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1.1 Background 
The African elephant (Loxodonta africana) plays a vital role: ecologically as 
keystone species, culturally as an iconic representation of the African 
continent, and  economically as a driver of tourism (Chase et al., 2016). 
However, elephants are considered vulnerable and are under threat in most 
parts of Africa from poaching, human-elephant conflict, habitat fragmentation 
and loss, and isolation of populations (UNEP et al., 2013). This is related to 
weak governance as well as poverty in the elephant range countries (Blanc et 
al., 2013, Kyando et al., 2017). Poaching or hunting for economic, social, and 
cultural reasons currently forms the main cause of the reduction in elephant 
populations in Africa (Bouché et al., 2011, Chase et al., 2016, Maisels et al., 
2013, Zafra-Calvo et al., 2018).  

Poaching forms an immediate threat to the survival of African elephants and 
is responsible for the decline in African elephants at alarming rates 
throughout numerous African range countries (Kyando et al., 2017). For 
example, one hundred thousand elephants are estimated to have been killed 
across the African continent during the period 2008–2012 (Wittemyer et al., 
2014). Existing poaching levels in Africa remain unacceptably high and if the 
present killing rate of 7.4 percent continues (which is higher than the natural 
population growth rate of up to 5 percent (Kyando et al., 2017)), this could 
soon lead to the decline and even local extinction of some elephant (Nyirenda 
et al., 2015). The loss or decline in numbers of elephants can influence the 
integrity of the ecosystems and their services as well as affect human 
livelihoods through reduced tourism income potential (Zafra-Calvo et al., 
2018). 

Elephants are an umbrella species, and their conservation depends on huge 
areas of the ecosystems being protected, which will assist the objective of 
wider biodiversity conservation (Omondi and Ngene, 2012b). Moreover, 
elephants are also a flagship species, extremely charismatic animals that can 
assist as a rallying point for conservation, appealing to the imagination of 
people from all over the world and generating significant returns from 
wildlife-based tourism (Omondi and Ngene, 2012b). Last but not least, 
elephants are a keystone species playing a substantial role in ecological 
dynamics. Therefore, their survival is important to the conservation of other 
elements of biodiversity (Omondi and Ngene, 2012b).  

In the first decade of the twenty-first century, there was an upsurge in the 
price of ivory, coinciding with a rise in ivory demand (Litoroh et al., 2012). 
Many believe that the down-listing of four Southern African elephant 
populations from Appendix I to Appendix II by CITES, along with two legal 
‘one-off’ sales of ivory, have enhanced poaching and illegal trade (Maingi et 
al., 2012).  
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According to the IUCN's African Elephant Status Report presented in 
September 2016 at the 17th meeting of the Conference of the Parties to 
CITES, in Johannesburg, South Africa, Africa's overall elephant population 
has seen its most serious decline in 25 years, largely due to poaching over 
the past ten years. That elephant poaching occurs at an alarming rate is a 
result of the high demand for illegal ivory in Asia (Kyando et al., 2017). Trade 
in ivory depends on a subtle balance of supply and demand (Chaiklin, 2010). 
Factors driving this crime include fast growth in the demand for ivory in Asian 
countries and the Middle East for fashion and medicinal purposes, as well as 
widespread poverty, unemployment, and corruption in supply countries 
(Kideghesho, 2016).  

Most large deliveries of ivory are reaching the Asian markets through the 
eastern Africa sub-region. Since 2009, trade routes switched from Central 
Africa and West seaports to East Africa, with Kenya and Tanzania becoming 
the primary departure points for illegal ivory trade leaving the continent 
through Indian Ocean ports (Mombasa, Dar es Salaam and Zanzibar)(Vira et 
al., 2014). Kenya and Tanzania are now involved in the ivory trade on a large 
scale both as source and as the departure point (Kyando et al., 2017, Vira et 
al., 2014). This reflects the shifts in poaching patterns from West and Central 
Africa to Eastern and Southern Africa (Blanc et al., 2013, Kyando et al., 
2017).  

1.2 Elephant Poaching and Research Problem 

1.2.1 Elephant Poaching in Kenya 
Elephants were effectively eradicated from large areas of Africa due to ivory 
trade in the 18th and, in particular, the late 19th century (Spinage, 1973). 
The population of the African elephant decreased severely throughout the 
continent, from an estimate of 1.3 million in 1979 to about 600,000 in the 
late 1980s (Onyango and Lesowapir, 2016). 

The international ivory trade, which started increasing at the end of the 
1960s, expanded due to  large illegal hunting during the 1970s and 1980s, 
leading to a rapid decline in elephant populations across West, Central, East 
and parts of Southern Africa (Douglas-Hamilton, 1989). Kenya, like most 
African countries, formed no exception regarding the elephant carnage 
(Onyango and Lesowapir, 2016). Between 1973 and 1990, elephant numbers 
in Kenya decreased from about 167,000 to as few as  20,000 (Litoroh et al., 
2012). In 1990, with the formation of a more effective management 
authority, i.e. the Kenya Wildlife Service (KWS), and through the termination 
of legal international ivory trade (through elevation of the African elephant to 
Appendix I of CITES), the elephant population re-established itself. However, 
illegal poaching and black market trading remain challenges this species still 
faces (Hassan and Baqer, 2016). For example, the year 2006 again saw a 
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dramatic rise in illegal poaching. Large upsurges have also been documented 
since 2007 (Hassan and Baqer, 2016). Although elephant poaching has been 
forbidden globally for more than 40 years now, in Kenya the illegal killing of 
elephants has not decreased. This is due to poverty, to the high return 
associated with elephant tusks and to the ease of shipping to the ready black 
market (Hassan and Baqer, 2016).  

1.2.2 Limitation in the Research and Knowledge Gap 
Regarding the Analysis of Elephant Poaching  

Insufficient human and financial resources, combined with the large areal 
extent to be monitored, pose major challenges for anti-poaching activities in 
Kenya (Maingi et al., 2012, Rashidi et al., 2015). Because of high 
conservation costs, Kenya cannot offer adequate protection of wildlife from 
poaching within national parks and reserves. The KWS is understaffed with 
less than one ranger per 100 km2 of wildlife reserve (Maingi et al., 2012). 
Also, an absolute measure of the poaching based on direct observation is 
impossible because of the covert nature of poaching (Burn et al., 2011, 
Sharma et al., 2014). Moreover, detailed data are scarce, and many poaching 
reports are collected incidentally, and may possibly be indirect (Madhusudan 
and Karanth, 2002, Sánchez-Mercado et al., 2008). Nevertheless, in order to 
protect elephants against current poaching threats, conservation managers 
require timely information on spatial and temporal variations in high-risk 
poaching areas for prioritizing intelligence and enforcement efforts (Critchlow 
et al., 2015). 

This study will fill the existing gap in knowledge needed to ensure efficient 
law enforcement and management of elephants, considering restraints 
regarding data availability and finance. This research assists in the targeting 
of specific locations where poaching may be concentrated as well as in the 
setting of conservation priorities and the concentration of management 
resources. Therefore, this research is valuable not only for the identification 
of risk areas, through further understanding of annual and seasonal trends, 
but also to recognize the reasons why conflicts are clustered in a certain 
area, as well as the factors, biophysical and human, that promote poaching 
risk. In addition, it is important to evaluate whether some of the new 
methods developed and discussed in this research may be more effective for 
analyzing poaching because they overcome the scarce data problem (Gelman 
and Price, 1999), which appears when low incident counts and high sampling 
variation cause unstable estimations (Bernardinelli et al., 1995, Congdon, 
2000). 

1.2.3 Innovative Application of Cluster Analysis and 
Bayesian Modelling Regarding Elephant Poaching Data 
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In this study, cluster analysis has been applied to poaching data to detect 
spatial and spatiotemporal patterns in elephant poaching and to discern areas 
or periods of high occurrence (hotspots) of a specific feature from other areas 
or periods with a more random occurrence. Bayesian modelling was used to 
assess the spatial and spatio-temporal variation in elephant poaching trends. 
The aim was to identify probability risk for the areas within the study area 
that are at greater risk of elephant poaching and to ascertain associations 
between occurrence and potential risk factors. Such information is useful in 
guiding the deployment of policing resources in the protected areas and its 
surroundings, and to help improve or alter the management actions. The 
findings could be incorporated in future national and regional management 
programs in order to reduce human-induced elephant deaths. 

1.3 Research Objectives 
The general objective of this research is to assess spatial and spatiotemporal 
trends, as well as seasonal and annual changes in elephant poaching risk at 
local and national level utilizing cluster and Bayesian modelling. Therefore, 
the specific objectives can be described as follows: 

 To identify elephant poaching hotspots by analyzing the differences in 
clusters of poached elephants in the Tsavo ecosystem (Kenya) that 
emerge from different cluster detection methods.  

 To investigate elephant poaching risk by comparing spatial and non-
spatial Bayesian models in small areas (blocks) in the Tsavo ecosystem, 
Kenya. 

 To assess inter-annual trends and seasonal changes in elephant poaching 
risk for Kenya’s Greater Tsavo ecosystem over an eleven-year period, 
from 2002 to 2012, using spatio-temporal Bayesian modelling. 

 To investigate, on a regional level, how elephant poaching risk in Kenya 
may change at different locations or times or for any interaction between 
space and time.  

 To identify the key factors influencing high-risk elephant poaching areas. 

1.4 Study Area 
The study was conducted at national as well as local level. At national level 
we focussed on Kenya (Figure 1.1). The republic of Kenya covers an area of 
about 582,646 km2 on the equator in East Africa. It lies between 5°30' N and 
4° 30' S latitude and 34° E and 42° E longitude (Ouko, 2013). Kenya has 
thirteen National Parks and twenty-five reserves that occupy ten percent of 
the country (Burnett and Rowntree 1990). There are a wide range of natural 
regions in the country, varying from hot, arid lowlands to cool, humid 
highlands, with numerous soils types (Batjes, 2004). The altitude steadily 
rises from 0 m above mean sea level nearby the Indian Ocean to between 
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2000 - 3400 m in the highlands (Ouko, 2013). The climate of Kenya varies by 
location. The long rainy season takes place from March through May in many 
regions of Kenya and the short rainy season occurs between October to 
November (Batjes, 2004). The dry seasons encompass January to February 
and June to September in most years (Batjes, 2004). Mean annual rainfall 
varies between 150 - 500 mm in the arid east and northeast of the Kenya, to 
500 - 1000 mm in the semi-arid regions, and 1000 to 2500 mm in the more 
humid areas in the central highlands and near Lake Victoria (Ouko, 2013). 
The mean annual air temperature is acutely correlated with elevation. It 
declines from about 27° C near the sea, to 17° C in Nairobi in the central 
highlands, to below 10° C above 3000 m (Ouko, 2013). 

Figure 0.1 Location of the conservation regions in Kenya; and total elephant poaching 
incidents per conservation region (2002-2012)  

At local level we focus on the Tsavo ecosystem. The Greater Tsavo ecosystem 
covers 38,128 km2 in south-east Kenya (Figure 1.2). Our study area was 
composed of the Tsavo East National Parks North (north of the Galana River) 
and South (south of the Galana River), as well as the Tsavo West National 
Park, and also a number of private ranches (Figure 1.2). The rivers and 
streams of the Tsavo ecosystem include the Tsavo, the Tiva, the Galana, the 
Athirivers, and the Voi (Maingi et al., 2012). Commiphora savanna forms the 
prevailing vegetation community in the study area (Cobb, 1976). The area’s 
climate shows clear seasonality and also displays a large geographic 
variation. The long wet season takes place between March and May. Rainfall 
amounts during the wet season are largest between the Taita Hills and the 
Kilimanjaro area. The short rainy season occurs in November and December, 
when rainfall is concentrated mostly in the eastern and northern parts of the 
area (Ngene et al., 2013, Smith and Kasiki, 2000). The Tsavo ecosystem is 
home to the largest population of Kenya’s elephants, but also experiences the 
largest number of elephant poaching incidents in Kenya (Maingi et al., 2012, 
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Rashidi et al., 2015). It is also one of four sites for “Monitoring of Illegal 
Killing of Elephants” (MIKE program) in Kenya (Shaffer and Bishop, 2016).  

Figure 0.2 Location of the Greater Tsavo ecosystem in Kenya. The points (151) 
indicate the recorded sites of elephant poaching and the colors show the different 
ranches and sections of the Greater Tsavo ecosystem (2002-2012). 

1.5 Thesis outline 
Structurally this thesis comprises six chapters, namely the introduction, four 
core chapters, and a synthesis. The core chapters include four stand-alone 
papers that have been published (three) or submitted (one) to peer reviewed 
international journals. The chapters are in the following order:  

Chapter 1: In this chapter, the background to this research is discussed 
briefly, the research problems and objectives are described and the thesis 
outline presented.   

Chapter 2: In this chapter, elephant poaching hotspots are identified by 
analyzing the differences in clusters of poached elephants in the Tsavo 
ecosystem (Kenya) that emerged from different cluster detection methods. 
Two spatial- and two spatio-temporal clustering methods are applied to the 
data. The predictive accuracy of the spatial methods in defining hotspots is 
assessed using the prediction accuracy index (PAI), which is then modified 
(MPAI) for measuring the predictive accuracy of the spatiotemporal methods. 
Finally, blocks consistently identified as poaching hotspots are introduced. 

Chapter 3: In this chapter poaching risk for African elephant (Loxodonta 
africana) is investigated by comparing spatial and non-spatial Bayesian 
models. Spatial and non-spatial Bayesian models are fed with expert 
knowledge obtained through survey responses from 30 experts. The 
predictive accuracy of both models is assessed using the Deviance 
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Information Criterion (DIC). Key factors influencing elephant poaching risk 
are determined by Bayesian spatial and non-spatial models. Risk probability 
values per spatial unit are determined.  

Chapter 4: In this chapter inter-annual trends and seasonal changes in 
elephant poaching risk are assessed for Kenya’s Greater Tsavo ecosystem for 
the eleven-year period from 2002 to 2012, using spatio-temporal Bayesian 
modelling. The hypothesis concerning whether risk factors enhance the 
prediction of the model are tested. At a local level specific areas with a 
persistently high risk of elephant poaching in the years studied (2002 - 2012) 
are highlighted. Also, locations with the highest elephant poaching risk during 
the wet and dry seasons are assessed.  

Chapter 5: In this chapter Bayesian spatio-temporal methods with the ability 
to incorporate prior knowledge (expert knowledge) are used to investigate 
how elephant poaching risk in Kenya may change at different locations or 
times or with any interaction between space and time. These models are also 
used to identify the key factors influencing high risk elephant poaching areas 
at a national level. Annual shifts in high risk elephant poaching areas in 
Kenya (2002 to 2012) are also identified. At a national level, spatio-temporal 
high risk areas with a persistently high risk of elephant poaching over the 
studied years (2002 - 2012) are identified.  

Chapter 6: In this chapter, the research findings are logically amalgamated. 
An overview of the research findings from the previous chapters is provided.  
It elaborates on the implications of these results regarding prevention or 
reduction of poaching activity in areas with relatively strongly increasing 
poaching trends. Ultimately, suggestions are made for further study. 
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Chapter 2 
 
Spatial and Spatiotemporal Clustering 
Methods for Detecting Elephant Poaching 
Hotspots* 

 

                                          
* This chapter is based on: Rashidi, P., Wang, T.J., Skidmore, A.K., Vrieling, A., 
Darvishzadeh, R., Toxopeus, A.G., Ngene, S.M. and Omondi, P. (2015) Spatial and 
Spatiotemporal Clustering Methods for Detecting Elephant Poaching Hotspots. In: 
Ecological Modelling, 297, 180-186. 



Spatial and Spatiotemporal Clustering Methods 

10 

Abstract 
Spatial and spatiotemporal cluster methods are used for a wide range of 
applications including the study of criminal activities, but have never been 
compared for studying a specific form of crime, i.e. wildlife poaching. We 
aimed to identify elephant poaching hotspots by analyzing the differences in 
clusters of poached elephants in the Tsavo ecosystem (Kenya) that emerged 
from different cluster detection methods. Reports of elephant poaching in the 
Tsavo ecosystem were obtained for 2002–2012 from the Kenya Wildlife 
Service. The study area was divided into 34 blocks for analysis. Two spatial- 
and two spatiotemporal clustering methods were applied to the data. The 
predictive accuracy of the spatial methods in defining hotspots was assessed 
using the prediction accuracy index (PAI), which was then modified (MPAI) 
for measuring the predictive accuracy of the spatiotemporal methods. The 
results from the spatial methods indicated eight consistent poaching blocks, 
with Kulldorff’s spatial scan statistic having a slightly higher PAI value than 
the flexible scan statistic (2.39 vs 2.12). The spatiotemporal clustering 
methods revealed four consistent poaching blocks. The MPAI value was 
higher for the spatiotemporal scan statistic than the spatiotemporal 
permutation scan statistic (1.46 vs 0.97). The results demonstrated that 
although the hotspot predictions varied for the different methods, three 
blocks were consistently identified as poaching hotspots. Our findings may 
assist wildlife departments such as the Kenyan Wildlife Service to allocate 
their financial and human resources as effectively as possible in combating 
poaching. Further research is needed to examine the environmental and 
human factors contributing to the patterns that have been observed in 
elephant poaching. 
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2.1 Introduction 
Cluster analysis aids in identifying the presence of spatial and temporal 
patterns (Quick and Law, 2013). It can discern areas or periods of high 
occurrence (hotspots) of a specific feature from other areas or periods with a 
more random occurrence. Many methods for testing the presence of clusters 
in spatial point features have been defined and they can be broadly divided 
into global and local clustering methods (Chiu et al., 2008). In global 
clustering methods, the average tendency (a typical value for a probability 
distribution, e.g. mean or median) in a dataset is measured to test the null 
hypothesis of spatial randomness over the whole study area. However, the 
specific location or significance of individual clusters is not specified by global 
methods (Burra et al., 2002, Chakravorty, 1995, Quick and Law, 2013). In 
contrast, local clustering methods identify the location of individual clusters 
by processing subsets of global data; local clustering methods recognize 
neighboring regions that show exceedingly high or low occurrences relative to 
the null hypothesis of spatial randomness (Anselin, 1995, Anselin et al., 
2000, Kulldorff et al., 2003, Quick and Law, 2013). Local clustering can be 
classified in three groups: temporal clustering, spatial clustering, or 
spatiotemporal clustering (Tango, 2010). Temporal clustering investigates 
whether cases show a tendency to be placed close to each other in time 
(Tango, 2010). Spatial clustering investigates if the occurrence of a specific 
feature is particularly high in some geographical areas, irrespective of when it 
occurred during the study period. Spatiotemporal clustering investigates 
whether events that are close in space are also close in time (Tango, 2010). 

Cluster analysis used in epidemiology (Hanson and Wieczorek, 2002; 
Kulldorff, 1997; Torabi and Rosychuk, 2011) and has been applied to crime 
data to assist decision-making on where and when to address potential crime 
clusters in future, e.g. for drug offences (Quick and Law, 2013) or city 
violence and property crimes (Uittenbogaard and Ceccato, 2012). However, 
few studies exist that aimed at detecting spatial and spatiotemporal patterns 
in the specific criminal act of wildlife poaching. One example is Haines et al. 
(2012) who studied white-tailed deer poaching activity in Fayette County, 
Iowa, USA, in terms of temporal, spatial, and environmental patterns. They 
used logistic regression models and produced poaching activity hotspots map. 

Although elephant populations are declining across their habitat range in 
Africa and poaching is a significant source of mortality, little attention has 
been paid to predicting poaching hotspots. Analysis of data related to 
poaching is important for wildlife conservation. Based on elephant mortality 
data collected between 1989 and 2005 Kyale et al. (2011a) identified spatial 
patterns of elephant mortality, which is largely due to poaching, in Tsavo East 
National Park in Kenya. They used kernel density analyses and found that the 
patterns were clustered, with poaching being more intensive in the northern 
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and central areas of the park. Maingi et al. (2012) studied spatial patterns of 
elephant poaching separately for wet and dry season for the period between 
January 1990 and December 2009 in south-eastern Kenya. They used kernel 
density analyses and concluded that poaching was more common in the dry 
season when the elephants aggregate along permanent rivers. However, their 
analysis merely separated the two seasons and assessed hotspots for each, 
but did not address both space and time in a single model. In fact, poaching 
hotspots have never been mapped using spatiotemporal methods and the 
differences in hotspots that emerge from various clustering methods have not 
been evaluated. 

We therefore set out to identify elephant poaching hotspots by analyzing the 
differences in emerging clusters of poached elephants in the Tsavo 
ecosystem. We used different cluster detection methods on data covering a 
continuous period of ten years. We selected four common clustering methods 
(two spatial, two spatiotemporal) for this purpose. Our study aimed to 
answer the following five questions: (1) Where are the consistent elephant 
poaching hotspots as determined by various spatial and spatiotemporal 
clustering methods? (2) What are the differences between the emerging 
clusters obtained by the different spatial clustering methods? (3) Do spatial 
clustering methods differ in their ability to predict where hotspots may occur? 
(4) What are the differences between the emerging clusters obtained by 
different spatiotemporal clustering methods? (5) Do the spatiotemporal 
clustering methods differ in their ability to predict where and when hotspots 
may occur? 

2.2 Materials and Methods 

2.2.1 Study Area 

The Tsavo ecosystem covers an area of about 38,128 km2 in south-east 
Kenya (Figure 1.2). The ecosystem lies between 2–4ºS, and 37.5–39.5ºE 
(Ngene, 2013). It has a population of about 11,000 elephants (Kyale et al, 
2014), and the highest reported poaching of elephants, in Kenya (Maingi et 
al., 2012). The anti-poaching activities in the Tsavo ecosystem are challenged 
by inadequate resources (human and financial), and the extensive area 
covered (Maingi et al., 2012). Various rivers traverse the ecosystem, 
including the Galana, Voi, Tiva, Tsavo and Athirivers (Maingi et al., 2012). 
Our study area comprised the Tsavo East national park north, Tsavo East 
national park south, and Tsavo West national parks, with the remainder 
covered by private ranches (Figure 1.2). The climate of the area is semi-arid, 
with the long rainy season occurring between March and May, and the short 
rainy season in November and December. Mean annual rainfall varies locally 
between 250 and 500 mm (Maingi et al., 2012). Vegetation in the Tsavo 
ecosystem is dominated by Commiphora savanna (Maingi et al., 2012). 



