int/datasets/data/interim-full-daily/
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(Albergel et al., 2012a; Albergel et al., 2012b; Su et al., 2013). Results show 

that ERA-Interim first layer soil moisture follows the seasonal trend with in-situ 

soil moisture variation with the average coefficient of determination of 0.63 (-) 

and an overestimation of 0.079 m3 m-3 is observed with respect to in-situ 

measurement. In this article, the soil moisture recorded at 12:00 in the first layer 

is used for comparison since it is closest to Aquarius acquisition time over 

Tibetan Plateau.  

2.5 Ancillary datasets 

2.5.1 Moderate resolution imaging Spectroradiometer (MODIS) 

Normalized Difference Vegetation Index (NDVI) 

MODIS instrument was first launched aboard Terra spacecraft in 1999 and the 

second MODIS instrument was launched aboard the Aqua platform in 2002 

with the swath is 2330 km. Both Terra- and Aqua-MODIS instruments acquire 

data in 36 discrete spectral bands with the wavelengths between 0.4  and 

14.4  at three spatial resolutions, 250m, 500m and 1000m. With the 

available MODIS observations, MODIS science team produces and distributes 

the MODIS products, namely land, ocean and atmosphere products.  

Normalized Difference Vegetation Index (NDVI) is one of MODIS land 

products, which is computed from bi-directional (red and near-infrared spectral 

band) surface reflectance after atmosphere correction. NDVI is widely used to 

monitor the vegetation growth conditions, drought as well as land cover 

classification. The MODIS NDVI products are of spatial resolutions with 250 m, 

500 m, 1 km and 0.05° with a 16 day interval. In this research, MOD13Q1 

which is of 16 day temporal resolution with 250 meter spatial resolution is used 

(https://e4ftl01.cr.usgs.gov/MOLT/MOD13Q1.005/, last accessed: 15 October 

2016). The Harmonic ANalysis of Time Series (HANTS, Verhoef et al., 1996) 

algorithm is applied to suppress the effects of clouds within the NDVI time 

series. An additional linear interpolation is performed to match the 16-day cloud 

mitigated NDVI to the 7-day Aquarius observations.  

 

https://e4ftl01.cr.usgs.gov/MOLT/MOD13Q1.005/
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2.5.2 MODIS Leaf Area Index (LAI) 

The LAI (MCD15A2, Weiss et al., 2007) product derived from data acquired 

by both Terra and Aqua satellites is used to characterize the dynamic 

vegetation effects on microwave signals. The dataset has spatial and temporal 

resolutions of 1 km and 8 days, respectively, and can be downloaded from 

http://e4ftl01.cr.usgs.gov/MOTA/MCD15A2.005/(last accessed on 30 March, 

2017). Similar to NDVI, HANTS algorithm and linear interpolation are used 

to match the 8-day cloud mitigated LAI to the 7-day Aquarius observations.  

2.5.3 Climate Hazards Group Infrared Precipitation with Station 

data (CHIRPS) 

CHIRPS is a quasi-global precipitation dataset since 1981 to near present with a 

spatial coverage from 50°S to 50°N at a 0.05° resolution and provides 

information at daily, decadal, and monthly temporal resolutions (Funk et al., 

2015). It incorporates global precipitation climatologies, satellite-based 

precipitation estimates and in-situ precipitation observations.  

CHIRPS was validated by several researchers with in-situ measurements 

(Katsanos et al., 2016; Paredes-Trejo et al., 2017; Zambrano-Bigiarini et al., 

2017) that the CHIRPS agrees with the in-situ measurements. For instance, 

Katsanos et al. (2016) indicated that a correlation of around 0.85 (-) was found 

between monthly CHIRPS and station observed precipitation in Cyprus. 

Paredess-Trejo et al. (2017) concluded the CHIRPS data correlate well with 

observations for all stations in Northeast Brazil with the Pearson correlation 

coefficient is 0.94 (-). The latest version 2.0 dataset was released in February, 

2015 and is used in this research http://chg.geog.ucsb.edu/data/chirps/ (accessed 

on 1 March, 2017). 

2.5.4 Surface Energy Balance System (SEBS) evapotranspiration 

Su (2002) developed the SEBS for retrieval regional and global atmospheric 

turbulent fluxes and evapotranspiration with satellite earth observation data. The 

SEBS requires inputs from: (1) land surface physical parameters, such as 

albedo, emissivity, temperature, etc.; (2) radiation measurements; (3) 

meteorological parameters. The original SEBS was assessed by Su et al. (2002) 

and results showed that SEBS was capable to estimate turbulent heat fluxes and 

evaporative fraction at various scales with acceptable accuracy (20% relative 

http://chg.geog.ucsb.edu/data/chirps/
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error of mean sensible heat flux). Ma et al. (2014) evaluated the SEBS 

evapotranspiration (ET) with the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) dataset over Tibetan Plateau and concluded 

the RMSE of ET is 0.7 mm/d with respect to the in-situ flux tower data.  

Chen et al. (2013) further enhanced the turbulent parameterization method used 

in SEBS specifically for the bare soil and major land covers over the Tibetan 

Plateau. Using the updated SEBS version, Chen et al. (2014) produced a 

monthly ET dataset for mainland China area and a RMSE of 21.9 W m-2 is 

found for the ET with respect to the stations’ measurements. This higher 

resolution evapotranspiration product is used for this research to verify the 

spatial trend included in the soil moisture datasets. 
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Chapter 3 Sensitivity of Aquarius observations over 

soil moisture in Maqu network* 

3.1 Introduction 

L-band microwave remote sensing is regarded as a viable method for realizing 

the global soil moisture monitoring ambition as an imperative for an improved 

understanding of the heat and mass exchanges at the land-atmosphere interface 

that regulate weather and climate (Dorigo et al.,2014). The potential for soil 

moisture applications has been demonstrated for both active and passive 

measurements techniques (e.g., Jackson 1993; Njoku and Entekhabi, 1996; 

Pellarin et al., 2003; Ulaby et al., 1996; Wigneron, et al., 2007). This led in 

2009 to the launch of the first satellite dedicated to soil moisture by the 

European Space Agency (ESA) named the Soil Moisture and Ocean Salinity 

(SMOS, Kerr et al., 2001) mission. Also, the National Aeronautics and Space 

Administration (NASA) launched a L-band satellite dedicated to global soil 

moisture monitoring, named the Soil Moisture Active Passive mission (SMAP, 

Entekhabi et al., 2010). In contrast to SMOS, the soil moisture is the sole 

objective of SMAP and carries active as well as passive microwave 

instrumentation. The rationale behind the active/passive combination is that, 

apart from their physical complementarity, the active microwave observations 

can be availed for the downscaling of the coarse passive microwave products. 

NASA launched the first satellite with both active and passive L-band 

microwave instrumentation called Aquarius/SAC-D mission in 2011. The 

Aquarius instrument consists of three dual polarized L-band (1.413 GHz) 

radiometers each with its own feedhorn and a fully polarimetric L-band (1.26 

GHz) scatterometer that makes use of the radiometer feedhorns. The three 

                                                 
*  This chapter is based on 

Wang, Q., van der Velde, R., Su, Z., & Wen, J. (2016). Aquarius L-band scatterometer 

and radiometer observations over a Tibetan Plateau site. International Journal of 

Applied Earth Observation and Geoinformation, 45, 165-177. DOI: 

10.1016/j.jag.2015.06.010 
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feedhorns are aligned in the push broom configuration and point at three 

different off-nadir angles of 28.7°, 37.8° and 45.6°.  

Despite Aquarius/SAC-D mission is not designed for land applications, the 

availability of both active and passive microwave observations from a single 

space platform has attracted the attention of researchers (e.g. Bruscantini et al., 

2014; Colliander and Xu, 2013; Luo et al., 2013; McColl et al., 2014) from the 

soil moisture community, primarily in anticipation of SMAP. Luo et al. (2013) 

and Bruscantini et al. (2014), for instance, reported on the development of an 

Observing System Simulation Experiments (OSSEs) for Red-Arkansas River 

basin to synthetically assess the impact of uncertainties on the soil moisture 

retrieved from Aquarius radiometer and scatterometer observations. Colliander 

and Xu (2013) introduced the normalized residual scattering index (NRSI) 

based on radar backscatter (σ0) and brightness temperature (Tb), and 

demonstrated its global applicability using Aquarius data. Further, McColl et al. 

(2014) assessed the uncertainty embedded within soil moisture and vegetation 

indices derived Aquarius scatterometer observations. 

This chapter emphasizes on the analysis of the L-band Aquarius 

scatterometer/radiometer observations in the Maqu area situated on the eastern 

part of the Tibetan Plateau at the high-elevation Yellow River Source Region. 

The Maqu area holds since 2008 a regional scale soil moisture/temperature 

monitoring network that is part of Tibetan Plateau Observatory (Tibet-Obs, Su 

et al., 2011). For the analysis presented in this chapter, we use the NASA 

Aquarius Level-2 Sea Surface Salinity & Wind Speed Data version 2.0 which 

is available from ftp://podaac-ftp.jpl.nasa.gov/allData/aquarius/retired/L2/V2/ 

(last verified: 09 January 2014). To be noticed, RFI flagged observations for 

level 2 product is removed for later analysis in this research. 

In particular, we study the impact of freeze-thaw, soil moisture and vegetation 

on the L-band scatterometer/radiometer observations collected across an 

almost two-year period from August 2011 to May 2013 using in-situ 

measurements. The primary purpose is to investigate how the regional hydro-

meteorological processes influence the L-band active/passive microwave 

observations and the possible synergetic use of the two data sources via the 

available polarimetric information. To this aim, Radar Vegetation Index (RVI) 

time series derived from the Aquarius σ0 observations is analyzed. Further, the 

τ-ω concept (Mo et al., 1982) is utilized to reproduce the Microwave 

Polarization Difference Index (MPDI) derived from the time series of 
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Aquarius Tb’s and quantify the vegetation optical depth (τ). Subsequently, the 

relationships are investigated among the τ, RVI and Moderate Resolution 

Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index 

(NDVI) as proxy for the vegetation biomass. 

3.2 Data analysis 

3.2.1 Backscattering coefficients 

Fig.3.1 shows the Aquarius VV, HH, and VH polarized σ0 measured at the three 

incidence angles over Maqu region in the period August 2011 to May 2013. The 

plots illustrate that the temporal σ0 variability is strongly determined by the 

transition from a frozen to a thawed land surface. In late November, the soil 

temperature drops below freezing point (see Fig.2.3b), and water in the soil 

matrix starts to freeze. This reduces the dielectric constant and causes the σ0 

decrease noted in the VV, HH as well as VH polarization. The minimum σ0 

values are typically reached in early January and can be considered as the 

month during which most soil water is frozen. In months afterwards, soil 

temperatures rise again increasing the liquid water content in the soil and 

produce a higher σ0 response. Van der Velde and Su (2009) reported on a 

similar behavior of the σ0 observed by the C-band Advanced Synthetic Aperture 

Radar (ASAR) over the central part of the Tibetan Plateau. Once the frozen 

season has ended, more liquid water is present in the soil and the σ0 variations 

remain fairly small but also some agreement is noted with the soil moisture 

dynamics (see Fig.2.3 a) as will be discussed in section 3.2.2.   

The magnitude of the VV polarized σ0 is close to the HH polarized one for all 

three incidence angles. The σ0 observed at incidence angle of 37.8° matches 

closely the σ0 observed at an incidence of 45.6°; both are substantially smaller 

than the σ0 measured at 28.7°. This angular behavior is as expected based on 

theory (e.g. Ulaby et al. 1982) and has been confirmed in various investigations 

(e.g. Abdel-Messeh and Quegan, 2001; Lievens et al., 2011; Van der Velde and 

Su, 2009; Van der Velde et al., 2014). The VH polarized σ0 displays a similar 

seasonal behavior as the co-polarized ones (VV and HH), but smaller 

differences are noted among the three incidence angles.  
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Fig.3.1. Multi-angular (28.7o, 37.8o and 45.6o) L-band backscatter observed by Aquarius in the VV (a) HH (b) 

and VH (c) polarization over the Maqu soil moisture monitoring network (lat:33.8° , lon:102.2°, WGS84). 

The vertical dashed lines indicate when the mean daily temperature measured at a 5-cm depth is 0 oC. 

3.2.2 Brightness temperatures 

Fig.3.2 shows the series of the Aquarius V and H polarized radiometer 

observation for the three incidence angles over the Maqu region from August 

2011 to May 2013, whereby the Tb is commonly defined as the product of the 

emissivity and the temperature of the emitting layer. In the passive case, the 

decrease in the dielectric constant associated with the freezing of soil water 
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reduces the reflectivity and increases the emissivity because of its 

complementarity according to Kirchhoff’s law. This explains the Tb increase 

noted during wintertime as the emissivity increase outweighs the drop in the 

temperature of the emitting layer. Similar to the depression in the Aquarius σ0 is 

the Tb peak reached in early January whereby the exact timing depends on the 

incidence angle. A comparable Tb response to the freezing and thawing of bare 

land is reported in Wegmüller (1990) for two diurnal cycles monitored with a 

ground based radiometer.  

Upon completion of the thawing of the land surface, the Tb drops to about 200 

and 180 K for V and H polarization respectively, after which a gradual increase 

is noted towards the warm monsoon. The enhanced land surface emission is 

caused on a seasonal time scale by an increase in the land surface temperature 

possibly in combination with a larger emissivity induced by vegetation biomass 

following from its growth. Vegetation is generally known to attenuate the soil 

emission and contribute itself to the total emission, thereby, enlarging the 

overall land surface emissivity in the microwave region in particular under wet 

conditions (e.g. Mo et al. 1982, Joseph et al. 2010).  

As the warm season dissipates and, yet, the soil moisture content does not 

change substantially (see Fig.3.2), the Tb decreases as a result of a drop in the 

land surface temperature and vegetation biomass. It should be noted that the Tb 

observed from an incidence of 45.6° is in particular for the V polarization larger 

than the 28.7° and 37.8° Tb. This is explained on the one hand by the theoretical 

angular dependence and on the other hand by the fact that the impact of 

vegetation is larger at high incidence angles as will be demonstrated in section 

3.3.  
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Fig.3.2. Multi-angular (28.7o, 37.8o and 45.6o) L-band brightness temperatures observed by Aquarius in the V 

(a) and H (b) polarization over the Maqu soil moisture monitoring network (lat:33.8° , lon:102.2°, WGS84). 

The vertical dashed lines indicate when the mean daily temperature measured at a 5-cm depth is 0 oC. 

3.2.3 Response to soil moisture 

The soil moisture sensitivity of both active and passive microwave observations 

has been demonstrated in numerous studies (Dubois et al., 1995; Njoku and 

Entekhabi, 1996; Naemi et al., 2009; McColl et al., 2014). Here, we investigate 

the sensitivity of the coarse Aquarius scatterometer/radiometer observations to 

the soil moisture measurements from the Maqu region. For the active case, 

Fig.3.3 shows plots of the VV and HH polarized Aquarius σ0 versus soil 

moisture and Fig.3.4 presents the passive case with plots of the V and H 

polarized emissivity against the measured soil moisture, whereby the emissivity 

is computed as the Aquarius Tb divided by the measured soil temperature. Both 

soil moisture and temperature data used for Figs.3.3 and 3.4 are mean values of 

the 5-cm measurements from the 12 stations for which the record is complete 

for the selected Aquarius observation period from August 2011 to May 2013.  

 



 

Chapter 3 

27 

 

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6

Soil moisture (m3/m3)

-16

-12

-8

-4

0

B
a
c
k
sc

a
tt

e
r 

c
o
e
ff

ic
ie

n
t 

(d
B
)

Non-freezing-28.7O

Non-freezing-37.8O

Non-freezing-45.6O

Freezing-28.7O

Freezing-37.8O

Freezing-45.6O

0 0.1 0.2 0.3 0.4 0.5 0.6

Soil moisture (m3/m3)

-16

-12

-8

-4

0

B
a
c
k
sc

a
tt

e
r 

c
o
e
ff

ic
ie

n
t 

(d
B
)

Non-freezing-28.7O

Non-freezing-37.8O

Non-freezing-45.6O

Freezing-28.7O

Freezing-37.8O

Freezing-45.6O

 

Fig.3.3. Multi-angular (28.7o, 37.8o and 45.6o) L-band σo observed by Aquarius in the VV (a) and HH (b) 

polarization versus the measured soil moisture. Data collected under conditions with 5-cm soil temperature 

below (square symbols) and above 0oC (circular symbols) are separated.   

In general, positive relationships are observed between the Aquarius σ0 and the 

mean soil moisture derived from measurements, which is expected based on 

previous investigations (e.g. Joseph et al. 2010; Kaojarern et al. 2004; Mancini 

et al. 1999). In fact, we find two linear relationships for the VV as well as HH 

polarized Aquarius σ0. The first is noted for conditions when the 5-cm soil 

temperature is below 0°C. Increments in both VV and HH polarized σ0 are 

recorded varying from about 2.0 up to 4.0 dB over the 0.1 – 0.2 m3 m-3 soil 

moisture range depending on the view angle.  

Of course, one can argue meaning of soil moisture at temperatures below 0oC. 

However, we would like to remind that liquid and frozen water can co-exist in 

the soil matrix up to several degrees below freezing point depending on the soil 

type, temperature and water content (Watanabe and Flury 2008). In fact, 

Wegmüller (1990) has reported on the impact of liquid water in soils below 0 oC 

on active as well as passive microwave signatures. Here, a correlation is found 

between the σ0 and the in-situ soil moisture because the selected in-situ sensors 

essentially measure a dielectric constant (section 2.2.1) that also influences the 

microwave observations. 

