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ABSTRACT 

Land cover and land use (LCLU) change is a very important indicator that can assist in the 

monitoring and assessment of both physical and functional recovery. Its fundamental approach rests on 

change assessment comparing the situation before, the immediate post-disaster situation and later the 

recovery stage through image classification. Remote sensing (RS) imagery provides spatial, spectral and 

contextual information that can assist in the LCLU classification. However, this works well with the 

classification of land cover (LC) but not for land use (LU) as it fails to capture information on the building 

use and function which are highly significant in LU classification. OpenStreetMap (OSM) data have been 

an emerging data source for providing base map information (roads, buildings, etc) on the ground. Most of 

the studies conducted using OSM data have been mainly concentrated on OSM data quality issues, but the 

potential of OSM data in disaster recovery assessment has been less explored.   

Therefore, the main objective of this study was to contribute to fill this knowledge gap by 

investigating the potential of using RS imagery and OSM data in LCLU classification for improving the 

understanding of post-disaster recovery assessment. This study addresses the limitations that came to light 

in a previous study performed using a pixel-based approach for assessing LCLU changes with RS imagery, 

but that faced problems related to the issue of mixed unit pixels and uncertainty, especially in the LU 

classification. This study aimed at using Object-Based Image Analysis (OBIA) for improving the accuracy 

of LCLU classification. This was done first by analyzing to what extent LCLU mapping performed by using 

a pixel-based approach can be improved with an OBIA,  and secondly investigating the significance of using 

OSM information to supplement satellite imagery during the LCLU classification and lastly to assess the 

performance of these two methods in the detection of different LC and LU classes.  

Tacloban city in the Philippines was highly impacted by Typhoon Haiyan on 8 November 2013. As 

a result of the typhoon, the area underwent drastic changes related to LC and LU in the process of recovery. 

This area was selected as a study area for recovery monitoring using three Worldview 2 satellite images of 

multiple time steps and OSM data. 

A methodology was employed which starts by creating image segments through integrating the 

vector data (road network, building footprint) obtained from OSM data in the process. Then samples were 

generated using the OSM data that provided the sample label and other multi-source information (Google 

Earth Pro, Google Street View, panchromatic band) for image classification. To have direct comparability 

of the methods (pixels vs. segments) Support Vector Machine (SVM) classifier was employed for 

classification purposes, and different object-based features for OBIA were tested to identify the specific 

features that provide competent class descriptions in the classification process. The object geometry (size, 

shape), layer value (brightness, mean of all WV2 bands), spectral indices (NDVI2, NDWI) and class-related 

features were used for the LC classification. For the LU classification, the same features were employed in 

addition to texture features and layer value (panchromatic band). The results for the three timestep images 

showed an OA of 89.9%, 85.3%, 88.9% and 79.9%, 68.7%, 78.6% for the LC and LU respectively. This 

shows that object geometry features and spatial data yield promising results in improving the classification, 

especially for the built-up related classes. 

The OSM information was shown to be of significant value in the LCLU classification as it helped 

in the proper identification of road area and also in providing a sample label for image classification. A 

quantitative and visual analysis of the classification results was conducted to assess the performance of 

object and pixel- based methods. The results showed that the object based method produce maps with more 

homogeneous and meaningful LCLU objects, but it still suffered from misclassification of vegetation classes. 

The pixel-based process performed slightly better than the object-based approach in the classification of 
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vegetation classes (palm tree, other tree). Both methods showed poor performance in the classification of 

the damage class (rubble), more investigation is required when it comes to the detection of debri/rubble in 

a complex urban environment. On the whole, with OBIA a promising result in the LCLU classification was 

attained, however more additional of ancillary data (elevation data etc) in the analysis could show more 

competitive performance. 

 

Keywords: recovery, land cover, land use, satellite imagery, OpenStreetMap, OBIA 
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1. INTRODUCTION 

1.1. Background 

A community or society is said to have been affected by a disaster when a hazardous event causes 

serious disruption in its operation and results in physical, socio-economic and environmental losses such 

that the community or society fails to cope using its own resources (UNISDR, 2009). According to Guha-

Sapir, Hoyois, & Below (2016), the distribution of disaster occurrences varies from continent to continent. 

Asia has been reported as the most affected continent by disasters, in which the Philippines is frequently 

affected by natural disaster. The statistics show that the country was hit by 311 typhoons, 168 hydrological 

disasters, 54 geophysical disasters and 9 climatological disasters from 1950 to 2014 (CRED, 2014).  

Typhoons are one among the main types of hazards that may cause loss of life or injury, damage, 

and destruction to property and environment. In 2013, the Philippines was hit by the super typhoon Haiyan. 

This was the strongest tropical cyclone ever recorded to make landfall in the history of the Philippines, with 

category five storm surge and wind speed that reached 300 km/h (DEC, 2015; Takagi & Esteban, 2016). 

The typhoon brought damages and losses to the country of an estimated USD 2.2 billion, and a total of 

6,300 individuals were reported dead, 28,688 injured and 1,062 are still missing (NDRRMC, 2014; DEC, 

2015). The areas that were largely affected by the typhoon includes the province of Samar and Leyte 

especially Tacloban among others. Rapid damage assessment was carried out followed by the response phase 

using various methods such as Remote Sensing (RS), Volunteered Geographic Information (VGI) (social 

media, OpenStreetMap) and ground-based observations (Westrope, Banick, & Levine, 2014; Takahashi, 

Tandoc, & Carmichael, 2015). Furthermore, different studies have been done in this area to understand how 

the area is recovering from this devastating event (Yan et al., 2017; Sheykhmousa, 2018). 

Recovery is significant for communities affected by the disaster to improve or restore the pre-

disaster living condition. UNDP (2011) defined recovery as the process of returning to a normal situation 

after a time of difficulty whereas enabling essential modifications that will facilitate disaster risk reduction. 

In general, recovery is seen as a dynamic process which involves different phases in the procedure. The 

recovery phase begins after the response phase has ended and it can take several months or years to reach 

its goals, that is to say,  restoring the pre-disaster stage by implementing the progress actions to reduce the 

disaster risk (Coppola, 2015; UNISDR, 2015). 

After a disaster, it is vital for policymakers and other stakeholders to understand how the recovery 

process might take place and to have proper planning and management of the resources. Although assessing 

and monitoring of recovery is important, this process is still considered to be the least understood phase of 

the DRM cycle (Hettige, 2018). The initial step of understanding recovery is to define and measure it in a 

more systematic and holistic framework (Miles & Chang, 2003).  

There are existing methods that can be used to monitor and assess the recovery processes. These 

techniques guide in obtaining essential data that can support the decision-making process by relevant 

stakeholders and policymakers for necessary and effective actions to be taken (Horney et al., 2016). Existing 

recovery assessment methods include but are not limited to ground survey and observation, social audits 

(key informant interviews, focus group discussion), household surveys, official publication and statistics, 

VGI and satellite image analysis (Platt, Brown, & Hughes, 2016). Ground-based techniques are costly, time-

consuming and difficult to cover all the aspect of recovery over the large and inaccessible areas. Platt et al., 

(2016) found out that combining ground-based techniques with satellite data to monitor and assess recovery 

yielded effective results. RS allows measurements and assessment of recovery over large areas while ground-

based techniques provide more details on the ground over a small area. 
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Remote sensing (RS) is a potential tool to study and understand recovery. The use of existing 

satellite imagery data of multiple time steps has proven to be useful in assessing the state of the structure 

(buildings, roads) as well as non-structural elements such as vegetation areas and water bodies in detecting 

the changes over time (Guo et al., 2010; Sheykhmousa, 2018). In addition, indicator methods are widely 

used in the monitoring and assessment of recovery. Brown et al. (2015) used the indicator-based method to 

assess the physical and social recovery based on the Very High Resolution (VHR) image combined with a 

ground survey and social audit technique. The use of the indicator-based method associated with 

quantifiable metrics was adopted to study post-disaster community recovery in the United States (Horney 

et al., 2016). However, these studies focused much on the physical aspect of recovery which is limited to 

detect changes in the construction and reconstruction of the built-up environment and neglects the 

functional recovery that reveals changes on the use/function of ground objects. Besides, the RS approach 

fails to capture information on the building’s facades, building use and function both of which can assist in 

the functional recovery. This is due to limited spatial resolution and non-oblique look angle of most satellite 

sensors (Cusicanqui, Kerle, & Nex, 2018). On the contrary, VGI data OSM specifically can be combined 

with the RS approach to assist the analysis data as it provides base map which contains information that can 

be used to support different phases of disaster activities (Westrope et al., 2014). 

OpenStreetMap (OSM) is a crowdsourced thematic database that has grown in relevance. In the 

OSM platform, detailed and up-to-date geospatial data can be generated by online volunteers (Miyazaki, 

Nagai, & Shibasaki, 2015). On the other hand, the Humanitarian OpenStreetMap Team (HOT) is a 

worldwide dedicated team that performs humanitarian actions by working together online to build local 

mapping capacity and add data to OSM (HOT, 2018). These geographic data are freely available and can be 

used for a wide range of application such as in disaster risk management (DRM). A very comprehensive 

database can be quickly created after a disaster event. The database includes useful features such as the 

outline of the buildings and building use, both of which can provide information on the land-use hence 

strongly assist in functional recovery assessment (Wang & Zipf, 2017). However, since the assessment of 

recovery depends on the accurate determination of pre-disaster and post-disaster state, in some areas such 

as Tacloban in the Philippines, OSM data in the past prior to the disaster, does not exist. For this reason, it 

is difficult to relate to the pre-disaster state as the benchmark dataset is not available.  

Much research work has been conducted on using VGI data to support the prevention, preparation, 

and response phases of the DRM cycle (de Albuquerque et al., 2016; Latif et al., 2011). However, the use of 

OSM data in the recovery phase has received less attention. The existing studies have largely focused on the 

economic aspect of recovery, for instance, Yan et al. (2017) use the geotagged social media data as one of 

the forms of VGI to assess and monitor post-disaster recovery in tourist destinations. The author 

highlighted the incompleteness of the extracted tourists’ sites from the OSM database due to data quality 

issues. In fact, the quality of OSM data has been a point of discussion in different literature. Different 

researches have investigated the completeness and accuracy of OSM data, especially in large cities. The 

results obtained from these studies show that overall OSM data has proven to be an excellent source of 

information and often outstanding official data (Mobasheri et al., 2018; Haklay et al., 2010; Kounadi, 2009). 

However, there is little knowledge on the use of these available and free data in the recovery phase after a 

major disaster.  

The recovery process after a disaster influence different changes in the community affected, which 

ranges from physical reconstruction to social economic and environmental impacts (CDEM, 2005). The 

increasing availability of VHR imagery before and after the disaster allows different indicators of features to 

be detected that can assist in the monitoring of recovery (Joyce et al., 2009). Land cover (LC) and land use 

(LU) change detection can be used as a reliable indicator to assist in the monitoring and assessment of 

recovery. It provides information that can reveal the physical changes in the environment (LC) as well as 

the functional changes (LU). The provided information can be used to support the planning and 

management of resources and also to assess how well the recovery has taken place in the affected area.  
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There are various methods used in the LCLU change assessment. Among others, the traditional 

pixel-based approach has been widely used in image classification for change detection analysis (Joyce et al., 

2009; Veljanovski, Kanjir, & Oštir, 2011). Recently, the development of satellite imagery with a resolution 

below 1-meter has made the pixel size considerably smaller than the mean size of the object to be observed 

(Blaschke, 2010a). Therefore, most of the studies started changing from individual pixels to objects 

representation as the most appropriate data for image classification analysis.  

Object-based image analysis (OBIA) has been extensively used for many application such as in LC 

and LU image classification in the field of RS (Goodin, Anibas, & Bezymennyi, 2015a; Marangoz, 2018). 

There are different approaches that can be used to perform the OBIA classification among others the 

supervised classification methods which use the training sample and reference data are mostly used in the 

classification of LC and LU (Marangoz, Sekertekin, & Akcin, 2017). Advanced in technology has lead to the 

development of machine learning algorithms that have demonstrated the capability to detect, quantify and 

identify different features in an image. Support Vector Machine (SVM) among others is more popular in the 

RS field due to the capability of handling small training data set and producing competitive results 

(Mountrakis, Im, & Ogole, 2011). In the OBIA process, the use of machine learning has proved to perform 

well in differentiating different segments and are capable of handling different learning tasks with high-

resolution images and produce high classification accuracy (Kuffer et al., 2016a). 

1.2. Research Problem  

An accurate assessment of recovery depends on the determination of changes on the situation 

before, during and after a disaster event. The use of available high-resolution satellite images of multiple 

time steps has made the recovery assessment possible through the change detection analysis (Joyce et al., 

2009). Different change detection methods based on RS data can be performed using pixel and object-based 

classification techniques. However, the performance of these techniques lies in the efficient procedures used 

to classify satellite images. 

Landcover (LC) can be obtained directly from the RS images. However, the process may be 

challenging depending on the type of LC that needs to be extracted. For example, extraction of the damage 

features such as debris or rubble in the area affected by a disaster may be challenging and hence making the 

classification process problematic. This problem has been observed by Sheykhmousa, (2018) who used the 

pixel-based approach in LC and LU classification and faced difficulties in detecting the class debris/rubble 

from an image resulting in considerable misclassification of this damage class with other cover classes. The 

reason for such misclassification might be rooted by the problem of mixed unit class within a pixel at which 

spectral and textural information only may not be enough for such a discrimination. From the preceding 

discussion, it is evident that a method that can discriminate features by using additional information other 

than spectral and textural characteristics which mostly used by pixel approach be adopted. 

LU which refers to the function of the surface cover, desires more information on the use of the 

cover to be well classified. Crowdsource information such as OSM data can be used to aid in LU 

classification. OSM data that contains boundaries of the buildings, roads and other objects can be 

incorporated with satellite imagery for LU classification. For this reason, OSM data can be used to aid the 

OBIA process to improve the accuracy in LC and LU classification. However, to what extent the use of 

OBIA will help improve the accuracy of LC and LU mapping which was previously done by the pixel-based 

approach and faced difficulties especially in the detection of debris/rubble in Tacloban city is still a question 

to be answered.  

Therefore,  this study aims at investigating the potential of using OSM data within an OBIA 

approach for the LCLU classification of high-resolution satellite images in post-disaster recovery 

assessment. The analysis will be performed in eCognition software which has incorporated different 

machine learning tools. 
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1.3. Objectives and Research Questions  

1.3.1. Main Objective  

To investigate the potential of using OSM data within an OBIA and machine learning approach for 

LCLU classification of high-resolution satellite images in post-disaster recovery assessment. 

