

A Method for Enhancing
Shareability and Reproducibility
of Geoprocessing Workflows.
Case Study: Integration of
Crowdsourced Geoinfor

mation,

Satellite and In-Situ Data for Water
Resource Monitoring

ROBERT OUKO OHURU

March 2019

SUPERVISORS:

Dr. Ir. R.L.G Lemmens

Dr. J.M. Morales

Thesis submitted to the Faculty of Geo-Information Science and Earth Observation of the University of Twente in

partial fulfilment of the requirements for the degree of Master of Science in Geo-information Science and Earth

Observation.

Specialization: Geoinformatics

SUPERVISORS:

Dr. Ir. R.L.G Lemmens

Dr. J.M. Morales

THESIS ASSESSMENT BOARD:

Prof. Dr. M.J. Kraak (Chair)]

Dr. S. Jirka (External Examiner, 52°North Initiative for Geospatial Open Source Software GmbH)

A Method for Enhancing Shareability and Reproducibility

of Geoprocessing Workflows.

Case Study: Integration of Crowdsourced

Geoinformation, Satellite and In-Situ Data for Water

Resource Monitoring

ROBERT OUKO OHURU

Enschede, The Netherlands, March 2019

DISCLAIMER

This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and

Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the

author, and do not necessarily represent those of the Faculty.

i

ABSTRACT

With the recent advancement in technology, a large amount of heterogeneous and distributed geospatial

data is becoming available. As a result, scientists are faced with the challenges of integrating these large

data in geoprocessing functions to solve complex scientific problems. The rise of web service technology

offers an opportunity for processing functions and geospatial data to be shared online inform of web

services thereby ensuring interoperability and accessibility of geoprocessing resources. Most scientific

solutions require several geoprocessing functions and resources some of which cannot be provided by a

single computing resource and therefore calls for distributed processing in the web in what is popularly

known as grid computing. Workflows present a framework in which complex geoprocessing functions

and geospatial data can be combined and executed automatically in real-time. Integrating geospatial and

processes in a workflow has been approached by popular GIS software packages. However, these

software packages do not incorporate geoprocessing functions exposed through web services thus making

it difficult to create shareable and reproducible workflows.

Several standard organizations have proposed standards that, if implemented, can support shareability and

reproducibility of geoprocessing workflows. The implementation of OGC WPS supports interoperability

and accessibility of geoprocessing functions while WFS, WCS and SOS provide specifications for sharing

geospatial data. WfMC and OMG have also come up with standard notations and schema for modelling

and describing workflows such as BPMN and XPDL. However, these standards have not been

appreciated a lot in current GIS Workflow Management Systems (WfMSs) mainly because they don’t

represent current technology advancements. For instance, BPMN and XPDL are purely XML-based and

often support SOAP services which do not align to the current trend for RESTful services and light-

weight protocols such as JSON. This, therefore, calls for a more generally accepted standard which

borrows from the workflow implementations of current WfMSs. To do this, we propose a method for

enhancing the sharing and reproducibility of geospatial workflows which implements two approaches.

First, by establishing a standard workflow interchange schema based on a JSON data format. Using this

interchange format, we create a method for transforming workflow from one WfMSs to another based on

the mapping of their constructs. Secondly, we provide a method for composing workflows from

heterogeneously distributed geoprocessing functions using web services. We implement a web-based

prototype system to offer a visual abstraction of the underlying method for workflow composition which

also has a backend workflow engine responsible for service chaining and workflow execution. We

demonstrate the applicability of our method using a simple workflow for triple collocation which

combines crowdsourced geoinformation, satellite and in-situ data. The execution of this workflow

provides a similar result to the methods used in ILWIS desktop application for triple collocation which

supports shareability and reproducibility of the workflow using our method.

Keywords

Shareability, Reproducibility, Geoprocessing Workflow, Web Services Chaining, Triple Collocation.

ii

ACKNOWLEDGMENTS

If it were not for the overwhelming support in form pieces of advice and prayers from my supervisors,

family and friends, this thesis would not have been a reality. I want to express my deepest gratitude to all

of you.

First, and the most important, I would like to thank the Almighty God for the wisdom, grace, strength and

good health that He bestowed upon me to finish this thesis. For sure, my heart was never troubled for I

believed in a God who his greater than all my weaknesses.

I want to thank my supervisors, Dr. Ir. R.L.G Lemmens and Dr. J.M. Morales for being the best mentors

that I ever needed during my research period. Their guidance and every time spent to review my thesis

helped to transform my weakness into strength as a young scientist. I wouldn’t have reached this far if it

were not for their patience. I am equally grateful to Dr. Ir. Luc Boerboom, Dr. Ir. Bert Toxopeus and Dr.

Ir. Chris Mannaerts who also supported me in various ways to ensure the success of my research. They

consistently enquired about my progress and encouraged me through this journey.

I am indebted to Bas Retsios for being a friend and a role model in software engineering. I went to his

office for every technical problem that I met along the way and he gave me enough time beyond

appointments.

My sincere appreciation goes out to my parents Elder John Ohuru and Mrs. Milka Akoth together with

my brothers Brian, Jacob and Esau for enduring my absence for such a long time. It was not easy for

them, but they provided me with a peace of mind and prayed earnestly for me to finish this thesis in good

health.

To my friends Stella, Andy, Eustace, Esther, Dantom, Godfrey and many who I cannot mention, your

help was precious. Your kindness, encouragements and prayers offered great help to me throughout this

research.

Special thanks to everyone who helped me along the way.

May God bless you!

iii

TABLE OF CONTENTS

1. Introduction .. 11

1.1. Background Information .. 11
1.2. Problem Statement ... 13
1.3. Research Objective ... 14
1.4. Research Questions .. 14
1.5. Use Case ... 15
1.6. Thesis Outline ... 15

2. Workflows ... 17

2.1. Evolution of Workflows ... 17
2.2. Workflow Modelling .. 18
2.3. Scientific Workflows .. 20
2.4. Factors Affecting the Reproducibility of Workflows ... 22

3. Workflow Management Systems ... 25

3.1. Workflow Specification Standards .. 26
3.2. Standardization compliant WfMSs .. 28
3.3. Non-Standardization Compliant WfMSs ... 29
3.4. Shortcomings of Current WfMSs .. 32
3.5. Proposed Solution for the Challenges facing Current WfMSs ... 35

4. Workflow Composition from Distributed Web Services .. 40

4.1. Composability of Scientific Workflows .. 41
4.2. Data Services ... 42
4.3. Processing Services .. 48
4.4. OGC Process Chaining ... 54
4.5. Workflow Engine ... 55

5. Supporting Shareability and Reproducibility of Workflows ... 57

5.1. Supporting Shareability through Standard Interchange Format .. 57
5.2. Provenance Support for Reproducibility ... 68
5.3. REST API to Support Reuse ... 70

6. Prototype implementation .. 72

6.1. System Architecture ... 72
6.2. Generic Workflow Client .. 75
6.3. Data Services ... 77
6.4. Processing Services .. 81
6.5. Workflow Engine ... 87
6.6. Workflow Transformation .. 93

7. Proof of Concept ... 100

7.1. Satellite, In-situ and Crowdsourced Geoinformation .. 100
7.2. Triple Collocation ... 102
7.3. Shareable and Reproducible Workflow for Triple Collocation.. 103
7.4. Result Discussion ... 108