Chapter 2 

13 

2.2.2 Elephant Data 

The poaching and population data on elephants used for this study were 
obtained from the Kenya Wildlife Service (KWS). The poaching data were 
collected from aerial patrols and daily ground patrols carried out by KWS 
through monitoring illegal killing of elephants (MIKE) program. Regular 
patrols and extensive coverage of monitored sites is essential to collect 
comprehensive data for the MIKE program. Rangers are expected to complete 
patrol forms and carcass forms, and to use GPS units to record locations. The 
dataset listed 151 poaching locations in the study area between June 2002 
and August 2012. The data included geographic coordinates, names of the 
locations where elephant carcasses were found, and the estimated date of 
death. Elephant population data were collected by aerial surveys carried out  
in the Tsavo ecosystem from 7–12 February 2011 (Ngene, 2013). We 
assumed that the spatial population at risk data from 2011 can be used for all 
years, since there were no significant changes in elephant population and 
distribution from 2002 till 2012 (Ngene, 2013). The data included the date, 
geographic coordinates and names of the locations where elephants were 
seen. 

2.2.3 Block Design 

In order to compare the results of the different cluster analysis methods on 
the same basis, the study area was divided into 37 blocks, which were 
initially designed for the aerial counting comparison of the elephant 
population in the Tsavo-Mkomazi ecosystem. The blocks were described by 
Ngene (2013). They were defined mostly by easily detectable features such 
as hills, road, rivers, and protected area boundaries. The average block size 
was 1,098 km² (Ngene, 2013). Block numbers 33–35 were excluded because 
they are located in Tanzania and no poaching data was available. We used 
the 34 blocks in Tsavo ecosystem to compare our findings (Figure 2.1). 

Figure 0.1 Distribution of recorded elephant poaching incidents between 2002 and 
2012 within the defined blocks in the Greater Tsavo ecosystem. 
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2.2.4 Spatial Clustering Methods 

2.2.4.1 Kulldorff’s Spatial Scan Statistic 

The spatial scan statistic was originally proposed by Kulldorff to examine 
occurrences of breast cancer (Kulldorff, 1997; Tango and Takahashi, 2005). 
It has been broadly applied in spatial cluster analysis (Wu et al., 2011). 
Kulldorff’s spatial scan method imposes a circular scan window of a given 
radius centered on a target location centroid(Hanson and Wieczorek, 2002). 
The radius increases in size to an upper limit specified by the user(Xu, 2008). 
For each circle, a likelihood ratio statistic is computed based on the number 
of observed and expected cases within the window compared with outside the 
window (Hanson and Wieczorek, 2002, Torabi and Rosychuk, 2011). The 
window with the highest value for the likelihood ratio and the greatest 
relative risk (RR) is identified as the most probable cluster. Kulldorff’s spatial 
scan method utilizes the maximum likelihood ratio as the test statistic to 
overcome the problem of multiple testing(Mennis and Guo, 2009). RR 
represents how much more common high incidence rates are in this 
particular cluster compared to the average outside this cluster. Thus, 
Kulldorff’s spatial scan method reports the most likely cluster with a set of 
secondary clusters(Mennis and Guo, 2009). It initially calculates the 
likelihood ratio for each window and finds the maximum(Mennis and Guo, 
2009).  

To determine the statistically significant level, a large number of random 
replications of the dataset are generated under the null hypothesis using a 
Monte Carlo simulation and the test statistic value is calculated for each 
replication (Mennis and Guo, 2009, Xu, 2008). At that point, the true test 
statistic value is compared to the test values for all replications to detect the 
significant level for the most likely cluster and the secondary clusters (Mennis 
and Guo, 2009). In this study, we used spatial cluster analysis for higher 
incidence in the SaTScan software (version 9) (Kulldorff, 2011), in which the 
block centroids were included in the radius of the circle since aggregate data 
were used in this research. The maximum spatial cluster size was set to a 
circle with a 70-km radius, because an analysis of poaching locations using 
ArcGIS’s incremental spatial autocorrelation tool demonstrated that 
maximum clustering occurred at a distance of 70 km. 

2.2.4.2 Flexible Spatial Scan Statistic 

The flexible spatial scan statistic was developed by Tango and Takahashi 
(2005) and it permits irregularly shaped clusters to be identified (Quick and 
Law, 2013, Torabi and Rosychuk, 2011). The flexible spatial scan statistic is 
similar to Kulldorff’s spatial scan statistic, but it is able to detect clusters with 
any shape, although the detected cluster is limited to a relatively small 
neighborhood in each region (Torabi and Rosychuk, 2011). The flexible scan 
statistic imposes an irregularly shaped window on each region by connecting 
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its adjacent regions and Monte Carlo hypothesis testing is used to find the 
distribution of the test statistic under the null hypothesis of spatial 
randomness (Tango and Takahashi, 2005). In this study, we used the flexible 
spatial scan statistic implemented with a restricted likelihood ratio in order to 
considerably reduce the computational time required (Tango and Takahashi, 
2012). This method scans only the regions with an elevated risk. The method 
was implemented with the FleXScan software and the maximum spatial 
cluster size was set to a default setting of 15 blocks(Takahashi et al., 2005). 
Similar to the circular spatial scan statistic, the window with the highest 
likelihood ratio values and the greatest relative risk are identified as potential 
clusters. 

2.2.5 Spatiotemporal Clustering Methods 

2.2.5.1 Spatiotemporal Scan Statistic 

The spatial scan statistic can be extended to the spatiotemporal scan statistic 
by considering both spatial and temporal aspects of the recorded elephant 
poaching incidents. This is done by modifying the scanning window so that, 
instead of circles across space, cylinders are tested. The base of the cylinder 
represents the space and the height represents time (Kulldorff, 2011). Since 
we had elephant poaching data for a ten-year period, a retrospective space-
time cluster analysis of incidents was selected using SaTScan software 
(version 9). Cases files, population files, and coordinate files (i.e. the 
centroids of the blocks) were generated for analysis(Wang et al., 2013). 
Spatiotemporal clusters were identified by fitting a discrete Poisson model 
and using a maximum cluster size of 50% of the study period in the temporal 
window and a circle of 70-km radius spatially (see 2.4.1). The primary cluster 
and secondary clusters were detected through the log likelihood ratio (LLR) 
test. The greatest relative risk was calculated as the estimated risk within the 
cluster divided by the estimated risk outside the cluster (Kulldorff, 2011). We 
tested the null-hypothesis that there is no cluster of occurrence inside the 
window against the alternative hypothesis that there is an elevated risk inside 
the window in comparison with outside (Xu, 2008).The p-values for identified 
clusters were computed by utilizing Monte Carlo simulations to create various 
random replications of the dataset under the proper null hypothesis (Liu et 
al., 2013). To ensure sufficient statistical power, and taking computation 
times in to account, we created 999 random simulations to obtain p-values  
(Liu et al., 2013). The null hypothesis of a spatiotemporally random 
distribution was rejected if the p-values was < 0.05 (Wang et al., 2013). 

2.2.5.2 Spatiotemporal Permutation Scan Statistic 

The spatiotemporal permutation scan statistic uses a cylindrical window while 
scanning. A circular or ellipsoid radius of the cylinder indicates the number of 
incidents covered by the cluster, and the height of the cylinder corresponds 
to the time covered. The spatiotemporal permutation scan statistic requires 
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only case data (with information about the location and date) and does not 
need population-at-risk data (Kulldorff et al., 2005). The expected number of 
elephant poaching incidents was calculated by assuming complete spatial 
randomness, which is the same if the observed events with a persistent 
average were roughly independent Poisson random parameters (Si et al., 
2009). A likelihood ratio, based on this approximation, was estimated to 
determine whether the cylinder contained a cluster or not. One cylinder with 
the maximum likelihood ratio test statistic is then considered to be the key 
candidate for the most likely cluster (Kulldorff et al., 2005). The statistical 
significance of detected clusters was evaluated using a Monte Carlo 
simulation (Dwass, 1957). The rank of the maximum likelihoods from the real 
dataset were compared to those of the random datasets to compute the p-
values (Dwass, 1957, Kulldorff, 2006). The space-time permutation scan 
statistic was used to detect clusters mathematically. The center of the 
window was positioned at the centroid of each block (the latitude/longitude 
information of geometric center was obtained using ArcGIS geocoding 
function), and the radius of the circular window varied continuously from zero 
to a maximum radius of 70 km (see 2.4.1). For each spatial base, the height 
of the cylinder was modified from the shortest time aggregation length of 1 
month to a maximum of 50% of the whole study period. The number of 
Monte Carlo replications was set at 999 and the statistical significance at 
0.05. 

2.2.6 The Prediction Accuracy Index 

The Prediction Accuracy Index (PAI) was used to measure the predictive 
accuracy of the spatial clustering methods(Chainey et al., 2008). This index 
provides a single measure of how reliable such a method is for predicting 
where hotspots may occur. A higher value of PAI reflects a greater accuracy. 
The index is calculated by: 

PAI =  (1) 

where n is the number of poached elephants in areas where poaching is 
predicted to occur (hotspots), N is the total number of elephants poached in 
the study area in the 10-year study period, a is the area where poaching is 
predicted to occur (e.g. area of hotspots in km2) and A is the whole study 
area in km2. A higher PAI value indicates higher prediction accuracy. 

Since the PAI is suitable for spatial clustering methods but does not consider 
the temporal aspects of incidents, in this study, we modified the PAI (MPAI) 
by adding a time factor to evaluate the spatiotemporal methods. Equation 2 
shows how this new index was calculated. 
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MPAI=  (2) 

where nt is the number of elephants poached in areas where poaching is 
predicted to occur (hotspots) and in the time range (t) of occurrence, NT is 
the number of elephants poached in the whole study area during the total 
study period, a is the area where poaching is predicted to occur (e.g. area of 
hotspots in km2) and A is the whole study area in km2. 

2.3 Results 
Kulldorff’s spatial scan statistic detected two significant clusters (p < 0.05) 
(P< 0.05) ranging in size from 1– 7 blocks (Figure 2.2). The most likely 
cluster consisted of seven blocks, defined by the highest relative risk 
(RR=21.75) and log likelihood ratio (LLR=146.89). The secondary clusters 
included one block, with a smaller RR (11.85) and LLR (9.23) compared with 
the most likely clusters (Figure 2.2). 

 
The flexible spatial scan statistic with a restricted likelihood ratio resulted in 
two significant clusters (p < 0.05) (Figure 2.2). The most likely cluster 
consisted of seven blocks with the greatest RR (10.01) and LLR (146.89). The 
secondary clusters consisted of two blocks with smaller RR (5.76) and LLR 
(11.44) compared to the most likely cluster. 

Figure 0.2 The most likely clusters 
identified by the two spatial clustering 
methods:(a) Kulldorff’s spatial scan 
statistic, and (b) the flexible spatial 
scan statistic with a restricted 
likelihood ratio. 
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The results for the spatiotemporal scan statistic cluster are shown in Figure 
2.3. The spatiotemporal cluster analysis of cases of elephant poaching in 
2002-2012 in the Tsavo ecosystem showed that elephant poaching was not 
distributed randomly in space and time. Using the maximum spatial cluster 
size of a circle with 70-km radius, and the maximum temporal cluster size of 
50% of the study period, one most likely cluster and two secondary clusters 
were identified (Figure 2.3). The most likely cluster consisted of seven blocks 
with the greatest RR (77.10) and LLR (235.33). It was detected for the period 
December 2009 to August 2012. The two secondary clusters also consisted of 
seven blocks; the RR of these clusters (69.62 and 32.51 respectively) within 
a non-random distribution pattern was also significant (p < 0.05) (Figure 
2.3). 

The retrospective spatiotemporal permutation scan analysis of elephant 
poaching data during 2002–2012 detected two significant clusters (p < 0.05) 
(Figure 2.3). The most likely cluster consisted of seven blocks with the 
greatest likelihood ratio test statistic (LLR= 8.46). It was detected between 
August 2002 and August 2006. The secondary clusters consisted of three 
blocks with a smaller test statistic compared to the most likely cluster (LLR= 
6.61). 

 

 
 

Figure 0.3 The most likely 
clusters identified by two 
spatiotemporal cluster 
methods, using monthly 
spatiotemporal data from 2000 
to 2012. (a) Spatiotemporal 
scanstatistic and (b) 
spatiotemporal permutation 
scan statistic. 
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As can been seen from Figure 2.4 a, eight blocks were detected as having 
high poaching, irrespective of the spatial clustering method used. When the 
spatiotemporal analyses were included (Figure 2.4 b), four blocks were 
detected as having high poaching, irrespective of the method used. Three of 
these blocks overlapped in space and time (8, 9, and 10), but one overlapped 
in space, but not time (block 20). Figure 2.4 shows the locations of these 
consistent blocks. 

 

 
 

The PAI results for the two spatial clustering methods indicated that the 
cluster analysis methods vary in their ability to predict patterns of poaching 
events. Our results showed that Kulldorff’s spatial scan statistic had a slightly 
higher PAI value than the flexible scan statistic (2.39 vs 2.12). 

An evaluation of the modified PAI results for the two spatiotemporal 
clustering methods showed that the spatiotemporal scan statistic predicts 
when and where hotspots occur with greater accuracy than the 
spatiotemporal permutation scan statistic (1.46 vs 0.97).  

Figure 0.4 Consistent blocks 
of elephant poaching in the 
Tsavo ecosystem, Kenya. They 
were derived from (a) spatial 
clustering methods, and (b) 
spatiotemporal clustering 
methods. 
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2.4 Discussion 
A number of consistent elephant poaching hotspots in the Tsavo ecosystem 
emerged from the different cluster detection methods. Among the 34 blocks 
in the study area, three blocks were selected consistently, irrespective of the 
clustering method used, indicating a consistently high risk of poaching in 
these areas (Figure 2.5).The consistently detected hotspots are located in 
Taita ranches and Tsavo West National Park and most were located along the 
border of Tanzania.  

 

Figure 0.5 Consistent blocks of elephant poaching in the Tsavo ecosystem, Kenya. 
They were derived from (a) spatial clustering methods, and (b) spatiotemporal 
clustering methods. 

Our results indicated that similarities occurred between clusters detected by 
different cluster detection methods, but also differences emerged. This is 
partly due to variations in the sizes of search window and because the input 
data used are different. Our (Kulldorff’s spatial scan statistic method) results 
identified a smaller number of combined blocks as a potential cluster 
compared to flexible scan statistic method. This may be due to the non-
circular shape of the regions in the Tsavo ecosystem (Torabi and Rosychuk, 
2011). Despite the small deviation, the results of the spatial scan statistics 
and flexible spatial scan statistics were largely consistent (Figure 2.4 a). This 
suggests that both spatial methods could be used interchangeably for 
application in the field of the poaching. 

The PAI was used to assess the predictive accuracy of the spatial clustering 
methods. The results using PAI indicated that Kulldorff’s spatial scan statistic 
had a slightly higher PAI value than the flexible scan statistic (2.39 vs 2.12). 
This finding implies that the shape of the search window has a small effect on 
the prediction accuracy. Based on the PAI value, Kulldorff’s spatial scan 
statistics showed reasonably good prediction accuracy in detecting circular 
clusters. The flexible scan statistic also showed a reasonably good PAI value 
plus the ability to detect non-circular clusters (Figure 2.2). 
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Clusters that emerged from the spatiotemporal clustering methods 
demonstrated an interesting phenomenon. For instance the most likely 
cluster in the spatiotemporal permutation scan statistic was selected as the 
area of the secondary cluster by the spatiotemporal scan statistic (Figure 
2.3). This different result may be partly explained by the influence of the 
input data, which are different for both methods. The spatiotemporal 
permutation scan statistic requires only case data, with information about the 
location and time for each case, but it does not need population-at-risk data, 
whereas the spatiotemporal scan statistics does require population-at-risk 
data. When comparing the two spatiotemporal methods, a few consistent 
poaching clusters were detected (Figure 2.4b), which indicates the 
importance of considering the assumptions made in the scan statistic models 
in relation to the data being used(Alton et al., 2013). For example, when 
using the spatio-temporal scan statistics, the expected number of cases in 
each area is proportional to the population of the cases in that area, whereas 
for the spatiotemporal permutation scan statistic, the expected values are 
calculated only on the basis of cases. The permutation scan statistic is 
advantageous if population data are missing, but it may not be appropriate 
for analyzing poaching activities due to their covert nature and the fact that 
some cases of elephant poaching may not be reported (Burn et al., 2011).  

By modifying the prediction accuracy index (MPAI), we demonstrated that it 
is possible to evaluate the predictive accuracy of spatiotemporal clustering 
methods over time. Our results indicate that the spatiotemporal scan statistic 
had a higher MPAI value when detecting cluster areas than the 
spatiotemporal permutation scan statistic (1.46 vs 0.97). This lower accuracy 
may be explained by the spatiotemporal permutation scan statistic being 
independent of the population-at-risk and a cluster being detected if an area 
has a higher proportion of cases during a specific time period compared to 
the remaining geographical areas(Alzahrani et al., 2013). 

2.5 Conclusions 
Clustering methods are useful for understanding the pattern of criminal 
activities; in this paper we compared four clustering methods for the purpose 
of examining one such activity, i.e. elephant poaching, using 10 years of 
patrol data. Elephant poaching clusters in the Tsavo ecosystem from two 
spatial methods (flexible scan statistic and Kulldorff’s scan statistics) almost 
coincided and had a similar predictive accuracy. The two spatiotemporal 
methods showed larger differences; the spatiotemporal scan statistic 
outperformed the spatiotemporal permutation scan statistic in accurately 
predicting elephant poaching hotspots in the Tsavo ecosystem, based on a 
modified Predication Accuracy Index (MPAI). This difference can largely be 
explained by the fact that the permutation scan statistic does not use 
population-at-risk input data, which we had available in the form of an aerial 
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elephant survey. Our results and methodological comparison may assist the 
Kenya Wildlife Service in allocating financial and human resources effectively 
to tackle (elephant and other species) poaching. 
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Chapter 3 
 
Elephant Poaching Risk Assessed Using 
Spatial and Non-Spatial Bayesian Models2 

                                          
2 This chapter is based on: Rashidi, P., Wang, T.J., Skidmore, A.K., Mehdipoor. H., 
Darvishzadeh, R., Ngene, S.M., Vrieling, A., Toxopeus, A.G. (2016) Elephant Poaching 
Risk Assessed Using Spatial and Non-Spatial Bayesian Models. Ecological Modelling, 
338, 60-68. 
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Abstract 
Bayesian statistical methods are being used increasingly in crime research 
because they overcome data quality problems that arise due to the covert 
nature of crime, but the use of such methods is still in its infancy in the field 
of wildlife poaching – a specific form of crime. We analyzed poaching risk for 
African elephant (Loxodonta africana) by comparing spatial and non-spatial 
Bayesian models. Reports on elephant poaching in the Tsavo ecosystem were 
obtained for 2002–2012 from the Kenya Wildlife Service. The ecosystem was 
divided into 34 spatial units for which poaching data were aggregated and 
served as the base units for analysis. Spatial and non-spatial Bayesian 
models were fed with expert knowledge obtained through survey responses 
from 30 experts. The predictive accuracy of both models was assessed using 
the Deviance Information Criterion (DIC). Our results indicated that spatial 
Bayesian modelling improved the model fit for mapping elephant poaching 
risk compared to using non-spatial Bayesian models (DIC value of 193.05 vs 
199.03). The results further showed that the seasonal timing of elephant 
poaching (i.e., in dry and wet seasons), density of waterholes, livestock 
density and elephant population density were factors significantly influencing 
the spatial patterns of elephant poaching risk in the Tsavo ecosystem for 
both models. Although there were similarities in the high risk areas for 
elephant poaching recognized in both models, risk probability values per 
spatial unit could differ. Furthermore, spatial Bayesian modelling also 
identified areas of high poaching risk that were not predicted by the non-
spatial model. These findings provide vital information for identifying priority 
areas for combating elephant poaching and for informing conservation 
management decisions. The model we present here can be applied to 
poaching data for other threatened species. 
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3.1 Introduction  
Widespread illegal hunting and the bush meat trade occur more frequently 
and with greater impact on wildlife populations in the Southern and Eastern 
savannas of Africa than previously thought (Lindsey et al., 2012). For 
example, in 2011 alone, about 40,000 elephants were poached for their ivory 
in Africa - equivalent to a species loss of about 3% (Wittemyer et al., 2014). 
A better understanding of where and when poaching is likely to occur  would 
enable more effective law enforcement and possibly decrease the decline of 
wildlife due to poaching (Critchlow et al., 2015). Given the covert nature of 
poaching (Burn et al., 2011) that makes it difficult to record detailed spatial 
and temporal information on all poaching events, methods are needed that 
can deal with data scarcity (Gelman and Price, 1999). Not accounting for 
such scarcity can lead to unstable estimations of poaching patterns 
(Bernardinelli et al., 1995, Congdon, 2000). 

With the ability to incorporate expert knowledge to help inform estimates for 
poorly sampled areas, Bayesian methods are becoming an increasingly 
common tool for ecological and disease mapping (Gelman and Price, 1999). 
In Bayesian statistical methods, crime data is regarded as a fixed quantity, 
whereas model parameters are considered to be random quantities when the 
measurement uncertainty is determined. Bayes’ theorem combines 
information contained in the data (recorded crime) with prior knowledge to 
obtain posterior probabilities of crime risk, including risks for those areas that 
have a crime incidence count of zero (Law and Chan, 2012). The advent of 
recently developed Bayesian statistical approaches enables associations 
between crime occurrence and potential risk factors to be analyzed (Law and 
Chan, 2012, Law and Haining, 2004, Law et al., 2006, Law and Quick, 2013). 
Although in some situations non-spatial regression models can be carefully 
implemented to examine such associations (MacNab, 2004), these methods 
are limited in their ability to handle spatial data in which unmeasured 
confounders and spatial autocorrelation are evident (Einhorn et al., 1977, 
MacNab, 2004). 

