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ABSTRACT 

Dominica is one of the most active landslide-prone areas in the Caribbean islands. Landslides, which 

usually occur during tropical storms and hurricanes, can result in catastrophic loss of life and property 

damage. Hence, for any development effort in the area, one should take into account of landslide-prone 

locations to reduce its negative consequences. For slope stability assessment, soil depth is considered as an 

essential factor. In this study, the influence of soil depths, derived from different soil depth models, on 

slope instability was analysed. Unfortunately, dense soil depth sampling in the field was very challenging 

due to the inherent young volcanic nature of the island, rugged topography, very steep slopes and dense 

forest cover. Besides, the available DEM lacks terrain details and contain some artefacts. However, models 

which explain the spatial variability of soil depth is required for slope instability assessment. Hence, three 

different techniques namely decision tree, multiple linear regression and soil water balance were applied 

for estimating soil depths. All the soil depth models predicted deep soil within stream channels. Decision 

tree and multiple linear regression model predicted shallow to moderately deep soil on the slopes while the 

soil balance model predicted moderate to very deep soils. The predictive powers of each soil depth model 

were checked against the field measurements. The results show that the soil depth predicted using the 

decision tree gave higher correlations with surface topography. Following the soil depth simulations, 

landslide susceptibility assessment was carried out using the infinite slope model in which various soil 

depth maps were used as one of the input data layers while other data (shear strength of soil, soil hydraulic 

properties, data on land use, topography, etc.) were kept constant. Also, the role of rainfall in landslide 

trigger is considered, and its influence was checked by varying between normal and extreme values. Then 

the factor of safety obtained from the infinite slope model under both normal and extreme rainfall 

conditions was validated against existing landslide inventory data. The result shows that soil depth, 

obtained from the decision tree, showed a good correlation with the existing landslide inventory data. 

Furthermore, the influence of slope gradient on slope failure was checked, which showed that most slope 

failures were located on slope angles greater than 37 degrees.  

 

 

Keywords: Soil depth, prediction, topographic variables, infinite slope, inventory landslide, model 

validation 
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1. INTRODUCTION 

1.1. Justification of the study 

 

Landslide and flood are the most frequently occurring natural disasters followed by tropical storms and 

hurricanes across the world. Both landslide and flood in combined affected more than 78million people 

globally and caused economic damage of about 59billion USD in 2016 alone(Guha-sapir et al., 2016). 

Landslide mainly is a common hillslope process which causes loss of life and properties in mountainous 

areas of the world. Its frequency has also recently increased despite the lack of comprehensive information 

on the actual damage it caused(Gariano & Guzzetti, 2016). Landslides caused worldwide fatalities of 

32,322 between the year 2004 and 2010. Likewise, the annual global economic loss due to geophysical 

disasters including landslides was estimated to be 32 billion USD in 2016 although this figure is ambiguous 

due to lack of detailed data (Guha-sapir et al., 2016).  

 

The main triggers of a landslide are rainfall and earthquakes, and several other environmental factors 

contribute to the probability of landslides occurring (Segoni et al., 2011). Environmental factors constitute 

the complex interactions of topographic attributes, geological and anthropogenic factors of a given area 

(Matori & Basith, 2012; Mccoll, 2015).  Topography initiates shallow landslides by controlling subsurface 

flow and through slope gradient(Montgomery & Dietrich, 1994). The demand for land due to population 

growth and urbanisations has forced people to settle on unstable slope regions (Di Martire et al., 2012). 

Then, people activities on unstable slopes like the construction of houses and roads aggravate slope 

instability. The global climate change has also significantly contributed to an increased slope instability of 

the last decades (Gariano & Guzzetti, 2016). Similarly, slope processes controlled by geomorphological, 

geological and hydrological factors indisputably induce slope instability and determine its distributions 

(Reichenbach et al., 2014). 

 

Assessment of landslide causes is useful for mitigation and future development of hazardous areas(Mccoll, 

2015). It involves mapping the probability of landslide occurrences using several environmental factors 

and different soil type related input parameters (Cascini et al., 2015; Sorbino et al., 2010). The role of soils 

in slope instability is undisputable because most of the slope failures happen through soil mass (Ran et al., 

2012). Broadly speaking, slope instability could be modelled using an either physical based model which 

utilise the physical properties of materials that control geomorphological processes or using an empirical-

statistical model which assumes slope instability to occur under the previous condition by using terrain 

attribute information derived from topographic data and land use data (Goetz et al., 2011). In the physical 

based model, infinite slope stability analysis method is widely used in many shallow landslide analysis, and 

it also considers soil depth as an input parameter (Montgomery & Dietrich, 1994; Kim et al., 2015; Ho et 

al., 2012; Gorsevski et al., 2006).  

 

Many types of researches have proved the significance of soil depth information in improving slope 

instability assessment. However, accurate soil depth measurement is very challenging and difficult to 

obtain at a spatial point (Fu et al., 2011; Michel & Kobiyama, 2016). Because, the boundary between depth 

to a hard surface (soil depth) and underlying bedrock is mostly gradational as different lithologic units are 

characterised by different soil depth in different climatic zones (D’Odorico, 2000). Also, the rate of 

weathering variation with depth disturbs the sharp boundary between soil and rock. Another factor that 

makes soil depth measurement a challenging task is associations of depth variation with site-specific 
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nature that depends on soil forming factors and landscape history (Wilford & Thomas, 2013; Schaetzl, 

2013).  

 

Despite the challenges, we can still obtain soil depth information from road cuts, river cuts, borehole site 

and other human-made incisions and landslide scarps of an area. Various researchers used soil mechanical 

and soil hydrologic properties to define the boundary between soil and underlying rock. Catani et al. 

(2010) described soil depth as the depth to the first significant marked vertical change in the hydrological 

property of soils which can be determined based on field grain size description. Cascini et al. (2017) 

considered soil depth as the depth at which the first change in geotechnical properties of the soil occur 

that could be decided based on field strength measurements. Kuriakose et al. (2009) also described soil 

depth as depth to relatively consolidated surfaces (based on soil strength). Besides, the clue of soil depth 

can also be obtained from the influence of parent materials. For example; carbonate rocks like limestone 

are highly susceptible to weathering because they are chemically reactive while quartz-rich materials are 

more resistant to weathering. Hence, in a similar environment, carbonate rocks form thin soil whereas 

coarse-grained mafic materials form deep soils. On the other hand, basic volcanic rocks produce soil 

suitable for plant growth, so we can see vegetation difference, whereas soils formed from acidic volcanic 

rocks possess high quartz minerals and are stable in structure but low in fertility(Gray & Murphy, 1999).   

 

Several soil parameters related to soil mechanical and hydraulic properties are required as an input in an 

infinite slope model to determine the influence of soil depth in landslide initiations. Soil strength 

parameters are either determined in the field (like cohesion) or analysed in the laboratory. However, 

parameters related to soil hydraulic properties are difficult and time-consuming to measure in the field, but 

it can be easily obtained from readily measured soil properties using a different method. One of the 

commonly used predictive functions of soil hydraulic properties is a pedo-transfer function (PTF)(Wosten 

et al., 2001). It is a predictive function of soil properties and variables from available soil information to 

parametrise soil process(Looy et al., 2017).  

 

1.2. Background study  

 

Prediction of soil depth spatial variability is essential for understanding and analysis of the slope process in 

a landscape (Lucà et al., 2014; Scull et al., 2003). Moreover, soil depth influences the spatial and temporal 

distribution of shallow landslides in mountainous areas (Montgomery & Dietrich, 1994; Segoni et al., 

2011; Kim et al., 2016). Also, soil depth determines a depth of slope failure surface and volume depending 

on the subsurface flow of water and its connectivity through the soil mass(Sorbino et al., 2010; Lanni et 

al., 2012; Fan et al., 2016). Although soil depth plays a crucial role in slope stability analysis, its detail 

remains a challenging task because of the various factors influencing its spatial distribution. Kim et al. 

(2015) correlated soil depth spatial variation to local topographic units to improve landslide predictions. 

Still, it is unlikely for soil depth to be strongly correlated to unique topographic attributes because of its 

various factors which control its depth. Derose et al. (1991) suggested analysing soil depth relationships 

with all influencing landscape factors to have accurate soil depth information. Practically, accurate soil 

depth information is obtained only through direct measurements which is costly and time-consuming.  

 

Many methods of soil depth estimation that have been developed through time are currently available. 

Several researchers used a single method while others compared different types of methods to get a good 

result. Tesfa et al. (2009) predicted soil depth using generalised additive and random forests statistical 

methods, but the result explained only 50% of the soil depth spatial variation within the catchment. 

Cascini et al. (2017) estimated soil thickness from topography and geological analysis for landslide analysis 
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which required the improvements of their results through geotechnical back analysis of failed slopes and 

geomorphological analysis. Sarkar et al. (2013) predicted soil depth from elevation, slope, aspect, slope 

curvature, topographic wetness index, distance from the streams and land use using a soil-landscape 

regression kriging model where the model result explained 67% of soil depth spatial variation. Kuriakose 

et al. (2009) compared multivariate statistical methods with geostatistical methods for predicting soil depth 

by applying regression kriging on environmental covariates of elevation, slope, aspect, curvature, wetness 

index, land use and distance from streams and obtained prediction result which explained 52% of soil 

depth variation.  

 

It is evident that the existing methods of soil depth prediction are not universal, and the issue of soil depth 

mapping is still open for further research because of uncertainties on the details of hillslope interiors 

(Zhang et al., 2018). These uncertainties could be either input uncertainty or model uncertainty (Bishop et 

al., 2006). Furthermore, soil depth mapping can be conducted using decision tree models where a detailed 

soil survey is not practical. It involves the correlation of field depth observations and explanatory soil 

depth distribution variables like topographic variables (Taghizadeh-Mehrjardi et al., 2014). Besides, soil 

depth field observations and the topographic explanatory variables can be related based on the general 

principles of soil distributions on the slope. Montgomery & Dietrich, (1994) related soil distribution on 

the slopes to soil formation through weathering and soil removal by erosion processes where they 

described the process as a soil balance. Kuriakose et al. (2009) used the soil balance principle and tested it 

in Southern India by relating soil depth to environmental variables using a script to produce a soil depth 

map. In general, it is logical to relate soil depth to topographic variables which assumes a relatively shallow 

depth with relatively young soils and a strong influence of geomorphological processes (denudation and 

accumulation). However, the relationship between soil depth distributions and topography does not 

always exist as in the case of a deep weathered tropical soil under rainforest that has a strong surface 

process and deep volcanic deposit.  

 

The present study area located in the Southern part of Dominica is one of the active landslide areas of the 

region. Previous studies on the area described the frequent extreme hurricane and tropical storm events as 

the main factor inducing landslides in the area. These studies are focused mainly on national scale 

landslide susceptibility assessment (De Graff et al., 2012; Zafra, 2015; van Westen, 2016), landslide dam 

failure (Jerome et al., 2010), and national flood hazard maps (Jetten, 2016). However, soil depth which was 

proved to be an essential factor in improving slope instability analysis (Lucà et al., 2014; Scull et al., 2003; 

Montgomery & Dietrich, 1994;  Segoni et al., 2011; Kim et al., 2016; Sorbino et al., 2010; Lanni et al., 

2012; Fan et al., 2016) was not given emphasis by the previous studies in the present study area. 

Therefore, this study assumes slope failure causes many damages unless identified in advance through 

slope stability analysis and the best way to improve the analysis result is by including soil depth as the 

principal input parameter because of slope failure sensitivity to soil depth.  However, soil depth maps were 

produced using different techniques to get options of improved results because of the quality of existing 

DEM, size of the area, density and the spatial distributions of field soil depth points.  

 

1.3. Factors influencing landslide occurrence: A Review  

Every slope has the potential to fail at some point in time based on the magnitudes of stress resisting 

failure along an assumed failure surface. Hence, the stability of the slope is assessed based on the balance 

between opposing forces and driving forces whose relative ratio is expressed as a factor of safety(McColl, 

2015). Popescu, (1994) classified factors that cause different stages of landslide stability into preparatory 

factors (factors that reduce stability over time) and triggering factors (factors that initiate movement) 

based on their function (Figure 1.1). Preparatory factors include antecedent rainfall, weathering, landcover, 
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Figure 1.1 Example of how the factor of safety changes in time due to many factors. Source: (Popescu, 

1994) 
 

(de)forestation and triggering factors like meteorological factors, earthquake and human factors (Gariano 

& Guzzetti, 2016).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A list of main factors that play a role in landslide occurrences is presented as follow. The general overview 

of some of the factors was also highlighted under the background study subtopic above. Usually, each of 

the influencing factors can also act together in causing a landslide and hence, influence one another.  

 

i) Topography  

Local topography influences the occurrence and spatial distributions of landslide through both the 

concentrations of subsurface flow and slope gradient (Montgomery & Dietrich, 1994). The increase in 

slope gradient facilitates slope failure under the force of gravity and increases the likelihood of slope 

failure because of an increase in shear forces on a steep slope. Mccoll, (2015), argued slope geometry 

(slope height and steepness) which is determined by material strength is only a precondition for landslide 

occurrences, and failure occurs when a factor of safety drops either suddenly or gradually by internal or 

external factors. Then, the very steep slope nature of the present study area is a potential facilitator for 

landslide occurrences.  

 

ii) Geology 

Lithology and weathering characteristics of materials control geomorphology and together influence the 

likely distribution of landslides (Dai & Lee, 2003; Mccoll, 2015). Geological structures and other planes of 

weaknesses like cleavages, foliation, bedding plane and weathering horizon found within lithologic or 

weathered mass are even the primary landslides influencing factors, mainly when favourably dipping to the 

valley side of the slope (Mccoll, 2015). Although the lithological parent materials of the present area are 

volcanic in origin and closely related, the spatial variability of rainfall caused variations in weathering 

effectiveness and produced different soil types that influence landslide occurrence. The soil types of the 

area have significant differences in strength and closely related in texture based on the weathering 

intensity, time, age of volcanic source materials(Rouse et al., 1986).  

 

iii) Climate 

 

The long term climate changes (mainly temperature and rainfall) influence the occurrence of a 

landslide(Gariano & Guzzetti, 2016). They stated that an increase in rainfall intensity and frequency 
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increases landslide occurrences because it is a primary landslide trigger. However, long term rainfall 

pattern affects the occurrences of deep-seated landslide more than shallow slide(Mccoll, 2015). 

Temperature influences landslide occurrence in rock slopes by altering rock fracture openings due to 

icefall and avalanche, and deep-seated landslides by changing the hydrological cycle(Gariano & Guzzetti, 

2016). The primary role of rainfall is to affect factors of shear stress and shear strength adversely. Hence, 

rainfall reduces soil strength and effective stress(through increased weight), increase river discharge and 

removes basal and lateral slope support, lubricates failure surface between minerals and facilitates slope 

failure(Crozier, 2010). Furthermore, rainfall infiltration into the soil slope causes groundwater fluctuations 

and leads to slope failures.  

 

iv) Earthquake 

 

Ground shaking by earthquakes cause deteriorations of slope material strength through particle 

rearrangement and reduce slope stability(Mccoll, 2015). Such a role was further elaborated that even 

though the present earthquake does not lead to failure, it will prepare the slope for the next event. 

