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Summary 
Rapid automated information generation about the damages to the 
buildings after a destructive disaster event such as an earthquake is crucial 
to carry out speedy response and recovery actions. Remote sensing is the 
most suitable technology to provide data for automatic extraction of 
damage information for such spatially extensive events. In particular 
oblique airborne images from manned and unmanned aerial platforms have 
been recognized as a potentially more useful data source for building 
damage assessment than conventional vertical images, due to the 
following specific reasons: these images are generally captured with (i) 
multiple camera views (coverage of top and sides of the buildings) which 
is crucial for holistic building damage assessment; (ii) high spatial 
resolution (rich radiometric features); (iii) high frame overlap making it 
suitable to generate 3D point clouds (rich geometric features). Data with 
these characteristics are an important prerequisite for the automatic 
extraction of fundamental information for building damage assessment as 
described below. Although oblique airborne images and derived 3D point 
clouds are desirable for damage assessment, reliable, robust and 
operational methods for automated extraction of damage information from 
such data are rare. Thus the objective of this research was to design and 
develop methods for automatic extraction of information needed for 
damage assessment, specifically from the oblique airborne images and the 
3D point clouds derived from them. Pertaining to this, several methods 
were developed as summarized below: 

1) Automated building detection: Identification of individual buildings
is the first step in building damage assessment process. Photogrammetric 
point clouds have been considered for building detection process, but they 
are often noisy and error prone. Moreover, damaged scenes appear 
cluttered, which makes object recognition complex. Hence, a building 
detection method particularly suitable for this kind of data and scenario 
was developed and tested. It achieved an overall accuracy of 96%.  

2) Automated damage detection using supervised approach: Debris,
rubble piles and spalling are strong evidences to identify heavily damaged 
structures. The texture features have often been reported to be superior for 
the identification of these damage evidences from images. Based on 
preliminary analysis it was anticipated that texture features such as Gabor 
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and Histogram of Oriented Gradients (HoG) would be more useful 
compared to other widely reported features for damaged region detection. 
Supervised classification models based on Support Vector Machine 
(SVM) and Random Forests (RF) were trained using the above features 
independently. The classifier based on Gabor features with RF performed 
best, identifying 95% of the damaged regions. However, the developed 
method suffered from a generalization problem, where the accuracy 
dropped by around 30% when tested on another independent data set. To 
address this generalization issue, a method using visual bag-of-words 
(BoW) was developed using the above features–HoG and Gabor. The 
developed method was tested using four different data sets that varied 
substantially in terms of data and scene characteristics. The overall 
accuracy improved by 14% (i.e., from 77% to 91%) when applying the 
BoW approach with the Gabor features on the most complex dataset, 
which was used to test the generalization capability. It was observed that 
these texture features fail in specific urban settings with complex 
radiometric characteristics e.g., L’Aquila city in Italy. In the past few 
years, deep learning features have been reported as being superior to 
conventional handcrafted features for many applications in remote sensing 
and related domains. Hence, a method based on deep learning features was 
developed for damage detection, and achieved an accuracy around 90% 
for the areas where the above mentioned conventional textures features 
failed. Also, patch level 3D point cloud features were proposed and used 
in addition to image-based deep learning features and achieved an 
accuracy improvement of 3% to 7% under different settings. In contrast to 
the above mentioned supervised methods based on the batch learning 
setting, an incremental (online) learning based method using deep learning 
features was developed for damage detection. This was attempted to 
demonstrate how the streaming information about the damaged locations 
(possibly available at different point in time by various sources during 
disaster event) can be used to dynamically frame the training samples to 
incrementally build a reliable and robust classifier for damage detection. 
The obtained results show that the developed incremental classifier 
performed on par with the classifiers based on batch learning approach 
when deep learning features were used.  

3) Damaged region identification using unsupervised approaches: The
aforementioned supervised approaches work based on aprioristic 
assumptions of damaged building’s shapes and textures, which sometimes 
lead to uncertainties and misdetections. The usage of pre-event data as 
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reference could be of help to resolve these disputes. Towards this, a 
methodology based on an unsupervised approach for comparing the 3D 
point clouds and airborne oblique images of pre- and post-event was 
developed for damage detection. The developed methodology detected 
87% of damaged elements based on element-wise comparison in pre- and 
post-event. The missed detections were mainly due to varying noise levels 
within the point cloud, which hindered the recognition of some structural 
elements. Also, the method for identifying openings in the building created 
due to damage using post-event image and point cloud was developed 
based on an unsupervised approach. In this method, the gaps in the 3D 
point cloud were detected in an unsupervised manner. Subsequently, the 
gaps that result from damages were classified based on a set of rules. The 
developed approach detected all gaps due to damage in the considered 
study area.  
 
4) Accurate roof segment delineation for 3D reconstruction: For the 
holistic and reliable damage assessment, 3D modelling of buildings was 
realized as the desirable product, particularly for assessing the building 
with intact roofs and damaged façades. Automated and accurate 
delineation of roof faces of buildings is a minimal requirement for 
automatic 3D reconstruction of buildings using 3D point clouds. Image 
segmentation methods, incorporating 3D features in images (at pixel and 
super-pixel levels), were developed for delineating independent roof faces 
of the building. Based on these roof faces the 3D reconstruction was done 
using the existing approach. The quality of the 3D models depends on the 
accuracy of the roof face delineation. The 3D model of the buildings 
obtained for the chosen study area was visually close enough to the shape 
of the original buildings, thus depicting the accuracy of the roof face 
delineation method. 
 
The methods developed through this research were integrated to build an 
automated damage assessment system which was thoroughly 
demonstrated using the data obtained through EU-FP7 project 
RECONASS (www.reconass.eu, a pilot project in the field of near real-
time damage assessment). This demonstration yielded promising results, 
thereby highlighting the potentials of the developed system to scale well 
to applications in the real-world setting with minimal enhancements. 
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Samenvatting 
 Snelle geautomatiseerde informatieverstrekking over de schade aan de 
gebouwen na een verwoestende ramp zoals een aardbeving is cruciaal om 
snelle reddings- en herstelacties uit te voeren. Remote sensing is de 
geschiktste technologie om gegevens te verschaffen voor automatische 
extractie van schade-informatie voor dergelijke ruimtelijk omvangrijke 
gebeurtenissen. Met name oblieke luchtbeelden van bemande en 
onbemande vliegtuigen zijn erkend als een potentieel nuttiger 
gegevensbron voor het beoordelen van schade aan gebouwen dan 
conventionele verticale opnamen, vanwege de volgende specifieke 
redenen: deze beelden worden meestal vastgelegd met (i) meerdere 
camera’s (opname van de bovenkant en zijkanten van gebouwen) die 
cruciaal zijn voor een holistische beoordeling van schade aan gebouwen; 
(ii) hoge ruimtelijke resolutie (duidelijke radiometrische kenmerken); (iii) 
de hoge mate van overlap maakt de beelden geschikt om 3D-puntenwolken 
te genereren (duidelijke geometrische kenmerken). Beelden met deze 
kenmerken zijn een belangrijke voorwaarde voor de automatische 
extractie van fundamentele informatie voor schadebeoordeling van 
gebouwen, zoals hieronder beschreven. Hoewel oblieke luchtfoto’s en 
afgeleide 3D-puntenwolken wenselijk zijn voor het beoordelen van 
schade, zijn betrouwbare, robuuste en operationele methoden voor 
geautomatiseerde extractie van schade-informatie uit dergelijke beelden 
zeldzaam. Het doel van dit onderzoek was om methoden te ontwerpen en 
te ontwikkelen voor automatische extractie van informatie die nodig is 
voor schadebepaling, met name uit oblieke luchtfoto’s en de daaruit 
afgeleide 3D-puntenwolken. Hiervoor zijn verschillende methoden 
ontwikkeld zoals hieronder samengevat: 
 
1) Geautomatiseerde gebouwdetectie: Identificatie van individuele 
gebouwen is de eerste stap in het proces van schadebeoordeling. 
Overwogen is om fotogrammetrische puntwolken te gebruiken voor het 
detectieproces van gebouwen, maar deze bevatten vaak te veel ruis en 
grove fouten. Bovendien lijken beschadigde scènes rommelig, waardoor 
de objectherkenning complex wordt. Daarom is een 
gebouwdetectiemethode ontwikkeld en getest, die bijzonder geschikt is 
voor dit soort gegevens en scenario's. Hiermee is een algehele 
nauwkeurigheid van 96% bereikt. 
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2) Geautomatiseerde schadeherkenning met behulp van een 
gecontroleerde aanpak: puin, puinhopen en afbrokkelende gevels zijn 
sterke bewijzen om zwaar beschadigde constructies te identificeren. Van 
textuurkenmerken wordt vaak gezegd dat ze superieur zijn voor de 
identificatie van dergelijke schade in afbeeldingen. Op basis van een 
voorlopige analyse werd verwacht dat textuurkenmerken zoals Gabor en 
Histogram of Oriented Gradients (HoG) nuttiger zouden zijn in 
vergelijking met andere veel gerapporteerde functies voor detectie van 
beschadigingen. Gecontroleerde classificatoren gebaseerd op Support 
Vector Machine (SVM) en Random Forests (RF) zijn onafhankelijk van 
elkaar met behulp van de bovengenoemde functies getraind. De 
classificator op basis van Gaborkenmerken met RF presteerde het beste en 
identificeerde 95% van de beschadigde gebieden. De ontwikkelde 
methode had echter te lijden onder een generalisatieprobleem, waarbij de 
nauwkeurigheid met ongeveer 30% daalde bij testen op andere 
onafhankelijke beelden. Om dit generaliseringsprobleem aan te pakken, 
werd een methode ontwikkeld met behulp van visuele Bag-of-Words 
(BoW) op basis van de bovenstaande HoG en Gaborkenmerken. De 
ontwikkelde methode is getest met behulp van vier verschillende datasets 
die aanzienlijk varieerden in de eigenschappen van zowel de beelden als 
de scènes. De algehele nauwkeurigheid verbeterde met 14% (d.w.z. van 
77% tot 91%) bij het toepassen van de BoW-methode met de Gabor-
kenmerken op de meest complexe gegevensreeks, die werd gebruikt om 
het vermogen tot generaliseren te testen. Vastgesteld werd dat deze 
textuurkenmerken falen in specifieke stedelijke omgevingen met 
complexe radiometrische kenmerken, bijvoorbeeld in de stad L'Aquila in 
Italië. In de afgelopen paar jaar zijn deep learning-kenmerken 
gepubliceerd, die voor veel toepassingen in de aardobservatie en 
aanverwante domeinen superieur zijn aan de conventionele handgemaakte 
kenmerken. Daarom werd een methode voor schadeherkenning op basis 
van deep learning-kenmerken ontwikkeld. Hiermee werd een 
nauwkeurigheid van ongeveer 90% bereikt voor de gebieden waar de 
bovengenoemde conventionele textuurkenmerken faalden. Ook zijn 3D-
puntenwolkkenmerken voorgesteld en gebruikt naast de op beelden 
gebaseerde kenmerken voor deep learning. Hiermee werd een 
nauwkeurigheidsverbetering van 3% tot 7% onder verschillende 
instellingen bereikt. In tegenstelling tot de hierboven beschreven 
gecontroleerde methoden op basis van een batch-leeromgeving, werd een 
incrementele (online) op leren gebaseerde methode ontwikkeld met behulp 
van deep learning-kenmerken voor schadeherkenning. Hiermee is 
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geprobeerd aan te tonen hoe de informatie over de beschadigde locaties 
(mogelijk beschikbaar op verschillende tijdstippen uit verschillende 
bronnen tijdens een rampgebeurtenis) kan worden gebruikt om de 
trainingsdata dynamisch aan te leveren om zo incrementeel een 
betrouwbare en robuuste classificator voor schadeherkenning te 
ontwikkelen. De verkregen resultaten laten zien dat de ontwikkelde 
incrementele classificator op hetzelfde niveau presteerde als de 
classificatoren op basis van de batch-leerbenadering wanneer deep 
learning-kenmerken werden gebruikt. 
 
3) Identificatie van beschadigde gebieden met behulp van een 
ongecontroleerde aanpak: de bovengenoemde gecontroleerde aanpak 
werkt op basis van a priori veronderstellingen over beschadigde 
gebouwvormen en -structuren, die soms leiden tot onvolledigheid en 
onjuistheid. Het gebruik van gegevens van voor een aardbeving als 
referentie zou kunnen helpen om deze problemen op te lossen. Hiertoe 
werd een methode ontwikkeld op basis van een ongecontroleerde aanpak 
voor het vergelijken van de 3D-puntwolken en oblieke luchtfoto’s van 
voor en na de gebeurtenis. De ontwikkelde methodologie detecteerde 87% 
van de beschadigde elementen op basis van deze vergelijking. De 
onvolledigheid was voornamelijk te wijten aan het variëren van de ruis in 
de puntenwolk, wat de herkenning van sommige gebouwelementen 
bemoeilijkte. Ook is een methode ontwikkeld voor het identificeren van 
gaten in gebouwen die zijn ontstaan als gevolg van schade. In deze 
methode werden de gaten in de 3D-puntenwolk met een ongecontroleerde 
aanpak gedetecteerd. Vervolgens werden de gaten die het gevolg zijn van 
schades geclassificeerd op basis van een reeks regels. De ontwikkelde 
aanpak detecteerde alle gaten als gevolg van schade in het onderzochte 
studiegebied. 
 
4) Nauwkeurige omlijning van dakvlakken voor 3D-reconstructie: 
voor de holistische en betrouwbare schadebeoordeling werd een methode 
voor 3D-modellering van gebouwen gerealiseerd, vooral voor de 
beoordeling van gebouwen met intacte daken en beschadigde gevels. 
Geautomatiseerde en nauwkeurige omlijning van dakvlakken van 
gebouwen in foto’s is een minimale vereiste voor de automatische 3D-
reconstructie van gebouwen uit 3D-puntenwolken. Voor het omlijnen van 
de verschillende dakvlakken van een gebouw zijn 
beeldsegmentatiemethoden ontwikkeld, die 3D-kenmerken in 
rasterbeelden gebruiken (op pixel- en superpixelniveau). Op basis van 
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deze dakvlakken werd de 3D-reconstructie uitgevoerd met behulp van een 
al bestaande aanpak. De kwaliteit van de 3D-modellen is afhankelijk van 
de nauwkeurigheid van de omlijning van dakvlakken. De 3D-modellen 
van de gebouwen, die voor het gekozen studiegebied werden verkregen, 
waren visueel voldoende dicht bij de vorm van de werkelijke gebouwen 
en gaven daarmee de nauwkeurigheid weer van de omlijningsmethode van 
dakvlakken. 
 
De methoden, die in dit onderzoek zijn ontwikkeld, zijn geïntegreerd om 
een geautomatiseerd schadebeoordelingssysteem op te bouwen. Dit 
systeem is grondig gedemonstreerd met behulp van de gegevens die zijn 
verkregen uit het EU-FP7-project RECONASS (www.reconass.eu, een 
pilotproject op het gebied van bijna-realtime schadebeoordeling). Deze 
demonstratie leverde veelbelovende resultaten op en benadrukte zo het 
potentieel van het ontwikkelde systeem om zich met minimale noodzaak 
tot afstelling goed aan te passen aan toepassingen in de praktijk. 
  



 ix

Acknowledgement  
This dissertation would not have been possible without the support of 
many people who in one way or another have contributed and extended 
their precious knowledge and experience in my PhD studies. It is my 
pleasure to express my gratitude to them. 
 
My PhD life was fully peaceful and pleasant if few things were excluded. 
I would say this was only  because of my two supervisors Prof. Markus 
Gerke and Prof. Norman Kerle. Before joining PhD, I was a Software 
Engineer with some background in Image Processing. When I joined my 
PhD in 2013, I was not proficient in  Photogrammetry and had no idea 
about what 3D point cloud was. I had learnt all these technical stuff 
effortlessly because of Markus. He taught me any concept like teaching to 
a kid. I feel blessed and lucky to have Markus as my supervisor. Norman 
is a great motivator and critic. He always notices and passes comments on 
even minor things as he expects his PhD students to be  qualified research 
professionals in terms of both technical and  interpersonal skills. Thus, his 
constructive criticism encouraged my critical thinking and technical 
writing which helped me a lot to improve myself. Both of my supervisors 
spent enormous time for my PhD contributing through technical 
discussion, paper and thesis revision. As I got lot of support from my 
supervisors, I had an opportunity to explore several other interesting things 
during my PhD life such as learning music, exploring my skills on writing 
poems and to enrich my knowledge with history, political and social issues 
of my country. I’m always thankful to Markus and Norman for making my 
PhD life easier and joyful.   
 
I’m grateful to my promotor Prof. George Vosselman for his continuous 
support and encouragement throughout my PhD. Certainly, it is a great 
pride for me to obtain this PhD degree under a legend like Prof. George 
Vosselman in a reputed institution like ITC. So, I would like to express my 
sincere gratitude to ITC and the European Commission (funding agency 
of RECONASS project) for providing me this PhD opportunity. 
  
I would like to thank our department secretary Ms. Teresa for her great 
support on both official and personal things that made my life easier in The 
Netherlands.  
 



 x

There is one person who has always been a pillar of support throughout 
my thesis and personal life. That’s my friend Annamalai Narayanan and I 
feel that he is my perfect research partner as our background, interests and 
thought process are almost similar. I would like to thank him for the 
countless intensive brainstorming sessions that always helped me to 
improve my work.  
 
My heartfelt thanks to my undergraduate professors Dr. Alaguraja, Dr. 
Sathyabama and Dr. Kavitha Devi for their special efforts to make me 
succeed in every step of my career.   
 
My deepest gratitude to my sister-in-law Geetha who stood behind me in 
hard times especially when I resigned my job before joining my Master’s 
course. 
 
Special mention goes to my fellow PhD students and other faculties in our 
department for being supportive and providing a friendly working 
environment.  
 
Last but not the least, I thank my wife for supporting me spiritually 
throughout this thesis work and my life in general. 
 
  
  



 xi

Table of Contents 
 
Summary .................................................................................................... i 
Samenvatting ............................................................................................. v 

Acknowledgement ................................................................................... ix 

List of figures ........................................................................................ xvii 
List of tables .......................................................................................... xxi 
1 Introduction ........................................................................................ 1 

1.1 Background ................................................................................. 2 
1.2 Satellite and aerial images for damage assessment ..................... 4 
1.3 Limitations with vertical data for building damage assessment . 6 
1.4 Airborne oblique images for building damage assessment ......... 7 
1.5 Unmanned Aerial Vehicles ......................................................... 9 
1.6 Research background, objectives and contributions ................. 10 
1.7 Structure of the thesis ................................................................ 12 
1.8 References of chapter 1 ............................................................. 15 

2 Identification of damage in buildings based on gaps in 3D point 
clouds from very high resolution oblique airborne images ..................... 19 

Abstract ................................................................................................ 20 
2.1 Introduction ............................................................................... 21 
2.2 Previous work ........................................................................... 23 
2.3 Methods ..................................................................................... 24 

2.3.1 Initial building detection and delineation .......................... 24 

2.3.2 Gap detection on element level .......................................... 27 

2.3.3 Gap classification ............................................................... 28 

2.4 Experimental results and discussion ......................................... 34 
2.4.1 Building detection and delineation – dataset: oblique images 
from manned aircraft ....................................................................... 34 

2.4.2 Gap detection and classification on element level – dataset: 
images from UAV ............................................................................ 41 

2.4.3 Gap detection and classification on element level – dataset 
3: Nunspeet UAV ............................................................................ 53 

2.5 Overall discussion and conclusion ............................................ 55 
2.6 References of Chapter 2 ............................................................ 57 

3 Identification of structurally damaged areas in airborne oblique 
images using a visual-bag-of-words approach ........................................ 61 



 xii 

Abstract ................................................................................................ 62 
3.1 Introduction ............................................................................... 63 
3.2 Methods ..................................................................................... 67 

3.2.1 Damage classification based on global representation of 
features 67 

3.2.2 Damage detection using Visual-Bag-of-Words ................. 70 

3.3 Experiments and Results ........................................................... 72 
3.3.1 Dataset 1: UAV images ..................................................... 75 

3.3.2 Dataset 2: Oblique view manned aircraft images .............. 78 

3.3.3 Dataset 3: Street view images ............................................ 80 

3.3.4 Dataset 4: Datasets 1, 2 and 3 are combined ..................... 82 

3.4 Observations and analysis ......................................................... 84 
3.4.1 Global representation of HoG and Gabor wavelet for damage 
classification .................................................................................... 85 

3.4.2 BoW-based feature representation for damage classification
 86 

3.4.3 Impact of choice of learning algorithm ............................. 88 

3.5 Discussion ................................................................................. 89 
3.6 Conclusion and outlook ............................................................ 91 
3.7 References of Chapter 3 ............................................................ 92 

4 Disaster damage detection through synergistic use of deep learning 
and 3D point cloud features derived from very high resolution oblique 
aerial images, and multiple-kernel- learning ........................................... 97 

Abstract ................................................................................................ 98 
4.1 Introduction and related works ................................................. 99 
4.2 Methodology ........................................................................... 103 
4.3 Experiments ............................................................................ 112 

4.3.1 Datasets ............................................................................ 112 

4.3.2 Preparation of training samples ....................................... 113 

4.3.3 Experiment 1: CNN features only for damage detection . 116 

4.3.4 Experiment 2: Transferability of CNN features for damage 
detection ......................................................................................... 120 

4.3.5 Experiment 3: 3D point cloud features for damage detection 
alone 123 



 xiii

4.3.6 Experiment 4: Integration of CNN and 3D point cloud 
features using MKL for damage detection .................................... 125 

4.4 Overall discussions, conclusions and future works ................ 129 
4.5 References of chapter 4 ........................................................... 132 

5 Potential of multi-temporal oblique airborne imagery for structural 
damage assessment ................................................................................ 137 

Abstract .............................................................................................. 138 
5.1 Introduction & related works .................................................. 139 
5.2 Data description ...................................................................... 140 
5.3 Methodology for Point cloud based damage detection and 
classification ....................................................................................... 141 

5.3.1 Building delineation from 3D point cloud: ...................... 142 

5.3.2 Change detection to identify the missing building elements 
in post event: .................................................................................. 143 

5.3.3 Change classification (inferring reason for change): ....... 148 

5.4 Results ..................................................................................... 155 
5.4.1 Data used: ........................................................................ 155 

5.4.2 Results of building delineation: ....................................... 155 

5.4.3 Results of the change detection methods to identify the 
missing building elements in post event: ....................................... 156 

5.4.4 Results of change classification: ...................................... 157 

5.5 Discussion ............................................................................... 158 
5.6 Conclusion and outlook .......................................................... 159 
5.7 References of Chapter 5 .......................................................... 160 

6 Towards automated satellite image segmentation and classification 
for assessing disaster damage using data-specific features with incremental 
learning .................................................................................................. 161 

Abstract .............................................................................................. 162 
6.1 Introduction & related works .................................................. 163 
6.2 Methodology ........................................................................... 165 
6.3 Experiments ............................................................................ 168 

6.3.1 Data used: ........................................................................ 168 

6.3.2 Experimental steps and implementation details: ............. 169 

6.4 Results ..................................................................................... 169 
6.5 Discussions, conclusions and future work .............................. 171 
6.6 References of Chapter 6 .......................................................... 172 



 xiv 

7 Segmentation of UAV-based images incorporating 3D point cloud 
information ............................................................................................ 175 

Abstract .............................................................................................. 176 
7.1 Introduction and related work ................................................. 177 
7.2 Methods ................................................................................... 179 

7.2.1 Building delineation from 3D point cloud ....................... 179 

7.2.2 Segmentation ................................................................... 180 

7.3 Experimental results ................................................................ 184 
7.4 Data set 1 and results .............................................................. 185 

7.4.1 Building delineation in 3D point cloud and in image of data 
set-1: 185 

7.4.2 Radiometric features and various threshold values used in 
segmentation .................................................................................. 186 

7.4.3 Data set 2 and results ....................................................... 191 

7.5 Discussion and conclusion ...................................................... 193 
7.6 References of chapter 7 ........................................................... 194 

8 Accurate roof face delineation by synergistic use of UAV images and 
derived point clouds for automatic 3D reconstruction of buildings to 
perform detailed structural damage assessment .................................... 197 

8.1 Introduction ............................................................................. 198 
8.2 Methodology ........................................................................... 201 
8.3 Results and discussion ............................................................ 210 

8.3.1 Data used ......................................................................... 210 

8.3.2 Over-segmentation of the image ...................................... 211 

8.4 Conclusion .............................................................................. 219 
8.5 References of Chapter 8 .......................................................... 220 

9 The application of developed methods for building damage 
assessment based on the EU-FP7 project RECONASS ........................ 223 

9.1 Background ............................................................................. 224 
9.2 Demonstration of the methods in the remote sensing subsystem
 225 

9.2.1 Data description ............................................................... 225 

9.2.2 Demo 1: Damage assessment by comparing the CAD model 
and post-event point cloud and images .......................................... 227 

9.2.3 Demo 2: Damage assessment by comparing the pre- and 
post-event point cloud and images: ............................................... 233 



 xv

9.2.4 Demo 3: Damage assessment from post-event data alone
 233 

9.3 Conclusion .............................................................................. 236 
10 Synthesis ........................................................................................ 237 

Biography .............................................................................................. 247 

Author’s publications ............................................................................. 248 

 

 
 
 



 xvi 

  



 xvii 

List of figures  

Figure 1-1 Trends in occurrence of earthquakes all around the world ............................. 3 
Figure 1-2 Global death toll due to earthquakes from 2000 to 2015 ................................ 4 
Figure 1-3 George Laurence’s photo of the San Francisco after the earthquake in 1906 . 4 
Figure 1-4 Chicago Illinois, 0.5 meter resolution image taken by the Geoeye-1 
satellite  Copyright © 2010 GeoEye, Inc. ......................................................................... 6 
Figure 1-5 Appearance of damaged building with intact roof in nadir view (source: 
Plank (2014a)) .................................................................................................................. 7 
Figure 1-6 Footprints of the Pictometry camera sensor systems consisting of five 
cameras, one directed nadir, the others viewing forward, backward, left and right (Image 
Courtesy: Blom Group) .................................................................................................... 8 
Figure 1-7 Portions of building visible in different camera views captured by 
Pictometry- centre image is nadir view and others are oblique view. .............................. 9 
Figure 2-1  Texture pattern of damaged region .............................................................. 29 
Figure 2-2 Work flow of the gap classification process ................................................. 33 
Figure 2-3 Integrated work flow of all three processes (building delineation, gap 
detection and gap classification) .................................................................................... 34 
Figure 2-4 The delineated buildings projected over the images (highlighted in red) – 
building delineation without use of spectral index as merging criteria (left), building 
delineation with spectral index as one of the merging criteria (right), images © BLOM 
Italy ................................................................................................................................ 36 
Figure 2-5 Example of the impact of the merging criteria threshold on building 
delineation – (a) Twidth > 30 cm, and (b) Twidth >50 cm, images © BLOM Italy ............. 36 
Figure 2-6 Subsets of aerial image projected with 3D points of the delineated buildings, 
images © BLOM Italy .................................................................................................... 39 
Figure 2-7 An example for delineation of a single building from the 3D point cloud, 
images © Aibotix Italy ................................................................................................... 42 
Figure 2-8  Delineated gap regions in the image ............................................................ 44 
Figure 2-9  Subset of the UAV image and its Gabor feature images – the marked 
regions A, B and C are the roofs of different buildings and D is the region of debris ... 46 
Figure 2-10  HoG pattern for damaged and undamaged regions .................................... 49 
Figure 2-11 Image classified into damaged and undamaged region using the selected 
supervised model ............................................................................................................ 51 
Figure 2-12 An example for gap due to damage ............................................................ 52 
Figure 2-13 An example for a gap due to a natural opening .......................................... 52 
Figure 2-14  An example for gap due to surface characteristics issue ............................ 52 
Figure 2-15 (a) an image cut out shows a building with texture-less and occluded 
objects, (b) Subset of 3D point cloud corresponding to that building, (c) and (d) 
Voxelized 3D point cloud segments with highlighted gap voxels, images © Dutch 
Kadaster .......................................................................................................................... 54 
Figure 2-16 Image subsets showing the variation in window glass reflection for images 
captured from different positions, images © Dutch Kadaster ........................................ 54 
Figure 3-1 An example for debris, rubble piles and spalling –Source: 
http://www.combatgroupdynamix.com/Diorama/WargameSeries/Accessories/Buildings
/WargameAccessoriesTallBuilding.htm ......................................................................... 65 
Figure 3-2 Overall process of the BoW-based damage classification ............................ 72 



 xviii 

Figure 3-3  Combinations of feature descriptors and learning algorithms tested for each 
dataset ............................................................................................................................. 73 
Figure 3-4 Samples of image patches in dataset 1- UAV images ................................... 77 
Figure 3-5 Samples of image patches in dataset 2, images © Pictometry ...................... 79 
Figure 3-6  Samples of image patches in dataset 3- street view images ......................... 81 
Figure 3-7 Damage classification of images based on best performing supervised 
model .............................................................................................................................. 84 
Figure 3-8 (a) Local and global gradient pattern of an image patch that contains four 
objects with different dominant orientations; (b) gradient pattern of damaged regions . 86 
Figure 3-9 Detected SURF points are plotted on the image: (a) Strongest 300 SURF 
points among 4032x3024 pixels; (b) Strongest 300 SURF points among 977x835 pixels, 
images © Pictometry ...................................................................................................... 88 
Figure 3-10  The accuracy produced by the feature descriptors for each dataset when 
associated with different classifiers ................................................................................ 89 
Figure 4-1 Rudimentary histogram of gradient orientation pattern depicted in yellow for 
(a) damaged (no annotations) and undamaged (annotated as A, B, C and D) image 
samples; (b) undamaged roof with complex texture highlighted in red rectangular 
box ................................................................................................................................ 101 
Figure 4-2  Image samples (a) and (b) depicting radiometric variation as a result of 
degradation of building elements due to aging and fouling .......................................... 103 
Figure 4-3. CNN architecture design of the pre-trained CNN model – ‘imagenet-caffe-
alex’ designed based on one of the popular CNN architectures proposed by Krizhevsky 
et al. (2012) in which C1-C5 are convolutional layers and FC1-FC3 are fully connected 
layers. The values on the right-hand side and below C1-C5 indicate the number of filters 
and their sizes, respectively. The values below FC1-FC3 indicate their dimensions i.e., 
number of neurons in the fully connected layer. .......................................................... 106 
Figure 4-4. The CNN architecture for transfer learning by adding two extra fully 
connected layers (highlighted in red circle) to the existing pre-trained CNN model 
shown in Figure 4-3 for damage detection. .................................................................. 107 
Figure 4-5. Overall steps for integrating CNN and 3D point cloud features using MKL 
for damage classification .............................................................................................. 112 
Figure 4-7. Sample image patches of damaged (left) and undamaged (right) regions 
generated based on super-pixels of manned aircraft images (top), and UAV images 
(bottom) for framing the training and testing samples for supervised classification .... 114 
Figure 4-8. Super-pixels of aerial images that were classified as damage by the CNN_F 
based SVM classifier are highlighted as red polygons in the subset of an aerial image of 
L’Aquila (left) and Port-au-Prince, (right). © Pictometry. ........................................... 119 
Figure 4-9. Super-pixels of UAV images that were classified as damage by the CNN_F 
based SVM classifier are highlighted as red polygons in the subset of UAV images of 
Kathmandu (left-top), Mirabello (left-bottom) and L’Aquila (right). .......................... 120 
Figure 4-9 Subset of aerial image of Bidonville, Haiti, used for generating the dataset 
A_BID1655, where the scene characteristics visually seem different from images of other 
locations depicted in Figure 4-8 ................................................................................... 123 
Figure 4-11. The super-pixels of an image which are wrongly predicted as damaged, 
and missed detections by CNN features based-classifier, are highlighted in blue and 
green circles, respectively, and annotated with prediction scores ,i.e. distance of the 
sample to the classification boundary in feature space (left); the improved predictions 
by CNN+3D features-based classifier (right). The super-pixels with positive and 



 xix

negative prediction scores indicate damaged and undamaged regions, respectively. The 
prediction scores are in the range [-6.9, 8.2] for the samples in the training sets. ........ 129 
Figure 5-1. Overall workflow ....................................................................................... 142 
Figure 5-2.  Workflow of voxel-based approach .......................................................... 145 
Figure 5-3. Overall workflow of segment-based approach .......................................... 147 
Figure 5-4 Example of element collapses leading to an opening with the surface below 
it visible (left) and not visible, i.e. structural holes (right) are highlighted in red 
circles. .......................................................................................................................... 149 
Figure 5-5. Example for missing 3D segment classified as damaged and the surface 
below it is visible in post-event. ................................................................................... 151 
Figure 5-6. Example for missing 3D segment classified as (structural hole) caused by 
damage. ........................................................................................................................ 153 
Figure 5-7. Example for missing 3D segment classified as mis/no matches in 3D point 
generation. .................................................................................................................... 154 
Figure 5-8. Pre-event 3D point clouds of the sub-blocks considered for damage 
assessment. ................................................................................................................... 155 
Figure 5-9. Image subset of airborne image (left) and delineated buildings based on 3D 
point cloud are projected over the image (right). ......................................................... 156 
Figure 5-10. The detected missing pre-event segments using composite segment-based 
approach are projected as red points over a pre-event image (left), and outlined in the 
post-event (right) images with yellow circles. .............................................................. 156 
Figure 5-11. Outline of each missing segment of a building and their areas are annotated 
in m2 (top) and superimposed on the corresponding building in post-event (bottom). . 158 
Figure 6-1. Overall workflow ....................................................................................... 168 
Figure 6-2. The cumulative error plot of PA online classifiers when associated with 
GLCM, Gabor and CNN features ................................................................................. 170 
Figure 7-1 . Overall workflow ...................................................................................... 184 
Figure 7-2 Building delineation from 3D point cloud .................................................. 188 
Figure 7-3 Building delineated in image and annotated regions (R1 –R5) are used for 
feature significance analysis as described in section 3.1.2 ........................................... 189 
Figure 7-4 Silhouette value for analysing the feature significance in differentiating the 
image regions with different radiometric characteristics .............................................. 189 
Figure 7-5 3D planar segments of the delineated building from 3D point cloud are 
projected over the image .............................................................................................. 190 
Figure 7-6 Delineated building segmented using radiometric and 3D geometric 
features ......................................................................................................................... 190 
Figure 7-7 (a) Building in image at smaller scale and different orientation compared to 
Figure 3, and (b) corresponding segmentation ............................................................. 191 
Figure 7-8. (a) & (d): Buildings in UAV image for segmentation, (c) & (d): projected 
3D segments over the images of (a) & (b) respectively, and (e) & (f): finally segmented 
images using the developed method ............................................................................. 193 
Figure 8-1 The roof faces delineated based on planar segmentation of photogrammetric 
3D point cloud are projected over the image in varying colors. ................................... 200 
Figure 8-2. Subset of airborne oblique image with average GSD of 14 cm (left) and 
subset of UAV image with average GSD of 1 cm (right). Both depict the same church in 
Mirabello, Italy after the 2012 earthquake ................................................................... 203 
Figure 8-3. Criteria for refining the super-pixel if any two planar segments within it are 
coplanar ........................................................................................................................ 208 



 xx 

Figure 8-4. Selected nadir image (left) and super-pixels based on RGB using multi-
resolution segmentation in Eognition for scale (50), compactness (0.5) and shape (0.5) 
(right). ........................................................................................................................... 212 
Figure 8-5. Super-pixels based on Gabor-PCA features of image depicted in Figure 3-4, 
using multi-resolution segmentation with same scale, compactness and shape values 
used in RGB based segmentation as in Figure 3-4. ...................................................... 212 
Figure 8-6. Gabor feature images extracted for different orientation and frequency 
parameters. ................................................................................................................... 213 
Figure 8-7. 3D point clouds depicting the delineated independent roof faces after roof 
segment refinement process. The red circles indicate the incomplete roof segments 
because of gaps in the 3D point cloud .......................................................................... 215 
Figure 8-8. 3D reconstruction of building based on the 3D points of refined roof 
segments ....................................................................................................................... 215 
Figure 8-9. The images mapped to each segment of the model to provide radiometric 
information along geometric information for damage assessment ............................... 216 
Figure 8-10 a) Image subset corresponding to the study area considered for examining 
the roof delineation method; b) planar segmentation based segmented 3D point cloud 
corresponding to the image subset; c) the final delineated roof faces based on the 
proposed method .......................................................................................................... 218 
Figure 9-1 Aibotix Aibot X6 V2 .................................................................................. 225 
Figure 9-2 Circular layout of images, also indicating the ground control points (green 
circles) .......................................................................................................................... 226 
Figure 9-3. The classified point cloud of CAD model depicting the element-wise 
damage information (left-top and left bottom) of blast-1 identified automatically by the 
developed methods and the corresponding images (right-top and right bottom) for visual 
inspection. The damaged regions are annotated using alphabets A-H which are briefly 
described in the text. ..................................................................................................... 230 
Figure 9-4. The classified point cloud of CAD model depicting the element-wise 
damage information (left-top and left bottom) of blast-2 identified automatically by the 
developed methods and the corresponding images (right-top and right bottom) for visual 
inspection. The damaged regions are annotated using alphabets A-H which are briefly 
described in the text. ..................................................................................................... 232 
Figure 9-5. The detected missing element by comparison of pre- and post-event point 
cloud are highlighted using alphabets A-E in the point cloud of CAD model for 
reference (left-top) and the corresponding elements are highlighted in pre-event image 
(right-top) and post-event images (left- and right-bottom). The annotated alphabets A-E 
are briefly explained in the text. ................................................................................... 233 
Figure 9-6 Point cloud of the building after blast-2 highlighted and annotated the 
openings detected as damage by the method based on post-event data alone (top). The 
image corresponding to the point cloud in which the debris and spalling regions 
detected by our method are highlighted using red polygons. The annotated alphabets A-
E are briefly explained in the text ................................................................................. 235 
 



 xxi

List of tables  

Table 2-1 Number of buildings that falls under each category ....................................... 40 
Table 2-2 Results of building detection process ............................................................. 40 
Table 2-3 Results of Gabor feature-based supervised models for damaged region 
detection ......................................................................................................................... 47 
Table 2-4 Results of the HoG feature-based supervised models for damaged region 
detection ......................................................................................................................... 48 
Table 2-5 Results of the supervised models for damaged region detection when trained 
using samples from various locations and tested with samples from our study site 
(values in brackets indicate change to the earlier experiment where the classifier got 
trained in the actual area) ............................................................................................... 50 
Table 3-1 Definition of parameters associated with each algorithm/method used in the 
experiment ...................................................................................................................... 74 
Table 3-2 Definition of grid search space for tuning the hyper-parameters of the 
classifiers ........................................................................................................................ 75 
Table 3-3 Performance of feature descriptors when associated with different learning 
algorithms for dataset 1 comprising patches from the UAV images (training samples = 
#676, testing samples = # 290) - bold numbers indicate best performance per 
indicator .......................................................................................................................... 78 
Table 3-4 Performance of feature descriptors when associated with different learning 
algorithms for dataset 2 comprising patches from Pictometry images (training samples = 
#879, testing samples = # 377). ...................................................................................... 80 
Table 3-5 Performance of feature descriptors when associated with different learning 
algorithms for dataset 3 comprising patches from street view images (training samples = 
#620, testing samples = # 267). ...................................................................................... 81 
Table 3-6 Performance of feature descriptors when associated with different learning 
algorithms for dataset 4 (COM3109) comprising patches from UAV, Pictometry and 
street-view images (training samples = #2176, testing samples = # 933). ..................... 84 
Table 3-7 Naming of datasets based on the image characteristics and number of 
samples ........................................................................................................................... 85 
Table 4-1. 3D features based on 3D structure tensor derived from collection of 3D 
points ............................................................................................................................ 109 
Table 4-2. 3D feature subsets considered for the damage detection process ................ 111 
Table 4-3. Dataset 1 (Aerial7130) description of the training and testing samples derived 
from images of manned aerial platform for different geographic locations ................. 115 
Table 4-4. Dataset 2 (UAV5414) description of the training and testing samples derived 
from images of UAV for different geographic locations .............................................. 115 
Table 4-5. Details of CNN architecture designed for learning features from scratch ... 117 
Table 4-6. Results of damage detection on two different datasets using the supervised 
classifiers constructed based on CNN features extracted from three different 
scenarios ....................................................................................................................... 118 
Table 4-7. The results of the CNN_F based SVM classifier examined for transferability 
using Aerial7130 dataset. The reported accuracies are based on the classifier trained using 
the samples from training sites and tested on samples from unseen testing sites. The 
accuracies less than 80% and their corresponding testing sites are highlighted. .......... 121 
Table 4-8. The results of the CNN_F based SVM classifier examined for transferability 
using UAV5414 dataset. The reported accuracies are based on the classifier trained using 



 xxii 

the samples from training sites and tested on samples from unseen testing sites. The 
accuracies less than 80% and their corresponding testing sites are highlighted. .......... 122 
Table 4-9. Results of the performance of 3D feature subsets in the damage detection for 
the UAV5414 dataset, and the contribution of individual feature subset in the 
classification process estimated by MKL. The least contributing features are 
highlighted. ................................................................................................................... 124 
Table 4-10. Results of the performance of integrated use of CNN and 3D feature subsets 
in the damage detection for the UAV5414 dataset, and the contribution of individual 
feature subset in the classification process estimated by MKL. Significantly contributing 
features are highlighted. ............................................................................................... 126 
Table 4-11. The results of the transferability of supervised models developed based on 
the combined use of CNN and 3D feature subsets for the UAV5414 dataset. The 
difference in accuracy of the model developed by CNN+3D point cloud features and 
CNN alone is given within brackets for reference. The top 5 increase and top 5 decrease 
in accuracies are highlighted in green and yellow, respectively. .................................. 127 
Table 5-1. The results of missing pre-event 3D segments detected by all three 
approaches .................................................................................................................... 157 
Table 5-2. Results of classification of missing 3D segments detected by segment-based 
approach ....................................................................................................................... 157 
Table 6-1 Overall accuracy of online- and batch- classifiers when associated with 
different features .......................................................................................................... 171 
Table 8-1. The definition of various parameters used in the methods developed in this 
study. ............................................................................................................................ 216 

 



1 

1 Introduction  



Introduction  

 2

1.1 Background 
Earthquakes are one of the deadly and destructive disaster events which is 
unpredictable and increasingly happening at least once every year in 
several parts of the world. Earthquakes have the potential to cause severe 
damages to the manmade structures particularly buildings, thereby causing 
spatially extensive rapid human and economic loss. The earthquake 
disaster statistics (cf. Figure 1-1 and Figure 1-2) emphasizes the 
requirement and magnitude of response and recovery actions to be carried 
out quickly as part of disaster management after any such event. The 
response processes are more related to the actions of search and rescuing 
victims, providing first aid and other temporary relief actions. Whereas the 
recovery processes refer to the actions taken to restore the affected area 
and people’s life to its original state. For initiating the effective response 
and recovery actions the damage assessment which provides complete 
picture about the severity, extent and location of the damaged areas are 
crucial. For example, the approximate estimation of number of causalities 
is very important to plan for the rescue forces to be involved in the 
response actions and this information is closely related to the number of 
fully and partially collapsed buildings. Therefore, mapping the precise 
locations of highly damaged buildings is important as they are the 
suspected locations for victims, required to direct the rescue teams. This 
information also provides a rough estimate of number of people rendered 
homeless which can further aid to plan and allocate resources (funds, food, 
shelter, medical, etc.,). Therefore, rapid assessment of damage at building 
level is an important requisite and provides crucial information for 
stakeholders involved in response and recovery actions. However, the 
required level of damage information varies for each stakeholder. For 
example, those involved in the search and rescue process require only the 
information about the collapsed/heavily damaged buildings very rapidly. 
Other actors particularly related to recovery phases, such as insurance 
companies, require a less time critical but very detailed damage 
assessment, down to the level of cracks on a building. Conventional 
manual field assessment can provide very detailed and accurate damage 
assessment. However, it is cost, time and labor intensive, and cannot 
access all parts of the building. For example, the roof tops and even upper 
sections of facades of very tall buildings are difficult to assess based on 
field inspection. In practice, remote sensing images are increasingly being 
used as an alternative to field survey, and they constitute the best data 
source for initial and large-area damage assessment (Dell'Acqua and 
Gamba, 2012; Dong and Shan, 2013). Moreover, remote sensing has a long 
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history in damage assessment, starting in early twentieth century by 
successfully capturing the extensive view of 1906 earthquake damage in 
San Francisco through a kite-borne camera (cf. Figure 1-3). Since then 
technology has evolved gradually from aerial (sensors mounted on the 
balloon, aircraft or helicopter) to space borne satellites and now it has 
become the prospective source for spatial information in the field of 
disaster management (Dong and Shan, 2013). 
 

