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ABSTRACT 

Hyperspectral remote sensing is one of the frequently used tools and techniques for geologic exploration 

of mineral resources. The product of a hyperspectral study often is a mineral map whose accuracy needs 

to be validated. The existing accuracy assessment system for hyperspectral products is unstandardized and 

relies on ground truth data. To fill this niche, this research proposed an idea that the reproducibility 

and/or consistency of mineral-maps derived from multitemporal hyperspectral images over the same area 

may be correlated with the accuracy of their classification results. This idea depends on the fact that the 

mineral distribution barely changed during a short period of time. Therefore, the aim of this research was 

to measure the reproducibility of hyperspectral mineral maps, investigate assumed factors (e.g. vegetation 

cover, different spectral endmembers, and classification threshold) that may disturb reproducibility and 

estimate the relationship between reproducibility and accuracy of hyperspectral classification.  

 

In this study, three multitemporal AVIRIS scenes acquired in May 2006, September 2008 and October 

2010 respectively and over the Cuprite, Nevada, USA were used for hyperspectral mineral mapping. These 

three scenes were subsetted then classified by Spectral Angle Mapper (SAM) with the spectral 

endmembers extracted from the images using both various threshold and the unique threshold. Mask tool 

was used to mask out the pixels that have vastly different values (more than ±100 for reflectance) 

between the 3 pairs of images (May image and Sep image, May image and Oct image, as well as Sep image 

and Oct image). This process resulted in similarized images then these similarized images were classified 

by the various threshold set of SAM and the extracted endmembers to create new mineral maps. The 

Normalized Difference Vegetation Index (NDVI) was used to analyse the vegetation cover in the study 

area. Universal endmembers were created by averaging the three set of extracted endmember libraries and 

these were used to create minerals maps from the original images. Subsequently, all the classification 

results were compared to investigate reproducibility and the factors that affect it. Eventually, the 

reproduced classification results were compared with the ground truth to assess the accuracy of 

classification. 

 
The classification results created by the extracted endmembers with the various thresholds shown 

reproducibility around 60%. However, the classification results created with the extracted endmembers 

and the unique threshold shown poor classification. The similarity of identified classes between mineral 

maps derived from the similarized May image and similarized Sep image is around 23%, between mineral 

maps derived from the similarized May image and similarized Oct image is around 50%, between mineral 

maps derived from the similarized Sep image and similarized Oct image is around 48%. On the contrary, 

the similarity of identified classes between mineral maps derived from the original images is around 22%. 

The reproducibility of mineral maps that created with the same set of the universal spectral endmembers is 

around 85%. The comparisons between the producer’s accuracy of mineral maps that were created with 

the universal endmembers and reproducibility of the same set of maps shown a similar variation for every 

single mineral. Higher ratios of reproducibility indicated that differences of the original hyperspectral 

scenes and the differences amongst different endmember libraries influenced the reproducibility of 

hyperspectral mineral maps. The presence of similar variations in trend between the reproducibility and 

producer’s accuracy shown the potential of using reproducibility to assess the hyperspectral classification 

accuracy.   
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1. INTRODUCTION 

1.1. Background 

Identification or classification of minerals using reflectance spectroscopic techniques depends on the 

wavelength position and depth of their diagnostic absorption features. The electromagnetic wave is 

absorbed or reflected by different materials in various wavelength, of which the wavelength range 0.4-2.5 

μm is commonly used for detection of minerals or rocks because of the concentration of their spectral 

signatures in this region (Bakker et al., 2013). For example, the presence or absence of water and 

hydroxyl, carbonate and sulphate make minerals identifiable in shortwave infrared (SWIR) wavelength 

range due to diagnostic absorptions in 1.4-2.5 μm range (Hunt, 1977). Water molecules show absorption 

features at 1.4 μm and 1.9 μm, the hydroxyls attached to the metal ions of Mg and Al give absorption 

features in 2.2-2.3 μm (Duke, 1994), while carbonates have diagnostic absorptions in 2.5-2.55 μm and 2.3-

2.35 μm ranges (Van der Meer, 1995). Moreover, the depth of absorption features is normally associated 

with the relative presenting quantity of corresponding material (van der Meer et al., 2012). 

The product of hyperspectral image analysis in geologic remote sensing is a mineral map, of which pixels 

are assigned to different mineral classes and this processing is known as classification (Bakx et al., 2013). 

To derive a mineral map, many spectral analysis techniques have been developed for classifying 

hyperspectral data. According to Asadzadeh & de Souza Filho (2016), there are two main categories 

named as ‘per pixel’, or hard classifiers, and ‘sub-pixel’ or soft classifiers. Hard classifiers compare 

reference spectra to image spectra one by one and then label each pixel to a class. However, for ‘sub-

pixel’ or soft classifiers, each pixel is acceptable to have multiple labels. Classification methods such as 

spectral angle mapper (SAM), support vector machine (SVM), spectral feature fitting (SFF), Euclidean 

distance (ED) belong to the hard classification group. The soft classifiers include linear spectral unmixing 

(LSU), mixture tuned matched filtering (MTMF), iterative spectral mixture analysis (ISMA). (van der Meer 

et al., 2012; Asadzadeh & de Souza Filho, 2016).  

However, the hyperspectral mineral map is classified by classification methods and the classification relies 

on the use of spectra of identified pixels within the image as training data. Thus, errors can be jointly 

made by these either the classification process wrongly classifying a pixel or the training data containing 

wrong information.  Such errors will have a huge impact on the analysis of a user and the reputation of 

the producer of the final image products (Foody, 2004). Therefore, it is important to validate the 

classification results for the reduction of errors and then improve the quality of the created maps.  

Approximately 1975 is considered to be the historical beginning for accuracy assessment of multispectral 

remote sensing data. The rapid growth of the number of analysis results derived from remote sensing data 

acquired by Landsat-1 resulted in researchers beginning to consider and evaluate the quality of their 

obtained results (Congalton & Green, 1999a). The first criteria and approaches for mapping accuracy 

assessment were proposed by Hord and Brooner (1976), Van Genderen and Lock (1977), and Ginevan 

(1979). During the 1980s, Rosenfeld (1982) and Aronoff (1985) performed in-depth-study of the methods 

and strategies for the validation of multispectral mapping. After the development of decades, the 

dominant and most common used validation approach for spectral classification results is the confusion 

matrix (also known as error matrix) (Congalton, 1991; Congalton & Green, 1999a). For the information 

about confusion matrix, see Assessing the Accuracy of Remotely Sensed Data by Congalton & Green  

(1999b). 
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1.2. Problem Statement 

Nowadays, there are two strategies used for the collection of reference data for the validation of products 

created from spectroscopic techniques, which are the use of data in-situ measured or assuming a map 

with higher accuracy as the reference data. (Bakx et al., 2013). However, for both of these two strategies, a 

problem is observed that they have the indispensability of ancillary information (van der Meer et al., 

2012). Moreover, for the use of ground truth data as reference data, only part of a classification result will 

be directly compared with the reference data since it is impractical to sample for each pixel of the 

classification results in the field (Congalton & Green, 1999c). 

Furthermore, researchers are using various methods for the accuracy assessment of results derived from 

hyperspectral datasets. For instance, Boubanga-tombet et al. (2018) and Graham et al. (2018) did not 

report validation results. Pan et al. (2019) presented a ratio that calculated based on the field measurement 

for the overall accuracy of the classification results but no details about this ratio were shown. Bedini 

(2009) used a confusion matrix to compare the hyperspectral classification result with ground truth data. 

Mielke et al. (2016) proposed that the RMSE can be used to assess the accuracy of the abundant image. 

Kayet et al. (2018) also compare the classification result and surface truth data, but the accuracy ratio in 

this work is obtained by the analysis method root mean square error (RMSE). However, as opposed to 

the mature validation framework of the multispectral image, a standardized accuracy assessment method 

is still lacking in hyperspectral mineral mapping. Therefore, this research aims to fill these niches by the 

investigation of reproducibility and/or consistency of mineral maps derived from multitemporal 

hyperspectral scenes. 

1.3. Main-assumption 

With no standardized validation strategy for hyperspectral classification up to now and to fill the aforesaid 

niche, that the existing accuracy assessment indispensably depends on the ground truth data or other 

ancillary independent information. An assumption that estimate the reproducibility and/or consistency of 

the hyperspectral classification method using multitemporal hyperspectral images is proposed. 

Theoretically, mineral distribution on a very location should barely change over a short time. Thus, 

mineral mapping results created by multi-temporal hyperspectral images over the same location is 

supposed to present a high consistency between each other. In other words, classification results that are 

derived from multi-temporal hyperspectral images over the same area should be reproducible or 

consistently created by the same classifier. 

1.4. Objectives and research questions 

1.4.1. General objective 

The general objective of this research is to evaluate the reproducibility and accuracy of hyperspectral 

mineral maps derived from multitemporal hyperspectral AVIRIS images using the SAM method. 

1.4.2. Specific objectives 

1. To produce mineral maps from multitemporal hyperspectral image scenes using the same 

mapping technique. 

2. To compare hyperspectral classification results with each other for the evaluation of consistency 

and/or reproducibility pixel by pixel. 

3. To investigate which factors are responsible for differences between mineral maps derived from 

multitemporal hyperspectral images acquired over the same area. 

4. To assess the accuracy of mineral maps created in this research by comparing with ground truth 

data. 

5. To evaluate the correlation and/or association between the reproducibility and accuracy. 
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1.4.3. Research questions 

1. What are the criteria for selecting suitable multitemporal hyperspectral image scenes used in this 

research?  

2. Which classification method should be used? 

3. How to compare or/and measure the mineral maps derived from multitemporal hyperspectral 

images from the same area be compared? 

4. How will the reproducibility or robustness amongst classification results derived from 

multitemporal hyperspectral images be measured and/or defined? 

5. Is the difference amongst different mineral maps related to the different acquisition time of the 

hyperspectral images that those mineral maps were derived from? 

6. Will the vegetation cover in the study area affect the reproducibility of hyperspectral 

classification? 

7. Is there any other factor that may disturb the reproducibility of hyperspectral classification and 

what is it? 

8. Which method should be used to assess the accuracy of mineral maps produced in this research? 

9. How to verify the relationship between reproducibility and/or robustness amongst classification 

results and the accuracy of corresponding classification results produced in this research? 

1.5. Thesis structure 

This thesis has been structured into 5 chapters. Chapter 1, Introduction expounds background, problems, 

hypothesis, objectives and questions in this research. Chapter 2, Data and Methodology summarized data 

(hyperspectral data and reference data) and methods used in this research. These methods were used for 

pre-processing, endmember extraction, mineral mapping, validation, results of the comparison and other 

ancillary analyses. Chapter 3, Result presents the outcomes obtained from the processing through 

methods mentioned in chapter 2. Chapter 4, Discussion talked about the results derived from analysis and 

describes the decision basis for subsequent analysis. Chapter 5, Conclusion and Recommendation 
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2. DATA AND METHODOLOGY 

In this research, shortwave infrared data from three hyperspectral scenes that were acquired from Cuprite, 

Nevada, USA were used to produce mineral maps. The Cuprite Mineral Map (shown in Figure 2.1) was 

used as a reference. The methodology is divided into two stages: The first is the pre-processing of the 

airborne hyperspectral data, in which it contains atmospheric correction, data resize, geocoding of the 

reference data and other pre-processing steps. The second stage is the processing part which includes 

endmember extraction, mineral maps production, and analysis of robustness and/or consistency amongst 

those mineral maps created in this research (flowcharts in Appendix I). If not particularly claiming, then 

methods used in this research were performed in software ENVI 5.5 (Harris Geospatial Solutions, 2018). 

 Data 

2.1.1. Study area 

The study area of this research is the Cuprite district (Figure 2.1) located in Southwest of Nevada, USA. 

The area is suitable for this research for the following reasons. First, it hosts different hydrothermal 

alteration zones containing minerals which can be identified by spectroscopic methods. Second, it has 

been used as a test site by NASA-JPL in many studies for sensor calibration and spectroscopic studies 

(van der Meer et al., 2012). Thus, image data acquired at different time over the same location are 

available in this area. Third, it contains abundant mineral resources with extensive well-studied mineral 

mapping researches and it has a wide variety of rock types exposed with sparse vegetation cover. 

Cuprite mining district consists of two lithological units namely Tertiary volcanic and volcaniclastic rocks 

of mainly rhyolitic ash-flow tuffs with some air-fall tuff (Kruse & Boardman, 1990). Hydrothermal 

alteration has extensively modified the volcanic rocks to three altered zones. Such zones include 

argillaceous alteration zone, silicified alteration zone and the opal alteration zone (Wei et al., 2017). The 

mineralogy in the silicified zone is mainly quartz with minor calcite, alunite and kaolinite. The argillic zone 

consists of kaolinite derived from plagioclase, while opal and montmorillonite were derived from volcanic 

glass. The most intensely altered zone is siliceous rocks while argillized rocks are least intensely altered. 

The relict textures of the rocks are well preserved in all alteration zones (Ashley & Abrams, 1980). 

Swayze et al. (2014) directionally named two hydrothermal alteration regions which are abundantly 

mineralized in the Cuprite district as the eastern centre and the western centre (shown in Figure 2.1). For 

the reduction of uncertainty, the study area in this research must be contained by a single scene from each 

of the hyperspectral datasets used and these scenes should have a relatively high spatial resolution of the 

hyperspectral datasets, necessary for clear understanding and distinguish of the mineral distribution. 

However, based on the available AVIRIS datasets, no scenes that cover both of these two hydrothermal 

alteration centres match the criteria mentioned above. In the other world, only one alteration centre can 

be focused on for analysis.  

In this research, the eastern centre was selected as the study area because the selection of the western 

centre as the study area may complicate the analysis in this research for the following reasons. Initially, the 

composition of the silicified alteration region in the eastern centre shows a more concentrating 

distribution with bigger size than its distribution in the western centre. Besides that, four different kinds 

of white micas that located in the western centre will complicate the processing of endmember extraction, 

classification, and measurement of reproducibility in this research. Third, the spectral absorption features 

of Dickite which mineralized in the western centre with large scale is similar to the spectral curve of 
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Kaolinite. Thus, the classification may create confusing results for these two minerals in the western centre 

(Swayze et al., 2014). 