Although the frequency of landslide changes after large earthquakes occur, the frequency of an earthquake 

is not the same as the frequency of climatic factors to cause frequent landslides(Gariano & Guzzetti, 

2016). Earthquakes occurrence of Southern Dominica is mainly associated with volcanic complexes like 

Plat pays which is one of the active volcanic centres of the island. However, its cause of landslide 

occurrence lacks historical records (Degraff, 1987) or its intensity was not high enough to cause landslides 

compared to rainfall which is the major landslide influencing factor in the area(van Westen, 2016).  

 

v) Groundwater fluctuation 

 

Groundwater fluctuation is the most common dynamic trigger which affects landslide in the form of 

increasing slope weight, changing pore pressure against normal stress and changing inherent material 

strength(Mccoll, 2015). The influence of groundwater in the landslide has also been considered in many 

physical based models to analyse slope stability(Kim et al., 2015; Sorbino et al., 2010; Iverson, 1990) and 

reducing its effect is one of the remedial measures in stabilising slopes (Popescu, 2002). Previous work by 

Rouse, (1986) and Rouse, (1990) in Dominica island argued the main cause of shallow slide in allophane 

soil and other soil types was a rise in pore pressure due to the increase of groundwater table that reduced 

effective stress and shear strength of the soils along failure surfaces. But they also indicated that the highly 

porous and highly water content capacity of Dominican soils needs high rainfall to rise pore water 

pressure in the soils.  

 

vi) Weathering 

 

A physical and chemical weathering processes reduce the intrinsic strength of slope materials, increase 

pore pressure and permeability and contributes to landslide(Mccoll, 2015). In general overview, shallow 

failures occur on a weathered mass of steep residual soils and deep failures occur on highly weathered soil 

mass(Calcaterra & Parise, 2010). Dominica, having humid tropical climate have intense chemical 

weathering by which the soil of the area was formed(Reading, 1991; Degraff, 1987; Rouse et al., 1986). 

Hence, the weathering process is one of the factors that influence landslide of the present study area.  

 

vii) Vegetation effect 

 

Vegetation can have both positive and negative influences on slope instability. The positive aspect is 

maintaining drier soil and reducing pore water pressure through rainfall interception and groundwater 
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transpiration. It can also negatively influence by changing soil infiltration and evapotranspiration, adding 

weight to slope mass which causes slope failure(Popescu, 2002). In Dominica, most of the areas where 

vegetation cover became sparse due to the previous hurricane and tropical storms were more affected by 

landslides than areas with dense vegetation as observed during fieldwork. However, the fast-growing 

vegetation in the area covered some of the fresh landslide scarps which make it challenging to establish 

the relation between observed landslide and vegetation cover. Van Westen (2016) also mentioned the 

absences vegetation on potential landslide areas as interpreted from stereo images during inventory 

landslides preparation but commented on lack of statistical relationship between landslide occurrence and 

vegetation cover of the area because of lack of detailed vegetation characteristic data. 

  

viii) Removal of lateral support  

 

Lateral support of slopes can be removed either by human activities, incisions of river flow, increased 

throughflow, reductions of glacier volume, wave action along the shore or related factors (Crozier, 2010).  

Once lateral support starts to be removed, landslide could continuously occur, and each previous failures 

removes support of stable slope leading to reduced lateral stress and strength and causing progressive 

failure(Popescu, 2002). Existing inventory landslide produced by Van Westen, (2016) showed a dense 

landslide close to stream channels and road which indicated the removal of lateral support is another 

factor influencing landslide occurrence of the study area.  

 

ix) Frost action 

Temperature change in cold climates leads to thawing of ice between rock fractures and soil pores that 

reduces the strength of the slope mass and facilitates slope failure (Crozier, 2010; Mccoll, 2015). This 

factor has little or no influence in inducing landslides of the present area because of its geographic location 

in the tropical climate.  

1.4. Problem statement 

 

Dominica is one of the active landslide areas of the Caribbean islands which is hit by frequent tropical 

storms and hurricane. Most of the resulting slides happened through the soil mass and caused frequent 

property damages and threatened human lives. Hence, the influence of soil depth in landslide initiation is 

undeniable in the area while it is difficult to obtain accurate information. Many researchers developed 

various models to study the influence of soil depth in landslide analysis. However, there is minimal 

research which explicitly gives a method that is used for site-specific condition and accurately predicts soil 

depth for slope stability assessment particularly for the large and data-poor area due to its associated 

uncertainties. That is also why issues of soil depth prediction are still open for further research.  

 

Despite the presences of various soil depth prediction models, they are not without limitations. Liu et al., 

(2013) broadly classified models used for soil depth prediction into stochastic models, which assumes a 

statistical relationship between observed data and topographic variable and a physical based model, which 

focus on soil evolution process. Both methods require intensive data, and so far, their effectiveness was 

tested mostly on the small test area. Besides, most of the existing researches focused on the use of a single 

model from either of the broad model classes mentioned above and applied on small catchment where 

soil depth has a good relationship with the topography. However, Tesfa et al. (2009) stated the use of a 

single method could only show partial success because of the difficulty to incorporate various uncertainty 

parameters in a single model. Hence, the use of different models for soil depth prediction is believed to 

give more options to improve prediction results. For example, the applicability of empirical models like 

geo-statistics is limited to test area and require a significant amount of field data, but incorporating 
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physical based model will improve the prediction result(Liu et al., 2013). Presently, there is no research 

done on soil depth predictions in Dominica which is one of the most sensitive input parameters in slope 

stability analysis although the island is frequently affected by the landslides. In the present area, both the 

local government and the community are also interested to know the landslide probability of occurrence 

around settlements and infrastructures. 

1.5. Objectives 

1.5.1. General objective 

 

This study intends to analyse the influences of different soil depth models on slope instability initiation 

using topographic predictor variables and field data.  

1.5.2. Specific objectives  

The following specific objectives are formulated to achieve the general objective of the present study.  

i) To create soil depth maps using different techniques based on soil depth observations and 

topographic variables.  

 

• Which spatial interpolation method gives the best results in assessing soil depth?  

 

ii) To analyse the spatial relationships between soil depth and associated topographic variables.  

 

• Which topographic variables explain well spatial variability of soil depth?  

• Which locations have a soil depth that cannot be related to the topography, and why?  

• Can we explain the uncertainty of soil depth predictions in relation to the quality of the 

variables used?  

 

iii) To assess the sensitivity of slope instability of the area to the soil depth model results.    

 

• What is the sensitivity of slope instability to soil depth relative to other variables?  

• Is this influence of soil depth different in a year with average rainfall as opposed to a 

year with the extreme rainfall?  

 

iv) To validate slope instability prediction results using existing inventory landslide data.   

 

• Can the result of slope instability model be related to the landslide inventories?  

 

 

1.6. Structure of the thesis 

 

This thesis is structured as follow;  

 

Chapter 1: Introduces the background and justifications of the study, problem statement, objectives and 

review of slope instability factors 

 

Chapter 2: Describes the study area, the climate, the geology and landslides of the area (inventory landslide 

and field observations) 
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Chapter 3: Describes the available datasets and research methodology followed 

 

Chapter 4: Presented the result of soil depth models and model validations through their relationship with 

the topographic attributes   

 

Chapter 5: Presented the results of infinite slope model and its validation using inventory landslides.  

 

Chapter 6: Discusses the results of soil depth and infinite slope model based on objectives achieved, 

concludes the key elements of the research and indicates possible future research in the form of 

recommendations.  
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Figure 2.1 Location map of the study area 

2. STUDY AREA 

2.1. Location and general description 

 

The study area is located in the centre of the Lesser Antilles island arc, to the east of Caribbean sea and 

southern part of Dominica island, and covers an area of 43 square kilometres (Figure 1). The island is a 

volcanic formation with rugged topography and dense vegetation cover.  The geology of the area is 

composed of various volcanic rocks which include ignimbrites, lava flows, lahar deposits, and volcanic 

ashes (Van Westen, 2016). The soil of the area is formed by weathering of tropical wet climate, and the 

rapid denudation caused slopes with thin soils and valleys filled up with debris over time, by erosion and 

mass movement (Jetten, 2016). The test area is defined by geographic coordinates of 15° 18' 26.7''N to 15° 

12' 40.27"S latitude and -61° 20' 54.67"W to -61° 15' 38.19"E longitude, where the elevation reaches up to 

1176m above sea level.  
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2.2. Climate 

 

Dominica has a tropical climate with hot and humid air all year round. The rainfall patterns of the area 

from 1975 to 2013 showed the mean annual rainfall of 2620mm, which varies from a minimum of 

1950mm to a maximum of 3937mm. The rainfall variation of the area is also highly seasonal.  According 

to Reading (1991), rainfall which varies between the Western leeward coast that receives low rainfall and 

the perennial wet mountainous interior that receive high rainfall controls the soil distributions of the area. 

Also, rainfall variability caused rates of weathering variations over a short distance of the small island (Rad 

et al., 2013). Dominica has a dry season from January to mid-April and rainy season from mid-June to 

mid-November. Tropical storm and hurricanes most likely follow extreme rain of the area which occurs 

between August to October. Dominica has experienced many hurricane events at a different time out of 

which the two most destructive hurricanes were hurricane David and hurricane Maria which were category 

five hurricanes. Hurricane David which occurred in August 1979 caused many damages and generated 

many landslides, collapsed the economy and destructed infrastructures(Degraff, 1987) and similarly, 

hurricane Maria which happened in September 2017 also caused many disastrous damages to the island. 

The peak wind speeds were 280Km/hr and 282Km/hr for Hurricane David and Hurricane Maria 

respectively capable of producing severe losses. 

 

 

 

Figure 2.2 Rainfall pattern of Dominica (from 1975 to 2013) 

2.3. Geology 

 

Dominica is mostly made up of volcanic rocks of andesitic to dacitic rock types and their weathering by-

products that formed rugged relief(Rouse, 1990). The volcanic products are mainly pyroclastic fall deposit 

types. In addition to the fall deposits, Pleistocene-recent dome forming pumiceous pyroclastic flow 

deposit form the mountain chains of the island (Howe et al., 2015). Because of such a close similarity in 

lithologic types and age of the island, soil formation is attributed to the climatic variability within the 

island(Reading, 1991).  

 

Degraff (1987) described the geologic history associated with repeated volcanic eruption as the primary 

cause of landslides in the area. He argued, such a repeated and successive eruption has resulted in creating 

contacts (weak zones) between successive rock units dipping to either side of the highlands. Availabilities 
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of geological discontinuities between rock layers facilitate deep chemical weathering and influence soil 

formation and landslide occurrences.  

2.4. Soils 

 

Soils of the area are volcanic in origin and significantly vary as a result of variation in leaching effects in 

response to change in climatic factors, the age of the island and geology (Reading, 1991; Rouse et al., 

1986). The present study area was large, and it was impossible to access all the soil types available within 

the test site. Hence, soil class information on the area was obtained from the previous works by Rouse 

(1986) who classified soils of the island into four major types as follows; (1) Smectoid soils also called 

black cotton soils, or tropical black clays were originated from pyroclastic volcanic materials, shallow in 

thickness and impermeable due to montmorillonite clay content. It occasionally has cemented silica pan at 

B-horizon that made it have high dry unit weight subsoil and low porosity. (2) Kandoid soils: A reddish to 

bright reddish soil because of dominant iron oxide mineral content are found around older volcanic areas, 

relatively thick, has no hardpan, susceptible to erosion or failure. (3) Allophane latosolic: Are deep, organic 

reach and covers the interior part of the young island reliefs and mostly formed due to slope erosion. (4) 

Allophane podzolics: Covers the wettest part of the island, high organic matter content and moderate 

thickness.  

 

The available soil type map of the area is a generalised map which was prepared by Lang, (1967) and 

converted into GIS file by van Westen, (2016) (Figure 2.3B) for easy use. Soils were classified based on 

rates of chemical weathering that is enhanced by the tropical climate of the area. Regarding the degree of 

weathering, Protosols contain a large part of un-weathered minerals; young soil are at early stage of 

weathering, Smectoid soil is weathered clay, Allophane latosolic which is found in older volcanic deposits 

takes less time to be weathered compared to deeply weathered Kandoid latosoilcs clay (Rouse, 1986) 

(Figure 2.3A). These soils have unique engineering properties from transported or re-deposited soils 

(Reading, 1991), but the information was used as a soil texture from which soil hydraulic properties were 

generated for infinite slope input.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3A. Soil type of Dominica based on degree 

of weathering clay mineral content: Source: (Rouse et 

al., 1986) (Percent in the bracket shows the proportion 

of clay mineral) Figure 2.3B Soil type map of the area: Source:(Lang, 1967) 
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2.5. Vegetation and land use  

 

Dominica has diverse vegetation type which varies with elevation variation and climate. Despite the 

agricultural expansion, charcoal and wood production which are the primary threat to the forest cover of 

the island, its undisturbed forest cover is estimated to be more than sixty per cent (ECU, 2000). The 

steepness of the slopes and rugged mountainous nature of the area also hindered fast expansions of 

agricultural land and contributed to conservations of the undisturbed forest cover. Forest cover type and 

variation which was reported by FRA, (2014) shows the semi-deciduous forest dominated by shrubs is 

found at the lower elevation and on the west coast of the island. Mature Rain Forest which is a dense 

forest occurs toward the interior of the island and between the elevations of 270m and 430m a.s.l.  

Montane forest dominantly occurs on thin soil-covered slopes and above 610m altitude while the 

Secondary rain forest distribution is controlled by shifting agriculture. The evergreen forest is dominant on 

the dry side of the island. However, there is no recent and detailed land use data for the island at present. 

The existing land use data obtained from physical planning division department of Dominica shows 

general information about the distributions of settlements, infrastructure, locations of resource site like 

quarry and various forest type of the area.  

 

The vegetation cover of the area is usually affected by the frequent hurricane and tropical storm 

occurrences as shown in (Figure 2.4). The picture on the left shows the drying tree which was strongly hit 

by tropical storms, and the picture on the right side indicates trees recovering after tropical storms. The 

recovery is a mixture of new leaves and vines that overgrow dead trees. The change in vegetation cover is 

also believed to have effects on the occurrence of landslides through the root system and weight of the 

plant. The impact of plant weight is difficult to incorporate in the present study while the cohesion of 

plant root is recognised in slope stability system.  

 

Figure 2.4 Effects of hurricane Maria on the vegetation cover (on the left, photo from Dominica News online) and 
the tropical rainforest after recovery (on the right, photo from Jetten, 2018) 

2.6. Landslides of the area 

Dominica is one of the most landslide prone areas of the Lesser Antilles in West Indies island groups, but 

there is not much information on landslide occurrences. The geologically active volcanic nature coupled 

with steep mountainous terrain and frequent extreme rainfall events made the country susceptible to 

landslides. Degraff, (1987) analysed landslide occurrences of the area considering topography, geology and 

hydrology as essential factors. He used aerial photography for landslides interpretation and classified the 

movement types into a slide, fall and flow based on materials involved. Accordingly, more than 980 

individual landslide points have been identified in the island. As part of validation work, Degraff et al. 
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(1990) conducted fieldwork on selected portions of the island (present study area was involved) and 

identified additional 183 slope failures where the influences of slope steepness, soil types and vegetation 

cover was recognised. Since then different attempts were made to record landslides of the area for specific 

work objectives, but it was not organised into a common database until van Westen, (2016) collected 

historical landslide data and incorporated into their work in 2016.  