1.3.2. Specific Objective  

1. To investigate to what extent LCLU mapping performed by using a pixel-based approach for 

recovery assessment in Tacloban city can be improved with the OBIA method.  

 

a. Which classes were particularly difficult to classify using the pixel-based approach performed in 

previous LCLU recovery research in Tacloban city and why? 

 

b. Which aspect of OBIA (e.g., size, shape) can help to reduce the ambiguity of identified classes that 

were difficult to be accurately classified using a pixel-based approach? 

 

c. How can the use of the object-based approach yield potentially better results for LCLU 

classification and for which specific class/es do OBIA lead to an improvement? 

 

2. To investigate the significance of using OSM information to supplement satellite imagery during 

LCLU classification by OBIA. 

 

a. How valuable is the use of historical data in OSM during the LCLU classification process? 

 

b. How can OSM information be used to support the OBIA process? 

 

3. To analyze the value of using the object-based machine learning algorithm in eCognition for 

LCLU classification. 

a. What are the similarities and differences in the performance of pixels and objects based approaches 

in classifying urban-rural environment? 

1.4. Thesis Structure  

This research is divided into seven chapters. In chapter 1, the general background and motivation 

of the research are introduced, followed by the research problem, research objectives, and research 

questions. Chapter 2, provides an in-depth literature review carried out to understand the concept of post-

disaster recovery. Also, it introduces the methods used in the assessment of recovery and the contribution 

of VGI information in the recovery assessment. The chapter goes further in explaining the approaches used 

in the analysis of LCLU change as one of the indicators in the assessment of recovery with the focus on the 

object-based approach using RS and OSM data. Chapter 3, describes the study area and gives a brief 

overview of the disaster (Typhoon Haiyan). Also, it illustrates the description of the dataset used in this 

study. The methods used in this study to answer the research questions are described in chapter 4. Chapter 

5 presents the results, while chapter 6 discusses the limitations of the data and the method, and chapter 7 

elaborates on the conclusions and recommendations. 
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2. UNDERSTANDING POST DISASTER RECOVERY 

This chapter presents a general understanding of post-disaster recovery based on the in-depth literature 

review. Section 2.1 illustrates the concepts of recovery including different author’s definitions and different 

types of recovery. The following section, 2.2, demonstrates the relationship between land cover and land 

use in urban functions. Section 2.3 describes different methods used in the assessment of recovery and the 

contribution of Volunteered Geographic Information (VGI) in recovery assessment. The last section 2.4, 

illustrates the approaches used in the analysis of LCLU change as one of the indicators in the monitoring of 

recovery with the focus on the object-based approach using remote sensing and OSM data. 

2.1. Definition of Recovery 

Recovery has been defined in different ways in the existing literature. The term has been defined as the 

process of returning to a normal state after a period of difficulty (Chang, 2010). This definition creates 

contradiction especially when the status before the event is highly vulnerable to risk. Recently, recovery 

definitions have concentrated on improving and restoring the pre-disaster status of the affected society 

whereas enabling essential modifications that will facilitate disaster risk reduction (UNDP, 2011). In general, 

recovery is seen as a dynamic process which involves different phases in the process. Haas, Kates, & 

Bowden, (1977) described recovery as the long term 

process that passes through four main sequential steps with 

the main focus on the reconstruction stage. Following this 

argument, there has been a disagreement on the logic 

presented in this study (Rodríguez, Quarantelli, & Dynes, 

2007). Recovery is seen as the process that involve more 

than the reconstruction of the physical environment (Khan 

and Sayem, 2013). The holistic framework  explains 

different elements of community recovery (figure 2-1), it is 

indicated that a successive recovery of the community  

should cover different sectors in the community that 

ranges from physical reconstruction to social-economical 

and environment impacts (CDEM, 2005). As well as the 

strategies of how well these sectors will cover over time. 
                                 Figure 2.1. The Elements of community recovery                                                           
(CDEM, 2005)                         

According to CDEM, (2005) successive recovery should involve the process that considers the 
needs of the community as well as their interaction in social, natural, economic and built environment. Social 
environment needs include safety and well-being, health and welfare. Natural environment comprises of 
biodiversity and ecosystem, amenity value, pollution, and natural resources. All these components are 
essential as they play a great role in changing the physical environment. 

 CDEM, (2005) also defined the economic environment as the component of community recovery 

which comprises of individual, firm, infrastructure and government. This component is important in the 

recovery process as it involves the economic status of the community ranging from individual to community 

level. Lastly, is the build-up environment which is the most studied component in the recovery process. It 

is comprised of residential, commercial/industry, rural, public building and lifeline utilities. All these four 

components of community recovery are very important to be implemented in the recovery process. 
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2.1.1. Short Term and Long term Recovery 

Recovery is the process that involves different phases that can occur either sequentially or 

simultaneously. The recovery phase begins after the response phase has ended and it can take several months 

or years to reach its goals, that is to say,  restoring the pre-disaster stage (Coppola, 2015). Different targets 

have been implemented towards the risk of disasters caused by natural hazards. Among others, enhancing 

disaster preparedness for effective response plays a great role as it facilitates recovery, rehabilitation and 

reconstruction phase which is a potential opportunity to build- back- better (UNISDR, 2015). Lindell, (2013) 

argued that recovery is the process that involves four phases of activities: disaster assessment, short term 

recovery, long term reconstruction, and recovery management. Short term recovery focuses on the security 

of the impacted area, temporal shelter and housing, infrastructure restoration and debris management. All 

these activities start immediately after the disaster event and facilitate the long term recovery process. 

Long term recovery phase comprises reconstruction of the impacted area and manages the social, 

economic and political effect caused by the disaster. For this phase to be well accomplished proper planning 

and management of resources are vital for policymakers, stakeholders, non- governmental agencies and 

donors to understand how the recovery process will be conducted (Miles & Chang, 2003). The planning is 

significant as during this process changes in the environment are unavoidable. 

2.2. The Relationship Between Land Cover and Land Use in Urban Functions 

Urban functions are composed of activities which can be characterized based on LU such as industrial, 

commercial and residential to mention a few, which has a direct relationship to the corresponding LC. 

According to Comber, Fisher, & Wadsworth, (2005) LC refers to the physical aspect of the earth’s surface. 

In contrast, LU refers to the function of the surface cover (Dickinson & Shaw, 1977). Although LC and LU 

activities are related, they have distinct definition and different types of earth’s surface cover analysis. LC 

materials can be observed directly using remote sensing and reveal the physical recovery, while for the 

functional recovery LU must be inferred from LC together with the additional information that will explain 

the function/use (Verburg et al., 2009).  
 Verburg et al., (2009) argued that the relationship between LC and LU is non-linear and largely 

natural doings and human expansion influences the variations that occurred in the LC and LU. For example, 

agriculture land gets covered with housing due to human growth, bare land can be converted to agriculture 

land due to the food demands to mention few, all these 

activities influence the changes in the LC and LU. 

Mapping the functional recovery of the area affected by 

the disaster may be more complicated than physical 

recovery. However, it is important to pay attention in 

both physical and functional recovery, as the situation 

may be good in some aspect of functional recovery but 

lacks proper reconstruction or the recovery may be 

good in physical reconstruction without a proper 

recovery in the functional aspect. A complete and 

successful recovery works not only with physical 

recovery but also functional recovery and includes 

necessary procedures to improve the vulnerability of the 

pre-disaster condition (Lindell & Prater, 2000).  

Figure 2.2. LC,LU and land function interaction 
retrieved from Verburg et al., (2009)  

The relation between LC, LU, and land functions is explained in figure 2-2 and a detailed discussion on 
the LC, LU, and land functions interactions can be found in Foerstnow, (2017) study.        
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2.3. Measuring Recovery 

Monitoring of post-disaster recovery is important for policy-makers and other stakeholders who 

invested resources in the process and therefore want to know how the resources have been spent. This 

process requires special attention to the proper planning and management of invested funds to facilitate the 

activities involved (Yan et al., 2017). Successive assessment of post-disaster recovery requires valid data that 

can be acquired from different affected sectors such as built stock, social, economic and environmental 

sectors. Although, recovery assessment is essential this process is still considered to be the least understood 

phase of the DRM cycle (Hettige, 2018). The initial step of understanding recovery is to define and measure 

it in a more systematic and holistic framework (Miles & Chang, 2003). 

Measuring recovery depends on many factors that should be encountered in the process. The scale at 

which the disaster happens is vital in the evaluation of the disaster impacts (Rathfon et al., 2013). The 

geographic scale can range from individual, community to the regional level. Also, there are other factors 

that facilitate the recovery assessment process such as the type of disaster and the level of damage among 

others.  

There are existing methods that can be used to monitor and assess the recovery processes as discussed 

by Brown et al., (2008) and Platt et al., (2016). As this study is based on using RS and VGI information to 

understand post-disaster recovery, RS and VGI techniques will be discussed. 

 

2.3.1. Remote Sensing Methods 

Remote sensing has long been used in different phases of the DRM cycle. The increase 

developments of VHR images such as Pleiades, Sentinel and Planet Labs among others which provides 

information of an area on a daily basis has made the use of RS popular tool for spatial information (Platt et 

al., 2016). High-resolution images can be used to support or monitor post-disaster recovery activities by 

analyzing the changes in the time series images in a particular disaster area (Joyce et al., 2009).                                                                                                                                                                                                                                                     

Remote sensing-based method in monitoring and assessing recovery has been adopted by many of 

the researchers. For example, multi-temporal remote sensing images from various sources were acquired for 

analyzing post-earthquake landslide after the Wenchuan earthquake in China (Tang et al., 2016). In the study 

of Hoshi et al., (2017) satellite images were used in the assessment and monitoring of urban recovery after 

the Peru earthquake. Ghaffarian, Kerle, & Filatova, (2018) showed that monitoring and assessment of the 

recovery process could be achieved by using different proxies that can be obtained from the RS images. 

However, most of these studies concentrated on the physical aspect of recovery which is based on the 

reconstruction of buildings and infrastructures, ignoring the functional aspects which are also essential in 

recovery assessment. There have been changes in the recovery assessment taking even other parts of 

recovery into account (Joyce et al., 2009). Physical recovery can be directly assessed by RS. However, the 

RS approach has limits; for instance, if a roof has been rebuilt this can be directly observed from an image 

but what has been rebuilt beneath it is impossible to be captured.  

The use of Unmanned Aerial Vehicle (UAV) images and videos can play a very important role as 

well in the recovery situation. The fusion of photogrammetry and computer vision makes it possible to 

obtain simple photos, also the generation of orthophoto and point cloud from images obtained from UAV  

(Dominici, Alicandro, & Massimi, 2017).  These data have the ability to provide detailed information such 

as damage to structural facades (Gerke & Kerle, 2011) that allows much better characterization of the 

damage situation after the disaster. In general with UAV a very high temporal resolution can be generated 

aftermath, and this information can be used to look for rapid changes over time to support the recovery 

processes (Vetrivel, 2018).  However, with UAV only a small portion of an area can be covered, this limits 

the amount of information especially when a disaster occurs over a large area.  Also, information on the 

object function on the ground cannot be accurately obtained from UAV data, there is a need of ground 

information for verification to produce accurate assessment (Ezequiel et al., 2014). Obtaining ground 
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information can be expensive and time-consuming especially if traditional methods are used. Alternatively, 

the use of VGI data OpenStreetMap (OSM) specifically which is open source information can be employed.  

 

2.3.2. Volunteered Geographic Information in Recovery Assessment 

Volunteered Geographic Information (VGI) is a special case of user-generated content which has 

successfully achieved in collecting geospatial data through citizen volunteers who creates and disseminate 

the dataset voluntarily worldwide (Gröchenig, Brunauer, & Rehrl, 2014). In recent years VGI has arisen as 

a significant source of information that can support disaster management. This fact has been proved in 

different existing literature that used this source of information to support various activities in disaster 

management (Horita et al., 2013).  

There are different form of the VGI  that exist, among others, OSM is one of the most popular 

VGI platforms, that has grown in relevance (Neis & Zielstra, 2014). In the OSM platform, a detailed and 

up to date geospatial database which contains point, line and polygon features as described in (Figure 2-3) 

can be generated by online volunteers (Miyazaki et al., 2015). The database includes useful features such as 

the outline of the building, road network, and the attribute information explaining the type, function/use of 

the features both of which can actively provide information that may assist in functional recovery assessment 

(Wang & Zipf, 2017). These geographic data are freely available and can be used in a wide range of 

application. OSM data has been widely used as either a source of data where the is no data or as 

supplementary data in the disaster management activities. Also, the Humanitarian OpenStreetMap Team 

(HOT) plays an important role in the disaster management activities by providing the base maps in most 

vulnerable places especially in the developing countries (HOT, 2018). The provided maps and data can be 

used to assist the disaster management activities to the areas affected by crises.   

 

 

 
      Figure 2.3. Types of geospatial data created in OpenStreetMap (Jokar Arsanjani et al., 2013) 

Most of the research conducted using OSM data has been widely concentrated on the OSM data 

accuracy and completeness issues (Haklay, 2010; Girres & Touya, 2010) to mention few. On the other hand, 

the use of OSM data in disaster management activities has widely focused on supporting the prevention, 

preparation and response phases of the disaster management (de Albuquerque et al., 2016; Westrope et al., 
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2014; Horita et al., 2013). However, the use of OSM information in the recovery phase has been receiving 

less attention which brings a gap of knowledge in this field.  

The existing study on recovery has primarily focused on the economic aspect of recovery using 

other sources of VGI information. For instance, Yan et al., (2017) use the geotagged social media data as 

one of the forms of VGI to assess and monitor post-disaster recovery in tourist destinations. However, this 

was the aspect of social/economic recovery, other aspects of recovery such as the built up/natural 

environment which has the component of physical and functional recovery have been receiving less 

attention. 

In this study, the recovery assessment process will be evaluated based on the changes in the LC and 

LU. The analysis will be conducted by performing the classification of multi-temporal images to obtain 

changes over time. LC can be derived directly from the remote sensing images, but LU needs more 

information on the use of the cover to be well classified, and this is where the OSM information will play a 

significant role in this study. Some researchers have adopted the use of OSM data as either the only source 

of information or supplementary data in supporting land use/cover mapping in urban planning. For 

example, Jokar Arsanjani et al., (2013) utilized OSM information as a substitute source of data together with 

satellite images in mapping land use pattern of an urban landscape instead of gathering training sites through 

the direct visit of the area. An automated approach with decision rules and spatial analysis was used to 

convert OSM features into LC and LU maps in European areas (Fonte et al., 2016). The automated approach 

was adopted due to the reason of data quality which has been on top of the discussion in most of the OSM 

projects. 