The other relationship is found for data collected when the recorded 5-cm soil 

temperature is above 0 oC, which is much weaker than the previous one. In all 

six sensing configurations the σ0 increases less than 1.0 dB over a soil moisture 

range from 0.30 to 0.50 m3 m-3. The weaker sensitivity of σ0 observation 
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towards soil moisture is well known under wet conditions. For instance, Altese 

et al. (1996) eloquently demonstrated using C-band measurements performed 

under controlled laboratory conditions. They found that above a dielectric 

constant of 10 (-) the σ0 hardly increases regardless of the surface roughness 

condition and confirmed this result using the surface scattering simulations with 

the theoretical Integral Equation Method model (IEM, Fung et al. 1992). 

Similar conclusions were drawn from the study by Joseph et al. (2008) that 

focused on soil moisture estimation from ground based L-band σ0 observations 

collected during the corn growth cycle. Table 3.1 lists the regression 

coefficients and coefficients of determination (R2) following from fitting a 

linear equation of the form σ0 = a sm + b through σ0- soil moisture matchup data 

collected under below 0 oC and above 0 oC conditions, separately. 

Table 3.1. Regression coefficients (a and b) and coefficients of determination (R2) following from fitting a 

linear equation of the form σ0 = a SM+ b through the matchups. 

 Angle (degree) Polarization a b R2 

Below 0 oC 

 

28.7o 

 

V 50.25 -15.395 0.614 

H 50.339 -15.591 0.607 

37.8o 

 

V 22.859 -17.737 0.728 

H 22.833 -17.815 0.712 

45.6o 

 

V 29.490 -17.745 0.504 

H 30.994 -17.956 0.569 

Above 0 oC 

 

28.7o 

V 4.387 -6.979 0.239 

H 5.050 -7.332 0.036 

37.8o 

V 14.706 -16.038 0.450 

H 15.415 -16.312 0.468 

45.6o 

V 5.113 -12.235 0.239 

H 5.516 -12.288 0.275 
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Fig.3.4. Emissivity derived from multi-angular (28.7o, 37.8o, 45.6o) Aquarius H and V polarized Tb 

observations plotted against measured soil moisture; panels a), b) and c) present the results for the V 

polarization for angles of 28.7o, 37.8o and 45.6o, respectively and panels d), e) and f) show the results for the 

H polarization for the same respective angles. 

The plots of Fig.3.4 demonstrate the dependence of the L-band emissivity 

derived from Aquarius Tb’s on soil moisture. In line with theory (i.e. Ulaby et 

al. 1986) a higher L-band sensitivity to soil moisture is found for the H 

polarization that is, as expected, most appreciable at the largest incidence angle 

(e.g. 45.6o). In the plots, a distinction is made between data acquired under 

conditions when the measured 5-cm soil temperature is respectively below and 

above 0o C illustrating that the highest emissivity is obtained under the lowest 

soil moisture and freezing conditions. The emissivity decreases as the recorded 

moisture increases while the temperature remains under the freezing point. This 

is explained by the fact that once temperatures drop below 0 °C not all water in 

the soil matrix freezes and a part remains in a liquid state. The amount of liquid 

water defines the dielectric properties, which both affect the Aquarius and 

capacitance probe measurements. Hence, a well-defined linear relationship is 

found between the L-band emissivity and the recorded soil moisture even 

during freezing. Table 3.2 presents the regression coefficients and R2 of linear 

equations of the form e = a sm+ b fitting through the data available for below 

and above 0 oC conditions. 
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 Table 3.2 Regression coefficients (a and b) and coefficients of determination (R2) following from fitting a 

linear equation of the form E= a SM+ b through the matchups. 

 Angle (degree) a b R2 

V 

28.7o -0.470 0.959 0.774 

37.8o -0.494 1.005 0.748 

45.6o -0.380 1.003 0.775 

H 

28.7o -0.508 0.914 0.722 

37.8o -0.564 0.957 0.725 

45.6o -0.435 0.913 0.636 

The decrease of the emissivity continues under non-freezing conditions almost 

seamlessly for the emissivities derived from the Tb from angle of 28.7o (beam 1) 

and 45.6o (beam 3), whereas a clear discontinuity is noted at soil moisture 

values of 0.2-0.35 m3 m-3 for the 37.8o (beam 2) Aquarius observations. The 

time of overpass forms the explanation for the difference in the obtained 

relationships. Beam 1 and 3 cross the study area at 19h in the afternoon, and the 

beam 2 measurements are performed at 7h in the morning as the land surface 

cools down.  

In the latter case, the temperature near the land-atmosphere interface may have 

cooled down sufficiently to initiate dewfall as well as soil freezing. 

Development of ice at the soil surface lowers the dielectric constant and 

increases the L-band emissivity, while at a 5-cm depth water remains liquid 

because the temperature is well above 0 °C. Such strong soil temperature 

gradients near the surface have been reported for the study area by, for instance, 

Zheng et al. (2015). Mixed reports have been published on the effects of dew on 

L-band emission. For instance, Saleh et al. (2006) indicated that for a grassland 

L-band emission increases as a result of intercepted precipitation, whereas 

Hornbuckle et al. (2006) showed a decrease for the corn emission. As alpine 

meadow is the land cover in the study area, the noted enlarged microwave 

emission increase would be in line with the findings of Saleh et al. (2006). On 

the other hand, the emission increase occurs specifically at the intermediate 

moisture levels recorded at the transition from prevailing freezing to thawing 

conditions. Moreover, the humidity of air will be low and less appropriate for 

the formation of dew under those circumstances. 
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The relationship between the L-band emissivity and soil moisture weakens 

under wet conditions (> 0.35 m3 m-3) whereby even an increase in the emissivity 

is noted towards saturated levels, particularly for large incidence angles (e.g. 

37.8° and 45.6°). As open water reduces the emissivity considerably, a major 

impact of inundation on Aquarius radiometer (and scatterometer) observations 

is ruled out. A more probable cause for the observed increase in the L-band 

emissivity is the vegetation effects, which is further quantified in section 3.3.2.  

3.3 Behavior of polarimetric indices 

Polarimetric indices derived from active as well as passive microwave 

observations have proven to ease the interpretation of scenes at hand and unlock 

land surface information embedded within polarimetric microwave signals. 

Choudhury et al. (1987) and Paloscia and Pampaloni (1988) are among the first 

to propose the microwave polarization difference index (MPDI; or polarization 

index, PI) derived from Tb measured by microwave radiometers as follows, 

       (3.1) 

where superscripts v and h stand for the vertical or horizontal polarized 

brightness temperature, respectively.  

Kim and van Zyl (2000) introduced the radar vegetation index (RVI) deduced 

from polarimetric σ0 measurements,  

        (3.2) 

where  stand for the HH, VV, and HV polarized σ0, 

respectively. The RVI varies from 0 to 1, whereby values approaching unity 

increasingly represent the scattering behavior of a slab with randomly oriented 

thin cylinders.  

The behavior of both RVI and MPDI derived with Aquarius observations 

acquired over the Maqu area is discussed below. In addition, the τ-ω concept is 

employed to reconstruct the MPDI with input of the measured soil moisture to 

estimate the vegetation effects (e.g. optical depth, τ) on the L-band emissivity. 

This is subsequently related to the RVI and Normalized Difference Vegetation 
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Index (NDVI) taken from the Moderate Resolution Imaging Spectrometer 

(MODIS) MOD13Q1 product. 

3.3.1 Radar Vegetation Index 

Kim and Van Zyl (2004, 2009) have utilized the RVI as part of the soil moisture 

retrieval process from radar observations to distinguish critical biomass levels 

whereby RVI < 0.2 is considered as sparse vegetation and RVI > 0.35 is 

associated with significant vegetation biomass (e.g. vegetation water content, W 

> 2.5 kg m-2 for corn). More recently, Kim et al. (2012, 2014) studied the RVI 

for its potential to quantify the W of agricultural crops and McColl et al. (2014) 

investigated using Aquarius data the impact of inherent uncertainties following 

from noise and calibration errors on the RVI as a potential operational global 

product from SMAP. In support of this increased interest, Fig.3.5 shows time 

series of RVI derived from the Aquarius σ0 observed from the three incidence 

angles along with the MODIS NDVI on the secondary axis.  

 

Fig. 3.5 Time series of the RVI derived from quad-polarized Aquarius σ0 collected over the Maqu area at 

incidence angles of 28.7o, 37.8o and 45.6o from August 2011 up to May 2013 with the MODIS NDVI plotted 

on the secondary y-axis. 

The RVI time series deduced from the Aquarius observations display at all three 

incidence angles a seasonal cycle that is in phase with the NDVI, which 

demonstrates the potential use of RVI for quantifying vegetation biomass. The 

RVI derived from all three beams increases, on average, from the instant that 

the NDVI increases in early March and decreases from August. As a means of 

quantifying the relationship between RVI and NDVI a linear equation of the 
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form RVI = a NDVI +b is fitted through the matchups, of which Table 3.3 

provides the regression coefficients (e.g. a and b) and coefficient of 

determination (R2). Additionally, Fig.3.5 illustrates that the RVI typically 

increases with the incidence angle indicating that, as expected, vegetation has 

the largest impact on the observed σ0 at a 45.6° angle with the RVI varying from 

0.2 to more than 0.35. The latter is representative for significant vegetation 

(Kim and Van Zyl 2009). On the other hand, both the 28.7° and 37.8° RVI 

hardly exceeds 0.2, which suggests that vegetation in Maqu has little impact on 

those radar measurements.  

Table 3.3. Regression coefficients (a and b) and coefficient of determination (R2) following from 

fitting a linear equation of the form RVI = a NDVI + b through matchups.  

Angle (degree) a b R2 

28.7o 0.121 0.059 0.101 

37.8o 0.149 0.113 0.603 

45.6o 0.145 0.261 0.184 

The rather noisy behavior of RVI should also be noted in particular for the 28.7° 

and 45.6° incidence angle, whereas the 37.8o values exhibit a more robust 

behavior. This is clearly reflected in the magnitude of the R2 listed in Table 3.3, 

which with 0.603 appreciable for 37.8o data but with 0.101 and 0.184 rather low 

for the 28.7° and 45.6°, respectively. The susceptibility of the RVI, in general, 

for noise and calibration errors has previously been addressed by McColl et al 

(2014). They conclude that due to its additive nature imperfections in the 

calibration of the cross polarized σ0 have a large impact on the RVI. Indeed, 

Fig.3.1 shows that the day-to-day variability embedded within the 28.7° and 

45.6°    time series is somewhat larger than within the 37.8° . This could 

be caused by inherent different noise levels for Aquarius observations acquired 

from descending and ascending orbits over the study area either due to its view 

geometry or its overpass time.  

3.3.2 Microwave Polarization Difference Index 

The MPDI derived from high frequency microwave observations is primarily 

determined by the overlaying vegetation biomass (e.g. Choudhury et al. 1987, 

Wen and Su 2004, Wen et al. 2005). At lower frequencies, however, the MPDI 

decreases with decreasing soil moisture and increasing vegetation (e.g. Saleh et 
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al. 2006). Hence, popular retrieval algorithms (e.g. Owe et al. 2001, Paloscia et 

al. 2001) make use of this property to parameterize vegetation corrections and 

estimate the soil moisture content.  

Instead of presenting the MPDI as the ratio of H and V polarize Tb’s, the 

emissivity can also be used for its formulation as,  

      (3.3) 

where e is emissivity. This is attractive because the e of the soil-vegetation 

system ( ) can be computed using the τ-ω concept without information on 

the temperature of the emitting layer assuming a thermal equilibrium exists 

within the medium by,  

 

  (3.4) 

where ω (-) is the single scattering albedo, superscript p stands for the 

polarization that can either be H or V, γ is the transmissivity defined as 

 with τ as the optical depth and with θ as the incidence angle. 

The bare soil emissivity (esoil) can be computed using the model originally 

proposed in Choudhury et al. (1979) given in a generalized form by, 

     (3.5) 

where R0 is the Fresnel or smooth surface reflectivity, k is wavenumber (cm-1), s 

is the standard deviation of the surface height (cm). Typically, the factor k2s2 is 

represented by a single effective roughness parameter, hr, of which N describes 

the angular dependence. The system presented by Eq. 3.4 and 3.5 includes in 

total four parameters, of which two define the vegetation effects (e.g. τ and ω) 

and the other two account for the surface roughness effects (e.g. hr and N). The 

surface roughness is typically assumed invariant for natural ecosystems such as 

the Tibetan alpine meadows of the Maqu area (e.g. Jackson et al. 1999, Van der 

Velde et al. 2012, O’Neill et al. 2012), while vegetation is subject to 

considerable changes most notably during the warm monsoon season.  

We start the development of the parameterization for our study area with 

quantifying the surface roughness effects using the MPDI derived from 
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Aquarius Tb observations collected in the second part of May. During this time 

of the year, the temperatures in Maqu become sufficiently high to remove all ice 

from the soil matrix, yet biomass remains close to its winter levels permitting us 

to set τ and ω equal 0.0 thereby assuming negligible vegetation effects on the L-

band microwave emission. Van der Velde and Su (2009) found that for similar 

land conditions that vegetation in the region has only very little impact even on 

the lower frequency ASAR observations that are typically known to be more 

affected than L-band passive microwave observations. Then, the roughness 

parameter, hr, is estimated by minimizing the absolute difference between the 

Aquarius observed and model simulated MPDI using a steepest gradient 

method, for which data from 29 May 2012 is used for the 28.7o beam and from 

18 May 2013 for both 37.8° and 45.6° beams. Individual MPDI calculations are 

performed with Eq. 3.3 and 3.5 using dielectric constants computed from the 

soil moisture measurements in combination with available soil texture 

information (e.g. Su et al. 2011) and the soil dielectric mixing model by 

Mironov et al. (2004). 

Table 3.4 lists the obtained hr values for an assumed angular dependence factor, 

N of 0. It is evident that the hr exhibits angular dependence. The purpose of the 

roughness estimation is, however, to further analyze the vegetation effects on 

the L-band emission throughout the monsoon season. Hence, the hr values 

derived for each beam separately is utilized to optimally account for the 

roughness. 

Table 3.4. Roughness parameters, hr, estimated by minimizing the MAD computed using the Aquarius 

observed and model simulated MPDI for three angular dependence factors.  

Incidence angle hr 

28.7o 0.28 

37.8o 0.46 

45.6o 0.59 

Fig.3.6 presents time series of the MPDI derived from Aquarius observations 

and simulations made assuming negligible vegetation effects (e.g. both τ and ω 

taken as 0.0) for the 28.7°and 45.6° incidence angle. The data for beam 2, 37.8°, 

is not shown here for clarity as much of it overlaps with the 45.6° data. The plot 

illustrates that the observations and simulations match fairly well in the spring 

season (e.g. April, May) and at the end of the warm season starting from 

November. Differences can be noted in winters when soil water is typically 

frozen and during the warm monsoon season. In general, the simulations 

overestimate the observed MPDI whereby the most significant deviations occur 
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in the period from June to October and for the 45.6° angle. A decrease in 

computed MPDI could be facilitated by either a decrease in the soil moisture or 

an increase in the vegetation effects (Saleh et al. 2006). Fig.3.6 shows, however, 

that soil moisture remains fairly constant at a high level. As such, the 

discrepancy noted between the calculated and observed MPDI should be 

attributed to the vegetation effects.  

 

Fig. 3.6. Time series of Aquarius observed and MPDI simulated assuming negligible vegetation effects (e.g. τ 

and ω taken as 0.0) for incidence angles of 28.7o and 45.6o. The 37.8o data is excluded for clarity as it largely 

overlaps with the 45.6o data. 

The optical depth (τ) is estimated to quantify this vegetation effect, which is 

done by minimizing the absolute difference between the observed and simulated 

MPDI for each Aquarius acquisition, while assuming ω equal to 0.05 for both H 

and V polarizations in analogy with, for instance, Van de Griend et al. (1996). 

Fig.3.7 shows time series of the estimated τ for the three Aquarius incidence 

angles whereby the episode affected by soil freezing is not masked. Two peaks 

can be noted in the obtained τ throughout a year: i) during the winter in 

January/February, and ii) during the summer in July/August.  

The wintertime τ estimates are surprisingly large even through the differences 

between observed and simulated MPDI are smaller than during the summer (see 

Fig. 3.6). The calculations for frozen conditions are more sensitive to soil 

moisture as the amount of vegetation biomass is less. As such, the uncertainties 
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inherent to the capacitance probe measurements below 0o C have a more 

significant impact on the τ estimates causing the larger magnitude and 

fluctuations. Notably, the capacitance probes are not calibrated for determining 

the liquid moisture condition under below 0 oC conditions and the readings may 

display some sensitivity to temperature as well (Robinson et al. 2008). Also, the 

uncertainty following from the roughness estimation procedure (e.g. ‘bare soil’ 

assumption) may propagate towards the τ estimates. However, the magnitude of 

τ does not become negative as would be the case if the roughness parameter, hr, 

was estimated from Aquarius Tb’s on which the vegetation effect was 

substantial. On the other hand, a clear difference is seen among the three 

incidence angles, whereby the largest τ is generated using the 37.8° beam data 

collected at early morning versus 28.7° and 45.6° beam data collected during the 

afternoon. This could suggest that the magnitude of τ is an indication for the 

thickness of the frozen soil layer since the sensing depth changes as function of 

both the dielectric constant and view angle.  
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Fig.3.7. Time series of optical depth, τ, estimated by the minimizing the absolute difference between the 

Aquarius observed and MPDI simulated using the τ-ω concept for three incidence angles (e.g. 28.7o, 37.8o, 

45.6o). The vertical dashed lines indicate when the mean daily temperature measured at a 5-cm depth is 0 oC. 

During the warm season, the deviations among the τ derived from Aquarius Tb 

data collected at the three incidence angles dissipates demonstrating the 

suitability of τ as a means to define the transmissivity, γ, of vegetation. Hence, 

quantification of τ has always been an important component of soil moisture 

retrieval algorithm development (e.g. Wigneron et al. 2007). For instance, 
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Jackson and O’Neill (1990) were among the first to estimate τ as the product of 

an empirical vegetation type dependent parameter, b, and the vegetation water 

content, W. Recognizing the difficulty in obtaining W across the globe with 

sufficient reliability, vegetation indices deduced from readily available 

optical/infrared satellite products are frequently adopted as a proxy (e.g. 

