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ABSTRACT 

Machine learning regression models have recently gained popularity due to its ability to predict continuous 

outputs and reveal patterns from data. However, it is unclear whether these models perform well on 

spatial data due to frequently regression residuals are spatially autocorrelated, which violates the condition 

of independent and identically distributed. Recently, mixed effects machine learning regression model 

approach has been proposed to address the cluster in the data. In this research, we investigate the use of 

mixed effects machine learning regression models to capture spatial patterns. Random Forest (RF) 

regression, Support Vector Regression (SVR) and their mixed effects counterparts; namely Mixed Effects 

Random Forest (MERF) and Mixed Effects Support Vector Regression (MESVR) were chosen to develop 

models from spatiotemporal data. In this study, we analyse the performance using a real-world dataset to 

predict crimes in New York City. The model performance was evaluated with respect to the predictive 

power and the degree of spatial autocorrelation in the residuals. We conducted several experiments to 

evaluate the model performance using lagged spatial features; namely spatial lag and LISA’s local moran 

quadrant, non-lagged spatial features and various combination of random and fixed effects features. 

Experimental results show that MERF outperforms the other models in the selected metrics. Additionally, 

MESVR also outperforms the SVR in terms of predictive models. We also observed that using lagged 

spatial features can reduce the spatial autocorrelation of regression residual and improve predictive 

performance. Therefore, we conclude that mixed effects machine learning regression models, in this case, 

MERF models can effectively learn from spatiotemporal data and can predict the continuous outputs 

accurately to reveal spatial patterns while keeping the spatial autocorrelation of the residuals low. 

Keywords: machine learning, mixed effects models, spatial patterns, spatial autocorrelation, spatial 

features. 
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1. INTRODUCTION 

1.1. MOTIVATION AND PROBLEM STATEMENTS 

Recent developments in geospatial technologies have significantly improved the way we gather and access 

spatiotemporal data about humans and their environment (Kwan & Neutens, 2014). These technologies, 

such as GPS enabled smartphones, have sensors embedded and can record positions and movements. 

Besides smartphones, crowdsourced data from web applications, Twitter, Instagram and other social 

media platforms are good sources of geotagged information related to specific phenomena. The resulting 

proliferation of spatial data has remarkably influenced its complexity, dimension, and volume. However, it 

also provides opportunities for exploratory spatial research to reveals spatial patterns (Hagenauer & 

Helbich, 2013). 

A spatial pattern in the distribution of a geographic phenomenon is defined by the arrangement of 

individual objects in two or three dimensions and their geographical relationships (Chou, 1995). The 

pattern itself may not be observed by eyes and need some statistical analysis to reveal and assured that the 

data correspond to it. Spatial Autocorrelation (SAC) analysis is one of the geographical techniques that can 

be used to capture the spatial pattern. SAC measures the degree of relationship between spatial entities in 

the neighbouring area (Chou, 1995; H. Wang, Guo, Liu, Liu, & Hong, 2013). In the statistical domain, 

Moran’s I and Geary’s C coefficient have been widely used to measure spatial autocorrelation (Chou, 

1995).  

The presence of SAC in the data might negatively affect classical regression model (Bertazzon, Johnson, 

Eccles, & Kaplan, 2015; Lichstein, Simons, Shriner, & Franzkreb, 2002; Santibanez, Lakes, & Kloft, 2015). 

SAC occurred when the dependent variable is autocorrelated; thus the assumption of independence is 

often violated (Lichstein et al., 2002). Moreover, SAC induces spatial autocorrelation of the residuals of 

the regression, which indicate that there are structural problems of the model (Y. Chen, 2016). The 

residuals of the model will likely to exhibit clustering or other patterns (Santibanez, Lakes, et al., 2015). 

The occurrence of these patterns in the residuals violates the assumption of statistical analysis that 

residuals are independent and identically distributed (Dormann et al., 2007). Normally, regression assumes 

that all residuals are taken from the population has constant variance and scattered randomly around zero. 

It indicates that there is a missing key of features or misspecification of the model that might lead the 

model to under or oversimplification (Esri, 2013; Chen, 2016). Apart from that, random noise in the data 

may induce spatial autocorrelation and may lead to misleading interference and resulting underestimating 

of the model (Rocha et al., 2018) Thus, these conditions will lead prediction model to be unreliable.  

In the statistical domain, spatial autoregressive method has been proposed to handle SAC in order to 

develop inference model (Hua, Junfeng, Fubao, & Weiwei, 2016). However, regression analysis using 

statistical approach cannot cope with the variety, velocity, volume, and high dimension of large 

spatiotemporal dataset. This gives rise to the need for machine learning (Bzdok, Altman, & Krzywinski, 

2018).   

Machine learning is a branch of artificial intelligence and that is gaining popularity. It has been widely used 

in many applications. For instance, engineering, science, healthcare and business including earth science 

(Lary et al., 2018). It is often used by GIS practitioners in image processing and remote sensing 

applications (Lary et al., 2018). It allows the computer to learn from the data without being programmed 
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to perform specific tasks. Moreover, machine learnings techniques and methods can work with complex, 

high dimensional and tremendous amount of data and it can be used to develop regression and 

classification models. 

Machine learning regression models are powerful to predict to reveal the patterns from big data (Bzdok et 

al., 2018). They are scalable, flexible and capable of splitting processes into smaller chunks which run 

simultaneously, i.e. parallelisation (Upadhyaya, 2013). However, these techniques pose a significant 

challenge to model spatial pattern as most machine learning regression are not intended to deal with 

spatial data (Santibanez, Lakes, et al., 2015). Moreover, excellent goodness of fit can be achieved when the 

data is highly clustered, and also the model might indicate to overfitting (Santibanez, Lakes, et al., 2015). 

In other words, when the density of the cluster (as each cluster has their own features and different with 

each other) in a data is high, the model trying to learn the detail from each cluster in the data as a concept 

but this concept can not be applied to new data. This situation negatively affected the ability of the model 

to generalize the learning. Apart from that, noise in the data can also induce the spatial pattern that might 

lead to overfitting (Rocha et al., 2018). A new approach to handle cluster in the data, mixed effects 

machine learning has been proposed (Cho, 2010; Hajjem, Bellavance, & Larocque, 2014; Luts, 

Molenberghs, Verbeke, Van Huffel, & Suykens, 2012; Seok, Shim, Cho, Noh, & Hwang, 2011).  

Mixed effects models are well-suited for datasets that have cluster structure. Clustered data emerge when 

the datasets can be classified into many different groups (Galbraith, Daniel, & Vissel, 2010). Cluster 

structure can be longitudinal or hierarchical. Longitudinal structure arises when multiple observation 

measured within the same cluster, for instance, bare soil and forest land cover cluster. As for hierarchical 

cluster treating each observation into a separate cluster then merge the cluster that has similarity, for 

instance, deciduous forest landcover contained within forest landcover. Each cluster distinct from each 

other cluster. Mixed Effects Random Forest (MERF) approach showed significant improvements over 

vanilla random forest when random effects are substantials (Hajjem et al., 2014).  Apart from that, mixed 

effects support vector regression (MESVR) using Least Square SVR (LS-SVR) for handling longitudinal 

data and highly unbalance data also has been proposed (Cho, 2010; Luts et al., 2012; Seok et al., 2011). 

However, it is noteworthy that MESVR approach library (code) for regression is unavailable.    

Although several studies have been accomplished to reveal pattern using machine learning regression 

models in many disciplines (Wang et al., 2010; Kong et al., 2016; Czernecki et al., 2018; Schug et al., 2018) 

few have considered spatial autocorrelation (Rocha et al., 2018; Santibanez, Kloft, & Lakes, 2015; 

Santibanez, Lakes, et al., 2015; W. Yang, Deng, Xu, & Wang, 2018). Hence, research on machine learning 

regression model that considers spatial autocorrelation using spatiotemporal data remains challenges. This 

study aims to explore the suitability of mixed effects learning regression model to capture spatial pattern 

from spatial datasets.  

1.2. RESEARCH AND IDENTIFICATION 

Machine learning regression models are used to predict continuous outputs, and they have been applied in 

many disciplines. However, these techniques do not consider spatiotemporal data.  

In this study, we focus on the development, analysis and evaluation of mixed effects learning models; in 

particular, we focus on MERF and MESVR to reveal spatial patterns while improving the prediction of 

continuous outputs. Experiments will be done to test the suitability of mixed effects machine learning to 

datasets that have clustered structure by geographical relationship. Several machine learning approaches, 

for instance, MERF, Random Forest (RF), MESVR and Support Vector Regression (SVR) will be 

evaluated using spatial datasets. 
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Finally, the performance of the model using mixed effects will be compared and evaluated against vanilla 

machine learning using evaluation metrics. Analysing the degree of spatial autocorrelation of the residuals 

and looking at the required computation time of each model type. 

1.2.1. RESEARCH OBJECTIVE 

The main objective is to investigate whether mixed effects machine learning model; RF and SVR able to 

capture spatial pattern, improve predictive performance while keeping the spatial autocorrelation in the 

regression residual low compared with their vanilla counterparts given spatial datasets.  

1.2.1.1. RESEARCH SUB OBJECTIVES 

1. Review vanilla machine learning regression model; RF, SVR, and their mixed effects counterparts; 

MERF and MESVR and relate them to spatial data. 

2. Design, develop and evaluate general and mixed effects machine learning regression models using 

spatiotemporal (crowdsourced) data from variety domain. 

1.2.1.2. RESEARCH QUESTIONS 

The following research question will answer each research sub-objectives mentioned before. 

Sub-objective 1: 

1. How do vanilla RF, SVR and their mixed effects counterparts approach work?    

2. How can machine learning regression model approaches be used to model spatial data?   

Sub-objective 2: 

1. Can MESVR approach be developed and if so, how to apply regression given spatial datasets?  

2. How mixed effects machine learning approach deal with clustering in the data caused by 

geographical relationship? 

3. How should the spatial features be applied to machine learning? 

4. Which approaches perform better regarding predictive accuracy? 

5. What is the difference between mixed effects and general machine learning regarding the degree 

of SAC in the residuals? 

1.2.2. INNOVATION AIMED AT 

The proposed work aims to investigate mixed effects machine learning to deal with spatial data. Previous 

studies have evaluated the performance of general machine learning regression model to consider spatial 

and temporal data using synthetic data and real data. The innovation of this research is to design, develop 

and compare the performance of a machine learning regression approach based on mixed effects and of 

general machine learning regression model that consider spatial autocorrelation of the data. Moreover, the 

innovation of this research also to develop of MESVR approach using object-oriented language and 

existing machine learning libraries. This work will provide a detailed report on the capability of each model 

to reveal spatial patterns and its accuracy using different experimental settings of spatial autocorrelation 

level from three real-world datasets. 

1.3. PROJECT SET-UP 

The outline of the research as follows: 

a) Literature review 

b) Objective and data exploration 

c) Experimental setup 

d) Model performance evaluation 
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1.3.1. PROJECT WORKFLOW 

In the first stage of this research, a review of the literature would be carried out on machine learning 

regression models. Among several algorithms, special attention will be given to mixed effects approaches; 

which have been previously applied to clustered data such as MERF and MESVR. These approaches have 

not been tested with spatial data. In this stage, observation on literature will also be focused on how to 

design and develop MESVR algorithm using object-oriented language and existing SVR library since 

MESVR library is not published for the public.  

The second stage to this research is data exploration including a) data acquisition and preparation, b) data 

pre-processing, c) features engineering and d) spatial patterns. In the first stage involved how to retrieve 

the data and observe the data. In the data pre-processing we removed the unwanted data by data 

extraction, then we cleaned the empty or no-data known as NULL/NaN in the datasets. Feature 

engineering was performed to obtain the features used to train the model, including complaint features, 

temporal features and lagged spatial features. Lagged spatial features consist of temporally lagged spatial 

lag and LISA’s quadrant.  

The third stage of this research is experimental setup. In this stage, we determined the approach on how 

to develop the model including varying features into several experiments, hyperparameter tuning and 

model evaluation in the cross-validation.   

The final stage is to evaluate the performance of the regression models. Existing evaluation metrics will be 

used to evaluate the model, for instance, r squared (R2), Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE), Median Absolute Error (MAD). To evaluate spatial autocorrelation to the 

residuals regression, true and predicted response, Moran’s I was used. This method has been used widely 

to measure spatial autocorrelation (Dormann et al., 2007). 

1.3.2. THESIS OUTLINE 

The thesis outline divided into six chapters. The first chapter contains a brief introduction to the scientific 

problem and existing solutions in the scientific literature. The output of this chapter is a hypothesis mixed 

effects machine learning regression models can capture spatial patterns. The second chapter presents 

existing methods and algorithms of machine learning based regression model especially RF, MERF, SVR 

and MESVR. These methods have been successfully applied to spatial data and or just applied only to 

non-spatial data. The third chapter explains the case study objective and data exploration. It contains data 

pre-processing including feature engineering and spatiotemporal autocorrelation analysis in both target 

and features. The fourth chapter explains the experimental set-up which contains the modelling method 

including cross-validation strategy and hyperparameter tuning on each machine learning algorithms used 

to create machine learning regression models. It also explains the model evaluation on both performance 

and spatial autocorrelation on residuals regression. The fifth chapter presents the results and comparison 

of each machine learning models. In this chapter also discusses the pros and cons of mixed effects models 

and their standard counterparts in terms of their ability to capture spatial patterns and their performance.   

The final chapter contains the conclusions and recommendations for future work.      
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Figure 1. Flowchart of the project 
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2. LITERATURE REVIEW 

This chapter covers the theoretical background and reviews of spatial pattern and existing relevant 

machine learning algorithms to the problem considered in this research.  In the subsection 2.1, spatial 

patterns, their occurrences, shapes and how to measure in the dataset are discussed. The following 

subsection 2.2, I explain machine learning regression and their mixed model counterparts, their 

algorithms, parameters and how they train the model to learn from the data as well as relevant studies on 

which these algorithms have been applied. Moreover, the proper argument for the chosen algorithms 

applied to the problem statements are also described.  

2.1. SPATIAL PATTERN 

The origin of spatial patterns can be traced through two different ways; spatial dependence and spatial 

autocorrelation (Legendre et al., 2002). Spatial dependence and spatial autocorrelation have different 

meanings. Spatial dependence means that the response variable has spatially structure because it relies on 

the random features which have association with each other at different geographic location (Legendre et 

al., 2002). The equation of spatial dependence can be formulated: 

𝑦𝑖 = 𝜇𝑦 + 𝑓(𝑥𝑖) + 𝜀𝑖   (2.1) 

This equation states response y at i location is global mean 𝜇𝑦, the function of explanatory variables at 

location i or called ‘local effects’ and random error 𝜀𝑖 , 𝑖 = 1,… , 𝑛 . On the one hand, spatial 

autocorrelation assumed that response variable y at location i has relationship between y itself. The 

equation of spatial autocorrelation is given by: 

𝑦𝑖 = 𝜇𝑦 + ∑ 𝑓(𝑦𝑗 − 𝜇𝑦)

𝑛

𝑗=1 

+ 𝜀𝑖 (2.2) 

The model implies that the response at i-th unit is the global mean 𝜇𝑦 modulated by the sum of weighting 

function of response value at j-th units which neighbourhood of i and random error 𝜀𝑖 , 𝑖, 𝑗 = 1,… , 𝑛. 