2.7. Drainage networks 

 

The area has a dense drainage density that cut through the young volcanic terrain. Erosion materials are 

accumulated within the drainage channels forming thin to thick deposits. Drainage channels of flat valley 

areas were filled with debris flow deposits because the drainage channel width increases from source to 

the outlet areas near the coast and energy of flowing water ceases. Most of the drainage channels of the 

study area also contain dense landslides because of slope undercuttings. In particular, soft volcanic 

deposits are highly susceptible to slope base erosion and caused several landslides.  

2.8. Settlements 

 

Dominica has an estimated population size of over 73,000 people. Majority of these people lives near 

coastal areas because of the topographic nature of the island. Many settlement areas are located in the 

southern part of the island (present study area) as it is near the coast. The area is also one of the active 

landslide areas of the island, which is hit by frequent hurricanes and tropical storms. Most people of the 

study area dwell in local villages of Pichelin, Grand Bay and petite savanne (Figure 2.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                            Google earth images showing housing of A) Petite_savanne area 

and B) Grand bay area 
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Figure 2.5 Settlement map of the area.  
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Figure 3.1 Soil depth variation along catena in a tropical humid climate. Source (Schaetzl, 2013).  

3. MATERIALS AND METHODS 

3.1. Introduction 

Presently, many models are developed for estimations of soil depth spatial distribution. Liu et al., (2013) 

broadly classified models used for soil depth prediction into stochastic models, which assume a statistical 

relationship between observed data and topographic variable and physically based models, which focus on 

soil evolution process. In this study, three different soil depth prediction techniques; decision tree, 

Multiple regression and general soil balance equation which assumes a statistical relationship between soil 

depth and topographic variables were used. Then, the model results were separately used as the principal 

input parameter in an infinite slope model to analyse soil depth influence in slope instability initiations. 

Soil depth maps and other infinite slope model input parameters were run in a PCRaster script for daily 

time steps under normal and extreme rainfall condition scenarios for one year. Eventually, infinite slope 

model results produced using different soil depth maps from the three soil depth prediction techniques 

was validated against an existing inventory landslide polygon.   

3.2. Methods for assessing soil depths 

The complex topographic nature of the area, lack of strong correlation between observed soil depth and 

predictor variables and lack of dense field data forced soil depth to be predicted by three alternative 

methods. Multiple soil depth maps were believed to give an option for better soil depth maps which gives 

better landslide prediction results in the infinite slope model. 

 

(1) decision tree 

The decision tree is a decision rule based system of digital soil mapping which correlates dependent and 

independent variables and produces an output map according to the developed tree structure partitioning 

(Taghizadeh-Mehrjardi et al., 2014). In this study, soil depth is assumed as the dependent variable which 

varies based on independent topographic variables (Slope gradient, profile curvature, distance to river and 

TWI). Topographic variables were classified first into different classes based on their presumed 

relationship with soil distribution. This relationship was assumed to follow soil catena regardless of the 

origin of the topography. Accordingly, the soil continuum was divided into five artificial soil depth classes 

(very shallow to very deep) based on the work of Schaetzl (2013) to build a tree structure for different 

depth classes. The first vertical bar (from left to right) (Figure 3.1) represent the relative soil depth on the 

respective slope position.  
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The decision tree structure of the model was shown in (Chapter 4) under the decision tree model setup 

and result. The performance of the model was later checked by performing validation through the 

statistical correlation of observed depth in the field and predicted soil depth map.  

 

(2) Multiple linear regression model 

 

The model predicts the spatial variance of the dependent variable based on linear combinations of 

independent variables (Yilmaz & Kaynar, 2011). Here, it was used as a predictive analysis of a continuous 

soil depth based on the independent topographic variable. The same topographic variables used in the 

decision tree model were used in regression analysis to have a comparable result. Multiple regression was 

modelled using SAGA GIS 2.3.2, but the output is influenced much by the significant independent 

variables used for prediction. Soil depth was predicted based on the equation of the form below. 

 

ŷ = b0 + b1X1 +…+ bnXn + Ɛ ------------------------------------------------------------------------------------(3. 1) 

 

where ŷ =predicted variable (soil depth), x1-4=independent topographic variables (gradient, curvature, 

distance to river and TWI), b0=constant and b1-n=regression coefficients, Ɛ=error term.   

Soil depth observation points were divided into model calibration and validation datasets to check the 

predictive power of the model.  

 

(3) General soil balance equation 

 

The model was initially used by Dietrich et al. (1995) to predict the distribution and variations of colluvial 

soil depth for shallow landslide analysis based on soil mass balance between soil production by weathering 

and soil removal by erosion. Later, Kuriakose et al. (2009) tested the model on the Ghats mountains of 

Southern India using environmental variables based on the original work of Dietrich et al. (1995). In this 

study, the model was used because the previous test area is very similar to the present study area in terms 

of topography and landslide process the present model considers but differs geologically. It was also 

intended to have multiple soil depth maps to justify the influences of soil depth in slope instability 

initiations. The model used the same parameters as the two models above; slope gradient, distance to the 

river, slope profile curvature and TWI as an input parameter to produce soil depth. The model works in a 

principle of multiple regression above but with an adjustable coefficient (Equation 3.2). The following 

equation was used to create soil depth.   

 

Soil depth = (1‐a*G – b* Driver/Driver max + c*Curvature + d *TWI/TWI max) 
e 

-----------------------(3.2) 

 

Where, G = slope gradient, Driver = is the relative distance to the river channel on the slope, 

Curvature=Profile curvature, TWI=topographic wetness index. The values for parameters (a) to (e) are 

optimised based on the one on one correlations of field soil depth observations and the topographic 

factors derived from DEM. Hence, the topographic variable with a higher correlation with soil depth is 

given higher weight. Multiple iterations were made to bring about a good correlation of soil depth and 

topography which is the basis of the present soil depth models. 

3.3. Slope instability assessment  

3.3.1. The infinite slope model 

The infinite slope model is a limit equilibrium based slope instability analysis and widely used shallow 

landslide analysis (Iverson, 1990). The model determines the balance between shear stress and shear 
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Figure 3.2 Infinite model diagram. Source (Kim et al., 2015) 

strength of slope materials. The ratio between strength and stress factors is expressed as a factor of safety 

to assess the potential sliding surface as the stable or unstable slope (Kim et al., 2015). The classical 

infinite slope model has been applied mostly to a small area. Also, it was included in a GIS environment to 

be used for the large area where the factor of safety is calculated at pixel-based (Lee & Park, 2016,  Segoni 

et al., 2009). The Factor of safety is calculated for individual pixels based on equation 3.3 below where the 

slope planar failure plane is assumed as shown in Figure 3.2.  

𝐹𝑆 =
𝑐+𝑐𝑟+(𝛾𝐷−𝛾𝑤𝑧𝑤) 𝑐𝑜𝑠2𝛼 𝑡𝑎𝑛𝜑     

𝛾𝐷𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼
-----------------------------------------------------------------(3.3) 

Where c = cohesion of soil (Kpa), cr = cohesion of plant root (Kpa), γ = unit weight of the soil (KN/m3), 

D = soil depth (m), γw = unit weight of water (KN/m3), zw =groundwater pore pressure (m), α = slope 

angle (degree), φ = soil friction angle (degree).    

 

In addition to the factor of safety of a cell of a raster map, infinite slope model also gives a cumulative 

number of days in a year when the slope is unstable (equation 3.4).  
 

  FSDays = FSDays + if( FS < 1, 1, 0)-----------------------------------------------------------------------------------(3.4) 

Where FSDays = cumulative days in a year when the slope is unstable and FS = Factor of safety.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this study, the infinite slope model is implemented in the PCRaster modelling language (Karssenberg et 

al., 2009) and the code is added in Appendix 2. The model calculates the water balance for a single layer of 

soil on a daily basis, whereby part of the soil profile can be saturated with groundwater, creating a 

saturated and unsaturated zone. Figure 3.3 shows the flow chart of the model with hydrological fluxes and 

stores. The daily groundwater fluctuations are coupled to slope stability per pixel (Appendix 2). Input 

maps used includes DEM and its derivatives (local drainage direction, river width, outlet maps), soil units, 
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daily rainfall station and soil depth maps. The soil depth maps were raster maps produced using three 

techniques explained above. Besides, soil and land use data were used as an input constant. Daily rainfall 

data and potential Evapotranspiration data (calculated) were input as time series files which changes daily 

within the years considered (2004 and 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.3.  Flow diagram of water balance and infinite slope model process in PCRaster. 

 

The infinite slope model involves a dynamic process, and it was modelled in a daily time step. The 

dynamic modelling also involved groundwater as one of slope destabilising force. The pore water pressure 

(Figure 3.2) reduces effective normal stress on the slope and causes slope failure. The initial groundwater 

depth was defined in the model based on the soil depth. Then, it varied per day based on soil depth, 

rainfall intensity of selected year and soil hydraulic conductivity for the whole year. The outputs of the 

PCRaster infinite slope model are a daily factor of safety and number of unstable days in a year. 

 

3.3.2. The direct influence of soil depth in infinite slope model 

 

Soil depth directly influences the infinite slope model in different ways. In the factor of safety equation 

(equation 3.3) and model diagram (Figure 3.2), soil depth is specified as parameter D which influence the 

mass of the slope and depth of failure surface. Besides, soil depth also affects the water balance part in an 

infinite slope model. It is shown in Figure 3.2 that an increase of vertical rainfall infiltration increases soil 

saturation which also decreases soil strength and facilitates slope failure. However, Kim et al. (2015) stated 

that if the soil is fully saturated up to the surface (D < depth of (zw)), saturated overland flow occurs 

(Figure 3.3). In addition, rainfall infiltration also causes different levels of soil saturation based on soil 

depth of the slope (Chae et al., 2015). The slopes having shallow soil cover can quickly be saturated with 

rainfall infiltration, and shallow slope failure happens. However, it takes a longer time for deep soil to get 

fully saturated by direct rainfall infiltration and soils are assumed to be saturated by the rise of 

groundwater table which causes deep slope failures. Also, there are significant effects of plant zoot zones 
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Figure 3.4 Landslide inventory map and example of google earth image with landslide polygon. Source:(van 

Westen, 2016) 
 

in slope stability of vegetated soil slopes as shown in the process above (Figure 3.3). At a given soil depth, 

vegetation controls the initial moisture content of the topsoil through plant root water uptake and plant 

evapotranspiration. According to Leung & Ng (2013), the influence of vegetation in slope stability varies 

based on the hydrogeological response of soils during wet and dry seasons. Hence, the plant root zone at a 

given soil depth influences the porewater pressure in the soil and controls slope stability (Figure 3.3). 

Therefore, the direct influence of soil depth in the infinite slope model is in several ways, and presently the 

process is included in PCRaster to model slope instability of the area.     

 

3.3.3. Model calibration and validation 

 

Soil depth models were calibrated and validated based on field soil depth values while infinite slope model 

was calibrated using input constants obtained from field and literature. Unlike cohesion of some soil types 

measured in the field there was no laboratory analysis made for soil strength parameters. Hence, the values 

of constants related to soil shear strength and land use data obtained from secondary sources were varied 

between the minimum and maximum to use in the infinite slope model calibration. Infinite slope model 

calibration also involved defining groundwater threshold value through an iterative process to avoid 

overestimation of FS results which was checked by comparing with inventory landslide validation datasets. 

Hence, infinite slope model validation involved existing intensive landslide inventory data and Google 

earth images. Example of the existing inventory landslide including runout part is shown in Figure 3.4 

below. However, this study is focused on landslide initiation areas of the slope, and the runout part of the 

inventory landslide was removed before used in the infinite slope model as model validation.  
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3.4. Data collection and preparation 

 

Many datasets were used in this study despite the quality issues associated with some of them. Soil depth 

was the primary data collected from the field. Topographic factor maps were derived from DEM of 10m 

resolution. Long-term daily rainfall data was obtained from Melville Hall Airport station which is near the 

study area due to unavailability of rainfall station in the study area. Most of the soil physical properties 

were obtained from secondary sources while cohesion measurement was made using a shear vane test in 

the field. Also, the land use data was collected from the secondary source, and canopy cover percentage 

was calculated using (equation 3.5). Potential evapotranspiration was calculated based on the geographic 

location of the area and daily temperature data. The descriptions of data used in this study are given as 

follows.  

3.4.1. Topographic data 

 

The significance of topographic data in soil depth model has been mentioned in studies of (Kuriakose et 

al., 2009; Sarkar et al., 2013; Tesfa et al., 2009) and its significance in landslide model was elaborated in the 

work of (Cascini et al., 2017; Fu et al., 2011; Lanni et al., 2013). However, the quality of topographic data 

significantly affects the results of both soil depth and infinite slope model. Three sources of topographic 

data were available for the study area (radar, ALOS PALSAR and DEM interpolated from contour). 

However, none of them showed the ground truth of the area where steep slope and sharp ridges are 

prevalent. All the DEMs are smooth, and some of them also contain artefacts. In this study, DEM derived 

from contour is chosen to be used throughout this study because of the minimum artefacts it possesses 

compared to the other two DEM types. This DEM was produced in the CHARIM project by a kriging 

operation using a Gaussian semi-variogram on contour line data. However, these contour lines were 

themselves a product from ArcGIS (automatically generated) because the original digitised data was no 

longer available(Jetten, 2016). Hence the DEM lacks terrain details.   

3.4.2. Soil data 

Soil cohesion was measured in the field as mentioned above while porosity, field capacity, wilting point 

and bulk density were obtained from pedo-transfer functions by Saxton & Rawls (2006) based on soil 

texture class. Soil cohesion was measured in the field on a vertical soil profile, and an abrupt change in soil 

strength was used to define soil depth. Soil cohesion values measured in the field are assigned to the 

different soil types based on the existing soil type map of the area (Figure 2.2B) and its descriptions.  

Later, the soil cohesion values were varied between the minimum and maximum to decide their optimum 

value used in infinite slope model for model calibrations. Soil cohesion values of those soil types not 

encountered in the field and the soil friction angle were obtained from a website called 

www.geotechdata.info that provides standard geotechnical parameters for soil according to USCS 

classification. It gives a range of soil cohesion and friction angle values for normally consolidated soil.    

 

3.4.3. Land use data 

 

Analysis of slope stability per land use, particularly for settlement areas is helpful to reduce its 

consequences, but the existing land use data obtained from physical planning division department of 

Dominica is from the unknown date and of poor quality.  So, detailed slope stability assessment for each 

land use type is not possible. However, an overlay map of land use data and inventory landslide is shown 

in Appendix 1 to inspect the locations of settlements relative to landslide areas visually. Vegetation types 

are also obtained from the same department, but the canopy cover percentage was calculated based on 

NDVI from Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) image 
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obtained in 2018 by USGS. The NIR and Red bands were used to calculate the NDVI.  NDVI values 

were later converted to canopy cover based on the cover equation (equation 3.5) after (Van der Knijff et 

al. 1999). Vegetation controls both hydrological and mechanical process of a landslide that could be a 

positive or negative effect(Ghestem et al., 2011).  