According to Haklay et al., (2010); Girres & Touya, (2010) and  Fonte, Antoniou, & Bastin, (2017) 

it has been recognized that one of the problems when working with the OSM data set is the data quality. 

Different researchers have established several ways of assessing the quality of the OSM dataset. The use of 

geometric and semantic accuracy was one among the criteria used by Haklay et al., (2010) to assess the 

quality of OSM data. Girres & Touya, (2010) used a set of six criteria to asses the quality of OSM dataset in 

French. The review study conducted by Fonte et al., (2017), reveals the indicators that can be used in the 

assessment of the OSM data quality which included; positional accuracy, thematic accuracy, completeness, 

temporal quality, logical consistency, and usability. In the recovery assessment the position, thematic, 

completeness and temporally accuracy of OSM data are important as an accurate determination of changes 

depends mainly on these criteria. OSM dataset contains the historical feature which can be used to reveal 

the temporal information over time, this information requires high temporal accuracy meaning the quality 

of attribute and frequently update (Fonte et al., 2017). A detailed discussion of the indicators used in the 

assessment of  OSM quality and its application can be found in Fonte et al., (2017). 

Generally, the mentioned literature about the OSM data quality was using reliable reference dataset. 

Also, the studies cited above were conducted in the developed areas where the availability of dataset and 

completeness seems not to be problematic. However, it is a bit challenging to use this valuable information 

in developing countries (Latif et al., 2011). Since the accurate assessment of recovery depends on the precise 

determination of pre-disaster and post-disaster event state, in some areas, OSM data in the past tended not 

to exist. For this reason, it is difficult to relate to the pre-disaster state. However, the dataset available can 

be of value in the assessment of recovery based on the changes in LC and LU. 

2.4. Land Cover and Land Use Change Analysis and Existing Literature 

The increasing availability of the VHR image has created more attention to the use of the Object-based 

image analysis (OBIA) procedures for LC and LU change analysis. OBIA approach is based on the analysis 

of objects rather than individual pixels. The use of objects allows easy integration of information which 

helps in object identification. The information used can be categorized into spectral, shape, and 

neighborhood characteristics. The spectral characteristics involve the mean and standard deviation of a 

specific spectral band; shape variable includes the size, perimeter, and compactness of an object and 
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neighborhood variable involve mean difference of an object compared to the other objects (Martha et al., 

2011). In OBIA procedure it is possible to integrate different datasets from different sources such as vector 

data, DEM, LIDAR, and point clouds in the analysis. These capabilities are difficult to be performed based 

on pixel as the relationship between pixel size and dimension of the objects on the earth’s surface is entirely 

different (Blaschke, 2010; Zhu et al., 2016).   

With OBIA, the neighboring pixels with similar attribute values based on shape, color, and size are used 

to sub-divides an image into non-overlapping units through the process called segmentation (Veljanovski et 

al., 2011). Segmentation is a first building block of the OBIA, as the result of the image analysis depends on 

the accuracy of segmentation. One among the reason for grouping pixels into image segments is to 

overcome the effect of salt and paper which can result in uncertainties especially when extracting 

information from RS images. However, this depends on the spectral and spatial resolution of the dataset 

used (Blaschke, 2010b). The segmentation process can be performed in different environments such as in 

eCognition, ArcMap, QGIS, R Studio and Python. According to Veljanovski et al., (2011) eCognition 

software is one of the powerful software that could be used to perform the quality object-based analysis of 

remote sensing data. With this software incorporation of different spectral/spatial, contextual and other 

additional information can be used in the image analysis for successful analysis. 

Several studies have been conducted to investigate the relevance of OBIA in the content of urban RS 

applications (Rejaur Rahman & Saha, 2008; Ma et al., 2017; Marangoz, 2018). LC and LU mapping have 

been a significant theme in RS applications. Change detection based on RS data is one among the 

applications that have grown in relevance due to the increased availability of high-resolution images (Joyce 

et al., 2009). This development has made the disaster recovery assessment possible through the analysis of 

the time series imagery to determine if any changes are occurring.  

The use of the pixel-based and object-based approach has been applied in RS change detection to 

determine the changes over time. Both methods tend to find the changes based on comparing the pixels 

and objects/image segments on an image respectively. The traditional pixel-based change detection 

approach is mostly focused on the use of spectral information, and more recently, the use of textual 

information has been incorporated to detect the changes on the image (Gupta & Bhadauria, 2014). However, 

with the increase of high spatial resolution pixel-based approach becomes less effective as the association 

among the size of the pixel and measurement of the detected objects on the ground has altered significantly 

(Veljanovski et al., 2011). In this study, the analysis of recovery assessment is to be performed through 

evaluating the changes in LCLU over time in a complex urban and rural environment. In the study of 

Goodin, Anibas, & Bezymennyi, (2015b) it is observed that with the pixel-based approach the analysis of 

LC works better as compared to LU which requires additional information to use in extracting image 

features. Most researchers have claimed that OBIA is a suitable approach for overcoming the 

aforementioned problem (Goodin et al., 2015b)      

Various methods namely supervised and unsupervised has been adopted by researchers in object-

based image classification in a wide range of application. Supervised classification approach is the most used 

method in the classification of the LC and LU analysis (Ma et al., 2017). According to  Ali et al., (2015) there 

is a change in the image analysis processing approach due to development of machine learning method in 

the supervised classification procedure that can potentially be applied in different types of RS data. The use 

of this machine learning approach has proved to perform well with the object based image analysis especially 

in differentiating different segments and are capable in handling different learning task with high-resolution 

images (Kuffer et al., 2016a).  

There are several machine learning classifiers in eCognition software. The most used classifier 

includes; Random Forest (RF), Random Tree (RT), and Support Vector Machine (SVM) (Trimble Germany 

GmbH, 2016). Most of these algorithms need many training datasets. However, they are flexible and can be 

applied in any learning task for example image classification (Ali et al., 2015). In the study of Mountrakis, 

Im, & Ogole, (2011) SVM classifier is seen as a potential learning approach appealing in the RS field due to 
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the ability to perform learning tasks even with limited training samples. However, proper attention should 

be kept as this learning approach is affected by parameter assignment matters that can expressively affect 

the obtained results (Mountrakis et al., 2011). Apart from using the machine learning approach, other factors 

contribute to the accuracy of the obtained results among others includes the selection of the features used 

in the description of the classification task and the data type used to perform the analysis (Gupta & 

Bhadauria, 2014).     
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3. STUDY AREA AND DATA 

This chapter describes the case study area of this research, and it presents an overview of the 

typhoon Haiyan disaster and its impact. Also, it concludes with an overview of the dataset used in this study.  

3.1. Description of Study Area 

The study area of this research is in Tacloban the Philippines, located at 110 15’-110 12’ N and 1240 

59’- 1250 17’ E. Tacloban city has an area of 201.7 km2 and has approximately 243,000 inhabitants. Tacloban 

is a highly urbanized city in the Philippines, which is bound by mountains in the north and the west, but 

also in the east and south is surrounded by water leading to Leyte Gulf and Pacific Ocean (Pia Ranada, 

2013). The economy of Tacloban city is focused on the trade and services which provided around 54% of 

its annual tax revenues in 2013 followed by the industry sector activities that accounted 26% tax revenue 

(Paragas et al., 2016). The location of Tacloban city and its transportation infrastructures such as ports and 

airports make the city as the net importer of food to different areas in the country. The city was profoundly 

impacted by super Typhoon Haiyan on November 8, 2013, that resulted in massive damages and losses. A 

large number of losses took place in this city due to a maximum inundation height of 7m that was detected 

in the area ( Takagi et al., 2017). The number of damage to houses in Tacloban city itself was reported to be 

40,192 with 28734 totally damaged and 17,643 partially damaged (Figure 3-1) also there were 2,669 fatalities 

(Paragas et al., 2016). The airport in Tacloban city was severely damaged affecting business and tourism 

activities while major roads were blocked by trees and were impassable (GCSE, 2014). Also, the typhoon 

affected the fishing communities by destroying the boats and other equipment and most of the trees in the 

area around the city were uprooted (GCSE, 2014).  

Consequently, a wide range of changes has occurred through short, medium and long-term 

recovery. The changes due to recovery processes influence the changes to the LC and LU. For instance, 

there were changes due to new construction and reconstruction of public buildings and infrastructures, 

changes in the trading and agriculture sectors as well as changes in tourism and industrial development  

(GFDRR, 2014). Thus, all the above mentioned making this area suitable to test the potential of using the 

OBIA method for LCLU changes to understand both physical and functional post-disaster recovery. Figure 

3-2 shows the map that describes the path of typhoon Haiyan and the location of the study area which is a 

subsection of the Tacloban area. 

 

Figure 3.1. Devastated houses in the city of Tacloban (right), and debris lines in the street of Tacloban (left) after 
typhoon Haiyan 
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Figure 3.2. Track of Typhoon Haiyan in the Philippines showing one of the affected province Leyte (left), 
and the location of the study area in Tacloban (right) 

3.2. Descprition of Dataset 

The dataset for this study involves 3 Worldview2 (WV2) images with eight multispectral bands 

acquired at a different time (before, shortly after and 4 years after the occurrence of Haiyan). Multispectral 

images have a resolution of 2-meter while the panchromatic images have a resolution of 0.5-meter. The 

WV2 bands includes coastal blue (400-450nm), blue (450-510nm), green (510-580nm), yellow (585-625nm), 

red (630-690), red-edge (705-745), NIR1 (770-895) and NIR2 (860-1040) (DigitalGlobe, 2010). The 

selection of these images highly depended on the acquisition time, cloud-free scene and the coverage of the 

study area. Consideration of the mentioned factors while selecting the images was important since to 

perform the recovery assessment studies relies on the information determined at the situation before, during 

and after the disaster event.  

In addition, OSM data that contains building footprints, as well as other point and line features of 

the study area obtained from the OSM platform, will be used in this study. Moreover, the LCLU 

classification maps of the same study area and the accuracy assessment results obtained by Sheykhmousa, 

(2018) using the pixel-based approach will be used in this study for the comparative analysis of the results 

as this study will be using the object-based approach for the analysis. Below is the list of the dataset used in 

this study and its description related to the selected study area. 
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Table 3-1. List of available datasets and the description 

NO Datasets Acquired date Description 

1 Satellite imagery 3/17/2013 8 month before the disaster 

(pre) 

Worldview-2 

(multispectral and 

panchromatic images) 11/11/2013 

 

3 days after a disaster (event) 

3/18/2017 4 years after a disaster (post) 

2 OSM data A historical data set of 2013, 2015 and 2017 

retrieved from;  

https://archive.org/details/osmdata and  

https://www.openstreetmap.org  

 

 

Vector data including 

building footprint, road 

network and point of 

interest 

3 LCLU classification maps 

and accuracy assessment 

results 

Produced in 2018 by Sheykhmousa, (2018) LCLU classification 

maps of Tacloban city 

 

 

  

https://archive.org/details/osmdata
https://www.openstreetmap.org/
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4. METHODOLOGY 

This chapter illustrates the methods used in the LCLU classification in disaster-related multitemporal image 

analysis for improving understanding of the post-disaster recovery. The first section demonstrates the 

segmentation procedure which is the first building block of the OBIA. Second section describes the image 

classification process, in this section the class definition which is based on the deep literature review of the 

previous work performed by using the pixel-based approach is described and answers the first question of 

this study: which classes were particularly difficult to classify using the pixel-based approach performed in 

previous LCLU recovery research in Tacloban city and why?. Then the LCLU classification procedure is 

illustrated together with the sample generation approach. The third section describes the analysis of OSM 

data in the LCLU classification. Lastly, the fourth section demonstrates the approach used in the comparison 

of the performance of pixel-based and object-based methods for LCLU classification. The flow chart of the 

proposed method is presented in figure 4-1. 

 

                                           Figure 4.1. Flowchart of the proposed research. 
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4.1. Image Segmentation 

Image segmentation is the first step in the OBIA. This process identifies homogeneous areas 

in the image and groups them into specific objects called segments (Blaschke, 2010b). There are different 

segmentation algorithms used in OBIA, among others, Multiresolution Segmentation (MRS) technique is 

the most popular region growing segmentation algorithm and powerful when dealing with VHR images 

(Drǎguţ et al., 2014). The region growing method generates the image objects based on pairwise region 

technique starting with a one-pixel object (Rejaur Rahman & Saha, 2008).  

In this study, MRS algorithm was used for image segmentation in eCognition. In MRS the 

meaningful segments are created in an iterative process based on three key parameters namely, shape, 

compactness and scale. The scale is considered as the most critical factor in MRS as it controls the size of 

the objects to be obtained (Blaschke, 2010a). Advanced methods for automation that leads to the extraction 

of high quality and meaningful features from VHR images have been done (Drǎguţ, Tiede, & Levick, 2010). 

This technique has been used in wide range of application such as automatic change detection studies, 

geomorphological process, extraction of information from image due to its ability to produce high segments 

at different scales (Martha et al., 2011). For this reason, the Estimation of the Scale Parameter (ESP) tool 

was used in this study for the automatic generation of various scale levels for segmenting the images.  

4.1.1. Estimation of Scale Parameter  

The estimation of the scale parameter tool works in a bottom-up manner for the automatic generation 

of image objects at multiple scale levels corresponding to the degree of homogeneity. For each object level 

obtained in the process, the local variance for each scale is calculated to evaluate the level at which image 

can be segmented in a meaningful manner (Drǎguţ et al., 2010). The variation in the heterogeneity of 

segmented objects is discovered by plotting local variance against the corresponding scale. Besides, the 

plateau objective function that uses the peak values close to the maximum value of the objective function 

to determine the relevant scale parameter, is an alternative approach that can be used in the identification 

of relevant scale parameters (Martha et al., 2011). In this study, the ESP tool was used to estimate the optimal 

scale parameter at which the objects were segmented. The ruleset applied for ESP tool was loaded in 

eCognition 9.3.2 to obtain the relevant scale levels of pre-disaster, event and post-disaster event images. The 

process implemented is summarized as follows:  

 

▪ The selection of the step-size scale levels which defines the increment of the scale parameter for 

the stepwise segmentation was performed, and the value was set to 1.  

▪ Then the minimum scale at which the processing starts was chosen and the starting scale parameter 

was set to 10. The decision for this choice was made based on the smallest feature that is to be 

mapped from an image. 

▪ The use of hierarchy was considered in the processing to allow the hierarchy generation of scale 

levels whereby high level is based on the segmentation results at a lower level.  By keeping the shape 

constant and varying the compactness and vice versa the value of 0.3 and 0.5 were obtained and 

used for the settings of shape and compactness respectively. 

