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ABSTRACT 

This study compares the use of Sentinel 1 (S1) SAR sensor alongside with Sentinel 2 (S2) optical sensor in 

detection and mapping of burnt and unburnt scars occurring after a bushfire in Victoria, Australia, and 

Spain. The bushfires had recently occurred in the period of 2017-2018. The C-band dual polarized S1 data 

have been investigated to assess the backscatter intensity together with polarimetric decomposition 

component to determine forest burn severity over the two sites. The backscatter coefficient was also used 

in deriving texture measures from local statistics, using grey level co-occurrence matrix (GLCM). This was 

because of its sensitivity in the identification of textural variation of burnt and unburnt scars. While for S2 

the difference normalized burnt ratio (dNBR) was utilized to determine the magnitude of burnt severity 

levels present in both areas. Its analysis was explored using a contextual classifier Support Vector Machine 

and Markov Random Field classifier (SVM-MRF). This is because of its integration of spectral 

information and spatial context through the optimal smoothing parameter without degrading image 

quality. The training and test set datasets consisting of burned and unburned pixels were created from S2 

scenes used as reference data. The experimental results showed that a strong correlation exists in both 

spectral sensitivity and polarimetric sensitivity of the two defined classes after classification. The 

performance of the algorithm was evaluated using the kappa coefficient and f-score measurement. All fire 

zones yielded an accuracy of (0.80) except for S1 data in Spain. Also, the performance in users and 

producers accuracy provided the highest accuracies in both S1 and S2. The entropy alpha decomposition 

helped to classify the target based on their physical properties as presented by the 𝐻-𝛼 plane. The entropy 

and alpha values decreased and formed a pattern after the fire. The sensitivity analysis to the GLCM 

features showed that homogeneity, contrast and entropy were the key statistical features that showed  clear 

separation of burnt and unburnt scars using backscatter intensity. This was after the key parameters such 

as number of quantization levels, window size, pixel pair sampling distance which was one and the 

orientation were optimized. The use of S1 in discrimination of burnt and unburnt scars was highly 

dependent on local incidence angle, acquisition geometry and environmental conditions. In hilly areas, the 

low incidence angles showed high discrimination of burnt from unburnt areas compared to high incidence 

angles. Also, topography was of high influence as areas facing slopes in hilly areas showed high 

discrimination of unburnt areas from burnt compared to areas facing backslopes. The Spain dataset did 

not foreshow any changes in vegetation structure after the fire as compared to Australia using S1. This led 

to the conclusion that also the intensity of the fire and its effect to vegetation structure is of great 

influence to the sensitivity of SAR sensor in the analysis of changes in forest structure after a bushfire. 

Also optical data in such cases can be used as a substitute as it showed strong spectral sensitivity to 

changes in Spain fire irrespective of the intensity of the fire. Nevertheless, results in both areas verify the 

use of  satellite SAR sensor and optical in forestry application and their sensitivity  highly depends on 

vegetation structure, geographical nature of the area of study and fire intensity. 

Keywords: Burnt, Unburnt, Backscatter intensity, polarimetric decomposition, Texture, Bushfires. 
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1. INTRODUCTION 

This chapter mainly describes the history of wildfires, its effect over time and gaps present in mitigating 

the fires. Section 1.1 presents the motivation of the research together with the problem statement. Section 

1.2 defines the main objective of the research, its sub-objectives followed by the research questions to be 

handled. Section 1.3 defines the innovation of the research and finally, Section 1.4 describes the structure 

that is followed in the write-up. 

1.1. Motivation and Problem statement 

 
Forest is a key component of ecology and sustainable development and at the same time a dynamic 

resource. It is mainly affected by coexisting ecological processes, direct management interventions, and 

forest fires. Forest fires are generally referred to as wildfires due to their frequency and intensity  

(Westerling et al., 2006). Over the past years, the effect of wildfires in the forest as a result of the natural 

or human-induced phenomenon has attracted recognition both locally and globally. The implications 

associated with wildfires still continue even after it is contained as it leads to loss of vegetation cover, 

leaving exposed ground vulnerable to erosion and release of greenhouse gases in the atmosphere  

(Forshed et al., 2009). Different types of forest fires have been discussed in various literature. Key 

differences between wildfires and bushfires explored dependent on vegetation type. Wildfires being 

uncontrolled fires in a wildland area and characterized by its cause of ignition, weather and physical 

properties(USDA, 2003). Bushfires, on the other hand, are an uncontrolled fire in the woody or grassy or 

forested area especially occurring in Australia zones which is a sparsely-inhabited region (Lucas et al., 

2007). The duration and intensity of bushfires determine not only the number of greenhouses and 

aerosols emitted but also the recovery process after the fire event (Akagi et al., 2011). Severe and frequent 

bushfires have caused significant changes in forest structure, species and biomass stocks (Xaud et al., 

2013). Such severe changes over extensive areas are clearly assessed best using remote sensing (Chuvieco 

et al., 2002). 

Satellite remote sensing has been used for detection, mapping, managing fire-prone areas and estimating 

the severity and intensity of bushfires (Chuvieco, 1999). It has been seen as a good and time-saving 

method in monitoring and quantifying amount of change that has resulted after fire (Stroppiana et al.,  

2003). In particular optical satellite data has been extensively used and has proved useful data in the 

mapping of burned areas (Koutsias et al., 2000; Roy et al., 2002; Mitri & Gitas, 2004; Stroppiana et al., 

2015). However, the optical data has a disadvantage of being hindered by cloud cover or smoke during fire 

instance and errors due to spectral overlap (Kuenzer & Dech, 2013; Allison et al., 2016). Cloud cover 

reduces the observation rate in the visible/infrared bands which when depicting low fire severity and fast 

vegetation regrowth after fire may cause low spectral separability between burnt and unburned zones 

(Tansey et al., 2004). Thus this reduces the fire mapping capability of optical data sets. In contrast, the use 

of synthetic aperture radar (SAR) has the ability to penetrate clouds and fire smoke providing information 
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on burnt severity extent (Hoekman et al., 2010). Its weather independency also is an advantage compared 

to optical sensors. SAR has widely been used for biomass estimation, vegetation mapping and also 

ecological monitoring and growth (Kumar et al., 2017). 

It utilizes microwave energy in both quantitative and qualitative analysis of the target surface by measuring 

the difference in scattering mechanism based on surface roughness (Polychronaki et al., 2013). SAR sensor 

emits an electromagnetic signal and receives the signal echo called backscatter, which allows detection of 

nature and position of material in accordance to the travel time of received pulse (Richards & Jia, 2006). It 

measures the variation in dielectric constant of target objects and determines the backscatter intensity of 

the microwave energy received and emitted in the resulting SAR product (kasischke, 1997). It also directly 

relates to forest structure in relation to its wavelength, polarization and local incidence angle resulting in 

information on the change in forest structure due to fire severity. 

 In recent studies, SAR has been used in the mapping of burned areas depicting sensitivity of backscatter 

signal to vegetation structure and biomass (Kasischke et al., 2000). The removal of leaves and branches 

after fire alters the scattering mechanism which results in temporal variations of backscatter intensity. The 

effects of fires on the backscatter coefficient have been exploited in several fire-related studies. This 

includes identification of fires scars in boreal forestry by exploiting the C-band backscatter of burned areas 

(Kasischke et al., 2010). The research on boreal forest depicted stronger return of backscatter intensity 

from burned scares as compared the unburned as a result of changes in moisture content (Bourgeau-

Chavez et al., 1996). Similar observations were made also in tropical rain forest environment but 

discovered under dry weather decrease in backscatter compared to wet conditions however the 

discrimination of burnt and unburnt areas was difficult (Huang & Siegert, 2004). Some studies also 

reported the use of SAR in the mapping of burnt scars in the Mediterranean and the influence on rainfall 

in backscatter coefficient (Menges et al., 2004). The potential of SAR in the estimation of burnt severity 

after the fire has also been reported (Bourgeau-Chavez et al., 1996). However, most of the reported 

studies have focused on the detection and mapping of fire severity using SAR. 

A major issue when utilizing SAR images in fire burn scars monitoring is the retrieval of biophysical 

parameters with great impact from local topography. This causes an influence in the backscattering 

coefficient especially due to the tilt of terrain which changes the scattering mechanism (Luckman, 1998; 

Sivasankar et al., 2015). Few studies have been done on the effect of geographical aspect of an area, its 

influence on local topography which directly affects backscatter intensity in the retrieval of burnt and 

unburnt areas after a bushfire. This research aims to analyze the use of backscatter intensity in the retrieval 

of burnt and unburnt areas in relation to the geographical aspect of the study area. In this research, we 

shall compare the effect of bushfire on hilly-mountainous areas to flat-terrain areas in two study areas, 

Australia and Spain. The focus being comparing the use of satellite SAR and optical imagery in the 

identification of burnt and unburnt patches within fire perimeter zones.  
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1.2. Research Objective 

1.2.1. General Objective 

 
This study is aiming to analyze the use of satellite SAR data and its comparison to optical imagery for 

identification and classification of burnt and unburnt patches after a forest fire. 

1.2.2. Specific Objectives 

1. To develop a forest fire burnt severity map that compares the size and extent of change on pre 

and post-fire instances. 

2. To explore the sensitivity of polarimetric decomposition and backscatter intensity in the 

identification of burnt and unburnt areas. 

3. To determine the degree of spectral contrast between burnt and unburnt areas. 

4. To evaluate the contrast in texture analysis of unburnt areas and unburnt areas.  

1.2.3. Research Questions 

 
1. What is the suitable measure of burnt severity levels existing after the forest fire? 

2. Is there a difference of target decomposition and backscatter intensity in the analysis of burnt and 

unburnt areas? 

3. What are the effects of utilizing radar backscatter in retrieving the spectral and polarimetric aspect 

of the burnt and unburnt areas? 

4. What are the effects of utilizing radar backscatter in retrieving the GLCM textural variation of the 

burnt and unburnt areas? 

1.3. The innovation of the study 

 
The proposed attempt for this study is in the identification and classification of the burnt and unburnt 

patches comparing the ability of satellite SAR and optical dataset obtained after a fire in separating the two. 

The novelty will be specifically looking at the geographical aspect of two study areas (Australia and Spain), 

the influence it has on topography and how they affect both the backscatter coefficient and spectral analysis. 

This will take into consideration the fire severity and vegetation cover in both areas that are within fire 

perimeter zones. The effect of topography influence on the two parameters will act as a guiding factor in 

decision making and understanding its impact on the rate of spread of fire, impact on land cover changes 

and mitigation of fire events prior to occurrence by fire management. 
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1.4. Thesis structure 

This research has been documented in six main chapters. Chapter 1 is an introduction which contains 

motivation of research, problem statement, research objectives, and research questions, innovation of the 

study and summary of thesis structure. Chapter 2 is a literature review. Chapter 3 describes the methods 

used to achieve the objectives. Chapter 4 describes the study area and materials used in the research. 

Chapter 5 shows the results that are relating to the research objective and were obtained after the 

implementation of the methodology. Chapter 6 presents the evaluation and discussion of results. Finally, 

the conclusions and recommendations are in chapter 7. 
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2. LITERATURE REVIEW 

This chapter is divided into two sections: First, the related work in Section 2.1 which describes past 

researches that have been done in line with our research, their achievements and gaps left in the studies. 

Secondly is the theoretical background in Section 2.2. In this section, we describe in Section 2.2.1 the 

concept of SAR remote sensing, Section 2.2.2. the concept and formulation of polarimetric signatures. 

Section 2.2.3 relates polarimetric signatures to polarimetric decompositions and its interpretation in fire 

monitoring. Finally, Section 2.3 describes the textural component in relation to the backscatter coefficient 

using SAR imagery and its interpretation in fire scar mapping. 

2.1. Related work 

 
Fire scars have been detected and monitored using remote sensing on surface reflectance characteristics 

(Vallejo, 1999). Since early 1980,s remote sensing (RS) has proved an accurate tool in the estimation of 

bunt severity levels of fire affected areas both at regional and local scales (Chu & Guo, 2013; Lentile et al., 

2006). Space and airborne sensors have been used for assessing environmental conditions before and after 

the fire to detect the post-fire spectral changes and examine the vegetation influence (Lentile et al., 2006). 

The optical sensors that have been used in examining and evaluating burnt areas include Moderate 

Resolution Imaging Spectrometer (MODIS) (Boschetti et al., 2015). Landsat imagery (Salvador et al., 2000; 

Boschetti et al., 2015). Advanced Very High-Resolution Radiometer (AVHRR) (Remmel & Perera, 2001). 

Systeme Pour observation de la Terre Vegetation (SPOT-VEGETATION) (Pereira et al., 2002) and 

recently Sentinel 2- Multispectral Instrument (MSI) (Fernández-Manso et al., 2016). The above mentioned 

optical sensors have been widely used due to their high quality in terms of spectral and temporal 

resolution. Also, the need for moderate to high spatial resolution (10 m to 30 m) for mapping of burned 

areas was advocated by fire management for its analysis in the greenhouse effect, particles and aerosols 

(Mouillot et al., 2014; Randerson et al., 2012). This information is used for post-fire remedy and for an 

environmental management strategy.  