 

 

Cover = 1 – exp (− α  
𝑁𝐷𝑉𝐼 

(𝛽−𝑁𝐷𝑉𝐼)
 )………………………………………………………………………………………………. (3.5) 

 
Where α and β are 2 and 1 respectively  
 

3.4.4. Rainfall data  

 

Long-term daily rainfall data from 1974 to 2013 was obtained from Melville Hall Airport station. The 

values range from zero to an extreme of more than 400mm which shows the presence of significant 

rainfall variability in the area. However, the assumption of no slope failure occurs during the dry season 

was made for the slope stability analysis. Hence, the considerable rainfall amounts assumed to trigger slope 

failure are from the year with average rainfall and the year with extreme rainfall values caused by 

hurricanes and tropical storms. This is also helpful to obtain comparable slope instability result for two 

different rainfall scenarios. Then, the year 2009 was chosen as a year with an average daily rainfall of the 

area based on the absence of extreme event during that period. The year 2004 contains an extreme rainfall 

event which amounts 422mm/day (Figure 3.5), and this value is also close in amount to category five of 

hurricane Maria of September 2017 that generated thousands of landslides. The total annual rainfall values 

are 2590.9 and 3731.8 for 2009 and 2004 respectively. The daily rainfall data was used as a time series file 

in the infinite slope model. Potential evapotranspiration was also used as the time series data in the model.     

 

 
Figure 3.5 Daily rainfall amount (mm) of Extreme year (2004) and Normal year (2009) 
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Figure 3.6 Typical landslide and soil depth in the study area 

3.4.5. Landslide inventory data 

 

The most intensive landslide inventory of the area was made by van Westen, (2016) from historical 

information on landslide occurrences and multi‐temporal visual image interpretation. They identified more 

than 1,600 landslides for the whole island and combined it with historical landslide data to produce 

landslide inventory database. Also, landslides which occur from the tropical storms Erika in 2015 and 

hurricane Maria in 2017 are included in the inventory landslide.  

3.4.6. Field data collection methods 

 

Sampling strategy for fieldwork was developed using an application called QField in QGIS in which 

shapefile of an existing landslide inventory data was loaded for finding landslide scarps in the field. 

Besides, road cuts and river incisions were followed for soil depth measurements.  

 

Fieldwork was conducted in October 2018 to collect data on soil (soil depth, cohesion) and landslides. 

The purpose of obtaining data from the landslides is also for model validation. Different landslide 

characteristics and sizes were observed during fieldwork (Figure 3.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It was challenging to find depth to hard surface or bedrock most of the landslide scarps during fieldwork. 

In such case, depth to slip surface was measured but considered as soil depth for further soil depth model 

and later in infinite slope analysis. Stream incisions were also followed to find exposed depth to bedrock. 
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Figure 3.7 Flow chart of research methodology 

Because of the complex volcanic terrain nature of the area and lack of a detailed geological map, 

identifications of exact volcanic deposit boundaries were not possible both before and during fieldwork. 

The very steep slope nature of terrain which was very slippery during rainfall and dense vegetation cover 

restricted soil depth measurements close to the road network, stream channels, landslide scarps close to 

either stream cut or roads. Few points were measured using soil Auger penetration.  Accordingly, one 

hundred nineteen soil depth points were collected during the fieldwork for calibration and validations of 

soil depth models. 

 

3.4.7. The use of Pedo-transfer functions (PTF) 

 

PTF transform easy obtained soil information (texture in this case) into both soil hydraulic properties and 

soil water capacity where water in soil vary between field capacity and wilting point. It is used to fill a gap 

between existing soil properties and soil properties required in modelling. In this study, soil properties like 

saturated hydraulic conductivity, wilting point, field capacity, a bulk density of soils and soil porosities 

were parameterised using soil texture based on the work of Saxton & Rawls, (2006). These parameters 

were used as input of soil properties in infinite slope model.    
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4. RESULTS OF SOIL DEPTH MODELS 

Three different methods described in chapter 3 were used to produce soil depth maps, and their spatial 

relationships with topographic variables were analysed through which the first and second specific 

objectives of the research are achieved. 

4.1. Performance of field observation points  

 

A total of 119 soil depth and landslide slip depth points were collected during fieldwork (Figure 4.2B) and 

later, all the points were considered as soil depth for modelling purpose. However, the number and 

distributions of soil depth points were not significant enough to make point interpolations through 

commonly used methods of creating a surface from observation points like geostatistical interpolations. 

Hence, the present soil depth interpolations were made based on the assumption that soil depth 

distribution pattern on topography has spatial relationships with the topography as described in chapter 

three. In this way, four topographic variables were extracted from DEM (Figure 4.4) and correlated with 

field-based soil depth observations as shown in (Table 4.1) to establish a basis for the present soil depth 

models.  

 
Table 4.1 Correlation between all soil depth observations and the predictor variables (n=119) 

  Soil depth 

observations 

Profile curvature Distance to river Slope gradient TWI 

Soil depth observations 1 
    

Profile curvature -0.14 1 
   

Distance to river -0.10 0.37 1 
  

Slope gradient -0.01 -0.13 0.20 1 
 

TWI 0.17 0.03 -0.09 0.11 1 

 

As shown in the correlation table above (table 4.1) there is no significant relationship between soil depth 

and topographic variables used because of high spatial variabilities of soil depth in the area. The 

correlation result showed a maximum correlation of 17% (between soil depth and the TWI) and a 

minimum of 1% (between soil depth slope gradient) which is insignificant. This weak correlation can be 

associated with both the complexity of the area and limitations of the DEM used as indicated in section 

3.4. Since the soil depth models were based on the assumptions that soil depth and topographic 

relationships, such a lack of correlation between them led to the removal of some sample points regarded 

as outliers. The outliers, in this case, are those points which do not fit into the present model assumptions, 

and they are not predicted accordingly.   

 

The outlier points accounted for 20% (n=24) of the total sample points and picked based on the bins of 

the histogram (Figure 4.2B). In addition to lack of correlation with the topography as indicated above, the 

points also highly deviate from mean soil depth measurements in the field. For instance, a bottom of a 

side valley can be an erosive and incision site, and the soil depth is minimal while extreme accumulation is 

expected in the valley bottom because it is in the centre of a debris flow/landslide lobe. Example of the 

characteristic outlier points was shown in (Figure 4.1) for the soil depth prediction using the decision tree 

model. The scatter plot shows the predicted soil depth and observed soil depth are diametrically opposite 

on locations where outlier points were collected. That is, the model might have predicted shallow soil 

depth while in reality it was measured as deep soil. The specific locations for the outlier points collected 
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Figure 4.1 Scatter plots of outlier datasets (total number=24 points) 

Figure 4.2 A) Locations of field observation points 

include; very deep debris flow deposit in the valley or outcrop exposure in the valley due to river incision, 

and thick ash deposit on the slope in all cases were extreme values based on soil depth and slope 

relationship.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
After identifying the outlier points, the rest of the sample points were assumed to meet the models' 

assumption and correlate with the topography even though the spatial variability of soil depth is still and 

the correlation is weak. Hence, the sample points were divided into 60% for developing the models and 

40% for model validation which was randomly selected from all accessed locations during fieldwork 

(Figure 4.2A). Then, all the models were first developed based on a scalar range (0,1) and later converted 

to a quantitative value for the infinite slope model input because of the weak correlation recorded as 

mentions above. This qualitative class reduces soil depth spatial variability. Field observation points were 

also aggregated into the scale of (0,1) to have a comparable result with soil depth model predictions and to 

reduce its spatial variability. Hence, all the statistical analyses were made based on the scalar ranges. Soil 

depth prediction maps were also produced based on the scalar classes but later converted to quantitative 

maps to use in infinite slope model for the slope stability assessment.   

Figure 4.2 B) Distributions of all soil depth 
observation points 
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Figure 4.3 Factor maps of soil depth predictions 

4.2. Soil depth predictor variables  

 

The predictor variables were extracted from 10m resolution DEM. Slope gradient, profile curvature, 

distance to the river and topographic wetness index (TWI) (Figure 4.3) were considered as significant 

predictor topographic variables in soil distribution or redistribution on landform in the present study. 

Slope gradient is shown in a tangent with a value reaching up to 1.7 or about 60 degrees. TWI and profile 

curvature area expressed in values. Distance to the river is computed over the surface and shown in 

meters.  

 

Topographic variables are related to soil depth in different ways. The natural erosive force of water 

removes soil from higher slope gradient and accumulates on the lower slope gradient where thick soil is 

expected to develop. Also, on the steeper slope gradient, the rate of infiltration decreases and contributes 

to soil erosion. So, the slope gradient affects the potential and kinetic energy of water movement that 

changes sediment flux and contributes to soil redistribution. In this way, the slope gradient is related to 

denudation and accumulation processes and comply with the present model assumptions.  
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Slope profile curvature controls soil depth variability through convex and concave shapes (Figure 4.3). 

The convex profile curvature corresponds to an increased slope gradient and high erosive power of water 

while the concave profile curvature shows a decrease in slope gradient and corresponding soil deposition 

site where deep soil are expected. Hence, profile curvature affects soil distribution, and it is a useful 

parameter for the present soil depth model assumption. On the other hand, topographic wetness index 

shows where water accumulates in the landscape and is related to soil distribution. Hence, the lower 

wetness index value shows ridges and crests where soil erosion happens, and thin soil are expected while 

the higher value indicates landscape depression and accumulation of sediment and deposition where thick 

soil are expected. Distance to the river is also related to soil distribution because stream channels are 

erosional material accumulation site and the accumulation materials decrease as we go to the source area. 

Thus, four of the topographic factors mentioned above were used in the soil depth prediction models.  

4.3. Results of Soil depth prediction techniques 

4.3.1. Decision tree result  

 

Soil depth map using the decision tree model was produced based on the decision rules by applying 

topographic parameters of slope gradient, profile curvature, distance to the rivers and topographic wetness 

index in soil depth prediction. The decision tree (Figure 4.4) was developed based on a conceptual model 

of soil distribution on landform or soil catena regardless of the origin of the landform. Then, the soil 

continuum was divided into five artificial soil depth classes (very shallow to very deep) related to natural 

soil distribution on a slope. For instance, shallow soil depth is expected on a steep slope because of soil 

erosion, and deep soil on flat areas due to accumulation. Slope gradient was classified into five classes 

based on (FAO, 2006) as; Flat to very gently sloping ( 0-2%), sloping (2-5%), Moderately steep (15-30%), 

Steep (30-60%) and very steep slope (>60%). Slope profile curvature classes were made to accommodate 

minor slope irregularities. On steep slopes, soil movement is controlled more by slope gradient than slope 

curvature. Hence, for slopes which are more than 30% steep, profile curvature was not included in the 

decision rule. Distance to the river and TWI values were subjectively classified based on its histogram 

frequency distribution and possible location on the slope as shown in Appendix 4. 

 

Several other possible combinations of the decision rule system can also give different results of soil 

depth. However, the best possible combinations were selected based on the likelihood of soil depth 

expected using the different topographic factor map combinations, and soil depth map was created using a 

script in PCRaster (Appendix 3). The decision tree can be read as follows. For example, combinations of 

slope gradient = 20%, profile curvature = 0.005, distance to the river = 100 and TWI = 5.5 gives 

moderate soil depth. However, the lower class for any variable takes precedence and determine soil depth 

class.   

 

Base on the decision rule (Figure 4.4) below, qualitative soil depth map with a qualitative class between (0 

and 1) was produced (Figure 4.5) and later stretched to quantitative classes based on Soil survey (1951) to 

be used in the infinite slope model. The equivalent quantitative classes based on Soil survey (1951) are 

classified as very shallow (<0.25m), shallow (0.25-0.75m), moderate (0.75-1.25m) deep (1.25-1.5m) and 

very deep (>1.5m). The observed soil depth values were also aggregated into (0 to 1) scale to compare 

with the qualitative soil depth class and accordingly, the correlation was made between 40% of observed 

and predicted depth results (Figure 4.8A) for model validation.  
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Figure 4.4 Decision tree for soil depth prediction 

Figure 4.5 Soil depth prediction maps using decision tree 

 

 

The result of the decision tree below (Figure 4.5) showed deep soil within the stream channel of flat valley 

areas which also comply with field observations. Also, the model predicted moderate to deep soil on 

narrow valleys of the upstream sides while in reality it was covered by bedrock exposure because of deep 

river incision as observed during the fieldwork and contrary to the prediction results. But all the narrow 

valleys were not exposed bedrocks, and debris flow deposits covered some areas because of the variation 

in topography and local lithology. Besides, the steep part of the slope near the water divide was covered 

with either shallow soil depth or moderately deep soil. The flat part of the top of the hills was predicted as 

deep to very deep soil. This top part of the mountain is also used for agriculture purpose by the local 

dwellers.  
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Figure 4.6 Soil depth prediction maps using multiple regression 

Based on the results of decision tree above (Figure 4.5), statistical one on one correlation between the 

predicted soil depth and predictor factor maps used in prediction was computed for the training dataset to 

check the relative contributions of each factor maps in defining soil depth on the area (Table 4.2). The 

result showed that the slope gradient has low power of explaining soil depth distributions which are 

expected because of smooth DEM used. The high correlation with TWI is an indication that zones of 

accumulation greatly influences soil depth. The negative signs of the correlation coefficients show the 

inverse relationships between the predicted soil depth and predictor variables.  

 
Table 4.2 Correlation of predictor variables and predicted soil depth using decision tree(n=57(60%)) 

 

 

 

 

 

 

 

4.3.2. Multiple regression analysis result 

 

Multiple regression analysis was performed using SAGA GIS (2.3.2) with the intent to have additional soil 

depth prediction result apart from decision tree prediction. The model predicted the spatial variance of the 

dependent variable (soil depth) based on linear combinations of independent variables (topographic 

factors). Soil depth map was influenced highly by the factor map with high correlation (Table 4.2) and 

relatively significant (Table 4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Predicted soil depth 

Predicted soil depth 1 

Profile curvature -0.57 

Distance to river -0.58 

gradient -0.20 

TWI 0.71 
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The prediction results of the multiple regression (Fig 4.6) showed moderate and shallow soil depth cover 

close to ridges, but it does not follow slope gradient (Table 4.2). However, the model result underrated the 

deep soil to the downstream side and overestimated on the upstream side of the river channels. The flat 

part of the valley bottoms was covered by debris flow deposit as observed in the field. The underrated 

deep soil zone is attributed to the fact that the model considers the most significant factor maps for soil 

depth prediction and hence, the significant factor map was slope curvature. Unlike the decision tree model 

prediction which showed a progressive downstream increase of soil depth due to accumulation, the 

multiple regression result closely follows significant curvature differences for deep and very deep soil 

predictions. In this way, it predicted deep soil where very deep soil are expected due to lack of 

considerable surface irregularity variation shown by slope curvature on the valley bottom.     