8. Conclusions and Recommendations .. 111

8.1. Conclusions ... 111
8.2. Limitations ... 117
8.3. Suggestions for OGC Standards .. 118
8.4. Suggestion for GIS Software Developers .. 118
8.5. Recommendations for Future Work ... 119

iv

LIST OF FIGURES

Figure 2.1: Basic BPMN elements .. 18

Figure 2.2: Topological Sorting of Processes using DAG. ... 20

Figure 2.3: Comparison of the causes of workflow decay. ... 23

Figure 2.4: Comparison of Workflow decay due to third-party resources... 24

Figure 3.1: Composition of Workflow Management System ... 25

Figure 3.2: The Model Driven Architecture framework ... 37

Figure 3.3: Architecture of Workflow Interchange formats ... 38

Figure 4.1: Levels of Composability of Scientific Workflows .. 41

Figure 4.2: Sensor Web Enablement Framework .. 46

Figure 4.3: The WfMC Workflow Architecture ... 55

Figure 5.1: Abstract Class diagram for a Workflow ... 59

Figure 5.2: Class diagram for the Workflow Schema .. 68

Figure 5.3: Flowchart for process discovery ... 69

Figure 6.1: System Architecture .. 73

Figure 6.2: The Generic Workflow Client's User Interface .. 76

Figure 6.3: RESTful Service Definition through the Workflow client ... 87

Figure 6.4: Workflow Transformation ... 94

Figure 6.5: Changing resource providers for the same process ... 97

Figure 6.6: Transformation of PIW to QGIS Workflow .. 99

Figure 7.1: Study Area, Dano Burkina Faso. .. 103

Figure 7.2: Time-series Analysis of Sensor Data. ... 104

Figure 7.3: Abstract Workflow for the Triple Sensor Water Accounting. ... 105

Figure 7.4: Concrete Workflow for Triple Sensor Approach. ... 106

Figure 7.5: Triple Sensor Workflow Composition from Web Services. ... 106

Figure 7.6: JSON extract of the Triple Sensor Workflow. ... 107

Figure 7.7: Visualization of BPMN-based Triple Sensor Workflow in Camunda modeler. 108

Figure 7.8: Result Analysis of Triple Sensor Workflow Execution. .. 109

List of Listings

Listing 4.1: WFS GetCapabilities Response .. 43

Listing 4.2: WFS DescribeFeatureType Response ... 43

Listing 4.3: WCS GetCapabilities Response.. 45

Listing 4.4: WPS GetCapabilities response using SOAP bindings .. 49

Listing 4.5: RESTful WPS GetCapabilities Response ... 50

Listing 4.6: WPS DescribeProcess using SOAP Bindings .. 50

Listing 4.7: RESTful WPS DescribeProcess Result ... 51

Listing 4.8: WPS Execute Request's Body for SOAP Binding .. 52

Listing 4.9: WPS Execute Request's Body for RESTful Binding .. 53

Listing 5.1: JSON schema for workflow metadata property .. 59

Listing 5.2: JSON schema for the properties of an operation ... 60

Listing 5.3: JSON schema for the operation's metadata property ... 62

Listing 5.4: JSON schema for an operation's input ... 64

v

Listing 5.5: JSON schema for an operation's output .. 65

Listing 5.6: JSON Schema for connection property ... 67

Listing 6.1: Snippet of the JSON Representation of a Workflow .. 77

Listing 6.2: Snippet for the Python implementation of WFS GetCapabilities ... 78

Listing 6.3: JSON object for GetCapabilities request ... 80

Listing 6.4: OGC WPS GetCapabilities response for gs:Centroid operation ... 82

Listing 6.5: XML Snippet for OGC WPS DescribeProcess for gs:Centroid .. 83

Listing 6.6: Code snippet for mapping of WPS process definition to standard JSON schema 83

Listing 6.7: JSON representation for WPS gs:Centroid operation ... 84

Listing 6.8: Sample WPS Execute Body. ... 85

Listing 6.9: JSON representation for the AggregateRainfall RESTful service. .. 87

Listing 6.10: WPS Root element specification. .. 88

Listing 6.11: Python Code Snippet for WPS Execute Implementation. .. 89

Listing 6.12: Python Code for generating URL for RESTful web service. ... 90

Listing 6.13: Recursive Function for Insertion Sort.. 91

Listing 6.14: Code Snippet for Finding the Execution Order of Operations ... 91

Listing 6.15: Code Snippet for Executing the Workflow ... 92

Listing 6.16: Code snippet for initializing the process element and sequence flows (connections). 94

Listing 6.17: Code snippet for creating service tasks and data inputs. ... 95

Listing 6.18: Code snippet for mapping JSON connections to BPMN serviceFlows. 96

Listing 6.19: An extract of a BPMN sequenceFlow for a simple workflow. .. 96

Listing 6.20: Code snippet for searching an operation based on a keyword ... 98

vi

LIST OF TABLES

Table 3.1: BPMN Process Elements .. 27

Table 3.2: BPMN Diagram Elements .. 27

Table 3.3: OGC WPS Process Elements ... 28

Table 3.4: ILWIS Workflow Elements .. 30

Table 3.5: QGIS Workflow Elements ... 32

Table 3.6: Observed Differences among selected WfMSs ... 33

Table 5.1: Mapping Workflow Elements for different Workflow Specifications ... 58

Table 5.2: RESTful API for Service Reuse ... 70

Table 6.1: WFS Operations ... 78

Table 6.2: WCS Operations ... 80

Table 6.3: SOS Operations .. 81

Table 6.4: WPS Operations ... 82

Table 6.5: Non-OGC Compliant RESTful Services.. 86

Table 7.1: Comparison of results from the Triple Sensor Workflow to findings by Mannaerts et al. (2018)

 .. 109

vii

LIST OF ABBREVIATIONS

API Application Program Interface

BPEL Business Process Execution Language

BPDM Business process definition metamodel

BPMN Business Process Modelling Notation

DAG Directed Acyclic Graph

GPW Geo-Processing Workflow

ILWIS Integrated Land and Water Information System

JSON JavaScript Object Notation

MDA Model Driven Architecture

OGC Open Geospatial Consortium

OMG Object Management Group

PIW Platform Independent Workflow

PROV Provenance Model

PSW Platform Specific Workflow

SOAP Simple Object Access Protocol

REST Representational State Transfer

WCS Web Coverage Service

WfMC Workflow Management Coalition

WfMS Workflow Management System

WFS Web Feature Service

WMS Web Mapping Service

WPS Web Processing Service

WSDL Web Service Definition Language

SDI Spatial Data Infrastructure

SOA Service-Oriented Architecture

SOS Sensor Observation Service

SPS Sensor Planning Service

SWE Sensor Web Enablement

SensorML Sensor Modelling Language

UML Unified Modelling Language

VGI Volunteered Geographic Information

XML Extensible Markup Language

XPDL XML Process Definition Language

XSD XML Schema Definition

viii

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

11

1. INTRODUCTION

1.1. Background Information

Remote sensing technology and in-situ measurements observed from local weather stations are the two

traditional sources of geospatial data that have extensively contributed to the scientific research. One of

the scientific application of data obtained from these sources has been in the management of water

resources. For instance, in monitoring the growth of the harmful algae blooms in recreational water bodies

and drinking water (Clark et al., 2017), evaluation of extreme precipitations for water resource and flood

risk management (Dhib et al., 2017). Better water resource management is critical to helping people,

economies, and ecosystems to thrive, reduce poverty and sustain prosperity. However, successful water

management requires detailed knowledge of the available water resources which can only be achieved

through effective monitoring and forecasting. Water resource monitoring entails the provision of adequate

qualitative and quantitative information about the state of the water resource at any moment (Garcia et al.,

2016). Getting the latest and specific information for water resource monitoring or disaster management is

a challenge with many satellite products and in-situ generated data. This is because of the low temporal

and spatial resolution of these data sources.