2.1.2. Remote sensing data 

The remote sensing datasets were used to create mineral maps for the investigation of reproducibility 

and/or the consistency amongst classification results derived from different classifiers in this research. 

They are provided by NASA (National Aeronautics and Space Administration) and collected by the 

AVIRIS-classic (the airborne visible/infrared imaging spectrometer) sensor that records electromagnetic 

radiance signal which reflected from the target in 224 continuous narrow bands. This dataset consists of 

three geometrically and radiometrically corrected airborne multi-temporal hyperspectral scenes (details in 

table 2.1) and they were acquired over the same area but have slight geographically shift with each other. 

The AVIRIS images used in this research were selected from all hyperspectral images provided by NASA 

over the study area of this research based on the following criteria. Initially, the study area in this research 

must be contained by a single scene from each of the hyperspectral datasets used. This is because the 

uncertainty will be enhanced across scenes within the study area. This uncertainty may be a result of 

different illumination magnitude, solar elevation, and shadow amongst different scenes as a result of the 

different acquisition time of these scenes. Secondly, to clearly understand and classify the mineral 

distribution in the study area, a relatively high spatial resolution of the hyperspectral datasets is necessary 

for this research. Thirdly, each of the multitemporal hyperspectral scenes should have the same or at least 

similar spatial resolution to reduce the uncertainty caused by the resampling of the comparison amongst 

classification results derived from these scenes. Fourthly, the acquisition time of multitemporal 

hyperspectral images used in this research should belong to the different season for the estimation of the 

potential influence that is affected by vegetations. 

Eventually, three images that match the four criteria mentioned above were selected and used in this 

research. They were acquired by the AVIRIS sensor over the same place and at a different time. The May 

image was acquired at 19:02 (UTC) on the 2nd May 2006, the September image was acquired at 18:39 

(UTC) on the 20th Sep 2008, and Oct image acquired at 10:22 (UTC) on the 14th Oct 2010. The spatial 

resolution of May image and Sep image is 3.3 m while the Oct image has the pixel size as 3.2 m. The 

Eastern centre, the study area in this research, is completely covered by all three images. 

Table 2.1 Attribute of datasets 

Airborne Hyperspectral Image Auxiliary 

Data Type Radiance at Sensor Data Type Mineral Map 

Name of Sensor AVIRIS-Classic 

Name of 

Mineral 

Map 

Cuprite,Nevada_1995_

AVIRIS_Data_Tetracor

der_Mineral_Map 

Clays, Micas, Sulphates, 

Carbs. (+legend) 

Projection UTM 11 

Datum WGS-84 

Status L1-B 

Flight Name 
Acquisition 

Time 

Pixel 

Size 

Spectral 

Resolution 
Projection UTM 11 

f060502t01p00r05 
02 May 2006 

UTC:19:02 
3.3m 10nm Datum NAD27 

f080920t01p00r04 
20 Sep 2008 

UTC:18:39 
3.3m 10nm Time 1995 

f101014t01p00r04 
14 Oct 2010 

UTC:20:22 
3.2m 10nm Producer Clark & Swayze  
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The multitemporal AVIRIS images used in this research were offered by NASA in L1-B status. Thus, all 
of them has already been both calibrated and ortho-corrected by NASA with ancillary information. 
Therefore, multitemporal AVIRIS images used in this research are radiance-at-sensor data. And the 
ortho-correction was done through a complete 3-dimensional ray tracing model and a set of DEM data in 
spatial resolution of 30 m. During this ortho-correction, each individual pixel of the multitemporal 
AVIRIS scenes was traced by the 3-d model for its location and altitude until they match the DEM data. 
Therefore, there is no more ortho-correction and calibration were processed in this research according to 
the AVIRIS scenes used in this research had already been ortho-corrected and calibrated by NASA which 
is an institution that produced these images (Boardman, 2007). 
2.1.3. Ground truth data 

Eastern 
centre 

Western 
centre 

Figure 2.1 Cuprite, Nevada 1995 AVIRIS Data Mineral Map Clays, Micas, Sulphates, Carbs 

(Source: Swayze et al., 2014) The red box shows the study area of this MSc research 
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The second dataset is the Cuprite Mineral Map (shown in Figure 2.1) which mapped dominant minerals 

such as clays, micas, sulphates, and Carbonates, of 1.3-2.5 μm wavelength range (Swayze et al., 2014). 

This map was generated by Swayze et al. (2014) and it was retrieved from AVIRIS data. The Cuprite 

Mineral Map was validated by the authors using in-situ measurements and other ancillary information. A 

published and well-validated mineral map that also derived from the AVIRIS scenes was considered as 

the ground truth data for this research. Since there is no in-situ measurement in this research. Thus, the 

Cuprite Mineral Map was used for the accuracy assessment of mineral maps created based on the multi-

temporal hyperspectral images in this research. The Cuprite Mineral Map was re-geocoded in this research 

and is presented in Figure 2.1 below. The geo-coding allows it to be linked with the multitemporal 

hyperspectral images used in this research as an independent ground truth material.  

2.2. Pre-processing 

2.2.1. Atmospheric correction 

The AVIRIS data used in this research were provided by NASA-JPL (2010) and they have already been 

pre-processed to remove the adverse image characteristics caused by geometric and radiometric effects 

which are generated during the data acquisition. Therefore, the first pre-processing step in this research 

was an atmospheric correction to minimize redundant effects such as atmospheric path radiance which is 

the radiant energy scattered by the atmosphere and the adjacency effect which is reflected from the 

surface surrounding the target material (Kale et al., 2017).  

To achieve the objectives of this research, it was necessary and important to select an appropriate 

atmospheric correction method. The algorithms used for atmospheric correction can be divided into two 

categories, which are model-based and empirical-based methods (Ben-Dor, Kindel, & Goetz, 2004). 

Selection of the optimal atmospheric correction method depends on the purpose, ancillary information, 

and scene condition in the research. Normally, a rigorous model-based algorithm (such as FLAASH) is 

suitable for the use of the spectral library to classify surface target (Harris Geospatial Solution Inc., 2018a) 

as the classification methods will be used in this research. Thus, a literature review is done to select a 

suitable model-based atmospheric correction algorithm. Kruse (2004) compared several model-based 

atmospheric correction algorithms such as FLAASH, ACORN, and ATREM and he proposed the 

method FLAASH is the most flexible method for the correction of generating an accurate surface 

reflectance image from hyperspectral or multispectral radiance data. Rani et al. (2017) concluded that the 

model FLAASH is a rigorous tool which has the ability to correctly compensate for the effect of 

atmospheric scattering and absorption. Moreover, it is better than the other model-based atmospheric 

correction methods in the condition of enough ancillary information. Therefore, the model FLAASH was 

selected in this research. 

The model FLAASH (fast line-of-sight atmospheric analysis of hypercubes) which is developed by 

Spectral Centre and Research System, Inc. (Perkins et al., 2005) is an atmospheric correction code used to 

remove the interference of atmospheric scattering and the adjacency effect. The radiation transfer code of 

FLAASH is based on model MODTRAN4 whereas the standard MODTRAN model is used for the 

atmosphere and aerosol types code of FLAASH (Berk et al., 1998; Perkins et al., 2005). The result of 

FLAASH includes physics-based surface reflectance image, water vapor conditions, artefacts suppression, 

and cloud classification. FLAASH is suitable for the spectral data in the wavelength range from 0.4 μm to 

2.5 μm (Rani et al., 2017), therefore the target wavelength range (2.0-2.5 μm) of this study is covered. A 

wavelength range from 2.0-2.5 μm was selected because this region is useful for the investigation of the 

hydrothermal mineralized system (Amera, 2007) which is the dominant mineralizing system of the study 

area. Software ENVI is used to run the model FLAASH in this research and it has already built-in the 

latest version of the FLAASH model. 

The use of FLAASH model requires ancillary information and some of them are derived from the certain 

wavelength of the input data. The first portion of the auxiliaries is the gain values which is used to scale 
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the data. It is because the data provider of NASA/JPL used an array of gain values to convert the data 

type into an integer for economizing of hard disk space (Jin, 2018). With these gain values, FLAASH 

converts the input 16-bits integer data into radiance in the units of μW/cm2*sr*nm, which will match the 

requirement of FLAASH. Subsequently, some auxiliary information that was recorded during the data 

acquisition is required, such as acquisition time, the elevation of target ground and the altitude of the 

sensor, pixel size, and geographic position (Perkins et al., 2005). Furthermore, to perform the water vapor 

retrieval, the spectral resolution of the image must better than 15nm and the certain image contains bands 

that cover wavelength range 1050-1210nm while the range 870-1020nm and/or 770-870nm are 

considered as a substitution when the band around 1050-1210nm is absent (Harris Geospatial Solution 

Inc., 2018a). FLAASH employs an empirical ratio-based algorithm to retrieve the aerosol conditions, in 

which the boundary layer aerosol optical depth will be divided by effective layer thickness (Perkins et al., 

2005).  

 

Figure 2.2 Settings used for atmospheric correction of May image of model FLAASH in software ENVI 

2.2.2. Data resize 

Following the atmospheric correction, hyperspectral images used in this study were spatially and spectrally 

subsetted to match the requirement of this research. It is because some necessary ancillary information 

for the atmospheric correction of the FLAASH method is recorded in certain bands which are outside of 

the wavelength range for the subsequent research in this research. Therefore, the atmospheric influence 

of the multitemporal hyperspectral images used in this research cannot be corrected without those bands 

but the spectral analysis and classification will be complicated without excluding those bands. Thus, the 

spectral subsetting must follow the atmospheric correction. 

For the spatial subset, two criteria were built and the first one is the study area after the spatial subset 

should cover regions with abundant mineral types for the universal representation of this investigation. 

The second criterion is the study area should avoid all the dark boundaries in every scene. The reason for 
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that is because the pixel values of the dark boundary will bother the statistics results that will follow. 

Based on these two criteria, a region of interest file was built to generate the study area in the Cuprite 

mineralize district (shown in a red pane of Figure 2.1).  

Spectral subsetting was conducted in two steps in this research. It is a tool for the excluding of 

unnecessary wavelength bands of the dataset used in research (Harris Geospatial Solution Inc., 2018b). 

Initially, for the purpose of focusing on the targeting minerals in this study area, spectral subsetting was 

first performed to focus on a wavelength range 2.0-2.5 μm. It is because this range is useful for the 

investigation of the hydrothermal mineralized system (Amera, 2007) which is the dominant mineralizing 

system of the study area. Secondly, based on the Cuprite Mineral Map produced by Swayze et al (2014), 

the alteration minerals in this area are identified as alunite, buddingtonite, kaolinite, alunite & kaolinite, hydrated 

silica, and montmorillonite. None of these minerals has the first diagnostic spectral features out of the 

wavelength range 2120 nm to 2250 nm. And, the shoulders of spectral signatures of this research’s 

targeting mineral are concentrating at the wavelength range 2048-2120 nm and 2250-2350 nm. 

Furthermore, this result was supported by the frequency of the wavelength range of the first absorption 

feature (shown in Figure 3.5) generated by the wavelength mapping through software HypPy (Bakker, 

2018). Thus, during wavelength mapping, the wavelength range of the hyperspectral images used was 

further subsetted to 2048 nm to 2308 nm in this research. Since the other bands that exclude that range 

will not be used for classification in this research and the that many bands will both complicate and slow 

the speed of analysis. 

2.2.3. Geocoding 

The Cuprite Mineral Map (Swayze et al., 2014) was used as independent ground truth in this research to 

assess the accuracy of the classification results. However, this map was georeferenced by latitude and 

longitude with NAD 27 but the multitemporal hyperspectral images used for classification were projected 

to the UTM 11 with the datum of WGS-84. Therefore, the Cuprite Mineral Map was projected to WGS-

84 datum by the software Global Mapper (Blue Marble Geographics, n.d.). 

2.2.4. Region of interest (ROI) 

The ROI is a built-in tool of ENVI software, which is used to select pixels by particular characteristics, 

geometry, or drawn manually in a raster image. Afterwards, these selected pixels can be classified, be 

calculated for statistics, or be used to overlapped other images that have the same pixel seize with them 

(Harris Geospatial Solution Inc., 2018c).  

In this research, the tool ROI was used for three purposes. First, it was used to select pixels that represent 

each kind of mineral in the Cuprite Mineral Map created by Swayze et al. (2014) through the unique value 

of each mineral type in the green band of this RGB file. Subsequently, those ROIs that represents one 

mineral were classified to generate a reclassified file (see Appendix VI) for accuracy assessment by the 

confusion matrix. Second, there were several markers in the Cuprite Mineral Map used to label the field 

sampling position, and these markers were manually selected by drawing, then each of them was replaced 

with the same class as the pixels surrounding it. Third, the tool ROI was used to identify vegetation 

conditions in the NDVI results by the threshold claimed by Weier & Herring (2000). 

 Processing 

2.3.1. Wavelength mapping 

The wavelength mapping method was performed through software HypPy (Bakker, 2018) to display the 

distribution and depth of the deepest spectral absorption features in each pixel of the study area. This 

processing depends on the surface reflectance of the images.  

The procedure of wavelength mapping consists of two steps. In the first step, the tool Wavelength of 

Minimum that consists of two techniques was used to dominate the wavelength of the deepest absorption 
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pixel by pixel and measure the depth of those absorption features. The first technique is continuum 

removal, which was performed by divide the pixel spectrum with a convex hull to highlight the deepest 

absorption features (Van Ruitenbeek et al., 2014). Afterwards, another interpolation technique was 

conducted to calculate the deepest wavelength position of the continuum removed spectrum. The 

interpolation is necessary because the deepest absorption feature may be located between two bands. 

