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ABSTRACT 

Plant invasions pose a great threat to biodiversity, human health and economies. There have been many 

efforts taken worldwide to eradicate invasive species. Remote Sensing has been successfully used in the past 

two decades as a tool for monitoring invasive plants. Heracleum mantegazzianum also known as Giant 

Hogweed, is an invasive species that was introduced to Europe in the 19th century as an ornamental plant. 

Previous studies detect Heracleum mantegazzianum during the flowering and early fruiting season using its 

distinct giant umbels, which is from June to August. This limits the period of data acquisition. Heracleum 

mantegazzianum depends entirely on seed dispersal for its spread, which takes place after the fruiting season 

from August to October.  Detecting the plant in flowering phase also limits the time window for eradication 

measures. Hence, in this research, both pixel-based approach (Support Vector Machine or SVM) and object-

based approach (Object-Based image Analysis or OBIA) on high-resolution data acquired form Unmanned 

Aerial Vehicles (UAV) were carried out to detect the plant by using its leaves. SVM uses only spectral 

information while OBIA uses spectral and spatial information. Both the methods performed well, but SVM 

was time effective even though it produced salt and pepper effect in the resulting map. The accuracy of 

OBIA was lesser in low flying heights due to the effect of shadow, and in that case, a targeted analysis 

focusing on the shadow region was carried out to increase the accuracy. The high overall accuracy, between 

91% and 97%, which was achieved for both the methods, indicates that early detection is possible by using 

the spectral information of the leaves of the plant. As a possible third approach, this study also revealed that 

UAV images could be used as an input for deep learning based mobile application (ObsIdentify for plants). 

ObsIdentify for plants mobile application was developed to identify plants in the field based on their photo 

and uses a database with field photos as training data. 

 

Keywords: Heracleum mantegazzianum, Giant Hogweed, Unmanned Aerial Vehicle, Support Vector Machine, 

Object-Based Image Analysis, ObsIdentify 
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1. INTRODUCTION 

1.1. Motivation and Problem Statement 

Heracleum mantegazzianum also known as Giant Hogweed is an invasive plant species, which was introduced 

as an ornamental plant in the 19th century to Europe from the western Caucasus Mountains (Otte & Franke, 

1998). According to the Government of Canada (2004), “Invasive species are plants, animals, and micro-

organisms introduced by human action outside their natural past or present distribution whose introduction 

or spread threatens the environment, the economy, or society, including human health”. The European 

Commission has listed a number of invasive alien species of concern called the Union list, which are a threat 

to the natural ecosystem. Alien species that turn into invasive are one of the main reasons for the loss of 

biodiversity across the planet (Early et al., 2016). The Union list consists of 23 invasive plants, and Giant 

Hogweed is one among them (European Commission, 2015). Giant Hogweed is phototoxic, which means 

when the contacted skin is exposed to sunlight it can cause severe skin inflammations called 

phytophotodermatitis. The symptoms range from painful blisters to full chemical burn (Moenickes & Thiele, 

2013). The blisters leave a black or purplish scar, which can last for several years. Eye exposure to the plant 

sap can also lead to temporary blindness (ISAP, 2018). Giant Hogweed reproduces only by seeds (Perglová 

et al., 2007) and produces tens of thousands of seeds per year which are dispersed to new places through 

water and end up spreading miles away from the mother plant (Jakuboski, 2011). The Giant Hogweed 

colonies are known to extend up to 2 km along the river corridor and sometimes even 1 ha of adjacent 

habitat (Caffrey, 2001). The plants flower mostly in their third or fourth year (Caffrey, 1999). The flowering 

period of Giant Hogweed is from late June to July (Moravcová et al., 2005) and the seed dispersal starts 

from August and lasts until October (Nielsen et al., 2005). Giant Hogweed solely depends on seed dispersal 

for its spread and hence, it is logical to remove the plants before the seed dispersal stage to stop the 

spreading. 

The first step of invasive plant control is to identify the species. To manage the invasions, it is necessary to 

monitor the species, and its spread regularly and effectively. In the Netherlands, the Dutch Botanical 

Research Foundation called Floron uses volunteers to identify and map the distribution of the invasive 

plants. The volunteers cover 800-1000 km2 every year. Each species has its own set of characteristics which 

the volunteers use as a guide to identify them in the field. Remote Sensing has been successfully used in 

large-scale invasive plant monitoring in the last two decades (Huang & Asner, 2009). Images from airborne 

sensors were used in previous studies in the Czech Republic (Müllerová et al., 2013; Müllerová et al., 2005) 

for the detection of Heracleum mantegazzianum. The Giant Hogweed often grows under trees, along with the 

roads, waterways or at the edge of the forest. Earlier studies using images from airborne sensors had the 

limitation of not able to map the plant growing under tree canopies. Unmanned Aerial Vehicles (UAVs) can 

be an answer to this problem since the cameras of UAVs can be set in a specific angle to capture images of 

Giant Hogweed which grows under the trees. UAVs are state of the art technology derived from their 

military ancestors. However, booming civilian applications have prompted wider applications (Casagrande 

et al., 2018). Also, the advancement of imaging sensors in recent years has paved the way for ultra-high 

resolution monitoring with less than 10 cm of ground sampling distance (GSD) (Gao et al., 2018). Moreover, 

UAVs also allow for flexibility in flight schedules which makes them an easy option. Identifying the plant 

through volunteers is a labour intensive and tedious process. With successful detection of the species, the 

spread can be mapped, and the infected sites can be easily monitored using the UAV images. If the location 

of the alien plant can be detected accurately, suitable controlling measures which are sustainable to the 

environment as well as regulated by the European Union (European Union, 2012) can be undertaken. 
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Giant Hogweed produces big white umbrella-like composite flowers called umbels, which are up to 80 cm 

wide at their mature stage (Moravcová et al., 2005). The huge size of the umbels, which are distinct from 

the nearby vegetation, was used to detect Giant Hogweed in various studies. Huang and Asner (2009) have 

reviewed the application of Remote Sensing to various invasive plants from spectral, spatial and temporal 

perspectives. As a part of their research, the authors reviewed a study by Müllerová et al., (2005) on using 

aerial photos as a tool for assessing the regional dynamics of Heracleum mantegazzianum. According to the 

review, in panchromatic and colour-infrared (CIR) aerial photographs the brightness of Heracleum 

mantegazzianum was much higher than the nearby vegetation not only during the flowering but also in early 

fruiting season, which is from June to August. This brightness was attributed to the distinct structure of 

fruiting umbels. Hence, this distinct spectral characteristic of umbels along with the size of the umbels was 

the focus of Giant Hogweed detection. This limited the data acquisition to coincide with flowering and early 

fruiting period (Müllerová et al., 2013) in almost all studies related to Giant Hogweed. The flowering period 

is relatively concentrated on a short period for Giant Hogweed while other species can have flowering period 

spread over longer periods (Perglová et al., 2006). However, using the leaves instead of umbels can provide 

the user with the flexibility of the timing of data acquisition. In addition, it can also provide a buffer window 

for eradication measures. However, this may be possible only if the Giant Hogweed leaves are spectrally 

distinct from the nearby vegetation and background (Jones et al., 2011; Maheu-Giroux & De Blois, 2005; 

Müllerová et al., 2005). In addition, the data should also provide enough spectral and spatial information for 

accurate detection using only Giant Hogweed’s leaves. The existing studies fail to explain whether Giant 

Hogweed leaves have distinct spectral characteristics for a successful detection from its neighbouring 

vegetation. This may be one of the reasons for not using the leaves for detection in earlier studies. However, 

investigating the plant’s presence using a number of combination of spectral bands can help to identify a 

solution for the issue. This can be possible with UAVs as modern UAVs provide the flexibility to 

interchange sensors according to the user requirements (Mufalli et al., 2012). Perhaps the most serious issue 

would be whether the spectral information of the leaves would be enough for early detection. In the event 

of failure using only the spectral information, other methods should be investigated, which adds spatial 

context along with spectral context for the detection process.  

Conventional or pixel-based classification approaches (Bayesian or artificial neural networks) uses spectral 

information of the remotely sensed data. However, using high-resolution data like UAV data causes an 

increase in between-class spectral confusion and within-class spectral variation (Mathieu et al., 2007). 

Support Vector Machines (SVM) are machine learning based nonparametric classifiers which have been 

used in various Remote Sensing classification studies, and they are reported to produce more accurate results 

than traditional methods (Huang et al., 2002; Kavzoglu & Colkesen, 2009). However, if the spectral 

information is not enough for successful detection, an object-based approach (Object-Based Image Analysis 

or OBIA) can be implemented which uses spectral, spatial and temporal information (Blaschke, 2010). Also, 

OBIA is suitable for high-resolution imagery and provides a solution for salt and pepper effect from 

traditional pixel-based approaches (Whiteside et al., 2011). 

In addition, Waarneming.nl, a website which shows the different sightings of plant and animal species of 

the Netherlands, has launched a mobile application called ‘ObsIdentify or plants’ along with the Observation 

International organisation. The app is an initiative by the organisation which helps to recognise various 

plants and insects through pictures taken by mobile phones. The app uses deep learning to identify the 

species. It will be an interesting study to see whether a deep learning based app which was trained using 

mobile pictures taken in the field, can recognise Giant Hogweed using UAV images. The results can be used 

for further studies. 
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1.2. Research Identification 

1.2.1. Research Objectives 

The primary objective of this research is to see whether early detection of Giant Hogweed is possible by 

using the spectral information of the leaves from UAV data, acquired using a multispectral sensor that 

provides a choice of spectral bands. This can be further divided into the following sub-objectives 

1. To see whether early detection of Giant Hogweed is possible by using its spectral information. 

2. To assess whether adding spatial information to spectral information can increase the accuracy of 

detection. 

3. To check whether UAV images can be used as an input for a deep learning based mobile application. 

4. To examine whether different altitudes of the UAV flight or shadow can influence the accuracy of 

the detection for all the methods. 

1.2.2. Research Questions 

The following are the research questions that need to be answered for the sub-objectives above. 

Sub Objective 1: 

 Is early detection of Giant Hogweed possible by using only the spectral information of leaves? 

 What is the accuracy of the SVM method? 

Sub Objective 2: 

 Which extra parameters (shape, size and or texture) are used in addition to spectral information? 

Did it increase the accuracy of the detection in the OBIA method? 

 What is the accuracy of OBIA method? 

