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ABSTRACT 

The information regarding tree species in tropical forest is of high priority for the effective forest 

management, conservation, utilization and policy development. The Remote sensing data can be 

effectively used to provide species level information. The procurement of this information became 

possible due to the availability of the hyperspectral data. This study made use of airborne imaging 

spectroscopy to map tropical tree species richness in Shimoga, Karnataka, India. Hyperspectral imagery 

with spectral variation ranging from wavelength 400 nm – 2,500 nm acquired by the Airborne Visible and 

Infrared Imaging Spectrometer – Next Generation (AVIRIS-NG) sensor on 1st January 2016, was 

analyzed to map the tree species of the tropical forest. A field survey was conducted to collect the tree 

location data from the study area. Data was collected from the 25 different plots which were laid by using 

conditioned Latin Hypercube Sampling (cLHS) technique.  

To map forest tree species, selection of suitable classification approach is required. This study attempts to 

develop a methodology for classification of hyperspectral data for species level classification. Recently 

ensemble classifiers have gained the importance in the scientific community for the classification of data 

having high number of features. Random forest (RF) is a popular ensemble classifier in which 

performance is dependent on the strength and diversity of the individual base classifier in the ensemble. 

This study aims to increase diversity in the individual classifiers of the ensemble thus improving its overall 

accuracy. This was done by modifying RF by transforming the variables at each node to another space 

using Principal Component Analysis (PCA). The transformation at each tree node, improved the 

classification performance. This new method, PCA based Rotation Random Forest (RoRF) was validated 

by comparing it with RF and Support Vector Machine (SVM). RoRF has attained an overall tree species 

accuracy of 52.76% while SVM and RF has shown an overall accuracy of 41.21% and 40.34% respectively. 

The performance of SVM, RF and RoRF were evaluated using McNemar test. The performance of RoRF 

was found to be significantly different from the other two classifiers. The performance of RF and SVM do 

not differ significantly. Since the best performance was shown by RoRF classifier so with this classified 

map, species richness of the study area was calculated and compared with the species richness recorded in 

the study area. This study attempted to classify 20 tropical tree species of the study area including both 

rare and dominant species. Those species which were present in groups were classified better than the 

sparsely spread species. Also, the species richness was more in the region of drainage depressions rather 

than the areas where ridges were present. This study concludes that AVIRIS-NG data has the potential for 

mapping tree species of tropical forest. Also, the RF performance can be improved by improving diversity 

in individual classifier by transforming the data at each node into another subspace. For the future work it 

would be interesting to apply different feature extraction methods in place of PCA and compare their 

performance. Also, for more effective richness measurement ancillary data like LiDAR can be integrated 

with hyperspectral data.  

 
Key words: Classification, Hyperspectral remote sensing, Tropical forest, Tree species richness; PCA; 

SVM; Rotation Random forest  
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1. INTRODUCTION 

1.1. Motivation 

 
Human beings have been a key driver for change in the functionality of Earth systems. Anthropogenic 

activities put a lot of pressure on Earth causing ecosystem depletion and change in Earth’s climate 

(Rockström et al., 2009). To set limits on these activities, Stockholm Resilience Centre (SRC) has 

proposed nine planetary boundaries for sustainable functioning of Earth systems. Beyond the threshold of 

these boundaries, the risk of adverse and inevitable change in ecosystem increases (Stockholm Resilience 

Centre, 2012). Loss of biosphere integrity also known as loss of biodiversity is among the four boundaries 

that have already crossed the threshold limit. It is identified as the core component because it has drastic 

effects on Earth systems (Jaramillo & Destouni, 2015). Biodiversity loss is directly related to human 

welfare. For example, the international demand for timber results in the reduction of forest cover hence 

causes loss of regional biodiversity which can increase the risk of floods (Millennium Ecosystem 

Assessment, 2005). Preventing biodiversity loss is the need of the hour, and hence, it is necessary to 

monitor forests to avoid biodiversity loss. Species diversity estimation is a proven technique to keep a 

check over biodiversity loss.  

 

To measure species diversity, there are two significant factors to be considered, i.e. species richness and 

evenness (Purvis & Hector, 2000). Species richness is the total number of number species present in a 

particular ecological community or region while, species evenness can be defined as the relative abundance 

of individual species in a community (Wilson, 1993). Mapping species richness is essential from both 

management and scientific point of view. For better management, a forest official can estimate the 

economic yield of the forest, and prepare an effective and productive working plan and also for 

documenting forest inventory.  

 

From a scientific perspective, regions having a more significant number of different species are specially 

targeted for biodiversity conservation (Magurran, 2004). A researcher can further identify endemic and 

keystone species which are the key driver of an ecosystem. Mapping of species richness will provide a 

future scope for biodiversity loss estimation by studying temporal data to estimate the change detection. It 

is necessary because tropical forests are already under high risk due to encroachment (Bhat, Chandran, & 

Ramachandra, 2012) and illegal felling, causing forest fragmentation and increasing global warming (Clark, 

Roberts, & Clark, 2005). Tree species mapping not only supports management and scientific aspects but it 

has substantial social significance as well. 

 

Species mapping adds support to Sustainable Development Goal (SDG) number 15, Life on Land, 

focusing on the target number 15.5, which aims to take suitable action to check natural habitat and 

biodiversity loss by 2020. According to the report of  UNDP (2016), only 1% of about 80,000 tree species 

have been potentially used. Also, around 80% of the rural inhabitants around the world make use of direct 

plant extract for medicinal use which creates a need to keep a check on the availability and abundance of 

these species. Hence, this gives motivation to develop and improve techniques for mapping the different 
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tree species. With this motivation, this study attempts to map the species present in a tropical forest region 

in Western Ghats of India. 

 

A major work on the forest type classification system of Indian forests was done by Champion & Seth 

(1968). They majorly classified the forest till the level of vegetation groups based on the climatic, edaphic 

and local conditions. Another major study on the classification and mapping of tree species of Indian 

forests was done by Roy et al. (2015) by using the IRS LISS-III multispectral data. In this study, they 

attempt to map the 17 gregarious tree species (tree species present in pure associations) like Shore sp., 

Tectona sp., Bamboo sp., Pinus sp. etc. However, detailed species-level information is still missing which can 

be possible to achieve by using hyperspectral data. 

 

These assessments draw focus towards mapping of species richness. Due to the vastness and remoteness 

of the forest, this analysis can always be better with remote sensing. Also, in a survey conducted by 

Felbermeier et al. (2010) among professionals of forestry, it has been seen that two third among them 

reported a deficiency in the information of forest and 90% of them supported the fact that application of 

remote sensing is the best way to bring improvements. Tree species classification by remote sensing has 

provided a broad application in assessment and monitoring of biodiversity, mapping of wildlife habitat, 

insect abundance, management of hazard and stress, invasive species mapping and conservation and 

sustainable management of the forest. Information regarding tree species is essential in understanding the 

ecology of the tree communities and the contribution of tree species to ecosystem services and functions 

(Fassnacht et al., 2016).  

1.2. Background on mapping tree species by remote sensing 

 
Over past two decades, studies on tree species mapping using remote sensing have increased 

exponentially. One reason for this exponential increase, is the availability of the hyperspectral and LIDAR 

data (Fassnacht et al., 2016). There have been many studies dedicated to remote sensing of plant diversity 

till date that have been following two extensive approaches; namely direct and indirect (Carleer & Wolff, 

2004; M. Foody, Atkinson, Gething, Ravenhill, & Kelly, 2005; Turner et al., 2003). Direct approaches were 

based on the identification of species from the remotely sensed data and map them directly (Turner et al., 

2003). Some of these studies involved identification of individual species, weeds and mangrove species. 

Indirect approaches are based on modelling the species distribution and diversity indices distribution like 

Fisher’s alpha, Shannon diversity index (SDI), Simpson index (Akbari & Kalbi, 2017). Few studies also 

focussed on spectral heterogeneity aspect of the data, i.e. Spectral Variation Hypothesis (SVH) to assess 

the plant diversity or the habitat heterogeneity (Palmer et al., 2002; D. Rocchini et al., 2009). However, 

these traditional methods of image analysis fail to provide detailed individual species classification and 

hence do not fully make use of the available data (Foody & Cutler, 2003). Some studies are focussed on 

using Normalized Difference Vegetation Index (NDVI) (Madonsela et al., 2018; Pouteau, Gillespie, & 

Birnbaum, 2018). Wang et al. (2004) integrated the pixel-based approach and object-oriented classification 

for mapping different groups of mangrove species available on the Caribbean coast of Panama. Some of 

the researches were also focussed on the different types of spectral unmixing algorithms available and 

used them for mapping individual species of plants (Parker Williams & Hunt, 2002; Robichaud et al., 

2007). Sobhan (2007) utilised a spectral unmixing technique for airborne hyperspectral imagery to detect 

shrubs and tree species composition at the pixel level using the HyMap image. But the research had a 

limitation of not being able to find the end member spectra which truly represented the species.  
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In recent years, many studies have been done on pixel-based classifiers, in which each pixel is 

independently processed, and its spectral information is taken as the input to the classifier. Support vector 

machine (SVM) is a kernel based classifier and has proved to perform better in case of hyperspectral data 

since it gives good results even with less training data (Bahria, Essoussi, & Limam, 2011). Also, multiple 

classifier systems (MCSs) or ensemble classifiers have gained importance in recent times, in which a pixel 

is classified based on the set of individual classifiers. MCSs make consideration of the diverse information 

received by individual ensemble classifiers which tend to increase the overall performance (Xia et.al., 

2017). Random Forest (RF) has been a popular ensemble classifier used in various studies and has been 

increasingly applied for hyperspectral data for tree species richness (Ferreira et al., 2016). RF randomly 

selects a certain amount of variables at each node of each tree and then chooses the best splits out of 

those selected variables (Belgiu & Drăguţ, 2016). However, when individual tree data consist of too many 

unimportant variables, their usage tends to generate noise which leads to reduced ensemble performance. 

Hence, in recent years, modifying RF has gained interest in the research community. This study focuses on 

one of the modified version of RF that is Rotation Random Forest (RoRF) which incorporates Principal 

Component Analysis (PCA) to the random forest at each node (Rodriguez, Kuncheva, & Alonso, 2006). 

Then the result of RoRF is compared with both kernel-based method, i.e. SVM and the ensemble 

classifier, i.e. RF. 

1.3. Problem statement 

 

As discussed in the previous sections, classification studies for predicting species-level information of the 

tropical forest are still unable to give detailed results. Hence, it provides a scope of exploring newer 

classification techniques to map the species richness of the tropical forest by using hyperspectral data. This 

study aims to partially fulfil that gap by experimenting an unexplored classifier, RoRF. 