Bindlish et al. 2003, Lawrence et al 2014). Additionally, Kim et al. (2012, 

2014) studied the RVI derived from σ0 measured with a ground-based 

scatterometer for its potential of estimating the W of agricultural crops.  

Fig.3.8 presents plots of τ against the NDVI and RVI for each of the three 

Aquarius beams for investigating their appropriateness in quantifying the effect 

of Tibetan alpine meadows on L-band emission. Data points are only shown of 

the τ estimates from Aquarius Tb observed during days for which temperature 

measured at 5 cm remained above freezing point. In addition, Table 3.5 

provides regression coefficients and R2 values belonging to a linear equation of 

the form τ = a RVI (or NDVI) + b fitted through the matchups.  

Table 3.5. Regression coefficients (a and b) and coefficients of determination (R2) following form 

fitting a linear equation of the form τ = a RVI (or NDVI) + b through the matchups. 

 
Angle 

(degrees) 
a b R2 

RVI 

28.7o -0.035 0.110 0.001 

37.8o 0.873 -0.056 0.226 

45.6o 0.178 0.023 0.037 

NDVI 

28.7o 0.201 -0.002 0.405 

37.8o 0.176 0.019 0.230 

45.6o 0.230 -0.039 0.388 

In general, both the table and the plots illustrate that a clear relationship exists 

between the τ and NDVI. The obtained R2 varying from 0.230 to 0.405 are in 

agreement with results recently presented in Lawrence et al. (2014) who 

compared the SMOS τ product with a variety of MODIS derived vegetation 

indices for a major agricultural area in the United State of America. It should, 

however, be noted that the spread among the τ-NDVI matchups is quite 

considerable.  
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The relationship of τ with the RVI is less noticeable. Potentially the strongest 

dependence between τ and RVI is found for an incidence angle of 45.6° 

although the scatter among data points is fairly large due to the day-to-day 

variability embedded within the RVI time series (see Fig.3.5). At an incidence 

of 28.7° this dependence is virtually absent as a result of a rather small dynamic 

range in combination with an appreciable short-term RVI variability. On the 

other hand, the scatter plot of τ versus RVI derived from the 37.8° σ0 

observations demonstrates their agreement once the short-term variability is low 

in spite of the fact that the dynamic range. Hence, τ estimation using the RVI is 

only feasible if the signal is sufficiently stable over time.  

 

Fig.3.8. NDVI and RVI plotted against the τ estimated using the τ-ω concept from Aquarius MDPI observed 

from three incidence angles, whereby a) & d) present the results for 28.7°, b) & e) for 37.8° and c) & f) for 

45.6°. 
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3.4 Summary and Conclusions 

Aquarius scatterometer and radiometer measurements collected in the period 

from August 2011 to May 2013 are studied for the Maqu area on the 

northeastern part of the Tibetan Plateau, which is selected as one of the 

candidate international Cal/Val sites for NASA’s Soil Moisture Active Passive 

(SMAP) mission. The impact of freeze-thaw, soil moisture and vegetation on L-

band backscatter and emission is investigated using in-situ soil moisture and 

temperature measurements as well as the polarimetric information embedded 

within the Aquarius data. The τ-ω concept (Mo et al. 1982) is employed to 

reproduce the Microwave Polarization Difference Index (MPDI) derived from 

Aquarius Tb’s and quantify the vegetation optical depth (τ), which is 

subsequently linked with the Radar Vegetation Index (RVI) and Normalized 

Difference Vegetation Index (NDVI).  

The analysis of the Aquarius scatterometer/radiometer data reveals very 

distinctive seasonal dynamics of both backscatter (σ0) and brightness 

temperature (Tb) measurements. The lowest σ0 measurements are recorded in the 

winter season as the transformation from water to ice lowers the dielectric 

constant to the level of dry soil. Similarly, the passive microwave measurements 

converted to emissivity (e) by dividing the Tb with temperature measured at 5-

cm soil depth attain during wintertime values (high) representative for dry 

conditions. The comparisons of the σ0 and e versus soil moisture recorded with 

capacitance probes installed at a 5-cm soil depth (e.g. a direct measurement of 

the dielectric) illustrate that even for temperatures below 0 oC the L-band 

microwave observations are sensitive to the amount of liquid water within the 

soil matrix. This highlights once again that freeze-thaw is not an ‘on/off’ 

process and more importantly that the liquid water content for temperatures 

below freezing point can potentially be quantified using L-band active and/or 

passive microwave observations. Under wet conditions both the σ0 and e 

saturates starting from soil moisture contents of about 0.3 m3 m-3. This is in line 

with simulations performed with theoretical models in the past.  

In an attempt to quantify the vegetation effects on the σ0, the temporal behavior 

of RVI is analyzed with respect to the NDVI. In general, the seasonal dynamics 

of the two vegetation indices are in phase with each other demonstrating the 

potential of RVI for quantifying vegetation biomass. On the other hand, it is 

noted that the magnitude of RVI hardly exceeds 0.2 for the Aquarius σ0 
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observed at angles of 28.7° and 37.8°, and is only in several occasions above 0.4 

for the 45.6° σ0. This suggests that vegetation has a limited impact on the 

scatterometer measurements over the Maqu area, which negatively affects the 

signal-to-noise ratio. The latter is also compromised by the additive nature of 

calibration errors inherent to the cross polarized σ0 propagating towards the 

RVI.  

In addition, the MPDI constructed with Aquarius Tb measurements is 

reproduced by estimating the τ as part of a τ-ω modelling frame whereby soil 

moisture measurements are utilized to define the dielectric constant. Further the 

roughness parameter is estimated using Aquarius Tb’s measured under non-

frozen soil and optically-thin vegetation conditions. The time series of the τ 

estimates include for all three Aquarius angles (28.7°, 37.8° and 45.6°) peaks in 

the months January/February and in July/August. The wintertime τ is 

remarkable larger than the summer values, which may follow from uncertainties 

in the calibration of the capacitance probe measurements as well as the 

roughness estimation procedure. On the other hand, the results could also 

indicate that the magnitude of τ is a measure for the frost depth when 

temperatures are below 0 °C.  

In the warm season, the behavior of τ is in line with the vegetation dynamics 

and positive agreements are found with the NDVI although the spread is quite 

considerable. Also, the relationship with the RVI is studied, which is due to its 

small dynamic range and the short-term RVI variability barely noticeable. On 

the other hand, the RVI derived from the Aquarius 37.8o observations 

demonstrates the potential agreement with τ if the day-to-day RVI fluctuations 

are small. Hence, the possibility of defining the τ using the RVI needs to be 

further investigated using data collected over study areas with a larger dynamic 

range and also using additional ‘noise’ suppression techniques.  
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Chapter 4 Use of a discrete electromagnetic model 

for simulating Aquarius L-band active/passive 

observations and soil moisture retrieval*  

4.1 Introduction 

The combination of active and passive L-band observations is recognized as a 

viable approach for reliable soil moisture estimation at high resolution across 

the globe (e.g. Entekhabi et al., 2004). Passive microwave sensors or 

radiometers enable, through brightness temperature (Tb) measurement, 

quantification of the effective land surface emissivity (hereafter referred to as 

emissivity for brevity), which is the complement of the reflectivity that can be 

calculated by integrating the bistatic scattering coefficients as formulated in 

Peake (1959). Active microwave sensors or radars measure the scattering 

coefficient in the backward direction also known as the backscattering 

coefficients (σ0). The launch of the Aquarius/Satellite de Aplicaciones 

Cientificas (SAC)-D and the Soil Moisture Active/Passive (SMAP) missions, in 

2011 and 2015 respectively, marked the start of the worldwide measurement of 

concurrent L-band Tb and σ0. 

Several initiatives were undertaken to deliver operational global soil moisture 

products from the observations collected by both satellite missions at various 

spatial scales (e.g. Entekhabi et al., 2010; Bindlish et al., 2015). The SMAP 

mission (of which radar failed on 7 July 2015) was intended to specifically 

accommodate the use of both active and passive responses for operational soil 

moisture estimation at an intermediate 9-km resolution. This was to be 

accomplished through statistical downscaling of the coarse resolution (36-km) 

Tb,
 supported by the fine resolution (3-km) σ0, after which soil moisture was 

estimated at the target resolution using a similar approach to the one used for 

                                                 
* This chapter is based on 

Wang, Q., van der Velde.,R., and Su, Z. (2018) Use of a discrete electromagnetic model 

for simulating Aquarius L-band active/passive observations and soil moisture retrieval. 

Remote Sensing of Environment, 205, 434-452. DOI:10.1016/j.rse.2017.10.044   
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the radiometer-only product (Das et al., 2014). The procedure selected for the 

combined active/passive product has evolved from an earlier version (Das et al., 

2011) based on change detection, which stems from developments based on 

airborne field campaign and synthetically generated data sets (Njoku et al., 

2002; Narayan et al., 2006; Piles et al., 2009). A very similar approach was 

recently applied to satellite observations (van der Velde et al., 2015) and a 

review on the current state of spatial downscaling remotely sensed soil moisture 

has been documented in Peng et al. (2017). 

On the other hand, developments aimed at a more physical interpretation of the 

concurrent active and passive L-band microwave responses are also ongoing. 

For instance, for vegetation monitoring purposes, Colliander and Xu (2013) 

introduced the normalized residual scattering index (NRSI), as measure for the 

directionality of scattering obtained by evaluating σ0 with respect to reflectivity 

derived from Tb measurements. Guerriero et al. (2012) used the Tor Vergata 

University of Rome discrete electromagnetic model (TV-DEM) to assess the σ0 

- Tb relationship. They were able to confirm that the ratio of σ0 over reflectivity 

was sensitive to vegetation biomass and relatively unaffected by soil moisture.  

Indeed, Ferrazzoli et al. (1989), Chauhan et al. (1994) and Saatchi et al. (1994) 

had previously recognized that discrete electromagnetic models are powerful 

tools for interpreting active and passive microwave observations, an important 

step in optimizing soil moisture retrieval algorithms. At present, confidence in 

the performance of discrete electromagnetic models is such that they form an 

integral part of the Level-2 radiometer-only or radar-only processors used in 

soil moisture satellites. The Soil Moisture and Ocean Salinity (SMOS) retrieval 

algorithm, for instance, uses radiative transfer parameters simulated by the TV-

DEM to correct for the effect of forest emissions (Rahmoune et al., 2013). 

Furthermore, the experimental SMAP radar-only soil moisture product is based 

on searching a data cube or look up table built using forward model simulations 

(Kim et al., 2014). In their work, the discrete electromagnetic model based on 

the distorted Born approximation is used to compensate for the effects of 

vegetation (Lang and Sidhu, 1983).  

However, the use of discrete electromagnetic models for satellite missions, in 

the context of combined active/passive soil moisture retrieval, is still under 

development. One of the first studies in this domain was by Dente et al. (2014). 

They used observations over the Maqu study area in the north-eastern part of 

the Tibetan Plateau made with the C-band Metop Advanced Scatterometer 
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(ASCAT) and the Advanced Microwave Scanning Radiometer (AMSR-E) on 

the Earth Observing system. By using both active and passive microwave data, 

they concluded that litter in the Maqu study area has an important absorbing 

effect leading to an increase in the Tb and a decrease in the σ0 observed by the 

two individual satellites. As such, the evaluation TV-DEM simulations with 

respect to combined active and passive microwave satellite observations led to a 

better understanding of emission and scattering processes.  

The Aquarius instrument had been accumulating a record of concurrent L-band 

active and passive measurements for a period of 3 years and 8 months when the 

SAC-D platform failed on 7 June 2015. In this investigation, we have applied 

the TV-DEM to the available Aquarius active and passive data collected over 

the Maqu study area with the following three objectives:  

(i) To analyze the model´s ability in reproducing concurrent L-band active 

and passive measurements from a single platform; 

(ii) To better understand the scattering and emission processes observed by 

Aquarius instruments; 

(iii) To demonstrate soil moisture retrieval from both active and passive 

microwave data using an algorithm based on a single radiative 

transfer model (e.g. TV-DEM). 

The key scientific literature in relation to these objectives is summarized in 

Table 4.1. In this manuscript, TV-DEM’s sensitivity to its extensive 

parameterization of the soil-vegetation system is evaluated. These results are 

used to select the most critical parameters for calibration using data from the 

warm seasons of 2012 and 2013. The calibrated TV-DEM is subsequently 

deployed for soil moisture retrieval from three combinations of the Aquarius 

active and passive data from the 2014 and 2015 warm seasons. The 

performance of these retrievals is assessed through comparisons with in-situ 

measurements. In addition, the performance of the TV-DEM estimates is 

evaluated with respect to that of the soil moisture obtained with three 

algorithms based on application of the commonly used τ (optical depth) - ω 

(single scattering albedo) model, including the official Aquarius product. 

Further, uncertainties resulting from simplification of the TV-DEM application 

are quantified. 
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Table 4.1 List of cited scientific literature and summary of the key findings in relation to the objectives of the 

present investigation; the number (i), (ii), (iii) refer to the objectives defined in the introduction  

Literature Data Model and/or 

method 

Study area Key findings 

1. Bindlish 

et al. (2015) 

- Aquarius Tb  - τ-ω model 

implemented as 

single channel 

algorithm (SCA) 

- Globally 

applied  

- Validated for 

USA soil 

moisture 

networks 

i. not applicable 

ii. Reliability SCA 

retrievals are not 

compromised by varying 

incidence angles;  

iii. error metrics for soil 

moisture retrievals are: 

RMSE = 0.031 m3 m-3, R 

= 0.855 and bias = -

0.007 m3 m-3 

2. Chauhan 

et al. (1994) 

- Airborne 

Synthetic 

Aperture Radar 

(AIRSAR) σo 

- Aircraft 

mounted 

Pushbroom 

Microwave 

Radiometer 

(PBMR) Tb 

- Distorted born 

approximation 

based discrete 

electromagnetic 

model (DEM, Lang 

and Sidhu 1983) 

Corn field in 

Pennsylvania, 

USA 

i. Selected DEM is able 

to predict both σo and Tb 

using a single set of 

measured vegetation  

ii. a) Coherent ´direct-

reflected´ scattering 

component is an 

important contribution. 

b) Stalks of corn plants 

are crucial for the 

AIRSAR observed 

polarization difference. 

iii. not applicable 

3. 

Colliander 

& Xu 

(2013) 

- Passive Active 

L- and S-band 

(PALS) airborne 

sensor data sets 

across the USA 

from 1999 and 

2008 

- Aquarius Tb and 

σ0 

- Normalized 

Residual Scattering 

Index (NRSI) 

- Field campaign 

study areas 

across the USA 

for PALS data 

- Globally 

applied on 

Aquarius data 

i. not applicable 

ii. NRSI, derived from a 

combination of active 

and passive data, is 

sensitive to land cover 

features while being 

unaffected by soil 

moisture changes  

iii. not applicable 

4. Das et al. - PALS data set - Statistical - Corn and i. not applicable 
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(2011) from the Soil 

Moisture 

Experiments 

2002 (SMEX02) 

- Observation 

System 

Simulation 

Experiment 

(OSSE) data  

downscaling of soil 

moisture retrieved 

using the τ-ω model 

based SCA and fine 

resolution σo 

soybean fields in 

Iowa (USA) for 

SMEX02 PALS 

data 

-  Red Arkansas 

river basin for 

the OSSE data  

ii. not applicable 

iii. Addition of radar 

data improves the RMSE 

of soil moisture 

retrievals by 0.015-0.02 

m3 m-3 w.r.t. minimum 

performance 

5. Das et al. 

(2014) 

- PALS data from 

the SMEX02 

- Global-scale 

simulation 

(GloSim) for the 

SMAP mission 

- Statistical 

downscaling of Tb 

using fine 

resolution σo for 

which soil moisture 

retrieved with the τ-

ω model based 

SCA 

- Corn and 

soybean fields in 

Iowa (USA) for 

SMEX02 PALS 

data 

- Globally 

applied on 

GloSim data  

i. not applicable 

ii. not applicable 

iii. Radar data has the 

ability to resolve sub-

grid Tb heterogeneity and 

assist in obtaining a 

RMSE of 0.033 m3 m-3 

for soil moisture 

retrievals. 

6. Dente et 

al. (2014) 

- Metop 

Advanced 

Scatterometer 

(ASCAT) σo 

- Advanced 

Microwave 

Scanning 

Radiometer 

(AMSR-E) Tb  

- Matrix doubling 

based DEM, herein 

referred to as TV-

DEM 

- Alpine 

meadows in 

Maqu (Tibetan 

Plateau) 

i. TV-DEM is able to 

reproduce C-band σo and 

Tb observed from the 

two separate satellites. 

ii. Litter is found 

important for 

quantifying microwave 

emission.  

iii. not applicable 

7. 