 

Figure 1-1 Trends in occurrence of earthquakes all around the world 
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Figure 1-2 Global death toll due to earthquakes from 2000 to 2015 

 

 

Figure 1-3 George Laurence’s photo of the San Francisco after the earthquake 
in 1906 

1.2 Satellite and aerial images for damage assessment 
Satellite and aerial images are nowadays the conventional data source for 
assessing the extent and degree of damage after an event (Voigt et al., 
2007). The advent of very high spatial resolution (VHR) remote sensing 
data like satellite images of IKONOS, Quick Bird, EROS-B, World View, 
Geo Eye, etc., having spatial resolutions <1m made qualitative and 
quantitative damage assessment on per building level feasible. For 
example, see Figure 1-4 image of Geo Eye-1 satellite with a spatial 
resolution of 0.5 m where the individual buildings can be distinguished. 
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Many mapping agencies such as Charter1 are largely using this kind of high 
resolution satellite images for producing damage maps based on manual 
annotations to aid for emergency response actions. Alternative to manual 
mapping, from past decade, increasingly studies are being attempted to 
develop automated methods for mapping damage. Particularly, the 
temporal characteristics of satellite remote sensing provided the image of 
the scene before and after the event, motivated researchers to move 
forward from the qualitative to automated quantitative damage assessment. 
The damaged regions are identified based on the changes in the 
radiometric characteristics of the images captured before and after the 
event (Matsuoka et al., 2004). In addition to 2D radiometric features, the 
changes in 3D geometry especially the height information of pre- and post-
event is recognized as a key metric in identification of damaged building 
(Turker and Cetinkaya, 2005). Conventionally, the high resolution stereo 
image pairs, for example the stereo image pairs provided by satellites like 
IKONOS were being used to derive information such as heights of the 
buildings through constructing a digital elevation model (DEM) (Tong et 
al., 2012a). Besides space-borne images, overlapping aerial images 
captured by aircrafts are also useful to generate such DEM for identifying 
the damages. For example, Turker and Cetinkaya (2005) mapped the 
damaged buildings by differencing the DEM of the pre- and post-seismic 
aerial images. However, this multi-temporal approach has potential 
limitations. For example, it  can produce the overall changes in the pre- 
and post- event and cannot effectively differentiate between the changes 
caused by damage and by other kind (Li et al., 2010a). Also the availability 
of pre-event data of the required quality at the time of emergency cannot 
be guaranteed. Therefore, with the advancements in computer vision, 
pattern recognition, machine learning and other related fields, the research 
community inclined towards the development of methods for automatic 
identification of building damages from mono-temporal post-event images 
alone. Pertaining to  this, several automated methods based on mono-
temporal data have been reported over the past decade with results 
comparable to multi-temporal approach (Dong and Shan, 2013). However, 
assessment results have been highly variable in terms of accuracy e.g., 
Kerle (2010) declining to allow relying only on a remote sensing-based 
assessment. The major reason for the reported shortcoming is that in 
conventional nadir view remote sensing images, only the partial 
information is available i.e., the façades of the building from all four 

                                                 
1 https://www.disasterscharter.org/ 
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cardinal directions are often not largely visible in this perspective. Such 
partial information is useful yet insufficient for reliable building damage 
assessment (refer to below section 1.3). 
 

 

Figure 1-4 Chicago Illinois, 0.5 meter resolution image taken by the Geoeye-1 
satellite  

Copyright © 2010 GeoEye, Inc. 

(Source: http://eoedu.belspo.be/en/satellites/geoeye.htm) 

1.3 Limitations with vertical data for building damage 
assessment 

Though, several studies reported the potentials and usefulness of 
conventional vertical view remote sensing data for per building-level 
damage assessment (Dong and Shan, 2013), they have some limitations as 
well. For example, recent studies have highlighted that assessments based 
on even very high resolution vertical imageries are often found to 
underestimate damage (Lemoine, 2010). This is because, nadir imagery 
could provide only quasi-vertical perspective of the scene in which 
damage along the facades and lower grade damages to buildings that do 
not result in building roof collapse are not largely visible; even very heavy 
damages such as pancake collapse with intact roofs cannot be detected (cf. 
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Figure 1-5) (Booth et al., 2011; Gerke and Kerle, 2011a; Saito et al., 2010). 
As reported by previous studies vertical images could provide better 
results when the focus is to differentiate between heavily collapsed and 
uncollapsed roofs of the buildings. However, this information is not 
sufficient for accurate damage assessment. In reality damage information 
at various levels of detail is required, such as damages along both roofs 
and facades, to obtain a complete and reliable damage assessment.  
 

 

Figure 1-5 Appearance of damaged building with intact roof in nadir view 
(source: Plank (2014a)) 

1.4 Airborne oblique images for building damage 
assessment  

Multi-view oblique airborne images particularly captured at a large tilt 
angle can provide more information about the façades of different sides of 
the buildings (Gerke and Kerle, 2011b). For instance, systems such as 
Pictometry (cf. Jurisch and Mountain, 2008) provide a systematically 
captured full set of very high resolution multi-perspective images. This 
includes oblique images from four cardinal directions along with one nadir 
image providing more information of both roof and façades of the building 
compared to nadir-images (cf. Figure 1-6 & Figure 1-7). These oblique 
images are captured with very high  spatial  resolution (~ 10-15 cm) where 
even a failure of exterior structural elements at specific story of the 
building is visible (Saito et al., 2010). For example,  Saito et al. (2010) 
conducted a visual interpretation of the damage status of the individual 
buildings using oblique aerial imagery and reported that oblique imageries 
enable inferring specific damages to façades. Corbane et al. (2011) 
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reported that soft story failure of the building have been visually identified 
in airborne oblique imagery which is not visible in the nadir aerial imagery. 
Moreover, it is common to capture aerial images with high block overlap 
enabling to generate 3D point clouds based on photogrammetric 
processing. This provides 3D geometric information for both roof and 
façades in better quality than information derived from vertical images 
which is crucial for identifying damages to the buildings. Thus, multi-view 
oblique imageries are identified as the optimal alternative to vertical 
imagery for accurate building damage assessment regardless of its few 
limitations such as varying image scale and occlusions (Kerle and 
Hoffman, 2013a). Already, studies have demonstrated the potential of 
oblique aerial images and the 3D information generated from them in 
building damage assessment (Gerke and Kerle, 2011b).  
 

 

Figure 1-6 Footprints of the Pictometry camera sensor systems consisting of 
five cameras, one directed nadir, the others viewing forward, backward, left and 

right (Image Courtesy: Blom Group) 
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Figure 1-7 Portions of building visible in different camera views captured by 
Pictometry- centre image is nadir view and others are oblique view. 

(Source: http://ncbc.jsums.edu/Projects/DOJ/Pictometry.aspx) 

1.5 Unmanned Aerial Vehicles  
Alternative to manned aircrafts, unmanned aerial vehicles (UAVs) are 
recognized as a new promising miniature platform for photogrammetric 
data acquisition. It combine the advantages of both terrestrial and aerial 
photogrammetry, as it can be operated at lower altitude (Colomina and 
Molina, 2014; Haala et al., 2013). This miniature platforms are designed 
to carry a variety of less weighted data acquisition systems including still 
or video single-lens reflex (SLR) optical and thermal cameras, LiDAR 
sensors, etc., and the GNSS/INS system for autonomous navigation of 
UAV to the planned locations and also to support the photogrammetric 
processing such as image orientations. The UAV system is capable of 
providing very high spatial resolution data as it can operate at lower 
altitude and can also capture data with high overlap in multi-view 
directions (nadir and oblique), and positions (along different sides of the 
building, or even inside, if structural design permits) which helps to 
diminish occlusion that is a major challenge in the use of oblique images 
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acquired by traditional survey aircraft. The images captured with these 
flexible characteristics of the UAV facilitates generation of high quality 
photogrammetric products compared to images from manned aerial 
platforms such as dense 3D point clouds possibly (in ideal case) for the 
entire exterior view of individual buildings. The images in combination 
with such high quality 3D point clouds provide rich radiometric and 
geometric information essential for performing very detailed building 
level damage assessment. Thus UAVs have been anticipated as the most 
suitable platform for very detailed assessments of individual buildings. 
However, there are some limitations with UAV systems as well such as 
short flight time and small area coverage. Hence, compared to manned 
aircrafts, the UAV systems are more suitable particularly for local area 
applications (e.g., damage assessment for local municipality blocks) where 
repetitive, fast and cost effective data collection is desired. Moreover, 
UAVs can be operated remotely controlled, semi-automated or 
autonomous with no human pilot on-board. Thereby, it reduces the life risk 
of pilots for operating in highly risky disaster environments and 
inaccessible areas.  

1.6 Research background, objectives and contributions  
This PhD research is part of RECONASS (http://www.reconass.eu/), a 
EU_FP7 funded collaborative research project between ten research 
organizations across several countries. The aim of RECONASS is to 
develop an automated and near real time structural (building) damage 
assessment system to provide a stakeholders involved in response and 
recovery actions with continuously updated assessment of the structural 
condition of the monitored facilities after a natural or manmade disaster 
event. The RECONASS system mainly consists of two independent sub-
systems for assessing damages of individual buildings based on two 
technologies: wireless sensor networks (WSN) and remote sensing. The 
sub-system based on WSN assess damages to the selected high value 
building based on various wireless sensors such as strain, accelerometer 
and temperature sensors which are equipped on the desired locations of the 
building. Another sub-system based on remote sensing focuses on 
assessing damages to the externally visible elements of the selected 
building equipped with sensors and also the neighbouring buildings based 
on the airborne oblique images and point clouds derived from them. The 
oblique images are preferred for aforementioned reasons. We (ITC) are the 
sole organization responsible for developing remote sensing sub-system 
within RECONASS. The primary objectives of developing this subsystem 
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are: 1) to validate the assessments of WSN using image-based 
assessments; 2) to use the image-based assessments as a proxy in case of 
any sensor information loss; 3) to improve the sensor based assessment if 
any inconsistency is observed; 4) to produce local damage assessment for 
the RECONASS monitored and neighbouring buildings based on UAV’s 
data; and 5) to use this local assessment to validate and calibrate the 
damage maps of larger areas produced by different agencies based on the 
satellite images. To accomplish the objectives of RECONASS, an 
automated extraction of damages to the building using the oblique images 
and the 3D point clouds derived from them is required. However, it is a 
challenging task and accomplishing these tasks is the focus of this PhD 
research. The challenges are briefly described below with necessary 
background, pertaining to that the research objectives and contributions of 
this PhD research are also presented precisely.  
In existing literature, several methods have been reported for automated 
identification of damaged buildings using vertical view remote sensing 
images (Miura et al., 2013; Nex et al., 2014; Tong et al., 2012b). However, 
still in practice, damage maps are created based on tedious and time 
consuming manual visual interpretation. This is mainly because, the 
accuracies achieved by the reported automated approaches are not 
sufficient enough for practical use. There are many reasons for the 
limitations of the reported methods including the drawbacks mentioned 
earlier about the vertical imageries and the limitations with the reported 
methods itself which are discussed in detail in subsequent chapters. 
Concerning the oblique view images, the systematic capturing of these 
images based on manned and unmanned aerial platforms started advancing 
well from the beginning of this decade, since then they have been used 
increasingly for various remote sensing applications (Gerke and Xiao, 
2013; Nyaruhuma et al., 2012; Rau et al., 2015a; Xiao et al., 2012). To this 
end, the research community started to exploit these oblique aerial images 
for automated damage assessment as they have been acknowledged to be 
more proficient than vertical images for this specific application (Gerke 
and Kerle, 2011a; Kerle and Hoffman, 2013a; Xu et al., 2014). At the 
beginning of this PhD research in February 2013, very few studies have 
been reported on the automated methods for damage detection based on 
oblique images from manned aircrafts which were also not matured and 
robust enough to consider them for practical use. At the same time the 
potential of oblique images based on UAVs and the point clouds derived 
from them was not explored for damage assessment. However, the 
methods reported based on vertical images could not be directly adopted 
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for oblique images. This is because, as mentioned earlier, these methods 
are not robust enough and moreover, when compared to vertical images, 
oblique images possess complex characteristics. For example, they vary in 
scale and viewing directions, and often look cluttered as they capture both 
façades and roofs of the buildings unlike vertical images where only the 
roofs are largely visible. Also, the photogrammetric point clouds derived 
from these images are complex, since they are often noisy and contain 
significant gaps due to various reasons such as occlusion and inherent 
issues in the point cloud generation process (Vetrivel et al., 2015a). These 
complexities in oblique images and photogrammetric point clouds pose a 
number of challenges in automated extraction of useful information from 
them for building damage assessment. Thus, this research focuses on 
developing robust, reliable and practically adoptable methods and 
frameworks for automated damage information extraction using data with 
challenging characteristics i.e. both vertical and oblique images from 
manned and unmanned aerial platforms, in combination with 
photogrammetric 3D point clouds derived from them. Pertaining to this, 
by utilizing the advancements in various fields such as computer vision, 
photogrammetry, machine learning and pattern recognition, several 
automated methods and frameworks have been developed for performing 
various tasks to achieve automated and comprehensive building damage 
assessment: building delineation and 3D reconstruction, and automatic 
identification of various damage evidences such as debris, spalling, 
broken, inclined elements and debris quantification using both images and 
photogrammetric point clouds. The detailed description, significance and 
novelty of the proposed methods and frameworks are provided in the 
respective chapters.  

1.7 Structure of the thesis  
This thesis is organized into ten chapters. The first and last chapters are 
introduction and synthesis respectively, the remaining chapters are 
standalone scientific chapters holding specific research objectives, 
methodology/framework, results, discussions and conclusions. The outline 
of the thesis is briefly described below.  
Chapter 1. Introduction: It presents the background and importance of 
this research, research scope and the contributions in a broader context and 
the outline of the thesis.  
Chapter 2. Identification of damage in buildings based on gaps in 3D 
point clouds from very high resolution oblique airborne images: For 
building level damage detection, the first step would be the delineation of 
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buildings in the scene. 3D point clouds are the ideal source for building 
delineation. However, as mentioned earlier, the photogrammetric point 
clouds are often noisy and contain significant gaps. The gaps that appear 
in a 3D point cloud of the building are highly complex. For several reasons, 
these gaps can be normal and desired features (e.g., architectural 
elements), but they can also indicate damage. However, due to the 3D 
information generation process, gaps can also be created in case of partial 
building occlusion (e.g., by vegetation) or image matching problems. This 
chapter focuses on developing automated methods to identify and 
characterize a gap, leading to a reliable determination of openings due to 
structural damage. Towards this, an automated framework has been 
developed which includes three independent methods: 1) building 
delineation 2) identification of gaps in the 3D point cloud of the delineated 
building and 3) supervised classification model to detect damage 
evidences such as debris and spalling, thereby classifying the detected gaps 
that co-occur with these damage evidences as building openings due to 
damage.  
Chapter 3. Identification of structurally damaged areas in airborne 
oblique images using a visual-bag-of-words approach: Automated 
identification of damage evidences such as debris, rubble piles and spalling 
is important for damage assessment as they are the significant indicators 
of severe damages. The methods developed in chapter 2 for detecting these 
evidences are not robust enough for generalization and transferability. This 
chapter is the extension of the damage detection work in chapter 2 where 
we have developed a method based on visual bag of words approach for 
damage detection which is more robust than the global feature 
representation method developed in chapter 2. The method is designed to 
identify the damage patterns related to rubble piles, debris and spalling, 
regardless of the scale and clutter of the defined region in an image.  
Chapter 4. Disaster damage detection through synergistic use of deep 
learning and 3D point cloud features derived from very high 
resolution oblique aerial images, and multiple kernel learning: The 
damage detection work in chapter 3 is based on 2D texture features which 
works extremely well for specific study areas and is found to fail in areas 
with complex textures. This chapter focuses on developing methods based 
on deep learning features which are recently recognized to exhibit greater 
potential than conventional features such as textures, for damage detection 
process. Moreover, the 3D geometric features from point cloud are also 
expected to be useful for identifying these damage evidences. In this 
chapter, some 3D features are proposed and a framework is developed to 
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integrate these 3D point cloud geometric features and image-based deep 
learning features for damage detection using multiple kernel learning 
approach. 
Chapter 5. Potential of multi-temporal oblique airborne imagery for 
structural damage assessment: The damage detection methods reported 
in previous chapters are based on features derived from post-event images 
and 3D point clouds. These methods are based on the assumption that 
manmade undamaged areas possess more uniform radiometric and 
geometric pattern than damaged regions. However, this assumption fails 
in complex urban environments. In such cases, the pre-event reference is 
anticipated to be useful. Thus, this chapter focuses on developing 
automated methods to identify damages based on comparing pre- and post-
event 3D point clouds and images.  
Chapter 6. Towards automated satellite image segmentation and 
classification for assessing disaster damage using data-specific 
features with incremental learning: The methods developed for 
damaged detection in previous chapters are based on supervised learning 
approach where the classifier for damage detection is built based on a large 
number of training samples. The significance of site-specific training 
samples for building a robust classifier is inferred from the experiments 
conducted in the previous chapters. With the advancement in various 
technologies, it has become a common practice to make the damage 
information after any disaster event available online through various 
sources. Thus, this chapter focuses on developing a robust supervised 
classifier based on online learning approach where the classifier learns 
continuously from the aforementioned streaming site-specific training 
samples which are made available online by various sources.  
Chapter 7. Segmentation of UAV-based images incorporating 3D 
point cloud information: A 3D model of buildings is realised as the best 
representation for comprehensive damage assessment by systematic 
integration of damage evidences that are detected along various sides of 
the building. However, it is challenging to construct an accurate 3D model 
even for undamaged building from the image-based 3D point clouds as it 
is difficult to obtain the accurate roof segments as they are often too noisy. 
Thus, this chapter focuses on developing methods for accurate delineation 
of roof segments from noisy point cloud.  
Chapter 8. Automatic 3D reconstruction of buildings by synergistic 
use of UAV images and derived 3D point clouds for detailed structural 
damage assessment: The developed method in chapter 7 for accurate 
building roof segment delineation is based on pixel-based approach where 
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it possesses some limitations. Hence, as an extension of this method, a 
framework has been developed in this chapter for accurate roof delineation 
and 3D reconstruction of the building using segment-based approach from 
the noisy point cloud and images by addressing the inherent challenges.  
Chapter 9. Evaluation of methods based on EU-FP7 project 
RECONASS: Several datasets are considered in this research for the 
evaluation of developed methods. However, among them, only specific 
datasets are used to evaluate a specific method as they possess interesting 
characteristics and best suited for evaluating that particular method or 
other datasets were not available at that point of time when the particular 
method was developed and evaluated. Hence, in this chapter, the 
developed methods in previous chapters pertaining to building damage 
assessment are evaluated collectively using a single dataset from the EU 
FP7 project RECONASS which satisfies the requirement for evaluating 
most of the methods developed in this research.  
Chapter 10. Synthesis: This chapter presents the summary of this 
research findings and contributions, conclusions and recommendations for 
future research by extending or improving the methods reported in this 
research to achieve a reliable, operational and automated building damage 
assessment using remote sensing technologies. 
 
Most chapters of this thesis are based on the published journal and 
conference papers. There are some repetitive information between 
chapters, for example, the background, significance and justification for 
using oblique view images and UAVs will be presented in most chapters’ 
introduction. This is desired as this makes every chapter standalone, so the 
reader can directly read the interested chapters without having any 
dependencies on previous chapters.  
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2 Identification of damage in buildings based on 
gaps in 3D point clouds from very high 

resolution oblique airborne images 
 
 

                                                 
 This chapter is based on the article: 
Vetrivel, A., Gerke, M., Kerle, N. and Vosselman, G. (2015) Identification of damage in 
buildings based on gaps in 3D point clouds from very high resolution oblique airborne 
images. In: ISPRS Journal of Photogrammetry and Remote Sensing, 105 (2015) pp. 61-
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Abstract 
Point clouds generated from airborne oblique images have become a 
suitable source for detailed building damage assessment after a disaster 
event, since they provide the essential geometric and radiometric features 
of both roof and façades of the building. However, they often contain gaps 
that result either from physical damage or from a range of image artefacts 
or data acquisition conditions. A clear understanding of those reasons, and 
accurate classification of gap-type, are critical for 3D geometry-based 
damage assessment. In this study, a methodology was developed to 
delineate buildings from a point cloud and classify the present gaps. The 
building delineation process was carried out by identifying and merging 
the roof segments of single buildings from the pre-segmented 3D point 
cloud. This approach detected 96% of the buildings from a point cloud 
generated using airborne oblique images. The gap detection and 
classification methods were tested using two other data sets obtained with 
Unmanned Aerial Vehicle (UAV) images with a ground resolution of 
around 1-2 cm. The methods detected all significant gaps and correctly 
identified the gaps due to damage. The gaps due to damage were identified 
based on the surrounding damage pattern, applying Gabor wavelets and a 
histogram of gradient orientation features. Two learning algorithms – 
SVM and Random Forests were tested for mapping the damaged regions 
based on radiometric descriptors. The learning model based on Gabor 
features with Random Forests performed best, identifying 95% of the 
damaged regions. The generalisation performance of the supervised 
model, however, was less successful: quality measures decreased by 
around 15 to 30%.  
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2.1 Introduction 
Rapid and detailed damage assessment on a per building level after disaster 
events such as earthquakes has become imperative for initiating effective 
emergency response and recovery actions. However, manual assessment 
is expensive, time consuming and may be hindered by site accessibility 
problems. Remote sensing technology has been recognized as a potential 
alternative to manual damage assessment. Satellite and aerial images are 
the conventional data source for assessing the extent and degree of damage 
after an event (Voigt et al., 2007). Damage assessment on a per-building 
scale has become possible with the availability of remote sensing images 
with very high spatial resolution up to sub-meter precision (Ehrlich et al., 
2009). Numerous semi-automatic and automatic methods have been 
reported for image-based building damage assessment (Chen et al., 2011; 
Rathje et al., 2005). However, assessment results have been highly 
variable e.g., Kerle (2010) and generally not accurate enough to allow 
relying only on a remote sensing-based assessment. The major reason for 
the reported shortcoming is that in conventional nadir view remote sensing 
images roof portions alone are visible and damages along the façades 
cannot be assessed (Gerke and Kerle, 2011a). Therefore, such analysis 
depends strongly on the use of proxies such as presence of blow-out debris 
or shadow changes (Kerle and Hoffman, 2013b). Airborne oblique images, 
which provide information of both roofs and facades, have been 
recommended as a potential data source for a more comprehensive 
building damage assessment (Dong and Shan, 2013; Kerle and Hoffman, 
2013b). However, in a study of damage caused by the 2010 Haiti 
earthquake using oblique Pictometry data, the reported classification 
accuracy was only around 70% when the categories no-moderate damage 
(D1-D3), heavy damage (D4) and complete destruction (D5), using the 
European Macroseismic Scale (EMS 98) for damage classification (Gerke 
and Kerle, 2011a). The main shortcoming of this approach is that through 
relatively simple appearance based features, collected on a segment basis, 
the large variability of damage cannot be easily represented. In fact, such 
an approach leads to ambiguities in the damage classification approach. 
Each damage evidence is unique in its characteristics and requires unique 
features and a unique processing strategy to recognize them. For instance, 
the recognition of inclined elements requires 3D geometric features, 
whereas detection of cracks, spalling, etc., requires radiometric features, 
with damage such as partial collapse requiring both. Also the damage 
evidences have different impact when they occur on different elements of 
the building, especially when affecting structural (roof, façade, etc.) vs. 
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non-structural elements (windows, doors, etc.). Hence, an explicit 
definition of damage evidences, along with a categorisation of building 
elements, is important for accurate damage classification. Therefore, for a 
detailed and comprehensive damage assessment, a multi-level processing 
is required, where at each level a relevant set of features and a processing 
appropriate strategy should be adopted to recognize a specific type of 
damage evidence. This kind of assessment demands a detailed inventory 
of the building with its rich geometric and radiometric features. 3D point 
clouds have been recognized as an ideal source to infer the 3D geometric 
features (Lafarge and Mallet, 2012).  
 
Unmanned Aerial Vehicles (UAVs) have been recognized as an ideal 
platform for capturing images suitable for high quality 3D point cloud 
generation (Colomina and Molina, 2014). UAVs provide flexibility in 
capturing images of the building in multiple views and from multiple 
positions, which helps to diminish occlusion that is a major challenge in 
the use of oblique images acquired by traditional survey aircraft. UAVs 
can also be operated at lower altitudes. Hence, they can provide images 
with better spatial resolution than manned aircraft.  
 
There are a number of challenges associated with the use of image-based 
3D point clouds that need to be addressed for reliable damage assessment. 
One of those relates to gaps (holes) in the 3D point cloud of the building 
elements, which can be the result of actual damage (partially broken), 
image matching problems (low texture, lack of image coverage), 
occlusion, or absence of objects or surfaces (real openings). The 
identification of gaps in the 3D point cloud of an intact building, as well 
as their specific nature, is a prerequisite for the damage assessment 
scenario development. Additional radiometric features from images are 
required for accurate detection and classification. To our knowledge, a gap 
classification scheme for 3D point clouds that is suitable for damage 
assessment scenarios has not yet been developed.  
 
The objective of this research is to develop a methodology for delineation 
of individual buildings in the image-based 3D point clouds and mapping 
of specific kinds of damage evidences (e.g., broken segments) along the 
elements of the building that are related to gaps in 3D point clouds. This 
methodology attempts to utilize the advantages of both 3D geometry and 
multiple image features to resolve the ambiguities/limitations that cannot 
be addressed by either alone. The methodology includes three principal 
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processes: (i) delineation of individual buildings to be assessed; (ii) 3D 
point clouds gap detection and (iii) gap classification, in particular 
identification of gaps associated with different types of damage. The 
challenges associated with each process, related methodology and results 
are independently analysed and discussed in the chapter.  

2.2 Previous work  
Numerous methods have been reported for building damage assessment 
using various remote sensing data such as optical, SAR and LiDAR 
(Dell'Acqua and Gamba, 2012; Dong and Shan, 2013; Plank, 2014b). The 
reported methods can be categorized into two groups: 1) damage 
assessment by analysing the significant changes between the pre and post 
event data, and 2) damage assessment by analysing the post event data 
alone (mono-temporal). The latter approach has been found to be more 
suitable for time critical applications such as disaster management, as it 
can be operational even in absence of reference data (Dong and Shan, 
2013). With advances in related fields such as computer vision, pattern 
recognition and machine learning, numerous methods have been 
developed to infer the damage pattern from mono-temporal post event 
data. Various studies explored texture-based features as important cues for 
damage classification, since damaged regions tends to show unique texture 
pattern in contrast to undamaged manmade or natural objects, see for 
example, Ma and Qin (2012a), Radhika et al. (2012) and Yamazaki and 
Matsuoka (2007). Li et al. (2012) detected collapsed buildings using 
mono-temporal post-event data by fusing morphological texture features 
with spectral information, and reported that collapsed buildings were 
detected even in a complex urban environment. Some of the studies 
highlighted that 3D features were useful for detecting specific types of 
damage based on geometric reasoning (Gerke and Kerle, 2011c; Rehor and 
Vögtle 2008; Shen et al., 2010). So far, very few studies have investigated 
the potential of 3D point clouds, especially from LiDAR, for building 
damage assessment. Oude Elberink et al. (2011) used mono-temporal 
LiDAR point clouds to detect completely collapsed buildings. Shen et al. 
(2010) identified damaged buildings by estimating building inclination in 
post-disaster airborne laser data. Khoshelham et al. (2013a) classified 
building roofs into intact and damaged, using segment-based 3D features 
derived from LiDAR data. They reported that partially damaged larger 
roof segments were mostly misclassified as intact roofs. This implies that 
geometric features alone are not sufficient for reliable damage assessment. 
Apparently a combined use of 3D geometric features from LiDAR and 
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radiometric features from optical images could be the ideal combination 
for damage assessment. Hussain et al. (2011) demonstrated that the 
combined use of LiDAR data with GeoEye-1 imagery produced the 
effective damage assessment map for the damage caused by earthquakes 
in dense urban areas, such as in Port-au-Prince in 2010. Trinder and Salah 
(2012) reported improved results when LiDAR data are used along with 
aerial images rather than using aerial images alone.  
 
All the mentioned methods assess the damage state of the building as a 
whole and assign the single damage label for the entire building, even if 
only a specific portion of the building is severely damaged. Essentially 
element-specific detailed building damage information is wanted since 
different stakeholders (rescue team to insurance company) need different 
levels of damage information. This requires an accurate recognition of 
individual elements of the building. Recent studies in non-disaster 
domains have shown that 3D point clouds can be used to automatically 
recognize the structural components of the buildings, even in the presence 
of significant clutter and occlusion (Xiong et al., 2013). Most of the 
reported 3D point cloud-based urban scene classifications have so far been 
based on LiDAR point clouds. However, the technological advancements 
in the field of Computer Vision and computing made image-based stereo 
photogrammetric 3D cloud points comparable with LiDAR cloud points, 
at least in urban environments (Leberl et al., 2010). Also the advancement 
in UAV technology allows the capturing of high resolution data, suitable 
for photogrammetric processing for generating dense 3D point clouds of 
the scene.  

2.3 Methods  
A framework for building delineation from an image-based 3D point cloud 
and mapping of damaged elements of the delineated building that are 
related to the gaps in the 3D point cloud is developed. The framework 
comprises of three independent methods 1) building detection and 
delineation from image-based 3D point cloud, 2) detection of gaps in the 
3D point cloud corresponding to individual elements of the building and 
3) identification of gaps caused by damage. The description and related 
background of each method are provided in the following subsections.  

2.3.1 Initial building detection and delineation  

In our overall building damage assessment strategy we differentiate 
between fully demolished buildings and those where the roof is at least 
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partially intact. In this study, we concentrate on the latter case. Hence, the 
prerequisite for our building damage assessment is delineation of 
individual buildings from 3D point clouds that are fully/partially intact 
with some roof structures. In this study, we intended to explore the 
suitability of methods initially designed for LiDAR point clouds 
(Rottensteiner et al., 2014; Sun and Salvaggio, 2013) for image-based 3D 
point clouds. In addition we prefer a rooftop-based building delineation 
approach. This is for two reasons, 1) roof segments can be identified using 
simple geometric constraints i.e. they will always be located at a certain 
height above the ground and characteristically they will be horizontal or 
slanted planes, and 2) generally roof segments have better point cloud 
quality than other building elements such as façades, since roofs are visible 
in both nadir and oblique views and less affected by occlusion effects when 
compared to façades. Our aim is to detect only the building roofs, but often 
tree segments are misclassified as roof segment. Hence, tree detection will 
generally be carried out as a pre-processing step in 3D point cloud-based 
building detection (Sun and Salvaggio, 2013). Some studies indicated local 
distributions of point normal as a useful feature to classify between tree 
and non-tree component (Sun and Salvaggio, 2013). However, a tree 
portion with dense leafs may possess required uniformity in their point 
normal distribution to get recognized as a planar segment. In such cases, 
the differentiation of tree and roof segments based on geometric features 
becomes ambiguous. However, the image-based 3D point cloud 
additionally has spectral information for each 3D point, which can be used 
to overcome the ambiguity in classification between vegetation and 
building roof segment.  
 
Another issue to be addressed is the presence of large noise or outliers in 
the image-based 3D point clouds, which is mainly due to the generation of 
mismatches (Rupnik et al., 2014b). During plane-based segmentation a 
certain point offset from an optimal plane is allowed, hence erroneous 3D 
points might form a segment and possibly they may get connected with 
roof segments, thereby affecting the building delineation accuracy. In 
general, we assume that segments formed by erroneous points would be 
too compact or too narrow when compared to real roof segments. This kind 
of noisy segment may be connected to roof segments through single points. 
In contrast, real roof segments should be larger in general. Refer to 
threshold Twidth below. 
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The building detection and delineation has been carried out based on 
identifying spatially connected roof segments. As an initial step the 3D 
points are classified into terrain and off-terrain points using the method 
proposed by Axelsson (2000b) which is implemented as part of the 
software lastools (Rapidlasso, 2013). The off-terrain 3D point cloud is 
segmented into disjointed planar segments, using the plane-based 
segmentation as described in Vosselman (2012). Then the height 
normalization of the 3D point cloud is carried out i.e. the above ground 
height for each off-terrain 3D point is computed as the height difference 
between the off-terrain 3D point and the nearest terrain point. The roof 
segments are then identified based on the z component of plane normal of 
that segment. Then a connected component analysis is applied to merge 
the spatially connected roof segments that satisfy predefined merging 
criteria to obtain a complete roof of a single building. Four merging criteria 
are used in order to avoid tree and noisy segments to get included as 
building roof segments.  
Merging criteria,  

i. Distance between the segments < Tdistance.  
ii. Number of points that create a connection between the segments 

(i.e. number of points in one segment that are spatially connected 
to the convex hull of another segment) > Tpoints. 

iii. The distance between any two connecting points from step (ii) > 
Twidth. 

iv. Spectral index (G/(R+G+B)) > Tindex, RGB corresponds to the red, 
green and blue band, respectively. 
 

The choice of thresholds for those merging criteria plays an important role 
and will be discussed in the results section.  

The building detection and delineation process has been carried out 
through a number of steps as follows,  
1. The Z component of surface normal of each segment (nz) is computed 

through a plane fitting method (Rabbani et al., 2006). It is ensured that 
all normals point outside, i.e. all nz values are larger than zero.  

2. The area for each segment is computed using the convex hull. 
3. The segments that have nz > TZ (pre-defined threshold) are pre-

selected as roof segments and sorted by area in descending order.  
4. The roof segments that are spatially connected are considered as roof 

segments of a single building. The connected roof segments are 
merged to form a complete roof segment that represents the area of the 
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building. The building delineation based on roof merging process is 
carried out through a number of steps as follows,  
a) The largest roof segment is taken as the base element for the roof 

merging process. 
b) The boundary of the base element is defined using the convex hull. 
c) All segments that are spatially connected to the boundary of the 

base element are merged with the base element and its boundary is 
updated using the convex hull. The spatial connectivity constraint 
(conditions for segments to be agreed as connected) and the 
merging process (conditions for merging the connected segments) 
are based on the predefined merging criteria.  

d) The above process (c) is repeated with the updated base segment 
until no new segment is added to the base segment.  

e) The final base segment will be considered as a complete roof 
segment of a single building.  

f) All 3D points (both segmented and un-segmented) that lie within 
the 2D boundary defined by a convex hull of the final roof segment 
(i.e. all elements that lie below the final roof segment) will also be 
registered as points of that building.  

g) Finally the convex hull of the detected building is considered as the 
outline of the building.  

h) The above steps (a) to (g) are continued until the roof segment list 
becomes empty. 

2.3.2 Gap detection on element level 

A building delineated from 3D point clouds consists of a collection of 
segments (e.g., building elements like roofs, façades, etc.) and each 
segment consists of a collection of 3D points, in addition isolated points in 
the vicinity are added (step f. above).  
 
For the gap detection process, 3D points of a selected segment are 
voxelized based on a pre-defined voxel size. Then the voxels are classified 
into occupied voxels (at least one 3D point lies inside the voxel) and 
unoccupied voxels (no 3D point inside the voxel). In this context it is 
important to consider also the minimum number of image points required 
to compute a 3D point. This parameter is set within the image matching 
method. Per default we assume that this number is three. The unoccupied 
voxels are considered as gaps in the 3D point cloud, and can be further 
classified into occluded empty voxels (visible in less than three camera 
views) and visible empty voxels (visible in three or more camera views) 
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by applying a visibility test analysis. In this work, we used the voxel-ray 
intersection method as described by Alsadik et al. (2014b) for mapping of 
the occluded empty voxels. The remaining voxels which are visible in a 
sufficient number of cameras, but are not occupied will be further 
considered for the gap classification process. 

2.3.3 Gap classification  

A gap classification process is crucial to identify the gaps caused by 
damage. In general, gaps can be classified into four categories: 1) gap due 
to occlusion, 2) gap due to failure in 3D point generation (e.g., low texture, 
shadow), 3) gap due to openings in architectural design and 4) gap due to 
damage. The gap due to occlusion will already be classified during the gap 
detection process through visibility test analysis, but the remaining gap 
categories cannot be recognized from 3D point features alone. For 
example, 3D points cannot be generated for texture-less surfaces which 
leads to a gap in the 3D point could. This kind of gaps can be classified 
only by analysing the surface radiometric characteristics of that gap region 
in an image. Also the radiometric features are required to differentiate 
between a gap due to an opening in architectural design and a gap created 
due to damage. For this analysis we assume that undamaged urban objects 
are more homogenous in nature and possess uniform radiometric 
distribution whereas damaged region will tend to show more irregular 
radiometric distribution patterns. For example, any deformation in the 
concrete surface creates a sign of spalling or debris around the deformed 
region which are generally rough and flaky in nature and possess uneven 
radiometric distribution pattern as depicted in Figure 2-1Figure 1-1. 
Therefore we assume that a gap with spalling or debris in its surrounding 
region can be classified as a gap due to damage. Spalling and debris 
regions in an image can be identified using the radiometric descriptors, as 
explained in the next subsection.  
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Figure 2-1  Texture pattern of damaged region 

Source: Wikipedia (2015) 

2.3.3.1 Radiometric descriptors as damage indicator:  

Numerous radiometric features have been reported for mapping damaged 
regions. Among them features describing the texture have been noted as a 
significant indicators of unevenness radiometric distribution that 
corresponds to damaged region (Dong and Shan, 2013). In addition our 
working hypothesis is that the gradient orientation distribution of a region 
could indicate the actual damage state of that region. To this end we 
analyse the histogram of gradient orientation (HoG) feature, as well 
(Minetto et al., 2013; Salas et al., 2012). Based on those findings, the 
significance of HoG and other texture descriptors is analysed in 
identification of damaged regions in this work.  
 
i) Texture features 
The texture feature extraction methods can be categorized into statistical 
and signal processing approaches. Statistical methods define texture in 
terms of local grey–level statistics by analysing the spatial distribution of 
grey values within a specified image. An example, features based on the 
grey level co-occurrence matrix (GLCM). Signal processing based texture 
analysis is carried out by analysing the spatial-frequency characteristics of 
an image region, e.g., wavelets based features. Wavelet-based texture 
features were found to be superior to GLCM texture features in many 
applications including classification of remote sensing images (Ruiz et al., 
2004a). Also in damage assessment scenarios wavelet features were 

Damaged region  
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indicated as potential features in recognition of debris pattern (Radhika et 
al., 2012). Among wavelets, Gabor wavelets have been noted as an 
efficient tool for texture analysis especially for analysing highly specific 
frequency and orientation characteristics of an image region which is 
crucial for damage detection (Arivazhagan et al., 2006). Gabor wavelets 
consist of set of filter banks, where each filter is tuned to capture specific 
frequency information at specific orientations. Using Gabor filters, the 
image regions can be differentiated with respect to its dominant spatial 
frequency and orientation. Detailed information about Gabor filter banks 
generation and application for pattern recognition are given by 
Arivazhagan et al. (2006).  
 
ii) Histogram of gradient orientation (HoG) 
HoG features are widely used in computer vision for object detection and 
classification by measuring the spatial variation of edge orientations within 
a region (Kobayashi et al., 2008). The principle behind HoG feature-based 
image analysis is that local object appearance within an image can be 
characterized by measuring the distribution of the gradient directions. The 
HoG features can be derived locally by dividing the image into m x n 
rectangular grids and by computing the histogram of gradient orientations 
within the rectangular grid. This histogram will then be converted into a 
feature vector that represents the gradient orientation pattern of an image 
region corresponding to the rectangular grid.  

2.3.3.2 Procedure for gap classification 

The gap classification process has been carried out through a number of 
steps as follows,  
 
i) Choice of suitable image for gap classification:  
The first step is the choice of an appropriate image for gap classification. 
The appropriateness of an image is decided based on the following criteria, 
1. The angle between the normal orientation of the segment that contains 

one or more gap regions and the direction of the optical axis of the 
camera should be within the threshold Tangle. The image is 
automatically selected as the one where the angle between optical axis 
and face normal is minimal.  

2. The gap region must lie within the boundary of the camera view and 
not occluded by other objects. 
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3. From the selected images based on the above two criteria, select the 
one where the distance between the segment and the position of the 
camera is minimal for better spatial resolution.  

 
ii) Delineation of gap region on the image for analysis 
The next step is to delineate the gap regions in a selected image. As a first 
step, the centroids of gap voxels are projected onto the image. A 
morphological closing operation is performed to fill the gaps between the 
projected points. Then a connected component analysis is used to delineate 
the individual gap regions. A gap due to damage is classified based on the 
presence of damage patterns around the gap region. Therefore the 
delineated gap regions are dilated using a square structural element of size 
m, in order to include neighbouring pixels around the gap region for further 
analysis.  
 
iii) Classification of delineated gap regions  
a) Gap due to damage 
The gaps due to damage are classified based on the presence/ absence of 
damage pattern around them. The Gabor wavelets and HoG features are 
extracted around the gap region and independently evaluated for mapping 
the damaged region.  
 
Supervised learning methods are being widely used for pattern recognition 
and classification in specific application, since they are more effective to 
develop a relational model by just providing a set of training samples rather 
than defining a relationship based on domain knowledge. In image-based 
damage assessment applications, supervised learning approaches have 
extensively been applied to recognize damage pattern from radiometric 
descriptors which is evident from the review by Dong and Shan (2013). 
Hence, the potential of Gabor wavelets and HoG features for damage 
mapping is evaluated using two learning algorithms of different 
paradigms, Support Vector Machine (SVM) (Schölkopf and Smola, 2001) 
and Random Forests (RF) (Breiman, 2001). SVM and RF are state-of-the-
art and widely used machine learning algorithms of two different families. 
SVM and RF work in unique way. For example, random forest is a 
decision tree-based learning algorithm that works well for linearly 
separable features, and that can handle data with missing values and 
outliers, whereas SVM employs kernel-based learning and works well for 
non-linear features. A main objective of experiments conducted in the 
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study is thus to analyse the performance of features (Gabor/HoG) and the 
respective learning model (SVM/RF) for the classification of region into 
damaged and non-damaged region. Another objective in this context 
relates to the question of generalisation performance: given that the 
classifier is trained using images from different areas, and not the actual 
one, how is the overall classification performance? Especially in rapid 
damage assessment this is an important property in order to save time for 
the assessment. 
 
b) Gap due to openings in the architectural design  
The gap region that has no damage pattern around them is then tested for 
an opening in the architectural design. All 3D points that are registered 
with the delineated building (c.f. step 4f under section 2.3.1.1) are 
projected over the selected image. The occurrence of projected 3D points 
over the delineated gap region in an image indicates the presence of visible 
surface around the gap region. Therefore, the gap region in an image with 
projected 3D points and no damage pattern around is classified as an 
opening in architectural design.  
 
c) Gap due to image matching failure 
The gap region in an image with no damage pattern around them and no 
projected 3D points is then analysed based on its radiometric 
characteristics to further classify them into gap region corresponding to 
textured or non-textured surface/area. Three features (contrast, entropy 
and peak histogram intensity) are used to analyse the surface 
characteristics of the gap. High contrast and entropy values indicate that a 
good surface texture is present, but the matching algorithm was not 
successful in point creation in the area. On the other hand, if the named 
observations show low values, it is a hint on a poorly textured or shadowed 
area which hampered the image matching  
The automated procedure for overall gap classification process is depicted 
in Figure 2-2. 
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Figure 2-2 Work flow of the gap classification process 

 
The integrated work flow of all the three processes such as building 
delineation, gap detection and gap classification is depicted in Figure 
2-3. All the processes can be carried out automatically in sequence, 
once the parameters associated with each process are initialized.  
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Figure 2-3 Integrated work flow of all three processes (building delineation, gap 

detection and gap classification) 

2.4 Experimental results and discussion  

2.4.1 Building detection and delineation – dataset: oblique images 
from manned aircraft  

2.4.1.1 Data description  

At the time of preparing the experiments for the building detection and 
delineation method we had no access to UAV data over a large earthquake-
affected area. For this reason we chose a multiple view oblique airborne 
image data set which is described below. The data for the gap detection 
and classification, however, was taken from a UAV flight. The airborne 
oblique images captured over the city of Mirabello (Italy) after an 
earthquake in 2012 were taken as the primary data to evaluate the building 
delineation process where most of the buildings only show limited or no 
damaged. The images with an average ground sampling distance (GSD) of 
14 cm were captured by Blom-CGR S.p.A. (http://www.cgrspa.com), 
using the Midas- Oblique system composed of 5 cameras –one nadir and 
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4 oblique rotated in the four cardinal directions and tilted by 45° with 
respect to nadir. From the 70 captured images a dense 3D point cloud of 
the scene with an average point density of 15 points per m2 was generated 
by automatic orientation of the images, followed by dense matching using 
the software pix4Dmapper (http://pix4d.com). A subset of the 3D point 
cloud corresponding to the densely built-up region was extracted for 
testing of the building delineation process. The selected region consists of 
198 buildings. Of those 106 are isolated buildings (not connected to 
neighbouring buildings), and the remaining 92 buildings can be 
categorized as chains of buildings (building physically connected to 
neighbouring buildings). The selected region also consists of numerous 
densely leafed tall trees, some of which overlap with buildings.  