Therefore, a parabola was fitted to the absorption curve by three consecutive bands which is the band 

with the smallest value and two bands on two sides of it. Thus, the corresponding wavelength to the 

smallest value of this polynomial is the wavelength of the deepest absorption feature (Van Ruitenbeek et 

al., 2014). These two techniques were performed by the tool Wavelength of Minimum pixel by pixel and 

to generate a map that displays the wavelength of the smallest value of the local spectrum (Bakker, 2012).  

For this research, wavelength mapping of only the first feature was measured because the minerals in the 

study area are alunite, buddingtonite, kaolinite, alunite & kaolinite, hydrated silica, and montmorillonite, and most of 

them can be easily separated by just the first absorption feature. Eventually, a map with two bands was 

produced. One band records the wavelength of the deepest absorption feature for each pixel and another 

band records the depth of the absorption features relative to the continuum hull (Van Ruitenbeek et al., 

2014).  

Following the map produced by the minimum wavelength, a new image was generated to combine and 

visualize two kinds of information produced by the first step. In the second step, wavelength mapping 

transforms the digital information to a colourful map with the HSV colour table. Of which the hue (H) of 

a certain pixel is dominated by its wavelength position of the deepest reflectance value and the colour 

value (V) of a pixel is controlled by the depth of its deepest absorption feature. Afterwards, a wavelength 

map is created with corresponding colour legend through setting the saturation (S) as 1 for every pixel 

(Van Ruitenbeek et al., 2014). This map was used to give indices for the interpolation of surface mineral 

and display distribution of the deepest absorption features for a different type of minerals. 

Moreover, a histogram was also generated based on the minimum wavelength. This histogram 

summarized the frequency of the minimum wavelength for each pixel of the map produced by the 

minimum wavelength (Bakker, 2012). This histogram was used to support the second spectral subsetting 

for the multitemporal hyperspectral images in this research. 

2.3.2. Spatial-spectral endmember extraction (SSEE) 

The spatial-spectral endmember extraction (SSEE) method was applied on scenes modified and corrected 

by aforesaid pre-processing methods then the collected endmembers were compared with the spectral 

library proposed by the United States Geological Survey (USGS) (Rogge et al., 2007). The SSEE was 

selected to extract endmembers in this research because the spectral contrast will affect the ability for 

discrimination of pixels which carried relatively unique spectrum base on their spectral features, and it will 

be hard to discriminate potential endmembers which got low spectral differences. Therefore, the SSEE 

works on subsets which are square, have equal size, and not overlapping of a scene, thus a smaller spectra 

assemblage will help to classify pixels with relatively low spectral contrast (Rogge et al., 2012). Because the 

spectral contrast is a relative conception which hinges on the combination of spectra. In other word, for 

the spectrum that got low spectral contrast when compared to the whole scene may have high spectral 

contrast when it compared with a smaller group of spectra which surround it. 

Therefore, within the square-subsetting region, the eigenvectors which clarify the major spectral 

characteristics of the corresponding region will be efficiently calculated and collected. Subsequently, the 

spectrum of each pixel in a subset region will be projected to the compiled local eigenvector, then those 

spectra that reach the external of the vector will be recorded as candidate endmembers (Rogge et al., 

2012). Afterwards, the spatial constraining will be applied by the SSEE to average the similar 

endmembers which are near to each other and output those similar endmembers that are spatial 

independent (Rogge et al., 2007).  
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Eventually, endmembers that been collected with SSEE will be compared with the spectral library 

proposed by the USGS to label endmembers with certain minerals and the slight shifts may be caused by 

the error caused by calibration and/or the purity of target will be considered in this procedure. Then each 

endmember spectral library from each image was used to create a universal spectral library by averaging 

the endmember of each mineral. 

2.3.3. Spectral correlation 

The correlation coefficient was used to calculate the similarity among spectral endmembers of the same 

minerals that were collected from different images and it was calculated through the software Excel. The 

correlation coefficient used in this research is the linear correlation coefficient which was calculated to 

measure the degree of association between two variables (Asuero et al.,  2006), which in this study means 

spectra. This coefficient is defined as the covariance of two random variables divided by the standard 

derivation of these two variables, therefore the drawback of covariance, which is the dependence of the 

measurement scale is fixed (Asuero et al., 2006). The formula of correlation is expressed as follows 

 

               𝑟𝑥𝑦 =
𝛴(𝑥𝑖−�̅�)(𝑦𝑖−�̅�)

√𝛴(𝑥𝑖−�̅�)2(𝑦𝑖−�̅�)2
    i=(1,2,…,n)                                               (1) 

In the above formula, 𝒙 and 𝒚 represent two random variables and 𝒓𝒙𝒚 is the correlation coefficient of 

these two variables. Eventually, for the result of 𝒓𝒙𝒚 (−𝟏 ≤ 𝒓 ≤ 𝟏) will index the association between 

variables. Briefly, the positive association is progressively increase follow the increasing of the digital of 𝒓. 

In the other word, two random variables are totally positive correlated when 𝒓 =1, totally uncorrelated 

when r=0, and totally negative correlated when 𝒓 =-1 (Asuero et al., 2006; Gogtay & Thatte, 2017). 

In this research, the spectral correlation was used for comparing endmembers of every mineral in each of 

the four endmember libraries to avoid the differences of themselves unnecessarily influencing the 

robustness or reproducibility of classification results. Three of them are extracted libraries while one of 

them is the universal library. subsequently, the three extracted endmember libraries were compared with 

each other and the universal library was compared with each of the extracted libraries.  

2.3.4. Spectral angle mapper (SAM) 

The algorithm SAM was used in this research for the mapping of the mineral distribution on the ground. 

SAM is a method that allows fast classification by assigning image spectra to the corresponding reference 

spectrum. Reference spectrum can be spectra that measured from the field or in the laboratory or 

extracted from the image itself, based on the similarity of them (Kruse et al., 1993). The algorithm SAM 

measures the similarity between the reference spectrum and test spectra by project them to an n-

dimensional space (n equal to the number of bands of those spectra) as vectors, then calculate the angle 

between them (Kruse et al., 1993). Afterwards, the user will manually set a unique threshold or a set of 

various thresholds for different classes of reference spectra and the test spectra with angle degree lower 

than this threshold will be assigned to the class of corresponding reference spectrum. 

The SAM method was selected in this research to generate mineral maps for the investigation of 

classification reproducibility. Firstly, SAM was picked because it is widely used in the community of 

geological remote sensing and easily available. Bertels et al. (2005) indicated that the most popular 

category of the hyperspectral classification method is the similarity measurement and SAM is a commonly 

used method in this category. Rajendran & Nasir (2018) also claimed that SAM is one of the most often 

used methods for hyperspectral mineral mapping. Moreover, the standard SAM algorithm is a built-in 

tool of the most commonly used image processing applications (Bertels et al., 2005). Thus, SAM is an 

easily available algorithm for other researchers. On the other hand, it is also because SAM has already 

been proven as an efficient mineral mapping method. Asadzadeh & de Souza Filho (2016) claimed results 

of SAM shows better performance of the detecting for the boundaries of the target than the method 

Euclidean distance (ED) which is also in the category of similarity measurement. And Rahman (2016) 



 

 

 

EVALUATING REPRODUCIBILITY AND ACCURACY OF HYPERSPECTRAL MINERAL MAPS USING MULTI-TEMPORAL AVIRIS IMAGES OF CUPRITE, NEVADA, USA 

20 

concluded that SAM processing is based on the comparison of spectral signature between the targets and 

reference spectra and therefore it will generate good results. 

In this research, several mineral maps were produced with different sets of thresholds and different 

endmember libraries. Firstly, hyperspectral images were classified twice using two sets of thresholds (see 

Appendix II). One set of these thresholds is the various thresholds set by “trial and error” that changed 

from mineral to mineral. This set of thresholds were set based on the May image with the wavelength 

maps produced in this research and the Cuprite Mineral Map produced by Swayze et al. (2014) as 

references. Another set of thresholds for each mineral of each image were automatically set as a unique 

value “0.1” by ENVI software. Secondly, hyperspectral images were created with different endmember 

libraries and each hyperspectral image acquired at different time was classified with extracted endmember 

library and the universal endmember library respectively. These six mineral maps were compared with 

each other to investigate the comprehensive reproducibility and/or consistency of the SAM classification 

method. Afterwards, based on these six mineral maps, and the six different minerals, 36 solo mineral 

maps (see Appendix V) were created for the investigation of consistency and/or reproducibility mineral 

by mineral.  

2.3.5. Image-to-image registration 

Method image-to-image registration was performed through software ENVI and it is robust as well as 

accurate for the alignment of multi-temporal images (Jin, 2018). It is used to spatially fit multi-temporal 

images over the same area and to align corresponding pixels of those images so they cover with each 

other as much overlap as possible, with the purpose of improving the accuracy of comparison 

(Schowengerdt, 2007). This method consists of two parts, the ground control points selection and the 

image warping.  

The procedure of ground control points selection contains three steps: in the initial phase, two images 

with the same geo-coordinate system were inputted as the basic image and the warped image respectively. 

Subsequently, ground control points (GCP) were selected on each of these two images as the tie to fit the 

warped image to the basic image. In other word, a GCP on the basic image is supposed to have the same 

geographic position as its corresponding GCP on the warped image. However, spatial errors of the GCPs 

on either image are impossible to totally eliminate, thus sufficient numbers are significant to minimize the 

influence caused by those spatial errors (Usman, 2018) (e.g. more than 70 GCPs were selected in this 

research). During the selection of GCPs, a subset window will be automatically generated by the 

algorithm and its size depends on the parameter set by the user. This patch slips over both of the images 

to measure the grey value scale within the subset window and try to find conjugate GCPs based on the 

similarity of the grey degree (Harris Geospatial Solution Inc., 2018d). Based on that, GCPs are selected 

automatically to avoid the bias derived from the manual GCPs selection.  

Afterwards, the RMS error (root mean square error) will be calculated by the GCP self-test function to 

measure the malposition between a pair of GCPs on both of the images. The unit of the provided RMS 

error number is meter, it is directly calculated based on the GCPs themselves with the consideration of 

the spatial resolution of the input images (Barazzetti et al., 2016). And the GCP with high RMSE will be 

manually deleted. On the other hand, for some spots that assuredly in the same location (such as the road 

cross or the edge of hills) of two images, the manual GCP addition is also used to ensure both of the 

accuracy and number of GCPs. Eventually, GCPs with RMS error (e.g. the RMSE of GCPs in this 

research is 0.581 m and 0.771 m respectively) that lower than the pixel size of the images were used to 

align two images. 

Following the second step, the warped image will be aligned to the basic image through the GCPs and a 

resampling processing (Harris Geospatial Solution Inc., 2018d). In this study, the hyperspectral image 

acquired on the 2nd May 2006 was chosen as the basic image, and the other two images were spatially fit 

to it. Afterwards, some slightly shift caused by the different number of pixels between the warped images 

and the basic image will be fixed by spatial resize.  
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Nevertheless, based on the conclusion of Zhou et al., (2003), any resampling models lose spectral 

information more or less and mix the spectra within pixels. Thus, those lost information and mixed 

spectra resulted in the last phase, which is the resampling, of the image-to-image registration will enhance 

the uncertainty for the subsequent analyses. Therefore, the input hyperspectral images will be classified 

first then those classification results will be rectified to fit the same basic image. Therefore, the spectra of 

each pixel will not be mixed by image registration and the differences across classifiers and/or multi-

temple hyperspectral images can be pixel-based analysed.  

2.3.6. Confusion matrix 

The confusion matrix is a widely used method for comparing the classification result and the reference 

data to validate the correctness of the classification result (Congalton, 1991; Tobergte & Curtis, 2013). 

Two ratios, error of commission which means there are certain materials in the reference data but not in 

the classification result and error of omission which means there are certain materials in the classification 

result but not in the reference data are measured (Congalton, 1991; Pontius & Millones, 2011). Besides 

these, the user accuracy and the producer accuracy are the other two important information provided in 

the confusion matrix. The user accuracy is the probability that a certain class in the reference image is 

correctly labelled as the same class in the test image. While the producer accuracy is the probability that 

pixels in the test image can be actually identified as the class of reference image (Congalton, 1991; Bakx et 

al., 2013). 

Because of the integrated information summarized in the confusion matrix, it is also very convenient for 

applying several analysis methods to calculate these data for accuracy assessment (Foody, 2008). The most 

common one of these methods is the overall accuracy which is the number of all of the correctly 

classified pixels divided by the total of the pixels assessed (Bakx et al., 2013). 

Confusion matrix was used to compare the similarity or reproducibility of three pairs of SAM 

classification results derived from May image and Sep image, May image and Oct image, as well as Sep 

image and Oct image respectively through software ENVI. The calculation of the confusion matrix of 

software ENVI will calculate every pixel in the input images. On the other hand, every pixel of the six 

comprehensive mineral maps derived from three multitemporal hyperspectral images with the extracted 

and universal endmember libraries were also compared with each spatially corresponding pixel of the 

Cuprite Mineral Map (Swayze et al., 2014) which is the ground truth data in this research to calculate the 

correctness of these SAM classification results.  

2.3.7.  Masks 

Figure 2.3 (A) shows the original condition of a solo mineral map; (B) presents the values of pixels of the mask file when 
pixels of (A) excluded by the it with the characteristic as value equal to “zero”; (C) shows the value “one” in each pixel of 
the original solo mineral maps is changed to the value “two”. It is because each pixel that have value as “zero” in a mask 
file then the value of its spatially corresponding pixel of the original image can be exchanged through the tool “applying 
mask’’.  

(A) (B) (C) 
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Masks are tools used to exclude pixels with particular characteristics (for instance value or position). Once 

a mask is built in ENVI software based on certain characteristics, pixels contain conforming 

characteristics will be highlighted by getting the value as one while every other pixel will get the value as 

zero in the raster file. Then, for the using of mask, with the tool “applying mask’’, a mask file can be 

overlapped on an image has the same size and location with it and the value of that image can be set to 

exchange values of every pixel that is not highlighted in the mask (Harris Geospatial Solution Inc., 2018e). 