Ferrazzoli 

et al. (1989) 

- Airborne X-

band SAR σo and 

radiometer Tb  

- Matrix doubling 

based DEM similar 

to the TV-DEM 

- Oltrepò Pavese, 

Italy 

i. not applicable 

ii. Non-isotropic 

scattering behavior of 

land surface causes the 

non-unique relationship 

between σo and 

emissivity (e), which 

depend on vegetation 

type and biomass.  

iii. not applicable 

8. Guerriero 

et al. (2012) 

- Phased Array L-

band Synthetic 

Aperture Radar 

- TV-DEM - Central Africa 

(dense forest), 

South Central 

i. TV-DEM model 

simulations confirm the 

σo-e relationship 
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(PALSAR) σo 

- Soil Moisture 

and Ocean 

Salinity (SMOS) 

Tb 

Africa (sparse 

forest), Sahara 

(desert) and 

Pampas 

(agriculture, 

Argentina)  

observed across a broad 

range of vegetation 

densities.  

ii. not applicable 

iii. not applicable 

9. Kim et al. 

(2014) 

- Aircraft and 

truck mounted L-

band radar σo 

- Aquarius σo  

- Numerical 

Maxwell model in 

three-dimensions 

for bare soil 

- Distorted born 

approximation 

based DEM for 

vegetation covered 

land 

- Field campaign 

study areas 

across the USA 

for the aircraft 

and truck 

mounted radar 

data sets 

- Globally 

applied on 

Aquarius data 

i. Simulations performed 

with physically based 

scattering models that 

make use of simplified 

land surface 

parameterizations 

resemble σo 

measurements 

reasonably well 

ii. not applicable 

iii. A prototype retrieval 

algorithm based on 

output of physically 

based scattering models 

is tested and presented 

for application to global 

Soil Moisture 

Active/Passive (SMAP) 

σo data 

10. Lang & 

Sidhu 

(1983) 

- L-band 1.8 GHz 

ground based 

radar σo  

- Distorted born 

approximation 

based DEM 

- Soybean field i. A good match is found 

between model 

simulation and σo 

measurements after 

adjusting model 

parameters 

ii. Soil scattering is the 

dominant term when 

vegetation can be 

considered as a weakly 

scattering medium  

iii. not applicable 

11. Narayan 

et al. (2006) 

- PALS and 

AIRSAR data 

from the 

- Change detection 

whereby vegetation 

effects on the σo 

- Corn and 

soybean fields in 

Iowa (USA) 

i. not applicable 

ii. not applicable 

iii. σo change can be 
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SMEX02 

 

sensitivity to soil 

moisture is 

accounted for using 

the optical depth, τ 

 related to the soil 

moisture change at the 

sub footprint scale of the 

PALS radiometer 

12. Njoku et 

al. (2002) 

- PALS data from 

the SGP99 

experiment 

- Retrieval concepts 

based on changes in 

Tb and σo 

- Pastures, bare 

and corn field in 

Oklahoma (USA) 

i. not applicable 

ii. Both active and 

passive microwave data 

display a sensitivity to 

soil moisture even over 

dense vegetation 

iii. not considered 

13. Piles et 

al. (2009) 

- PALS data from 

the SMEX02 

- OSSE data 

 

- Retrieval 

algorithm 

quantifying soil 

moisture changes 

within radiometer 

footprints using σo 

changes  

- Corn and 

soybean fields in 

Iowa (USA) for 

SMEX02 PALS 

data 

- Red Arkansas 

river basin for 

the OSSE data 

i. not applicable 

ii. not applicable 

iii. Algorithm for 

retrieving soil moisture 

at high resolution from 

active and passive 

microwave data  

14. 

Rahmoune 

et al. (2013) 

- Soil Moisture 

and Ocean 

Salinity (SMOS) 

Tb 

- τ-ω model  

- TV-DEM  

- Forest across 

the globe 

i. not applicable 

ii. not applicable 

iii. TV-DEM output is 

used to quantify forest τ 

and ω for global soil 

moisture retrieval 

15. Saatchi 

et al. (1994) 

- Truck mounted 

C-band 

scatterometer σo  

- Aircraft 

mounted 

Pushbroom 

Microwave 

Radiometer 

(PBMR) Tb 

- Distorted born 

approximation 

based DEM (Lang 

and Sidhu 1983) 

- Konza prairie 

(grass canopies) 

in Kansas (USA) 

i. Selected DEM is able 

to predict both σo and Tb 

measured from different 

platforms (respectively 

aircraft and truck)  

ii. Thatch or litter causes 

grass canopies to appear 

warm from the passive 

microwave perspective 

and reduces the σo 

measured by active 

sensors 

iii. not applicable 

16. van der 

Velde et al. 

- PALSAR  σo 

- VUA-NASA 

- Statistical 

downscaling of soil 

- Pastures and 

corn fields in 

i. not applicable 

ii. not applicable 
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(2015) AMSR-E soil 

moisture products 

moisture retrieved 

following a similar 

approach as 

described in Das et 

al. (2011 

Twente (The 

Netherlands) 

iii. Soil moisture maps 

obtained by downscaling 

the coarse resolution 

passive microwave data 

capture hydrological and 

hydrometeorological 

information. 

17. This 

study 

- Aquarius Tb and 

σo 

- TV-DEM - Alpine 

meadows in 

Maqu (Tibetan 

Plateau) 

i. TV-DEM is able to 

reproduce L-band σo and 

Tb observed by Aquarius 

with reasonable accuracy 

ii Soil and litter 

contributions dominate 

for L-band land surface 

emissivity 

iii. Soil moisture 

retrieved from 

active/passive data using 

the TV-DEM is better 

than retrievals from 

passive data alone 

4.2 Methods 

4.2.1 Tor Vergata-Discrete electromagnetic model 

The discrete electromagnetic model developed at the Tor Vergata University of 

Rome (TV-DEM) represents vegetation as a medium of discrete scatterers and 

soil as a rough dielectric surface for simulating the bistatic scattering 

coefficients in all directions following the radiative transfer theory (Bracaglia et 

al., 1995), which include three main components as expressed by: 

  (4.1) 

where  stands for the total bistatic scattering coefficient 

calculated for an arbitrary zenith and azimuth angle of the incident signal (θ and 

φ, respectively) and of the scattered signal (θs and φs, respectively); subscripts v, 
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sv, and s indicate the scattering contributions coming from i) vegetation 

directly, ii) soil-vegetation pathways and iii) soil surface, respectively. Note that 

the polarization dependence is suppressed here for brevity.  

The scattering coefficient in the backward direction, viz. backscattering 

coefficient, is obtained for the case that (θs, φs) equals (θ, φ). Calculation of the 

emissivity follows from integration of all bistatic scattering coefficients across 

the hemisphere that yields the reflectivity. The assumption of thermal 

equilibrium across the soil-vegetation system and application of energy 

conservation implies that the absorption must be equal to the emission (Saatchi 

et al. 1994). Hence, the emissivity can be calculated as the complement of the 

reflectivity according to:  

  (4.2) 

where subscript p indicates the polarization orthogonal to the polarization 

represented by subscript q and dΩs = sinθs dθs dφs.  

The TV-DEM handles the morphology of a canopy by treating stems and 

branches as cylinders and leaves as discs. The Rayleigh-Gans approximation 

(Eom and Fung, 1984; Osborn, 1945) is used to represent the electromagnetic 

behavior of discs and cylinders at frequencies lower than 5.0 GHz. The Integral 

Equation Method (IEM, Fung et al., 1992) is adopted for calculating the bistatic 

scattering coefficients from a rough dielectric surface. A module is included to 

represent litter as a layer consisting of a mixture of air and dielectric material 

representing fallen vegetation, for which an effective permittivity is obtained by 

matching the reflectivities calculated with a coherent multiple-reflection model 

and the Fresnel formulas for a homogeneous ‘equivalent’ medium (Della 

Vecchia et al. 2007). The permittivity of vegetation is computed using Mätzler’s 

(1994) model, while the mixing model developed by Mironov et al. (2009) is 

used to calculate the soil permittivity. With the definition of the geometry and 

permittivity for each element, the scattering and extinction coefficients of the 

individual scatterers within the vegetation canopy can be calculated. The matrix 

doubling algorithm (e.g. Eom and Fung, 1984) is employed to combine the 

individual contributions across all vegetation-soil pathways, including multiple 

scattering. Additional information on the active and passive TV-DEM versions 
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is available in Bracaglia et al. (1995) and Ferrazzoli and Guerriero (1996), 

respectively. 

 

Fig. 4.1. Schematization of the morphology selected for the TV-DEM setup for the Maqu study area. 

4.2.2 Application to Maqu 

The dominant land cover in the study region consists of alpine meadows with a 

soil litter layer that is several centimeters thick. The soil-vegetation system is, 

therefore, assumed to consist only of foliage that can be represented as leaves, 

on top of a rough soil surface covered by litter, as previously described in Dente 

et al. (2014) and illustrated in Fig.4.1. The parameterization of the morphology 

largely follows the same rationale as the setup presented in Dente et al. (2014).  

The leaves are represented as a collection of thin dielectric discs of fixed radius, 

uniformly distributed across the upper hemisphere. This is accomplished by 

positioning the elements representing the green vegetation from 5° to 90° in the 

elevation plane and from 15° to 345° in the azimuth plane at intervals of 5° and 

30°, respectively. The number of discs included in the canopy is calculated from 

the MODIS LAI product (see section 2.5.2), by dividing the area of an 

individual disc as determined from its radius. The plant moisture content 

(needed to determine permittivity of the vegetation), disc radius and thickness 

are unknowns of the TV-DEM’s vegetation component for the Maqu study area. 

Surface roughness must be parameterized to facilitate simulation of the surface 

scattering component. To this end, data on the standard deviation of height 

variations (s), autocorrelation length (l) and autocorrelation length function 
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(ACF) is required. The l is set to a fixed value, as previous studies (i.e. Altese et 

al., 1996; Joseph et al., 2010; van der Velde, 2010) demonstrated that it is less 

sensitive than s. An exponential function was selected for the ACF because this 

is considered to be best suited to natural land covers (i.e. van der Velde et al. 

2012).  

The soil litter layer is represented as a mixture of air and dielectric material. The 

effective permittivity of this homogeneous half-space is obtained by matching 

the reflectivities calculated by a coherent multiple-reflection model and the 

Fresnel formulas for a homogeneous ‘equivalent’ medium as described in Della 

Vecchia et al. (2007). An empirical linear relationship, found by Grant et al. 

(2007) and modified by Dente et al. (2014) for grassland, is adopted to define 

the litter thickness as function of its biomass, which is assumed to be 0.07 g cm-

2. Furthermore, the amount of litter moisture is linearly related to the soil 

moisture content; an assumption that also follows from the in-situ 

measurements presented in Grant et al. (2007) and has been applied in this 

context by Della Vecchia et al. (2007) for forest and Dente et al. (2014) for 

Maqu alpine meadows. 

Uncertainties introduced by assumptions regarding the parameterization of the 

surface roughness are assessed in sections 4.4.1. An overview of all parameters 

needed to operate TV-DEM is provided in Table 4.2. In addition, the manner in 

which each parameter is treated (e.g. known/available/assumed/calibrated and 

constant/variable), its data source, and its value/initial estimate is given as well. 

The choice for calibrating certain parameters is motivated by using the 

sensitivity analysis presented in Section 4.3.1.  

Table 4.2 List of input parameters needed to operate the TV-DEM using the setup selected for the Maqu area  

Parameter Data source Type Value/(Initial) Estimate   

Frequency 
Satellite 

configuration 
known constant 

1.26 GHz scatterometer 

1.413 GHz radiometer 

View angle 
Satellite 

configuration 
known constant 28.7 ° 
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Soil moisture Measurements available variable 

spatial mean of in-situ 

measurements collected at 12 

sites 

Soil texture Measurements available variable 

spatial mean of in-situ 

measurements collected at 12 

sites 

LAI MODIS product available  variable n/a 

Standard 

deviation of 

height variations 

Dente14 calibrated constant 0.90 cm 

Autocorrelation 

length 
Dente14 assumed constant 9 cm 

Autocorrelation 

function 
Dente14 assumed constant Exponential function 

Litter moisture 

factor 
Dente14. calibrated constant 2.0 

Litter biomass Dente14 calibrated constant 0.07 g cm-2 

Disc radius Dente14. assumed constant 1.4 cm 

Disc thickness Dente14. assumed constant 0.02 cm 

Disc angular 

distribution 
Dente14 assumed constant Uniform 

Plant moisture 
Dente14. calibrated constant 0.80 kg kg-1 
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content 

 

4.2.3 Automated calibration 

Automated calibration of selected model parameters is performed using 

the Parameter Estimation (PEST) software package (Doherty, 2004) that 

has often been used for similar purposes in land surface hydrology (e.g. 

Goegebeur and Pauwels, 2007; Immerzeel and Droogers, 2008; van der 

Velde et al., 2009). PEST can operate, by writing and reading model 

input and output files via supplied templates, as a shell around any model 

that can be run from a command line. Optimum model parameters are 

found by minimizing an objective function (ϕ) taken as the sum of 

weighted squared differences between observations and simulations. A 

Gauss-Levenberg-Marquardt (GLM) algorithm (Skahill and Doherty 

2006) is utilized to direct parameter changes within and across iterations 

as a function of the partial derivatives of ϕ with respect to the parameter 

space. The PEST implementation of the GLM algorithm makes use of a 

forward difference scheme to determine the partial derivatives at the start 

of the calibration process and switches to a central difference scheme 

when improvements in ϕ drop below a user-defined threshold. Here, the 

default configuration is adopted and the other PEST settings needed for 

the GLM algorithm can be found along with further information in 

Doherty (2004) and Gallagher and Doherty (2007).  

The objective function (ϕ) when PEST is applied to the TV-DEM with input of 

the active and passive Aquarius observations reads: 

        (4.3) 
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where b stands for the vector of calibrated parameters, w and v represent 

weights assigned to the σ0 and e, respectively, p represents the polarization 

dependence, i stands for an individual model simulation or satellite observation, 

respectively, and subscripts o and m indicate that the variable follows from an 

observation or model simulation, respectively. The ep,o is derived from the Tb 

measured by the Aquarius radiometer according to,  

                                                                       (4.4) 

where Teff is the effective temperature of emitting layer (K), which is obtained 

through application of the approach reported in Lv et al. (2014) with input of 

soil moisture and temperature measured at depths of 5 cm and 80 cm. 

Specific weights can be assigned to  and ep, which would certainly be 

needed when  expressed in dB would be part of ϕ, because its statistical 

moments differ inherently from ep. However, the standard deviation of  

expressed in linear units is remarkably similar to that of ep for the warm seasons 

of the available Aquarius data sets, namely 0.038, 0.036, 0.030, and 0.036 for 

, , eh, and ev, respectively. This would lead to comparable weights for the 

respective  and ep sets. Hence, we have chosen to assign equal weights for 

the matchup sets, and include in ϕ the  expressed in linear units.  

4.3 Results 

4.3.1 Parameter sensitivity 

A sensitivity analysis is performed for the unknown constant parameters, viz. 

labelled ‘available/assumed/calibrated’ and ‘constant’ in Table 4.2, of the TV-

DEM setup described above (Section 4.2.2) with exception of the 

autocorrelation length function and the disc angular distribution. The aim of this 

exercise is to gain insight into their impact on the TV-DEM e and σ0 

simulations, and support for choosing to calibrate certain parameters. The 

analysis is based on varying each of the unknown constant parameters 

individually across the range of -50% and + 50% of its reference value listed in 

Table 3 with an interval of 10% for all except the plant water content. A range 

of 0.40 to 0.90 kg kg-1 with a 0.05 kg kg-1 interval is used for the plant water 
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content. Note that all other parameters are kept as reference, with values are 

optimized for Maqu by Dente et al. (2014) using C-band active (ASCAT) and 

passive (AMSR-E) microwave observations. The reason for choosing 

multiplicative factors to vary the parameters is that the optimized set of values 

reported in Dente et al. (2014) is already expected to provide already a 

reasonable initial guess. In other words, the sensitivity of the TV-DEM for a set 

of parameters is determined locally one-at-a-time (Göhler et al. 2013). This set 

is more objectively quantified when each parameter is varied by equal 

multiplicative factor, rather than along an arbitrary range specified for each 

parameter.  

The mean ratio of the TV-DEM simulation results obtained with a perturbed 

parameter set over the results achieved with the reference parameter set (μratio) is 

used to assess the sensitivity of the calculated e and σ0 for a specific parameter, 

and can be expressed as, 

                                                                                  (4.5) 

where Y represents either the TV-DEM e or σ0 simulation, n is the total number 

of samples, and subscript ref indicates the reference simulation. The μratio is 

determined using the TV-DEM simulations performed with measured soil 

moisture and MODIS LAI data for the instances Aquarius passed over Maqu 

during the warm seasons of 2012 and 2013. A warm season is here defined as 

the period when the temperature of the top 5 cm of soil is above freezing point 

(0 oC).  

Figs.4.2 and 4.3 present the μratio as function of the parameter change and plant 

water content, respectively, for H (a) and V (b) polarized e, and HH (c) and VV 

(d) polarized σ0 computed by the TV-DEM. In general, the plots illustrate that 

variations of - 50% and + 50% in the magnitude of the constant parameters 

result on average in a maximum deviation of about 5 % from the reference 

simulated e. The litter moisture factor and litter biomass relatively have the 

largest impact on the computed e, while the average effect of both the surface 

roughness (e.g. s and l) and disc (e.g. radius and thickness) parameters is less 

than 2%. The influence of the plant moisture content is also inferior to that of 

litter. 

Figs.4.2c, 4.2d and 4.3 show that overall sensitivities of the simulated σ0 for the 

constant parameters are larger than in the passive case and dominated by the s. 
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For instance, a change of -50% in the s, on average reduces the computed σ0 

almost four times and a +50% perturbation results in a twofold increase. The 

sensitivity found for litter (moisture and biomass) is appreciable with a 

maximum average difference of about 20% from the reference, which is 

comparable to that of the l roughness parameter. The σ0 simulations are clearly 

less sensitive to plant moisture content and disc parameters.  

The effect of litter on the e and σ0 simulations, found here, is as described in the 

scientific literature; it induces e and reduces σ0 for optically thin layers (Saatchi 

et al., 1994), and vice versa for optically thick layers (Tsang et al., 1977). The 

increase in litter biomass essentially implicates that the thickness of the layer 

increases, while the optical density remains identical. On the other hand, an 

increase in the litter moisture factor causes an increase in the optical density for 

the same litter layer thickness. The effect of this physical change in the 

morphology is that the e increases and σ0 decreases almost linearly as function 

of litter biomass, whereas for an increase in litter moisture results in an e 

increase and σ0 decrease at first. This trend then levels off, to be followed by the 

opposite effect; an e decrease and σ0 decrease. The latter phenomenon is also 

referred to as scatter darkening (i.e. Tsang et al., 1977). 