Sub Objective 3: 

 Can UAV images be used as an input for a deep learning based species recognition mobile 

application (ObsIdentify for plants)? 

Sub Objective 4: 

 How does the altitude of the flight influence the accuracy of detection of Giant Hogweed in SVM? 

 How does the altitude of the flight influence the accuracy of detection of Giant Hogweed in OBIA? 

 How does the altitude of the flight influence the accuracy of detection of Giant Hogweed in the 

mobile application? 

 Does the shadow affect the accuracy of detection in OBIA? 

 Does the shadow affect the accuracy of detection in SVM? 

 Between the two methods, which is more efficient in terms of accuracy and computation time? 

1.2.3. Innovation aimed at 

Giant Hogweed is usually detected using its umbels by Remote Sensing methods. However, detecting the 

plant at its flowering stage limits the data acquisition period. In addition, the invasive control cannot be fully 

effective because the buffer period between flowering and seed dispersal stage is very less. According to the 

Manual guideline for the management and control of Giant Hogweed (Nielsen et al., 2005) the plant must 

be eradicated in its early stage to prevent the spread of the species efficiently. Hence, this research aims at 



EARLY DETECTION OF HERACLEUM MANTEGAZZIANUM (GIANT HOGWEED) BASED ON LEAF SPECTRAL CHARACTERISTICS FROM UAV IMAGES USING SVM AND 

OBIA TECHNIQUES 

4 

detecting the plants at an early stage by implementing algorithms specifically designed to use the spectral 

information of the leaves of the plant. 

1.3. Thesis structure 

This thesis consists of seven chapters. Chapter 1 briefly discusses the motivation and problem that will be 

addressed in this research. Chapter 2 reviews the previous studies related to this research. Chapter 3 

describes the specification of the data used in this research. Chapter 4 explains the methodology of 

performing SVM and OBIA while chapter 5 explains the results obtained from SVM and OBIA along with 

the accuracy assessment of both the methods. Chapter 6 discusses the accuracy assessment, strength and 

weakness of both methods. Chapter 7 gives a short conclusion on this research along with the future 

recommendations.
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2. LITERATURE REVIEW 

This chapter begins with a brief review of related work in line with this research and is followed by the 

explanation of using UAV over other airborne sensors continued by reviews of the two methods, which 

was used in this research namely: Object-Based Image Analysis (OBIA) and Support Vector Machines 

(SVM).  

2.1. Related work 

There have been only a handful of studies conducted in the past for the detection of Heracleum 

mantegazzianum using Remote Sensing. In one of the studies conducted by Müllerová et al. (2005), aerial 

photos have been used as a source of data for assessing the regional dynamics of Heracleum mantegazzianum. 

The study area contains ten heavily invaded sites in the Czech Republic. The aerial photographs dated 

between 1947 (before the invasion started) and 2000 were analysed. The images were obtained during the 

flowering, and early fruiting stage (June – August). With the help of huge umbels, the plants were spotted 

in the imagery and digitised manually. The rate of spread of the invasion over 50 years was calculated by 

performing ANCOVA (Analysis of Covariance) over the digitised data. The study used aerial images only 

from June – August to detect the plant with the help of the giant umbels. 

In another study, the same author tries to review the various effects of data resolution and classification 

methods in the detection of Heracleum mantegazzianum (Müllerová et al., 2013) over a 50 year invasion period 

(1962 – 2010). This study uses various types of aerial images (panchromatic, multispectral, colour 

orthophoto) and satellite images with different spectral and spatial resolution from the period of July to 

August. This study also focuses on the detection of the plant during its flowering stage. Both, the pixel-

based approach (supervised and unsupervised) and the object-based approach were incorporated in the 

study. In OBIA, multi-resolution segmentation was used to segment the image, and the segmented image 

objects were classified using rule-based classification with conditions related to spectrum, shape, texture and 

context. The success of detection was attributed to data acquired at correct phenological stages (i.e. 

flowering stage), and the detection was mainly based on umbels. The umbels are composed of buds, flowers 

and ripening seeds (Perglová et al., 2006), which leads to spectral heterogeneity. This was attributed as a 

reason for the low accuracy of pixel-based classification. The object-based approach reached higher accuracy 

compared with the pixel-based approach because it employed additional parameters like shape, texture and 

context. The study also had a limitation of not able to detect Hogweed under the tree canopy. The study 

emphasises on the period of acquisition of data to coincide with flowering or early fruiting. 

Another study by Michez et al., (2016) uses UAV imagery to map riparian zone invasive species, and 

Heracleum mantegazzianum is one among them. The study used only visible and near-infrared orthophotos. 

The data were acquired during the flowering phase of the plant with a GSD of 0.05 m. OBIA was performed 

for the segmentation process using eCognition software. The classification was performed using supervised 

Random Forest algorithms. The study achieved better accuracy than the previous study by Müllerová et al. 

(2013). The research used manually delineated umbels as reference data for the OBIA analysis.  

Another study by Müllerová et al., (2017) explains the importance of timing of monitoring using two invasive 

plants Heracleum mantegazzianum and Fallopia japonica. This study also was set up on the fact that Giant 

Hogweed has a distinct flowering phase and uses both UAV and satellite data. The UAV was used to capture 

the data in RGB and near-infrared bands. The study reviews both the pixel based, object-based (OBIA) 

approach and machine learning methods and used data from July and September (2013 – 2016), i.e. the 
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flowering and post-flowering period. The accuracy of detection was very high during the flowering period 

(up to 100%), and it dropped to 60% in the post-flowering period. In addition, the high resolution of the 

UAV images reduced the accuracy of object-based classification results in the study; this was because the 

classification was based on giant umbels. As the spatial resolution increased, instead of consistent white 

dots, the umbels were visible as separate flowers, which decreased the classification accuracy.  

It can be inferred that all the previous studies used the huge distinct white umbels as a source of detection 

of the Giant Hogweed. The studies that used OBIA as an approach for the detection also used umbels. The 

studies gave good accuracy for the detection of the images only from peak flowering periods. The previous 

studies, which used airborne sensors, had the limitation of not mapping Giant Hogweed growing under 

trees. It can also be seen that the studies that used UAV as a source of data (Michez et al., 2016; Müllerová 

et al., 2017) used only the visible and near-infrared bands for the analysis. In addition, using high-resolution 

data decreased the accuracy of detection when using both pixel-based and object-based approach because 

of the high spectral variability of umbels.  

2.2. Technical Background 

2.2.1. Importance of UAV in this study 

The identification, distribution and the estimation of the cover of invasive species are traditionally surveyed 

manually with the help of surveyors (Lillesand et al., 2014). The advancement in satellite remote sensing 

techniques led to various opportunities to map and monitor invasive species (Royimani et al., 2018). There 

are many studies in the past, which used Remote Sensing as a tool for the management of invasive plant 

control. These studies have used various sources of Remote Sensing data typically from satellite or aircraft. 

Recent studies have been using data from UAV because they are known to provide a high spectral and 

spatial resolution (Dvořák et al., 2015; Müllerová et al., 2017; Manfreda et al., 2018) and can also be adjusted 

according to the requirements of the user. The manned airborne platforms, in principle, can give high-

resolution imagery. However, they have many disadvantages like operational complexity, safety, logistics 

and cost. On the other hand, recent advancements in UAVs have created a perfect alternative monitoring 

platform that provides a range of applications with a relatively small investment. They offer not only high-

resolution imagery but also high versatility, adaptability, and flexibility (Manfreda et al., 2018). Also, UAVs 

are one of the options that can map understory beneath canopies, which is important since Heracleum 

mantegazzianum is known to grow also under tree canopies. 

Multispectral sensors such as Parrot Sequoia coupled with UAVs have been used in various vegetation 

mapping applications such as classification (Ahmed et al., 2017), monitoring (Assmann et al., 2019). Parrot 

Sequoia provides four separate bands Green, Red, Red Edge, near infrared along with an RGB band. Parrot 

Sequoia analyses the vitality of plants by capturing the amount of light they absorb and reflect. Hence, this 

research uses UAV coupled with Parrot Sequoia multispectral sensor for acquiring the data.  

2.2.2. SVM and OBIA 

This study aims to use the spectral characteristics of Giant Hogweed leaves to separate it from its 

neighbourhood vegetation for early detection through image classification. Image classification algorithms 

can be performed using either supervised or unsupervised classification approaches. SVM is a supervised 

machine learning algorithm which is based on statistical learning theory, used for classification problems 

(Vapnik, 2006). Supervised classification of remote sensing data can be challenging because most of the 

methods require a large number of training samples (Mountrakis et al., 2011). SVM is more appealing in the 

remote sensing field because of its ability to often produce higher classification accuracy by using only small 

training data sets (Mantero et al., 2004). SVM has been successfully used in many image classification 

problems for invasive plant studies but mostly using satellite imageries (Calleja et al., 2019; Gavier-Pizarro 
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et al., 2012). SVM is a pixel-based approach, and the classifier uses the spectral characteristics of individual 

pixels for classification. Hence, it is used as an approach in this research to detect Giant Hogweed using its 

spectral characteristics.  

Object-Based Image Analysis (OBIA) is selected as the other method to compare with SVM results. It is 

selected over traditional pixel-based approaches because the pixel-based classification does not yield 

appropriate results when classifying high-resolution imagery. This is because the internal variability within 

homogeneous classes increases as the resolution increases which in turn decreases the spatial separability in 

the spectral data space of the classes. This internal variability leads to reduced accuracies in pixel-based 

classification such as K-means, Fuzzy C means (Chakraborty et al., 2017). Object-Based Image Analysis 

groups the pixels together based on their spectral, spatial and temporal similarity (Blaschke, 2010). OBIA 

segments the image into groups of contiguous pixels called ‘image objects’ that are further classified 

according to the spectral variable, size, shape, texture, spatial relationship (Blaschke, 2010; Müllerová et al., 

2013). Some studies in the past have used OBIA as an approach to detect Giant Hogweed (Michez et al., 

2016; Müllerová et al., 2013) but the studies were based on segmenting the giant umbels. 