2.4.1.2 Results of building detection and delineation process 

The height normalized above ground 3D points was segmented into 
disjointed planar segments. The segments that has Z component of normal 
greater than TZ (0.6) were filtered out as a roof segments. The building 
delineation method described in section 0 was used to delineate the 
buildings from the detected roof segments of the buildings.  
 
The building delineation process was carried out based on four merging 
criteria. We used Tdistance as 0.5 m, Tindex as 0.34, Tpoints as 3 and Twidth as 
30cm for building delineation process.  
 
The threshold Tindex for classifying 3D points as tree and non-tree 
component was defined based on Otsu threshold selection method (Otsu, 
1979). This spectral index performed well for our test data where most of 
the tree segments were identified. For visual comparison, the images 
projected with 3D points of the delineated buildings with and without use 
of spectral index as merging criteria for removing the tree segments are 
shown in Figure 2-4.  
 
The thresholds Tpoints and Twidth were defined based on trial and error basis. 
It was observed that the threshold Twidth has significant impact on building 
delineation process, since for higher values of Twidth e.g., Twidth > 50 cm, a 
single building tended to delineate as multiple buildings as depicted in 
Figure 2-5. 
 



Identification of damage in buildings based on gaps in 3D point clouds  

 36 

 
Figure 2-4 The delineated buildings projected over the images (highlighted in 
red) – building delineation without use of spectral index as merging criteria 
(left), building delineation with spectral index as one of the merging criteria 

(right), images © BLOM Italy 

 
Figure 2-5 Example of the impact of the merging criteria threshold on building 
delineation – (a) Twidth > 30 cm, and (b) Twidth >50 cm, images © BLOM Italy 
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The 3D points of the delineated buildings were projected over the image 
to analyse the results visually. A portion of an image projected with 3D 
points of the delineated buildings is shown in Figure 2-6. From the results 
we differentiate between the following cases (refer to Figure 2-6, where 
one example building for each case is annotated): 
Case 1: Isolated single building delineated as single building – this is the 
case, where a single building was correctly detected as single building and 
hence it was considered as topologically correct.  
Case 2: Single building delineated as two or more buildings – this is due 
to the gaps between the 3D points corresponding to a single roof segment. 
In the image-based point cloud, the point density varies from region to 
region (i.e. from object to object), since the point density depends on the 
surface characterizes of a region. Smoothly textured surfaces (e.g., 
homogenous roof segment) lead to sparsely distributed 3D points. 
Therefore spatially separated roof segments of a single building were 
found to be delineated as multiple buildings. In this case, an object was 
correctly classified as building but it was topologically incorrect, since a 
single building was detected as multiple buildings.  
Case 3: Spatially separated individual buildings delineated as single 
building –the noisy points in the 3D point cloud were found to act as a 
bridge between the physically separated buildings. This is the case where 
the object was correctly classified as building but topologically incorrect.  
Case 4: Building delineated with some portion of tree – this is the case, 
when a portion of tree was detected as a planar segment and spatially 
connected to a building was recognized as a part of the building. Therefore 
the outline of the detected building was considered as topologically 
incorrect.  
Case 5: Chain of buildings detected as single building –where physically 
connected buildings (a block of buildings) were delineated as a single 
building. In this case, the detected buildings were considered as 
topologically correct, since, with our data-driven approach, the physically 
connected buildings cannot be identified as separate buildings. 
Case 6: Chain of buildings detected as multiple individual buildings –
this happened due to two reasons, 1) significant change in the height of the 
connected buildings and 2) sparse 3D point cloud as described in case 2. 
The detected buildings were considered as topologically incorrect, since 
the physically connected buildings were considered as single building as 
per the above case.  
Case 7: Non-building detected as building –the above ground non-
building objects with horizontal or slanted planar segments were detected 
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as a building. For example, in our test data, non-building objects such as 
large vehicles were detected as building.  
Case 8: Buildings not detected – some of the buildings were partially 
detected and some not detected because of sparse or missing 3D points due 
to the radiometric characteristics of the surface.  
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Figure 2-6 Subsets of aerial image projected with 3D points of the delineated 

buildings, images © BLOM Italy 
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Table 2-1 Number of buildings that falls under each category 
Category of the delineated buildings Number of 

buildings 
Case 1 : Isolated single building delineated as single building 83 
Case 2: Single building delineated as two or more buildings 2 
Case 3: Spatially separated individual buildings delineated as single 
building 

9 

Case 4: Building delineated with some portion of tree 8 
Case 5: Chain of buildings detected as single building 76 
Case 6: Chain of buildings detected as multiple individual buildings 13 
Case 7: Non-building detected as building 16 
Case 8: Buildings not detected 7 

 
The efficiency of the building delineation method was assessed based on 
how well the buildings were detected among other above ground objects 
in the scene. We adopted commonly used evaluation metrics such as 
precision, recall and accuracy to assess the efficiency of the building 
delineation process. The precision, recall and accuracy can be defined as, 
Precision = TP/ (TP+FP); Recall = TP/ (TP+FN); Accuracy = (TP)/ (TP+ 
FP+FN) where TP, FP and FN are:  
True positive (TP) –Buildings detected as buildings: the buildings that 
comes under the category of case 1 to 6 were considered as true positives.  
False positive (FP) – Non-building detected as buildings: The objects that 
are categorized under case 7 are the non-building objects detected as 
buildings which were considered as false positives.  
False negative (FN) – Buildings not detected as buildings: The buildings 
that are categorized under case 8 were the non-detected buildings in the 
scene which were considered as false negatives.  

 
Table 2-2 Results of building detection process 
Evaluation metrics for building detection process 

TP = 191 (case 1+case 2+case 3+case 4+case 5+case6), FN = 7 (case 8), FP = 
16 (case 7) 

Precision 92 % 
Recall 96% 
Accuracy 89% 

 
The recall measure indicates that 96% of the buildings in the scene were 
detected using the roof-based building delineation approach (Table 2-2). 
The precision and accuracy measures (Table 2-2) were slightly affected by 
the detection of non-building objects as buildings. This is because here we 
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consider only the height and surface normal orientation of the segment as 
features for identifying the roof segments of the buildings. So any above 
ground object with horizontal or slanted segments will be recognized as 
roof segment. For example the upper part of large vehicle which is 
horizontally oriented and lies above the ground was detected as a building 
as depicted in Figure 2-6. This implies that geometric constraints alone 
cannot be sufficient to avoid the false positive detections. Among the 
detected buildings, only 83 % of the buildings (159 out of 191 buildings) 
that were categorized under case 1 and case 5 were considered as correctly 
delineated buildings, i.e. topologically error free. The visual assessment 
was carried out using the aerial images projected with 3D points of the 
delineated buildings as depicted in Figure 2-6. The boundary of remaining 
17 % of the detected buildings deviated from the actual boundary due to 
many reasons such as inclusion of tree segments, disconnected roof 
segments due to missing 3D points, etc., (refer to cases – 2,3,4 and 6 in 
Table 2-1). Overall the roof-based building delineation approach seems to 
be working well for image-based 3D point cloud where most of the 
building delineations were near the actual boundary of the building which 
is sufficient for the damage assessment scenario.  

2.4.2 Gap detection and classification on element level – dataset: 
images from UAV  

All the three processes such as building delineation, gap detection and gap 
classification were carried out in sequence for this data set and the results 
have been reported in the following sections.  

2.4.2.1 Data description  

A small region around the church –‘Church of Saint Paul’ in Mirabello 
captured by an UAV was considered for the gap detection and 
classification process. The images of the selected region were captured by 
a VTOL (vertical take-off and landing) UAV from various heights, 
positions and views (oblique and nadir). An average GSD of the captured 
images is around 1 cm. A 3D point cloud of the scene was generated from 
152 images with an average point density of 650 points per m2. The 
selected region contained six buildings and among them only one was 
damaged.  

2.4.2.2 Results of gap detection process 

All the six buildings in the scene were delineated using the building 
delineation approach. The merging criteria’s thresholds (c.f. 3.1) that were 
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defined for the building delineation from the point cloud of data set1 
(average point density of 15 points per m2) seem to work well when 
applied to much higher density point cloud of data set 2 (average point 
density of 650 points per m2). Among the six buildings, four are isolated 
(case 1) and two are spatially connected (case 5) which were correctly 
delineated using the building delineation approach. An example for the 
delineation of a single building from the 3D point cloud of UAV images 
is given in Figure 2-7.  
 

 
Figure 2-7 An example for delineation of a single building from the 3D point 

cloud, images © Aibotix Italy 

Each delineated building is comprised of a number of 3D point segments. 
The gap detection process was carried out individually for every 3D 
segment of the building. A 3D segment was chosen and voxelized. The 
choice of voxel size is indeed a compromise between a loss of information 
(large voxels compared to given point density) and oversampling caused 
by voxels that are too small, leading to artificial gaps. In fact, the voxel 
size must be large enough to contain actual information from the point 
cloud (if available) and small enough for the given application: which gap 
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size is of interest? In this work, we used 0.4 m voxel which was found to 
be sufficient for damage detection process, being aware of the fact that the 
original point density is much larger. The gap voxels were identified based 
on the gap detection procedure described in section 0 (e.g., refer to Figure 
2-8). In total 7 regions were detected as gaps. The gap detection process is 
a straightforward approach that can accurately detect gap voxels within a 
segment. 

2.4.2.3 Gap classification  

The 3D segments that contain the gaps were selected for the gap 
classification process. As a first step, each 3D gap segment was mapped 
with an image using the image selection criteria described in section 0. 
This is to extract the radiometric descriptors around the gap region for the 
gap classification. After selecting an appropriate image for each gap 
segment, the corresponding gap regions in the image were delineated using 
the procedure described in section 2.3.3.2. An example for gap region 
delineation process on image is portrayed in Figure 2-8.  
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Figure 2-8  Delineated gap regions in the image 

The next step after gap region delineation is the gap classification. The gap 
classification process requires information about the presence and absence 
of damage evidences around the gap region. Therefore, the detection of 
damaged regions in the image is a prerequisite for the gap classification 
process, which was carried out as follows.  

2.4.2.4 Classification of entire scene into damaged and undamaged 
regions 

Here two kinds of features, Gabor wavelets and HoG, were independently 
analysed for the damage detection process. A supervised learning 
approach was used to develop a model-based on the above mentioned 
features by providing the relevant training samples to perform the damage 
detection process. The significance of each kind of features for damage 
classification when trained with supervised algorithms was evaluated in 
two experiments:  
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a) Training and testing with samples belonging to the same study site. 
b) Training with samples collected from various places, and testing with 
the samples from our study site.  
The above two experiments were conducted in order to analyse the 
generalization capability of the classification. This is because it has been 
reported that often the supervised models developed based on samples 
from one study site produce weak predictions when tested with samples 
from another unseen site, due to many reasons such as the quality of the 
data, limitations of the selected features and limitations of the learning 
model itself (Foody et al., 2003). 

2.4.2.5 Results of the gap classification process 

i) Gabor wavelet features for damaged region detection  
The Gabor feature images were obtained by applying the filter banks of 
Gabor wavelets over the selected image. The Gabor filter banks were 
obtained using the procedure as described in Haghighat et al. (2013). From 
the feature images it was inferred that Gabor features have the potential to 
differentiate between the regions based on their surface pattern, 
irrespective of their intensity. For example consider Figure 2-9, where the 
RGB image depicts the scene that contains three different types of building 
roofs, annotated as A, B and C, and a damaged region annotated as D. The 
Gabor features images that are depicted in Figure 2-9 are the feature 
images corresponding to different frequencies and orientations. The roof 
segments A, B and C, were clearly differentiated by those Gabor wavelet 
features. For example, for the roof A the Gabor feature 3 showed a strong 
signal, whereas B and C got highlighted by other Gabor features as 
depicted in Figure 2-9. In all the feature images the damaged region 
annotated as D in Figure 2-9 was found to show similar characteristics. 
This is because the man-made objects have a dominant orientation; hence 
the respective feature corresponding to that orientation shows a clear peak. 
Conversely, the damaged region has a gradient orientation in many 
directions; hence they possess similar characteristics in most of the feature 
images corresponding to different orientations. The visual assessment 
indicates that Gabor features have the potential to differentiate the objects 
in the scene based on their dominant frequency and orientation 
characteristics.  
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Figure 2-9  Subset of the UAV image and its Gabor feature images – the 

marked regions A, B and C are the roofs of different buildings and D is the 
region of debris 

The Gabor filter banks consist of 40 filters (5 frequencies at 8 orientations), 
thus each pixel in the image was represented by a feature vector of size 
1x40. To select the training samples for building a supervised model, the 
image was divided into rectangular grids with a grid size of 40x40 pixels. 
Each rectangular grid was assigned with a feature vector by finding the 
median of features corresponding to all pixels within the rectangular grid. 
Manually 466 grids corresponding to damaged (267 grids) and non-
damaged (199 grids) regions were selected to frame training samples for 
constructing a supervised model. Using the training samples, supervised 
learning models were developed based on the two learning approaches, 
SVM and Random Forests. The performance of the learning models was 
analysed using a 10 fold cross validation process. The results are provided 
in Table 2-3.  
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Table 2-3 Results of Gabor feature-based supervised models for damaged 
region detection 

 Confusion matrix  
(D= Damaged  
ND =Non-damaged) 

Precision 
(%) 

Recall 
(%) 

Accuracy 
(%) 

Random Forest  Predicted Class 

Actual 
Class 

  D ND 

D 260 007 

ND 012 187 
 

95.6  97.4  95.9 

SVM  Predicted Class 

Actual 
Class 

  D ND 

D 260 007 

ND 031 168 
 

89.3  97.4  91.8 

 
Both SVM and RF produced same recall measure which indicates that they 
both correctly classified 97% of the damaged region. The precision 
produced by SVM was relatively low (89%) when compared to RF (95%). 
This shows that SVM tends to produce a larger number of false positive 
predictions than RF for this application.  
 
ii) HoG features for damaged region detection  
For damage detection using HoG features the selected image was also 
divided into rectangular grids with a grid size of 40x40 pixels. The HoG 
pattern was found to be different for damaged and undamaged regions. For 
damaged regions, the histogram was spread over many directions, as 
depicted in Figure 2-10, whereas HoG of undamaged regions possessed 
gradient orientations in few directions, which can be considered the 
dominant gradient orientation of that region (e.g., Figure 2-10). From the 
visual assessment, the HoG feature was found to be capable of 
differentiating between the damaged and undamaged regions based on its 
local gradient orientation pattern. The significance of the HoG feature for 
damage pattern recognition was evaluated using SVM and RF learning 
algorithms based on the same procedure as followed for the Gabor 
features. The obtained results for HoG feature are presented in Table 2.4, 
which are quite similar to the results obtained with the Gabor features. 
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Table 2-4 Results of the HoG feature-based supervised models for damaged 
region detection 

 Confusion matrix  
(D= Damaged  
ND =Non-damaged) 

Precision 
(%) 

Recall 
(%) 

Accuracy 
(%)  

Random Forest  Predicted Class 

Actual 
Class 

  D ND 

D 255 012 

ND 016 183 
 

94.1 95.5  94.0 

SVM  Predicted Class 

Actual 
Class 

  D ND 

D 248 019 

ND 022 177 
 

91.9  92.9  91.2 
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Figure 2-10  HoG pattern for damaged and undamaged regions 

Both Gabor and HoG features were found to work well for our test site 
when the supervised model was trained and tested with samples from the 
same study site. To assess the generalization capability of the supervised 
approach, a supervised model was developed using the training samples 
with wide variety of building and damage types, collected from various 
geographic locations and tested that model with the samples from our 
study site. The data used for preparing the training samples were the street 
view images of the damaged buildings collected from various countries 
after the disaster events. The training set consists of 344 positive samples 
(damaged region) and 276 negative samples (non-damaged region). The 
results of the supervised models when tested with the data from the unseen 
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site are presented in Table 2-5. The performances of these supervised 
models were significantly lower than the models trained and tested with 
samples from the same site. The maximum recall value (84%) was 
obtained by the model developed using HoG feature with RF when tested 
with data from unseen site (Table 2-5). But the same model produced 
relatively low precision of 71%. All the supervised models developed by 
unique combinations of features (Gabor and HoG) and learning algorithms 
(RF and SVM) produced similar results with higher recall value than 
precision when trained and tested with samples from different locations. 
This indicates that the accuracy of those models was mostly affected by 
the high false positive rates  
 
Table 2-5 Results of the supervised models for damaged region detection when 
trained using samples from various locations and tested with samples from our 
study site (values in brackets indicate change to the earlier experiment where 

the classifier got trained in the actual area) 
Features Learn

-ing 
algorit
-hm 

Confusion matrix  
(D= Damaged  
ND =Non-damaged) 

Precisi
-on 
(%) 

Recall 
(%) 

Accur 
-acy 
(%)  

Gabor RF  Predicted Class 
Act
ual 
Cla
ss 

 D ND 
D 193 064 
ND 096 103 

 

66.7 
(29.0) 

75.1 
(22.3) 

64.9 
(31.0) 

SVM   Predicted Class 
Act
ual 
Cla
ss 

 D ND 
D 205 052 
ND 072 127 

 

74.1 
(15.2)  

79.7 
(17.7) 

72.8 
(19.0) 

HoG  RF  Predicted Class 
Act
ual 
Cla
ss 

 D ND 
D 218 039 
ND 086 113 

 

71.7 
(22.4) 

84.8 
(10.7) 

72.58 
(21.4) 

SVM  Predicted Class 
Actual 
Class 

 D ND 
D 210 047 
ND 082 117 

 

71.9 
(20.0) 

81.7 
(11.2) 

71.7 
(19.5) 
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Overall, the supervised model developed based on Gabor wavelet features 
with RF (Table 2-3) produced better results than other developed 
supervised models for our test site and this classification was used in the 
further gap classification process. The image classified into damaged and 
undamaged regions using the selected supervised model is shown in Figure 
2-11.  
 

 
Figure 2-11 Image classified into damaged and undamaged region using the 

selected supervised model 

2.4.2.6 Classification of delineated gap regions: 
The delineated gap regions in the image were classified into gaps due to 
damage, gaps due to openings, and gaps due to surface characteristics 
issues, based on the procedure described in section 2.3.3.2. In total 7 gaps 
were considered. Among them only two were due to the damage, and both 
show evidence of damage (broken rubble pieces) around them. The 
damaged regions around those gaps were correctly detected as damaged 
regions by the selected supervised model for damage detection. The other 
gaps due to openings in the architectural design and image matching 
failure issues were also correctly classified. A sample of results for each 
gap category are given below. 
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Category 1: Gap due to damage  

 
Figure 2-12 An example for gap due to damage 

 
Category 2: Gap due to an opening in the architectural design 

 
Figure 2-13 An example for a gap due to a natural opening 

Category 3: Gap due to surface characteristics issues  

 
Figure 2-14  An example for gap due to surface characteristics issue 
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2.4.3 Gap detection and classification on element level – dataset 3: 
Nunspeet UAV 

So far, we have no access to UAV images showing real earthquake-
damaged buildings, other than what was shown in 4.2. In order to further 
assess the accuracy of detecting gaps in the point cloud that are due to a 
failure of 3D point generation or to real openings, the gap detection and 
classification methods were tested on another data over a non-damaged 
urban area in the municipality of Nunspeet in The Netherlands (Hinsbergh 
et al., 2013). The 3D point cloud of the selected urban region was 
generated with an average point density of 250 points per m2 from the 
images captured by an UAV with an average GSD of 1.5 cm. We observed 
a number of gaps in this 3D point cloud due to two reasons; 1) presence of 
texture-less objects such as glass windows in the gable roof of the 
buildings and 2) occlusion (visible in less than 3 images) as depicted in 
Figure 2-15. In total 11 buildings were considered for the gap classification 
process, in which we found 14 gaps in the roof segments of the building 
after automatically excluding the gaps due to occlusion. Among 14 gaps, 
5 were classified as texture-less surface and 9 were classified errors due to 
image matching failures, even though they all corresponding to the same 
object such as glass windows. This is because, the glass objects showed 
different kind of reflection when it was viewed from different positions as 
depicted in Figure 2-16. From the results, it was inferred that the presence 
of significant gap within the 3D segment of a point cloud will be detected 
by our method.  
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Figure 2-15 (a) an image cut out shows a building with texture-less and 

occluded objects, (b) Subset of 3D point cloud corresponding to that building, 
(c) and (d) Voxelized 3D point cloud segments with highlighted gap voxels, 

images © Dutch Kadaster 

 

 
Figure 2-16 Image subsets showing the variation in window glass reflection for 

images captured from different positions, images © Dutch Kadaster 
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2.5 Overall discussion and conclusion  
In this chapter a framework was developed to delineate buildings from an 
image-based 3D point cloud, and to identify the broken elements of the 
delineated buildings that let to gaps in the 3D point cloud.  
We adopted a roof-based building delineation approach. Often, tree 
segments that display some degree of planarity were misclassified as roofs, 
and thus wrongly detected as buildings. The spectral information from 
images was used to differentiate between the roofs and tree components, 
which removed most of the wrongly classified tree segments. Our 
approach detected 96% (Table 2-2) of the buildings in the selected area. 
The remaining buildings were not detected due to the missing or sparse 3D 
points. This has been identified as the major limitation of image-based 
point clouds that show high object-to-object point density variation. 
Because of this low point density issue, some of the detected buildings 
were not accurately delineated, and a single building was wrongly 
delineated as multiple buildings. Also, the presence of noisy points that 
were generated due to mismatches, and wrong detection of tree segments 
as roofs that are overlapped with the roof segments, affected the 
delineation accuracy of the detected buildings. In total, only 83% of the 
detected buildings were delineated correctly. However, our objective is to 
perform gap detection and classification at a segment level, where we 
require only the segments of the buildings, and where the building 
delineation accuracy has a limited impact. However, for future 
comprehensive damage assessment at a per-building level, the realization 
of the geometric characteristics of the building is important. This requires 
at least an approximate boundary of the building. The boundary inaccuracy 
problem in building delineation arises due to the limitations of roof 
merging criteria, where only the spatial relationship between the segments 
is considered for the merging of roof segments of a single building. 
Generally, those possess similar surface characteristics (i.e. colour and 
texture). Therefore, defining merging criteria based on the combination of 
spatial connectivity and radiometric homogeneity (same colour and 
texture) between the segments could overcome the above limitations, and 
thereby improve the building delineation accuracy. One of the objectives 
of this research was to identify the gaps in the 3D point cloud that are 
caused by the damage to building elements. Those gaps were identified 
based on their surrounding damage patterns. Since the HoG and Gabor 
wavelets features performed well in previously published pattern 
recognition and objection classification studies, we anticipated that they 
could identify and classify the radiometric patterns related to damages, 
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such as spalling and debris. We found that both HoG and Gabor wavelets 
has the potential to recognize the damage patterns, finding around 95% of 
the damaged regions when used in a supervised learning approach. 
However, we observed a problem of generalization with the damage 
detection process based on the supervised approach, as the supervised 
model developed from training samples based on different geographic 
locations produced weak results when tested with the samples from an 
unseen site (c.f. Table 2-5). In case of time critical applications such as 
damage assessment, the development of a local supervised model, suitable 
to the specific study site, and by collecting the training samples from the 
same study site, is not practical. Hence, derivation of a generalized 
relationship between the features and damage pattern is important. The 
generalization capability of the supervised model may improve when the 
training sample size is increased.  
 
The regions for damage analysis were defined by dividing the image into 
rectangular grids of constant size. In this case, often single objects get split 
into several regions. Therefore, the actual orientation characteristics of the 
object cannot be completely captured. This may lead to an incorrect 
prediction about the damage state of the region. Hence, deriving features 
at an appropriate scale is important. Therefore, instead of defining the 
regions based on a gridding approach, image segmentation can be used to 
identify the unique regions within the image for damage analysis. We 
anticipate that image segmentation based on Gabor features can identify 
those unique regions in the image, and that performing damage analysis 
on those regions will improve the accuracy of the damage classification 
(damaged region identification).  
 
Moreover, gaps due to damage were detected based on the surrounding 
damage pattern such as spalling or debris. In case such evidence is missing, 
damage-related gaps cannot be accurately classified. The domain 
semantics could be of help here. For example, according to the general 
nomenclature of the building, any openings in the building, such as a 
balcony, will be located only in a specific, predictable position. Also, real 
openings based on an architectural design will typically be uniform in 
geometry. Therefore, the gaps in inappropriate locations, and with 
irregular geometry, can be classified as gaps due to damage, after 
eliminating other possible reasons.  
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From the analysis it has been inferred that the incorporation of domain 
knowledge into our approaches is required to make them robust. However, 
the major challenge is that the conceptualization and formalization of these 
kinds of domain specific semantics into an operational format (e.g., a set 
of rules), which is generally referred to as ontology, e.g., Belgiu et al. 
(2014). However, considerable further research is required to develop such 
ontology-based robust approaches for building delineation and damage 
detection processes. 
 
The results and analysis of this study clearly indicate the importance of 
image-based radiometric features in both the building delineation and 
damage detection processes. Thereby it implies that an image-based 3D 
point cloud, which provides both radiometric and 3D geometric features, 
is a suitable source for structural damage assessment.  
 
Overall, the proposed framework for building delineation from image-
based 3D point clouds, and mapping of damaged elements of the 
delineated building that are related to the gaps in the 3D point cloud, was 
found to be successful. The extension of this framework by developing 
methods for mapping other kind of damages such as inclined elements, 
cracks, and spalling, along every element of the building, would lead to 
accomplishing our desired objective of comprehensive and detailed 
building damage assessment. 
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3 Identification of structurally damaged areas in 
airborne oblique images using a visual-bag-of-

words approach* 
 

                                                 
* This chapter is based on the article:  
Vetrivel, A., Gerke, M., Kerle, N. and Vosselman, G. (2016) Identification of structurally 
damaged areas in airborne oblique images using a visual-bag-of-words approach. In: 
Remote Sensing : open access, 8 (2016)3article no. 231, 22 p. 
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Abstract  
Automatic post-disaster mapping of building damage using remote sensing 
images is an important and time critical element of disaster management. 
The characteristics of remote sensing images available immediately after 
the disaster are not certain, since they may vary in terms of capturing 
platform, sensor-view, image scale and scene complexity. Therefore, a 
generalised method for damage detection that is invariant to the mentioned 
image characteristics is desirable. This study aims to develop a method to 
perform the grid-level damage classification of remote sensing images by 
detecting the damages corresponding to debris, rubble piles and heavy 
spalling within a defined grid, regardless of the aforementioned image 
characteristics. The Visual-Bag-of-Words (BoW) is one of the most 
widely used and proven frameworks for image classification in the field of 
computer vision. The framework adopts a kind of feature representation 
strategy that has been shown to be more efficient for image classification 
regardless of the scale and clutter than conventional global feature 
representations. In this study supervised models using various radiometric 
descriptors (histogram of gradient orientations (HoG) and Gabor wavelets) 
and classifiers (SVM, Random Forests and Adaboost) were developed for 
damage classification based on both BoW and conventional global feature 
representations, and tested with four datasets. Those vary according to the 
aforementioned image characteristics. The BoW framework outperformed 
conventional global feature representation approaches in all scenarios (i.e. 
for all combinations of feature descriptors, classifiers and datasets), and 
produced an average accuracy of approximately 90%. Particularly 
encouraging was an accuracy improvement by 14% (from 77% to 91%) 
produced by BoW over global representation for the most complex dataset, 
which was used to test the generalization capability. 
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3.1 Introduction 
Rapid damage assessment after a disaster event such as an earthquake is 
critical for efficient response and recovery actions. Direct manual field 
inspection is labour intensive, time consuming and cannot assess the 
damages in inaccessible areas. Remote sensing technology is the most 
predominant and early source to provide data for performing such 
assessments, either manually or using automated image analysis 
procedures (Dell'Acqua and Gamba, 2012; Dong and Shan, 2013). Various 
kinds of remote sensing data such as optical, synthetic aperture radar 
(SAR) and LiDAR are being used for the damage assessment process 
(Dong and Shan, 2013). However, optical data are often preferred as they 
are relatively easy to interpret (Dong and Shan, 2013). Moreover, optical 
remote sensing provides very high resolution images ranging from 
decimetre to centimetre scale through various platforms such as satellites, 
manned aircrafts and unmanned aerial vehicles (UAVs) (Adams et al., 
2013; Gerke and Kerle, 2011a; Li et al., 2010a). This allows performing 
comprehensive damage assessment through identifying different levels of 
damage evidences, ranging from complete collapse to cracks on the 
building roof or façades, by choosing images at appropriate scales. 
Particularly oblique airborne images are recognized as the most suitable 
source, as they facilitate the damage assessment on both roofs and lateral 
elements (Fernandez Galarreta et al., 2015a; Gerke, 2011). For example, 
even extensive building damage such as inter-story collapse or pancake 
collapse can be identified reliably only with oblique view images, while 
conventional nadir views at best provide damage proxies such as external 
debris (Dong and Shan, 2013; Fernandez Galarreta et al., 2015a; Kerle and 
Hoffman, 2013a). Although current remote sensing yields images at a vast 
range of views and scales, automatic recognition of even heavy damages 
to buildings is still challenging (Dong and Shan, 2013). This is due to 
various reasons, such as the complexity of the scene, uncertain 
characteristics of damage patterns and the varying scale problem in 
oblique view images.  
Generally, the regions corresponding to heavy damage are determined 
through the identification of damage patterns corresponding to rubbles 
piles, debris and spalling in an image region (refer to Figure 3-1Figure 2-1) 
(Kerle and Hoffman, 2013a). Those damage evidences have a specific 
meaning and play a major role in damage classification. For example, the 
presence of significant amounts of debris/ rubble piles around the building 
is the strong indication of (partial) building collapse. Spalling is an 
indicator of minor damage or partially broken structural elements. The 
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recognition process of those damage patterns can be performed by 
analysing features extracted either in pixel or region level (Dong and Shan, 
2013; Kaya et al., 2010; Miura et al., 2013). However, the pixel level 
analysis is not meaningful for very high spatial resolution images, 
particularly in the context of damage assessment, as the evidences are 
identified based on the characteristics of their radiometric distribution 
pattern, which can be captured more precisely at a region level. However, 
in region-level classification the critical part is to define the region that is 
appropriate to identify the specific damage patterns. Generally, image 
regions are obtained either through a gridding approach or though image 
segmentation (Ma et al., 2014). The most simple, efficient and 
straightforward strategy is the gridding approach, where the image is split 
into uniform rectangular cells. However, the regions derived from gridding 
are often cluttered, as they may comprise different kinds of objects. For 
example, a single cell may contain trees, building elements, cars, road 
sections, debris, etc. Moreover, oblique images are more complex 
compared to nadir images, since they also capture façades that frequently 
comprise various elements, such as windows, balconies, staircases, etc. 
They generally also look more cluttered than nadir images containing 
largely roofs, and reveal façade information only at image border, 
depending on the lens opening angle. It is quite challenging to identify the 
damage patterns in such kind of cluttered region. This can be alleviated by 
using a segmentation approach, which segments the damaged portions and 
other objects in the scene as separate regions. However, the selection of 
appropriate features and a segmentation algorithm that is suitable for a 
given damaged and cluttered environment is a challenging problem, one 
that requires substantial semantic analysis. Apart from clutter, the regions 
obtained from oblique images vary in scale. Nevertheless, the 
identification of damage patterns regardless of image scale is an important 
prerequisite in damage assessment. For example, damages at a building 
level such as inter-story collapse can be captured better at coarser scales 
(e.g., 100 x100 pixel region in an image of decimetre scale), while minor 
damages such as spalling at a building element level require finer scales 
(e.g., 100x100 pixel region in an image of centimetre scale). Therefore, a 
robust method is required to recognize the damage pattern in a defined 
region irrespective of the scale and clutter. This is an analogue of the 
human visual pattern recognition system which is extremely proficient in 
identifying the damage patterns regardless of the scale and complexity of 
the scene.  
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Figure 3-1 An example for debris, rubble piles and spalling –Source: 

http://www.combatgroupdynamix.com/Diorama/WargameSeries/Accessories/B
uildings/WargameAccessoriesTallBuilding.htm 

In the field of computer vision, various methods have been reported for 
pattern recognition tasks in various applications, such as object 
categorization, face recognition and natural scene classification (Jin and 
Ruan, 2009; Yang et al., 2009; Zhang et al., 2007). These methods are 
mostly based on supervised learning approaches, which work well for 
conventional image classification applications. However, the overall 
performance of the learning approach completely depends on the 
discriminative power of the image descriptors (features) considered for the 
classification (Huang et al., 2014). Generally, images are described 
through either global (e.g., textures) or local features, like point descriptors 
such as Scale Invariant Feature Transform (SIFT) (Oliva and Torralba, 
2006; Zhang et al., 2007). However, most global features are very sensitive 
to scale and clutter (Carneiro and Jepson, 2009). In contrast, the local 
descriptors are robust to clutter but cannot capture the global 
characteristics of the image (Lou et al., 2014; Zuo and Zhang, 2011). An 
alternate feature representation strategy, such as Visual-Bag-of-Words 
(BoW), captures the global characteristics of the image through encoding 
a set of local features, which makes them robust to scale and clutter (Ferraz 
et al., 2014a; Lu and Wang, 2015). For example, in texture-based 
classification, the global texture pattern of the image is captured by the 
frequencies of the co-occurrence of the local texture patterns. This kind of 
feature representation outperforms the conventional global feature 
representation approaches in image classification (Zhuang et al., 2013). 
Apart from general image classification, the Bag-of-Words framework has 
been demonstrated as a potential approach in many image-based domain 
specific applications including image retrieval (Wu et al., 2009), human 
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action and facial expression recognition (Li et al., 2010b; Wang and Mori, 
2009), image quality assessment (Ye and Doermann, 2012) and medical 
image annotation (Bouslimi et al., 2013). Conceptually, thus, the BoW 
approach seems to be appropriate for identifying the damaged regions in 
airborne oblique images, which generally look cluttered and vary in scale.  
Pattern recognition methods including BoW are based on a supervised 
learning approach that attempts to learn the underlying relationship 
between the image-derived features and the pattern of a specific category, 
in this case the damage pattern. Therefore, apart from a feature 
representation strategy, the choice of features that best discriminate the 
damaged and non-damaged regions is also a key element. Numerous 
studies reported that textures are the most influential feature for damage 
pattern recognition, as the damaged regions tend to show uneven and 
peculiar texture patterns in contrast to non-damaged regions (Ma and Qin, 
2012b; Radhika et al., 2012; Yamazaki and Matsuoka, 2007). Many 
damage classification studies used statistical textures such as grey level 
co-occurrence matrix (GLCM)-based features for the damage pattern 
recognition (Miura et al., 2013; Reinartz et al., 2013; Sui et al., 2014a). 
However, other texture measures such as wavelets have been recognized 
as superior to GLCM in many pattern recognition problems, including land 
cover classification (Stavrakoudis et al., 2011). Particularly for region-
level pattern classification problems, descriptors such as Histogram of 
Gradient Orientation (HoG), Gabor wavelets, SIFT and Speeded Up 
Robust Features (SURF) have led to good results (Conde et al., 2013; Khan 
et al., 2011; Lin et al., 2011). All these features describe the pattern of the 
given region in a unique way, based on the magnitude of gradient along 
various orientations and scales. Vetrivel et al. (2015a) demonstrated the 
potential of HoG and Gabor features to classify the damaged regions in 
very high resolution UAV images. However, they found limitations with 
the conventional global representation of HoG and Gabor features, 
especially with respect to generalization. So far, however, to our 
knowledge no work exists which combines the named features in a BoW 
fashion for damage mapping. 
The objective of this research work is thus to develop a robust method 
based on the BoW approach that is suitable especially (but not only) for 
oblique images to identify the damage patterns related to rubble piles, 
debris and spalling, regardless of the scale and the clutter of the defined 
region in an image. Following the above argumentation, a grid-based 
region definition is pursued. The robustness of the developed method 
based on this BoW approach is analysed by comparing the performance of 
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various learning algorithms and image descriptors (Gabor and HoG) under 
both the conventional and the BoW approach. Also, the generalization 
capability of the developed method is analysed, by testing it on a variety 
of images corresponding to various scales, camera views, capturing 
platforms and levels of scene complexity.  

3.2 Methods  
For the identification of damaged regions in an image, as a preparation 
step we provide reference data. That is, the given image is split into MxN 
regions which are termed image patches. The image patches are manually 
labelled as damaged if any kind of damage pattern related to debris, 
spalling and rubble piles is observed in them. The automatic detection of 
those damage patterns within the patches is carried out using two different 
feature representation approaches: global and BoW representation. The 
feature descriptors and learning algorithms considered for both the global 
and BoW-based damage classification process are described in the 
respective sub-sections.  

3.2.1 Damage classification based on global representation of 
features  

This process includes two steps: 1) extraction of image descriptors that 
provide the global description of the given image patch, and 2) 
classification of the given image patch as damaged or non-damaged, based 
on the extracted feature descriptors using a supervised learning algorithm.  

3.2.1.1 Extraction of feature descriptors 
The HoG and Gabor wavelets-based feature descriptors are considered for 
the global feature representation-based damage classification process.  
 
a) Histogram of Gradient Orientation (HoG) 
The standard approach is used to extract the HoG features (e.g., Dalal and 
Triggs (2005)), where the given image patch is split into a number of 
overlapping blocks, and histograms of gradient orientation derived for 
each block are concatenated to form a feature vector. This gives the global 
representation of the image patch.  
Procedure: 
1. Derive gradient magnitude and its orientation for each pixel in the 

image patch.  
2. Split the gradient image into AxB cells.  
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3. Again split the gradient image into a number of overlapping blocks, 
where each block contains CxD cells with 50% of overlapping cells 
between the blocks.  

4. Define the bin size for the histogram of gradient orientation, where 
each bin corresponds to a specific orientation (the bin size remains 
fixed for all experiments later).  

5. For each cell, compute the histogram of gradient orientation by adding 
the magnitude of the gradient to its corresponding orientation bin. 
Therefore, the size of the feature description of each cell is equal to 
the number of bins.  

6. Concatenate the histograms of gradient orientation of all cells within 
each block to get the block level description. Normalize the 
histograms magnitude within the block to compensate for the local 
illumination variations (Déniz et al., 2011).  

7. Concatenate all block level descriptors to form the global descriptor 
of the patch.  

b) Gabor wavelets descriptors 
The Gabor wavelets descriptors are obtained by convolving the image with 
a set of Gabor wavelet filters. These filters are derived by appropriate 
rotation and scaling of the mother Gabor wavelet function, where each 
filter is tuned to capture the pixel information at a specific orientation and 
frequency. The detailed procedure for Gabor wavelets filter generation can 
be found in Arivazhagan et al. (2006). After obtaining the Gabor filter 
responses for each pixel in the image patch, the region-level Gabor wavelet 
descriptor is represented by the histogram of magnitude of filter responses 
for all combinations of orientations and frequencies (cf. Yi and Su (2014)). 
This histogram is computed for three consecutive pyramid levels of image 
patches, in order to capture the variation across scales, in addition to the 
variation across frequencies and orientations. The procedure used for 
extracting the global Gabor feature descriptors for an image patch is 
described below.  
Procedure: 
1. Generate IxJ number of 2D Gabor wavelet filters, where I and J are the 

number of frequencies and number of orientations used to generate the 
Gabor wavelet filters, respectively.  

2. Convolve the image patch with the generated filter banks, which 
results in IxJ number of feature images.  

3. Normalize each feature image using l2 normalization.  
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4. Compute the histogram of Gabor filter responses, where each 
histogram bin corresponds to a specific frequency and orientation. 
Therefore, the number of histogram bins is equal to IxJ, which is the 
size of the final feature vector.  

5. Also, extract the Gabor wavelet features for the other two pyramid 
levels of the image patch, by subsampling it to ½ and ¼ of the image 
patch size.  

6. Feature vectors derived at different scales are concatenated to form the 
final feature vector. Therefore, this final feature vector will comprise 
features extracted at multiple scales, multiple frequencies and multiple 
orientations.  

3.2.1.2 Damage classification using the derived global 
feature descriptors 

Supervised learning approaches are adopted to classify the given image 
patch as damaged or non-damaged, based on the global feature descriptors. 
Three state-of-the-art and widely used supervised learning algorithms, 
Support Vector Machines (SVM) (Schölkopf and Smola, 2002), Random 
Forests (RF) (Breiman, 2001) and Adaboost (Rätsch et al., 2001), are 
considered for the damage classification process. These learning 
algorithms belong to the families of different learning paradigms, which 
learn the underlying relationship between the input features and the output 
label in a unique way. Three different learning paradigms are considered 
in order to analyse whether the considered feature descriptors are 
independent of the supervised algorithm, i.e. how the classification task is 
solved independently of the applied learning strategy. Also, each learning 
algorithm has a number of tuneable parameters, referred to as hyper-
parameters, which have a significant impact on the performance of the 
learning model (Bergstra and Bengio, 2012). Therefore, the hyper-
parameters are tuned for the best model by searching the parameter space 
using the grid space search approach (Bergstra et al., 2011). This approach 
constructs a number of learning models for different settings of the hyper-
parameters, using the training set. The performance of each model is 
assessed using a cross validation procedure. The best performing model is 
selected as the final model with tuned hyper-parameters, and then 
evaluated using the testing set. 
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3.2.2 Damage detection using Visual-Bag-of-Words  
The standard BoW framework is adopted for the damage classification 
process. The BoW framework comprises different components, such as 
feature point detection, feature descriptors, visual word dictionary, and a 
classifier. The algorithms used for each component and the overall 
procedure are described below.  
Overall, the BoW-based damage classification process is carried out in two 
stages: 1) construction of visual word dictionary, and 2) representation of 
the image in terms of BoW (histogram of visual words), and training the 
classifier based on them.  
 