 

The less significant factor maps in the multiple regression prediction models were slope gradient, distance 

to the river and TWI as mentioned above. The statistical relationship between the prediction result and 

the predictor variables (Table 4.4) also show the significance levels of each predictor variables. Hence, 

slope gradient was very smooth and had little effect in prediction result because the of the smooth DEM 

used. Similarly, distance to the river factor map was also less significant because it was computed as the 

distance on the slope surface which again depend on the topographic surface or DEM quality. The profile 

curvature and TWI factors were the influential factors, but profile curvature was the most influential 

factor considered by the model and greatly influenced the soil depth prediction result.  So, the correlations 

of training datasets showed the spatial relationship of 87% with profile curvature followed by 74% with 

TWI, 39% with distance to the river and 33% with a slope gradient. However, the results of the regression 

analysis (Table 4.2 and 4.3) based on regression coefficients showed all the factor maps were insignificant 

except curvature despite they all were forced in regression analysis to have a comparable result with other 

prediction model results. That is why decision tree and other techniques of predictions were sought for in 

such data poor area. The sign before the numbers shows the directional effects of the models. The strong 

correlation along a few observed points also does not make the model best over the other model, and its 

performance should be judged based on how accurately it predicts a landslide. Summary of the regression 

model and regression coefficients are shown in Table 4.2 and Table 4.3 below. 

 
Table 4.3 Summary of multiple regression model (n=57) 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .485a .235 .175 .1993 1.367 

a. Predictors: (Constant), Gradient TWI, Curvature, Distance to a river 

b. Dependent Variable: Observed depth 

 
Table 4.4 Regression coefficients 

Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

Sig. 

Correlations 

B Std. Error Beta Zero-order Partial Part 

1 (Constant) .713 .177  .000    

Curvature -22.5 7.854 -.426 .006 -.459 -.372 -.351 

Distance to river .000 .000 -.066 .624 -.235 -.069 -.060 

Gradient -.091 .185 -.084 .627 -.091 -.068 -.060 

TWI .005 .015 .058 .754 .284 .044 .039 

a. Dependent Variable: Observed soil depth 
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Figure 4.7 Soil depth prediction maps using soil balance equation 

Table 4.4 shows the presences of correlations between predicted soil depth and topographic variables. 

However, the overall low R2 and many irrelevant predictor variables are what is expected given the 

complexity of the area, presences of outliers in the data and concentrations of sample points in narrow 

zones (like roadcut). 

 
Table 4.5 Correlation of predictor variables and soil depth using Multiple regression analysis (n=60%) 

  Predicted soil depth 

Predicted soil depth 1 

Profile curvature -0.87 

Distance to river -0.39 

gradient -0.33 

TWI 0.74 

 

4.3.3. Soil mass balance between soil production and erosion 

 

The model was first tested by Dietrich et al. (1995) and later in India by Kuriakose et al. (2009). Soil depth 

map was produced using equation 3.2 mentioned before.  

 

Soil depth = (1‐a*G – b* Driver/Driver max + c*Curvature + d *TWI/TWI max) 
e 

 

Where, G = slope gradient (0‐1), Driver = is the relative distance to the river channel on slope (0‐1) and 

Scaling parameters: a=0.7, b=0.6, c=0.7, d=0.3, e=0.9. These scaling parameters were determined through 

multiple iteration processes and decided based on stage where soil depth observation points and 

topographic parameters showed significant correlation.  
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The prediction result of soil balance equation has pronounced the significances of slope gradient and TWI 

than the other variables although its general pattern is closely related to the other two model results (Fig 

4.7). The model predicted very deep to shallow soil following the slope gradient as shown in (Table 4.6) 

where the correlation is very high. Unlike the other model, it predicted very deep soil on large areas of the 

flat valley floor. Shallow soil prediction near the sharp edges of the hillslope sides and the large area cover 

of the deep soil predicted is related to the quality of the DEM in which flat areas are more pronounced 

than steep slopes of the area. The correlations of the predicted soil depth with topographic factors (Table 

4.5) also shows the significances each factor maps used. 

 
Table 4.6 Spatial relationships of predictor variables and predicted soil depth using soil balance equation for model 
building(n=57(60%)) 

4.4. Validation of soil depth models 

 

The predictive power of the model has to be checked by comparing the predicted and observed datasets 

for the models to be transferred to the final user (Beguería, 2006). In this case, the model results would be 

used in landslide analysis. The predicted soil depth values were expected to meet the assumptions made to 

build the models based on soil depth-hillslope relationships despite lack of statistically good correlation 

between observed datasets and predictor variables at the start of the analysis. After exclusions of the 

outliers from the observed datasets, 40% of the normally distributed sample were used for validating all 

the three models used for prediction. The correlation matrix table below (Table 4.7) showed correlation 

coefficients among observed and predicted soil depth for each prediction models used and the predictor 

variables. The soil-hillslope position relationship assumption made to build the model has now shown a 

statistically good relationship at a point. The variations in the significances of each predictor variables and 

its correlation coefficient under different models are also an indication of the unpredictability of which 

variable most influences the soil depth distributions in the study area. Hence, it is possible to say that the 

predictive powers of all the models used were reasonable and can be used further in an infinite slope 

model.  

 
Table 4.7 Correlation matrix among soil depth models and topographic attributes(n=40) 

  Predicted soil depth 

Predicted soil depth 1 

Profile curvature -0.17 

Distance to river -0.30 

gradient -0.90 

TWI 0.77 

Pearson Correlations 

 Observed soil depth 

Observed soil depth 1 

Predicted soil depth using; Decision tree .825** 

Soil balance equation .670** 

Multiple regression .786** 

Predictor variables Profile curvature -.506** 

Distance to river -.592** 

gradient -.518** 

TWI .730** 
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Figure 4.8 Scatter plots for model validations 

 

 

 

In addition to the correlation matrix results, the variability of the validation datasets is shown in Figure 4.8 

below. The scatter plots show that it is rare for shallow soil depth to be observed in the field and predicted 

by the model because of the model assumptions. For instance, most of the field data were collected from 

the lower slope and valley area where the model predicted as deep soil but in reality where shallow soils 

were also found. These reduced R2 values and the points included as outliers are shown in Figure 4.1. 

Also, the predictive models predicted soil depth into the next class; for example, an observed shallow soil 

depth might have been classified as moderate depth by the models, which contributed to reducing R2 

values. Such a difference in prediction result also indicates the differences in sensitivity of the models used 

to input factor maps. However, the correlations made for points collected from landslides indicate no 

relation with an observed depth points (Figure 4.8D) which shows high spatial variability of landslides in 

the area. Because of the spatial distributions of measured soil depths in the field and the limited number of 

sample points compared to landslide density on the area, the weak correlation result presented cannot 

distract the role of the big picture that slope parameters influence landslide occurrence besides soil depth.   

 

 

 

Compared to the number of field data and quality of the available DEM, the predictive powers of the 

models are all at best (Figure 4.8). Besides, each of the models was sensitive to different factor maps 

(Table 4.7) which are also indications of where to expect slope failures in slope stability assessment results. 

 

In addition to the correlations made on the qualitative classes of field observation and predicted soil 

depths, correlation is made on the quantitative soil depths. For the predicted qualitative soil depth classes, 

an equivalent quantitative classes were assigned based on Soil survey (1951) soil depth classes as 

mentioned above. Quantitative classes of the observed soil depth are soil depth values measured in the 

**. Correlation is significant at the 0.01 level (2-tailed). 
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B) Multiple regression analysis

Figure 4.9 Scatter plot for model validation using quantitative data 

field. Accordingly, the scatter plot was produced between the real data as shown in Figure 4.9 below for 

the same sample points shown in Figure 4.8 as a validation dataset. The R2 values of soil depth from the 

multiple regressions show a higher value while the equivalent qualitative classes showed higher R2 value 

for decision tree. This occurred because the qualitative class values which range from 0 and 1 were an 

integer number for the decision tree model while it was a fraction for the multiple regression model. 

Hence, one on one correlation between the integer value gave higher correlation compared to the fraction 

values on a qualitative soil depth class. However, for the real quantitative soil depth, the fraction number 

got higher value because of the significant spatial variabilities of soil measurements in the field. Based on 

the results of both the qualitative and quantitative classes it is possible to say that decision tree and 

multiple regression models predicted soil depth better than soil balance equation. The results were also 

validated later based on the predictive power of the models in slope instability initiations.  
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5. RESULTS OF INFINITE SLOPE MODEL 

5.1. Introduction 

 

In this section, the results of the spatial infinite slope model using different soil depth maps are presented. 

Topographic factors, land use, soil characteristic and rainfall data are used as an input in the infinite slope 

model under different scenarios. Soil depth maps produced using various techniques (Chapter 4) were 

used separately in the infinite slope analysis to check their influences in slope instability. Then, the 

prediction results of the infinite slope model were tested against existing landslide inventory data to 

validate the model output.  After validation, the best model are selected and the number of unstable days 

of the model is presented separately.  

5.2. Infinite slope model input parameters 

The input parameters of the infinite slope model in PCRaster was described under chapter 3, and the 

values of specific parameters obtained from different sources is shown in Table 5.1. The input parameters 

were optimised by varying the values between minimum and maximum and the optimum values are used 

to calibrate the infinite slope model. For example, there was no slope failure observed when maximum 

values of soil strength parameters are used. Hence, the minimum values were used for soil shear strength 

parameters and average values for parameters obtained from pedo-transfer functions to calibrate the 

infinite slope model.  The minimum soil shear strength values were selected because most slope failure 

happens during the rainy season and rainfall reduces shear strength values as observed in the field. 

Parameters obtained from pedo-transfer functions were soil texture dependent, and the was no need of 

changing the values sought.  Eventually, all the constants, maps and time series files as described in 

chapter 3 were run by scripts in PCRaster to produced infinite slope model results.  

 
Table 5.1 soil classes and input parameters 

Soil type Soil class Ksat 

(mm/hr) 

Porosity 

(%) 

Field 

Capacity 

(%) 

Wilting 

Point 

(%) 

Cohe

sion 

(Kpa) 

Friction  

Angle (0)  

Bulk 

Density 

(KN/m3) 

Skeletal  Gravelly 

sandy loam 

25.2 0.45 0.18 0.08 3.3 36 14.3 

Kandoid 

latosolics 

Silty clay 3.8 0.53 0.42 0.28 4.5 34 12.1 

Protosols Sandy loam 

with less 

fine matrix 

61 0.45 0.16 78 3.8 33 14.2 

Young 

soil 

Sandy loam 50 0.45 0.18 50 4 32 14.2 

Smectoid 

soil 

Clay 0.76 0.49 0.42 49 6.5 28 13.3 

Allophane 

latosolics 

Sandy clay 

loam 

7.9 0.43 0.28 18 5 31 14.8 

Unclassifi

ed soil 

- - - - - - - - 

Sources: Ksat, Porosity, Field capacity, Wilting point and Bulk density are obtained from the pedo-transfer function 

by Saxton & Rawls, (2006), Cohesion (measured in the field) and Friction angle (www.geotechdata.info).  

http://www.geotechdata.info/
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5.3. Infinite slope model results 

 

The results of an infinite slope model were a time series raster maps with each pixel representing a factor 

of safety (FS) values and the number of unstable days in the year. However, the factor of safety of two 

days each from the year with average rainfall (2009) and extreme rainfall (2004) were selected for further 

analysis. The two days with the rainfall amount of 192.6 for 2009 and 422.3 for 2004 are the maximum 

rainfall in respective years (Figure 5.1). The two days were selected because rainfall triggers slope failure 

and no slope failure is expected under dry condition. In this study, the emphasis was given to identify how 

soil depth influences slope failure initiations under two different rainfall conditions. Hence, the infinite 

slope stability model using 2009 rainfall is considered as modelling under normal rainfall conditions 

because it was from the year with average rainfall condition. Whereas the FS model using 2004 is 

considered as modelling under heavy rainfall condition because of the presence of the extreme rainfall 

presence.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Figure 5.1Selected rainfall days for FS analysis under different scenarios 

 

5.3.1. Factor of safety under normal rainfall conditions 

 

The results of infinite slope analysis considering different soil depth models under normal rainfall 

condition for the area is presented in Figure 5.2.  Similarly, the same input parameters were used in infinite 

slope analysis under extreme rainfall conditions to evaluate the influences of different soil depth models 

on slope instability initiations.  
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Figure 5.2 FS of slope using different soil depths and under normal rainfall condition on day which has the 
max daily rainfall (192mm) for that year 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The FS result (Figure 5.2) showed that deep soils require a high amount of rainfall to get fully saturated 

and cause many slope failures. The predicted dense slope failures on a steep slope by decision tree and 

multiple regression models are associated with predicted shallow to moderately deep soil depths by the 

respective models. But the soil balance equation predicted deep soil on the same steep slope and only a 

few slope failures occurred. Based on the result it is also logical to say that low rainfall intensity causes 

shallow slope failures than deep slope failures because it can not quickly saturate deep soils.   

5.3.2. Factor of safety under heavy rainfall condition 

 

The factor of safety was analysed for the extreme daily rainfall intensity in the year 2004. The daily rainfall 

intensity of the year was 422.3mm (Figure 5.1), and this was selected from the results of time series files of 

FS to evaluate how heavy rainfall affects slope instability compared to normal rainfall for the same soil 
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Figure 5.3 FS of slope using different soil depths under extreme rainfall condition and the extreme rainy day considered 

slope. Slope stability under extreme rainfall were modelled for different soil depth methods given all the 

other input parameters set constant to check the significance of soil depth in slope failure initiation. 

Unfortunately, there is no report on landslide occurrence in the year 2004, but the rainfall intensity was 

close to category five or equivalent to category four of hurricane Maria, which occurred in 2017. Hence, 

based on previous facts it was assumed that slope failure would presumably happen if the area receives 

such high rainfall. The FS result for the heavy rainfall are shown in (Figure 5.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The FS result showed several slope failures for decision tree, and multiple regression soil depth models 

under heavy rainfall conditions(Figure 5.3A & B) compared to the normal rainfall while there were 

minimal failures for deep soil(Figure 5.3C). Still, there was no major slope failure occurrence for slopes 

covered by thick soil under heavy rainfall condition. However, the time series result showed more slope 
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Figure 5.4 Example of FS model validation under normal rainfall condition using inventory landslide 

failures occurrences after one or two days compared to the slope failures during the extreme rainy day. 

This is also logical that deep soils require time to get fully saturated and for slope failures to occur while 

the result shown in (Figure 5.3C) is FS result of the extreme rainy day only. 

5.4. Infinite slope model validation 

 

Results obtained by applying infinite slope models were validated with the goal to know how good the 

models’ predictive power is compared to an existing landslide inventory of the area (excluding the runout 

part of the landslide inventory). There were no predefined threshold values set for the predictive models; 

instead, the emphasis was given to examining the FS results produced from each soil depth and selections 

of the best model with good predictive power. Accordingly, the outputs were first visually inspected based 

on their spatial distributions compared to the inventory landslide map. It was observed that soil depth 

maps predicted low slope failures close to stream channels and near flat valley areas. It was noted also that 

the spatial locations of the predicted slope failure initiations are sensitivity to slope gradient. Besides visual 

observations of the results, the models were validated using quantitative statistical based error matrix or 

confusion matrix analysis. The error matrix were performed between the raster maps of reference 

inventory landslide maps and slope failure maps from the predicted model results.  