This work explores the ways for early detection of Giant Hogweed before the flowering stage by using the 

spectral characteristics of the leaves. This study will also be using UAV as a source of data so that plants 

growing under the tree canopies can also be detected. The study also aims to use different spectral bands 

(Green, Red, Red Edge and near-infrared) to see whether the leaves of Giant Hogweed are spectrally distinct 

from neighbourhood vegetation, rather than only using near infrared and visible bands like the previous 

studies.
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3. DATASET 

3.1. Data Acquisition 

The study area is a small area close to the village of Lonneker in the Netherlands. The data used in this study 

were captured using UAV and was acquired on June 28, 2018, with varying altitudes 11 m, 12 m, and 14 m. 

The sensor used was Parrot Sequoia, a multispectral sensor, which recorded images in RGB, Green, Red, 

Red Edge and Near-infrared (NIR) bands. The Giant Hogweed was growing along an unpaved road under 

the trees. There was a maize field on the other side of the road. Figure 3.1 shows all the available bands with 

the presence of Hogweed being highlighted by the red ellipses.  

 

Figure 3.1 Raw UAV image tiles of different bands. The red ellipses show the position of the Giant Hogweed, which 
is more distinct in Green, Red edge & NIR bands. 

It can be seen from Figure 3.1 that Giant Hogweed is spectrally distinct from the nearby vegetation in the 

Green band. The whole vegetation in the scene is prominent in both NIR and Red Edge bands. In order to 

get clearer pictures of Giant Hogweed under the trees, the UAV camera was tilted to an angle of 11 degrees. 

The angle tilt was measured using a protractor as shown in Figure 3.2.  The black part was the camera 

mount, which was connected to the UAV through the white metal piece.  

                    

Figure 3.2 Measuring the tilt of the camera mounted in UAV using a protractor. The black part is where the camera 
was located. 
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The total number of images acquired in each flying height can be seen in Table 3.1. 

Table 3.1 Total number of images for each flying height including all the bands namely; RGB, Red, Red Edge, Green 
and NIR. 

Flying height (in m) 
No. of images 

(including all bands) 

11 65 

12 255 

14 105 

 

The images were taken continuously every few seconds. The Parrot Sequoia sensor comes with a sunshine 
sensor along with a multispectral sensor, which is used to calibrate the images depending on the different 
variations of sunlight (MicaSense, 2017). The wavelength and bandwidth of all the bands of the images are 
tabulated in Table 3.2. 

Table 3.2 Wavelength and bandwidth of all the image bands from the Parrot Sequoia multispectral sensor. 

Band 
Wavelength 
(in nm) 

Bandwidth 
(in nm) 

Green 550 40 

Red 660 40 

Red Edge 735 10 

NIR 790 40 

3.2.  Software Used 

The pre-processing of the UAV images was done using pix4D mapper, a photogrammetry software. It was 

also used to create orthomosaics of UAV images.  In addition, ERDAS IMAGINE 2018 was used to create 

layer stacks of different spectral bands of orthomosaics. eCognition Developer 9.3 was used for the object-

based approach. eCognition allows the user to export the classified features as raster or vector. SVM was 

carried out in the RStudio (R Core Team, 2018) using the package e1071 (Meyer et al., 2018). The 

classification code for SVM was obtained from the EOS department at ITC. The accuracy assessment for 

OBIA was carried out in ArcMap 10.6. The final output maps were also created using ArcMap 10.6.   
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4. METHODS 

4.1. Overview 

The overview of the methodology adopted for this research is shown in the flowchart as seen in Figure 4.1. 

 

 

4.2. Data Pre-Processing 

The images acquired from the UAVs are pre-processed first before any further analysis. Pix4D has a 

dedicated template for Parrot Sequoia multispectral sensor and provides automatic radiometric calibration. 

The orthomosaics are created from the Digital Surface Model (DSM), which is, in turn, is created from the 

Figure 4.1 Workflow of the methodology adopted for this research. 
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point cloud. The pre-processing phase consists of orthorectification of the imagery and mosaicking the 

individual images of a particular height. The process was repeated for all the flying heights and each band. 

The final ortho mosaics were used for further analysis. 

4.3. Object-Based Image Analysis 

The image analysis workflow can be divided into two steps: segmentation and classification. The software 

offers a collection of algorithms for both processes, which are tailored for different aspects of image analysis. 

The main concept is that the important semantic information, which is necessary to interpret an image, is 

not represented as individual pixels but rather as image objects. Unlike a pixel-based approach which 

classifies the individual pixel, eCognition classifies the image object as a whole which is output from the 

segmentation step (Trimble, 2012). The rule sets and applications developed for a specific task can be reused 

for larger areas which can be used for automating the image analysis process (Trimble, 2015). eCognition 

allows the user to export the classified features as raster or vector. 

4.3.1. Segmentation 

Image segmentation is the process of dividing an image into homogeneous regions of a set of pixels which 

have similar features like intensity, colour, variance, texture (Tamaki et al., 1999). First, the images are 

segmented into image objects, which is a group of homogeneous pixels. These image objects will be later 

classified. Multi-resolution segmentation was selected for the segmentation process, which is a Bottom-up 

segmentation. Bottom-up segmentation segments the image into homogeneous regions in terms of colour, 

texture and other image-based criteria. A recognition process is then used to group these regions into image 

objects (Borenstein & Ullman, 2008). The segmentation process in eCognition is defined by three 

parameters namely scale, shape and compactness. The scale value defines how large the image objects should 

be. The higher the value for scale parameter, the larger the image objects and vice versa. The values of shape 

and compactness parameters can be anywhere from 0 to 1. The shape parameter determines the influence 

of colour in the segmentation process, the higher the value lower the influence. The compactness parameter 

determines how compact the image objects should be. The higher the value, the more compact the image 

objects. The image objects are displayed on top of the imagery in the eCognition software at the end of the 

segmentation process. 

The optimum values of the parameters for each flying height were determined by the trial and error method. 

The segmentation results were validated visually for each set of values of the parameters. The validation was 

performed by seeing whether the image objects were perfectly aligned with the real-world features. The 

process was repeated until the image objects resemble with the real-world features. 

4.3.2. Classification 

Classification is the process of labelling the image objects into user-defined classes. The segmented image 

objects were classified to one of the two classes (Hogweed, Not Hogweed) for further analysis. The classes 

were defined as Hogweed and Not Hogweed. The background classes excluding Hogweed were merged to 

form one class and was named Not Hogweed. This was done to exclude misclassification error within 

background classes, since detecting Hogweed is the main objective of this study. OBIA requires training 

samples for successful classification. Sufficient amount of samples were selected for each of the two classes 

from the successfully segmented image objects. The samples were selected from user interpretation of high-

resolution imagery on which the segmentation results were overlaid. The image objects created from the 

segmentation process can be classified using two different classification methods: (1) Nearest Neighbour 

classification or classification based on samples and (2) Rule-based classification or classification based on 

prior knowledge stored as rule sets (Schöpfer et al., 2010). 
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Nearest Neighbour classification is a supervised classification method which uses fuzzy rules (Wei et al., 

2005). The classifier classifies image objects based on the selected samples within a defined feature space. 

With the help of selected samples and defined statistics, the segmented image objects were classified to 

either Hogweed or Not Hogweed class. Next, the statistics are defined. The nearest neighbour classifies the 

image objects based on the resemblance to the samples and the defined statistics. The classifier assigns the 

image objects to the classes, which are closer to the classes of the selected samples. Rule-based classification 

provides a way to overcome the spectral similarity of two different classes (Schöpfer et al., 2010) by 

integrating prior knowledge of the target classes. The classification results are then exported as shapefile and 

raster file for accuracy assessment analysis. 

4.4. Support Vector Machines 

The main goal of the SVM classifier is to determine the optimal hyperplane that maximises the margin 

between two classes (Kavzoglu & Colkesen, 2009) therefore minimising the confusion between classes. The 

training data sets are used to determine optimum hyperplane. Support vectors are the critical elements of 

the training data set which define the hyperplane and are the extreme data points in the data set which are 

used to define the hyperplane. SVM uses a set of mathematical functions called kernels to transfer the input 

data into the desired form. The performance of SVM is related to the choice of the kernel function. Radial 

basis function (RBF) kernels and polynomial kernels are the two commonly used kernels for the 

classification of remotely sensed images (Huang et al., 2002; Pal & Mather, 2005). The main limitation of 

using SVM is the need to select suitable parameter values for the kernels which in turn improves the 

capability of well-trained SVMs to accurately predict the unknown data (Tso & Mather, 2009). The 

polynomial kernel has three parameters excluding the cost factor (offset, scaling and degree) while RBF has 

only one parameter excluding the cost factor (gamma). The number of parameters influences the complexity 

of the model, and hence, RBF is selected for this research since the model can be calibrated relatively quicker 

as opposed to the other kernel. 

Training datasets for all the flying heights were created as a shapefile based on visual interpretation of high-

resolution imagery. In order to train the SVM effectively, the training samples were created with all the land 

cover classes in the study area namely: Hogweed, Sand, Vegetation and Maize. Gamma () and cost (𝐶) are 

the two parameters which need to be defined for an RBF kernel. Intuitively, the  parameter defines how 

far the influence of tthe raining sample reaches. For a small value the decision boundary is linear, and as the 

value increases, it leads to overfitting of the decision boundary (Ben-Hur & Weston, 2010). The 𝐶 parameter 

is an error penalty to ensure satisfactory classification results (Tso & Mather, 2009). It is a tradeoff between 

the correct classification of training samples against the maximisation of margin between two classes. The 

lower the value, the higher the margin, the larger the value, the smaller the margin.  

The goal is to find the optimum value for both the parameters, which in turn gives the best classification 

results. The training samples for the study area had four classes (Hogweed, Vegetation, Sand, and Maize). 

Since this research aims only at the accurate detection of Hogweed, precision, recall and F1 score for the 

class Hogweed was calculated, and F1 score was used as a measure to find the optimum parameters and the 

misclassification (error) of Vegetation, Sand and Maize classes were excluded. Precision and recall are based 

on the measure of how relevant the classification is. Precision (p) is a measure, which is computed by the 

ratio of the number of correctly predicted positive observations, i.e. true positives (Tp) to the total predicted 

positive observations, i.e. the sum of true positives (Tp) and false positives (Fp). It is calculated as follows:  

𝑝 =  
𝑇𝑝

 𝑇𝑝 +  𝐹𝑝
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Recall (r) is a measure which is computed by the ratio of correctly predicted positive observations to all the 

observations in the reference class, i.e. the sum of true positives (Tp) and false negatives (Fn) (Ghorbani, 

Ebadi, & Sedaghat, 2019). It is calculated as follows: 

𝑟 =
𝑇𝑝 

 𝑇𝑝 +  𝐹𝑛
 

High precision relates to a low false positive rate while high recall relates to the low false negative rate. 