1.4. Research identification 

 
The objective of the research is to map the individual tree species of the tropical forests of Shimoga region 

of Karnataka in India to get the species richness map.  

1.5. Research objectives 

 
1. To implement RoRF classifier which relies on PCA to transform variables at each tree node to 

another space for classifying hyperspectral data. 

2. To compare classification results obtained by the implemented RoRF classifier with those 

obtained by RF and SVM. 

3. To create species richness map of the study area from the classified image.  

4. To compare species richness obtained from the classified image with the one calculated from the 

field data.  
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1.6. Research questions 

 

Research objective 1 and 2: 

1. How does the PCA-based RoRF classifier perform in comparison with RF and SVM?  

2. How to deal with the unclassified tree species classes that are present in the study area? 

Research objective 3 and 4: 

1. To what extent can we map tree species from the used hyperspectral data? 

2. To what extent the species richness obtained from classified image differs from the species 

richness obtained from field data? 

1.7. Innovation 

 

In this study, hyperspectral data has been explored for tree species level classification. Classification of 

hyperspectral data has been carried out mostly by Maximum Likelihood Classifier (MLC) (Jia & Richards, 

1994), SVM (Vapnik, 1995) and RF (Breiman, 2001). MLC can effectively classify low to moderate 

resolution data, but for high spectral resolution data, it fails due to the presence of high variance. SVM has 

proven to give good results for hyperspectral data even with the less training data, but it has the limitation 

of manually selecting the penalty parameter (𝐶) and gamma (𝛾) (Burges, 1998). These parameters are 

further discussed in section 4.4.1.  

 
RF is a type of ensemble classifier. It is a simple method since it requires an adjustment of only the 

number of trees and the number of input features used to split at each tree node (Breiman, 2001). RF 

gained popularity to classify hyperspectral data because it can efficiently deal with a high number of input 

features which are the total number of bands in this case. Due to high dimensionality (Hughes 

phenomenon, discussed in section 2.1) of the hyperspectral data, there are chances of having very high 

unimportant features. In such cases, RF sometimes have tendency to show reduced performance. This is 

because, for high accuracy, ensemble classifiers need to have high diversity in their base classifier which 

can be achieved if each partition of feature set can accommodate within the base classifiers with equal 

probability. But since RF creates the feature subsets by random selection, it reduces the probability of all 

possible feature subsets being different. Hence there is a requirement to introduce extra randomization for 

the ensemble. It can be implemented by applying PCA on a bootstrap sample which results in RoRF 

technique which also solves the problem of the curse of dimensionality (Rodriguez et al., 2006). 

 

In this MSc Thesis, RoRF will be used for tree species mapping from hyperspectral satellite images. This 

classifier relies on the transformation of variables at each node to another space. According to Zhang & 

Suganthan (2014), this approach increases the diversity and accuracy of each decision tree built in the 

classifier. PCA is used to transform the data at each node.  We investigate whether the transformation at 

each tree node increases the classification results. This research will be focussed on making use of PCA-

based RoRF for the purpose of classification of hyperspectral imagery to identify different species in the 

selected study area. This research not only experiments the integrated RF- PCA approach but also fulfils 

the need for mapping of the species richness data for the selected region which has not been done yet. 
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1.8. Thesis outline 

 

This thesis has been organised into six chapters. Chapter 1 introduces the motivation of the study along 

with the background of the topic, problem statement, research identification, objectives and research 

questions. Chapter 2 briefs about the literature related to the research. Chapter 3 provides a description of 

the study area, dataset and the software that were used in this research. Chapter 4 describes the method 

adopted to achieve the research objectives. Chapter 5 shows the results obtained after applying the 

method. Chapter 6 contains a discussion on the obtained results. Chapter 7 concludes the research 

provided with the answers to the research questions and future recommendations. 
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2. LITERATURE REVIEW 

The following sections provide an insight of scientific literature related to the estimation of tree species 

richness in case of tropical forest making use of different multispectral and hyperspectral datasets and by 

using various classification techniques. Fassnacht et al. (2016) provided a broad analysis on the 

classification of different tree species using remotely sensed data in tropical forests.  Maity et al. (2017) 

currently performing similar work related to species identification in the same study area as this research, 

is using the same sensor data, but the approach they considered for the classification and identification is 

different. They made use of absorption peak decomposition method for identification of nineteen species 

although they have been successful in identifying only three species till now. In the past, it has been 

proven that to accommodate complex, non-normal and multimodal within-class variations, RF and SVM 

are better-classifying techniques (Baldeck et al., 2015). Hence, the focus of this research is focussed on the 

above-stated classification techniques. The sections below are subcategorized into following different parts 

which explain in brief the above mentioned different topics: 

 Hyperspectral remote sensing 

 Mapping tropical forest tree species 

 Methods used for tree species classification  

 Comparative performance of classification algorithms 
 

2.1. Hyperspectral remote sensing 

 
So far, medium to high-resolution multispectral data such as Quickbird data (Rocchini et al., 2009) and 

Landsat data (Bhat, Chandran, & Ramachandra, 2012) have been used for classifying different types of 

vegetation. But the hyperspectral image analysis gained importance due to its ability to provide detailed 

contiguous spectral signature curves which cannot be obtained from multispectral data. Hyperspectral data 

has a high spectral resolution which enhances its capability of differentiating between different ground 

objects like vegetation, soil, minerals and rocks. Its narrow bandwidth gives detailed information of earth 

surface which is difficult to obtain from coarser bandwidth data like that of the multispectral sensor. 

However, due to the huge volume of the data with increased dimensionality, it has been a challenge to 

extract thematic information from the hyperspectral data. High dimensionality in the data, i.e. a large 

number of bands is of great advantage to classify more number of classes. But the size of training sample 

required to train the classifier is dependent on the number of bands in the dataset. It has been mentioned 

by Mather & Koch (2011) that a training data of size 10 𝑁 to 30 𝑁 per class is required to train the 

classifier, where 𝑁 is the number of bands present in the dataset. Hence, in case of high dimensional 

dataset, the number of bands are very high resulting into requirement of the large training data per class to 

train the classifier. Therefore, the boon of the hyperspectral data i.e. large number of bands turns into the 

curse of dimensionality which is also known as Hughes Phenomenon which means for training the 

classifier; sample size increases exponentially with the total number of bands present in the data (Chutia et 

al., 2016). This “curse” can overcome by using the suitable classification algorithms discussed in section 

2.3. 
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Hyperspectral imagery classification has begun since the 1980s (Goetz et al., 1985) by using traditional 

multispectral classification approaches, but they produced inconsistent classification results. Significant 

changes in this field have happened since 2004 with the development of advance classifiers like SVM, RF 

etc. However, in recent times, many developments have been done for improving advance classifiers to 

apply on hyperspectral data. Some of these advancements include RFs classification and regression 

methods, Random subspace ensembles and Rotation forest etc. (Chutia et al., 2016).  

 

Hyperspectral data has proven to give better accuracy than active sensors like SAR and LiDAR especially 

in the identification of tree species in areas having rich biodiversity (Fassnacht et al., 2016). Studies have 

been conducted to map tree species with HYDICE sensor data (Clark et al., 2005), Hyperion sensor data 

(Kalacska et al., 2007) and AVIRIS sensor data (Carlson et al., 2007). In the case of Hyperion data, it was 

difficult to identify species richness of rich diversity areas. Also, its poor spatial resolution and cloud 

interference affected the quality of images. The different spectral patterns obtained with AVIRIS data gave 

better results than EO-1, Hyperion due to very high signal-to-noise ratio which means data contains more 

information and less noise (Carlson et al., 2007). Hyperspectral sensor data give high precision in species-

level forest classification, species identification, canopy density, etc. (Wang & Zhao, 2016). George et al. 

(2014) conducted a study for tree species discrimination in the western Himalayan region in India. They 

utilised Hyperion data and had shown that it performs comparatively better than Landsat data. It is 

because it can capture the spectral variability of the plant species, which hence improves the forest tree 

species mapping.  

 

2.2. Mapping tropical forest tree species 

 
Many studies have been done to map the tree species in the tropical region. In the tropical forest, the wide 

variety of species makes it a challenging task to identify and map all the species. Even if training data is 

available for those species, classification output will not be very appealing since, with increase in the 

number of classes, accuracy tends to decrease. To prove this, Feret & Asner (2013) conducted an 

experimental study with 17 species and 50 samples per species tested over seven different classifiers and 

all of them resulted in a linearly decreasing trend of accuracy with respect to number of species. The result 

varied from approx. 85-95% accuracy with 2 classes and 25% to 75% accuracy with 17 classes. 

 

In a study done over Costa Rica forest, seven different forest tree species were classified using HYDICE 

sensor data achieving an overall accuracy of 95%. Even after attaining such promising result, this model 

was unable to map even a single species across the study area from the many other unclassified tree 

species present in the study area (Clark et al., 2005). To overcome these problems, another approach has 

been adopted, namely to classify only single tree species. This method focuses only on one species which 

requires less training data  (Liu et al., 2003). Therefore, single species classification has been performed for 

mapping tree species in low diverse ecosystems (Feret & Asner, 2012; M. Foody et al., 2005). Similar to 

the single tree species mapping approach,  Baldeck & Asner, (2015) have mapped three species in the 

tropical forest of Barro Colorado Island, Panama which has a dense canopy. They made use of 

hyperspectral data obtained by High-fidelity Imaging Spectrometer (HiFIS) sensor having a spatial 

resolution of 1.12 m and spectral resolution of 9.4 nm using various support vector techniques.  

 

While mapping of individual tree species, background signal such as undergrowth vegetation and bare soil 

cause variations in spectral signatures of the same species in a different location. This happens usually in 
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case of tropical forests. To overcome this problem reference data has been derived from the dense canopy 

of single species (Carleer & Wolff, 2004; Ghosh, Fassnacht et al., 2014). 

2.3. Methods used for tree species classification 

 
Classification of hyperspectral imagery has been attempted with traditional multispectral classification 

algorithms, and further modifications have also been done to improve the performance of the classifier 

for the hyperspectral data in terms of accuracy and robustness. Chutia et al. (2016) provided a detailed 

study of different classification techniques for hyperspectral data. Maximum Likelihood Classifier (MLC) 

based classification has been used in the past to classify hyperspectral imagery for tree species mapping 

after applying PCA to reduce the dimensionality of hyperspectral data that is to reduce the number of 

bands by removing the bands with high correlation. This was done to reduce the redundancy in the data 

(Jia & Richards, 1994). But MLC is biased for small training samples and cannot be applied for high 

dimensional data. To reduce the dimensionality of the data, some other techniques can also be 

implemented like the removal of individual bands, vegetation indices calculation, PCA or similar other 

transformations to the data. Some studies made use of Minimum Noise Fraction (MNF) transformation 

for the purpose of diversity mapping using imaging spectroscopy (Ghosh et al., 2014; Laurin et al., 2014; 

Leutner et al., 2012). But in MNF, PCA is applied for the two times due to which there are chances to lose 

even the important information (Richards & Jia, 2006). 