Masks were used for giving a different value to those maps with only one mineral type produced by the 

method SAM (shown in the conceptual graph Figure 2.3). Originally, in the solo mineral maps, pixels that 

identified as mineral carry the value of “one’’(shown in Figure 2.3 A). However, for each mineral type 

there a total of three corresponding mineral maps and each of them derived from one of the three 

different hyperspectral images. Therefore, the differences amongst those mineral maps are hard to be 

completely observed based on the same value carried by every classified pixel of three various maps. 

Thus, pixels of solo mineral maps derived from May image and Sep image were assigned a new value of 

“two” by the method mask (shown in Figure C). 

2.3.8. Change detection (CD) 

Change detection is a method used for the detection of differences in the targets at different times (Lu et 

al., 2009). These three mineral maps were analysed by the built-in tool change detection difference map of 

ENVI software. This tool allows setting two images as “final state” image and “initial state” image 

respectively then the value contained by each pixel of the “final state” image will subtract the value of the 

spatially corresponding pixel of the “initial state” image. Subsequently, some threshold will be manually 

set to class the values of detected differences. Eventually, the change detection result will be present in a 

red and blue map, of which red indict positive differences and brighter red pixel means higher value. 

While blue express negative and darker blue shows an even lower value (Harris Geospatial Solution Inc, 

2018f).  

For the use of change detection in this research, solo mineral maps whose value was exchanged to two of 

the identified pixels were set as the “initial state” image (as a conceptual graph shown in Figure 2.4 A) and 

those solo mineral maps with original value for the identified pixels were set as “final state” image (shown 

in Figure 2.4 B). The “initial state” image was assumed as the reference image in this research. Then the 

method change detection used the value contained in each pixel of the “final state” image to subtract the 

value of corresponding pixels in the “initial state” image. Therefore, for those pixels that were not 

identified in both of these images, the value of them in the CD image remains zero and for the pixels 

both identified, the value of CD image is minus one. On the other hand, for those pixels only identified in 

the “initial state” images were recorded as omission. Similarly, those pixels only identified in the “final 

state” images were labelled as commission. Eventually, both the spatially and identically information was 

summarized and directly visualized with this method (shown in Figure 2.4 C). 

Figure 2.5 (A) shows the distribution of the pixels whose value is “two” of the “initial stat” image; similarly, (B) shows the 
distribution of the pixels whose value is “one” of the “final stat” image; (C) presents the result when the value of pixels of the 
“final state” image subtracts the value of their corresponding pixels in the “initial state” image. Meanwhile, the “initial 
state” image was assumed as the reference data while the  “final state” image was assumed as the test data. Therefore, in 
graph (C), “-2” presents omission, “-1” shows that pixel was classified in both of these two mineral maps, “0” presents that 
pixel was not identified in both of the solo maps, and “1” indicates that pixel should be labelled as commission. 

(A) (B) (C) 
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2.3.9. Similarization  

A method named as similarization in this research was designed to investigate the relationship between 

differences amongst the original radiance datasets and the reproducibility of results derived from those 

datasets. Initially, three original multitemporal hyperspectral image scenes were paired to three pairs 

which are May image and Sep image, May image and Oct image, as well as Sep image and Oct image. 

Subsequently, the change detection tool was used to highlight pixels that only have the same or similar 

values (±100 of the reflectance value) in the same location within these three pairs of images. Then those 

highlighted pixels were selected by the ROI tool. The selection of pixels with similar values based on the 

comparison between only two images, because more information and pixels will be excluded if the 

selection was based on the differences for all of the three images. Afterwards, those pixels that are from 

the same dataset were saved as a new image file then three pairs of new hyperspectral images were 

created, of which each pixel in an image only has the same or similar values to a pixel that has the same 

location with it of the other image in this pair.  

In this research, these similarized new images were named as May-Sep image, May-Oct image, Sep-May 

image, Sep-Oct image, Oct-May image, and Oct-Sep image. For the name of a new image, the former part 

on behalf of an original image that this image is similarized from while the latter half of the name 

indicates which original scene this new image is similar with. For instance, the May-Sep image means this 

image was similarized based on the selection of pixels of May image and these pixels have the similar or 

same value with pixels in the same location with them in Sep image.  

2.3.10. Identification similarity 

The overall accuracy that used to interpret information summarized by the confusion matrix was defined 

as the number of all of the correctly classified pixels divided by the total of the pixels assessed (Bakx et al., 

2013). But for mineral maps derived from the similarized hyperspectral images, pixels that correctly 

labelled as unclassified may influence the reliability of the overall accuracy. Since the only pixel that has 

similar value was selected in former operation and a lot of pixels that show different values were excluded 

during the processing of similarization. Therefore, to measure the reproducibility of classification results 

derived from the similarized hyperspectral images, the identification similarity was defined in this 

research.  

The calculation of identification similarity still based on the comparison results of the confusion matrix. 

However, it was defined in this research as the sum of the number of pixels that identified as mineral 

divided by the difference of the number of all the pixels minus the number of the pixels that identified as 

unclassified. Therefore, this calculation can eliminate the influence by the number of unclassified pixels 

that produced during the similarization processing for the overall accuracy. 

Subsequently, these three pairs of images were classified by SAM with the corresponding extracted 

endmember libraries. Therefore, for any pair of these three hyperspectral images, if the classification 

results that derived from each of the images in certain pair show similarity of identification between each 

other. Then, the assumption that the low reproducibility amongst classification results that derived from 

multitemporal hyperspectral images over the same area is related to the differences amongst those 

hyperspectral images themselves can be confirmed. 

2.3.11.  Normalized difference vegetation index (NDVI) 

In the past three decades, NDVI (Normalized difference vegetation index) method has been wildly used 

in many remote sensing applications, including the measurement of both green vegetations and dry 

vegetations in the end-of-season, for the coefficient of the vegetation land covers (Rouse et al., 1973; 

Bhandari et al., 2012). This algorithm is designed to use the difference between apparent reflectance of 

the red channel whose wavelength is around 0.66 μm and the apparent reflectance of the near-infrared 

channel whose wavelength is around 0.86 μm to be divided by the sum of these two values (Rouse et al., 

1973). The equation of NDVI is shown below  
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NDVI=(RNIR-RRed)/(RNIR+RRed)                                                      (2) 

 

In this equation, the RNIR means the reflectance value of the near infrared channel and RRed means the 

reflectance value of the red channel. The NDVI index will be calculated through this formula and be 

classified by different threshold (Gandhi et al., 2015). Empirically, very low NDVI coefficient (0.1 and 

below) presents the ground surface without vegetations, middle NDVI index (0.2-0.3) indicates grassland 

or barren on the ground, and high value of the NDVI index (0.6-0.8) presents the forest (Weier & 

Herring, 2000). 

Swayze et al. (2014) indicated that only sparse vegetation covering (around 15%) in the study area which 

is the Cuprite mineralization region, Nevada of this research. However, the change of vegetation 

following time series might still slightly influence the classification result derived from the hyperspectral 

image acquired at multiple time. Thus, NDVI the best known (Tobergte & Curtis, 2013) vegetation index 

method was selected to map the distribution of vegetation based on the multitemporal hyperspectral 

images, which are the same datasets that used for mineral mapping in this research, of the study area. The 

NDVI results were identified by the tool ROI built-in software ENVI with the threshold claimed by 

Weier & Herring (2000). Then these classified results were used to analyse the vegetation cover 

conditions in the study area and then investigate the potential influence of vegetation to hyperspectral 

mineral mapping in this research. 

2.3.12. Measurement of the reproducibility 

There are two kinds of reproducibility that were measured in this research. The first one is the 

comprehensive reproducibility between the mineral maps with all the six kinds of minerals. As aforesaid, 

this measurement was done through the method confusion matrix by assuming one mineral map as 

reference data and another one as the test data. Thus, the overall accuracy calculated together with the 

confusion matrix can be simulated as the overall reproducibility of the compared classification images. 

Nevertheless, the results summarized by the confusion matrix are too complicated for the analysis of 

reproducibility for the single mineral type. Therefore, the second kind of measurement of reproducibility 

was designed to investigate reproducibility mineral by mineral. 

The second measurement was designed based on the statistics in the results of the differences maps 

created by the method change detection and derived from the solo mineral maps. They present the 

number of pixels that are detected such as both unidentified, reproduced, commission result, or omission 

result and the number of all the pixels of these solo mineral maps by change detection. Therefore, the 

ratio of reproducibility between a pair of solo mineral maps that derived from different AVIRIS images 

was defined as 

R=B/(S-U)                                                                       (3) 
 

In this equation, R represents the reproducibility while B means the number of pixels that classified as the 

same mineral in both of the solo mineral maps classified from different hyperspectral images. S indicates 

the number of all the pixels in a solo mineral map. Eventually, U represents the number of pixels that 

unidentified in both of the solo mineral maps classified from two hyperspectral images. Therefore, the 

influence of the reproducibility by the number of unidentified pixels can be eliminated by this calculation. 

The reproducibility of mineral n carried out from image X was defined as the  

 

                                                                    (Rn:x:y+Rn:x:z)/2                                                             (4) 
 

Rn:x:y indicates the reproducibility of mineral n between solo mineral maps derived from image X and 

image Y while Rn:x:z indicates the reproducibility of mineral n between solo mineral maps derived from 

image X and image Z. This is because the reproducibility measurement was processed based on a 
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comparison between two mineral maps in this research. Therefore, this calculation can summarize the 

reproducibility of mineral n carried out from image  X  with both other two images. 

2.3.13. Plot 

Several different types of plots were performed by the software Excel as well as software HypPy and used 

in this research to visualize data extracted from the statistical results. It is a more informative and 

directive way than only using the digital result derived from the correlation coefficient.  

Scatter plot is generated based on the projection of 𝑛 times sampling of two random variables (𝑥𝑖, 𝑦𝑖) 

into a two dimensional plot (Asuero et al., 2006) then it displays the visual summary of linear, nonlinear 

or other relationship base on the points. The scatter plots were generated to present the linear correlation 

calculation results of spectra of each type of the minerals amongst the universal spectral library and each 

of the three extracted spectral libraries. Column plot were used to compare the similarities of percentages 

between the reproducibility and the producer accuracy. Box plots were used to show the relationship 

between the position of the deepest absorption features and the classification label for the same pixel. 

The box plot was used to compare the classification results with the result generated by the minimum 

wavelength of software HypPy. 
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3. RESULT 

This section presents the results of pre-processing, wavelength mapping, endmember extraction, scatter 

plot, mineral mapping, classification results comparison, accuracy assessment et al. in this research. 

Without particular claiming, the results presented in this section are created by software ENVI (Harris 

Geospatial Solutions, 2018). 

 Atmospheric correction 

The radiance-at-sensor images were atmospherically corrected by a model-based method FLAASH. 

Subsequently, the result was inspected in two phases: initially, the mean spectra of the original images and 

post-correction images were compared to roughly check the overall quality of the atmospheric correction 

results (shown in Figure 3.1 A). The overall spectrum for the whole corrected image shows two over 

correction convex (shown in Figure 3.1 A) around the atmospheric absorption wavelength range 0.9 μm 

and 1.4 μm respectively. But these over correction convenes were not observed in the wavelength range 

(2.0-2.5 μm) that used in this research (shown in Figure 3.1 B). Afterwards, the performance of the ATM 

correction was specifically assessed. Pixels at the same location with six typical mineral depositing 

locations observed in the Cuprite Mineral Map produced by Swayze et al. (2014) were selected and the 

spectra within those pixels were extracted. A comparison between those extracted spectra and 

corresponding mineral spectra derived from the USGS library was done (shown in Figure 3.2 A, B, and 

C). The spectra that extracted from the corrected images shown similar spectral curves with the spectra of 

corresponds mineral from the USGS library. 
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(B) 
 Figure 3.1 (A) shows the comparison of overall spectra derived from May, Sep, and Oct image, before and after the 

atmospheric correction respectively.; (B) presents the comparison of overall spectra whose wavelength is 2000 - 2500nm 
derived from May, Sep, and Oct image, before and after the atmospheric correction respectively. Which is also the spectra 
surrounded by a dark outline of Figure 3.1 (A). 
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 Data resize 

Figure 3.5 shows six images in greyscale, of which images (A)(C)(E) are before ATM correction and 

(B)(D)(F) are after ATM correction. Afterwards, the (B)(D)(F) images have been spectrally subset from 

224 bands to the 1998.28-2497.04 nm. The wavelength range finally used in this research was 2048 nm to 

2308 nm. The range 2120 nm to 2250 nm contains the first absorption features while 2050-2120 nm and 

2250-2300 nm were the spectral shoulders of the targeting alteration minerals.  

  Wavelength mapping 

Figure 3.3 displays the statistic result of the frequency that a wavelength value was detected as a position 

of the deepest absorption feature. It shows that for the spectra carried by the pixels of hyperspectral 

datasets used in this research, the diagnostic spectral features concentrate around two wavelength ranges 

which are around from 2120 nm to 2250 nm and around from 2420 nm to 2480 nm. Figure 3.4 presents 

wavelength maps that were created with HypPy software. The colours represent corresponding 

wavelength value and the brightness shows the absorption depth. 

Based on Figure 3.3, another result was observed and summarized that for the spectra carried by the 

pixels of hyperspectral datasets used in this research, the first diagnostic spectral features concentrate 

around two wavelength ranges which are around from 2120 nm to 2250 nm and around from 2420 nm to 

2480 nm. Based on the Cuprite Mineral Map produced by Swayze et al (2014), the alteration minerals in 

this area are identified as alunite, buddingtonite, kaolinite, alunite & kaolinite, hydrated silica, and montmorillonite. 