Crime research is increasingly using spatial methods because geocoded crime 
data and crime-related spatial data are becoming more available, and spatial 
methods for analyzing crime data at the local level are being developed (Law 
and Chan, 2012). Spatial analysis at the local level typically takes the form of 
exploratory spatial analysis such as cluster detection (e.g., hot spot 
identification) (Rashidi et al., 2015), or confirmatory spatial regression (e.g., 
risk factor identification) (Law and Quick, 2013). 

The spatial association between crime occurrence and potential risk factors 
has traditionally been modeled using a frequentist (classical) statistical 
approach in the form of logistic regression (Haines et al., 2012, Nielsen et al., 
2004). However, such an approach does not satisfactorily account for local 
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risk factors (i.e., existing in one unit but not in neighboring ones) that remain 
unknown and are not captured in the model (Law and Chan, 2012). As a 
result, spatial autocorrelation remains a problem in traditional approaches 
even if the covariates are adjusted for it (Law and Chan, 2012). Moreover, 
developing accurate models requires large datasets; this can be a problem in 
crime research where observational data are scarce, costly to obtain, or 
subject to design and quality concerns. 

Bayesian statistics have been used to fit spatial models in several crime 
studies (Law and Chan, 2012, Law and Haining, 2004, Law et al., 2006, Law 
and Quick, 2013, Haining and Law, 2007, Porter and Brown, 2007). However, 
to our knowledge, few studies have utilized spatial Bayesian methods to 
explore relationships between wildlife poaching (a specific form of crime)   
and potential risk factors. One example is Burn et al. (2011), who studied 
global trends and factors associated with the illegal killing of elephants in 
Africa and Asia between 2002 and 2009. They used a Bayesian hierarchical 
modelling approach to estimate the trend and the effects of site- and 
country-level factors associated with the poaching. At a country level, key 
determinants for elephant poaching were poor governance and low levels of 
human development; whereas at a site level they were low human population 
density and forest cover. Although Burn et al. [12] explored spatial Bayesian 
modelling in their analysis, they did not incorporate any informative prior 
knowledge (expert knowledge) in the model.  

Expert knowledge can provide information about model parameters and help 
characterize uncertainty in models, and it can be useful when data are limited 
or are not available (Kuhnert, 2011). For example, Murray et al. (2009) used 
expert judgments to fill information gaps related with species occupancy in 
unreachable sites. Expert knowledge has also been used to assess the 
impacts of grazing levels on bird density in woodland habitats (Martin et al., 
2005). Furthermore, expert knowledge was used to create Bayesian networks 
for criminal profiling from limited data (Baumgartner et al., 2008). 

Bayesian methods can incorporate expert knowledge through priors (prior 
knowledge), using probability distributions representing what is known about 
the effect of the factor on what is being modeled (Gelman et al., 2014, 
Kuhnert et al., 2010, Stigler, 1986). The priors reflect the knowledge 
available on model parameters before observing the current data (Schoot et 
al., 2014, Stigler, 1986). Non-informative priors can be specified if one does 
not want to impose any prior knowledge on a model. The use of non-
informative priors is referred to as objective Bayesian statistics since only the 
data determine the posterior results (Clarke, 1996, Press, 2009, Schoot et 
al., 2014). In contrast, informative priors convey information on prior 
preference for certain parameter values. Methods using informative priors are 
referred to as subjective Bayesian statistics (Akaike, 1977, Clarke, 1996, De 
Finetti et al., 1990, Press, 2009, Schoot et al., 2014). Subjective priors are 
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beneficial because findings from previous research and expert knowledge can 
be incorporated into the analyses (Akaike, 1977, Clarke, 1996, Press, 2009, 
Schoot et al., 2014). For example, after several studies on the relationship 
between elephant poaching and risk factors, we may be able to provide a 
fairly accurate prior distribution of the parameters that measure this 
relationship. Prior information can also be obtained from expert knowledge 
gained from extensive experience. Different points of view might represent 
different priors for parameters, however, it has been shown that Bayesian 
expert systems are robust with respect to the absolute difference in priors 
(McCarthy, 2007). For example, Crome et al. (1996) used Bayesian methods 
to study effects of logging on mammals and birds. They were mainly 
interested in investigating real differences of opinion, which were elicited 
from experts. Differences of opinion were represented in the different priors 
for the impact of logging on mammals and birds. They revealed that these 
differences of opinion could reach consensus for various species (McCarthy, 
2007). 

In a previous study, we analyzed elephant poaching hotspots from poaching 
incidence data using clustering techniques (Rashidi et al., 2015). However, 
we did not incorporate any knowledge about risk factors nor did we account 
for the possibility of missing poaching data in the records. In the present 
study, we propose to use expert knowledge as prior information on risk 
factors.  

A key feature of the spatial Bayesian modelling approach is the specification 
of the spatial random effect term to the Bayesian non-spatial model; this 
term can account for unidentified or unexplained sources of spatial 
autocorrelation. The spatial random effect term includes a spatially 
unstructured random variable and a spatially structured variable. Spatially 
unstructured random variables ignore the geographical location of the 
analysis units, whereas spatially structured random variables assume that 
geographically proximate spatial units tend to have similar risks (Law and 
Chan, 2012). Another advantage of the Bayesian spatial model is its 
capability to account for missing data, where, due to data limitations, the 
analyst is concerned about the effects of important covariates that are 
missing (Law and Haining, 2004, Law and Quick, 2013).  

Our study aimed to address four questions: (1) Is the Bayesian spatial model 
more effective for mapping elephant poaching risk than the non-spatial 
model? (2) What are the key factors influencing elephant poaching risk as 
determined by Bayesian spatial and non-spatial models? (3) Where are the 
high risk areas for elephant poaching in the Tsavo ecosystem based on both 
models? (4) Where are areas of high risk unexplained by the covariates?  



Elephant Poaching Risk Assessed Using Spatial and Non-Spatial Bayesian Models 

28 

3.2 Materials and Methods 

3.2.1 Study Area 

The Tsavo ecosystem consists of an area of about 38,128 km2 in south-east 
Kenya (Figure 1.2). It lies between 2–4ºS, and 37.5–39.5ºE. The Tsavo 
ecosystem has the highest population of elephants in Kenya, and also the 
highest number of reported elephant poaching incidents (Rashidi et al., 2015, 
Maingi et al., 2012). The anti-poaching activities in the Tsavo ecosystem face 
challenges of insufficient human and financial resources, and the extensive 
area to be covered (Rashidi et al., 2015, Maingi et al., 2012). Several rivers 
cross the ecosystem, including the Tsavo, Tiva, Galana, Athirivers, and Voi 
(Maingi et al., 2012). The study area includes the Tsavo West National Park, 
Tsavo East National Park North (north of Galana River) and, Tsavo East 
National Park South (south of Galana River), with the remainder of the area 
covered by private ranches (Figure 1.2). Vegetation in the Tsavo ecosystem 
is dominated by Commiphora shrub savannas (Cobb, 1976) and the climate 
is semi-arid with a mean annual rainfall varying between 250 and 500 mm, 
characterized by large spatial and interannual variability. The short rainy 
season occurs between November and December, when rainfall is 
concentrated most in the northern and eastern parts, and a long rainy season 
occurs between March and May (the highest rainfall is between Taita Hills and 
the Kilimanjaro area) (Leuthold and Leuthold, 1978, Tyrrell and Coe, 1974).  

3.2.2 Block Design 

To study the probability of elephant poaching between neighboring areas, the 
study area was divided into 37 blocks, which were initially designed for the 
aerial counting of the elephant population in the Tsavo-Mkomazi ecosystem 
(Ngene et al., 2013). They were defined mostly by easily detectable features 
such as rivers, hills, roads, and protected area boundaries. The average block 
size was 1,098 km². The smallest block measured 248 km² and the largest 
block was 2,008 km² (Ngene et al., 2013). Block numbers 33–35 were 
excluded because they are located in Tanzania (Rashidi et al., 2015). We 
used the 34 blocks in the Tsavo ecosystem to differentiate area-level risk 
probabilities (Figure 2.1). 

3.2.3 Data 

3.2.3.1 Elephant Population and Poaching Incidence Data 

The Kenya Wildlife Service (KWS) provided the population and poaching data 
on elephants for this study. Elephant population data were collected by aerial 
surveys carried out in the Tsavo ecosystem from 7–12 February 2011 (Ngene 
et al., 2013). Since there were no significant changes in elephant population 
and distribution from 2002 till 2012 (Ngene et al., 2013), we assumed that 
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the spatial distribution of the elephant population in 2011 could be used for 
all years. The dataset included the geographic coordinates and names of the 
locations where elephants were seen, the number of elephants observed at 
that location, and the dates of observation (Ngene et al., 2013). The 
poaching incidence data were collected from aerial patrols and daily ground 
patrols carried out by KWS through the Monitoring the Illegal Killing of 
Elephants (MIKE) program. Regular patrols and extensive coverage of 
monitored sites is essential to collect comprehensive data for the MIKE 
program. Rangers used their bush and tracking skills as well as contacts in 
the local communities to recognize poachers and poacher trails, as well as 
visual observations in the field (e.g. presence of vultures) to identify carcass 
locations. Rangers are expected to complete patrol forms and carcass forms, 
and to use global positioning system (GPS) units to record locations (CITES, 
2010). The dataset listed 151 poaching locations in the study area between 
June 2002 and August 2012 and included the estimated date of death, 
geographic coordinates, and names of the locations where elephant carcasses 
were found. 

3.2.3.2 Risk Factors 

We selected potential risk factors for poaching based on discussions with 
experts and previous research (Kyale et al., 2011b, Maingi et al., 2012). 
These factors included: (1) distance to roads, (2) distance to settlements, 
(3) distance to rivers and streams, (4) density of waterholes, (5) elevation, 
(6) slope, (7) mean normalized difference vegetation index (NDVI), (8) 
standard deviation of NDVI, (9) elephant population density, (10) livestock 
density, (11) distance to international border, and (12) seasonal timing of 
elephant poaching (i.e., poaching probabilities in the dry and wet seasons). 
‘Distance to roads’ may be important because this would provide easy access 
and escape opportunities for the poachers (Haines et al., 2012). We modeled 
‘distance to settlements’ as a potential risk factor because the distance-decay 
concept implies that poaching will tend to cluster where opportunities and 
motivated offenders are plentiful (Maingi et al., 2012). ‘Distance to rivers and 
streams’ may be a potential risk factor because these linear landscape 
features are places where elephants aggregate, thus hunting pressure may 
be higher near rivers and streams. Likewise, we can expect poaching to be 
related to the ‘density of waterholes’, because these are areas with many 
elephants. ‘Elevation’ may add to the risk because of the abundance of 
browse species favored by elephants at different elevations. ‘Slope’ could 
pose a risk because rough terrain can provide cover for poachers. We 
modeled the mean NDVI and standard deviation of NDVI as potential risk 
factors because vegetation condition could provide cover for poaching 
activities. ‘Elephant population density’ was included as a potential risk factor 
because we would expect poaching to be concentrated where elephants are 
most plentiful (Maingi et al., 2012). ‘Livestock density’ is an important risk 
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factor because it can provide cover for poachers in the form of ranchers and 
ranches. ‘Distance to international border’ could be a risk factor because it 
may allow for easy transportation of the ivory directly to the ivory traders. 
Finally, we focused on the ‘seasonal timing of elephant poaching’, which 
might influence the extent of poaching because in different seasons poaching 
is likely to occur at different locations due to elephants’ requirements such as 
food, water, or even land cover.  

ArcGIS’ Spatial Analyst was used to generate the nearest distance (m) from 
the center of each block to roads, settlements, rivers and streams, and to the 
border with Tanzania (ESRI, 2011). Elevation and slope of the study area 
were extracted from a 90-m digital elevation model (DEM) derived from the 
Shuttle Radar Topographic Mission (SRTM). Time series of the NDVI from 
SPOT-VEGETATION were obtained through the Flemish Institute for 
Technological Research as 10-day composites. Mean NDVI corresponds to the 
NDVI average obtained from a time series of 10-day NDVI composites from 
November 2002 to November 2012 and was used to summarize annual NDVI 
values for the period studied. We calculated their average over the 10 years. 
Standard deviation of NDVI corresponds to the mean annual standard 
deviation of NDVI, obtained from a time series of 10-day NDVI composites 
from November 2002 to November 2012. The annual standard deviation 
provides a measure of the within-year NDVI variation as it is affected by 
seasonality. The mean and standard deviation of NDVI are a proxy for 
vegetation condition in the Tsavo ecosystem for the period 2002–2012. 
Based on an aerial count, data on livestock density were compiled by the 
World Resources Institute and the International Livestock Research Institute. 
For each block, we calculated mean values for elevation, slope, mean NDVI, 
standard deviation of NDVI, and livestock density (Table 3.1). Seasonal 
timing of elephant poaching (i.e., dry and wet seasons) was used to take 
seasonality into account. To quantify the seasonal timing of elephant 
poaching, of the 151 events recorded between June 2002 and August 2012, 
we first indicated how many were recorded during the dry season (January, 
February, June, July, August, September, October) and the wet season 
(March, April, May, November and December)  in each block. Then, the 
probabilities of elephant poaching were calculated for the dry and wet 
seasons in each block. The dates of poaching events were obtained from the 
estimated date of death recorded with each observation.  
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Table 0-1 The potential risk factors and their associated mean and standard deviation. 
Risk factors Mean  SD 

Distance to roads (m) 6791 6044 
Density of waterholes  ( number per km2) 0.042 0.056 
Distance to rivers and streams (m) 7742 6960 
Distance to settlements (m) 19,870 12,400 
Elevation (m) 489 256 
Slope (degrees) 0.988 0.884 
Mean NDVI (no dimension) 0.348 0.072 
Standard deviation of NDVI 0.012 0.021 
Elephant population density (number per km2) 0.341 0.316 
Distance to international border (m) 77,730 35,090 
Probability of elephant poaching in wet season (%) 0.150 0.229 
Probability of elephant poaching in dry season (%) 0.614 0.406 
Livestock density (number per square kilometer) 31.590 37.804 

3.2.4 Expert Rating of Poaching Risk Factors 

Thirty experts from the Kenya Wildlife Service were interviewed based on 
their knowledge about elephants, their habitat, and poaching. They were 
asked to score how they thought selected factors would contribute to 
elephant poaching in the Tsavo ecosystem (Table 3.2) in order to populate a 
Bayesian expert system with a priori probabilities (Skidmore, 1989). The 
terminology was explained to the rangers. The survey required the expert to 
give each factor a score between 0 and 1, depending on how much they 
thought the factor contributed. There has been considerable debate in the 
statistical literature regarding elicitation methods and how they can be used 
to form prior distributions and inform analyses (Kuhnert et al., 2005, Martin 
et al., 2005). In our study, since there were no major differences in the 
expert ratings of poaching risk factors, the equal weighted linear opinion pool 
(i.e., group average) was used to determine the mean response elicited from 
the experts. This method is simple and delivers accurate judgments 
compared with more complex methods (Armstrong, 2001). By taking this 
opinion pool, we avoided difficulties concerned with rating the comparative 
‘accuracy’ of each expert's opinion on the relationship between poaching and 
various factors (Einhorn et al., 1977, Martin et al., 2005). 
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Table 0-2 Information elicited from 30 experts on the risk factor’s impact on elephant 
poaching in the Tsavo ecosystem, showing the mean response from the experts and 
the corresponding precision (the inverse of variance). 
Risk Factors Mean Response Precision 
Distance to roads  0.56 12.17 
Density of waterholes  0.73 18.55 
Distance to rivers and streams  0.54 8.85 
Distance to settlements  0.77 34.60 
Elevation 0.32 16.90 
Slope 0.30 17.88 
Mean NDVI 0.97 0.65 
Standard deviation of NDVI 0.97 0.65 
Elephant population density 0.52 7.51 
Distance to international border 0.65 9.68 
Probability of elephant poaching in wet season 0.65 11.07 
Probability of elephant poaching in dry season 0.65 11.07 
Livestock density 0.74 17.79 

3.2.5 Modelling Strategy and Analysis 

To analyze elephant poaching risks, we fitted Bayesian non-spatial and 
spatial models using the statistical software WinBUGS (McCarthy, 2007). 
WinBUGS is a Bayesian modelling tool which requires the specification of 
priors on the parameters; these priors were determined through expert 
knowledge. The prior information specified for each factor is a normal 
distribution with a mean representing the expert opinion the expert opinion 
for the model parameter and a precision which is based on the overall expert 
response for each factor (Kuhnert et al., 2010). Spatial interactions between 
neighboring areas can be defined using an Intrinsic Conditional 
AutoRegressive Gaussian distribution (ICAR) (Law et al., 2006). The ICAR 
distribution is a special case of the general conditional autoregressive (or 
CAR) distribution, which is used as a prior distribution for spatially structured 
random effects (Law and Haining, 2004). Under the ICAR specification, the 
mean of spatial structure for one block depends on the spatial structure of its 
neighboring blocks (Law et al., 2014). The prior information specified for the 
spatially unstructured random effect is a normal distribution. Both the 
precision parameters of spatially unstructured random effect and spatially 
structured random effect follow a gamma distribution (a, b), where a and b 
are equal to 0.5 and 0.0005, respectively. This gamma distribution is a prior 
that would provide a reasonable range for relative risks (Elliot et al., 2000). A 
sensitivity analysis was performed using a different gamma distribution of 
parameters 0.001 and 0.001 for testing the sensitivity of results to the choice 
of prior distributions. 
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WinBUGS uses Markov chain Monte Carlo (MCMC) algorithms to estimate 
parameters (McCarthy, 2007). This software takes samples from the 
posterior distribution by using MCMC methods, a series of random numbers 
in which the value of each is conditional on the previous number (Kéry, 
2010), and finally converging to the required posterior (Law et al., 2006). 
The idea of this iterative procedure is that with sufficiently many simulated 
observations, it is feasible to acquire an accurate picture of the distribution 
(Kim, 2011).  

3.2.5.1 Non-Spatial Bayesian Modelling 

The first method of analysis in this study is a non-spatial Bayesian model. 
The Tsavo ecosystem was divided into 34 blocks labeled i = 1, … , n, where n 
= 34, the total numbers of areas. Ci represents mutually independent and 
Poisson-distributed poaching counts. We assumed that Ci  P (λi), where the 
parameter λi of the Poisson distribution (P) is the expected value of Ci, exp 
[Ci]. 

Exp (Ci) = λi = Eiri (1) 

where Ei and r are the area-specific expected count and unknown risk, 
respectively, of elephant poaching events. 

We log-transformed Eq. (1) as follows: 

Log [λi] = log [Ei] + log [ri] (2) 

            = log [Ei] + ß0 + ß1x1i + ß2x2i + ….. + ßkxki  (3) 

Equation (3) is a Poisson regression model, where log[Ei] is an offset term 
with a regression coefficient of one, X1,i, X2,i, …, and XK,i are observations 
defined for the explanatory variables of X1, X2, …, and XK for block i, K is the 
total number of explanatory variables, and ß represents covariate coefficients 
(Law and Quick, 2013, Law and Chan, 2012). This model, however, has 
problems estimating the area-specific elephant poaching risk (ri) and testing 
for the significance of explanatory variables. The maximum likelihood of ri 
(which is calculated by Ci/Ei,) cannot be calculated if data for Ci are missing 
or equal to zero. Furthermore, the Poisson model assumption presented in 
Eq. (4) is not valid when over-dispersion is present (Thogmartin et al., 
2004). Over-dispersion occurs when some areas have large counts and other 
areas have small or no counts (Law and Quick, 2013, Law and Chan, 2012). 
Accounting for over-dispersion is necessary because its effect on a non-
spatial model (see Eq. (3)) is that standard errors of parameter estimates will 
be underestimated, thus inducing type one errors in the hypothesis testing 
(Law et al., 2006). 

Exp [Ci] = var [Ci] = λi (4) 
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Likewise, this relationship may display spatial autocorrelation, representing 
observations that are not independent, which then need to be accounted for 
in the spatial structure of the non-spatial model (Law and Quick, 2013). 

3.2.5.2 Spatial Modelling 

Two Gaussian random effects terms, Ui (spatially unstructured) and Si 
(spatially structured), were added to the non-spatial model Eq. (3) to form 
the spatial model Eq. (5). These terms accommodate any over-dispersion 
that may be unaccounted for in the non-spatial model Eq. (3) (Maingi et al., 
2012, Law and Quick, 2013). Priors for Ui and Si were determined by an 
independent normal distribution and the ICAR distribution (Besag et al., 
1991), respectively. 

Log [λi] = log [Ei] + ß0 + ß1x1i + ß2x2i + ….. + ßkxki + Ui + Si (5) 

The models represented by Eqs. (3) and (5) were fitted to the data using an 
MCMC simulation approach in the WinBUGS software. For each model, MCMC 
chains comprising 100,000 iterations with a burn-in of 1,000 were found to 
be sufficient to achieve convergence. The Brook-Gelman-Rubin Diagnostic 
and Monte Carlo standard error (< 5 % of the sample posterior standard 
deviation) helped to ensure sufficient burn-in and iterations. Fitting of this 
model has been reported in detail in the literature (Haining et al., 2009, Law 
et al., 2006). Based on Eq. (5), the Bayesian spatial random effect model, 
the relative risk function, ri, can be written as 

ri = [exp ß0] exp [ß1x1i] exp [ß2x2i] …..exp [ßkxki] exp [Ui] exp [Si] (6) 

The DIC was used to evaluate model fit and measure the relative 
performance of models (McCarthy, 2007). The DIC is a Bayesian equivalent 
of the Akaike Information Criterion (AIC). The DIC compares model fit 
without predetermining the number of model parameters, whereas AIC is a 
penalized likelihood ratio model-choice criterion, where the penalty is the 
number of parameters in the model (Law and Chan, 2012, Law and Quick, 
2013). Smaller values for the DIC indicate a better model fit; the difference 
should be at least 5 for concluding the model fit is better because Monte 
Carlo sampling errors inherent in the calculation of DIC need to be accounted 
for (Law et al., 2014). The DIC is defined by Eq. (7), where D ̅ is the deviance 
when using the mean of the posterior distributions for the parameters, PD is 
the number of effective parameters in the model, θ ̅   is the posterior mean of 
the parameters, and D(θ ̅  ) is the deviance of the posterior means. It is 
obtained by using the posterior means of the relevant parameters (Law and 
Quick, 2013, Spiegelhalter et al., 2002).  