Moreover, the low sensitivity of both the active and passive TV-DEM for the 

evaluated vegetation parameters may be caused by the wavelength (~ 21.2 cm 

radiometer and 23.8 cm scatterometer) at L-band being much larger than the 

dimensions of the scatterers of the setup selected for the Maqu study area. This 

does, however, not implicate that L-band microwave signals are unaffected by 

vegetation; notably, the vegetation water content (VWC), expressed in kg m-2, is 

used in many retrieval algorithms to correct for the effects of vegetation (i.e. 

Jackson et al., 1999). The TV-DEM uses the plant moisture content, expressed 

in kg kg-1, to define the permittivity of the scatterers representing vegetation, 

following Mätzler (1994), while the density of the scatterers is parameterized 

via LAI. As such, the combination of the permittivity (e.g. plant moisture 

content) and density of the scatterers (e.g. LAI) should be recognized as a proxy 

for the VWC. It should, however, be noted that the low sensitivity for the 

vegetation parameters presented here is the result of numerical experiments. 

Evaluations based on detailed field measurements are needed to verify these 

findings, however this extends beyond the scope of this investigation.  

The sensitivity of the TV-DEM for the surface roughness parameters is also 

somewhat expected. Notably, the effect on the simulations is limited in the 
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passive case and utterly dominant in the active case, especially for s. The 

control of the surface roughness effects on σ0 is widely recognized as important 

source of uncertainty that hampers the development of readily available soil 

moisture products from high resolution Synthetic Aperture Radar (SAR) σ0 

datasets (e.g. Verhoest et al., 2008, Kornelsen and Coulibaly, 2013). Surface 

roughness influences passive microwaves signals much less, which clearly 

reduces the ambiguities in soil moisture retrieval from such datasets. 
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Fig. 4.2 Mean ratio of TV-DEM simulation results obtained with a perturbed parameter set over the 

simulation results achieved with the reference parameter set as functions of the parameter change. a) H-pol 

emissivity, b) V-pol emissivity, c) HH-pol backscatter and d) VV-pol backscatter. 
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Fig. 4.3. Same as Fig. 4.2 except as function of plant water content. 

 

4.3.2 Calibration and validation 

Supported by the results from the sensitivity analysis, we have chosen to 

optimize four TV-DEM parameters, namely s, litter moisture factor, litter 

biomass and plant moisture content. The values reported in Table 4.2 are 

utilized for the other parameters. Arguably, the sensitivity of the TV-DEM for l 

would also opt for its calibration. However, this enlarges the parameter space 

posing additional challenges on obtaining a unique solution for the optimization 

problem. Moreover, van der Velde (2010) showed that the two roughness 

parameters, s and l, are highly correlated in the context of IEM simulations, viz. 

effects of a change in s on surface scattering calculations can be countered by a 

proportional change in l, which further complicates the search for a unique 

solution in a steepest gradient setting. On the other hand, the latter also implies 

that imperfections in the selected value for l can be accounted for in the 

calibrated value of s. For these reasons, l has not been included in the 

optimization process and an ‘effective’ surface roughness parameterization has 

been derived; an approach, which has been taken previously (e.g. Su et al., 

1997; Joseph et al., 2010; van der Velde et al., 2012). 

In the PEST optimization process, the Aquarius Tb and σ0 datasets collected 

during the warm seasons of 2012 and 2013, i.e. with a top 5-cm soil temperature 

> 0 oC, serve as the observations (252 # in total) in ϕ, Eq. 4.3, whereby Teff 
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determined using Eq. 4.4 is adopted to derive the e from the Aquarius Tb. The 

simulations follow from TV-DEM runs, setup similarly to the ones presented in 

the sensitivity analysis, with soil moisture measurements and MODIS LAI as 

model input. The complete optimization process is performed several times with 

different initial values, randomly picked from the preselected parameter range, 

to avoid local minima. Table 4.3 lists the TV-DEM parameters selected for 

optimization, their initial values, lower and upper limits, as well as the 

calibrated values. In obtaining the final calibrated parameters PEST reached 

convergence after 5 of the maximum 30 iterations with a ϕ, sum of squared 

differences, of 0.9649 (-). 

Table 4.3 PEST optimized values, as well as initial, lower and upper limits adopted for the PEST setup 

designed for calibrating selected TV-DEM parameters using Aquarius active and passive L-band observations 

collected over the Maqu study area.  

 Parameter values 

Parameter name PEST 

calibrated 

Initial Lower limit Upper limit 

Standard deviation of height 

variation, s (cm) 
2.67 1.00 0.30 3.50 

Litter moisture factor (-) 1.06 1.40 0.80 2.00 

Litter biomass (g cm-2) 0.03 0.10 0.01 0.20 

Plant moisture content (kg kg-1) 0.59 0.60 0.40 0.90 

The model performance is assessed for the calibration period and an 

independent validation period, for which data from the warm seasons of 

2014 and 2015 (30 # Aquarius matchups) are utilized. The mean absolute 

difference (MAD), root mean squared difference (RMSD), Mean 

Difference (MD), unbiased RMSD (ubRMSD) and coefficient of 

determination (R2) computed for each specific observation type are adopted 

as the error metrics, and expressed as:  

                                           (4.6) 

                                                (4.7) 
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                                                (4.8) 

                                   (4.9) 

                                                (4.10) 

where  represents the ith estimated or simulated quantity Y,  represents the 

ith observed or measured quantity Y, and n is the number of observations of a 

quantity, in this case of Aquarius , ,  and . 

Fig.4.4 shows time series of the Aquarius , ,  and  observations 

and the TV-DEM simulations obtained for the calibration and validation periods 

and Table 4.4 presents the associated error statistics. The plots illustrate that the 

TV-DEM is generally capable of reproducing the seasonal dynamics of the 

Aquarius Tb and σ0 observations. The Tb and σ0 rise from the spring to the 

middle of summer and the decline towards the winter are noticeable within both 

Aquarius observations and TV-DEM simulations. Also, variations observed 

over short time scales are captured by the simulations. An excellent example of 

this is 20 August 2013 where the soil moisture content drops to a value below 

0.20 m3 m-3 leading to a Tb increase of about 20 K and a σ0 decrease of about 3 

dB in the observations as well as simulations. Interesting about this example as 

well is also that it highlights the contrasting responses of active and passive 

microwave observations, which is in line with the theory and thereby provides 

confidence in the consistency of both observations and simulations. The 

observed agreement between the Aquarius observations and TV-DEM 

simulations lead to R2’s of 0.75 to 0.86 and 0.36 to 0.68 (-), and ubRMSDs of 

3.81 to 5.72 (K) and 0.26 to 0.53 (dB), respectively, computed using the Tb and 

σ0 matchups. Such error statistics are comparable to the results previously 

reported for comparisons between model simulations and satellite observations 

(e.g. Dente et al., 2014; Montzka et al., 2013) as well as between model 

simulations and ground-based radiometer observations (e.g. Escorihuela et al., 

2010; Pardé et al., 2004; Joseph et al., 2010).  

Imperfections can also be noted in the matchups between the observations and 

simulations. Most notably, the  observations are systematically 

overestimated, by 5.20 (K), and the  observations are underestimated, by 
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1.88 (dB), and vice versa for the vertical polarization. Topography is a possible 

explanation for this polarization dependent bias. Pierdicca et al. (2010) and 

Pulvirenti et al. (2011) are among the first to investigate the topographic effects 

on space borne radiometry. Based on model simulations, they concluded that 

topography increases  and decreases ; in other words, it has a 

depolarizing effect on the microwave emission from a flat land surface. Utku 

and Le Vine (2014) drew similar conclusions based on model simulations and 

Aquarius Tb observations, but found that topography affects  and  in an 

equal manner.  

For Maqu, however,  and  recorded by Aquarius display a remarkable 

resemblance (with differences typically being less than 0.1 dB) indicating that 

an external factor has a depolarizing influence on the observations. As 

topography has been shown to have an impact on land surface emission, this 

may also be the case for microwave scattering from land since the two 

quantities are physically connected. The clear distinction between the σ0 

observations and simulations in Fig 4.4 suggests that, for Maqu, the 

depolarizing effect is more profound on L-band scattering than on emission. 

The large temporal variability in the Tb somewhat influences this perception, but 

a detailed investigation is beyond the scope of this research. In section 4.4.3, we 

do elaborate on the impact of the depolarization on the calibration results.  

In support of further analyses, Fig.4.5 presents mean monthly differences 

between simulations and observations, whereby the error bars stand for the 

standard deviation. The plots show that the mean errors fluctuate across the 

months March to October quite considerably with respect to observed temporal 

variability, namely 8.5 (K) and 0.93 (dB) on average for Tb and σ0, respectively. 

Yet, the differences in the errors obtained for the horizontal and vertical 

polarizations remain fairly constant, implicating persistence of the polarization 

imbalance.  

Fig.4.5 also shows that the standard deviation in the error varies by month with 

the largest spread found around the season transitions (e.g. March, April and 

October) and the least difference seen in the summer months, with the exception 

of July. The variability in errors seen during the season transitions may be 

attributed to a spatially variable freeze-thaw state within the Aquarius 

footprints. Although only observations have been selected during which the 

measured top 5-cm soil temperature is above freezing point, the soil temperature 

and thus the freeze-thaw state may vary spatially due to topography or spatially 
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varying atmospheric forcings (e.g. air temperature, wind and solar radiation). 

This leads to an uncertain and, most likely, a smaller soil dielectric constant 

than used for the TV-DEM simulations, which will result typically in a larger Tb 

and lower σ0 as is seen in Fig.4.4 for March 2013. This source of uncertainty 

does not play a role during the summer months. Instead the large volume of 

monsoon rains may cause inundations, which are accounted for in the TV-DEM 

and may enlarge the spread in errors as noted in Fig.4.5 for July.  
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Fig. 4.4. Aquarius observations and TV-DEM simulations obtained for the calibration (2012 and 2013 warm 

seasons) and validation (2014 and 2015 warm seasons) periods; a) H polarized Tb, b) V polarized Tb, c) HH 

polarized σ0 and d) VV polarized σ0 
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Fig.4.5. Mean error computed between Aquarius observations and TV-DEM simulations for each month of 

the 2012, 2013, 2014 and 2015 warm seasons, whereby the error bars indicate the standard deviation; a)  for 

Tb and b)  for σ0. 
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Table 4.4 Error statistics computed for matchups of TV-DEM simulations and Aquarius observations of σo 

and Tb for the calibration and validation period. 

  MAD RMSD MD ubRMSD R2 

  (K or dB) (-) 

Calibration 

 6.72 7.73 5.20 5.72 0.75 

 4.57 6.10 -4.00 4.61 0.77 

 1.88 1.93 -1.88 0.47 0.42 

 0.75 0.89 0.72 0.53 0.36 

Validation 

 7.68 8.60 7.64 3.93 0.86 

 3.20 4.06 -1.41 3.81 0.83 

 2.12 2.13 -2.12 0.26 0.68 

 0.40 0.46 0.35 0.30 0.65 

 

4.3.3 Scattering and emission components 

Figs.4.6 and 4.7 show the individual emission and scattering contributions and 

transmissivity for the 2012 and 2013 warm seasons following from the 

calibrated TV-DEM simulations. Note that the vegetation contributions are 

plotted on the lower secondary y-axis because the seasonal dynamics of these 

contributions would not be visible on main y-axis, as they are an order of 

magnitude smaller than the total and soil surface- soil litter contributions. 

Fig.4.6 demonstrates that the total L-band emission in both polarizations 

depends highly on the soil surface- soil litter component. Even in mid-summer 

when the LAI is highest, the transmissivity values remains above 0.93 (-). This 

implicates that the effects of vegetation in the Maqu region relatively have little 

impact on the total land surface emission, but still remains at a level that would 

require consideration in passive microwave retrieval algorithms.  
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Fig.4.7 shows that the total backscattering is virtually composed only of the 

contributions coming from the soil surface and soil litter layer. Scattering 

coming from the vegetation directly as well as from the soil-vegetation 

pathways do fluctuate across the season and the latter even displays some 

response to soil moisture, but the magnitudes of these components remain 

insignificant with respect to the soil surface-soil litter contribution. Van der 

Velde and Su (2009) obtained similar findings through a statistical analysis of a 

time series of Advanced SAR (ASAR) C-band σ0 observed over alpine 

meadows in the Naqu region in the central part of the Tibetan Plateau. They 

showed that the NDVI, as a proxy for vegetation, has a limited value for 

explaining the temporal σ0 variation. Hence, an algorithm that considers only 

surface scattering has the potential to retrieve soil moisture reliably from σ0 data 

collected over these Tibetan alpine meadows as was demonstrated in van der 

Velde et al. (2012a).  
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Fig. 4.6. TV-DEM simulated emission components from soil  and litter (left Y-axis) and vegetation (right y-

axis) , total emission (left y-axis) and transmissivity (y-axis) for the Maqu in warm seasons of 2012 and 2013; 

Results for the horizontal polarization are shown in a) and for the vertical polarization in b).  
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Fig.4.7. Same as Fig. 8 but for scattering components; a) horizontal and b) vertical polarization 

4.3.4 Soil moisture estimates 

Soil moisture is retrieved with the calibrated TV-DEM for the 2014 and 2015 

warm seasons from three combinations of Aquarius active and passive data, 

namely:  

i)  alone, hereafter Single Channel Algorithm (SCA), 

ii)  and , hereafter Dual Channel Algorithm (DCA), 

iii) , ,  and , hereafter Active/Passive (A/P) algorithm. 

The following objective functions are formulated for the retrieval of soil 

moisture (sm) from the above defined data inputs:  

                                                              (4.11) 

                                              

                                                (4.12) 
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         (4.13) 

whereby the  is obtained from the Aquarius  as described in section 4.2.3 

(Eq. 4.4). Retrieval is achieved for the minimum  within the one-dimensional 

parameter space composed of the variable soil moisture. For this, TV-DEM 

simulations are performed by varying soil moisture from 0.03 to 0.60 m3 m-3 

with increments of 0.001 m3 m-3, while keeping the other parameters fixed at 

their calibrated values and using the LAI from MCD15A2 product. The 

performance of forthcoming estimates is assessed using the in-situ measured 

soil moisture via scatter plots shown in Figs.4.8(a)-(c) and via the error metrics 

MAD, RMSD, MD, ubRMSD and R2 computed from the matchups listed in 

Table 4.5. 

Further, the reliability of the TV-DEM retrieval is evaluated with respect to that 

of the official Aquarius soil moisture product (Bindlish et al. 2015; Bindlish and 

Jackson, 2015), which uses the τ-ω radiative transfer model (Mo et al. 1982) as 

backbone of the algorithm, and formulated as: 

                          (4.14) 

with  

                                                (4.14a) 

                                                     (4.14b) 

where  is the p polarized Fresnel reflection coefficient (-), hr is an effective 

surface roughness parameter (-) and  is computed as  with W as the 

vegetation water content (kg m-2) and b as an empirical vegetation parameter 

(m2 kg-2). 

For the global Aquarius product, soil moisture is retrieved from the H polarized 

Tb in a similar fashion as the SCA defined here, whereby ω, b and hr are taken 

as 0.05 (-),0.08 (m2 kg-2), and 0.1 (-), respectively, and W is estimated from a 

MODIS NDVI climatology as described in Bindlish et al. (2015). TV-DEM is 

calibrated here using local data and, therefore, the b and hr parameters of the τ-ω 

model are also calibrated using the Aquarius and in-situ measurements collected 

over the Maqu study area during the 2012 and 2013 warm seasons for an 

objective comparison. The ω is kept at 0.05 (-), Teff is calculated as described in 

section 4.2.3 and W is derived from the 16-day MODIS NDVI product 
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(MOD13Q1) following the approach adopted for SMAP products described in 

Chan et al. (2013). A calibrated b and hr of 0.135 (m2 kg-1) and 0.109 (-), 

respectively, are obtained with a R2 of 0.75 (-), and ubRMSD computed from 

the Tb matchups of 5.22 K, respectively.  

Subsequently, the calibrated b and hr are used for the soil moisture retrieval 

from Aquarius Tb data collected during the 2014 and 2015 warm seasons, for 

which the results are plotted in Figs.4.8 (d)-(f) and the computed error metrics 

are listed in Table 4.5. The scatter plots of Fig.4.8 show that the matchup of the 

TV-DEM, and the SCA and DCA τ-ω model retrievals with the measurements 

lead to data points centered around the 1:1 line with a fairly small spread with 

an R2 varying from 0.76 to 0.79 (-). A larger scatter (e.g. R2 = 0.35) around the 

1:1 line can be noted for the data points following from the matchup of the 

official Aquarius product with the measurements. This may be attributed to two 

inherent differences between the official Aquarius processor and the application 

of the τ-ω model SCA and DCA presented here. Firstly, the Aquarius processor 

makes use of a NDVI climatology for calculating the W, whereas the 16-day 

MODIS NDVI product is adopted for the SCA and DCA. Secondly, surface 

temperature simulations by a Numerical Weather Prediction model is used as 

Teff, while the in-situ measured soil temperature is used for the SCA and DCA. 

Overall, the error metrics obtained with the calibrated TV-DEM and τ-ω model 

belong to the lower limit of results recently reported for state-of-the-art global 

soil moisture products. For instance, Bindlish et al. (2015) found that the 

matchup of the official Aquarius product with measurements collected in the 

Little Washita and Litter River (USA) watersheds resulted in a RMSD of 0.031 

m3 m-3. Also for measurements collected across USA watersheds, Jackson et al. 

(2010) and Jackson et al. (2012) describe that soil moisture retrievals from 

AMSR-E and SMOS observations may yield RMSDs of, on average, 0.040 and 

0.043 m3 m-3, respectively, before flagging for invalid land surface conditions. 