None of these minerals has the first diagnostic spectral features of a wavelength range from 2420 nm to 

2480 nm (Swayze et al., 2014). As well as this latter wavelength concentrating range is an atmospheric 

absorption range (van der Werff & van der Meer, 2015), thus the wavelength range 2120 nm to 2250 nm 

was considered as the concentrating range of the mineral spectral signatures. Therefore, the wavelength 

range of the hyperspectral images used was further subsetted to 2050 nm to 2300 nm in this research. The 

range 2120 nm to 2250 nm contains the first absorption features while 2.05-2.12μm and 2.25-2.3μm were 
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Figure 3.2 (A), (B), and (C) shows the comparison between spectra collected from May, Sep, and Oct image respectively 
and their corresponding mineral spectrum from the USGS library. For the comparison of each mineral, the upper 
spectrum is referenced from the USGS spectral library while the lower one was collected from the images.  
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kept as the spectral shoulders of the targeting alteration minerals. The further spectral subsetting process 

was conducted to reduce the impact of other spectral curve features around the diagnostic absorption 

features of the hydrothermal alterative minerals in the study area. 
  

Figure 3.3 frequency for the wavelength position of the first peak 

 

(C) 

 

(C) 

(B) 

 

(B) 

(A) 

 

(A) 

Legend  
 

Figure 3.4 (A) shows the wavelength map derived from May image; (B) is the wavelength map 
produced based on the Sep image; (C) presents the wavelength map created depends on the Oct 
image. 
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 Endmember extraction 

The spectra of extracted endmember libraries and the universal spectral library are shown in Figure 3.6. 

For the extracted endmember libraries, six mineral spectra were selected and labelled from all the spectra 

extracted by the SSEE method for each of the hyperspectral images based on the comparison with 

mineral spectra from the USGS library. The spectra of the universal endmember library were created 

through the averaging of the three corresponding mineral spectra from each of the extracted endmember 

library, except for montmorillonite. The spectrum of montmorillonite in the universal library is directly selected 

from the endmember library of the Sep image because this spectrum was only found in the Sep image by 

the SSEE method. And the endmember of montmorillonite in the extracted libraries that derived from the 

May Image and the Oct image were extracted from the similar location where the spectrum of 

montmorillonite was found in the Sep image.  

 

 

As Figure 3.6 shows, these spectra are alunite, buddingtonite, kaolinite, alunite & kaolinite, hydrated silica, and 

montmorillonite. Alunite shows diagnostic absorption features at 2168.51 nm and 2208.46 nm. Buddingtonite 

presents a wide spectral feature and its deepest absorption features of it located at 2128.51 nm. Double 

absorption features are shown by the endmember of kaolinite, the deepest feature locates at 2208.46 nm 

while the second peak at 2168.51 nm. Kaolinite & alunite is a mixed endmember that presents a similar 

spectral shape as kaolinite, but there is no clear absorption difference between these two peaks, which is 

influenced by the superposition of both kaolinite and alunite. Hydrated silica shows a very shallow, wide and 

noisy spectral features, of which the deepest absorption feature is 2228.43 nm but no clear difference with 

other peaks of its spectrum. Finally, the diagnostic absorption feature of montmorillonite has the same 

wavelength with hydrated silica, which is 2228.43 nm. But on the contrary of hydrated silica, the signature of 

montmorillonite shows a sharper and clearer curve even if it is also noisy. Especially for the endmember of 

montmorillonite extracted from the May image, its spectral curve shows several slight peaks around its real 

absorption feature (see Figure 3.6). 

Figure 3.6 Spectral endmember libraries used in this research & legend 
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 Endmember similarity 

Before using the endmember libraries that were shown in Figure 3.6 for mineral mapping, the similarities 

between them were measured by linear spectral correlation (shown in Table 3.1 and Table 3.2). The tables 

show the linear spectral correlations across endmembers extracted from each of the hyperspectral images 

and corresponding endmember from the universal library. The values of correlation coefficients (shown 

in both Table 3.1 and Table 3.2) for the comparison between each pair of the endmembers shown in 

Figure 3.6 are higher than 0.95 and some of them even equal to 1.  

  

 

 Table 3.1 Linear Spectral correlation of extracted endmembers 

 

Table 3.2 Linear Spectral correlation across extracted libraries and the universal library 

  May Image: Sep Image May Image: Oct Image Sep Image: Oct Image 

Alunite 0.994843 1 0.994843 

Buddingtonite 0.992662 0.996862 0.995189 

Kaolinite 0.999092 1 0.999092 

Kaolinite+ Alunite 0.950897 0.996701 0.96604 

Hydrated Silica 0.98984 0.99685 0.99628 

Montmorillonite 0.974933 0.98503 0.994367 

  May: Universal Sep: Universal Oct: Universal 

Alunite 0.999429 0.997703 0.999429 

Buddingtonite 0.998265 0.997519 0.999110 

Kaolinite 0.999893 0.999609 0.999893 

Kaolinite+ Alunite 0.992421 0.981317 0.997324 

Hydrated Silica 0.997070 0.997611 0.999597 

Montmorillonite 0.989456 0.996425 0.998409 
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 Image-to-image registration 

For the spatial aligning of the three multitemporal hyperspectral images, the image-to-image registration 

tool built-in to the software ENVI was used. 70 GCPs (ground control points) were automatically 

selected for the registration of the May image and Sep image, while 81 GCPs were automatically selected 

for the registration of the May image and Oct image (shown in Figure 3.7). The self-assessment (see in 

Appendix III) of these GCPs shows the RMS error as 0.508 m and 0.624 m for the accuracy of the 

aligning results of the May image and Sep image as well as May image and Oct image respectively. These 

accuracy indexes present the shift amongst pixels, with the same coordinates, from each of the 

hyperspectral image scenes have already much lower than one pixel, as the pixel size of the hyperspectral 

images used for registration is 3.3 m. Therefore, the spatial accuracy for image aligning was considered as 

acceptable for pixel-based comparison.  

(A) 

 

(A) Figure 3.7 (A) shows the GCPs distribution of Sep image; (B) shows the GCPs distribution 
upon the Oct image. 

(B) (A) (A) 
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Moreover, after the process of registration with these two portions of GCPs, the image-to-image 

registration results were assessed by the dynamic link through the visual inspection. And these registered 

results presented that they are as close as possible according to both the low RMS errors and the dynamic 

visual estimations. Therefore, for this research, the co-registered pixels while from different hyperspectral 

images are assumed as overlapping with the same coordinates. 

 Measurement of the reproducibility 

3.7.1. Mineral maps produced through the extracted endmember library 

Figure 3.8 shows the classification results derived from the multitemporal hyperspectral images and 

produced by the SAM method with the extracted endmembers. Huge differences can be observed that 

the distribution of each mineral type was changed follows the change of time (shown in Figure 3.8). 

The low consistency shown in Figure 3.8 was supported by the comparison results generated by the 

confusion matrix (shown in Table 3.3, Table 3.4, and Table 3.5). The overall accuracy between May image 

and Sep image is around 59%, between May image and Oct image is around 61%, as well as between Sep 

image and Oct image is around 58%. 

(A) (C) (B) 

Legend Kaolini

te 
Buddingtonite 

Alunite 

Kaolinite &Alunite 

Hydrated 

Silica 

Montmorillo

nite 

Figure 3.8 (A), (B), and (C) are SAM classification results, that were classified though the extracted 
endmember libraries and one set of various thresholds, derived from May image, Sep image, and Oct image 
respectively. 
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Table 3.3 Confusion matrix of the comparison between May image and Sep image  
 

Classification result of May image 
   

Classification result  

of Sep image 
Unclassified Alunite Buddingtonite Kaolinite 

Alunite & 

Kaolinite 

Hydrated 

Silica 
Montmorillonite Total 

Error of  

Commission(%) 

User  

Accuracy(%) 

Unclassified  471352 92331 44 1354 37521 1909 10523 615034 23.36 76.64 

Alunite 16 18056 0 5 2221 0 2 20300 11.05 88.95 

Buddingtonite 1805 5590 3312 0 18 0 0 10725 69.12 30.88 

Kaolinite  4593 5496 1 40715 62156 638 3148 116747 65.13 34.87 

Alunite & Kaolinite 0 0 0 768 76 0 0 844 91 9 

Hydrated Silica 124876 105 1 536 606 43144 31292 200560 78.49 21.51 

Montmorillonite 11 0 0 15 1 13 70 110 36.36 63.64 

Total 602653 121578 3358 43393 102599 45704 45035 964320   

Error of omission(%) 21.79 85.15 1.37 6.17 99.93 5.6 99.84    

Producer Accuracy(%) 78.21 14.85 98.63 93.83 0.07 94.4 0.16  Overall Accuracy 59.81% 

 

Table 3.4 Confusion matrix of the comparison between May image and Oct image 

 Classification result of May image    

Classification result  

of Oct image 
Unclassified Alunite Buddingtonite Kaolinite 

Alunite & 

Kaolinite 

Hydrated 

Silica 
Montmorillonite Total 

Error of  

Commission(%) 

User  

Accuracy(%) 

Unclassified 470880 23953 1009 17918 28479 9813 23141 575193 18.14 81.86 

Alunite 55005 73364 1357 7183 45358 4829 7320 194416 62.26 37.74 

Buddingtonite 794 1663 957 26 202 1 0 3643 73.73 26.27 

Kaolinite 17612 6510 21 14423 16270 1926 4996 61758 76.65 23.35 

Alunite & Kaolinite 345 853 0 634 1847 308 144 4131 55.29 44.71 

Hydrated Silica 57467 15014 5 3017 10107 28769 9277 123656 76.73 23.27 

Montmorillonite 550 221 9 192 336 58 157 1523 89.69 10.31 

Total 602653 121578 3358 43393 102599 45704 45035 964320   

Error of omission(%) 21.87 39.66 71.5 66.76 98.2 37.05 99.65    

Producer Accuracy(%) 78.13 60.34 28.5 33.24 1.8 62.95 0.35  Overall Accuracy 61.22% 
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Table 3.5 Confusion matrix of the comparison between Sep image and Oct image

 Classification result of Sep image    

Classification result  

of Oct image 
Unclassified Alunite Buddingtonite Kaolinite 

Alunite & 

Kaolinite 

Hydrated 

Silica 
Montmorillonite Total 

Error of  

Commission(%) 

User  

Accuracy(%) 

Unclassified 438723 3179 3100 37076 91 92958 66 575193 23.73 76.27 

Alunite 117134 11979 5247 36759 225 23045 27 194416 93.84 6.16 

Buddingtonite 1622 39 1875 62 0 45 0 3643 48.53 51.47 

Kaolinite 24420 1461 209 28637 416 6606 9 61758 53.63 46.37 

Alunite & Kaolinite 965 230 9 2434 48 445 0 4131 98.84 1.16 

Hydrated Silica 31490 3385 260 11272 64 77177 8 123656 37.59 62.41 

Montmorillonite 680 27 25 507 0 284 0 1523 100 0 

Total 615034 20300 10725 116747 844 200560 110 964320   

Error of omission(%) 28.67 40.99 82.52 75.47 94.31 61.52 100    

Producer Accuracy(%) 71.33 59.01 17.48 24.53 5.69 38.48 0  Overall Accuracy 57.91% 
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3.7.2. Maps classified by the unique threshold  

For verifying of the assumption about the influence of various threshold for reproducibility of the 

classifier SAM, three classification results (shown in Figure 3.9) were generated again based on the May 

image, Sep image, and Oct image respectively with its corresponding extracted endmember libraries. 

However, the classification thresholds for each mineral of each image were set as a unique value “0.1”. 

But, these results can be easily assessed as a poor classification just by the visual comparison between 

these and the Cuprite Mineral Map produced by Swayze et al. (2014) as the ground truth data. Therefore, 

the reproducibility of classifier SAM cannot be enhanced by using a unique classification threshold. 

  

Figure 3.9 (A), (B), and (C) are SAM classification results, that were classified though the extracted endmember libraries 
and “0.1” as threshold for every mineral, derived from May image, Sep image, and Oct image respectively. 
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3.7.3. Differences amongst the original images  

The assumption that the differences amongst the original radiance datasets result in the influence of 
reproducibility was investigated. Initially, three multitemporal hyperspectral image scenes were paired to 
three pairs which are May image and Sep image, May image and Oct image, and the Sep image and Oct 
image. Afterwards, change detection method was used to search the pixels that have different values in 
the same location between a pair of the original datasets used for classification (threshold see Appendix 
IV). The change detection result will be present in a red and blue map, of which red indict positive 
differences and brighter red pixel means higher value. While blue express negative and darker blue shows 
an even lower value (Harris Geospatial Solution Inc, 2018f). There are a lot of pixels with different values 
according to the difference maps (shown in Figure 3.10) created by the change detection.  

 
The composition of these pixels observed in Figure 3.10 presents similarity as the shape of shadow in the 
three original images (shown in Figure 3.5 B, D, and F). These shadows may be jointly made by the 
different sun angles of the multitemporal AVIRIS scenes and the complicate topography of this area. The 
differences amongst sun angles of different images were caused by the AVIRIS images used in this 
research were acquired in different seasons and time. Besides that, the size and direction of shadow in a 
mountain area like the Cuprite is highly related with the sun angle and other illumination conditions. 

(C) (A) (B) 

Figure 3.10 Differences maps generated by the change detection, of which (A) shows the differences between May image and 
Sep image; (B) presents the differences between Sep image and Oct image; (C) shows the differences between May image and 
Oct image; the different value from positive to negative was present from lighter red to dimmer blue in this map. 
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Therefore, the change of sun angles following the change of time will change the shadow condition in 
Cuprite. Then the consistency amongst the original multitemporal AVIRIS images of this area was 
disturbed by these shadow differences. 

Figure 3.12 shows the classification results derived from the similarized hyperspectral images and 

differences of mineral distribution were still can be observed of them. Even those pixels that have hugely 

different values between each other have already been excluded. The pixel-based Comparison between 

classification results derived from May-Sep image and Sep-May image shown in Table 3.6 and the overall 

accuracy and/or overall similarity between them is around 82%. The pixel-based Comparison between 

classification results derived from May-Oct image and Oct-May image shown in Table 3.7 and the overall 

accuracy and/or overall similarity between them is around 94%. The pixel-based Comparison between 

classification results derived from Sep-Oct and Oct-Sep image are shown in Table 3.8 and the overall 

accuracy and/or overall similarity between them is around 96%.  