DIC = D̅ + pD = D(θ̅  ) + 2PD  (7) 
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3.2.6 Analysis of Risk Factors 

The most significant explanatory factors related to elephant poaching were 
identified using the Bayesian spatial and non-spatial models (see Eqs. (3) 
and (5)). First, a set of explanatory variables used to fit Eq. (3) was identified 
from Table 3.1 after accounting for the effects of multicollinearity. Equation 
(3) was then fitted with the set of ‘non-highly correlated’ explanatory 
variables identified, and those variables that were found significant were used 
to fit Eq. (5). Explanatory variables that remained significant from the fitting 
of Eq. (5) were identified as significant risk factors (Law and Quick, 2013). 

In the presence of potential multicollinearity between the selected 
explanatory variables of Table 3.1, the estimated regression coefficients 
would tend to have larger sampling variability (Law and Chan, 2012, Law and 
Quick, 2013). The problem of multicollinearity in the statistical inference of a 
multiple regression equation can be tackled by calculating a variance inflation 
factor (VIF) for a set of variables and excluding the highly correlated 
variables from the set through a stepwise procedure (Dormann et al., 2013, 
Naimi, 2013). VIFCOR was used to exclude highly collinear variables in Table 
3.1 through a stepwise procedure. VIFCOR is a method based on the 
calculated VIF statistics. VIFCOR works by looking for the pair of variables 
that has the maximum linear correlation, and removes the variable which has 
the larger VIF, replicating the procedure until there is no variable pair with a 
high coefficient of correlation (Naimi, 2013). Here, we first selected variable 
pairs that had a linear correlation coefficient greater than a threshold of 0.5. 
For the variable pair with the highest correlation, one of the variables was 
excluded, i.e. the one with the highest VIF. The procedure was repeated until 
no variable pair with a correlation coefficient above 0.5 remained (Naimi, 
2013). The variables left were then used to fit Eqs. (3) and (5) separately. By 
comparing the DIC values (the smaller the DIC, the better the model fit) 
from these two equations, we identified which model performed better. If any 
of the explanatory variables were deemed insignificant by our modelling 
framework, the improved model was re-fitted using only those explanatory 
variables that were significant to form the final model (Law and Quick, 2013). 

3.3 Results 
Among the selected variables (Table 3.1), distance to road, waterhole 
density, elephant population density, distance to rivers and streams, 
seasonal timing of elephant poaching (i.e., probabilities in dry and wet 
seasons), distance to international border, standard deviation (STD) of NDVI, 
and livestock density remained after accounting for multicollinearity (Table 
A.1 ). The non-spatial analysis (Eq. (3) revealed that distance to road, 
distance to rivers and streams, standard deviation of NDVI, and distance to 
international border were insignificant at the 95% credible interval among 
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those variables that remained after accounting for multicollinearity (Table 
3.1). Therefore we ignored them in further analysis. The inclusion of zero 
values within the 95% Bayesian credible intervals implies the insignificance of 
the estimates (Jianmei, 2014).  

 
Table 0-3 Posterior summaries for ß coefficients of the explanatory variables in 
Bayesian non-spatial and spatial models. 
Explanatory variables Non-spatial model  

mean ß (credible 
interval: 2.5%, 97.5%) 

Spatial model  
mean ß (credible 
interval: 2.5%, 97.5%) 

Probability of elephant 
poaching in wet season 

1.05 (0.78, 1.36) 0.83 (0.42, 1.22) 

Probability of elephant 
poaching in dry season 

0.92 (0.55, 1.31) 1.01(0.57, 1.48) 

Livestock density 0.20 (0.02, 0.37) 0.56 (0.22, 0.94) 
Waterhole density  0.30 (0.07, 0.52) 0.64 (0.28, 1.03) 
Elephant population density -1.75 (-2.03, -1.49) -0.88 (-1.40,- 0.31) 
Distance to nearest road 0.10 (-0.01, 0.22) NA 

Distance to rivers and 
streams 

0.05 (-0.14, 0.26) NA 

Standard deviation (STD) of 
NDVI 

0.08 (-0.13, 0.30) NA 

Distance to international 
border 

0.03 (-0.27, 0.21) NA 

DIC 199.03 193.05 
NA not applicable, DIC Deviance Information Criterion. 

We then ran Bayesian spatial analyses (Eq. (5)) with those variables that 
were found significant in the Bayesian non-spatial model (Table 3.3). The 
result obtained from Eq. (5) revealed that the seasonal timing of elephant 
poaching, density of waterhole, livestock density, and the elephant 
population density were significant factors that influence the spatial patterns 
of elephant poaching risk in the Tsavo ecosystem (Table 3.3). The Bayesian 
spatial model had a better model fit than the non-spatial model with a DIC of 
193.055 versus 199.03 (Table 3.3). 

Figure 3.1 presents the elephant poaching risk probabilities for each block 
using the non-spatial model (a) and the spatial model (b). The blocks with 
the highest poaching risk are those that have probabilities greater than 0.9 
and the lowest risk blocks are those with probabilities < 0.1. While similar 
spatial patterns of high poaching risk were found in both models, eight blocks 
displayed different probability classes (blocks 11, 12, 13, 17, 23, 24, 26, and 
36).  
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Figure 0.1 Tsavo ecosystem displaying the probability of elephant poaching risk for 
each block: (a) Bayesian non-spatial model and (b) Bayesian spatial model. 

The map of spatially structured random effects displayed in Figure 3.2 
indicates the locations of clusters for a high risk of elephant poaching that 
could not be explained by the factors in the model. When exp (S) (Eq. (6)) is 
< 0.5, it represents a decrease in elephant poaching risk by the unexplained 
spatial structure in those areas. When exp (S) is > 0.5, it represents an 
increase in risk by the unexplained spatial structure. These areas have a high 
risk of elephant poaching that is unexplained by the measured variables and 
their confounding effects. 

Figure 0.2 Areas of high elephant poaching risk that were unexplained by the 
measured risk factors, i.e., using the spatial model in which the spatial random 
variable is acting as a proxy of the unmeasured risk factors that were spatially 
structured. 

3.4 Discussion 
Under the common conditions where unmeasured confounders and spatial 
autocorrelation were evident, Bayesian spatial modelling gave a better model 
fit for analyzing elephant poaching data than Bayesian non-spatial modelling. 
One reason for this could be the inherent clustering of poaching activities in 
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geographical spaces (Kyale et al., 2011b, Maingi et al., 2012, Rashidi et al., 
2015). Poaching tends to be concentrated around some common areas which 
hold a good potential for poaching activities. Most of the poaching clusters 
are neighborhoods with similar environment characteristics. As a result, the 
risks of elephant poaching for areas with zero counts was estimated by 
borrowing information from areas through the spatial random effect term and 
with a neighboring structure defined in the Bayesian spatial model (Law and 
Chan, 2012, Law and Quick, 2013).  

When there is spatial structure in the dependent variable (elephant poaching) 
that could not be described by the selected factors, the non-spatial model 
ignores the unexplained structure and overestimates the effects of the 
covariates. In contrast, in the spatial model, the spatial random variable acts 
as a surrogate of the missing covariates (unmeasured risk factors) that are 
spatially structured (Law and Chan, 2012, Law and Quick, 2013). As a result, 
compared with Bayesian non-spatial modelling, the spatial modelling 
demonstrated an improved model fit through a lower DIC and excluded four 
significant independent variables that had been identified in the non-spatial 
model (Table 3.3).  

The results using Bayesian non-spatial modelling indicated that a seasonal 
timing of elephant poaching (i.e., in the dry and wet seasons), density of 
waterholes, livestock density, and the elephant population density were the 
key determinants of elephant poaching. Waterhole density may be explained 
by elephants’ preference for water, i.e., where elephants aggregate makes 
them more vulnerable to poaching. The elephant population is a significant 
factor because this likely provides the poachers with the highest harvest 
related to their effort. This finding supports this idea that poaching risks are 
higher in areas with a high elephant population (Kyale et al., 2011b, Maingi 
et al., 2012). The influence of livestock on elephant poaching can be 
explained by the fact that poachers may use livestock as a cover for elephant 
poaching, either directly or with the assistance of livestock herders. The 
seasonal timing of elephant poaching was also determined to be a significant 
explanatory variable of elephant poaching. This partly explains why poaching 
is more likely to occur in different locations in the dry season than the wet 
season. The suitability of the natural environment for poaching varies in 
different locations for different seasons and can be linked to elephants’ 
requirements such as food, water, or even land cover for hiding (Osborne, 
2000).  

The probability relative risk map allows high and low risk areas to be 
identified (Figure 3.1). This map provides information about the elephant 
poaching risks in each block and in its neighbors. The different results from 
the non-spatial and final spatial model can largely be explained by the 
covariates – the spatially structured or unstructured random effects terms. 
Areas with a relative risk of poaching > 0.50 should be further investigated 
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as elephant poaching hotspots. Methods for detecting elephant poaching 
hotspots have been described previously, specifically in Rashidi et al. (2015), 
who detected hotspots using exploratory spatial analysis. They identified 
hotspots using different spatial and spatiotemporal clustering models; 
however, the results from this current study not only cover all their detected 
hotspots, but could also be used to estimate the probability of an area being 
a hot or cold spot. Moreover, some new areas were detected as hot spots 
(Figure 3.1). One reason for these discrepancies could be because in cluster 
techniques, as described by Rashidi et al. (2015), the number of poaching 
incidents detects clusters using the maximum likelihood method. They 
identified areas of significant clusters, but the technique cannot map the 
probability of clustering across areas (e.g. in areas not classified as 
‘clustered’).  

The map of spatially structured random effects (Figure 3.2) reveals the 
locations of clusters of high risk for elephants that could not be explained by 
the covariates of factors in the model. This indicated that one or more risk 
factors (covariates) with spatial structure, which are typically unobserved 
variables, might be missing in the model (Law and Chan, 2012). These 
missing risk factors should have little or no connection with the associated 
factors used in our study (Law and Quick, 2013). Our analyses have not 
included these factors, which would need to be integrated in a different way. 
For example, a moonlight factor, which it is not possible to integrate in the 
model like other variables, or similarly, those variables that were excluded 
from our analysis under the terms of access to data. For instance, we 
excluded distance to park offices, park gates, patrol bases and outposts since 
we could not get data on these factors because of security issues. Moreover, 
our final model contains all of the factors that are significant after accounting 
for multicollinearity. One good reason for using the spatial model is that 
when risk factors that have spatial structure are missing or unidentifiable, the 
spatially structured random effects term acts as a surrogate for these 
covariates (Law et al., 2006). This reduces the effects of overestimating the 
significance of the risk factors in the model or of retaining risk factors in the 
model that are not actually significant.  

3.5 Conclusions  
This study compared a spatial and non-spatial Bayesian model to investigate 
elephant poaching risk in small areal units (blocks) in the Tsavo ecosystem, 
Kenya. The models were fitted using a Bayesian simulation approach, which 
provided a flexible framework for specifying expert knowledge and fitting 
complex spatial models that would have been difficult to fit with frequentist 
approaches. 
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Our results indicated that the seasonal timing of elephant poaching (i.e., dry 
and wet seasons), density of waterholes, livestock density, and the elephant 
population density were significantly and consistently identified as key factors 
that influence the spatial patterns of elephant poaching risk in the Tsavo 
ecosystem, Kenya. A non-spatial Bayesian model initially ran with nine 
significant explanatory variables; however, when we added spatially 
structured and unstructured random effects terms to this equation, only five 
variables remained significant. As demonstrated by a smaller DIC value, the 
spatial Bayesian model fitted the data better than the non-spatial model.  

Our results have several practical implications. The KWS can use them to 
allocate financial and human resources effectively to patrol against poaching 
activity more efficiently in areas with high risks. Furthermore, our results 
provide vital information for conservation decision-making and management 
so that more attention can be given to certain areas, for example those with 
a relative risk of elephant poaching > 0.5. Our findings may be useful in 
identifying priority areas for elephant poaching prevention. In a wider sense, 
the model we present here can be applied to poaching data for other 
threatened species. 
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Chapter 4 
 
Assessing Trends and Seasonal Changes in 
Elephant Poaching Risk at the Small Area 
Level Using Spatio-Temporal Bayesian 
Modelling3 

 

 

                                          
3 This chapter is based on Rashidi, P., Skidmore, A., Wang, T., Darvishzadeh, R., 
Ngene, S., Vrieling, A., 2017. Assessing Trends and Seasonal Changes in Elephant 
Poaching Risk at the Small Area Level Using Spatio-Temporal Bayesian Modelling. 
International Journal of Geographical Information Science, 1-15. 
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Abstract  
Knowledge about trends and seasonal changes of wildlife poaching risk at fine 
spatial scale can provide essential background intelligence for law 
enforcement and prevention. We assessed interannual trends and seasonal 
changes in elephant poaching risk for Kenya’s Greater Tsavo ecosystem for 
an eleven-year period, from 2002 to 2012, using spatio-temporal Bayesian 
modelling. Data on elephant poaching in the Tsavo ecosystem were obtained 
from the Kenya Wildlife Service’s database on elephant mortality. The 
Greater Tsavo ecosystem was divided into 34 areas (blocks) for which 
poaching data were aggregated. We used the Markov chain Monte Carlo 
simulation approach to fit the spatio-temporal Bayesian models, and then 
assessed the predictive accuracy of the model fit using the Deviance 
Information Criterion (DIC). While these model types have been used in 
earlier poaching studies, the present paper is new because 1) we combine 
spatial with temporal analysis to investigate the interaction between space 
and time when defining highest risk poaching areas for elephant; 2) we 
evaluate if the inclusion of environmental risk factors into the spatio-temporal 
Bayesian model can improve the accuracy of poaching prediction; and 3) we 
separately model the dry and the wet seasons to understand season-
dependent poaching patterns. Techniques developed here permit trends for 
different periods to be automatically generated for poaching across individual 
blocks. The results indicate that although Tsavo’s overall poaching trend 
showed an increase over time, spatio-temporal trends of poaching risk were 
significantly different between areas of the Greater Tsavo ecosystem. In 
particular, three out of the 34 blocks had a very high risk of elephant 
poaching throughout the study period regardless of whether the models 
included environmental risk factors or not. The results further showed that 
livestock density, distance to roads and the international border, seasonal 
timing of elephant poaching, and the density of waterholes were useful 
predictors, which significantly influenced the spatial variation in trends 
regarding elephant poaching risk over time in Kenya’s Greater Tsavo 
ecosystem. Adding these variables to the model enhanced the model’s 
predictive power (DIC value of 14725 vs 14870). Furthermore, differences 
between the dry and the wet season in the highest poaching risk areas were 
highlighted. The findings improve our understanding of elephant poaching in 
the Greater Tsavo ecosystem and highlight specific areas where action to 
reduce elephant poaching is required.  
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4.1 Introduction  
In the past decade, there has been an increase in African elephant 
(Loxodonta africana) poaching, especially for ivory (Douglas-Hamilton, 2009, 
Nyirenda et al., 2015, Wittemyer et al., 2014). Estimates suggest that 
between 2011 and 2013, more than 100,000 African elephants were poached 
(Wasser et al., 2015, White, 2013), corresponding to 21% of the total 
population. Kenya, like many other African countries is suffering from a 
continuous year-to-year increase in the proportion of illegally killed elephants 
since 2003 (Douglas-Hamilton, 2009, Maingi et al., 2012).  

Insufficient human and financial resources, combined with the large areal 
extent to be monitored, pose major challenges for anti-poaching activities in 
Kenya (Maingi et al., 2012, Rashidi et al., 2015). Because of high 
conservation costs, Kenya cannot offer adequate protection of wildlife from 
poaching within national parks and reserves (Maingi et al., 2012). The Kenya 
Wildlife Service (KWS) is understaffed with less than one ranger per 100 km2 
of wildlife reserve (Maingi et al., 2012).  Therefore, assessment of trends and 
seasonal changes in wildlife crime on a small spatial scale allows for targeting 
specific locations where crime may be concentrated and assists in the setting 
of conservation priorities and the concentration of management resources 
(Maingi et al., 2012). 

Poaching is a dominant wildlife crime, but it is unevenly distributed over 
space and time (Burn et al., 2011). Poaching data have a covert nature, 
which makes it difficult to estimate poaching trends (Burn et al., 2011) in 
small spatial units. We therefore need models that can take scarcity of 
poaching data or incomplete data into account (Gelman and Price, 1999). 
Spatio-temporal Bayesian models are particularly useful when working with 
fine scale data (DiMaggio, 2015) as they can consider poaching risk in areas 
with zero counts by borrowing information from neighboring areas (Sun et 
al., 2000). This helps to overcome problems of unstable poaching estimates 
related to a lack of data (Gelman and Price, 1999) as a result of low incident 
counts in small areas and large variations in sampling (Bernardinelli et al., 
1995, Congdon, 2000).  

The assessment of trends in wildlife poaching using Bayesian models has 
been limited to large-scale studies at countrywide levels (Burn et al., 2011). 
Critchlow et al. (2015) used ranger-collected data from 1999 to 2012 to 
identify spatio-temporal trends in general illegal activities in a Ugandan 
national park. The illegal activities included infringing upon nature reserves 
for plant harvesting, cultivation, animal grazing or poaching. Although the 
above studies used Bayesian models to monitor the spatio-temporal variation 
in trends within a unified framework, they did not incorporate expert 
knowledge for the selection of ecological covariates or for prior probabilities. 
Prior probabilities are represented by probability distributions indicating 
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known effects of the ecological covariates on illegal activities. Moreover, they 
also did not investigate seasonal changes in areas highly at risk of illegal 
activity. Rashidi et al. (2015) addressed the problem of limited data in small 
geographic units (blocks) using expert knowledge and Bayesian modelling, 
but focused on spatial variations. Here we incorporate a temporal element 
into the analysis. Space-time analyses have extra benefits to purely spatial 
analyses, since they permit the simultaneous study of mean trends and 
unusual local trends (Richardson et al., 2006). This is important because 
patterns of illegal activities can vary over time and space (Critchlow et al., 
2015). 

In this paper, we assess interannual trends and seasonal changes in elephant 
poaching risk for Kenya’s Greater Tsavo ecosystem for an eleven-year period, 
from 2002 to 2012, using spatio-temporal Bayesian modelling. This study has 
three specific objectives, i.e. 1) to identify the presence of space–time 
interactions, by ascertaining if temporal trends in poaching risk differ 
between areas of the Greater Tsavo ecosystem; 2) to investigate if the 
accuracy of poaching prediction can be improved by adding environmental 
risk factors to the spatio-temporal Bayesian model; and 3) to assess whether 
locations of the highest elephant poaching risk differ between wet and dry 
seasons.  

4.2 Materials and Methods 

4.2.1 Study Area 

The Greater Tsavo ecosystem covers 38,128 km2 in south-east Kenya (Figure 
1.2). Our study area was composed of the Tsavo East National Parks North 
(north of the Galana River) and South (south of the Galana River), as well as 
the Tsavo West National Park, with the remaining areas being covered by 
private ranches (Figure 1.2). The rivers and streams of the Tsavo ecosystem 
include the Tsavo, Tiva, Galana, Athirivers, and Voi (Maingi et al., 2012). 
Commiphora savanna is the prevailing vegetation community in the study 
area (Cobb, 1976). The area’s climate shows clear seasonality and also 
displays a large geographic variation. The long wet season takes place 
between March and May. Rainfall amount during the wet season is largest 
between the Taita Hills and the Kilimanjaro area. The short rainy season 
occurs in November and December, when rainfall is concentrated mostly in 
the eastern and northern parts of the area (Ngene et al., 2013, Smith and 
Kasiki, 2000). The Tsavo ecosystem is home to the largest population of 
Kenya’s elephants, but also experiences the largest number of elephant 
poaching incidents in Kenya (Maingi et al., 2012, Rashidi et al., 2015). It is 
also one of four sites for “Monitoring of Illegal Killing of Elephants” (MIKE 
program) in Kenya (Shaffer and Bishop, 2016).  
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To quantify local differences in elephant poaching trends, the Greater Tsavo 
ecosystem was subdivided into 37 blocks, which were initially designed for 
the aerial counting of the elephant population in the Tsavo-Mkomazi 
ecosystem (Ngene et al., 2013). Block boundaries were defined by the Kenya 
Wildlife Service (KWS) according to easily detectable features such as roads, 
hills, rivers, and protected area boundaries. Block sizes ranged from 248 km² 
to 2,008 km2, with and average size of 1,098 km² (Ngene et al., 2013). Block 
numbers 33–35 were omitted since they were located in Tanzania and 
poaching data there were not accessible (Rashidi et al., 2015). We used the 
34 blocks in the Kenyan part of the ecosystem as the geographic units in our 
analysis. All data, for both the elephant population and elephant poaching 
incidents, were linked to these geographic units (Figure 2.1). 