 

Studies have been done where mapping of tree species has been carried out using SVM classifier; These 

studies provided good results in a closed-canopy and diverse tropical forest using hyperspectral data 

(Baldeck et al., 2015). The advantage of SVM is that it performs well even with the small training samples. 

But the selection of the kernel parameter is the major limitation of this approach.  

 

For tree species identification, ensemble classifiers showed good performance (Ferreira et al., 2016). 

Ensemble classifiers are gaining popularity in recent time. There are three main approaches to construct 

the classifier ensemble that are bagging (Breiman, 1996), RF (Breiman, 2001) and boosting (Freund & 

Schapire, 1997). Bagging gives high accuracy but leads to low diversity in the individual classifier. RF is a 

version of bagging to enforce diversity among base classifier which improves accuracy of the classifier. 

Boosting is used to enhance the performance of the classifier. For hyperspectral data, RF has been used in 

many studies due to its ability to deal with an increasing number of input features. But in such cases where 

a large number of unimportant features are present, sometimes the performance of RF reduces. So the 

modification of RF gained popularity to deal with the high dimensional dataset. In a study done by 

Rodriguez et al. (2006), ensemble classifier was constructed by the modification of RF which is known as 

RoRF. The modification was based on a feature extraction technique that is PCA. In this method, each 

decision tree is trained in new different rotated spaces which gives increased individual classifier accuracy 

and diversity simultaneously.  

 

Application of PCA is not suitable for feature extraction in the whole dataset (Heijden et al., 2004; Webb, 

2002)  because it results in loss of some relevant information. This is due to the reason that when PCA is 

performed in the whole data set and only a few components are retained then there are chances that more 

important components which correspond to small variance will be discarded. But PCA has performed 

better when applied for transformation of the data at each node in ensemble classifier. In a study 

conducted by Skurichina & Duin (2005), they proposed an ensemble classifier which was built by using 
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the PCA in the whole dataset. They have proved that a PCA based ensemble gave better results than 

ensembles based on random feature selection.  

 

Tumer & Oza (2003) have used PCA as a dimensionality reduction tool for the generation of the 

ensemble. The number of classifier in their ensemble was equal to the number of classes in their study. 

Different sets of extracted features were selected to improve the diversity among the classifiers. Then for 

the training of each base classifier, PCA is applied on data of each class. The number of principal 

components retained was the parameter of the algorithm. This transformation was applied on the whole 

dataset, and each classifier was trained on the selected extracted features which were further used to 

distinguish the original classes. This is the reason to choose the size of ensemble the same as the number 

of classes present. 

 

To analyse the performance of PCA based ensemble classifier, Rodriguez et al. (2006) performed a study 

in which they applied PCA as feature extraction technique to the feature subsets and reconstructed a 

feature set for each classifier in the ensemble. They considered all the principal components to avoid the 

loss of information. They called this a rotation forest and compared it with Bagging, Adaboost and RF. 

For all the methods they used the same number of classifiers in the ensemble. They performed this 

experiment on 33 datasets from the UCI Machine Learning Repository and showed that rotation forest 

gave the best results among all other methods. The reason for its good performance was the increased 

diversity among the classifier which was due to different feature subsets. In this study, they only 

considered PCA for the feature extraction.  

 

Zhang & Suganthan (2014) have compared different method where different feature extraction techniques 

were used to transform the data at each node. They used PCA and LDA to see the performance and 

compared it with standard RF. In this experiment, the parameter which controls the size of the feature 

subset was fixed as default that is the square root of the total number of features in the dataset for all three 

classifiers so that a comparative study among the classifier can be possible. Also, they considered the same 

number of base classifiers which was 100 for all the method so that a fair comparison could be possible. 

Both PCA based RoRF and LDA based RoRF performed better than standard RF. It was because when 

data was transformed at each node, it increased the diversity among the decision trees and hence results in 

low correlation among them. In this study PCA based RoRF outperformed LDA based RoRF. It is 

because all the principal components are retained to preserve the variability information of the data, and 

the whole dataset was used to train each base classifier. Hence accuracy has increased. 

. 
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2.4. Comparitive performance of classification algorithms 

 

Classifier comparison is an important step to know whether the classification results are significantly 

different from each other. For this, the selection of suitable statistical test is required. In those cases where 

only a single test dataset can be used to evaluate the classification algorithms, and it is not possible to 

apply the test in which evaluation is done repetitively by making use of resampling technique like k-fold 

cross-validation. For such cases, Dietterich (1998) has suggested a McNemar test because it gives the low 

type I error. The type I error can be defined as the probability of wrongly detecting a difference among 

classifiers where no difference is present. 

 

McNemar test has been used to compare the performance of 5 classification algorithms that are Bayes 

Net, IBK, Naive Bayes, J48 and Multilayer Perceptron (Bostanci & Bostanci, 2013). In this study, they 

experimented to justify the integrity of the McNemar test. For that, they compared the McNemar test with 

Kappa statistic and Root Mean Squared Error (RMSE) and found that McNemar test conforms to the 

Kappa statistic and RMSE. Cortés Rodríguez (2014) performed Land Use Land Cover (LULC) 

classification by using seven different ensemble classifiers and compared these classifiers by using the 

McNemar test.  
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3. STUDY AREA AND DATASETS 

3.1. Study area 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1 Study area. True colour composite (TCC) of AVIRIS-NG image (R: 54; G: 36; B: 18) over the Shimoga 
forest area (Karnataka) 

 

 

The peninsular region of India, particularly the Western Ghats, is home to one of the eight hottest 

hotspots having rich biological diversity in the world and is declared as World Heritage Site by United 

Nations Educational, Scientific and Cultural Organisation (UNESCO) (The Times of India, 2012). The 

forests of Western Ghats lie within 12°N to 14°N covering areas of Coorg district, Hassan, Chikmagalur, 

Shimoga up to the southern region of Uttara Kannada. This research is targeted in Shimoga region which 

is the gateway to the hilly region of the Western Ghats Figure 3.1. The extent of the study area lies within 

75.408949 to 75.446867 in longitude while 13.819849 to 13.846069 in latitude. The region has rich species 

diversity which is due to the tropical climate and heavy precipitation (Bhat et al., 2012). Rainfall season is 

from June to September, with maximum rainfall reported in July. And the reported driest month is March. 

Following Figure 3.2 shows the False colour composite (FCC) of vegetation of the study area during the 

driest month, i.e. March and the month just after the rainfall season gets over i.e. November. This FCC 

was analysed by using Sentinel data to see the clear spread of the vegetation. During dry season, evergreen 
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species do not shed all of their leaves like deciduous species. So during the dry month also, some part in 

the Figure 3.2 is showing red colour in FCC which denotes that this region has the dominance of 

evergreen species.  A transition from moist deciduous to pure evergreen can be clearly seen in the study 

area.  
 

 

 

 
Figure 3.2: Analysis of vegetation in Shimoga, Karnataka by using False Colour Composite (FCC) images of Sentinel 
2 data 

 

 
According to Champion & Seth (1968), this area consists of Southern Tropical Semi-Evergreen Forest 

(2A/C2) and South Tropical Moist Deciduous Forest (3B/2). Eastern side of the study area has degraded 

forest, so no proper shape and form is present. Even plantation species like Teak & Eucalyptus are 

present inside the natural forest of this region. Evergreen tree species are mostly present in the western 

side of the study area, primarily concentrated in the mountain range named Mandgadde. Deciduous 

species are spread throughout the study area because, in the evergreen region, past illegal felling and fire 

have left open patches in which restoration has been done with deciduous species as well. 

 

 

3.2. Dataset used 

 
Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG), developed by Jet 

Propulsion Laboratory (JPL) of The National Aeronautics and Space Administration (NASA) is used in 

this study. It is an airborne hyperspectral sensor having wavelength range 376-2500 nm with a narrow 

bandwidth of 10 nm, 425 bands and 5m spatial resolution (gisresources, 2013). The swath width of 

AVIRIS is around 11 km. The data acquisition was made on 1st January 2016. The dataset was available in 

the Visualisation of Earth observation Data and Archival System (VEDAS) of Space Application Centre 

(SAC) (Vedas SAC, 2016) as shown in Figure 3.3. For this study, 12 sqkm area has been selected for 

analysis.  

 

 

https://en.wikipedia.org/wiki/Jet_Propulsion_Laboratory
https://en.wikipedia.org/wiki/Jet_Propulsion_Laboratory
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Figure 3.3: AVIRIS-NG strips available for Shimoga, 
Karnataka (Vedas SAC, 2016) 

Table 3.1: Dataset information 

 

 

Dataset information  

Name AVIRIS-NG 

Sensor Hyperspectral  

Spatial resolution 5m 

Spectral resolution 425 

Swath  11km 

Wavelength range 376-2500 nm 

Bandwidth 10nm 

Source (Vedas SAC, 2016) 

 

 

3.3. Software used 

 

Following software have been used in this study: 

 

1. All the classification methods and their comparison were done using Python 2. The libraries used 

were: gdal, ogr, numpy, pandas, researchpy, sklearn (Pedregosa et al., 2011).  

2. R-Studio (R Development Core Team, 2010) was used for field plot generation by using clhs 

package and for calculating covariance between different species by using corrplot package (Wei 

& Simko, 2017) .  

3. ENVI Classic 5.0 was used for visualisation and pre-processing of data and spectral signature 

generation. 

4. ArcGIS (ArcMap v 10.1) developed by ESRI was used for data preparation and map generation. 

5. QGIS Desktop version 3.4.3-Madeira (QGIS Development Team, 2009) was used for digitization 

of tree crown and tree species measurement. 

6. All the three algorithms were computational intensive; hence High-performance 

computing (HPC) systems were utilised for their processing. 
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4. METHODOLOGY 

This chapter describes the methods adopted to achieve the objectives of this research. The methods 

include the hyperspectral data preprocessing, sampling to generate field plots, collection of field data and 

its analysis, classification methods SVM, RF and RoRF for tree species mapping, accuracy assessment and 

the classifier comparison, tree species richness estimation both from the field and from the classified 

imagery. The general methodology has been highlighted in Figure 4.1. 