Stage 1:  
a) Feature point detection 

The basic idea behind this step is that an image can be described by a 
small number of significant pixels (salient points). For example, pixels 
corresponding to edges and corners contain the most significant 
information compared to pixels of homogenous regions. Salient point 
descriptors that are invariant to scale and orientation are most 
appropriate to build an image classification model that is robust to 
scale and rotation. Numerous such salient point detection methods are 
available, with SIFT and SURF commonly being used in the BoW 
context (Lou et al., 2014). In this study, SURF was used since it is 
faster than SIFT and its descriptor is suitable to be used as the feature 
in the BoW framework, as discussed in the following sub-section. A 
description of the SURF points detection process can be found in Bay 
et al. (2006).  

 
b) Feature extraction 

The purpose of this step is to extract the local feature descriptor for 
each salient point in the given image patch. The feature descriptors 
HoG and Gabor wavelets that are used in the global representation-
based damage classification are also considered here for the local 
description of salient points in the BoW-based damage classification. 
This allows to compare the potential of BoW and global feature 
representation irrespective of the features. In the BoW approach the 
SURF descriptor is additionally used to describe the salient points. 
This is because SURF is a well-proven point descriptor (local 
descriptor), and widely used in BoW-based image classification 
processes (Tsai, 2012). Furthermore, SURF descriptors are based on 
wavelet responses, which also describe the image region in terms of 



Chapter 3 

 71

textures, similar to HOG and Gabor feature descriptors. Therefore, the 
three feature descriptors HoG, Gabor wavelets and SURF are used 
independently to describe each salient point in the given image patch 
for the BoW-based damage classification. The local pattern description 
for each salient point is derived by considering a local neighbourhood 
of PxQ pixels around the salient point. The same procedure as 
described in section 2.1.1 is followed to extract the Gabor and HoG 
features. The standard procedure is used to extract the SURF feature 
descriptor (cf. Bay et al. (2006)).  

 
c) Visual words dictionary construction 

The feature descriptors of salient points from all image patches 
(regardless of their class) are concatenated into a single feature vector. 
Numerous feature encoding methods have been reported for visual 
word dictionary construction (Peng et al., 2013). We adopted the most 
commonly used iterative k-means clustering algorithm (Tsai, 2012). 
The obtained feature vector is clustered into k clusters using the 
iterative k-means clustering (Vattani, 2011). Each cluster centre is 
considered as the visual word, and the cluster centres are collectively 
referred to as visual word dictionary.  

Stage 2:  
a) Image description based on visual words 

To represent the given image patch in terms of BoW (histogram of 
visual words), the salient points in the image patch are detected and 
feature descriptors are obtained for each point. The detected points in 
the image are assigned to their closest visual word in the dictionary. 
Subsequently, the frequency of occurrence of the visual words in the 
image is represented as a single histogram, which is referred to as the 
BoW representation of the image, which will be fed into the classifier 
in the next step.  

b) Classification of visual words using machine learning algorithms 
Again, the three learning algorithms SVM, RF and Adaboost are used 
as classifier for classifying the damage and non-damaged image 
patches based on BoW. The procedure as described in section 2.1.2 is 
followed to develop the supervised learning models based on the BoW 
features. 

The overall workflow of BoW-based damage classification process is 
depicted in Figure 3-2.  
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Figure 3-2 Overall process of the BoW-based damage classification 

3.3 Experiments and Results  
The damage classification method was evaluated using four different data 
sets, with each differing in its image characteristics such as scale, camera 
view, capturing platform and scene complexity. Each data set was 
independently analysed for the damage classification process based on the 
three feature descriptors HoG, Gabor wavelets and SURF. The 
performances of HoG and Gabor wavelets for damage classification were 
analysed by representing them in both a conventional and BoW 
framework. Also the potential of the SURF descriptor was analysed for 
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damage classification by representing it in a BoW framework and 
comparing it with BoW based Gabor and HoG. 
 
Three supervised learning algorithms, SVM, RF and Adaboost, were used 
for analysing the performance of the feature descriptors. Therefore, each 
data set was tested with different combinations of feature descriptors and 
supervised learning algorithms, as depicted in Figure 3-3.  
 
The conducted experiments for the damage classification process include 
a number of algorithms, and each algorithm was associated with a number 
of parameters. The values used for the parameters of the algorithm are 
shown in Table 3-1. The hyper-parameters considered for tuning the 
learning algorithms (cf. 2.1.2) are described in Table 3-2. 

 
Figure 3-3  Combinations of feature descriptors and learning algorithms tested 

for each dataset 
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Table 3-1 Definition of parameters associated with each algorithm/method used 
in the experiment 

Algorithm/ 
method 

Parameter values Description Reference  

Image patch 
generation 

M=100; N=100 To generate 100x100 image patches Section 2 

HoG procedure A=25; B=25 Cell size AxB - 25x25pixels Section 
2.1.1 C= 4; D=4 Block size CxD– 4x4 cells 

bin size =9 Bin size of histogram of the gradient 
orientations 

Gabor wavelet 
descriptor 

I=5; J=8 I, J are the number of frequencies and 
orientations respectively to generate 
the Gabor wavelet filters 

Section 
2.1.1 

Feature 
extraction 

P=10; Q=10 10 x10 local neighbourhood is 
considered for deriving descriptor for 
each salient point 

Section 
2.2 

Visual word 
dictionary 
construction 

k = 500 
 
 

k value for k-means clustering Section 
2.2 

Supervised 
model for 
damage 
classification 

10-fold cross 
validation 

Cross-validation to identify the 
optimal hyper-parameters for a 
learning model based on the grid 
search approach 

Section 
2.1.2 

The dataset is split 
into 70% and 30% 
for training and 
testing, respectively 

Training set is used to train the model 
and also for cross-validation for tuning 
the hyper-parameters. Testing set is 
used for evaluating the trained model. 
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Table 3-2 Definition of grid search space for tuning the hyper-parameters of the 
classifiers 

Supervised 
classifier 

Hyper-parameter Grid search 
space 

Description 

 
 
 
 
SVM 

C 0.001 to 100, 
step size – 
multiples of 
10 

Regularization parameter which has a 
significant effect on the generalization 
performance of the classifier. 

Kernel Linear, radial 
basis function 
(RBF) and 
histogram 
intersection 

The function used to compute the kernel 
matrix for classification. 

gamma 0.0001 to 1.0, 
step size – 
multiples of 
10 
 

Regularization parameter used in RBF 
kernel (Gaussian kernel function) which 
has significant impact in the 
performance of the kernel. 

 
 
 
 
RF 

N_estimators 3 to 20, step 
size 2 
 

Number of trees in the forest. 

Max_depth 1 to 5, step 
size 1 
 

Maximum depth of the tree. 

Min_samples_split 1 to 4, step 
size 1 

Minimum number of samples required to 
split a node. 

Min_samples_leaf 1 to 3, step 
size 1 

Minimum number of samples required in 
newly created leaf after the split. 

 
Adaboost 

N_estimators 100 to 1000, 
step size 100 

The maximum number of estimators that 
can be used to build the ensemble 
learning model. 

Learning rate 0.01 to 0.1, 
step size 0.01 

Regularization parameter that scales the 
contribution of each weak estimator. 

3.3.1 Dataset 1: UAV images 
UAV images captured over two different areas were considered: 1) a small 
region around a church (‘Church of Saint Paul’) in Mirabello, Italy, 
damaged by a 2012 earthquake; 2) a small region around a partly 
demolished industrial facility in Gronau, Germany. Both regions possess 
similar characteristics, and they contain only a few buildings that are 
largely disconnected. One building in each region was partially collapsed 
and produced a significant quantity of debris and rubble piles (cf. top left 
image in Figure 3-4– UAV image-subset of the Mirabello church). The 
UAV images were captured at different heights, positions and views (nadir 
and oblique) with a spatial resolution of 1-2 cm. The images of both 
regions corresponding to various orientations and heights were split into 
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100x100 pixel rectangular image patches for framing of the training and 
testing datasets for the damage classification process. The patches are 
labelled as damage if at least 25% of their area represents damage 
evidences (debris/rubbles or spalling). It is difficult to describe the 
characteristics of damage and undamaged samples. Hence, for each 
dataset, the samples of damaged and undamaged image patches are 
portrayed to provide better insight (refer to Figure 3-4 to Figure 3-6). Since 
the image resolution is very high, the defined rectangular patches cover 
only a small region (approximately 1 m2) and, therefore, most of them 
contain only either damage evidences or single homogenous object, i.e. the 
defined regions are mostly uncluttered; refer to the image training samples 
in Figure 3-4. In total 966 samples (482 damaged, 484 non-damaged) each 
of size 100x100 pixels were considered. The dataset was constructed by 
selecting the specific samples across different regions within the scene that 
highly vary in their characteristics to avoid a large number of repetitive 
samples. The damage classification was performed for this dataset based 
on different combinations of feature descriptors and learning algorithm as 
described above, and the results are reported in Table 3-3.  
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Dataset 1: UAV image subset 100x100 image patches – training 
samples for non-damaged regions 

   

  

  

100x100 image patches – training samples for damaged regions 

Figure 3-4 Samples of image patches in dataset 1- UAV images 
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Table 3-3 Performance of feature descriptors when associated with different 
learning algorithms for dataset 1 comprising patches from the UAV images 

(training samples = #676, testing samples = # 290) - bold numbers indicate best 
performance per indicator 

Data     
-set1 

SVM RF Adaboost 

Preci
sn 

Reca
-ll 

Accurac
y 

Precisio
n 

Recal
l 

Accurac
y 

Precisio
n 

Recal
l 

Accurac
y 

Gabor 0.91 0.87 0.90 0.99 0.92 0.95 0.81 0.76 0.79 

HoG 0.87 0.86 0.86 0.94 0.93 0.93 0.71 0.67 0.69 

BoW-
Gabor 

0.96 0.93 0.95 0.99 0.98 0.98 0.96 0.71 0.83 

BoW-
HOG 

0.98 0.97 0.98 0.97 0.95 0.95 0.95 0.87 0.90 

BoW-
SURF 

0.97 0.92 0.94 0.90 0.88 0.90 0.80 0.81 0.81 

3.3.2 Dataset 2: Oblique view manned aircraft images  
The airborne oblique images (Pictometry) with a Ground Sampling 
Distance (GSD) between 10 cm (foreground) and 16cm (background) 
captured over Port-au- Prince after the 2010 Haiti earthquake were 
considered. The images cover almost entire city, and contain numerous 
buildings ranging from simple to complex. Most of the buildings are 
densely clustered in such a way that it is difficult to differentiate each 
building even visually from the images. Numerous buildings are partially 
covered with densely leafed tall trees, adding to the clutter of the scene. A 
significant number of buildings is damaged, ranging from complete/partial 
collapse to heavy spalling on the intact elements of the building (cf. Figure 
3-5). The images are split into 100x100 pixel images/patches to frame the 
training and testing datasets for the damage classification process. The 
defined image patches are highly cluttered as they cover a large area (at 
least 10 m2) and comprise different kinds of objects, such as trees, building 
elements, cars, road sections and debris (cf. Figure 3-5). The dataset was 
constructed by selecting the specific samples across different regions 
within the city that highly vary in their characteristics. Again, the selection 
of samples was driven by the idea to cover different damage characteristics 
rather than piling up redundant information. In total 1256 samples (698 
damaged, 558 non-damaged) were selected and tested for the damage 
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classification based on the developed approach. The patches cover an area 
of approximately 13,000 m². The results are reported in Table 3-4.  
 

Dataset 2: Oblique view Pictometry 
image subset 

100x100 image regions – training 
samples for non-damaged regions 

 

  

  
100x100 image regions – training samples for damaged regions 

Figure 3-5 Samples of image patches in dataset 2, images © Pictometry 
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Table 3-4 Performance of feature descriptors when associated with different 
learning algorithms for dataset 2 comprising patches from Pictometry images 

(training samples = #879, testing samples = # 377). 
Datase
t2 

SVM RF Adaboost 

Precisio
n 

Reca
ll 

Accura
cy 

Precisio
n 

Reca
ll 

Accura
cy 

Precisio
n 

Reca
ll 

Accura
cy 

Gabor 0.81 0.76 0.79 0.82 0.76 0.79 0.78 0.61 0.72 

HoG 0.78 0.61 0.72 0.67 0.61 0.66 0.62 0.58 0.63 

BoW-
Gabor 

0.89 0.86 0.88 0.88 0.88 0.88 0.80 0.79 0.79 

BoW-
HOG 

0.93 0.89 0.91 0.85 0.83 0.84 0.80 0.69 0.75 

BoW-
SURF 

0.91 0.89 0.90 0.84 0.82 0.83 0.80 0.78 0.80 

3.3.3 Dataset 3: Street view images  
Street view close-range images of damaged buildings captured by hand-
held cameras after earthquakes in different geographic locations were 
used. These images were collected from two sources: 1) Governmental 
organization: the German Federal Agency for Technical Relief, THW; 
(http://www.thw.de), and 2) the internet (various websites). The collected 
images vary in scale; however, the actual scale is unknown. Therefore, the 
100x100 pixel patches generated from those images may cover small areas 
(e.g., an element of the building) or large areas (e.g., entire or major 
portion of the building). The collected images contain buildings with 
various kinds of damages, such as complete collapse, partial collapse, 
inter-story collapse and heavy spalling. In total 887 samples (384 
damaged, 503 non-damaged) were considered to construct and evaluate 
the supervised model for the damage classification. Samples image 
patches used for the training and testing of the supervised model are 
depicted in Figure 3-6. The results are reported in Table 3.5.  
.  
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Dataset 3: Scale varying street view images 
100x100 image regions – training 

samples for damaged regions 
100x100 image regions – training 
samples for non-damaged regions 

    

    
Figure 3-6  Samples of image patches in dataset 3- street view images 

Table 3-5 Performance of feature descriptors when associated with different 
learning algorithms for dataset 3 comprising patches from street view images 

(training samples = #620, testing samples = # 267). 
Datase
t3 

SVM RF Adaboost 

Precisio
n 

Reca
ll 

Accura
cy 

Precisio
n 

Reca
ll 

Accura
cy 

Precisio
n 

Reca
ll 

Accura
cy 

Gabor 0.89 0.85 0.87 0.88 0.80 0.85 0.91 0.85 0.89 

HoG 0.95 0.74 0.86 0.94 0.81 0.89 0.84 0.84 0.85 

BoW-
Gabor 

0.99 0.91 0.95 0.92 0.77 0.86 0.92 0.72 0.84 

BoW-
HOG 

1.0 0.93 0.96 0.98 0.94 0.96 0.98 0.82 0.90 

BoW-
SURF 

0.99 0.89 0.94 0.98 0.82 0.91 0.98 0.77 0.89 
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3.3.4  Dataset 4: Datasets 1, 2 and 3 are combined  
The samples from datasets 1, 2 and 3, which vary in scale, camera view, 
and platform and scene complexity, were combined into a single dataset in 
order to assess the generalization capability of the damage classification 
methods. In total 3109 samples (1564 damaged, 1545 non-damaged; 
subsequently termed COM3109) were used to develop and test the 
supervised models for damage classification. The results are reported in 
Table 3-6. For visual analysis, an UAV image of dataset 1 and a Pictometry 
image of dataset 2 were classified for the damage detection using the best 
performing model (BoW-Gabor with SVM). The classified images are 
depicted in Figure 3-7. The classification is quite accurate, showing only 
very few false positives and false negatives, which are also highlighted in 
the classified images (cf. Figure 3-7). The false positives and negatives are 
the examples where our assumption fails: i.e. a surface with unusual 
radiometric characteristics is assumed to be damaged, while manmade 
objects are assumed to have a regular shape and uniform radiometric 
characteristics. For example, in Figure 3-7b the leaf-off tree was 
misdetected as damage, since it shows strong irregular texture pattern. 
Similarly, the damaged regions are not detected as they show smooth 
texture.  
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(a) UAV image of dataset 1 (left); detected damaged regions are highlighted 
in red, and the false positives are highlighted using yellow circles (right) 

(b) Subset of Pictometry image of dataset 2 (left); detected damaged regions 
are highlighted in red, and the false positives and false negatives are 

highlighted using yellow and green circles, respectively (right). images © 
Pictometry
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(c) Street view image of dataset3 (left); detected damaged regions are 
highlighted in red, and the false positives and false negatives are highlighted 

using yellow and green circles, respectively (right). 

Figure 3-7 Damage classification of images based on best performing 
supervised model 

Table 3-6 Performance of feature descriptors when associated with different 
learning algorithms for dataset 4 (COM3109) comprising patches from UAV, 

Pictometry and street-view images (training samples = #2176, testing samples = 
# 933). 

Datase
t4 

SVM RF Adaboost 

Precisio
n 

Reca
ll 

Accura
cy 

Precisio
n 

Reca
ll 

Accura
cy 

Precisio
n 

Reca
ll 

Accura
cy 

Gabor 0.79 0.75 0.77 0.76 0.64 0.72 0.62 0.58 0.62 

HoG 0.81 0.62 0.73 0.79 0.64 0.71 0.71 0.57 0.61 

BoW-
Gabor 

0.95 0.88 0.91 0.93 0.79 0.86 0.64 0.68 0.67 

BoW-
HOG 

0.89 0.87 0.88 0.83 0.76 0.80 0.80 0.64 0.74 

BoW-
SURF 

0.90 0.84 0.87 0.83 0.77 0.80 0.79 0.75 0.77 

3.4 Observations and analysis  
For convenient analysis of the results, the datasets 1 and 3, which were not 
cluttered and less affected by shadows and trees, are referred to as non-
complex datasets, while datasets 2 and 4, where the image patches were 
mostly cluttered and severely affected by shadows and trees, are referred 
to as complex datasets. Also, for convenience, the datasets are named 
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based on the image characteristics and number of samples as described in 
Table 3-7. 
 
Table 3-7 Naming of datasets based on the image characteristics and number of 

samples 
Dataset Name Description Scene 

complexity 
Dataset 
1 

UAV966 966 image patches generated from UAV images. Non-complex 

Dataset 
2 

PIC1256 1256 image patches generated from Pictometry 
images. 

Complex 

Dataset 
3 

SVI887 887 image patches generated from street view 
images. 

Non-complex 

Dataset 
4 

COM3109 Comprehensive dataset, where datasets 1, 2 & 3 are 
combined, containing 3109 image patches. 

Complex 

3.4.1 Global representation of HoG and Gabor wavelet for 
damage classification  

The results show that the global representations of HoG and Gabor wavelet 
feature descriptors have great potential to identify the damaged regions in 
the image, if the defined image patches are non-complex. For example, the 
supervised models constructed for UAV966 (non-complex) based on the 
global representation of Gabor wavelet and HoG features resulted in 
accuracies of 95% and 93%, respectively (Table 3-3). However, the same 
feature descriptors Gabor and HoG produced accuracies of 82% and 72%, 
respectively for PIC1256 (Table 3-4), where the defined image patches were 
mostly complex. Moreover, the same features Gabor and HoG produced 
highly inferior results for COM3109, which was more complex than the 
other datasets (Table 3-6). This clearly indicates that the robustness of the 
global representation of HoG and Gabor features declines with an increase 
in image patch complexity. This is because in the global representation the 
radiometric characteristics of the complex region (e.g., clutter, shadows 
and trees) resemble the radiometric characteristics of damaged regions, 
which are generally more non-uniform than radiometric patterns of non-
damaged regions (cf. Figure 3-8). Consider an image patch that contains 
different objects with different dominant orientations. The global 
description of this image patch based on gradient orientation is the 
aggregation of all gradient orientation information within this patch. In 
such a case the image patch would seem to possess gradient orientations 
in many directions, which resemble the radiometric characteristics of 
damaged regions. For example, consider Figure 3-8 a as an image patch 
that contains four different objects (annotated as A, B, C and D) with 



Identification of structurally damaged areas in airborne oblique images using a BoW approach 

 86 

different gradient orientation patterns. The gradient pattern derived locally 
for each object was overlaid on the corresponding object with a black 
background. These local patterns show that each object possesses 
dominant orientations which were more uniform. However, the global 
gradient pattern derived for the whole image patch was non-uniform and 
resembles the characteristics of damaged regions (cf. Figure 3-8 a). Thus, 
it is difficult to classify an image patch based on global features in case it 
is cluttered. Also, trees and shadows possess irregular shapes and non-
uniform gradient orientations, which also resemble the radiometric 
characteristics of the damaged regions. Hence, global feature descriptors-
based damage classification did not efficiently classify the image patches 
that were strongly affected by trees and shadow.  

 

 
Figure 3-8 (a) Local and global gradient pattern of an image patch that contains 

four objects with different dominant orientations; (b) gradient pattern of 
damaged regions 

3.4.2 BoW-based feature representation for damage 
classification  

The Gabor and HoG features produced superior results for all datasets 
when represented in a BoW framework than represented in conventional 
global scale for damage classification. Although the BoW approach 
produced superior results to the conventional approach, there was no 
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significant difference in the performance between them when the 
considered image regions were not complex, e.g., UAV966 (cf. Table 3-3). 
However, in complex image regions there was a significant performance 
difference between the BoW and conventional feature representation. This 
is evident from the results for PIC1256, where the BoW-based Gabor and 
HoG produced maximum accuracies of 88% and 91%, respectively, which 
are 9% and 19% higher than the accuracies obtained by those features 
when represented at a global scale (cf. Table 3-4). This shows that BoW-
based Gabor and HoG features are more robust to clutter, trees and 
shadows than when they are represented at a global scale. The following 
characteristics made the BoW approach more robust compared to the 
global representation:  
1. Unlike the global representation, the BoW approach does not 

aggregate the radiometric patterns within the image patch. Instead, it 
describes the image patch based on the number of salient points, where 
each point is described by the local radiometric pattern derived from 
its neighbourhood. Therefore, in case of no damage, the image patch 
will be represented by points with a uniform radiometric pattern 
(gradient orientation), even if the image patch contains objects with 
different dominant orientations. On the other hand, if the image patch 
contains damage it will be represented by the points with non-uniform 
gradient orientations. The final damage classification is performed by 
analysing the pattern of the occurrences of local radiometric patterns 
within the image patch. This eliminates the ambiguity caused by mixed 
radiometric pattern typical for the global representation, making the 
BoW comparatively more robust.  

2. The BoW approach considers only the salient points as representatives 
to describe the image patch. The salient point selection method based 
on SURF mostly did not consider the pixels of shadows and trees as 
salient points: Figure 3-9 a & b show the strongest 300 SURF points 
in the image, where most of the detected points are not corresponding 
to trees and shadows. Thus, the BoW approach largely eliminates the 
shadows and trees in the damage classification process, which was one 
of the major problems in the global descriptors-based damage 
classification. Moreover, the pixels corresponding to the damaged 
regions were often detected as salient points, as they show a stronger 
gradient than other objects (cf. Figure 3-9 a). This ensures that the 
number of points corresponding to the damaged portion will always be 
significantly proportional to the number of points corresponding to the 
non-damaged objects, even if only a small portion of the image patch 
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is damaged (cf. Figure 3-9 a & b). This specific characteristic of the 
SURF points made the BoW-based damage classification approach 
invariant to scale, clutter and scene complexity. 

 

 
(a)                                                                  (b) 

Figure 3-9 Detected SURF points are plotted on the image: (a) Strongest 300 
SURF points among 4032x3024 pixels; (b) Strongest 300 SURF points among 

977x835 pixels, images © Pictometry 

3.4.3 Impact of choice of learning algorithm  
The results show that the choice of learning algorithm has a significant 
impact on damage classification performance, since the feature descriptors 
performed differently for different datasets when associated with different 
learning algorithms. The accuracies produced by SVM, RF and Adaboost 
for all datasets when they were associated with different feature 
descriptors are depicted in Figure 3-10. The plot shows that 1) SVM and 
RF mostly outperformed Adaboost; 2) Using the global feature descriptors 
the performances of RF and SVM varied with the datasets: RF produced 
superior results compared to SVM for UAV966 and SVI887, whereas it 
produced inferior results than SVM for PIC1256 and COM3109. This shows 
that the performance of the learning algorithm is highly dependent on the 
characteristics of the datasets, with SVM performing well for complex 
datasets and RF performing well for non-complex dataset. However, using 
the BoW approach the SVM mostly outperformed RF in the classification 
for all datasets, irrespective of the feature descriptors (cf. Figure 3-10). 
One overall conclusion from this is that the SVM based supervised models 
were more reliable and mostly showed better generalization performance 
than RF, particularly for the complex datasets. 
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Figure 3-10  The accuracy produced by the feature descriptors for each dataset 

when associated with different classifiers 

3.5 Discussion  
The primary objective of this research work was to develop a damage 
classification method that classifies a given image patch as damaged or 
non-damaged, irrespective of scale, image characteristics and scene 
complexity. The damage classification method was developed by 
considering various feature descriptors (HoG, Gabor and SURF), different 
feature descriptor representations (Global and BoW), different learning 
algorithms (SVM, RF and Adaboost) and image datasets with different 
levels of scale and scene complexity. It was shown that the feature 
representation has a significant impact on the performance of the damage 
classification compared to other components such as features descriptor 
and learning algorithm. For all datasets, the BoW-based damage 
classification models performed well for all combinations of feature 
descriptors and learning algorithms, compared to the models developed 
based on global representation. Particularly, concerning COM3109 (the 
comprehensive dataset), the accuracy obtained with the best-performing 
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feature descriptor (Gabor) and learning algorithm (SVM) with the global 
representation improved by 14% (from 77% to 91%), when tested with the 
BoW representation (cf. Table 3-6). The choice of learning algorithm was 
found to be the second significant factor in the performance of the damage 
classification model: the SVM produced significantly better results than 
RF and Adaboost for all feature descriptors in the BoW representation (cf. 
Table 3-6). The considered feature descriptors performed equally well and, 
hence, the choice of feature descriptor was found to have least impact on 
the performance of the model. The Gabor features led to a 3% and 4% 
improvement in accuracy compared to HoG and SURF, respectively, when 
the image patches were classified with SVM in the BoW framework. This 
small improvement also may be due to the additional information that 
Gabor features possess compared to HoG. For example, in Gabor, the 
gradient orientations information is extracted based on five different 
frequency scales, whereas in HoG the gradient orientation information is 
extracted at only one frequency scale (cf. 2.1.1). However, these 
improvements are significantly more modest when compared to the 14% 
of improvement in accuracy between BoW and global representation (cf. 
Table 3-6). This highlights the importance of feature representation, 
regardless of the potential of features. Overall, SVM associated with 
Gabor feature descriptors in the BoW framework was found to produce the 
most robust and generalized damage classification model. Even visually, 
the damage classification was found to be more accurate when the images 
of different scales, camera views and capturing platforms, and different 
levels of scene complexity, were classified by the best performing model 
(cf. Figure 3-7). Shadowed areas continue being a major problem in 
damage classification. Since the damaged regions covered by shadows 
show low contrast, they were not detected by our BoW-based approach 
(no SURF points in those areas). However, it is important to identify the 
damages in low-contrast regions as well; therefore, further tuning of the 
methods or identifying the optimal strategy that can make our approach 
work even in low contrast regions is required to increase the robustness of 
the model.  
The BoW framework consists of various components such as feature 
descriptor, learning algorithm and the visual word dictionary construction. 
The algorithms used for each component are associated with a number of 
parameters (cf. Table 3-1). The performance of the BoW-based damage 
classification model might be further improved by tuning the parameters 
of the algorithm or modifying/ replacing the algorithm of the specific 
component. For example, the iterative k-means clustering was used to 
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construct the visual word dictionary, whereas other feature encoding 
methods such as auto-encoders (e.g., Vincent et al. (2010)), which encode 
the features differently compared to k-means, may produce a better visual 
word dictionary and thereby can potentially improve the performance of 
the model as well. Concerning the feature descriptors, all three-feature 
descriptors were used independently to construct the damage classification 
models, whereas the combined use of feature descriptors may also improve 
the performance of our model. Similarly, concerning the learning 
algorithm we used a single kernel-based SVM for constructing the damage 
classification model, whereas the multiple-kernel (e.g., Bucak et al. 
(2014)) based learning may improve the performance of the model as well. 
We did not attempt to fine-tune the model by exploring all those possible 
approaches, because the principal focus of this research work was to 
analyze the potential of the BoW framework in damage classification. 
The developed method can identify the damages related to debris/rubble 
piles that are strong indicators of building collapse or severe structural 
damage, which would be very useful for first responders involved in 
disaster response, but also other stakeholders such as governmental 
agencies assessing post-disaster construction needs, or insurance 
companies. However, for detailed building level damage assessment, these 
evidences alone are not sufficient to infer the complete damage state of the 
building, nor the total damage cost, as the latter also depends on internal 
(invisible) damage, and on building functions being affected, which is not 
always visible. However, along with other damage evidences such as 
cracks, inclined elements, etc., these evidences are also important in the 
damage classification process. From a practical point of view especially 
the observations we made using the combined dataset 4 (COM3109) are 
very interesting. Although the used patches vary significantly in terms of 
scale and complexity, an overall accuracy of around 90% was reached (cf. 
Table 3-6). Transferred to an actual disaster scenario, where quick 
interpretation of image data is needed, this would mean that an already 
existing database can be used to train a model and new images can be 
readily classified, and a similar overall accuracy might be expected. 
Hence, at least for a first damage assessment, the tedious manual 
referencing might not be necessary. 

3.6 Conclusion and outlook 
A damage classification based on BoW was developed to classify a given 
image patch as damaged or non-damaged, irrespective of scale, image 
characteristics and scene complexity. Various combinations of image 
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features (Gabor wavelets, HoG and SURF) and supervised classifiers 
(SVM, RF and Adaboost) are tested in both, BoW framework and 
conventional global feature representation approach using four different 
datasets. The BoW framework outperformed conventional global feature 
representation approaches in all scenarios (i.e. for all combinations of 
feature descriptors, classifiers and datasets), and produced an average 
accuracy of approximately 90%. Although the developed model can well 
identify the damaged regions in the images, it cannot classify the detected 
damaged regions into specific types, such as debris, rubble piles, spalling 
and inter-story collapse. We need contextual information and 3D 
geometric features such as shape, location, characteristics of the 
neighbouring elements and local height variation of the damaged region, 
to identify the actual category of damage. For example, the damage 
patterns on large intact planar elements could be classified as spalling, 
whereas the damage pattern on the ground with large local height 
variations and no large 3D segments could be classified as debris. 
Therefore, the potential extension of this work will be the development of 
methods for classification of the detected damaged regions into actual 
damage categories. 
As stated earlier, the feature descriptor component in BoW framework has 
a significant impact on the performance of the model. Here, the texture 
features are chosen to examine our BoW framework as their potential in 
damage detection has been demonstrated well by previous studies as 
highlighted in the introduction. However, recent studies report that 
supervised feature learning methods such as convolutional neural 
networks (CNN) could learn the feature and its representation directly 
from the image pixel values chosen for a specific application (Szegedy et 
al., 2015). Hence, these features are referred to as data-adaptive features 
and they are found to be superior to well-proven handcrafted features such 
as Gabor and HoG for many computer vison applications including image 
classification (Karpathy et al., 2014; Zuo et al., 2014). Therefore, we 
intend to explore the potential of CNNs for damage classification in the 
future.   
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4 Disaster damage detection through synergistic 
use of deep learning and 3D point cloud features 
derived from very high resolution oblique aerial 

images, and multiple-kernel- learning* 
 
  

                                                 
* This chapter is based on the article: 
Vetrivel, A., Gerke, M., Kerle, N., Nex, F.C. and Vosselman, G. (2017) Disaster damage 
detection through synergistic use of deep learning and 3D point cloud features derived 
from very high resolution oblique aerial images, and multiple-kernel-learning. In: ISPRS 
Journal of Photogrammetry and Remote Sensing, (2017) IN PRESS15 p. 



Damage detection using deep learning and 3D point cloud features based on multiple-kernel-learning 

 98 

Abstract  
Oblique aerial images offer views of both building roofs and façades, and 
thus have been recognized as a potential source to detect severe building 
damages caused by destructive disaster events such as earthquakes. 
Therefore, they represent an important source of information for first 
responders or other stakeholders involved in the post-disaster response 
process. Several automated methods based on supervised learning have 
already been demonstrated for damage detection using oblique airborne 
images. However, they often do not generalize well when data from new 
unseen sites need to be processed, hampering their practical use. Reasons 
for this limitation include image and scene characteristics, though the most 
prominent one relates to the image features being used for training the 
classifier. Recently features based on deep learning approaches, such as 
convolutional neural networks (CNNs), have been shown to be more 
effective than conventional hand-crafted features, and have become the 
state-of-the-art in many domains, including remote sensing. Moreover, 
often oblique images are captured with high block overlap, facilitating the 
generation of dense 3D point clouds – an ideal source to derive geometric 
characteristics. We hypothesized that the use of CNN features, either 
independently or in combination with 3D point cloud features, would yield 
improved performance in damage detection. To this end we used CNN and 
3D features, both independently and in combination, using images from 
manned and unmanned aerial platforms over several geographic locations 
that vary significantly in terms of image and scene characteristics. A 
multiple-kernel-learning framework, an effective way for integrating 
features from different modalities, was used for combining the two sets of 
features for classification. The results are encouraging: while CNN 
features produced an average classification accuracy of about 91%, the 
integration of 3D point cloud features led to an additional improvement of 
about 3% (i.e. an average classification accuracy of 94%). The significance 
of 3D point cloud features becomes more evident in the model 
transferability scenario (i.e., training and testing samples from different 
sites that vary slightly in the aforementioned characteristics), where the 
integration of CNN and 3D point cloud features significantly improved the 
model transferability accuracy up to a maximum of 7% compared with the 
accuracy achieved by CNN features alone. Overall, an average accuracy 
of 85% was achieved for the model transferability scenario across all 
experiments. Our main conclusion is that such an approach qualifies for 
practical use.  
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4.1 Introduction and related works 
Automated detection of severe building damages is crucial in the 
coordination of fast response actions after any destructive disaster event 
such as earthquakes. Remote sensing technology has been recognized as a 
suitable source to provide timely data for automated detection of damaged 
buildings for larger areas (Dell'Acqua and Gamba, 2012; Dong and Shan, 
2013). In particular, multi-view oblique images from manned aircraft and 
unmanned aerial vehicles (UAV) have been recognized as most suitable 
(Fernandez Galarreta et al., 2015a; Gerke and Kerle, 2011b; Kerle and 
Hoffman, 2013a). This is because these images capture both roofs and 
façades with very high spatial resolution, facilitating a holistic and detailed 
view of the building for damage assessment (Fernandez Galarreta et al., 
2015a). Several studies have demonstrated automated detection of 
damaged buildings from the above mentioned image types, where the 
heavily damaged buildings are identified by recognizing externally visible 
damage evidences such as spalling, debris, rubble piles and broken 
elements, which are the strong indicators of severe structural damage 
(Dong and Shan, 2013; Vetrivel et al., 2015a). These damage evidences 
alone are not sufficient to infer the actual damage state of the building, as 
it requires additional information such as damages to internal building 
elements (e.g., columns and beams), which can rarely be directly inferred 
from images. Even though the information that can be derived from the 
images is limited, it is typically sufficient for satisfying the requirements 
of the stakeholders involved in search and rescue processes (Dong and 
Shan, 2013). Furthermore, the information can be used to plan for 
subsequent detailed assessments, for example, identifying hotspots that 
require immediate attention, and prioritizing the locations for field 
inspection. Towards this, numerous automated methods have been 
proposed for detection of aforementioned visual damage evidences from 
very high resolution images (Dong and Shan, 2013; Ma et al., 2016). These 
methods are largely based on two approaches: 1) comparison of pre- and 
post-event data, and 2) damage detection based on mono-temporal post-
event data alone. The methods based on supervised learning strategies 
have been demonstrated to be effective for damage detection, particularly 
for the mono-temporal approach (Gerke and Kerle, 2011b; Vetrivel et al., 
2015a). However, it is still challenging to adopt them for practical use. 
This is because the methods based on a supervised learning approach often 
do not generalize enough for them to be transferred to similar remote 
sensing data from unseen geographic locations, and Vetrivel et al. (2015a) 
discussed several reasons. One of the major factors is the poor 
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generalization capability of the features and their representation used for 
constructing the supervised model, which is briefly described below:  
1) Numerous image features have been examined for damage detection, 

and often the texture features such as Histogram of oriented Gradients 
(HoG) and Gabor features have been reported as effective 
(Samadzadegan and Rastiveisi, 2008; Tu et al., 2016a; Vetrivel et al., 
2015a). Apart from feature selection, the choice of the feature 
representation strategy is also crucial, which is evident from the recent 
study by Vetrivel et al. (2016b), where the performance of the above 
mentioned texture features was found to be improved when 
represented using a Visual Bag of Words (BoW) framework (Ferraz et 
al., 2014b). Though the BoW representation improved the accuracy, 
problems related to generalization still exist. For example, Vetrivel et 
al. (2016b) examined the generalization capability of three different 
texture features: speeded up robust features (SURF), HoG features and 
Gabor features in a BoW framework for damage detection, using very 
high resolution images from different geographic locations (e.g., Italy, 
Haiti, India, etc.). They reported that the performance of the features is 
moderately inconsistent for datasets from different places, i.e. 
particular features perform better for specific datasets. The difference 
between the accuracies produced by these features for different 
datasets was reported to be 3 to 4%. The same set of features in a 
similar experimental setting as reported in Vetrivel et al. (2016b) was 
examined by Tu et al. (2016a) for another study area for damage 
detection. However, they reported contradictory findings: the 
difference in accuracy produced by different features was found to be 
higher (~10%), though there is no obvious explanation for this 
difference in results. Thus, identifying the generalized features for 
building a supervised classifier for damage detection is still 
challenging.  

2) Additionally, all aforementioned features which have been reported as 
being efficient for damage detection are based on gradient orientation 
distribution patterns. These features are adopted for the damage 
detection process based on the assumption that structurally deformed 
regions often result in non-uniform radiometric distributions when 
compared to regions of undamaged man-made structural elements. For 
example, Figure 4-1a depicts the rudimentary gradient orientation 
pattern derived for damaged and undamaged image regions. However 
this assumption often fails in urban areas possessing complex texture 
(Vetrivel et al., 2016a). For example, consider Figure 4-1b where the 
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building elements possess complex textures that look similar to the 
radiometric pattern of damaged regions. In such areas, the reported 
texture features would fail, thereby hindering the automated 
assessment.  

 

 
Figure 4-1 Rudimentary histogram of gradient orientation pattern depicted in 

yellow for (a) damaged (no annotations) and undamaged (annotated as A, B, C 
and D) image samples; (b) undamaged roof with complex texture highlighted in 

red rectangular box 

Overall, the previously reported features are found to be inadequate to 
create a strong generalized supervised model for damage detection, and a 
feature descriptor robust to aforementioned limitations is highly desirable.  
Recently, the features from deep learning approaches such as 
Convolutional Neural Networks (CNNs) have been reported as being 
superior to conventional hand-crafted features, including the ones used in 
earlier state-of-the-art BoW framework for image classification in many 
applications including remote sensing (Hu et al., 2015; Karpathy et al., 
2014; Sherrah, 2016; Szegedy et al., 2015; Zhou et al., 2015; Zuo et al., 
2014). For example, several participants in the ISPRS urban scene 
classification challenge have achieved state-of-the-art accuracy for the 
ISPRS Vaihingen and Potsdam benchmark data sets using CNN features, 
outperforming all previously reported methods based on hand-crafted 
features (cf. ISPRS-Benchmark, 2016). Hence, we anticipate that CNN 
features would outperform the hand-crafted features in a damage detection 
application as well. This is examined in this study.  
 
In the real world, man-made structural elements are complex and they 
often possess irregular radiometric patterns due to several reasons other 

(a)
)

(b) 
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than damage, including radiometric degradation of elements due to aging, 
or presence of dirt (cf. Figure 4-2 ). In such cases, our assumptions about 
damaged regions based on image-radiometric patterns may fail. In this 
scenario, the use of 3D geometric information could be of help to 
differentiate between the unusual radiometric pattern due to geometric 
deformation (damage) and other reasons. In general, 3D point clouds are 
an ideal source to infer geometric characteristics of structural elements. 
For example, Khoshelham et al. (2013b) demonstrated the potential of 3D 
point cloud features derived from post-event LiDAR point clouds for 
building damage detection. The oblique-view aerial images from manned- 
and unmanned aerial vehicles which have previously been identified as 
effective for damage detection are usually captured with high block 
overlap, facilitating the generation of 3D point clouds (Nex and 
Remondino, 2014). We assume that the integrated use of 3D features from 
photogrammetric point clouds and CNN features from images would yield 
improved results. However, it is well known that the direct integration of 
features, i.e. stacking of features from different sources, possibly 
possessing different modalities, into a single feature vector for supervised 
classification is inefficient (Bucak et al., 2014; Gu et al., 2015). 
Alternatively, integrating features from different sources using a Multiple-
Kernel-Learning (MKL) approach associated with a kernel-based 
classifier such as SVM has been reported to be effective and it is being 
commonly used (Bucak et al., 2014; Gu et al., 2015). In addition to feature 
subsets integration, the MKL also could be used to evaluate the 
significance of each feature subset in the classification process (Gönen and 
Alpaydın, 2011). Hence, in addition to feature subsets integration, MKL is 
being widely used as a feature selection algorithm as well (Cao et al., 
2015). In this study, MKL is used to integrate 3D point cloud-based 
features and CNN features for classification, and is also used as a feature 
selection approach by inferring the contribution of each feature subset in 
the classification accuracy.  
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Figure 4-2  Image samples (a) and (b) depicting radiometric variation as a result 

of degradation of building elements due to aging and fouling 

To the best of our knowledge, so far no studies have been reported for 
building damage detection using 1) CNN features, 2) mono-temporal post-
event photogrammetric point cloud features, and 3) the combination of 3D 
point cloud and CNN features based on MKL. Thus the objective of this 
study is to develop an automated framework for performing building 
damage detection using CNN- and 3D point cloud-features based on MKL. 
The developed framework is evaluated using datasets containing images 
of manned and unmanned aerial vehicles captured from different 
geographic locations that are highly variable in scene and image 
characteristics, in order to examine the generalization capability of the 
developed approach.  
 
The research problems and objectives with their background and relevant 
literature are introduced in Section 1. The detailed description of the 
methodology is provided in Section 2. The information about the 
experimental setup, implementation details, data description and the 
results is provided in Section 3. Section 4 provides the overall discussions 
and conclusions.  

4.2 Methodology 
A framework is developed for constructing a supervised learning model 
for damage classification using CNN features independently and in 
combination with 3D point cloud features. This framework includes three 
components: 1) a method for the generation of super-pixels to facilitate the 
object-level analysis; 2) methods for extracting CNN and several 3D point 
cloud features, and 3) a method for integration of CNN and 3D point cloud 
features for classification. Each component in the framework is described 
below.  

(b) (a) 
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a) Step 1: Super-pixel construction  
As stated earlier, damaged regions are identified by recognizing unusual 
radiometric and geometric patterns. An object or segment level analysis is 
often preferred for identifying damaged regions, as it can capture these 
damage patterns more precisely than pixel level features (Vetrivel et al., 
2016b). The pertinence of an object-based approach for damage 
classification has been already demonstrated by several studies (Dong and 
Shan, 2013; Li et al., 2011). Therefore, super-pixels derived by over-
segmentation of images are considered as the primary entity for generating 
the image patches for the feature extraction and damage classification 
process. In this study, the state-of-the-art algorithm represented by Simple 
Linear Iterative Clustering (SLIC) (cf. Achanta et al. 2012) is adopted for 
generating the super-pixels. The information about the tunable parameters 
associated with SLIC is provided in the Experimental Section. The CNN 
architecture adopted in this study requires input in a format of rectangular 
image patches, hence the super-pixels are converted into such patches by 
fitting an outer-rectangle. 
b) Step 2: Feature extraction 
The methods for extracting CNN and 3D point cloud features for the image 
patches derived based on the super-pixels are described below: 
i. CNN features  

Feature extraction is a fundamental step in any image classification 
application. Particularly feature extraction based on filtering 
approaches has been found to be dominating (Arivazhagan et al., 2006; 
Tian, 2013b). In general, object level feature extraction is carried out 
in two steps. As a first step, the features are extracted using a set of 
filters, where usually the filter weights are defined based on 
mathematical functions (e.g., Gabor filter banks). Subsequently, the 
extracted features are represented by adopting a suitable feature 
encoding approach such as a BoW framework, which typically serves 
as an input for a classifier (Xu et al., 2010). A CNN also belongs to the 
category of filtering approaches, where the filter weights and feature 
encoding strategy are directly learned from the images (Bengio et al., 
2013). Hence, they are referred to as data-specific features. CNN is 
typically built by stacking several layers. For example, Figure 4-3 
depicts the pre-trained CNN model ‘imagenet-caffe-alex’ (cf. 
MatConvNet, 2016), designed based on the popular CNN architecture 
proposed by Krizhevsky et al. (2012). In a CNN, the first few layers 
will be the convolutional layers analogous to the filter banks in the 
filtering approach (e.g., C1-C5 in Figure 4-3). These layers are found 
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to be capable of learning low-level features such as blobs, edges, and 
oriented gradients in the first layer, and gradually learn higher level 
contextual information in the subsequent layers. Typically, each 
convolutional layer will be followed by the Rectified Linear Unit 
(ReLU) and a pooling layer. The ReLU performs the non-linear 
transformation of the feature map produced by the convolutional layer 
to introduce nonlinearity to the system. The pooling layer is used to 
reduce the size of the feature maps produced by the convolutional 
layer. The few layers preceding the final layer in the network will be 
the fully connected layers, where the output of each of these layers 
provides features with high-level reasoning, by summarizing the 
information from feature maps of previous convolutional layers. This 
information can be used as a final feature vector, an input to any 
classifier. The final layer in the network is also the fully connected 
(FC) layer, usually coupled with a loss function such as softmax or 
SVM (Tang, 2013). The dimensionality of this layer should be equal 
to the number of classes defined for the classification process, as its 
output will be the probability scores for each defined class. The 
learning process is carried out by tuning the weights of the neurons in 
various layers of the network, using the back propagation algorithm 
based on a large number of labelled image samples. For more details 
about the layers in the CNN architecture refer to Zeiler and Fergus 
(2014) and Krizhevsky et al. (2012).  
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Figure 4-3. CNN architecture design of the pre-trained CNN model – 

‘imagenet-caffe-alex’ designed based on one of the popular CNN architectures 
proposed by Krizhevsky et al. (2012) in which C1-C5 are convolutional layers 
and FC1-FC3 are fully connected layers. The values on the right-hand side and 

below C1-C5 indicate the number of filters and their sizes, respectively. The 
values below FC1-FC3 indicate their dimensions i.e., number of neurons in the 

fully connected layer. 