4.2.2 Data 

4.2.2.1 Elephant Population and Poaching Incidence Data 

Data on elephant populations and poaching were obtained from the KWS. 
Aerial surveys were undertaken by the KWS in the Tsavo ecosystem from 7–
12 February 2011 to record elephant populations (Ngene et al., 2013). We 
assumed that the spatial distribution of the elephant population in 2011 could 
be used for all blocks and years because there were no significant changes in 
the population from 2002 till 2012 (Ngene et al., 2013). The dataset 
comprised the number of elephants observed per location, the geographic 
coordinates and names of these locations, and the observation dates (Ngene 
et al., 2013). Aerial patrols and daily ground patrols were executed by the 
KWS through the MIKE program to record elephant poaching incidents. 
Consistent patrolling and a wide coverage of the monitored sites belong to 
the core methods employed by the MIKE program (Burn et al., 2011) 
Rangers used their bush and tracking skills, as well as contacts with the local 
communities, to recognize poachers and poacher trails (Rashidi et al. 2016). 
They also used visual cues in the field (e.g., the presence of vultures) to 
identify carcass locations (Rashidi et al. 2016) and global positioning system 
(GPS) units for recording locations (CITES, 2010). Patrol forms and carcass 
forms were completed by the rangers. The full dataset consisted of 151 
poaching locations in the study area for the years 2002 to 2012. The data 
contained the estimated date of death, location names of where elephant 
carcasses were found, and coordinates of the locations where elephant 
carcasses were found. The Spatial Join geoprocessing tool in ArcMap 10 was 
used to link the data on the 151 poaching locations to the 34 blocks (Table 
A2, A3 and A4). 

4.2.2.2 Environmental Risk Factors 

The selection of environmental risk factors was based on previous studies 
(Kyale et al., 2011b, Maingi et al., 2012, Rashidi et al., 2016). We obtained 
spatial and spatio-temporal information on these risk factors as per Rashidi et 
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al. (2016). The factors included: (1) elephant population density, (2) 
livestock density, (3) mean normalized difference vegetation index (NDVI), 
(4) standard deviation of NDVI, (5) elevation, (6) slope, (7) density of 
waterholes, (8) distance to rivers and streams, (9) distance to roads, (10) 
distance to international border, (11) distance to settlements, and (12) 
seasonal timing of elephant poaching (i.e., poaching probabilities in the dry 
and wet seasons). 

We used the variance inflation factor (VIF) to evaluate and account for the 
effects of multicollinearity between variables (Dormann et al. 2013). This is a 
method based on the calculated VIF statistics, which iteratively selects 
variables based on the maximum linear correlation found between pairs of 
variables and excludes the variable that has the larger VIF. This procedure is 
repeated until there is no variable pair with a high coefficient of correlation 
left (Naimi, 2013). Here, we first selected variable pairs that had a linear 
correlation coefficient greater than the threshold set to 0.5. For the variable 
pair with the highest correlation, one of the variables was excluded, i.e. the 
one with the highest VIF. The procedure was repeated until no variable pair 
with a correlation coefficient above 0.5 remained. Of the selected variables, 
elephant population density, livestock density, standard deviation (STD) of 
NDVI, distance to rivers and streams, waterhole density, distance to road, 
distance to international border, and seasonal timing of elephant poaching 
(i.e., probabilities in dry and wet seasons) remained after accounting for 
multicollinearity (Table A5).  

4.2.3 Modelling Strategy and Analysis 
We fitted two different sets of spatio-temporal Bayesian models (Table 4.1). 
The first set was used to assess local trends of elephant poaching from 2002 
to 2012 in the Greater Tsavo ecosystem, and includes two models. Model 1.1 
did not account for the potential risk factors that vary geographically across 
the blocks, while Model 1.2 added risk variables to the model to test whether 
the ‘risk’ covariates enhanced the prediction of poaching (Table 4.1). Expert 
knowledge, based on survey responses from 30 experts, was input to Model 
1.2 (Rashidi et al., 2016). We used this expert knowledge for the selection of 
environmental risk factors and also incorporated expert knowledge through 
priors (prior knowledge), based on probability distributions representing what 
is known about the effect of the environmental risk factor on elephant 
poaching risk. The second spatio-temporal Bayesian model set was used to 
investigate seasonal changes in elephant poaching risk. The second set also 
includes two models, one fitted for the wet and one for the dry season (Table 
4.1). Data were divided into seasonal categories (wet and dry) based on 
rainfall distribution in the study area. Model 2.1 was used to determine risk 
areas for elephant poaching during the wet season, and Model 2.2 was used 
to determine risk areas for elephant poaching in the dry season (Table 4.1). 
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Table 0-1 Model structure for the two different model sets used in this chapter. 
Model  Types  Data 
Set1 
1.1 
 
1.2 

 
log(eij) + α + ui +  si +  (ƴ + δi)tj 
 
log(eij) + α + ui +  si +  (ƴ + δi)tj + + 
ß1x1i + ….. + ßkxki 

 
Data include wet and dry 
season data  
Data include wet and dry 
season data 

Set 2 
2.1 
 
2.2 

 
log(eij) + α + ui +  si +  (ƴ + δi)tj 
 
log(eij) + α + ui +  si +  (ƴ + δi)tj 

 
Data include only wet 
season data 
Data include only dry 
season data 

 

For all models, we used Poisson regression with the log link function, as this 
function accounts for rare incidences (Li et al., 2014, McCullagh and Nelder, 
1989, Torabi and Rosychuk, 2012). Bayesian approaches combine observed 
data (i.e., elephant poaching incidents) and prior knowledge (e.g., 
neighborhood structure, information from adjacent blocks or experts) to 
estimate posterior distributions of unknown parameters (e.g., local 
differential trends in elephant poaching) (Luan et al., 2015). The prior data 
reflect the knowledge available on model parameters before observing the 
current data (Schoot et al., 2014, Stigler, 1986). The prior distribution is 
used to model data dependence between neighboring areas (Law and Chan, 
2012) since it contains information about how the poaching risks are related 
to one another.  

The poaching cases (Yij) for area i= 1, . . . , I, and time period j = 1, . . . ,T 
can be modeled as a  

Yij ~ Poison (lambdaij).  

where the parameter lambdaij of the Poisson distribution (P) is the expected 
value of Yij, exp [Yij,]. 

exp [Yij,]=lambdaij = θij* eij 

Using a log link function, unknown risk (θij) is split into parameters 
measuring purely spatial variation, purely temporal variation, and spatio-
temporal interaction: 

log (θij) = α+ ui+  si+  (ƴ + δi)tj 

Log (lambda ij) = log (eij) + α+ ui +  si +  (ƴ + δi)tj 

where eij is the corresponding number of expected elephant poaching cases 
for area i = 1, . . . , I, and time period j = 1, . . . , T. The purely spatial 
variation is represented by an intercept α (average elephant poaching for the 
study region), ui (unstructured random effects), and si (spatially structured 
random effects). These terms accommodate any over-dispersion that may 
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arise when modelling count data at the areal level (Luan et al., 2015). 
Regional temporal variation of elephant poaching for the study region is 
captured by ƴ. We assumed a linear regional trend over all areas in the study 
region, which depends on the nature of the data set (the observed elephant 
poaching incidents data) (Torabi and Rosychuk, 2012). δi is the interaction 
between the spatial and temporal effects. To explore the geographic variation 
of the local trends, we mapped the posterior probability (PP) of a local 
differential trend (δi) that was greater than the mean trend (Law et al., 2014, 
Law et al., 2015). PP can be viewed as the Bayesian equivalent of the p-value 
(Meng and Dempster, 1987). It represents the degree that each spatial unit 
is greater than the mean trend, which accounts for the variance of area-
specific trends. High PPi values indicate that area-specific trends have a high 
probability of differing from the mean trend, whereas low PPi values indicate 
that area-specific trends have a low probability of differing from the mean 
trend. 

To capture the number of elephant poaching incidences expected, we used an 
indirect standardization method (utilizing the average trend and elephant 
population) (Law et al., 2015). Indirect standardization utilizes the risk 
estimates in the reference population (total population in the study region as 
a whole) to calculate the expected number of incidents in the study 
population (Yuan, 2013). The expected number of elephants poached was 
calculated for each block, season and year. For example, in 2011 block #3 
had an elephant population of 27 and 5 poaching incidents. Given that from 
2002 to 2012 the overall increase in incidents in the study region was 246, 
and in 2011 the total elephant population in the study region was 1370, the 
expected number of incidents for block 3 in 2011 was 9.59 (= 5 + (27 × 
246/1370)), where 246/1370 is the average trend of elephant poaching in 
the whole study region.  

4.2.4 Computational Details 

An improper uniform prior U (−∞, +∞) was defined for the intercept α (Luan 
et al., 2015). A normal distribution prior with mean 0 and variance σs2 was 
specified for ui (Law et al., 2015). The prior for the regional time trend (ƴ) 
was a vague prior normal distribution with mean equal to zero and variance 
of 1,000 (Law et al., 2014). An Intrinsic Conditional Autoregressive Gaussian 
distribution (ICAR) was used to specify priors for spatial random effect si and 
spatio-temporal interaction δi (Law et al., 2014, Law et al., 2015, Li et al., 
2014, Luan et al., 2015, Torabi and Rosychuk, 2012). Under the ICAR 
specification, the means of si and δi for one block depend on the si and δi, 
respectively, of the neighboring blocks’ distribution, where adjacency is 
defined as areas that have common borders (Luan et al., 2015, Torabi and 
Rosychuk, 2012). The amount of variation of si and δi is controlled by 
hyperparameters σs2 and σδ2, respectively, and is contrariwise related to the 
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number of neighbors of the ith block (Law et al., 2014, Law et al., 2015, Li et 
al., 2014, Luan et al., 2015, Torabi and Rosychuk, 2012). In Bayesian 
approaches, priors assigned to hyperparameters (i.e. the parameters of 
priors) are called hyperpriors (Luan et al., 2015). We conducted analysis 
using a uniform hyperprior distribution of (0.5, 0.0005) for σu, σs and σδ. This 
gamma distribution is a prior that offers a reasonable range for relative risk 
(Elliot et al., 2000). 

Spatio-temporal modelling was conducted using the statistical software 
WinBUGS, version 1.4.3 (McCarthy, 2007). Models were specified textually 
via the BUGS language in WinBUGS, in which the model likelihood and the 
prior distribution are defined (Figure B1) (McCarthy, 2007). WinBUGS uses 
‘Markov Chain Monte arlo’ (MCMC) algorithms to estimate posterior 
distributions of the model parameters (McCarthy, 2007). MCMC methods 
create random samples from the posterior distribution: the value of each step 
is conditional on the previous step (Kéry, 2010), and after enough iterations, 
the algorithm converges to the required posterior value (Law et al., 2006). 
With a sufficient number of simulated observations, this iterative procedure 
leads to an accurate estimation of the distribution (Kim, 2011). To assess 
trends and seasonal changes in the elephant poaching risk in the Greater 
Tsavo ecosystem from 2002 till 2012, we fitted the spatio-temporal Bayesian 
models using WinBUGS software with two parallel chains thinned by 10 to 
reduce autocorrelation (Luan et al., 2015). For each model, to obtain 20,000 
samples from the posterior distribution, MCMC chains comprising 10,000 
iterations with a burn-in of 1,000 were found to be sufficient to achieve 
convergence. Convergence was assessed by Brook-Gelman-Rubin Diagnostic, 
history plots, visually examining trace plots, and Monte Carlo standard error 
(< 5 % of the sample posterior standard deviation) (Law et al., 2014, Luan et 
al., 2015).  

To assess the model fit, we used the Deviance Information Criterion (DIC) 
(Spiegelhalter et al., 2002). The DIC can be considered as Bayesian 
equivalent of the Akaike Information Criterion (AIC), and it utilizes the 
number of effective parameters (defined as the posterior expectation of the 
deviance minus the deviance evaluated at the posterior mean of the 
parameter (King et al., 2009)) instead of the actual number of parameters 
used by the AIC (Ntzoufras, 2011). The advantage of DIC is that it can be 
directly computed from an MCMC output, and moreover it can be applied in a 
larger variety of models (Ntzoufras, 2011). Lower values for the DIC indicate 
that the model fit is closer to the data. A difference in DIC values between 
two models should be at least 5 to conclude that one of the models fits the 
data better, because of Monte Carlo sampling errors inherent in the 
calculation of the DIC (Law et al., 2014).  
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4.3 Results 
Figure 4.1 shows the probability that local elephant poaching trends were 
greater than the mean trend (Table 4.2) using two different models (Table 
4.1). Variation in area-specific elephant poaching trends was statistically 
significant at the 95 % credible interval (Table A5). Blocks with the highest 
probability were areas that have experienced relatively higher risks of 
elephant poaching over the 11 years and showed a steeper, increasing trend 
in poaching compared with the mean trend (Figure 4.1). In both models, the 
largest positive trends (probability that elephant poaching risk is above mean 
trend > 0.9) were located in specific blocks (blocks 9, 26 and 29) in the 
Tsavo West National Park, Tita ranch and Galana ranch (Figure 4.1). 

Our results indicate that while similar blocks with the highest poaching trend 
were found by both models (Model 1.1 and Model 1.2), some blocks 
displayed different probability classes (blocks 1, 2, 5, 6, 10, 14, 17, 19, 20, 
22, 24, 25, 27, and 31) (Figure 4.1). Moreover, Model 1.2, which accounts 
for potential risk factors, had a smaller value for the DIC (Table 4.2) which 
indicates a more accurate model fit for Model 1.2 than Model 1.1. 

 
Based on our modelling results, we could map elephant poaching incidences 
(Figure 2.1) and estimate poaching trend over time (Figure 4.1). A large 
spatial variability can be observed both in observed poaching incidence and 
estimated risk. 

Figure 0.1 Probability that 
local elephant poaching risks 
were greater than the mean 
temporal trend: (a) Model 1.1: 
spatio-temporal Bayesian 
model without accounting for 
the potential risk factors and 
(b) Model 1.2: spatio-temporal 
Bayesian model which includes 
potential risk factors. 
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Table 0-2 The results of model fitting for Model 1.1 and 1.2. 
 Model 1.1  Model 1.2  

ƴ : overall time trend  (credible 
interval: 2.5%, 97.5%) 

0. 27 (0.4,0.6) 0.76 (0.1,1) 

DIC: deviance information criteria  14870 14725 
PD: effective number of 
parameters  

276 250 

 

Further, the results indicate that among the selected factors that remained 
after accounting for multicollinearity, livestock density, distance to road, 
seasonal timing of elephant poaching, density of waterholes, and distance to 
international border were significant at the 95% credible interval (Table A5). 
Inclusion of zero values within the 95% Bayesian credible intervals implies 
the insignificance of the estimates (Jianmei, 2014). In other words, if the 
credible interval for estimated parameters covers zero, then that would be 
considered as lack of evidence for different variances (Kéry, 2010).   

Figure 4.2 shows that the highest risk areas for elephant poaching differ 
between the wet and dry season. 

Figure 0.2 Seasonal changes in high risk areas for elephant poaching in Tsavo 
ecosystem (2002–2012) using the spatio-temporal Bayesian model: (a) Model 2.1: wet 
season and (b) Model 2.2: dry season. 

4.4 Discussion 
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The ability to detect areas with increasing elephant poaching can aid decision 
making regarding conservation priorities, by prompting the need for further 
management attention, such as increased ranger/patrol activities in areas 
with higher poaching risk (Figure 4.1). For example, for the Tsavo, blocks 
#26 and #29 in the Galana ranch and #9 in the in the Tsavo West National 
Park and Tita ranch should be prioritized for preventive actions.  

These three blocks are all located in areas with human settlements in and 
around them. Therefore, the result can be partly explained by human–
elephant conflict over resources (space, water, and forage) in these areas 
(Ngene, 2010). Another reason could be possible collaboration of local people 
with poachers or their indifference towards elephant poaching (Maingi et al., 
2012). The findings thus indicate the need for strategies such as local 
community conservation programs (Maingi et al., 2012) to obtain community 
support. And priority should be given to security patrols in these areas to 
mitigate elephant poaching risks.  

The highest risk areas for elephant poaching determined by this study differ 
from those identified in the previous study (Rashidi et al., 2016), which 
focused only on the spatial variation observed in elephant poaching in the 
Tsavo ecosystem without investigating the interaction between time and 
space. Spatio-temporal methods may therefore detect relatively subtle 
changes in elephant poaching risk in specific blocks over time that would not 
have been detected by spatial analyses alone (Critchlow et al., 2015). 
However, there were also blocks (blocks 6, 10, 16, and 21), which did display 
similar probability classes in both studies. 

Furthermore, we found that block #9 was consistently identified as a hot spot 
with a high poaching risk, as Rashidi et al. (2015) had also observed, when 
using spatial as well as spatiotemporal clustering methods (Figure 4.1). 
However, in the current study, some new areas showing a significantly 
increasing trend were detected (Figure 4.1) and we further demonstrated the 
probability that each block would show a differential trend from the mean 
elephant poaching trend in the Tsavo ecosystem (Figure 4.2). By explicitly 
stating the probability of observed poaching risk in a particular block, we 
detected high-risk areas where this risk is unlikely to be due to chance 
(DiMaggio, 2015). This allowed us to be more specific about high risk area 
locations rather than having to resort to reporting clusters of areas (as 
typically recognized by SaTScan). For example, Rashidi et al. (2015) found 
that blocks #8, #9 and #10 were hotspots, irrespective of the clustering 
method used. However, they did not detect probabilities regarding elephant 
poaching risk for these areas. In the current study, we detected that the 
elephant poaching risk probability differed between these three blocks (Figure 
4.1). 
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The fact that some areas show significantly different trends in poaching could 
be due to potential risk factors that vary geographically across the blocks. 
Therefore, we set Model 1.2 to consider the effect of adding these variables 
to the Model 1.1 (Table 4.1) and to test whether the covariates enhanced the 
prediction of the model. We found that density of waterholes, livestock 
density, seasonal timing of elephant poaching, distance to roads and distance 
to international border significantly contributed to the estimation of temporal 
trends in elephant poaching in Kenya’s Greater Tsavo ecosystem (Table A5). 
Rashidi et al. (2016) also found the first three risk factors to be covariates, 
while the latter two were new in the present study. The fact that some 
variables like elephant density and distance to rivers have been deemed 
important by experts but were not significant in our models could be due to 
theoretical knowledge rather than personal and local experience (Doswald et 
al., 2007). Such variables may be collinear with other covariates responsible 
for elephant poaching, and therefore make scoring difficult (Doswald et al., 
2007). Although expert opinion is useful for collecting general knowledge on 
elephant poaching, combined expert and field data enhanced the posterior 
estimates and further improved elephant poaching models. Our results also 
indicated that selected variables were useful predictors, because Model 1.2 
provided an improved model fit through a lower DIC. This result is in contrast 
with the results of Critchlow et al. (2015), who found that their selected 
ecological covariates were not useful predictors for incidences of illegal 
activities. One reason for this contrast could be the selection of potential risk 
factors in our study, which were based on expert knowledge. This supports 
the idea that combining expert opinion with empirical data improves model 
performance (Murray et al., 2009). 

Furthermore, the results obtained from Model 2.1 and 2.2 demonstrated that 
the highest risk areas for elephant poaching differed between the wet and dry 
seasons. This finding supports the idea from the previous study (Rashidi et 
al., 2016) that elephant poaching is more likely to occur in different locations 
in the dry season than in the wet season. This could be explained by seasonal 
preferences for specific land cover by elephant (Shaffer and Bishop, 2016) as 
well as seasonal variations in surface water availability. It may be expected 
that elephants move to other areas where water and food supplies are 
plenty, but conservation security there might be lower (Sibanda et al., 2016).  

A limitation when studying elephant poaching trends lies in the collection of 
poaching data, which may be underreported or misreported by rangers 
(Maingi et al., 2012). It is possible that the elephant poaching data that we 
used for this study only represent a proportion of the total poaching that 
occurred between 2002 and 2012. However, we mitigated this problem by 
utilizing a spatio-temporal Bayesian model, which provides a flexible 
framework for borrowing information over space and time from adjacent 
blocks by using spatial and temporal random effects (Li et al., 2014). For 
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example, the recorded elephant poaching incidences (Figure 2.1) and 
estimated poaching trend over time (Figure 4.1) are very different in blocks 
#26 and #29 in the Galana ranch. Our study demonstrates that the spatio-
temporal Bayesian model is a valuable approach when recorded elephant 
poaching incidents are scarce or incomplete, as it allowed the discerning of 
elephant poaching trends in some blocks that could not be ascertained from a 
visual analysis of the poaching data alone. With improvements to the 
observation effort and the recording of patrol data and associated contextual 
information, and with the development of appropriate models, predictions of 
poaching could be further improved (Keane et al., 2011). 

A linear regional trend over an eleven-year period was assumed in this study, 
which is appropriate for the data on observed elephant poaching incidents. 
When using poaching data that cover multiple time periods rather than 
subsequent years, a non-linear trend analysis may further reduce error in the 
model, thereby providing additional insight into poaching change over time. 

4.5 Conclusions  
We examined spatial variation in trends and seasonal changes in elephant 
poaching risk from 2002 to 2012 in Kenya’s Greater Tsavo ecosystem, using 
spatio-temporal Bayesian modelling. We also tested the hypothesis 
concerning whether risk factors enhanced the prediction of the model. This 
modelling framework has been shown to effectively account for inconsistent 
results due to limited and/or missing data. Our results indicate that the mean 
trend in elephant poaching is increasing in the Tsavo ecosystem over time. 
Assessment of spatio-temporal poaching trends in small areas showed that 
blocks with the strongest positive trends in elephant poaching are situated in 
the Tsavo West National Park, Tita ranch and Galana ranch. Our results also 
indicate that adding risk factors enhances model fit. Furthermore, our results 
indicate that areas with the highest poaching risk differ between dry and wet 
seasons. 