Furthermore, a high score for both precision and recall shows that the classifier is returning accurate results 

(high precision) with a majority of all positive results (high recall). The F1 score, which is the weighted 

harmonic average of both precision and recall, was used as a measure for the optimum parameter selection 

of the RBF kernel. The value takes both false positives and false negatives into account. The F1 score is a 

measure between 0 to 1, with 0 being worst and 1 being the best. It is calculated as follows: 

𝐹1  =  2 
𝑝 . 𝑟

𝑝 + 𝑟
 

According to Hsu et al., (2003), the practical method for finding the optimum 𝐶 and  parameter is to select 

values with an exponentially growing sequence. They also suggested a range of values for both parameters, 

which was used in this study as well. The value of 𝐶 parameter ranges from 2-5, 2-3 ...215 while the value of  

parameter ranges from 2-15, 2-13…23. Various pairs of values needs to be tested by running the process in a  

loop to select the optimum value. The set of values, which gives the maximum F1 score for individual flying 

heights, were selected as the optimum values for the 𝐶 and  parameters. 

4.5. Accuracy Assessment 

To know the success of the classification carried out and to find if the objectives of the analysis are met, it 

is essential to perform an accuracy assessment. It can be done visually by comparing the classification results, 

but for reliable assessment, we need a method, which can quantify the errors. Accuracy assessment is a 

process to compare the classified image to another dataset which is considered as accurate or ground truth 

data (Esri, 2018).  

The confusion or error matrix is one of the widely promoted and often used accuracy assessment methods, 

which was used in this research as an accuracy measure for both the methods.  It is a cross-tabulation of the 

classified class label against that observed in the ground or reference data (Foody, 2002). The reference data 

can be derived from interpreting high-resolution imagery, existing classified imagery, or GIS data layers. In 

this research, point shapefiles were created in Arc GIS using the high-resolution imagery as reference data. 

The reference points were created randomly using the ‘Create Random points’ tool in Arc GIS to avoid 

bias. Stratified sampling was used for selecting validation points from the reference data. The Giant 

Hogweed has a distinguishable fern-like leaf structure compared to the nearby vegetation, and it is very 

prominent in the green band. With the help of these criteria, the reference points were classified to one of 

the four classes (Hogweed, Maize, Sand, Vegetation) using the high-resolution UAV imagery by visual 

interpretation. The reference point in the classes Maize, Sand, and Vegetation, were merged together and 

labelled as Not Hogweed for OBIA accuracy assessment. 

The confusion matrix was created from the reference data and classified results for further assessment. The 

measures of error in the confusion matrix were also calculated for each class. Bakx et al., (2013) explain the 

different components of the confusion matrix as follows. The column in the confusion matrix sums up to 

the total number of labelled reference pixels per class, and the row sums up to the total number of pixels 

labelled by the classifier. With the help of these, the errors of omission and errors of the commission can 

be defined. Errors of omission represent the values that belong to a class but were predicted by the classifier 
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in a different class. The error of omission relates to the column in the confusion matrix and is a corollary to 

the Producer’s Accuracy. The producer’s accuracy is the map accuracy, which shows how often the real 

features on the ground are correctly shown on the classified map as well. Errors of commission represent 

the values that are predicted to be in a class by the classifier, but they belong to another class. The error of 

commission relates to the row in the confusion matrix and is a corollary to the user’s accuracy. User’s 

accuracy tells us how reliable is the classification map is to the real world. 

4.6. Testing of ObsIdentify for Plants Application 

ObsIdentify for plants is a mobile application for Android users, which was launched in 2017. The app uses 

deep learning to identify various wild plants from the Netherlands and Belgium using mobile pictures. Deep 

learning is an application of neural networks, and it consists of several layers of nodes, usually more than 4 

between the input and output (Arel et al., 2010). The main disadvantage of deep learning is that it requires 

a large amount of data for training, but that does not pose as a problem for the app since it uses photos 

from websites Waarneming.nl and Waarnemingen.be to train the software. Users can upload pictures of 

various flora and fauna along with the location where it was sighted in the websites. The sites are maintained 

by volunteers. Around 6,000,000 – 7,000,000 photos are uploaded each year in the waarneming.nl website 

(Waarneming.nl, 2019). The app is trained not only using the perfect pictures from the field but also using 

the bad pictures (Strien, 2018). As the volume of the dataset increases, the performance of deep learning 

increases (Talha et al., 2019). When the app was released, it could identify about 1,300 wild plants from both 

countries. A beta version was introduced in 2018 with an expanded library of about 2200+ species including 

mosses (Hogeweg, 2018). 

The app is very straightforward to use. Users can either take photos using the mobile camera or upload it 

from their album directly. The app has a species list that lists all the species, which the app can identify along 

with their basic information. The main interface (Figure 4.2) of the app is simple and efficient. The app also 

allows the user to crop the image to focus more on the target species that needs to be identified. The UAV 

images of different flying heights were uploaded, and the area with Giant Hogweed was cropped using the 

crop feature from the app. After uploading the picture, the ‘ID’ option was clicked, to identify the species. 

The app displays the results as a list of species names, which it thinks that closely resembles the input image. 

Moreover, there is also a small pie chart next to the species name, which indicates the measure of the 

likelihood of that species. The recognition process completely works offline. Users can also upload more 

than one image; for example, different images showing different angles of the same plant. This method was 

often found to improve recognition (Herremans, 2017). 
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Figure 4.2 The main interface of the ObsIdentify for Plants mobile application. The options in the bottom from left 

are 1. To upload pictures from the mobile album, 2. To directly click a picture with the mobile camera 3. The ID 

button, which is used as a start button for the process after uploading the picture. 
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5. RESULTS 

5.1. Data Pre Processing 

The layer stack of flying height 11 m, 12 m and 14 m created using the orthophoto mosaics of Green, NIR, 

and Red Edge bands can be seen in Figure 5.1.  

 

(a) 

 

(b) 
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(c) 

The GSD for orthomosaics were calculated by default by the software, and they were around 0.01 m for all 

three flying heights with only a small variation in decimal. It can be seen in the layer stack of flying height 

11 m (Figure 5.1 a) that almost half of the study area was under the effect of shadow. As the flying height 

increases the effect of shadow decreases and the area coverage increases. The area of the three flying height 

scenes can be seen in Table 5.1. 

Table 5.1 The area of the study area for all three flying heights shown in square metres. 

Flying height 

(in m) 

Area 

(in sq. m) 

11 275.4 

12 279.5 

14 308.5 

5.2. Object-Based Image Analysis 

5.2.1. Segmentation 

eCognition allows using multiple bands to perform segmentation. Different combinations of image bands 

were used, and it was found that the segmentation carried out using a combination of Green, NIR and Red 

Edge bands gave image objects, which closely resembled the real-world features.  

Since in the Green band, Giant Hogweed is more prominent than the nearby vegetation (Figure 3.1), a 

weight of 2 was given for Green band during the segmentation process while the other two bands, NIR and 

Red Edge were given a weight of 1. The segmentation analysis showed promising results at each stage when 

Figure 5.1 Layer stack of spectral bands Red Edge, NIR and Green bands of 11 m (a) 12 m (b) and 14 m (c) flying 
heights. The bands Red Edge, NIR and Green are displayed in Red, Green and Blue respectively. 
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the values of the parameters were changed. The process was carried out separately for different heights 

instead of using the same parameters for all the heights. At first, a value of 100 was given for the scale 

parameter, which resulted in small image objects. The image objects were small compared to the real-world 

features; hence, the value of the scale parameter was increased to accommodate the shape of the hogweed. 

Values from 600 to 700 accommodated the size of the hogweed image objects for all flying heights. 

The values for shape and compactness were started from a minimum value of 0.2, and it was observed that 

when the values were low, it yielded many small meaningless image objects (Figure 5.2) because the influence 

of colour is high with low values. This is known as over-segmentation of the image. Over-segmentation is 

when the parameters for segmentation produce smaller image objects than the actual features (Haque et al., 

2016). To avoid over-segmentation, the values were increased, and the segmentation outputs were observed. 

As the values increased, it resulted in less meaningless image objects. Values from 0.6 to 0.8 were optimum 

for less over-segmentation of the image for all the flying heights. 

                

Figure 5.2 Left, over-segmented image objects. Right, segmentation with meaningful image objects. The segmentation 
results are overlaid on a layer stack image whose combination is Green, NIR and Red Edge bands in eCognition 
software. 

Another main reason for controlling over-segmentation was because it also resulted in many small image 

objects for the flying height of 11 m, in the maize region which was spectrally similar to the Hogweed (Figure 

5.3). As the value for shape and compactness were increased, it resulted in less spectrally similar image 

objects in the maize region (Figure 5.4). This inconsistency, which was found only in 11 m flying height may 

be due to the high spectral variability of high-resolution data in low flying heights. 

 

      

Figure 5.3 Several small Not Hogweed image objects, but spectrally similar to Hogweed in the maize region. These 
image objects are shown as blue polygons overlaid on flying height 11 m. These small image objects were due to over-
segmentation. 
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Figure 5.4 Not Hogweed image objects in the maize region overlaid as blue polygons on flying height 11 m. These 
image objects are spectrally similar to Hogweed. These are fewer than in Figure 5.3, due to the increase of shape and 
compactness values. 

For each combination of values for the parameters, the changes in the segmentation results were observed. 

The combination of parameters, which gave image objects that were similar to the shape of the Hogweed 

with less over-segmentation, were tabulated as optimum values. The optimum values for the parameters for 

all the three flying heights are as tabulated in Table 5.2. 

Table 5.2 Optimum values for the parameters scale, shape and compactness of the Segmentation process of Object-
Based Image Analysis performed in eCognition software for all flying heights. 