Spatial autocorrelation analysis is used to measure the magnitude of spatial pattern (Chou, 1995).  The 

concept of spatial autocorrelation primarily derived from the degree of geographical objects similarity in 

the space (Lichstein et al., 2002). It comes into two terms; the distance between geographical objects and 

its attribute or value. One of the common ones used statistical formula to compute the degree of spatial 

autocorrelation is using Moran’s I (Zhao, Wang, & Shi, 2018).  The Moran’s I value can be obtained given 

by the equation: 

𝐼 = 𝑛/𝑆0  ∑∑𝑧𝑖𝑤𝑖,𝑗 𝑧𝑗

𝑛

𝑗=1

𝑛

𝑖=1

/∑𝑧𝑖𝑧𝑖

𝑛

𝑖=1

 (2.3) 

Where n is the number of geographical units, 𝑤𝑖,𝑗 is a spatial weight between i-th and j-th units,  𝑧𝑖 =

 𝑦𝑖 − 𝑦   is a global mean values and  𝑆0 is the sum of spatial weight matrix, 𝑖, 𝑗 = 1,… , 𝑛.  
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Moran’s I value ranged from +1 to -1, positive value means strong positive autocorrelation and has 

clustering effects while negative value means otherwise and has scattered patterns. Zero value indicates 

there is no spatial correlation and has random patterns (Sawada, 2001). These patterns can be illustrated as 

in Figure 2.  

   

(A) (B) (C) 

Figure 2. (A) showing positive autocorrelation, (B) showing no correlation and (C) showing negative autocorrelation 
(Sawada, 2001) 

Equally important as Global Moran’s I in this study also consider Anselin’s Local Moran’s I coefficient 

known as Local Indicator of Spatial Association (LISA). Anselin’s LISA measures the degree of spatial 

autocorrelation in a local specific context to allow further insight of clustering in the particular area  (Feng, 

Chen, & Chen, 2018). The LISA formula is given by the equation: 

𝐼𝑖 = (𝑛 − 1)
𝑧𝑖  ∑ 𝑧𝑖𝑤𝑖,𝑗𝑧𝑗

𝑛
𝑗=1  

∑ 𝑧𝑖𝑧𝑖
𝑛
𝑖=1  

 (2.4) 

Using LISA, spatial datasets will be classified into four groups. Positive value of LISA indicates high 

values surrounding by high (HH group) and low value surrounding by low values (LL group) while 

negative value of LISA indicates high value surrounding by low values (HL group) and vice versa (LH 

group). The last two groups mentioned earlier considered as an outlier while the statistical significance of 

HH known as hot spots and LL known as cold spots (Anselin, 1995).  

Alongside with spatial autocorrelation, dependent variable might be temporally autocorrelated due to 

seasonality (Hoef, London, & Boveng, 2010). Therefore, period, for instance, date, week, month and year 

could be random features that induced spatial dependence.   

2.2. MACHINE LEARNING REGRESSION  

Machine learning can be distinguished into four categories; supervised, semi-supervised, unsupervised and 

reinforcement learning. In supervised learning, the model is merely learning how to map given input 

features or explanatory variable x and given target or output variable y in the training sample datasets. The 

training sample acts as a supervisor in the learning process. In supervised learning, when the output 

variable is categorical or discrete value then it is classification, but when the output variable is continuous 

value, then it is a regression. In this study, we are interested in the regression problem. The simple formula 

to explain regression problem is given by the equation: 

𝑦 = 𝑓(𝑥) + b (2.5) 

The purpose of regression is to estimate target y value using function f(x) from given input datasets and 

their errors term. Moreover, in the regression, the model learns from the data in various techniques to 

minimize the bias and variance until at some point the model prediction achieved the best fit. Many 
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machine learning regression algorithms can be used to predict continuous output, and two of them are RF 

and SVR.  

Machine learning regression RF algorithm based on the predictive power, the capability to handle 

categorical features, adaptable to features of data or in other words, it does not require to normalize the 

data and minimal efforts to tune the parameter. Moreover, RF also more interpretable than different 

complex machine learning algorithms such as Neural Networks (Deng, 2018).   

SVR algorithm apart from its predictive power, it also carries a feature namely kernel parameter which is 

used to map a lower dimension to higher dimensional data (Bhattacharyya, 2018; Kleynhans, Montanaro, 

Gerace, & Kanan, 2017). Therefore, SVR uses kernel trick to compute the inner products in the feature 

space.   

2.2.1. RANDOM FOREST 

The random forest regression model is one of ensemble learning. Ensemble method works by aggregating 

several base prediction estimators to decrease variance and bias. There are many kinds of ensemble 

method, for instance averaging, boosting and stacking. RF using averaging ensemble method, in which the 

final predicted value is the average value of all the decision trees. Hence, it allows better model predictive 

performance compared using only single base estimator (Pedregosa et al., 2011; Smolyakov, 2017), 

resistant to multicollinearity and insensitive to outliers (Breiman, 2001). The goal of RF is to minimize the 

variance of bagging by reducing trees correlation without increasing the bias (Hastie, 2017). 

 

Figure 3. Tree model development concept in random forest 

RF prediction estimators are composed of decision trees with different depths and leaves that spawned 

given the number of features in the datasets. The number of branches on each tree in the forest as shown 

in Figure 3, can be measured starting from the top or root until the red filled circle counted through 

several levels of split nodes (L1, L2, …, Ln). The more splits it has, the more depth information can be 

captured from the data, thus reducing bias. Each split node has the various number of samples, but at least 

it has one sample. The split node can be identified inside the orange filled circle as shown in Figure 4. As 

the tree in nature, it also has a leaf. Almost similar with the split node, the split leaf has various number of 

samples inside the leaf, but it required minimally one sample. In contrast with the split node, the leaf node 

does not have children. It can be seen in figure 4, the leaf inside the blue filled circle. Moreover, RF 

randomly uses a subset of features instead of all features and randomize the tree (Breiman, 2001; Hastie, 
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2017; Hengl, Nussbaum, Wright, Heuvelink, & Gräler, 2018; Smolyakov, 2017). A branch of a tree in RF 

based on the bootstrap sample from training datasets as can be seen in Figure 4.  

 

Figure 4. A branch of the tree from a subset of features (𝑓𝑛, n = 1, …, n) in RF that use the bootstrap sample from 
training datasets 

RF regression estimator is given by: 

𝑓𝐼(𝑥) =  
∑ 𝑡𝑖

∗𝐼
𝑖=1 (𝑥)

𝐼
  (2.6) 

where 𝑓𝐼(𝑥) is random forest estimator, individual bootstrap sample i, I is the total number of trees which 

represent the number of estimators and 𝑡𝑖
∗ (𝑥) is individual decision tree function: 

𝑡𝑖
∗ (𝑥) = t (x; 𝑧𝑖1,…

∗ 𝑧𝑖𝑛
∗ ) (2.7) 

where 𝑧𝑖𝑛
∗  (n = 1 …. N) is n-th training sample from given datasets with x input features and y target.  

Hence, to solve the problem when the dependent variable belongs to a particular location j given the 

equation 2.6:  

𝑓𝐼(𝑥𝑗) =  
∑ 𝑡𝑖

∗𝐼
𝑖=1 (𝑥𝑗)

𝐼
 (2.8) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡, 𝑡𝑖
∗ (𝑥𝑗) = t (𝑥𝑗; 𝑧𝑖1,…

∗ 𝑧𝑖𝑛
∗ ) (2.9) 

The optimum value of the RF parameter such as the number of branches, samples split and sample leaf 

node is required to find out through hyperparameter tuning. However, the creators of this method 

recommend to use 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 =
1

3
 𝑚 where m is the number of features of the data and the minimum split 

node is five (Hastie, 2017). 
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Relevant studies 

Using real estate data to predict the price of housing and in order to make it spatially autocorrelated, 

Santibanez, Kloft, et al. (2015) interpolate the training set features and target using zip code level and 

measure the RF performance through RMSE and SAC residuals regression using Moran’s I. Parameter 

tuning was done using grid search repeated five cross-validation. They claimed the results obtained have 

relatively good RMSE but also has high clustering pattern in the residuals. However, there is a major 

drawback such as using default parameter tuning to train all the models. Thus, these models seem 

underestimated by observing at r-squared results. The results would be misleading because the errors 

prediction rate becomes high.  

RF regression was also used to predict the spatiotemporal pattern of concentration and distribution of 

particle matters with size less than ten micrometres in China (G. Chen, Knibbs, et al., 2018; G. Chen, 

Wang, et al., 2018). The training datasets were aggregated to a province resolution. Parameter tuning was 

done using ten folds cross-validation and 500 iterations. The RMSE results were good despite SAC 

analysis was not performed.  

Their approaches are adopted in this research by using zip code resolution to aggregate input features and 

the response. Moran’s I also applied to evaluate the SAC residuals and ability of the model to capture the 

spatial patterns. R-squared also applied to evaluate the model prediction accuracy. However, there are 

slightly different to evaluate model performance, this study used MAE, MAD to evaluate and compare RF 

and MERF and use RMSE to evaluate SVR and MESVR model. All the metrics were used to evaluate and 

compare mixed effects models. Consider time allocated to MSc thesis; instead of using 500 iterations, we 

use random search with maximum 200 iterations. Also, in the cross-validation method used in this 

research, we consider the spatial structures in the data. Hence, we used seven folds instead of five nor ten 

folds.  

Recently, random forest generic framework to predict spatiotemporal features has been proposed (Hengl 

et al., 2018). The framework uses buffer distance from observation points or geographical coordinates 

used as features. The model performance claimed to have less biased and able to capture spatial patterns. 

A similar approach was also applied to this research for using zip code as features in the learning process 

to create a gap between cluster. Moreover, we also use spatially lagged of response and LISA’s quadrant to 

inform the models the distance and weight of response surrounding cluster.  

2.2.2. SUPPORT VECTOR REGRESSION  

SVR is a supervised learning model and used for regression despite being originally created for 

classification (Jin, Sun, Wang, Wang, & Yan, 2013). SVR uses structural risk minimization approach rather 

than the empirical risk minimization to optimize the model through minimizing error within a certain 

threshold (Bhattacharyya, 2018) and model complexity (Baydaroğlu, Koçak, & Duran, 2018; Jin et al., 

2013). Hence, the SVR model is robust to solve non-linear problems (Smola & Sc Olkopf, 2004; H. Yang, 

Huang, Chan, King, & Lyu, 2004) 

SVR algorithm solves the non-linear problem using kernel tricks. SVR solves non-linear problems using 

kernel tricks. These kernels calculate the similarity of the samples in a high dimensional feature space. 

Hence transforming a non-linear problem into a linear one. The illustration of SVR can be seen in Figure 

5. 
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Figure 5. SVR solves non-linear problem using kernel function (Sayad, 2010) 

 
Mathematically, non-linear SVR is formulated given by: 

𝑦 = 𝑓(𝑥) = 〈𝑤, 𝜑(𝑥)〉 + 𝑏 (2.10) 

where 𝑤  is weight vector, 𝜑(. )  is the feature mapping function and b is independent and identical 

distributed errors or bias terms. Furthermore, SVR use Vapnik’s epsilon ε loss function that defines a 

margin or errors tolerance. The higher value of ε, the larger errors are being tolerated. In contrast, set ε 

value to zero means every error will be penalized.  

𝐿𝜀(𝑦𝑖, 𝑓〈𝑥𝑖 , 𝑤〉) = {
0, 𝑖𝑓 |𝑦𝑖 − 𝑓〈𝑥𝑖, 𝑤〉| ≤  𝜀

|𝑦𝑖 − 𝑓〈𝑥𝑖 , 𝑤〉|  , 𝑖𝑓 |𝑦𝑖 − 𝑓〈𝑥𝑖, 𝑤〉| ≥  𝜀
 (2.11) 

SVR solves linear regression in n-dimensional data with n > 1 using loss function and reducing model 

complexity by minimizing vector |w| which is induced slack variable 𝜉𝑖, 𝑓𝑜𝑟 𝑖 = 1,… , 𝑛  to estimate 

deviation of training samples that located outside ε margin (Cherkassky & Ma, 2004), such that:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (
1

2
‖𝑤‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖

) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

𝑦𝑖 −  𝑓〈𝑥𝑖 , 𝑤〉 − 𝑏 ≤  𝜀 + 𝜉𝑖    

𝑓〈𝑥𝑖, 𝑤〉 + 𝑏 − 𝑦𝑖  ≤  𝜀 + 𝜉𝑖
∗ 

𝜉𝑖, 𝜉𝑖
∗  ≥ 0

 

|𝜉|𝜀 ≔ {
0 𝑖𝑓 |𝜉|  ≤  𝜀 

|𝜉| −  𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(2.12) 

Where C as regularization parameters is introduced. It is used as penalty factor; a huge constant value of C 

may induce overfitting while a minimal value of C may induce underfitting. According to Vapnik (1995), 

optimization formula can be transformed into dual problem 𝛼𝑝 and 𝛼𝑝
∗  for each data point as follow: 

𝑓(𝑥𝑖) =  ∑ (𝛼𝑝𝑖 − 𝛼𝑝𝑖
∗ )𝐾(𝑥𝑝𝑖 , 𝑥𝑞𝑖) + 𝑏

𝑛

𝑝,𝑞=1

 (2.13) 

where 𝛼𝑖 ≥ 0 and C ≥ 𝛼𝑖
∗ and 𝐾(𝑥𝑝𝑖, 𝑥𝑞𝑖) is kernel function for 𝑖, 𝑝, 𝑞 = 1,… , 𝑛 . There are three 

commonly used kernels; namely linear, polynomial and gaussian radial basis (Üstün, Melssen, & Buydens, 

2006). In this study, we use radial basis function (RBF) kernel because it performs better than two others 
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to solve non-linear problem (Cawley, Talbot, Guyon, & Saffari, 2007). Using RBF kernel, gamma γ as free 

parameter of RBF is introduced. The RBF kernel function formula is given by the equation 2.14: 

𝐾(𝑥𝑝𝑖, 𝑥𝑞𝑖) = exp (−𝛾‖𝑥𝑝𝑖 − 𝑥𝑞𝑖‖
2
) , 𝛾 ≥ 0 (2.14) 

The small gamma value means the kernel has large width or large variances, while the large gamma value 

means the variance might be small. Also, a large value of gamma may lead to high bias and low variance 

and vice versa.  

SVR parameters; C, ε and γ value are the foundation of the SVR model.  Therefore, it is important to 

select the most appropriate hyperparameters of SVR to ensure good generalization of the model 

(Cherkassky & Ma, 2004). 

Relevant Studies 

Several studies using SVR and consider spatial autocorrelation in the dataset have been proposed. To start 

with, multi-scale SVR proposed by Ballabio & Comolli (2010). Their approach was using more than one 

kernel with the same function to train the model. The first kernel was used to estimate of response while 

the second kernel function to estimate the residuals of fitted models. The model claimed has slightly better 

performance than vanilla SVR and kriging regression. However, it gets more complicated in the training 

process as the number of kernels increases and the model likely overestimated. Their approach was 

adopted in this MSc thesis to use mixed models instead using multiple kernels.  