 

 

 

 

 

 
Figure 4.1: Generalized Methodology 
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4.1. Data preprocessing 

 
The available data of AVIRIS-NG was of Level-2 (L2) (reflectance data) which means it was 

already radiometrically and atmospherically corrected. L2 data is produced at the Jet Propulsion 

Laboratory (JPL) Science Data System (SDS). All the bands are visualized individually, and water 

absorption bands and noisy bands are removed from the dataset by using the tool Resize data 

(Spatial/Spectral) in ENVI Classic image processing software version 5.0. Table 4.1 shows the list of the 

bad bands that were removed. The area outside the natural forest is cropped from the study area by using 

tool Subset Data via (region of interest) ROIs in ENVI. A total of 367 bands were retained which were 

further used for classification 

 

 

Table 4.1: List of bad bands 

 

4.2. Field data collection 

 
The data collected from the field should be capable of representing the whole study area. Different criteria 

were considered in several studies for the collection of tree sample data. Clark & Roberts (2012) collected 

reference data according to visual interpretation like dominant species, isolated species etc. Jensen et al. 

(2012) considered accessibility in the study area. Some studies considered a group of species or 

homogenous crown (van Aardt & Wynne, 2007) and reducing background signal by selecting only the 

dense crown (Youngentob et al., 2011). Some studies have attempted to consider understory trees which 

have proved to be a difficult and challenging task (Korpela, Hovi, & Morsdorf, 2012). So it has been 

suggested for small trees, to do area-based classification rather than single species based approach. Only 

some studies considered the increasing representation of each species (Engler et al., 2013). In a study done 

by  Leckie et al. (2005), several reference classes have been taken, which later merged into a single class to 

increase representation in each class and has proved to give good results. 

 

The airborne hyperspectral data was collected on January 1, 2016, but field data collection was done in 

November 2018. It is assumed that there will be no significant change in tree species distribution between 

image acqusition and ground truth collection. Field data collection was done for 12 days from November 

9, 2018, to November 20, 2018. 

 

AVIRIS-NG 

Bands 
Band Wavelength (nm) Remarks 

1-10 376.44 to 421.52 Noisy bands 

195-207 1348.12 to 1408.23 Water vapour absorption bands 

287-316 1808.92 to 1954.17 Water vapour absorption bands 

325-329 1999.25 to 2019.28 Noisy bands 
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A GPS-Aided GEO Augmented Navigation (GAGAN-GPS), named “Parishudha” was used to collect the 

location data of the tree species. It has an accuracy of 0.5m to 2m. Inch tape and ropes were used for 

laying plots. The magnetic compass was used to lay plots with proper orientation.  

 

 

 
Figure 4.2: GPS-Aided GEO Augmented Navigation (GAGAN-GPS) “Parishudha” 

 

 
A Latin square is a square grid which contains only one sample in each row and column. When a Latin 

square is generalised to a "𝑛"  number of dimensions and in each axis-aligned hyperplane there is only one 

sample present is called the Latin hypercube (Figure 4.3) (Minasny & McBratney, 2006). In this study, 

Conditioned Latin hypercube sampling (cLHS) was used to generate field plots. The cLHS is a type 

stratified random sampling method. In this, sampling is done using some ancillary information. In this 

study, it was decided to generate 30 sample plots. Two variables that are Topographic Wetness Index 

(TWI) and Aspect has been used for ancillary information. These parameters were selected because 

species distribution mainly depends on soil quality, aspect, topography and drainage in the area (Moeslund 

et al., 2013). Both TWI and the aspect were calculated by using the Cartosat Digital Elevation Model 

(DEM) of 30 m spatial resolution. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
Figure 4.3: An example of 2-D Latin hypercube. Here, x and y are the two variables divided into equal classes of 
equal interval. The dots are the sample points. Note that for each class in both the axis, one sample point is present.  
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TWI (Beven & Kirkby, 1979) is a function of slope and flow accumulation of an area. It has shown a good 
correlation with species richness (Song & Cao, 2017). TWI was calculated in Arc-GIS 10.1, using python 
based tool provided by Fricker, (2017). It is given by (Equation 4.1):  

 
 

Where,  

𝑤 = topographic wetness index 

𝛼 = local area of flow accumulation 

𝛽 = local slope (in degrees) 

 

In the cLHS method, the range of selected variable (TWI and aspect) was divided into 30 equal probable 

intervals. And then in each Latin hypercube, one sample point was laid. As a result, 30 sample points were 

obtained. Note that the number of division is equal to the number of the sample points required. The 

advantage of this technique is that the number of samples does not depend upon the variables used 

(Jenkins, 2015). Because from the Figure 4.3 it can be seen that the two variables (x and y) are divided into 

5 classes for generating 5 sample points. Similarly in this study, the two variables (TWI and aspect) were 

classified into 30 parts to generate 30 sample points. Conditioned Latin Hypercube Sampling (CLHS) 

library (Roudier, 2011) has been used in RStudio to perform cLHS sampling, provided with the number of 

required sample points, i.e. 30. Figure 4.5 shows the sample plots from where the tree species location 

data has been collected. A total of 30 sample plots were decided but on field it was found out that the 5 

points were inaccessible due to the rough terrain and security issues. So, those points were rejected and 

tree location data from 25 plots was collected. 

 

For each plot, location of all the four corners of plots was measured using the “Parishudha” with accuracy 

ranging from 0.5 m to 2 m. Since ranging rods were not available, so a right-angled triangle (Pythagoras 

theorem) was made at the corner of the plot for proper orientation of plot with the help of inch tape and a 

magnetic compass Figure 4.6 .Location of all trees within the plot was noted. Group of same tree species 

and dense crowns were given special importance so that for generation of spectral signatures background 

noise and mixed crowns could be avoided. In total 320 tree location points were collected representing 20 

tree species. 

 

 
𝑤 = 𝑙𝑛 (

𝛼

𝑡𝑎𝑛𝛽
) (Equation 4.1) 

 
Figure 4.4: Topographic Wetness Index (TWI) 

 

 
Figure 4.5: Sample plots 
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4.3. Data preparation 

 

The collected 320 points shapefile was imported in Quantum GIS (QGIS) software to digitise the crowns 

of trees. Google base map was used to delineate the tree crown using the QGIS plugin QuickMapServices. 

As a result, a total of 320 polygons consisting of 1,738 pixels in total were obtained (Figure 4.7). These 

polygons were divided into a training set and testing set manually, considering that training and testing 

polygons of each class should be selected from different plots. Following is the Table 4.2 showing the 

training and testing data.  

 

 
Table 4.2: Tree species identified in the study area 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 4.6: Field plot alignment 

 

 

Figure 4.7: Digitization of tree crowns over world view 
image (Google Earth, 2019) 
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4.4. Classification of hyperspectral imagery 

4.4.1. Support Vector Machine (SVM) 

 
The SVM was developed by Vapnik (1995). This classifier tries to find the optimal hyperplane (a decision 

boundary) in multidimensional space in such a way that there will be a maximum margin between the 

classes to minimize the structural risk (classification errors). The hyperplane is built on the basis of 

training data properties which tends to maximise the margin of separation between the different classes. A 

subset of training data contributes in constructing of the hyperplane and called as support vectors. Classes 

can be clearly separable or non-separable. As in remote sensing classes are generally not able to separate 

linearly; non-linear SVM can be implemented. In non-linear SVM, raw input data or feature vector (𝑥𝑖 ∈

 𝑅𝑑) is mapped into a higher dimension space ℋ to improve the class separability. It facilitates the fitting 

of the linear hyperplane. The training samples are projected in higher dimension ℋ by means of a 

nonlinear vector mapping function called Φ: 𝑅𝑑 → ℋ by a decision rule shown in the (Equation 4.2. 

 

 

 
𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑𝛼𝑖

𝑛𝑠𝑣

𝑖=1

𝑦𝑖𝛷(𝑥). 𝛷(𝑥𝑖) + 𝑏) 

 

 

(Equation 4.2) 

 

 

Where, {𝑥𝑖,𝑦𝑖} is the training dataset in which 𝑥𝑖 is the observed features while 𝑦𝑖  is the label information 

of the class. 𝛼𝑖  is the positive Lagrange multiplier for each training point (𝛼𝑖 > 0 are support vectors). 

𝑛𝑠𝑣 is the number of support vectors, 𝑥 is the point lying on hyperplane, 𝑏 is the bias which is computed 

for stability concerns by using all the support vectors on the margin. 

 

In high dimension space 𝛷(𝑥) ∗ 𝛷(𝑥𝑖) can be computationally intensive so Vapnik, (1995) proposed a 

kernel function denoted by 𝐾(𝑥, 𝑦) . This function used in training algorithm and reduces the 

computational burden. The generalised decision rule is given in (Equation 4.3)  

 

 

 

 
𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑𝛼𝑖

𝑛𝑠𝑣

𝑖=1

𝑦𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏) 

 

 

(Equation 4.3) 

 

 

 

Some of the common kernel functions are linear, polynomial (homogeneous), polynomial 

(inhomogeneous), Radial Basis Function (RBF), Gaussian Radial Basis Function and sigmoid. In this study 

RBF kernel function is adopted which is given by the (Equation 4.4): 

 

  

𝐾(𝑥, 𝑥𝑖) = exp(−𝛾‖𝑥 − 𝑥𝑖‖
2) , 𝛾 > 0 

 

(Equation 4.4) 
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In RBF two parameters have to be optimised before performing the training stage. These are the penalty 

parameter denoted as 𝐶(error term) and kernel parameter denoted by 𝛾 (gamma). The 𝐶 parameter has to 

be optimised in case of all the SVMs because it controls the trade-off between decision rule complexity 

and training error frequency. While 𝛾 needs to be defined before applying RBF-SVM. In this study, the 

RBF kernel is selected because the linear kernel was not able to handle nonlinearly separable classes. The 

polynomial and sigmoid kernels needs more parameter to tune than the RBF kernel also the computation 

is more stable in RBF kernel (Tso & Mather, 2009). 

 

RBF-SVM classification is performed using ‘svm’ function present in sklearn library for Python 2. SVM is 

trained using the optimal value for C and gamma. The optimal C value and gamma value was chosen by 

applying loop for the C value range (1 to 1000 at an interval of 100) and gamma value range (0.1 to 1 at an 

interval of 0.1). Maximum accuracy was obtained at C= 100 and gamma=0.6. Further accuracy assessment 

was done using the confusion matrix.  

 

 

4.4.2. Random Forest (RF) 

 
The RF (Breiman, 2001) is a machine learning algorithm which consists of a combination of decision trees 

classifiers. In this, each classifier is generated by selecting a set of independent random samples from the 

training set of the input vector and forming a forest. Bagging method is used to generate forest randomly. 

Bagging avoids overfitting and also improves the classification accuracy (Breiman, 1996). Bagging 

generates a random sample with replacement of size 𝑛 from the training set 𝑁 and makes a new training 

set (where,𝑛 < 𝑁). Suppose data contains 𝑀 attributes (spectral bands), so 𝑚 (where,𝑚 <  𝑀) attributes 

are also randomly selected for each node to provide the base for the best split at that node of the tree. 