The identification similarity of the comparison between May-Sep image and Sep-May image is around 

25%, of the comparison between May-Oct image and Oct-May image is around 50%, as well as of the 

comparison between Sep-Oct and Oct-Sep image is around 48%. To clearly understand the influence of 

the differences between the original images, the identification similarity of the classification results that 

derived from the three original hyperspectral images was compared with the identification similarity of 

the classification results derived from the three pairs of similarized images (shown in Figure 3.11). The 

identification similarity of comparison between May image and Sep image is around 21%, between May 

image and Sep image is around 24%, and between Sep image and Oct image is around 23%.   
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Figure 3.11 Comparison of identification similarity between results derived from the original images and 
the results derived from the similarized images. 
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Table 3.6 Comparison of classification results between May-Sep image and Sep-May image 

 

  

 Classification result of  May-Sep image    

Classification result  

of  Sep-May image 
Unclassified Alunite Buddingtonite Kaolinite 

Alunite & 

Kaolinite 

Hydrated 

Silica 
Montmorillonite Total 

Error of  

Commission(%) 

User  

Accuracy(%) 

Unclassified 742721 41654 8 643 17528 1042 4559 808155 8.1 91.9 

Alunite 8 8307 0 1 961 0 0 9277 10.46 89.54 

Buddingtonite 755 2031 776 0 5 0 0 3567 78.25 21.75 

Kaolinite 1391 2040 0 21237 27021 245 1377 53311 60.16 39.84 

Alunite & Kaolinite 0 0 0 334 16 0 0 350 95.43 4.57 

Hydrated Silica 55261 48 0 235 233 19235 14020 89032 78.4 21.6 

Montmorillonite 2 0 0 6 0 6 26 40 35 65 

Total 800138 54080 784 22456 45764 20528 19982 963732     

Error of omission(%) 7.18 84.64 1.02 5.43 99.97 6.3 99.87     Overall Accuracy  82.21% 

Producer Accuracy(%) 92.82 15.36 98.98 94.57 0.03 93.7 0.13 Identification Similarity 22.44% 
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Table 3.7 Comparison of classification results between May-Oct image and Oct-May image 

  

  

 Classification result of  May-Oct image    

Classification result  

of  Oct-May image 
Unclassified Alunite Buddingtonite Kaolinite 

Alunite & 

Kaolinite 

Hydrated 

Silica 
Montmorillonite Total 

Error of  

Commission(%) 

User  

Accuracy(%) 

Unclassified 842003 453 18 653 4586 463 6181 854357 1.45 98.55 

Alunite 4842 35469 112 99 15396 12 90 56020 36.69 63.31 

Buddingtonite 31 85 821 0 1 0 0 938 12.47 87.53 

Kaolinite 532 49 1 9480 6109 163 427 16761 43.44 56.56 

Alunite & Kaolinite 0 4 0 110 995 0 0 1109 10.28 89.72 

Hydrated Silica 15121 11 0 72 107 13301 5416 34028 60.91 39.09 

Montmorillonite 48 2 0 11 7 15 436 519 15.99 84.01 

Total 862577 36073 952 10425 27201 13954 12550 963732     

Error of omission(%) 2.39 1.67 13.76 9.06 96.34 4.68 96.53     Overall Accuracy  93.65% 

Producer Accuracy(%) 97.61 98.33 86.24 90.94 3.66 95.32 3.47 Identification Similarity  49.7% 
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Table 3.8 Comparison of classification results between Sep-Oct image and Oct-Sep image 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Classification result of Sep-Oct image     

Classification result  

of  Oct-Sep image 
Unclassified Alunite Buddingtonite Kaolinite 

Alunite & 

Kaolinite 

Hydrated 

Silica 
Montmorillonite Total 

Error of  

Commission(%) 

User  

Accuracy(%) 

Unclassified 886192 8 358 1506 0 7575 1 895640 1.05 98.95 

Alunite 21225 4780 989 6010 0 94 0 33098 85.56 14.44 

Buddingtonite 4 0 164 0 0 0 0 168 2.38 97.62 

Kaolinite 563 7 0 9802 169 208 6 10755 8.86 91.14 

Alunite & Kaolinite 2 49 0 848 75 0 0 974 92.3 7.7 

Hydrated Silica 597 0 0 134 0 21975 0 22706 3.22 96.78 

Montmorillonite 36 0 0 32 0 316 7 391 98.21 1.79 

Total 908619 4844 1511 18332 244 30168 14 963732     

Error of omission(%) 2.47 1.32 89.15 46.53 69.26 27.16 50     Overall Accuracy  95.77% 

Producer Accuracy(%) 97.53 98.68 10.85 53.47 30.74 72.84 50 Identification Similarity 47.46% 
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Figure 3.12 (A) shows the classification result derived from the May-Sep image; (B) shows the classification result derived from the Sep-May image; (C) shows the classification 
result derived from the May-Oct image; (D) shows the classification result derived from the Oct-May image; (E) shows the classification result derived from the Sep-Oct image; (F) 
shows the classification result derived from the Oct-Sep image. 

Legend 
Kaolinite Buddingtonite Alunite 

Kaolinite &Alunite Hydrated Silica Montmorillonite 

(A) 
 

(C) 
 

(B) 
 

(D) 
 

(E) 
 

(F) 
 



 

 

 

 

EVALUATING REPRODUCIBILITY AND ACCURACY OF HYPERSPECTRAL MINERAL MAPS USING MULTITEMPORAL AVIRIS IMAGES OF CUPRITE, NEVADA, USA 

43 

3.7.4. Influence of vegetation 

The distribution of vegetation of each hyperspectral image used was detected by the algorithm NDVI then 

they were classified by the tool ROI with the threshold suggested by Weier & Herring (2000) and Cheng 

et al.(2008) suggested that 0.1 and below presents the ground surface without vegetations, 0.1-0.2 can be 

considered as no vegetation or sparse vegetation, 0.2-0.3 indicates grassland or barren, and 0.6-0.8 

presents the forest (shown in Figure 3.13).  

The interpolation results of these classified NDVI images (shown in Figure 3.14, 3.15, and 3.16) present 

that only sparse vegetation distributes in this region, so that the vegetation condition in the study area was 

considered as it cannot influence the differences of classification results as shown in Figure 3.8.  

 

 

 

0.6-0.8 Unclassified 

0.1-0.2 0.3-0.6 

Figure 3.13 (A), (B), and (C) presents the classified NDVI results that derived from May image, Sep image, and Oct 
image respectively. 

(A) (B) (C) 

Legend 
0.2-0.3 
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Figure 3.14 Vegetation distribution in May image 

116

690638

272801

177 0 0
0

100000

200000

300000

400000

500000

600000

700000

800000

Unclassified No
vegetation

No or sparse
vegetation

Grass or
Barren

Grass to
Forest

Forest

Figure 3.15 Vegetation distribution in Sep image 

N
um

be
r 

of
 P

ix
el

s 
 

190

441804

518698

3026 0 14
0

100000

200000

300000

400000

500000

600000

Unclassified No
vegetation

No or sparse
vegetation

Grass or
Barren

Grass to
Forest

Forest

Figure 3.16 Vegetation distribution in Oct image 
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3.7.5. Influence of endmember library 

Eventually, the last assumption that the reproducibility or consistency of SAM classifier is disturbed by 

the extracted endmember libraries was researched. For the verifying of this hypothesis, the universal 

endmember library was used for the mineral mapping of May image, Sep image, and Oct image 

respectively by the method SAM through the consistent classification threshold (see Appendix II) and the 

results are shown in Figure 3.17.  

As the results shown above, results A, B, and C are similar to each other based on the visual inspection. 

Therefore, the similarity of them was further and specifically estimated by the confusion matrix (shown in 

Table 3.9, 3.10, and 3.11). Because the overall accuracy presents of the confusion matrix is considered as 

similarity, thus the similarity between May image and Sep image is 84%, between May image and Sep 

image is 83%, and between Sep image and Oct image is 89%. Therefore, the hypothesis was confirmed by 

the fact that multitemporal hyperspectral images over the same area with the universal endmembers can 

be classified consistently by the SAM.  

Legend Kaolinite Buddingtonite Alunite 

Kaolinite &Alunite Hydrated Silica Montmorillonite 

(C) (A) (B) 

Figure 3.16 (A), (B), and (C) are SAM classification results, that were classified though the universal 
endmember library and one set of various threshold, derived from May image, Sep image, and Oct image 
respectively. 
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Table 3.9 Confusion matrix of the comparison between May image and Sep image 

 Classification result of May image    

Classification result  

of Sep image 
Unclassified Alunite Buddingtonite Kaolinite 

Alunite & 

Kaolinite 

Hydrated 

Silica 
Montmorillonite Total 

Error of  

Commission(%) 

User  

Accuracy(%) 

Unclassified 607610 1313 36 8988 20586 16176 4448 659157 7.82 92.18 

Alunite 9462 77826 63 3220 25761 30 5 116367 33.12 66.88 

Buddingtonite 1716 404 3716 3 12 0 0 5851 36.49 63.51 

Kaolinite 2476 69 0 53849 1131 354 639 58518 7.98 92.02 

Alunite & Kaolinite 4054 707 0 29727 21860 115 94 56557 61.35 38.65 

Hydrated Silica 12073 8 0 299 37 53979 12 66408 18.72 81.28 

Montmorillonite 230 1 0 209 9 420 593 1462 59.44 40.56 

Total 637621 80328 3815 96295 69396 71074 5791 964320   

Error of Omission(%) 4.71 3.11 2.6 44.08 68.5 24.05 89.76    

Producer Accuracy(%) 95.29 96.89 97.4 55.92 31.5 75.95 10.24  Overall Accuracy 84.9752% 

 

Table 3.10 Confusion matrix of the comparison between May image and Oct image 

  Classification result of May image       

Classification result  

of Oct image 
Unclassified Alunite  Buddingtonite Kaolinite  

Alunite & 

Kaolinite 

Hydrated 

Silica 
Montmorillonite Total 

Error of  

Commission(%) 

User  

Accuracy(%) 

Unclassified  610194 1928 38 11230 20746 28895 4482 677513 9.94 90.06 

Alunite 11096 76887 92 4367 26259 79 12 118792 35.28 64.72 

Buddingtonite 1337 326 3685 3 10 0 0 5361 31.26 68.74 

Kaolinite  3439 149 0 50246 1451 599 801 56685 11.36 88.64 

Alunite & Kaolinite 4681 1013 0 29926 20840 282 148 56890 63.37 36.63 

Hydrated Silica 6623 18 0 354 72 40720 15 47802 14.82 85.18 

Montmorillonite 251 7 0 169 18 499 333 1277 73.92 26.08 

Total 637621 80328 3815 96295 69396 71074 5791 964320     

Error of omission(%) 4.3 4.28 3.41 47.82 69.97 42.71 94.25       

Producer Accuracy(%) 95.7 95.72 96.59 52.18 30.03 57.29 5.75   Overall Accuracy  83.2613% 
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Table 3.11 Confusion matrix of the comparison between Sep image and Oct image 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Classification result of Sep image       

Classification result  

of Oct image 
Unclassified Alunite  Buddingtonite Kaolinite  

Alunite & 

Kaolinite 

Hydrated 

Silica 
Montmorillonite Total 

Error of  

Commission(%) 

User  

Accuracy(%) 

Unclassified  634080 6849 688 4685 8237 22302 672 677513 6.41 93.59 

Alunite 7904 102799 470 679 6886 49 5 118792 13.46 86.54 

Buddingtonite 441 218 4685 2 15 0 0 5361 12.61 87.39 

Kaolinite  4265 607 1 44997 6126 414 275 56685 20.62 79.38 

Alunite & Kaolinite 7891 5847 7 7792 35165 145 43 56890 38.19 61.81 

Hydrated Silica 4104 35 0 245 93 43221 104 47802 9.58 90.42 

Montmorillonite 472 12 0 118 35 277 363 1277 71.57 28.43 

Total 659157 116367 5851 58518 56557 66408 1462 964320     

Error of omission(%) 3.8 11.66 19.93 23.11 37.82 34.92 75.17       

Producer Accuracy(%) 96.2 88.34 80.07 76.89 62.18 65.08 24.83   Overall Accuracy  89.7327% 
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3.7.6. Comparison between solo mineral maps 

Solo mineral maps (shown in Figure 3.19) were generated based on the classification results shown in 

Figure 3.17 to check the reproducibility of each mineral type. These solo mineral maps that belong to the 

same mineral were compared with the change detection tool and the results were statistically summarized 

(shown in Figure 3.18). 

Based on the information presented in the Figure 3.18, each kind of mineral shows similar reproducibility 

in any of the three pairs of comparison, except the reproducibility of montmorillonite between Sep image 

and Oct image, shows double times higher value than the other two ratios. Moreover, Alunite, Kaolinite, 

Alunite & Kaolinite, and Hydrated silica present relatively high consistency but similar values. The lowest 

reproducibility was observed of Montmorillonite while Buddingtonite shows the second lowest consistency in 

the comparison of these three pairs of images.  
 