Majority of the burned area mapping have attempted to detect the spectral changes caused after the fire 

which alters the vegetation (Roy et al., 2005; Giglio et al., 2006). These changes have been observed using 

the optical wavelength bands although they showed variation in space and time of the fire. Postfire 

characteristics of forest fires can be divided into two signals; the formation and deposition of charcoal or 

alteration of vegetation structure (scar) and plant canopies (Gitas et al., 2012). Previous studies have 

shown that burned areas generally tend to have lower reflectance and relatively dark in the visible spectral 

range (Almeida-Filho & Shimabukuro, 2004; Anderson et al., 2007; Masek et al., 2006). According to  

(Arnalds, 2015), the mapping of burned areas using the visible spectral region does not give accurate 

results due to the landcover types such as water bodies, wetlands, and soil. The spectral region appears 

darker making it difficult to discriminate burnt and unburnt areas. Bastarrika et al., (2014) has shown that 
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the near-infrared (NIR) in the spectral region where the signal for burned areas is highly sensitive is 

considered to be the most used region for mapping forest fire. Schroeder et al. (2016) explained that pre-

fire images of forest usually depicts high reflectance in the NIR region while there is a decrease in 

reflectance at the postfire occurrence.  

Various methods for burnt area analysis include the manual interpretation and detection of burnt areas 

(Silva et al.,  2005), use of decision tree classification (Kontoes et al., 2009) whereby the method was 

efficient and offered high spatial and thematic accuracy results but unstable when data changes. Maeda et 

al. (2009) used the artificial neural network (ANN) using MODIS sensor to detect high-risk zones of fire 

in Amazon Brazil. He identified it as a fast and precise method for forest fire mapping however difficulties 

in model interpretation was experienced. Koutsias et al. (2013) applied a thresholding method used on 

analysis of pre and post-fire images in analyzing the extreme of fire severity. However, most studies have 

employed spectral differences between pre and post-fire images for burned area mapping and fire severity 

studies. The spectral indices such as normalized burnt ratio, burnt area index (BAI), mid-infrared burn 

index (MIRBI) and global environmental monitoring index (GEMI) have commonly been used to observe 

such differences (Chuvieco et al., 2002; Bastarrika et al., 2011(Bastarrika et al., 2011); Schepers et al., 

2014). 

However, these approaches are limited due to cloud contamination it's difficult to obtain suitable pre- and 

post-fire images for clear analysis. Secondly burned areas demonstrate spatial and spectral diversity due to 

fire severity, the time difference in image acquisition dates and fire dates and existing vegetation types 

 (Stroppiana et al., 2012). Lastly cloud, shadows and water bodies foreshow similar spectral response to 

burned areas leading confusion in determining the coverage of unburnt patches (Boschetti et al., 2015). 

Change detection method between pre- and post-fire images have been mostly used to achieve good 

results however better approach for burned area detection and mapping is needed that will overcome the 

limitations mentioned.  

 

2.2. Theoretical Background of SAR 

2.2.1. Concept of SAR 

Basically, SAR is a side-looking radar system that takes multiple images along an orbital path and transmits 

the electromagnetic signals that resulted after interaction with the target surface and records the 

backscattered echoes (Moreira et al., 2013). The specific properties of the SAR sensor being used 

determine the amount of backscatter coefficient that returns from the target surface to sensor (Koo & 

Chan, 2008). The properties include object roughness, dielectric properties of the surface, local incidence 

angles, polarization and wavelength, biomass and moisture content of vegetation. The SAR sensor has the 

ability to produce high-resolution images. The images are formed through the formation of virtual 

aperture and wavelength that’s longer than the physical antenna length utilizing the Doppler effect of the 

echoes (Koo & Chan, 2008). However, SAR also experiences shortcomings with vegetation, speckle 
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effect, and shadows that hinder its visual and classification interpretation difficult (Sinha et al., 2015). The 

SAR wavelength runs from short wavelength to longer wavelength in the order of X, C, S, L, and P band 

and have distinctive properties that differ on various surfaces (Richards & Jia, 2006).  

The use and application of SAR in various studies has grown over time from 1950,s. Since then several 

studies have been implemented that has contributed to the technological development of both airborne 

and spaceborne SAR missions. SAR has been widely used in the monitoring of landcover surfaces, natural 

phenomena such as forest, waterbodies. This is due to its capability in penetration of earth surface 

materials, all weather and usability during the night (Moreira et al., 2013). However, availability of data 

varies in all sensors, most of them requiring a special request and only a few are accessible to public 

dependent on special request. 

 

2.2.2. Polarization Signatures 

 
Polarization signatures provide a wealth of information about various properties of a surface as radiation 

with different polarizations scatter in different ways depends on the target surface  (Richards & Jia, 2006). 

There exist four polarimetric channels consisting of both horizontal and vertical polarizations which are  

HV, VH, HH, and VV. HH means that the wave is transmitted and received horizontally. Similarly for VV 

that the wave is transmitted and received vertically and for VH the wave is transmitted vertically and 

received horizontally. Finally, for HV  the wave is transmitted horizontally and received vertically. The 

HH and VV are referred to as co-polarized transmit and receive polarizations in the same direction. The 

HV and VH are called cross-polarized transmit and receive polarizations in the orthogonal direction 

(Aponte et al., 2014). The single polarized system is a system that transmits and receives either VV or HH 

polarized wave. The dual polarized system is a system that transmits and receives waves in two 

combinations of polarizations HH or VV and HV or VV and VH that transmits and receives waves in all 

combinations of polarizations (Massonnet & Souyris, 2008). In forestry analysis, the channels of 

polarization are significant in modeling forest burn severity. For the X and C band  L bands co and cross-

polarized were tested for burnt severity (Tanase et al., 2014) and for the co-polarization, the backscatter 

increased with burnt severity while for cross-polarized it decreased with burn severity. For wavelengths in 

X and C band, the polarization was dominant at the upper part of tree crown canopy while for L bands 

penetrate the canopy to higher extent interacting unburnt scars (Toan et al, 1992; Shoshany & Sternberg, 

2001). A study by Ruecker & Siegert (2000) confirmed there is a decrease in VH polarization under dry 

weather conditions while during wet conditions the backscatter increased thus discrimination from 

unburned surroundings becoming difficult for C-band. Menges et al. (2004) also analyzed the effect of co 

and cross-polarized after a bushfire and discovered for both C and L- bands showed low values for 

burned areas and high for the unburned forest in relation to cross-polarized wave, however, for L- band 

depicted higher values compared to C- band. Finally, for Mediterranean forests (Gimeno et al., 2004) 

identified that for the C- band co-polarized backscattering increased independently with an increase in 
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precipitation. Tanase et al. (2010) mentioned that the scenes characterized by wet conditions presented 

higher levels of backscatter compared to ones obtained during dry conditions although both showed 

potential in the estimation of burnt severity after a forest fire. 

 

2.2.3. Polarimetric Target Decomposition 

 
The polarimetric decomposition theorem is used to analyze and understand the scattering mechanism of 

ground targets (Lee, 2009). It was first introduced by (Huynen, 1957),  and has its founding roots by on 

light-based scattering by smaller anisotropic particles (Stretton, 2016). Many targets in radar remote 

sensing require a statistical description due to a combination of coherent speckle noise random vector 

scatter effect from target surface and volume. The development of a dominant scattering, mechanism 

which is invariant to changes in wave polarization is used for purpose of classification or inversion of 

scattering data. This is through expressing the average scatter mechanism as the sum of independent 

elements to associate physical mechanism with each component. There are two main types of target 

decomposition Coherent and Incoherent target decomposition (Veci, 2015). First is the coherent target 

decomposition characterizes completely polarized scattered waves whose polarimetric information is 

contained in a scattering matrix and only used for pure targets. Examples are the Pauli, Kroger, and 

Cameron decomposition (Alberga et al., 2004; Gaglione et al., 2014; Cameron e al., 1996). The Kroger 

decomposition can be represented as a combination of sphere, plane, and helix.  

The second is Incoherent target decomposition which takes into consideration distributed scatterers 

(natural targets) by using the coherency covariance matrix which is a second-order statistics which 

represent Hermitian average covariance and coherency matrices (Zhang et al., 2008). The incoherent 

decomposition is a combination of second order statistics 3 × 3 coherency matrix or equivalent to 

4 × 4 Mueller matrix that corresponds to the complex objects enabling an easier physical interpretation 

(Cloude & Pettier, 1996). 

The polarization of the electromagnetic wave is represented by a modified Stokes vector their relation 

given by the Muller matrix (or Stokes matrix).  A three-component scattering mechanism was proposed by 

(Freeman & Durden, 1998). H-alpha target decomposition theorem by (Cloude & Pettier, 1996). An 

imaging radar polarimetric data for unsupervised classification of scattering behavior by comparing 

polarization properties of each pixel in an image to simple classes of scattering such as even number, an 

odd number, and diffuse scattering by (van Zyl, 1989). Freeman and Durben considered three scattering 

mechanism volume scattering, double bounce, and single scattering. The volume scattering is from 

randomly oriented dipoles, double bounce from a different orientation of wave hitting the orthogonal 

surface with different dielectric constants and surface scatter from a rough surface (Freeman & Durden, 

1998). The model contains an equal number of input and output model parameters and was being applied 

to C-, L- and P- band AIRSAR images of different terrains. The above target decompositions are used to 

analyze fully polarimetric SAR data, not much research exists on dually polarized decomposition.  
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However, the Cloud – Pottier decomposition can be used to analyze both the full and dual polarized data. 

The decomposition is used in the analysis of eigenvalue of a coherency matrix and is decomposed into 

eigenvalues and eigenvectors (Cloude & Pettier, 1996). In this research, the eigenvector-based 

decompositions are used to generate a diagonal form of coherency matrix which can be used for physical 

interpretation. Cloude & Pettier, (1996) considered such a decomposition as on an algorithm that 

identifies the dominant scattering mechanism via the extraction of the largest eigenvalue (Cloude et al., 

2008). It consists of three parameters that are the entropy, anisotropy and alpha angle defined as a 

function of decomposition of eigenvalues and eigenvectors from the scatter matrix (Cloude & Pottier, 

1997). The entropy indicates the randomness of the scattering mechanism (𝐻~0= mechanism of unique 

scattering; 𝐻~1= multiple scattering mechanisms). The 𝐻 values are usually high indicating large variation 

due to a variety of species distribution. Anisotropy 𝐴 offers complementary discrimination of information 

at high entropy and the alpha provides information on the main scattering mechanism (Baxter et al., 

2008). The alpha denotes the scattering dominating the target, where 𝛼=0 (isotropic surface), 𝛼=45 

(horizontal dipole) and 𝛼=90 (isotropic dihedral scatter) respectively (Cloude et al., 2008). The alpha angle 

is independent of roughness and increases with angle of incidence and with a dielectric constant of the 

surface. The association of entropy (𝐻) and alpha (𝛼) is one of the key ways of understanding forest 

targets. The 𝐻/𝛼 plane is segmented into important zones according to its scatter behavior. Vertically 

three classes are distinguishable include surface, volume, and multiple scattering and horizontally the three 

classes are the low, medium and high entropy as defined by Cloude and Pottier (1997). The class 

boundaries relate to boundaries between physical models of the scattering behavior. It results into nine 

distinct classes however the high entropy surface scatters is excluded as a feasible region due to its inability 

to classify scattering types with increasing entropy thus we obtain eight useful classes. 

2.3. Texture Feature Extraction 

Texture is defined as the measure of the quality of an object while texture analysis is the process of 

analyzing the qualities of textures i.e. smooth or rough and many others in relation to its spatial variation 

of intensity values (Pathak & Barooah, 2013). There exist three main descriptors in texture analysis these 

includes texture classification or discrimination, texture description and boundary establishment between 

different texture elements (Beyerer et al., 2015). Texture depicts spatial information or pixel neighborhood 

position of elements in an image according to (Ojala et al., 1996). Haralick et al. (1973) define texture as 

spatial relationship of tonal elements often very small to be distinguished as individual elements such as 

trees, leaves and leaf shadows that can be segmented in an image. This forms a definition of image 

characteristics either rough or smooth, irregular or regular and random or linear providing visual 

appearance of image features (Ojala et al., 1996). The spatial distribution of grey values as a statistical 

approach is one of the features of texture description and various literature present it as one of the most 

employed methods in texture analysis (Rao et al., 2002). Texture computation is seen as a non-
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deterministic spatial distribution of grey level values that result from the computation of local mean, 

variance and standard deviation (Pietikinen, 2004). The statistical method was defined in first, second and 

higher order representing one to more pixels on the feature. According to (Haralick et al., 1973) the 

statistical description of image texture characterization formed fourteen features. The initial features 

described optical transformation, autocorrelation functions, and digital transformations which resulted in 

eight groups. The other five groups describe structural elements, spatial grey tone co-occurrence 

probabilities, autoregressive models, textural edges and grey tone run lengths  (Pathak & Barooah, 2013). 

                      This research aims in looking at burnt and unburnt areas comparing pre/post-fire images 

analysis by use of H_alpha dual polarimetric target decomposition. The results obtained will be compared 

to the optical vegetation index obtained. The backscatter intensity values will be used in evaluating the 

textural component.  
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3. METHODS  

This chapter describes the methods adopted for detection and characterizing of burnt and unburnt areas 

resulting from forest fires and analyzed using Sentinel 1 and Sentinel 2 datasets covering  Victoria, 

Australia, and Spain. The methods include initial preprocessing, generating covariance matrix, polarimetric 

decomposition of Sentinel 1, contextual classification and texture analysis. An overview of the 

methodology followed for this research is depicted in Figure 1. 