▪ Lastly, the graph was plotted, and 70 scale levels were automatically processed, the peak values of 

rate of change curve were obtained, and the scale levels corresponding to these peak values were 

considered as the relevant scale parameters that will be implemented in the MRS process to obtain 

image segments. 
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4.1.2. Procedure of segmentation  

The segmentation process in this study was carried out on multiple scale levels as obtained in the 

ESP tool for all (pre, event, and post) images. Considering the variation in size and spectral characteristics 

of the features to be obtained the single segmentation scale parameter was not likely. Hence, numerous 

segmentation stages with varying levels of scale were performed to obtain relevant segmentation for various 

classes to be identified in the classification process. All the layers of the WV2 image were given an equal 

weighting of 1 in the LC segmentation, and for LU segmentation the panchromatic image layer was added 

to the segmentation process and given the weight of 5 while other layers were maintaining equal weighting 

of 1 in this process. Other parameters such as shape were set to 0.3 and compactness was set to 0.5 in all 

the images. The use of thematic layers such as road network and building footprint from OSM was adopted 

in this process to account for the clear identification of physical boundaries in an image. 

4.2. Image Classification 

The second step in OBIA is image classification. In this section, the segmented image objects will 

be assigned into relevant LC and LU classes that will help to study and understand recovery in the Tacloban 

area. Moreover, this section fulfills objective 1 of this research answering the question; which classes were 

particularly difficult to classify using the pixel-based approach and why?  

4.2.1. Class Definition  

In image classification, the definition of classes is relevant as it assists in assigning the segmented 

objects into specific classes. As this study aims at comparing the results of classification which was 

previously performed based on pixel approach, the same definition of classes that were used previously to 

study and understand recovery in Tacloban city by Sheykhmousa, (2018) were implemented in this study. A 

total of seven classes  for LC and twelve classes for LU as shown in figure 4-2 were used for the classification 

task. These classes are defined in a hierarchy manner ranging from a parental level which represents the 

category of classes and narrowing down to the course and finer classes which represents LC and LU classes 

respectively. The LC classes includes ‘building’, ‘impervious surface’, ‘bare land’, ‘tree’, ‘nontree’, ‘open 

water’ and ‘inland water’. The LU classes includes ‘large scale industry’, ‘informal built-up area’, ‘formal 

built-up area’, ‘palm tree’, ‘other tree’, ‘recreation area’, ‘cropland’, ‘grassland’, ‘impervious surface’, ‘bare 

land’, ‘open water’ and ‘inland water’. 
 

 
Figure 4.2. Hierarchy definition of LC and LU classes (Sheykhmousa, 2018) 
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In addition, for the situation right after the typhoon Haiyan, it is essential to consider the definition 

of damage classes. That is because the classes for the disaster situation are no longer regarded as normal due 

to the destruction caused by the typhoon. The same definition of damage classes as studied in the previous 

study based on a pixel-based approach in Tacloban were adopted in this study. A total of 4 damage classes 

namely ‘rubble,’ ‘debris,’ ‘inundated land’ and ‘flattened tree’ that represents damage related to buildings, 

trees and water bodies respectively will be used. 

Concerning the damage related to buildings, two damage classes namely ‘rubble’ and ‘debris’ were 

assigned. The class ‘rubble’ is mainly related to the damage patterns corresponding to structural or building 

material while the class ‘debris’ is mainly related to damage patterns corresponding to a mix of wind and 

water-borne material. In this study, these two damage classes were merged into one class ‘rubble’ because 

with the 2-meter resolution of WV2 image differentiating the two both spatially and spectrally is very 

difficult and challenging and can cause uncertainty in the classification task. The class ‘inundated land’ 

represents damage related to the rising of the body water and overflowing into the dry land and the class 

‘flattened tree’ represents land covered by fallen or toppled tree branches or uprooted trees. A detailed 

description of the LCLU classes and they are important in studying recovery in Tacloban city can be found 

in Sheykhmousa, (2018). 

In order to identify the classes that were difficult to be classified using the pixel-based approach, an 

in-depth literature review of the recovery work performed in Tacloban city using the pixel-based approach 

by Sheykhmousa, (2018) was carried out. It was observed that the built-up category and vegetation related 

classes were having misclassification problem for both LC and LU classification, but the problem was worse 

for the LU classification. Regarding the LC, the classes that were particularly having a problem include; 

‘building,’ ‘impervious surface’ and ‘rubble.’ There was a confusion in distinguishing the class ‘building’ from 

‘rubble’ and ‘building’ from ‘impervious surface’ which leads to the misclassification of these classes, 

especially for an immediate post-disaster situation. The reason for such misclassification was rooted by the 

spectral similarity of the classes and hence it was difficult to be extracted by using the spectral and textural 

information only as per pixel based approach works (Gupta & Bhadauria, 2014). In addition, with the pixel-

based approach, it is difficult to overcome the “salt and pepper” effect which can result in uncertainties 

especially if the spectral and spatial resolution of the used image is not good, this attributed the 

misclassification found (Blaschke, 2010c).  

Moreover, the class rubble was massively misclassified in both the LC and LU classification, and 

this had the consequences in overestimating the damage in an area. Objectively, the amount of damage was 

much less in the affected area, the classifier confused a lot of stuff in the street which was related to blown 

up and washed up material due to the wind and heavy rainfall that can be quite easily removed, but all these 

were regarded as damage. This was a challenge according to the resolution of the WV2 image used to 

distinguish the real rubble or debris with other materials on the affected area. 

For the LU classification, the confusion of the built-up classes was worse as compared to the LC. 

Regarding the built-up classes, the class ‘Large Scale Industry’ (LSI), ‘Formal Built Up Area’ (FBA) and 

‘Informal Built Up Area’ (IBA) were having the misclassification problem. This was attributed by the mixed 

pixel problem influenced by the high spectral similarity of the buildings which created complexity in the 

classification process. Furthermore, there was misclassification of the vegetation classes due to the 

confusion between the class ‘palm tree,’ and ‘other tree’ and another confusion was within the classes ‘grass’, 

‘cropland’ and ‘recreation area’. The reason for this misclassification is rooted by the high spectral similarity 

of these classes with the low spectral and spatial resolution of WV2 for such a discrimination. 

All the mentioned classes made the image classification complex as they could not be distinguished 

relying on spectral and textural information only. For this reason, additional information is required to 

resolve the ambiguity of the mentioned classes to improve the LCLU classification mapping in Tacloban 

city as will be explained in the following sections. 
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4.2.2. Procedure for Land Cover and Land Use Classification  

The process of assigning image objects according to specific cover and use as per class definition 

was followed. There are different supervised algorithms that are used for the classification of VHR image 

in eCognition, among others Random Forest (RF) and Support Vector Machine (SVM) classifier are very 

popular and have been used for LC and LU classification in urban areas using remote sensing images (Ma 

et al., 2017; Zhang et al., 2017; Fallatah et al., 2018) 

An SVM classifier is a supervised machine learning approach that operates by following a structural 

risk minimization. It is discriminative classifier defined by separating hyperplane that separates the dataset 

into a discrete predefined number of classes based on the training datasets (Mountrakis et al., 2011). The 

classifier operates in a binary system by fitting an optimal separating hyperplane of training samples in a 

multi-dimensional feature. The distance between the closest training and the hyperplane is maximized by 

the classifier (Chich Hsu, Chich-Chung Chang, 2016). For classes that are linearly nonseparable, a slack 

variable is introduced, the regularization parameter C is introduced to overcome the number of 

misclassification error. However for the nonlinear situation, a kernel function is introduced, and among the 

most used kernel in RS studies radial basis functions are known (Vapnik, 1999). The accuracy of SVM based 

on radial basis function kernel relies on two parameters C and gamma. Parameter C controls the magnitude 

related to training data and gamma controls the width of the kernel.  

Since the objective of this study is to compare the classification results performed by using SVM 

based on pixels, and due to high ability of this classifier to handle small training dataset and achieve high 

accuracy classification results (Mountrakis et al., 2011) the SVM classifier was used for the classification of 

LC and LU in this study. A grid search using cross-validation approach as recommended by (Hsu et al., 

2016)  to be the most effective method to optimize the radial basis function parameter was used to determine 

the optimal parameter for C and gamma. 

4.2.3. Features Employed in LCLU Classification  

In this study, the object features in OBIA were used for the class description in the LC and LU 

classification process. The morphological, texture, class-related features and spectral indices were used to 

help the classification task (Table 4-1). The morphological features help to describe the object class based 

mostly on their shape; for example, the buildings which are most rectangular in shape can be discriminated 

from the road which are elongated features based on the shape  (Salehi et al., 2012). The class-related features 

help to describe the object class in relation to neighbor objects, sub-objects, and super objects. 

Moreover, the contextual features help to describe the image objects based on the information 

derived from the digital number values of the neighborhood pixels. This information is calculated based on 

the grey level variations in the image. The obtained information helps in the classification task by providing 

additional information about the image properties (Mboga et al., 2017). Texture features based on the grey-

level co-occurrence matrix (GLCM) have been proved to be useful in extracting relevant information from 

VHR imagery and improve classification accuracy in urban settings (Mboga et al., 2017;  Lan & Liu, 2018).  

There are eight types of GLM features that can be used to assist image classification as mentioned 

in Haralick, Shanmugam, & Dinstein, (1973) study. However, according to Hall-Beyer, (2017), not all 

features are helpful in the classification process due to the reason that some of these features are highly 

associated and hence can result into the redundancy of features. In this study, the calculation of GLCM 

features using the windows sizes (3*3, 5*5) was performed and used to assist the classification task in 

eCognition.    
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Table 4-1. List of objects features 

Feature category Object features 

Shape and geometry Rectangular fit, shape index, length/width, compactness, density, asymmetry  

Spectral Mean, brightness, standard deviation, NDWI (Green - NIR 2 / Green + NIR 

2), NDVI (NIR 1 -Red / NIR1 + Red) NDVI2 (NIR 2 – Red / NIR 2 + Red) 

BAI (Blue - NIR 1 / Blue + NIR 2) 

Texture GLCM Contrast, GLCM Variance, GLCM Homogeneity, GLCM Mean, 

GLCM Dissimilarity, GLCM Entropy, GLCM Angular second moment, 

GLCM correlation. 

4.2.4. Sample Generation  

In the absence of reference data (obtained direct from the field), an approach is developed that 

combines OSM data and other multi-source data such as Google Earth Pro, Google Street View and a 

panchromatic band of WV2 images for the sample generation. For the case of LC, the reference data was 

generated by visual interpretation using Google Earth Pro, Google street view and panchromatic bands of 

the WV2 image. On the other hand, the LU samples were generated based mostly on the information 

obtained from the OSM data. With the OSM data, training sample labels for the LU classification were 

obtained as it contained rich information of the ground object classes. The OSM data provided information 

on the line features (road network, railway, river/canal) and polygon features (building footprints, farmland, 

park, forest and water bodies). However, some errors occurred due to the problem of OSM data accuracy 

and quality. Therefore, the samples generated from the OSM data were refined by using the size of the 

calculated buildings (for the building classes category) but also by visual comparison on the other multi-

source data. 

4.2.5. Experiment Setup  

To achieve the classification of the LCLU analysis using the OBIA approach and improve the 

classification accuracy, the following procedures were implemented in the eCognition software and are 

summarized as follows: 

.  

• The samples were imported in eCognition, then converted to sample objects that represent the class 

of interest using ‘assign class by thematic layer’ aligorithm. This aligorithm is used to assign image 

objects to a class based on the relation to a thematic layer considering different image objects levels. 

• Then the sample objects were converted to sample statistics and a *csv file that stores a feature 

information was created; in this process, the features that the supervised classification model will 

use to calculate the class description were selected. 

• Then the process of removing the initial classification was followed since the sample information 

is now stored in a sample statistics file. 

• Lastly, the process of training and applying the supervised classification model (SVM classifier) was 

done based on sample statistics. In this stage, the feature normalization was implemented as it 

allows the normal distribution characteristic of each feature and to make training and classification 

faster (Chich Hsu, Chich-Chung Chang, 2016). Also, the process assists to avoid domination of 

high numerical value from dominating the low numerical values. The classification process was 

done for both LC and LU.  

4.2.6. Accuracy Assessment  

Accuracy assessment is a measure that provides the quality of the classified map. The process is 

performed by calculating the confusion matrix which provides different accuracy parameter to judge the 
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classification results. The accuracy parameters which includes overall accuracy, kappa statistics producer and 

consumer accuracy can be used to evaluate the results of classification (Kerle, Janssen, & Bakker, 2004). 

In this study accuracy assessment was performed by using a sampling method, the dataset was separated 

into two parts, one for training the classifier (70% of the samples) and one part (unseen) for validating the 

accuracy of the classifier (30% of the samples) using stratified random sampling method. All classes of LC 

and LU were considered for accuracy assessment, and the process was performed in eCognition. 

4.3. Analysis of the OSM 

The OSM historical dataset of the study area for the year 2013, 2015 and 2017 was download 

through https://archieve.org./details/osmdata and https://www.openstreetmap.org. Since the obtained 

dataset was computationally intense to be extracted by using other software such as ArcGIS, in QGIS a 

code created in python was used to extract the dataset covering the study area whereby polygon, point, and 

line features were extracted.  

The OSM dataset obtained was used in this study to supplement satellite imagery during the LCLU 

classification process. In this case, the method was formulated that included different aspects of how 

significance the dataset will add value in the process of LCLU classification by OBIA approach. The value 

of OSM information was evaluated based on three criteria, the value of geometric and thematic information, 

in the OBIA process and the value of historical information in the multi-temporal analysis. With these 3 

criteria analyses was conducted to assess the potential value of OSM information in the LCLU classification 

as explained below. 

4.3.1. Analysis Based on the Geometrical Value of OSM Information 

The geometrical information obtained from the OSM dataset such as building footprint and road 

network was analyzed using a statistical approach. The analysis was conducted in ArcGIS software in all 3 

images following the below-mentioned steps: 

 

• Feature to polygon tool was used to convert the road network to a polygon to create boundaries of 

different neighborhoods (units) within a study area. 

• Then different defined neighborhoods were created based on the number of buildings available by 

using the clipping tool. 

• The calculation of the number of buildings available, the average size of the building structure, and 

the density of the buildings were conducted in each neighborhood. 

• Lastly, evaluation of the nature of the land use per each unit block was done by using the statistical 

values obtained from the analysis.  

In addition, geometric information was analyzed on how valuable can be used to assist in the OBIA 

process. Delineating objects during the segmentation process might be challenging especially when dealing 

with features like buildings that are close to each other. With geometric information such as building 

footprint and roads network, the physical boundary of the buildings can be easily identified (Kuffer, Pfeffer, 

Sliuzas, & Baud, 2016b). The OSM road networks obtained were buffered according to the adaptive radii 

and used as a thematic layer in the segmentation process. Also, the building footprint with the area greater 

than 200m2 was used as the thematic layer to orient the OBIA in the segmentation process in eCognition.  