Santibanez, Lakes, et al. (2015) and Santibanez, Kloft, et al. (2015) using generated spatial datasets and real 

spatial datasets respectively, assessed SVR using radial basis kernel and claimed the model perform better 

than RF regarding RMSE and SAC in the regression residuals. It because the regularization step to 

generate more simple function and the strength of RBF as a kernel. Parameter tuning was done using five 

folds cross-validation, C and sigma variation. Their approach drawback already explained in the previous 

subsection. However, their approach is adopted in this research for the kernel selection and Moran’s I to 

evaluate SAC. It is slightly different in the parameter selection, we utilize gamma and epsilon to optimize 

model instead of sigma.  

Considering the temporal factor, Rocha et al. (2018) evaluated the performance of SVR using synthetic 

data to simulate hyperspectral data to predict leaf traits. To reduce overfitting, ten cross-validations was 

used. They used Durbin Watson method to evaluate serial autocorrelation of residuals of regression. The 

noise in the data that produce clusters makes predictive model become overfitting. In this research, we 

used seven folds in cross-validation to reduce overfitting in the model considering the size of data, 

features and spatial structures. However, in this study, the noise is naturally coming from the data.  

2.3. LINEAR MIXED EFFECTS MODEL 

The mixed model is a statistical model that comprises fixed effects and random effects. There are various 

types of mixed models such as Bayesian generalized linear mixed models, non-linear mixed models, linear 

mixed models, etc. In this study, we focused on the linear mixed effects model. In nature, data often has 

multifaceted data structures, such as containing a cluster of dependent variable (Zuur & Ieno, 2016) and 

linear mixed effects model become popular to solve cluster in the data (Blood, Cabral, Heeren, & Cheng, 

2010; Zhang, Jie, Sun, & Pieper, 2016). Recall in the first chapter, there are two kinds of clustering in the 

data, hierarchical and longitudinal cluster as illustrated in Figure 6.  
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Linear mixed effects model has proved to solve the serial correlations problem in the dataset when using 

longitudinal data (Meng, Huang, Vanderschaaf, Yang, & Trincado, 2012). Serial correlation occurs when 

lagged version of particular variable highly correlated with itself over various time intervals. Other than 

that, it also able to handle correlated error structures found in temporal and spatial statistics (Hoef et al., 

2010). Thus, using the linear mixed model approach, the error structures caused by spatial autocorrelation 

in the regression residuals theoretically can be diminished.   

 

 

Figure 6. (A) Illustration of longitudinal and (B) hierarchical clustering in the data 

 

Mathematically, the linear mixed effects algorithm is formulated by: 

𝑦𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖 + 𝜖𝑖 (2.15) 

where 𝑦𝑖 = [𝑦𝑖1 , … , 𝑦𝑖𝑛𝑖]
𝑇 is a vector response for ni observations in cluster i, 𝑋𝑖 = [𝑋𝑖1 , … , 𝑋𝑖𝑛𝑖]

𝑇 is 

matrix of fixed effects features, 𝑍𝑖 = [𝑍𝑖1 , … , 𝑍𝑖𝑛𝑖]
𝑇   is matrix of random effects features, 𝜖𝑖 =

 [𝜖𝑖1 , … , 𝜖𝑖𝑛𝑖]
𝑇  is an unknown vector errors, 𝑏𝑖 = (𝑏𝑖1 , … , 𝑏𝑖𝑛𝑖)

𝑇 is an unknown vector of random 

effects coefficients in the cluster i, and 𝛽 is an unknown vector of fixed effects coefficients. In linear 

mixed effects, it assumes that 𝑏𝑖  and 𝜖𝑖  are independent and identical distributed as 𝑏𝑖~ 𝑁(0, 𝐷) and 

𝜖𝑖~ 𝑁(0, 𝑅𝑖) where N is referred to normal distribution, while 𝐷 and 𝑅𝑖 are diagonal matrices features of 

𝑏𝑖 and 𝜖𝑖 respectively.       

2.3.1. MIXED EFFECTS RANDOM FOREST  

MERF algorithm was proposed by Hajjem et al. (2014) to tackle clustered and unbalanced repeatable 

measurements in the datasets. MERF is like linear mixed effects model as in the equation 2.15, except the 

fixed effects 𝑋𝑖𝛽 replaced with random forest function 𝑓𝐼(𝑥) as in the equation 2.6 to estimate fixed 

features coefficients.   

𝑦𝑖 = 𝑓𝐼(𝑥) + 𝑍𝑖𝑏𝑖 + 𝜖𝑖 (2.16) 

Given equation 2.16, 𝐶𝑜𝑣(𝑦) = 𝑑𝑖𝑎𝑔 (𝑐𝑜𝑣(𝑦1), … , (𝑦𝑛)). Covariance matrix of repeated measurement 

vector 𝑦𝑖 for cluster i-th is 𝐶𝑜𝑣(𝑦,𝑖) =  𝑍𝑖𝐷𝑍𝑖
𝑇 + 𝑅𝑖, hence there might be a correlation between cluster 

that is induced between cluster variance in term of random effects or within cluster variation in term 𝑅𝑖. It 

holds if D and 𝑅𝑖 are diagonal and 𝑐𝑜𝑣(𝑍𝑖𝐷𝑍𝑖
𝑇) > 0 and 𝑐𝑜𝑣(𝑅𝑖) > 0 even though 𝜖𝑖 are random and 
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independent distributed errors (Hulin & Zhang, 2006). 𝑅𝑖 is diagonal matrix of the variances of errors  

 𝜎2𝐼𝑛𝑖, 𝑖 = 1,… , 𝑛 . MERF uses out of bag prediction to estimate non-linear model using bootstrap 

dataset that does not contain record from original subset. Furthermore, Hajjem et al. (2014) also 

implemented expectation-maximization (EM) in order to estimate response 𝑦𝑖 .  

The EM algorithm is used to estimate parameters for multiple features to solve imbalance in the data 

(Borman, 2004). EM algorithm to find optimum 𝑦𝑖 as proposed by Hulin & Zhang (2006) is as follows: 

Set iteration index r as 𝑟 = 0, 1, 2, … , 𝑛 

𝑠𝑡𝑒𝑝 0. 𝑆𝑒𝑡 𝑟 = 0, �̂�(0)
2 = 1, �̂�𝑖(0) = 0, �̂�(0) = 𝐼𝑞    

𝑠𝑡𝑒𝑝 1. 𝑆𝑒𝑡 𝑟 = 𝑟 + 1, 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑦𝑖(𝑟)
∗ , 𝑓𝐼(𝑋𝑖)𝑟 𝑎𝑛𝑑 �̂�𝑖(𝑟) 𝑢𝑠𝑖𝑛𝑔  

i. 𝑦𝑖(𝑟)
∗ = 𝑦𝑖 − 𝑍𝑖�̂�𝑖 (𝑟−1), 𝑖 = 1,… , 𝑛  

ii. Build multiple trees in the forest using random forest algorithm with 𝑦𝑖𝑗(𝑟)
∗  as response 

set to 𝑥𝑖𝑗  features using bootstrap training sample from the training sets (𝑦𝑖𝑗(𝑟)
∗ , 𝑥𝑖𝑗), 𝑖 =

1,… , 𝑛, 𝑗 = 1,… , 𝑛𝑖.    

iii. Get random forest 𝑓𝐼(𝑥𝑖𝑗)𝑟 of 𝑓(𝑥𝑖𝑗) model using out of bag prediction  

Let 𝑓𝐼(𝑋𝑖)𝑟 = [𝑓𝐼(𝑥𝑖1)(𝑟), … , 𝑓𝐼(𝑥𝑖𝑛𝑖)(𝑟)
] 𝑇 , 𝑖 = 1,… , 𝑛 

iv. Compute  �̂�𝑖(𝑟)  as 

�̂�𝑖(𝑟) = �̂�(𝑟−1)𝑍𝑖
𝑇�̂�𝑖(𝑟−1)

−1  (𝑦𝑖 − 𝑓𝐼(𝑋𝑖)𝑟), 𝑤ℎ𝑒𝑟𝑒 �̂�𝑖(𝑟−1) = 𝑍𝑖�̂�(𝑟−1)𝑍𝑖
𝑇 + �̂�(𝑟−1)

2 𝐼𝑛𝑖,

𝑖 = 1,… , 𝑛 

𝑠𝑡𝑒𝑝 2. 𝑈𝑝𝑑𝑎𝑡𝑒 �̂�(𝑟)
2  𝑎𝑛𝑑 �̂�(𝑟)  𝑎𝑠 

 �̂�(𝑟)
2 = 𝑁−1  ∑{𝜖�̂�(𝑟)

𝑇 𝜖�̂�(𝑟) + �̂�(𝑟−1)
2 [𝑛𝑖 − �̂�(𝑟−1)

2  𝑡𝑟𝑎𝑐𝑒 (�̂�𝑖(𝑟−1))] }

𝑛

𝑛=1

, 

 𝑤ℎ𝑒𝑟𝑒  𝜖�̂�(𝑟) = 𝑦𝑖 − 𝑓𝐼(𝑋𝑖)𝑟 − 𝑍𝑖 �̂�𝑖 (𝑟−1) 

�̂�(𝑟) = 𝑁−1  ∑{�̂�𝑖(𝑟)
𝑇 �̂�𝑖(𝑟) + [�̂�(𝑟−1) − �̂�(𝑟−1)𝑍𝑖

𝑇�̂�𝑖(𝑟−1)
−1 𝑍𝑖�̂�(𝑟−1)] }

𝑛

𝑛=1

  

𝑠𝑡𝑒𝑝 3.  𝑑𝑜 𝑙𝑜𝑜𝑝 𝑠𝑡𝑒𝑝 1 𝑎𝑛𝑑 2 𝑢𝑛𝑡𝑖𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 

These EM steps in MERF can be explained as; initially, set the default value for variance, random effects 

coefficient and diagonal matrix of unknown variance �̂�. Next step is to calculate the response variable at 

cluster i as 𝑦𝑖(𝑟)
∗  as 𝑦𝑖 −  𝑍𝑖�̂�𝑖(𝑟−1). Next step, estimate fixed effects using random forest with out of bag 

prediction given (𝑦𝑖𝑗,
∗ 𝑥𝑖𝑗). Estimated 𝑓𝐼(𝑥𝑖𝑗) from random forest are used to find the random effects 

coefficient �̂�𝑖 at particular cluster i. Last step is to compute variance �̂�2 and matrices �̂� from estimated 

residuals and random effects respectively. This algorithm runs iteratively until its convergences.   

Additionally, MERF algorithm utilizes generalized likelihood (GLL) to calculate training loss in the model 

development. GLL will eventually reach convergence when the model achieved the best fit as shown in 

Figure 7.  
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Figure 7. GLL in the training process reach convergence with 200 iterations 

Hajjem et al. (2014) conducted a testing using simulation and real datasets. Model performance evaluation 

was done using Prediction Mean Square Error (PMSE). Five models were tested and compared to MERF 

performance. The MERF method performed better because it had lower PMSE compared with standard 

RF. 

2.3.2. MIXED EFFECTS SUPPORT VECTOR REGRESSION  

The MESVR algorithm was proposed by Cho (2010) to handle longitudinal cluster in the sample datasets. 

It is almost similar to MERF except in this algorithm use LS-SVR instead of vanilla SVR. LS-SVR proved 

has better accuracies, able to handle extensive datasets and better processing computation time compared 

vanilla SVR (Guo, Li, Bai, & Ma, 2012; Steinwart & Thomann, 2017).  It is used to solve the non-linear 

problem. Given equation 2.10 and 2.15, MESVR can be formulated as follows: 

𝑦𝑖𝑗 = 〈𝑤, 𝜑(𝑥𝑖𝑗)〉 + 𝑍𝑖𝑗𝑏𝑖 + 𝑏0 + 𝜖𝑖𝑗   (2.17) 

Where 𝑥𝑖𝑗  assumed related with 𝑦𝑖𝑗  as (𝑦𝑖𝑗 , 𝑥𝑖𝑗) , 𝑦𝑖𝑗  is response variable of j-th sample at cluster i.  

𝜑(. ) is non-linear mapping function, 𝑍𝑖𝑗 is random effects features, 𝑏𝑖 is random effects parameter vector 

normally distributed as 𝑁(0, 𝐷), 𝜖𝑖~ 𝑁(0, 𝑅𝑖) and 𝑏0 is the bias. Sample observation j = 1, …, n, cluster i 

= 1, …, 𝑛𝑖.  

The optimization problem can be estimated given equation 2.17, known 𝐷 and 𝑅𝑖 : 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (
1

2
‖𝑤‖2 + 

𝜆1
2
∑(𝑏𝑖𝐷

−1𝑏𝑖) +

𝑁

𝑖=1

𝜆2
2
∑ ∑ (𝜖𝑖𝑗𝑅𝑖

−1𝜖𝑖𝑘)

𝑛𝑖

𝑗,𝑘=1

𝑁

𝑖=1

) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖𝑗 = 〈𝑤, 𝜑(𝑥𝑖𝑗)〉 + 𝑍𝑖𝑗𝑏𝑖 + 𝑏0 + 𝜖𝑖𝑗 

(2.18) 

 

where 𝜆1 and 𝜆2 are the regularization parameter. The Langrangian function obtained given equation 2.17 

and 2.18: 
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𝐿 =  𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (
1

2
‖𝑤‖2 + 

𝜆1
2
∑(𝑏𝑖𝐷

−1𝑏𝑖) +

𝑁

𝑖=1

𝜆2
2
∑ ∑ (𝜖𝑖𝑗𝑅𝑖

−1𝜖𝑖𝑘)

𝑛𝑖

𝑗,𝑘=1

 

𝑁

𝑖=1

   

+ ∑ ∑ 𝛼𝑖𝑗(𝑦𝑖𝑗 − 〈𝑤, 𝜑(𝑥𝑖𝑗)〉 + 𝑍𝑖𝑗𝑏𝑖 + 𝑏0 + 𝜖𝑖𝑗)

𝑛𝑖

𝑗,𝑘=1

 

𝑁

𝑖=1

) (2.19) 

where 𝛼𝑖𝑗 is Langrangian multipliers. Given equation 2.19, optimum parameters can be estimate by their 

first order derivative. It can be written in the simple formula as: 

[

0 1𝑁𝑛
𝑇

1𝑁𝑛 𝐾 +
1

𝜆1
𝑍𝐷𝑍𝑇 +

1

𝜆2
𝑅
] [
𝑏0
𝜆2
] =  [

0
𝑦
] 

Where 𝑁𝑛 is 𝑛𝑖 observation at cluster i, 0 and 1 are vectors of zeros and ones respectively, k = 1, …, 𝑛𝑖 , 𝐾 

is kernel matrix  𝐾(𝑥𝑖𝑗 , 𝑥𝑘𝑙) , Z is diagonal matrix 𝑍 = 𝑑𝑖𝑎𝑔(𝑍1, … , 𝑍𝑛) , D is diagonal matrix 𝐷 =

𝑑𝑖𝑎𝑔(𝐷,… , 𝐷)  and R also diagonal matrix 𝑅 = 𝑑𝑖𝑎𝑔(𝑅𝑖,…,𝑅𝑛),  𝑦𝑖 = [𝑦𝑖1 , … , 𝑦𝑖𝑛𝑖]
𝑇 , 𝛼𝑖 =

 [𝛼𝑖1 , … , 𝛼𝑖𝑛𝑖]
𝑇. The final MESVR estimator equation given (𝑥0, 𝑧0) as follow: 

�̂�(𝑥0, 𝑧0) =  𝑏0 + ∑∑(𝛼𝑖𝑗𝐾(𝑥𝑖𝑗 , 𝑥0) + 𝑏𝑖𝑧0)

𝑛𝑖

𝑗=1

𝑛

𝑖=𝑗

  (2.20) 

where 𝑏0 and 𝛼𝑖𝑗 is solved with linear regression. Hence, to estimate �̂� : 

�̂� =  �̂�01𝑁𝑛
+ 𝐾�̂� + 𝑍�̂� 

Furthermore, Cho (2010) tested the algorithm using the RBF kernel and GCV function to estimate the 

optimal value of hyperparameters. The result proved slightly increased performance and prediction over 

standard LS-SVR and linear regression using simulation and real datasets (Cho, 2010; Seok et al., 2011).  