The last decade has seen the emergence of a third data stream where humans are involved in scientific

research by creating and sharing information. When this information generated by humans contains

geospatial references, it is known as Volunteered Geographic Information (VGI; Dhib et al., 2017). The

term Volunteered Geographic Information (VGI) was first coined by Goodchild (2007) to refer to

geospatial data created and disseminated voluntarily by individuals. Literature materials use other terms to

describe VGI such as crowdsourcing, citizen science, citizen observation or participatory science

(Assumpcao et al., 2018). Their differences notwithstanding, these terms are often used interchangeably to

depict the act of involving the public in collection and dissemination of data. Crowdsourced

geoinformation suggests a complementary source of data to fill the gaps in satellite and in-situ data.

With the recent advancement in web and mobile phone technology, a large amount of heterogeneous and

distributed geospatial data is becoming available. As a result, scientists are faced with the challenges of

integrating these data to solve specific problems. To promote the automated integration of these data for

solving complex scientific issues, well defined sequential methods contained as a workflow can be used

(Yue et al., 2011). Workflow is a concept that has existed in the business domain for an extended period

and has been useful in facilitating the automatic execution of business processes. Researchers in various

fields have embraced the use of workflows to conduct a range of analysis and scientific pipelines since

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

12

they model computation structure and data processing tasks in a manner that help in the management of a

scientific process.

Integrating datasets and processes in a workflow has been applied by popular GIS software packages

including ESRI suite Model Builder, ILWIS model builder, QGIS processing modeler, ERDAS Imagine

Spatial modeler among others. However, these software packages are proprietary and are often confined

in a desktop installation making it difficult to share workflows with different users and across different

platforms. Furthermore, these workflows are only executable within their propriety software since they

depend on a combination of software and libraries contained in the environment of their propriety GIS

software. Sharing workflows helps scientist to understand scientific processes created by their colleagues

as well as make the workflows as an essential building block in their new processes. Reproducibility of a

workflow involves taking the original workflow, data and rerunning the execution to give the same results

(Taylor et al., 2007). Reproducibility is very vital in scientific processes to help scientists to validate and

verify a given set of results. Reproducibility allows a workflow created for a particular scientific problem to

be reused by different users by a repetition of steps with varying sets of data to produce new or more

elaborate results. Shareability and reproducibility of workflows are an important application requirement

towards achieving interoperability and accessibility of geospatial resources which includes data and

processes.

Interoperability can be addressed by establishing common standards, amongst which enabling the

accessibility to geospatial resources through web services (Yue et al., 2012). Several organizations have

been involved in establishing standards to control access and sharing of geospatial resources. In 1993, the

Workflow Management Coalition (WfMC) was created to promote and develop the use of workflows

through the establishment of standards for software terminology, interoperability and connectivity among

processes (Schmidt, 1999). They developed a large set of reference models, documents and standards with

the primary focus on processes. For instance, they came up with the XML process definition language

(XPDL) in 1998 as an interchange format for business process models. Its popularity was further

enhanced when WfMC endorsed the Business Process and Modelling Notation (BPMN) as a graphical

standard for business processes in 2004 (Ko et al., 2009). To this date, XPDL is still being used for

describing processes. The Open Geospatial Consortium (OGC) has also specified several standards that

can be used to create geoprocessing workflows in an interoperable way by combining processes and data

using web services. These standards include Web Processing Service (WPS) which can be built into

workflows to execute remote processes that have been exposed by different GIS software. The OGC’s

Sensor Web Enablement (SWE) has a suite of standards to handle spatial data infrastructures for sensors

which can be applied to in-situ and crowdsourced data (Simonis et al., 2016). These standards include

Sensor Model Language (SensorML) for describing sensors, Sensor Planning Service (SPS) for the

definition of tasks to be performed by sensors and Sensor Observation Service (SOS) for obtaining and

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

13

storing sensor observation data. The OGC Web Coverage Service (WCS) and Web Feature Service (WFS)

are also used widely to share raster and vector data respectively.

Most scientific applications require multiple resources which cannot be provided by individual GIS

software. There is, therefore, a greater need to combine resources from different service providers in a

distributed processing manner using web service technology. This is motivated by the evolving concept of

web services and service-oriented architectures (SOA). This has further been reinforced by the idea of

spatial data infrastructure (SDI) which provides web-based access to data (Schäffer & Foerster, 2008). The

OGC Geo-Processing Workflow (GPW) initiative has demonstrated interoperability through chaining of

web services in a workflow. Modelling of such workflow can be achieved through the Unified Modelling

Language (UML) and Business Process Modelling. However, business process modelling has been widely

used for describing workflows. Due to its popularity, this research focused on business process modelling.

Modelling visual workflows is facilitated by Business Process Modelling Notation (BPMN) which is a

language based on flowcharts for describing business processes (Decker et al., 2010). Another tool

commonly used in workflow modelling is the Business Process Execution Language (BPEL) which is an

XML-based specification of business processes and their interaction protocols. The graphical object

properties supported in BPMN enables the generation of executable BPEL which can be used to

implement several geoprocesses that can consume crowdsourced geoinformation, satellite and in-situ data

(J. Morales & De By, 2009).

1.2. Problem Statement

Recent technologies such as Web 2.0, web services, lightweight exchange formats as JSON and the ability

to process and deliver real-time geospatial data have made it possible to create, share and execute

workflows through online browsers which can bring a rich experience to users. Integrating processes and

data exposed by RESTful web services can offer great potential for interoperability to enhance shareability

and reproducibility of workflows. However, due to the lack of a standardized interchange format for

workflows and a platform-independent medium for composing workflows from distributed geoprocessing

functions, it is impossible to share and reproduce workflows across different WfMSs. Unfortunately,

current WfMSs do not incorporate web services making it difficult to use remote processes. To address

these concerns, this research developed a method that can be used to enhance the shareability and

reproducibility of workflows. This was accomplished in the following manner.

1. By proposing a standard interchange schema for specifying workflows. This was based on the

limitations and strength of existing interchange formats for specifying workflows. Using this

standard interchange schema, we establish a method for transforming a workflow from one

interchange format to another which is motivated by the concept of OMG model-driven

architecture (OMG, 2003).

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

14

2. By creating a method for composing workflows from heterogeneously distributed geoprocessing

functions using web services. Web services technology driven by service-oriented architecture

(SOA) represent a characteristic of platform and language independence which can be explored to

achieve interoperability. We implement a web-based prototype system to offer a visual abstraction

of the underlying method for workflow composition.

As a proof of concept, we use the prototype system to demonstrate a shareable and reproducible

workflow for integration of crowdsourced geoinformation, in-situ and satellite data for water resource

monitoring and forecasting. The system allows the user to view and download the result of each step in

the workflow composition.