The process was done by using the 3 images (pre, event and post-disaster) following other settings required 

in the segmentation process as already explained in section 4.1.2. 
 

4.3.2. Analysis Based on the Thematic Value of OSM Information 

The thematic information obtained from the historical OSM dataset was evaluated on how well this 

detailed information can be used to assist in the LC and LU classification process. LC information can be 

https://archieve.org./details/osmdata
https://www.openstreetmap.org/
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directly observed from an image, but with LU since it refers to the function of the observed features in an 

image additional information is required (Townshend et al., 1991). The thematic attribute of OSM dataset 

was used to provide the samples label in the satellite imagery as it contains information on the various object 

features in an image.   

4.3.3. Accuracy Assessment of OSM Data 

This study was aware of the challenges that may occur due to the problem of the accuracy and quality 

of the OSM data in the analysis. Therefore, the OSM data were evaluated in terms of positional accuracy 

and attribute accuracy. According to Fan et al., (2014) the definition of position accuracy evaluates how well 

the coordinate value of the OSM buildings relates to the reality on the ground. The accuracy assessment  

was performed by using the visual/spatial comparison method to assess the goodness of the OSM dataset 

(Haklay, 2010). The analysis was conducted for both the road network and building footprint in ArcGIS 

software. For positional accuracy of OSM dataset, the spatial adjustment was conducted using the rubble 

sheeting method as explained by  Kasianchuk, (2003) whenever necessary. Both images (pre, event, and 

post) were used as the reference dataset for the adjustment process. In case of the attribute accuracy the 

analysis was done in ArcMap to calculate the number of features in the OSM data that had the label against 

the ones that did not have the attribute label. 

4.4. Comparison Analysis of the Pixel and Object-Based Classification Results 

The classification maps and accuracies obtained using object-based, and pixel-based approach was used 

in the comparative analysis. A quantitative assessment of the classification results in both cases was 

performed based on critical evaluation of the accuracy values. However, this was not the only factor 

considered in the assessment as in this study the ground truth information was obtained from different 

multisource information, not directly collected from the field. As the validation data plays an important role 

in quantitatively assessing in the classification result (Frank, Rebbapragada, Bialas, Oommen, & Havens, 

2017) an intensive visual assessment of the classification output from both approaches were also conducted. 

4.5. Summary 

In general, this chapter explained the methods used to achieve the proposed objectives of this study. 

The significant expected outcomes of this thesis include the following: 1) LC and LU classification maps 

with the improved accuracy as compared to the results obtained in pixel-based approach by Sheykhmousa, 

(2018) and the specific classes that will be improved due to the use of OBIA. 2) Image segments with a clear 

boundary between different features in an image but also the training and validation samples from the 

information that will be obtained in OSM data. 3) The specific classes that will be well represented in both 

approaches, and the possible reason for such an outcome.    
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5. RESULTS 

This section presents the results of this study. The first section presents the results of the image 

segmentation, the second section presents the results of the OSM data analysis and finally the last section 

presents the results of the object based image classification. 

5.1. Image Segmentation 

Image segmentation was done for both three images pre-event, event, and post event for the LC and 

LU classification task. In eCognition developer, MRS made use of ESP tool and the results are presented 

below. 

5.1.1. Estimation of Scale Parameter  

Estimation of scale parameter (ESP) tool was used to find out several relevant scales for segmenting 

the image. Figure 5-1 shows the ESP graph produced from the pre-event image processing. From the graph, 

the red circle presents the scale parameter of 22, 24, 32, 45, 54, 58 and 70 selected for different segmentation 

routines in eCognition. These scales were selected as they occur at the high peaks of the rate of change 

(ROC) curve which indicate that at these levels the image objects match the types of segments characterized 

by an equal degree of homogeneity. The graph portrays the changes in local variance indicated in the red 

line and ROC with increasing scale parameter as shown in the blue line. The selected scale parameters will 

be used in MRS for event and post-event images as well. 

  

 
Figure 5.1. ESP graph produced from the pre-event image processing, the red circle indicates the peak of 
the ROC corresponding to the scale parameters of 22, 24, 32, 45, 54, 58 and 70 which are relevant scale 
levels for the segmentation. 

5.1.2. Multiresolution Segmentation  

The analysis based on the multiple resolutions that capture objects which naturally occur at different 

scales was done in eCognition. Seven scale levels (22, 24, 32, 45, 54, 58 and 70) were implemented in 

segmentation routine with a shape factor of 0.3 and compactness of 0.5. The road network and building 

footprint for the large structures were included as the thematic layer in the process. The segmentation 

procedure was performed using the MRS algorithm, whereby in each segmentation level the link of the 

segment was not only to its neighbors but also to its super objects and sub-objects. Objects output at each 
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scale level was visually examined and it was observed that the scale parameter of 24 and 54 were having 

minor modifications in the structure of objects. 

 On the other hand, the scale parameter of 70 resulted mostly in over-segmentation of  most image 

objects when taking into consideration the classes of interest to be obtained. Therefore, the image objects 

obtained at the scale levels of 22, 32, 45 and 58 were used in the classification analysis. For example, the 

scale parameter of 22 was good for the classes that were small such as the small structured buildings and 

patches of bare land. The scale parameter of 32 and 45 obtained image objects that capture road and 

river/canal features and most of the medium size-structured building respectively. The scale parameter of 

58 obtained the segments that presented most of the large structured building and the vegetation areas. 

This study was aware that there is no perfect scale parameter for segmenting the image, there will be 

always over segmentation and under-segmentation of the image objects at different scale levels. All small 

objects or other problem related to the obtained segments were solved in the re-segmentation and 

classification analysis. 

5.2. Analysis of OSM Data 

This section presents the results of the OSM analysis which was conducted to investigate the significant 

value of including OSM information in the OBIA process as well as the value of using historical OSM data 

during the LCLU classification. The obtained results answer the research objective 2 of this study and its 

questions as presented below. 

5.2.1. Assessing the Potential Value of OSM Geometrical Information  

The geometric value of the OSM data is to give information on the objects that are on the ground 

in terms of their size and density which determines the nature of the land use at a particular area. Figure 5-

2, shows the map of the nature of the land use in a different neighborhood of the study area, the map was 

created from outcomes of the statistical analysis performed using the building footprint and road network 

information. This information was difficult to be obtained using satellite imagery alone. Using the road 

network, different units were created which presents the neighborhood in the study area. With building 

footprint found in the created neighborhoods, statistical analysis was performed to identify the nature of 

land use in the area. The selection of the nature of the land use was made based on the average size of the 

structure, considering the building size, number of building and building density of each neighborhood. For 

example, having a large number of buildings within a block this indicates that the area is squatter (slum) or 

if the average size of the buildings is very large this indicates that the city block is commercial or residential 

etc.  

Table 5-1 shows the threshold values used in the assessment of the nature of the land use obtained 

using the OSM information. The selection was done considering the average size of the structure in relation 

to other factors as mentioned above. However, the results show that this approach was subjective as within 

a unit they can be residential buildings as well as the commercial buildings. This was the limitation 

encountered in this analysis since the approach was based on the calculated statistical information obtained 

in each neighborhood, but not for the individual building in each unit. Generally, the statistical results 

obtained helped in the analysis of LU classification. 

 
Table 5-1. Classification threshold values used in the assessment of the nature of land use (‘X’=average 
size of the structure)  

No The average size of the structure in (square meter) Class 

1 0>X<=60 Slum 

2 60>X<=120 Residential 

3 X>120 Commercial 
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Figure 5.2. A map showing the nature of land use in a different neighbourhood in the study area obtained 
using OSM information. 

In addition, the geometrical value was tested to find out how the building footprints and road 

network will assist in the OBIA process. The building footprint obtained did not perfectly represent the 

building outlines in an image as explained earlier, but it was valuable as a tool to locate the buildings in the 

segmentation process. The road network and building with large an area coverage of >200m2 were used to 

assist in the segmentation process. The reason for choosing the building with the area greater than 200m2 

was because for rubber sheeting adjustment, the building small than this size were still having the shifting 

problem. Figure 5-3, shows that involving the OSM geometric information helps to clearly segment the 

building and road by giving them more identified shapes and physical boundary. Segmentation without OSM 

information resulted in poor shape and unclear physical boundary. 
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Figure 5.3. Significance of using OSM road network in the segmentation process. Section (b) shows the 
results of segmentation without including OSM road network while section (c) shows the result of 
segmentation with the inclusion of the road network. Section (a) shows the overview of the study area with 
a red circle indicating the zoomed section. 

5.2.2. Assessing the Potential Value of OSM Thematic Information  

The analysis of assessing the potential value of OSM historical information was performed using 

the OSM dataset of 2013, 2015 and 2017. The result shows that there were no significant changes in OSM 

information in terms of building footprint and attribute information of dataset obtained in 2013, 2015 and 

2017 as it was expected. The possible reason for this may be due to the fact that during the disaster situation 

most of the volunteers are always active and generates interest to map the area affected, but after the disaster 

time has passed most of the volunteers lose interest and they became inactive. Figure 5-4 shows different 

findings obtained from the OSM historical data of 2013 and 2017. There are three parts indicated in both 

images, in part 1 the area shows that there is omission error which indicates that there were existing buildings 

in both images but not digitized. Part 2 indicates that there is no update of information in the OSM data, 

this is indicated by the building that was not available in 2013 image but constructed in 2017 image and was 

not digitized. There are other areas with such scenarios though was not indicated in the displayed image. 

Part 3 shows that some of the building were not mapped in the 2013 image, but in 2017 the buildings were 

mapped.  

Furthermore, the OSM data was used as a source of information in the generation of the training 

samples. However, there were limitations related to data quality (e.g incorrect label, the incompleteness of 

the attribute) in this process. Under these circumstances, the building area and different multi-source data 

such as Google Earth Pro, Google Street View, and the panchromatic image were adapted to complement 

the required information where there is doubt. For example, the building size of the slum area is expected 

to be much smaller compared to the building size of the formal built up area. On the other hand, the building 

size of the large-scale industry such as instutions and processing industries is expected to have a larger size 

compared to other formal built up area buildings. From the calculation made on the building footprints, the 

assumption for the refinement of the LSI buildings was taken using the building with coverage size of (size> 
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1000m2). Also the buildings with (size <100) was considered for IBA, but for this specific class the map of 

the nature of land use (figure 5-2 ) was used also for the refinement. This assumptions was taken to validate 

the information obtained from the OSM data. 

However other multi-source data (Google Earth Pro, Google Street View panchromatic image) 

were used to make sure that the samples were correctly generated. It should be noted that in the OSM data 

the information regarding the label palm tree and grassland was not available. Also, out of attribute 

information obtained in the OSM database only 2% represented information of the cropland and recreation 

area class. For this reason, other multi source data were used to obtain the samples for the mentioned classes 

 

 
Figure 5.4. Errors related to OSM historical data quality shown in pre-disaster image (a) and post-disaster 
image (b)  1) shows buildings that were not digitized 2) shows newly constructed buildings in section (b) but 
not updated 3) shows incompleteness in the building footprint in section (a) as compared to section (b). 

5.2.3. Positional and Attribute Accuracy of OSM Data  

An accuracy assessment of OSM dataset was conducted to have a general overview of the data 

accuracy. The results show that there were some errors in OSM data such as the shifting of the building 

footprint from the true positional and the data incompleteness in terms of attribute information. Figure 5-

5 part ‘a’ shows the mentioned shift of the obtained building footprint which resulted in the mismatch of 

the corresponding buildings on the images. It was realized that the shift was not systematic for the all study 

area, some area was having the shift towards the north-east direction, while other areas the shift was towards 

the south-east/west direction. The shift was found to be between 2.5 metres to 3.5 metres.  

In some situations, there are buildings that were not digitized and some of the buildings were 

digitized as large building polygon while there are multiple buildings within that polygon. This error might 

be attributed due to the person responsible for digitizing. Carelessness and low experience may account for 

such low digitization output. On the other hand, the results observed incompleteness of the attribute 

information in most of the buildings, and incorrect labels were found especially in the post-disaster case. 
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Out of the available 29,416 buildings, 19,205 were incorrectly labelled. For example, in the north-west part 

of Tacloban some of the labels for most of the slum areas it says that the building was destroyed while it 

has been rebuilt (Figure 5-6). 

To account for the OSM shifting uncertainties, the rubber sheeting was performed to adjust the 

building footprint and road network to match the buildings and roads in the images. Figure 5-5 part ‘b’ 

shows that after the process of rubble sheeting most of the large building’s footprints were well fitting the 

buildings in the images but for the small buildings even after the adjustment still, there was a mismatch 

problem. For the case of the road network after adjustment, most of the road networks were corresponding 

with the road present on the image. 

 

 
Figure 5.5. Shifting of the building footprint from the original position as indicated in the image (a), image 
(b) shows the adjustment of the building footprints after rubber sheeting. 
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Figure 5.6. A map showing the post-disaster image with a problem of the incorrect label of the building 
footprints in the northwest area of Tacloban (a) and corresponding attribute table showing the information 
of the building selected in blue color (b) 

5.3. Features used in LCLU image Classification 

In this study, the analysis of LC and LU classification based on objects was done using the SVM classifier 

in eCognition. Initially, a total of seven classes for LC and twelve classes for LU were defined for the 

classification task. The analysis was carried out in all the images i.e pre-disaster, event and post-disaster 

image. A rule set was created based on the sample statistics approach, and the selection of the features to 

be used in the classification process was done. In the rule set, different spectral, morphological, contextual 

and class-related features were employed. These are the features that the supervised classification model 

used to calculate the class description (Table 5-2 and 5-3).  The classification process was carried out using 

the RBF kernel with the gamma settings to 0.1 and C settings to 2 also the feature normalization process 

was employed. 

The selection of features was based on the previous study performed in the study area, but also new 

object-based feature characteristics were added. Different morphological features were tested and among 

the ones tested length/width, rectangular fit, and compactness was chosen as they had a great impact in 

discriminating impervious surface from buildings which helped to improve the classification accuracy as 

also mentioned in  Salehi et al., (2012) study. Among the calculated indices the NDVI2 and NDWI were 

selected to be used in the classification task. These features were very promising indices in differentiating 

vegetation area from the non-built up areas (NDVI2) and water areas from other cover classes (NDWI) 

which also helps to improve the classification accuracy as also obtained in Oumar & Mutanga, (2013) & 

Wolf, (2010) study. 