Relevant studies 

There might be an intra-cluster correlation influenced by random effects (Hajjem et al., 2014; Verbeke, 

Molenberghs, & Rizopoulos, 2010). In another words, the prediction at particular cluster could be affected 

by random effects parameters (Westfall, 2016).  In this MSc thesis, we have hypothesized that the MERF 

and the MESVR able to capture spatial patterns through correlation between cluster via cluster variance 

regarding random effects (spatial autocorrelation) or within-cluster variation regarding errors (spatial 

dependence).   

Apart from that, we adopted the MERF framework to develop MESVR. It is assumed that the MERF 

framework is modular and flexible. Thus, the non-linear regression in MERF was replaced with SVR to 

compute fixed effects. Given the MERF framework equation in 2.16, the random forest 𝑓𝐼(𝑥)  was 

replaced with the non-linear mapping function of SVR 〈𝑤, 𝜑(𝑥𝑖𝑗)〉. Hence, the equation for MESVR 

using MERF framework can be calculated using this formula: 

𝑦𝑖 = 〈𝑤, 𝜑(𝑥𝑖𝑗)〉 + 𝑍𝑖𝑏𝑖 + 𝜖𝑖 (2.21) 

The rest functions inside existing MERF are used, for instance, EM and GLL. The out of bag prediction 

in random effect replaced with cross-validation split in the training set.  
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3. CASE STUDY: OBJECTIVE AND DATA EXPLORATION  

This chapter contains the objective of the selected case study. A brief description of the study area and 

data exploration in the subsection. Data exploration contains; a) data acquisition and preparation, b) data 

pre-processing, c) feature engineering and d) spatial-temporal autocorrelation.  

3.1. OBJECTIVE AND STUDY AREA 

The case study in this research is crimes that occurred in New York City, New York, USA. As can be seen 

in Figure 8, New York City was divided into five boroughs; Bronx, Queens, Brooklyn, Manhattan and 

Staten Island. It also has approximately 248 unique number of zip codes that split the area into finer 

resolution. Moreover, New York City also becomes the most populous city in the USA (Barron, 2018). 

Despite the most populous city, the number of crimes in New York City began to decline dramatically in 

the late 20th century (Fox, 2018; New York City Police Department, 2018). Therefore, the objective of this 

case study is to capture the crime pattern and predict the number of crimes at the zip code level based 

complaint features in New York City. 

 

Figure 8. The study area for investigating the ability of machine learning regression to capture spatial patterns 
situated in New York City, United States. 

3.2. DATA ACQUISITION AND PREPARATION 

The spatiotemporal dataset used in this research was gathered from crowdsourced GIS data, that are 

publicly available online through the NYC open data website (NYC Information Technology & 

Telecommunications, 2019). The datasets contain three different sources, and each source has its purpose; 

namely the features, the response variable and the spatial aggregator.  
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The dataset for explanatory features was acquired from the 311 Service Requests database that was 

collected from 2010 to present. Originally, it contained 41 columns, around 18 million rows and yielded 

more than 10 GB file size with csv format extension. The dataset for the response variable was obtained 

from the New York City Police Department (NYPD) Complaint Data Historic. It contains all valid crimes 

that were reported to NYPD from the year 2006 until 2017. It originally consisted of 35 columns with 

more than six million rows and generated more than 1.5 GB file size in csv format. Both datasets have 

columns on latitude and longitudinal coordinates. The generic overview of both datasets can be seen in 

Table 3.1. The spatial aggregator data is New York City zip code boundary (Department of Information 

Technology & Telecommunications (DoITT), 2018). The spatial dataset, zip code boundary, has geometry 

type of multipolygon.  

Table 3.1. Generic overview of complaints and crimes dataset 

 Complaint Datasets Crime Datasets 

Datatype Count Count 

float64 5 6 

int64 1 2 

object 35 16 

Memory Usage: 5.7+ GB 

Disk Usage: 10.6+ GB 

Memory Usage: 1.1+ GB 

Disk Usage: 1.5+ GB 

3.3. DATA PRE-PROCESSING 

The aim of data pre-processing is to provide good quality training dataset. The performance of the model 

has linear relationship with the quality of the training sample data that fed into the model itself (Malik, 

2018).  There are three main steps of data pre-processing; namely data extraction, data cleaning.  

Data Extraction 

Data extraction has significant role in improving learning time and ramping up the size of the data. The 

aim of data extraction process is to acquire the baseline appropriate input data matrix as learning sample. 

Extracting information in the dataset was performed by removing unrelated attributes and selecting the 

important one that has an impact on the learning process. It performed by extracting an appropriate 

length of time period. The length of the year for both datasets is different. Crime dataset was obtained by 

extracting the data started from year 2009 through 2017 while complaint dataset from year 2010 to 2017. 

To extract information, both datasets that contain valid crimes and complaints were loaded into physical 

memory and extracted using panda’s dataframe.   

Apart from removing unrelated features, we renamed the attribute name and converted its datatype in 

order to make them compatible to PostgreSQL standard and further reduced file size in both disk and 

physical memory. Hence, efficient computation time involving these datasets can be achieved.  

Data extraction resulted in massive reduction in the size of the data. The amount of data that resides in 

the memory went down from 5.7+ GB to 1.1+ GB for complaint dataset and 1.1+ GB to 440+ MB for 

crime dataset. The output of data extraction on both complaint and crime datasets after passing through 

this step are listed in Table 3.2 and Table 3.3 respectively.   
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Table 3.2. Complaint datasets after extracting and removing unrelated attributes. 

Attributes Datatype Description 

id int64 indexing 

complaint_type object types of complaint 

zip object zip code reported 

x float64 x state plane in meters 

y float64 y state plane in meters 

latitude float64 geographic coordinate wgs84 

longitude float64 geographic coordinate wgs84 

created_date datetime64[ns] date incident reported 

 

Table 3.3. Crime datasets after information extraction and unrelated attributes removal. 

Attributes Datatype Description 

id int64 indexing 

report_date datetime64[ns] date complaints reported 

offense_desc object types of crime incident 

x float64 x state plane in meters 

y float64 y state plane in meters 

latitude float64 geographic coordinate in wgs84 

longitude float64 geographic coordinate in wgs84 

 

Data Cleaning 

Data cleaning has the purpose to fix the missing data in the datasets that come from various sources, for 

instance, input data error, programming error, error on data transfer, etc. Missing data reparation by filling 

any value, such as median, mean, backfill, etc, is not usually simple generic and appropriate solution, 

because it depends on the attribute knowledge domain (Brownlee, 2013; Malik, 2018).  

There are two kinds of types of missing data that occurred in the complaints and crimes datasets; 

NaN/NULL and zero in the latitude, longitude, offense_desc and complaint_type column. The 

percentage of missing data in latitude and longitude in complaints and crime datasets are low by 9.03% 

and 3.31% respectively. Therefore, we removed all of the data that has missing value.  

Data cleaning was also performed to spatial data, precisely to their geometry identity to remain consistent 

according to Open Geospatial Consortium (OGC) compliance. Thus, data duplication and ambiguity in 

the later processing stage can be avoided, such as SQL query in the feature engineering. Data cleaning to 

spatial data was performed using SQL/PostgreSQL – PostGIS.  
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According to OGC compliance, multipolygon is valid if and only if all elements are valid and there are less 

than two elements that intersect. However, the boundaries of any two elements may touch a limited 

number of points (The PostGIS Development Group, 2018). Hence, the implementation of multipolygon 

in the PostgreSQL through postgis should be one and more tuple may contain different attribute data but 

originate from similar or equivalent geometries. This is not the case in this study; multiple data that have 

similar zip code but have more than one geometry had to be merged to avoid data ambiguity and 

duplication as shown in Figure 9. 

  

(A) (B) 

Figure 9. (A) Realization of spatial data in the geodatabase showing the same geometry split into four tuples. (B) 
visualization of spatial data showing the geometry filled with solid yellow colour has the same zip code level 

3.4. FEATURE ENGINEERING 

In this stage, raw data transformed into features. These features represent problem wrapper to the 

predictive models. Feature engineering might improve model accuracy on the test set (Shekhar, 2018). 

Features engineering was accomplished using SQL/PostgreSQL query and Python’s library Pandas. A data 

manipulation method that was used to extract features from the raw datasets is one hot encoding. One hot 

encoding is a process transforming categorical or discrete features into one hot numeric array.  

As it can be seen in Figure 10, complaint_type column contains the discrete value, such as blocked 

driveway, noise residential and noise vehicle. Using one hot encoding method, these values are converted 

to three features; namely blocked_driveway, noise_residential and noise_vehicle. Their values converted to 

binary value that machine learning regression can understand better.  

Feature extraction for the explanatory features was performed using SQL/PostgreSQL query to extract 

the number of complaints. The feature selection method was based on the ten largest number of 

complaints, for instance, noise residential, water problem, street condition, generic noise and blocked 

driveway. Another method to select the other features; graffiti, dirty condition and noise vehicle was 

purely random selection to find out that these features contribute to initiate crimes in a particular area. 

Features were selected and extracted from complaint_type column and aggregated to zip code level and 

particular temporal resolution. Spatial aggregation to zip code resolution was performed using SQL 

GROUP BY and ST_Intersects functions. Thus, each tuple has its geometry from specific zip code. One 

hot encoding also applied to date column. Using pandas, datetime was split into a week, month and year.  
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(A) (B) 

Figure 10. (B) is one hot encoding product from (A) 

Same treatment to response variable, one hot encoding applied to offense_desc established from five 

crime categories; namely larceny, assault, burglary, robbery and drugs. The selection for one feature, which 

is drugs was obtained based random selection while the others based major crime occurrences in New 

York City (Newsday, 2018). The complete feature engineering output can be seen in Table 3.4 below.    

Table 3.4. Complaint features along with lagged spatial features and response variable  

 

 

Feature construction was also performed to create two lagged features; time offset spatial lag of response 

variable and time offset quadrant of LISA’s indicator. Response variable shifted to 𝑡 + 1, where 𝑡 is time 

of year. Spatial lag of response value was obtained using equation 2.2 by calculating the weighted sum of 

each observation neighbour of shifted response. Spatial lag was used to estimate the spatial correlation 

between response at a particular cluster and its neighbour. In case offset quadrant of LISA’s, the value was 

obtained by calculating local moran of shifted response variable using equation 2.4. LISA’s quadrant label 

was used to estimate correlation significance between cluster. As LISA’s quadrants contains discrete value, 

thus they were one hot encoded to inform the model the significance of cluster of each response in 

particular cluster. The lagged spatial features can be seen in Table 3.4 

As RF and SVR model able to learn the data from each cluster and make it equally comparable regarding 

performance and ability to capture spatial patterns with MERF and MESVR method, the zip code and 

month were one hot encoded as features. Zip code as features informs the model that particular sub-

sample data belongs to a specific cluster object. The same treatment applied to month features to improve 

model performance. The result as shown in Table 3.5 and Table 3.6.  

Complaint  Lagged spatial features Response 

noise_residential 

noise_vehicle 

dirty_condition 

graffiti 

street_condition 

blocked_driveway 

generic_noise 

water_problem 

y_offset_splag 

quadrant_0 

quadrant_1 

quadrant_2 

quadrant_3 

quadrant_4 

crime_num 
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Table 3.5. Zip code id matrix being transposed as features set in the training set 

 Cluster features [cf_ohe]  

Zip code cluster_𝒁𝟏 cluster_𝒁𝟐 …….. cluster_𝒁𝒏 

𝑍1 1 0 …….. 0 

𝑍2 0 1 ……. 0 

…… ……. …… ……. …… 

𝑍𝑛 0 0 ……. 1 

 

Table 3.6. Month matrix being transposed as features set in the training set 

 Month features   

Month month_1 month_2 ….. month_12 

1 1 0 ….. 0 

2 0 1 ….. 0 

…… ……. …… ….. …… 

12 0 0 ….. 1 

 

Baseline sample training constructed as the cartesian product between zip code boundary data, weekly data 

and monthly generated series. Hence, when there is no complaint nor crime reported in particular time 

scale and place, then the data will be filled with 0. The final input data matrix is obtained by inner joining 

between explanatory, response and baseline datasets. It can be seen in Table 3.7 

Table 3.7. Input data matrix for the machine learning algorithm 

 

Response 

Data dimension 

 1st dim 2nd dim 

(offset SL response) 

3rd dim 

(offset LISA) 

n dim 

Training data 𝑦𝑖𝑗 𝑥𝑖11 𝑥𝑖12 (𝑡 − 1) 𝑥𝑖12 (𝑡 − 1) 𝑥𝑖𝑛𝑖 

Testing data . . . . . 

 

Feature Scaling 

There are several methods to normalise the features. The choice of the method depends on the data 

distribution and the occurrence of outliers in the data. We observed that the number of outliers in the 

dataset is quite high. Apart from outliers, we also observed the distribution of the data in each covariate 

and zip code are not always normal distribution. Thus, we conclude the appropriate feature scaling 

method to use robust scaling. Robust scaling method works by removing the median and uses interquartile 

range. Hence, this method robust to outliers. 
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Mathematically, it is calculated using formula:  

𝑋_𝑆𝑐𝑎𝑙𝑒𝑑 =   
𝑋 − 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑋)

𝐼𝑄𝑅
 

where IQR is interquartile range.  

Features Exploration 

To determine the random effects variable from complaint features, we compared the pattern of data 

distribution of each feature in the training set with the response variable. As it can be seen in Figure 11,  

dirty_condition and noise_vehicle have a similar pattern. Hence, we select these features as random 

features. 

 

 

Figure 11. Data distribution of selected features and response from the year 2010 – 2016 

3.5. SPATIAL PATTERN  

Spatial autocorrelation analysis in this stage was performed to the response variable to get the whole 

picture of pattern in the datasets before the learning process takes places. The output will be used to 

consider the model performance. The degree of spatial autocorrelation on the response value in the 

monthly aggregated dataset was calculated using Global Moran’s I. The result of I as shown in Figure 12, 

shows the degree of clustering is fluctuating through the time. Although it is fluctuating, the average value 

of Global Moran’s I quiet high ranging from 50 – 57% of the area are clustered. Additionally, the Global 

Moran’s I value of the response variable is different between monthly and weekly dataset. However, it can 

be concluded that there is a pattern in the dataset.  
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Figure 12. Global Moran's I value of response variable fluctuating through time, the blue line is Global Moran's I on 
the weekly dataset, while the red line is acquired on the monthly dataset 
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4. CASE STUDY: EXPERIMENTAL SET-UP 

The subsections in this chapter give a detailed description of the experiments designed to develop the 

machine learning models. This includes a description of the cross-validation strategy and hyperparameter 

tuning.  Moreover, the selected configuration to evaluate model performance and its ability to capture 

spatial patterns is also explained. Besides this, the hardware and software configuration to run the machine 

learning models are also described too.    