 

Figure 1: Methodological Flow Diagram 
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3.1. Generation of Scattering matrix [C2] 

 

SNAP software was used to generate the scattering matrix of the dual-polarimetric. The 2 × 2 coherent 

matrix [𝑆]  contains information about the single co- and cross polarization (VH and VV) (Cloude & 

Pettier, 1996). This establishes the existing relationship between the transmitted and scattered 

electromagnetic wave from a cell resolution by describing the backscatter information of the target for 

both polarizations (Jin & Xu, 2013). 

[S]=|
𝑆𝐻𝐻 𝑆𝐻𝑉

𝑆𝑉𝐻 𝑆𝑉𝑉
|                              

(3.1) 

   

The scattering matrix measures the phase and amplitude of each element represented in complex form. 

The diagonal and off-diagonal elements representing the co and cross-polarized elements respectively. 

3.2. Polarimetric Decomposition 

 
The target decomposition theorem is used to evaluate the difference in backscatter intensity before and 

after fire events. The backscatter intensities which include dual (VV/VH) and the second will be 

polarimetric target decomposition. The eigenvector decomposition of the target covariance matrix will be 

implemented as described by (Cloude & Pottier, 1997). The main advantage of using this decomposition 

technique is that it provides a clear description between signal processing theory and estimation of noise 

from the covariance matrix (Cloude & Pettier, 1996). 

Incoherent decomposition called the H-alpha dual decomposition is implemented. The created coherency 

matrix [𝐶2] in S1 is used as input for the Entropy/Alpha dual polarization decomposition. It is used to 

discriminate three scatters which include isotropic surface, horizontal dipole and isotropic dihedral. 

According to Cloude & Pottier (1997)  there are three parameters extracted from eigenvalues ratio which 

include Entropy 𝐻 which measures the randomness of scattering. Anisotropy 𝐴 provides complementary 

information of entropy and facilitates interpretation of scatterer process. Alpha provides main scattering 

mechanism ranging from surface scattering (0˚≤𝛼≤30˚), dipole scattering (40˚≤𝛼≤50˚) and dihedral 

scattering mechanism (60˚≤𝛼≤90˚).  The entropy 𝐻 and alpha 𝛼  are separated into nine different regions 

of different scattering behavior (Ji & Wu, 2015) as shown in Figure 2: 
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Figure 2: Segmentation of the H-alpha plane.                                                 Source: (Jagdhuber et al., 2014) 

The H-α plane discriminates between surface reflection, volume diffusion and double bounce reflection 

along the x-axis and low, medium and high degree of randomness along entropy axis (Lee & Pottier, 2009). 

The surface scattering characterizes agriculture fields, bare soils, flat surface and water, volume scattering 

appears mainly in vegetated and forested areas and double bounce typical of forested and urban buildings. 

Visual interpretation is a key step in detecting and collecting relevant information about fire affected areas 

and other land cover features. Earlier the results of decomposition of S1 were used to identify burnt and 

unburnt areas by displaying them in red, green, blue RGB composite then the properties of burnt areas were 

collected for analysis and classification process. 

3.3. Support Vector Machine (SVM) 

The support vector machines are non-parametric classifiers used mostly for classification and regression 

and its concept introduced by (Cortes & Vapnik, 1995). It is a statistical learning algorithm that finds an 

optimal hyperplane and maximizes the margin between two defined classes using fewer training samples  

(Vapnik, 2006). SVM tends to maximize the margin between the hyperplane and the training samples 

while minimizing the empirical error caused by the training samples. The learning is an iterative process of 

finding a decision boundary that separates the training patterns (Zhu & Blumberg, 2002). The 

influence of inseparable samples is done using the regularisation parameter 𝐶. A detailed description of 

SVM working is described by (Richards & Jia, 2006). 
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A set of L training samples with pairs (𝑥𝑖𝑦𝑖) where 𝑖 = 1,2 … 𝑙 whereby the existing class label is 

 𝑦𝑖 ∈ 1, −1 and 𝑥𝑖  ∈ 𝑅𝑠. The separating hyperplane is described as 𝑓(𝑥) tries to find the maximum 

separation between two closest vectors and is denoted equation 3.2 where 𝑥 represents a point on 

hyperplane, 𝑏 represents the marginal distance from origin to the point on hyperplane. The 𝑤 represents 

the norm vector 𝑤 ∈ 𝑅𝑠 which is also perpendicular a point in a two-dimensional vector. 

𝑓(𝑥) = 𝑤. 𝑥 + 𝑏 (3.2) 

  

The aim of SVM is to maximize margin between two defined classes which is represented as two parallel 

hyperplanes along the main separating hyperplane passing through the closest training sample represented 

in Equation 3.3 and 3.4. The best point is one which ∥ 𝑤 ∥ weight vector is least. 

𝑤. 𝑥 + 𝑏 = +1 (3.3) 

  

𝑤. 𝑥 + 𝑏 = −1      (3. 1) 

However, in seeking to maximize the margin between the hyperplane and nearest samples a constraint is 

experienced represented in Equation 3.5  

min 
1

2
 ∥ 𝑤 ∥ 2 + 𝐶 ∑ 𝜉𝑖

𝑙
𝑖=1  (3.5) 

  

Whereby 𝜉𝑖 is the degree of slackness that allows some misclassification error and 𝐶 regularisation 

parameter controls the rate of misclassification in our sample. Thus linear SVM is extended to non-linear 

SVM by introducing the kernel basis function which operates in high dimension feature by use of 

Lagrange multipliers shown in Equation 3.6 and problem denoted Equation 3.7 (Richards & Jia, 2006). 

𝑓(𝑥) = ∑ 𝜆𝑖 𝑦𝑖
𝑖𝜀

𝐾(𝑥. 𝑥𝑖) + 𝑏 (3.6) 

𝑚𝑎𝑥𝛼 ∑ 𝜆𝑖
𝑙
𝑖=1 −

1

2
∑ 𝑦𝑖𝑦𝑖

𝑙
𝑖=1 𝐾(𝑥𝑖 . 𝑥𝑖)      (3.7) 

 

Whereby 𝐶 ≥ 𝜆𝑖 ≥ 0 and    ∑ 𝑦𝑖𝑦𝑖
𝑙
𝑖=1 = 0   and   𝑖 = 1,2 … . 𝑙 . The 𝛼𝑖𝛼𝑗  are considered as Lagrange 

multipliers while 𝜆𝑖 is between regularisation parameter 𝐶 and kernel function 𝐾. The most common used 

kernel is the radial basis kernel (RBF). It is selected as the optimal kernel in its parameter adjustments 

according to classifier performances and a one-against-one (OAO) strategy is used to handle multi-class 

problems (Kavzoglu & Colkesen, 2009). The RBF contains two parameters namely parameter (𝐶) and the 

gamma parameter (у). 

3.4. Markov Random Field (MRF) 

Markov Random Field (MRF) is a widely considered technique in the in-depth understanding of 

contextual information (Richards & Jia, 2006). Contextual information refers to a relationship of feature in 
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relation to its neighboring pixels. The main application of MRF has been on remote sensing image analysis 

to improve image classification accuracy, textural analysis, edge detection algorithm and (Li, 2010; Jackson 

et al., 2002). MRF and its formulation are described in (Mather & Tso, 2013). 

Let 𝑑 = 𝑑1, 𝑑2 … . 𝑑𝑚 represents a set of random variables which is defined on the set of 𝑆 containing 

𝑚 number of pixels with each random variable taking a label 𝐿 while 𝑑 represents a set of digital number 

(DN) values known as random fia eld. The label 𝐿 is highly dependent of on user defined possible classes 

which include forest, agriculture, water, bare land etc. A random field is considered to relate to a 

neighbourhood system and therefore called a Markov Random Field if only its probability density function 

satisfies the following conditions; 

I. Positivity: 𝑃(𝑤) > 0, it means there does not exist any label configurations which isn’t possible. 

II. Markovianity: 𝑃(𝑤𝑟|𝑤𝑠−𝑟) = 𝑃(𝑤𝑟|𝑤𝑁𝑟) it means the membership of the label of pixel is 

highly dependent on its neighbourhood.  

III. Homogeneity: 𝑃(𝑤𝑟 𝑤𝑁𝑟⁄ ) it means that probability is the same for all pixels 𝑟 regardless of 

pixels location. 

An additional condition is Isotropy which denotes dependence variation of pixels with its neighborhood 

as a function of direction. 

3.5. Neighbourhood System  

In our thesis research were mainly interested in the spatial contextual classification of our images. MRF 

mainly deals with local neighborhood while Gibbs Random Field (GRF) deals with the global 

neighborhood (Mather & Tso, 2013). Its represented by the probability density function is shown in 

Equation 3.8. 

P(w) =
1

Z
exp[−

(𝑈(𝑤))

T
] 

(3.8) 

Whereby 𝑃(𝑤) represents the probability of 𝑤 , 𝑍 is called the partitioning function and is a sum of all 

possible combinations of 𝑤  represented in equation 3.9. ∪ (𝑤)  represents the Energy function and lastly 

is 𝑇 which is a constant called temperature.  

     𝑍 = ∑ 𝑒𝑥𝑝 −
(𝑢(𝑤))

T
                  (3.9) 

 

Maximizing of 𝑃(𝑤) is equivalent to minimization of the energy function ∪ (𝑤)  shown in Equation 3.10 

 

𝑈(𝑤) = ∑ 𝑉𝑐𝑐𝜀𝐶 (𝑤)                                (3.10) 

 

The C = C1 ∪ C2 ∪ C3 ∪ … .,  it is a collection of all possible cliques which are a representation of a part 

of a neighborhood. The ∁ is denoted as a single pair, a pair of neighboring sites or triple neighboring sites 
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in a neighborhood system respectively. In this study ∁2 has been used as a second order neighborhood 

system. 

3.6. Maximum A Posterior Solution (MAP) 

A Maximum A Posterior (MAP) is obtained by minimization of global posterior energy. This helps in 

pixel labeling problems. Posterior energy is as a result of the combination of prior energy and conditional 

energy. MAP solution is formed according to the Bayesian formula as shown in Equation 3.11 (Bassett & 

Deride, 2018). 

𝑃(𝜃|𝑑) =
(𝑃(𝑑|𝜃)𝑃(𝜃))

(𝑃(𝑑))
   

(3.11) 

Where 𝜃 is the membership value and 𝑑 is a dataset. The formula can also be expressed as shown in 

equation 3.12 whereby 𝑃(
𝜃

𝑑
) is the posterior energy function. 

𝑃 (
𝜃

𝑑
) =  𝑎𝑟𝑔 𝑚𝑎𝑥 {𝑃

𝜃

𝑑
}                    (3.12) 

 
For the minimization of the global energy function, it is expressed in equation 3.13. 

𝑃 (
𝜃

𝑑
) = 𝑃 (

𝜃

𝑑
) +  𝑃(𝜃)                  (3.13) 

Where 𝑃(𝜃/𝑑) is the conditional energy and 𝑃(𝜃)  is the prior energy function. To create a balance 

between two energy functions an additional parameter denoted as 𝜆 is added into the Equation 3.14. 

𝑃 (
𝜃

𝑑
) = (1 − 𝜆)𝑃 (

𝜃

𝑑
) + 𝑃(𝜃)     (3.14) 

The 𝜆  ranges from 0-1 and results to smoothness in output. Therefore, to obtain MRF-MAP estimate 

minimization of global posterior energy is needed. However, the use of Simulated Annealing (SA) 

algorithm has been often used in global minimal energy and shown greater strength compared to other 

algorithms  such as Iterative Conditional Modes (ICM) and Maximiser of Posterior Marginals (Mather & 

Tso, 2013). 

3.7. Simulated Annealing (SA) 

Simulated Annealing (SA) is an iterative relaxation algorithm that was first proposed by Metropolis et al., 

(1953) for behavior simulation. It is preferred as it reaches a global minimum with the least computational 

time. SA is implemented in minimizing energy function to approximate MRF-MAP estimate. The 

algorithm begins at a high temperature 𝑇0, at equilibrium, it tends to converge the slowly decreases 

according to a scheduled time frame. The process is an iterative one and at the convergence point 𝑇0 → 0 

no more updates are yielded, and a solution is found. The optimal solution is determined by two main 

parameters initial temperature 𝑇0 and update temperature 𝑇𝑢𝑝𝑑 (Mather & Tso, 2013). 
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3.8. Validation  

The spectral index normalized burn ratio (NBR) will be used as a reference to detect burnt and unburnt 

areas on S2-A images, for better analysis and verification and provide burnt and unburnt patches (Escuin 

et al., 2008). The NBR is used in the identification of burnt zones occurring after forest fires and 

calculated as shown in equation 3.15. Its formula relates similarly to the normalized difference vegetation 

index (NDVI). However, it differs slightly as it uses near-infrared (NIR) which covers 750-900 nm and 

short-wave infrared (SWIR) which covers 2080-2350 nm portion of the electromagnetic spectrum (Allison 

et al., 2005). The NIR reflects strongly in vegetation while SWIR is lower but after the fire, the SWIR 

reflects stronger than the NIR. 

𝑁𝐵𝑅 =
(𝑁𝐼𝑅−𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅+𝑆𝑊𝐼𝑅)
          (3.15) 

 
From the result of NBR the ratio between pre- and post-fire images as it measures forest regeneration 

with time aspect. 