 The choice of texture features and the specific band to use was according to the findings of 

Sheykhmousa, (2018) who investigates the utility of features to use in the LCLU classification in Tacloban 

city. The GLCM contrast and variance were among the features that help to improve classification accuracy. 
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The use of panchromatic images and GLCM textural features were very helpful especially in LU 

classification, as it had more classes that were very difficult to differentiate using the spectral, morphological 

and spatial information alone. 

 The feature such as brightness helped in discrimination of the vegetation areas among tree and grass 

which also helped to improve the classification as also mentioned in the Salehi et al., (2012) study. After 

obtaining the classification results, the visual interpretation of the classified image was conducted to find 

out if the output was good enough. The class related features were very helpful in improving the accuracy 

of the LC and LU classification maps. The process of reclassification was performed using the ‘assign class’ 

algorithm based on the class related characteristics using the ‘relation to neighbor objects’ feature to improve 

the classification. Different geometry features such as area, shape index and length/width also the vector 

data were employed in this process and helped to improve the classification results. 

 

Table 5-2. Selected object features in OBIA for LC classification task 

Type Feature 

Layer Value Brightness, Mean (all WV2 bands) 

Customized Indices NDVI2, NDWI 

Object Geometry Length/width, Rectangular fit, and 

Compactness 

Class related feature Relation to neighbor objects 

 
Table 5-3. Selected object features in OBIA for LU classification task 

Type Feature 

Layer Value Brightness, Mean (all WV2 bands and 

panchromatic band) 

Customized Indices NDVI2, NDWI 

Object Geometry Length/width, Rectangular fit, Density, 

and Compactness 

Class related feature Relation to neighbor objects 

Texture GLCM Contrast (all dir) (L2, L5, L6, L7, 

L8 all dir) 

GLCM Variance (all dir) (L2, L5, L6, L7, 

L8 all dir) 

 

5.3.1. Classified Maps of LC and LU  

Figure 5-7, 5-8, and 5-9 show the result of LC classified maps for the pre-disaster, event and post-

disaster images, and related pie charts respectively. The results show that the pre and post-disaster classified 

maps are less noisy as compared to the event map. It is observed that most of the road networks are well 

classified in both images, this is sensible as the road network layer was used in the segmentation process. 

However, there is a misclassification in the built-up areas among the buildings and impervious surfaces 

especially the pavements close to the built-up areas. This misclassification was worse especially for the event 

image whereby, the misclassification of the built-up areas is also attributed due to a disaster situation in the 

area. Moreover, for the vegetation area, the results show misclassification of the class flattened tree and non-

tree especially in the north-east part of the study area for the event map. This might be attributed due to the 

fact that the classifier confused the fallen or topped tree branches with the class non-tree (grass). However, 

this misclassification is reduced in both pre and post classified maps. 
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The multi-layer pie charts describe the percentage area coverage of each class category in pre-

disaster, event and post-disaster maps respectively. The inner pie charts show the percentage of the coverage 

area in each class obtained in a previous study performed by using pixel-based approach, while the outer pie 

charts show the area coverage based on the object-based classification results of this study. The results from 

the object-based approach show the increase of 2% in the class building and impervious surface respectively 

from pre-disaster to post-disaster state. This indicates that most of the affected areas and some new 

buildings and road have been rebuild after 4 years, which indicates a good sign of recovery in an area. Also, 

there is a decrease of 2% of bare land from pre-disaster to post-disaster state which indicates a recovery in 

the area as most of the bare land areas were proposed for the plantation, vegetation and building 

development (Tacloban Recovery and Sustainable Development Group, 2014).  

With regard to vegetation class, there is an increase of 3% in the non-tree area in the post-disaster 

state while the tree is showing a decrease of 4% in the post-disaster state. The reduction of the area covered 

by the tree is sensible as the typhoon Haiyan destroyed almost all palm tree in area around the city either 

living them fruitless or destroyed. Furthermore, the damage class shows huge destruction in the disaster 

situation as 32% of the area is covered by rubble, a flattened tree covers 15% of the area, and 6% of the 

area is covered by inundated land. The comparison of the similarity and differences in the results obtained 

from the object-based and pixel-based approach will be discussed in section 6.4 in the next chapter. 



INTEGRATING OPENSTREETMAP DATA IN OBJECT BASED LANDCOVER AND LANDUSE CLASSIFICATION FOR DISASTER RECOVERY 

42 

 

 

Figure 5.7. LC classification map for the pre disaster image obtained using object based approach and 
corresponding pie chart showing the coverage area per class (outer layer) in comparison to pixel-based 
approach (inner layer) coverage area per class previously obtained by Sheykhmousa, (2018)  

 

 

 

 

 

 

Pre- disaster LC classified map 
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Figure 5.8. LC classification map for the event image obtained using object based approach and 
corresponding pie chart showing the coverage area per class (outer layer) in comparison to pixel-based 
approach (inner layer) coverage area per class previously obtained by Sheykhmousa, (2018)  
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Figure 5.9. LC classification map for the post disaster image obtained using object based approach and 
corresponding pie chart showing the coverage area per class (outer layer) in comparison to pixel-based 
approach (inner layer) coverage area per class previously obtained by Sheykhmousa, (2018) 
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Figure 5.10. LU classification map for the pre disaster image obtained using object based approach and 
corresponding pie chart showing the coverage area per class (outer layer) in comparison to pixel-based 
approach (inner layer) coverage area per class previously obtained by Sheykhmousa, (2018) 
  

Pre- disaster LU classified map 
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Figure 5.11. LU classification map for the event image obtained using object based approach and 
corresponding pie chart showing the coverage area per class (outer layer) in comparison to pixel-based 
approach (inner layer) coverage area per class previously obtained by Sheykhmousa, (2018) 
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Figure 5.12. LU classification map for the post disaster image obtained using object based approach and 
corresponding pie chart showing the coverage area per class (outer layer) in comparison to pixel-based 
approach (inner layer) coverage area per class previously obtained by Sheykhmousa, (2018) 

The LU classified maps as shown in figure 5-10, 5-11, and 5-12 for the pre-disaster, event and post-

disaster images, shows the confusion of the built-up classes category, especially for the event time image. 

There is a confusion of ‘impervious surface’ with other built-up areas and ‘rubble’, this confusion is high 

especially for the pavement areas close to buildings as compared to the roads. Moreover, the results show 

misclassification of the vegetation areas, which leads to confusion of the class ‘palm tree’ and ‘other trees’ 

also there were confusion between the class ‘grass’ ‘recreation area’ and ‘cropland’. This confusion was 

reduced especially in the pre-disaster image as compared to event and post-disaster image. The 

misclassification in the vegetation classes implies that the GLCM feature and brightness did not perform 

well as expected in the discrimination of the vegetation classes in the level of LU, more information could 

improve the accuracy of LU classification. In addition, the results show less noise in the pre-disaster image 

 



INTEGRATING OPENSTREETMAP DATA IN OBJECT BASED LANDCOVER AND LANDUSE CLASSIFICATION FOR DISASTER RECOVERY 

48 

as compared to the event and post-disaster image which facilitates the low accuracy of the event and post-

disaster image classification as widely explained in the discussion chapter. 

The LU related pie charts obtained from the result of object based in the outer layer show that there is 

an increase in the building category of 2% and 1% in FBA and LSI respectively which indicates a good sign 

of recovery in the public buildings and industrial areas. This is sensible as it can be seen in the post-disaster 

raw image that there are changes due to the construction and reconstruction of public buildings, 

infrastructure and industrial development in an area (GFDRR, 2014). 

On the contrary, the class IBA area shows the destruction of 1% in the disaster situation from 3% pre-

disaster state, and in the post-disaster state, the slums were built back to 3%. This indicates a negative sign 

of recovery as explained in the UNDP, (2011) that recovery should concentrate on improving and restoring 

the pre-disaster status of the affected society whereas enabling essential modification that will facilitate 

disaster risk reduction. Regarding the vegetation category, there is a decrease in 4%, and 2% in a class ‘palm 

tree’ and ‘other tree’ while the class ‘cropland’ and ‘recreation area’ shows an increase of 3% and 1% 

respectively. The decrease of a palm tree and other tree is related to the reasons explained earlier in the LC.    

However, the increase of cropland and recreation area indicates a good sign of recovery in the area as 

most of the recreation area was restored again. Also, the possible reasons for the increase in the cropland 

may be attributed due to the fact that farmers adapted other types of crops to adapt the changes in climate 

and disaster readiness as also mention in Thomas, (2017) report. The comparison of the coverage area 

between the two methods will be addressed in the discussion chapter 

5.4. Accuracy Assessment 

The accuracy assessment of LC and LU classified maps is presented and analyzed in this section. 

5.4.1. LC Accuracy Assessment  

After obtaining the LC classified maps, an accuracy assessment was calculated for both images and 

user, producer, overall accuracy and accuracy statistics (kappa) values are presented in table 5-4.  

 

The results show the Overall Accuracy (OA) of 89.9%, 85.3%, and 88.9% and a kappa coefficient 

of 0.87, 0.83 and 0.85 for pre-disaster, event and post-disaster classification respectively. The higher OA is 

reflected in pre-disaster and post-disaster classified maps while the event classified map shows low OA.  The 

reason for low OA in the event image is attributed due to the disaster situation in the area which results in 

confusion of some classes. Among all classes in the event image, the built-up area classes were having low 

PA and UA especially ‘bare land’ class which resulted to high commission and omission error ranging from 

42.9% to 33.3% respectively. On the other hand, the UA of buildings and the impervious surface was 72.2% 

and 76% respectively which highlights the commission error of these two classes. Also, there was confusion 

between the class ‘building’ and ‘impervious surface’ and ‘bare land’. However, the results show a slight 

improvement in the built-up area related classes especially for the building and impervious surface in both 

pre-disaster, event and post-disaster situation as compared to the results obtained using the pixel-based 

approach. The bare land class shows high PA and low UA as compared to the pixel-based approach which 

shows high UA and low PA. On the other hand, in both approaches, the damage and vegetation classes 

portray high PA and UA.  

The performance of the results obtained using the object based approach with the results that was 

previous obtained by Sheykhmousa, (2018) using the pixel based are compared. The object-based approach 

shows an increase in the accuracy of 0.5% and 3.1% for the pre-disaster and event classified images in 

contrast to  pixel-based approach that had OA of (89.4% and 82.2%) for pre disaster and event classified 

image respectively. Surprisingly, the object based approach shows a decrease in accuracy of 1.9% for the 

post disaster classified image in contrast to results obtained by pixel based approach that had OA of (90.8%). 
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A detailed description of the reason for having high or low accuracy in different classes category will be 

explained in chapter 6. Also the results obtained previous by Sheykhmousa, (2018) can be found in (Annex1) 

 
Table 5-4. LC classification accuracies for the pre, event and post-disaster images 

 Class name Accuracy Error Overall Accuracy/Kappa 

value 

 Land cover classes UA% PA% Commission Omission  

PRE Bare land 79.2 82.6 20.8 17.4  

 

89.9 

0.87 

Building 91.0 90.0 9.0 10.0 

Impervious surface 86.0 84.1 14.0 15.9 

Inland water 94.7 100.0 5.3 0.0 

Non-tree 92.5 94.2 7.5 5.8 

Open water 99.6 100.0 0.4 0.0 

Tree 93.3 87.5 6.7 12.5 

EVENT Bare land 57.1 66.7 42.9 33.3  

 

 

85.3 

0.83 

Building 72.2 73.9 27.8 26.1 

Impervious surface 76.0 79.2 24 20.8 

Inundated land 100.0 88.9 0.0 11.4 

Non-tree 96.6 96.5 3.4 3.5 

Open water 81.8 100 18.2 0.0 

Flattened tree 88.9 94.0 11.1 6.0 

Rubble 89.1 82.5 10.9 17.5 

POST Bare Land 80.0 90.9 20.0 9.9  

 

 

88.9 

0.85 

Building 92.0 84.4 18.0 15.6 

Impervious surface 85.7 89.1 14.3 10.9 

Inland water 98.0 100.0 2.0 0.0 

Non-tree 97.2 87.5 2.8 12.5 

Open water 97.0 100.0 3.0 0.0 

Tree 80.8 95.5 19.2 4.5 

 

5.4.2. LU Accuracy Assessment  

Accuracy assessment of LU classification maps was calculated for all images and the UA, PA, 

together with OA and kappa coefficient is presented in Table 5-5. In general, the result shows that the OA 

for pre and post-disaster images was higher as compared to the event image. This was because of the 

complexity of the scene in the event state due to a disaster situation which attributed to uncertainties in 

different classes as it was observed in LC results as well. It is also observed that the OA of the LU maps 

were lower as compared to LC maps. The result shows the OA of 79.9%, 68.7% and 78.6% with kappa 

coefficient value of 0.77, 0.6 and 0.75 for both pre-disaster, event and post-disaster classified maps 

respectively. 
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Table 5-5. LU classification accuracies for the pre, event and post-disaster images. The bolded classes in 
each timestep shows the vegetation classes that has low UA and PA as compared to the results obtained in 
pixel based approach 

 Class name Accuracy Error Overall 

Accuracy/Kappa 

value 

 Land use classes UA% PA% Commission Omission  

PRE Bare land 84.3 53.8 15.7 46.2  

 

79.9 

0.77 

Formal built up area 79.0 81.7 21 18.3 

Large scale industry 88.2 81.4 11.8 18.6 

Informal built up area 83.7 91.3 16.3 8.7 

Impervious surface 96.6 88.4 3.4 11.6 

Other tree 65.7 67.6 34.3 32.4 

Palm tree 60.0 75.0 40.0 25.0 

Grass land 62.5 61.7 37.5 38.3 

Recreation area 66.7 50.0 33.3 50.0 

Crop land 70.5 51.7 29.5 48.3 

Inland water 100.0 84.2 0.0 15.8 

Open water 100.0 89.5 0.0 10.5 

EVENT Bare land 75.3 42.7 24.4 57.3  

 

 

           

68.7 

0.6 

Formal built up area 66.8 59.8 33.2 40.3 

Large scale industry 66.7 70.5 33.3 29.5 

Informal built up area 89.9 50.0 10.1 50.0 

Impervious surface 80.0 80.0 20.0 20.0 

Flattened tree 67.7 93.3 32.3 6.7 

Grass land 55.6 71.4 44.4 28.6 

Recreation area 38.9 57.8 61.1 42.2 

Crop land 45.0 53.6 55 46.4 

Inundated land 95.2 100.0 4.8 0.0 

Open water 100 94.4 0.0 5.6 

Rubble 55.2 92.7 44.8 7.3 

POST 

 

Bare Land 91.3 84.0 8.7 16  

 

 

78.6 

0.75 

Formal built up area 76.2 86.5 23.8 13.5 

Large scale industry 84.3 82.7 15.7 17.3 

Informal built up area 83.7 70.9 16.3 29.1 

Impervious surface 95.5 96.9 4.5 3.1 

Other tree 57.4 72.2 42.6 27.8 

Palm tree 42.9 57.1 57.1 42.9 

Grass land 60.1 88.9 39.9 11.1 

Recreation area 90.0 64.3 10.0 35.7 

Crop land 70.0 41.2 30.0 58.8 

Inland water 100 90.9 0.0 9.1 
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Open water 88.2 93.8 11.8 6.2 

The result shows the uncertainty in most of the classes especially classes related to vegetation category 

in all the images. For example, there is confusion between class ‘palm tree’ and ‘other tree’, which results in 

high commission and omission error in the pre-disaster and post-disaster image. Also, there is a confusion 

between classes ‘grassland’, ‘cropland’ and ‘recreation area’ which attributed the misclassification found in 

these classes especially for the disaster situation image. There was a high amount of commission and 

omission error of 44.4% and 28.6% in ‘grassland’, 55% and 46.4% in cropland and 61.1% and 42.2% in 

recreation area respectively. This contributed to the low OA obtained in the event image as compared to 

pre-disaster and post-disaster situation.  