More recently, Colliander et al. (2017) documented the validation of SMAP L2 

soil moisture product using soil moisture collected by measurement networks 

across the globe and found ubRMSDs varying from 0.021 to 0.056 m3 m-3. As 

such, it can be concluded that the performance of the algorithm with the 

calibrated radiative transfer models is in line with state-of-the-art products, and 

also complies with the accuracy requirement of 0.04 m3 m-3 ubRMSD for the 

SMAP L2 soil moisture product (e.g. Entekhabi et al. 2010).  



Use of a discrete electromagnetic model for simulating Aquarius L-

band active/passive observations and soil moisture retrieval 

72 

 

Comparison of the results obtained using the algorithms based on both 

calibrated models reveals quite similar error metrics. The TV-DEM retrievals 

produce, however, systemically lower biases (MD) and ubRMSDs with the 

minimum values of -0.008 m3 m-3 and 0.021 m3 m-3, respectively, obtained with 

the A/P algorithm. On the other hand, better R2 values of 0.79 (-) are found for 

the τ-ω model retrievals in comparison to a R2 of 0.76 (-) achieved with the TV-

DEM A/P setup. The R2 (see. Eq.4.10) is, however, a normalization of the 

squared differences between linearly regressed estimates and measurements 

with respect to the variance embedded in measurements. In this sense, the R2 is 

not a pure measure of error as it compares the same quantities, viz. soil moisture 

versus soil moisture, as the linear regression model will account for biases in 

the mean and range of the retrievals and measurements.  

In conclusion, the TV-DEM A/P soil moisture retrievals are less biased than the 

retrieval obtained with the other approaches and lead to significantly lower 

MAD, RMSD and ubRMSD. This positive result warrants further investigation 

to discover whether a truly synergistic active/passive approach would also yield 

less biased soil moisture estimates for other climatic regions across the globe. In 

addition, the above results demonstrate that a complex physically based 

radiative transfer model, such as TV-DEM, can be used to estimate soil 

moisture with accuracies, which are, at the very least, comparable to the τ-ω 

model algorithms. Global application of these physically based models requires, 

however, additional research regarding the definition of vegetation morphology 

and associated parameter sets for land cover units worldwide. Kim et al. (2014) 

already reported on investigation in the context of the development of the 

experimental SMAP radar-only soil moisture products. On the other hand, 

physically based models may also prove useful in combination with the τ-ω 

model algorithms by providing parameterizations for ecosystems where detailed 

microwave data sets are scarce, which Rahmoune et al. (2013) already 

demonstrated for SMOS soil moisture retrieval over forests.
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Table 4.5. Error metrics of soil moisture estimates obtained using algorithms based on the TV-DEM and the τ-

ω radiative transfer model along with the parameters (e.g. slope and intercept) of the linear equation 

 fitted through the data pairs. 

Model Algorithm 
a b R2 MAD RMSD MD ubRMSD 

(-) (m3 m-3) (-) (m3 m-3) 

TV-

DEM 

SCA 0.963 0.028 0.77 0.022 0.029 0.017 0.023 

DCA 0.842 0.034 0.76 0.020 0.024 -0.011 0.022 

A/P 0.771 0.057 0.76 0.018 0.023 -0.008 0.021 

τ-ω 

Aquarius 0.947 0.027 0.35 0.016 0.058 0.012 0.057 

SCA 1.135 -0.017 0.79 0.029 0.034 0.022 0.026 

DCA 1.085 -0.006 0.78 0.026 0.032 0.019 0.025 
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Fig.4.8. Scatter plots of soil moisture retrievals against in-situ measurements for the 2014 and 2015 warm 

seasons; subplots (a)-(c) show the results obtained using simulations with the calibrated TV-DEM in the SCA, 

DCA and A/P retrieval setups, respectively, and subplots (d)-(f) show results obtained using τ-ω model based 

algorithms with the official Aquarius product given in (d) and the SCA and DCA τ-ω retrievals given in (e) 

and (f), respectively. 
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4.4 Discussion 

4.4.1 Assumptions for surface roughness 

Fig.4.9 (a) shows the ratio of e and σ0 TV-DEM simulations with 

autocorrelation lengths (l) varying from 6.5 to 16 cm with respect to simulations 

with a l of 9 cm to quantify the impact of this assumption on the presented 

results. The plot shows that the e ratio for both H and V polarization decreases, 

namely from 1.04 to 0.94 (-) and from1.03 to 0.97 (-), respectively, for an 

increasing l from 6.5 to 16 cm. However, the σ0 ratio for HH and VV 

polarization shows an increasing trend as function of the l up to a critical value 

(12.5 cm for HH polarization and 9.5 cm for VV polarization) followed by a 

moderate decrease in the σ0 ratio.  

We further investigate the sensitivity of the TV-DEM A/P retrievals for the 

uncertainty induced by the assumed l of 9 cm. Fig.4.9 (b) shows the RMSDs 

obtained for TV-DEM A/P soil moisture retrievals from the 2014 and 2015 

warm seasons with the l varying from 6.5 to 16 cm. The plot illustrates that over 

the l range of 7 to 11 cm the RMSD obtained remains below the 0.04 m3 m-3. In 

combination with the relatively small changes in the e and σ0 ratio, it may be 

concluded that the assumption of a fixed 9 cm l is justified. Especially since the 

effect of selecting correlation length can be compensated by parameterization of 

s as is described in van der Velde (2010).  
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Fig. 4.9. The ratio of emissivity/backscattering coefficient in different polarizations (a) and the RMSD of soil 

moisture retrieval with respect to the reference value (b) by using different correlation lengths   

4.4.2 Effective soil temperature 

Estimates of Teff are critical for soil moisture retrieval from passive microwave 

observations to derive the e from the observed Tb. Here, we investigate the 

impact of the choice for a specific Teff scheme by considering the approaches 

developed by Choudhury et al. (1982, CH82), Wigneron et al. (2008, W08), Lv 

et al. (2014, Lv14) and the in-situ measured soil temperature at 5 cm depth. 

Fig.4.10 shows time series of the H and V polarized Tb for the 2012 and 2013 

warm seasons derived from simulation with the calibrated TV-DEM using the 

W08 and LV14 Teff methods along with the Aquarius Tb. The results based on 

the CH82 method and the 5 cm in-situ measurements are not included in the 

plots as they are similar to those using LV14 and W08, respectively. The plots in 

Fig.4.10 show that the Tb derived using LV14 and W08 are comparable to each 

other; hardly any differences are noted.  
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Fig.4.10. Brightness temperature time series for the Maqu study area, consisting of observations made by 

Aquarius as well as DEM-A/P simulations in H (a) and V (b) polarization, and based on effective temperature 

methods derived from Lv14 and W08 

Table 4.6 shows the error metrics (Eq. 4.6-4.10) computed between the 

Aquarius Tb and the TV-DEM Tb’s derived through application of the CH82, 

W08, Lv14 and in-situ measured Teff . It can be deduced that the Lv14 and 

CH82 scheme lead to comparable metrics, which are slightly better than the 

ones obtained with W08 and the Teff derived from in-situ measurements. From 

this analysis, we may conclude that the choice of the method adopted for 

computation of Teff has a limited impact on Tb derived from TV-DEM 

simulations.
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Table 4.6 Statistics of brightness temperature (in H and V polarizations) of TV-DEM based 

DEM-A/P simulations relative to observations made by Aquarius, using different methods of 

calculating effective temperature 

 MAD (K) RMSD (K) MD (K) R2 (-) 

 

LV14 6.72 5.20 7.73 0.75 

CH82 6.70 5.19 7.71 0.75 

W08 7.02 5.41 8.11 0.71 

In-situ 7.00 5.39 8.09 0.72 

 

LV14 4.57 -4.00 6.10 0.77 

CH82 4.57 -4.00 6.10 0.77 

W08 4.58 -3.77 6.19 0.74 

In-situ 4.59 -3.79 6.19 0.74 

 

4.4.3 Effect of depolarization on calibration results 

A clear discrepancy exists between simulated and observed  in Fig.4.4 (c). 

Such a discrepancy is not seen for . This depolarization phenomenon found 

for Aquarius is likely attributable to the topographic effect as suggested by Utku 

and Le Vine (2014). We investigate the impact of this depolarization by 

analyzing the results of four additional calibrations of the TV-DEM carried out 

with PEST for six Aquarius acquisitions from June 2012 and 2013 to minimize 

the effects of soil freeze/thaw and inundation. The four calibrations are based on 

objective functions (see Eq. 4.3) built up out of the Aquarius derived/observed, 

1) H polarized e (computed using Eq. 4.4), hereafter H-pol, 

2) V polarized e, hereafter V-pol, 

3) Sums of H and V polarized e, and HH and VV polarized σ0, hereafter A/P,  

4) Individual H and V polarized e, and HH and VV polarized σ0, hereafter A/P 

dual-pol. 
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The parameters used for the four calibrations are listed in Table 4.7. Clear 

distinctions can be noted concerning the obtained parameter sets with the largest 

differences between the H-pol and V-pol, whereas much smaller deviations are 

found between the A/P and A/P dual-pol set. Furthermore, it should be noted 

that the A/P dual-pol set is quite close to calibrated parameters listed in Table 

4.3. 

Table 4.7 Four TV-DEM parameter sets calibrated using Aquarius observations collected over the Maqu study 

area June 2012 and 2013.  

 Calibration setup 

Parameter name H-pol V-pol A/P A/P dual-pol 

Standard deviation of 

height variation, s (cm) 
3.50 2.41 2.99 2.75 

Litter moisture factor (-) 0.80 1.03 0.80 1.05 

Litter biomass (g cm-2) 0.01 0.04 0.01 0.02 

Plant moisture content (kg 

kg-1) 
0.40 0.52 0.40 0.40 

Table 4.8 lists the error metrics (e.g. MAD, RMSD, MD, ubRMSD and R2) 

computed from the matchup of the Aquarius observations and the TV-DEM 

simulations. Generally, the metrics presented in the table illustrate that the 

different calibration setups lead to some changes in the biases, but do not lead to 

very large alterations in the overall performance of the TV-DEM. Notably, the 

R2 obtained for Tb varies from 0.72 to 0.77 (-) and for σ0 from 0.30 to 0.34 (-). 

Therefore, we expect that the polarization dependent bias between the Aquarius 

observations and TV-DEM simulations will not have significant consequences 

for the conclusion of this investigation. 
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Table 4.8 Error metrics computed for matchups of DEM-A/P simulations and Aquarius observations of σo and 

Tb for the calibration period by using four schemes for calibration 

 

MAD RMSD MD ubRMSD R2 

(K or dB) (-) 

H-pol 

 8.67 9.97 8.14 5.76 0.76 

 5.07 6.28 -4.34 4.54 0.78 

 1.34 1.44 -1.34 0.53 0.37 

 1.19 1.33 1.18 0.62 0.31 

V-pol 

 5.17 6.43 2.47 5.94 0.73 

 5.50 6.95 -5.02 4.81 0.75 

 2.27 2.34 -2.27 0.57 0.42 

 0.49 0.62 0.31 0.54 0.36 

A/P-pol 

 5.03 5.97 1.19 5.85 0.74 

 9.33 10.56 -9.31 4.98 0.76 

 1.32 1.42 -1.32 0.52 0.37 

 1.28 1.42 1.28 0.62 0.31 

A/P 

dual-pol 

 5.28 6.27 0.82 6.22 0.71 

 8.45 9.66 -8.29 4.96 0.73 

 1.60 1.68 -1.60 0.51 0.33 

 1.00 1.15 0.99 0.59 0.27 
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4.5 Conclusion 

This chapter reports on the simulation of L-band Aquarius emission and 

scattering by the TV-DEM (Discrete Electromagnetic Model developed at the 

Tor Vergata University in Rome) for the Maqu study area, which is a region 

situated in the north-eastern part of the Tibetan plateau. The TV-DEM 

parameters (standard deviation of surface height variations, litter moisture 

factor, litter biomass and plant moisture content), found to have the largest 

impact on simulations, have been calibrated using Aquarius observed brightness 

temperature (Tb’s) and backscattering coefficients (σ0) for the 2012 and 2013 

warm seasons. For these forward TV-DEM simulations, the Moderate 

resolution imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) product 

MCD15A2), the in-situ measured soil moisture and profile soil temperature 

were employed as inputs.  

Fairly good agreement, with an average R2 of 0.80 for Tb and 0.53 (-) for σ0, is 

achieved between the Aquarius observations and the calibrated TV-DEM 

simulations for the calibration period as well as the independent validation 

composed of the Aquarius acquisitions collected during the warm season of 

2014 and 2015. The simulations, however, systematically overestimate 

Aquarius observations made in the H polarization, and underestimate the 

observations made in the V polarization. Further, the largest variations in 

differences between the Aquarius observation and TV-DEM are found for the 

months around the season transitions (e.g. March, April and October) from 

freezing to thawing. Analysis of the individual scattering and emission 

components produced by the TV-DEM suggests that the L-band land surface 

emissivity is highly dependent on the surface component composed of soil and 

litter contributions, whereas the vegetation component is relatively small. For 

the active case, the TV-DEM σ0 simulations are utterly dominated by the 

surface components, and the vegetation and vegetation-surface scattering 

components are essentially negligible. 

The calibrated TV-DEM is also employed to retrieve soil moisture from three 

combinations of Aquarius data from the 2014 and 2015 warm seasons, namely: 

i) H polarized Tb (hereafter SCA), ii) H and V polarized Tb (hereafter DCA) and 

iii) H and V polarized Tb, and HH and VV polarized σ0 (hereafter A/P). The 

performance of TV-DEM soil moisture retrievals is assessed using in-situ 

measurements and also compared to the performance of the official Aquarius 
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soil moisture products, which is based upon a global application of the τ (optical 

depth)-ω (single scattering albedo) radiative transfer model similar to the SCA 

defined here. Since the TV-DEM has been calibrated using local data, soil 

moisture retrieval has also been performed with a calibrated τ-ω model. The 

error metrics computed from the matchup of the retrievals with the 

measurements suggest that the calibrated TV-DEM yields the least biased 

results with a MD (mean difference) of –0.008 m3 m-3 and a ubRMSD (unbiased 

root mean squared difference) of 0.021 m3 m-3 found for the A/P setup. On the 

other hand, the largest coefficients of determination (R2) are obtained for the 

retrievals with the calibrated τ-ω model, on average 0.785 versus 0.765 (-) for 

TV-DEM. 

In conclusion, the investigation shows that a single model, TV-DEM, can 

simulate both brightness temperatures and backscattering coefficients that are to 

some extent in agreement with L-band observations made from the Aquarius 

space platform. The surface contribution dominates the scattering and emission 

from the Maqu study area, where vegetation (particularly in the active case) has 

an almost negligible contribution. Soil moisture retrieval is successfully 

conducted using a calibrated TV-DEM, whereby synergistic use of active and 

passive Aquarius observations leads to the least biased estimates.  

These positive results encourage further investigation of  the synergistic use of 

active and passive microwave observations for soil moisture retrieval as well as 

the usage of complex physically radiative transfer model as part of existing 

global soil moisture retrieval processors. However, the results presented here 

only demonstrate the possibility to reproduce coincident active and passive 

microwave signals for one site. Additional research will need to be undertaken 

to develop definitions of vegetation morphology and associated parameter sets 

for land cover units worldwide. Kim et al. (2014) already reported on research 

in the context of the experimental SMAP L2 radar only soil moisture product 

and Rahmoune et al. (2013) adopted a similar approach to aid the τ-ω model 

SMOS soil moisture retrieval over forests worldwide.  
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Chapter 5 Soil moisture estimation from L-band 

active and passive microwave observations 

acquired by Aquarius over the Tibetan Plateau* 

5.1 Introduction 

Soil moisture is the key state controlling the exchange of momentum, heat and 

mass at the land-atmosphere interface. The availability of soil moisture 

information may lead to a better understanding of biology, hydrology, 

meteorology and climatology. Numerous algorithms have been developed 

during the last two decades based on aircraft and satellite observations (Jackson, 

1993; Wagner et al., 1999; Owe et al., 2008). Jackson (1993) showed the 

relationship between emissivity and soil moisture by aircraft observations and 

presented a Single Channel Algorithm (SCA) for soil moisture retrieval. Owe et 

al. (2008) and Wagner et al. (1999) proposed the Land Parameter Retrieval 

Model (LPRM) and a change detection algorithm to retrieve soil moisture from 

passive multiple frequency Scanning Multichannel Microwave Radiometer 

(SMMR) and active C-band European Space Agency's (ESA) Earth Remote 

Sensing (ERS) scatterometer, respectively. As L-band proved to be the 

preferred frequency for soil moisture retrieval (Schmugge and Jackson,1994; 

Wagner 2007) at global scale, two dedicated missions for soil moisture mapping 

were launched in 2009 and 2015, namely Soil Moisture and Ocean Salinity 

(SMOS) and Soil Moisture Active Passive (SMAP), respectively. Aquarius 

carrying both a radiometer and a scatterometer for measuring sea surface 

salinity operated from 10 June 2011 to 8 June, 2015.  

Since both active and passive microwave observations contain soil moisture 

information, various investigators have carried out research to combine the 

backscatter and emission signals measured by active and passive microwave 

sensors. For instance, Das et al. (2012, 2014) and van der Velde et al. (2015) 

studied statistical methods for downscaling coarse passive microwave products 

                                                 
* This chapter is based on 

Wang, Q., van der Velde.,R., Ferrazzoli, P., Bai, X., and Su, Z.  (2018) Mapping soil 

moisture across the Tibetan Plateau using Aquarius active and passive L-band 

microwave observations. (In review) 
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using the higher resolution active microwave observations towards an 

intermediate resolution soil moisture product. Liu et al (2012) generated a 

global soil moisture map by cumulative distribution function (CDF) matching 

soil moisture products from active and passive observations. Physical 

interpretation of simultaneous active and passive microwave signals has been 

pursued by investigators (e.g. Chauhan et al, 1994; Ferrazzoli et al, 1989; 

Guerriero et al., 2016; Dente et al., 2014; Wang et al., 2018]) as well. Chauhan 

et al. (1994) demonstrated that a discrete scatter approach can be used to predict 

both L-band radar and radiometer observations. Dente et al. (2014) investigated 

a discrete electromagnetic model for simulating C-band Advanced Microwave 

Scanning Radiometer for EOS (AMSR-E) brightness temperature (Tb) and 

ASCAT backscattering coefficient ( ) in the Maqu area and proved its 

applicability to satellite observations. Guerriero et al. (2016) applied a discrete 

electromagnetic model to reproduce the active and passive observations 

simultaneously collected in airborne field campaigns at L band.  