5.4.1. Sensitivity of slope failure to soil depth models under normal rainfall condition 

 

Inventory landslide and predicted FS overlay showed several slope failures occurred on shallow to 

moderately deep soil under normal rainfall conditions as shown in the example of FS result using decision 

tree prediction (Figure 5.4A) and multiple regressions while only few slope failures occurred on deep soil 

slope predicted using soil balance equation (Figure 5.4B). Majority of the deep soil slopes were marginally 

unstable.  

 

 

 

Besides, statistical accuracy assessment for all the three soil depth models was conducted using the error 

matrix (Table 5.2) between inventory landslide and slope failure maps under normal rainfall conditions. 
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Both inventory landslide and predicted slope failure maps (maps with FS < 1) are converted to Boolean 

maps of 0 and 1 for pixels with FS > 1 and FS < 1 respectively. Accordingly, the pixel-based confusion 

matrix were made between the landslide and non-landslide areas of two maps where the per cent of errors 

in the table indicate the numbers of pixels involved and omitted during classification. Besides, the overall 

accuracy per cent reported was calculated based on whether the classified total of landslide and non-

landslide pixels has been classified correctly into the category. The available inventor landslide map is a 

collection from several sources and years combined. However, the present infinite slope model was 

performed for one year based on a daily time step and the result of an extremely rainy day is presented. 

Hence, this fact needs to be considered before generalisations of the output. However, the results are also 

good indicators of how soil depth influences slope failure initiations. The numbers in the rows and 

columns of the confusion matrix (Table 5.2) shows the numbers of respective pixels.  

 
Table 5.2 Accuracy assessment of predicted FS maps using different soil depth under normal rainfall condition 

 
Error Matrix 
 

Inventory landslide 

FS > 1 FS < 1 Row 
sum 

Commission 
error(%) 

User’s accuracy 
(%) 

Prediction FS 
map using soil 
depth model 
 
A. Decision 

tree 

FS > 1  371327 22657 393984 5.75 94.25 

FS < 1  28166 5180 33346 84.46 15.54 

Column Sum 399493 27837 427330   

Omission 
error (%)  

7 81.4  Overall Accuracy=88.1 

Producer’s 
accuracy (%) 

93 18.6  

Prediction FS 
map using soil 
depth model 
 
B. Multiple 

regression 

FS > 1  374708 23101 397809 5.8 94.2 

FS < 1  24785 4736 29521 83.95 16.5 

Column Sum 399493 27837 427330   

Error of 
Omission (%) 

6.2 82.98  Overall Accuracy =88.8 

Producer’s 
accuracy (%) 

93.8 17.02  

Prediction FS 
map using soil 
depth model 
 
C. Soil 

balance 

FS > 1  394047 25815 419862 6.15 99.89 

FS < 1  5446 2022 7468 72.92 13.91 

Column Sum 399493 27837 427330   

Error of 
Omission (%) 

1.4 92.73  Overall Accuracy = 92.2 

Producer’s 
accuracy (%) 

98.6 7.27  

 

For FS using soil depth from decision tree, about 84% of the predicted FS was incorrectly classified as 

slope failure while it was not present in the inventory map which shows the mismatch between the 

numbers of the pixel in reference and prediction maps. However, only 5.75% of the prediction landslide 

free area was reported as the landslide free area while it was not actually when compared with the 

inventory reference data. Besides, 81.4% of slope failure (FS<1) prediction using soil depth from decision 

tree was left out of the slope failure category. The result also means 81.4% of the inventory landslide area 

was classified as landslide free in the predicted map. Similarly, about 83% and 73% of landslide area were 

classified as landslide free area for FS prediction using Multiple regression and soil balance equation of the 

soil depth models. However, regarding the accuracy of the predictive model decision tree, multiple 

regression and soil balance equation models had 88.1%, 88.8% and 92.2% overall classification accuracies 

respectively.  



 

40 

Figure 5.5 FS prediction under high rainfall for different soil depth models and inventory landslide used for model 
validation 

The performances of all soil depth models in slope instability initiations under normal rainfall condition 

can be evaluated as a good prediction result based on the overall accuracy. However, the overall accuracy 

result alone is misleading as it shows how the performance of the model classifications. Hence, based on 

the number pixels class predicted slope failure classified into the inventory landslides, soil depth model 

using decision tree model showed good performance compared to the other soil depth models. Regardless 

of how well the slope failures are classified, the results were an indication of the influence of soil depth in 

slope instability initiations. Based on the results it is also logical to say that the average rainfall of the area 

induces slope failure mainly on shallow and moderate soil depths compared to deep soils.  

5.4.2. Sensitivity of slope failure to soil depth models under heavy rainfall condition 

 

Visual observations showed most of the predicted slope failures using soil depth models from the decision 

tree, and multiple regression falls within inventory landslide area (Figure 5.5 A & B). However, there were 

few slope failures predicted on deep soil (Figure 5.5 C).  
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The confusion matrix result between the predicted factor of safety and inventory landslide raster maps is 

shown in (Table 5.3). The result shows soil depth prediction using soil balance equation produced higher 

classification overall accuracy (93.45%) for slope instability compared to decision tree model (85.57%) and 

multiple regression model (84.8%). However, the goal of this study is mainly to evaluate the influence of 

soil depth in slope failure with less emphasis on the stable slope. Hence, pixel-based evaluations show soil 

depth model using decision tree has predicted better slope failure that was classified into inventory 

landslides than the other soil depth models.  

 
Table 5.3 Accuracy assessment of predicted FS maps using different soil depth for extreme rainfall condition 

 

Error Matrix 

 

Inventory landslide 

FS > 1 FS < 1 Row 

sum 

Error of 

Commission(%) 

User’s 

accuracy (%) 

Prediction FS 

map 

using soil depth 

model 

A. Decision 

tree 

FS > 1  357838 20007 377845 5.3 94.7 

FS < 1  41655 7830 49485 84.2 15.8 

Column Sum 399493 27837 427330   

Error of 

Omission (%) 

10.42 71.87  Overall Accuracy = 85.57 

Producer’s 

accuracy (%) 

89.58 28.13  

Prediction FS 

map  

using soil depth 

model 

 

B. Multiple 

regression 

FS > 1  354566 20041 374607 5.3 94.7 

FS < 1  44927 7796 52723 85.21 14.79 

Column Sum 399493 27837 427330   

Error of 

Omission (%) 

11.24 71.99  Overall Accuracy = 84.8 

Producer’s 

accuracy (%) 

88.76 28.01  

Prediction FS 

map  

using soil depth 

model 

C. Soil 

balance 

FS > 1  399059 27543 426602 6.4 93.6 

FS < 1  434 294 728 59.6 40.4 

Column Sum 399493 27837 427330   

Error of 

Omission (%) 

0.1 98.9  Overall Accuracy = 93.45 

Producer’s 

accuracy (%) 

99.9 1.1  

 

 

Even though soil depth model using decision tree has produced a comparatively low value of overall 

accuracy, it is the best model based on the number of slope failure pixels classified into inventory landslide 

both under normal and extreme rainfall conditions. Furthermore, the close similarities between the 

number of pixels classified into inventory landslide for both decision tree and multiple regression soil 

depth models were also similar in general pattern as shown in (Figure 5.6) at a large scale view under heavy 

rainfall condition. However, the high overall accuracy classification using the soil balance equation was 

overrated by the dominant non-landslide area, and it showed fewer landslide initiations as shown in Figure 

5.6. This are associated with the deep soil predicted by the model while the landslides were shallow or 

moderately deep as observed in the field.  
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Figure 5.7 Number of unstable days of slopes under heavy rainfall using soil depth from decision tree 

Figure 5.6 Example of large-scale FS maps for a particular area using different soil depth models under heavy rainfall 

5.4.3. Number of unstable days of the slope under high rainfall 

 

A factor of safety changes with time but no slope is expected to be unstable for the whole year. The 

number of unstable days of slope using soil depth from the model decision tree (Figure 5.7) showed many 

stable days for most of the flat and gentle slope and where deep soil dominate. Shallow soil depth zones 

found on steep slopes are unstable for many days in the year. However, artefacts on the DEM and very 

steep slopes were unstable for more than 300days in the year which reduce the confidence of the result on 

those positions.  
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6. DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

This chapter discusses about the main finding of the research, the limitations of the models and data used, 

and draw conclusion based on the main question posed for the research objectives.  

6.1.  Discussion on soil depth models   

 

The application of a different method for soil depth prediction gave different results which are attributed 

to the sensitivity of the models to different topographic variables.  The source of input data for all the soil 

depth models used was DEM, which was not perfect as discussed below in the section on the limitations 

of the study.  While the effects of the inputs data on model outputs are undeniable, efforts were made to 

calibrate each model using field observation to get the best possible result. 

 

Soil depth results obtained using decision tree and multiple regression models were closely related. Both 

the models predicted deep soil (>1.5m) on the flat top of the mountains and valley bottoms as verified in 

the field. The result also complies with an estimation made by Rouse, (1990) on those specific positions. 

Model validation results also showed that both models had a weak correlation with slope gradient 

compared to other variables. Slope gradient showed only 20% correlation with decision tree prediction 

result and 33% with multiple regression result which in both cases were the lowest. However, the result is 

justifiable because of the poor DEM quality which did not show the actual nature slope geometry in the 

area. The main difference between the decision tree and multiple linear regression models was their 

sensitivity to different topographic input variables. In the decision tree, the model was forced to have the 

predefined values although it standardises the result based on the combined input variables the result had 

a correlation of 71% with TWI. However, multiple regression model result was sensitive to minor 

topographic irregularities having an 87% correlation with profile curvature due to its significance 

compared to other input topographic variables.  

 

Soil balance equation comparatively predicted deep soil where the other two models predicted either 

moderate or shallow soil depth. It was caused by the calibrations of the model coefficients to find a good 

correlation between soil depth and topographic variables. Accordingly, the highest weight was given to the 

slope gradient that resulted in a 90% correlation with soil depth observations. The model prediction also 

showed a very weak correlation with profile curvature with only 17% which was the opposite of multiple 

regression prediction result relationship. Eventually, soil depth prediction using the decision tree showed a 

correlation of 82.5% with field measured soil depth which was a promising result in obtaining good slope 

instability result in such a poor data area. The sensitivities of each soil depth model to different 

topographic variables were also helpful to get different slope instability model caused by various slope 

instability contributing factors in addition to soil depth.   

6.2. Discussion on infinite slope model 

 

Sensitivity analysis was carried out by using different soil depth map in an infinite slope model while 

keeping constant all the other parameters. This resulted in different slope instabilities and confirmed the 

sensitivity of slope stability to soil depth as proved by several researchers (Montgomery & Dietrich, 1994,  

Segoni et al., 2011, Kim et al., 2016) and as assumed in this work. For all the three soil depth maps used in 

infinite slope model under different scenarios, the influence of deep soil were underestimated, and the 

importance of shallow and moderate soil depths were overestimated in the slope failure initiations (Figures 
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Figure 6.1 Slope angle and factor of safety relationship for decision tree soil depth under heavy rainfall 

5.2 and Figure 5.3). The overestimations of slope failure by shallow soil depth were mentioned by Segoni 

et al. (2011) as the limitations of infinite slope model.  

 

The infinite slope model under normal rainfall condition returned overestimation of the factor of safety 

for both decision tree and multiple regression soil depth models while the model underestimated FS for 

soil depth using the soil balance model. Overestimations of the FS by the two soil depth models were 

related to the high sensitivity of shallow slope failures to shallow and moderate soil depths. To the 

contrary, there were no significant slope failures predicted on deep soil due to normal rainfall. Also, Van 

Asch et al. (1999) stated that deeper landslides in soil needs larger amount of water for its triggering than 

shallow and moderate soil depths and justifies the low slope failure prediction on deeper soil balance 

model under normal rainfall. The result can also be related to what many researchers claimed that infinite 

slope better predicts shallow slope failures than deep failure.  The quality of available inventory landslide 

data was also believed to have influenced the reality of the slope failure predictions because the inventory 

landslides were not a single event failure but rather a collection of multiple events from different sources.  

 

The results of the infinite slope model under heavy rainfall showed the high number of landslide 

initiations as observed from the pixel-based statistical comparison with inventory landslide for both soil 

depths obtained from decision tree and multiple regression models. It is also logical that heavy rainfall 

triggers many shallow slope failures. On the other hand, Rouse, (1986) described the topsoils of Dominica 

as characterised by unique nature and requires a high amount of rainfall to be saturated due to their high 

porosity and high water holding capacity. In this way, deep soils need both a high amount of rainfall and 

time for slope failure to occur. Therefore, there were only a few unstable slopes observed using soil depth 

model that predicted deep soil (soil balance equation). It was proved also from a time series factor of 

safety maps that many slope failures happened after the extreme rainy day shown here as an analysis result 

(Figure 5.3C). This resulted because the maximum rolling set for rainfall in the dynamic model was one 

day and on the selected day (extreme rainy day) for infinite slope analysis, the soil could not be fully 

saturated to initiate huge slope failure.    

 

Topographic variables are also identified as the most important controls for slope failure initiations in this 

study. The patterns and distributions of slope failure results also showed the influence of topographic 

factors in slope failure initiations in addition to soil depths. For example, the relationship of average values 

of slope gradient and factor of safety result under heavy rainfall condition (Figure 6.1) showed the 

sensitivity of slope instability to slope gradient. Hence, slopes higher than 37 degrees are susceptible to 

failure under heavy rainfall conditions. On the other hand, Reading, (1991) estimated the tropical residual 

soils of Dominica could be stable up to more than 40 degrees under normal conditions. In general, as the 

slope gradient increases, the chance of slope failure also increase.  
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For the other topographic variables like slope profile curvature and wetness indexes used in soil depth 

modes, there was no sensitivity analysis made on the infinite slope result maps. However, a simple overlay 

of the factor of safety maps on the topographic variables showed the locations of slope failure initiations 

as convex slope areas, low topographic wetness index and steep slopes far from the rivers.     

6.3. Conclusion 

 

This study presented the use of decision tree, multiple regression and soil balance equation as methods to 

predict soil depths of the area. Soil depth points was collected in the field from landslide scarps, road cuts, 

stream cuts and using Auger assuming to calibrate and validate soil depth model results. The present 

models assumed soil depth distribution is related to topography and it plays an essential role in slope 

failure initiations. Hence, topographic variables was extracted from DEM and soil depth maps were 

produced based on the relationship between soil depth points from the field and DEM derivative 

variables. The results of soil depth models were validated using soil depth points collected in the field, and 

consequently, soil depth map from the decision tree model showed higher soil depth spatial variability. 

Then, all the soil depth maps were entered into the infinite model which was developed in PCRaster. 

Infinite slope model were performed under an average rainy day and extreme rainy day of the years 2009 

and 2004 respectively with an assumption of no slope failure during a dry season. The reliabilities of slope 

stability results was checked against an existing inventory landslide data, and in this way, soil depth 

prediction using the decision model produced a better factor of safety map under both rainfall conditions. 

Hence, soil depths predicted using decision tree was rated as the best model as the validation results of an 

infinite slope model showed a higher number of predicted slope failure predicted factor of safety classified 

into inventory landslides. The factor of safety maps predicted using multiple regression models showed 

closely similar results decision tree results both in terms of pattern and number of pixels.  Slope stability 

assessment result also showed that a thick soil layer (soil balance model prediction) caused under 

predictions of slope instability and shallow soil depth caused slope instability over prediction.  