In general, CNN feature extraction is performed in three scenarios: 
1) Training from scratch: In this approach, the CNN architecture is 

designed from scratch using the layers mentioned earlier. However, 
designing the network, i.e. the choice of the number of layers and the 
number of hyper-parameters in each layer, is a challenging task. This 
is because there is no standard definition and it entirely depends on 
numerous factors, such as the characteristics of the input image (e.g., 
size, complexity, etc.), complexity of the application, number of 
classes and number of training samples available. In general, 
combinations of layers and their hyper-parameters that are suitable for 
specific applications are identified empirically based on the dataset. 
This approach requires a large amount of training data to avoid 
overfitting, hence it can be adopted only when a large amount of 
training sample is available. The features from this approach can be 
referred to as application- and data-specific features, as they are 
learned based on the image samples from the specific application (e.g., 
damage detection) and images with specific characteristics (e.g., aerial 
images).  

2) Transfer learning using pre-trained models: Transfer learning in a 
CNN is achieved by learning application-specific features by adopting 
a pre-trained model that is already trained using large number of 
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samples (usually on the order of millions) from related domains, and 
tuning their weights using the training samples from the considered 
application. These kinds of pre-trained CNN models are increasingly 
available (MatConvNet, 2016). Moreover, the adaptability of these 
pre-trained models to perform transfer learning for remote sensing 
applications such as urban scene classification has already been 
demonstrated (Hu et al., 2015). While adopting the pre-trained CNN 
model for transfer learning it is mandatory to modify the final fully 
connected layer, as its dimension should be equal to the number of 
classes defined for the classification. Also, the architecture of the 
network can be altered by adding or removing layers, if required. 
However, in most cases the architecture of the pre-trained model is 
largely retained as the features learned by them are often found to be 
more generalized and contain information significant for any image 
classification application including remote sensing (Hu et al., 2015). 
To this end, the pre-trained model is modified in several ways and 
evaluated concurrently (i.e. by removing or adding some layers and 
concurrently evaluating using our datasets). The model which provided 
superior results is adopted here. For example, the pre-trained model 
depicted in Figure 4-3 when modified by adding two fully connected 
layers as depicted in Figure 4-4 provided superior results. The 
dimension of the last fully connected layer is set to two, as we intend 
to learn CNN features for performing binary classification for image 
regions, i.e. damaged or undamaged. The dimension of the layer FC4 
preceding to the last layer has been empirically set to 256 after 
evaluating several dimensions (64, 128, 256 and 512) based on the 
dataset used in this study.  

 
Figure 4-4. The CNN architecture for transfer learning by adding two extra fully 

connected layers (highlighted in red circle) to the existing pre-trained CNN 
model shown in Figure 4-3 for damage detection. 



Damage detection using deep learning and 3D point cloud features based on multiple-kernel-learning 

 108 

3) Pre-trained CNN model as feature extraction tool: In this approach 
the pre-trained CNN model acts as a tool for feature extraction, where 
the output of one of the fully connected layers in the CNN architecture 
is considered as the feature representation for a given image patch 
(super-pixels). This is based on the aforementioned assumption on 
generalization ability of the CNN features learned by the pre-trained 
CNN model using a large number of generic images with highly 
varying characteristics. The features extracted from the fully connected 
layer can be used for the classification process by fitting them with any 
classifier such as SVM. This approach also has been demonstrated for 
the classification of remote sensing images by few studies 
(Castelluccio et al., 2015; Cheng and Han, 2016).  

 
In this study, the CNN features extracted using the above mentioned three 
approaches are examined for the damage detection process and their 
implementation details are provided in the experiment section.  
 

ii. 3D point cloud features 
As stated earlier, it is hypothesized that 3D geometric features from 
a photogrammetric point cloud have the potential to identify 
geometrically deformed structural elements. Numerous 3D point 
cloud features have been reported for generic applications such as 
scene classification and object detection using 3D point clouds 
(Golovinskiy et al., 2009; Velizhev et al., 2012). In particular, 3D 
point cloud features derived based on 3D structure tensor have 
been reported to be effective (Gevaert et al., 2016; Hackel et al., 
2016; Weinmann et al., 2015). The commonly used 3D point cloud 
features are listed in Table 4-1. A few of them, such as linearity, 
planarity and scattering, have already been demonstrated by 
Khoshelham et al. (2013b) to be effective for detection of damaged 
buildings in LiDAR point clouds. In general, these features are 
extracted at point level by computing the 3D structure tensor for 
each point based on its local neighborhood (Weinmann et al., 
2015). The extraction of these features at segment level can be 
achieved by considering all 3D points in the segment as local 
neighborhood for constructing the 3D structure tensor (Weinmann 
et al., 2016) . Alternatively, it is also common to use the mean value 
of the point-level features computed for each 3D point within the 
segment as the segment-level representation (Khoshelham et al., 
2013b). However, the above two strategies for extracting segment-
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level features are not suitable for the application of damage 
detection. This is because the damaged regions are identified by 
assuming that they will possess a non-uniform distribution of 
geometric characteristics, which cannot be captured well by the 
aforementioned segment-level feature extraction strategies. 
However, histograms are widely used as region-level descriptors 
and are expected to be effective for capturing the distribution 
pattern of local geometric variations within the segment. For 
example, in image-space the radiometric distribution patterns of 
damaged regions (image segments) have been reported to be well 
represented by histogram approaches such as Histogram of 
oriented Gradients (HoG) (Vetrivel et al., 2016b). Hence, in this 
study, we propose to use a similar histogram approach for 
representing the geometric distribution pattern based on local 
point-level features within the segment. The procedure for 
extracting various 3D point cloud features on segment-level is 
described below.  

 
Table 4-1. 3D features based on 3D structure tensor derived from collection of 

3D points 

Features based on 3D structure 
tensor 

Feature definition (e1, e2 and e3 are 
the normalized eigenvalues of the 
3D structure tensor computed for 
3D points derived based on the 
local neighborhood) 

Linearity Lλ (e1-e2)/e1 
Planarity Pλ (e2-e3)/e1 
Scattering Sλ e3/e1 
Omnivariance Oλ √

య e1 e2 e3 
Anisotropy Aλ (e1-e3)/e1 
Eigenentropy Eλ -∑ଷ

ୀଵ ei ln(ei) 
Change of curvature Cλ e3/(e1+ e2 +e3) 

 
Procedure for extracting segment level 3D point cloud features based 
on histogram  
1) Select the over-segmented image and the corresponding 3D point 

cloud for damage detection. Derive the 3D point cloud features listed 
in Table 4-1 for each 3D point by computing the 3D structure tensor 
based on the local neighborhood. The optimal local neighborhood size 
for each 3D point is computed using the method proposed by 
Weinmann et al. (2015).  
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2) Identify the visible 3D points to the selected image using hidden point 
removal (HPR) algorithm (Katz et al., 2007c). Subsequently, project 
the features of these 3D points to the over-segmented image.  

3) Derive the segment-level descriptors based on the projected point-level 
features using the histogram approach inspired from HoG which is 
described below. 
a. Select a rectangular image patch derived based on the super-pixel 

and split it into M × N blocks. 
b. All 3D point feature values range from 0–1 as they are normalized. 

Define the bin size (Bsize) for computing the histogram. 
c. For each block compute the histogram of a specific 3D feature by 

adding its value to the corresponding bin.  
d. Concatenate all block-level histogram of the specific feature to 

derive the patch-level descriptor. The size of the final descriptor for 
each feature is equal to the number of blocks × size of the histogram 
bin.  

The seven features listed in Table 4-1 and additionally the Z component of 
the normal vector of each 3D point within image segment are used to 
derive segment-level descriptors using the histogram approach as 
described above. Therefore, in total eight histogram-based feature subsets 
are used to describe a segment. For comparison, the segment-level 3D 
point cloud features are also derived using the aforementioned two 
conventional approaches: 1) deriving features by considering all 3D points 
within the segment as local neighborhood and 2) computing the mean of 
the point feature values within the segment. Therefore, overall ten 3D 
feature subsets are derived for each segment, as described in Table 4-2 for 
the damage detection process. 
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Table 4-2. 3D feature subsets considered for the damage detection process 
Feature 
subsets (FS) 
name 

Description Feature subset size 

FS1: H_Lλ Histogram of linearity  

1 x (M×N× Bsize). For 
example, consider the 
image blocks are split into 
4×4 (M×N) and histogram 
bin size (Bsize) as 10, then 
FS size is equal to 1x160.  

FS2: H_Pλ Histogram of planarity  
FS3: H_Sλ  Histogram of scattering  
FS4: H_Oλ  Histogram of omnivariance  
FS5: H_Aλ Histogram of anisotropy  
FS6: H_Eλ Histogram of eigenentropy  
FS7: H_Cλ Histogram of change of curvature  

FS8: H_Nz 
Histogram of Z component of the normal 
vector 

FS9: S_3D 

All seven features listed in Table 4-1 are 
derived for a segment by considering all 
3D points within the segment as local 
neighborhood 

1x7 

FS10: M_3D 

All seven features listed in Table 4-1 are 
derived for a segment by computing the 
mean of the point feature values within 
the segment 

 
c) Step 3: Classification  
The classification process is carried out using a canonical kernel classifier, 
namely SVM, based on the features mentioned earlier. In this study, 
multiple feature subsets such as several 3D feature subsets and a CNN 
feature subset are considered independently and in-combination for 
damage classification. These feature subsets may possess different 
modalities. In this study, MKL is used as the tool for systematically 
aggregating different modalities into a single learned model. It is achieved 
through a convex combination of multiple kernels, each representing one 
feature subset:  

݇ሺݔ, ᇱሻݔ ൌߚ


݇ሺݔ,  	ᇱሻݔ

where ݇ሺݔ,   is aߚ ,ᇱݔ	and	ݔ	ᇱሻ is a basic kernel built for subjectsݔ
nonnegative weighting parameter with ∑ ߚ ൌ 1	, and m is the number 
of kernels where each kernel is associated with one feature subset. In this 
study, we adopt the widely used Simple-MKL proposed by 
Rakotomamonjy et al. (2008), where the optimal values of ߚ are learned 
together with other SVM parameters by optimizing a single objective 
function. The derived values of ߚ indicate the importance i.e. 
contribution of each feature subset in the classification process. The MKL 
framework adopted for damage detection is depicted in Figure 4-5.  
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Figure 4-5. Overall steps for integrating CNN and 3D point cloud features using 

MKL for damage classification 

4.3 Experiments  
In this study we examined the potential of CNN and 3D features, both 
independently and synergistically for damage detection. Towards this 
several experiments have been conducted. Among them some experiments 
were designed based on the inference made in preceding experiments. 
Hence, the results and discussions are provided independently for each 
experiment.  

4.3.1 Datasets  
Two groups of datasets based on multi-view oblique images from two 
different platforms, 1) manned aircrafts and 2) UAVs, were considered in 
this study (cf. Table 4-3 and Table 4-4). These images were captured by 
different sensors for different disaster events from several geographic 
locations that are highly varying in scene characteristics, illumination 
condition and image characteristics. Particularly, the UAV images from all 
locations were captured with high overlap which facilitated the generation 
of a dense 3D point cloud. This was used for examining the combined use 
of image and 3D point cloud features for the damage detection process. 
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The information about the datasets is summarized in Table 4-3 and Table 
4-4.  

4.3.2 Preparation of training samples  
The images from the above mentioned datasets were considered for 
preparing the training and testing samples for training and evaluating the 
supervised classifiers. The damage evidences such as debris, spalling, 
holes and building collapses that are clearly visible in the images were 
considered as damaged regions. The intact building elements, bare ground 
areas, cars, roads, etc., were considered as undamaged image regions for 
preparing negative training samples. Some portions of damaged and 
undamaged regions in the considered images were manually delineated 
using a polygon and labelled accordingly. Subsequently, the images were 
segmented into super-pixels using the SLIC method. The CNN model 
requires as input a rectangular image patch in specific size. In order to 
generate the super-pixels with about uniform size and shape, the parameter 
'm' in SLIC, which controls the compactness of a super-pixel, was 
empirically determined as 40 after examining several values (i.e. 10, 20, 
30, 40 and 50). Another important parameter associated with SLIC is the 
number of desired super-pixels, which was set to be the dimension of the 
image (i.e. number of pixels) divided by desired size of the super-pixels 
(100x100).The super-pixels having at least 50% of their area overlapping 
with a polygon labeled as damaged or undamaged were chosen and 
converted into rectangular image patches as depicted in Figure 4-6. These 
are then constituted as the final training and testing samples for damage 
detection. In all experiments, the training and testing samples had a 70:30 
ratio. The count of image patches corresponding to each dataset is provided 
in Table 4-3 and Table 4-4. 
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Figure 4-6. Sample image patches of damaged (left) and undamaged (right) 
regions generated based on super-pixels of manned aircraft images (top), and 

UAV images (bottom) for framing the training and testing samples for 
supervised classification 
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Table 4-3. Dataset 1 (Aerial7130)2 description of the training and testing samples 
derived from images of manned aerial platform for different geographic 

locations 
Geographic 
Location 
 
 

Year of 
disaster 
event 

Type of 
event 

No of samples Acronym for 
dataset from 
each 
location 

Damaged Undamaged Total 

Port-au-
Prince, Haiti 

2010 Earthquake 984 942 1926 A_PAP1926 

Bidonville, 
Haiti 

2010 Earthquake 795 860 1655 A_BID1655 

L’Aquila, 
Italy 

2009 Earthquake 485 503 988 A_LAQ988 

Onna, Italy 2009 Earthquake 647 609 1256 A_ONN1256 
Tempera, 
Italy 

2009 Earthquake 493 568 1061 A_TEM1061 

Mirabello, 
Italy 

2012 Earthquake 97 147 244 A_MIR244 

Total  3501 3647 7130 Aerial7130H 
Overall description: The samples were derived from images captured by manned aircrafts (CGR 
and Pictometry) with five cameras (one nadir and four oblique views), with a spatial resolution 
around 10 –16 cm. 

 
Table 4-4. Dataset 2 (UAV5414) description of the training and testing samples 

derived from images of UAV for different geographic locations 

Location 
 
 

Year of 
event 

Type of 
event 

No of samples Acronym 
for dataset 
from each 
location 

Damaged Undamaged Total 

Ecuador, 
Peru 
 

2016 Earthquake 307 476 783 U_ECU783 

Kathmandu, 
Nepal  

2015 Earthquake 837 715 1552 U_KAT1552 

L’Aquila, 
Italy 

2009 Earthquake 184 201 385 U_LAQ385 

Pingtung, 
Taiwan 

2016 Earthquake 483 506 989 U_PIN989 

Mirabello, 
Italy 

2012 Earthquake 568 679 1247 U_MIR1247 

Gronau, 
Germany 

2013 

Manually 
destructed 
industrial 
area 

214 244 558 U_GRO244 

Total  2593 2821 5414 UAV5414 
Overall description: The samples were derived from images captured by UAVs at different 
heights, views, cameras and lighting conditions, with spatial resolutions ranging from 1 –5 cm. 

                                                 
2 Subscript in the dataset name indicates the number of samples present in the data set 
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4.3.3 Experiment 1: CNN features only for damage detection 

The CNN features were extracted according to the three scenarios (cf. 
Section 2.2.1) and independently examined for damage detection. The 
main motivation of this experiment is to examine whether the features 
learned by the pre-trained CNN models based on generic images (i.e. 
image patches from various domains) are generalized enough to be used 
for the classification of damaged and undamaged regions in the remote 
sensing images. Alternatively features learned from the domain-specific 
training samples would be required. The implementation details of CNN 
for aforementioned three scenarios are described below.  
a) CNN from scratch (CNN_S): As stated earlier, the designing strategy 
of CNN depends on various factors including the available number of 
training samples and the number of classes defined for the classification 
process. In this study, we have a limited number of training samples for 
building the binary classifier (damaged or undamaged). In this case, we 
cannot adopt the design of established pre-trained models as their network 
size is too large (i.e. too many hyper-parameters), which cannot be 
effectively tuned with the limited number of training samples. Hence, we 
designed a CNN architecture empirically, which was similar to the 
architecture of pre-trained models but with a relatively low number of 
layers and a low number of hyper-parameters in each layer. The details of 
the designed CNN model are given in Table 4-5. The weights in the 
network were initialized based on a Gaussian distribution with mean 0 and 
standard deviation 0.01. The network was independently trained and tested 
for both datasets. The training and testing processes were repeated ten 
times with varying training and testing sample sets. The mean and standard 
deviation of the performance measures overall accuracy, precision and 
recall obtained for ten trials are reported in Table 4-6. In this chapter, the 
measures reported with its range (e.g. x ± y) always indicate the mean and 
standard deviation obtained for ten trials.  
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Table 4-5. Details of CNN architecture designed for learning features from 
scratch 

CNN architecture for training from scratch 
Layer 
number 

Layer name Properties 

1 Input layer Input image patch size: 100x100x3 
2 Convolutional Number of filters: 9; Filter size: 11x11 
3 RELU – 
4 Maxpooling Pool size 2x2 
5 Convolutional Number of filters: 21; Filter size: 7x7 
6 RELU – 
7 Maxpooling Pool size 2x2 
8 Convolutional Number of filters: 41; Filter size: 3x3 
9 RELU – 
10 Maxpooling Pool size 2x2 
11 Fully connected Size: 1x256 
12 RELU – 
13 Dropout Dropout ratio: 0.5 
14 Fully connected Size: 1x100 
15 Fully connected Size: 1x2 
16 Softmax – 

 
b) Transfer learning using pre-trained CNN (CNN_T): The pre-trained 
CNN model was modified by adding two extra fully connected layers as 
depicted in Figure 4-4, and was deployed for performing transfer learning 
i.e. fine-tuning of a pre-trained model using the domain-specific training 
samples. The learning rate was set to a very low (0.000005) to avoid large 
weight updates, preserving the useful features learned by the pre-trained 
model. The network was independently fine-tuned using the training 
samples from both datasets and tested with corresponding testing samples 
(cf. Table 4-6).  
 
c) Pre-trained CNN model as feature extraction tool (CNN_F): The 
CNN pre-trained model depicted in Figure 4-3 was adopted as a tool for 
CNN feature extraction without any further tuning of the weights in the 
network using domain-specific samples. The output of the fully connected 
layer FC2 with dimension 1x4096 was considered as the final feature 
vector for an image patch (227x227x3) input to the pre-trained model. The 
classification process was carried out independently for both datasets and 
the results are reported in Table 4-6.  
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Table 4-6. Results of damage detection on two different datasets using the 
supervised classifiers constructed based on CNN features extracted from three 

different scenarios 
Data      
set 

 
 
Models  

Aerial7130 UAV5414 
Accur
acy  
(in %) 

Precision 
(in %) 

Recall   
(in %) 

CT 
(in s) 

Accura
cy    
(in %) 

Precision 
(in %) 

Recall 
(in %) 

CT 
(in s) 

CNN_S 93.62±
0.50 

95.25± 
0.19 

92.13
± 0.95 

7330 89.60±
1.19 

92.44± 
0.40 

86.83
± 2.53 

6974 

CNN_T 94.24±
0.21

96.42±  
0.26 

92.08
± 0.48 

8173 92.33±
0.62 

92.42± 
0.37 

92.19
± 1.27 

7623 

CNN_F 92.18±
0.16 

93.38± 
0.15 

91.01
± 0.38 

635 91.15±
0.56 

92.56± 
0.43 

89.54
± 1.22 

541 

The computation time (CT) is the time taken for training and testing of the classifier on a laptop 
with 8 CPU cores (Intel® Core™ i7- 4710HQ), NVIDIA® GTX-860M 4G GPU and 16 GB of 
RAM.  

 
The pre-trained model tuned with domain-specific samples (CNN_T) 
performed better than the other two cases, CNN_S and CNN_F, when 
tested using both datasets. CNN_S, the model trained with domain-specific 
samples, did not perform better than CNN_F (features learned from 
generic images) for the dataset UAV5414. This could be because of two 
problems: 1) suboptimal design of the network, or 2) insufficient training 
samples as building a CNN model from scratch typically requires a large 
number of training samples. Hence, it is expected that its performance may 
be improved by increasing the number of training samples or further 
optimizing the architecture of the CNN. However, an overall observation 
is that there was no significant difference in the classification accuracy for 
CNNs used in three different scenarios. The results indicate that the CNN 
features learned by the pre-trained model from generic images generalize 
enough for adopting them directly for the damage detection application. 
Moreover, this approach (CNN_F) requires a significantly lower number 
of training samples compared to other two methods (CNN_S and CNN_T), 
though providing comparable accuracy with much more efficient 
computation. Hence, the CNN_F approach is highly recommended for the 
damage detection application. Samples of aerial and UAV images 
classified using CNN_F model are depicted in Figure 4-7 and Figure 4-8, 
respectively. Based on visual interpretation, the CNN_F model detected 
almost all damaged regions, though with a small number of false positives.  
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Figure 4-7. Super-pixels of aerial images that were classified as damage by the 
CNN_F based SVM classifier are highlighted as red polygons in the subset of 
an aerial image of L’Aquila (left) and Port-au-Prince, (right). © Pictometry. 
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4.3.4 Experiment 2: Transferability of CNN features for damage 
detection 

The transferability of the CNN features was examined by training the 
supervised model using the image samples from several geographic 
locations, and tested on the samples from unseen locations. Each of the 
two datasets consists of samples from six independent geographic 
locations. For examining the transferability, the supervised model was 
trained by considering samples from any three out of six geographic 
locations and independently tested on samples from the remaining three 
locations. This strategy is followed, because samples from a single site 
may not be sufficient for constructing the supervised model. For the same 
reason, the CNN_F approach alone was considered in this experiment for 
examining the transferability, as the number of training samples 
constituted from three geographic locations alone may not be sufficient for 
building the CNN model based on the other two scenarios (CNN_S and 

Figure 4-8. Super-pixels of UAV images that were classified as damage by the 
CNN_F based SVM classifier are highlighted as red polygons in the subset of 
UAV images of Kathmandu (left-top), Mirabello (left-bottom) and L’Aquila 

(right). 
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CNN_T). From six locations, in total 20 unique subsets, each containing 
three locations, can be generated. The supervised models were trained and 
tested for all 20 subsets independently for each datasets. The results are 
reported in Table 4-7 and Table 4-8.  
 

Table 4-7. The results of the CNN_F based SVM classifier examined for 
transferability using Aerial7130 dataset. The reported accuracies are based on the 

classifier trained using the samples from training sites and tested on samples 
from unseen testing sites. The accuracies less than 80% and their corresponding 

testing sites are highlighted. 
Aerial7130 dataset’s geographic locations: 1–
A_PAP1926; 2–A_BID1655; 3–A_LAQ988; 4–A_ONN1256; 
5–A_TEM1061; 6–A_MIR244. 
 

Training 
locations 

Testing 
locations  

Overall accuracies (%) 
corresponding to the 
testing locations 

1,2,3 4,5,6 91.32 88.37 82.56 
1,2,4 3,5,6 88.69 88.09 83.12 
1,2,5 3,4,6 91.87 94.42 90.65 
1,2,6 3,4,5 86.86 92.97 86.56 
1,3,4 2,5,6 74.51 90.21 87.40 
1,3,5 2,4,6 81.07 95.24 87.61 
1,3,6 2,4,5 72.09 92.24 89.87 
1,4,5 2,3,6 78.84 93.55 92.71 
1,4,6 2,3,5 69.21 86.20 87.79 
1,5,6 2,3,4 73.05 92.17 95.97 
2,3,4 1,5,6 88.68 88.41 88.62 
2,3,5 1,4,6 82.29 94.10 81.95 
2,3,6 1,4,5 86.18 88.62 91.74 
2,4,5 1,3,6 86.68 92.05 82.28 
2,4,6 1,3,5 83.12 89.63 87.09 
2,5,6 1,3,4 90.49 91.37 91.21 
3,4,5 1,2,6 87.98 78.16 88.25 
3,4,6 1,2,5 87.41 71.36 90.17 
3,5,6 1,2,4 89.50 73.06 93.48 
4,5,6 1,2,3 89.92 71.84 92.03 
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Table 4-8. The results of the CNN_F based SVM classifier examined for 
transferability using UAV5414 dataset. The reported accuracies are based on the 
classifier trained using the samples from training sites and tested on samples 

from unseen testing sites. The accuracies less than 80% and their corresponding 
testing sites are highlighted. 

UAV5414 dataset’s geographic locations: 1– 
U_ECU783; 2– U_KAT1552; 3– U_LAQ385; 4– 
U_PIN989; 5– U_MIR1247; 6– U_GRO244. 
 

Training 
locations 

Testing 
locations 

Overall accuracies (%) 
corresponding to the 
testing locations 

1,2,3 4,5,6 92.69 68.45 85.96 
1,2,4 3,5,6 84.09 83.32 86.45 
1,2,5 3,4,6 83.52 91.49 86.05 
1,2,6 3,4,5 91.01 76.50 68.15 
1,3,4 2,5,6 85.59 83.72 87.62 
1,3,5 2,4,6 85.65 90.27 87.12 
1,3,6 2,4,5 80.73 79.8 69.51 
1,4,5 2,3,6 83.11 67.86 83.20 
1,4,6 2,3,5 74.28 94.63 85.87 
1,5,6 2,3,4 79.39 91.01 78.44 
2,3,4 1,5,6 92.46 91.35 90.44 
2,3,5 1,4,6 86.09 90.97 85.96 
2,3,6 1,4,5 89.88 76.24 80.87 
2,4,5 1,3,6 85.55 65.06 82.01 
2,4,6 1,3,5 90.30 85.37 93.21 
2,5,6 1,3,4 89.56 79.74 84.45 
3,4,5 1,2,6 86.47 78.46 83.67 
3,4,6 1,2,5 93.34 66.56 94.58 
3,5,6 1,2,4 90.75 67.06 85.64 
4,5,6 1,2,3 87.79 62.61 75.99 

 
The results show that the supervised model trained using CNN features 
was highly transferable, achieving an average transferable accuracy of 
85%, and a maximum of approximately 95% for both datasets. However, 
the results were not too generalized as in some cases they produced a 
transferable accuracy of only around 65%. It was found that transferable 
accuracy drops to very low values only when a specific geographic 
location was considered as the testing site. For example, concerning the 
dataset Aerial7130, model transferability accuracy drops whenever the 
geographic location A_BID1655 (2) was considered as the testing site. 
When examined, it was found that the scene characteristics of A_BID1655 

(cf. Figure 4-9) differed substantially from the rest of the considered 
geographic locations (cf. Figure 4-7). Hence, the accuracy might drop 
because of the poor representativeness of the training samples used for 
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constructing the supervised model. A similar observation was made from 
the results of UAV5414 dataset, where the accuracy drops when a specific 
combination of sites was considered in the training and testing process. For 
example, the accuracy of testing site 2 drops whenever the sites 1 and 3 
did not co-occur in the training set. Overall, the results show that the 
supervised model developed based on CNN features generalized enough 
to transfer it to classify remote sensing images from unseen sites that vary 
in illumination conditions, spatial resolution and scene characteristics. 
However, it was observed that the tuning of a model from site-specific 
samples remains necessary for improved accuracy, particularly when the 
considered test site varies substantially in scene characteristics compared 
to the sites used for training the supervised model.  
 

 
Figure 4-9 Subset of aerial image of Bidonville, Haiti, used for generating the 
dataset A_BID1655, where the scene characteristics visually seem different from 

images of other locations depicted in Figure 4-7 

4.3.5 Experiment 3: 3D point cloud features for damage detection 
alone 

As stated earlier, it was anticipated that the combined use of CNN and 3D 
point cloud features could improve the results by compensating the 
weakness of one with the strength of another. Towards this, several 3D 
feature subsets were defined (cf. Table 4-2). Before delving into the final 
damage detection process using both CNN and 3D features, it is important 
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to infer the independent significance of 3D feature subsets in damage 
detection and eliminate the insignificant features. This is the objective of 
this experiment. The UAV5414 dataset was considered for this experiment, 
as it has a 3D point cloud corresponding to all images in the dataset. 
Thereby, the 3D feature subsets as mentioned in Table 4-2 were derived 
for all image samples using the method described in Section 0. The derived 
features were used to fit a SVM classifier, where the integration of 
different 3D feature subsets and the estimation of their individual 
contribution in the classification process were performed using MKL. Two 
kernels, linear and Gaussian, were used independently in this MKL 
framework in order to infer the performance of 3D point cloud features 
when associated with different kernels. The results are reported in Table 
4-9. 
 

Table 4-9. Results of the performance of 3D feature subsets in the damage 
detection for the UAV5414 dataset, and the contribution of individual feature 

subset in the classification process estimated by MKL. The least contributing 
features are highlighted.  

3D feature subsets (cf.  
 
 

Table 4‐2)  

Weight β estimated by MKL for each 
feature subset  
Linear kernel Gaussian kernel 

FS1: H_Lλ 0.11±0.066 0.12±0.015 
FS2: H_Pλ 0.14±0.045 0.15±0.006 
FS3: H_Sλ  0.16±0.015 0.17±0.003 
FS4: H_Oλ  0.13±0.016 0.11±0.004 
FS5: H_Aλ 0.09±0.016 0.08±0.004 
FS6: H_Eλ 0.09±0.027 0.07±0.002 
FS7: H_Cλ 0.09±0.009 0.04±0.027 
FS8: H_Nz 0.23±0.046 0.25±0.001 
FS9: S_3D 0.011±0.01 0.01±0.012 
FS10: M_3D 0.022±0.013 0.01±0.003 
Overall accuracy % 75.94±1.41 81.64±1.26 
Precision%  78.29±1.29 83.33±1.29 
Recall% 73.62±3.3 79.95±3.04 

 
The results in Table 4-9 show that 3D point cloud features possess some 
useful information for identifying the damaged regions. Also, the choice 
of kernel for representing 3D point cloud features was observed to be 
having a significant impact on the classification accuracy (cf. in Table 4-9 
the accuracy difference between Gaussian kernel and linear kernel was 
around 5%). As anticipated, the histogram-based representation of 3D 
point cloud features was more important than the other two representations 
FS9 and FS10. In particular the histogram feature representing the 
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distribution of Z component of the normal vector (FS8) was found to be 
the most significant 3D feature, contributing 23% to the classification 
accuracy. The other histogram 3D point cloud features were found to be 
moderately contributing (around 10-16%), while the other non-histogram 
based 3D point cloud features FS9 and FS10 were insignificant, 
contributing only around 1%. Hence, the latter two features were not 
considered for the classification process in the subsequent experiments.  

4.3.6 Experiment 4: Integration of CNN and 3D point cloud features 
using MKL for damage detection 

In this experiment the effectiveness of the combined use of CNN and 3D 
point cloud features for damage detection was analyzed. The histogram-
based 3D point cloud features FS 1-8, which were found to be significant, 
and CNN features based on the CNN_F approach, were the features 
considered for this experiment. The integration and estimation of 
individual contribution of these features for the damage detection process 
was achieved using MKL with a SVM classifier. In the MKL framework, 
a Gaussian kernel was used for all 3D point cloud features based on the 
results from Table 4-9, while a linear kernel was used for CNN features, 
as its dimensionality was already high (1x4096). It is well-known that 
applying higher order kernels on high dimensional features may lead to 
overfitting (Han and Jiang, 2014). The UAV5414 dataset containing both 
images and corresponding 3D point clouds was considered for this 
experiment, and the results are reported in Table 4-10. It was also analyzed 
whether the integration of 3D point cloud features along with CNN 
features for model construction improves the model transferability. This 
was realized using the same procedure used in Experiment 2 by adopting 
the MKL framework, and the corresponding results are shown in Table 4-
11. 
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Table 4-11Table 4-10. Results of the performance of integrated use of 
CNN and 3D feature subsets in the damage detection for the UAV5414 

dataset, and the contribution of individual feature subset in the 
classification process estimated by MKL. Significantly contributing 

features are highlighted. 

3D feature 
subsets (cf. 
Table 4-2) 

Kernel 
associated with 
each feature 
subset 

Weight β 
estimated by MKL 
for each feature 
subset

FS1: H_Lλ Gaussian 0.039481 
FS2: H_Pλ Gaussian 0.043047 
FS3: H_Sλ Gaussian 0.042455 
FS4: H_Oλ Gaussian 0.026954 
FS5: H_Aλ Gaussian 0.025276 
FS6: H_Eλ Gaussian 0.011519 
FS7: H_Cλ Gaussian 0.038332 
FS8: H_Nz Gaussian 0.118256 
CNN_feature Linear 0.65468 
Overall accuracy % 94.22±0.85 
Precision%  95.66±0.74 
Recall% 92.78±1.72 
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Table 4-11. The results of the transferability of supervised models developed 
based on the combined use of CNN and 3D feature subsets for the UAV5414 

dataset. The difference in accuracy of the model developed by CNN+3D point 
cloud features and CNN alone is given within brackets for reference. The top 5 
increase and top 5 decrease in accuracies are highlighted in green and yellow, 

respectively. 
Geographic locations: 1–A_PAP1926; 2–A_BID1655; 3–A_LAQ988; 4–A_ONN1256; 
5–A_TEM1061; 6–A_MIR244 
Training 
locations 

Testing 
locations  

Overall accuracies (%) corresponding to the testing 
locations 

1,2,3 4,5,6 94.02 (+1.33) 74.95 (+6.5) 87.01 (+1.05) 
1,2,4 3,5,6 83.63 (-0.46) 86.95 (+3.63) 86.75 ( +0.30) 
1,2,5 3,4,6 84.34 (+0.82) 91.65 (+0.16) 86.17 (+0.12) 
1,2,6 3,4,5 88.81 (-2.20) 83.47 (+6.97) 71.86 (+3.71) 
1,3,4 2,5,6 86.92 (+1.33) 85.67 (+1.95) 88.81 (+1.19) 
1,3,5 2,4,6 86.82 (+1.17) 90.30 (+0.03) 88.90 (+1.78) 
1,3,6 2,4,5 83.08 (+2.35) 81.58 (+1.78) 73.00 (+3.49) 
1,4,5 2,3,6 82.12 (-0.99) 74.98 (+ 7.12) 84.18 (+0.98) 
1,4,6 2,3,5 78.00 (+3.72) 93.22 (-1.41) 86.41 (+0.54) 
1,5,6 2,3,4 82.59 (+3.20) 91.72 (+0.71) 81.14 (+2.70) 
2,3,4 1,5,6 93.73 (+1.27) 91.26 (-0.09) 92.37 (+1.93) 
2,3,5 1,4,6 88.04 (+1.95) 92.23 (+1.26) 87.73 (+1.77) 
2,3,6 1,4,5 91.66 (+1.78) 81.15 (+4.91) 83.95 (+3.08) 
2,4,5 1,3,6 88.33 (+2.78) 69.37 (+ 4.31) 83.70 (+1.69) 
2,4,6 1,3,5 91.07 (+0.77) 85.66 (+0.29) 93.25 (+0.04) 
2,5,6 1,3,4 90.27 (+0.71) 82.57 (+2.83) 85.86 (+1.41) 
3,4,5 1,2,6 88.53 (+2.06) 80.41 (+1.95) 86.47 (+2.80) 
3,4,6 1,2,5 91.39 (-1.95) 70.52 (+3.96) 93.57 (-1.01) 
3,5,6 1,2,4 91.04 (+0.29) 71.73 (+4.67) 86.35 (+0.71) 
4,5,6 1,2,3 89.02 (+1.23) 67.54 (+4.93) 78.11 (+2.12) 

 
The 3D point cloud features which were found to possess some potential 
in identifying the damaged regions led to an accuracy improvement of 
3.1% (i.e. 94.2% to 91.1%) when they were integrated with CNN features 
(cf. Table 4-6 & 4-10). Moreover, the 3D point cloud features were found 
to play a significant role in model transferability. For example, in many 
cases, the use of 3D point cloud features along with CNN features 
improved the model transferability accuracy by a maximum of 7%, 
compared to the accuracy previously achieved by CNN features alone. 
When examining the reasons for accuracy improvement, we observed that 
the 3D point cloud features help to distinguish between the radiometric 
pattern discrepancy due to geometric deformation (damage) and other 
reasons mentioned earlier, thereby controlling the error rates. For example, 
8.9% of the errors made by CNN features alone were reduced to 5.8% 
when including 3D point cloud features i.e. the amount of error was 
reduced by 35% (cf. Table 4-6 and Table 4-10). This is visually evident 
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from Figure 4-10, which depicts the classified image where the undamaged 
and geometrically intact super-pixels (highlighted with blue circles) were 
classified as damaged (false positive) by the CNN-features based 
classifier. However, they were classified with a very low confidence rate 
(prediction score depicting the distance between the sample point and the 
decision boundary in feature space), indicating a high degree of 
classification uncertainty. In such cases, the influence of 3D point cloud 
features was found to be significant, as they help moving these low 
confidence predictions (samples closer to the margin) into the high 
confidence region (far away from the margin), thereby improving the 
accuracy (cf. Figure 4-10). Also, the inclusion of 3D point cloud features 
along with CNN features lead to improved accuracy by detecting a few 
damaged regions that were not previously detected by CNN features-based 
classifier (cf. region highlighted using green circle in Figure 4-10). On the 
contrary, in some cases, the integration of 3D point cloud features along 
with CNN features was found to decrease the accuracy of the model 
transferability achieved previously by CNN features alone. Upon closer 
examination it was found that façade regions or under-segmented image 
super-pixels were often wrongly detected as damaged by the 3D geometric 
features, as they generally look cluttered, consequently possessing varying 
geometric distribution characteristics. This problem could be eliminated 
by improving the segmentation quality. Also the photogrammetry point 
clouds are often noisy, leading to poor geometric representation for some 
regions in particular façade regions (cf. Vetrivel et al. 2016a), which could 
also be one of the reasons for the decrease in accuracy.  
In addition, we analyzed the significance of each feature when both CNN 
and 3D point cloud features were used in combination for damage 
detection. The CNN feature was estimated as the most significant feature 
by MKL, contributing around 65% among the nine features considered for 
the classification (cf. Table 4-10). The proportion of contribution of the 
3D point cloud features was similar to the inference made in a preceding 
experiment, where the histogram of Z component of the normal vector was 
ranked as the most significant feature among other 3D features, 
contributing around 11%. The remaining seven 3D point cloud features 
were assigned weights in the range of 1-4% by MKL, where their total 
contribution was around 24%.  
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4.4 Overall discussions, conclusions and future works 
A framework was developed for the independent and integrated use of 
CNN and 3D point cloud features for automated identification of damaged 
regions using images from manned and unmanned aerial platforms. The 
framework was tested in different scenarios using images from several 
geographic locations that are highly varying in image and scene 
characteristics. The major inferences are discussed and summarized 
below.  
CNN features: They were examined for damage detection in three 
different scenarios: 1) feature learning by training the model from scratch 
(CNN_S), 2) tuning features of a pre-trained CNN model using domain-
specific samples (CNN_T), and 3) directly adopting the features learned 
by a pre-trained based on images from related domains (CNN_F). There 
was no significant difference in the performance of the features learned by 
three different scenarios, as they all produced an accuracy of 90±3%. 
However, the CNN_F approach is highly recommended as it requires a 
lower number of training samples and is light-weight in computation. For 
this study we selected the pre-trained model developed based on classical 
images, as there was no pre-trained model specific to the remote sensing 

Figure 4-10. The super-pixels of an image which are wrongly predicted as 
damaged, and missed detections by CNN features based-classifier, are 
highlighted in blue and green circles, respectively, and annotated with 

prediction scores ,i.e. distance of the sample to the classification boundary in 
feature space (left); the improved predictions by CNN+3D features-based 
classifier (right). The super-pixels with positive and negative prediction 

scores indicate damaged and undamaged regions, respectively. The prediction 
scores are in the range [-6.9, 8.2] for the samples in the training sets. 
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domain readily available. However, it was observed that the pre-trained 
model tuned with domain-specific samples produced slightly better 
accuracy than the other two approaches. Based on this observation, we 
expected that creating a pre-trained model specific to the remote sensing 
domain (i.e. training CNN models with remote sensing images from 
various remote sensing applications) could learn the useful domain-
specific features, further adopting this model for feature extraction might 
improve the accuracy.  
3D point cloud features: The Z of plane normal and several structure 
tensor-based 3D features described in Table 4-1 were examined for the 
damage detection process using the UAV5414 dataset. The major objective 
was to analyze the significance of these features before using them 
together with CNN features for the classification process. We anticipated 
that the histogram-based representation of 3D point cloud features inspired 
from HoG would be more effective for capturing the segment-level 
geometric characteristics than other conventional representations as 
described in Section 0. To examine this, 10 feature subsets were framed as 
described in Table 4-2, in which eight features subsets were based on the 
histogram approach and the remaining two were based on other two 
approaches. The significance of each 3D feature subset was estimated 
using the MKL approach. As expected the histogram-based 3D point cloud 
features were found to be the most significant features, contributing 97% 
towards the classification accuracy of 81% (cf. Table 4-9). Also, the choice 
of kernel in the MKL framework for representing 3D feature was found to 
have a significant impact on the classification accuracy: the Gaussian 
kernel produced superior results over the linear kernel. 
Integrated use of CNN and 3D features: The CNN and 3D feature 
subsets were integrated and classified using SVM by adopting the MKL 
framework. The integration of 3D point cloud features with CNN produced 
only a marginal improvement in terms of accuracy, from 91% to 94% (cf. 
Table 4-6 and Table 10). There was no significant difference in the 
predictions made by CNN when used alone or together with 3D features, 
because the MKL assigned a weight of 65% to CNN features, signaling its 
superiority and enabling it to strongly dominate the influence of 3D point 
cloud features in the classification process. Hence, only the highly 
uncertain samples (often the false positives) in the feature space of CNN 
could have been influenced by the 3D point cloud features when integrated 
with CNN, leading to a marginal accuracy improvement.  
Model transferability: The transferability of the supervised models based 
on CNN features was examined by training the model based on images 
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from specific geographic locations, and tested on images from unseen sites 
that were slightly varying in scene characteristics, illumination conditions, 
spatial resolution and radiometric characteristics. Often the CNN based 
supervised models were found to generalize well and produce an average 
accuracy of around 85% for the experiments conducted for analyzing the 
model transferability. In some cases, the model transferability accuracy 
dropped when the training and testing samples were from highly varying 
scene characteristics, highlighting the importance of site-specific samples 
for achieving improved results. The inclusion of 3D point cloud features 
along with CNN for model construction often was found to be significantly 
increasing the transferability of the model. In a few cases, the inclusion of 
the 3D point cloud features degraded the accuracy of the model due to the 
earlier mentioned reasons such as under-segmentation and presence of 
high noise in the point cloud. The under-segmentation issues could be 
largely resolved by using 3D point cloud features along with image 
features for segmentation (Vetrivel et al., 2015b). We also expected that 
instead of using hand-crafted 3D features, learning useful 3D point cloud 
features directly from the 3D point cloud using CNN might be effective. 
However, it is not possible to adopt CNN directly for 3D point clouds, as 
the used CNNs are specially designed for data in matrix format, such as 
images. However, in other domains, where the data are not in matrix 
format, such as text mining and software security, the CNN approach has 
been widely used for feature extraction by converting their data originally 
in non-matrix representations to matrix representation (Kim, 2014; 
Narayanan et al., 2016a). For example, the recently proposed concept 
word2vec for representing text in matrix format has been used for adopting 
CNN for text mining applications (Fu et al., 2016). It has been reported 
that the CNN features learned specifically for text or graph data are 
reported to be superior over hand-crafted features (Kim, 2014; Narayanan 
et al., 2016a). Similarly, designing an approach for representing 3D point 
clouds in matrix format to use CNN for learning the application- and data-
specific 3D features might outperform the conventional hand-crafted 
features as observed in several studies from related domains. We intend to 
explore this in the future.  
Overall, the proposed framework for training supervised model based on 
CNN features either combined with 3D point cloud features using MKL 
or alone was found to be significant for detecting damaged regions using 
very high resolution images. Particularly, the accuracy obtained on model 
transferability was encouraging, where the model trained with a sufficient 
number of samples can be transferred to an actual disaster scenario without 
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any retraining for a quick assessment of damaged regions. This would be 
highly beneficial to the first responders for speedy response activities, 
avoiding the tedious manual referencing.  
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5 Potential of multi-temporal oblique airborne 
imagery for structural damage assessment* 

 
 
  

                                                 
* This chapter is based on the article: 
Vetrivel, A., Duarte, D., Nex, F.C., Gerke, M., Kerle, N. and Vosselman, 
G. (2016) Potential of multi-temporal oblique airborne imagery for structural damage 
assessment. In: Proceedings of the XXIII ISPRS Congress: From human history to the 
future with spatial information, 12-19 July 2016, Prague, Czech Republic. Peer reviewed 
Annals, Volume III-3, 2016 / edited by L. Halounova, ... [et al.]. ISPRS, 2016. ISSN: 
2194-9050. pp. 355-362. 
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Abstract  
Quick post-disaster actions demand automated, rapid and detailed building 
damage assessment. Among the available technologies, post-event oblique 
airborne images have already shown their potential for this task. However, 
existing methods usually compensate the lack of pre-event information 
with aprioristic assumptions of building shapes and textures that can lead 
to uncertainties and misdetections. However, oblique images have been 
already captured over many cities of the world, and the exploitation of pre- 
and post-event data as inputs to damage assessment is readily feasible in 
urban areas. In this chapter, we investigate the potential of multi-temporal 
oblique imagery for detailed damage assessment by developing a 
methodology for detecting severe structural damages related to 
geometrical deformation by combining the complementary information 
provided by photogrammetric point clouds and oblique images. The 
developed methodology detected 87% of damaged elements. Most of the 
failed detections are due to varying noise levels within the point cloud 
which hindered the recognition of some structural elements. 
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5.1 Introduction & related works 
Structural damage assessment is an imperative process to be carried out 
immediately after the disaster event for effective planning and execution 
of response and recovery actions. Assessing building damages over large 
areas affected by hazard events with ground observations is not efficient. 
Alternatively, remote sensing-based approaches have been recognized as 
useful means for assessing synoptic building damage. Detailed 
information of an affected area can be provided in a short time using a 
variety of sensors such as optical, SAR and LiDAR (Khoshelham et al., 
2013a; Miura et al., 2013; Uprety and Yamazaki, 2012). In particular 
airborne oblique images have been recognized as a valuable data source to 
assess building damages because, compared to traditional nadir views, 
they allow the complete inspection of the external outlines of the building, 
such as roofs and façades (Murtiyoso et al., 2014). Nowadays, airborne 
images are captured with high overlap, and the generated point clouds can 
be exploited in the damage assessment process as well (Sui et al., 2014b). 
Geometrical deformations such as partial/complete collapse, pancake 
collapse, inclination, broken and dislocation of elements can be derived by 
3D geometric information, while damages such as cracks and spalling can 
be inferred from the images directly. Several papers have highlighted the 
potential of synergistic use of 3D point cloud and images for building 
damage assessment (Gerke and Kerle, 2011a; Vetrivel et al., 2015a). 
However, only few studies have looked at the use of digital oblique aerial 
imagery for structural damage assessment, and were focused on (mono-
temporal) post-event information (Gerke and Kerle, 2011a; Vetrivel et al., 
2015a). The major limitation of this approach is that damage is inferred 
based on a set of ontological assumptions: i.e. a surface with unusual 
radiometric or geometric characteristics is assumed to be damaged, while 
manmade objects are assumed to have a regular shape and uniform 
radiometric characteristics. These assumptions have limitation in complex 
environments, leading to a high rate of false alarms, which reduces their 
reliability and operational utility. In Vetrivel et al. (2015a), damages 
presenting regular and uniform shapes (false negative), or intact regions 
characterized by cluttered and non-uniform radiometric distributions (false 
positive), were incorrectly  classified due to these assumptions.  
 