Obtained results have several practical implications. The KWS can benefit 
from our results by allocating their financial and human resources more 
effectively to prevent or reduce poaching activity in areas with relatively 
strongly increasing poaching trends. Our results also provide vital information 
for decision-making and management regarding setting conservation 
priorities. Moreover, the models we present here may also be adjusted and 
applied to poaching data for other threatened species and in other areas. 
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Chapter 5 
 
Areas at High Risk of Elephant Poaching Shift 
from the South-East to the West of Kenya 
During 2002-2012 4 
 
 
 
 
 
 
 

                                          
4 This chapter is based on: Rashidi, P., Wang, T.J., Skidmore, A.K., Darvishzadeh, R., 
Ngene, S.M (2018) Areas at High Risk of Elephant Poaching Shift from the South-East 
to the West of Kenya During 2002-2012. In review:  AMBIO 
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Abstract 
Poaching is an increasingly rampant problem in Kenya as it is right across 
Africa. Poaching risk analysis may have a considerable mitigating effect on 
the illegal killing of wildlife. Using a Bayesian spatio-temporal model, we 
investigate how elephant poaching risk in Kenya might change at different 
locations, over time or through interaction between space and time, and we 
try to identify key factors influencing high-risk elephant poaching areas at a 
national level. Data on elephant population, poaching incidence, biophysical 
and anthropogenic factors for the period 2002 – 2012 were obtained from 
Kenya Wildlife Service. Kenya was divided into eight conservation regions, for 
which poaching data were aggregated and which served as the base units for 
analysis. Our results show that areas at risk of elephant poaching are 
temporally dynamic, shifting from areas with high recorded elephant 
poaching incidents to areas where minimal poaching incidents have been 
reported. We found that there is a shift in poaching from the south-east to 
the west of Kenya. We also found that the Mountain, Tsavo and Coast regions 
have been high-risk poaching areas in Kenya for over a decade. Our results 
also show that seasonal timing of elephant poaching, density of waterholes, 
and distance to an international border, a road, or a settlement were all 
consistently identified as key factors influencing the spatial and temporal 
variation regarding elephant poaching risk in Kenya. Although the Bayesian 
spatio-temporal model has been used in earlier poaching studies, the present 
paper is innovative, because high-risk areas for elephant poaching had not 
previously been investigated at a national level and there was a distinct lack 
of understanding of factors causing shifts in elephant poaching areas over 
time. The findings of our study provide new information for recognizing key 
factors causing elephant poaching, providing management with information 
to assist in the battle against poaching. 
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5.1 Introduction 
High-risk poaching areas threaten species survival by providing opportunities 
for poaching activity (Maingi et al., 2012, Rashidi et al., 2016). Given limited 
resources, many researchers advocate focusing conservation efforts on high-
risk poaching areas (Rutledge et al., 2001). Identifying high-risk poaching 
areas as well as the factors that abet poaching plays an important role in 
reducing poaching.  

Poaching has long been considered the main threat to keystone and umbrella 
species such as elephants, rhinos and tigers (Sharma et al., 2014). Elephants 
play a vital role in the ecosystems throughout Africa, and their persistence is 
also significant to the conservation of other elements of biodiversity (Omondi 
and Ngene, 2012a). Poaching and illegal ivory trafficking in recent years form 
the key factors driving the decline of African elephant populations (Burn et 
al., 2011). Around 22,000 elephants were illegally killed for their ivory in 
Africa in 2012 (Wittemyer et al., 2014).  Most large deliveries of ivory are 
reaching the Asian markets through the eastern Africa sub-region. Since 
2009, trade routes have switched from Central and West Africa to seaports in 
East Africa, with Kenya and Tanzania forming primary departure points for 
illegal ivory trade with shipments leaving the continent through Indian Ocean 
ports (Mombasa, Dar es Salaam and Zanzibar) (Kyando, 2014). As both 
significant source and departure point of ivory, Kenya and Tanzania are more 
involved in the ivory trade than any other country in Africa (Kyando, 2014), 
reflecting the shift in poaching patterns from West and Central Africa to 
Eastern and Southern Africa (Blanc et al., 2013, Kyando et al., 2017). 

Despite the ecological significance of elephants, the effectiveness of anti-
poaching patrols is limited in most African countries due to inadequate 
resources as well as the large spatial extent of the areas to be monitored. 
This limits the effectiveness of patrols by rangers (Maingi et al., 2012). It is, 
therefore, all the more important that conservation managers receive timely 
information on spatial and temporal variations in high-risk poaching areas to 
be able to prioritize intelligence and enforcement efforts, ultimately to reduce 
poaching (Critchlow et al., 2015). 

Obtaining an absolute measure of poaching levels based on direct 
observation is practically impossible due to the covert nature of poaching 
(Burn et al., 2011, Sharma et al., 2014). Detailed data are scarce and many 
poaching reports are collected incidentally, and may be indirectly obtained 
(Madhusudan and Karanth, 2002, Sánchez-Mercado et al., 2008). Such 
reports may be challenging to analyze because of the absence of a sampling 
design and uncertainty concerning locations (Reutter et al., 2003, Sánchez-
Mercado et al., 2008). It is therefore important to apply methods that can 
overcome the scarce data problem (Gelman and Price, 1999), which emerges 
when unstable estimations occur due to low counts of incidents and high 
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sampling variation (Bernardinelli et al., 1995, Congdon, 2000). Moreover, 
poaching analysts need to consider the interrelatedness of spatial and 
temporal shifts in poaching patterns before labelling poaching areas as high-
risk (Herrmann, 2015). 

Poaching is attributed to a variety of biophysical and anthropogenic factors. 
For example, the seasonal timing of elephant poaching, density of 
waterholes, distance to roads or an international border, livestock density as 
well as elephant population density may enhance poacher motivation (Rashidi 
et al., 2017, Rashidi et al., 2016). Previous studies indicated that these 
factors significantly influenced elephant poaching risk at the local level 
(Rashidi et al., 2017, Rashidi et al., 2016). Bayesian spatio-temporal models 
have been developed to better represent the uncertainties in the data and in 
the models (Burn et al., 2011), which can account for the interrelatedness of 
spatial and temporal shifts in poaching analysis. The advent of recently 
developed Bayesian statistical approaches enables associations between 
poaching occurrence and potential risk factors to be analyzed (Rashidi et al., 
2016). To date a number of studies have used poaching data in Bayesian 
spatio-temporal models (Burn et al., 2011, Critchlow et al., 2015, Rashidi et 
al., 2017). However, high-risk areas for elephant poaching have not been 
investigated at the national level and (annual) time series maps depicting 
shifts in elephant poaching areas are missing. 

The goal of this study is to investigate the spatial and temporal dynamics of 
elephant poaching risk in Kenya from 2002 to 2012, using a Bayesian spatio-
temporal model. Specifically, we attempt to answer the following questions: 
How do elephant poaching risk areas in Kenya shift in space and over time? 
Where are the persistently high-risk areas for elephant poaching in Kenya 
located between 2002 to 2012? What are the key factors determining the 
emergence of high-risk elephant poaching areas in Kenya? 

5.2 Materials and Methods 

5.2.1 Study Area 

Kenya covers an area of about 582,646 km2 on the equator in East Africa. It 
lies between 5°30' N and 4° 30' S latitude and 34° E and 42° E longitude 
(Ouko, 2013). Kenya has thirteen National Parks and twenty-five reserves 
that cover ten percent of the country (Burnett and Rowntree 1990). There is 
a wide range of natural regions in the country, varying from hot, arid 
lowlands to cool, humid highlands, with numerous soils types (Batjes, 2004). 
The altitude steadily rises from 0 m above sea level nearby the Indian Ocean 
to between 2000 - 3400 m in the highlands (Ouko, 2013). The climate of 
Kenya varies by location. The long rainy season takes place from March 
through May in many regions of Kenya and the short rainy season occurs 
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between October to November (Batjes, 2004). The dry seasons are from 
January to February and from June to September most years (Batjes, 2004). 
Mean annual rainfall varies from 150 - 500 mm in the arid east and northeast 
of Kenya to 500 - 1000 mm in the semi-arid regions and 1000 - 2500 mm in 
the more humid areas in the central highlands and near Lake Victoria (Ouko, 
2013). The mean annual air temperature is extremely connected to elevation. 
It declines from about 27° C near the sea level, to 17° C in Nairobi in the 
central highlands, to less than 10° C above 3000 m (Ouko, 2013). 

Kenya is divided into eight conservation regions by the Kenya Wildlife 
Service, namely: Tsavo, Mountain, Central Rift, Coast, Southern, Northern, 
Western, and Eastern regions (Figure 1.1).  These conservation regions are 
administrative and delineated according to their biodiversity uniqueness 
(Litoroh et al., 2012, Ouko, 2013). Poaching crimes occur in both protected 
and un-protected conservation areas (Ouko, 2013).  

5.2.2 Data 

5.2.2.1 Elephant Population and Poaching Incidence Data 

Elephant population and poaching data were obtained from the Kenya Wildlife 
Service (KWS). The elephant population dataset includes the geographic 
coordinates and names of the locations where elephants were seen, the 
number of elephants observed at that location, and the dates of observation. 
The elephant population in Kenya has been surveyed through aerial total and 
sample counts, total ground counts, dung density surveys, and the use of 
individual elephant registration(Litoroh et al., 2012).  

Elephant-mortality data covered the period from 2002 to 2012. The elephant-
mortality data set comprised dates and names of the locations where the 
carcasses were found, geographic coordinates of incidents, and cause of the 
elephant mortality. Of the mortality dataset only elephant mortality 
incidences due to poaching were included in our analyses (Figure 5.1). All 
other data, referring to natural deaths, problem animal control, unknown 
deaths, accidents, and human wildlife conflicts were omitted. KWS had 
collected the poaching incidence data from daily ground patrols and aerial 
patrols through the Monitoring the Illegal Killing of Elephants (MIKE) program 
(Rashidi et al., 2016).  
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Figure 0.1 Yearly distribution of recorded elephant poaching incidents between 
2002 and 2012 in Kenya. 

5.2.2.2 Risk Factors 

We selected potential risk factors for poaching based on discussions with 
experts and previous research (Kyale et al., 2011b, Maingi et al., 2012, 
Ouko, 2013, Rashidi et al., 2016). Thirty experts from the Kenya Wildlife 
Service were interviewed regarding elephants and poaching. They were asked 
to score how they believed chosen factors would contribute to elephant 
poaching risk (Table 5.2). In order to settle a Bayesian expert system with a 
priori probabilities (Skidmore, 1989), we asked the experts to give a score 
between 0 and 1 for each factor, depending on how much they believed that 
the factor may contribute to poaching risk. The equal weighted linear opinion 
pool (i.e., group average) was used to determine the mean response elicited 
from the experts, because there were no key differences in the expert ratings 
of poaching risk factors in this study (Armstrong, 2001) (Table 5.1). This 
method helps to avoid troubles concerned with rating the comparative 
‘accuracy’ of each expert's opinion on the association between poaching and 
different factors (Einhorn et al., 1977, Martin et al., 2012, Rashidi et al., 
2016). 

We expected evidence of elephant poaching to occur closer to roads because 
roads provide easy access for human exploitation as well as escape 
opportunities for the poachers (Haines et al., 2012, Sibanda et al., 2016). We 
modeled the distance to international borders since these may facilitate the  
transportation of ivory straight to the ivory traders (Rashidi et al., 2016). 
Areas of high waterhole density and areas in close proximity to rivers and 
streams are also a potential risk factor, because these linear landscape 
features are places with relatively high densities of elephants (Maingi et al., 
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2012, Rashidi et al., 2016). Likewise, we can expect elephant poaching to be 
more probable closer to human settlement where occasions and motivated 
offenders are abundant. The 'near' tool in ArcGIS was used to calculate the 
nearest distance (m) to settlements, rivers and streams, roads and to the 
international borders (ESRI, 2011). We included the mean Normalized 
Difference Vegetation Index (NDVI)  and standard deviation of NDVI as 
indices of land-cover variation, as this may provide a source of food for the 
elephants as well as camouflage for poachers (Sibanda et al., 2016). Time 
series of the NDVI from SPOT-VEGETATION were obtained through the 
Flemish Institute for Technological Research. Following this process, mean 
NDVI corresponding to the NDVI average was generated from a time series of 
10-day NDVI composites for the period from 2002 to 2012. The standard 
deviation of NDVI corresponds to the mean annual standard deviation of 
NDVI, obtained from a time series of 10-day NDVI composites for the period 
from 2002 to 2012. The annual standard deviation is referred to as a 
measure of the within-year NDVI variation, since it is influenced by 
seasonality. Seasonal timing of elephant poaching could be a potential 
predictive variable because in different seasons poaching is expected to 
happen at dissimilar locations due to elephants’ need for water, food or even 
land cover (Rashidi et al., 2016). To quantify the seasonal timing of elephant 
poaching in Kenya, we first specified how many poaching incidents were 
recorded during the wet season (March, April, May, November and 
December) and the dry season (January, February, June, July, August, 
September, October) in each region. Then, the probabilities of elephant 
poaching were computed for the wet and dry seasons in each region (Rashidi 
et al., 2016). Livestock density could be another potential predictor variable 
because it could provide cover for poaching activities in the form of ranchers 
and ranches (Rashidi et al., 2016). Data on livestock density were produced 
by the World Resources Institute and the International Livestock Research 
Institute based on an aerial count (Ouko, 2013). We can expect poaching to 
be related to the elephant population density because poachers prefer areas 
with high harvesting opportunities in relation to their effort (Burn et al., 
2011, Maingi et al., 2012). We modeled elevation as a potential risk factor 
because of the abundance of browse species preferred by elephants at 
diverse elevations (Ouko, 2013). Finally, we focused on slope as a potential 
risk factor because rough terrain can provide cover for poachers (Rashidi et 
al., 2016). A 90-m digital elevation model (DEM) derived from the Shuttle 
Radar Topographic Mission (SRTM) was used to extract slope and elevation of 
the study area. For each region, we generated mean values for mean NDVI, 
standard deviation of NDVI, elevation, slope, and livestock density (Table 
5.1).  
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Table 0-1 The potential risk factors with their associated mean and the mean response 
elicited from the experts on the risk factor’s impact on elephant poaching. 
Explanatory variables Units  Mean  Mean 

Response 

Distance to settlement Meter  14740 0.77 
Probability of elephant 
poaching in dry season 

Percentage 0.668 0.65 

Probability of elephant 
poaching in wet season 

Percentage 0.331 0.65 

Elevation  Meter 905 0.32 
Livestock density Number per square 

kilometer 
0.036 0.74 

Waterhole density  Number per square 
kilometer 

0.003 0.73 

Distance to international 
border, 

Meter 123489 0.65 

Distance to nearest road Meter 6703 0.56 
Elephant population density Number per square 

kilometer 
0.067 0.52 

Distance to rivers and streams Meter 2676 0.54 
Mean normalized difference 
vegetation index (NDVI), 

Dimension less 0.385 0.97 

Slope Degree 1.479 0.30 
Standard deviation of NDVI Dimension less -0.005 0.97 

5.2.3 Accounting for the Effects of Multicollinearity 
Regarding Risk Factors 

The variance inflation factor (VIF) was used to account for the effects of 
multicollinearity between risk factors (Table 5.1). The highly correlated risk 
factors from the set were excluded through a stepwise procedure(Dormann et 
al., 2013, Naimi, 2013). VIF works by looking for the pair of variables that 
has the maximum linear correlation, and eliminates the variable which has 
the higher VIF, duplicating the procedure until there is no variable pair with a 
high coefficient of correlation (Naimi, 2013). 

5.2.4 Modelling Strategy and Analysis 

Separate Poisson regression models were constructed in a Bayesian 
framework using the WinBUGS software. We classified our dataset into 11 
years based on the yearly reporting of elephant poaching incidents in Kenya.  
Eleven models were fitted to annually assess the temporal and spatial shifts 
in elephant poaching risk areas in Kenya during the past 11 years. We did not 
include risk factors in the annual models.  A final model was developed that 
contained all components of the preceding 11 models to account for the 
interaction between space and time when defining high-risk poaching areas 
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and incorporating the potential effects of risk factors that could have been of 
influence. It is worthwhile to mention that our final model contains all the 
potential risk factors that remain significant after accounting for 
multicollinearity. 

Our models assumed that the poaching cases (Yij) for area i= 1, . . . , I, and 
time period j = 1, . .,T followed a Poisson distribution, which can be modeled 
as   

Yij ~ Poison (lambdaij).  

where the parameter lambdaij of the Poisson distribution (P) is the expected 
value of Yij, exp [Yij,]. 

exp [Yij,]=lambdaij = θij* eij 

Using a log link function, unknown risk (θij) is split into parameters measuring 
purely spatial variation, purely temporal variation, and spatio-temporal 
interaction: 

log (θij)= α+ ui+  si+  (ƴ + δi)tj 

Log (lambda ij) = log(eij) + α+ ui+  si+  (ƴ + δi)tj 

where 

eij = is the corresponding number of expected elephant poaching cases for 
the ith geographic area (i = 1. . .8) in the jth year (j= 1, . . . , 11).  

α= Intercept (average elephant poaching for the study region) 

si = Spatially structured random effect 

ui = Unstructured random effects 

ƴ = Regional temporal variation of elephant poaching for the study region 

δi= Area-specific differential trends  

x = Potential risk factors 

ß = Coefficient of covariate x 

The indirect standardization method was used to capture expected elephant 
poaching cases (Law et al., 2015). Intercept α, si and ui represent purely 
spatial variation. Any over-dispersion, which arises when modelling count 
data at the areal level, are accommodated with these terms (Luan et al., 
2015). While ƴ represents the overall rate of change in poaching risk, δi 
measures the departure from ƴ for each spatial unit. For example, a negative 
estimate of δi would indicate a slower increase (or even a decrease) in 
elephant poaching over time for that specific spatial unit. We mapped the 
posterior mean of area-specific differential trends (δi) to explore areas prone 



Areas at High Risk of Elephant Poaching 

64 

to elephant poaching activities in this area. Mapping δi allows each spatial 
unit to have its own risk trend (Li et al., 2014). 

It is required to specify a priori distribution for the model parameters in the 
Bayesian approaches (Bernardinelli et al., 1995).  A flat prior distribution was 
defined for the intercept α, whereas a normal prior distribution with a mean 
representing the expert opinion for the model parameter and a precision that 
is based on the overall expert response for each factor (Kuhnert et al., 2010, 
Rashidi et al., 2016) was specified for the coefficients of potential risk factors. 
Priors for ui and ƴ were determined by a normal distribution prior (with mean 
0 and variance σs2) and a vague prior normal distribution (with mean equal to 
0 and variance of 1000), respectively (Law et al., 2014). An Intrinsic 
Conditional Autoregressive Gaussian distribution (ICAR) prior was defined for 
spatio-temporal interaction δi and spatial random effect si (Law et al., 2014, 
Law et al., 2015, Li et al., 2014, Luan et al., 2015, Torabi and Rosychuk, 
2012). The ICAR prior on these parameters implies that the means of si and 
δi for one region depend on the si and δi of the neighboring regions’ 
distribution, respectively, where the adjacency weights matrix is defined as 
areas that have common borders (Luan et al., 2015, Torabi and Rosychuk, 
2012). For example if two regions share a border, the weight is 1, and if they 
do not share a border then the weight is 0 (Restrepo et al., 2014). 

Finally, for the hyper-parameters σs 2 and σδ 2, a priori independent 
distribution gammas were considered with an average and variance equal to 
0.5 and 0.0005, respectively. This gamma distribution is a prior that would 
offer a logical range for relative risks (Elliot et al., 2000). 

Estimates of the parameters and hyper-parameters of interest were acquired 
from Markov chain Monte Carlo (MCMC) algorithms, with the Win Bugs 
statistical programs having been implemented. Models were specified 
textually via the BUGS language in WinBUGS, in which the prior distribution 
and model likelihood are determined (McCarthy, 2007). For annual models 
and the final model, MCMC chains comprising 100,00 and 200,00 iterations, 
respectively, with a burn-in of 1,000 were found to be sufficient to achieve 
convergence. Monte Carlo standard error and the Brook-Gelman-Rubin 
Diagnostic (< 5 % of the sample posterior standard deviation) aided to make 
certain appropriate burn-in and iterations (Law et al., 2015, Luan et al., 
2015, Rashidi et al., 2016).  

The deviance information criterion (DIC) was calculated for model selection, 
where lower DIC indicates a better model fit. To determine if a model fits the 
data better, the difference in DIC value for the models should be no less than 
5, because of Monte Carlo sampling errors intrinsic in the computation of DIC 
(Law et al., 2014).  
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5.3 Results 
In total, 11 models were developed to consider how elephant poaching risk 
areas shifted annually in Kenya over a decade. Our results revealed that the 
locations of high-risk elephant poaching areas vary annually and are highly 
dynamic (Figure 5.2). High-risk elephant poaching areas have seen a spatial 
shift from a contiguous area in the south-east of Kenya in the year 2002 to 
the west, central rift and south area in the year 2012, where only minimal 
poaching incidents were actually reported (Figure 5.2).  

Figure 0.2 Time series maps depict the shifts in high-risk elephant poaching areas 
from the south-east to the west of Kenya (2002 to 2012). 

The final model, which includes data for the eleven-year period from 2002 to 
2012, as well as potential risk factors, demonstrates that Mountain, Tsavo 
and Coast area are poaching risk areas with a persistently high risk of 
elephant poaching over the study period(2002 - 2012) (Figure 5.3). 

 

Figure 0.3 Spatio-temporal high-
risk areas in Kenya with a 
persistently high risk of elephant 
poaching over the study period 
(2002 - 2012).
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A large spatial variability can be observed both in observed poaching 
incidence (Figure 5.1) and estimated risk (Figure 5.3) in the Eastern area.  

Of the selected risk factors (Table 5.1), distance to an international border, 
mean normalized difference vegetation index (mNDVI), standard deviation of 
NDVI, distance to a road, elephant population density, seasonal timing of 
elephant poaching (i.e., probabilities in the wet season), and waterhole 
density remained after accounting for multicollinearity.  

The results further show that the seasonal timing of elephant poaching, the 
density of waterholes, and the distance to a road, settlement and 
international border were the factors significantly influencing the spatio-
temporal patterns of elephant poaching risk in Kenya (Table 5.2). The 
inclusion of zero values within the 95% Bayesian credible intervals implies an 
insignificance of the estimates (Jianmei, 2014). Our results indicate that 
despite expert knowledge, some variables like elephant density, land cover 
and distance to rivers were not significant. 