With the launch of Aquarius, the first L-band active and passive microwave 

observations were recorded simultaneously from space. Wang et al. (2016) 

investigated the Aquarius observation against the in-situ measurement of Maqu 

network and showed that both brightness temperature (Tb) and backscattering 

coefficient ( ) hold sensitivity to soil moisture. Furthermore, a single discrete 

electromagnetic model was used to simulate Aquarius emission and scattering 

in Wang et al. (2018) with Maqu as the study area. Moreover, Wang et al. 

(2018) also concluded the vegetation is insignificant in scattering and emission 

compared to soil-litter layer and reliable soil moisture estimates are obtained by 

the synergistic use of Aquarius data. In this chapter, an algorithm for soil 

moisture retrieval in a large spatial domain is described. Look UP Tables 

(LUTs) are generated on basis of simulations performed with Tor Vergata-

Discrete electromagnetic model (TV-DEM), and it is used as a tool for soil 

moisture retrieval in this algorithm. The in-situ measurement of three regional-

scale monitoring networks covering different climate regions in Tibetan Plateau 

(Su et al., 2011) served as the ground truth. The forthcoming soil moisture 

estimates and three other public available soil moisture products (L3 gridded 1° 

grid Aquarius/SAC-D, ASCAT level 2, ERA-Interim) are validated in a point 

scale against the mean soil moisture of in-situ measurements of three networks. 

Moreover, the spatial distribution of the retrieved soil moisture product as well 

as three other soil moisture products are verified using antecedent rainfall fields 

available via the Climate Hazards Group Infrared Precipitation with Station data 
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(CHIRPS, Funk et al., 2015) and thermal remote sensing retrieved 

evapotranspiration products (Chen et al., 2014).  

5.2 Materials and methods 

5.2.1 Look up table (LUT) establishment  

The TV-DEM can perform simulations of the horizontal (H) and vertical (V) 

polarized emissivity, and the horizontally and vertically co-polarized (HH and 

VV, respectively) backscattering coefficients as a function of input parameters 

of the soil-vegetation system. Table 4.2 (section 4.2.2) lists the set of 

parameters needed to run TV-DEM along with the values that were used 

previously to reproduce satellite observations over Maqu (e.g. Dente et al., 

2014; Wang et al., 2018). In section 4.3.1 it is shown that apart from the soil 

moisture, the standard deviation of surface height variations (s), litter moisture 

and litter biomass are the most sensitive parameters as well as the plant water 

content. Based on these findings, the LUTs are composed of forward TV-DEM 

simulations by varying the soil moisture from 0.03 to 0.50 m3 m-3 with an 

interval of 0.001 m3 m-3 and the LAI, varying from 0.1 to 5.0 m2 m-2 with an 

interval of 0.1 m2 m-2, while s, litter moisture and litter biomass, plant water 

content calibrated in Maqu site in section 4.3.2 is used in LUTs creation as well. 

The vast Tibetan Plateau holds a variety of land covers that require different 

morphological descriptions of the soil-vegetation system. Here, we distinguish 

the two main categories: 

(1) Vegetation surface in Tibetan Plateau Plains mainly located in the 

eastern and southern part of Tibetan Plateau according to Fig.2.1 

(section 2.1). Foliage is represented as a collection of discs and the soil 

litter module is invoked.  

(2) Bare soil surfaces indicated in Fig.2.1, which are located in the western 

and northern part of Tibetan Plateau. Neither vegetation nor litter is 

included, and IEM is used to simulate the backscattering coefficient.  
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5.2.2 Object function definition and soil moisture retrieval 

scheme 

As both active and passive observations are used simultaneously for soil 

moisture estimation, a reliable object function should be proposed. Moreover, 

regularization or normalization should be further considered to make the weight 

of the active and passive observation comparable in the object function. Akbar 

and Moghaddam (2015) proposed a detailed algorithm to assign weights by 

considering the noise level of SMAP observations. Dente et al. (2014) and 

Wang et al. (2018) used the standard deviation to normalize the passive and 

active observations in an object function for C- and L-band observations in 

Maqu. Following the method of Wang et al. (2018), a joint active-passive object 

function is defined as follows for soil moisture estimation from Aquarius 

observations. 

                              (5.1) 

where  is the object function, P indicates H or V,  indicate the emissivity 

and  are backscattering coefficient (in power units), respectively, sim 

denotes the simulation of the LUT and obs indicates the Aquarius observation, 

 indicates the standard deviation.  

The LUT is generated based on TV-DEM simulations and then an algorithm for 

retrieving soil moisture for Tibetan Plateau is proposed as follows.  

(a): The brightness temperature (Tb) measured by Aquarius is converted to 

emissivity based on Eq 4.4 indicated in section 4.2.3.  

where p denotes the polarization being either H or V, Teff  is the effective 

temperature of the emitting layer (K) for which we use surface temperature 

obtained from NCEP GFS GDAS product which provided in the 

Aquarius/SAC-D level-2 processed dataset with version 4.0.  

    (b): By searching the minimum of Eq. 5.1 in the LUT, the soil moisture value 

of the Aquarius footprint is retrieved from the LUT and called the TV-DEM 

retrieved soil moisture. The flow chart for soil moisture retrieval of TV-DEM is 

shown in Fig.5.1. 
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Fig. 5.1. Flow chart for soil moisture retrieval scheme (sm represents soil moisture) 

5.2.3 Matchup and error metrics 

As in-situ soil moisture and ASCAT dataset are in point scale and 12.5 km 

resolution, while official Aquarius and ERA-Interim soil moisture product are 

of a resolution of 1°, upscaling the high resolution soil moisture product to a 

coarse resolution is required. As many investigators (Dente et al., 2014; Jackson 

et al., 2000; Jackson et al., 2012; Leroux et al., 2014; Su et al., 2012; Dente et 

al., 2012) already used spatial average for upscaling and proved its feasibility, it 

is adopted here as well. Soil moisture measurements of Tibet-Obs as well as 

ASCAT soil moisture nested (Maqu, Naqu and Ngari ) in 1° × 1° grid are 

spatially averaged to represent the ground truth of the 1° × 1° grid based on the 

topography and soil texture (Dente et al., 2012) in the same resolution for the 

same grid. 

The error metrics are used to evaluate the TV-DEM Aquarius as well as the 

official Aquarius, ASCAT and ERA-Interim soil moisture with respect to the 

in-situ measurements collected by the Tibetan Plateau Observatory. The 

adopted error scores are the bias, root mean squared difference (RMSD), 



Soil moisture estimation from L-band active and passive microwave 

observations acquired by Aquarius over the Tibetan Plateau 

88 

 

unbiased root mean squared difference (ubRMSD) and coefficient of 

determination (R2), detailed calculation of these error scores are described in 

Eq. 4.6 – 4.10 in section 4.3.2. 

5.3 Validation  

5.3.1 Footprint-scale assessment 

The TV-DEM Aquarius is generated based on the algorithm discussed in 

previous section for the whole Aquarius acquisition period (August 2011 to 

June 2015) by using the parameters obtained for two years observations over 

single site (Maqu) from Wang et al. (2018). The TV-DEM Aquarius, official 

Aquarius, ASCAT and ERA-Interim soil moisture products in 2012 are plotted 

in Fig. 5.2 as time series along with the mean of in-situ measurements for the 

available sites from the three regional scale networks included in the Tibet-Obs 

(Ngari for Fig. 5.2 (a), Naqu for Fig. 5.2 (b) and Maqu for Fig.5.2 (c)). Soil 

moisture over the Ngari network is retrieved with the LUT with bare soil 

surface. Soil moisture estimates over Naqu and Maqu networks are obtained by 

using the LUT with vegetated surfaces. The in-situ measurements of Tibet-Obs 

are taken as the reference for comparison with the TV-DEM Aquarius, official 

Aquarius, ASCAT and ERA-Interim soil moisture products. The soil moisture 

information from two grid cells (31°N, 92°E) and (33°N, 102°E) were used for 

Naqu and Maqu, respectively. Soil moisture retrieval of TV-DEM Aquarius is 

not available for Ngari in-situ grid cell (32°N, 80°E) since Aquarius doesn’t 

pass the grid with beam 1, hereby, the soil moisture of nearest grid cell (32°N, 

81°E) for TV-DEM Aquarius, official Aquarius, ASCAT and ERA-Interim are 

used for comparison with respect to the Ngari in-situ measurement.  
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Fig.5.2. Time series of different soil moisture products as well as in-situ soil moisture over Ngari (a), Naqu (b) 

and Maqu (c) for year 2012  
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Fig. 5.2 (a)-(c) show that the seasonal soil moisture variations measured at the 

three networks are captured by TV-DEM Aquarius product. Similarly, official 

Aquarius soil moisture product also show the seasonal change of soil moisture, 

however, a clear dry bias is shown for Naqu network while a wet bias is seen 

for Maqu network. ASCAT soil moisture product also captures the variation of 

soil moisture across the warm season, but it is more scattered in comparison to 

the in-situ measurements over Ngari site. Moreover, ASCAT indicates a large 

dry bias for Maqu and Naqu network while a slight wet bias is seen for Ngari 

network in May and June. ERA-Interim captures the seasonal variation well, but 

with a limited soil moisture ranging from 0.15 to 0.35 m3 m-3, this produces a 

more than 0.10 m3 m-3 wet bias over Ngari site, which is in agreement with 

observations of Leroux et al. (2014) who found a wet bias of 0.1-0.2 m3 m-3 

over four Watersheds in U.S. Detailed error metrics calculated by 95% 

confidence interval for the three networks in the Aquarius acquisition period are 

listed in Table 5.1. 
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Table 5.1. Error metrics of different soil moisture products with respect to in-situ measurement 

for Aquarius acquisition period (August 2011 to June 2015) 

  

Number 

of 

original 

retrievals 

Number 

of match-

up 

Bias 

(m3 m-3) 

RMSD 

(m3 m-3) 

ubRMS

D 

(m3 m-3) 

R2 (-) 

Ngari 

TV-DEM 

Aquarius 
132 

33 

-0.007 0.017 0.016 0.499 

Official 

Aquarius 
163 0.002 0.027 0.027 0.498 

ASCAT 336 0.032 0.064 0.055 0.005 

ERA-Interim 651 0.143 0.146 0.026 0.427 

Naqu 

TV-DEM 

Aquarius 
78 

22 

-0.056 0.075 0.050 0.274 

Official 

Aquarius 
92 -0.062 0.088 0.062 0.393 

ASCAT 374 -0.106 0.127 0.070 0.294 

ERA-Interim 735 0.025 0.051 0.044 0.248 

Maqu 

TV-DEM 

Aquarius 
129 

37 

-0.046 0.066 0.048 0.384 

Official 

Aquarius 
205 0.121 0.149 0.087 0.352 

ASCAT 427 -0.100 0.122 0.070 0.094 

ERA-Interim 875 0.007 0.049 0.049 0.387 

 

Table 5.1 illustrates that TV-DEM Aquarius soil moisture always performs with 

the ubRMSD is better than 0.050 m3 m-3 and the R2 is larger than 0.274 (-) over 

Tibet-Obs. The official Aquarius product is also in line with the in-situ 

measurements except dry and wet biases are found for Naqu and Maqu 

respectively. A slightly lower R2 is obtained for the Naqu area compared to the 

Ngari and Maqu area for ERA-Interim, which is caused by an overestimation of 

soil moisture by ERA-Interim over the early months before June in 2012 and 

2014. This agrees with the findings of Su et al. (2013), who found that ERA-

Interim in Naqu is overestimated while a comparable value of ERA-Interim is 

found for Maqu. The significant overestimation of soil moisture over the 
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western Plateau from ERA-Interim indicates an overestimation of dielectric 

constant for the surface, which corresponds to a decreasing transmissivity for 

the surface. Hereby, a lower surface temperature is expected, which is 

consistent with the cold bias in its skin temperature reported by Chen et al. 

(2017) caused by its land surface temperature modeling. For ASCAT, low 

correlation is obtained for Ngari area, this may come from part of it (before 

June 2012) is scattered over the in-situ measurements with around 0.1 m3 m-3 

overestimation (see Fig.5.2 (a)). For ASCAT, it is quite noisy with low R2s  

(less than 0.1) are found for Ngari and Maqu network, which in accordance with 

previous findings (Leroux et al., 2014; Albergel et al., 2012b). Moreover, a 

slightly wet bias is found for Ngari area while clear dry bias is found for Naqu 

and Ngari area. Overall, it can be concluded that TV-DEM Aquarius performs 

best with less bias compared to the other three soil moisture products. Detailed 

scatter plots of the four soil moisture products against in-situ measurement are 

shown in Appendix A (Fig.A1-A3).  

5.3.2 Plateau-scale assessment 

The resampled 1° × 1° grid TV-DEM Aquarius and official Aquarius are 

averaged per month. Similarly, the ASCAT and ERA-Interim products are also 

averaged per month for comparison purposes. To demonstrate the spatial soil 

moisture distribution, the monthly averaged Plateau-scale soil moisture products 

over Tibetan Plateau from May to October 2012 are shown the first four 

columns of Fig.5.3. The monthly accumulated precipitation from CHIRPS and 

monthly evapotranspiration (ET) generated from a revised SEBS model (Chen 

et al., 2013) are shown in the last two columns.  

Fig.5.3 indicates that TV-DEM Aquarius, official Aquarius and ASCAT soil 

moisture products show the seasonal soil moisture dynamics with increasing 

values from May to July/August and then decreasing afterwards. This can be 

attributed to the influence of East Asia monsoon over Tibetan Plateau. The 

monsoon dominates weather over the Tibetan Plateau and leads to frequent and 

large amount of precipitation occurring in July and August, resulting in a high 

soil moisture level during these months.  

Moreover, TV-DEM Aquarius, official Aquarius and ASCAT soil moisture 

products also show clear decreasing gradient in the east-west direction for most 

of the months in Fig.5.3, this confirms the monsoon movement from south-east 

to north-west. This pattern is well represented by the evapotranspiration 
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obtained from SEBS in Fig.5.3, which implies that the TV-DEM Aquarius, 

official Aquarius and ASCAT can capture the spatial soil moisture variability 

over the Tibetan Plateau. The dry-wet from northwest to southeast is also 

exposed by spatial pattern of evapotranspiration (Chen et al., 2014). Similarly, 

the spatial pattern of TV-DEM Aquarius also can be found in most months of 

monthly accumulated precipitation from CHIPRS in Fig.5.3. The monsoon 

effect is not obvious in the ERA-interim product, which has a small magnitude 

of soil moisture variations, in line with the findings of Su et al. (2013). ASCAT 

has a lower dynamic range of soil moisture variation during May to October 

2012 compared with TV-DEM Aquarius and official Aquarius. ERA-Interim 

contains low spatial variability of soil moisture over Tibetan Plateau and no soil 

moisture gradient can be found in west-east direction.
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October 

      
 

            

                                                  

                                                                                           

                                                                                                                       Soil moisture (m3m-3)                                                          Precipitation (mm/month)         ET(mm/month) 
 

Fig.5.3. Plateau-scale interpolated monthly soil moisture of TV-DEM-Aquarius, official Aquarius, ASCAT and ERA-Interim from May to October, 2012 as 

well as the monthly accumulated precipitation from CHIRPS (log10 scale) and evapotranspiration from SEBS 
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5.4 Discussion 

5.4.1 Effect of roughness change 

As single model TV-DEM can simulate emissivity and backscattering 

coefficient simultaneously with the same set of input parameters, it can be seen 

that there are three scenarios can be used to retrieve soil moisture, namely TV-

DEM algorithm using both active and passive observation (TV-DEM-A/P), 

only the passive observation (TV-DEM-P) and only the active observation (TV-

DEM-A). However, if the TV-DEM-A/P is needed or TV-DEM-P and TV-

DEM-A can have a good estimation of soil moisture already is under question. 

Hereby, we investigated. the added value for using both active and passive 

Aquarius observation to retrieve soil moisture. To this end, the soil moisture 

retrieval of TV-DEM-A/P, TV-DEM-P and TV-DEM-A for vegetated surface 

and bare surface are compared. The effect of s change on object functions for 

TV-DEM-A/P, TV-DEM-P, TV-DEM-A over vegetated surface and bare soil 

surface are analyzed and shown in Figs. 5. 4 (a) and (b) respectively by carrying 

out numerical simulation for 100 uniform distributed soil moisture (hereby, we 

name this set of data as test dataset) in the range of 0.03-0.50 m3 m-3.   

Fig. 5.4(a) and 5.4(b) indicate that object function of TV-DEM-A shows largest 

sensitivity on s for both vegetated area and bare soil surface, followed by TV-

DEM-A/P and TV-DEM-P. More specifically, a 50% underestimation of s will 

result in a change of 1.024 (-), 0.714 (-) and 0.270 (-) for object function of TV-

DEM-A, TV-DEM-A/P and TV-DEM-P, respectively for vegetated cover 

surface and it will lead to a change of 1.502 (-), 1.031 (-) and 0.273 (-) for TV-

DEM-A, TV-DEM-A/P and TV-DEM-P for bare surface correspondingly. 

Compared Fig. 5.4(b) with Fig. 5.4(a), it can be concluded that with the same 

change of s, the change of object function for bare soil is larger than vegetated 

area, which can be explained by the fact that vegetation reduces transmitting 

signal from the atmosphere to the surface. Moreover, it can be seen that an 

underestimation of the s results in larger increment in the object function than 

an overestimation of the roughness, this can be explained by the scattering 

increases with the increment of s, however, when s is at a high level, the 

increase in scattering is less based on the IEM simulation (Fig.1 (b) of Altese et 

al. (1996)).  
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Fig. 5.4. Values of object function of TV-DEM simulation results obtained with a perturbed s over the 

simulation results achieved with the reference parameter set as functions of the parameter change for a) 

vegetated b) bare surface. 