 

 

 

 

 

 

 

 

 

Alunite Buddingtonite Kaolinite Alunite&Kaolinite Hydrated Silica Montmorillonite

May:Sep 66.41% 33.24% 67.43% 68.73% 64.56% 10.04%

May:Oct 64.49% 40.88% 65.84% 67.56% 53.87% 6.31%

Sep:Oct 67.29% 58.89% 77.12% 78.61% 62.91% 19.15%
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Figure 3.17 Reproducibility of solo maps classified with the universal endmember libraries 
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(A) (B) (D) (C) (F) (E) (G) (H) (I) 

Figure 3.18 (A) show the different distribution of Alunite between reproduced mineral maps derived from May and Sep image; (B) show the different distribution of Alunite between reproduced mineral maps derived 
from May and Oct image; (C) show the different distribution of Alunite between reproduced mineral maps derived from Sep and Oct image; (D) show the different distribution of Buddingtonite between reproduced 
mineral maps derived from May and Sep image; (E) show the different distribution of Buddingtonite between reproduced mineral maps derived from May and Oct image; (F) show the different distribution of 
Buddingtonite between reproduced mineral maps derived from Sep and Oct image; (G) show the different distribution of Kaolinite between reproduced mineral maps derived from May and Sep image; (H) show the 
different distribution of Kaolinite between reproduced mineral maps derived from May and Oct image;  (I) show the different distribution of Kaolinite between Sep and Oct image 
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(A) (B) (D) (C) (F) (E) (G) (H) (I) 

Figure 3.19 (A) show the different distribution of Alunite & Kaolinite between reproduced mineral maps derived from May and Sep image; (B) show the different distribution of Alunite & Kaolinite between 
reproduced mineral maps derived from May and Oct image; (C) show the different distribution of Alunite & Kaolinite between reproduced mineral maps derived from Sep and Oct image; (D) show the different 
distribution of Hydrated silica between reproduced mineral maps derived from May and Sep image; (E) show the different distribution of Hydrated silica between reproduced mineral maps derived from May 
and Oct image;  (F) show the different distribution of Hydrated silica between reproduced mineral maps derived from Sep and Oct image; (G) show the different distribution of Montmorillonite between 
reproduced mineral maps derived from May and Sep image; (H) show the different distribution of Montmorillonite between reproduced mineral maps derived from May and Oct image; (I) show the different 
distribution of Montmorillonite between reproduced mineral maps derived from Sep and Oct image 
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 Accuracy assessment 

3.8.1. Comparison between the classification results and the Cuprite Mineral Map 

Initially, a reclassified file derived from geo-coded the Cuprite Mineral Map (Swayze et al.2014) was 

generated through the unique value for each mineral mapped upon it in the green band as the ground 

truth. Then correctness of the reproduced mineral maps was estimated by the comparison between the 

classification results created by SAM and the ground truth through confusion matrix (shown in Table 

3.12, Table 3.13, and Table 3.14). The overall accuracy of the classification result derived from the May 

image and classified by the various thresholds using the universal endmembers is around 64%. The 

overall accuracy of the classification result derived from the Sep image and classified by the various 

thresholds using the universal endmembers is around 63%. The overall accuracy of the classification 

result derived from the Oct image and classified by the various thresholds using the universal 

endmembers is around 64%.  
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Table 3.12 Confusion matrix of the comparison between the ground truth and May image 

 

  

  Ground Truth     

May Image Unclassified Alunite  Buddingtonite Kaolinite 
Kaolinite & 

Alunite 

Hydrated 

Silica 
Montmorillonite Total 

Error of  

Commission(%) 

User  

Accuracy(%) 

Unclassified 531187 4161 951 35659 46791 5691 12595 637035 16.62 83.38% 

Alunite  51880 5855 499 2690 19129 17 258 80328 92.71 7.29% 

Buddingtonite 2588 235 804 86 98 0 4 3815 78.93 21.07% 

Kaolinite 36380 379 93 46172 12655 125 491 96295 52.05 47.95% 

Kaolinite & Alunite 27500 1267 157 12171 27947 70 284 69396 59.73 40.27% 

Hydrated Silica 44432 604 39 2455 8829 7661 7054 71074 89.22 10.78% 

Montmorillonite 3686 6 7 1453 613 0 24 5789 99.59 0.41% 

Total 697653 12507 2550 100686 116062 13564 20710 963732     

Error of omission(%) 23.86% 53.19% 68.47% 54.14% 75.92% 43.52% 99.88%       

Producer Accuracy(%) 76.14% 46.81% 31.53% 45.86% 24.08% 56.48% 0.12% Overall Accuracy =  64.3%   
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Table 3.13 Confusion matrix of the comparison between the ground truth and Sep image 

 

  

 

  

  Ground Truth     

Sep Image Unclassified Alunite  Buddingtonite Kaolinite 
Kaolinite & 

Alunite 

Hydrated 

Silica 
Montmorillonite Total 

Error of  

Commission(%) 

User  

Accuracy(%) 

Unclassified 539971 3491 911 39148 52781 4665 12902 653869 17.42 82.58% 

Alunite  69207 7516 693 3870 34941 2 138 116367 93.54 6.46% 

Buddingtonite 3858 295 834 377 483 0 4 5851 85.75 14.25% 

Kaolinite 18514 143 42 36214 3433 26 146 58518 38.11 61.89% 

Kaolinite & Alunite 20057 521 28 19790 16056 11 94 56557 71.61 28.39% 

Hydrated Silica 40268 532 40 1072 8251 8858 7387 66408 86.66 13.34% 

Montmorillonite 1103 4 2 215 117 2 15 1458 98.97 1.03% 

Total 692978 12502 2550 100686 116062 13564 20686 959028     

Error of omission(%) 22.08 39.88 67.29 64.03 86.17 34.69 99.93       

Producer Accuracy(%) 77.92% 60.12% 32.71% 35.97% 13.83% 65.31% 0.07% Overall Accuracy =  63.55%   
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Table 3.14 Confusion matrix of the comparison between the ground truth and Oct image 

  Ground Truth     

Oct Image Unclassified Alunite  Buddingtonite Kaolinite 
Kaolinite & 

Alunite 

Hydrated 

Silica 
Montmorillonite Total 

Error of  

Commission(%) 

User  

Accuracy(%) 

Unclassified 551466 3573 941 40107 54618 6722 14794 672221 17.96 82.04% 

Alunite  70219 7597 673 Oct-11 35841 1 144 118792 93.6 6.40% 

Buddingtonite 3506 253 812 349 438 0 3 5361 84.85 15.15% 

Kaolinite 18303 129 45 34742 3288 20 158 56685 38.71 61.29% 

Kaolinite & Alunite 20398 542 49 20368 15405 14 114 56890 72.92 27.08% 

Hydrated Silica 28107 404 28 655 6352 6807 5449 47802 85.76 14.24% 

Montmorillonite 979 4 2 148 120 0 24 1277 98.12 1.88% 

Total 692978 12502 2550 100686 116062 13564 20686 959028     

Error of omission(%) 20.42 39.23 68.16 65.49 86.73 49.82 99.88       

Producer Accuracy(%) 79.58% 60.77% 31.84% 34.51% 13.27% 50.18% 0.12% Overall Accuracy = 64.32%   
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3.8.2. Comparison between the classification results and the wavelength map 

The classification results with both the universal endmember library and the extracted endmember library 

are also assessed by making a comparison with the wavelength positions of the first peak produced by the 

software HypPy, through a box plot (shown in Figure 3.20). In these plots, the Y-axis shows the 

wavelength of the deepest absorption position of the spectral curve carried by a pixel in the hyperspectral 

images while X-axis shows the classes of the classification results. In conclusion, these plots present the 

wavelength position of the first peak for classified pixels. Thus, if the boxes shown in Figure 3.20 are 

concentrating to the wavelength of the absorption feature represents the mineral that box belongs to, then 

certain mineral is accurately identified.  

(F) 

(A) (B) 

(C) (D) 

(E) 
Figure 3.20 (A), (C), and (E) shows the comparison between the ground truth and the classification results created with 
the universal library through May, Sep, and Oct image respectively; (B), (D), and (F) presents the comparison between the 
ground truth and the classification results created with the customized library through May, Sep, and Oct image 
respectively. In the X-axis, 0 to 1 represents unclassified, 0 to 1 represents unclassified; 1 to 2 represents Alunite; 2 to 
3 represents Buddingtonite; 3 to 4 represents Kaolinite; 4 to 5 represents Alunite & Kaolinite; 5 to 6 represents 
Hydrated silica; 6 to 7 represents Montmorillonite 
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Based on the observation of the results in Figure 3.20, the classification result of images that have been 

classified with the universal endmembers cover a large wavelength range. For each class, its corresponding 

box is not concentrating toward the wavelength that represents its deepest absorption feature.  

 The relationship between reproducibility and correctness 

To verify the main-assumption that the measurement of reproducibility is the first step for the accuracy 

assessment without the ground truth data proposed at the beginning of this research. The reproducibility 

that measured in this research of the classified solo mineral maps that created with the SAM classifier and 

the universal endmember libraries derived from the May image, Sep image, and Oct image were compared 

with their producer accuracy (shown in Figure 3.21, 3.22, and 3.23). The producer accuracy was selected to 

compare because it is defined as the ratio that pixels in the test image labelled in the same class to the 

pixels in the same location of the reference image (Bakx et al., 2013), thus this ratio is more related to the 

processing of classification than the user accuracy or the overall accuracy. 

Based on Figure 3.21, 3.22, and 3.23, the reproducibility of every single mineral shows similarity in trend 

with the producer accuracy of the corresponding mineral. Only the mixed mineral that alunite & kaolinite 

shows high differences in trend. Moreover, the mineral montmorillonite shows the lowest ratio for both the 

reproducibility and producer accuracy. 

Alunite Buddingtonite Kaolinite Alunite&Kaolinite Hydrated Silica Montmorillonite

Reproducibility 66.85% 46.07% 72.27% 73.67% 63.73% 14.59%

Producer Accuracy 60.12% 32.71% 35.97% 13.83% 65.31% 0.07%
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Figure 3.21 Comparison between reproducibility and producer accuracy of Sep image. 

Alunite Buddingtonite Kaolinite Alunite&Kaolinite Hydrated Silica Montmorillonite

Reproducibility 65.45% 37.06% 66.63% 68.14% 59.21% 8.18%

Producer Accuracy 46.81% 31.53% 45.86% 24.08% 56.48% 0.12%
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Figure 3.22 Comparison between reproducibility and producer accuracy of May image. 
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Alunite Buddingtonite Kaolinite
Alunite&Kaolinit

e
Hydrated Silica Montmorillonite

Reproducibility 65.89% 49.89% 71.48% 73.08% 58.39% 12.73%

Producer Accuracy 60.77% 31.84% 34.51% 13.27% 50.18% 0.12%
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Figure 3.23 Comparison between reproducibility and producer accuracy of Oct image. 
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4. DISCUSSION  

The inspection of the atmospheric correction shows that both the operation and the overall reflectance 

spectra indicate that the model was able to transfer the radiance at sensor data to surface reflectance 

image. It was observed that some bands in the atmospheric absorption wavelength (around 0.9 μm and 

1.4 μm) were over-corrected by the FLAASH method (shown in Figure 3.1 A), but the spectral curve of 

the other wavelength range, like bands in wavelength range from 2.05 μm to 2.3 μm used in this research, 

was not influenced (shown in Figure 3.1 B). Furthermore, the ATM absorption curves around 2.0 and 

2.45 μm disappeared after ATM correction (shown in Figure 3.1 B). 

For assessing the quality of atmospheric correction, the endmembers manually extracted from three ATM 

corrected hyperspectral images and endmember of their corresponding minerals from the USGS library 

were compared. Figure 3.2 shows three sets of spectra which are comparison results between endmembers 

from the USGS library and spectra manually extracted from three ATM corrected hyperspectral images. In 

these comparison results, the extracted spectra present the same absorption features as its corresponding 

endmember from the USGS library. Therefore, the quality of atmospheric correction results in this 

research was decided to be acceptable because for the absorption feature of the same mineral of the image 

spectra and the USGS library spectra were similar.  

 

Based on the Cuprite Mineral Map produced by Swayze et al (2014), the alteration minerals in this area are 

identified as alunite, buddingtonite, kaolinite, alunite & kaolinite, hydrated silica, and montmorillonite. None of these 

minerals has the first diagnostic spectral features of a wavelength range from 2420 nm to 2480 nm 

(Swayze et al., 2014). As well as the latter wavelength concentrating range is an atmospheric absorption 

range (van der Werff & van der Meer, 2015), thus the wavelength range 2120 nm to 2250 nm was 

considered as the concentrating range of the mineral spectral signatures. Therefore, during wavelength 

mapping, the wavelength range of the hyperspectral images used was further subsetted to 2050 nm to 

2300 nm in this research. The range 2120 nm to 2250 nm contains the first absorption features while 2.05-

2.12 μm and 2.25-2.3 μm were kept for the spectral shoulders of the targeting alteration minerals. 

Therefore, the wavelength range used in this research was further spectrally subsetted to 2048 nm to 2308 

nm. This further subset was conducted to reduce the impact of other spectral curve features around the 

diagnostic absorption features of the hydrothermal alterative minerals in the study area. 

 

To carry out mineral classification, two kinds of endmember libraries were created in this research (shown 

in Figure 3.6). The first type is three extracted spectral endmember libraries and they were directly 

extracted from each of the multitemporal hyperspectral images used in this research. However, the 

spectral endmembers that extracted from different images may have some slight differences which may 

enhance the uncertainty for the analysis of reproducibility amongst the classification results that created 

with those extracted endmembers. Therefore, a special kind of endmember library which is the universal 

spectral endmember library was also created in this research. For higher representability of endmember 

that used to classify all of the three multitemporal hyperspectral images, the universal endmember was 

designed as the average of endmembers of the corresponding mineral from the three extracted 

endmember libraries. 

 

The correlation was used to evaluate the differences between spectral endmembers for the same mineral 

but extracted from different images. Furthermore, the extracted endmember and the universal endmember 

of the same mineral was also been evaluated for the similarity. Based on the results shown in Table 3.1 and 

Table 3.2, the correlation coefficient amongst each pair of the compared endmembers is over 0.95 and 

some of them are even equal to 1. This implies that the spectral endmembers of each of the extracted 
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endmember library or the universal endmember library representing the same mineral type but derived 

from different images are highly associated or totally same based on the criteria mentioned by Asuero et 

al. (2006). Therefore, differences caused by using those highly associated endmembers for classification 

will only slightly happen or not even happened. Thus, an assumption proposed in this research, that the 

reproducibility of classification may be disturbed by the differences of the extracted endmember that 

extracted from different hyperspectral images was theoretically disproved. Thus, extracted endmembers 

were firstly used for classification by the method SAM. Since, unlike the universal endmembers, they were 

not mixed by the process of averaging. 