 

So there may be the chance that some samples are selected many times while some may not choose at all. 

Approximately two-third samples used for training called as in-bag samples while remaining are called as 

out-of-the bag samples, which are used in internal cross-validation to estimate the performance of 

resulting RF model. This error estimate called as out-of-bag (OOB) error. The number of decision trees 

(Ntree) is defined by users, and each decision tree is produced independently without pruning. Each node 

of the tree splits using the number of features (Mtry) that is a user-defined parameter. The algorithm then 

creates decision trees with high variance and low bias. The final classification decision is taken considering 

arithmetic mean of the class assignment probabilities calculated by all the trees in the RF. Then the 

unlabelled data is given as input and is evaluated against all the decision trees in classifier ensemble. Finally 

voting is done for class membership by each tree and the class with maximum votes is finally assigned 

(Belgiu & Drăguţ, 2016). 

 

RF is performed using ‘RandomForestClassifier’ function present in the ensemble class of sklearn library 

for Python 2. Size of the feature subset was fixed at 19 (square root of the number of features), and Ntree 

was defined as 500 since the errors get stabilize at this number of decision trees (Belgiu & Drăguţ, 2016). 
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4.4.3. Rotation Random Forest 

 
The RoRF (Rodriguez et al., 2006) is a classifier ensemble in which the original data feature space is 

transformed into another feature space. This method is rather different from the traditional methods, 

where, whole data is transformed using feature reduction techniques before the classification. Instead, in 

RoRF, data transformation applies at each node in different subspace. In this method, the feature set is 

split into K subsets, and in each subset data transformation algorithm is applied, and then the new 

extracted feature set is rearranged while keeping all the components. It results in increasing both member 

diversities and individual accuracy within the classifier. In this study, PCA based RoRF has been used 

where PCA is used to transform data at each node. 

 

The theory behind the PCA based RoRF: 

Assumptions:-  

1) 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇  dataset having n features  

2) 𝑋 = Training dataset in the form of 𝑁 × 𝑛 matrix 

3) 𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑛]𝑇   It is the vector with class labels in the form of 𝑁 ×  1 matrix and Class 

labels  are denoted by the set {𝑤1, 𝑤2, … , 𝑤𝑐}, where  𝑐  is the total no. of class 

4) 𝐿 =  𝐷1, 𝐷2, … , 𝐷𝐿  are the classifier ensemble where 𝐿  is the total no. of decision trees  

5) 𝐹  is the feature set 

To formulate Base classifiers:-  

 All classifiers are trained in parallel for 𝑖 =  1, … , 𝐿 

 Split feature set (𝐹) into 𝐹𝑖𝑗  disjoint subsets:  for 𝑗 =  1, … , 𝐾, where 𝐾 is the total number of 

subsets. Each subset contains 𝑀 features. 

 Now, consider a random non-empty subset, 𝑋𝑖𝑗 of classes (for given dataset X) for the feature 

set  𝐹𝑖,𝑗 at  𝑗 =  1, … , 𝐾 . (Note: the Eigen values of the considered subset may contain zero 

values)  

 Reject the terms which are having zero Eigenvalues in 𝑋𝑖𝑗 (so that, 𝑀𝑗 ≤ 𝑀)  

 For each subset𝑋𝑖,𝑗 , a bootstrap sample is selected i.e.  75 % of the data count (𝑋𝑖𝑗) is selected 

then the new set of 𝑋𝑖,𝑗 is denoted as 𝑋′𝑖,𝑗      

 Apply PCA on 𝑋′𝑖,𝑗  and 𝐹𝑖𝑗 and  matrix of coefficient [𝐶𝑖𝑗] is obtained, For 𝑗 =  1, … , 𝐾 

 Arrange coefficient 𝐶𝑖𝑗 matrix in Rotation matrix (𝑅𝑖) format (Equation 4.5) and rearrange the 

column(𝑅𝑖) into 𝑅𝑖
𝑎 (size N x n) format to match the order of feature set (𝐹). 

 

 

 

𝑅𝑖

= 

[
 
 
 
 𝑎𝑖,1

(1)
𝑎𝑖,1

(2)
, … , 𝑎𝑖,1

(𝑀1)
0 ⋯ 0

0 𝑎𝑖,2
(1)

𝑎𝑖,2
(2)

, … , 𝑎𝑖,2
(𝑀2)

⋯ 0

⋮ 0 ⋱ ⋮

0 0 ⋯ 𝑎𝑖,𝐾
(1)

𝑎𝑖,𝐾
(2)

, … , 𝑎𝑖,𝐾
(𝑀𝐾)

]
 
 
 
 

 

 

 

 

 

(Equation 4.5) 

The training classifier, 𝐷𝑖 is constructed using the training set = (𝑋𝑅𝑖
𝑎  , 𝑌) 
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Classification phase:-  

For a given unlabelled input data  𝑥, let 𝑑𝑖,𝑗(𝑥𝑅𝑖
𝑎) be the probability that classifier 𝐷𝑖  has assigned by 

stating the hypothesis that 𝑥 belongs to class 𝑤𝑗  

Now Confidence of each class 𝑤𝑗 can be calculated by average combination method (Equation 4.6). 

 

                   𝜇𝑗  (𝑥) =  
1

𝐿
∑ 𝑑𝑖,𝑗 (𝑥𝑅𝑖

𝑎)𝐿
𝑖=1  where  𝑗 =  1, … , 𝑐 (Equation 4.6) 

𝑥  will be assigned to the class which will have maximum confidence.  

 

In this study, RoRF algorithm was applied to the AVIRIS NG hyperspectral imagery. RoRF was 

performed using sklearn library for Python 2. Two key parameters of RoRF that are the number of 

features in each subset (𝑀) and the number of decision trees (𝐿) and since in this case number of features 

were 367, so  𝑀 was fixed to 19 (square root of the number of features). Decision trees were selected as 

the base classifier and the number of trees (𝐿) were selected as 500. These two values were taken same for 

both RF and RoRF, so that a fair comparison could be possible. Overall accuracy was estimated using the 

confusion matrix to assess the performance of the classifier.  

   

 

4.4.4. Accuracy assessment of the classification algorithms 

 

Accuracy assessment for tree species richness is an important step to assess the performance 
quantitatively. This study has utilised a confusion matrix to determine the classification accuracy from the 
validation samples which has further helped to derive Kappa index, overall accuracy, producer accuracy 
and user accuracy (Congalton, 1991). Confusion matrix, which is also known as the error matrix is formed 
for comparison or cross-tabulation of the number of pixels of all classes in the classified image to the 
actual class (obtained from testing data). Table 4.3 shows the layout of the confusion matrix. 
 
 

Table 4.3: Layout of a confusion matrix 

Testing data Classified image Total 

Class 1 Class 2 ……… Class n 

Class 1 𝑎11 𝑎12 ……… 𝑎1𝑛 𝑅1 
Class 2 𝑎21 𝑎22 ……… 𝑎2𝑛 𝑅2 
……… ……… ……… ……… ……… ……… 

Class n 𝑎𝑛1 𝑎𝑛2 ……… 𝑎𝑛𝑛 𝑅𝑛 
Total 𝐶1 𝐶2  𝐶𝑛  

 

 

Here, 𝑎𝑝𝑝 are the number of pixels that are correctly classified and  𝑎𝑝𝑞 are the number of pixels which 

belongs to class 𝑝 in testing data but it is classified into class 𝑞. 
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Overall Accuracy is calculated by dividing the sum of the count of the correctly classified pixels (diagonal 
elements of the confusion matrix) by the total count of pixels in the testing data, as shown in (Equation 
4.7) 
 

 
𝑂𝐴 =

∑ 𝑎𝑖𝑖
𝑛
𝑖=1

∑ 𝑅𝑖
𝑛
𝑖=1

 

 

 
(Equation 4.7) 

 
 

Producer Accuracy is calculated by dividing the total number of correctly classified pixels in class 𝑖 by the 
total number of pixels present in that class in testing data. Given in the (Equation 4.8). This is a measure 
of error of omission, it indicates the probability that a pixel is correctly classified this measure is also 
known as the error of omission.  

 
 
 

𝑃𝐴𝑖 =
𝑎𝑖𝑖

𝑅𝑖
 

 
(Equation 4.8) 

 
 
 

User accuracy is calculated by dividing the total number of pixels that are correctly classified in the class 𝑖 
divided by total number of pixels that are classified in that class. Given in the (Equation 4.9) Since it 
indicates the probability that a pixel classified on the image is actually represent that class on the ground, 
this measure is also known as the error of commission. 
 

 
 

𝑃𝐴𝑖 =
𝑎𝑖𝑖

𝑅𝑖
 

  
(Equation 4.9) 

 
 
In this study accuracy of the PCA-based RoRF, RF and SVM was assessed by using sklearn library using 
“classifier.score” function and kappa score was calculated by using “cohen_kappa_score” function in 
Python 2. 
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4.4.5. Comparison of classification algorithms 

 
Classification algorithms (SVM, RF and RoRF) are compared by using the McNemar test. The null 
hypothesis for this test was formulated as both the classifiers are not significantly different from each 
other. Alternate hypothesis was that the performance of both the classifiers was different from each other. 

𝑧 Score has been calculated by using Equation 4.7. In case of the 𝑧 = 0, it means both the algorithms have 

performed the same. At the significance level of 𝛼 = 0.05,  𝑝 value is calculated by using Equation 4.8. If 

the 𝑝 value is lower than the selected significance level, then reject the null hypothesis that both the 
classifiers are performing the same. Hence, both the classifiers are significantly different from each other 
vice versa (Bostanci & Bostanci, 2013).  
 
McNemar test is based on the 2x2 contingency matrix of the algorithm predictions. Following table 4.4 
shows the possible outcomes of the algorithms.  
 
The test statistic for McNemar test is given by the (Equation 4.10):  

 
 

𝑧 =
(|𝑁𝑐𝑤 − 𝑁𝑤𝑐|  − 1) 

√𝑁𝑐𝑤 + 𝑁𝑤𝑐

  

 

 
(Equation 4.10) 

 

 
Where, 

𝑁𝑐𝑤: denotes the number of times the algorithm 1 classified correctly and the algorithm 2 failed. 