1.3. Research Objective

The main objective of this research is to create a method for enhancing shareability and reproducibility of

geoprocessing workflows across different GIS software packages. The method aims to use a standardized

workflow interchange format whose JSON schema is derived from the existing interchange formats of

different GIS software and established standards. A workflow that combines crowdsourced

geoinformation, in-situ measurements, and satellite data is used to demonstrate the applicability of the

method as a real-life application using a web-based workflow editor.

There are four sub-objectives to this research;

1. To investigate existing workflow interchange formats and propose an interoperable standard

format for sharing workflows.

2. To devise a method for producing shareable and reproducible workflows.

3. To design and implement a prototype that facilitates the creation and sharing of workflows.

4. To demonstrate the applicability of the prototype in combining crowdsourced geoinformation, in-

situ measurements and satellite data for water resource monitoring and forecasting.

1.4. Research Questions

Related to the first objective

i. What are the available tools/software for creating geoprocessing workflows?

ii. Which interchange formats do they use to share their workflows?

iii. How can a standard interchange format be created to achieve interoperability?

Related to the second objective

i. What does it take for a workflow to be shared and reproduced?

ii. How can a workflow be composed of distributed geospatial web services?

iii. How can a workflow be shared across different geoprocessing tools/software?

Related to the third objective

i. How can the prototype system be developed?

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

15

ii. What are the requirements and procedure for setting up the system?

iii. What are the limitations to this system and the problems that can be encountered?

Related to the fourth objective

i. What are the potential characteristics of crowdsourced geoinformation, satellite and in-situ data

that affects their combination?

ii. How can specific operations be integrated to combine crowdsourced geoinformation, satellite,

and in-situ data?

iii. What is the added value of the method to shareability and reproducibility of workflow for

integration of crowdsourced geoinformation, satellite, and in-situ data?

1.5. Use Case

This research has selected the AfriAlliance project as its use case. The afrialliance project aims to “prepare

Africa for future climate change challenges by creating the opportunity for African and European

stakeholders to work together in the areas of water innovation, research, policy, and capacity

development” (Mannaerts et al., 2017a). As one of its deliverables, AfriAlliance would want to use a

multisensory approach to improve water resource monitoring and forecasting in Africa. The triple sensor

approach combines different water-related products obtained from satellite, local weather stations, and

crowdsourced geoinformation. The following reasons motivated the choice for this use case:

i. The Triple sensor approach uses three categories of geospatial data that are commonly used

in geoprocessing workflows. There are already established standards that define the sharing of

these data using web services. Satellite data can be accessed through OGC Web Coverage

Service (WCS), in-situ data and Crowdsourced geoinformation using Sensor Web

Enablement (SWE).

ii. Since ITC is involved in this project, access can be provided to the abstract workflow and

data for testing.

iii. This project uses preprocessing and triple collocation methods to combine these datasets.

These methods are well-defined and typical functional building blocks to be composed in a

workflow using web services by chaining processes from different GIS software processes.

iv. The shareability and reproducibility of the workflow can be tested by allowing different users

involved in the project to rerun the workflow and compare results.

1.6. Thesis Outline

This thesis has adopted the following structure.

Chapter 1 provides a general introduction to this thesis through background information, problem

statement and stating research objectives and questions.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

16

Chapter 2 provides a literature review on workflows and how to specify workflows using business process

modelling notation (BPMN). The transformation from BPMN to BPEL scripts is also discussed. The

chapter looks at a broader perspective of workflows having been first used in business processes then later

adopted for scientific processes. The concept of scientific workflows is introduced and terminologies used

in workflow including shareability, reproducibility, and provenance are discussed. Finally, this chapter ends

by considering factors that affect the reproducibility of scientific workflows.

Chapter 3 discusses software for workflow management, a comparison of how current WfMSs share their

workflows and their shortcomings. After that, a discussion on how web-based workflows come to the

rescue of current GIS WfMSs and attempts of standardization organizations such as WfMC, Object

Management Group (OMG) and OGC to support sharing of workflows through the establishment of

standards are addressed.

Chapter 4 discusses the way workflows can be composed by integrating data and processes using web

services. The following services are considered: Web Feature Service, Web Coverage Service, Sensor Web

Enablement, Web Processing Service and non-OGC compliant RESTful processing services. The OGC

Geo-Processing Workflow service chaining is also discussed.

Chapter 5 is based on previous concepts. It introduces a method of producing shareable and reproducible

workflows. This chapter also proposes a JSON schema for a standard workflow interchange format. The

chapter ends with a discussion of provenance support for reproducibility of scientific workflows.

Chapter 6 discusses the implementation of the proposed system which contains a web-based workflow

client and a workflow engine capable of composing a workflow using web services and executing the

workflow. The result of the execution is displayed through the web client which also provides users with

the ability to download the result using WCS or WFS. Sharing of the workflow is achieved through the

standard interchange format which can create reproducible workflows for specific GIS software.

Chapter 7 discusses a proof of concept to demonstrate how the proposed system can be used to solve

real scientific problems one of which is the case study. It provides a discussion on the pre-processing of

data and the triple collocation method. Creation of shareable and reproducible workflow for integrating

crowdsourced geoinformation, satellite, and in-situ data is discussed. To measure the success of the

method, the analysis of the result is performed.

Chapter 8 provides a summary of the thesis by answering the research questions and reflecting on the

limitations. Moreover, this chapter also suggests a standard workflow interchange format as well as

providing recommendations for future work.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

17

2. WORKFLOWS

2.1. Evolution of Workflows

Workflow is a concept that has existed in the business domain for an extended period and has been useful

in facilitating the automatic execution of business processes. The last three decades have witnessed the

growing trend in the design and use of workflow systems both for business and in scientific research. This

has been motivated by the growth of the internet which has opened up the possibility of using workflows

to deploy service-oriented applications across wide area networks (Belhajjame et al., 2002). As network

capabilities mature and computational power increases, distributed processing powered by web services

technology is quickly gaining popularity. This has further been reinforced by the concept of spatial data

infrastructure (SDI) which provides web-based access to data (Schäffer & Foerster, 2008).

As the use of workflows increases, the need for a universal standard to facilitate the creation, sharing, and

reuse of workflows becomes a necessity. In 1993, the Workflow Management Coalition (WfMC) was

created to promote and develop the use of workflows through the establishment of standards for software

terminology, interoperability and connectivity among business processes (Schmidt, 1999). They developed

a large set of reference models, documents and standards with the main focus on business processes.

Three years later, they came up with a formal definition for workflows as “the automation of a business process,

in whole or part, during which documents, information or tasks are passed from one participant to another for action,

according to a set of procedural rules” (Barga & Gannon, 2007). Business processes relate to a great extent to

this definition since they involve the shift in tasks from one person to another. However, the current

evolution of workflows is based on service-oriented architectures in which the tasks are carried out in a

distributed environment using remote computational resources (Curcin & Ghanem, 2008). This contrast is

the difference between business workflows and scientific workflows. The workflow logic of business

processes is control flow driven making their execution robust which is a contrast to their counterpart

scientific workflows which are data flow driven. Scientific workflows often utilize a lot of computing and

storage resources which cannot be adequately provided by a single computer. As a result, most of the

processes in scientific workflows are executed remotely and are coordinated by a workflow management

system. The business workflows are always not fully automated as compared to scientific workflows

(Sonntag, Karastoyanova, & Deelman, 2010). They involve the use of humans in some stages of the

execution process whereas, in scientific workflows, the humans are only required during the creation of

the workflow. Despite their differences, scientific workflows borrow a lot from the original concepts of

workflows which were based on business processes.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

18

2.2. Workflow Modelling

Modelling workflow can be achieved through the Unified Modelling Language (UML) and Business

Process Modelling. However, business process modelling has been widely used for describing scientific

workflows. Business Process modelling is an essential component to the success of software development.