Height (in m) Scale Shape Compactness 

11 700 0.6 0.6 

12 700 0.8 0.8 

14 600 0.8 0.8 

 

As can be seen from Table 5.2, the scale value decreases with an increase in flying height. This is because as 

the flying height increases, the spatial resolution decreases which means the size of the real-world feature, 

measured in pixels, decreases with an increase in flying height. It can also be seen that the value of shape 

and compactness were less for flying height 11 m when compared with 12 m and 14 m. As the value of 

shape decreases the influence of colour decreases in the segmentation process. The value was reduced to 

successfully segment image objects in the shadow region since half of 11 m flying height was covered with 

shadow. However, a trade-off was made for the value that gave few misclassified image objects, which were 

spectrally similar to Hogweed in Maize region (see Figure 5.3 and Figure 5.4) and also segmented Hogweed 

image objects in shadow region. However, this value was not efficient for the entire shadow region. It did 

not successfully segment all the image objects in the shadow region. This is because of the effect of shadow 

in the flying height 11 m, which led to under-segmentation in the shadow region. This under-segmentation 

could be attributed to the spectral similarity within the image objects in the shadow region. Under-

segmentation is a segmentation inaccuracy which refers to creating too fewer segments (Möller et al., 2007). 

Hence, the shadow area was segmented separately from the sunlit region, and the sunlit region was masked 

(Figure 5.5), and the segmentation was performed separately on the shadow region. The optimum values 

for scale, shape, and compactness were 500, 0.3 and 0.9. The values for parameters scale, shape, and 
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compactness had to be changed because segmentation in the shadow region is different from the sunlit 

region. The decrease in shape and scale values were to overcome the under-segmentation.  

 

5.2.2. Classification 

The classification step was carried out by selecting samples from the successfully segmented image objects. 

The idea is that classifier will use the selected samples to classify the entire image. The parameters selected 

to classify the image objects using the Nearest Neighbour classification method were layer mean, brightness, 

standard deviation, hue, saturation and intensity. The rule-based classification was used to reclassify the 

image objects from other classes, which were misclassified as Hogweed. Although after increasing the values 

for shape and compactness parameters to control over-segmentation in flying height 11 m, there were still 

some small meaningless image objects in the Not Hogweed class, which were classified as Hogweed due to 

the spectral similarity. Image objects having an area of lesser than 100-pixel were reclassified as Not 

Hogweed from Hogweed class. The following steps were used to define the value of the area-based rule. 

The area of the image objects in the maize field that were spectrally similar to Hogweed was identified using 

the image object information feature in eCognition. The threshold value was defined in such a way that the 

value does not affect the correctly classified Hogweed image objects. This rule-based classification was done 

only for 11 m flying height as the other flying heights 12 m, and 14 m did not have small image objects as 

explained in the section 5.2.1. The classified features were evaluated visually before doing further accuracy 

assessment. This visual assessment was done by exporting the classified features as shapefile and overlaying 

them on top of the high-resolution UAV imagery (Figure 5.6)  

Figure 5.5 Segmented shadow region of 11 m flying height seperated from the sunlit region for further targeted 
analysis 
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The final classified results were used to make maps showing Hogweed in black colour and Not Hogweed 

in white colour for all flying heights as shown in figures 5.7 – 5.9. The Hogweed was located in the north 

side of the study area in a long stretch as seen in the maps. Also, as the flying height increases, the size of 

the Hogweed leaves decreases, which can be seen when comparing the map of 11 m flying height with a 

map of 14 m flying height. Giant Hogweed’s leaves have a fern-like structure that was distinct from the 

nearby vegetation and was preserved in the segmentation (Figure 5.6) and hence can be seen in all the final 

classified maps too.  

 

 

 

 

Figure 5.6 Classified shapefile output from eCognition, which was overlaid on the Green Band of the UAV image for 
evaluation of the classification method in ArcGIS software. The image shows the Hogweed class. 

Figure 5.7 Classified raster image for 11 m flying height using Object-Based Image Analysis where Hogweed class is 
represented as black and Not Hogweed class is represented as white. 
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Figure 5.8 Classified raster image for 12 m flying height using Object-Based Image Analysis where Hogweed class is 

represented as black and Not Hogweed class is represented as white. 

 

Figure 5.9 Classified raster image for 14 m flying height using Object-Based Image Analysis where Hogweed class is 

represented as black and Not Hogweed class is represented as white. 

It can be seen from Figure 5.7 that OBIA failed to classify the Hogweed image objects in the shadow region. 

The spectral variability between the shaded region and unshaded region for the same real-world features are 

high (Lichtblau & Oswald, 2019) which resulted in affecting the classification. Hence, a targeted 

segmentation was done only for the shadow region and samples from the shadow region for both the classes 
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were selected for classification, and the classified raster, where Hogweed is in black and Not Hogweed is in 

white for only the shadow region can be seen in Figure 5.10. 

 
 
Figure 5.11 Classified raster image for 11 m flying height with Hogweed image objects from shadow and sunlit region, 
using Object-Based Image Analysis where Hogweed class is represented as black and Not Hogweed class is represented 
as white. 

The Hogweed objects classified from the shadow region and sunlit region were merged to create a final 
classified map for 11 m flying height as seen in Figure 5.11. There were some misclassified image objects, 
but they were fewer in this particular case. A rule classification based on the area was not used to reclassify 
misclassified image objects, because they were almost similar in size to the Hogweed image objects. 

Figure 5.10 Classified raster image for 11 m flying height for the shadow region using Object-Based Image Analysis 
where Hogweed class is represented as black and Not Hogweed class is represented as white. 
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5.3. Support Vector Machines 

The main goal is to identify the best values for 𝐶 and  that will help the classifier to classify the data 

accurately. The F1 score for each combination of parameters was tabulated. The pair of values, which gave 

the best F1 score, was finalised as the optimum parameter set for a specific flying height. The results are 

tabulated in Table 5.3. 

Table 5.3 Optimum values of parameters cost and gamma for Radial Basis Kernel of Support Vector Machine method 
for all the flying heights with their respective precision, recall and F1 score. 

Height (in m) Cost Gamma Precision Recall F1 score 

11 128 1 0.84 0.8936 0.8659 

12 0.5 2 1 0.9 0.9473 

14 4 0.5 0.9 0.9 0.9000 

 

The result was a classified binary raster image, which was used to make maps showing Hogweed class in 

black colour and Not Hogweed class in white colour. The classified raster images for all the flying heights 

are shown in the figures 5.12 – 5.14. Similar to OBIA the size of the Hogweed visibly decreased as the flying 

height increased. In addition, the distinct fern-like structure of the Giant Hogweed’s leaves was preserved 

in SVM as well. 

 

Figure 5.12 Classified raster image for 11 m flying height using SVM, where Hogweed class is represented as black and 

Not Hogweed class is represented as white. 

It is evident from the classified image for flying height 11 m (Figure 5.12) that Not Hogweed classes were 

also classified as Hogweed. SVM classifies the data according to the spectral information and hence 

spectrally similar pixels from other classes such as Maize, Sand and Vegetation were also classified as 
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Hogweed.  There were some misclassified pixels in the sand class because of the presence of grass in the 

unpaved road. 

 

 

Figure 5.13 Classified raster image for 12 m flying height using SVM, where Hogweed class is represented as black and 

Not Hogweed class is represented as white. 

 

 

Figure 5.14 Classified raster image for 11 m flying height using SVM, where Hogweed class is represented as black and 

Not Hogweed class is represented as white. 
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The salt and pepper effect, which is common to a pixel-based approach when applied to high-resolution 

images, can be seen in all three flying heights. Among all the three flying heights, the 11 m has the most 

misclassified pixels; this was mainly due to the effect of shadow. Compared to the other flying heights, 11 

m has most of the study area covered with shadow, which resulted in training samples being selected from 

the shadow region as well. Hence, the process was repeated for 11 m flying height without training samples 

for Hogweed from the shadow region. The process was again run in a loop; the set of 𝐶 and  values with 

the highest F1 score was selected. The resulting output raster image had visibly less misclassified pixels 

(Figure 5.15). The optimum 𝐶 and  were 4096 and 8 respectively, and the F1 score for the combination was 

0.7804. The F1 score for 11 m flying height without training samples from the shadow region is much lower 

than the one, which had samples from the shadow region. This is because the classifier did not classify the 

Hogweed in the shadow region due to the absence of training samples in the shadow region. 

 

 

Figure 5.15 Classified a raster image for 11 m flying height using SVM without training samples of Hogweed from the 

shadow region. Hogweed class is represented as black, and Not Hogweed class is represented as white. 

When comparing the classified image raster for flying height 11 m with samples from shadow region (Figure 

5.12) and without samples from shadow region (Figure 5.15), the number of misclassified pixels in other 

classes has reduced visibly. A possible explanation for this might be that the misclassified pixels were 

spectrally similar to Hogweed in the shadow region. 

5.4. Accuracy Assessment 

5.4.1. Object-Based Image Analysis 

The confusion matrix for the predicted class and the actual class was created for all the flying heights to 

quantify the errors, and they are shown in tables 5.4 – 5.6. The table shows the Producer’s Accuracy, User’s 

Accuracy and the Overall Accuracy, which are used as measures for the assessment of the methods. 
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Table 5.4 Confusion Matrix for flying height 11 m, which is for the accuracy assessment for the Object-Based Image 

Analysis method. 

Confusion Matrix 
Actual class Error of 

Commission 
User’s Accuracy 

Hogweed Not Hogweed Total 

P
re

d
ic

te
d

 

c
la

ss
 

Hogweed 31 0 31 0% 100% 

Not Hogweed 19 150 169 11.24% 88.76% 

Total 50 150 200   

Error of Omission 38% 0%    

Producer’s Accuracy 62% 100%    

Overall Accuracy 91% 

 
Table 5.5 Confusion Matrix for flying height 12 m, which is used for the accuracy assessment for the Object-Based 
Image Analysis method. 

Confusion Matrix 
Actual class Error of 

Omission 
User’s Accuracy 

Hogweed Not Hogweed Total 

P
re

d
ic

te
d

 

c
la

ss
 

Hogweed 42 0 42 0% 100% 

Not Hogweed 8 150 158 5.06% 94.94% 

Total 50 150 200   

Error of Commission 16% 0%    

Producer’s Accuracy 84% 100%    

Overall Accuracy 96% 

 
Table 5.6 Confusion Matrix for flying height 14 m, which is used for the accuracy assessment for Object-Based Image 
Analysis method. 

Confusion Matrix 
Actual class Error of 

Commission 
User’s Accuracy 

Hogweed Not Hogweed Total 

P
re

d
ic

te
d

 

c
la

ss
 

Hogweed 43 0 43 0% 100% 

Not Hogweed 7 150 157 4.06% 95.94% 

Total 50 150 200   

Error of Omission 14% 0%    

Producer’s Accuracy 86% 100%    

Overall Accuracy 97% 

 

A total of 200 reference points were selected for the accuracy assessment of Object-Based Image Analysis. 