𝑁𝑤𝑐 : denotes the number of times the algorithm 2 classified correctly and the algorithm 1 failed 

𝑁𝑤𝑤: denotes the number of times when both the algorithms failed 

𝑁𝑐𝑐 :  denotes the number of times when both the algorithms classified correctly 

 

The 𝑝 value is given by the  

(Equation 4.11): 

 

 

𝑝 = 2 ∑ (
𝑛

𝑖
)

𝑛

𝑖=𝑁𝑐𝑤

 0.5𝑖(1 − 0.5)𝑛−𝑖 

 

(Equation 4.11) 

 

Here, 𝑛 denotes the total number of samples, 𝑛 =  𝑁𝑐𝑤 + 𝑁𝑤𝑐   

 

 
 

Table 4.4: Layout of the contingency matrix for McNemar test 

 

 

 

 

 

 

 

 

 Algorithm 1 
(wrong) 

Algorithm 1 
(correct) 

Algorithm 2 (wrong) 𝑁𝑤𝑤 𝑁𝑐𝑤 
 

Algorithm 2 (correct) 𝑁𝑤𝑐 𝑁𝑐𝑐 
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In this study, McNemar test was calculated using “researchpy” library in Python 2. 𝑧 Score was calculated 

between two classification algorithms at a time. Hence, this test was applied three times to compare the 

performance of all three combinations of classifiers. 

4.4.6. Assessment of tree species richness 

 

In principle, species richness is the total number of unique species in a particular area.  Species richness 

was calculated by using TomBio tool (Burkmar, 2015) in QGIS. This tool can be used for obtaining the 

distribution and abundance of the living organisms. It was originally made to use in the United Kingdom 

but can be used in any geographical region. In this tool, the grid is created and the size of grid is user-

defined, to obtain the information regarding biological records within each of the grid. This tool counts 

the total number of points and the unique points in each grid. In the output attribute table the total 

number of points is represented as “abundance” and the total count of unique pixels is represented by 

“richness”, along with the spatial information of the grid. 

 

The TomBio version 3.1.1 is the latest version of the tool and is available from the QGIS plugin 

repository. It takes .csv file as input. Therefore RoRF classified image was converted into point layer and 

saved in csv format. This file was imported in tool and latitude, longitude and taxon column were 

specified. Since the size of field plot was 30m x 30m, the grid size was also selected the same so that a 

proper comparison could be possible between species richness obtained from field and the RoRF 

classified imagery. This tool was run by selecting the create map layer button and the map layer was created 

having the information associated with each grid. That is the information about the number of unique 

pixels present in each grid and also the total number of pixels present in the grid. These can be visualised 

clearly in the attribute table. Here, a number of unique pixels are the different species in the grid. Hence, 

species richness per 30m x 30m was obtained. The richness map was then created using the Arc GIS.  

 
The richness from the field was also calculated manually and then compared with the species richness 

obtained for the same region (field plot) from the RoRF classified map.   
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5. RESULTS 

This chapter presents all the results and their analysis which were obtained by applying the methodology 

steps present in chapter 4 on the hyperspectral imagery. This chapter has been divided into following 

subsections: 

 

 Spectral separability 

 Classification results analysis 
o Result obtained from SVM 
o Result obtained from RF 
o Result obtained from RoRF 

 Comparison of classifiers 

 Forest type map 

 Species richness 

5.1. Spectral separability 

 

Spectral signatures were generated from the pixel corresponding to the tree location point, preferably 

where tree species were present in groups. The spectral signatures of all the tree species are shown in 

Figure 5.1. This was done to see the spectral variability among the different tree species. For better clarity, 

covariance of spectral reflectance among the tree species was calculated, which is shown in Figure 5.1. The 

range of Covariance lies between 0 to 0.02, which is very low. Hence, the variability among the spectral 

signatures proved to be low. Among all the tree species classes, Eucalyptus grandis has showed maximum 

covariance with all other species. And Lannea grandis has the lowest covariance value with all other tree 

species. Lannea grandis shows little spectral variance with respect to Eucalyptus grandis, Tectona grandis and 

Dalbergia latifolia.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1: Comparison of Spectral signature between different tree species. The graph is plotted between 
wavelength and reflectance on x and y axis respectively. Different colours represent different tree species identified 
in study area. 
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Figure 5.2: Covariance between spectral signatures of the tree species. The 
covariance value increases from light colour to dark colour. 
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5.2. Classification results analysis 

 

In this research three different classifiers, namely SVM, RF & RoRF have been used and compared so as 

to provide best tree species level classification based on AVIRIS-NG hyperspectral imagery for Shimoga 

region of Karnataka, India. The classifier with best performance shall be used to generate the final results 

for the tree species richness and analysis. This section explains the classification results obtained from 

each classifier. 

 

5.2.1. Result obtained from SVM 

 

The SVM algorithm was applied to classify the hyperspectral imagery of the Shimoga region in Karnataka. 

SVM consists of two major parameters, C value and Gamma, which needs to be optimised accordingly to 

obtain maximum classification accuracy. For applying parameter optimization, a range of values of C and 

gamma have been defined. The set of values which provided highest accuracy was used to perform 

classification. To determine these parameters, the range defined for C value was 1 to 1,000 at an interval 

of 100, while the range defined for gamma was 0.1 to 1 at an interval of 0.1. A nested for loop has been 

applied on the above mentioned ranges, which provided the set of C = 100 and gamma = 0.6 to give 

highest accuracy. The variation of accuracy with different set of C and gamma values has been shown in 

Figure 5.3.  
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The classified image obtained using SVM with optimized parameters has been shown in Figure 5.4. From 

the classified image, it can be observed that Bahunia racemosa, Dalbergia latifolia and Lannea grandis are spread 

over southern part of the area. This region mostly consists of hilly area. It is a part of Mandgadde range.  

This range extends from north to south. On the peaks of this range Lannea grandis and Holarrhena 

antidysenterica were dominant species. In the flat region of southern part Terminalia bellarica has been seen 

more. In northern part more number of tree species classes were together showing more species richness 

in northern part. Alsodephne semicarpifolia and Lagestormia Lanciolata were in dominance while Tectona grandis 

was spread more in northern part but not in dominance, since Tectona grandis is not a native species of this 

area. It was planted to fill the blank patches inside the forest. In the western part of study area Terminalia 

tomentosa and Grewia tiliaefolia were together dominating the forest. Delinia pentagyna, Grewia tiliaefolia and 

Phyllanthus emblica were in flat portions of the study area. Terminalia paniculata, Xylia xylocarpa and Lagestormia 

parviflora are mostly present in the eastern side of the study area. Also, Eucalyptus grandis is seen in some 

patches together with them in eastern part of study area.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Variation in overall accuracy with gamma value at constant value of C 

Figure 5.4: Classified output generated using Support Vector Machine 
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The confusion matrix obtained from the classified result has been shown in Table 5.1. The SVM gave an 

overall accuracy of 41.21% and kappa value of 0.37. From the confusion matrix, it can been observed that 

Bahunia racemosa has maximum producer accuracy i.e. 82.76% followed by Eucalyptus grandis and Bombax 

ceiba which has a producer accuracy of 78.57% and 73.08% respectively. For class Lagestormia parviflora, 

SVM failed to correctly classify due to overlapping of signatures with other species. Training data of 

Lagestormia parviflora has 33 number of pixels and mostly it is classified into two dominant species that are 

Terminalia paniculata and Xylia xylocarpa. 

 

For Cassia fistula and Xylia xylocarpa, producer accuracy is very low i.e. 9% and 16.18% respectively. Rest of 

the species classes achieved producer accuracy between 20% to 70%. The dominant species Xylia xylocarpa 

is mostly misclassified with Grewia tiliaefolia and Alsodephne semicarpifolia. In case of Lannea grandis 17 out of 

37 pixels were correctly classified by SVM. But 55 pixels from other species were misclassified with Lannea 

grandis, as a result 23.61% of user accuracy.  

 

 

 

 

 

5.2.2. Results obtained from RF 

 

In RF, there are two major parameters which need to be defined before classification, namely, number of 

decision trees and the number of features per subset. The number of features per subset are taken as 

square root of the total number of features. In this study, there are 367 bands in data or 367 total number 

of features after the pre-processing step. Hence √367 ≈ 19 has been taken as number of features per 

subset. For studying the trend of variation of overall accuracy with the number of trees, a graph between 

the two has been plotted and shown in Figure 5.5. It can be observed that the maximum accuracy of 

42.68% was obtained when number of trees were 300. Although 300 trees have given highest accuracy, the 

number of trees considered for training the classifier is 500 because error gets stabilized with 500 trees 

(Belgiu & Drăguţ, 2016). And the classifier can be compared properly by fixing this parameter. 

 

 

 

 

Table 5.1: Confusion Matrix for SVM 
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Figure 5.5:  Variation in overall accuracy based on number of decision trees used in RF. Dotted line represents the 
trend of increase on logarithmic scale. 

The classified image obtained after using RF with optimized parameters has been shown in Figure 5.6. 

From classified image, it can be observed that Bahunia racemosa is mostly confined to the southern part of 

the study area. Bahunia racemosa, Dalbergia latifolia and Lannea grandis are together forming a community in 

the southern part of the study area. Lannea grandis is the dominant species in the ridge of the Mandgadde 

range. In the northern part of the study area, many species were sparsely spread resulting in increasing 

species richness. No dominance of any particular species was seen. Alsodephne semicarpifolia, Lagestormia 

Lanciolata, Terminalia paniculata and Tectona grandis are mostly confined to the northern part only. Terminalia 

paniculata is more in north-eastern side, in the flat areas. Terminalia paniculata and Xylia xylocarpa were found 

to form a community. They were present together. Lagestormia parviflora, Phyllanthus emblica, Bombax ceiba, 

Cassia fistula, Kydia calycina and Melia dubia, all these classes were sparsely spread and no particular pattern 

can be observed. Eucalyptus grandis is present in clusters in only eastern part of the study area.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5.6: Classified output generated using Random Forest. 
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For accuracy assessment of RF, confusion matrix has been made as shown in Table 5.2. The RF has 

shown an overall accuracy of 40.34% and kappa value of 0.36. The OOB score obtained was 0.85. From 

the confusion matrix, it can be observed that class Bombax ceiba has shown maximum accuracy of 88.46% 

in which 23 testing pixels out of 26 were classified correctly. Second highest accuracy was observed in 

Eucalyptus grandis with 78.57% of accuracy where, out of 14 testing samples 11 were classified correctly. 

Followed by Bahunia racemosa, which has accuracy of 65.52% where out of 29 samples 19 were correctly 

classified. Lowest accuracy was observed for Cassia fistula, and it was highly misclassified with the one of 

the dominant species of the study area that is Xylia xylocarpa. In case of Cassia fistula only 2 pixels were 

correctly classified from among 33 pixels. Followed by Alsodephne semicarpifolia where only 5 pixels were 

correctly classified from 41 pixels with the producer accuracy of 12.19%. In case of Xylia xylocarpa, which 

is one of the dominant species of the study area. The classifier was trained with 104 pixels for this species. 