Moreover, the effect of s change (within IEM validity domain) on soil moisture 

retrievals (TV-DEM-A/P, TV-DEM-P, TV-DEM-A) for vegetated areas and 

bare surfaces have been simulated using the test dataset. For example, the 

corresponding result for soil moisture of 0.19 m3 m-3 is shown in Fig. 5.5 (a) 

and 5.5 (b) for vegetated surface and bare surface, respectively. In Fig. 5.5 (a) 

and 5.5 (b), a dashed horizontal line represents the soil moisture of 0.19 m3 m-3 

and the reference roughness is 2.67 cm.  The displacement with respect to the 

horizontal line represents the retrieval error due to a possible change of surface 

roughness. Similar results are observed for vegetated and bare surfaces. As 

expected, the trend of retrieved soil moisture of TV-DEM-P is inverse with 

respect to the one of TV-DEM-A. A decrease of “s” has the same effect of soil 

moistening with passive systems, and soil drying for active systems. The 

algorithm compensates this by retrieving a lower soil moisture in the first case 

and a higher soil moisture in the second case. The consequent error is 

particularly high with smooth soils and active systems. In case of an increase of 

“s” all effects are reversed. The cost function of the TV-DEM-AP produces a 

balance between errors of active and passive systems, which reduces the impact 

of both positive and negative “s” variations, substantially reducing the error on 

retrieved soil moisture. 
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Fig. 5.5. The soil moisture retrievals obtained with a measured soil moisture of 0.19 m3/m3 and a 

perturbed s for a) vegetated b) bare surface. 

5.4.2 Spatially variable roughness 

As the s is sensitive to IEM surface scattering (Altese et al., 1996), the validity 

of the assumption for taking a constant s of 2.67 cm for the entire Tibetan 

Plateau for estimating soil moisture with algorithm based on TV-DEM 

simulations is investigated. Van der Velde et al. (2012a) proposed a roughness 

estimation algorithm based on minimizing the absolute difference between and 

model simulated of satellite observed  collected from three view angles over 

frozen soil. Different from van der Velde et al. (2012a), we use single angle 

satellite observations with two polarizations (HH and VV) for retrieving 

roughness here, which is shown as follows. 

                                                                           

(5.2) 

where s (-) represents the object function used for the surface roughness 

estimation, the observation of each grid used here is the solo acquisition with 

minimal backscattering coefficient in both HH and VV polarization. We assume 

the aforementioned observation corresponds to the frozen soil with a water 

content level of 0.05 m3 m-3 (Wegmüller, 1990). Hereby, the IEM simulations 

are performed by changing s from 0.10 to 3.50 with 0.01 cm interval with a 

fixed l of 9 cm and an exponential ACF is considered as well as the Mironov 

model (Mironov et al., 2009) is used for calculating the soil dielectric constant 

for a soil moisture of 0.05 m3m-3. By searching the minimum of Eq. 5.2 with s 
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varies in the range of 0.10 to 3.50 cm, the corresponding s for each grid is 

computed. The retrieved s over the Tibetan Plateau and its histogram are shown 

in Fig. 5.6. 

 

Figure. 5.6 Retrieved s (a) and its histogram (b) over Tibetan Plateau by using approach of van der 

Velde (2012a) 

Fig. 5.6 (a)-(b) indicate that the retrieved s for the Tibetan Plateau changes from 

0.82 to 3.16 (cm). Among them, 55 out of 122 (45.1%) retrieved s value is 3.16 

(cm), which are mostly located in the eastern vegetated areas of the Tibetan 

Plateau. This s (3.16 cm) is in the range of (+10%, +20%) with respect to the 

reference roughness and will cause a less than 0.20 (-) change of object function 

value (Fig.5.5 (a)), resulting in an ubRMSD of less than 0.015 m3m-3 for TV-

DEM-A/P by computing Fig.5.5 for the whole test dataset. Other retrieved s in 

vegetated areas are in the range of (1.40, 3.16) cm, which corresponds to (-50%, 

+20%) range with respect to the referenced roughness (2.67 cm), and this will 

result an ubRMSD of less than 0.024 m3 m-3 by calculating TV-DEM-A/P 

retrievals in Fig.5.5 for the whole test dataset.  

Fig. 5.6 (a) also show that the retrieved s of serval grids are even lower than 

50% of the reference roughness, for example, a minimal s of 0.82 cm (-69% of 

the referenced roughness) is retrieved for the grid (35,84). These grids with a 

low s are located in the eastern part of Tibetan Plateau and fall in the land cover 

of bare soil, with the corresponding ubRMSD will be less than 0.011 m3 m-3 

with the retrieved s falls in (-50%, + 20%) with respect to the reference 

roughness. By expanding the low boundary of s change in Fig.5.5 to -70% with 

respect to the referenced roughness (0.80 cm), the corresponding ubRMSD of 

retrieved soil moisture of TV-DEM-A/P for the whole test dataset with the s 

will be 0.024 m3m-3. Hereby, we conclude that by using a constant s across 

Tibetan Plateau (bare soil and vegetated area are included), the ubRMSD of 

0.024 m3m-3 will be obtained by using TV-DEM-A/P, which is acceptable based 

on SMOS and SMAP mission requirement. However, more accurate soil 
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moisture map should be generated by using various roughness for each grid. 

Furthermore, it should be noted that the roughness estimated by using algorithm 

provided in Van der Velde et al. (2012a) is 2.77 cm for Maqu site (Fig.5.6 (a)), 

which is very close to 2.67 cm used in our TV-DEM algorithm, this implies the 

roughness estimation by using derivative method of Van der Velde et al. 

(2012a) will be a reasonable option. 

5.5 Conclusion 

An algorithm is developed for retrieving soil moisture at plateau scale by 

combined usage of Aquarius active and passive L-band observations. For this 

algorithm, Look-up tables (LUT) are generated by using optimized parameters 

(standard deviation of surface height (s), plant moisture, litter moisture, litter 

biomass) of Tor Vergata-Discrete Electromagnetic Model (TV-DEM) obtained 

from single site (Maqu) in Tibetan Plateau. For vegetated areas, the LUT is 

created with soil moisture and leaf area index (LAI) as variables, while soil 

moisture is the sole variable for the bare surface LUT. By using these LUTs, 

soil moisture is retrieved from Aquarius brightness temperature (Tb) and 

backscattering coefficient (σ0) observed over Tibetan Plateau from August 2011 

to June 2015. The retrievals (indicated as TV-DEM Aquarius) are validated 

with the ground measurements in three networks located respectively in the 

western, central and eastern Tibetan Plateau. TV-DEM retrieved soil moisture 

captures the seasonal dynamics well and agrees with in-situ soil moisture with 

the R2 are 0.499, 0.274 and 0.384 (-) together with ubRMSDs of 0.016, 0.050 

and 0.048 m3 m-3 for the Ngari, Naqu and Maqu networks, respectively. TV-

DEM Aquarius is further compared with official Aquarius, ASCAT and ERA-

Interim surface soil moisture products over the three networks and we find that 

the performance of TV-DEM Aquarius is in line with other three soil moisture 

products over these networks by considering the ubRMSD and R2 values.  

The four soil moisture products are also compared at a Plateau-scale with 

respect to the precipitation dataset from CHIRPS and evapotranspiration (ET) 

from thermal remote sensing method during May to October 2012. In terms of 

temporal change, TV-DEM Aquarius, official Aquarius and ASCAT soil 

moisture products show clear seasonal dynamics over these months due to the 

influence of East Asian monsoon. The ERA-Interim soil moisture product 

shows little variation in the same period. In terms of spatial variability, TV-

DEM Aquarius, official Aquarius and ASCAT soil moisture products also show 
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decreasing soil moisture gradient in the northwest to southeast direction for 

most of the months, which dry-wet spatial pattern has been clearly shown by the 

spatial variability of ET and precipitation. With these findings, we conclude the 

TV-DEM based algorithm can be used to retrieve reliably soil moisture in a 

Plateau scale.  

By combined usage of Aquarius active and passive observations, the uncertainty 

of roughness on soil moisture retrieval is reduced and a more reliable soil 

moisture estimation is obtained compared with the soil moisture retrievals with 

only active or passive observation is used. Furthermore, the accuracy of our TV-

DEM soil moisture retrieval is comparable with other state of art products, 

which is encouraging to investigate further the usage discrete electromagnetic 

models as part of retrieval algorithms. As this TV-DEM based algorithm can be 

modified based on land cover, global soil moisture estimation can be considered 

later on by including accurate global vegetation parameters, for example, 

morphologic parameters for trees in forested area.
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Chapter 6 Conclusions and recommendations   

6.1 Introduction 

Soil moisture is one of the key components in the water cycle and plays an 

important role in land and atmosphere interaction with respect to energy, water 

and gasses. Accurate soil moisture estimation will benefit hydrology, 

agriculture, meteorology, and climate change research. Both active and passive 

microwave observations show sensitivity to soil moisture and can be used to 

retrieve soil moisture. Soil moisture estimation by combined usage of active and 

passive microwave observations may solve some of the ambiguity involved in 

soil moisture retrieval due to the inherent problems in remote sensing retrievals, 

but a fundamental investigation has not received much traction into uncovering 

the critical factors in synergistic use of active and passive microwave 

observation. This thesis contributes to a better estimation of soil moisture across 

the Tibetan Plateau by combining the usage of single L-band active and passive 

observations from the satellite Aquarius. Three research objectives have been 

formulated (section 1.3) and the conclusions reached as a result of the research 

outlined in the previous chapters follow below in section 6.2. Recommendations 

for the further research are listed in section 6.3. 

6.2 Conclusions 

6.2.1 Sensitivity of Aquarius observations over soil moisture in 

Maqu network 

The time series of Aquarius scatterometer and radiometer observations indicate 

clear seasonal dynamics. In the winter season when the soil is dry, the 

backscattering coefficient (σ0) is at a relatively low level while the brightness 

temperature (Tb) is high; in the summer season, on the other hand, a low Tb and 

a high σ0 are observed, corresponding to a wetter soil. The passive microwave 

measurements converted to emissivity (e) by dividing the Tb with temperature 

measured at 5-cm soil depth show a clear sensitivity to mean soil moisture at 5-

cm depth for the Maqu area. Similarly, the σ0 increases with rising soil moisture, 
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but saturates at a level of 0.30 m3 m-3. These findings prove that Aquarius active 

and passive observations can be synergistically used for further soil moisture 

estimation. 

The vegetation effects on σ0 are quantified through the radar vegetation index 

(RVI) and results show that the RVI indeed shows promise regarding 

quantifying the vegetation biomass. However, the RVI in the Maqu area is 

barely greater than 0.4 (-), indicating that in the Maqu area vegetation has a 

limited effect. Furthermore, the Microwave Polarization Difference Index 

(MPDI) derived from Aquarius Tb is used to reproduce the optical depth (τ) and 

results show that the dynamics of τ are in agreement with vegetation change in 

the Maqu area. 

6.2.2 Use of a discrete electromagnetic model for simulating 

Aquarius L-band active/passive observations and soil moisture 

retrieval 

A theoretical model, TV-DEM (Discrete Electromagnetic Model developed at 

the Tor Vergata University in Rome) is selected to simulate Aquarius active and 

passive observations and is applied together with the in-situ measurements at 

the Maqu study area. The sensitivity of the model output to input parameters is 

first analyzed to simplify the model, and it is concluded that the most sensitive 

input parameters in the TV-DEM are standard deviation of surface height, litter 

moisture, litter biomass and plant moisture. With the four most sensitive input 

parameters in TV-DEM selected, the calibrated values of these parameters are 

attained, based on the minimization of the difference between the Aquarius 

observations and the TV-DEM output in a least-squares sense, by considering 

the dataset for years 2012 and 2013. These calibrated values are 2.67 cm for 

standard deviation of surface height, 1.06 (-) for litter moisture, 0.03 (g cm-2) 

for litter biomass and 0.59 (kg kg-1) for plant moisture. Forward simulations by 

the TV-DEM using the calibrated parameters are compared with the Aquarius 

observations for the years 2014 and 2015 to further validate the choice of 

calibrated parameters. An average R2 of 0.80 for Tb and of 0.53  for σ0 is 

achieved between the Aquarius observations and the calibrated TV-DEM 

simulations for the calibration period as well as the validation period.  

Moreover, soil moisture retrieval based on the TV-DEM is proposed and these 

retrievals are compared with the widely used τ-ω model. With the error metrics 
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computed, we concluded that TV-DEM retrievals have the least biased 

difference of 0.008 m3 m-3 with respect to the in-situ measurements as well as 

an unbiased Root Mean Square Difference (ubRMSD) of 0.021 m3 m-3, which is 

comparable with the performance of the retrievals of the τ-ω model. This proves 

that a single model, the TV-DEM, can simulate both brightness temperatures 

and backscattering coefficients that are to some extent in agreement with L-

band observations made from the Aquarius space platform. It also ascertains 

that the soil moisture retrieval by the TV-DEM from Aquarius active and 

passive observations is of great potential. 

6.2.3 Soil moisture estimation over the Tibetan Plateau 

A soil moisture retrieval algorithm at plateau scale is developed by combining 

the usage of Aquarius active and passive observations. The algorithm starts with 

Look-up tables (LUTs) generated by using optimized parameters (standard 

deviation of surface height (s), plant moisture, litter moisture, litter biomass) 

from the Maqu area and varied soil moisture levels (0.03 to 0.50 m3 m-3 with an 

interval of 0.001 m3 m-3) together with the TV-DEM. The leaf area index (LAI, 

0.1 to 5.0 m2 m-2 with an interval of 0.1 m2 m-2) is considered for vegetated 

areas, but set to zero for bare soil surface, for the establishment of the LUTs.  

Soil moisture is retrieved from Aquarius brightness temperature (Tb) and 

backscattering coefficient (σ0) observations over the Tibetan Plateau in the 

Aquarius acquisition period and interpolated into a 1° × 1° grid. The retrievals 

(denoted as TV-DEM Aquarius) are validated in the three networks located in 

the western (Ngari), central (Naqu) and eastern (Maqu) Tibetan Plateau with the 

corresponding ground measurements. Results show that an R2 of 0.499, 0.274 

and 0.384 (-), and an ubRMSD of 0.016, 0.050 and 0.048 m3 m-3 are achieved, 

respectively, for the Ngari, Naqu and Maqu network. Furthermore, TV-DEM 

Aquarius retrievals show less bias than the other three soil moisture products 

(official Aquarius, ASCAT and ERA-Interim) with respect to the in-situ 

measurements across the three networks. All four soil moisture products are 

compared with the precipitation dataset from CHIRPS as well as 

evapotranspiration (ET) from May to October 2012 at plateau scale in terms of 

spatial-temporal distributions. Results show that the TV-DEM Aquarius soil 

moisture product can capture clear seasonal dynamics, as is also seen in the 

official Aquarius and ASCAT soil moisture products. Furthermore, TV-DEM 

Aquarius indicates a clear dry-wet spatial pattern in the northwest to southeast 

direction for most of the months, which agrees with the spatial variability of ET 
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and precipitation, and is less clearly observed in official Aquarius and ASCAT 

soil moisture products. This leads to the conclusion that the TV-DEM based 

algorithm may be used to reliably retrieve soil moisture at Plateau scale.  

6.3 Recommendations  

This research showed the successful soil moisture retrieval over the Tibetan 

Plateau by using Aquarius active and passive observations on the basis of the 

TV-DEM. Moreover, it gives an insight into the influence the Asian monsoon 

has over the Tibetan Plateau in terms of response by spatial-temporal soil 

moisture to precipitation and evapotranspiration.  

Firstly, as indicated in Chapter 3, Aquarius observations are sensitive to frozen 

soil, which implies that soil moisture estimation may be further studied during 

periods of frost as well. As frozen soil is a mixture of liquid water, ice and soil 

particles, specific equations to represent the frozen soil dielectric constant 

should be further developed. Moreover, to what extent the TV-DEM may be 

used to retrieve data on liquid water in frozen soil would also make an 

interesting study topic. 

Secondly, soil moisture estimation for other land covers should be further 

investigated, such as for forest or shrub. As the TV-DEM shows many variants 

depending on the vegetation type that is represented by the morphological 

parameters, the most sensitive parameters for each land cover should be 

investigated. Furthermore, soil moisture estimation can be conducted for 

various land cover types.  

Thirdly, TV-DEM soil moisture retrieval through the combination of active and 

passive observations with different resolutions should be further analyzed. The 

soil moisture active passive (SMAP) satellite provided 1-3 km resolution radar 

observations and 36 km resolution radiometer observations for the first half year 

of the mission until the radar failed. Hence, how to produce an intermediate 

resolution soil moisture map based on the TV-DEM with fine resolution radar 

observations and coarse resolution radiometer observations should be further 

investigated.  
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Appendix A 

 

Figure A1. Scatter plot of soil moisture products (a) TV-DEM Aquarius (b) Official Aquarius (c) 

ASCAT (d) ERA-Interim against in-situ soil moisture over Ngari with 1:1 line (solid line) and regression line 

(dashed line) are indicated 

 

Figure A2. Scatter plot of soil moisture products (a) TV-DEM Aquarius (b) Official Aquarius (c) ASCAT (d) 

ERA-Interim against in-situ soil moisture over Naqu with 1:1 line (solid line) and regression line (dashed line) 

are indicated 
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Figure A3. Scatter plot of soil moisture products (a) TV-DEM Aquarius (b) Official Aquarius (c) ASCAT (d) 

ERA-Interim against in-situ soil moisture over Maqu with 1:1 line (solid line) and regression line (dashed 

line) are indicated 
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