In the above table, the diagonal elements show the number of points that were correctly classified. The 

overall accuracy using OBIA was 91%, 96% and 97% for 11 m, 12 m, and 14 m respectively. Overall 
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accuracy was calculated by dividing the number of correctly classified points by the total number of points. 

From the confusion matrix, it can be inferred that the overall error was skewed in such a way that all the 

flying heights had omission error, but no commission error, i.e. Hogweed class was classified as Not 

Hogweed class, but there was no Not Hogweed class that was classified as Hogweed class. To understand 

more about the cause of this skewness the errors were checked by overlaying them on high-resolution 

imagery. While plotting the errors, it was found out that the effect of shadow was the main reason for most 

of the misclassified points. This was due to the spectral similarity between the Not Hogweed and Hogweed 

class in the shadow region, which resulted in the inefficiency of OBIA classifier to classify Hogweed image 

objects correctly. In general, the 12 m and 14 m study area did not have any commission error. However, it 

should be noted that the rule-based classification helped to eradicate the commission error in flying height 

11 m. It can also be seen that the accuracy increases as the flying height increases. The increase in accuracy 

was due to the decrease in error of omission with increasing flying heights that was mainly due to the 

decrease in the effect of shadow in 12 m and 14 m flying heights when compared with 11 m flying height.  

The accuracy assessment for the classified image with Hogweed image objects merged from both the 
shadow and sunlit region Figure 5.11, can be seen in Table 5.7.  

 
Table 5.7 Confusion Matrix for flying height 11 m, which consists of Hogweed image objects from both shadow region 

and sunlit region. 

Confusion Matrix 
Actual class Error of 

Commission 
User’s Accuracy 

Hogweed Not Hogweed Total 

P
re

d
ic

te
d

 

c
la

ss
 

Hogweed 40 0 40 0% 100% 

Not Hogweed 10 150 160 6.25% 93.75% 

Total 50 150 200   

Error of Omission 20% 0%    

Producer’s Accuracy 80% 100%    

Overall Accuracy 95% 

 

The confusion matrix of flying height 11 m, which did not have image objects from shadow region (Table 

5.4) was compared with the confusion matrix of flying height 11 m which had image objects from both 

sunlit and shaded region (Table 5.7). It can be seen that the Producer’s Accuracy for the Hogweed class 

increased from 62% to 80% and the overall accuracy increased from 81% to 95%. This was because of the 

addition of Hogweed image objects from the shadow region decreased the error of omission from 38% to 

20%  in Table 5.7, which in turn increased the Overall Accuracy. 

5.4.2. Support Vector Machine 

The confusion matrix was used as a measure for accuracy assessment of the SVM algorithm for consistency. 

The confusion matrix with all the four classes namely: Hogweed, Not Hogweed, Sand, and Maize along 

with simplified confusion matrix with only two classes Hogweed and Not Hogweed for all the flying heights 

are shown in the tables 5.8 – 5.13. The simplified confusion matrix was added in addition to show the 

Overall Accuracy excluding the misclassification error from background classes (Sand, Vegetation, and 

Maize), which will be used as a measure for assessment of the method. The table also shows the Producer’s 

Accuracy, User’s Accuracy, which will also be used as measures for the assessment of the methods. 
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Table 5.8 Confusion Matrix for flying height 11 m, which was used for the accuracy assessment of the SVM method 

that shows all four training classes. 

Confusion Matrix 
Actual class 

User’s Accuracy 
Hogweed Not Hogweed Sand Maize Total 

P
re

d
ic

te
d

 c
la

ss
 

Hogweed 42 0 2 3 47 89% 

Not Hogweed 0 41 1 27 69 59.42% 

Sand 4 1 37 6 48 77.08% 

Maize 4 8 10 14 36 38.89% 

Total 50 50 50 50 200  

Producer’s Accuracy 84% 82% 74% 28%   

Overall Accuracy 67% 

 

Table 5.9 Simplified Confusion Matrix for flying height 11 m, which was used for the accuracy assessment of the SVM 
method that shows only Hogweed and Not Hogweed class. 

Confusion Matrix 
Actual class Error of 

Commission 
User’s Accuracy 

Hogweed Not Hogweed Total 

P
re

d
ic

te
d

 

c
la

ss
 

Hogweed 42 5 47 11% 89% 

Not Hogweed 8 145 153 5.23% 94.77% 

Total 50 150 200   

Error of Omission 16% 3%    

Producer’s Accuracy 84% 97%    

Overall Accuracy 94% 

 
Table 5.10 Confusion Matrix for flying height 12 m, which was used for the accuracy assessment of the SVM method 
that shows all four training classes. 

Confusion Matrix 
Actual class 

User’s Accuracy 
Hogweed Not Hogweed Sand Maize Total 

P
re

d
ic

te
d

 c
la

ss
 

Hogweed 47 1 1 1 50 94% 

Not Hogweed 2 32 1 6 41 78.05% 

Sand 0 0 43 0 43 100% 

Maize 1 17 5 43 66 65.15% 

Total 50 50 50 50 200  

Producer’s Accuracy 94% 64% 56% 86%   

Overall Accuracy 83% 
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Table 5.11 Simplified Confusion Matrix for flying height 12 m, which was used for the accuracy assessment of the 
SVM method that shows only Hogweed and Not Hogweed class. 

Confusion Matrix 
Actual class Error of 

Commission 
User’s Accuracy 

Hogweed Not Hogweed Total 

P
re

d
ic

te
d

 

c
la

ss
 

Hogweed 47 3 50 6% 94% 

Not Hogweed 3 147 150 2% 98% 

Total 50 150 200   

Error of Omission 6% 2%    

Producer’s Accuracy 94% 98%    

Overall Accuracy 97% 

 

Table 5.12 Confusion Matrix for flying height 14 m, which was used for the accuracy assessment of the SVM method 
that shows all four training classes. 

Confusion Matrix 
Actual class 

User’s Accuracy 
Hogweed Not Hogweed Sand Maize Total 

P
re

d
ic

te
d

 c
la

ss
 

Hogweed 45 3 0 2 50 90% 

Not Hogweed 1 30 6 11 48 62.50% 

Sand 3 6 43 4 56 76.79% 

Maize 1 11 1 33 46 71.74% 

Total 50 50 50 50 200  

Producer’s Accuracy 90% 60% 86% 66%   

Overall Accuracy 76% 

 

Table 5.13 Simplified Confusion Matrix for flying height 14 m, which was used for the accuracy assessment of the 

SVM method that shows only Hogweed and Not Hogweed class. 

Confusion Matrix 
Actual class Error of 

Commission 
User’s Accuracy 

Hogweed Not Hogweed Total 

P
re

d
ic

te
d

 

c
la

ss
 

Hogweed 45 5 50 10% 90% 

Not Hogweed 5 145 150 3.33% 96.67% 

Total 50 150 200   

Error of Omission 10% 3%    

Producer’s Accuracy 90% 97%    

Overall Accuracy 95% 
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The same 200 reference points, which were selected for OBIA accuracy assessment, were also used for 

accuracy assessment of the SVM method to avoid bias. The reference points were spread over all the four 

classes. It can be seen from the simplified confusion matrix tables (Table 5.9, Table 5.11, and Table 5.13) 

that unlike OBIA, the errors were skewed in both directions. Even though the misclassification was evident 

in the Maize region for the 11 m flying height in Figure 5.12, the number of false positives were only 5 

(Table 5.9). The most relevant classification was chosen according to the F1 score, which takes both False 

Positives and False Negatives into account. Hence, the final classification has the least False Positives and 

False Negatives even though there was a visible misclassification spread over other classes. This 

inconsistency might be due to overfitting of the SVM model. Generally, a higher value of 𝐶  results in 

overfitting of the SVM model. The 𝐶 parameter controls the trade-off between classifying training point 

correctly and having a smooth decision boundary. From Table 5.3, it can be inferred that the value of 𝐶 is 

higher for flying height 11 m when compared with 12 m and 14 m. According to Liu and Gillies (2016) in 

machine learning, overfitting happens when the algorithm tries to maximise the inter-class discrimination 

with less training samples. The overfitting of the SVM model was seen only in 11 m. This inconsistency can 

be attributed to the presence of training samples in the shadow region, which were spectrally similar to other 

classes in the study area, which resulted in the classifier maximising the inter-class discrimination for better 

accuracy. This led to overfitting of the model, which led to fewer errors even though the misclassification 

was evident. The overall accuracy using the SVM method is 94%, 97% and 95% for 11 m, 12 m and 14 m 

respectively. 

The confusion matrix and the simplified confusion matrix for flying height 11 m without training samples 

from the shadow region are shown in the tables 5.14 and 5.15. 

 

Table 5.14 Confusion Matrix for flying height 11 m, which was used for the accuracy assessment of SVM method that 

shows all four training classes and has no training samples for the Hogweed class from the shadow region. 

Confusion Matrix 
Actual class 

User’s Accuracy 
Hogweed Not Hogweed Sand Maize Total 

P
re

d
ic

te
d

 c
la

ss
 

Hogweed 32 0 0 0 32 100% 

Not Hogweed 5 35 10 24 74 47.3% 

Sand 7 1 32 3 43 74.42% 

Maize 6 14 8 23 51 45.1% 

Total 50 50 50 50 200  

Producer’s Accuracy 64% 70% 64% 46%   

Overall Accuracy 61% 
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Table 5.15 Simplified Confusion Matrix for flying height 11 m, which was used for the accuracy assessment of SVM 

method that shows only Hogweed and Not Hogweed class and has no training samples for the Hogweed class from 

the shadow region. 

Confusion Matrix 
Actual class Error of 

Commission 
User’s Accuracy 

Hogweed Not Hogweed Total 

P
re

d
ic

te
d

 

c
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ss
 

Hogweed 32 0 32 0% 100% 

Not Hogweed 18 150 168 17.17% 82.29% 

Total 50 150 200   

Error of Omission 36% 0%    

Producer’s Accuracy 64% 100%    

Overall Accuracy 91% 

 

The removal of training samples of Hogweed class from the shadow region in flying height 11 m decreased 

the Producer’s accuracy from 84% to 64% and the overall accuracy from 94% to 91%. This was because 

the classifier was not able to classify the Hogweed in the shadow region due to the absence of training 

samples. However, Table 5.9 and Table 5.15 shows that the error of commission has decreased from 11% 

to 0%. A possible explanation is that the misclassified pixels were spectrally similar Hogweed in shadow 

region. Hence, the removal of Hogweed training classes from the shadow region resulted in 0% commission 

error. 