Morales & De By (2009) observed that the business process modelling field strongly drives workflow

modelling. Business process modelling uses one of the most popular conceptual modelling tools for

specifying workflows known as the business process and model notation (BPMN). BPMN offers a

graphical notation for high-level modelling using descriptive and analytic constructs. Business process and

model notations were developed as a result of an agreement among several tool vendors towards a

standard of notations for describing business processes (Burattin, 2015). Since the release of the first

flowchart-based BPMN in May 2004, BPMN has gained a wide audience both in business processes and

scientific processes. BPMN has enabled users to create sequences of processes and their supporting

information in a graphical representation which describes a business process. Figure 2.1 shows essential

OMG (2011) BPMN elements which include activities, events, gateways, connectors.

Figure 2.1: Basic BPMN elements

Activity: Activity identifies the task performed by a company. They are often represented as rectangles

with rounded corners. BPMN specifies several types of tasks depending on their roles which include

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

19

service tasks, send task, receive task, user task, manual task, business rule task, script task. For this

research, we use service tasks since it is used for web services or automated applications.

Gateways: Gateways are used to control the flow of processes using sequence flows through divergence

and convergence in a process.

Sub-activity: sub-activity can be used to hide the different level of abstraction of a task.

Events: The user or the system always trigger events. An event can be used to start the execution of a

process, pause or terminate it.

Connectors: These components are used to indicate the flow of information or association.

Once a business process has been specified using the business process modelling notation, it is saved as a

BPMN document. A BPMN document is an XML based file representation of the graphical workflow.

BPMN documents by their own cannot be executed. Therefore, there is a need to convert them to an

executable specification which is written in the business process execution language (BPEL). BPEL can be

thought of as an XML-programming language for web services compositions since it is used together with

Web Service Definition Language (WSDL). Moreover, BPEL incorporates several features of web service

development including XML data definition and manipulation, a dynamic binding mechanism which is

based on the explicit manipulation of endpoint references and declarative mechanism for correlating

messages to process instances, an essential requirement for asynchronous communication (Ko et al.,

2009). BPMN’s graphical standards are graph-oriented representing logical flow through nodes and

connectors whereas BPEL execution standards are block oriented in which the flow of execution is

controlled by nesting different kinds of syntactic control primitives using XML.

A visual workflow obtained from a BPMN document can be serialized as a BPEL script before it can be

executed. To do this, the non-linear workflow has to be transformed into a linear workflow to establish

the sequence of its execution. A Scientific workflow forms a directed acyclic graph (DAG) in which the

nodes represent the participating services whereas the edges represent data flow between services

(Schäffer & Foerster, 2008). A DAG exhibits three properties which include reflexivity, asymmetry, and

transitivity.

Given a set O = {A, B, C, D, E, F, G} to represent the elements of a scientific workflow,

• Reflexivity of A is defined by 𝐴 ≤ 𝐴

• Asymmetry: if 𝐴 ≤ 𝐵 → 𝐵 < 𝐴 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒

• Transitivity: if 𝐴 ≤ 𝐵 𝑎𝑛𝑑 𝐵 ≤ 𝐶 𝑡ℎ𝑒𝑛 𝐴 ≤ 𝐶

Once all the elements of the set have been modeled as DAG, their topological relationships can be

determined to create a linear ordering of the processes as shown in Figure 2.2. Several permutations of the

ordered processes for the DAG can be obtained for similar illustrations. These include A-B-C-D-E-F-G

or A-B-C-D-E-G-F or A-C-B-D-E-F-G or A-C-B-D-E-G-F. For a given DAG G (K, E), the topological

sort of its vertices is a sequence 𝑆 = {𝑢1, 𝑢2, … … . , 𝑢𝑛}, 𝑢 ∈ 𝐾 in where every element of K appears

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

20

exactly once (Schäffer & Foerster, 2008). With this notation, no process in a workflow can be repeated in

the sequence. The concept of the DAG is used in Section 6.5.2 to determine the execution order of

processes in a workflow.

Figure 2.2: Topological Sorting of Processes using DAG.

2.3. Scientific Workflows

Application of workflows to scientific calculations, simulations, and experiments were much inspired by

the success witnessed in the application of the workflow management system to business processes

(Sonntag et al., 2010). Researchers in various domains have embraced the use of scientific workflows to

conduct a range of analysis and scientific pipelines since they model computation structure and data

processing tasks in a manner that help in the management of a scientific process. Lemmens et al. (2018)

distinguish scientific workflows into two levels of abstraction, abstract and concrete workflows. Abstract

workflows are used to provide an overview of the operations, their input, and output without having to

specify data sources and operation parameters. An abstract workflow hides the implementation details of a

workflow and can be considered as platform independent.

On the other hand, a concrete workflow provides details of steps of processes of a workflow which can be

executed by a particular WfMSs. Given an abstract workflow, it is possible to generate its concrete

workflow which can be implemented in different software. Scientific studies have proved that it is possible

to automatically generate concrete or executable workflows from abstract workflows using their semantic

descriptions. For instance, Ubels (2018) researched on automatic conversion of abstract workflows to

executable using semantic web technologies. This research opened the way for scientific processes and

workflows to be discovered using ontologies and semantic web technology thus supporting shareability of

scientific processes. Scheider & Ballatore (2018) also proposed a method for expressing workflows as

linked data which is easily publishable and discoverable through the web. Their method provides support

Adopted from (Schäffer & Foerster, 2008)

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

21

for searching, interpreting and reusing workflows in a modular manner using semantic descriptions. In the

following subsections, we discuss some of the concepts of scientific workflows.

2.3.1. Provenance

The term provenance means source or origin. It can be applied to data to indicate its evolution and

modification applied to it (Juhnke et al., 2010). To ensure reproducibility and repeatability, sufficient

provenance information is desired. Just as with data, provenance can be used with workflows to capture

information such as processes and their execution environment, input parameters provided to processes, a

log of processes, connections, intermediary and final outputs. There are seven different scenarios explored

by Taylor et al. (2007) where workflow provenance information can be relevant. Some of these scenarios

include to repeat a workflow execution, to reproduce a data output by retrieving intermediate results or

inputs from which these outputs were derived, to assess the performance of a service that has been

invoked multiple times and to debug a failed workflow execution in order to establish which service failed

and the possible causes.

A. Banati et al. (2015), identified four levels of provenance, i.e., system, environment, data, and workflow

model. The system level provenance helps answer the questions of what, where, when and how long has

been executed by storing the type of infrastructure, the variables, and the timing parameters. System-level

provenance ensures portability of the workflow. The environmental provenance stores the execution

details including the operating system properties, libraries, and code interpreter properties. Data

provenance deals with data lineage and additional provenance information like input(s) and output(s)

names, types, size, parameters significance, among others. The workflow model provides lineage

information of the workflow which documents the history of its modification. The provenance

information collected at the fourth level is necessary for workflow versioning.