𝑑𝑁𝐵𝑅 = 𝑝𝑟𝑒𝑁𝐵𝑅 − 𝑝𝑜𝑠𝑡𝑁𝐵𝑅            (3.16) 

After that difference between the image before and after the fire as shown in Equation 3.16 the result is 

used to develop the burnt severity levels which will include five major classes (1) unburned areas (2) lightly 

burned areas (3) medium burned areas and  (4) deeply burned areas and (5) post-fire regrowth (Allison et 

al., 2005). Validation is an essential part of any classification as it assesses the accuracy of results and we 

can tell the correctly and not correctly classified pixels in the image. The validation sets are chosen with 

reference to the vegetation index (dNBR) which is used in the detection of burnt and unburnt areas by 

computing the difference of two images (pre/post) fire images as shown in Equation 3.16. They are 

segmented to extract burnt and unburnt areas. According to Madoffe et al. (2000) defines unburned areas 

as having the forest fire not burning forest floor, lightly burnt areas are partially burned and scorched trees 

and burn is Scottish. They further described that moderately burned area are whereby most vegetation is 

burned to ground level and most forest floor coverage is burnt while deeply or highly burned areas and 

the forest floor is consumed by combustion and skeletons of vegetations are left as remnants. A random 

feature selection of training and test sets shall be used to reduce data redundancy. 

Validation dataset is used to test the ability of the SVM_MRF classifier to classify new pixels in new 

datasets. Finally, the results obtained are validated using training and test sets to produce overall accuracy. 

The classification results are evaluated by accuracy assessment accuracy takes into consideration the 

overall accuracy (OA), users’ accuracy (UA), producers’ accuracy (PA) and kappa coefficient (Kc) which 

uses the error matrix incorrectly classified pixels. According to Powers (2007) for us to be able to ascertain 

the relevance of our SVM classification system the precision and recall evaluation metrics will also be 

analyzed. Precision (𝑃) is defined as a measure of classifiers exactness calculated by the number of true 

positives over the number of true positives 𝑇𝑝 plus the number of false positives 𝐹𝑝. 
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𝑃 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
            (3.17) 

 

Recall (R) is defined as a measure of classifiers completeness and calculated by of true positives over the 

number of true positives 𝑇𝑝 plus the number of false negatives 𝐹𝑛. 

 

𝑅 =  
𝑇𝑝  

𝑇𝑝 +  𝐹𝑛
 

(3.18) 

 

The F1 score conveys the balance between precision and recall and calculated as; 

𝐹1 = 2 × [
(𝑃×𝑅)

(𝑃+𝑅)
]                    (3.19) 

3.9. Spatial Texture Analysis 

After the pre-processing steps, texture analysis is performed on each backscatter (VV and VH).  

Texture analysis is vital in ground object recognition as it represents the spatial relationship of grey-levels in 

an image (Dinstein et al, 1973). It improves the accuracy of interpretation in classification in many remote 

sensing applications (Dekker, 2003). This provides vital information about SAR imagery (Dubois et al., 

2008). The GLCM texture analysis is the most commonly used landcover monitoring applied in numerous 

studies (Franklin, 2001; Clausi & Yu, 2004). In this study, GLCM is implemented to obtain statistical texture 

features. 

The grey level co-occurrence matrix (GLCM) is a second ordered statistical texture analysis approach often 

used in texture classification and texture segmentation (Arivazhagan & Ganesan, 2003). It describes the 

spatial distribution of intensities that occur in an image. GLCM requires images to be quantized to a certain 

number of grey levels. The texture measures depict the spatial distribution of grey level value and its 

homogeneity to each in relation to a specific lag distance at (𝑥, 𝑦) and orientation (0˚,45˚,90˚ and 135˚). At 

origin 14 texture features were extracted from the GLCM features however seven of them are most relevant 

in remote sensing image analysis. The features are as follows as shown in Figure 3. The commonly used 

texture features include angular second moment (ASM), contrast, variance, homogeneity, correlation, and 

entropy as they are considered to obtain optimal results (Rao et al., 2002; Soh et al., 1999). In the study, 

thirteen textural features were experimented at all directional invariant texture angles (0˚,45˚,90˚ and 135˚), 

a lag distance of 1, a window size of 9×9 and 256 level quantization was used because of efficiency and 

sufficiency in its performance on separation of burnt and unburnt patches in S1. 

 

Angular Second Moment = ∑ ∑ {𝑃(𝑖, 𝑗)}2
𝑗𝑖           (3.20) 

 

Contrast = ∑ (𝑖 − 𝑗)2𝑃(𝑖, 𝑗)
𝑁

𝑖,𝑗=1
          (3.21) 
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Entropy  = − ∑ 𝑃(𝑖, 𝑗)𝑙𝑜𝑔𝑃(𝑖, 𝑗)𝑁
𝑖,𝑗=1        (3.22) 

Homogeneity = ∑
1

1+(𝑖−𝑗)2 
𝑁
𝑖,𝑗=1 𝑃(𝑖, 𝑗)              (3.23)                     

Variance = ∑ ∑ (𝑖 − 𝑢𝑖𝑗𝑖 )2𝑃(𝑖, 𝑗) (3.24) 

Correlation = ∑ ∑ (
(𝑖𝑗)𝑃(𝑖,𝑗)−𝑢𝑥𝑢𝑦

𝜎𝑥𝜎𝑦
𝑗𝑖               (3.25) 
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4. STUDY AREA  AND MATERIALS 

This chapter gives an overview of the study area and materials utilized during the research. Section 4.1 

describes the influence of the choice of the study area. Section 4.2 describes the dataset and time zones. 

Section 4.3 describes the software used and its packages. Section 4.4 describes the pre-processing steps 

involved in utilizing both sentinel 1 and Section 4.5 for Sentinel 2 data. Finally, Section 4.5 describes the 

method used in the selection of validation and training sets. 

4.1. Description of choice of study area 

The two case study areas selected for our research were Victoria, Australia, and Spain respectively. The 

choice of our study areas was influenced by the following factors, firstly they experience severe wildfires 

occasionally that have caused massive impact on human lives and economic and environmental 

degradation. Thus, it would be key to look into the causes of fire and the measures to be undertaken to 

mitigate future fires and also for sustainability of the forest ecology. Secondly, they have a forest structure 

that influences the spread of fire rapidly. Thirdly they have varying geographical phenomena that would be 

of interest in our research in understanding how each area responds to fire occurrences. Fourthly the have 

recent forest fire occurrences that could be of interest in our research. Lastly due to the recent fire 

occurrences the availability of recent launched satellite missions S1 and S2 time frame the datasets would 

be suitable and available for study areas. 

The selection of the fire zones in the two areas was mainly influenced by their geographical position which 

varied from hilly areas in Australia to flat areas in Spain and variation in vegetation cover. The level of fire 

severity especially in Victoria, Australia as there were many bushfires. Their time of occurrence which had 

to be recent in the period of 2017 and 2018 which would reflect how timely and important our research is 

to specific stakeholders involved in forest fire management. Finally, the availability of data from respective 

forest database which had the area of the fires and the fire perimeter zones showing the extent of the fires 

which is a guiding factor during analysis of our thesis. 

For Victoria, Australia the Victoria bushfire database was used, which contained bushfires registered and 

updated from 1939 to 2018 (Victoria, 2018). The database contained information in vector shapefile 

format of all the burns and bushfires in the area, their date of occurrence, the level of severity, location of 

the fire, fire type, season, area coverage and method of obtaining the fire perimeters together with 

accuracy in the resolution of the method used. From the dataset three bushfires were extracted between 

2017 and 2018 using a criterion that they were bushfires, their occurrence date was recent (2017/2018) 

and their burnt severity level was the highest in the database.  
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Fire zone Database name 

( FIRE_NO) 

Date of fire Area 

coverage(HA) 

Fire type 

Fire 1 S34 26/11/2017 1054.81 Bushfire 

Fire 2 M35 12/03/2017 1249.75 Bushfire 

Fire 3 2BNN0030 11/03/2017 218.96 Bushfire 

Table 1: Description of fire zones in Victoria, Australia. 

In Spain, the data was provided by César Vicente Fernández and Francisco Senra Rivero  (PAU, 2018). 

From the authors, we obtained two fire zones located in the southwestern part of Spain. The data 

contained fire perimeter zones of the two areas, also the description of the direction of fire, the landcover 

and the terrain of the areas. The fires recently occurred in 2017/2018 also as described in Table 2.  

 

Fire zone Database name 

(fire name) 

Date of fire Area 

coverage(HA) 

Fire type 

Fire 4 Hu_Nerva   02/08/2018 1749.79 Forest fire 

Fire 5 Hu_ Moguer   24/06/2017 1033.34 Forest fire 

 

Table 2: Description of fire zones in Spain 

4.1.1. Australia study area 

 
Victoria is located in the southeastern corner of Australia. It covers an area of about 240,451 km2. It has 

diverse climatic areas, ranging from semi-arid and hot in the northwest to cool temperatures along the 

coastal region (Attiwill & Adams, 2013).  It is located 34˚ 20’ N and 39˚ 00’ S and between longitudes 141˚ 

E and 150˚ E .Bushfires in Victoria Australia occur frequently and are due to the naturally occurring 

phenomenon in the Australian environment. This is because of its hot and dry climate during summer. 

Most of the bushfire has destroyed a greater number of homes, human lives, and properties. The 

devastating bushfires have occurred and range through the dense eucalypts forest which contains 

flammable oils in the leaves regenerates faster after the fire and are present in all of the varying continents 

climate zones (Fairman et al., 2016). In southern Australia, there exists two distinctive eucalyptus forest 

species, those species that are of high-severity nature and those that mostly survive the fire levels highly 

had a longer tree life span (Jenkins et al., 2016). The eucalyptus class types consist of low open woodlands 

to tall closed forestry and consist mostly of woodland trees of medium-height (Martin & Topp, 2018). 

Increased temperatures and extended droughts mostly increase the frequency of fire intensity and highly 

depends on fuel loads, wind patterns and topography which varies highly in Victoria (Clarke et al., 2013). 

About 2.60 million ha of forest was severely damaged by three major bushfires in 2003,2006-2007 and 
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2009 (Whittaker & Mercer, 2004). It is estimated that about 50% of the 8.6 million hectares of forest area 

burned between 1962 and 2014 occurred mostly from 2003 (Fairman et al., 2016). 

 

 

 
Figure 3: In red: Fires selected for this study from the Victoria bushfire database between 2017/2018. Map 
source: Esri, Digital globe, Geoeye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, 
AeroGRID, IGN, and the GIS User Community. 
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(a) (b) 

                        (c) 

 

 

Figure 4: Selected bushfires from Victoria database a) fire 1, b) fire 2 and c) fire 3. The red lines indicate 
fire footprints with some holes within it. Map source 2018 Google earth © 2019 CNES/Airbus. Image 
Landsat/Copernicus. 

 

4.1.2. Spain study area 

Spain is a country situated along the Mediterranean basin in Southern Europe. It covers an area of about 

505,370 km2 around the Iberian Peninsula. The coastal regions are in the southern and eastern region, 

while the mountainous area in the northern sections. It is located between latitude 26˚ 47’ N and 44˚ 01’ N 

and between longitudes 19˚00’ E and 5˚ 36’ W. Its climate is characterized by warm and hot and dry 

summers and also wet winters (Giannakopoulos et al., 2005). Due to the agricultural sector Spain 

experiences large and high variability in climate changes. The vegetation is also diverse with a special type 

of Mediterranean forests especially oak as well as pine forests replanted mostly after forest fires (Riera 

Mora, 2006).  
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Figure 5: In red: Fires selected for this study from Spain between 2017/2018. Map source: Esri, Digital globe, 
Geoeye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User 
Community. 

Figure 6: Selected fires zones a) fire 4 and b) fire 5 respectively in Spain: the red lines indicate the fire extent area 
with holes within it. Map source: © 2018 Google. Image Landsat/Copernicus. Data SIO, NOAA, U.S. Navy, NGA, 
GEBCO. 
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4.2. Satellite Dataset 

 

Table 3: List of radar and optical data used in Victoria, Australian study area respectively 

 

 

Table 4: List of radar and optical data used in Spain study area respectively 

Data Sentinel 1  

(Fire 1) 

Sentinel 1  

(Fire 2) 

 Sentinel 1  

 (Fire 3) 

Sentinel2  

(Fire 1) 

Sentinel2  

(Fire 2) 

  Sentinel2         

(Fire 3) 

Fire date 26/11/2017 12/03/2017   11/03/2017 26/11/2017 12/03/2017  11/03/2017 

Acquisition 

date 

(pre/post) 

16/11/2017 

27/01/2018 

02/03/2017 

07/04/2017 

  25/02/2017 

  08/05/2017 

17/10/2017  

14/02/2018 

17/02/2017  

18/04/2017 

  17/02/2017  

  18/04/2017 

Product type L1 SLC L1 SLC     L1 SLC S2MSI1C S2MSI1C S2MSI1C 

resolution 4 × 20 m 4 × 20 m  4 × 20 m 10m 10m  10m 

Instrument 

mode 

IW IW     IW INS-NOBS INS-NOBS INS-NOBS 

Polarization VH/VV VH/VV     VH/VV 
  

 

Orbit Descending 
 

    
  

 

Data Sentinel 1  

(Fire 4) 

Sentinel 1  

(Fire 5) 

Sentinel 2  

(Fire 4) 

Sentinel 2  

(Fire 5) 

Fire date 02/08/2018 24/06/2017 02/08/2018 24/06/2017 

Acquisition date 

(pre/post) 

20/07/2018 

14/08/2018 

19/06/2017 

20/07/2017 

31/07/2018  

05/08/2018 

11/06/2017  

21/07/2017 

Product type L1 SLC L1 SLC S2MSI1C S2MSI1C 

Resolution 4 × 20 m 4 × 20 m 10m 10m 

Instrument mode IW IW INS-NOBS INS-NOBS 

Polarization VH/VV VH/VV 
  

Orbit Descending 
   



ANALYSIS OF FOREST FIRE USING SATELLITE RADAR DATA 

 

32 

 

Figure 7: Sentinel 2 postfire images covering the area of bushfires from figure 4. (a) fire 1, (b) fire 2, (c) fire 3, 
respectively. Band combination is=8:4:3. Green representing burnt areas while red represents the unburnt areas in 
Victoria, Australia. 