 

The self-assessment (see in Appendix III) of the GCPs that was used for the registration of images shows 

an RMS error as 0.508 m and 0.624 m for the accuracy of the aligning results of the May image and Sep 

image as well as May image and Oct image respectively (shown in Figure 3.7). These ratios, in the unit of 

meter (Barazzetti et al., 2016) present the shift amongst pixels with the same coordinates. Therefore, from 

each of the hyperspectral image scenes, the RMS error is much lower than the size of one pixel, as the 

pixel size of the hyperspectral images used for registration is 3.3 m. Otherwise, when the RMS error is 

larger than one ground sampling distance the alignment will be inaccurate (Barazzetti et al., 2016). 

Therefore, the spatial accuracy for image aligning was considered as acceptable for pixel-based 

comparison. Moreover, after the process of registration with these two portions of GCPs, the image-to-

image registration results were assessed by the dynamic link through the visual inspection. And these 

registered results presented that they are as close as possible according to both the low RMS errors and 

the dynamic visual estimations. Therefore, for this research, the co-registered pixels while from different 

hyperspectral images are assumed as overlapping with the same coordinates. 

 

Changes in mineral distribution as the time changes can be visually observed from mineral maps created 

by the extracted endmembers (shown in Figure 3.8). For more specific estimation, the reproducibility for 

the performance of the method SAM was measured through the confusion matrix (shown in Table 3.3, 

3.4, and 3.5). The overall accuracy was assumed as the similarity between these two images since the 

overall accuracy was calculated based on the comparison of their classification results. The similarities 

calculated with the confusion matrix (shown in Tables 3.3, 3.4, and 3.5) show low values relative to the 

results produced with the universal endmembers. The comparison between the classification results 

derived from May image and Sep image is around 60%, overall similarities of the comparison between the 

classification results derived from May image and Oct image is around 61%, and overall similarities of the 

comparison between the classification results derived from Sep image and Oct image is around 58%. 

Therefore, both of the visual inspection and these low similarity ratios indicate the performance of the 

SAM classifier performed low reproducibility and/or consistency for the classifying of multitemporal 

images using the extracted endmembers and various threshold.  

 

To further investigate the reason of low consistency and/or reproducibility between mineral maps derived 

from three multitemporal hyperspectral images and to enhance it, four reasons that may reduce the 

reproducibility of the SAM classification were assumed by this research. First, low consistency may be 

caused by the various threshold used for classification. Second, the differences between the original 

hyperspectral images used in this research may result in the low reproducibility. Third, the changes of 

vegetation with time series may be the reason. Last but not least, the spectral endmembers used for 

classification caused the low consistency even though they have already very similar according to the 

results of the spectral correlation. Thus, all of these four assumptions were investigated in this research for 

the enhancement of reproducibility and/or consistency.  
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Both the lower consistency and accuracy can be visually observed by the mineral maps (shown in Figure 

3.9) created by the unique classification threshold. Therefore, the reproducibility of classifier SAM cannot 

be enhanced by using a unique classification threshold. 

 

The different classification results following changes in time can be observed in Figure 3.12. Further 

analysis for those classification results by confusion matrix shows very high similarities. The overall 

accuracy from the confusion matrix (shown in Table 3.6, 3.7, and 3.8) between the classification results 

derived from May image and Sep image is around 82%, overall accuracy of the comparison between the 

classification results derived from May image and Oct image is around 93%, and overall accuracy of the 

comparison between the classification results derived from Sep image and Oct image is around 96%. The 

differences between visual inspection and overall accuracy may be caused by the overlap of some 

identified mineral types. On the other hand, the high accuracies (shown in Table 3.6, 3.7, and 3.8) may 

relate with the larger number of pixels that labelled as unclassified since the only pixel that has similar 

value was selected in former operation. Therefore, the calculation of identification similarity makes more 

sense since this calculation eliminates the influence of all the pixels that were labelled as unclassified.  

 

The identification similarity (IdS) was measured to further verify the assumption that differences of the 

original hyperspectral images may affect the reproducibility. The IdS from the confusion matrix (shown in 

Table 3.6, 3.7, and 3.8) between the classification results derived from similarized May image and 

similarized Sep image is around 23%, IdS of the comparison between the classification results derived 

from similarized May image and similarized Oct image is around 50%, and IdS of the comparison between 

the classification results derived from similarized Sep image and similarized Oct image is around 47%. The 

IdS from the confusion matrix (shown in Table 3.6, 3.7, and 3.8) between the classification results derived 

from May image and Sep image is around 21%, IdS of the comparison between the classification results 

derived from May image and Oct image is around 24%, and IdS of the comparison between the 

classification results derived from similarized Sep image and similarized Oct image is around 22%. Thus, 

the identification similarity between the classification results that were derived from the original images is 

much lower ratios than the identification similarity between the classification results that were derived 

from the similarized images (shown in Figure 3.11). Therefore, the assumption that the low reproducibility 

may be caused by the differences of the original images was confirmed and the differences between the 

original images were considered as a main reason for the low reproducibility of classification for 

multitemporal hyperspectral images over the same area. 

 

The statistical results (shown in Figure 3.14, 3.15, and 3.16) of the classified NDVI images (shown in 

Figure 3.13) present that vegetation was barely present in this region in any season. So that the vegetation 

condition was considered as cannot disturb the reproducibility of classification results and result in huge 

differences as shown in Figure 3.8.  

 

The mineral maps created from the universal endmembers show high consistency as seen in Figure 3.17. 

Moreover, as the overall accuracy presents of the confusion matrix (shown in Table 3.6, Table 3.7, and 

Table 3.8) is considered as similarity, thus the similarity between May image and Sep image is around 84%, 

between May image and Sep image is around 83%, and between Sep image and Oct image is around 89%. 

Therefore, the assumption was confirmed by the fact that the similarity between each pair of the 

classification results that were created with the universal endmembers shows a much higher ratio than the 

similarity between mineral maps created using the extracted endmember libraries. Thus, another main 

factor that may disturb the reproducibility of SAM classifier to create mineral maps based on multi-

temporal hyperspectral images was considered as the endmembers used. 

 



 

 

 

 

EVALUATING REPRODUCIBILITY AND ACCURACY OF HYPERSPECTRAL MINERAL MAPS USING MULTITEMPORAL AVIRIS IMAGES OF CUPRITE, NEVADA, USA 

61 

The low reproducibility ratio of Buddingtonite was shown in Figure 3.18. This can be explained by the 

fact that only a few pixels were identified as Buddingtonite, therefore even a small number of the 

misclassified pixels can result in a relatively high influence for the reproducibility of this mineral. The 

lowest ratio of reproducibility was found in the mineral of montmorillonite. It may be caused by the fact 

mentioned before, that montmorillonite was classified by the most vogue endmember. The endmember of 

montmorillonite even cannot be extracted by the algorithm SSEE in the May image and Oct image. 

 

The geo-coded Cuprite Mineral Map (Swayze et al., 2014) was used as the ground truth data to estimate 

the accuracy of the reproduced mineral maps (shown in Figure 3.17) created in this research. This is 

because the producers have already validated the Cuprite Mineral Map and also this map was generated 

based on the AVIRIS data (Swayze et al., 2014). Therefore, as there is no field data collected in this 

research, the Cuprite Mineral Map that well-validated by the authors using both published information and 

the field data is the best independent ground truth data that can be used in this research. 

 

The overall accuracies of the reproduced mineral maps are around 65% (shown in Table 3.9, 3.10, and 

3.11). The relatively low overall accuracies maybe caused by the fact that pixels which are representing 

minerals were omitted during the transformation from the Cuprite Mineral Map to a classified image that 

can be compared by the confusion matrix. This is because, for the boundary of polygons in a vector image 

like the Cuprite Mineral Map, they will be gradually changed during the conversion from vector to raster. 

However, the value of these gradually changed pixels will be too complicated to select, thus the number of 

identified pixels was undercounted. Therefore, the real overall accuracy of the reproduced classification 

results could be higher than the ratios shown above. 

 

Based on the observation of the box plots of wavelength position seen in Figure 3.20, the classification 

results, that the minerals classified with the universal endmember libraries or the universal endmembers 

are not very accurate. Because for each mineral class, its corresponding box is not concentrating toward 

the wavelength that represents its deepest absorption feature. However, the information of absorption 

depth which is related with the content of targets (van der Meer et al., 2012) has not been considered in 

the results of the box plots, and the number of pixels whose spectral curve has the disperse the first peak 

is not been shown either. Thus, this method could be a nice tool to assess the accuracy of the classification 

results without the need for in-situ measurement. It also offers a nice way to furtherly link the wavelength 

map and the classification results. But based on the drawbacks mentioned above, the box plot still needs 

more research to improve the information summarized by it. 

 

The reproducibility and producer accuracy present highly associated values based on the observation of 

the results shown in Figure 3.21, Figure 3.22, and Figure 3.23, except the ratio of Alunite & Kaolinite. 

However, the Cuprite Mineral Map which was used as the ground truth in this research was produced by 

the classifier Tetracorder (Swayze et al. 2014) and the mineral maps generated in this research were 

classified by the method SAM. For, two different classifiers, it is too difficult to create similar results for a 

mixed class of two similar mineral type like Alunite & Kaolinite. Moreover, only this class shows low 

association and never shows high associations across all of these three comparisons. Therefore, the low 

correlation results of class Alunite & Kaolinite was considered as a result of the mixed endmember and 

different classifier in this research. In other word, the reproducibility and producer accuracy are highly 

correlated with each other based on all the analysis and results shown above.  
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5. CONCLUSION AND RECOMMENDATION  

• In this research, the reproducibility of mineral maps that were derived from multitemporal 

hyperspectral images and classified with the universal spectral library by the SAM classifier shows 

a great potential to validate the classification result. Since the similar variation trend between the 

reproducibility for each mineral and the producer accuracy for the corresponding mineral. The 

use of reproducibility or robustness to estimate the accuracy of classification results does not rely 

on any ground truth data. 

 

• The accuracies of mineral maps created in this research are acceptable based on the validation 

results that the overall accuracy for mineral maps derived from three multitemporal hyperspectral 

images are around 64%. And the real accuracy should higher than this ratio as some information 

was lost during the re-classification of the Cuprite Mineral Map. 

 

• The use of “0.1” the default unique classification threshold of classifier SAM is not appropriate 

for the creation of both correct and consistent classification results. Since the results shown huge 

different amongst each other and each of the result shown huge differences from the ground 

truth map. 

 

• The investigation of the similarity between the mineral maps that were derived from the 

similarized hyperspectral images shows that the difference between the original images is a factor 

contributing to the low reproducibility of the classification processing. Since huge differences 

amongst different original hyperspectral images and the higher identification similarity amongst 

the mineral maps derived from the similarized hyperspectral images. 

 

• The evaluation for vegetation condition of the study area shows that only very sparse vegetation 

cover was detected, by the interpretation of NDVI results of Cuprite, from all of the three 

hyperspectral images. And this sparse vegetation cover does not show any relationship with the 

huge differences amongst mineral maps that derived from multitemporal hyperspectral images 

and classified by SAM with the extracted endmember libraries. On the other hand, the Cuprite 

was confirmed again as a good site for the research of remote sensing since it has sparse 

vegetation cover. 
 

• The spectral correlation calculations present very high association between the extracted spectral 

endmember libraries that were directly extracted from each of the multitemporal hyperspectral 

images. However, the use of these three extracted spectral endmember libraries still showed a 

huge influence on the reproducibility of classification results. Therefore, based on the high 

similarity shown by the comparison between the classification results that were created using the 

universal endmember library. Mineral maps derived from multitemporal hyperspectral images can 

be robustly and/or reproducibly classified by the classifier SAM through the using of the 

universal spectral endmembers.  

 

The recommendations of this research are shown below 

 

• The change detection results show the differences amongst each of the three multitemporal 

hyperspectral images are similar to the shadow. The reproducibility of ortho-correction for 

radiance-at-sensor datasets should be further investigated. 
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• The box plot shows its great potential to assess the classification results by the comparison of 

these results with corresponding wavelength maps. However, the drawback of this method is that 

the information summarized by it is not enough to completely validate the classification results. of 

absorption depth which is related to the content of targets (van der Meer et al., 2012) to the box 

plot. Moreover, the number of pixels whose spectral curve have expanded wavelength 

distribution is not been summarized by the box plot either. Therefore, this research suggests 

further study to add these two types of information to the box plot. Then the box plot may 

become a powerful method for the accuracy assessment of classification results without the use of 

ground truth data. 

 

• The accuracy for the conclusion of this research was built upon the pixel-by-pixel comparison 

between mineral maps created in this research and the Cuprite Mineral Map as ground truth data. 

However, some pixels were lost during the reclassification of the Cuprite Mineral Map. Therefore, 

for higher reliability, this research highly suggests further investigation to repeat the conclusion 

proposed in this research with in-situ measurement data and also repeat this research in other 

regions. 
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6. APPENDICES 

Appendix I. Flowcharts illustrating methodology  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Above is the flow chat for general information. The following detail flowchart 1 presents the pre-

processing and the processing of estimation for reproducibility of mineral maps produced by general 

workflow. Detail flowchart 2 shows the verifying for four assumptions. Detail flowchart 3 presents the 

validation of reproduced mineral maps and the evaluation of the relationship between classification 

accuracy and reproducibility. 
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1. 3 AVIRIS scenes from NASA-JPL 
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Swayze et al. 
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Detail flowchart 1  
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Detail flowchart 2
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 Detail flowchart 3 
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Appendix II. Two sets of thresholds for SAM 
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Appendix III. The self-assessment for the GCPs 
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Appendix IV. The threshold for change detection 
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Appendix V. The 36 solo mineral maps 
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 (A), (B), and (C) show the distribution of Alunite in May image, Sep image, and Oct image respectively; (D), (E), and (F) show the distribution of Buddingtonite in May image, Sep image, 
and Oct image respectively; (G), (H), and (I) show the distribution of Kaolinite in May image, Sep image, and Oct image respectively; (J), (K), and (L) show the distribution of Alunite & 
Kaolinite in May image, Sep image, and Oct image respectively; (M), (N), and (O) show the distribution of Hydrated silica in May image, Sep image, and Oct image respectively; (P), (Q), and 
(R) show the distribution of Montmorillonite in May image, Sep image, and Oct image respectively. 
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Appendix VI. The reclassified Cuprite Mineral Map 