In this research, we performed experiments on four machine learning algorithms using two different 

temporal scale datasets which are monthly and weekly datasets. These datasets contain explanatory and 

response variable. These features we obtained through feature engineering discussed in the previous 

chapter. The features contain four major features; namely complaints, temporal, lagged spatial features and 

zip code. Lagged spatial features contain spatial lag and LISA’s quadrant.  

The experiments divided into two big domains; namely no lag (NL) and with lagged spatial features (WL). 

NL experiment consists of complaint, temporal and zip code features. While, WL consists of complaints, 

temporal, lagged spatial features and zip code. Beside this, we also varied the experiment with 

combination of random and fixed features. We have already discussed and chosen features as random 

effects, fixed effects or both of them in the previous chapter. The overview of the detailed experiment as 

shown in Table 4.1. However, vanilla RF and SVR model only trained using fixed effects.  
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Table 4.1. Detail experiments to develop machine learning models 

 Features 

Experiments 

Code 

Random/ 

Fixed 

Variable 

(RV/FV) 

Complaints 
Temporal 

(𝒎𝒐𝒏𝒕𝒉) 

Spatial 

Lag 

(𝒕 − 𝟏) 

LISA’s 

Quadrant 

(𝒕 − 𝟏) 

 

Zip 

Code 

 

V+MNL/WNL FV ●    (OHE) 

V+MWL/WWL  FV ●  ● ● (OHE) 

ME+MNL/WNL - 

1 

FV ● ●   

C 
RV     

ME+NL – 3, ..., 

15* 

… 
… … … … 

… 

ME+MWL/WWL 

– 10 

FV ● ● ● ● 

C 
RV   ●  

ME+MWL/WWL 

– 11 

FV ● ●   

C 
RV   ● ● 

ME+WL – 1, …, 

24* 

… 
… … … … 

… 

V = Vanilla machine learning regression model (R for RF and S for SVR*) 

ME = Mixed effects + machine learning regression model (M for MERF and MS for MESVR*) 

M/W = Monthly dataset / Weekly dataset 

NL/WL = No Lagged / With Lagged features 

C = Cluster 

* = see appendix   

4.1. MODELLING 

Here, we explain the process followed to develop a model to predict the future values of a response 

variable based on several features. It is important to develop a good predictive model as the prediction 

model outcome can be used to take further action to reduce crime. Therefore, we need to tune up the 

model performance. 

Model generalization often can be adjusted through hyperparameter tuning (Probst, Wright, & Boulesteix, 

2018). There are several steps to tune up the model hyperparameter. Hyperparameter is parameters that 

cannot directly be learned during learning and have to be set to the machine learning before training the 

model. Hyperparameter tuning is used to find the best machine learning regression parameters 
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configuration. Furthermore, it relies on trial and error experiments to determine the best parameter setting 

through model evaluation using different parameter combinations. Although there are many methods to 

obtain the best parameters, grid search and randomized search method were selected used in this research. 

Because they are widely used (Bergstra，James & Bengio, 2012). The modelling configuration in the 

hyperparameter tuning can be seen in Table 4.2. 

Table 4.2. Modelling configuration used in hyperparameter tuning  

 Modelling Setup 

 RF MERF SVR MESVR 

 Monthly Weekly Monthly Weekly Monthly Weekly Monthly Weekly 

Feature scaling     ● ● ● ● 

Subsampling        ● 

Randomize search ● ●   ● ● ● ● 

Grid search   ● ● ● ●   

Zip Code [OHE] ● ●   ● ●   

Zip Code [Cluster]   ● ●   ● ● 

Group K-Fold 7  7  7  7  7  7  7  3  

NL features 256 257 * * 256 257 * * 

WL features 262 263 * * 262 263 * * 

* the number of features is varied on random and fixed features combination.  

 

Grid search is an expensive way to find the best parameters of the machine learning over pre-defined 

ranges for each parameter. Bergstra et al. (2012) proved that grid search is reliable in a problem with a 

relatively small number of parameters and become inefficient when the dimensionality of parameters 

increased. In contrast, randomized search is more efficient when working with high-dimensional 

parameter space. Thus, in this study, grid search was applied to datasets that have a small number of 

parameters.   

Unlike grid search, randomized search uses a fixed number of parameter space, that is sampled from a 

specified uniform distribution (Zhigljavsky & Pintér, 1991). Moreover, randomized search is iterative 

through the number of parameters being sampled (Peck & Dhawan, 1995). Hence, there is a trade-off 

between the number of iteration and efficiency. However, both grid search and randomized search were 

used to find the best parameters.  

In the modelling configuration, as shown in Table 4.2, the datasets were split seven folds in the training 

set and hold out a year in the test set except for MESVR trained with weekly dataset use three folds. In the 

training set consists of spatial structure in the form of multipolygon. Thus, to retain the structure in the 

data, we use group k-fold with a year as a grouping parameter to split training set in the cross-validation.     
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4.1.1. CROSS-VALIDATION  

Cross-validation is an essential step in the training process of data-driven models (Cawley & Talbot, 2010). 

It helps to reduce overfitting by partitioning datasets into k-fold. Instead of putting all of the data into the 

training, cross-validation split datasets into two subsets; training subset and validation test as shown in 

Figure 13.  

 

Figure 13. Cross-validation split the dataset into training, validation and test set 

In the cross-validation, we were careful to choose the best method to split datasets, since we were working 

with longitudinal spatial datasets as shown in Figure 14. To retain spatial structure in the dataset, we 

picked group k-fold and use temporal slicing on year variable as grouping parameter split.    

 

 

Figure 14. Structure of monthly scale spatial datasets used to develop machine learning model with m = 2010, …, 
2016, n = 1, …, 12 and i = 1, …, 248 

Group k-fold has a similar approach to leave one out group cv except it divides the dataset into k-fold. 

Moreover, it also does not use a similar group twice in two different folds as shown in Figure 15. Using 

this approach, we split the training set into seven folds.   

 

 

Figure 15. Illustration of group k-fold, the yellowish block is validation test set.  
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4.1.2. RANDOM FOREST 

RF has feature selection ability through its feature importance. As we already discussed in chapter 3, in the 

training process, the random forest grows the number of trees. In each tree has several nodes as each 

node contain features and the split the dataset into two which have the same response value. Thus, it is 

possible that RF to calculate the feature importance from how much of each feature decreases the 

variance in a tree. Feature importance can be used to further reduce data dimensionality without affecting 

the model performance. 

Features Importance 

As can be seen in Table 4.1 and Table 4.2 we have different the number of features for a different domain 

(with lagged spatial features and without lagged) and temporal scale dataset. It translates four different 

experiments. Training set on monthly dataset has 256 features for without lagged and 262 features for 

without lagged spatial features. As for weekly dataset, we have 257 and 263 features for without lagged 

and with lagged domain respectively. Using the default RF parameter, the model trained using without 

lagged features; the average accuracy measured using r-squared obtained are 0.91 and 0.86 for monthly 

and weekly dataset respectively using without lagged features. These results can be seen in Figure 16 and 

Figure 17. 

  

Figure 16. Feature importance result and cumulative importance on the monthly dataset 

The relative differences in the feature importance as shown in Figure 16, noise residential has the most 

influence compared with others. Interesting result, there are two clusters as features that have significant 

importance. The feature selection process also considers the contribution of each variable to the overall 

importance. The cumulative importance graph as shown in Figure 16 might help to cut off the 

unimportant features. The red dashed line was drawn at 93% of total cumulative importance in the 

monthly dataset to select the most important features. As a result, month features have been dropped 

from the training set.  

Feature selection for weekly scale dataset has a similar result with feature importance for monthly dataset 

except for the threshold to remove the unimportant feature. The upper threshold can be acquired to filter 

unimportant is around 88% as shown in Figure 17.  The threshold that was used to filter features is an 

arbitrary threshold. This means we can adjust the value of the threshold when the result is not good.  
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Figure 17. Feature importance and cumulative importance on the weekly dataset 

An interesting observation to feature importance was when all features included in the training set to both 

weekly and monthly set. As it can be seen in Figure 18, lagged features become dominant and make the 

other features irrelevant. It has a strong correlation with response variable that could indicate serial 

correlation. Moreover, the accuracy of r-squared score goes up significantly by 0.95.  

  

Figure 18. Feature importance and cumulative importance result when lagged features were included 

Hyperparameter Tuning 

Recall in chapter 2; there are four RF parameters to tune up; the number of trees, maximum tree depth, 

minimum samples split and leaf. Randomized search was accomplished to each different temporal scale 

datasets. Parameter distribution grid configuration as shown in Table 4.3 Randomized search 

configuration was used to find the best RF parameters. It runs iteratively to find the best configuration. 

The number iteration was set to 10, 25, 50, 100 and 200. Group k-fold seven folds were used to tune the 

parameters.  

Hyperparameter tuning is close to trial and error to find the best parameter. For weekly data, we did the 

second round of iteration with a higher number of number estimators and adding iterations because the 

results were not good enough.  
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Table 4.3 Randomized search configuration was used to find the best RF parameters 

Hyperparameter Tuning 

Monthly Weekly 

Parameters Tuning Tuning 

n_estimators random integer (50 – 500) random integer (100 – 1000) 

max_depth random integer (10 – 200) random integer (10 – 200) 

min_samples_split random integer (2 – 50) random integer (2 – 50) 

min_samples_leaf random integer (5 – 100) random integer (5 – 100) 

 

Randomized search found the best configuration parameter on a different number of iterations. As can be 

seen in Figure 19, the best parameter configuration found in a different number of iterations. For monthly 

dataset, the model trained using non-lagged spatial features the best parameter found for 100 iterations, as 

for weekly data found for 200 iterations. Both different datasets using lagged spatial features found for 50 

iterations. The optimum RF parameter from randomized search as shown in Table 4.4.  

  

(A) (B) 

Figure 19. (A) Hyperparameter tuning using vanilla RF on monthly dataset (B) weekly dataset. The blue 
line, the model trained with lagged spatial features, while the red line without lagged spatial features. 

Table 4.4. Optimum RF parameter configuration for both monthly and weekly scale dataset 

Optimum RF Parameter Configuration 

 NL WL 

Parameter Monthly  Weekly  Monthly  Weekly  

n_estimators 450 552 279 707 

max_features all features all features all features all features 

max_depth 36 140 194 128 

min_samples_split  3 27 23 41 

min_samples_leaf 11 9 5 6 
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4.1.3. SUPPORT VECTOR REGRESSION 

Modelling with SVR were performed using RBF kernel. RBF kernel is based on distance. Recall equation 

in 2.14, the features that have a large range of value will dominate in the computation of kernel matrices.  

Hence, it is required to scaling the features values to get better model generalization (Valenzuela, Zhang, 

& Selpi, 2017). In SVR modelling, scaled datasets were used to train the model. Beside this, we found that 

feeding the model in the hyperparameter tuning with the whole training subset and validation set on 

weekly dataset was very expensive. This because SVR solves the problem in quadratic order. SVR training 

becomes expensive as the size and the dimension of the data are increased. Hence, we decided to 

subsample dataset become smaller size.  

Subsampling Training Set 

Good approach to subsampling dataset is by randomly sampling. However, we did not randomly 

subsample the dataset as we consider spatial structure in the dataset as shown in Figure 14, data 

distribution and its pattern through time as shown in Figure 20 and the degree of spatial autocorrelation of 

the response variable as shown in Figure 12. We decided to subsample the data from 2012 – 2014. This 

dataset was used to tune hyperparameter and retrain the final model for SVR and MESVR. 

 

Figure 20. Line chart showing the series of the data distribution of each complaint feature 

 
Hyperparameter Tuning 

Apart from randomized search, we also used grid search to find the best estimate of SVR parameters. 

There are three parameters used to tune up the model; gamma, c and epsilon value. Similar treatment with 

randomized search on RF, it was also performed to two different scales of datasets. Slightly different with 

RF, we used all the features including lagged spatial features in the hyperparameter tuning. Thus, the 

parameter setting for non-lagged features to train the model was using the same set as lagged spatial 

features. The configuration of parameter distribution used to find the best parameter with randomized 

search can be seen in Table 4.5. The number of iterations was set to 10, 25, 50, 100, 150 and 200.  
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Table 4.5. Parameter distribution configuration to find optimal SVR parameters. 

Hyperparameter Tuning 

Monthly Weekly 

Parameters Configuration Configuration 

kernel RBF RBF 

gamma random (1-100) random (1-100) 

c random (1- 100)  random (1- 100) 

epsilon random (0.1-10) random (1-100) 

 

The range of C and epsilon parameter was chosen according to Cherkassky & Ma (2004). Range C 

parameter was obtained from:  

𝐶 = max( |�̅� + 3𝜎𝑦|, |�̅� −  3𝜎𝑦 | ) 

where �̅� is mean of the response variable, 𝜎𝑦 is the standard deviation of resthe ponse variable. The range 

for epsilon when the number of samples is large obtained by 

𝜀 =  𝜏𝜎√
ln𝑛

𝑛
 

where n is the number of samples, the value of  𝜏 is constant and Cherkassky & Ma (2004) proposed 3 for 

good estimation. The optimum parameter of SVR using monthly datasets obtained using 150 iterations of 

randomized search as shown in Error! Reference source not found.. 

However, further observation to the model measured with r-squared using weekly dataset using all 

features has low prediction accuracy, about 0.60. Then, we further tuned up the parameter using grid 

search using the best randomized search parameter as a baseline. The grid parameter as shown in  

Table 4.6, we add c value 1000 and gamma value 0.001 to the distribution parameter grid. Using this grid 

configuration, the model gains prediction accuracy significantly with more than 20% with r-2 squared 

measured 0.82. The optimum SVR parameter can be seen in Table 4.7 

Table 4.6. Grid distribution parameter used to find best SVR parameter for weekly dataset 

Hyperparameter Tuning 

Parameter Configuration 

kernel RBF 

gamma [0.001, 0.01] 

c [100, 1000.0] 

epsilon 0.1 
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Table 4.7. Optimum SVR parameter configuration 

Optimum SVR Parameter Configuration 

Parameter Monthly scale Weekly scale 

gamma 0.1 0.001 

c 100 1000 

epsilon 10 0.1 

  

4.1.4. MIXED EFFECTS RANDOM FOREST 

The tuning on MERF’s hyperparameters was performed using grid search. Unlike vanilla RF, there are 

two rounds to tune up the model performance. To start with, we tuned the MERF parameter and 

secondly, we tuned up the model through the combination of random and fixed features.  

MERF uses out of bag prediction and sub-sample dataset to find an optimum predicted response. We 

observed that by default only two parameters that can be tuned; namely the number of estimator and 

iterations. Hence, we use grid search to find the best parameters of MERF. All of the features excluding 

lagged spatial features were used to tune the MERF’s parameter.  