2.3.2. Shareability

Shareability of scientific workflow is defined as the ability to transfer the workflow from one scientist to

another or one environment to another in a manner that allows readability and understanding of the

workflow that is not necessarily created by the same scientist or in the same environment. Sharing

workflows helps scientist to understand scientific processes created by their colleagues as well as make the

workflows as an essential building block in their new processes. Most GIS workflow management system

enables the creation of workflow but sharing of these workflows across the different system is still not

possible. This affects interoperability between GIS workflow management system forcing scientists to

recreate their workflows in different environments. An attempt to achieve interoperability between

scientific workflow management systems was undertaken by A. Banati et al. (2015) who developed Gefyra,

which is a system based on the PROV workflow model to translate provenance information from one

format to another. However, PROV was not entirely successful since every scientific workflow

management system could not use it.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

22

2.3.3. Reproducibility

Reproducibility is the most vital part of science enabling scientists to evaluate the validity of each other’s

methods and hypothesis by running an experiment at different locations using different tools (Gil et al.,

2007). Reproducibility allows a workflow specified to address a particular scientific problem to be reused

by different users under equivalent conditions without having to manipulate or change the original

specification to produce scientifically similar results. To reproduce scientific workflows, provenance

information must be collected on the individual tasks, their execution environments as well as their input

and output parameter requirements. Rich provenance information, as well as careful workflow design and

documentation, are necessary for efficient workflow reproducibility (Anna Banati et al., 2016).

Shareability and reproducibility of workflows are important application requirements towards achieving

interoperability and accessibility of geospatial resources which includes data and processes. Shareability

needs a mechanism in which processes and data can be exchanged between different WfMS by use of a

standard interchange format. Semantically enabled exchange formats; for instance, JSON provides an

interoperable way in which humans and machines can share workflows. Shareability is mainly concerned

with preserving the physical representation of the workflow and data flow between processes whereas

reproducibility is responsible for the logical preservation of the workflow by which rich provenance

information is used. Reproducibility makes it possible to reuse workflows created by others to verify the

correctness of their intermediate results or hypothesis (Bechhofer et al., 2013). A reproducible result or

method of a scientific experiment would require the use of similar processes, data and conditions in a

workflow.

Shareability and reproducibility are strongly related concepts. Workflows cannot be reproduced if they are

not shareable across different environments. A workflow should always be reproducible; otherwise, it has

no value. However, the most important considerations are the threshold and conditions under which it

can be reproduced.

2.4. Factors Affecting the Reproducibility of Workflows

Zhao et al. (2012) came up with the term workflow decay to refer to a situation where a workflow is not able

to be reproduced. In other literature materials, this situation is known as workflow irreproducibility. They

revealed that nearly 80% of workflows could not be reproduced due to volatile third-party resources,

missing data, missing the execution environment and insufficient metadata about the workflow. We

discuss each of these factors in the subsequent sections. Figure 2.3 provides an overview of their findings

on how the four factors affect reproducibility. It can be observed that third-party resources greatly affect

reproducibility of workflows whereas execution environment has the least influence in reproducibility of

workflows.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

23

Figure 2.3: Comparison of the causes of workflow decay.

2.4.1. Third-party resources

Third-party resources include web services and databases which are used in the instantiation of a

workflow. Provision of such services may be changed or interrupted thereby interfering with the execution

of the workflow. The provider of a web service may change the configuration and implementation of the

web service thereby giving a different result or making it impossible to execute a workflow. Figure 2.4

illustrates that unavailability of third-party resources contributes greatly to the irreproducibility of

workflows. This is due to the depreciation of web services and server failures which are not consistently

administered. Inaccessibility of resources includes the use of different identifiers from the one previously

used in composing the workflow, introduction of access rights requiring authentication to use a service.

Updates to web services result in changes on the types and quality of the outputs due to software or

library upgrades and also changes in functionality as a result of making references to a different web

service using the same identifier.

Source: (Zhao et al., 2012)

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

24

Figure 2.4: Comparison of Workflow decay due to third-party resources.

2.4.2. Nature of the input data

Insufficient input data also affect the reproducibility of scientific workflows. Whenever a mandatory data

required by a process cannot be found, the execution of the entire workflow fails. In the case of

geoscientific workflows, data varies by scale, resolution and coordinate system. Data of different scale,

resolution and coordinate system are incompatible. When incompatible data are used together, they

introduce errors which affect the execution of the workflow.

2.4.3. Execution environment

Execution environment of a workflow comprises of the software and libraries that are required to execute

the workflow. Whenever there is a missing library from which a process depends, reproducibility of the

workflow is affected. Software and libraries are also prone to regular updates from their vendors. Such

updates can introduce compatibility with the old implementation of the workflow.

2.4.4. Workflow Metadata

Workflow metadata is part of the provenance information that is required to reproduce a workflow.

Insufficient description of the workflow negatively affects the reproducibility of scientific workflows.

These include the description of processes, input/output data, the flow of information (connections),

purpose and expected outcomes of the workflow. When there is no adequate information which describes

the workflow, users are not able to understand its purpose and the expected result associated with it. From

their study, Zhao et al. (2012) established that 28% of workflow irreproducibility is caused by insufficient

descriptive information about the workflow.

Source: (Zhao et al., 2012)

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

25

3. WORKFLOW MANAGEMENT SYSTEMS

The Workflow Management Coalition (WfMC) defines a Workflow Management System (WfMS) as “a

system that completely defines, manages and executes workflows through the execution of software

whose order of execution is driven by a computer representation of the workflow logic.” A WfMS is made

up of two main components, the workflow client and the workflow engine. The workflow client contains

a graphical editor which allows users to interactively compose the visual workflow by dragging and

dropping the figures representing the workflow elements. It also allows users to define the rules and

sequence of execution of the workflow.

Additionally, the workflow client has a monitor where users can view the result of their workflow once

execution is completed. After visually modelling a workflow, it is translated to a script which is sent to the

workflow engine where execution takes place. The order of the execution is based on the sequence

defined by the user when composing the workflow. Upon reaching the workflow engine, the workflow

has to be transformed into a linear workflow to determine its execution order. How the workflow engine

arrives at this linear ordering has been mentioned in Section 2.2. A similar concept has also been discussed

by (Schäffer & Foerster, 2008). Figure 3.1 below visually illustrate the composition of the workflow

management system.

Figure 3.1: Composition of Workflow Management System

Standard organizations like OMG, WfMC, and OGC have established several standards to support the

development of workflow management systems. These standards enable WfMSs to automate and

coordinate tasks by independently developed applications distributed by different software vendors

(Schmidt, 1999). Some of the popular standards established by the standardization organizations are

discussed in Section 3.1. As workflow technology get more appreciated within the scientific domain as a

way to automate processing, new WfMSs are increasingly evolving. However, most of the emerging

proprietary WfMSs define their standards for their workflow management. This trend has made it possible

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

26

for this research to group WfMSs into two broad categories. These include standardization compliant

WfMSs and non-standardization compliant WfMSs. The following Sections discuss these categories as

well example of popular WfMSs in each category.