On the other hand, uncertainty also occurred in the class LSI, FBA and IBA, there was confusion among 

these classes especially at the event situation. However, this confusion was reduced in the pre-disaster and 

post-disaster image. Generally, the class LSI, FBA, IBA, ‘impervious surface’ and ‘rubble’ shows 

improvement in the accuracy as compared to the LU results obtained using the pixel-based approach  

Moreover, the object-based results obtained are compared with the previous results obtained using the 

pixel based approach which had the OA of (76.3%, 69.9% and 77.8%) for pre-disaster, event and post- 

disaster classified image respectively. The object based approach shows an increase in accuracy of 3.6% and 

0.8% for the pre- disaster and post-disaster classified image as compared to result obtained in the pixel-

based approach. However, the object based shows a decrease of 1.2 % for the event classified image as 

compared to the results obtained from pixel based approach.  The results show that the use of OBIA did 

not improve the accuracy of vegetation-related classes in LU classification as compared to the pixel-based 

approach especially for the classes as crop land, palm tree, recreation area and grass land (Table 5-6). 

Regarding the damage category, the results show improvement in the class rubble and inundated land as 

compared to the pixel-based approach. With the object-based approach, high uncertainty in the class 

flattened tree is observed with a commission error of 32.3% as compared to the pixel-based approach that 

had a commission error of 15.4%. The OA, UA and PA accuracy obtained using the pixel based approach 

by Sheykhmousa, (2018) can be found in (Annex 2) 
 
Table 5-6: The UA and PA of the vegetation classes obtained previous by the pixel based approach with 
improved accuracy as compared to object based results for both pre, event and post disaster respectively 

Class UA (pre, event post) (%) PA (%) (pre, event, post) 

Crop land 72.8,       50.1,     80.7 73.2,         85.0,         43.2 

Palm tree 66.1,        84.6      58 93.4,         83.5          56.6 

Recreation area 91.9,       64.4,      97.2 68.8,          19.1,        73.8 

Grass land 66.7,        40.5,     58.2 65.6,          33.4,        86.2 
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6. DISCUSSION 

This chapter discusses the main findings of this research presented in chapter 5, the discussion is built 

on the consideration and reflection of the limitation of the data and method used in this study. The main 

objective of this study was to investigate the potential of using OBIA with OSM data for the LCLU 

classification of high-resolution satellite image in post-disaster recovery assessment. The first section (6.1) 

of this discussion reflects the findings obtained in the second objective in question 1 and 2. Section 6.2 and 

6.3 discusses the findings obtained in the first objective. Lastly, section 6.4 and 6.5 the findings obtained in 

the third objective are discussed.  

6.1. The Value of OSM Information in the OBIA Process 

The results obtained from the OSM data analysis shows that OSM data has significant value in the 

LCLU classification task regardless of the problems found related to data quality. In this study, the spatial 

information obtained from OSM data shows a potential value in assisting the OBIA process. For example, 

the OSM road network was used in the segmentation process to orient the OBIA on the proper delineation 

of the road network. This explains the good segments with a clear road network definition obtained. On 

the whole, this proves that inclusion of the road network in the OBIA process helps in proper identification 

of road areas as also mentioned in other studies (Luo et al., 2019; Grippa et al., 2018). Also, the building 

footprint layer used in the segmentation process helped in orienting the OBIA by proving the physical 

boundary of each buildings, especially in the areas that the buildings were close to each other. However, not 

all buildings were included in the analysis due to the shifting problem in OSM data, the large building 

included show that image objects with clearly physical boundary of each buildings can be obtained and this 

can help improve the accuracy in the classification process.  

The statistical analysis conducted using the OSM data shows that with road network it was possible to 

derive the parcels that present different neighborhood as also achieved in other studies (Hu, Yang, Li, & 

Gong, 2016; Grippa et al., 2018). By using building footprint information, it was possible to identify different 

land use information based on the building density, size of the building structure together with the number 

of buildings within the neighborhood. However, due to data incompleteness, it was not possible to identify 

the changes within the neighborhood in different time steps, and this hinders the recovery assessment using 

the OSM information only.   

Moreover, with satellite image alone it is difficult to obtain the ground information of different objects, 

the OSM information helped to supplement the satellite image by providing the sample label for the image 

classification. However, there was a limitation in this process due to a problem related to the incorrect label 

of OSM information but also data incompleteness. Even by combining different multi-source information 

such as Google Earth, Google Street View, and panchromatic image to refine the OSM data still there were 

mistakes in the identification of different LU classes especially the vegetation related classes. This facilitates 

the challenge observed in the classification of the vegetation classes. The possible solution for this could be 

to refine the OSM data by intersecting the OSM sample with multiple information indexes (Luo et al., 2019). 

This will help to correct the errors on the OSM database which are related to the user generated process of 

OSM. However, this can be subjective as the refinement needs the threshold which may differ from one 

expert to the other, but also in different study areas. The thematic data obtained from the OSM data proves 

to be valuable in providing ground information despite the quality data issues which have been a discussion 

in most of the studies. However, having good quality OSM data can help provide more information on the 

ground and hence improve the LU classification accuracy. 

Apart from the successful results obtained from the OSM data, there are limitations related to the OSM 

data quality which facilitates the uncertainty obtained in this study. For example, the accuracy of the 

segmented object based on the road network depends on the completeness of the OSM road data. In case 
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the digitized roads in OSM data are more as compared to the reality in the image or if there are roads that 

are not mapped in the area but are existing in the OSM data. This could create the problem in the 

classification and hence cause misclassification. Therefore, this indicates that the success classification of 

the roads is highly attributed to the high completeness of the OSM road networks.  

In general, OSM data shows a promising value in assisting the LCLU classification task. However, the 

performance of these data relies on the accuracy and completeness of the data. It is clear that in the area 

selected for this study the OSM data was not good in terms of data completeness but also the shifting of 

the building footprint due to unknown source data used in the digitization is an issue to be explored in 

detail.  

The deficiency of the shifting found is related to the fact that the source image used in the digitization 

process is unknown. Also, this can be attributed by the fact that after the disaster when speed matters most 

of the sensors are shifted to capture the disaster event, as a result, satellite image with non-nadir viewing 

angle is being used in the original digitizing process, or even non orthorectified image. On the other hand, 

the issue of data accuracy and incompleteness was also observed in this study, this had been a problem in 

most places in the world as also explained in other studies (Haklay, 2010; Girres & Touya, 2010). In most 

of the developed countries, OSM data can be used directly to create land cover/land use maps due to the 

high quality of data in these areas. However, due to the lack of data quality and completeness as explained 

above the OSM data was incorporated with remote sensing imagery for the LCLU classification process. 

6.2. Utilization of Object Features in LCLU Classification 

The findings obtained in the analysis of LCLU shows that the object geometry features (shape, size) 

and spatial information (road network, building footprint) helps to improve the accuracy of built up related 

classes in both LC and LU classification. As explained in section 4.1.2, the classification of LCLU that was 

previously performed with the pixel-based approach resulted in some uncertainty of some classes due to 

spectral similarity and mixed unit classes within a pixel problem  (Sheykhmousa, 2018). Therefore, in this 

study application of object features in OBIA helps to solve the ambiguity of the classes ‘building’ and 

‘impervious surface’ for the LC classification and LSI, IBA, FBA for the LU classification. 

 The use of length/width and rectangular shape assists in the discrimination of the class building and 

impervious surface as it was also found in Salehi et al., (2012) study. Very likely, most of the road networks 

are length and buildings are rectangular in shape, by refining these features in the classification analysis using 

the shape aspect the ambiguity of these two classes was reduced. However, there was a river/canal in the 

study area which had similar characteristics with the road network in terms of shape. For this reason, the 

NDWI index helps to refine the area covered with water, the index is very helpful in avoiding 

misinterpretation of other architectural surfaces from water as also found in the study of  Oumar & Mutanga, 

(2013).  

The aspect of size and spatial features obtained from OSM data reduces the ambiguity of the classes 

LSI, FBA, and IBA. Apart from using the geometry and spatial features, the class related features helped to 

reduce the ambiguity of these classes as well. For example, if the area is classified as a slum area, but there 

are few objects classified as FBA and are 100% surrounded by slum buildings, then the area is refined to 

IBA. Also, the same approach applies in the refinement of the FBA and LSI classes, taking into 

consideration other aspects of object features. On the other hand, the GLCM contrast feature was helpful 

in discriminating IBA from FBA as also mentioned in Kuffer et al., (2016a) study. 

Regarding the vegetation classes, the brightness feature helps to discriminate forest area from grass area, 

especially for LC classification as also mentioned in Salehi et al., (2012) study. However, the GLCM feature 

and brightness did not perform well in discriminating vegetation classes at the level of LU as also observed 

in Adam, Csaplovics, & Elhaja, (2016) study. This explains the low UA and PA results obtained in these 

classes. Also, due to the absence of ground truth data, there was the possibility of  inherent errors related to 
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the way the samples were created. This also contributed to low accuracy obtained in vegetation classes for 

the LU classification. 

In general, object-based features and spatial data from OSM in OBIA improved the accuracy of the 

built-up related classes, especially for the LU classification. However, the addition of other information such 

as the ancillary elevation data could help yield competitive results in the built-up related classes. This data 

could assist the discrimination of the impervious surface and buildings by using the height difference and 

hence reduce the confusion of these classes. 

6.3. LCLU Analysis Using the Object-Based Strategy. 

Based on the results obtained, the use of SVM based on the object performed well for the LC 

classification as compared to the LU classification. The possible reason for such an outcome may be related 

due to the fact that, the LU classes are heterogeneous and are more classes and according to Clarke, 

Couclelis, & Clarke, (2005) the OA decreases as the number of classes increases. In addition, the low UA 

and PA of the vegetation classes contribute to the low OA obtained in LU classification, especially for the 

event time image. The most significance confusion occurred between a class palm tree and other tree, which 

is attributed in high spectral similarity and also low spatial resolution of the WV2 image as shown in (figure 

6-2).  

Moreover, adding the panchromatic band in the LU classification task helps to differentiate the 

vegetation classes in LU classification. However, the object-based approach misclassifies objects of these 

classes especially in the areas with mixed palm tree and other tree. This is sensible as object-based approach 

depends largely on the sample objects used during the training process, and as explained earlier the samples 

were created based on the visual interpretation of the images which may lead to inherent errors and hence 

affects the classification results. Figure 6-1 shows the graph obtained from the separability analysis of the 

class palm tree and other tree. As it is observed in the graph separating the palm tree from other tree using 

the first 5 bands of WV2 image is not possible. Even in the three remaining bands, it shows that the classes 

are closely related which explained the confusion obtained in these two classes. The possible solution for 

solving this problem could be using high-resolution multispectral satellite image, with this image vegetation 

index having the most powerful discrimination between a palm tree and other trees can be extracted 

(Srestasathiern & Rakwatin, 2014). Also, the use of texture from high-resolution image data such as those 

obtained by drones may be more useful to discriminate palm tree from other tree. 

On the other hand, the confusion observed between grassland, recreation area, and cropland facilitates 

the low OA obtained in LU classification as well. The use of GLCM texture features was not good enough 

for such discrimination as also observed by Sheykhmousa, (2018). The possible solution could also be 

including additional information in the analysis such as using the Local Binary Pattern (LBP) feature which 

is a more powerful feature in separating different objects based on their texture characteristics as it was 

observed in the Sheykhmousa, (2018) study. 

Moreover, the low accuracy obtained in the post-disaster image for LU classification may be influenced 

by the segmentation process. Surprisingly, the segments obtained in this image at different levels was very 

small as compared to the pre-disaster image on the same scale parameter settings, this explains the noise 

found in the LU post disaster classified image. The possible reason for such an outcome may be due to the 

number of features used in the segmentation process but also other reasons may be related to the impact of 

feature normalization. In the meantime, the specific reason for such an outcome is not clear yet, but this 

fact has a direct consequence on the low OA obtained in the post-disaster classified image.  

Furthermore, in both LC and LU classification the event time image had the low OA, this is sensible as 

the classification process faces difficult due to the complexity of the scene in the typhoon Haiyan setting. 

For example, as a result of the typhoon, the area was overflown with water which made almost the bare 

land areas to become wet. In this case the spectral characteristics of the bare land changes, this created 

confusion of the class bare land with rubble as visually seen in the image they appeared to be looking similar. 
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The possible solution for this is to use the image with high spectral and spatial resolution but also using 

another image from the time when the holding water vanishes. However, this will have the consequences 

of losing the damage information as also explained in Sheykhmousa, (2018) work. The high amount of 

commission error in the flattened tree class which is rooted by the low spatial resolution of the WV2 image 

(Figure 6-6) facilitates the low accuracy obtained in the event state classified image.  

  

 
            
Figure 6.1. Spectral separability of the tree category showing the mean digital number values obtained in 
each band from pre-event WV2 image.         

 

   Figure 6.2. A subset of a multispectral image showing the complexity of the area covered by a palm tree 
and other trees in both pre-disaster state (A) and post-disaster state (C) image, also the damage in the 
disaster situation showing (flattened tree) (C) 

The most significance misclassification occurred in the class rubble and debris. This confusion is 

attributed to the difficulty in the identification of what is considered as real debris due to the limitation of 

using ground truth map which facilitates the uncertainty in the classification results. During the disaster 

situation, there was a different fragment that has been blown about due to strong wind and flood tides. This 

causes most of the roads to be covered by different pieces of the fragment which can be related to car pieces, 

branches of a tree, or materials washed down due to torrential rain and extremely strong winds. All these 

materials may look as rubble in the image which may facilitate uncertainty when analyzing the rubble and 
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results in misinterpretation of damage in the area as seen in (Figure 6-3). The mentioned image shows the 

area located in the north-east part of the Central Business District (CBD) close to the coast area. 