Using configuration as shown in Table 4.8, translates 25 combination fits per fold and renders 175 fits.   

Table 4.8. Hyperparameter tuning configuration to find optimum MERF parameters 

MERF Parameter Tuning Configuration 

Parameters Configuration 

n_estimators [50, 100, 150, 200, 250] 

n_iterations [50, 100, 150, 200, 250] 

max_features n_features 
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(A) (B) 

 

(C) 

Figure 21. Parameter tuning result on MERF with the monthly dataset (A) measured using RMSE, (B) measured 

using MAD, (C) computation required to train the model.  

As it can be seen in Figure 21, using root mean squared error (RMSE) and median absolute deviation 

(MAD) as metric evaluation, the number of iterations is convergence when it reached 200 iterations. It is 

also similar to the number of estimators. The selection of parameter configuration also considers the 

computation time required to train the model. Thus, the configuration parameter for the monthly dataset 

is using 200 for the number of iterations and estimators. 

As for the weekly dataset, as shown in Figure 22, the best configuration for the number of iterations is 150 

while the number of estimators is 100. As the model performance already reached its peak. Thus, adding 

more estimator does not change the performance of the model. These configurations were used to tune 

up the model in the second round.  
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(A) (B) 

 

(C) 

Figure 22. Parameter tuning result on MERF using weekly dataset, (A) measured using RMSE (B) measured using 
MAD (C) computation time 

4.1.5. MIXED EFFECTS SUPPORT VECTOR REGRESSION  

The tuning on MESVR’s parameters is similar to MERF. Slightly different from MERF, we can place the 

best configuration parameter of fixed effects estimator, which is SVR. Therefore, in the first round, we 

performed parameter tuning using randomized search. Randomized search was performed using 

complaint and lagged spatial features since the zip code as spatial representation in the data placed to the 

cluster. Randomized search parameter distribution was using the similar set as vanilla SVR as shown in 

Table 4.5.  

  

(A) (B) 

Figure 23. Tuning SVR parameter using randomized search using (A) monthly dataset and (B) weekly dataset 
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As it can be seen in Figure 23, using randomized search, the best parameter configuration of SVR trained 

using monthly dataset found for 100 iterations and 50 iterations for SVR parameter trained using weekly 

dataset. The optimum SVR parameter can be seen in Table 4.9. These optimum parameters were used to 

further tune up the model through random and fixed features combinations.  

Table 4.9. Optimum SVR parameter as fixed effects function in MESVR 

Optimum SVR Parameter Configuration 

Parameter Monthly scale Weekly scale 

gamma 0.7 7.3 

c 73.8 8.2 

epsilon 20 0.02 

4.2. MODEL EVALUATION 

Optimum parameter configuration for each machine learning regression algorithm has been used to 

retrain the model. Retraining the model using fully training set was performed to acquire the optimized 

model. The optimized model then evaluated using testing set in term of predictive performance and ability 

to capture spatial pattern. Moreover, to evaluate the ability to predict and capture spatial pattern on 

unseen data, the model re-trained using training and test set as a new piece of information to obtain a final 

model. These models will be used to predict crime in New York City in the year 2017. 

There are five kinds of metrics evaluation to evaluate the model. Firstly, model prediction performance 

evaluation metrics will use mean absolute error (MAE) since mean absolute errors insensitive to outliers 

and weighted equally (C. Chen, Yan, Zhao, Guo, & Liu, 2017; Roy & Larocque, 2012). Mean absolute 

error formula: 

𝑀𝐴𝐸 = 
1

𝑛
 ∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 

Secondly, the metric was used to evaluate the model prediction error is the median absolute deviation 

(MAD). This metrics also robust to outliers by taking the median of all absolute errors of the residual’s 

regression given i samples. Mathematically, it is calculated using this formula: 

𝑀𝐴𝐷 (𝑦, �̂�) = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦𝑖 − �̂�𝑖|) 

These two metrics were used to evaluate RF models and their mixed effects counterparts since random 

forest robust to outliers. Whereas, SVR and MESVR models were evaluated using root mean squared 

errors (RMSE) since these algorithms do not make fully resistant to outliers in the data. However, both 

MERF and MESVR were evaluated using all of the metrics mentioned here. RMSE is formulated given 

by: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 

Such that, RMSE penalizes the magnitude of errors higher than MAE. Thus, the value of RMSE will be 

higher or equal to MAE. To evaluate the prediction accuracy, R2 was selected.  
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It is formulated given by: 

�̂�2 = 1 − 
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�𝑖)
2𝑛

𝑖=1

 

The last metric is Moran's I. It was used to evaluate the model ability to capture spatial patterns. The 

equation of Moran’s I can be found in chapter 2 at equation 2.3. Additionally, computation time during 

training the model also assessed. 

4.3. HARDWARE AND SOFTWARE 

This subsection gives a brief description on hardware and software were used in the experiments. 

Software 

Standard (also known as “vanilla”) machine learning regression algorithms, RF and SVR are provided by 

Scikit-learn (Pedregosa et al., 2011).1 One of the most popular machine learning libraries in Python. The 

MERF algorithm was also available as a python package was provided by Hajjem et al. (2014).2  

QGIS was used to visualize the base map and the zip code map. The PostgreSQL/SQL database 

container and the PostGIS extension were used to store and pre-process datasets. Psycopg version 2 was 

used to connect Python to the database.   

Source code development was done using Python language with Jupyter Notebook as an Integrated 

Development Environment (IDE). The PySal library was used to process geospatial data along with 

GeoPandas. An extension of Pandas that allows spatial operation on geometric types.   

High Performance Computing (HPC) environment using job scheduler and use qsub utility to send the 

batch job queue of model training to computing nodes. 

Hardware 

The RF and SVR models were run using all of the resources excluding GPU since there is no API nor 

middleware in Scikit-learn to split and distribute the processes to an external resource such as GPU. 

Therefore, the learning processes of the models are only made use of the raw power available CPU. It was 

parallelly distributed the processes into physical and logical cores. It also uses a large amount of physical 

RAM as temporary storage of the result set of models.  

Two types of were used in this thesis; PC and High-Performance Computing (HPC). LIPI HPC facilities 

were used to run a task that needs heavy computation such as MERF and MESVR models.3 The HPC and 

PC configurations are described in Table 4.10. 

Table 4.10. PC and HPC configuration were used to train the model 

Hardware Configuration 

PC HPC (1 Node) 

CPU AMD x64 8 cores / 16 threads 2 x Intel Xeon E5-2650 2.00 GHz (16 Cores)  

HDD 4 TB 100 GB 

RAM DDR 4 32 GB 128 GB RAM  

                                                      
1 https://scikit-learn.org/stable/index.html 
2 https://github.com/manifoldai/merf 
3 http://grid.lipi.go.id 
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5. CASE STUDY: RESULTS AND DISCUSSION 

The cross-validation and model generalization results are presented in this chapter. These models were 

evaluated using the metrics explained in chapter 4. These metrics were used to pick the best model in the 

cross-validation. The best configuration of a selected model of each algorithm was used to build the final 

model and to predict test set (known as “unseen dataset”). The model performances that were trained 

from the various time scale dataset and features configuration on both model selection and final model 

performance are compared and explained in this subsection.  

5.1. CROSS-VALIDATION 

The results of the cross-validation model are presented, compared and evaluated to select the best model 

in term predictive performance and ability to capture spatial pattern. Two kind approaches to evaluate the 

vanilla machine learning regression models and their mixed effects counterparts. Vanilla model evaluations 

were performed by checking model performance in each split. Mixed effects model were evaluated by 

checking the performance of all the experiments (see Appendix I for the detail).  

The models were trained using seven and three group k-folds (MESVR on the weekly dataset) to avoid 

overlapping and retain the spatial structure. As for random features, we use five random features; a) two 

features from both complaints features, b) two lagged spatial features and c) temporal features. To 

discover the influence of lagged spatial features to model performance and SAC residuals level, we split 

the cross-validation process into lagged and non-lagged model domains. Hence, in the cross-validation 

stage, we have 15 and 24 unique combinations of non-lagged and lagged models respectively performed at 

two temporal scales. 

However, both approaches compare the model prediction performance with the degree of spatial 

autocorrelation in the regression residuals. The aim is to discover not only the best predictive model but 

also the lowest SAC level in the residuals.  

5.1.1. RANDOM FOREST 

As it can be seen in Figure 24, the model trained using lagged spatial features has better predictive 

performance compared trained using only complaints variable. The points are converging close to the 

regression line. This means that the model might have the lowest standard deviation compared with 

others. Moreover, recall that lagged spatial feature; namely spatial lag has the highest feature importance 

might due seasonality in the response variable (see chapter 3 in the features exploration). In regression, the 

difference between true value and predicted values is known as regression residual. These model residuals 

were evaluated in term of SAC in each cross-validation split.  
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(A) The model trained with monthly 

scale dataset without lagged features 

(B) The model trained with monthly 

scale dataset with lagged features 

  

(C) The model trained with weekly scale 

dataset without lagged features 

(D) The model trained with weekly scale 

dataset with lagged features 

Figure 24. The prediction errors of each experiments using vanilla random forest to various scale dataset and feature 

configuration shows (B) has better prediction accuracy compared with the others. 

The SAC of the response variable weekly set is slightly lower than the monthly set around 0.03 as shown 

in Figure 12 and Figure 25. This could be the weekly datasets have finer resolution than monthly. From 

Figure 25, we can infer that model trained using monthly scale dataset without lagged features as input 

features have the highest SAC in the regression residuals.   

  

(A) (B) 

Figure 25. SAC of regression residual on each RF model in cross-validation stage (A) trained with the monthly set 

(B) trained with the weekly set. 
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The model prediction accuracy was evaluated using r-squared metric. It can be seen in Figure 26; model 

RMWL has higher accuracy of around 0.96 compared with the others. From Figure 26, we can also infer 

that there is a negative correlation between SAC and model prediction accuracy for model RMWL and 

RWWL. Conversely with model RMNL and RWNL has a positive correlation. This means that when the 

predictive performance of the model is high, the SAC value of the regression residuals also high. This 

could be an issue in the regression since the errors of regression should be independent and identically 

distributed over all region. However, the model trained using weekly dataset as in RMWL and RWWL 

experiments the SAC residuals are relatively constant. We can also infer from Figure 26, as for model 

trained using lagged spatial features has lower SAC residuals.  

  

  

Figure 26. R-squared of RF experiments are compared. The blue line is a regression line to estimate relationship 

between r-squared and SAC residuals. The number 1 until 7 is cross-validation split.  

To evaluate the magnitude of model prediction errors, mean absolute errors (MAE) and median absolute 

deviation (MAD) were performed to the model. Model prediction errors measured using MAE are lower 

as the magnitude of SAC of regression residual becomes higher for model RMNL as shown in Figure 27. 

This result is coherent with r-squared evaluation. However, using MAD, as shown in Figure 28, the 

correlation between the magnitude of errors and the degree of SAC of the regression residuals for model 

RMWL becomes positive. As it can be seen in Figure 27, the values of errors measured using MAE in split 

six, seven, four and five are shifted to the left in MAD in Figure 28. This means the distribution of model 

errors in these splits are positively skewed.  
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Figure 27. Equally weighted of average model errors of RF experiments. The blue line is a regression line to estimate 

the relationship between MAE and SAC residuals.  

  

  

Figure 28. Comparison of prediction errors RF models using MAD. The blue line is a regression line to estimate the 

relationship between MAD and SAC residuals. 
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To summarize, from the various metrics evaluation, we can infer that the model trained using weekly data 

has lower SAC of the regression residuals level compared with their counterparts despite the lower 

prediction accuracy. The RF model trained using geographical features as geographical proximity in the 

predictors, in this case, zip code still prone to induce SAC in the residual regression. Therefore, consider 

these metrics evaluation, we opted to build the final model using lagged features and evaluate the final 

model on unseen data to both different scale datasets.  

5.1.2. SUPPORT VECTOR REGRESSION 

There are several approaches to evaluate predictive model performance. To begin with, we use scatterplots 

as shown in Figure 29 to give an overview of the model prediction performance. From these images, we 

observe that SMNL and SMWL model have better predictive performance than their weekly counterparts. 

We can see that most of the prediction points on both models are close to the best line fit.    

  

  

Figure 29. Scatterplots the predicted value and true response of vanilla SVR experiments. 
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Figure 30. Prediction accuracy measured using r-squared to SVR models and compared. The blue line is a regression 

line to estimate the relationship between r-squared and SAC residuals. 

The model prediction accuracy evaluated using r-squared as shown in Figure 30, reinforce the previous 

observation that the model SMNL and SMWL have relatively good prediction accuracy around 0.91 and 

0.92 respectively. However, the SAC residual on SMWL experiment is slightly increased as the prediction 

accuracy getting higher. As for the model trained using weekly dataset, SWNL and SWWL, the SAC 

residuals are slightly lower than their counterparts as the baseline of SAC response also slightly lower. Still, 

the model trained using lagged spatial features has lower SAC residuals.   

Overall, the model performance trained using lagged spatial features has relatively lower SAC residuals as 

shown in Figure 31. Moreover, there is a similar pattern of SAC regression residuals level to the models 

were trained with lagged spatial features that lower the magnitude of SAC residuals regression.      
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(A) (B) 

Figure 31. Comparison of SAC of regression residual on SVR experiments (A) trained with the monthly set (B) 
trained with the weekly set. 

The model prediction errors were evaluated using RMSE and show that the model trained using lagged 

spatial features has a close gap and overlap with the model trained without lagged spatial features as 

shown in Figure 32. Based on this finding, training the model using SVR with lagged spatial features does 

not significantly improve the model prediction performance directly, but it may indirectly improve to 

lower the magnitude of SAC residuals.  

 

  

  

Figure 32. Prediction error of all vanilla SVR experiments is presented and compared.  
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5.1.3. MIXED EFFECTS RANDOM FOREST 

 

  

Figure 33. The degree of prediction errors evaluated using MAE is compared to all MERF models.  

 
The aim of the cross-validation work is to select the best model configuration. MERF model evaluation 

was performed using MAE, MAD and R2 metrics. These metrics were compared to the level of SAC 

residuals. The results in the cross-validation split were averaged and plotted to the chart. The detail model 

performance of the best model in each split is also presented.  

To begin with, MAE was performed to evaluate errors in the prediction performance along with the 

degree of SAC residuals. As it can be seen in Figure 33, the prediction errors of the model trained without 

lagged spatial features and with lagged features measured using MAE are close to each other. However, we 

can see from Figure 33; there are two cluster points that have different prediction errors of each domain 

(lagged and non-lagged). For model trained with lagged spatial features, experiment number 1, 2, 3, 5, 9, 

11, 15, 17, 23 have slightly larger errors. While the other experiments have lower errors and lower SAC 

residuals. As for the models were trained using non-lagged spatial features, experiment number 1, 2, 6, 8, 

10, 12 and 14 have slightly more errors. The interval prediction errors of the model between non-lagged 

and lagged are relatively small by 0.05 – 0.9. 

The model performance in term SAC residuals, the model trained using monthly dataset have SAC 

residuals ranging from 0.13 – 0.18. As for model trained using weekly set, the SAC residuals ranging from 

0.08 – 0.16. We observed experiments number 14, 13 and 20 for lagged models across time scale dataset 

have lower the SAC residuals. As for non-lagged models, experiment number 11, 13 and 15 have lower 

SAC residuals and lower errors.  