3.1. Workflow Specification Standards

One of the popular standards used in specifying workflows is OMG’s Business Process and Management

Notation (BPMN). We introduced BPMN in Section 2.2 and discussed how it uses notations to visually

model workflows utilizing an industry standard exchange format. These notations are generally accepted

and understood by standardization compliant WfMSs thereby ensuring shareability and reproducibility of

workflows. The OGC has also specified several standards that have made the composition of workflows

through web services possible. These standards discussed in Chapter 4 include WPS, WFS, WCS, and

SWE. WPS provides a specification for enabling sharing and accessing of processing functions while the

other standards specify how a satellite and sensor data can be shared. The OGC process chaining also

defines three ways in which a workflow can be created by chaining several web services. Section 4.4

provides a detailed description of the OGC process chaining.

3.1.1. BPMN

Business Process Model And Notation Specification Version 2.0 provides a list of machine consumable

documents which describes the schema of a business process. The most relevant for this research are the

five XSD files which define the process semantics and its graphical representations. These XSD files

include BPMN20.xsd, Semantics.xsd, BPMNDI.xsd, DC.xsd and DC.xsd. BPMN documents have several

elements and attributes whose descriptions are well elaborated in the BPMN 2.0 specification by (OMG,

2011). This research focuses on some of these elements which are relevant to our proposal of a standard

schema for workflow interchange. At the top-level schema, a BPMN document contains the elements;

process which specifies the semantics of the workflow and the BPMNDiagram for the graphical

representation. The attributes of the process are id, name, and isExecutable.

➢ id: Represents the identifier for the process

➢ name: Represent the name of the process

➢ isExecutable: This is a Boolean value specifying whether the business process is executable or not.

The process has sub-elements such as the startEvent, endEvent, sequenceFlow and serviceTask. The startEvent

indicates the beginning of the process while the endEvent indicates the end of the process. The sequenceFlow

outlines the flow of activity from one task to another. It resembles the connections between activities. The

serviceTask is a type of BPMN task specifically meant for web services or an automated application. It

references an operation and includes attributes such as id, name, and implementation. The implementation

attribute specifies the web service technology or URI that is used to send and receive messages. BPMN

captures data requirements as dataInput and inputSet while the result of execution is captured using

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

27

dataOutput and outputSet. The ioSpecification or InputOutputSpecification is the parent class from which the data

inputs and outputs and input sets and output sets are derived.

Table 3.1: BPMN Process Elements

Elements Attributes Sub elements

ioSpecification Id dataInput

dataOutput

inputSet

outputSet

startEvent id, name

endEvent id, name

sequenceFlow id, name, sourceRef, targetRef

serviceTask id, name, implementation Incoming

Outgoing

ioSpecification

dataInputAssociation

dataOutputAssociation

Table 3.2: BPMN Diagram Elements

Elements Attributes Sub elements

BPMNPlane id, bpmnElement BPMNShape

BPMNEdge

BPMNShape depicts a BPMN model element and contains a screen coordinate for the visual

representation of the element which can be an event or activity. BPMNEdge is used to depict the

relationship between BPMN model elements.

3.1.2. OGC Geoprocessing Workflow (GPW)

The OGC Geo Processing Workflow (Werling, 2008) wraps several web processing service (WPS) in a

BPEL script. This makes it possible for creating workflows through web services and executing them in a

BPEL engine. However, BPEL alone cannot visually represent a workflow and therefore relies on BPMN.

The OGC process chaining also specifies how a workflow can be created by chaining several services in a

single WPS execute request. However, this approach cannot be useful when the services are offered on

different servers. Since the OGC GPW has not been fully established as a standard, this research focused

on the WPS process chaining. The attributes and elements of a WPS which were considered relevant for

this research were as shown below.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

28

Table 3.3: OGC WPS Process Elements

Element Attributes Sub Elements

Identifier

Title

Abstract

DataInputs Input

ResponseForm RawDataOutput

Input maxOccurs

minOccurs

Identifier

Title

Abstract

ComplexData/ LiteralData

Data

ComplexData Format

Reference

LiteralData Data

Reference

mimeType

xlink:href

method

RawDataOutput mimeType Identifier

The Identifier elements refer to the unique identity of the WPS process. DataInputs specifies the input data

requirements. An operation can have at least one input parameter. The minOccurs and maxOccurs

attributes specify the number of input parameter requirement. A mandatory input has a minOccurs value of

1 and above while an optional input has a minOccurs value of 0. An input has other elements like identifier,

title, abstract (description) and the value which can either be passed as a reference or by value. ComplexData

is used for spatial data types like coverages and vector data whereas LiteralData is used for non-spatial data

types like string, numeric and Boolean.

3.2. Standardization compliant WfMSs

The BPMN website1 provides a list of several WfMSs that implements the BPMN 2.0 specification. For

this study, we identified a few of these WfMSs that have been used by experts in the geospatial domain for

managing processes in a workflow. Some of the WfMSs that were found to have demonstrated the

1 http://www.bpmn.org/

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

29

applicability of these standards were Camunda2, JBPM3, Bonita4, ProcessMaker5 and Yaoqiang BPMN

editor6. The OGC Testbed-13 Pross & Christoph (2018) demonstrated the combination of BPMN and

OGC WPS for a conflation workflow using the Camunda BPMN Engine. Rosser et al., (2018) also took

advantage of the JBPM engine to demonstrate metadata profiling approaches for geoprocessing

workflows. Since these tools allow sharing of workflows as BPMN documents, it is possible to reproduce

the same workflows among other BPMN compliant software. ProcessMaker is a cloud-based BPMN

compliant software that is multi-tenant and scalable for multiple users without any management overhead

or performance issues. ProcessMaker allows users to connect to remote databases and retrieve data which

can be used as inputs to the workflow. Additionally, it offers the ability to integrate third-party functions

and libraries as well as connect a set of web services using their REST API.

3.3. Non-Standardization Compliant WfMSs

There exist many WfMSs that do not conform to any established standard for specifying workflows.

Among these are the popular WfMSs used within the domain of geographic information science (GIS).

This research focuses on four main software packages that are frequently used by scientist in the GIS

domain. These include ILWIS model builder, ArcMap model builder, QGIS processing modeler, and

ERDAS Imagine Spatial Modeler. These tools provide users with the ability to create visual workflows

following the standards of business process modelling notations (BPMN). Visual workflows provide an

abstract view of the underlying system definition of the process thereby making it simpler for people with

little knowledge to understand the workflows. In as much as these tools borrow the BMPN diagram

notations, they use their file formats and structure to represent their workflows.

Most the popular software packages support sharing of workflows using a semantic web-based exchange

format which can be understood by both machines and humans. However, these formats are not based on

any standardized schema like the BPMN-based WfMSs which we discussed in the previous Section. This

makes it difficult to achieve interoperability among different WfMSs. XML and JSON are the two

commonly used web-based exchange formats today. The latest version of ILWIS uses a semantic web-

based exchange format in JSON-LD which makes sharing of workflows possible (Lemmens,

Schouwenburg, et al., 2018). ERDAS allow users to share their workflows in JSON file formats while

QGIS support both XML and JSON file formats. ArcMap model builder, however, does not support

sharing of workflows using any of the exchange formats discusses above. Therefore, we did not give it

much attention in this research. Apart from the GIS WfMSs, there are also other commonly used WfMSs

such as KNIME and Taverna which uses their specifications for their workflows. KNIME provides users

2 https://camunda.com/
3 https://www.jbpm.org/
4 https://www.bonitasoft.com/
5 https://www.processmaker.com/
6 https://sourceforge.net/projects/bpmn/

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

30

with an editor for visually creating workflows and an engine for executing already created workflows. It is

an Eclipse-based tool which is available as a desktop application and commonly runs on Java

environment.