  

  

(a) (b) 

  

(c) 
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Figure 8: Sentinel 2 postfire images covering the area of bushfires from figure 6. (a) fire 4, (b) fire 5, 
respectively of Spain. Band combination=8:4:3.  

 

The RGB bands represent Band 8 is red is Near infrared(NIR) covers 842nm in electromagnetic 

spectrum. Band 4 is visible red or orange covers 665nm in electromagnetic spectrum. Band 3 is visible 

light green and covers 560nm in electromagnetic spectrum. 

4.3. Software 

All pre-processing of S1 was performed using freely available Sentinel Application Platform (SNAP) 

toolbox version 6.0 provided by European Space Agency (ESA). It was used for co-registration, 

calibration, debursting, radiometric and geometric correction, polarimetric decomposition of SAR. Erdas 

Imagine 2016 was used for vegetation index calculation (Geospatial, 2016). ArcMap version 10.6.1 

developed by ESRI was used for producing map outputs on the standard processing work station. 

Sen2cor plugin was used for atmospheric correction for S2 images (GmbH, 2015). Most of classification 

and analysis were done using R and R studio (R Development Core Team, 2018). The libraries used for 

processing were Rgdal (Rowlingson, 2018) used to read the longitude/latitude description of an image, 

MASS (Ripley & Venables, 2002) supports statistical functions and computations , e1071 (Meyer et al., 

2018) supports functions related to classifiers such as the support vector machines, mvtnorm (Alan et al., 

2018) used in probability computations, quantiles and density plots, rgeos (Roger et al., 2018) used for 

topology and spatial operations on geometries, Rcpp (Eddelbuettel & François, 2011) used to write R 

functions in fast speed. The classification codes were developed by earth observation science (EOS) 

  

(a) (b) 
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department in ITC. They include SVM hyperspectral classification, SVM_MRF_VHR classification code, 

and GLCM textural analysis. 

4.4. Pre-processing of Sentinel 1 

The main pre-processing steps of dual polarized channel S1 was done in Sentinel Application Platform 

(SNAP) software obtained in single look complex product (SLC) containing phase information involve 

(Maître, 2008). The main pre-processing steps of the SLC image involve: 

➢ Radiometric calibration provides correction of pixel values as an actual representation of radar 

backscatter of reflecting surface. This is to correct for instrument distortion which may cause an 

error in quantitative physical measurements of SAR data. An absolute calibration vector is included 

as an annotation in image product which allows conversion of image intensity values into Digital 

Number (DN) values (Rosich, 2004). The corrections are applied by the software automatically 

determining the input and output and the product is saved as complex output. 

➢ Debursting: The S1 IW SLC image is composed of several bursts overlapping in azimuth time for 

each subwaths, separated by black lines and each sub-swaths has its own dimensions and geocoding 

(Sanders et al., 2016). The deburst operator generates a continuous image in reference to azimuth 

time, by removal of black separation lines as well as redundant lines between bursts (Sowter et al., 

2016). The input is to the operator S1 TOPSAR-Deburst is the SLC IW image with multiple 

subwaths its intensity values of VV and VH polarization and output was deburst SLC image. After 

a deburst operator, the target product is usually one dimension for all bands and similar geocoding. 

➢ Radiometric terrain flattening aids in correcting terrain that is rugged which results in 

misclassification during landcover classification. Terrain variations is a function of the relative 

orientation of surfaces in relation to the source of illumination and position of the sensor to the 

target (Small, 2011). Terrain variations not only affect the position of a point on earth surface but 

also the brightness of the radar return. The facet method proposed by Small et al. (1998) 

compensates the terrain variation effect by calculation for each image pixel a facet of digital 

elevation model (DEM) that corresponds to the scatter area. The parameters used are the source 

image whereby select the source bands or by default, all bands are selected. The second parameter 

is the DEM used in computing the local illuminated area and the Shuttle Radar Topographic 

Mission (SRTM) 3Sec (90m) was used. The DEM resampling method used in getting the elevation 

from DEM was bilinear resampling method. The process will run automatically after parameters 

are well defined. 

➢ Geometric correction, which is a refining of pixel absolute location, using SRTM DEM. 

Geocoding of images is a key process as it will convert the slant range onto map coordinate 

system through the range-doppler terrain correction (RDTC) implements the range-doppler 

orthorectification method of SAR image (Schubert & Small, 2008). It uses the orbit state vector 

information in metadata, the radar timing annotations, slant to ground range conversion 
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parameters together with reference DEM to derive precise geolocation (Schubert et al., 2014). 

The parameters to be defined will be processed using SRTM 1Sec (30m) as inputs of DEM data 

which is automatically downloaded. Both the DEM and image resample will implement the 

bilinear interpolation method. A pixel spacing of 30m and map projection of universal transverse 

Mercator (UTM) and the datum, world geodetic system (WGS) 1984. The areas without elevation 

will be masked with reference to the DEM data. 

4.5. Pre-processing of Sentinel 2 

The Sentinel -2A Level 1C (L1C) MSI images used in this study were downloaded from ESA. 

 The images correspond to level 1C products that are not radiometrically and geometrically corrected Top-

of-Atmosphere (TOA). The corrections done include orthorectification and spatial registration on global 

reference system (UTM/WGS84 projection) with subpixel accuracy. The atmospheric correction was 

done using Sen2cor which performs pre-processing of L1C Top-of-Atmosphere (TOA) images and 

applies scene classification with an atmospheric, terrain and cirrus correction. Then it converts to ortho 

image L2A Bottom-Of-Atmosphere (BOA) reflectance product (ESA, 2015). The L2A products spatial 

resolution varied from 10m to 60m depending on spectral bands however the images were resampled to 

10 m resolution using nearest neighbor resampling. All the images were cloud free thus there was no need 

for cloud mask for the elimination of cloud pixels. The top of atmosphere reflectance images was 

converted to surface reflectance images. The surface reflectance images were subset to selected fire and 

NBR was computed for both pre and post-fire images followed by dNBR.  

4.6. Selection of validation and training sets 

Sampling sites for training are obtained through visual interpretation of images both before and after the 

fire and drawing of vector training sets using ArcMap. While the selection of validation sets is from the 

vegetation indices difference normalized burnt ratio (dNBR) as there was no ground truth data thus 

interpretation of S2 images will act as a reference dataset. Also, the RGB post-fire images shown in figure 7 

& 8 is utilized. The performance is measured according to the accurate assessment of unsupervised 

classification. This ensures the correct identification of a land cover pattern. The training and test sets are 

separated using a random sampling procedure. Training sets contain two-thirds of the total data and the test 

set one third. Cross-validation will allow testing of the data using a full training set by means of the k-fold-

cross-validation which uses repeated sampling to avoid biases from the initial sampling (Gütlein et al., 2013). 

The S1 is used to map burnt and unburnt areas, access the characteristics of unburnt patches and its spectral 

properties. This is because it contains backscatter information that is sensitive to forest structural parameter. 

According to different reflectance property and spatial distribution, it shows accurate and reliable 

information on position and extent of unburnt patches, and the vegetation or other land cover contained in 

the unburnt patches (Antropov et al., 2016).  

 



ANALYSIS OF FOREST FIRE USING SATELLITE RADAR DATA 

 

36 

  



ANALYSIS OF BURNT SCAR USING OPTICAL AND RADAR SATELLITE DATA 

 

37 

Fire Zones Number of training samples Number of test samples 

Fire  1 50 40 

Fire 2 60 50 

Fire 3 40 35 

Fire 4   21 24 

Fire 5 33 22 

 
Table 5: Number of training and test samples for each fire zones (1-3) Victoria, Australia and (4-5) Spain 
respectively. 
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5. RESULTS 

This chapter shows achieved results obtained from the implementation of our defined method in chapter 

3 and its interpretation in relation to our research objectives. The method adopted was for detection and 

characterizing of burnt and unburnt areas resulting from severe forest fires in both Victoria, Australia and 

Spain captured by Sentinel 1 and Sentinel 2 datasets. The results include optical based spectral indices, S1 

data analysis on polarimetric decomposition and backscatter coefficient, comparison of contextual 

classification of both S1 and S2 and finally texture analysis of S1 using backscatter coefficient. 

5.1. Optical-based spectral indices (dNBR) 

 
The Victoria bushfire database provided bushfire shapefiles that showed the perimeter of the fires as well 

as the distribution of the severity levels inside it facilitating the decision making the process faster as shown 

in Figure 4. Spain also provided shapefiles that showed the fire perimeter extent of the fire shown in Figure 

6. In both Australian and Spain fire zones, the S1 and S2 images were acquired a month before the fire and 

a month after the fire. The preferred time zone of image acquisition was potential because of the need to 

obtain immediate changes after the fire has distinguished off to determine its severity. Also, images acquired 

immediately after the fire may not be appropriate as the fire could still be burning while images acquired 

two or three months after fire could not exhibit the damage caused by the fire as forest regeneration would 

have occurred fastly. Additionally, the high spatial resolution (10m) of the images, enabled analysis of fire 

heterogeneity exhibiting great potential in analyzing fire severity scale. This enabled the understanding of 

spatial variability of fire and its extent. 
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(a) (b) 

 

 

 

 

 

 

 

 

 

 

 

                                 (c) 

 

Figure 9: Difference normalized burnt ratio (dNBR) from S2 of fire zones a) fire 1, b) fire 2 and c) fire 3 

respectively of Victoria, Australia. Calculated from the difference between pre- and post-fire images 

depicting changes covering the area of bushfires. 
 

Fire scar differentiation using optically based indices was attainable in analyzing Australian bushfire and 

also Spain data. Australian bushfire burnt severity estimation was accurate for highly burned sites and 

medium burned sites however for low and unburned sites there was a classification error. The threshold-
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based classification of dNBR was used as a methodological reference to obtain burnt severity maps for 

both Australia and Spain. The burnt severity using S2 data was developed by comparing pre and post-fire 

satellite images as this showed the capability of different spectral bands in burned area detection. The 

burnt ratio index was found to be sensitive to regenerating vegetation and also showed forest regeneration 

is slower especially in areas where the degree of burnt severity was high. 

The results obtained from dNBR show that the unburned pixels depict very low optimal values that are 

close to zero. In regard to burned pixels, the optimal values of dNBR are considerably high reaching a 

mean value of 0.66. The categories used in the index were classified into five classes as shown in Table 6. 

A bigger proportion of the bushfire 9(a) lied between medium to highly burnt areas while for bushfire 9 

(b) and (c) lied between medium to low burnt severity areas as shown in Figure 9. However, it was noted 

that the burnt severity levels consisted of some classification error especially between the high and 

medium burned areas were difficult to separate two classes and also between the unburned and low 

burned areas. 

   

ΔdNBR Values Burn Severity 

<-0.1 Post-fire regrowth 

-0.1 to 0.1 Unburned 

0.1 to 0.27 Low severity burn 

0.27 to 0.66 Moderate to high severity burn 

>0.66 High severity burn 

 
Table 6: dNBR burn severity category 

Source: (Benson, 2005) 
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                        (c) 

 

Figure 10: SVM classification of the bushfire zones from S2 of fire zones a) fire 1, b) fire 2 and c) fire 3  
respectively of Victoria, Australia. The bushfires show the land cover present in the area generated from 
the burnt ratio index in figure 9. 

The results obtained from vegetation indices aided in the identification of land cover classes present in 

each of the fire zones identified using the nonlinear SVM classification. The optical data were classified 

into classes defined in Figure 10 which were later recorded to two classes to compare the ability of optical 

and SAR in differentiating the burnt and unburnt patches. 
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                           (a) (b)  

Figure 11: Difference normalized burnt ratio (dNBR) from S2 of fire zones (a) fire 4 and (b) fire 5 
respectively of Spain. Calculated from the difference between pre- and post-fire images depicting changes 
covering the area of bushfires. 

The Spain data changes between pre- and post-fire images were also analyzed using similar burnt ratio 

index as shown in Table 6. The two fire zones shown in Figure 11 depicted five severity burnt levels 

similarly to Australian bushfire zones shown in Figure 9. It was noted that in both the Australian and 

Spain data there was visual contrast within the burned zones indicating spatial patterns and variation of 

effects. The initial assessment of dNBR values of burned areas tended to portray high values as compared 

to unburned areas that showed very low values in Spain data. Good contrast was seen between the burnt 

and unburnt areas, however, there existed a high degree of complexity in the separation of intermediary 

severity level. In fire zone 11 (a) most burns occurred at high-to-medium severe burn areas while in fire 

zone 11 (b) most burns occurred between medium-to-low severity. Also, there was high misclassification 

between low severity levels and unburnt areas in both fire zones 11 (a) and (b) similar result was identified 

also in Australian bushfire. 
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5.2. Sentinel 1 (S1) data analysis 

 

The polarimetric features used for classification were real and imaginary parts of SVHSVV. Two 

classes mainly identified for analysis were burnt and unburnt areas.  
 