We can infer that experiment configuration number 15 for non-lagged, and 14 for lagged have a relatively 

consistent result. These configurations have the lowest SAC and low prediction errors.  
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Figure 34. Evaluation of model predictive errors using MAD to all models is compared.  

The model performance is also evaluated using MAD. The results are coherent with the MAE metric. As 

it can be seen in Figure 34, model number 15 for non-lagged and 14 for lagged spatial features are still 

consistent with low error and SAC residuals.  

As for the model prediction accuracy, it can be seen in Figure 35, showing the gap are very close between 

non-lagged and lagged. Nevertheless, the level of SAC residuals between them is different. Random 

features significantly affect the magnitude of SAC residual. 

The model trained with lagged features has higher accuracy than other models. However, the gap is very 

close around 0.03 points. Also, the SAC residuals levels are significantly different by 10 – 20%. This result 

is coherent with the vanilla RF.  
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Figure 35. Evaluation of MERF model prediction accuracies measured using r-squared. 

 

Figure 36. Snapshot the detail performance model MMNL-15 in the cross-validation. 

Based on the model metrics evaluation were performed to the model, the model configuration number 15 

for non-lagged and 14 for lagged domains were selected to build the final model to predict the unseen 

data.  
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The detailed performance of model MMNL-15 is shown in Figure 36. The model prediction errors were 

assessed with MAD and MAE metrics and have low rate error while keeping the SAC residuals low. As 

for the model prediction accuracy evaluated using r-squared are getting higher when the SAC residuals are 

lower. Furthermore, the model can capture the spatial pattern. The detail for the rest of the selected 

models can be accessed in the appendix.     

5.1.4. MIXED EFFECTS SUPPORT VECTOR REGRESSION 

MESVR models were trained using all the training dataset except the model trained with the weekly set. 

The fixed effects best estimator parameters were obtained using randomized search.  

The model performances were evaluated using RMSE metrics to measure the magnitude of errors and 

also r-squared to check the model generalization. To start with, model evaluation using RMSE, as shown 

in Figure 37, we can observe that the model trained using lagged spatial features, experiment number 14 

has a low level on both RMSE and SAC residuals. Although, it also appears that experiment number 15 

and 18 have close performance with number 14. As for the model trained using non-lagged spatial 

features, experiment number 14 and 15 give low prediction error while keeping the SAC residuals low. 

From Figure 37, also shows the model trained only complaints features give higher error and SAC in the 

residual regression as in experiment number 1 and two on both lagged and non-lagged across the two 

different time scale datasets. 

 

 

Figure 37. Prediction error of MESVR model is evaluated using RMSE and compared.  

The model prediction accuracy assessed using r-squared metrics as shown in Figure 38, the accuracy for 

the models trained using weekly dataset, MSWNL and MSWWL, give lower prediction accuracy than the 

model trained using monthly dataset. Similarly, to the results of MERF models, these models have lower 

SAC residuals 
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From RMSE and r-squared evaluation results, we conclude that experiment MSMNL-15, MSWNL-14, 

MSMWL-14 and MSWWL-14 have good prediction accuracy while keeping the SAC residuals low. Hence, 

these models were selected to build the final model to predict unseen data. These results are quite similar 

to the best MERF model features configuration. Moreover, the model able to capture spatial pattern. The 

detail for the rest of the models selected can be accessed in the appendix.   

 

 

Figure 38. Evaluation of the prediction accuracy of MESVR models using r-squared.  

The detailed performance of model MSMNL-15 is shown in Figure 39. The model performance on each 

split was evaluated using RMSE metrics showing a positive trend. The MSMNL-15 model trained using 

lagged spatial features as random features and excluded both of them from fixed features. As for the 

model prediction accuracy evaluated using r-squared are getting higher when the SAC residuals are lower.  
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Figure 39. Evaluation of prediction errors on MSMNL-15 model using RMSE 

5.2. MODEL PERFORMANCE  

In the previous subsections, we performed parameter tuning and cross-validation model evaluation using 

various metrics to obtain the best model parameter configuration. These configurations were used to 

retrain the model using the whole training set to evaluate the generalization of the model. The model was 

evaluated using hold out test data. The aim is to detect and investigate the model generalization to predict 

and capture spatial pattern from complete a new dataset.  

In this subsection, we explain the final model performance comparison to each vanilla RF and SVR and 

their mixed model counterparts in terms of prediction error, SAC residuals and ability to capture the 

pattern.  

5.2.1. RANDOM FOREST AND MIXED EFFECTS RANDOM FOREST 

The MERF model performs better. The predictive performance measured using r-squared is shown in  

Figure 40. The model that was trained using non-lagged spatial features, MMNL-15 outperforms vanilla 

RF in terms of accuracy by 10%. Additionally, the models that were trained using lagged spatial features 

have higher accuracy and lower SAC residuals compared to other models. These results are coherent with 

cross-validation stage results.  
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Figure 40. Side by side model prediction accuracy comparison between vanilla RF and MERF models  

 

Figure 41. The prediction errors evaluation using MAE shows that MERF models have fewer prediction errors 
compared with vanilla RF models. 
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Figure 42. Prediction errors evaluation using MAD metrics on vanilla SVR and MERF  

The prediction errors of MERF models are lower than vanilla RF. As it can be seen in Figure 41 and 

Figure 42, the model prediction deviation was evaluated using MAE and MAD showing the MERF 

models have significant improvement over vanilla RF. Overall, the MERF models have higher predictive 

accuracy, lower errors and lower SAC residuals compared vanilla RF. The MWWL-14 has the lowest error 

and SAC compared with the others. 

The MERF models have low SAC residuals. Instead of fitting only using fixed effects features as in RF, 

MERF model also considers random effects features to capture the correlation between zip code. In other 

words, random effects features allow for non-independence control as shown in Figure 43.  

 

Figure 43. The map shows random effects coefficient distributions for model MMWL-14. These values are varying 
to all zip code.  
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By fitting the model only fixed effects features using zip codes as a cluster in RF, the regression assumes 

that each zip code is independent to each other and share residual variances. When random effects 

features in the linear mixed effects model are considered, the slope and intercept of the model on each zip 

code are varied. Thus, putting features such as temporal features, noise vehicle and dirty condition that 

have a similar trend with the response in the random effect features reduce the SAC residuals.  

 

Figure 44. Plotting SAC residuals of MMWL-14 model to the map. 

Reducing the SAC residuals is important in the regression analysis as the presence of SAC residuals may 

cause erroneous in the results interpretation. However, using local Moran's I as shown in Figure 44, there 

is a small cluster occurrence in the residuals despite the magnitude of global SAC is 0.02 using pseudo p-

value <0.05 due to random permutation value used to compute Local Moran’s I. Map legend; namely 0 

for not significant, 1 for high-high spatial clusters, 2 for low-high spatial outliers, 3 for low – low spatial 

cluster, 4 for high – low spatial outliers   
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(A) (B) 

  

(C) (D) 

  

(E) (F) 

Figure 45. Spatial pattern of crime in New York City on particular month, SAC of each zip code measured using 
Local Moran’s I, while SAC to entire area is measured using Global Moran’s I. (A) The spatial pattern of the 

response variable which has the highest of SAC in 2017 (B) The corresponding predicted SAC pattern, on month 9 
(C) The spatial pattern of response variable which has the lowest SAC in 2017, (D) The corresponding predicted 
SAC pattern on month 4 (E) SAC residuals MMWL-14 on month 4 (F) SAC residuals MMWL-14 on month 9. 
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MERF models trained using lagged spatial and non-spatial features on monthly data have strong predictive 

power and ability to capture spatial pattern. As can be seen in Figure 45, the MERF model trained using 

spatial features was able to capture most of the crime patterns in New York City. The MERF model with 

non-lagged features has a similar ability to the model trained using spatial features. This means the model 

can capture the correlation of response induced between zip code through random effects features. The 

result can be seen in the appendix B. The same applies to the RF model trained using spatial features. 

Nevertheless, the MERF model trained using weekly data have lower prediction accuracy; the gap ranges 

from 6% to 10%. This result can be explained as in the weekly data; the estimated errors variances are less 

significant than in the monthly data. As it can be seen in Figure 46, sigma_e2_hat or �̂�(𝑟)
2  MMWL-15 is 

higher than MWWL-14. These errors variances are originated from fixed noise. Hence, the higher errors 

variance of fixed effects, the more predictable the response from known clusters in this case zip codes 

(Hajjem et al., 2014). From this figure, we can also infer that the GLL convergences at 200 iterations. The 

random effects coefficients for MMWL-15 model is also flat. Conversely, several random effects 

coefficient for MWWL-14 diverge.  

 

(A) 

 

(B) 

Figure 46. Training history on (A) MMWL-15 model and (B) MWWL-14 model 
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5.2.2. SUPPORT VECTOR REGRESSION AND MIXED EFFECTS SUPPORT VECTOR REGRESSION 

The final MESVR models performance trained using monthly outperform vanilla SVR. These models 

have smaller errors compared with vanilla SVR models by 35% – 43%. These results are measured using 

RMSE metrics as shown in Figure 47. However, MESVR models using weekly dataset have a relatively 

good generalization as were trained using subsample dataset from 2012 to 2014. These models have a 

prediction error that is higher but close to vanilla SVR models, which were trained using the whole 

training. The error difference is between 0.72 and 0.51.  

Similarly, to the analytical results of the random forest models, RMSE & SAC residuals are lower for three 

out four spatial lagged models compared to their non-spatial lagged counterparts. These models are 

SMWL SWWL and MSWWL.   

 

Figure 47. The MESVR and SVR model prediction errors were evaluated using RMSE and compared. 

 

Figure 48. The final model generalization performance of MESVR and SVR are measured using r-squared and 
compared. 
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MSMNL-15 and MSMWL-14 outperform vanilla SVR models with 10% in term of accuracy as shown in 

Figure 48. MSWNL-14 and MSWWL-14 models that were trained using a subsample dataset have good 

generalization with 82% and 86% respectively. Although SMWL has significantly lower accuracy than 

MSMWL but the SAC residual is significantly lower.  

It is likely the model trained using weekly dataset have similar error structure as MERF model. As it can 

be seen in Figure 49, GLL flattens at 50 iterations, but the MSWWL-14 model has difficulty in predicting 

the response from the new dataset due to fixed effects noise. The variance error (�̂�(𝑟)
2 ) of MSMWL-14 is 

higher than MSWWL-14. Hence, the model that was trained with monthly dataset has better 

generalization.  

 

 

(A) 

 

 

(B) 

Figure 49. Training statistics of (A) MSMWL-14 and (B) MSWWL-14 are compared. GLL for both models flattens 

and convergences for 50 iterations. 
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(A) (B) 

  

(C) (D) 

  

(E) (F) 

Figure 50. Spatial pattern of crime occurrences in New York City on particular months, (A) The spatial pattern of the 

response variable which has the highest SAC in 2017 (B) The predicted pattern of the response variable, which has 

the highest SAC in 2017, (C) The spatial pattern of the response variable, which has the lowest of SAC response in 

2017, (D) The predicted pattern of the response variable, which has the lowest of SAC response in 2017 (E) and (F) 

are SAC residuals of the response variable of the lowest SAC and highest SAC respectively 
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The MESVR model’s ability to capture spatial pattern as shown in Figure 50. The model can capture the 

spatial pattern when the SAC residuals are almost zero. However, when the SAC residuals are getting 

higher, the model’s predicted pattern deviates slightly from the real spatial patterns. 

5.2.3. MIXED EFFECTS RANDOM FOREST AND MIXED EFFECTS SUPPORT VECTOR REGRESSION 

MERF model performs better than MESVR in terms of predictive accuracy and SAC residuals. As it can 

be seen in Table 5.1, the prediction errors showing that each MERF experiment has fewer errors 

compared with its counterparts. Moreover, MERF models also have lower SAC residuals ranging from 3% 

- 10%. Therefore, MERF model has better performance and ability to capture the spatial patterns. 

 

Table 5.1. Model generalization of MERF and MESVR are evaluated using various metrics and compared 

ME Experiment MAD MAE 𝑹𝟐 RMSE MI 

Response 

MI 

Residuals 

MI 

Predicted 

SVR 
 

MNL-15 6.47 10.797 0.944 17.322 0.538 0.164 0.557 
 

MWL-14 5.772 10.551 0.941 17.835 0.538 0.191 0.545 
 

WNL-14 2.418 4.277 0.822 7.042 0.51 0.229 0.567 
 

WWL-14 2.272 3.967 0.858 6.278 0.51 0.138 0.536 

RF 
 

MNL-15 5.885 10.144 0.944 17.382 0.538 0.134 0.549 
 

MWL-14 4.724 8.888 0.959 14.947 0.538 0.122 0.552 
 

WNL-15 2.432 4.11 0.846 6.535 0.51 0.132 0.54 
 

WWL-14 2.097 3.662 0.879 5.795 0.51 0.052 0.52 

5.2.4. COMPUTATIONAL TIME AND COMPLEXITY 

Naturally, vanilla RF was the fastest and followed by SVR. Training time using RF in the hyperparameter 

tuning ranged from 5 – 40 minutes. However, the computational time becomes expensive when the 

density of the data and the features become bigger and larger, such as to train a model with cross-

validation using a weekly dataset with more than 90.000 rows and hundred features.  

The computation time required to train the model on a weekly set is nearly five times longer than monthly 

set as shown in Figure 51 below which also shows that using more features does not affect the 

computational time. Moreover, it turns out that the time required to train the model with additional 

features, which is the spatial and temporal lagged of the response variable is faster than train only with 

complaint features.   

 

Figure 51. Computation time required to train the RF model in the cross-validation. 
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SVR training is very expensive since SVR solves an optimization problem of quadratic order. The training 

time on monthly scale dataset ranges from ten minutes to three hours in the hyperparameter tuning phase. 

Nevertheless, the time required to train the model increased linearly when the data are getting larger.  

 

Figure 52. Computation time required to train the SVR model in the cross-validation. 

It can be seen in Figure 52, SWWL model, using all features, needs approximately around one hour in 

each split to learn the data.  

EM algorithm in the MERF is expensive. Training using the weekly dataset in the hyperparameter tuning 

need at least two to three hours to build one model using 200 estimators for 100 to 200 iterations. We 

have 15 and 24 combinations of non-spatial features and spatial features respectively.  These combinations 

render 30 – 62 hours to complete cross-validation using seven folds split.  

MESVR is the most expensive to train the model using the weekly dataset. This is why we use subsampled 

data to train the model. Using the whole training set, it needs at least three to four hours per fold, 

translating 21 hours using seven folds to complete one experiment. By reducing the size of the data and 

re-optimizing the kernel with loosening C and gamma, it needs around 30 – 40 minutes for 20 iterations 

per fold.  

These algorithms are still depending on CPU cores to model. These results obtained using 16 cores CPU. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. CONCLUSIONS 

In this MSc thesis, we investigated whether mixed effects machine learning regression model capture 

spatial pattern better than their vanilla counterparts. We reviewed RF and SVR and their mixed model 

counterparts to predict crime in New York City. We used seven years of data to train the model and one-

year data for testing and also we worked with data at two temporal scales, monthly and weekly. Moreover, 

we used spatial features as both random and fixed effects in the model development.  We used the best 

parameter configuration to each algorithm to train the model. The effect of using a various set of random 

and fixed effects features on the model prediction performance and its ability to capture spatial patterns 

also was investigated.  