And this class was tested with 68 pixels. 35 pixels were correctly classified resulting in 51.47% of producer 

accuracy. But 86 pixels of other species has been misclassified with this class. Resulting in low user 

accuracy i.e. 22.73%.   

 

 

 

 

 

 

5.2.3. Result obtained from RoRF  

 

The AVIRIS-NG hyperspectral imagery is classified using PCA based RoRF. For a better comparison 

with the RF classifier, the number of trees and the number of features per subset were considered to be 

same as RF i.e. 19 number of features per subset and 500 number of decision trees. The variation of 

number of decision trees with the overall accuracy is plotted in the graph shown in Figure 5.7. Maximum 

accuracy is seen when the decision trees were 400 to 450.  

 

 

 

 

 

 

Table 5.2: Confusion Matrix for RF 
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The classified image by RoRF is presented in Figure 5.8. The tree species Lannea grandis is spread 

throughout the ridge extended from north till south. With maximum spread in southern part of study area. 

Also, it is forming a community with Bahunia racemosa and Dalbergia latifolia. And confined to that area only. 

Lannea grandis is forming a community with Holarrhena antidysenterica in the ridge of the Mandgadde range. 

Alsodephne semicarpifolia is spread sparsely in the northern part of the study area. Lagestormia Lanciolata is also 

present in study area with Alsodephne semicarpifolia in the north side. But not forming any clear community 

together. Terminalia paniculata is present in all over the study area. It is sparsely spread in northern side but 

comparatively more in number. Delinia pentagyna is more in the eastern part of the study area. Eucalyptus 

grandis is present in clusters in the eastern side only. Grewia tiliaefolia is present in all over the study area 

except in the ridges present in the study area. Lagestormia parviflora is a rare species for the study area. It is 

found in very less number. Tectona grandis is sparsely present in the northern part of the study area. 

Terminalia bellarica is found in all over the study area. Xylia xylocarpa is one of the dominant species and is 

found more in flat areas of the study area in both eastern and western part of the study area. Xylia 

xylocarpa, Terminalia paniculata and Terminalia tomentosa are the three major species of this region. These three 

have formed a community. This community together dominates the eastern part of the study area.  

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 5.7: Variation in overall accuracy based on number of decision trees used in RoRF. 
Dotted line represents the trend of increase on logarithmic scale. 
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The accuracy assessment of the classifier is done by using confusion matrix given in Table 5.3. The RoRF 

gave an overall accuracy of 52.76% and kappa value of 0.49. The OOB score obtained was 0.85. RoRF has 

shown 100% accuracy in case of Bombax ceiba in which 17 samples have given to classifier for training and 

26 samples were given for testing the classifier. RoRF has classified all the pixels correctly in case of 

Bombax ceiba. Second highest accuracy was seen in case of Eucalyptus grandis i.e. 85.71%, it has correctly 

classified 12 pixels among 14 pixels. Dalbergia latifolia and Bahunia racemosa has similar producer accuracy i.e. 

about 72%. In case of RoRF lowest accuracy was seen in class Lagestormia parviflora, which is a rare species 

in the study area. Out of 30 testing pixels only 5 were classified correctly. Most of them were misclassified 

with Terminalia paniculata and Xylia xylocarpa, Lagestormia parviflora is present as rare species in those area 

where Xylia xylocarpa and Terminalia paniculata are in majority and forming a community along with 

Terminalia tomentosa. For the dominant class Xylia xylocarpa, 39 out of 68 pixels were classified correctly 

while remaining pixels were misclassified with different species.  

 

 

 

 

 

 

 

 

 

Figure 5.8: Classified output generated using Rotation Random Forest. 
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5.3. Comparison of classifiers 

 

Producer accuracy is a measure of error of omission, which gives information to the producer of 

classification about how well a particular class can be classified (Congalton, 1991). So, it has given a special 

consideration in this study. Producer accuracy of all three classifiers with the training data for each class is 

given in the following graph shown in Figure 5.9. For Eucalyptus grandis and Bahunia racemosa, less training 

data was provided to the classifier even then all the three classifiers have given good accuracy. Cassia fistula 

and Lagestormia parviflora with 31 and 33 training samples respectively, producer accuracy was below 20% 

for all three classifiers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3: Confusion matrix for RoRF 

Figure 5.9: A comparison of producer accuracy for SVM, RF and RoRF along with the training 
data for each tree species class 
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Classifier comparison was also done by applying the McNemar test for checking whether the classification 

results are significantly different from each other or not. Following is the contingency matrix obtained by 

applying McNemar test. Table 5.4 shows the contingency matrix of the SVM and RF. Both of them 

classified 266 pixels correctly while 332 pixels were misclassified. In this case, 𝑧 score obtained was 0.04. If 

𝑧 is between −1.96 and 1.96. The 𝑝 value should be greater than 0.05. In this case p value is 0.08, hence 

accepted the null hypothesis that both the classifiers are similar in performance. 

 

In case of RF and RoRF, the correctly classified pixels by both the classes were 276 while 345 were the 

misclassified pixels as shown in the Table 5.5. Note that these two values does not take part in the 

calculation of the test statistics. The number of pixels correctly classified by RF and wrongly classified by 

RoRF were 40 while the pixels correctly classified by RoRF and wrongly classified by RF were 137. These 

are the values which take part in calculating the test statistics. The 𝑧 score obtained was 53.1582. Also, in 

case of SVM and RoRF as shown in the, the 𝑧 score obtained was 44.1800. In both the cases 𝑧 score was 

high and 𝑝 value is very low as shown in Table 5.5  and Table 5.6 . The 𝑧 score for all the three classifiers 

is shown in the following Table 5.7Table 5.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 RF (wrong) RF (correct) All 

SVM (wrong) 369 110 479 

SVM (correct) 113 206 319 

All 482 316 798 

McNemar  

results 

𝑧 score 

𝑝 value 

     0.0404 

     0.8408 

Table 5.4: Contingency matrix for McNemar test (RF and SVM) 

 RF (wrong) RF (correct) All 

RoRF (wrong) 345 40 385 

RoRF (correct) 137 276 413 

All 482 316 798 

McNemar  

results 

𝑧 score 

𝑝 value 

53.1582 

5.361

∗  10−13 

 

Table 5.5: Contingency matrix for McNemar test (RF and RoRF) 

 

 RoRF (wrong) RoRF (correct) All 

SVM (wrong) 332 147 479 

SVM (correct) 53 266 319 

All 385 413 798 

McNemar  

results 

𝑧 score 

𝑝 value 

44.18 

4.829 ∗ 10−11 

 

Table 5.6: Contingency matrix for McNemar test (SVM and RoRF) 
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Table 5.7: McNemar test results for SVM, RF and RoRF 

 

 

 

 

 

 

 

5.4. Forest type map 

 

With the help of working plan of the Shimoga region (Manjunath, 2011) trees identified in the field were 

labelled according to their type. In the study area, three types of forest vegetation was present; evergreen, 

deciduous and mix forest (both deciduous and evergreen species were present). Figure 5.10 shows the 

forest type map of Shimoga region. From map it can be seen that evergreen species are spread more in 

southern part and in the ridges of the hill in the centre part of the study area. Northern part of the study 

area is dominated by the deciduous species while eastern part and the flat areas of both east and west side 

of study area has mix type of forest vegetation. The Sentinel 2 imagery has also been analysed for the same 

represented in the Figure 3.2, In that it was clearly seen that the ridges of the Mandgadde Mountain range 

is dominated by evergreen species because even during the dry season the FCC is showing the presence of 

vegetation in that region. While in the other part of the region dominance of deciduous species can be 

clearly seen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 SVM RF RoRF 

SVM - 0.0404 44.1800 

RF - - 53.1582 

RoRF - - - 

Figure 5.10: A forest type map of Shimoga Forest, Karnataka 
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5.5. Tree species richness 

 

Species richness in the Shimoga region was estimated by using image classified with RoRF. Since the field 

plot size was 30m x 30m. So grid of same dimensions were selected to measure number of tree species in 

each grid. The variation in number of trees per 30m x 30m was found from 1 to 15 species, shown in 

Figure 5.11. Only in three grids, species richness was 1. Northern region has high species richness than the 

southern part of the study area. Flat areas has the maximum species richness in the eastern side. 

 

Species richness from the RoRF classified map was compared with the collected field data. Following 

shows the location of the field plot with the species richness obtained from classified map and from 

collected ground data. Following graph in the Figure 5.12Figure 5.12 shows the clear comparison between 

them. Four plots has the same species richness from both field and from classified image. In case of three 

plots, species richness calculated from field is more than the classified map. Six plots has a variation of 

only one species and eight plots has the difference of only 2 species when compared richness from image 

with the richness from the field. Only in one plot difference in species richness was more i.e. 4 and three 

plots has difference of 3. These plots were mostly in the northern and eastern part of the study area as 

shown in Figure 5.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Tree species richness map for Shimoga Forest, Karnataka 
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Figure 5.12: Comparison of tree species richness calculated from the field 
plot and the classified image 

Figure 5.13: Comparison of tree species richness from classified map and field 
plots for Shimoga, Karnataka. Figure shows the species richness along with 
the location of plots 
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6. DISCUSSION 

This chapter presents a discussion on the results reported in the Chapter 5. This includes the analysis done 

on the performance of the algorithms used in this study. This chapter also includes the discussion related 

to the forest tree species and about the species richness of the study area.  

 

In this research, it can be seen that the PCA based transformed features at each node resulted in 

increasing the diversity of each individual classifier in the RoRF, which gave the decision trees with low 

correlation. Hence the accuracy got increased. If 𝑛 features are chosen from the all 𝑁 features, then 𝑁 +

1 − 𝑛 will be the number of best-split feature, searched exhaustively. According to the splitting rule if we 

rank all the features, then the last 𝑛 − 1 features will never get selected to split. According to the splitting 

rule, those feature which are in high rank with more discriminant power than other will have more chance 

to get selected. Hence, some feature will seldom be selected to split. In case of RF, since we have 367 

number of features and 19 were selected for splitting, so at each node we can have at most 349 choices. 

But in case of RoRF, since each rotation matrix generates one unique split feature so, we can have 

1.7310 × 1013 choices for the same (Zhang & Suganthan, 2014). Since the decision trees are very 

sensitive even to the small changes in the data so, more choices results in less correlated decision trees. 

Hence improving diversity among the decision trees.  