Regarding this situation, the image used for the event time in this study was acquired 3 days after 

the disaster. This portrays that the damage to the road may be overestimated when using a one-time image 

acquired after the disaster, which has an influence on the high amount of rubble obtained in this study. The 

same situation is applied to the buildings as well, whereby they were a huge misinterpretation of damage 

related to the reasons explained earlier. The possible solution for this will be to use multiple time step images 

acquired after the disaster and also high spatial and spectral resolution like those acquired using the drone. 

The former will assist in avoiding misinterpretation of damage in the area while the later will help in solving 

the ambiguity of confusing the rubble from standing building due to high spatial discriminative power. All 

these reasons facilitate the low accuracy obtained in the LC and LU event classified map. However, 

differentiating the class rubble from debris in the disaster settings environment is still a complex task. 

 

Figure 6.3. Uncertainty in assessing road damage as shown in different time series drone images. (A) image 

taken 6 days after the disaster showing the impassable road; (B) image taken 8 days after the disaster 

showing the cleaning up effort; (C) image taken 7 weeks after the disaster (Corephil Data Services Inc, 

2013) 

Besides, higher accuracy obtained in the LC classification especially for the built up related classes 

is attributed by the use of the geometry features and spatial information as also identified in the study of 

(Luo et al., 2019). Most of the roads are always covered by small or large car tracks which creates difficulty 

in the identification of road network especially when depending on the satellite image alone. By using the 

road network obtained from OSM, this problem can be solved. However, this worked well with the roads 

networks only as compared to other impervious surfaces such as parking lot which were close to built-up 

areas. Using the OBIA with other additional information such as elevation and high spatial resolution image 

can improve more the accuracy of the LC and LU classification. 

In general, the OBIA approach shows improvement in the built-up related classes especially the building 

and impervious surface with some uncertainty in the bare land as explained above for both LC and LU 

classification. This research was aware of the inherent errors that may occur in the classification process due 

to the limitation on the way the training and validation samples were created. The samples were not 

physically collected from the field, there were created using visual interpretation of the image and from OSM 

information and other multisource data that have the limitations as well. This has a direct influence on the 

accuracy values of the results obtained in this study. 

6.4. Comparison of the Object-Based Approach to the Pixel-Based Method. 

In this study, quantitative result gives a general overview of the difference in performance of the two 

methods applied to the same data. The difference in the performance of these methods was observed 

especially when looking at the performance of each class. Due to the limitation of the way the training data 

were created, the performance of these methods were not judged by considering the accuracy values only 

but also a visual assessment of the classified maps in a small subsection of the study area.      
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Based on the visual assessment comparison results, the object-based approach performs better for the 

built-up related classes as compared to the pixel-based approach that shows better performance in most of 

the vegetation classes. This was also observed in the accuracy values obtained in the classification results. In 

Figure 6.4, a small subset of the study area is shown with the classification results obtained from both 

approaches. A visual comparison of the classification result shows that in both approaches most of the 

buildings have been well estimated. However, the object-based approach shows a smother structure as 

compared to a pixel-based approach.  

Also, the object-based approach outperforms better in representing road areas as compared to the pixel-

based approach, this is sensible as the OSM data was used in the segmentation process and this facilitates 

the output observed. Looking into the blue circle in both pre and post-disaster image, the map shows that 

the spectral characteristics of the tree were detected from the satellite image as seen in the raw image. This 

explained the results observed in the classified portion of the pixel-based approach. But, with the object-

based approach, this was different as the integration of spatial information helped to identify the road 

underneath of that area, from the satellite image alone this was difficult to be observed.  

Moreover, the object based classified images suffers from errors as shown in the white circle were some 

few trees have been classified as grass in both pre and post-disaster image. In the event time situation, both 

approaches show an incorrect classification of the class rubble in an area, which leads into misclassification 

of other classes especially building and impervious surface. However, this confusion was more in the pixel-

based approach, as most of the road has been classified as rubble while this was not the case as shown in 

the raw image. 

Surely, the object-based approach shows a homogeneous representation of different classes in the area 

as compared to the pixel-based approach. Despite the errors encountered, it is clear that the object-based 

approach is advantageous in mapping the built-up related classes as it gives a more homogenous 

representation of these classes in an area. This is rooted due to the ability of object-based approach to reduce 

the problem of pixel and pepper noises in the classification result which is a substantial problem in pixel-

based approach.   
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Figure 6.4. Built-up classes comparison of the object based and pixel-based classification performance in a small 
subset of a study area. The blue circle and the white circle highlight the area of uncertainty in both approaches. A) 
pre-disaster image B) event image 

A visual comparison of classification in the area covered by a palm tree and other trees in figure 6-

5 shows that both approaches misclassify the palm tree and other trees in an area. Taking a close look in the 

results of both approaches the object-based approach seems to have more misclassification of the class palm 

tree and other trees as compared to the pixel-based approach. The possible reason for this may be related 

to the errors in creating image objects, especially the areas that the palm trees are mixed with other trees 

which also made the creation of segments for these classes a complex task. For example, within a large area 

covered by other trees, an individual palm tree can be found especially in the post-disaster situation, this 

resulted to the small-sized objects covered by a palm tree and yet created uncertainty in the identification of 

this class.  

However, the pixel-based approach is known to have a better representation of small fields that can 

be few pixels in size, this may attribute the outperformance of the pixel-based approach as compared to the 

object-based approach. 

Looking at the classified maps in the event time state, both approaches show that the dominant 

area is covered by flattened trees. In both approaches, there is a misinterpretation of the class flattened tree 

as also observed in the quantitative results. With WV2 image it was not possible to see the flattened tree 
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visually (figure 6-6) which leads to the inherent errors even in the creation of samples. This had a direct 

influence on the misinterpretation observed.          

 
 

Figure 6.5. Vegetation classes comparison of object-based and pixel-based classification performance in a 

small subset of a study area. The panchromatic image of the pre-disaster (A), event (B), and post-disaster 

(C) respectively are used for the clear visualization of the palm tree and other trees.   

Figure 6.6. Complexity of the damage class flattened tree A) WV2 image, B) Drone Image 

Besides, the comparison analysis of the performance of these methods is a very challenging task. The 

features used in the classification of both approaches are different which explains the difficult in judgment.  

Also, due to the reason that most of the LU classes are difficult to be observed visually in the image, the 

visual assessment of the LU classification maps was very difficult, and this was the limitation of this 

approach. However, some classes such as palm tree and other trees to some extent they can be visualized in 

A B 



INTEGRATING OPENSTREETMAP DATA IN OBJECT BASED LANDCOVER AND LANDUSE CLASSIFICATION FOR DISASTER RECOVERY 

60 

the panchromatic image, but this was difficult for the class grassland, recreation area, and cropland. Also, it 

was not possible with the building classes category as visually in the image the function of the building 

cannot be recognized. 

6.5. Comparison Based on the Percentage of Area Coverage in Both Strategy. 

Grounded on the results of the percentage coverage of each class in both approaches as presented in 

section 5.3.1, there are similarities and differences in representation of the coverage area per class in both 

methods.  A high percentage of the area covered by the building is observed in the object-based approach 

while the pixel-based approach is having the low coverage area of the same class. This is sensible as with 

OBIA more homogeneous areas can be obtained as compared to a pixel-based approach that has the effect 

of salt and paper and hence creates uncertainty in the estimation of the area covered by the building. On 

the other hand, an object-based approach shows the lower coverage of the impervious surface as compared 

to the pixel-based approach which shows an increase of 5% in the area covered by impervious surface. This 

increase can be accelerated by the confusion of building and the impervious surface made in the pixel-based 

classification work as also mentioned in  Sheykhmousa, (2018) study. 

The class inland water seems to be overestimated in the pixel-based approach. This is attributed due to 

the fact that the discrimination of the features in the pixel-based approach is mostly depending on the 

spectral characteristics of the object. For example, buildings with the dark color roofs can be misinterpreted 

as water in the pixel-based approach. However, this problem was not encountered in the object-based 

approach as the NDWI index used in the classification process helps to discriminate water areas from other 

structural and non-structural areas. Also the use of spatial features such as size and shape helps to avoid 

such a confusion. With regard to damage classes, the object-based approach obtained a low percentage 

covered by the rubble as compared to the pixel-based approach. However, in both approaches, this class 

was overestimated due to the confusion of this class with debris. The class flattened tree shows a low 

coverage area as compared to the pixel-based approach, this is attributed due to the confusion of this class 

with other vegetation class in the object-based approach as explained earlier. 

Furthermore, the class other trees and palm tree shows a huge difference in the area covered in both 

approaches. This is attributed due to the confusion between these two-classes, especially with the object-

based approach. The class grassland, recreation area, and cropland show no significant difference in the 

coverage area. Surprisingly, the class cropland in the event time state shows an increase of 2% in the pixel-

based approach, which indicates huge confusion of this class with other vegetation class in the event time 

state. 

Truly, the classification based on the object-based approach produced more uniform objects for easier 

interpretation in the structured urban environment, and this can avoid misinterpretation of the LCLU 

changes. On the contrary, the classification based on the pixel-based approach had salt and paper appearance 

and this results in the harder interpretation of the LCLU changes and hence affected the recovery 

assessment. For example, in the buildings, other pixels of water, impervious surface, bare land can be found 

in the building structure while all those pixels they belong to the building, this leads to harder interpretation 

or even misinterpretation of changes from one-time span to the other.  
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7. CONCLUSIONS 

This thesis demonstrated that the use of object-based approach in disaster-related multitemporal image 

analysis yields a promising result in the LCLU classification over the urban-rural environment. It has also 

demonstrated that the object geometry features and spatial information obtained from OSM data in OBIA 

help to improve the accuracy of LCLU classification. The principal purpose of this study was to investigate 

the potential of using RS imagery and OSM data within an OBIA for improving the LCLU classification. 

The study was based on the limitation encountered in the previous study that was performed using the pixel-

based approach. This study established three objectives 1) to investigate to what extent LCLU mapping 

performed by using a pixel-based approach for recovery assessment can be improved with the OBIA 

method; 2) to investigate the significance of using OSM information to supplement satellite imagery during 

LCLU classification by OBIA method; 3) to analyze the value of using object-based machine learning 

algorithm in eCognition for LCLU classification. The available dataset were 3 WV2 images obtained at 

different timestep ( 8 months before the disaster, 3 days right after the disaster and 4 years after a disaster) 

and OSM data. 

A ruleset was developed in OBIA that integrates the spatial information from OSM data in obtaining 

the image segments. The attributes from the OSM data and other multi-source information (Google Earth 

Pro, Google Street View, panchromatic band) were used to obtain the validation samples. Different object 

features were tested for class description in the LC and LU classification task. The results showed the use 

of spatial and geometry features improved the results of the built up related classes while the GLCM features 

and brightness failed to improve the accuracy of the vegetation classes, additional of information such as 

texture, high spatial and spectral resolution images could yield competitive results in discrimination of 

vegetation-related classes especially in the level of LU. 

The integration of spatial information in OBIA improved the accuracy of the LCLU classification map. 

The geometric information obtained from OSM road network and building footprint showed better results 

of obtained image segments with clear shape and the physical boundary which highly assisted in class 

identification in the classification process. In addition, the attributes from the OSM historical data were used 

together with other multisource data to extract training samples. However, there was limitation related to 

the quality of OSM data, and this had a direct impact on the obtained results, more investigation is needed 

on the actual database of OSM in the study area.  

The classification of LC was performed using the SVM classifier with object geometry (size, shape), 

layer value (brightness, mean of all WV2 bands), spectral indices (NDVI2, NDWI)  and class-related features  

resulted in the high overall accuracy of 89.9%, 85.3% and 88.9% for pre-disaster, event and post-disaster 

classified image respectively for LC classification. In the case of the LU classification, the SVM classifier 

was used, the same features were employed with addition of GLCM features and panchromatic band, the 

overall accuracy of 79.9%, 68.7% and 78.6% for the pre-disaster, event and post-disaster classified maps 

respectively was obtained. In both results, the event classified image had low OA. The results showed high 

accuracies in the LC classification as compared to the LU classification.  

On the whole, the OBIA approach shows an improvement of the accuracy in comparison to the pixel-

based approach. It should be noted that with LC classification no texture information was used, but also in 

the LU classification, the texture information used was based in the GLCM features as compared to a pixel-

based approach that adopted the use of LBP texture information in the analysis. Therefore, the addition of 

more features in the analysis could show more improved results especially for LU classification which was 

very complex and challenging. 

Furthermore, the comparison of the two approaches showed that the object based performed better as 

compared to the pixel-based approach. However, in both approaches, there was uncertainty in the 

classification of the vegetation related classes and the rubble class. With the object-based approach, the 
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uncertainty in the class rubble was reduced to some extent. However, more investigation is required on the 

best approach of discriminating the rubble from debris in a disaster setting environment.  

In general, the object-based approach produced more uniform objects for easier interpretation in the 

structure urban-rural environment setting, while the pixel-based approach maps obtained in the previous 

study had a salt and pepper appearance and were harder to interpret. This thesis revealed that in the bases 

of the recovery assessment the pixel-based approach showed an overestimation of the class rubble which 

was due to the confusion of this class with the building. This indicated the misinterpretation of the recovery 

in the building as well. Also,  related to damage classes, this study observed that the damage in the impervious 

surface and building in both approaches might be overestimated depending on the image used in the 

analysis. This requires more investigation on the number of the image to be used for the assessment of 

recovery.  

 

7.1. Recommendations and Future Works 

The use of high-resolution satellite image and OSM data for improving LCLU classification in post-

disaster recovery assessment provide an opportunity for future study. Based on the highlighted limitation 

of this study the following recommendations are proposed. 

 

• Investigating to what extent the information obtained from OSM data only can be used to study 

and understand functional post-disaster recovery in an urban setting environment.  

 

• Exploiting the impact of the feature normalization in aiding the identification of feature description 

in the LCLU classification using OBIA approach. 

 

• Investigate the reasons that may influence the difference in the size and number of image objects 

when the same settings for the segmentation is applied in the same area of an image (in this case 

the pre- disaster and post-disaster (4 years after the event)) 
 

• Investigate the appropriate approach that can be used in the assessment of the performance of the 

pixel and object-based methods when the same data type is used but different classification features 

are employed in the classification process.    
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