Our results show that the MERF and MESVR models trained using the complete training set outperform 

their vanilla counterparts. MERF models perform better than MESVR model in all performance metrics. 

We found that the optimal models of MERF and MESVR use a similar combination of random and fixed 

effects features. The model trained using lagged spatial features as in the experiment number 14 using the 

combination as follows: complaint and lagged spatial lag features as fixed effects, temporal features as 

random effects and lagged LISA’s quadrant features as both fixed and random effects. As for the model 

trained using non-lagged spatial features as in experiment number 15, by placing temporal, and other two 

complaint features; namely noise_vehicle and dirty_condition as both fixed and random effects.  

The model generalization to test set data also observed. Vanilla RF and SVR and their mixed effects 

counterparts that were trained using whole training set can generalize pretty well onto a hold out data, 

known as test set or unseen data. As for the MESVR models that were trained using subsampled weekly 

dataset relatively able to generalize well the test set despite having lower prediction accuracy than in the 

cross-validation, ranges by 0.02 – 0.05 measured using r-squared. Moreover, generally, the models that 

were trained using lagged spatial features have strong predictive power and lower SAC residuals than the 

others. The models that have low SAC residuals can capture spatial pattern pretty well.  

The answer to the research question listed in subsection 1.2.1 is as follows: 

Review the vanilla machine learning regression model; RF, SVR, and their mixed effects 

counterparts; MERF and MESVR and relate them to spatial data. 

1. How do vanilla RF, SVR and their mixed effects counterparts approach work? 

In subsection 2.2 we discussed on theoretically behind the vanilla RF and SVR algorithms while in 

2.3, we described a linear mixed model and mixed effects machine learning regression model. 

Mixed effects model works well with the data that has a cluster structured given any longitudinal 

or hierarchical datasets along with the response and several cluster inside. Recall equation 2.8 and 

2.13, vanilla RF and SVR estimate the model only from fixed effects features. This means the 

fixed effects coefficients are estimated using variation of n-sample (subsample) dataset within 

each cluster and using the only variance between cluster. As for mixed effects models, recall 

equation 2.15 and 2.16, the model estimated using both fixed effects and random effects. Unlike 

their vanilla counterparts, the variation between cluster also contains random effects information. 

The architecture of each algorithm was elaborated in detail.  
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2. How can machine learning regression model approaches be used to model spatial data? 

In chapter 2, we adopted various approaches, Santibanez, Kloft, et al. (2015), we used zip code as 

spatial features to aggregate the occurrence of crime and complaints. Hengl et al. (2018) use 

spatial distance, in this thesis, to approximate the distance between each cluster we slightly 

modified it by using temporally and spatially lagged of the response variable and also the lagged 

LISA’s value of response variable of each cluster. Rocha et al. (2018) to minimize overfitting of 

the model use ten folds cross-validation. However, as in subsection 4.1.1, in the cross-validation, 

we used group k-fold to split dataset using year as time slicer to retain spatial structure in the 

dataset. The number of folds to evaluate the model performance are varies and depends on the 

spatial structure in the data. There are two kinds of fold we used to validate the model, seven 

folds and three folds for the subsampled dataset. To reduce SAC residuals and improve predictive 

performance, in the cross-validation using mixed effects machine learning models we developed 

15 models from different random and fixed features combinations of non-lagged features and 24 

models from different random and fixed features combinations of lagged spatial features across 

two different temporal scales. As for their vanilla machine learning counterparts, we trained the 

model only with fixed effects using non-lagged and lagged variations.  

Design, develop and evaluate vanilla and mixed effects machine learning regression models using 

spatiotemporal (crowdsourced) data from the crime domain   

 

3. Can MESVR regression approach be developed and if so, how to apply regression? 

In subsection 2.3.2, we show how to use the framework of MERF and replace the non-linear 

function f(.) of RF with SVR algorithms. Out of bag prediction was replaced with a subsampled 

the training set in the cross-validation split. EM algorithm and GLL were not replaced. Slightly 

different from MERF, MESVR can use the already optimal model estimator which is SVR to train 

the model. The parameter of MERF was slightly modified; the number of estimators of RF was 

replaced with the model estimator.   

4. How should the spatial features be applied to machine learning? 

In chapter 3, three kinds of spatial features are described that were used to train the model. To 

begin with, we use zip codes. Zip code as spatial features was used to train the model because it 

has geometry inside. Vanilla machine learning regression model used zip codes id as a feature to 

address the cluster. Therefore, we one hot encoded the zip code and generated another 248 

features. As for their mixed effect counterparts, this process becomes easier, as we just put zip 

code as a cluster. Consequently, hyperparameter tuning of mixed effects machine learning model 

is effortless. We also use a spatial lag of response variable obtained using queen contiguity and 

weighted to each cluster neighbourhood. This spatial lag shifted to a minus one year and assigned 

to random or fixed effects or both of them. The last spatial feature is LISA’s local moran. The 

lagged LISA’s values are discrete. Thus, we one hot encoded the significance value of each cluster. 

These features to inform the model the correlation between cluster. Similar to spatial lag, it was 

obtained using queen contiguity and shifted to the next year. 
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5. How mixed effects machine learning approach deal with clustering in the data caused by 

geographical relationship? 

In chapter 4, in the mixed effects model, each cluster contains random effects information. 

Hence, there is a possibility of a correlation between cluster through random effects. Thus, we 

assigned zip code as a cluster and lagged spatial features; namely temporally lagged spatial lag to 

fixed effects and LISA’s value to both random and fixed effects. The models that were trained 

using lagged spatial features, lagged spatial lag as fixed effects and LISA’s value as both random 

and fixed effects give strong predictive performance and lower SAC residuals compared the 

others. 

6. Which approaches perform better regarding predictive accuracy? 

In chapter 5, model results and performance are reported and discussed. MERF models have the 

best performance results using various metrics compared with other algorithms. This was 

achieved by experiment MMWL-14, MMNL-15, MWNL-15, MWWL-14.   

7. What is the difference between mixed effects and general machine learning regarding the degree 

of SAC in the residuals? 

In chapter 5, MERF models have higher predictive accuracy and lower the SAC residuals 

compared with RF. Inversely, only one MESVR model has lower SAC residuals compared with 

SVR models. However, the prediction accuracy of MESVR model trained with monthly dataset 

outperforms vanilla SVR with a considerable margin.   

6.2. RECOMMENDATIONS  

For future research, I recommend: 

i. To further investigate mixed effects models with clusters defined with k-means clustering instead 

of predefined cluster boundary as polygon or multipolygon.  

ii. To further investigate the performance of MERF and MESVR using different domain and spatial 

resolution.  

iii. To further investigate the performance of MERF and MESVR on spatial and also temporal 

autocorrelation using spatiotemporal dataset. 

iv. To further investigate the use of lagged spatial features in the regression using different datasets 

that the response variables have random temporal patterns.  

v. To develop and tune SVR and MESVR using GPGPU or splitting into several nodes using 

messages passing interface (MPI) to accelerate the training process. Since the model performance 

of MESVR and SVR using RBF kernel look promising.  
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APPENDIX A  

A 1. Detail experiments of non-lagged model 

  Explanatory Variables 

Experiments 

Code 

Random/ 

Fixed 

Variable 

(RV/FV) 

Complaints 
Temporal 

(𝑚𝑜𝑛𝑡ℎ) 

Complaints 

(dirty_ 

condition) 

Complaints 

(noise_ 

vehicle) 

 

Zip Code 

 

V+MNL/WNL FV ●  ● ● (OHE) 

ME+MNL/WNL - 

1 

FV ● ●   

C 
RV     

ME+MNL/WNL - 

2 

FV ● ●  ● 

C 
RV   ●  

ME+MNL/WNL - 

3 

FV ● ● ● ● 

C 
RV   ●  

ME+MNL/WNL - 

4 

FV ●  ● ●  

C 
RV    ● 

ME+MNL/WNL - 

5 

FV ● ● ● ● 

C 
RV    ● 

ME+MNL/WNL - 

6 

FV ●  ●   

C 
RV   ● ● 

ME+MNL/WNL - 

7 

FV ● ● ● ● 

C 
RV   ● ● 

ME+MNL/WNL - 

8 

FV ●  ● ● 

C 
RV  ●   

ME+MNL/WNL - 

9 

FV ● ● ● ● 

C 
RV  ●   

 

 

 



 

83 

  Explanatory Variables 

Experiments 

Code 

Random/ 

Fixed 

Variable 

(RV/FV) 

Complaints 
Temporal 

(𝑚𝑜𝑛𝑡ℎ) 

Complaints 

(dirty_ 

condition) 

Complaints 

(noise_ 

vehicle) 

 

Zip 

Code 

 

ME+MNL/WNL -10 FV ● ● ● ● 

C 

 RV  ●  ● 

ME+MNL/WNL - 11 

FV ● ● ● ● 

C 
RV  ●  ● 

ME+MNL/WNL - 12 

FV ●   ● 

C 
RV  ● ●  

ME+MNL/WNL - 13 

FV ● ● ● ● 

C 
RV  ● ●  

ME+MNL/WNL - 14 

FV ●    

C 
RV  ● ● ● 

ME+MNL/WNL - 15 

FV ● ● ● ● 

C 
RV  ● ● ● 

 

A 2. Detail experiments of lagged spatial features model 

  Explanatory Variables 

Experiments 

Code 

Random/ 

Fixed 

Variable 

(RV/FV) 

Complaints 
Temporal 

(𝑚𝑜𝑛𝑡ℎ) 

Spatial Lag 

(𝑡 − 1) 

LISA’s 

Quadrant 

(𝑡 − 1) 

 

Zip Code 

 

V+MWL/WWL  FV ●  ● ● (OHE) 

ME+MWL/WWL - 1 

FV ● ●  ● 

C 
RV     

ME+MWL/WWL - 2 

FV ● ● ●  

C 
RV     
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  Explanatory Variables 

Experiments 

Code 

Random/ 

Fixed 

Variable 

(RV/FV) 

Complaints 
Temporal 

(𝑚𝑜𝑛𝑡ℎ) 

Spatial Lag 

(𝑡 − 1) 

LISA’s 

Quadrant 

(𝑡 − 1) 

 

Zip Code 

 

ME+MWL/WWL - 3 

FV ●   ● 

C 
RV  ●   

ME+MWL/WWL - 4 

FV ●  ●  

C 
RV  ●   

ME+MWL/WWL - 5 

FV ● ●  ● 

C 
RV  ●   

ME+MWL/WWL - 6 

FV ● ● ●  

C 
RV  ●   

ME+MWL/WWL - 7 

FV ● ● ●  

C 
RV    ● 

ME+MWL/WWL - 8 

FV ● ● ● ● 

C 
RV    ● 

ME+MWL/WWL - 9 

FV ● ●  ● 

C 
RV   ●  

ME+MWL/WWL - 10 

FV ● ● ● ● 

C 
RV   ●  

ME+MWL/WWL - 11 

FV ● ●   

C 
RV   ● ● 

ME+MWL/WWL - 12 

FV ● ● ● ● 

C 
RV   ● ● 

ME+MWL/WWL - 13 

FV ●  ●  

C 
RV  ●  ● 
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  Explanatory Variables 

Experiments 

Code 

Random/ 

Fixed 

Variable 

(RV/FV) 

Complaints 
Temporal 

(𝑚𝑜𝑛𝑡ℎ) 

Spatial Lag 

(𝑡 − 1) 

LISA’s 

Quadrant 

(𝑡 − 1) 

 

Zip Code 

 

ME+MWL/WWL - 14 

FV ●  ● ● 

C 
RV  ●  ● 

ME+MWL/WWL - 15 

FV ●   ● 

C 
RV  ● ●  

ME+MWL/WWL - 16 

FV ●  ● ● 

C 
RV  ● ●  

ME+MWL/WWL - 17 

FV ●    

C 
RV  ● ● ● 

ME+MWL/WWL - 18 

FV ●  ● ● 

C 
RV  ● ● ● 

ME+MWL/WWL - 19 

FV ● ● ●  

C 
RV  ●  ● 

ME+MWL/WWL - 20 

FV ● ● ● ● 

C 
RV  ● ●  

ME+MWL/WWL - 21 

FV ● ●  ● 

C 
RV  ● ●  

ME+MWL/WWL - 22 

FV ● ● ● ● 

C 
RV  ● ●  

ME+MWL/WWL - 23 

FV ● ●   

C 
RV  ● ● ● 

ME+MWL/WWL - 24 

FV ● ● ● ● 

C 
RV  ● ● ● 
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APPENDIX B 

DETAIL CROSS-VALIDATION RESULTS 

MIXED EFFECTS RANDOM FOREST 

 

B 1. Detail performance of MWNL-15 model 

 

B 2. Detail performance of MMWL-14 model 
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B 3. Detail performance of MWWL-14 model 

 

MIXED EFFECTS SUPPORT VECTOR REGRESSION 

 

B 4. Detail performance of MSWNL-14 model 
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B 5. Detail performance of MSMWL-14 model 

 

B 6. Detail performance of MSWWL-14 model 
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FINAL MODEL EVALUATION 

RF – RMNL 

  

(A) (B) 

  

(C) (D) 

  

(E) (F) 

B 7. Spatial pattern of crime in New York City on particular month, SAC of each zip code measured using Local 
Moran’s I, while SAC to entire area is measured using Global Moran’s I. (A) The spatial pattern of the response 

variable which has the highest of SAC in 2017 (B) The corresponding predicted SAC pattern, on month 9 (C) The 
spatial pattern of response variable which has the lowest SAC in 2017, (D) The corresponding predicted SAC pattern 

on month 4 (E) SAC residuals RMNL on month 4 (F) SAC residuals RMNL on month 9. 
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RF - RMWL 

  

(A) (B) 

  

(C) (D) 

  

(E) (F) 

B 8. Spatial pattern of crime in New York City on particular month, SAC of each zip code measured using Local 
Moran’s I, while SAC to entire area is measured using Global Moran’s I. (A) The spatial pattern of the response 

variable which has the highest of SAC in 2017 (B) The corresponding predicted SAC pattern, on month 9 (C) The 
spatial pattern of response variable which has the lowest SAC in 2017, (D) The corresponding predicted SAC pattern 

on month 4 (E) SAC residuals RMWL on month 4 (F) SAC residuals RMWL on month 9. 
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MERF – MMNL-15 

 

  

(A) (B) 

  

(C) (D) 

  

(E) (F) 

B 9. Spatial pattern of crime in New York City on particular month, SAC of each zip code measured using Local 
Moran’s I, while SAC to entire area is measured using Global Moran’s I. (A) The spatial pattern of the response 

variable which has the highest of SAC in 2017 (B) The corresponding predicted SAC pattern, on month 9 (C) The 
spatial pattern of response variable which has the lowest SAC in 2017, (D) The corresponding predicted SAC pattern 

on month 4 (E) SAC residuals MMNL-15 on month 4 (F) SAC residuals MMNL-15 on month 9. 
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