Table 0-2 Posterior summaries for ß coefficients of the explanatory variables in spatio-
temporal Bayesian modelling 
Explanatory variables mean ß  

(credible interval:  
2.5%, 97.5%) 

Distance to settlement -3.7 (-8.7, -0.9)  
Probability of elephant poaching in wet season 0.65 (0.07, 1.23) 
Distance to nearest road 0.98 (0.55, 1.44) 
Waterhole density  0.72 (0.25, 1.19)  
Distance to international border 0.08 (0.05, 0.14)  
Elephant population density 0.54 (-0.22, 1.28) 
Mean normalized difference vegetation index (NDVI) -4.93 (-4.73, 11.58) 
Standard deviation of NDVI 0.94 (-1.42, 3.44) 

 

It is worth mentioning that DIC values were different for the annual models. 
Moreover, adding the potential risk factors to the final model didn’t enhance 
the prediction of the model (DIC value of 51773 vs 51775). 

5.4 Discussion 
The annual high-risk areas for elephant poaching have not been investigated 
at national level in previous studies and neither have time series maps 
depicting shifts in elephant poaching areas been considered. In the current 
study we found high poaching risk areas in Kenya have varied annually and 
shifted from the south-east to the west between 2002 and 2012. This could 
be attributed to elephant movements, enhanced ranger patrols, and/or 
changes in poacher behavior in certain areas (Sibanda et al., 2016). It is 
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obvious that poachers avoid some high-risk areas, which have become known 
as poaching hotspots, because the increased security in these areas increases 
a poacher’s risk of getting reported or apprehended. For example, elephant 
poaching risk areas have encountered spatial shifts from the southern area in 
2002 to the western area in 2012, where minimal poaching incidents were 
reported over the 11 years (Figure 1.1 and 5.2). Poachers and buyers clearly 
shift to new areas like the western area if that means less chance of poacher 
detection. Spatiotemporal dynamics of high-risk elephant poaching areas 
(Figure 5.2) may be a useful indicator of changing elephant poaching 
pressures as well as help to predict areas that could potentially emerge as 
high-risk elephant poaching areas across the country.  

High-risk elephant poaching has seen a spatial shift from areas with high 
recorded elephant poaching incidents in the year 2002 to the areas where 
minimal poaching incidents were reported in the year 2012 (Figure 5.2). One 
reason for this contrast could be that the collection of poaching data has 
issues related to underreporting or misreporting by rangers (Maingi et al., 
2012). Therefore, an increase in the number of reports of elephant poaching 
incidents in some areas and years cannot automatically be interpreted as an 
increase in poaching rate in those areas and years, as it could instead be a 
reflection of better enforcement and more developed data collection systems 
(Sharma et al., 2014).  

Furthermore, we found that the Mountain, Tsavo and Coast areas are 
poaching risk areas with a persistently high risk of elephant poaching over 
the studied years (2002 - 2012) (Figure 5.3). Ouko (2013) had also observed 
this, when using spatiotemporal clustering methods. Moreover, our analysis 
shows that the Tsavo ecosystem is the main persistently high-risk area in 
Kenya between 2002 and 2012 (Figure 5.2). However, in the current study, 
we demonstrated the probability that each region would show a differential 
trend from the mean elephant poaching trend in Kenya (Figure 5.3). This 
allowed us to be more specific about high-risk area locations rather than 
having to resort to reporting clusters of areas. For example, Ouko (2013) 
found that most of the space-time clusters appeared in the mountain 
conservation region, Tsavo, and in Coast conservation areas. However, he did 
not detect probabilities regarding elephant poaching risk for these areas. In 
the current study, we identified the elephant poaching risk probability for 
these regions (Figure 5.3).           

Non-existence of high-risk poaching areas for elephant in Eastern areas over 
the studied years in the final model does not necessarily mean that no 
poaching is taking place in those regions, but could be explained by the fact 
that there is no interaction between time and space for high-risk elephant 
poaching areas in Eastern areas (Figure 5.3).  
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The fact that some areas show significantly different trends in poaching could 
be due to potential risk factors that vary geographically across the regions. 
Therefore, we set up a final model to identify useful predictors that 
significantly influenced the spatial variation in trends regarding elephant 
poaching risk over time in Kenya. We found that density of waterholes and 
the seasonal timing of elephant poaching (the probability of elephant 
poaching in the wet season) were consistently identified as useful predictors 
that significantly influenced the spatial variation in trends regarding elephant 
poaching risk irrespective of scale and the Bayesian methods (spatial or 
spatiotemporal) used (Rashidi et al., 2017, Rashidi et al., 2016).  It is 
worthwhile to mention that we ignored the probability of elephant poaching in 
the dry season in our final model because of multicollinearity. We just 
considered the probability of elephant poaching in the wet season, which was 
a significant factor. This relationship could be attributed to the fact that 
during the wet seasons the conservation security may not be very high, 
because of inaccessibility of some areas after they have been cut off by 
flooding rivers (Maingi et al., 2012). The influence of density of waterholes on 
elephant poaching could be explained by the fact that availability of more 
water resources, limiting elephant less to certain areas, would make them 
less vulnerable to poaching (Sibanda et al. 2016). Distance to an 
international border and distance to a road were consistently significant 
variables contributing to elephant poaching risk. Our results indicate that, 
regardless of scale (local or national level), these two variables are useful 
predictors for predicting elephant poaching risk areas when accounting for 
space and time interaction. Roads would provide easy access and escape 
opportunities for poachers. The variable ‘distance to an international border’ 
confirms the hypothesis from our earlier study (Rashidi et al., 2015) that 
higher poaching risk exists along international borders,  and is possibly 
associated with reduced anti-poaching activity. For example, this study has 
identified poaching hot spots along the international border with Somalia, 
which is consistent with Daskin and Pringle (2018). It is worth noting that 
distance to human settlement was not a significant factor regarding elephant 
poaching risk at local level using Bayesian spatial and spatiotemporal 
modelling in a former study (Rashidi et al., 2017, Rashidi et al., 2016), while, 
the results in our current study reveal that it is a significant factor 
contributing to elephant poaching risk. In areas closer to settlements the 
probability of elephant poaching risk is greater. This could be attributed to 
the fact that there are human–elephant conflicts over resources (space, 
water, and forage) and the possibility of participation by local people with the 
poachers or, at least, their indifference towards elephant poaching (Maingi et 
al., 2012).  

The fact that some variables like elephant density have been deemed 
important by experts, but were not significant in our models could be due to 



Chapter 5 

69 

theoretical knowledge rather than personal and local experience (Doswald et 
al., 2007, Rashidi et al., 2017). 

The main limitations of poaching studies include the reliance on elephant 
poaching data that only represent a proportion of the total poaching in Kenya 
between 2002 and 2012. Poaching density reports per district and per year 
often use tables, graphs and maps to indicate rate or percentage of change in 
poaching, but seldom use spatial statistical methods to analyze poaching 
trends. This style of poaching trend analysis and reporting has limitations in 
conveying a comprehensive understanding of small-area changes (Law et al., 
2014) in poaching and is ineffective when used to mitigate elephant poaching 
at local and national level. However, we lessened this problem by utilizing a 
spatio-temporal Bayesian model, which provides a flexible framework for 
borrowing information over space and time from adjacent regions by using 
spatial and temporal random effects (Rashidi et al., 2017). Moreover, the 
past does seem to be the best predictor of the future regarding poaching 
activity, therefore further work needs to be carried out to investigate 
elephant poaching risk in Kenya from 2013 to the present at local and 
regional scale. 

5.5 Conclusions  
This study investigated the spatial and temporal dynamics of elephant 
poaching risk areas from 2002 to 2012 in Kenya using a spatio-temporal 
Bayesian modelling. We also tested whether elephant poaching high-risk 
areas were influenced by potential risk factors that vary geographically across 
the regions. Results showed variations in high-risk elephant poaching areas 
for different regions and different years in Kenya. Furthermore, we found that 
the Mountain, Tsavo and Coast are areas with a persistently high risk of 
elephant poaching over the studied years (2002 - 2012). Elephant poaching 
risk areas at national level in Kenya were mainly determined by the seasonal 
timing of elephant poaching, density of waterholes, distance to an 
international border, distance to a road, and the distance to settlements. To 
aid KWS in their efforts to mitigate elephant poaching, our results offer a 
promising solution for the allocation of both human and financial resources as 
effectively as possible, at exact locations and at the right time. This type of 
modelling can be expanded to incorporate other threatened species over 
different space – time scales. 
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6.1 Introduction 
Elephant poaching is currently the main cause of elephant population decline 
in Africa (Bouché et al., 2011, Chase et al., 2016, Maisels et al., 2013, Zafra-
Calvo et al., 2018). The latest African census revealed a 30% decrease in the 
elephant population between 2007 and 2014 (Chase et al., 2016, Gholami, 
2018). Poaching affects elephant populations in ways that may persist into 
unfavourably limiting both the rate of population growth and the onset of 
recovery (Onyango and Lesowapir, 2016). As poachers target older elephants 
with big tusks, they rob the population of its top reproductive individuals 
(Onyango and Lesowapir, 2016). As a result, poached elephant populations 
have a smaller proportion of older individuals, a more  female-biased 
operational sex ratio and a longer calving interval than unpoached 
populations (Onyango and Lesowapir, 2016). 

Kenya, as so many African countries, has not been exempt from elephant 
poaching. In Kenya, the number of elephants killed by poachers has 
increased over the past ten years, with more intense poaching occurring in 
some specific regions. For example, the Tsavo ecosystem has the highest 
reported incidence of elephant poaching in Kenya (Maingi et al., 2012). In 
order to effectively protect elephants against poaching threats, timely 
information on spatial and temporal variations in high-risk poaching areas is 
required. However, obtaining an absolute measure of poaching levels based 
on direct observation (carcasses monitoring) is practically impossible due to 
the covert nature of poaching (Burn et al., 2011). Furthermore, wildlife 
authorities in Kenya, as in other countries in sub-Saharan Africa, lack 
adequate manpower with less than one ranger per 100 km2 of wildlife reserve 
(Maingi et al., 2012), which is very low compared to the international 
standard of one ranger per 24 km2 for effective policing and patrolling 
(Kyando, 2014). Therefore, there is a clear need for the development of 
modelling approaches with the ability to borrow information from those areas 
that have a long-term observation system, and to incorporate expert 
knowledge to assist in making informed estimates in poorly sampled areas. 

Mapping and assessing poaching risk areas and trends form key components 
of the anti-poaching initiative, and can make a major contribution to the 
global fight against poaching, as they allow problems to be recognized, 
priorities to be established, solutions to be settled, and resources to be 
targeted (Rashidi et al., 2017). The aim of this thesis has been to assess how 
elephant poaching risk may change at different locations or times, or for any 
interaction between space and time, at local and national level. As well, an 
attempt is made to identify key factors influencing elephant poaching risk. 

This thesis encompasses several studies concerned with assessing elephant 
poaching hotspots as well as spatial and spatio-temporal elephant poaching 
trends and risks. Although there is some overlap, these studies can be 
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classified into four overarching themes: 1) elephant poaching hotspots at 
local level in the Tsavo ecosystem (chapter 2, 3 & 4); 2) spatial and spatio-
temporal dynamics of elephant poaching risks at local and national level 
(chapter 3, 4 & 5); 3) biophysical and anthropogenic factors that are 
influencing elephant poaching risk at local and national level (chapter 3, 4 & 
5); and 4) applications of spatial and spatio-temporal models in elephant 
poaching research (chapter 2, 3, 4 & 5). In the synthesis chapter, the major 
research findings from the previous chapters are highlighted and brought 
together to try and understand elephant poaching risk and its relationship 
with biophysical and anthropogenic factors at different scale levels in Kenya. 
The practical relevance of these results for management and conservation is 
discussed.  

6.2 Detecting Elephant Poaching Hotspots at Local 
Level in the Tsavo Ecosystem. 

- Where Are Elephant Poaching Hotspots Consistently 
Located in the Tsavo Ecosystem?  

Poaching hotspots are areas where or periods that the occurrence of 
poaching is so much more frequent than in other areas or periods that 
species survival is threatened(Maingi et al., 2012). Given limited resources, 
many researchers advocate focusing conservation efforts on poaching 
hotspots (Rutledge et al. 2001). Identifying poaching hotspots plays an 
important role in reducing poaching. Many methods are used to identify 
hotspots in a wide range of applications, including the studying of criminal 
activities, but the use of such methods is still in its infancy in the field of 
wildlife poaching—a specific form of crime. In this current study, we set out 
to identify consistent elephant poaching hotspots at local level in the Tsavo 
ecosystem by using different cluster and Bayesian methods on data that 
cover a continuous period of eleven years.  

The results of our study reveal that although hotspot predictions varied for 
the different methods, two blocks were consistently identified as 
encompassing poaching hotspots at local level in the Tsavo ecosystem (Fig. 
6.1). These blocks of hotspots are located in the Tsavo west national park, 
and the Taita ranches and are mainly found along the border with Tanzania, 
which confirms the hypothesis posed in Chapter 2 (that higher poaching risk 
exists along international borders) and is possibly associated with reduced 
anti-poaching activity in that area. Locations along the international border 
may facilitate the transportation of ivory straight to the ivory traders (Rashidi 
et al., 2016). Our results and methodological comparison may assist the 
Kenya Wildlife Service in allocating financial and human resources effectively 
to reduce elephant poaching.  
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Figure 0.1 Consistent elephant poaching hotspots in the Tsavo ecosystem, Kenya 

6.3 Spatial and Spatio-temporal Dynamics of 
Elephant Poaching Risk at Local and National 
Level  

- How do the Elephant Poaching Risk Areas Vary Across 
Place and Time at Local and National Level? 

Poaching is a dominant wildlife crime, but it is unevenly distributed over 
space and time (Burn et al., 2011). Within wildlife criminology, both spatial 
and temporal lenses are useful for studying poaching trends (Burn et al., 
2011, Critchlow et al., 2015, Maingi et al., 2012, Rashidi et al., 2017, Rashidi 
et al., 2016, Rashidi et al., 2015). Quantifying spatial and temporal dynamics 
of elephant poaching risk at different scale levels provides information 
needed for setting conservation priorities (Wittemyer et al., 2014), as well as 
for concentrating management resources where they are most needed (Li et 
al., 2014). However, few studies exist that are aimed at quantifying spatial 
and spatiotemporal patterns in the specific criminal act of wildlife poaching. 
In this study, we first used a spatial Bayesian model to investigate spatial 
variation observed in elephant poaching risk at the local level (blocks in the 
Tsavo ecosystem) without investigating the interaction between time and 
space. Next, we integrated spatial and temporal lenses in the Bayesian model 
to examine variation in elephant poaching risk over space and time at the 
local (blocks in the Tsavo ecosystem) and national level (conservation 
regions in entire Kenya).  

The results reveal emerging differences between the detected highest risk 
areas for elephant poaching by the spatial model (which focused only on the 
spatial variation observed in elephant poaching in the Tsavo ecosystem) and 
by the spatio-temporal model (which investigating the interaction between 
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time and space) (Figure 6.2). This may be partly due to the integration of 
spatial and temporal random effects into the poaching analysis, possibly 
detecting relatively subtle changes in elephant poaching risk in specific blocks 
over time that would not have been detected by spatial analyses alone 
(Critchlow et al., 2015). However, there were also blocks in the Tsavo 
ecosystem, which did display similar probability classes in both models 
(Figure 6.2). Moreover, our analysis at national level shows that high 
poaching risk areas in Kenya have varied annually from the south-east to the 
west between 2002 and 2012 (Figure 6.3). This may be attributed to 
elephant movement, enhanced ranger patrols, and/or changes in poacher 
behaviour in certain areas (Sibanda et al., 2016). Further results indicate 
that the Tsavo ecosystem is persistently the main high-risk area at national 
level in Kenya from 2002 to 2012. This confirms the hypothesis posed in 
Chapter 3 that the elephant population size is a significant factor because it is 
likely to provide the poachers with the highest harvest related to their efforts. 
This finding supports the idea that poaching risk is higher in areas with a high 
elephant population (Maingi et al., 2012). 

Figure 0.2 The probability of elephant poaching risk for each block in the Tsavo 
ecosystem, Kenya: (a) Bayesian spatial model and (b) Bayesian spatito-temporal 
model. 
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Figure 0.3 Shifts in high-risk elephant poaching areas from (a) the south-east of 
Kenya with high recorded elephant poaching incidents in the year 2002 to (b) the west 
of Kenya where minimal poaching incidents were reported in the year 2012. 

6.4 Biophysical and Anthropogenic Factors 
Influencing Elephant Poaching Risk 

- What are Persistently the Key Factors Influencing Elephant 
Poaching Risk at Local and National Level? 

Poaching is attributed to a variety of biophysical and anthropogenic factors 
(Burn et al., 2011, Critchlow et al., 2015, Kyale et al., 2011b, Maingi et al., 
2012). The fact that some areas show significantly different trends in 
poaching could be due to potential risk factors that vary geographically 
across the regions (Rashidi et al., 2017, Rashidi et al., 2016). Understanding 
what key factors determine the spatial and spatio-temporal distribution of 
elephant poaching is vital to developing effective anti-poaching actions and 
and to protecting area (Zafra-Calvo et al., 2018). The achievements of anti-
poaching actions are expected to depend on context-specific circumstances. 
Consequently, more information about what determines the spatial and 
spatio-temporal distribution of poaching risk in poaching hotspots is thus 
immediately needed (Zafra-Calvo et al., 2018). The spatial association 
between poaching occurrence and potential risk factors has traditionally been 
modeled using a frequentist (classical) statistical approach in the form of 
logistic regression (Kyale et al., 2011b, Maingi et al., 2012), but, such an 
approach does not satisfactorily account for local risk factors (i.e., existing in 
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one unit but not in neighboring ones) that remain unknown and are not 
captured in the model (Law and Chan, 2012). As a result, spatial 
autocorrelation remains a problem in traditional approaches even if the 
covariates are adjusted (Law and Chan, 2012). Therefore, in this study we 
first used Bayesian spatio-temporal modelling at local level (the Tsavo 
ecosystem) to investigate the key factors determining the emergence of high 
risk elephant poaching areas at local level. Then we applied the same 
modelling at national level to assess whether the key factors that are 
determining the emergence of high-risk elephant poaching areas differ 
between local and national level. 

We selected potential risk factors for poaching based on discussions with 
experts and previous research. These factors included: (1) distance to roads, 
(2) distance to settlements, (3) distance to rivers and streams, (4) density of 
waterholes, (5) elevation, (6) slope, (7) mean normalized difference 
vegetation index (NDVI), (8) standard deviation of NDVI, (9) elephant 
population density, (10) livestock density, (11) distance to international 
border, and (12) seasonal timing of elephant poaching (i.e., poaching 
probabilities in the dry and wet seasons).  

Our results indicate that, of the selected factors that remained after 
accounting for multicollinearity, the seasonal timing of elephant poaching, 
density of waterholes, distance to road and distance to an international 
border were persistent key factors influencing elephant poaching risk at both 
local and national level in Kenya (Table 6.1). Distance to an international 
border seems to have the greatest influence on elephant poaching at local 
level while distance to a road is most influential at national level, with a 
variation greater than other risk factors (Table 6.1). The seasonal timing of 
elephant poaching might influence the extent of poaching because poaching 
is likely to occur at different locations in different seasons due to elephant’s 
requirements such as food, water, and even land cover. Likewise, the 
influence of density of waterholes on elephant poaching could be explained 
by the fact that the availability of more water resources, limiting elephant 
less to certain areas, would make them less vulnerable to poaching (Sibanda 
et al., 2016). Distance to roads may be important because it could provide 
easy access and escape opportunities for the poachers (Haines et al., 2012). 
Distance to an international border also forms a permanent risk factor 
presumably because it allows for easy transportation of the ivory directly to 
the ivory traders. 

In our study, we found that some variables, such as elephant population 
density, formed significant predictors in the spatial model at local level, but 
were not significant in the spatio-temporal model at local or national level. 
This could be due to the dynamics of elephant populations across different 
areas, but there were no significant changes in the population during our 
study period from 2002 till 2012. 
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Table 0-1 Posterior summaries for ß coefficients of the consistent explanatory 
variables at local and national level using spatio-temporal Bayesian modelling 
Explanatory variables mean ß 

(Local level) 
(credible interval: 
 2.5%, 97.5%) 

mean ß 
(National level) 
(credible interval: 
 2.5%, 97.5%) 

Probability of elephant poaching  
in wet season 

0.62 (0.022, 1.237)  0.65 (0.07, 1.23) 

Waterhole density  0.77 (0.054, 1.288)  0.72 (0.25, 1.19) 
Distance to road 0.55(0.004, 1.144) 0.98 (0.55, 1.44) 
Distance to international border 1.49 (0.421, 2.711) 0.08 (0.05, 0.14) 

6.5 Applications of Spatial and Spatio-Temporal 
Models in Elephant Poaching Research 

Poaching is a dominant wildlife crime, but it is unevenly distributed over 
space and time (Burn et al., 2011). Given the covert nature of poaching 
(Burn et al., 2011) it is difficult to analyze spatial and temporal trends in 
wildlife poaching at a fine scale, and methods that can deal with data scarcity 
are required (Gelman and Price, 1999).  

Poaching research is incrementally using spatial and spatio-temporal models 
because geocoded poaching data and temporal data are becoming more 
readily available. Spatial as well as spatio-temporal methods for analyzing 
poaching data at different scale levels are being developed (Rashidi et al., 
2017, Rashidi et al., 2016). Researchers have taken a variety of spatial and 
spatio-temporal approaches to investigate and understand poaching risk and 
contributing risk factors (Burn et al., 2011, Critchlow et al., 2015, Kyale et 
al., 2011b, Maingi et al., 2012, Rashidi et al., 2017, Rashidi et al., 2016, 
Rashidi et al., 2015, Wittemyer et al., 2014). Some have used the kernel 
density and frequentist (classical) statistical approach in  the form of logistic 
regression to map poaching hotspots and investigate contributing risk factors 
(Kyale et al., 2011b, Maingi et al., 2012). However, such an approach does 
not satisfactorily account for unexplained variance in the models, missing 
data and all key risk factors (i.e., factors existing in one unit but not in 
neighbouring ones) that remain unknown and are not captured in the model 
(Law and Chan, 2012). As a result, spatial autocorrelation remains a problem 
in traditional approaches even if the covariates are adjusted for (Law and 
Chan, 2012). Moreover, developing accurate models requires large datasets; 
this can be a problem in poaching research where observational data are 
scarce, costly to obtain, or subject to design and quality concerns (Rashidi et 
al., 2016). 