 

The influences of slope gradient, soil strength and rainfall were also significant in slope failure initiations 

of the area in addition to soil depth. The sensitivity of a factor of safety result against slope gradient 

showed slope gradient as a useful index of slope failure locations in the area. Steep slopes were sensitive to 

slope failure compared to gentle slopes. Higher rainfall amount caused many slope failures as shown by 

pixel based statistical relationship with validation data. Infinite slope model was also susceptible to the 

changes in model calibration data values like soil cohesion and friction angle as soil strength determining 

factors. However, the influences of soil strength parameters were checked during infinite slope model 

calibration and there was no sensitivity analysis made for it.  

 

The following section gives answers to the main questions asked for the specific objectives.  

 

  

(1)  Which spatial interpolation method gives the best results in assessing soil depth?  

 

The ratings of the models were made based on their accuracy assessment and predictive power of slope 

failure initiations. The accuracy of soil depth prediction results was tested against field observation points. 

The decision tree prediction result showed the best soil depth result compared to results obtained using 

the soil balance equation and multiple regression models. Besides, it also better-predicted slope failure 

initiations that makes the decision tree the best model used in this work. However, the researcher warns 

on the general ratings of the models as the validation points were not uniformly distributed in the study 

area. 
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(2) Which locations have a soil depth that cannot be related to the topography and why?  

The present soil depth prediction methods assume the presence of a relationship between soil depth 

distribution and topography regardless of the origins of the materials. However, there are locations where 

the soil depth does not behave according to the soil depth model concepts used. In this way, the thick 

soils on volcanic ash deposits observed in the field were not predicted accurately by all the soil depth 

prediction methods. Also, river channels which are an accumulation site for erosion materials and were 

thick soil are expected were also affected by river incisions. So, bedrock was exposed in stream channels 

located in the narrow, and V-shaped gorges which gave soil depth prediction result different from the 

model assumptions. Hence, there is low confidence in the results of soil depth maps in those locations.  

 

(3) Which topographic variables explain well spatial variability of soil depth?  

 

Correlations of soil depth and topographic variables showed the three soil depth prediction results were 

sensitive to different topographic variables (Table 4.7). Soil depth map obtained from the decision tree 

model was sensitive to the topographic wetness index and distance to the river while the soil balance 

equation model was highly sensitive to slope gradient followed by topographic wetness index. The main 

controls of the multiple regression model are the most significant variables, and slope profile curvature 

was a relatively significant variable in this study. The variability and sensitivity of soil depth to different 

topographic variables is believed to be related to the quality of DEM data and number and positions of 

field depth observation points. 

 

(4) Can we explain the uncertainty of predictions of soil depth in relation to the quality of the 

variables used?  
 

The primary input parameters in the soil depth model were DEM derivative topographic variables which 

had quality issues as indicated under limitations of the research subtopic below. Soil depth prediction 

results and topographic relationships were correlated to check which variable better explains soil depth 

distributions of the area. Accordingly, the three soil depth prediction results showed different correlation 

with topographic input parameters used, but uncertainties of the variables were not quantified. Similarly, 

the uncertainty of field soil depth measurements is admitted also because of the complex geologic nature 

of the area. Soil depth models were calibrated based on field observations which admittedly contain 

uncertainty. Therefore, uncertainties associated with model input parameters can be explained for future 

improvements, but they are not quantified in this work. 

 

 

(5) What is the sensitivity of slope instability to soil depth relative to other variables?  

 

Sensitive input parameters influence any model, and soil depth was the factor that influenced most the 

slope failure initiations in this study. The sensitivity of slope instability to soil depth was checked by 

purposely keeping all the other infinite slope models inputs same (values were not varied when different 

models are used) for each soil depth models. Hence, the results showed high sensitivities of slope failure 

to shallow and moderate soil depths as opposed to deep soil both under normal and heavy rainfall 

conditions. In addition to soil depth, both topographic factors like slope gradient and soil strength 

parameters also played an important role in slope stability of the area. Even though sensitivity analysis was 

not made statistically for how soil strength parameters affected slope stability, it was checked during 

infinite slope model calibration as mentioned above. So, there were no slope instabilities observed at 

higher soil strength parameter values as opposed to low and average soil strength parameter values. The 

influence of slope gradient was significant in slope stability under both normal and heavy rainfall 
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conditions. For example, the average factor of safety of slopes under heavy rainfall occurred on a slope 

having an angle higher than 370 is shown as an example of other factors affecting slope instability of an 

area (Figure 6.1). It also shows the positions of factor of safety range from unstable slope through 

marginal and stable slopes on the slope gradient. Besides, the importance of soil strength parameters on 

slope instability result was also undeniable as observed during model calibration under different rainfall 

condition. In general, rainfall increases soil saturation and decreases soil shear strength which also causes 

more unstable slopes. 

 

(6) Is this influence of soil depth different in a year with average rainfall as opposed to a year 

with the extreme rainfall? 

 

The occurrence of slope instability was in general positively influenced by the presence of rainfall as 

opposed to a dry season.  However, there is a significant difference in the predicted factor of safety as 

shown model validations (table 5.2 and table 5.3) under normal and heavy rainfall conditions. The factor 

of safety result using soil depth from decision tree showed an overall accuracy of 88.1% under normal 

rainfall and 85.57% under heavy rainfall condition. In the same way, the soil depth map using multiple 

regression showed an overall accuracy of 88.8% and 84.8% under normal and heavy rainfall conditions 

respectively. However, soil depth map using the soil balance equation showed a higher overall accuracy of 

92.2% under normal rainfall and overall accuracy of 93.45% under heavy rainfall while having small 

numbers of slope failure pixels classified into inventory landslide data. Hence, the difference between 

different soil depth models in influencing slope failure is based on the number of pixels classified into 

inventory landslide. In addition to the overall accuracy results, visual observations of the predicted factor 

of safety maps also showed lesser unstable areas under the normal rainfall conditions as opposed to the 

heavy rainfall condition which showed the difference in the influence of soil depth models on slope 

instability under different rainfall condition.  

 

(7) Can the results of the slope instability model be related to the landslide inventories?  

 

The statistical summary of correlations made among landslide and non-landslide classes showed the 

presence of significant correlations between the predicted slope instability results and the existing 

inventory landslide data. The focus of the statistical relationship was on soil depth as a sensitive parameter 

in the slope stability model. All the three soil depth models also showed the presence of a reasonable 

relationship with an existing inventory landslide data with an overall accuracy of more than 84%. Since the 

goal of this study was also to identify the best soil depth predictive model which gives the best slope 

instability model, the statistical summary of the best model chosen was also indicated. In this way, soil 

depth model using decision tree was selected as the best model for slope instability prediction (based on 

the number of the classified pixels) and showed an overall accuracy of 88.1% under normal rainfall and 

85.57% under heavy rainfall with inventor landslide data. 

 

6.4. Limitations of the research 

 

The main limitations of the research were the quality of topographic data used from which model 

variables were extracted, and the number as well as the spatial distributions of soil depth measurements in 

the field. The available DEM data contains artefacts that influenced both soil depth and infinite slope 

models. The low resolutions of the DEM also underrated the actual slope geometry of the area. In 

addition, the number of soil depth observation points were limited, and its spatial distributions were not 

uniform compared to the size of the test area because of inaccessibility during fieldwork. The models also 
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had limitations because they underrated soil depth values on volcanic deposit and overestimated the values 

of river incision that also appeared in infinite slope results. Majority of the model calibration data were 

obtained from secondary sources while the models were sensitive to input data. There was no rainfall 

station in the study area as rainfall variability controlled soil distribution and believed to control landslide 

occurrences in the area. Therefore, the overall evaluations of the research should consider the indicated 

limitations.    

6.5. Recommendation  

 

In this study, several data from various sources were used to model both soil depth and slope stability of 

the area. However, most of these data lacks details as shown under the limitation of the study. For 

example, the DEM data which was the sources of topographic input variables lacked terrain detail and 

influenced the results of both soil depth and infinite slope model. This could be improved by using 

detailed topographic variables obtained from Lidar DEM data. In addition, soil strength parameters which 

are an important input parameter in slope stability analysis was derived from standard tables and literature, 

but detailed laboratory analysis is required in future to improve the results of the present study. 

Furthermore, many researchers in the area indicated that rainfall of the area is highly variable and such 

variability controls soil distributions of the area. Unfortunately, there was no rainfall station in the study 

area. So, rainfall data from the nearest station was used.  Any future study on the area should consider 

detailed rainfall data on the test site. The number and distributions of soil depth sampling in the field were 

also not satisfactory compared to the size of the area. Therefore, dense soil depth data which is uniformly 

distributed in the study area give more detailed information about soil depth distributions of the area. 

Equally important is also the soil depth models used. The models assumed the presence of correlation 

between soil depth distribution and topography. However, the area is complex terrain and there are areas 

which do not fit into these model assumptions. Hence, future improvement can be made by segregating 

the topography of the area into the parts which satisfy the model assumptions and adopting other 

assumptions for the parts that are difficult be included.   
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Appendix 1: The distribution of inventory landslide per land use of the area 
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Appendix 2 

PCRaster code 

######################################################## 
# MSC thesis (groundwater balance and slope stability model) 
# Version 4.1.0 # 
# timestep: day # 
# input : daily rainfall and daily ETp, dem, soiltypes, landuse types # # 
######################################################## 
#! --matrixtable --radians --lddout  
# global options, do not touch! 
 
binding  
 
### Input ### 
dem = dem10mNew.map; # digital elevation model 
stations = station2.map; # map with rainfall station(s) 
LDD = ldd2.map; 
soilunit = soils1.map; # main texture class units 
rainfall_tss = prec2009.tss; # rainfall data in mm/day  
ETP_tss = ETp2009.tss; # Potential evapotranspiration, based on Penman 
soildata_tbl = soils.tbl; # 1 = ksat, 2=pore, 3=field capacity, 4=wilting point, 5 = c 
# 6 = phi, 7= bulk density 
Ksat = ksat2.map; # saturated hydraulic conductivity (mm/h) 
soildepth = soildepth.map; # soil depth in mm 
riverwid = rivw.map; # stream channel width (m) 
landunit = landuse2.map; # land use types 
landusedata_tbl = landuse.tbl; # 1=cover, 2=height, 3=ground cover  
Outlet = outlet2.map;  
#rivfract = rivfrac.map; 
mask=mask.map;  
### Output ### 
#maps## 
theta_s = pore.map; # porosity (fraction) 
theta_fc = fieldcap.map; # field capacity (fraction) 
theta_wp = wilting.map; # wilting point (fraction) 
SoilMoisture = moist; # daily soil moisture maps (mm) 
interception = intc; # daily interception (mm) 
unsatdepth = unsdep; # deoth unsaturated zone (mm) 
#graphs  
p_tss = pavg.tss; # average daily rainfall (mm) 
pcum_tss = pcumavg.tss; # average cumulative rainfall (mm) 
ETpavg_tss = etpavg.tss; # average daily ETp (mm) 
ETpcum_tss = ETpcumavg.tss; # average cumulative ETp (mm) 
 
intccum_tss = intcum.tss; # average cumulative interception (mm) 
ETfact_tss = ETfactor.tss; # average daily ratio ETa/ETp 
eta_tss = ETaavg.tss; # average daily ETa (mm) 
etacum_tss = ETacumavg.tss; # average cumulative ETa (mm) 
perc_tss = perc.tss; # average daily percolation (mm) 
perccum_tss = perccum.tss; # average daily cumulative percolation (mm) 
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infcum_tss = infilcum.tss; # average cumulative interception (mm) 
rocum_tss = runoffcum.tss; # average cumulative interception (mm) 
 
theta_tss = theta.tss; # average daily theta (-) 
moisture_tss = moisture.tss; # average daily soil moisture (mm) 
 
areamap  
dem;  
timer 
1 365 1; # 365 days, 2004 and 2009, adjust when using different year! 
 
initial 
report mask = scalar(soilunit ne 0 and landunit ne 0 and dem gt 0); 
# ensure the mask has the smallest cross section with all input maps 
 
dem *= mask; 
soilunit = if(mask eq 1,soilunit); 
landunit = if (mask eq 1, landunit); 
 
nrCells = maptotal(mask); 
# nr cells in catchment 
##############################  
### read soil related data ### 
############################## 
rivfrac = min(1.0, riverwid/celllength()); 
# fraction of riverwidth in a stream gridcell, 0 elsewhere 
#report rivfrac.map = min(1.0, riverwid/celllength()); 
dem = if(riverwid gt 0, dem-2*rivfrac,dem) + 10; 
#burn in the river 
report LDD = lddcreate(dem, 1e10,1e10,1e10,1e10); 
report ws.map=catchment(LDD, pit(LDD)); 
# burn in the river, 2 m 
outcrop = boolean(0); #soildep22.map eq 0; 
# boolean map with true and false 
Ksat = Ksat * 24 * mask; 
#convert to mm/day 
theta_s = lookupscalar(soildata_tbl, 2, soilunit);  
# porosity in column 2 (-) 
theta_fc = lookupscalar(soildata_tbl, 3, soilunit); 
# field capacity in column 3 (-) 
theta_wp = lookupscalar(soildata_tbl, 4, soilunit); 
# wilting point in column 4 (-) 
#m_param = lookupscalar(soildata_tbl, 8, soilunit); 
#Van Genuchten n-param NOT USED 
theta_s = theta_s * mask; 
#porosity (-) 
theta_fc = theta_fc * mask; 
#field capacity (-) 
theta_wp = theta_wp * mask; 
#wilting point (-) 



 

55 

Cover = lookupscalar(landusedata_tbl, 1, landunit)*mask; 
# constant plant cover (-)  
 
TanPhi = lookupscalar(soildata_tbl,6,soilunit); 
# tan of angle of internal friction  
coh = lookupscalar(soildata_tbl,5,soilunit); 
# regolith/soil cohesion kPa 
bulk = lookupscalar(soildata_tbl,7,soilunit); 
# specific density regolith kN/m3 
############################ 
### initialize variables ### 
############################ 
 
theta = theta_fc; 
# initialize soil moisture theta at field capacity (arbitrary) 
GWDepth = soildepth*0.2; 
# groundwater intially at 0.2 of the depth 
 
GWDepth = (1-rivfrac)*GWDepth; 
GWDepth = if (outcrop, 0, GWDepth); 
# initialize groundwater depth (mm) 
soildepth = if(outcrop, 10, soildepth); 
 
unsatdepth = soildepth - GWDepth; 
#depth unsatirated zone (mm)  
SoilMoisture = theta*unsatdepth; 
# initial soil moisture in mm 
 
### totals ### 
ETacum = 0; 
ETpcum = 0; 
Pcum = 0; 
percum = 0; 
intccum = 0; 
infilcum = 0; 
peakcum = 0; 
Tacum = 0; 
Eacum = 0; 
rocum = 0; 
totbase = 0; 
totpeak = 0; 
interception = 0*mask; 
Perc = 0*mask; 
SafetyDay = 0*mask; 
baseflow = 0*mask; 
surplus = 0*mask; 
FDays = 0; 
dynamic 
######################## 
### meteo data input ### 
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######################## 
Pinterpol = timeinputscalar(rainfall_tss, stations); 
# get the rainfall values at the stations 
 