  

(a) (b) 

  

(c) (d) 
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                                (e) (f) 

Figure 12: Comparison of H-Alpha target decomposition covering the area of bushfires in Victoria, 
Australia from figure 4 (a-c) using S1 pre-images as (a, c, e) post-fire images (b, d, f) respectively. The red 
color represents entropy and blue color represents alpha. 
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(a) (b) 

  

(c) (d) 

Figure 13: Comparison of H-Alpha target decomposition covering the area of bushfires in Spain from 
figure 6 (a and b) using S1 pre-images as (a, c) post-fire images (b, d) respectively. The red color represents 
entropy and blue color represents alpha. The black polygon indicating the fire extent boundary. 

 
To visually ascertain burnt and unburnt patches in S1 the use of backscatter intensity for Victoria, 

Australian bushfire in fire 1 was possible but for fire 2 and fire 3 was not that distinguishable. A similar 

scenario was seen when discriminating burnt and unburnt patches also in Spain for fire 4 and fire 5. Thus, 

we settled to use RGB color composite H-Alpha decomposed images for all the fire zones. This resulted 

in some form of pattern comparing pre and post-fire images showing its sensitivity to forest structure 

changes. Red was assigned to entropy, green to anisotropy and blue to alpha values as shown in Figure 12 

and Figure 13  representing Victoria, Australia, and Spain respectively. 

As burnt severity increased the entropy and alpha values decreased this was due to decreased scattering 

randomness and increase in surface dominated scattering mechanism. The integration of backscatter and 
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polarimetric decomposition were sensitive to distinguishing the burnt and unburnt patches. The C-band 

S1 co-polarized backscatter (VV) increased with burnt severity while the cross-polarized (VH) backscatter 

decreased with burn severity. Low sensitivity to forest regrowth was observed for the C-band backscatter 

with most of it classified as burnt areas. This is because of burnt leaves, branches and tree trunks at some 

areas leaving bare soil area. Most of the unburnt forest and low severity were characterized by volumetric 

scattering (medium to high entropy and dominant dipole scattering) as foreshown in Figure 2. 

 

A major issue in the use of S1 image was the influence of topography and local incidence angle on the 

backscatter coefficient during mapping of burned and unburned areas. 

 

  

(a) (b) 
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(c) (d) 

(e) (f) 

Figure 14: Boxplots showing backscatter intensity of VH coefficient projected against local incidence angle 
of bushfires in Victoria, Australia comparing images before and after the fire respectively.    

    

The average backscatter of cross-polarized (VH) intensity was plotted against marginal interval of local 

incidence angles as shown in Figure 14. This is because VH intensity covers volume scatter thus is 

sensitive to the changes in vegetation. The dividing of incidence angle into five or four intervals was to 

enable us to understand the performance of backscatter analysis under different incidence angle margin.  

The output results of the boxplots foreshow at lower incidence angle there is better discrimination of 

burnt areas as one compares pre- and post-fire results. It is also noted in areas that remained unburnt the 

size of boxplots remained the same in both images. The backscatter values decreased slightly as one 

compares the pre- and post-fire plots however they all ranged -2 to -6 dB. In fire 2 and 3, the areas were 
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terrain thus steep slopes were experienced and incidence angle ranged from (0˚-90˚) shown in Figure 14 

(c) and (e). Areas with lower incidence angles (0˚-30˚) and facing the radar sensor as shown in Figure 14 

(d) and (f) of post-fire images shows a decrease in VH intensity and slight changes in boxplot size. This 

resulted from a brighter return of radar signal for areas with smaller incidence angles enabling 

discrimination of burnt and unburnt areas easier. However, due to the steepness of the areas shadows 

were experienced which were darker and portrayed similarly with areas facing away from the sensor which 

was also darker. Areas facing away from the sensor or with large incidence angle ranged (45˚-90˚) showed 

a high number of outliers this could be related to the presence of noise being greater in that range. This 

could have hindered discrimination of defined classes and resulting in high commission and omission 

errors. Lastly as one compares the ranges of smaller incidence angle in flat areas and steep areas we could 

see the flat areas ranges were high (0˚-30˚) as compared to steep areas (0˚-18˚) this showed clarity into 

why for flat areas the discrimination of burnt areas was easier as compared to steep areas. This was 

because of the higher return of backscatter signal to the sensor which increased its sensitivity to vegetation 

changes after the fire.   

 

5.3. Burnt scar classification 

 

Fire zone(MRF) Lambda Initial temperature Updating factor 

Fire 1 0.8 3.0 0.9 

Fire 2 0.8 4.0 0.9 

Fire 3 0.8 4.0 0.9 

Fire 4 0.8 3.0 0.9 

Fire 5 0.8 4.0 0.9 

Table 7: Parameter tuning values obtained for MRF classifier for fire  (a) fire 1 (b) fire 2  and (c) fire 3  
bushfire zones of Victoria, Australia and (d) fire 4 and (b) fire 5 of Spain respectively. 

 
After applying contextual classification and tuning the parameters of MRF classifiers i.e. the lambda, initial 

temperature, and updating factor for reducing the temperature for each fire zone is shown in Table 7. This 

was done through trial using a small subset of an image and different random values were tested and 

verifiedd according to their accuracy assessment the optimal one was selected.  
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(a) (b) 

  

(c) (d) 
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(e) (f) 

 

Figure 15: Comparison of classification result of optical(S2) and radar(S1) respectively covering the area of 
bushfires in Victoria, Australia from figure 4 (a-c). Optical(S2) as (a,c,e) and radar(S1) (b,d,f) respectively. 
Red color representing burnt areas and green representing unburnt areas. 

 
It was difficult to separate the burnt severity levels using the C-band S1 this is because of the transitional 

nature of the fire. All the burn severity levels largely overlap each other. However, we combined the 

backscatter intensity bands (VV and VH) together with H- alpha target decomposition bands (entropy, 

anisotropy, and alpha)  and reclassified to two classes burnt and unburnt. This is shown in Figure 15 for 

Australian fire. In fire 2 & 3 had steep slopes which resulted in shadows making it difficult to determine 

whether the shadowed areas were burnt or unburnt areas this eventually affected the classification results. 

In Figure 15 (b),(d) and (f) S1 showed a stronger return of burnt and unburnt patches compared to optical 

dataset Figure 14 (a), (c) and (e) due to the high influence of geometry acquisition and captures terrain. S2 

utilizes the spectral sensitivity of defined classes which take the measure of only the vegetation fill and 

crown closure while S1 utilizes the polarimetric sensitivity of removal of crown leaves, branches. 
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(a) (b) 

 

 

 

(c)  

Figure 16: The dNBR showing grayscale indicating the magnitude of change in NBR, S2  on the upper 
side (a) and (b) overlaid with red polygon showing fire extent with brighter pixels within it indicating burnt 
areas and darker areas indicating unburnt areas. The lower side (c)  and (d) is SVM_MRF classified image 
of the same area in Spain with a red color representing burnt areas and green representing unburnt areas. 

However, it was also noted for the Spain fire zones 4 & 5 the optical dataset (S2) showed a stronger 

sensitivity to changes resulting after the fire compared to radar (S1) data. This is proved by the visual 

assessment of the H-alpha decomposition of S1 in Figure 13. The sensitivity to changes after the fire was 

not as severe in both fires as compared to Figure 14 as a similar approach was applied in both study areas. 
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The kappa coefficient also in table  8 (d) and (e)  for both S1 and S2 differed greatly as compared to table 

8 (a), (b) and (c) for Victoria, Australia as S2 had a higher kappa coefficient while S1 indicated extremely 

low value. Nevertheless, S2 classification resulted in a similar match with the fire extent of the polygon 

showing the spectral sensitivity of pixels to changes after the fire. Similarly, the result was matched to the 

burnt index as shown in Figure 16. There was misclassification of burnt pixels outside the defined fire 

extent as some the unburnt areas that appeared brighter in the dNBR Figure 16 (a) and (b) and were 

outside the boundary of the burnt area was classified as burnt areas as shown in Figure 16 (c) and (d). This 

resulted in a false high kappa coefficient shown in table 8 fire 4 & 5 for S2. 

 

Fire Sentinel 2_SVM Sentinel 1_SVM Sentinel 1_SVM_MRF 

Fire 1 0.95 0.70 0.82 

Fire 2 0.93 0.78 0.85 

Fire 3 0.84 0.77 0.88 

Fire 4 0.94 0.05 0.04 

Fire 5 0.95 0.03 0.02 

Table 8: Classification results for kappa coefficient for optical (S2) and radar (S1) for covering fire zones 
1-3 Victoria, Australia, and 4-5 Spain respectively. 

 
Fire Kappa 

Sentinel 2 
Producer 
accuracy 

User  
accuracy 

Number of 
training 
samples 

Number of 
test samples 

Fire 1 0.95 Burnt=84.35 % 
Unburnt=82.26% 

Burnt=92.43% 
Unburnt=84.65% 

50 40 

Fire 2 0.93 Burnt=86.30% 
Unburnt=77.81% 

Burnt=90.35% 
Unburnt=75.61% 

60 50 

Fire 3 0.92 Burnt=85.40% 
Unburnt=80.70% 

Burnt=86.30% 
Unburnt=78.69% 

34 40 

Fire 4 0.94 Burnt=97.43 % 
Unburnt=94.54% 

Burnt=94.56% 
Unburnt=95.78% 

21 24 

Fire 5 0.95 Burnt=88.64% 
Unburnt=91.35% 

Burnt=95.65% 
Unburnt=95.67% 

33 22 

Table 9: Accuracy assessment results based on kappa statistics from SVM_MRF classification of S2 
covering fire zones 1-3 Victoria, Australia, and 4-5 Spain respectively. 

 

Fire Kappa 

Sentinel1 

(S1) 

Producer accuracy User  

accuracy 

Number of 

training 

samples 

Number of 

test samples 

Fire 1 82% Burnt=80.69% 

Unburnt=78.65% 

Burnt=85.65% 

Unburnt=80.25% 
50 42 

Fire 2 85% Burnt=88.9%3 

Unburnt=78.66% 

Burnt=87.43% 

Unburnt=82.11% 
60 52 

Fire 3 84% Burnt=86.40% 

Unburnt=79.65% 

Burnt=83.40% 

Unburnt=80.35% 

34 31 

Table 10: Accuracy assessment results based on kappa statistics from SVM_MRF classification of S1 
covering fire 1-3 in  Victoria, Australia. 
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        To assess the certainty of our results in the separation of burnt and unburnt areas in both optical and 

SAR we used kappa coefficient and f-score measurement. Both the producer's accuracy and users accuracy 

were taken into consideration as shown in Table 9 and Table 10. The remote sensing indices that accessed 

burned versus unburned areas produced better overall accuracy, higher user and producer accuracy results 

as shown in table 8 through SVM_MRF  classification of S1 and S2.  This showed the capability of both 

the electromagnetic spectrum and SAR polarimetry in corresponding to changes in vegetation structure 

after a fire. Similarly, we obtained quite a good classification percentage accuracy and separation of burnt 

and unburnt areas within fire perimeter zones as shown by the use of precision and recall and f-score in 

Spain data assessment in Table 11.  

 

 

Table 11: Accuracy assessment results based on F-score measurements from SVM_MRF classification of 
S2 covering fire 4& 5 of Spain. 

  

Fire zone SVM(%) SVM_MRF(%) Precision(%) recall(%) F-score(%) 

Fire 4 91.60 94.20 0.94 0.91 0.92 

Fire 5 90.20 93.60 0.92 0.89 0.90 



ANALYSIS OF FOREST FIRE USING SATELLITE RADAR DATA 

 

54 

 (b) 

(a)  

  

Figure 17: Boundary classification from SVM_MRF output overlaid with fire perimeter zones in black 
representing Spain fire (a) fire 4 and (b) fire 5 respectively. Red signifies burnt area and green the unburnt 
area. 

It was seen in particular after classification with SVM_MRF the vector shapefile that represents fire  

perimeter zone was not exactly fitting the boundary edges of the burnt zones depicted in classification 

results as shown in Figure 17 (a) and (b). This could have been attributed to the use of contextual 

classifiers SVM_MRF which cope up with the problem of intraclass spectral variation and spatial 

variability along the boundaries. Another problem could be related to the timing of digitization of vector 

fire perimeter which might have occurred at early stages of the while our spectral classification analysis 

was related to the post-fire analysis of the image. This may lead disparity of fire perimeter shapefile with 

the actual ground timing of fire timeout as shown in Figure 17. A similar result was noted in the polygons 

obtained from Victoria database as they reflected the start of the fire but did not execute the whole fire 

zone. Thus it was a limiting factor in determining whether a similar problem was experienced in Australia. 

 

5.4. Texture Analysis 

The result of texture analysis utilized backscatter intensity (VH to determine GLCM statistical measure in 

the retrieval of burnt and unburnt areas. The entropy, homogeneity and contrast statistics showed 

variation among the burnt and unburnt classes in Victoria, Australia bushfire shown in Figures 16-18. 
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                                    (c) 

Figure 18: GLCM textural analysis showing the measure of entropy values using S1 VH backscatter 
intensity covering bushfire a) fire 1, b) fire 2 and c) fire 3 respectively in Victoria, Australia. Red color 
representing burnt areas and blue color representing unburnt areas. 

  

 
 

(a) (b) 
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                                        (c) 

Figure 19: GLCM textural analysis showing the measure of homogeneity values S1 VH backscatter 
intensity covering bushfire a) fire 1, b) fire 2 and c) fire 3 respectively in Victoria, Australia. Red color 
representing burnt areas and blue color representing unburnt areas. 