The above uncertainties can be alleviated if pre-event data are available 
for reference. Many studies have demonstrated the potential of multi-
temporal data for damage assessment, though with most focusing on nadir-
view images (Dong and Shan, 2013; Murtiyoso et al., 2014). To our 
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knowledge, no methods have been reported yet for identifying building 
damages using multi-temporal oblique images and/or 3D point clouds.  
 
In this chapter the first implementation of an automated algorithm for 
building damage assessment from multi-temporal oblique images is 
presented. Although geometrically more stable cameras are used 
nowadays in oblique airborne systems, many data sets are captured with 
less sophisticated camera systems, and image overlap is often restricted to 
2-fold. Hence, for such configurations one has to cope with dense image 
matching point clouds of minor quality (relatively large random error 
margin, gaps). The proposed methods take advantage of both 2D and 3D 
information and efficiently cope with these problems. 
 
Thus this chapter focuses on developing methods to identify severe 
building damages related to geometrical deformation, using multi-
temporal oblique images and 3D point clouds. To this end three different 
change detection methods are proposed to identify building elements that 
are geometrically deformed between the two epochs. Subsequently, a 
change classification method is proposed to identify the geometric 
deformation of an element marked as damaged. The detailed description 
of the methodologies and the results achieved on the test area of L’Aquila 
(Italy) will be presented in detail in subsequent sections.  

5.2 Data description 
The data used are corresponding to the city of L’Aquila, Italy in which an 
earthquake occurred on 6th April 2009. The data consist of two airborne 
oblique acquisitions (August 2008 and May 2009) covering the city with 
both oblique (4 cameras) and nadir (1 camera) imagery, captured by small 
format DSLR cameras. Images were acquired at a flying height of 
approximately 1000 m allowing for an average ground sampling distance 
of 16 cm on oblique views. The flight was conducted considering a 
forward overlap between 60-70% and side overlap between 35-45%, 
allowing to derive a 3D point cloud. The registration was achieved 
computing tie-points from all the imagery, forcing both epochs to share a 
local coordinate system. Dense image matching was then performed 
separately on both epochs. 
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5.3 Methodology for Point cloud based damage detection 
and classification 

Any severe structural damage, such as partial or complete collapse, 
pancake collapse, dislocated or inclined elements, leads to the absence of 
the given elements in their actual 3D boundary in the pre-event data. These 
damaged elements are referred to missing elements. The missing structural 
elements can be identified by comparing the accurately co-registered 
multi-temporal (pre and post-event) 3D point clouds. However, the 
absence of pre-event segments in post-event 3D point clouds may be due 
to many reasons, such as occlusion/a building part being exposed to a 
lower number of camera views, or poorly textured surfaces, leading to 
missing 3D points. On the other hand, an element can be missing because 
it was damaged or cleared deliberately. Therefore, it is important to infer 
the reasons for the absence of a pre-event element in the second epoch data 
after detecting them. 
  
The missing elements due to damage are detected using the pre- and post-
event images and 3D point clouds derived from them by three pipeline 
processes (cf. Figure 5-1). As an initial step, the individual buildings in the 
area are delineated from the pre-event 3D point cloud. Subsequently, the 
delineated buildings in the pre-event data are compared to the post event 
3D point cloud to detect changes. Finally, the changes are classified to 
isolate the changes caused by damage. The detailed methodology to carry 
out the aforementioned processes is described below.  
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Figure 5-1. Overall workflow 

5.3.1 Building delineation from 3D point cloud:  
In remote sensing data, the roof segments are the most visible and least 
cluttered building elements. Moreover, they can be recognised based on 
simple geometric constraints. For instance, the roof segments are mostly 
elevated horizontal or slanted planar surfaces with respect to ground. 
Hence, in this study the roof-based building delineation approach based on 
3D point clouds is adopted. Moreover, this method has previously shown 
reliable results (Vetrivel et al., 2015a). The procedure followed is 
described below.  
 
The 3D point cloud is segmented using planar segmentation as described 
by Vosselman (2012). The segments with Z component of the plane 
normal > TZ (0.4) and above height TH (3 m) are labelled as roof segments. 
The spatially connected roof segments are identified by defining the alpha 
shapes with an alpha radius of TR (0.3). Finally, the 3D points that are 
covered by single alpha shapes are delineated as roofs of a single building. 
Also, all the 3D points that lie within the 2D boundary of the alpha shape 
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are registered as the 3D points of the building, i.e. all 3D points that lie 
below the roof elements are also registered as the 3D points of the building. 

5.3.2 Change detection to identify the missing building elements 
in post event:  

The pre-event building elements that are missing in the post-event point 
cloud are identified using the following three approaches. To provide a 
clear understanding of the proposed methods, they are illustrated with 
examples from the data used and results obtained from our experimental 
study. Also, the pros and cons, and appropriate scenario that make a 
particular method suitable, are discussed. 

5.3.2.1 Voxel-based approach (VBA): 
 A unit of 3D space that is occupied by a specific building element in the 
pre-event but not the post-event data is straight-forwardly identified and 
classified as a change. The 3D space defined by the delineated building in 
the pre-event point cloud is divided into voxels. The edge length of voxels 
is defined based on image ground resolution (0.5 m ~ three times the image 
ground resolution). The 3D points of the pre- and post-event point clouds 
that lie within the defined 3D boundary are added to the corresponding 
voxels. The voxels that contain pre-event but no post-event 3D points are 
classified as changed voxels. However, it is challenging to differentiate 
between the changed and unchanged voxels as there is a high probability 
that 3D points of the pre- and post-event epochs of the same building 
element may fall into different (adjacent) voxels, due to the varying noise 
level between the two point clouds. To overcome this problem the spatial 
buffers along the horizontal and vertical directions with buffer thresholds 
of THB (0.5 m) and TVB (1.0 m), respectively, are created for each voxel 
occupied with the pre-event 3D points. These voxels are classified as 
unchanged voxels if post-event 3D points lie within the buffer area; 
otherwise they are classified as changed voxels. Finally, the pre-event 3D 
points of the changed voxels are detected as 3D points of missing building 
elements and considered for the further change classification process. The 
overall process of this approach is shown in Figure 5-2. 
 
Pros: In many cases photogrammetric point clouds are very noisy, 
hindering the recognition of individual building elements. In such cases, 
this approach is more suitable as it does not need any prior information or 
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assumptions about the building, unlike the segment-based approaches 
discussed below.  
 
Cons: The presence of artefact 3D points, common in photogrammetric 
point clouds in unfavourable image flight configurations, strongly affect 
the performance of this approach. Moreover, in specific scenarios, it 
cannot detect or accurately delineate the missing portion of the element, 
since the voxels are classified in a binary fashion, i.e. whether or not they 
contain a certain element. Therefore, even if only a minor portion of a 
voxel is occupied by an element, it will be classified as occupied voxel. 
Hence this results in a failure to detect missing elements that characterises 
the remaining majority portion of the voxel. Since it does not consider the 
geometry of the elements it may fail to detect the damages in specific 
scenarios. For example, consider a horizontal roof segment is missing and 
the below vertical elements are visible. In such a case, this approach may 
fail as the 3D points of the vertical elements fall into the voxels of the 
missing elements when the voxel and its buffer sizes are significantly 
large. Moreover, this approach is computationally intensive. 
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Figure 5-2.  Workflow of voxel-based approach 

5.3.2.2 Segment-based approach (SBA): 
 In general, most buildings are made of a composition of planar segments. 
Hence, we anticipate that comparison of pre- and post-event data based on 
planar segments will help to precisely identify changes on element level. 
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This would also lead to more object-oriented analysis compared the voxel-
based approach. However, direct comparison of 3D segments that are 
obtained from independent segmentation of pre and post-event is not 
always practically possible. This is because, though the 3D point clouds of 
the two epochs are segmented using the same segmentation algorithm, in 
practice it is not always feasible to obtain the same segments even for 
corresponding undamaged areas. This is predominantly due to varying 
noise level between point clouds. Therefore, we propose a method where 
the pre-event point cloud alone is segmented and the corresponding 
segments in the post-event are derived based on the pre-event segments.  
This is done by fitting a plane to pre-event 3D segment and, subsequently, 
the post-event 3D points that lie within the plane-offset of TD (1.0 m) to 
be derived as post-event segment. Then the missing (damaged) portions of 
pre-event segments are identified by comparing them with the 
corresponding derived post-event segments. Only the segments with an 
area greater than TA (5 m2) are considered for the change detection process. 
The overall procedure of this approach is shown in Figure 5-3. 
 
Pros: Compared to the voxel-based approach it is 1) less sensitive to 
artefacts, 2) more robust in detection and accurate delineation of missing 
elements, and 3) computationally less demanding.  
 
Cons: This approach fully depends on the performance of the planar 
segmentation algorithm. The planar segmentation fails to produce accurate 
segmentation for portions of point cloud corresponding to very high noise, 
and also for regions of non-planar elements.  
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Figure 5-3. Overall workflow of segment-based approach 

5.3.2.3 Composite segment-based approach (CSBA):  
The above segment-based approach is defined particularly for plane-based 
segmentation. Here, we develop an alternative segment-based approach 
that is independent of the segmentation methods. Pertaining to this, a 
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composite segment-based approach is developed where the pre and post-
event point clouds are merged and segmented together using a plane-based 
segmentation algorithm (although any segmentation method can be used). 
Therefore, the corresponding segments in the two dataset share the same 
segment label, which facilitates direct comparison between them. Thereby 
the completely and partially missing elements can be identified in simple 
and faster way than in the above proposed methods. The proposed change 
detection strategy is described below.  
 The pre-event segments that have no corresponding segment in the 

post-event point cloud represent the completely missing segments. 
This can be obtained in a single step by a simple set difference: i.e. 
suppose sets A and B are the segment label lists of pre and post-event 
epoch, respectively, then the completely missing segments are 
obtained by A-B (set difference).  

 To identify the partially missing segments select the corresponding 
segments in the pre- and post-event data and define the boundary for 
the post-event 3D segment using the alpha shapes. The pre-event 3D 
points that lie outside the defined boundary are considered as the 
missing portion of the pre-event segment in the post-event data. 

Pros: It is faster and simple than the other two proposed methods.  
 
Cons: The choice of segmentation algorithm is critical as it should detect 
building elements of different geometry (planar and no-planar) and robust 
to varying noise levels between the point clouds. It is also highly 
vulnerable to co-registration errors of multi-temporal point clouds.   

5.3.3 Change classification (inferring reason for change):  
In general, the disappearance of a building element due to damage will 
lead to two kinds of scenarios: 1) the absence of certain elements will 
create an opening, leading to a visibility of the element below it. Therefore, 
there will be a new surface (3D points) in the post-event data, 
corresponding to this disappeared element (cf. Figure 5-8Figure 5-4), or 2) 
the disappearance of partial elements may create a hole in the structural 
element which appear darker due to poor radiometric reflection (cf. Figure 
5-4). This is termed as structural holes and it will be a gap in the 3D point 
cloud. However, gaps in 3D point clouds may also be caused by mis/no 
matches in 3D point generation (e.g., poorly textured surfaces) and 
occlusions. Therefore, it is important to distinguish between these gaps to 
identify the ones caused by damage. As the image radiometry plays a 
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major role here, we used pre- and post-event images in addition to point 
clouds for the change classification process. The procedure for inferring 
the reasons for the absence of pre-event element in post-event is described 
below.   
 

 
Figure 5-4 Example of element collapses leading to an opening with the surface 
below it visible (left) and not visible, i.e. structural holes (right) are highlighted 

in red circles. 

Case 1: Element missing due to occlusion/partial visibility:  
The pre-event 3D points missing in the post-event data due to occlusion 
can be identified by analysing the visibility of those points in the post-
event camera views. This is done by adding the missing pre-event 3D 
points to the post-event point cloud. Subsequently, the visibility of 3D 
points in each post-event camera view is estimated using the Hidden Point 
Removal operator (HPR) (Katz et al., 2007a). Finally, the newly added 
pre-event 3D points that are visible in less than ‘N (3)’ camera views (post-
event cameras) are removed by labelling them as occluded points, and the 
remaining pre-event 3D points are classified as visible points and 
considered for further change classification process.  
Case 2: Element missing due to damage and mis/no matches in 3D 
point generation: The change classification is preferred to be performed 
at segment level, as manmade objects are largely composed of 
planar/regular elements, thus it helps to reduce false decisions. The 
segment-based approaches will directly provide the 3D points of missing 
element in terms of segments. However, for the voxel-based approach, it 
will provide the collection of independent pre-event 3D points that are 
absent in the post-event situation. Therefore, the 3D points obtained from 
the latter are grouped into dis-jointed 3D segments based on their spatial 
connectivity, using the alpha shapes for further processing.  
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A rule-based approach is adopted and a set of rules is defined to classify 
the missing elements into the aforementioned scenarios. This classification 
approach is independent from the methods used to detect missing elements 
and is described below. 
Element missing due to damage and the surface below it is visible: The 
rule for this class is defined below and illustrated in Figure 5-5.  
Rules: The post-event 3D points should be present within the 2D boundary 
(change boundary) of the missing pre-event 3D segment. Also the post-
event points and pre-event 3D segment should be visible in the same post-
event camera. Also the area covered by the post-event 3D points should be 
of similar size compared to the area of the missing pre-event segment (at 
least cover 30 %). 
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Figure 5-5. Example for missing 3D segment classified as damaged and the 

surface below it is visible in post-event.  
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Pre-event element missing in post-event due to damage (structural 
hole) or mis/no matches in 3D point generation: In contrast to the above 
scenario, if the change-boundary does not contain a significant number of 
post-event 3D points then the radiometric characteristics of the change 
boundaries in the pre- and post-event data are compared by delineating 
them in the corresponding images. If they are not similar and if the post-
event image surface appears significantly darker compared to the pre-event 
one, then it is classified as damage (structural holes), otherwise it is 
classified as mis/no matches in 3D point generation. The grey-value 
(image pixel value) based histogram is used as a feature to compare the 
radiometric characteristics as it is well proven and widely used region-
level image descriptors (Wenjing et al., 2006). 
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Figure 5-6. Example for missing 3D segment classified as (structural hole) 

caused by damage. 
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Figure 5-7. Example for missing 3D segment classified as mis/no matches in 3D 

point generation. 

Rules: If the correlation between the histograms of the pre and post-image 
regions is less than THD (0.75) they are considered to be radiometrically 
dissimilar. If the histogram peak of the post-event image patch corresponds 
to grey values <TG (50 lower grey value) then the pre-event 3D segment is 
classified as element missing due to damage (structural holes) in the 
post-event.  If above constraints are not satisfied then the missing pre-
event element is classified as element missing due to mis/no matches in 
3D point generation.  The illustrations of these two classes are depicted in 
Figure 5-6 and Figure 5-7. 
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5.4 Results  

5.4.1 Data used: 

Three subsets of building blocks from different parts of the city were 
considered for the damage detection process, containing a total of 48 
buildings. Of those 23 building elements are identified as either completely 
or partially missing in the post event data due to damage. The pre-event 
3D point clouds of the considered sub-blocks are shown in Figure 5-8.  
 

 
Figure 5-8. Pre-event 3D point clouds of the sub-blocks considered for damage 

assessment. 

5.4.2 Results of building delineation:  
All 48 buildings are detected using the method described in section 0 and 
they are categorized into three cases: 1) Buildings that were delineated 
with close approximation to the actual boundary (# 36); 2) buildings with 
some portions not delineated (# 7); 3) single buildings detected as multiple 
buildings, particularly the buildings with multi-level roofs. (#5). A sample 
result for building delineation is shown in Figure 5-9.  
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Figure 5-9. Image subset of airborne image (left) and delineated buildings based 

on 3D point cloud are projected over the image (right). 

5.4.3 Results of the change detection methods to identify the 
missing building elements in post event:  

In this section, the overall results and the major inferences associated with 
each change detection method are summarized. The overall results are 
provided in Table 5-1. An example result of missing elements that were 
detected by the composite segment-based approach for a small block is 
depicted in Figure 5-10. 
 

 
Figure 5-10. The detected missing pre-event segments using composite 
segment-based approach are projected as red points over a pre-event image 
(left), and outlined in the post-event (right) images with yellow circles. 
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Table 5-1. The results of missing pre-event 3D segments detected by all three 
approaches  

Method Detected damage
(not detected) 

Missing elements due to:  
Occlusions Mis/no matches 

VBA 17 (6) 3 8 
SBA 20 (3) 1 3 
CSBA  20 (3) 1 2 

5.4.4 Results of change classification:  
For the change classification process, the missing elements identified by 
the segment-based approach were considered (cf. Table 5-1 ).  
Case 1: Element missing in the post-event data due to occlusion: only 
one segment that was very small (area < 5m2) was identified as missing in 
the post-event data due to occlusion (cf. Table 5-1), and it was classified 
correctly and removed from the further classification process.  
Case 2: Element missing due to damage and mis/no matches in 3D 
point generation: The results of the change classification process are 
provided in Table 5-2. In total all 20 elements that are missing due to 
damage were classified correctly. Among the three non-damaged missing 
elements two were correctly classified as mis/no matches in 3D point 
generation. The remaining one was misclassified as damage related to 
structural hole as it was affected by shadow in the post-event data.   
 

Table 5-2. Results of classification of missing 3D segments detected by 
segment-based approach 

 Predicted 
Actual Damage Non-damage 

Damage 20 0 
Non-damage 1 2 

Recall =100% ; precision= 95.23% and accuracy= 95.6% 
 
The final outcome of the overall process is the report for each building that 
shows the area and boundary map of each missing elements of the building 
due to damage. For example, Figure 5-11 depicts the area and outline of 
each missing elements for a building shown in Figure 5-3. 
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Figure 5-11. Outline of each missing segment of a building and their areas are 
annotated in m2 (top) and superimposed on the corresponding building in post-

event (bottom). 

5.5 Discussion  
The pre- and post-event point clouds derived from the oblique images are 
noisy. However, the noise level varies from place to place as they are 
susceptible to the radiometric characteristics of the surface. Therefore, the 
places corresponding to very noisy 3D points were not segmented well, 
and because of this three (out of 23) damaged elements were not detected 
by both segment-based approaches (cf. Table 5-1).  The voxel-based 
approach has not detected six damaged elements. This is due to its 
limitations that are highlighted in the cons of the voxel-based approach (cf. 
0). The change classification (cf. 5.3.1.3) is a straightforward approach 
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which correctly classified the missing elements due to earthquake damages 
or man-made changes. The classification of mis/no matches failed just in 
one case, in correspondence of a shadowed building element that was 
wrongly classified as structural hole. 

5.6 Conclusion and outlook 
In the presented chapter, automated methods were developed to identify 
the structural damages by utilizing both 2D and 3D information derived 
from multi-temporal, pre- and post-event oblique images. The methods 
focussed on identifying structurally deformed elements due to damage 
using the pre- and post-event images and 3D point cloud. The developed 
methods produced significant results, particularly, the segment-based 
approaches detected 87% (20 out of 23) of geometrically deformed 
elements, and all of them were correctly classified as damaged by the 
proposed change classification approach. However, while the proposed 
methods can identify the structurally deformed elements due to damage, 
they cannot infer the type of structural deformation, such as dislocation, 
inclination, complete collapse or pancake collapse. Generally, any missing 
structural element in the pre-event data will emerge as a new element (at 
least debris) in the post-event epoch. These newly emerged post-event 
elements can be identified by detecting the missing elements from the post- 
to pre-event data using any one of the proposed change detection methods. 
A semantic analysis by mapping of corresponding missing pre-event and 
the newly emerged post-event elements would help to infer the specific 
reason of structural deformation. This would be the logical extension of 
this work.  
 
The planar segmentation was adopted to derive segments in the segment-
based change detection approaches. It often failed to provide accurate 
segmentation for very noisy and non-planar regions in the 3D point cloud, 
which hindered the assessment for those regions. However, numerous 
point-cloud segmentation methods have been developed which utilize the 
contextual information, the image-radiometric and points cloud-geometric 
information in combination, and which provide better segmentation for 
noisy and non-planar regions (cf. Anh and Bac (2013)). Adopting such 
segmentation coupled with our proposed composite segment-based 
approach can yield better assessment. 
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6 Towards automated satellite image segmentation 
and classification for assessing disaster damage 

using data-specific features with incremental 
learning* 

 
 
  

                                                 
* This chapter is based on the article: 
Towards automated satellite image segmentation and classification for assessing disaster 
damage using data-specific features with incremental learning. In: Proceedings of 
GEOBIA 2016 : Solutions and synergies, 14-16 September 2016, Enschede, Netherlands 
/ edited by N. Kerle, M. Gerke and S. Lefevre. Enschede: University of Twente Faculty 
of Geo-Information and Earth Observation (ITC), 2016. ISBN: 978-90-365-4201-2. 5 p 
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Abstract  
Automated damage assessment based on satellite imagery is crucial for 
initiating fast response actions. Several methods based on supervised 
learning approaches have been reported as effective for automated 
mapping of damages using remote sensing images. However, adopting 
these methods for practical use is still challenging, as they typically 
demand large amounts of training samples to build a supervised classifier, 
which are usually not readily available. With the advancement in 
technologies local and detailed damage assessment for individual 
buildings is being made available, for example through analysis of images 
captured by unmanned aerial vehicles, monitoring systems installed in 
buildings, and through crowdsourcing. Often such assessments are being 
done in parallel, with results becoming available progressively. In this 
chapter, an online classification strategy is adopted where a classifier is 
built incrementally using the streaming damage labels from various 
sources as training samples, i.e. without retraining it from the scratch when 
new samples stream in. The Passive-Aggressive online classifier is used 
for the classification process. Apart from the classifier, the choice of image 
features plays a crucial role in the performance of the classification. The 
features extracted using recently reported deep learning approaches such 
as Convolutional Neural Networks (CNN), which learns features directly 
from images, have been reported to be more effective than conventional 
handcrafted features such as gray level co-occurrence matrix and Gabor 
wavelets. Thus in this study, the potential of CNN features is explored for 
online classification of satellite image to detect structural damage, and is 
compared against handcrafted features. The feature extraction and 
classification process is carried out at an object level, where the objects are 
obtained by over-segmentation of the satellite image.  The proposed online 
framework for damage classification achieves a maximum overall 
accuracy of about 73%, which is comparable to that of batch classifier 
accuracy (74%) obtained for the same training and testing samples, 
however at a significantly lesser time and memory requirements. 
Moreover, the CNN features always significantly outperform handcrafted 
features.  
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6.1 Introduction & related works 
Very high resolution satellite images, which are usually made available 
within a few hours after a disaster event such as an earthquake, serve as an 
ideal data source for rapid damage assessment over large areas for fast 
response actions (Kerle and Hoffman, 2013a). Though many automated 
methods have been proposed for damage mapping using satellite imagery, 
in practice operational damage mapping continues to be based on manual 
interpretation of satellite images, which is time- and labour- intensive. 
There are many reasons for automated methods not yet being adopted for 
automatic processing, including the limited spatial resolution of satellite 
imagery compared to increasingly available aerial alternatives, and the 
complexity of the scene. However, the primary reason is that most of the 
automated methods are based on supervised learning approaches that 
require a large volume of training samples to build accurate models which 
are often not readily available (Dong and Shan, 2013). Also adopting a 
pre-trained supervised model that was previously developed for a different 
geographic area or image data type typically has limited transferability. In 
such cases at least a small number of training samples reflecting the study 
area is required to fine-tune the pre-trained model. Either for constructing 
a new model or for calibrating the existing model, a significant number of 
study-area-specific training samples is required. However, training 
samples representing the distribution of damage characteristics of the 
study area, are usually not readily available. Moreover, manual 
construction of a new training dataset with a large number of samples is 
not feasible at the time of emergency. With the advancement in 
technologies, local and detailed damage assessments for individual 
buildings are made available from various sources. For example, it is 
becoming increasingly common to assess damages locally after an 
earthquake. UAV images substantially exceed satellite images in terms of 
spatial resolution and multi-perspective coverage of individual buildings 
(Vetrivel et al., 2015a). Therefore, automated damage estimation based on 
UAV images can be more accurate and reliable. Furthermore, damage 
information for specific locations is made available on-line from many 
other sources such as buildings equipped with automated monitoring 
systems (Sdongos et al., 2014) and crowdsourcing (Ghosh et al., 2011; 
Sdongos et al., 2014). Local damage estimates from such sources could be 
used to construct the study-area-specific training data for building a 
required supervised classifier. However, two major challenges need to be 
addressed when constructing a supervised classifier with such training 
data:   
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1) Handling streaming training samples: In the considered scenario 
damage assessment results from the aforementioned sources arrive at 
different points in time, also depending on whether data processing takes 
place locally or remotely. Therefore, a classifier is needed that can be 
trained dynamically, i.e., when new samples arrive the classifier should 
learn without retraining from scratch, and reclassify the image if required. 
This kind of learning is referred to as incremental or on-line learning (i.e. 
learning without having access to all the samples at once) (Crammer et al., 
2006). Conventional batch-learning methods such as Random Forests or 
Support Vector Machines (SVM) are not suitable for this kind of learning 
(Narayanan et al., 2016b). Many on-line learning algorithms have been 
developed, and have been shown to perform similarly to batch-learning 
methods (Hoi et al., 2014; Wang et al., 2014). 

 

2) Data-specific feature for damage classification: Even when a large 
number of training samples is available, it is critical to choose the features 
and a representation strategy that is suitable for the specific data, study 
area and application. For example, in earlier work (cf. Vetrivel et al. 
(2016b)) we examined various image features for identifying damage 
using images from various geographic locations. It was observed that 
specific features are performing well for specific study areas. Hence, 
selection of appropriate features specific to the study area is crucial for 
improved assessment. Recent research revealed that supervised feature 
learning methods such as Convolutional Neural Networks (CNN) could 
learn the data-specific features and their representation directly from the 
image pixel values (Bengio et al., 2013). These features are found to be far 
superior to conventional handcrafted features, which are described in the 
later section (Bengio et al., 2013). 

 

Generally, the regions corresponding to heavy damage are determined 
through the identification of damage patterns corresponding to rubbles 
piles, debris and spalling in an image (Kerle and Hoffman, 2013a). The 
recognition process of those damage patterns can be performed by 
analysing features extracted either at pixel or region level (Dong and Shan, 
2013; Kaya et al., 2010; Miura et al., 2013). However, the pixel level 
analysis is not meaningful for very high spatial resolution images, 
particularly in the context of damage assessment, as the evidences are 
identified based on the characteristics of their radiometric distribution 
pattern, which can be captured more precisely at a region- or object-level. 
Therefore, super-pixels or segments derived from object-based image 
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analysis approaches are considered as the primary entity for performing 
feature extraction and classification. Moreover, this kind of segment-based 
(super-pixels) approach has been demonstrated as a more efficient 
approach in several studies compared to pixel-based methods, particularly 
in applications dealing with very high resolution images (Blaschke, 2010; 
Blaschke et al., 2014).  
 
Another challenging task is how to compile information from various 
sources to label each super-pixel as damaged or undamaged. However, this 
is not the focus of this chapter. Instead we center on how to build an 
incremental classifier if the labels for super-pixels are made available from 
streaming data sources. Hence, in this study the labels for super-pixels are 
manually annotated and they are synthetically framed as a stream of 
training labels obtained from various sources to carry out the online-
classification.  
 
To the best of our knowledge online classification with CNN features has 
not yet been tested for remote sensing applications, particularly for damage 
assessment. Thus the objective is to develop a framework to use online-
learning and CNN together to build an incremental classifier with data-
specific features for automated satellite image-based damage classification 
from streaming samples.  

6.2 Methodology 
The proposed methodology comprises three pipeline processes. As a first 
step, the satellite image is split into super-pixels using an over-
segmentation approach. In the second step, feature extraction is carried for 
the super-pixels, and as a step 3 an online classifier is constructed based 
on the extracted features, by considering them as streaming training 
samples.  
 
Step 1: Over-segmentation of image 
Super pixel construction is a mandatory pre-processing step in many image 
processing applications. For that a range of methods has been reported 
(Achanta et al., 2012a; Aksoy and Akcay, 2005b; Salem et al., 2013b). 
Among them Simple Linear Iterative Clustering (SLIC) (cf. Achanta et al. 
(2012a)) is widely used and reported to be effective for obtaining objects 
in uniform size, which is suitable to create rectangular image patches, the 
input format required by common CNN implementation for extracting 
features. 
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Step 2: Feature extraction  
Many kinds of feature extraction techniques, such as statistical, filtering 
and morphological operations, have been reported for image processing 
applications (Zhang and Tan, 2002). Among them filtering is recognized 
as the most effective approach (Arivazhagan et al., 2006; Tian, 2013b). 
For example, many popular features such as Gabor-, Sobel-, Gaussian- and 
wavelet-features are based on filtering techniques. Such filtering-based 
features have proved to be effective for many image processing 
applications, particularly for image classification (Arivazhagan et al., 
2006; Tian, 2013b). These filters are designed based on standard 
mathematical functions and they are referred to as hand-crafted features. 
However, these features are not especially designed for specific data types 
or applications. It is challenging to choose appropriate features, i.e. 
designing filters with appropriate weights that give the best image 
representation for a specific application (Vetrivel et al., 2016b). CNN is 
one of the deep learning approaches where the filters’ weights are learned 
directly from the images chosen for a specific application, instead of using 
a mathematical function (Krizhevsky et al., 2012). It has been reported that 
filters that are directly learned from images outperform conventional 
handcrafted features (Antipov et al., 2015; Chen et al., 2015; Krizhevsky 
et al., 2012) .  
 
In this study, both hand-crafted- and CNN features are examined and 
compared for the damage classification capacity.   
 
a) Hand-crafted features: Two kinds of hand-crafted texture features 

that have been widely reported as effective features for damage 
classification are considered. They are 1) features based on gray-level 
co-occurrence matrix (GLCM) and 2) Gabor wavelet features. Details 
about the extraction of  GLCM- and Gabor wavelet- features can be 
found in Preethi and Sornagopal (2014) and Arivazhagan et al. (2006), 
respectively.   
 

b) Deep learning features based on CNN: CNN can be used for 
classification in three different scenarios:   
1) Training from scratch: Designing and training of new CNN 

requires a large amount of training data to avoid overfitting. This 
method can be adopted if large number of training sample is 
available.  
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2) Tuning a pre-trained model: Another common approach is to 
adopt a pre-trained CNN model that is trained for a related domain 
(e.g., general image classification) using a large amount of training 
samples: the network weights of a pre-trained model are fine-tuned 
using a domain specific training samples. This approach also 
requires relatively many training samples.  

3) Pre-trained model without tuning: If only a small amount of 
training sample is available for the designated application (here 
damage classification), then a common approach is to extract the 
features using the pre-trained model and use them to perform 
classification based on any supervised classifier such as SVM.  The 
activations of one of the fully connected layers in CNN architecture 
are considered as the CNN features for a given image patch (super-
pixels). For more details about the layers in CNN architecture refer 
to Zeiler and Fergus (2014) and Krizhevsky et al. (2012).  

 
The third approach is most suitable for our application where it is usually 
common to obtain only small amount of training samples from the 
aforementioned sources i.e., few hundreds to thousands of samples 
depending on the nature of the disaster event. Moreover, this approach has 
been reported to be effective for image classification in various domains, 
including remote sensing applications such as land cover classification 
using very high resolution images (Hu et al., 2015). Hence, this approach 
is adopted in this study where the features for super-pixels are obtained 
using the pre-trained model and using these features an independent 
supervised classifier is built for performing the final classification.  
 
Step 3: online classification  
Many online-learning algorithms have been proposed and among them the 
widely used Passive-Aggressive (PA) algorithm is adopted here for 
building the online classifier (Crammer et al., 2006). The classifier is built 
incrementally by providing one sample at a time, where it predicts the label 
and confidence rate of the provided unseen sample. Further, the classifiers 
gets updated for each wrong and low confidence prediction. The details of 
the PA algorithm can be found in Crammer et al. (2006). 
 
The overall work flow is depicted in Figure 5-1.  
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Figure 6-1. Overall workflow 

6.3 Experiments  

6.3.1 Data used: 
A subset of a Geoeye satellite image with 50 cm nominal ground resolution 
of Port-au-Prince captured after the 2010 Haiti earthquake was considered 
for this experiment. The damaged and undamaged regions in the image 
were manually delineated using a polygon and annotated as damaged and 
undamaged, respectively, to generate the training samples for building the 
classifier. These polygons are considered as the streaming ground truth 
information for analyzing the proposed online classifier.  
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6.3.2 Experimental steps and implementation details:  
Step 1: The super-pixels were generated for the selected image subset 
using SLIC method. As stated earlier, we need super-pixels with more 
uniform size and shape. To achieve this, the parameter 'm' in SLIC that 
controls the compactness of a super-pixel was empirically determined as 
40. 
 
Step 2: The manually delineated polygons annotated with damage labels 
were overlaid on the super-pixels of the image. The super-pixels having at 
least 50% of their area overlapping with a polygon were assigned with 
corresponding polygon’s label, and considered for training and testing the 
classifier. In total, 2553 super-pixels were labelled, of which 70% of the 
samples were considered for building the classifier, while the remaining 
30% samples were used for testing.  
 
Step 3: Three kinds of features (GLCM, Gabor and CNN features) as 
described in the methodology section were extracted for the selected 
super-pixels. The CNN features were extracted using a pre-trained CNN 
model ‘imagenet-caffe-alex’ developed by Krizhevsky et al. (2012). This 
model demands the input of image patch with size 227x227x3. Hence the 
super-pixels were converted into rectangular patches and then scaled to 
above said dimension. In general the images are scaled to larger size using 
an interpolation technique that significantly degrades the quality of the 
image. This might have an impact on the quality of the CNN features. 
Hence, in this study the image patches based on super-pixels were resized 
to aforementioned dimensions using two approaches: 1) images resized 
based on interpolation techniques and 2) images resized based on zero 
padding. CNN features from image patches obtained based on these two 
approaches are compared as well.  
 
In total four different features – GLCM, Gabor, CNN_pad (image resized 
by zero padding) and CNN_nopad (image resized by interpolation 
technique) are analyzed independently by fitting the PA online classifier.  

6.4 Results 
The results of the online classification are shown in Figure 6-2, which 
depicts the cumulative error rate for each feature. Also this figure 
implicitly shows the number of times the classifier gets updated. The 
overall accuracy estimated based on their error rates for GLCM, Gabor, 
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CNN_pad and CNN_nopad are 66.5%, 70.0%, 71.0% and 74.5%, 
respectively.  
 
It is evident that the online learning algorithm does not need to be re-
trained from scratch every time a sample streams in, leading to 
significantly superior time and memory efficiency. However, this might 
adversely affect the accuracy of the model. Hence, we intend to determine 
whether the accuracy diminishes in the online learning setting, and if so, 
how significant would that be. To this end, we compare the online 
classifier with canonical batch classifier SVM, using all aforementioned 
features. The SVM classifier was trained using the same 70% of the 
samples. Subsequently, both SVM and PA classifiers were evaluated using 
the remaining 30% of samples and the accuracies are reported in Table 6-
1.  

 
Figure 6-2. The cumulative error plot of PA online classifiers when associated 

with GLCM, Gabor and CNN features 
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Table 6-1 Overall accuracy of online- and batch- classifiers when associated 
with different features 

Classifier  Overall accuracy in % 
GLCM Gabor  CNN_nopad CNN_pad 

PA 57.3 59.5 68.1 73.2 
SVM 63.4 63.7 70.9 74.7 

6.5 Discussions, conclusions and future work  
A framework was developed for automated mapping of building damage 
from satellite imagery, using an online classifier that dynamically learns 
from streaming training samples based on local damage assessments from 
different sources. In this study, the potential of CNN features from pre-
trained model, in combination with online PA classifier was explored for 
automated damage classification of satellite imagery. Further, the accuracy 
retrieved from CNN features was compared against the standard hand-
crafted features GLCM and Gabor by fitting them using the PA classifier. 
The results show that CNN features are performing better than both 
handcrafted features. Moreover, the cumulative error graph (cf. Figure 
6-2) shows that CNN features generalize better with fewer training 
samples than the handcrafted features. For example, the error curve (cf. 
Figure 6-2Figure 6-2) of CNN tends to be smoother (shows better 
generalization) after being trained with 1000 samples, while the error 
curves of handcrafted features fluctuates, indicating that it could not learn 
fast and generalize well compared to CNN features. Also the error graph 
shows that the choice of image resizing approach used to resize the super-
pixel based image patch in a dimension required for CNN feature 
extraction have a significant impact on the performance of the final 
classification accuracy. For example, CNN features extracted from the 
image patch resized using an interpolation technique were found to be 
significantly inferior to the CNN features extracted from image patch 
resized using zero padding (cf. Figure 6-2).  
 
The features evaluated in online learning settings were also evaluated 
using the canonical batch mode classifier SVM. The results show that the 
selected online classifier performs slightly inferior to the batch classifier, 
irrespective of the features (cf. Table 6-1). However, the difference in 
accuracy is only around 1% concerning CNN features. There is significant 
difference between the accuracies of online and batch classifiers when 
employing the handcrafted features. This is because the online classifiers 
based on the handcrafted features could not learn and generalize well. The 
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overall conclusion is that the choice of features has significant impact on 
the performance of the online classifier. Also it is observed that compared 
to handcrafted features the CNN features are more effective and consistent 
for online classification, as they yield similar accuracy when used in the 
batch learning setting (cf. Table 6-1). 
 