In this study, various spatial and spatio-temporal models with the ability to 
estimate poaching risk in areas with zero counts by borrowing information 
from neighbouring areas and experts (Sun et al., 2000) were used. This helps 
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to overcome the scarce data problem (Gelman and Price, 1999), which occurs 
with unreliable estimations due to low incident counts in small areas and high 
variation in sampling (Bernardinelli et al., 1995; Congdon, 2000). 

Specifically, in Chapter 2, we run the Kulldorff’s spatial scan statistic, flexible 
spatial scan statistic, spatio-temporal scan statistic and spatio-temporal 
permutation scan statistic for exploring elephant poaching hotspots at local 
level in the Tsavo ecosystem. Our results indicate that areas of significant 
clusters can be identified by these methods, but that the technique cannot 
map the probability of clustering across areas.  

Recently, methods have been developed that can account for spatial and 
spatio-temporal variation in elephant poaching by estimating the probability 
of detecting an incident independently from the processes that drive the 
distribution of the incidents (Critchlow et al., 2015). These methods are also 
capable of accounting for missing data, where, due to data limitations, the 
analyst is concerned about the effects of important covariates that are 
missing. These methods have rarely been applied to poaching research (Burn 
et al., 2011, Critchlow et al., 2015) and informative prior knowledge (expert 
knowledge) has not been incorporated in the modelling. Expert knowledge 
can provide information about model parameters and help characterize 
uncertainty in models, and it can be useful when data are limited or 
unavailable (Kuhnert, 2011). To our knowledge, our study is the first study in 
which expert knowledge has been integrated (using Bayesian modelling) to 
investigate elephant poaching risk and contributing risk factors.  

This thesis focuses on spatial and spatio-temporal poaching incident analysis. 
However, the models we used do not appear to be an effective means of 
detecting the poachers themselves. Therefore, approaches used in this thesis 
should be expanded into a model that also models poacher’s spatial and 
spatial-temporal preferences for certain sites across all poaching landscapes.  

Moreover, future research is needed to investigate how elephant population 
dynamics change at the various scales as a result of poaching.  

On the whole, despite the study’s limitations, our results provide a detailed 
understanding of the scope of the elephant poaching problem in Kenya, and 
our results are of relevance to conservation and management actions, not 
only with immediate consequences but also as a foundation for further study. 

6.6 Relevance to Conservation and Management. 
Insufficient human and financial resources, combined with the large areal 
extent to be monitored, pose major challenges for anti-poaching activities in 
Kenya (Maingi et al., 2012, Rashidi et al., 2015). Patrolling is an imperfect 
process because wildlife authorities lack the manpower to have rangers 
effectively patrol massive areas regularly (Gholami, 2018). They cannot 
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patrol everywhere all the time, and therefore there is considerable 
uncertainty surrounding the poaching carcasses datasets (Gholami, 2018), 
which most likely only represent a proportion of the total poaching that has 
occurred. It is thus necessary to consider models that estimate missing data 
and hidden variables even for areas with zero incidents.  

In the thesis, we employed spatial and spatio-temporal models with the 
ability to borrow information from those areas that have a better observation 
system in place to detect elephant poaching hotspots and spatial and spatio-
temporal trends of elephant poaching risk from 2002 to 2012 at local and 
national level in Kenya. Applying this kind of modelling, which provides a 
flexible framework for borrowing information over space and time from 
adjacent areas by using spatial and temporal random effects, provides an 
effective way to form estimates for poorly sampled areas. The findings 
presented in this thesis assist in the setting of conservation priorities and the 
concentration of management resources. This is especially important for 
wildlife authorities in Kenya that cannot offer adequate protection of wildlife 
from poaching within national parks and reserves because of high 
conservation costs and due to being understaffed with less than one ranger 
per 100 km2 of wildlife reserve (Maingi et al., 2012).  

We also quantify the key factors determining the emergence of high-risk 
elephant poaching areas at different scale levels. Understanding the spatial 
distribution of elephant carcasses in relation to biophysical and anthropogenic 
factors is critical to developing targeted management strategies for 
mitigating poaching.  

We have provided the above-mentioned contributions in support of reducing 
elephant poaching in Kenya. However, KWS should continue to carry out 
frequent surveillance and intensify patrolling within and around the detected 
elephant poaching hotspots especially targeting the areas which exist along 
international borders and areas with human settlements in and around them.  

Elephant poaching can be influenced by landscape fragmentation thus 
increasing the human-wildlife boundary and the incidence of human-wildlife 
conflicts (Fischer and Lindenmayer, 2007). Therefore, to further clarify the 
interaction between landscape fragmentation and elephant poaching risk, 
future research should seek to develop a prediction model for modelling 
future trends of elephant poaching based on different population and habitat 
fragmentation scenarios. This is an interesting topic because in a fragmenting 
landscape, wildlife numbers and diversity decline, while simultaneously 
human-wildlife conflicts increase as a result of a longer interface between 
farms and wild lands (Pittiglio, 2012). Last but not least, methods presented 
in this study may also be adjusted and applied to poaching data for other 
threatened species and in other areas to devise targeted conservation and 
management strategies in a bid to reverse current poaching trends. 
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Summary 
Poaching of elephants is an increasingly rampant problem both in Kenya and 
across Africa. It is a key driver of elephant population decline in certain 
regions of Africa. Quantifying spatial and temporal dynamics of elephant 
poaching risk at different scales provides the information needed for setting 
conservation priorities as well as for concentrating management resources 
where they are most needed. However, few studies exist that are aimed at 
quantifying the spatial and spatiotemporal patterns linked to the criminal act 
of wildlife poaching. Obtaining an absolute measure of poaching levels based 
on direct observation is practically impossible due to the covert nature of 
poaching. Detailed data are scarce, and many poaching reports are collected 
incidentally and may be only indirectly obtained. Such reports may be 
challenging to analyze because of the absence of sampling design and 
uncertainty concerning locations. It is therefore important to apply methods 
that can overcome the scarce data problem, which emerges when unstable 
estimations occur due to low counts of incidents and high sampling variation. 

Using different spatial and spatio-temporal modelling methods, with the 
ability to estimate poaching risk in areas with zero counts by borrowing 
information from neighboring areas and experts, we investigated how 
elephant poaching risk may change at different locations, times or for 
combinations of space and time at a local and national level, and we tried to 
identify key factors influencing elephant poaching risk. Applying this kind of 
modelling, which provides a flexible framework for borrowing information 
over space and time from adjacent areas by using spatial and temporal 
random effects, provides an effective way to form estimates for poorly 
sampled areas. 

Poaching data were obtained from the Kenya Wildlife Service’s database on 
elephant mortality. Based on the literature and prior scoping discussion, we 
selected the potential risk factors associated with poaching. Thirty experts 
from the Kenya Wildlife Service were interviewed regarding elephant and 
poaching These factors included: (1) distance to roads, (2) distance to 
settlements, (3) distance to rivers and streams, (4) density of waterholes, 
(5) elevation, (6) slope, (7) mean normalized difference vegetation index 
(NDVI), (8) standard deviation of NDVI, (9) elephant population density, (10) 
livestock density, (11) distance to international border, and (12) seasonal 
timing of elephant poaching (i.e., poaching probabilities in the dry and wet 
seasons). 

Our results indicate that although hotspot predictions varied for the different 
methods, some areas were consistently identified as encompassing poaching 
hotspots. Moreover, our analysis at national level shows that high poaching 
risk areas in Kenya have varied annually, shifting from the south-east to the 
west between 2002 and 2012. They are shifting from areas with high 
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recorded elephant poaching incidents to areas where minimal poaching 
incidents have been historically reported. The results also demonstrate that 
the Tsavo ecosystem is the main persistently high-risk area at national level 
in Kenya between 2002 and 2012. It was also found that the mean trend in 
elephant poaching is increasing in the Tsavo ecosystem over time. The 
results further showed that two blocks, located in the Tsavo west national 
park and the Taita ranches, have been consistently identified as poaching 
hotspots irrespective of the model used. Furthermore, our results indicate 
that areas with the highest poaching risk differ between dry and wet seasons. 

In addition, the results revealed that adding risk factors enhances the model 
fit for assessing poaching risk. Furthermore, results obtained from the 
poaching risk factor analysis indicated that similarities occurred between risk 
factors detected at the local and national level, but also that some differences 
emerged. For example, the seasonal timing of elephant poaching, density of 
waterholes, distance to a road, and distance to an international border are all 
key factors persistently influencing elephant poaching risk at local and 
national level in Kenya. Distance to an international border seems to have 
the greatest influence on elephant poaching at the local level, while the 
distance to a road is most influential at the national level, with a variation 
greater than other risk factors. Moreover, it was found that distance to 
settlements was significantly identified as a key factor that influences the 
spatial patterns of elephant poaching risk at the national level while was not 
significant at the local level. On the other hand, livestock density was a 
significant predictor, which significantly influenced the spatial variation in 
trends regarding elephant poaching risk over time at a local level but was not 
significant at the national level. 

These findings can be used to guide the deployment of policing resources in 
areas with relatively increasing poaching trends, or to improve or alter 
management actions. The Kenyan Wildlife Service (KWS) should continue to 
carry out frequent surveillance and intensify patrolling within and around the 
detected elephant poaching hotspots especially targeting the areas which 
exist along international borders and areas with human settlements in and 
around them. The findings could also be incorporated in future national and 
regional management programs to further -reduce the poaching of elephants. 

 



 

93 

Samenvatting 
Het stropen van olifanten is een steeds groter wordend probleem, zowel in 
Kenia als in heel Afrika. Stroperij is een belangrijke oorzaak van de 
achteruitgang van de olifantenpopulatie in bepaalde regio's van Afrika. Het 
kwantificeren van de ruimtelijke en temporele dynamiek van het risico van 
olifantstroperij op verschillende schaalniveaus biedt de informatie die nodig is 
voor het in stand houden van de diersoort, alsmede voor het bepalen van 
hulp op het gebied van management waar deze het meest nodig zijn. Er 
bestaan echter weinig studies die zijn gericht op het kwantificeren van de 
ruimtelijke en ruimte-temporele patronen die verband houden met de 
criminele daad van het stropen van wilde dieren. Het verkrijgen van een 
absolute maat voor het niveau van stroperij op basis van directe waarneming 
is praktisch onmogelijk vanwege de verborgen aard van stroperij. 
Gedetailleerde gegevens zijn schaars en veel stroperij rapportages worden 
incidenteel verzameld en kunnen alleen indirect worden verkregen. Dergelijke 
rapporten kunnen een uitdaging zijn om te analyseren vanwege de 
afwezigheid van een steekproef basis alsmede de onzekerheid over locaties. 
Het is daarom belangrijk om methoden toe te passen die het schaarse 
gegevensprobleem kunnen oplossen, vooral wanneer onstabiele schattingen 
worden gedaan als gevolg van de lage aantallen incidenten tegenover de 
hoge variatie van het aantal genomen monsters.  

Onderzocht is, hoe het risico van olifanten stroperij kan veranderen op 
verschillende locaties, tijden of een combinatie hiervan op beide nationaal en 
lokaal niveau. Hiervoor werden verschillende ruimtelijke en ruimte-temporele 
modellerings-methoden gebruikt, met de mogelijkheid om stropersrisico's te 
schatten in gebieden met nul-tellingen door informatie te lenen van 
aangrenzende gebieden en experts. Daarnaast is er geprobeerd om de 
belangrijkste factoren te identificeren die van invloed zijn op het risico van 
olifanten stroperij. Het toepassen van deze type modellering, dat een flexibel 
raamwerk biedt met behulp van ruimtelijke en temporele willekeurige 
effecten, biedt een effectieve manier om schattingen te maken voor de slecht 
ingeschatte/gecontroleerde gebieden. 

Stroperijgegevens werden verkregen uit de database van de Kenya Wildlife 
Service over olifanten sterfte. Op basis van de literatuur en een eerdere 
verkennende discussie zijn potentiële risicofactoren voor stroperij 
geselecteerd op basis van discussies met experts en eerder onderzoek. Dertig 
deskundigen van de Kenya Wildlife Service werden geïnterviewd over 
olifanten en stroperijen. Deze factoren omvatten: (1) afstand tot wegen, (2) 
afstand tot nederzettingen, (3) afstand tot rivieren en beken, (4) dichtheid 
van waterpoelen, (5) hoogte, (6) helling, (7) gemiddelde genormaliseerde 
verschil-vegetatie-index (NDVI), (8) standaardafwijking van NDVI, (9) olifant 
populatiedichtheid, (10) veebezetting, (11) afstand tot internationale grens, 
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en (12) seizoensgebonden timing van olifantstroperij (dwz stroperskansen in 
de droge- en natte seizoenen). 

Onze resultaten geven aan dat, hoewel hot spot voorspellingen variëerden 
voor de verschillende methoden, sommige gebieden consequent werden 
geïdentificeerd als omvattende stropers hot spots. Bovendien laat onze 
analyse op nationaal niveau zien dat streken met hoge stropersrisico's in 
Kenia jaarlijks variëren, en verschuiven van het zuid-oosten naar het westen 
tussen 2002 en 2012. Ze verplaatsen zich van gebieden met hoge 
geregistreerde olifanten stroperij incidenten naar gebieden waar historisch 
gezien minimale stroperij incidenten zijn gerapporteerd. De resultaten tonen 
ook aan dat het Tsavo-ecosysteem tussen 2002 en 2012 het belangrijkste 
persistente hoog-risicogebied op nationaal niveau in Kenia is. Ook werd 
vastgesteld dat de gemiddelde trend in olifantstroperij in de loop van de tijd 
toeneemt in het Tsavo-ecosysteem. De resultaten toonden verder aan dat 
twee gebieden, gelegen in het Tsavo West National Park en de Taita Ranches, 
consequent zijn geïdentificeerd als stropers hotspots, ongeacht het model dat 
gebruikt werdt. Bovendien geven onze resultaten aan dat gebieden met het 
hoogste stroperij risico verschillen tussen droge en natte seizoenen. 

Bovendien toonden de resultaten aan dat het toevoegen van risicofactoren 
het model, dat geschikt is voor het beoordelen van het risico op stroperij, 
verbetert. Bovendien gaven de resultaten van de risicofactor-analyse aan dat 
er overeenkomsten waren tussen op lokaal en nationaal niveau 
gedetecteerde risicofactoren, maar ook dat er enkele verschillen naar voren 
kwamen. Bijvoorbeeld, de seizoensgebonden timing van de olifanten 
stroperij, veelvuldigheid van water bronnen, afstand tot een weg en afstand 
tot een internationale grens zijn allemaal belangrijke factoren die het risico 
van stroperij op lokaal en nationaal niveau in Kenia blijven beïnvloeden.  

De factor van de afstand tot een internationale grens lijkt de grootste invloed 
te hebben op het stropen van olifanten op lokaal niveau, terwijl de afstand 
tot een weg het meest invloedrijke is op nationaal niveau, met een grotere 
variatie dan andere risicofactoren. Bovendien werd vastgesteld dat afstand 
tot nederzettingen significant werd geïdentificeerd als een sleutelfactor die de 
ruimtelijke patronen van het risico van olifantstroperij op nationaal niveau 
beïnvloedt, terwijl deze op lokaal niveau niet significant was. Anderzijds was 
de veebezetting een significante voorspeller, die de ruimtelijke variatie in 
trends ten aanzien van het risico van olifantenstroperij, over een bepaalde 
tijd, op lokaal niveau significant beïnvloedde, maar op nationaal niveau niet 
significant was. 

Deze bevindingen kunnen worden gebruikt als een richtlijn voor de inzet van 
politiemiddelen in gebieden met relatief toenemende stroperij, of om 
managementacties te verbeteren of te wijzigen. De Keniaanse Wildlife 
Service (KWS) moet frequente bewaking blijven uitvoeren en de patrouilles in 
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en om de gedetecteerde olifantstrop hotspots intensiveren, met name gericht 
op de gebieden langs internationale grenzen en gebieden met menselijke 
nederzettingen in en rondom hen. De bevindingen kunnen ook worden 
opgenomen in toekomstige nationale en regionale beheersprogramma's om 
het stropen van olifanten verder te verminderen. 
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Appendix Table A1: VIFs of the remaining variables after excluding the 
collinear variables 

Explanatory variables VIF 

Distance to road 1.087 
Waterhole  density 1.388 
Distance to river 1.607 
Probability of Elephant poaching in wet season  1.307 
Probability of Elephant poaching in dry season   1.309 
Standard deviation of NDVI 1.316 
Elephant population density 1.277 
Distance to international border 1.566 
Livestock density 1.733 
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Appendix Table A2: Descriptive statistics for elephant poaching incidents between 
2002 and 2012 within the defined blocks in the Greater Tsavo ecosystem. 
Blocks Mean  Sd Max Min 
1 1.09 2.9 10 0 
2 1.27 2.7 8 0 
3 1.90 3.20 8 0 
4 4.09 7.15 24 0 
5 0.63 2.01 7 0 
6 6.63 11.09 35 0 
7 2.18 4.70 14 0 
8 3.72 6.68 20 0 
9 3 5.02 14 0 
10 8.06 20.11 70 0 
11 4.09 7.03 21 0 
12 11.45 17.39 45 0 
13 14.54 26.51 84 0 
14 2 4.74 16 0 
15 1.18 2.51 7 0 
16 0.54 1.72 6 0 
17 1.45 4.59 16 0 
18 0.81 2.58 9 0 
19 1.09 3.44 12 0 
20 0.18 0.57 2 0 
21 2 3.33 9 0 
22 2.90 5.66 19 0 
23 0 0 0 0 
24 3.90 9.42 32 0 
25 0 0 0 0 
26 0 0 0 0 
27 1.09 3.44 12 0 
28 0 0 0 0 
29 0 0 0 0 
30 3.09 6.21 21 0 
31 0.81 2.58 9 0 
32 1.63 3.49 10 0 
36 0 0 0 0 
37 3.45 6.28 19 0 
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Appendix Table A3: Descriptive statistics for elephant poaching incidents in in the dry 
seasons between 2002 and 2012 within the defined blocks in the Greater Tsavo 
ecosystem. 
Blocks Mean  Sd Max Min 
1 0.18 0.38 1 0 
2 0.18 0.38 1 0 
3 0.18 0.38 1 0 
4 0.27 0.44 1 0 
5 0.09 0.28 1 0 
6 0.81 1.33 4 0 
7 0.18 0.57 2 0 
8 0.81 1.74 6 0 
9 0.36 0.64 2 0 
10 1 1.9 5 0 
11 0.36 0.88 3 0 
12 1.09 1.92 6 0 
13 1.18 2.28 6 0 
14 0.36 0.64 2 0 
15 0.18 0.38 1 0 
16 0.09 0.28 1 0 
17 0.27 0.61 2 0 
18 0 0 0 0 
19 0 0 0 0 
20 0 0 0 0 
21 0.36 0.48 1 0 
22 0.45 0.89 3 0 
23 0 0 0 0 
24 0.36 1.14 4 0 
25 0 0 0 0 
26 0 0 0 0 
27 0.18 0.57 2 0 
28 0 0 0 0 
29 0 0 0 0 
30 0.36 0.64 2 0 
31 0.09 0.28 1 0 
32 0.18 0.38 1 0 
36 0 0 0 0 
37 0.45 0.78 2 0 
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Appendix Table A4: Descriptive statistics for elephant poaching incidents in the wet 
seasons between 2002 and 2012 within the defined blocks in the Greater Tsavo 
ecosystem. 

Blocks Mean  Sd Max Min 
1 0 0 0 0 
2 0 0 0 0 
3 0.09 0.28 1 0 
4 0.27 0.61 2 0 
5 0 0 0 0 
6 0.18 0.38 1 0 
7 0.18 0.57 2 0 
8 0 0 0 0 
9 0.09 0.28 1 0 
10 0.45 1.15 4 0 
11 0.09 0.28 1 0 
12 0.54 1.15 4 0 
13 1.18 1.64 4 0 
14 0 0 0 0 
15 0 0 0 0 
16 0 0 0 0 
17 0 0 0 0 
18 0 0 0 0 
19 0.09 0.28 1 0 
20 0 0 0 0 
21 0 0 0 0 
22 0 0 0 0 
23 0 0 0 0 
24 0.09 0.28 1 0 
25 0 0 0 0 
26 0 0 0 0 
27 0 0 0 0 
28 0 0 0 0 
29 0 0 0 0 
30 0.18 0.38 1 0 
31 0 0 0 0 
32 0 0 0 0 
36 0 0 0 0 
37 0.09 0.28 1 0 
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Appendix Table A5: Posterior summaries for ß coefficients of the explanatory 
variables and precision of area-specific trends in spatio-temporal Bayesian modelling 
Explanatory variables mean ß (credible interval: 2.5%, 

97.5%) 

Probability of elephant poaching in 
wet season 

0.62 (0.022, 1.237)  

Probability of elephant poaching in 
dry season 

0.55 (-0.016, 1.147) 

Livestock density 1.07 (0.246, 2.211)  
Waterhole density  0.77 (0.054, 1.288)  
Elephant population density 0.92 (-0.331, 1.933)  
Distance to road 0.55(0.004, 1.144) 
Distance to rivers and streams 0.61 (-0.460, 1.408) 
Standard deviation (STD) of NDVI 1.04 (-1.373, 3.495) 
Distance to international border 1.49 (0.421, 2.711) 
Prec delta: precision of area-specific 
trends  

0.01 (0.005 – 0.017) 
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Appendix figure B1:  

 
WinBUGS code for Model 1.1 
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