5.5. Testing of ObsIdentify for Plants Application 

RGB bands of UAV images with different flying heights were given as an input for the ObsIdentify for 

plants mobile application. The images were cropped using the crop feature from the app to focus on leaves 

and leaves with the umbels region. Images with good exposure of sunlight as well as in shadow region were 

selected as input images to understand whether the effect of shadow would be a problem in deep learning 

based mobile application as well. 

UAV images with low flying heights like 5m, 8m and 11 m, which had both shadow region (Figure 5.16) 

and good exposure of sunlight (Figure 5.17), were recognised as Heracleum mantegazzianum by the application 

with one image only. Moreover, the application had no difficulty in identifying images with only leaves and 

images with leaves and umbels.  

As the flying height increased (12 m and 14 m), the app had some difficulty in recognising the images and 

the results were always two to three species with Heracleum mantegazzianum being the first choice, second 

choice or third choice. However, when one or more images of the same scene were added the app recognised 

images as Heracleum mantegazzianum without any difficulty. In summary, these results conclude that only flying 

height influences the accuracy of recognition of the species whereas neither the effect of shadow nor the 

parts of plant influence the accuracy of recognition. The selection of a good subset of the image that has 

only Giant Hogweed is also equally important, i.e. the image for the detection should be cropped in such a 

way that Giant Hogweed covers most of the region than the nearby vegetation. 
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Figure 5.16 Screenshots of app results of flying height 8m in the shadow region that shows the maximum likelihood 

of Heracleum mantegazzianum. Left: image with umbels and leaves. Right: image with only leaves. 

 

                          

Figure 5.17 Screenshots of app results of flying height 5m with bright sun exposure that shows the maximum likelihood 

of Heracleum mantegazzianum. Left: image with umbels and leaves. Right: image with only leaves. 
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Figure 5.18 Left: Screenshot of app results of flying height 14 m with umbels and leaves in the shadow region that 

shows three possibilities of species with Heracleum mantegazzianum being the first choice. Right: Screenshot of app results 

of flying height 14 m with umbels and leaves in the shadow region with two different images of the same scene that 

shows a maximum likelihood of Heracleum mantegazzianum. 

 

                          

Figure 5.19 Left: Screenshots of app results of flying height 14 m with leaves in bright sun exposed region that shows 

three possibilities of species with Heracleum mantegazzianum being the second choice. Right: Screenshots of app results 

of flying height 14 m with leaves in the shadow region with two different images of the same scene that shows a 

maximum likelihood of Heracleum mantegazzianum. 
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6. DISCUSSION 

In this chapter, a comparison of the accuracy assessment of the two methods adopted along with a detailed 

discussion on the results of both the methods, explaining the strength and weakness is presented.  

6.1. Comparison of OBIA and SVM accuracy assessment 

This section discusses the comparison of the accuracy assessment of both methods adopted for this research 

namely: Object-Based Image Analysis and Support Vector Machine. The Producer’s Accuracy (PA) for the 

Hogweed class and the OA (Overall Accuracy) from the confusion matrix are used as a measure for the 

assessment of both methods. The PA for Hogweed class is only discussed because of its relevance to this 

research and hence the PA for Not Hogweed class is not discussed. The OA and PA for both methods can 

be seen in Table 6.1. 

 
Table 6.1 Producer's Accuracy of Hogweed class and Overall Accuracy for all the flying heights of OBIA and SVM 
including the results of the targeted analysis of shadow and sunlit areas for 11 m flying height as well. 

Flying height 

(in m) 

OBIA SVM 

Shadow + Sunlit Only sunlit Shadow + Sunlit Only sunlit 

PA OA PA OA PA OA PA OA 

11 80% 95% 62% 91% 84% 94% 64% 91% 

12 84% 96% - - 94% 97% - - 

14 86% 97% - - 90% 95% - - 

 

It can be inferred from Table 6.1 that the OA of all the flying heights for both the methods is above 90%. 

SVM returned an error of commission less than 11% for all flying heights whereas, OBIA returned 0% error 

of commission. Introducing an area rule effectively reduced the error of commission to 0% in 11 m flying 

height of OBIA method. The low error of commission for both methods further supports that the spectral 

information of Giant Hogweed is distinct from its neighbourhood vegetation for successful detection. This 

distinct spectral information helped both the classifiers to accurately separate Hogweed from Not Hogweed. 

However, it should also be noted that the misclassification error within Not Hogweed class (Maize, 

Vegetation and Sand) was not included since the main objective of this research was to accurately detect 

Giant Hogweed from its neighbouring vegetation. 

In terms of PA for Hogweed class, surprisingly SVM shows better results than OBIA. It was also found out 

that the effect of shadow plays an important role when classifying the image using spectral information. The 

inefficiency of OBIA classifier in the shadow region led to a PA of only 62%. Hence, a targeted OBIA 

analysis for the shadow region was done only for 11 m flying height. The performed targeted analysis using 

OBIA for 11 m flying height was successful because it increased the PA for the Hogweed class substantially 

from 62% to 80%. Also, the effect of shadow resulted in misclassification in the SVM method too since the 

spectral information of Hogweed in the shadow region is not distinct from its nearby vegetation. However, 

the SVM classifier classified Hogweed image objects in shadow region because of overfitting. Hence, a 

targeted analysis was carried out by removing the samples from the shadow region, which resulted in a PA 

of 64%. This results further support that the spectral variability between Hogweed image objects in the 
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shadow region and the sunlit region is very high. It can also be seen from the above table that the 

performance of both classifiers was almost similar when samples from the shadow region were not included 

for the training, which shows that for higher PA, the region affected by shadow should be treated separately 

from the sunlit region . 

The effect of shadow is a universal problem, and it was encountered in one of the previous studies too. The 

change in luminosity and the presence of shadow due to the position of the sun caused high spectral 

variability within the classes which resulted in the decrease of classification accuracy (Michez et al., 2016). 

6.2. Strength and weakness of OBIA 

OBIA was the first method adopted in the methodology because an object-based approach is more suitable 

for high-resolution data than the pixel-based approach. OBIA reduces within-class spectral variation that 

removes salt and pepper effects in images, which is a typical phenomenon in pixel-based approach (D. Liu 

& Xia, 2010), also seen in the SVM results of this research. Defining the rule sets for segmentation and 

classification is easy and straightforward. Even though defining the rule sets is easy, the optimum parameter 

is defined by a repeated trial and error method, which is very time-consuming. Moreover, the results of 

segmentation need to be checked by the user for every set of parameter values, which can lead to ambiguity, 

as there is no set of formal rules for a good segmentation (Hay & Castilla, 2006). Segmentation errors are 

one of the main disadvantages of OBIA segmentation. Two types of errors that often exist in a segmentation 

process are over-segmentation and under-segmentation, which was seen in this research as well. A study by 

Liu and Xia (2010), which assesses the advantages and limitations of OBIA for high-resolution data, points 

out that under-segmentation introduces error to the subsequent classification process no matter which 

classifier is used. In addition, features extracted from over-segmented and under-segmented segments do 

not represent the properties of real-world objects (e.g. shape and area). The effect of shadow in the flying 

height 11 m resulted in under-segmentation, which resulted in the inefficiency of OBIA to classify Hogweed 

image objects from the shadow region. This resulted in a very low PA of only 54% for flying height 11 m. 

By performing targeted analysis in the shadow region and sunlit region separately, the PA was increased 

from 54% to 72% for flying height 11 m. 

One main advantage of using OBIA would be that it allows the user to add spatial information along with 

the spectral information for a more refined classification. In this research, an area rule was introduced to 

reclassify misclassified image objects, which were spectrally similar to Hogweed image objects. The 

misclassified image objects were from the maize region of the study area and were very small, and hence the 

rule was applicable. However, the area rule cannot be used if the misclassified image objects are similar in 

size to Hogweed image objects.  

Moreover, OBIA uses segmented image objects as samples for the classification process. This can lead to a 

bias in the final classification results depending on the area of the study and the total number of image 

objects segmented. For example, selecting 50 samples from a total of 100 segmented image objects is not 

an efficient classification. For this reason, in this research, a total of 10 – 20 image objects were selected as 

samples for the OBIA classification. 

The classification results from OBIA gave an OA of 97% for the 14 m flying height with a PA (Hogweed 

class) of 86%. It can be seen from Table 6.1 the classifier gives better accuracy as the flying height increases. 

The variability of high-resolution data decreases with an increase in height, which also is a factor that helped 

the software efficiently classify Giant Hogweed in the higher-flying heights. The main issue identified from 

using OBIA classifier was that the error of omission was high (38%) in the flying height 11 m, which was 

due to the effect of shadow and high spectral variability. The targeted analysis shows that separate analysis 

on the shadow region could be an answer for the inefficiency of OBIA classifier in the shadow region. 

Hence, the effect of shadow was not a limitation in this research. The spectral variability also resulted in 
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over-segmentation, which was successfully eradicated using an area rule. The spectral variability of 11 m is 

high compared to other flying heights even though the GSD of all three flying heights are almost similar. 

This is because the orthophotos were resampled from UAV images and the UAV images from low flying 

heights have more spectral variability when compared to the data from higher-flying heights. The resampling 

method resulted in almost similar GSD but retained high spectral variability for the lower flying height (11 

m). 

6.3. Strength and weakness of SVM 

Several studies have shown that an object-based approach is desirable for high-resolution data, but 

interestingly SVM outperformed OBIA in this research in many aspects. The values from Table 6.1 shows 

the overview of the comparison between both the methods. It can be seen that the PA for the Hogweed 

class is higher for all flying heights in the SVM method. OBIA classifier did not return any false positives 

while SVM returned. This was due to the salt and pepper effect of SVM. However, the false positives did 

not affect the OA drastically since they were only less than 5 misclassified points. This shows that the SVM 

classifier was efficient in separating Hogweed pixels from Not Hogweed pixels. 

Optimisation of parameters for the SVM model is one of the main limitations for using SVM. A kernel with 

fewer parameters was chosen in this study due to time constraint. Furthermore, processing the entire image 

in a loop for the parameter optimisation is time-consuming. A small portion of the image, which contains 

all the classes, can be chosen for parameter optimisation to overcome the situation. This, in turn, will speed 

up the process significantly. 