 

All the three algorithms that were evaluated in this research were performed by considering all the 

features, without any feature selection from the whole dataset. This was done to have a fair comparison 

between their performances. To analyse the effect of feature selection in the algorithms performed in this 

study, feature selection was done using random forest and then all classifier were performed. Features 

were selected based on recursive eliminating variables method as proposed by Díaz-Uriarte & Alvarez de 

Andrés (2006). In this approach, first RF calculates the feature importance and then 20 % of the least 

important features were removed and then classification was performed on the remaining features. This 

was continuously performed by applying a loop till the accuracy started declining. As a result, in all three 

classifiers there was very less difference in the overall accuracy compared to the overall accuracy obtained 

when all the features were considered. The table showing the accuracy in case of all the three classifier is 

present in the Appendix C. This analysis was in consistent with the study done by Ferreira et al. (2016) for 

mapping tree species in tropical forest. They have mentioned that there used to be no significant 

difference in the accuracy after the feature selection.   

 

In this research, the SVM has shown better performance in comparison of RF which was in agreement 

with the study done by Burai et al. (2015) and Raczko & Zagajewski (2017). They have also compared 

these classifiers for the species level classification and found that SVM outperforms RF. In this study, all 

the three classification results were tested by using McNemar test, where it was found that in the case of 

SVM and RF p value is 0.08, which was more than 0.05, hence the null hypothesis is accepted that both 

the classifiers are similar in performance. Hence SVM and RF do not significantly differ from each other. 

This result is in concordance with the study done by Ghosh et al. (2014), they have also found that for 

hyperspectral data, SVM and RF shows the similar performance. When SVM and RF is compared with 

RoRF the 𝑝 value is less than 0.05, hence the null hypothesis is rejected that means the classification 

results are significantly different. Hence the performance of RoRF is significantly different from both 

SVM and RF which is in consistence with the study done by Zhang & Suganthan (2014), where PCA 

based RoRF has outperformed RF.  
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In case of almost all the species classes, RoRF have shown good accuracy than the SVM and RF. The 

reason behind this was that in case of hyperspectral data where large number of features are present, 

although RF performs well. But in case of RoRF, more randomization is included during selection of 

feature subset in the RoRF, classifiers become diverse and as a result accuracy increases. It can be noticed 

that the species are misclassified with the dominant species of the study area. Eucalyptus grandis has shown 

good accuracy in all three cases. This species was present in the patches. Since Eucalyptus grandis shows 

allelopathic behaviour, i.e. it releases chemical which inhibits other species around them. Hence it was 

present in separate groups so a large number of pure pixels were obtained for the species. Lagestormia 

parviflora has shown the accuracy less than 20 % in all three classifiers due of unavailability of the good 

quality training data. Lagestormia parviflora in group were not found anywhere in the 25 plots. To have 

better classification of the species, training data should be collected from the areas where the tree is 

present in groups. This supports the fact that for hyperspectral data, it is better to collect data from the 

region where the group of same trees are available.  This is done to reduce the variability between the 

same species in different locations which comes due to the crown mixing and background signals (Carleer 

& Wolff, 2004; Ghosh et al., 2014). In case of tree class Bombax ceiba, it is a very large tree, which flowers 

from December to February.  It has a large (approx. 10cm across), dark crimson coloured flower due to 

which, its spectral signatures has high variability than others. Hence it resulted in attaining the high 

producer accuracy by each classifier. Lannea grandis showed lower user accuracy because many other 

species has been misclassified with it. This happened because variability in the spectral signatures of 

Lannea grandis is very low. Hence, Species with high variance in their spectral signature showed good 

accuracy in comparison to other species with low spectral variability.  

 

In the eastern side of the forest type map, the area is majorly dominated by more number of deciduous 

and semi-evergreen species. While in the area having the ridges is dominated by evergreen species. 

According to the Shimoga Forest working plan (Manjunath, 2011), in the eastern part of the study area 

past illegal felling and forest fire is reported. Due to which blank patches were left at this region. So forest 

department did plantation to fill those blank patches inside the natural forest. As a result, mix vegetation 

has resulted including both deciduous and evergreen species. The species richness from classified image 

and from the field data is same for some field plots but for some plots it varies. The reason behind the 

variation of species richness is due to the fact that the spatial resolution of the hyperspectral imagery is 5m 

x 5m. While there were only a very few cases where the span of 25sq. m was being occupied by single tree 

species on the field. This reduced the amount of pure pixels for classification. Cases were observed where 

one pixel was occupied by more than one tree crown of the training data. In such cases, the pixel was 

labelled as the species whose crown covered the centre point of the pixel. This mislabelling further lead to 

misclassification and hence cause the variation in the species richness as well. 

  

The Figure 4.4 presented in section 4.2 represents the TWI of the study area which has been calculated by 

using DEM of 30 m. Since the lower value of the TWI represents ridges while the higher values represents 

drainage depressions (Cooley, 2015). The areas where TWI was low, the richness was also found to be 

low. While in the eastern and western part of the study area has high species richness, it was because of 

the high drainage depressions present over there. Species richness is more where TWI is more. This result 

is in agreement with the fact that both TWI and species richness are positively correlated shown in the 

study done by Song & Cao (2017). In the southern part of the study area, species richness is low while in 

the northern and the eastern part, species richness is very high, because in the past illegal felling and forest 

fire was reported in that area. So plantation with different species was done on this region. Exotic species 

like Tectona grandis and Eucalyptus grandis were also found in this area. Hence resulting in more number of 

different species.   
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7. CONCLUSION AND RECOMMENDATIONS 

7.1. Conclusion 

 

This research has shown the performance of three machine learning algorithms that are Support Vector 

Machine (SVM), Random Forest (RF) and PCA based Rotation Random Forest (RoRF) for mapping of 

tree species richness of tropical forest of Shimoga, Karnataka. This was achieved by classifying the 

imagery obtained by AVIRIS NG hyperspectral sensor. PCA based RoRF model was proposed in this 

study to improve the diversity of individual classifiers in the ensemble. Which ultimately results in 

increasing the accuracy of the classifier. In this method the feature set is split into 𝑘 subsets. PCA is 

applied separately in each subset to transform data into another space and all the components were kept, 

resulting in a new extracted feature set. With this new extracted feature dataset, decision trees are trained. 

And each rotation generates a unique split. Thus resulting into diverse classifiers. 

 

The conclusion that can be drawn from this research is that the RoRF has outperformed the other two 

algorithms. McNemar test was performed to evaluate the performance of the classifiers. The test suggests 

that the performance of RoRF is significantly different from SVM and RF. Also, there is no significant 

difference in the performance of the SVM and RF. To achieve the objectives, the result obtained from the 

best performed algorithm i.e. RoRF was then used for the estimation of the tree species richness in the 

study area. The plot wise species richness is calculated manually i.e. by counting the unique species in each 

plot. The obtained tree species richness from the RoRF classified map is then compared with the data 

collected from the field survey. As a result it is found that, out of 25 plots, in some of the plots, species 

richness was same as that of the richness obtained from the imagery while in some plots species richness 

was slightly different. Only in some cases the difference was more.  

 

  

7.2. Answers to research questions 

 

 This study answers the following research questions that were proposed: 

 

Question: How does the PCA-based Rotation Random Forest classifier perform in comparison with RFs 

and SVM?  

Answer: From the results obtained in section 5.3, it can be inferred that PCA based RoRF has significantly 

outperformed the other two classifiers, SVM and RF. This indicates that RoRF can better deal with the 

high dimensional feature space and the limited number of training samples. The reason for this is that 

more diversity and higher accuracy has been introduced in the individual classifier of the ensemble.  

 

Question: How to deal with the unclassified tree species classes that are present in the study area? 

Answer: A total of 20 unique tree species samples were collected from the study area. This study made an 

assumption that the study area consists of only these 20 tree species, and the remaining existent tree 

species were ignored due to unavailability of appropriate training data. Although, on comparison with the 

working plan of Shimoga (Manjunath, 2011), it was noted that most of the dominant species of the region 

were included in the study. Also, for dealing with remaining unclassified classes, a masking region was 

defined to clip out the region. 
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Question: To what extent can we map tree species from the used hyperspectral data? 

Answer: Hyperspectral data, due to its very high spectral resolution has the ability to capture the highly 

detailed information relating to individual species, which makes it easier to uniquely identify each tree 

species which can be seen in section 5.1. In the tropical forest, mapping of tree species is very difficult but 

in this study, the hyperspectral data was able to map 20 species of the tropical forest. Those species which 

were not available in groups showed less accuracy. But the species available in group showed good 

accuracy. It can be interpreted that with the quality training data, species mapping can be improved further 

by using hyperspectral data.   

 

Question: To what extent the species richness obtained from classified image differs from the species 

richness obtained from field data? 

Answer: From the results of section 5.5, it can be seen that a mix variation of species richness was 

observed when the classified tree species richness was compared with field tree species richness. There 

were cases where the species richness obtained from classified image was same as species richness 

obtained from the field. While in some cases, there was a variation which ranged from difference of count 

of 1 species up to 4 species. The reason behind this variation was the spatial resolution of the data used. 

The area covered by one individual pixel was 25 sq. m while this was capable of covering more than a 

single tree species, which lead to unavailability of pure pixels for the training of the classifier. This reason 

caused the classifier to misclassify some of the classes and hence causing the variation in the tree species 

richness. 

7.3. Recommendations 

 

The future scope of this research has been highlighted in form of following recommendations: 

 

 In this research, location information of tree species was collected as training and testing samples 

for classifiers and spectral signature generation to see the variability among them. So, use of GPS 

with high accuracy or Differential Global Positioning System (DGPS) can be used for ground 

data collection in conjunction with the location information.  

 In this study RoRF was compared with only two classifiers, i.e. SVM and RF, there is still scope to 

explore its potential by comparing it with other classifiers. Also, different type of base classifier 

can be explored to undermine the best suited base classifier for RoRF. 

 This research makes use of PCA for the purpose of feature extraction. This opens up scope to 

explore other feature extraction techniques and compare their performance. 

 Ancillary data like topography and DEM can be used in tree species classification process for 

improved results. Other sensor data like LiDAR can be combined to improve the accuracy as 

mentioned in some studies (Ghosh et al., 2014; Leutner et al., 2012). The use of LiDAR data will 

enrich the information of the tree species by capturing the height and the canopy of the trees. 
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APPENDIX-A 

 
 
Following are the spectral signatures of all the tree species which were identified in Shimoga, Karnataka. 
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APPENDIX-B 

 
Following is the attribute table which was obtained using TomBio tool in QGIS provided with the 
information of species richness. 
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APPENDIX-C 

Following table gives the overall accuracy of all the three bands when all the bands were considered and 
when variable selection was done. After performing variable selection 20% of least important bands were 
removed and accuracy was calculated. Maximum accuracy was achieved after the first iteration in all three 
cases.  
 

 All bands 20 % bands 
removed 

SVM 41.21% 41.94% 

RF 40.34% 41.88% 

RoRF 52.76% 53.50% 
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