 

 
 

(a) (b) 
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Figure 20: GLCM textural analysis showing the measure of contast values S1 VH backscatter intensity 
covering bushfire a) fire 1, b) fire 2 and c) fire 3 respectively in Victoria, Australia. Red color representing 
burnt areas and blue color representing unburnt areas. 

The entropy results showed a measure of homogeneity and good visual differences between burnt and 

unburnt areas as shown in Figure 18. However, the range between the burnt and unburnt areas was 

minimal the pattern remained the same in all directions this shows that it is not affected by orientation 

variation rather as one changed the quantization levels the entropy increased. Similar results were depicted 

in all the fire 2 & 3. For steep terrain areas such as fire area 2 & 3 represented in Figure 18 (b) and (c) 

respectively the entropy values showed higher values compared to flat areas fire 1 Figure 18 (a). The order 

  

(a)  (b) 

 

 

 

(c)  
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changes also and the steep areas proved difficult to separate burnt and unburnt zones especially for fire 3 

Figure 18 (c) as the backscatter intensity was highly affected by the incidence angle and presence of 

shadows. The homogeneity measure in Figure 19 (a) depicted higher values for burnt areas compared to 

unburnt areas. In Figure 19 (b) and (c), the unburnt areas depicted higher values while the burnt areas very 

low values that were varying. This shows much of the terrain area remained unburnt however due to the 

effect of incidence angle on steep areas and affecting backscatter intensity we cannot ascertain the results 

of both Figure 19 (b) and (c). For Figure 19 (c) the marginal difference between burnt and unburnt areas 

was very minimal depicting closeness in texture for both of two classes.  

Contrast measures the degree of smoothness or roughness of the area. In Figure 20 (a) because the 

defined area was a flat area the contrast values were low (1-7) as compared to Figure 20 (b) and (c) whose 

values range (0-6000) and the area was terrain. This shows in flat areas homogeneity was high as compared 

to terrain areas. It was also noted in Figure 19 (a) the separation of burnt areas from unburnt areas had a 

marginal difference that could be visually seen while for Figure 20 (b) and (c) the marginal difference of 

separation between the burnt and unburnt areas was extremely minimal. The contrast values increased as 

the quantization levels increased. The large contrast reflects large intensity differences in GLCM analysis 

of defined classes. 

In general, it was noted that homogeneity and entropy were least affected by the directional change as 

compared to the contrast measure. Also as one increased the quantization levels the homogeneity values 

increased leading to a higher marginal separation between the burnt and unburnt areas. In all the three 

bushfire zones they were least influenced by orientation parameter except for Figure 19 (c) which kept 

changing with directional change. Nevertheless, they all showed good results in separation of burnt and 

unburnt areas in both flat and steep areas of Victoria, Australia. 

5.5. Summary of results 

From our results, we can conclude that the use of S1 SAR sensor and S2 in the classification of burnt and 

unburnt areas was successful as it yielded good accuracy results that could relate to the fire perimeter 

shapefiles obtained from their respective database of Spain and Victoria, Australia. From our results, we 

could see remote sensing as an essential tool in wide coverage of wildfires and through the vegetation 

index dNBR we could relate the magnitude of change that has occurred after the fire in both areas. The 

vegetation index was a reference dataset in obtaining our training sets for classification of both S1 and S2. 

Through the classifier, we could see differences in spectral and polarimetric sensitivity of burnt and 

unburnt areas. This is especially in areas that were considered as regrowth in the dNBR index were 

unburnt in S2 classifier while in S1  they were burnt. Also through the analysis of polarimetric entropy and 

alpha decomposition, we could see the ability of S1 in showing changes in forest structure which is a key 

thing in the use of SAR. However, the use of backscatter intensity was limited to local incidence angle and 

steep slopes orientation thus integration of polarimetric decomposition enabled us to quantify the changes 

directly occurring after a bushfire. Also, the use of SAR was only successful in Victoria, Australia but in 
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Spain, it could not detect changes after the fire using backscatter intensity and a very minimal change in 

use of H- alpha decomposition. This was directly foreseen to be due to the intensity of the fire that was 

not severe to have caused changes in forest structure. Nevertheless, in the optical dataset, it gave similar 

results in both areas. Also, the use of GLCM to measure spatial variation in the texture of burnt and 

unburnt scars was successful as it showed discrimination, especially on steep slopes. The textural variation 

was highly influenced by parameter changes in quantization levels, lag distance and window size as they 

changed with different textural measures. Lastly, from the accuracy results we could note even though our 

classification accuracies were high for both SAR and optical and even the producer and user accuracy 

results it was not sufficient to ascertain our results. This is because of S1 classification in steep areas 

affected by large incidence angle there was no return of radar signal thus difficult to ascertain whether the 

areas were burnt or unburnt directing influencing overall accuracy. Also in S2 due to the spectral similarity 

of burnt pixels with unburnt pixels outside fire perimeter led to classification errors. Nevertheless, the 

results obtained from identification of burnt and unburnt scars using both SAR sensor and optical was 

successful and could relate to both datasets in our study areas. 
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6. DISCUSSION 

This chapter further gives a detailed description of the understanding of our results. It mainly identifies 

what was well achieved at the end of our research, what was not well accomplished and what were the 

limitations experienced. The opened gateways the research avails in line with future studies together with 

the likely threats that are to be expected as research furthers. Lastly is the benefits the research brings 

onboard and the stakeholders that would also be directly or indirectly related to it.   

6.1. Evaluation and discussion of results 

 
This study analysed the use of satellite SAR sensor and optical data in the detection and classification of 

burnt and unburnt patches after a forest fire in Victoria, Australia, and Spain. We used satellite remote 

sensing images S1 and S2 to distinguish the two defined classes and also a contextual classifier in looking at 

the ability of spectral and backscatter intensity in separability of the two defined classes. We have made use 

of data available in the Victoria fire database and also Spain dataset. From these datasets, we were able to 

use the fire polygons as a guiding factor in our classification results showing us the extent of fire perimeter 

zones in relation to the spectral and polarimetric pattern of burnt areas.  

 In looking into the diverse use of forestry and forest resources management further studies could be done 

on advancement in sensor technology and also the use of drones. The drones carry a variety of sensing 

instruments including visible light, near-infrared (NIR), shortwave infrared (SWIR) and radar sensors could 

be helpful in terms of area coverage, time and also efficiency (Berni et al., 2009; Ojala et al., 2011). The 

benefits of a drone being flexible control of its spatial and temporal resolution, high intensity of data 

collection and low operating costs with less hazard to forest fire crews. This would be a key aspect when 

tracking forest wildfires, especially in support of near real-time fire control strategies at the infancy stages 

before it causes a hazard. A series of the experiment has been done in Spain and Portugal wildfires and 

allowed coverage of large areas and real-time view of fire and control strategy (Merino et al., 2012; Martínez 

de Dio, 2011). Numerous remote sensing studies have also been applied especially in assessing how severe 

wildfire is based on ecological changes in vegetation indices from spectral analysis measured by satellite 

sensors. Also, more focus could be enhanced on relating ecological measures to fire-induced physical 

changes on the land surface and how it influences forest regeneration fastly (Remmel & Perera, 2001; Allison 

et al., 2005; Benson, 2005; Hughes et al., 2015).   

The resilience and impact of forest fires have been major focus worldly in recent past and is currently 

ongoing. This is in relation to joint research center (JRC) which supports services that are related to 

protection of forests against fires in European Union (EU) countries and also provide updated and reliable 

information on wildfires in Europe (JRC, 2014). Their reports confirm a trend in longer and intense wildfire 

seasons across Europe and neighboring regions. The 2016 report analyzed the frequent bushfires occurring 

together with burnt areas using best available data at the time mostly optical dataset in analyzing the impact 

of the fire and provided it to policymakers across the EU. In addition, the JRC reports aim at providing 
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important information like fire causes, impacts, dangers, responsive and prevention measures. However, 

this has been coupled by a number of challenges including the presence of smoke particles, cloud cover, 

and weather that hinder fire analysis. Additionally, satellites being used were missing in some areas, the time 

lag between acquisition of some satellites and also the image resolutions was inadequate and inefficient for 

detection of fires over large areas. There exists a gap in most JRC reports in analysing the influence of forest 

structure and its relation in the rate of fire spread and that has not been adequately researched upon. 

Therefore our research method and use of satellite SAR sensor with optical data would be of great benefit 

especially to the JRC. This is because it would foreshow the importance of radar in the analysis of forest 

structure and how it will minimize most of the challenges experienced beforehand taking consideration the 

weather independence, spatial and temporal resolution and revisit period that is key in monitoring changes 

in the forest over time. 

 In relation to the aim of our research as mentioned in the introduction is to characterize the difference in 

burnt and unburnt scars using remote sensing methods comparing S1 and S2. Firstly was to explore the 

extent of severity of the fire. This was done by use of vegetation indices dNBR in S2 resulted in the 

identification of burnt and unburnt patches in both Victoria, Australia, and Spain. The comparison of pre- 

and post-fire reflectance values showed spectral similarity as there was a decrease in the post-fire values 

indicating complete or partial loss of vegetation based on fire intensity section 5.1. The differences at burnt 

severity maps displayed in section 5.1  particularly at intermediate severity levels point out classification 

errors that eventually affect the overall accuracy result. The spectral confusion has been commonly reported 

by various authors (Sunderman & Weisberg, 2011; Stambaugh et al., 2015). These changes were highly 

influenced by the timely acquisition of the images as this is a key component in relation to the start of fire 

dates and sampling of the vegetation changes. More comparison should also be done on spectral indices 

after a wildfire in relation to fire behavior for risk assessment of fire-prone areas and implementation of 

prevention and risk assessment strategy (Sannier et al., 2002).  

Secondly was to analyze the use of satellite SAR imagery in polarimetric aspect and backscatter intensity. 

This resulted in discrimination of burnt areas from the unburnt areas and provided distinct information that 

was related more to changes in the forest structure. The changes were mainly associated with backscatter 

intensity of the fire resulting in changes in vegetation structure and also topography similar results obtained 

from (Siegert & Ruecker, 2000). However, the influence of local incidence angle and topography was of 

greater effect resulting in shadows. Thus the backscatter could not penetrate in some areas making it difficult 

to discriminate whether the areas were burnt or unburnt lead to commission and omission  errors (Sun & 

Ranson, 2015). We did not further expound on whether the limitation experienced in using satellite SAR 

could be minimized by integration of SAR and optical data using a similar method defined in method section 

3 . Finally, the use of S1 was only sensitive to bushfires in Victoria, Australia but not in Spain this was based 

on an assumption on fire intensity did not cause much changes in Spain forest structure. However, an in-

depth in time series analysis would be efficient in understanding the structural and behavioural changes 

caused by fire, despite the intensity of the fire. In relation to vegetation changes past and recent analysis of 
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wildfire behaviour relates it to the rate of fuel consumption, weather, and topography. A clear understanding 

should be brought forth on how fire ignition points influence the direction of fires based on wind pattern 

(Fischer et al., 2015; Yebra et al., 2013). 

 Thirdly was determining the degree of spectral contrast between the burnt and unburnt areas. This was 

done by assessing the use of kappa coefficient and f-score measurement. Both the producer's accuracy and 

users accuracy were taken into consideration as shown in table 9 and 10. The remote sensing indices that 

accessed burned versus unburned areas produced better overall accuracy, user and producer accuracy results 

as section 5.3.  This showed the capability of the electromagnetic spectrum to correspond to changes in 

vegetation after fire. Nevertheless, it was important to note that overall accuracy obtained could not be 

relied upon as it could be biased on the sample size of one class in relation to the other (Benson, 2005; 

Stambaugh et al., 2015). This is clearly shown with the dNBR values whereby the bright areas within and 

outside fire perimeter zones were classified as burnt areas even though some of the were unburnt areas such 

as rocky areas and buildings outside fire perimeter zone shown in section 5.3. This drew forth a conclusion 

that it is not enough to rely on higher kappa coefficient or accuracy assessment to affirm the clear separation 

of defined classes. However, keen attention should be kept when relating to the accuracy assessment result 

and expected the outcome of defined classes. Also, validation maps or existing forms of information on the 

land use of the patches of holes that remain unburned would help in understanding its influence on fire 

regeneration. This at the moment was not within the scope of the study.  However further research could 

be expounded on the influence of the threshold of vegetation indices which could help in the reduction of 

classification errors. One would relate the vector representing the fire perimeter wall to be an exact match 

of our classification results as the burned pixels would have similar spectral sensitivity. However, the task 

of accounting for precise boundary of the classified image that relates to vector shapefile representing fire 

perimeter zone becomes complex and difficult. It was noted in particular after classification with SVM_MRF 

the vector shapefile that represents fire perimeter zone was not exactly fitting the boundary edges of the 

burnt zones depicted in Figure 17. This could have been attributed to the disparity of fire perimeter based 

on the reference data and actual ground truth vector file may differ. Another problem could be related to 

the timing of digitization of vector fire perimeter which might have occurred at early stages of the fire 

especially for Victoria database while our spectral classification analysis was based on post-fire analysis of 

the image. This may lead difference of fire perimeter shapefile with the actual ground timing of fire timeout. 