Though CNN features were reported to be effective for many remote 
sensing application such as land cover classification, the maximum 
classification accuracy obtained for damage classification using satellite 
imagery was around 73% (Table 6-1), signalling a continuing limitation of 
automated damage classification with satellite imagery (Kerle, 2010). This 
inferior accuracy might be due to many reasons such as insufficient 
number of training samples used for building the classifier, and complexity 
of the scene. However, the major reason would be the limitation of the 
satellite imagery where the considered image resolution is around 50 cm. 
With this level of spatial resolution even manual interpretation is difficult, 
and similar problems have previously been reported (Kerle, 2010). The 
available pre-event satellite imagery could be of help and is usually 
available. In such a case, the classifier can be trained with CNN features 
from both epochs, which could provide better results and we intend to 
explore this in the future.  On the other hand, the training samples 
considered in this study are from single satellite imagery of a single 
geographic location, where the characteristics of the streaming samples are 
not highly variable. However, the usefulness and potential of online 
learning can be realized when there is high variability in the streaming 
samples in terms of characteristics of the study area, weather condition and 
spatial resolution of the images. Hence, as a future work we intend to 
explore the potential of the proposed framework by applying it to much 
better spatial resolution satellite or aerial imagery obtained for different 
geographic locations varying in aforementioned characteristics.  
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7 Segmentation of UAV-based images 
incorporating 3D point cloud information* 

 
 
  

                                                 
* This chapter is based on the article: 
Vetrivel, A., Gerke, M., Kerle, N. and Vosselman, G. (2015) Segmentation of UAV - 
based images incorporating 3D point cloud information. In: PIA15+HRIGI15 : Joint 
ISPRS conference proceedings, 25-27 March 2015, Munich, Germany. ISPRS Archives, 
Vol XL-3/W2. : open access. ISPRS, 2015. pp. 261-268. 
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Abstract  
Numerous applications related to urban scene analysis demand automatic 
recognition of buildings and distinct sub-elements. For example, if LiDAR 
data is available, only 3D information could be leveraged for the 
segmentation. However, this poses several risks, for instance, the in-plane 
objects cannot be distinguished from their surroundings. On the other 
hand, if only image based segmentation is performed, the geometric 
features (e.g., normal orientation, planarity) are not readily available. This 
renders the task of detecting the distinct sub-elements of the building with 
similar radiometric characteristic infeasible. In this chapter, the individual 
sub-elements of buildings are recognized through sub-segmentation of the 
building using geometric and radiometric characteristics jointly. 3D points 
generated from Unmanned Aerial Vehicle (UAV) images are used for 
inferring the geometric characteristics of roofs and facades of the building. 
However, the image-based 3D points are noisy, error prone and often 
contain gaps. Hence the segmentation in 3D space is not appropriate. 
Therefore, we propose to perform segmentation in image space using 
geometric features from the 3D point cloud along with the radiometric 
features. The initial detection of buildings in 3D point cloud is followed 
by the segmentation in image space using the region growing approach by 
utilizing various radiometric and 3D point cloud features. The developed 
method was tested using two data sets obtained with UAV images with a 
ground resolution of around 1-2 cm. The developed method accurately 
segmented most of the building elements when compared to the plane-
based segmentation using 3D point cloud alone.  
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7.1 Introduction and related work 
Automatic detection of individual building and recognition of its distinct 
sub-elements from remote sensing data are crucial for many applications 
including 3D building modelling, building level damage assessment and 
other urban related studies (Dong and Shan, 2013; Sun and Salvaggio, 
2013). Generally, the buildings and its elements possess unique geometric 
characteristics. Hence, the 3D geometric features are being used as the 
fundamental information in building detection and categorisation of its 
sub-elements (Rottensteiner et al., 2014; Xiong et al., 2013). 3D point 
clouds are well suited to infer the geometric characteristics of the objects. 
Particularly, the multi-view airborne oblique images are a suitable source 
to generate 3D points cloud for building analysis as they can provide 
information of both the roofs and facades of the building (Liu and Guo, 
2014). Unmanned Aerial Vehicles (UAVs) are attractive platforms which 
can capture the images with suitable characteristics such as multi-view, 
high overlap and very high resolution to generate very dense 3D point 
cloud in minimal time and cost (Colomina and Molina, 2014).  

Generally, the building detection process from 3D point clouds has been 
carried out through identifying planar segments as most elements of 
general buildings are planar surfaces (Dorninger and Pfeifer, 2008). Planar 
segments with its geometric features could help to detect and delineate 
buildings in the scene. However, an accurate segmentation of individual 
elements of the building is not always feasible, especially with the 
geometric features from image-based 3D point cloud. This is due to 
various reasons such as 1) presence of low-textured planar surfaces might 
lead to sparse 3D point cloud generation with significant gaps. In such 
case, a single planar segment might get fragmented into multiple small 
segments, or even partly missed, leading to an inaccurate segmentation; 2) 
Outliers or random errors which are inherent in image based 3D point 
clouds, especially when the image block configuration is not optimal might 
also leads to artefacts or inaccurate segmentation of building elements 
(Rupnik et al., 2014a); 3) Regions affected by poor visibility (e.g., only 
visible in single images due to occlusions) will have no 3D points and 
those areas cannot be segmented; 4) 3D points belonging to non-planar 
objects will not be segmented by plane-based methods and it is difficult to 
recognize the complex objects even using other methods such as model-
driven approach from sparse and erroneous 3D point clouds (Xiong et al., 
2014c); 5) Objects that share the same plane geometry, e.g., windows in 
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the roof and façade plane, might not get segmented as individual entity, 
hence leading to under segmentation.  

The segmentation based on radiometric features alone might delineate the 
building regions that possess similar spectral or textural characteristics. 
However, elements of different category with similar spectral 
characteristics cannot be differentiated, e.g., roof and façade of the 
building with same surface characteristics and colour might be segmented 
as a single element. Also the segments found based on spectral features 
cannot be categorised into roofs, facades, etc., without inferring its 
geometric characteristics. Hence, it is obvious that both geometric and 
spectral features are important for an accurate segmentation and 
recognition of distinct elements of the building.  

Many studies used radiometric features such as colour along with 
geometric features and shape descriptors for recognition of objects in 3D 
point clouds through segmentation (Aijazi et al., 2013; Strom et al., 2010). 
However, the image-based 3D point cloud might be erroneous and 
incomplete with missing 3D points for some regions. Hence, performing 
the segmentation in image space by utilizing the geometric information 
from 3D point cloud could be an alternative strategy.  

Previously many studies have been reported for image segmentation by 
using the combination of 2D radiometric and 3D geometric features e.g., 
segmentation of depth images (RGB-D) (Mirante et al., 2011; Yin and 
Kong, 2013). The surface normal, gradient of depth, and residuals of plane 
fitting are the widely used geometric features in depth image segmentation 
(Enjarini and Graser, 2012; Hulik et al., 2012). Spectral and spatial 
features such as colour, texture, edges and shape are widely used image-
based features for segmentation (Tian, 2013a). Among them texture 
features from GLCM are often reported as key features to infer the 
radiometric characteristics of the surface (Rampun et al., 2013). Numerous 
segmentation approaches are used in practice such as region-based 
approach (e.g., region growing, split and merge), clustering-based 
approach (e.g., k-means, mean shift), and graph-based approach (e.g., 
graph-cut) (Boykov and Funka-Lea, 2006; Narkhede, 2013). However, the 
choice of segmentation approach depends on the application and kind of 
features available for segmentation. Region-based approaches are often 
preferred for segmentation based on multiple image and 3D-features as it 
implicitly utilizes the spatial connectivity as a constraint (unlike clustering 
methods). In contrast to graph-based approaches region growing is 
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computationally cheap and multiple features can be combined 
straightforward.  

Another aspect concerns the question whether a more data- or a more 
model-driven approach should be pursued. The key question is to which 
extent assumptions about the object structure and properties can be made. 
While model-driven methods help to mitigate the effect of insufficient 
observations by applying strong assumptions (knowledge) about the 
object, they might generalize quite strongly. If such knowledge is not 
available, a data-driven method should be used, being aware of the fact 
that uncertainties and errors in the observed information might lead to 
wrong results.  

The objective of this research work is to develop a methodology to identify 
the distinct segments of buildings by 1) detecting the buildings from the 
3D point cloud from the UAV-based oblique images and 2) performing a 
sub-segmentation within the building area in image space using both the 
spectral and corresponding geometric features from 3D point cloud. For 
both steps we aim to use as less assumptions (model knowledge) as 
possible, hence we are pursuing a strong data driven approach. The 
motivation for this is that one main application of our method is building 
damage assessment and for this task only vague assumptions should be 
made to avoid any kind of misinterpretation. 

It is also important to note that so far we do not exploit multi-image 
observations for the segmentation except for the 3D point cloud 
information which is derived from image matching. Here again the damage 
mapping context justifies this decision: in many circumstances some parts 
of a damaged building are only well visible in single images. In this case 
still we want to be able to derive segmentation information. 

7.2 Methods  
The methodology for image segmentation includes two processes, 1) 
building delineation from a 3D point cloud to define the region of interest 
for performing image segmentation and 2) image segmentation using the 
spectral information from the image and 3D geometric features from the 
3D point cloud.  

7.2.1 Building delineation from 3D point cloud  
The building delineation is carried out by finding the connected 3D planar 
roof segments from the 3D point cloud. A straightforward, quite simplistic 
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approach is used, which, however, turned out to be quite successful, see 
result section. We only briefly describe this method here, because actually 
it is just a pre-processing step which allows restricting the processing area 
for the main step – the segmentation.  

 The 3D points are segmented into disjoint planar segments using the 
plane-based segmentation method as described in Vosselman (2012). 

 The 3D points are classified into terrain and off-terrain points using the 
method proposed by Axelsson (2000a) which is implemented as part 
of the software lastools (http://lastools.org). The height normalized 3D 
points are computed by differencing the height of each off-terrain 3D 
points to its closest terrain 3D point.  

 The planar segments that are above certain height (TH) and have 
surface normal z-component (nz) greater than threshold (Tz) are 
classified as roof segments.  

 A connected component analysis is used to identify the spatially 
connected roof segments of a single building.  

 A convex hull is used to define a 2D boundary of the connected roof 
segments that gives an approximate 2D boundary of the building. 

 All 3D points that lie within the defined boundary are registered as the 
3D points of the building.  

7.2.2 Segmentation  
The image segmentation process is carried out based on feature similarity 
between the spatially connected pixels.  

It is a scenario where the 3D planar segments which are derived for 
detecting buildings from the 3D point cloud are available in addition to the 
image for segmentation. In this study, an image segmentation algorithm 
based on region growing concept is developed by utilizing both image 
spectral and 3D geometric features from the planar segments for finding 
the distinct segments in the building.  

The success of region growing based image segmentation highly 
depends on three key elements,  

a) Selection of seed points: The mid points of 3D planar segments (which 
are already identified as segments in 3D space) are taken as the seed 
points for region growing in image space. Here, we assume that at least 
a small region of all elements of the building will have 3D points.  

b) Features used for pixel similarity analysis: 
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 Spectral features: In this study colour features and gray level 
co-occurrence matrix (GLCM) based texture features are 
considered to measure the pixel similarity for region growing. 
A small experiment is conducted to identify the radiometric 
features that show maximum variation between the pixels 
belonging to surfaces with different radiometric characteristics. 
The identified feature is then used in the region growing 
process.  

 Geometric features: The 3D points are projected onto the 
image and the geometric properties such as normal vector and 
XYZ coordinate of each projected 3D points are assigned to the 
corresponding image pixel.  

c) Criteria for region growing: Each image pixel will have a feature 
vector that represents the spectral characteristics of the pixel and 
may have geometric features in addition.  

Three criteria are used for region growing:  

1. The distance between the feature vector of a new pixel to the mean 
feature vector of the region being grown (Spectral distance) <TSD. 

2. The dot product of normal vector of a new pixel and the plane-normal 
of the region being grown (Normal difference) <Tangle. 

3. The distance between the 3D point corresponding to the new pixel to 
the plane of the region being grown (point to plane distance) <Tdistance. 

The image pixels that do not have 3D features will be considered for region 
growing based on first criteria alone. 

The global definition of spectral distance threshold TSD is not appropriate 
for segmenting elements of the building corresponding to varying surface 
characteristics. For example, the pixels corresponding to a rough surface 
show high spectral variation between them, hence a high TSD is required 
to avoid over-segmentation whereas a low TSD is suitable for smooth 
surfaces to avoid under-segmentation. Therefore, instead of a global 
threshold, all seed points are assigned with an adaptive local threshold for 
region growing. The local threshold for each seed point is computed as the 
maximum spectral difference between the pixels corresponding to the 3D 
points that lie within a certain distance from the seed point in the 3D planar 
segment. Always, the region growing process is initiated by choosing the 
seed point corresponding to lowest local threshold value in the lists, in 
order to segment the smoother regions first to avoid under-segmentation.  
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Procedure for segmentation of individual elements in the building:  

a) Data preparation for image segmentation: 
1. Individual buildings in the scene are delineated from the 3D point 

cloud using the procedure described earlier. 
2. Select one delineated building and an appropriate image where the 

building is visible for segmentation. We are not posing any 
requirements for image selection, since this decision should be 
made by the actual application, e.g. the image where a certain 
damage region is best visible.  

3. The 3D points of the planar-segments of the delineated building 
which are visible in the selected image (camera view) are found 
using the hidden point removal (HPR) operator e.g., Katz et al. 
(2007b) as described in Gerke and Xiao (2014). The visible points 
are then projected over the image. 

4. The image pixels that correspond to the projected 3D points are 
assigned with their plane-normal vector and XYZ value.  

5. A majority filter is used to assign the 3D features for pixels that do 
not have corresponding 3D points from their adjacent pixels that 
have 3D points.  

6. The boundary of the building in image is defined by constructing a 
convexhull for the projected 3D points which forms the region of 
interest (ROI) for segmentation.  

7. The spectral feature such as colour and texture are derived for each 
pixel.  

8. The midpoints of all 3D planar segments are considered as the seed 
points and each seed point is assigned with four parameters: a) 
normal vector of the plane, b) distance of the plane to the origin 
and c) local spectral distance threshold (TSD), and d) feature vector 
of the seed point as mean spectral feature vector.   

b) Image segmentation:  
1. The seed points are sorted by local spectral distance threshold. 
2. Remove the topmost seed point (i.e. the one with lowest TSD) in the 

list and initiate region growing using this seed point.  
3. Consider the un-segmented neighbouring pixels to the pixels in the 

region as new pixels for growing. 
4. Grow the region by adding the new pixels to the region if they 

satisfy the growing criteria (refer to (c) under section 2.2) and they 
lie within the ROI.  

5. Update the mean spectral feature vector of the region based on the 
newly added pixels.  
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6. Continue steps 3 to 5 until no new pixel is added to the region. 
7. Compute the boundary of the new region using a boundary tracing 

algorithm.  
8. Find the seed points that lie within the boundary of the obtained 

region and remove them from the list.  
9. Continue steps 2 to 8 until the seed point list becomes empty.  
10. Find the boundary of the regions with significant size (number of 

pixels) that remain un-segmented.  
11. Consider the midpoint of the un-segmented regions as seeds for 

region growing and perform steps 2 to 9.  

The overall workflow is depicted in Figure 7-1. 
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Figure 7-1 . Overall workflow 

7.3 Experimental results 
The proposed methodology was tested on two data sets captured by a UAV 
platform. One important aspect of this kind of image analysis task is the 
question on how far thresholds and parameters are transferrable. Therefore 
– besides the standard evaluation of the method – this issue is checked 
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further. It is done by fixing threshold values for the first data set and using 
the same values for the second. 

7.4 Data set 1 and results 
The UAV images captured over a small region around the Church of Saint 
Paul in Mirabello, after the earthquake in 2012, were considered. The 
images were captured by a VTOL (vertical take-off and landing) UAV 
from various heights, positions and views (oblique and nadir). The average 
GSD of the captured images is around 1 cm. A dense 3D point cloud of 
the scene was generated from 152 images with an average point density of 
650 points per m2 by automatic orientation of the images, followed by 
dense matching using the software pix4Dmapper (http://pix4d.com). The 
selected region contained six buildings. Among them the larger one 
comprised of various complex sub-components was considered for testing 
the developed segmentation method. The selected building consists of 
different segments such as roofs composed of planar faces with different 
orientations and different radiometric characteristics, façades painted with 
different colour, windows in the façade, non-planar objects on the roof, 
balconies, etc.  

7.4.1 Building delineation in 3D point cloud and in image of 
data set-1:  

The 3D point cloud was segmented into disjoint planar segments. The 
thresholds TH = 3 meters and TZ = 0.6 were used to filter out the roof 
segments through the procedure described in section 2.1. All six buildings 
in the 3D point cloud of the scene were detected and delineated with close 
approximate to the actual boundary of the building. The major objective 
of this research is to segment the building into its various sub-components 
in image space, once it has been delineated in the 3D point cloud. Hence, 
detailed information about the conducted experiments, results and analysis 
related to building delineations from the 3D point cloud is not in the focus 
of this chapter. An example for building delineation from the 3D point 
cloud and the delineation of the same in the image is shown in Figure 7-2 
and Figure 7-3. The planar segments that are obtained from the 3D point 
cloud and lie within the boundary of the delineated building were projected 
onto the image. Their geometric features were assigned corresponding 
image pixels. Figure 7-5 shows that segments are not accurately delineated 
from 3D planar segments. Also many portions of the building do not have 
projected 3D points, particularly the façade regions contain sparse 3D 
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points hence these portions have radiometric features alone for 
segmentation.  

7.4.2 Radiometric features and various threshold values used in 
segmentation 

The colour features such as red, green, blue, hue, and saturation, and 
GLCM texture features such as mean, variance, homogeneity, contrast, 
dissimilarity, entropy, second moment and correlation were considered. 
The potential of each feature in separating the pixels of different elements 
of the building was analysed. Five small image regions corresponding to 
various elements of the building with different radiometric characteristics 
were considered as shown in Figure 7-3. The above mentioned radiometric 
features were derived for each region. A silhouette value ((Wang et al., 
2009) which gives the measure of how well each pixel in one cluster 
matches with the pixels in the other clusters was used to identify the 
features that show maximum variation (high silhouette value) between the 
pixels corresponding to different clusters. The GLCM features showed a 
higher silhouette value than the colour features (c.f. Figure 7-4). 
Particularly, the contrast and homogeneity features produced higher 
silhouette values than when used independently than used in combination 
with other GLCM features. Therefore, contrast and homogeneity of 
GLCM features were used as the radiometric features for image 
segmentation. The adaptive local spectral threshold method (c.f. section 
2.2) provided better results than a global threshold. However, in few 
regions, an over-segmentation was observed which was then resolved by 
adding a constant to the local threshold value. As we have the radiometric 
features as additional constraint for segmentation, the geometric 
constraints were relaxed by setting higher threshold values for Tangle (0.9) 
and Tdistance (0.75 m) to achieve better results even with erroneous 3D point 
measurements.  
 
The obtained segmentation result for the above mentioned threshold values 
is shown in Figure 7-6. Based on visual analysis, it was inferred that the 
segmentation obtained in image space based on both radiometric and 
geometric features is more accurate than the segmentation in 3D object 
space without using radiometric features. The developed segmentation 
algorithm delineated all planar surfaces in the building with close 
approximate to their actual boundary. The non-planar objects and regions 
that do not have 3D points were segmented using the radiometric features 
alone. However, in such cases, over- or under-segmentation was observed. 
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For example, c.f. Figure 7-6, where the rooftop element and small portion 
of ground were segmented as single segment because of radiometric 
similarity and absence of 3D information. This clearly implies that both 
geometric and radiometric features are essential for accurate segmentation. 
The same building was segmented in another image with smaller scale and 
different orientation (Figure 7-7 a). The segmentation was largely similar 
(Figure 7-7 b). However, the segmentation in larger scale image is more 
accurate. This slight performance difference may be due to the variation in 
texture representation between different scales.  
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Figure 7-2 Building delineation from 3D point cloud 
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Figure 7-3 Building delineated in image and annotated regions (R1 –R5) 

are used for feature significance analysis as described in section 3.1.2 

 
Figure 7-4 Silhouette value for analysing the feature significance in 

differentiating the image regions with different radiometric characteristics 
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Figure 7-5 3D planar segments of the delineated building from 3D point cloud 

are projected over the image 

 
Figure 7-6 Delineated building segmented using radiometric and 3D geometric 

features 
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                           (a)                                                                     (b) 

 
Figure 7-7 (a) Building in image at smaller scale and different orientation 

compared to Figure 3, and (b) corresponding segmentation 
   
The transferability of the thresholds to other datasets will be demonstrated 
with the following experiment. 

7.4.3 Data set 2 and results 
The developed segmentation algorithm was tested with the 3D point cloud 
generated from the UAV images of small urban area in the municipality of 
Nunspeet in The Netherlands (Hinsbergh et al., 2013). The images are 
captured in nadir view with an average GSD of 1.5 cm and the 3D point 
cloud was generated with an average point density of 250 points per m2. 
The buildings in this region are less complex compared to the selected 
building from dataset 1. For example, the individual elements in the 
building are highly homogeneous and show high contrast with their 
neighbouring elements in terms of radiometric characteristics. Moreover, 
the buildings in the selected region are more identical and mainly made of 
planar surfaces. Among them two buildings that show different structure 
were considered for testing the segmentation algorithm (Figure 7-8 a & b). 
The selected buildings have gabled roofs with different kinds of windows 
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on them, such as flat windows that lie in the same roof plane and windows 
extruded above the roof. The façades are single planar surfaces with 
uniform colour and texture.  
 
The 3D planar segments obtained from 3D point cloud were projected over 
the image.  Many of the 3D segments were more accurately segmented 
when compared to the 3D segments obtained for the building in dataset 1 
(Figure 7-8 c & d). However, over-segmentation was observed in the 
façade and few places in the roof (Figure 7-8 d). The flat windows over 
the roofs were not identified as separate segments in the 3D segmentation.  
 
The image segmentation using the texture features along with the projected 
3D features was carried out following the same procedure and thresholds 
used for the segmentation of building in dataset1. The segmentation results 
are shown in Figure 7-8 e & f.  
 
The obtained results were better than the plane-based 3D point cloud 
segmentation where the over segmented regions in 3D space such as 
façades were well segmented in the image space (c.f. Figure 7-8 d & f). 
Most of the windows and small non-planar above roof elements were also 
segmented as separate segments. However, in few places over-
segmentation was observed due to the variation in radiometric 
characteristics within the same element. For example, the dirt in the corner 
of the segment resulted in over-segmentation even though they are 
geometrically recognized as single planar segment (c.f. annotated region 
in Figure 7-8 b and same region in Figure 7-8 d & f). This is due to the 
weakness in the segmentation criteria where the geometric constraints are 
relaxed to a certain extent when the radiometric characteristics are similar 
but not the other way around. However, the radiometric constraint has to 
be relaxed when there is strong hold on geometric characteristics. For 
example in the above case, the segmentation based on geometric features 
results in uniform shape whereas the consideration of radiometric features 
results in a non-uniform shape. In such instance the radiometric constraint 
can be relaxed. This kind of analysis can be carried out even in post-
processing.  
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                             (a)                                                              (b) 
 

          
(c)                                                                       (d) 

 

            
(e)                                              (f) 

 
Figure 7-8. (a) & (d): Buildings in UAV image for segmentation, (c) & (d): 

projected 3D segments over the images of (a) & (b) respectively, and (e) & (f): 
finally segmented images using the developed method 

7.5 Discussion and conclusion 
The overall results indicate that the radiometric features complement the 
3D geometric features and a combination of the two produced significantly 
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superior segmentation compared to the 3D geometric features based 
segmentation alone. The radiometric features seem to be advantageous in 
identification of single segments even though there is significant error in 
geometric measurements. The sub-segmentation of planar objects also 
might lead to over-segmentation, when the face contains shadows, dirt, 
etc., refer to Figure 7-8 b, d and e. This is however, the correct behaviour 
since on purpose we chose this data driven approach. In the actual 
application – like damage mapping – those segments might give valuable 
information for the interpretation.  
In this study, the 3D features such as normal orientation and planarity 
derived from plane-based segmentation in 3D space were used as 
geometric features in combination with radiometric features for 
segmentation in image space. The plane-based features alone are not 
sufficient in all cases. For example, plane-based features cannot accurately 
segment the curved surface which leads to over-segmentation. In such 
cases, other 3D features could be of help, such as the curvature feature 
which can be computed based on local neighbourhood 3D points. The 
inclusion of more 3D features such as curvature likely will improve the 
segmentation accuracy.  
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8 Accurate roof face delineation by synergistic use 
of UAV images and derived point clouds for 
automatic 3D reconstruction of buildings to 

perform detailed structural damage assessment 
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8.1 Introduction 
Rapid assessment of the damage state of individual buildings after disaster 
events such as earthquakes provides critical information for stakeholders 
involved in response and recovery actions. As discussed in Chapter 1, the 
required level of damage information varies for each stakeholder. For 
example, those involved in the search and rescue process require only the 
information about collapsed/heavily damaged buildings, though very 
rapidly. Other actors, such as insurance companies, require a less time 
critical but very detailed damage assessment, precisely to the level of 
cracks on a building. In practice, remote sensing images are increasingly 
being used as an alternative to conventional field survey, and they 
constitute the best data source for initial and large-area damage assessment 
(Dell'Acqua and Gamba, 2012; Dong and Shan, 2013). Particularly, very 
high resolution (less than 15 cm ground sampling distance (GSD)) oblique 
view images have been found to be very useful, as they capture both the 
roofs and facades of the building with finer details than nadir-view satellite 
or aerial images (Gerke and Kerle, 2011a; Rasika et al., 2006; Saito et al., 
2010). Numerous methods have been reported for building level damage 
assessment (Miura et al., 2013; Nex et al., 2014; Tong et al., 2012b), but 
most of them are focussed on the identification of completely collapsed or 
heavily damaged buildings (Dong and Shan, 2013). However, for practical 
use, a detailed building damage assessment (at least of physical damages) 
is required, of a type suitable for all stakeholders mentioned above 
(Fernandez Galarreta et al., 2015b). The prerequisites to perform such 
detailed damage assessment, for both manual and automated approaches, 
include:  1) identification of various kinds of damage evidences, such as 
debris, spalling, cracks, holes, broken elements, hanging and inclined parts 
of the building; 2) building face topology (e.g. a geometric model), as it is 
important to infer the type and position of the elements along with the 
damage evidences, since the damages have variable impact on different 
elements of the building. For example, damages to elements such as a roofs 
have less impact than damages to structural elements such as columns or 
beams in the facades; 3) semantic integration of those damages along 
different elements on different sides of the building to infer the overall 
damage state of the building, i.e. to arrive at one overall building damage 
score. Images alone can only partially satisfy the aforementioned 
prerequisites. This is because the building topology and the damage 
evidences that require 3D geometric information, such as holes, debris 
quantity, or hanging and inclined elements, cannot be inferred directly 
only from images. Hence a damage assessment only based on them will be 
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incomplete, ambiguous and uncertain. However, a semantically rich 3D 
model of the buildings, with the corresponding images mapped to each 
portion of the 3D model, would be the best representation for performing 
such very detailed damage assessment. This has been partly demonstrated 
by Fernandez Galarreta et al. (2015a) and Saedi (2016). However, those 
demonstrations are based on synthetically generated 3D building models. 
Though the 3D models along with images are recognized as desirable data 
representation for detailed and more accurate damage assessment, it has 
not yet become operational. This is because of the challenges that subsist 
in the automated construction of such 3D models of buildings from remote 
sensing images for damaged environment. Addressing these challenges is 
the focus of this Chapter.  
 
3D point clouds are an ideal data source for automatic 3D modelling of 
buildings (Rottensteiner et al., 2014; Sun and Salvaggio, 2013; Xiong et 
al., 2014d). Particularly photogrammetric 3D point clouds from images, 
such as acquired by Unmanned Aerial Vehicles (UAV), seem to be 
advantageous for generating detailed 3D building models for the reasons 
mentioned in Chapter 1. The images captured with the characteristics of 
the UAV will help to obtain high quality point clouds in terms of point 
density and good coverage of the individual buildings, better than point 
clouds from any manned airborne platform, which forms an ideal base for 
the detailed 3D modelling of buildings. However, the generation of such 
3D models of the buildings in structurally damaged environments and 
particularly based on photogrammetric point clouds is quite challenging. 
This is because accurate delineation of independent roof faces of single 
buildings is the elementary requirement for 3D reconstruction, but often it 
is difficult to obtain them from photogrammetric point clouds (Vetrivel et 
al., 2015a). The difficulties are mainly because of two reasons: 
 
1) Limitations in the photogrammetric point cloud: i) the presence of 
gaps in the 3D point cloud caused by poorly-textured or reflective surfaces, 
as well as by partial occlusion; ii) artefacts due to outliers and random 
errors, which are inherent in the process of photogrammetric 3D point 
cloud generation; iii) objects close to buildings such as trees with dense 
leaves that possess a geometry similar to building roofs, meaning that 
building elements cannot be differentiated using geometric features alone. 
All the aforementioned problems affect the accurate recognition of the 
individual roof faces of the building using point clouds, thereby leading to 
inaccurate building’s roof face delineation (Vetrivel et al., 2015a). For 
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example, Xiong et al. (2014b) reported that large  errors inherent in the 
photogrammetric 3D point cloud cause a single planar roof face to be 
recognized as multiple smaller segments. This, consequently, affects the 
accurate recognition of roof topology of the building. For example, refer 
to Figure 8-1 depicting the above limitations of photogrammetric point 
cloud for accurate delineation of individual roof faces.  
 

 
Figure 8-1 The roof faces delineated based on planar segmentation of 

photogrammetric 3D point cloud are projected over the image in varying colors. 
 
2) Characteristics of the damaged scene: in particular urban damaged 
scenes are typically very complex and cluttered, and hence a 3D point 
cloud that only provides geometric information is not sufficient for 
handling such complexities (Vetrivel et al., 2015a). This is due to the 
geometric constraints used to infer the 3D objects in the erroneous point 
cloud are generally relaxed to some extent (Vetrivel et al., 2015c). With 
such relaxed geometric constraints even distinguishing roof segments of 
intact buildings from those of completely collapsed structures that result 
in debris heaps is ambiguous, as both possess similar geometry. 
The problems mentioned above can be significantly mitigated if image-
based features are used along with the 3D point cloud. This hypothesis is 
based on the previous studies which have demonstrated the pertinence of 
synergistic use of image and 3D point cloud features for building roof 
detection and delineation (Gilani et al., 2016; Hermosilla et al., 2011). 
However, they are mostly based on image features combined with LiDAR 
point clouds. So far, very few studies have used the combination of images 
and photogrammetric 3D point clouds for building roof detection (Rau et 
al., 2015b; Vetrivel et al., 2015a). However, they are not primarily 
concerned about the delineation accuracy of each individual roof faces as 
it is not critical for their application of building detection, unlike in the 
case of 3D reconstruction. Moreover, the ambiguity in recognition of 
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debris heaps that possess similar geometry as roofs in 3D point cloud can 
also be resolved with the aid of image-based radiometric features, since 
they are recognized as strong indicators for those kind of damages 
(Radhika et al., 2012; Vetrivel et al., 2015a). For example, Vetrivel et al. 
(2016b) demonstrated that image-based texture features have the potential 
to identify image areas corresponding to damage evidences such as 
debris/rubble piles and spalling.  
 
In summary, it is expected that the combined use of image and 3D point 
cloud features will help to overcome the aforementioned limitations in 
obtaining independent roof faces of the building with an accuracy required 
for an automatic building 3D reconstruction. To the best of our knowledge, 
no methods have been proposed yet addressing all aforementioned 
challenges in automatic 3D reconstruction of buildings with the combined 
use of images and their derived point cloud, particularly for damaged 
environments. Thus, the objective of this chapter is to develop a 
methodology for the automatic and accurate delineation of independent 
roof faces and thereby 3D reconstruction of the buildings in the damaged 
environment, by synergistically using the photogrammetric 3D point cloud 
and images of the UAV. Afterwards the corresponding images will be 
mapped to the reconstructed 3D model. This can serve as an input to any 
damage classification system (e.g., Saedi (2016)), facilitating further 
detailed damage assessment either in a manual or automated fashion. The 
overall methodology is a framework which comprises numerous methods, 
including image and point cloud segmentation, classification, damaged 
area detection, accurate roof delineation and 3D reconstruction of 
buildings. The proposed framework as a whole is novel. The background, 
justification and novelty specific to each method in the framework are 
provided in the respective sections. 

8.2 Methodology  
Photogrammetric 3D point clouds and images are considered for accurate 
roof face delineation for 3D reconstruction of buildings in damaged 
environments. The 3D point cloud- and image-features can be 
incorporated and processed either in object- or image-space. We prefer to 
process in image-space, since the photogrammetric 3D point clouds 
(representation in object-space) are erroneous, sparse and incomplete, with 
missing 3D points for some regions (Vetrivel et al., 2015c). However, even 
in image-space, the simultaneous use of 3D point cloud- and image 
radiometric- features at pixel level is not desirable. This is because of the 
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varying density of point cloud, with the number of gaps leaving many 
image portions (pixels) with no corresponding 3D points. Hence, super-
pixels or segments derived from object-based image analysis are 
considered as the primary entity for the incorporation of 3D features in 
image-space for further processing.  Moreover, this kind of segment-based 
(super-pixels) approach has been demonstrated as being superior to pixel-
based approaches by several studies, particularly in applications dealing 
with very high resolution images (Blaschke, 2010; Blaschke et al., 2014).  
The proposed methodology comprises six processes in a pipeline, which 
are explained in detail later in this section. As a first step, nadir-view 
images are selected as they are suitable for the delineation of roof faces of 
the buildings and less complex than oblique-view images. A selected 
image is segmented into super-pixels using an over-segmentation 
approach based on texture features. In the second step, the super-pixels are 
classified into roof, terrain, damaged (spalling or debris), vegetation and 
other category by utilizing either or both radiometric and 3D point cloud 
features. In the third step, the identified roof segments are refined such that 
each roof segment should be composed of only one planar surface. In the 
fourth step, the refined roof segments with similar radiometric and 
geometric features are merged to obtain the independent roof faces of the 
building. Finally, based on the delineated roof faces, a roof topology graph 
is constructed, whereby 3D reconstruction is performed. Then, the images 
are mapped to the corresponding portions of the reconstructed 3D model 
that can facilitate further detailed assessment. The detailed description of 
the above processes is provided below.  
 
Step 1: Over-segmentation of image 
The super-pixels construction is a mandatory pre-processing step in many 
image processing applications. For that numerous methods have been 
reported and among them methods such as SLIC, Quickshift and multi-
resolution image segmentation are widely being used (Achanta et al., 
2012b; Aksoy and Akcay, 2005a; Salem et al., 2013a). However, it is still 
challenging to obtain super-pixels from images designated for a specific 
application. This is because the characteristics of images vary based on the 
chosen application and it is critical to choose the appropriate features that 
can derive meaningful super-pixels for the actual problem. For example, 
here our objective is to derive super-pixels for very high resolution aerial 
images (GSD of 1-2 cm) captured over damaged areas. In general, objects 
in urban environments are highly heterogeneous in terms of geometry and 
radiometric characteristics. In particular, the damaged environment is 
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cluttered and possesses a high degree of heterogeneity in its surface 
characteristics. Moreover, the radiometric heterogeneity of an image area 
is directly related to the spatial resolution of the image as nuances of an 
object captured in images increase with increasing spatial resolution. For 
example, consider Figure 8-2, which depicts the same object in two 
different spatial resolutions. The same area in the high spatial resolution 
image (right image in Figure 8-2) shows a higher degree of spectral 
heterogeneity than in lower spatial resolution (left image in Figure 8-2). 
Therefore, it is obvious that the direct true colour features (red, green and 
blue spectral bands) of an image are not adequate for consistent 
segmentation of very high resolution images, particularly for the 
application of damage assessment. Texture features are often reported as 
superior to spectral features for segmentation of images in many 
applications including complex urban scene segmentation of remote 
sensing images (Aguilar et al., 2012; Vetrivel et al., 2015c). Particularly, 
several studies have demonstrated that Gabor wavelets features are 
effective for urban scene segmentation of remote sensing images (Jiangye 
et al., 2014; Jiao and Deng, 2016). Also, Vetrivel et al. (2016b) 
demonstrated the ability of Gabor features in recognizing the damaged 
areas from very high resolution aerial images. Taking into account these 
inferences, in this study, the Gabor wavelet features are adopted to carry 
out the image segmentation.  
 

 
Figure 8-2. Subset of airborne oblique image with average GSD of 14 cm (left) 
and subset of UAV image with average GSD of 1 cm (right). Both depict the 

same church in Mirabello, Italy after the 2012 earthquake 

The Gabor wavelet comprises a set of filters, where each filter is tuned to 
extract information from the image at a specific frequency and orientation. 
In general, a large number of filters are used to construct the Gabor filter 
bank which is determined by the number of frequency scales and 
orientations considered for the feature extraction. The detailed procedure 
for Gabor wavelets filter generation can be found in Arivazhagan et al. 
(2006). However, the dimensionality of the Gabor features will be high 
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(for e.g., 5 scales x 8 orientations = 40 filters), and some of the features 
might be highly correlated as there is a high possibility of capturing the 
same information at consecutive frequency scales. This can be partly 
addressed by eliminating the redundant information by adopting 
dimensionality reduction technique such as principal component analysis 
(PCA) (Gupta et al., 2013). However, still the dimensionality of the feature 
might be high. The next critical step is to choose the segmentation 
algorithm that is suitable to handle high dimensional features. A multi-
resolution method is adopted for image segmentation as its ability to 
handle high dimensional features has been demonstrated in several studies 
(Darwish et al., 2003; Shao et al., 2014). The detailed procedure pursued 
for image segmentation is described below.  
 
Procedure for image over-segmentation:  
Input: Nadir-view image 
Outcome: super-pixels of the image 
a) Generate M x N number of 2D Gabor wavelet filters, where M and N 

are the number of frequencies and number of orientations considered 
for feature extraction, respectively.  

b) Convolve the selected image with the generated filter banks to extract 
M x N number of feature images. 

c) Apply PCA for the extracted M x N feature images to transform them 
to M x N principal component images.  

d) Select the principal components that contributes more than 95% of 
total information, i.e. sort the eigenvalues corresponding to each 
principal component in descending order and select the top eigenvalues 
in the list that contributes 95% of total variance. Then select the 
principal components corresponding to the selected eigenvalues.  

e) Perform image over-segmentation to the selected principal component 
images using the multi-resolution segmentation method (Benz et al., 
2004).  

Step 2: Classification of segments 
After segmentation, the next step is to identify the roof segments of the 
buildings. The roofs can be identified based on their geometric 
characteristics, as they are always elevated and consist of horizontal or 
slanted planar surfaces. However, as stated before, trees and debris heaps 
often hinder the accurate recognition of roof segments as they may possess 
similar geometric characteristics. Therefore, the super-pixels are initially 
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classified into five categories such as roofs, terrain, vegetation, damaged 
(spalling or debris) and others (e.g., façade elements). A multi-level, mixed 
unsupervised and supervised classification approach is adopted, as a 
specific set of features and classification strategy is required to recognize 
each category. For example, the vegetation can be classified based on 
simple thresholding of image spectral features. However, detection of 
super-pixels containing damage evidences such as debris and spalling 
requires texture features with a suitable classifier. Further, 3D information 
is required to distinguish between those damage evidences and to identify 
the roof and terrain segments. The pursued classification procedure is 
described below.  
a) Identification of tree segments: The vegetation index (VI) = 
G/(R+G+B) is computed for each pixel in the selected image, where R, G 
and B correspond to the red, green and blue spectral bands of the image, 
respectively. The mean vegetation index is computed for each super-pixel. 
The super-pixels with mean VI greater than threshold TV are classified as 
vegetation. The threshold TV is computed using Otsu’s method (Otsu, 
1979). These super-pixels are eliminated from further analysis.  
b) Identification of the damaged segments: The damage segments are 
identified using the CNN features based on the method described in 
Chapter 4. This method is adopted as it produced around 94% of overall 
accuracy in detecting the damages for the datasets used in this Chapter. 
c) Classification of segments to identify the roof faces: To distinguish 
the roofs from other segments, the 3D information is required for which 
the 3D points derived from the images are considered. These 3D points are 
initially classified as terrain and off-terrain points, using the method 
proposed by Axelsson (2000b) that is implemented as part of the software 
LAStools (Rapidlasso, 2013). Subsequently, height normalization is 
performed, i.e. the height information is appended to each off-terrain point 
by differencing their Z value to the Z value of the nearest terrain point. 
Then the 3D points that are visible in the selected image are identified 
using the Hidden Point Removal method (HPR) (cf. Katz et al. (2007c)) 
and projected to the over-segmented image. In HPR, the hyper-parameter 
sphere radius R is defined using the technique described by Alsadik et al. 
(2014a). The segments containing the terrain 3D points are classified as 
terrain and removed from further processing. Further, the normal vector of 
each 3D point is computed based on its local neighbourhood. The 3D 
points with Z of normal >TZ and height > TH are classified as roof points. 
Then super-pixels are classified as roofs if at least 50% of their 3D points 
are roof points. This substantial relaxation is provided as some of the roof 
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super-pixels might be under-segmented, and also because there might be 
misclassifications due to errors in the normal vector computation. The 
remaining super-pixels containing non-roof points are classified as other 
category.  
Step 3: Roof segment refinement 
The above classified roof super-pixels might be inaccurate as these are 
initially obtained using image radiometric features alone, in which 
over/under segmentation is inevitable. For example, any adjacent objects 
(e.g., two adjacent faces in gabled roof) in images possessing similar 
radiometric texture will lead to under-segmentation. Also, as stated earlier, 
the super-pixels belonging to debris regions might also be misclassified as 
roof, since they both possesses similar geometry. Hence, a roof segment 
refinement step is carried out to address these issues. This refinement step 
is to make each super-pixel to contain only one 3D planar segment. This 
is based on the assumption that a single roof face often consists of a single 
planar segment. The pursued refinement procedure is described below.  
Procedure:  
Inputs: List of super-pixels that are classified as roof, and 3D points that 
lie within each super-pixel. 
Outcome: Refined super-pixels such that each super-pixel will contain 
only one 3D planar segment.  
 
a) Identification of super-pixels to be refined 
Identify and count the planar segments that lie within each super-pixel in 
the list. This is done by segmenting the 3D points corresponding to each 
super-pixel using a planar segmentation method. The super-pixels 
containing more than one 3D planar segment are considered for the 
refinement process. For example, consider the top polygon in Figure 8-3 
as super pixel that is considered for the refinement process, as it comprises 
three different 3D planar segments.  
 
b)  Super-pixel refinement process 
Select a super-pixel that needs to be refined. Identify the 3D planar 
segments within the super-pixel and list them according to their perimeter 
in descending order. There is a possibility that identified planar segments 
could belong to the same planar surface but are recognized as separate 
segments in object-space due to high error or gaps in the 3D point cloud. 
Hence, as a first step such planar segments are identified and merged to a 
single planar segment. If more than one planar segment persists after this 
merging process, then the boundary of each planar segment within the 
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super pixel is delineated and treated as a new super-pixel. Therefore, the 
final super-pixels will contain only one 3D planar segment. The overall 
refinement process is described below.  
Select the largest 3D planar segment in the list and identify other planar 
segments that are coplanar to it. This is done by fitting an infinite plane to 
the selected planar segment and select the other 3D segments as coplanar 
to it, if their 3D points lie within a distance of TD to the defined infinite 
plane (point to plane distance). The identified coplanar segments are 
considered as parts belonging to the same roof face and they are merged 
based on the following criteria:  
i) Merge two planar segments that are considered to be part of same 3D 

surface if no other planar segments lie in-between. For example, 
consider Figure 8-3: if the planar segments corresponding to red and 
blue 3D points are found to be coplanar then they can be merged 
straightforwardly, since there is no other 3D segments in between 
them (refer to case 1 in Figure 8-3). The assumption here is that those 
segments within the super-pixel are recognized as separate segments 
in object-space due to gaps in the 3D point cloud.  

ii) In case there are any planar segments in-between them, merge all of 
them, if additionally two more conditions are satisfied (refer to case 2 
and 3 in Figure 8-3):  
 The in-between segments should also be the roof segments. The 

planar segments are identified as roof if their Z of plane normal > 
TZ.  

 The average point to plane distance of the 3D points of the in-
between segments and the plane defined for the 3D points of two 
coplanar segments should be less than TLD. 

The above criteria are defined based on the assumption that any roof 
segment lying in-between two segments of the same roof surface 
should also be the part of that surface. It is assumed to be segmented 
as separate roof parts in object-space due to the high error in the 3D 
point measurements. Since it is anticipated as highly noisy region, set 
the above offset threshold TLD much higher than the offset value TD, 

which is used earlier for planar segmentation.  
 
After the above merging process, the number of 3D planar segments in the 
super-pixel is analysed. If it contains only one planar segment, then it is 
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considered as refined super-pixel and the refinement process is again 
continued for subsequent super-pixels in the list. Alternatively, if the 
super-pixel still contains more planar segments then it would be due to 
either one of the two possible scenarios: 1) the super-pixel may correspond 
to a debris region which possesses uneven distribution of the 3D points, 
leading to a higher number of planar segments, or 2) the super-pixel could 
be actually composed of different planar surfaces. In the former case, the 
super-pixel is classified as debris and removed from the super-pixel list. In 
the latter case, the boundaries of the planar segments within the super-pixel 
are derived and split into new super-pixels (see Figure 8-3, case 3). Among 
the newly derived super-pixels identify the ones corresponding to roof 
segment based on their normal vector as pursued earlier and add them to 
the super-pixel list.  