One of the main advantages of using SVM is that it requires no human interference for the classification 

process. The process is automated, unlike OBIA which needs a user to validate both segmentation and 

classification results. This makes SVM less biased than OBIA. However, it should also be noted the 

overfitting of the SVM model is a disadvantage. Overfitting of the model was seen in flying height 11 m. 

However, increasing the size of the training samples could help in overcoming the overfitting of the model. 

In addition, like OBIA the sunlit region and shadow region can be analysed separately and hence, this is not 

a major weakness. 

SVM gives salt and pepper effect as any pixel-based approach would. SVM like any other pixel-based 

approach considers only spectral properties and does not consider the relationship between spatial and 

spectral properties, which results in salt and pepper effect. However, this cannot be deemed as a limitation 

since there are several additional ways to eradicate the salt and pepper effect. Post classification smoothing 

algorithms such as majority filter (Huang et al., 2004) or likelihood class filter (Su, 2016) can be used to 

overcome the effect. This might increase the steps in the overall SVM classification process but also the OA 

would increase for all heights since the process would effectively decrease the commission error. 

Interestingly, the effect of shadow did not affect the accuracy for SVM as OBIA did, for flying height 11 m 

because the model tried to maximise the inter-class separability. Although it resulted in overfitting of the 

model, the PA and OA were as high as 84% and 94% respectively. The comparison of results suggests that 

SVM can be preferred for analysing shadow prone area with additional measures taken for overfitting as 

suggested. 

6.4. Strength and Weakness of using UAV 

The methodology as explained in chapter 3 was carried out using the spectral characteristics of the leaves 

of Giant Hogweed while the umbels were not used for detection at any point in this study. The success of 

the detection could be attributed to the use of different spectral bands like Green, NIR, and Red Edge 

instead of using only visible and NIR bands like in the previous studies (Michez et al., 2016; Müllerová et 
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al., 2017). As discussed in the introduction section UAVs are a great option since Giant Hogweed usually 

grows under trees and UAVs can be successfully used for understory mapping.  

Although UAVs are the best option for the source of data, they also have some limitations. The area that 

can be covered by UAVs is significantly smaller than airborne sensors. Hence, UAVs are much suitable for 

monitoring the efficiency of eradication efforts or mapping a small infected area (Dvořák et al., 2015). In 

the Netherlands, UAVs are prohibited to be flown over a group of people or connected buildings. Giant 

Hogweed was introduced as an ornamental plant in Europe, and hence they can be seen in urban areas too. 

However, due to the law UAVs cannot be flown in an urban area, which is a major limitation for data 

acquisition in urban areas infected by Giant Hogweed.   

6.5. ObsIdentify for plants 

ObsIdentify for plants, the deep learning based mobile application showed promising results in the detection 

of Giant Hogweed using UAV images. The application, which was trained using mobile pictures from the 

waarneming.nl website, had no difficulty in identifying UAV images. Furthermore, the app produced 

accurate results using images with only leaves and images with shadow. A possible explanation for the 

accurate detection of images with shadow can be attributed to the training of the application using bad 

pictures along with good pictures as explained in the methodology chapter. The algorithm has been trained 

to detect images with shadow as well. This opens up many opportunities for early detection of Giant 

Hogweed since the shadow is not a problem and only leaves are sufficient for accurate detection. 

Furthermore, deep learning could be a solution for the detection of images with shadow, and the data can 

be easily acquired from the waarneming.nl website for training the algorithm. The detection of Giant 

Hogweed using the ObsIdentify algorithm could be automated for further detection studies, but the main 

issue is feeding a tile of the image with very little to no neighbouring vegetation. As discussed in the results 

chapter, careful subset selection plays an important role in the accuracy of detection. Giant Hogweed had 

huge leaves and was growing away from the dense understory in this research study area, which made the 

subset selection easier. Moreover, it was done manually. If the Giant Hogweed were growing in a dense 

understory, the subset selection would have been difficult. It can be seen from the results of SVM and OBIA 

that as the flying height increases the overall accuracy decreases due to the decrease in spectral variability 

and effect of shadow. Whereas in the mobile application the accuracy of detection increases as the flying 

height decreases. One possible implication could be that the algorithm was trained using mobile pictures, 

which are normally taken at a very close range.  

Future studies using the ObsIdentify algorithm is therefore suggested because of the promising results and 

the wide opportunities. The algorithm is already trained for all the wild plants in the Netherlands and 

Belgium and the results from this research show that UAV images can be used as an input. The algorithm 

can be used not only for Giant Hogweed detection but for other invasive plants detection as well. However, 

further studies involving the automation of subset selection for the detection should be undertaken.  
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7. CONCLUSION AND RECOMMENDATIONS 

7.1. Conclusion 

The main objective of this study was to find whether an early detection is possible by using the spectral 

characteristics of Giant Hogweed leaves, from its nearby vegetation. The results of this study show that 

early detection is possible with the help of spectral characteristics of leaves. This allows the detection of 

Giant Hogweed before the flowering period and does not limit the data acquisition to only flowering period. 

The second major finding was that the spatial context (OBIA) is not necessary for early detection; spectral 

information of Giant Hogweed’s leaves are more than enough for successful detection using SVM. Despite 

the small study area, the study certainly adds to our understanding that spectral information of Giant 

Hogweed’s leaves can be used as important information for early detection. The study was successful since 

Giant Hogweed was not spectrally similar to nearby vegetation. This may not be true for all cases. Hence, 

this is a limitation of this study. Further studies, which takes this variable into account, will need to be 

undertaken. As explained before the mapping of invasive species in the Netherlands, is done by volunteers. 

With the help of UAV images, the detection can be done effectively with less labour work. One of the more 

significant findings to emerge from this study is that UAV images can be used as an input for the deep 

learning based mobile application, ObsIdentify for plants and shadow does not pose as a problem. This 

would be a fruitful area for further work. 

7.2. Research Questions: Answered 

This section discusses the answers to the research questions from section 1.2. 

 

1. Is early detection of Giant Hogweed possible by using the spectral information of leaves? 

The high OA of above 90% (see section 5.4.2) of SVM method, which uses only spectral 

information, shows that the early detection is possible by using only spectral information of Giant 

Hogweed’s leaves. 

 

2. What is the accuracy of the SVM method? 
The OA of SVM is 94%, 97% and 95% for 11 m, 12 m and 14 m flying heights respectively. In 

addition, the OA for the SVM method without training samples from the shadow region is 91% 

 

3. Which extra parameters (shape, size and or texture) is used in addition to spectral information? Did 

it increase the accuracy of the detection in the OBIA method? 

OBIA adds spatial information in addition to spectral information for the classification; hence there 

was no salt and pepper effect like SVM. An area rule was also introduced, which resulted in zero 

commission error; however, there was no significant increase in OA when compared with SVM. 

The results of this research also proved that spectral information is enough for successful detection. 

 

4. What is the accuracy of OBIA method? 

The OA of OBIA is 91%, 96% and 97% for 11 m, 12 m and 14 m respectively. In addition, the 

OA for 11 m with Hogweed image objects from shadow and sunlit region is 95%. 

 

5. Can UAV images be used as an input for a deep learning based species recognition mobile 

application (ObsIdentify for plants)? 

Yes, UAV images can be used as an input for deep learning based mobile app, which was trained 

using pictures from mobile. 
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6. How does the altitude of the flight influence the accuracy of detection of the plant in SVM? 

From the results, it can be seen that the altitude does not influence the accuracy of detection. All 

three flying heights have similar OA. 

 

7. How does the altitude of the flight influence the accuracy of detection of the plant in OBIA? 

The over-segmentation of OBIA suggest that the flying height influences the accuracy of detection. 

This influence can be attributed to the inefficiency of OBIA handling spectral variability within 

classes as the flying height decreases. However, additional measures like rule-based classification 

can be used to overcome the effect of flying height. 

 

8. How does the altitude of the flight influence the accuracy of detection of the plant in the mobile 

application? 

The altitude of the flight plays an important role in the detection of the plant using ObsIdentify. 

From the results, it can be seen that the app successfully detected Giant Hogweed in low flying 

heights and as the flying height increased the app had difficulty. This is due to the training of the 

algorithm using mobile pictures from the website waarneming.nl, which are always taken at a close 

range. 

 

9. Does the shadow affect the accuracy of detection in OBIA? 

The effect of shadow is a weakness for OBIA classifier since it leads to under-segmentation, which 

in turn leads to the inefficiency of classifier classifying Hogweed image objects in the shadow region. 

However, separate analysis on shadow and the sunlit region was found to increase the accuracy. 

 

10. Does the shadow affect the accuracy of detection in SVM? 

Overall, the results indicate that shadow does affect the accuracy even though the degree of 

influence is not as significant as OBIA. 

 

11. Does the shadow affect the accuracy of detection in the mobile application? 

In low flying heights like less than 11 m, the shadow does not affect the accuracy of detection. 

However, as the flying height increases the shadow also influences the accuracy detection along 

with flying height. This is because the images used for training the algorithm includes bad pictures 

and pictures taken in the shaded region. 

 

12. Between the two methods, which is more efficient in terms of accuracy and computation time? 

Both methods give almost similar accuracy bur from the results and discussion chapter; it can be 

seen that SVM is the more efficient than OBIA in this research because, 

 The PA for Hogweed class is high in SVM for all flying heights. 

 Fully automated classification with little human interference. 

 Less overall computation time and less bias in final classification when compared with 

OBIA. 

 SVM classifies Hogweed in shadow region unlike OBIA which needs targeted analysis 

7.3. Recommendation 

The following suggestions are recommended for future work. 

 The study should be repeated using different other plants to see whether there are any plants, which 

is spectrally similar to Giant Hogweed’s leaves. In that case, a new parameter must be defined which 

can help the user to differentiate Giant Hogweed from other plants. 

 In addition, a natural progression of this work would be to find a solution as a part of the analysis 

for the effect of shadow rather than targeted analysis. For example, a spatial context can be defined 
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which can help Hogweed image objects from both shadow and sunlit region to be classified without 

segmenting the study area into two separate regions. 

 A further study on using the algorithm from deep learning based app ObsIdentify could be very 

fruitful research for invasive plant detection as discussed in the discussion chapter. 
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