Also the use of contextual classifiers SVM_MRF which cope up with the problem of intraclass spectral 

variation and spatial variability along the boundaries (Tarabalka et al., 2010; Li, 2011). The classifier is applied 

as a post-smoothing method which was developed using spectrally based classifiers that were not collected 

as ground truth data collected from the actual field (Magnussen et al., 2004). Our research did not go in 

depth to understanding the causes of boundary variation in relation to mixed pixels in cases of both burnt 

and unburnt scars. This could be further addressed by the use of soft classification techniques which 

involves sub-pixel classification or fuzzy classification and super-resolution mapping (Suresh & Jain, 2018). 

However, it was also not part of our objective within our scope of the study. 
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 Fourthly was the evaluation of texture variation and separability of burnt and unburnt scars. This was done 

through GLCM textural analysis using backscatter intensity. The contrast, entropy and homogeneity 

measures performed well in texture separation of two defined classes shown in section 5.4. This could be 

linked to the GLCM parameters that were influential which include window size, lag distance, and 

quantization level. However, GLCM is a time-consuming process mainly due to the need to determine many 

orientations scales and window sizes to accurately capture the textural differentiation of the defined classes. 

The quantization level has an overall impact on texture feature values. In-depth research could be done to 

better understand the relationship that exists between forest structure and type and GLCM textural features 

when varying geographical and image resolution. Also, the algorithms that are computationally time-saving 

and efficient in textural analysis other than the GLCM algorithm. 

 Finally, it would be important to mention how our results would be helpful to various stakeholders based 

on their interests. The main stakeholders being state forest agencies including state government 

departments, community or landowners and finally, firefighters, risk emergency providers, and forest 

managers. We could see the state government departments who are keen on forest management use the 

spatial mapping of bushfire coverage and remote sensing analysis of fire severity act as a guide in providing 

emergency resources in most affected areas. Also, they would create restricted boundaries surrounding 

frequent bushfire zones that should not be inhabited as a measure of safety of human and ecological 

preparedness. Community and landowners that reside within and close to the fire forested zones could be 

educated on the factors that aggregate and influence the fast spread of bushfire, the particular zones that are 

highly susceptible to fire and should be avoided and the impact of fire to their physical health and economic 

wealth. Firefighters and risk emergency providers would benefit from the study by additional integration of 

fire ignition points in developing fire escape zones and setting up of fire emergency units. Forest managers 

would benefit in decision making on how to minimize adverse impacts caused by the bushfire in relation to 

unburnt areas that may act as reignition points of fire again. They would also use the information from radar 

to understand the influence of forest type and structure to fuel connectivity and use it to adequately allocate 

resources to manage fire risks in an effective and safe manner. 
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7. CONCLUSION AND RECOMMENDATION 

This chapter concludes the research with some recommendation. Section 7.1 presents the conclusion drawn 

from this research and Section 7.2 presents some recommendations for future study. 

7.1. Conclusion 

This study explored the use of satellite SAR and optical dataset in the identification and classification of 

burnt and unburnt areas with the main focus being an analysis of unburnt areas. It was done through the 

classification of polarimetric and backscatter intensity in S1 and spectral aspect of S2. The result was also 

compared to the textural variation of the defined classes by use of GLCM statistical measure. From the 

results, it was concluded that the use of the SAR system in the mapping of burnt and unburnt scars has 

the potential for consistent estimation of wildfires as compared to reflectance based indices provided by 

the optical dataset. However, the effect of the local incidence angle has to be normalized especially for 

terrain tropical areas and also the backscatter variation that results from environmental conditions such as 

wet or dry needs to be considered. The field accessed vegetation indexes should also contain more 

information on forest structure which is the main factor causing variation in the SAR backscatter. The 

research also identified that for use of satellite SAR  S1 in forest fire analysis is highly dependent on the 

level of wildfire severity. This is because of its influence in the use of SAR in monitoring the changes 

when comparing backscatter intensity before and after the fire to determine the extent of damage caused 

by fire. This was concluded as a result of variation in  Spain data to Australian bushfires using the same 

methodology and dataset type.  The following conclusion with respect to the research questions can be 

made on the basis of results achieved from the research objectives. 

7.1.1. What is the suitable measure of burnt severity levels existing after the forest fire? 

The use of optical reflectance based indices dNBR as depicted in Chapter 5 resulted in the good measure 

of burnt severity levels existing after the fire. This gave us the magnitude of five levels of burnt severity 

which includes the (1) highly burnt areas (2) medium burnt areas (3)low severity areas (4) unburnt areas 

and (5) post-fire regrowth shown in Section 5.1. The NIR reflectance declined due to loss of vegetation 

after the fire while the short-wavelength infrared (SWIR) increased this is due to the presence of charred 

remains of fuel and also minimal or hardly any vegetation and soil content. For the highly burnt areas and 

the unburnt areas, there was consistency in their result among all the bushfire zones however for the 

intermediate burn levels was difficult to ascertain the surety of results.  
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7.1.2. Is there a difference of target decomposition and backscatter intensity in the analysis of burnt and 
unburnt areas? 

The results of this study confirmed there was a difference between the backscatter intensity and target 

decomposition in the analysis of burnt and unburnt areas, especially in Australian bushfires. Scattering 

from the tree crown was the most predominant of the backscatter for the forested areas at C-band. 

However, the backscatter intensity was highly dependent on environmental conditions such as terrain 

effect and also on the local incidence angle.  This affected the separation of burnt and unburnt areas. The 

integration of target decomposition however improved the results and aided in the formation of pattern 

comparing pre- and post-fire images. This resulted in visual identification of the burnt perimeter zones 

shown in Section 5.2. The H-alpha dual decomposition showed the potential of burnt and unburnt area 

estimation without much hindrance from the topography. The scattering properties from burned areas 

related to the vegetation indices were obtained from entropy and alpha values. It was noted that the 

entropy and alpha values decreased with increase in burnt severity due to a decrease in volume scatter 

while for the unburnt areas the entropy and alpha values remained the same as similar to pre-fire images. 

Also looking into the physical scattering characteristics described H-alpha plane that contains nine zones 

all the bushfire zones were dominated by dihedral and volume scattering which lied between medium to 

high entropy values described in Section 3.2. This showed the ability of polarimetric decomposition to 

sensitivity in the interpretation of the scattering mechanism in bushfire areas using dual C-band. Although 

a different result was obtained in Spain data as there was very minimal changes between pre- and post-fire 

backscatter and polarimetric decomposition. This was assumed to be due to very low fire intensity that 

could hardly alter changes in canopy structure as compared to Australian fire showing how SAR sensitivity 

to fire varies from one area to another. Nevertheless, in high severity levels of fire satellite, SAR provides a 

good understanding of changes in forest structural properties of an area in relation to backscatter and 

target decomposition tool.          

7.1.3. What are the effects of utilizing radar backscatter in retrieving the spectral and polarimetric aspect of the 
burnt and unburnt areas?  

Both spectral and polarimetric aspect were able to distinguish the burnt and unburnt areas shown in figure 

Section 5.3 for Australian bushfire and Spain fire. The results were obtained through classification of both 

optical and SAR contextual classifier SVM_MRF classification. For Australia bushfires, the S1 burnt and 

unburnt areas backscatter related well to the burnt severity levels of vegetation indices of dNBR for S2. In 

both Australia and Spain fire zones, the dNBR vegetation indices produced similar and relatable results in 

relation to spectral analysis. Utilizing of polarimetric sensitivity of S1 was applicable in Australia but not 

Spain as its highly related to burn severity level. The optical and SAR gave us good accuracy classification 

results obtaining over 80% accuracy results from the classification of both S1 and S2 in all bushfire zones. 

The overlap of the classes could not be avoided although it was minimal when analyzing both the 

producer and user accuracies obtained for optical S2 and radar S1 shown in Table 9 and Table 10. In 
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Section 5.1 for Spain, the optical showed high sensitivity to burnt and unburnt areas in spectral analysis as 

compared to SAR polarimetric sensitivity. However, in Australian bushfire in S1 the regrowth areas were 

classified as burnt while for S2 they were classified as unburnt. This was due to the polarimetric and 

spectral differences respectively in both the radar and optical shown Section 5.3. The optical (S2) in Spain 

also depicted classification error between areas that were burnt within the fire perimeter zone and areas 

that were unburnt outside the fire perimeter zones. Relatively high determination accuracy and low 

estimation errors of the burnt and unburnt areas were obtained for both the SAR and the optical dataset 

in Australia and optical for Spain as shown in Table 9 and Table 10. Nevertheless, both spectral and 

polarimetric decomposition were successful in the delineation of burnt and unburnt areas in all the 

bushfire zone after the fire. 

7.1.4. What are the effects of utilizing radar backscatter in retrieving the GLCM textural variation of the burnt 
and unburnt areas? 

The GLCM co-occurrence texture analysis revealed a good descriptor in that the homogeneity statistics 

(homogeneity, entropy) provided a good result in the separation of burnt and unburnt. This is especially in 

steep areas compared to the smoothness statistics (contrast) shown in Section 5.4. The three features 

produced consistent texture measures at different orientation angles but increased higher as the 

quantization level increased. The variation of texture between the burnt and unburnt areas was noticeable 

at high quantization level (256 × 256). Similar results were obtained across all texture features when 

adjusting the quantization level, however, for the correlation feature, no much difference was obtained. 

Thus we concluded that the analysis of SAR backscatter using GLCM method can be successful in the 

retrieval of textural features of classes specified. Also when using GLCM features the window size, 

quantization level, and orientation parameters are key descriptors in texture analysis and must be chosen 

carefully. The GLCM analysis was faster in speed and computationally time-saving, however in choosing 

of parameters it was time-consuming. Nevertheless, the use of GLCM was a good descriptor in the 

separation of the two define classes. 

7.2. Recommendations for Future Work 
 

Further improvements in the research would include: 

➢ The use of the proposed methodology to other SAR sensors such as ALOS 2, Radarsat - 

2 which has additional polarizations and longer wavelength to be compared and analyzed. 

➢ Explore other target decomposition theorems and compare its results to the Cloud and 

pottier decomposition theorem and see its effectiveness in burnt severity estimation 

compared to vegetation indices. 

➢ The use of L-band or P-band which have a longer wavelength compared to C- band to 

understand the state of structural damage and its relation to the soil stability and 

rehabilitation of burned areas. 
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➢ Asses the benefits of using fully polarimetric data over dual backscatter channel 

acquisition mode. 
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APPENDIX A  

Simulated annealing parameter tuning 

Simulated annealing was performed  by tuning of parameters to find the optimal values for the Updating 

Temperature  𝑇𝑢𝑝𝑑, Initial Temperature  𝑇0 and  Smoothing parameter 𝜆. Each parameter was varied 

within a defined  range while keeping the other two parameters constant at different times while looking at 

its behaviour of the curves. Table 12-14 shows the range of values used in each parameter and the values 

that were kept constant. The optimal values are shown in table 5 for all fire zones. 

 

Parameter Value 

Updating Temperature 𝑇𝑢𝑝𝑑 (0.7,0.8,0.85,0.9,0.95,1.00) 

Initial Temperature 𝑇0 4 

Smoothing parameter  𝜆 0.80 

 Table 12: Variation of updating temperature experiments: while monitoring the parameter values 

 

Parameter Value 

Updating Temperature 𝑇𝑢𝑝𝑑 0.90 

Initial Temperature 𝑇0 (1,3,4,5,7,8.5,10) 

Smoothing parameter 𝜆 0.80 

Table 13: Variation of initial temperature experiments: while monitoring the parameter values. 

 

Parameter Value 

Updating Temperature 𝑇𝑢𝑝𝑑 0.90 

Initial Temperature 𝑇0 4 

Smoothing parameter 𝜆 (0.20,0.50,0.75,0.80,0.9,0.99) 

Table 14: Variation of smoothing parameter experiments: while monitoring the parameter values. 
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APPENDIX B 

GLCM parameter tuning 

GLCM textural variation of parameters to determine optimal values that show the variation of burnt and 

unburnt areas. The parameter values included were Quantization level (Ql), Lag distance (L), Angular 

direction (𝜃). While one parameter was varied the others were kept constant. The optimal value was 

chosen in accordance to the output result that foreshowed clear description of the defined classes. We 

shall present for contrast and sa imilar method was done for all features. 

 

Parameter Value 

Quantization level Ql (16,64,128,256) 

Lag distance L 1:10 

Angular direction 𝜃 4 

Table 15: Variation of Quantization level experiments: while monitoring the parameter values. 

 

(Ql=16) (Ql=64) 

 
 

(Ql=128) (Ql=256) 

 
 

Figure 21: GLCM measure of contrast feature while varying quantization level representing fire 1 in Australia, 
Victoria. 
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APPENDIX C 

 

Parameter Value 

Quantization level Ql 256 

Lag distance L (1:10,20,40,70) 

Angular direction 𝜃 4 

Table 16: Variation of  GLCM lag distance: while monitoring the parameter values. 

 

(L=1:10) (L=1:20) 

 
 

(L=1:40) (L=1:70) 

 

 

Figure 22: GLCM measure of contrast feature while varying lag distance representing fire 1 in Australia, Victoria. 
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APPENDIX D 

Parameter Value 

Quantization level Ql 256 

Lag distance L 1:10 

Angular direction 𝜃 (1,2,3,4) 

Table 17: Variation of  GLCM Angular direction: while monitoring the parameter values. 

 

(𝜃 =1) (𝜽 =2) 

  

(𝜃 =3) (𝜃 =4) 

 
 

Table 18: GLCM measure of contrast feature while varying angular direction representing fire 1 in Australia, Victoria. 

 

 