P = Pinterpol*mask; 
# restrict to area mask 
report p_tss = maptotal(P)/nrCells; 
# write a graph of the average daily rainfall 
 
Pcum = Pcum + P; 
#calculate cumulative P for outut 
#report pcum_tss = maptotal(Pcum)/nrCells;  
# write a graph of the average cumulative rainfall 
ETp = timeinputscalar(ETP_tss, nominal(mask)); 
# read potential evapotranspiration from a file and give the whole area that value 
# ETp is the potential evapotranspiration (in mm) report ETpavg_tss = maptotal(ETp)/nrCells; 
ETpcum = ETpcum + ETp; 
report ETpcum_tss = maptotal(ETpcum)/nrCells; 
#################### 
### Interception ### 
####################  
Coverm = min(Cover, 0.95); 
# maximize cover fraction to 0.95, to avoid infinite LAI 
LAI = ln(1-Coverm)/-0.4;  
# calculate LAI from Cover using Cover = exp(-0,4*LAI), WOFOST 
Smax = max(0, 0.2856*LAI); 
Smax = if(outcrop, 0, Smax); 
Smax = Smax*(1-rivfrac); 
# calculate Smax from LAI and avoid negative values becuse of logarithm 
# formula from data in De Jong and Jetten (2008) 
 
interception = interception + P - ETp; 
# add rainfall and subtract evaporation from interception 
interception = min(Smax, interception); 
# fill up the interception with rain to a max of Smax 
interception = max(0, interception); 
# cannot be less than 0 
Pe = max(P - interception, 0); 
# effective rainfall is rainfall - interception, but larger than 0 
 
ETp = if(interception gt ETp, 0, ETp - interception); 
# decrease potential evaporation with interception evaporation 
# if ETp is greater that interception, interception becomes 0 
 
intccum = intccum + interception;  
# report cumulative interception 
report intccum_tss = maptotal(intccum)/nrCells; 
# graph with spatial average cumulative interception (mm) 
#################### 
### Infiltration ### 
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#################### 
store = max(1.0, (theta_s-theta)*unsatdepth); 
cal = 1.0; 
 
rof = if(Pe gt 0, exp(-cal*store/Pe), 0); 
#runoff coefficient according to Shrestha and Jetten 2018, based on kirkby 1976 
rof = if(unsatdepth gt 1.0, rof, 1.0); 
# 100% runoff if soil is nearly full 
 
Infilcap = min((1-rof)*Pe, store); 
Infilcap = if(outcrop, 0, Infilcap); 
Infilcap = (1-rivfrac)*Infilcap; 
Runoff = accuthresholdflux(LDD, Pe, Infilcap)*mask;  
Infil = accuthresholdstate(LDD, Pe, Infilcap)*mask;  
# route the water to the outlet 
 
infilcum = infilcum + Infil;  
# report cumulative interception 
report infcum_tss = maptotal(infilcum)/nrCells; 
 
################################# 
### Actual Evapotranspiration ### 
################################# 
 
# actual evapotranspiration ETa linear with soil moisture content (mm) 
ETpoint = theta_wp + (theta_fc - theta_wp)*1/3; 
ETfactor = if (theta gt ETpoint, 1.0, 0.0); 
ETfactor = if (theta lt ETpoint and theta ge theta_wp, 
(theta-theta_wp)/(ETpoint-theta_wp), ETfactor); 
ETfactor = if (theta lt theta_wp, 0.0, ETfactor); 
report ETfact_tss = maptotal(ETfactor)/nrCells; 
Ta = ETp * ETfactor * Cover; 
# actual transpiration (mm) 
Ea = ETp * theta/theta_s * (1-Cover); 
#actual soil evaporation (mm) 
Ea = if(outcrop, 0, Ea); 
Ta = if(outcrop, 0, Ta); 
Ta = (1-rivfrac)*Ta; 
Ea = (1-rivfrac)*Ea; 
ETa = Ea + Ta; 
# ETa sum of the Evap and Transp  
ETa = min(ETa, SoilMoisture); 
# cannot be more than soil moisture present 
 
# graphs with average and cumulative average ETa of all cells 
report eta_tss = maptotal(ETa)/nrCells; 
ETacum = ETacum + ETa; 
report etacum_tss = maptotal(ETacum)/nrCells; 
################### 
### Percolation ### 
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################### 
theta_e = (theta/theta_s); 
 
# percolation based on Shrestha and Jetten, 2018, after Brooks Corey 1964 
p_coef = if(Ksat gt 0.1, 5.55*((Ksat/24)**-0.114), 0); 
# using characteristic values for ksat to get a coefficient for percolation decrease with moisture 
Perc = if (theta gt theta_fc, Ksat*(theta_e**p_coef), 0); 
# using the coefficient to calculate the percolation from Ksat and theta_e 
# assume dH/dz = 1 percolation depends on unsaturated hydr conductivity 
 
Perc = min(Perc, SoilMoisture); 
# cannot have more percolation than soil moisture 
Perc = if(outcrop, 0, Perc); 
Perc = (1-rivfrac)*Perc; 
report perc_tss = maptotal(Perc)/nrCells; 
# graph with average spatial percolation 
 
percum = percum + Perc; 
#report perccum_tss = maptotal(percum)/nrCells; 
# cumulative percolation 
 
######################### 
### new soil moisture ### 
######################### 
SoilMoisture = SoilMoisture + (Infil - ETa - Perc) * dt; 
SoilMoisture = max(0, SoilMoisture); 
SoilMoisture = if(outcrop, 0, SoilMoisture); 
# update soil moisture (mm) with rainfall and evapotranspiration 
 
surplus = max(0, SoilMoisture - unsatdepth*theta_s); 
# the water balance can result in more soilmoisture than fits in the soil 
SoilMoisture = SoilMoisture - surplus; 
 
theta = if(unsatdepth gt 0, SoilMoisture/unsatdepth, theta_s);  
# soil moisture content (cm3/cm3) = (-)  
report theta = min(theta_s, theta); 
 
# calc new soil moisture based on adjusted theta (mm) 
#SoilMoisture = theta * unsatdepth; 
# graph with average theta of all cells 
report theta_tss = maptotal(theta)/nrCells; 
report moisture_tss = maptotal(SoilMoisture)/nrCells; 
 
########################### 
### Groundwater balance ### 
########################### 
# Gravity based flow: potential differences  
# between GW surface in NS and EW directions 
# Total flow in/out cell is: 
# Darcy : Q = q*A = K sin(a)*(h*dx) 
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# A is wet cross section of the flow 
# dQ = SUM [ (K * sin(a)*h*dx) ] EW and NS  
# dQ is in m3/timestep and is added to the central cell 
# Converted to height by division by the cell area  
#NOTE: everything is in meters and meters/day 
 
dx = celllength(); 
# set up basic directions for groundwater movement 
ldd2 = ldd(2*mask); #south, row + 1 
ldd4 = ldd(4*mask); #west, col - 1 
ldd6 = ldd(6*mask); #east, col + 1 
ldd8 = ldd(8*mask); #north, row - 1  
z = (dem-mapminimum(dem)+1) - soildepth/1000; 
# gravity potential equals dem of bedrock, soildepth is in mmm, convert to m 
# assume more averaged (smooth) subsurface DEM over which GW flows ? 
GWDepth = GWDepth + if(theta < theta_s, Perc/(theta_s-theta), 0); 
GWDepth = if (outcrop, 0, GWDepth); 
 
GWDepth = min (GWDepth, soildepth); 
# add percolation amount to GW depth (convert to height in mm) 
 
h = GWDepth/1000; 
# GW depth in mm, h = matric potential in m  
SumGWbefore = maptotal(h); 
# sum GW before movement 
 
day = 0; 
hours = 2; #from 6 to 2 
frac = hours/24; #8 hour timestep 
grad = sin(atan(slope(dem))); 
# loop to make the GW flow in steps less than a day, e.g. 8 hours does 3 steps 
 
repeat{ 
H = h + z; 
# total hydraulic potential in m 
dHdL2 = sin(atan((upstream(ldd2, H)-H)/dx)); 
dHdL4 = sin(atan((upstream(ldd4, H)-H)/dx)); 
dHdL6 = sin(atan((upstream(ldd6, H)-H)/dx)); 
dHdL8 = sin(atan((upstream(ldd8, H)-H)/dx)); 
 
# sine of potential differences between central cell 
# dH/dx = tan so atan(dH/dx) is angle  
# and cells in 4 directions EW ans NS (in m) 
h2 = 0.5*(h+upstream(ldd2, h)); 
h4 = 0.5*(h+upstream(ldd4, h)); 
h6 = 0.5*(h+upstream(ldd6, h)); 
h8 = 0.5*(h+upstream(ldd8, h));  
 
dQ = 10*frac*Ksat/1000 * dx * (h2*dHdL2 + h8*dHdL8 + h4*dHdL4 + h6*dHdL6); 
# sum of all fluxes in m3/day, ksat in m/day, divide by 1000 
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h = h + dQ/(dx*dx); 
# add in/out flow to the cell in m 
day += hours; 
### mass balance correction ### 
SumGWafter = maptotal(h); 
# sum GW after the movement  
errorh = (SumGWbefore - SumGWafter)*mask; 
#total mass balance error in GW depth (before - after)  
wetcells = maptotal(scalar(h gt 0))*mask; 
# calc which cells have GW  
h = h + if(h gt 0, errorh/wetcells, 0);  
# smooth out the error over all wet cells  
SumGWafter = maptotal(h);  
# report any remaining error in the mass balance  
 
}until day gt 24; 
 
report GWerror.tss = if (SumGWbefore gt 0.001,(SumGWbefore - 
SumGWafter)/SumGWbefore,0); 
 
#################################### 
### back to hydrology, discharge ### 
#################################### 
GWDepth = h*1000; 
# convert from m back to mm for comparison with the other fluxesin the model 
GWDepth = max(0, GWDepth); 
report surplus += if (GWDepth gt soildepth, (GWDepth-soildepth)*theta_s, 0); 
GWDepth = min(GWDepth, soildepth); 
#confine GWdepth between 0 and surface, surplus water becomes runoff 
Runoff = Runoff + accuflux(LDD, surplus); 
peak = Runoff*cellarea()*0.001; 
#daily runoff in m3  
 
GWloss = if(GWDepth gt 300, 0.01*GWDepth, 0); 
GWDepth = GWDepth - GWloss;  
# subtract a loss when GWDepth is above a threshold 
GWDepth = if(outcrop, 0, GWDepth); 
# no groundwater where outcrops 
baseflow = (GWDepth*rivfrac*theta_s) + GWloss*theta_s; 
base = accuflux(LDD, baseflow)*cellarea()*0.001; 
#baseflow in m3/day 
report Q = peak + base; 
 
report q.tss = timeoutput(Outlet,Q); 
report GWDepth = if(riverwid gt 0, GWDepth * (1-rivfrac) ,GWDepth); 
unsatdepth = max(0, soildepth - GWDepth); 
# hew unsaturated zone depth 
#####################################  
### slope stability SAFETY FACTOR ###  
#####################################  
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grad = slope(dem)+0.005; 
cosS = cos(atan(grad)); 
sinS = sin(atan(grad)); 
bulk_w = 9.8; 
# bulk density water in kN/m3 
Mu = GWDepth/1000; 
#report Mu.map = GWDepth/1000; 
# pore pressure in m  
D = soildepth/1000;  
# soil depth in m 
cohroot = 1; #kPa, changed from 4 to 2 
Tan_Phi = tan(TanPhi* 3.141592/180); # tan(angle *pi/180) 
S = coh+cohroot+(D*bulk - Mu*bulk_w)*(cosS**2)*Tan_Phi; 
# S = (coh+cohroot+(D*bulk - Mu*bulk_w)*(cosS**2)*TanPhi); 
# shear strength 
T = D*bulk*sinS*cosS; 
# report T.map = D*bulk*sinS*cosS; 
# shear stress kPa  
F = S/T; 
#safety factor, strength/stress, F >=1 means stable  
report F = if(outcrop,0, F);#min(2,F); 
# no instability on outcrops 
 
report FDays = FDays + if (F lt 1, 1, 0); 
# cumulative days in year when unstable 
report FdayTot = FDays; 
# report the last timestep, cumulative unstable days  

 

Appendix 3 Script to produce soil depth map using the decision tree 

 
rockexposure.map=scalar(if((grad.map ge 0.6 or distriva.map ge 290 or twi.map lt 0), 0,1)) 
 
very_shallowdepth.map=scalar(if(((grad.map ge 0.3) and (grad.map lt 0.6)) or ((distriva.map ge 220) and 
(distriva.map lt 290)) or (twi.map lt 4), 0.2, 0)) 

 
shallowdepth.map=scalar(if(((grad.map ge 0.15) and (grad.map lt 0.3)) or ((curvp.map lt 0.05) and 
(curvp.map gt 0)) or ((distriva.map ge 140) and (distriva.map lt 220)) or ((twi.map ge 4) and (twi.map lt 
5)),0.4, 0)) 

 
moderatedepth.map=scalar(if(((grad.map ge 0.15) and (grad.map lt 0.3)) or ((curvp.map ge -0.0001) and 
(curvp.map lt 0.006)) or ((distriva.map ge 70) and (distriva.map lt 140)) or ((twi.map ge 5) and (twi.map lt 
6)),0.6, 0)) 

 
deepsoil.map=scalar(if(((grad.map ge 0.02) and (grad.map lt 0.15)) or (curvp.map lt -0.003) or 
((distriva.map ge 10) and (distriva.map lt 70)) or ((twi.map ge 6) and (twi.map lt 12)),0.8,0)) 

 
verydeepsoil.map=scalar(if(((grad.map ge 0) and (grad.map lt 0.02)) or (curvp.map lt -0.08) or 
((distriva.map ge 0) and (distriva.map lt 10)) or (twi.map ge 12),1, 0)) 
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Appendix 4 Frequency distributions of distance to river and TWI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 5 Soil depth scrip for soil balance equation model 

 

######################################### 

# Model: Soil depth 

# ############################################ 
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binding 

 

mask=mask.map; 

chanm = channelr.map; 

soildepth=soildepth.map; 

dem=dem10m.map; 

distriv = distriv.map; 

twi= twi.map; 

curv=curvp.map; 

grad=grad.map; 

 

initial 

#grad = min(1.0,slope(dem)); 

weight = grad; #weight for spreading, def 1.0. Grad gives steep slopes  

coeff = 0.9; #higher than 1 gives narrow deep valley soils,  

#< 1.0 gives broad deep valley soils 

#report curv=profcurv(dem); #negative concave to positive convex) 

#report distriv = spread(nominal(chanm gt 0),0,weight)*mask; 

soild = cover( 

1-0.7*grad # steeper slopes giver undeep soils 

-0.6*distriv/mapmaximum(distriv) # closer to river gives deeper soils 

+0.7*curv  

+0.3*twi/mapmaximum(twi) # convex gives deeper soils 

,0)*mask; 

soild = (soild-mapminimum(soild))/(mapmaximum(soild)-mapminimum(soild)); 

soild = (soild)**coeff; 

# m to mm for lisem, higher power emphasizes deep, updeep 

soildepth = soild;#mask*(200+cover(windowaverage(soild,3*celllength()),mask)); 

report soildep3.map = soildepth*mask; 