 
Figure 8-3. Criteria for refining the super-pixel if any two planar segments 

within it are coplanar 
 
Step 4: Independent roof face construction 
The refined super-pixels obtained from the above processes are considered 
for the independent roof face delineation process. This is achieved by 
merging the adjacent super-pixels possessing similar radiometric and 
geometric characteristics. The critical step is to decide whether two super-
pixels are considered to be radiometrically and geometrically similar or 
dissimilar. The pursued approach to define the radiometric and geometric 
similarity between super-pixels is described below.  
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a) Radiometric similarity:  Each super-pixel is assigned with a mean 
radiometric feature (MR) and a standard deviation (SD) computed based 
on the radiometric features (Gabor texture features) of the collection of 
pixels belonging to it. The two adjacent super-pixels are considered to be 
radiometrically similar if the distance between their MR is less than their 
SDs. 
 
b) Geometric similarity: The adjacent super-pixels are considered to be 
geometrically similar if the angle between the normal vectors of their 3D 
planar segments is less than TAngle and also if the distance between those 
two planar segments is less than TDistance. However, from our experiments, 
these criteria are found to be inadequate for handling noisy super-pixels 
(i.e. super-pixels containing highly erroneous 3D points). This is because 
a large angle deviation is often observed between the normal vectors of the 
plane defined for the noisy super-pixels belonging to the same planar 
surface. Therefore, an additional criteria is defined later in this section for 
analysing the geometrical similarity between the noisy super-pixels. 
However, the critical step is the identification of noisy super-pixels. In the 
plane segmentation, the 3D points that lie beyond the allowed plane offset 
are left unsegmented. The number of these unsegmented points is expected 
to be high in the noisy super-pixels as the 3D points corresponding to them 
are unevenly distributed. Thereby, the super-pixel is considered as noisy if 
the ratio of the unsegmented to segmented 3D points in the super-pixel is 
greater than threshold P. Further, the additional criteria to identify the 
geometrical similarity between such noisy super-pixels is defined as: 
among the considered two super-pixels, select the noisier one and find the 
average point to plane distance (TPD) of the unsegmented 3D points to the 
plane fitted for the segmented 3D points (this gives an approximate local 
error level). By taking this value as the offset threshold, find whether the 
3D points of second super-pixel lie near the plane of the first super-pixel 
and label them as newly-segmented points. If the number of newly-
segmented points is greater than number of segmented points already in 
the second super-pixel, then both super-pixels are considered to be 
coplanar and hence they are considered as geometrically similar.  
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Based on the above criteria, the adjacent super-pixels possessing similar 
radiometric and geometric characteristics are merged. Thereby the 
individual roof faces are delineated for the 3D reconstruction process.  
 
Step 5: 3D reconstruction   
The roof segments obtained using above roof refinement method are used 
to reconstruct the 3D model based on the method by Xiong et al. (2014a).  
In this method, the roof surfaces are constructed by deriving the boundary 
lines of the roof faces based on computing contours using the 2D α-shape 
algorithm and then generalized into polygons with fewer edges and regular 
angles. Finally, the outer boundary lines of polygon are projected onto 
ground as walls.  
Step 6: Mapping of images to the 3D reconstructed model 
The image corresponding to each segment in the 3D model is 
automatically mapped onto the model segment based on the following 
criteria, 
1. The angle between the normal orientation of the segment in 3D model 

and the direction of the optical axis of the camera should be within the 
threshold Tangle.  

2. The 3D segment of the model must lie within the boundary of the 
camera view and may not be occluded by other objects. 

3. From the selected images based on the above two criteria, select one 
where the distance between the segment and the position of the camera 
is minimal to obtain better spatial resolution.  

8.3 Results and discussion  

8.3.1 Data used  

A small region around the ‘Church of Saint Paul’ in Mirabello captured 
by an UAV was considered for evaluating the developed methods.  The 
images of the selected region were captured by a UAV from various 
heights, positions and views (oblique and nadir). The average GSD of the 
captured images is around 1 cm. A 3D point cloud of the scene was 
generated from 152 images with an average point density of 650 points per 
m2. The selected region contains six buildings and among them only one 
was damaged.  
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8.3.2 Over-segmentation of the image  

The multi-resolution image segmentation algorithm in eCognition was 
used for over-segmenting the image into super-pixels. In order to highlight 
the need for the proposed texture based segmentation, the selected image 
was segmented using both RGB values and the texture features 
independently. The segmentation parameters (compactness, scale and 
shape) were arbitrarily defined in order to portray that the derived texture 
features are effective and less sensitive to these parameter values 
compared to raw RGB images. For example, the over-segmented images 
obtained using both RGB and PCA-Gabor features with arbitrarily chosen 
parameter values are presented in Figure 8-4 and Figure 8-5, respectively. 
The segmentation based on RGB was very poor, yielding results that 
cannot be used for our purpose, i.e. the incorporation of 3D point features 
for obtaining geometrically uniform roof segments. Alternatively, the 
segmentation using the proposed PCA-Gabor based features provided 
relatively uniform segments, which is highly desirable for carrying out the 
further processes in the pipeline. The texture features were more useful 
than the RBG values in the image segmentation, as the Gabor features were 
found to effectively differentiate between the regions based on their 
surface patterns, irrespective of their intensity. For example, consider 
Figure 8-6 (taken from chapter 2), where the RGB image depicts the scene 
that contains three different types of building roofs, annotated as A, B and 
C, and a damaged region annotated as D. The Gabor feature images that 
are depicted in Figure 8-6 are the feature images corresponding to different 
frequencies and orientations. The roof segments A, B and C were clearly 
differentiated by those Gabor wavelet features. For example, for roof A, 
the Gabor feature 3 showed a strong signal, whereas B and C were 
highlighted by other Gabor features, as depicted in Figure 8-6. In all the 
feature images, the damaged region annotated as D in Figure 8-6 was 
found to show similar characteristics. This is because man-made objects 
have a dominant orientation; hence, the respective feature corresponding 
to that orientation shows a clear peak. Conversely, the damaged region has 
a gradient orientation in many directions; hence, they possess similar 
characteristics in most of the feature images corresponding to different 
orientations. The visual assessment indicates that Gabor features have the 
potential to differentiate the objects in the scene based on their dominant 
frequency and orientation characteristics.  
 



Accurate roof face delineation by synergistic use of UAV images and derived point clouds for 3D reconstruction  

 212 

 
Figure 8-4. Selected nadir image (left) and super-pixels based on RGB using 
multi-resolution segmentation in eCognition for scale (50), compactness (0.5) 

and shape (0.5) (right). 

 
Figure 8-5. Super-pixels based on Gabor-PCA features of image depicted in 

Figure 8-4, using multi-resolution segmentation with same scale, compactness 
and shape values used in RGB based segmentation as in Figure 8-4. 
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Figure 8-6. Gabor feature images extracted for different orientation and 

frequency parameters.  

After image segmentation, the 3D point features were incorporated 
corresponding to each super-pixel, and the independent roof faces of the 
building were obtained using the procedure described earlier and the 
sample results are shown in Figure 8-7. Subsequently, the 3D 
reconstruction of the building and mapping of images to each element of 
the reconstructed 3D model was performed, and the results are shown in 
Figure 8-8 and Figure 8-9, respectively. From the results, even based on 
direct visual assessments it is clearly evident that the delineated roof faces 
based on the proposed method using both image and point cloud features 
were more accurate and geometrically regular compared to the roof faces 
obtained based only on planar based segmentation of 3D point cloud (cf. 
Figure 8-7 and Figure 8-1). The reconstructed 3D models were close 
enough to the original building if their roof faces were accurately 
delineated. For example, consider building B in Figure 8-6, which was not 
completely reconstructed. This is because that building contains a multi-
layer roof, but in our method, the horizontal or slanted elements which are 
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below roofs were considered as other elements of the building, e.g., 
extended balconies or staircases. Hence, the second layer roof elements 
were eliminated in this case and thus leading to inaccurate modelling of 
this building. However, this has to be addressed i.e., the roof detection 
method has to be improved to detect multi-layer roofs by recognizing other 
elements that are similar to roof structures.  Moreover, in our case, the 3D 
point clouds were generated based on oblique-view images, where both 
top and side view information are typically available. Hence, in addition 
to roofs other lateral elements, such as façades, balconies and staircases, 
can also be used for 3D modelling, which would lead to more accurate 
models. This would be one of the crucial extensions of this work. Also, the 
presence of large gaps in the point cloud due to aforementioned reasons 
leads to inaccurate modelling. For example, see the building in Figure 8-7 
which is marked with red circles indicating incomplete roof faces due to 
gaps in the 3D point cloud. Because of this, the same building in Figure 
8-8 was not accurately modelled in the portions corresponding to gaps in 
3D point cloud. Also, a significant structure – the tower in Figure 8-2  – 
was not detected and modelled in Figure 8-7 and Figure 8-8. This is 
because the top horizontal element of the tower was smaller and also much 
smoother. Hence, no significant number of 3D points corresponding to that 
particular portion was generated to be detected as a planar surface. Thus 
the tower was missing in the results of roof delineation and 3D 
reconstruction, even though the side portions of the tower were visible in 
the 3D point cloud. This is one of the examples for the aforementioned 
limitation in the roof-based 3D reconstruction approach. 
 
The proposed framework consists of a number of methods and each 
comprises several tuneable parameters, whose definition is described in 
Table 8-1. These thresholds are defined based on the domain knowledge. 
For instance, the roof segment height is defined as greater than 3m from 
ground based on the fact that in general the roof heights will be at least two 
times greater than the average height (1.5 m) of a human being.  
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Figure 8-7. 3D point clouds depicting the delineated independent roof faces 

after roof segment refinement process. The red circles indicate the incomplete 
roof segments because of gaps in the 3D point cloud  

 
Figure 8-8. 3D reconstruction of building based on the 3D points of refined roof 

segments 
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Figure 8-9. The images mapped to each segment of the model to provide 

radiometric information along geometric information for damage assessment 

 
Table 8-1. The definition of various parameters used in the methods developed 

in this study. 
Section  Sub heading  Parameter 

definition  
Description  

Over-segmentation 
of image 

Procedure for 
image over-
segmentation:  
 

M= 5 and N=8 M and N are the 
number of 
frequencies and 
orientations used 
for generating the 
Gabor filter banks 

Classification of 
segments 

c) Classification of 
segments to 
identify the roof 
faces 

TZ = 0.4 degree, 
TH= 5m 

TZ  and TH are the 
thresholds, where Z 
of normal of a 
planar segment is 
greater than TZ and 
average height 
greater than TH  are 
considered as roof 
segments 

 Roof segment 
refinement 

 

Super-pixel 
refinement process 
 

TD =0.5, TLD = 

1.5m  
TD is the allowed 
offset for the plane 
and the points. If 
the distance 
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between the 3D 
points that are lying 
between two 
coplanar segments 
will be considered 
as the points of 
those planes, if the 
point to plane 
distance is less than  
TLD  

Independent roof 
face construction 

 

b) Geometric 
similarity 

TAngle = 5 degree 
TDistance = 1.5 m 

Adjacent super-
pixels are 
considered to be 
geometrically 
similar, if the angle 
between the normal 
vectors of their 3D 
planar segments is 
less than TAngle and 
also if the distance 
between those two 
planar segments is 
less than TDistance. 

 
The major contribution of the proposed framework is the method for 
accurate roof face delineation. The other methods in the framework, such 
as vegetation detection, damage detection and 3D reconstruction, were 
adopted from previous chapters or from other published scientific articles. 
Hence the results corresponding to accurate roof face detection was given 
more focus. Pertaining to this, the proposed method for accurate roof face 
delineation was examined in another data set, based on images captured 
by manned aircraft over a portion of the city L’Aquila, Italy. The captured 
images had a spatial resolution of approximately 10 to 16 cm, which was 
much lower than the spatial resolution of the images of earlier dataset 
based on UAV. Therefore, the generated 3D point cloud of the current 
dataset based on images of manned aircraft was noisier than the 3D point 
cloud of UAV dataset. The detailed description about the dataset can be 
found in the data description Section (5.2) of Chapter 5. For the dataset 
based on a survey with a manned aircraft, the proposed roof face 
delineation method was examined. The image subset corresponding to the 
considered study area and the corresponding segmented 3D point cloud, 
and the final delineated roof faces are depicted in Figure 8-10. The results 
show that the roof faces obtained from the proposed method were more 
accurate compared to the roof faces obtained from planar segmentation of 
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the raw point cloud (e.g., compare Figure 8-1 vs Figure 8-7 and Figure 
8-10b vs Figure 8-10c). Though the spatial resolution of the images and 
quality of the 3D point clouds vary between the datasets, the threshold 
values defined in Table 8-1 were found to be working well for both 
datasets.   
 

        
(a)                                               (b) 

 

 
(c)  

Figure 8-10 a) Image subset corresponding to the study area considered for 
examining the roof delineation method; b) planar segmentation based 

segmented 3D point cloud corresponding to the image subset; c) the final 
delineated roof faces based on the proposed method 

  

50.6 m 92.5 m 

140.0 m 
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8.4 Conclusion  
3D models of buildings are highly desirable for a comprehensive damage 
assessment. Accurate delineation of roof faces from a 3D point cloud is 
the minimal requirement for 3D modelling of buildings. Often 3D point 
clouds derived from images are quite noisy, which hinders the accurate 
delineation of roof faces as discussed earlier. To address this, a framework 
was developed for the delineation of accurate roof faces of building from 
noisy 3D point clouds and images for 3D reconstruction of the buildings. 
There are several independent tasks within the framework such as image 
segmentation, damage detection, roof face delineation and 3D 
reconstruction. The framework was tested using the real world dataset: 
UAV images of Mirabello city, Italy captured after 2012 earthquake and 
the 3D point cloud derived from them. All 6 buildings in the point cloud 
were detected and reconstructed as a 3D model by the developed 
framework. The quality of the 3D models depends on the accuracy of the 
roof face delineation, where the model of the buildings with accurate roof 
face delineations was visually close enough to the shape of the original 
buildings. The gaps in the 3D point cloud hinder the accurate roof face 
delineation thereby affecting the quality of the reconstructed model. Also 
the images corresponding to the structural elements of the 3D model are 
mapped using the automated procedure. This representation, i.e., the 3D 
model mapped with images, is sufficient to satisfy the requirement for 
deriving the comprehensive damage classification of an individual 
building based on the recently reported classification systems, e.g., Saedi 
(2016). The major contribution of this research was the method for 
accurate roof face delineation. Hence, the framework up to roof face 
delineation was examined for another data set obtained with a manned 
aircraft, which was inferior to the UAV dataset in terms of the spatial 
resolution of the images and the quality of 3D point cloud. The roof faces 
delineated by the proposed method were more accurate than the roof faces 
derived from plane-based segmented 3D point cloud for this dataset as 
well. The values of the thresholds associated with the methods defined 
based on domain knowledge were the same for both datasets, and were 
found to be working well regardless of their varying characteristics. 
However, the generalization of these thresholds has to be examined further 
by considering several datasets with varying characteristics. 
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9.1 Background  
As mentioned in Chapter 1, this research is embedded in the research 
project RECONASS, which aimed to develop a near real-time damage 
assessment system, referred to as RECONASS system. Remote sensing 
and a wireless sensor network (WSN) based damage assessment systems 
are the two major subsystems of the RECONASS system. The remote 
sensing subsystem was solely developed by our research group at ITC. The 
objectives of this subsystem were already described in Chapter 1. In order 
to accomplish those objectives, this subsystem was designed to carry out 
three major tasks based on UAV images and 3D point clouds derived from 
them: 1) building detection, 2) automatic detection of externally visible 
damage evidences such as spalling, debris, rubble piles, broken and 
inclined elements, cracks and debris volume quantification, and 3) 3D 
modelling of buildings to systematically integrate the damages identified 
along different portions of a building to derive a comprehensive building 
level damage label based on the damage classification scheme. The 
methods for accomplishing these tasks have been developed as part of the 
remote sensing subsystem in RECONASS. All methods developed in this 
PhD thesis were part of this subsystem. In order to demonstrate all 
subsystems within RECONASS system, a 3-story building equipped with 
RECONASS sensors was constructed in Sweden. A pilot experiment was 
conducted by deliberately damaging the building based on two massive 
blasts. The first blast was an explosion of 400 Kg of TNT outside the 
building, and the second was a smaller blast of 16 Kg of TNT inside one 
of the rooms of the building. The remote sensing-based subsystem is 
evaluated using the data captured by a camera on the UAV after the two 
blasts. Apart from methods reported in this thesis, we have also developed 
several other methods in order to accomplish the objectives of 
RECONASS. For example, methods such as identification of inclined 
elements, debris volume quantification, crack detection and final damage 
classification to derive the building level single damage label were 
developed and delivered to European commission as technical reports. For 
the sake of completeness and to provide a broad picture of the remote 
sensing subsystem in RECONASS, the results of these methods are also 
presented along with the results of the methods reported in this thesis. 
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9.2 Demonstration of the methods in the remote sensing 
subsystem 

The system is demonstrated in three scenarios based on the availability of 
the data: 1) when both pre-event CAD model and post-event images and 
point cloud are available for assessment; 2) when pre- and post-event 
images and 3D point cloud are available for assessment; 3) when only post-
event images and 3D point cloud alone available for assessment. The 
descriptions about the demonstration strategy and their results are reported 
together in the below respective subsections 

9.2.1 Data description 

In the RECONASS pilot experiment a hexacopter Aibotix Aibot X6 V2 
UAV was used, i.e. a rotary wing system with 6 rotors. The chosen UAV 
can lift a payload with a total weight of up to 2 kg, hence it is ideal to carry 
a professional DSLR camera. In our case a Canon D600 with a Voigtländer 
20mm fix zoom lens was employed. The UAV also comes with a GNSS 
receiver in order to geotag the images. 
 

 
Figure 8-11 Aibotix Aibot X6 V2 

The image acquisition after the explosion was planned using a circular 
waypoint layout, that is, the drone flies a circle in a given height. The 
center of this circle was above the area of interest (building) and the circle 
radius and nick angle of the camera were chosen in way to optimally cover 
the building, see Figure 8-12 for a birds-eye view of the scene and the 
cameras. In the experiment we chose a flying height above ground of 55m 
and 65m, respectively, which resulted in an average ground sampling 
distance (GSD, pixel size at the object) of 1.5 cm.  
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Figure 8-12 Circular layout of images, also indicating the ground control points 

(green circles) 

In total 103 images were captured. Since the BIM or CAD model of the 
building of interest maintains a local coordinate system we preferred to 
generate 3D point cloud in that system to facilitate the direct comparison 
of the CAD model and 3D point cloud for damage assessment. This was 
one of the experiments conducted for demonstrating the potential of the 
developed methods which is reported later in this chapter. However, the 
GNSS receiver on board the UAV provides image locations in a global 
coordinate frame. Hence a procedure to co-register the images with the 
BIM model was developed, to generate a 3D point cloud in the local 
coordinate system. The overall procedure is described below3: 
 
 Before the detonation took place some corners of the building were 

surveyed with a professional GNSS receiver. 

                                                 
3This co-registration procedure was solely developed and implemented by Prof. Markus 
Gerke 
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 Using both the GNSS-coordinates of the corners and the corresponding 
coordinates in the local system, the 6 transformation parameters were 
computed. 

 After the initial image orientation using the GCPs on the ground, the 
image locations and tie points were transformed to the local model, 
defined by the BIM model by applying the 6 parameter-transform. 

 As a last step the sparse point cloud in the local building coordinate 
system was fine-registered with the point cloud derived from the BIM-
model by employing a variant of the ICP (Iterative Closest Point) 
algorithm. The image locations were then also transformed 
accordingly, and finally the image orientation parameters were defined 
in the BIM model system. 

 A dense 3D point cloud was generated based on the same procedure 
described in earlier chapters.  

The detailed procedure of this co-registration process can be found in 
Chapter 6 of RECONASS deliverable D4.3, available at 
http://reconass.eu/.  

9.2.2 Demo 1: Damage assessment by comparing the CAD model 
and post-event point cloud and images 

In this scenario, the post-event UAV images and point clouds derived from 
them, and pre-event 3D points of the CAD model were the inputs for the 
remote sensing subsystem.  
The damages to the RECONASS building were identified by comparing 
the post-event 3D point cloud generated from UAV images to the 
externally visible elements of the CAD model of the monitored building. 
This assessment included the identification of various damage evidences 
and thereby classifying the building elements into different classes as 
described below.  
1) Broken elements: Missing CAD elements in the post-event point 

cloud were identified by performing the element-wise comparison of 
post-event point cloud with the point cloud generated based on CAD 
model. The details about this method can be found in section 5.3.2.2 in 
chapter 5. 

2) Inclined elements: The difference in angle of plane normal for the 
corresponding planar elements in both post-event point cloud and CAD 
model was computed. If the angle difference was greater than certain 
threshold (3 degree), then the respective planar element is classified as 
inclined.  
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3) Debris: The debris and spalling regions were identified based on 
recognizing the unusual radiometric using information from images 
based on the method described in chapter 4. The presence of these 
patterns on the ground surface was considered as debris and its volume 
was quantified. The volume quantification method is described in 
Chapter 5 of RECONASS deliverable D4.1, available at 
http://reconass.eu/.   

4) Cracks: Cracks were identified based on the radiometric 
characteristics and geometrical shapes. For example, the darker region 
with linear shapes on intact planar segment was classified as cracks. 
The description about the crack detection method can be found in 
Chapter 6 of RECONASS deliverable D4.3, available at 
http://reconass.eu.  

5) Intact: The elements with no above mentioned damage evidences 
were classified as intact.  

6) Occluded: The CAD model elements invisible in the images were 
identified and labelled as occluded. The occlusion detection was 
carried out using HPR as described in chapter 5.  

 
The classified 3D points of the CAD model based on above mentioned 
classes were the output of damage detection process as depicted in 
Figure 8-13. From an image-based system, it is possible to map only 
the visually recognizable damages. Therefore, the evaluation of 
damage assessments were carried out by visually comparing the 
automated results with the damages visible in the images and the 3D 
point cloud and the results are discussed below.  

9.2.2.1 Results of blast 1:  

The classified point cloud of a CAD model representing the damage 
information (automatically identified by this subsystem) along with 
corresponding image are provided in Figure 8-13 for visual inspection.  
The monitored building in Figure 8-13 is represented in two different 
orientations in such a way that all the sides of the building are visible. The 
detected damages in the point cloud and images were highlighted and 
annotated using the letters A to H for analysis, which are briefly described 
below.  
Damage region A: It depicts two broken elements leading to holes in the 
building and debris in the ground which were correctly identified by our 
automated methods. This was the only region affected by the blast while 
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other regions (B-H) were detected as damages due to other reasons which 
are described below.  
Damage regions B, G and F: These regions were detected as broken 
elements as there was difference in the CAD model and the actual 
constructed building. For example, the elements in the region B and G in 
CAD model were corresponding to infill walls which were not actually 
constructed. On the other hand, the building elements corresponding to 
region F were detected as missing as they were hidden by the staircase 
which was not part of the CAD model design. Therefore, these elements 
in CAD model were annotated as damage since they were missing in the 
post-event point cloud. The developed algorithms worked well by 
detecting the missing elements, though the reason was not damage. This 
observation makes clear that in a real case scenario the BIM or CAD model 
of the building must actually be well maintained and be identical to the as-
built-status. 
Damage region C: The elements detected as damaged in region C were 
not actually damaged. They were the structural elements (beams) 
embedded in the roof segment. In this case, damage was detected based on 
comparing pre-event 3D CAD model based point cloud with post-event 
image-based point cloud. For comparison, only the visible CAD model 
elements were considered. While the visibility analysis is conducted for 
the elements in CAD model, the structural elements (beams) in region C 
were marked as visible by our HPR algorithm as they were embedded in 
the visible roof segment.  Hence, they were considered for comparison 
with post-event point cloud. However, these elements were absent in the 
post-event point cloud as they were not visible in the images captured by 
UAV. Hence these elements were wrongly classified as damaged.   
Damage region D: This intact element was wrongly detected as inclined 
because of the presence of noise leading to large variations in the Z of 
normal of the 3D points corresponding to this region.  
Damage region H: This region is detected as damaged due to the gaps that 
exist in the generated post-event point cloud. The reasons for occurrence 
of these gaps is not obvious since the criteria for generation of 3D point 
cloud were satisfied (e.g., these regions are visible in more than three 
cameras and the surface characteristics of these regions were similar to the 
other regions which had corresponding 3D points). 
 
There were no visible cracks in the exterior building elements after blast 
1. Overall, the developed algorithm detected 1) all the missing elements 
due to damage, and 2) the debris region. The wrongly detected damage 
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regions D and H alone can be considered as false positives which resulted 
from the limitations in the generated point cloud, while other wrongly 
detected damaged regions B, C, G and F cannot be considered as false 
positives as they were detected as damage because of the difference in the 
CAD model and the constructed building.  
 

 
Figure 8-13. The classified point cloud of CAD model depicting the element-

wise damage information (left-top and left bottom) of blast-1 identified 
automatically by the developed methods and the corresponding images (right-

top and right bottom) for visual inspection. The damaged regions were 
annotated using alphabets A-H which are briefly described in the text.  

9.2.2.2 Results of blast 2:  

Similar to above results, the buildings are depicted in two different views 
in order to make all the sides of the buildings visible. The detected 
damages after the blast were highlighted and annotated in the respective 
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point cloud and images using alphabets A to H for analysis, as depicted in 
Figure 8-14 and it is described below. 
Damage region A: All broken elements and debris regions were detected 
by our method.  
Damage regions B, C, F, G and H: The same reasons as described in 
section 0.  
Damage region D:  The element annotated as D was correctly identified 
as inclined, the angle difference between the element in the CAD model 
and post-event point cloud was estimated as 4.4 degree.  
Damage region I: The presence of minor crack in this region was 
identified by our method.  
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Figure 8-14. The classified point cloud of CAD model depicting the element-

wise damage information (left-top and left bottom) of blast-2 identified 
automatically by the developed methods and the corresponding images (right-

top and right bottom) for visual inspection. The damaged regions were 
annotated using alphabets A-H which are briefly described in the text. 

Overall, concerning both blast 1 and blast 2, a total of eight externally 
visible damaged regions was identified by visual inspection: five missing 
infill walls, one inclined façade and two debris regions on the ground. All 
these damaged regions were identified by our method, however with a few 
false positives (cf. section 6.3.1.1).  
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9.2.3 Demo 2: Damage assessment by comparing the pre- and post-
event point cloud and images: 

This is the scenario where the oblique images of pre- and post-event are 
available. The 3D point clouds of pre- and post-event were generated 
independently and compared for identifying the missing elements. The 
detailed procedure of this approach can be found in chapter 5. The detected 
damaged regions by this approach were annotated in Figure 8-15, where 
all missing elements due to damage were correctly identified, and there 
was no false positive detection. Even the damage to the wooden fence on 
the roof top (region A in Figure 8-15 ) was correctly identified, portraying 
the robustness of this approach. 

 
Figure 8-15. The detected missing element by comparison of pre- and post-

event point cloud were highlighted using alphabets A-E in the point cloud of 
CAD model for reference (left-top) and the corresponding elements are 

highlighted in pre-event image (right-top) and post-event images (left- and 
right-bottom). The annotated alphabets A-E are briefly explained in the text. 

9.2.4 Demo 3: Damage assessment from post-event data alone  

This is the scenario where only the post-event images and point cloud are 
available. The missing elements are assumed to often create an opening to 
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the building and further this appears as a gap in the 3D point cloud. 
However, for several reasons gaps in the 3D point cloud can correspond to 
a normal and desired feature (e.g., architectural elements). Also, due to the 
3D information generation process, gaps can also be created in case of 
partial building occlusion (e.g., by vegetation) or image matching 
problems. Therefore, as a first step, the gaps in the point cloud are detected 
and the gaps with debris or spalling evidences around them are classified 
as gaps due to structural damage, since any deformation in the concrete 
surface creates a sign of spalling or debris around the deformed region. 
The detailed procedure for the gap based damage detection is provided in 
RECONASS deliverable D4.1, and can be found in Vetrivel et al. (2015). 
The debris and spalling regions were detected (annotated using red 
polygon in Figure 8-16) by the improved version of damage detection 
framework reported in Chapter 4. The damaged regions detected by this 
approach were annotated using alphabets A-E in Figure 8-16, where only 
the gap depicted in region A was damage, while other gaps B-E (the 
openings due to other reasons) were detected as damages, since debris and 
spalling evidences are found around them (cf. Figure 8-16). This shows 
that, although the accurate mapping of the damage evidences such as 
debris and spalling from the post-event images is feasible (can help to infer 
the severity of the damage), it is still challenging to interpret the actual 
damaged elements based on these evidences. This highlights the 
importance of pre-event data as a reference for accurate damage mapping.  
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Figure 8-16 Point cloud of the building after blast-2 highlighted and annotated 
the openings detected as damage by the method based on post-event data alone 

(top). The image corresponding to the point cloud in which the debris and 
spalling regions detected by our method were highlighted using red polygons. 

The annotated alphabets A-E are briefly explained in the text 

 
Finally, a damage classification system was developed within the 
RECONASS framework for deriving a building level damage based on 
systematic aggregation of various aforementioned damage evidences from 
different sides of the building (cf. Chapter 4 of RECONASS deliverable 
D4.3, available at  http://reconass.eu/). However, the results of the damage 
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classification are not provided and discussed here as it is beyond the scope 
of this thesis.  

9.3 Conclusion  
In this chapter, the potentials of methods developed in earlier chapters for 
damage detection and 3D modelling of the building were demonstrated in 
several aspects using datasets from the pilot experiments conducted in 
Sweden. The major inference from the demonstration results is that the 
level of assessment and accuracy depends on the kind of data available for 
the assessment. In particular, the availability of both pre- and post-event 
data facilitates more detailed and accurate assessment than assessments 
based on post-event data alone. Overall, the developed methods are found 
to be working well when demonstrated using the data sets from the pilot 
experiment. No major issues arose while transferring the methods 
developed and tested based on several real-world datasets as mentioned in 
earlier chapters to the new data from this pilot project. 
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This research focused on developing methods for the automated extraction 
of information from remote sensing images that could aid stakeholders 
involved in disaster management to carry out fast response and recovery 
actions. As emphasized several times in this thesis, a stakeholder involved 
in different phases of disaster management needs damage information with 
different levels of abstraction in a specific format. For example, a specific 
stakeholder may require the locations of collapsed buildings in 2D map 
format, while another stakeholder may require damage information along 
every element of the building annotated on a 3D model of the building. 
The fundamental information required from remote sensing data for 
producing these kinds of damage representations are: 1) automated 
delineation and 3D modelling of buildings, and 2) automated recognition 
of various kinds of damage evidences required for damage assessment 
such as spalling, openings in a building due to damage and debris/rubble 
piles mapping and quantification. The methodologies for performing the 
aforementioned tasks have been developed in this thesis that are especially 
(but not only) suitable for oblique view images (for the reasons mentioned 
earlier) either from manned or unmanned aerial platforms and 3D point 
clouds derived from them. The developed methodologies and their results 
are briefly summarized and discussed below.  
 
Any severe structural damage often creates an opening (hole) to the 
buildings. Among several above-mentioned damage evidences, we 
initially focused on developing methodology for the identification of the 
structural openings (damage) caused by the disaster event. This is because 
we use photogrammetric 3D point clouds in addition to the images for 
various tasks including building detection and 3D reconstruction. In 
general, the photogrammetric point clouds are highly noisy and often 
contain gaps that can be due to several reasons, such as the architectural 
design or partial building occlusion (e.g., by vegetation), or image 
matching problems. It is essential to distinguish the gaps in 3D point cloud 
due to the aforementioned reasons from the gaps created due to damage, 
in order to effectively carry out other tasks that are based on 3D point 
clouds (particularly, accurate delineation of individual elements of the 
building and 3D modelling of the building). The methodology for mapping 
the gaps created due to damage was developed and reported in Chapter 2. 
The methodology includes three steps in which automatic building 
delineation from aerial images and photogrammetric 3D point cloud was 
the first step. While conducting this research in 2014, methods were 
already available for building delineation from 3D point cloud which were 
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mostly based on LiDAR technology (Rottensteiner et al., 2014; Sun and 
Salvaggio, 2013). However, it was challenging to directly adopt these 
methods to accurately delineate the buildings from photogrammetric 3D 
point clouds as it is often inferior in quality compared to LiDAR point 
clouds.  Hence, a method suitable for building delineation from noisy 
photogrammetric point cloud was developed. Also, it was often difficult to 
distinguish between densely-leafed trees and the roof segments of 
buildings from the noisy photogrammetric point cloud. These issues were 
largely addressed in the developed method by using spectral information 
from images in addition to 3D point clouds. Overall, the developed 
methodology detected 96% of buildings in the urban areas selected for the 
experiment. However, the building delineations were not accurate 
compared to the actual boundary of the building, but it was sufficient for 
the desired gap based damage detection process. The second step was the 
gap detection process. The method developed for gap detection was based 
on a voxelization of the 3D point cloud where the empty voxel which were 
visible from the number of camera views sufficient to generate 3D point 
was marked as a gap. This method worked well, detecting all gaps in 
significant sizes in the point cloud. The third step was gap classification. 
The gap was classified as an opening due to damage if any damage 
evidence such as spalling or debris were found around them. Hence, a 
method for the detection of these damage evidences was required. In 
literature, several methods for detecting these kinds of damage evidences 
from remote sensing images were already reported at the time of 
conducting this research in 2013 (Dong and Shan, 2013).  Most of the 
methods were based on a supervised classification approach where 
predominantly textures were used as feature for building the classifier 
(Dong and Shan, 2013; Ma and Qin, 2012b; Radhika et al., 2012). In most 
cases, statistical textures such as grey level co-occurrence matrix based 
features were used. However, the texture features such as HoG and Gabor 
wavelets were reported to be more efficient than GLCM features in several 
classification based applications in computer vision and remote sensing 
(Radhika et al., 2012; Ruiz et al., 2004b; Stavrakoudis et al., 2011). Hence, 
it was hypothesised that these features can be useful for damage detection 
application as well. Thus, a methodology for mapping the spalling, debris 
and rubble piles from images was developed based on these two kinds of 
texture features –Gabor and HoG using the supervised classifiers SVM and 
Random Forests. The classifier based on Gabor features with Random 
Forests performed best, identifying 95% of the damaged regions in the 
considered study area. However, the generalization capability of the 
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developed classifier was very poor, with the quality measures decreasing 
by around 30% when tested on another independent data set. Since the 
method produced an accuracy of 95% for the study area, the gap 
classification process was successful, with all 21 detected gaps correctly 
classified.  
 
The mapping of damage evidences such as spalling, debris and rubble piles 
was highly desired as they are the strong indicators of severe structural 
damage. As mentioned above, the methods based on texture feature 
reported in Chapter 2 were found to be useful for detecting these damage 
evidences. However, they strongly suffered from generalization problem, 
which was mainly due to the varying characteristics of image (various 
views and scales), scene and damage pattern. In order to improve the 
classification accuracy, a state-of-the-art (in 2013) Bag-of-words (BoW) 
approach was adopted to develop a methodology for automated mapping 
of earlier mentioned damage evidences (cf. Chapter 3). Three kinds of 
texture features, HoG, Gabor and SURF, and three different classifiers 
(SVM, Random Forests and Adaboost) were independently used for 
constructing the BoW-based classifiers. The developed classifiers were 
tested with four different data sets that varied greatly in terms of image 
and scene characteristics. The results of the developed BoW-based method 
were compared with a conventional global representation approach 
(reported in Chapter 2), using the same set of image features and classifiers 
for all datasets. The BoW framework outperformed the conventional 
global feature representation approach in all scenarios (i.e. for all 
combinations of feature descriptors, classifiers and datasets), and produced 
an average accuracy of approximately 90%. Particularly encouraging was 
an accuracy improvement by 14% (from 77% to 91%) produced by BoW 
over global representation (reported in Chapter 2) for the most complex 
dataset, which was used to test the generalization capability. Owing to its 
effectiveness, the BoW framework was adopted with interest by the 
research community for disaster damage detection using remote sensing 
data. For instance, the BoW framework developed in this research with 
same set of features – HoG, Gabor and SURF was used by Tu et al. (2016b) 
for detecting the damaged roof tops using the very high resolution airborne 
image captured  after 2014 earthquake in Beichuan. They reported an 
overall accuracy of 90% using HoG in BoW framework. Tu et al. (2017) 
used BoW as a feature for detecting damaged regions based on change 
detection approach by comparing the pre- and post-event data.  
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Though the method based on a BoW framework (reported in Chapter 3) 
produced 90% accuracy it still lacks the generalization capability which 
was described in detail in Chapter 4. In the meantime, the deep learning 
features such as CNN features became state-of-the-art, outperforming the 
BoW features in many domains, including related applications in remote 
sensing. These features were highly recognized by the research 
communities particularly, for its generalization capability. A methodology 
for identifying the damaged regions based on CNN features was developed 
and reported in Chapter 4. The methodology was tested for images of both 
manned and unmanned aerial platforms from several geographic locations 
that are highly varying in image and scene characteristics. The methods 
based on CNN features produced an average accuracy of approximately 
93% for all datasets. Also it produced an average accuracy of 85% in the 
model transferability scenarios, i.e., the model was trained with one dataset 
and tested with another dataset. It was anticipated that inclusion of 3D 
point cloud features along with 2D CNN features would improve the 
accuracy. Pertaining to this, a framework based on multiple-kernel-
learning (MKL) was proposed to integrate CNN features of images and 3D 
point cloud features to perform damage detection. The feature extraction 
was carried out at segment level, for which histogram-based 3D point 
cloud features were proposed. The proposed 3D features were examined 
independently and found to be useful in detecting the damaged regions. In 
conclusion, the integration of proposed 3D point cloud features and image-
based CNN features based on MKL framework was found to improve the 
classification accuracy, particularly in the model transferability scenario 
where the achieved maximum accuracy improvement was around 7%.  
From the results, it was inferred that the CNN based model possesses a 
strong generalization capability. Hence, it was strongly anticipated that 
this model can be used as a tool for automatically producing damage maps 
from very high resolution images when a new event occurs, helping to 
circumvent the tedious manual mapping. This capability was demonstrated 
by Duarte et al. (2017) as they adopted the model developed in this 
research (without any retraining) for mapping the damaged façades from 
oblique airborne images and reported an overall accuracy of 83%. 
However, intuitively it is expected that this accuracy can be increased 
further by improving generalization capability of the CNN model by 
training it with more number of samples from distributed locations with 
significantly varying characteristics.  
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All the aforementioned methods for damage detections were based on 
mono-temporal post-event data. In these approaches, the damage detection 
methods were designed based on the primary fact that damaged regions 
will possess non-uniform radiometric and geometric characteristics 
compared to undamaged man-made objects. However, these assumptions 
were often found to be failing in complex urban areas, and thereby 
hindering the accurate mapping of damaged regions (for e.g., see L’Aquila 
dataset described in Chapter 5). In such cases, the presence of pre-event 
data could be useful. Towards this, a methodology was developed and 
reported in Chapter 5 to identify the damaged regions by comparing the 
pre- and post-event 3D point clouds and images. The proposed method 
detected almost all damages related to geometric deformation of the 
building’s elements in the considered study area. The developed method 
was fully unsupervised in contrast to the methods reported in earlier 
chapters, which were largely based on supervised approach. The 
unsupervised methods are simpler and independent (no need of training 
samples) compared to supervised approaches. The major advantage of this 
unsupervised based multi-temporal approach is that the estimates will be 
more robust and reliable compared to the estimates based on mono-
temporal post-event data based approaches reported in earlier Chapters.  
 
From the experiments conducted in earlier chapters of this thesis 
(particularly in Chapter 4), the usefulness of site specific samples for 
training the supervised classifier for accurate damage detection was 
established. Moreover, it has become a common practice to make the 
damage assessment of individual buildings available from various sources 
(cf. Chapter 6). In order to utilize these site specific samples that are 
streaming online at different points in time for training the classifier, a 
framework for damage detection based on an incrementally learning 
classifier was developed and reported in Chapter 6. The suitability and 
potential of the proposed incremental classifier based framework for the 
application of damage detection was demonstrated. A noteworthy 
inference from the experiments related to the proposed framework is that 
compared to handcrafted features the CNN features are more effective and 
suitable for online classification, as they yield similar accuracy when used 
in both online and batch learning setting, whereas, handcrafted features 
produced significantly inferior results in online setting compared to batch 
learning approaches. In conclusion, CNN features were recommended for 
building the online classifier for the disaster damage detection application.  
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All methods reported in Chapter 2 to 6 were largely focussed on mapping 
the damages related to debris/rubble piles. However, as mentioned earlier, 
to perform a comprehensive damage assessment, a 3D model of the 
building annotated with damage evidences is required. Accurate roof 
delineation of the building is the minimum requirement for constructing at 
least a rudimentary 3D model. However, accurate delineation of 
independent elements of the building from photogrammetric 3D point 
cloud was challenging, as inferred from the experiments conducted in 
Chapter 2 for building delineation. It was anticipated that integrated use of 
2D radiometric features from images and 3D geometric information from 
point cloud would help to obtain accurate roof faces of the building. To 
this end, a segmentation algorithm was proposed in Chapter 7 which 
incorporates both 3D point cloud features and 2D radiometric features 
from images to perform image segmentation to accurately delineate the 
individual elements of the building. The segmentation was carried out in 
image space by assigning the 3D point cloud features to the corresponding 
image pixels. The proposed segmentation algorithm worked well in most 
of the cases, where it even accurately delineated small objects such as 
windows on the roofs and façades. However, it failed in some image 
regions, particularly, it led to under-segmentation where the 3D point 
cloud feature information was missing or image regions corresponding to 
highly noisy 3D point cloud. In order to overcome these issues, another 
framework was proposed in Chapter 8 to automatically delineate the roof 
segments of the building, by synergistically using 3D point cloud and 
image features. The proposed method incorporates the 3D features in 
super-pixel level (derived based on image-based over-segmentation 
approach) instead of pixel level. This approach largely alleviates the 
under-segmentation issues and delivered accurate roof faces of the 
building essentially sufficient for 3D reconstruction. Also, using an 
automated approach, the images corresponding to each element of the 
building were mapped in order to facilitate further processing to produce 
the information in a format required by a specific stakeholder e.g.,  
deriving building-level damage label or score.  
 
The methods which were demonstrated to be effective based on real word 
datasets for damage detection, building delineation and 3D construction in 
Chapters 2 to 8 of this thesis, were selected. The selected methods were 
integrated as an automated system for damage assessment. The system was 
examined based on the UAV datasets of the RECONASS building which 
was damaged deliberately by two consecutive bomb blasts in the pilot 
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experiments conducted in Sweden. The integrated system was found to be 
working well where all methods in the system were consecutively 
executed which produced results similar to the one obtained from the 
experiments conducted based on several real world datasets reported in 
chapters 2 to 8. As the developed modules were found to be working well 
when they were transferred to the new unseen datasets from the pilot 
experiments of RECONASS, we anticipate that these methods can be 
scalable as independent operational systems to assess the damages to the 
real word functioning buildings after any disaster event. Moreover, the 
methods developed in this research were not confined to damage detection 
application. For example, the methods developed as part of this research 
such as image segmentation using 2D and 3D features, the online learning 
framework for classification, change detection between point clouds, 
accurate roof segment delineation for 3D reconstruction and the 3D point 
cloud features proposed in Chapter 5 are generic enough to be considered 
in several other remote sensing applications such as object detection, 3D 
city modelling, cadastral mapping, and urban sprawl monitoring.  
 
The methods developed in this research were effective and sufficient to 
generate quick automatic damage maps containing the information of 
collapsed or heavily damaged buildings based on remote sensing images. 
This would directly satisfy the requirements of the first responders 
involved in speedy response activities. However, this would be insufficient 
for some other actors such as insurance companies. For example, as 
mentioned earlier, they need very detailed and high level information in 
the format like: window in first story is broken, staircase is collapsed, wide 
diagonal crack on the wall, roof top is inclined, chimney is broken, etc. 
Conducting research to design a methodology for automatically generating 
these kinds of high level information by utilizing (as well improving, if 
required) the methods reported in this research such as mapping of damage 
evidences and 3D modelling of the building from remote sensing data 
would be the next stepping stone towards an automatic comprehensive 
damage assessment system.  
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