3.3.1. ILWIS Model Builder

The structure of an ILWIS workflow reveals four main elements which are id, metadata, operations, and

connections. The metadata is a JSON object of attributes which describe the workflow. The operations

contain a list of processes that are used in the workflow while the connections list the sequence of

connections between operations and the parameters. Each operation has an id, metadata and an array of

inputs and outputs. The attribute inputparametercount indicate the number of required input parameters for

operation while outputparametercount indicates the number of required output parameters. The resource

specifies the execution engine of the operation. By default, this is always assigned the value “ILWIS.” The

syntax attribute specifies the internal name of the operation as a function of inputs.

Table 3.4: ILWIS Workflow Elements

Element Attributes Sub-element

workflows

id

metadata description

inputparametercount

outputparametercount

longname

resource

syntax

operations id

Inputs

Metadata

outputs

Operation Metadata description

inputparametercount

outputparametercount

keywords

label

longname

resource

syntax

final

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

31

Input id

change

local

description

name

optional

show

type

URL

value

Output id

local

description

name

optional

show

type

URL

value

connections fromOperationID

toOperationID

fromParameterID

toParameterID

3.3.2. QGIS Processing Modeller

QGIS modeler provides a JSON file export option for its workflow but with very different structure or

format. At the top level of the JSON file are two elements values and class. Values represent the semantics

of the workflow whereas class has a default value of

“processing.modeler.ModelerAlgorithm.ModelerAlgorithm” which indicates that the file is a modeler

specific type. The most relevant elements of values are inputs and algs. The inputs element is used to specify

modeler spatial input parameters. The attributes of an input parameter include the inputs id, screen (x, y)

position, value, optional, description, data type, name, and others which are irrelevant for this research.

The algs define the algorithms or operations used in the workflow. A particular algorithm is assigned a key

with a set of elements which include input parameters, output values, the name of the algorithm, internal

name of the algorithm (consoleName), description and the screen coordinate.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

32

Table 3.5: QGIS Workflow Elements

Element Attribute Sub-element

class

values Inputs

helpContent

group

name

algs

Inputs Id (key derived from the input name and

index)

pos (x, y)

name

value

optional

default

description

data type

algs Id (key derived from the algorithm name

and index)

Name

consoleName

description

pos (x, y)

Params (input parameters)

outputs

params Name (derived from the input id)

outputs Description

pos (x, y)

3.4. Shortcomings of Current WfMSs

Observation of the WfMSs discussed in the previous Sections revealed a lot of differences in the manner

in which they specify and share their workflows. These differences can affect the execution and visual

representation of a workflow outside its proprietary software package. To help us understand these

limitations better, this research adopted the following questions.

i. Which exchange format is used?

This question is intended to provide answers to the formats used to exchange workflows by specific

WfMSs. The formats can include XML, JSON, text files, script file such as Python or batch, etc.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

33

ii. Does the schema of this format conform to any standard?

This question addresses the grammar used in specifying the workflow and determine whether it is based

on a standard. Standards for workflow specification include BPMN, OGC GPW among others.

iii. Is the workflow reproducible from this format and schema?

This question determines if it is possible to reproduce the workflow based on the answers from the

previous questions.

iv. Does it store enough metadata to describe a process?

From the discussion in Sections 2.3 and 2.4, we found out that sufficient provenance information is

required to support reproducibility of the workflow. In Section 5.1 we provide a minimum requirement

for metadata information that is sufficient to describe a process. Therefore, this question is intended to

answer if the selected WfMSs adhere to such a requirement.

v. Does it support workflow composition from remote services?

The discussion on remote services required to compose a workflow is discussed in Chapter 4. By this

question, we intend to determine if the selected WfMSs are capable of composing and executing

workflows from web services, e.g. WPS, WFS, REST services, etc.

The findings from the questions above are shown in Table 3.6. These findings are further discussed in the

following sections.

Table 3.6: Observed Differences among selected WfMSs

3.4.1. Standardization compliant WfMSs

Even though some of these WfMSs have been proved by researchers to be suitable for composing and

executing geoprocessing workflows, this research, however, observed the following limitations associated

with them.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

34

1. These WfMSs, for instance, Camunda modeler and Yaoqiang BPMN editor only provide client

specific functionalities like editing of workflows. They cannot be used to execute workflows. To

execute the workflow, the user is required to use a different workflow engine. This makes it

difficult to automate the execution of workflows.

2. Since these WfMSs are based on BPMN’s XML schema, they do not support other exchange

formats like JSON which has been proved to be lightweight and suitable for sharing workflows

through the web (Nurseitov, Paulson, Reynolds, & Izurieta, 2009).

3. They specifically target business processes and require expert knowledge to use for geoprocessing

workflows.

4. Some of the WfMSs are commercial and thereby require users to pay to get full functionalities.

3.4.2. Non-Standardization Compliant WfMSs

This category of WfMSs are popularly used within the geo domain and offer great benefits to users when

it comes to automation of geoprocessing tasks. However, observation of these systems revealed several

limitations which make it difficult to share and reproduce geoprocessing workflows.

1. Unlike the BPMN-based WfMSs, this category of WfMSs does not have a standard schema for

sharing their workflows. They have their file formats and use a different structure to define their

workflows.

2. It is not possible to recreate the visual workflows from the file formats of the workflow produced

by some of the WfMSs. For instance, ILWIS does not store the (X, Y) coordinates of the visual

components in its JSON structure. Even though this doesn’t in any way affect the execution of

the workflow, it could pose a more significant challenge to recreate a visual representation of the

same workflow in a different environment.

3. Inadequate metadata information attached to the workflow. For instance, QGIS store data types

for input parameters but not for output parameters. It is thus challenging to assign the output of

one operation to a different operation which might be using different data types. It requires one

to have prior information about the expected output parameter data type. However, in the

absence of this information, it is not possible to connect from one process to another. Non-

spatial data (texts, Boolean, numeric) have no proper definition as other inputs of spatial types in

QGIS. For example, in case of a vector data inputs, QGIS store value, data type, optional

(true/false), name and description attributes whereas for numeric data inputs they only store value

and name attributes.

4. Some of the workflow interchange file formats are not reproducible, e.g., ILWIS cannot

reproduce a workflow of its JSON format, and ArcMap cannot do the same for its Python file

formats.

5. They do not allow composition of workflows from web services, therefore, cannot support

distributed computing.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

35

This research summarizes the limitations of the two categories of WfMSs using the following way.

➢ The workflow definitions created by different WfMSs are not interoperable because they are not

based on a universal standard. Therefore, other workflow engines cannot read and execute

workflows produced by different WfMSs. Even though interoperability has been demonstrated

with the sharing of data from one WfMS to another, the same is not possible for processes and

workflows.

➢ There is no standard workflow interchange schema to map from one workflow to another. For

instance, it is not possible to create a BPMN document from ILWIS or QGIS workflow.

➢ There is little metadata information attached to the workflows making it difficult to reproduce the

same methods in different WfMSs. Minimum required metadata information is discussed in

Section 5.1.

➢ Some of the workflow interchange formats are not reproducible, e.g., ILWIS (JSON) and ArcMap

(Python) file formats.

➢ Mapping on endpoints of third-party resources is not possible making it difficult to discover and

use processes owned by different service providers.

The WfMSs does not allow composition of workflows from web services. Furthermore, the GIS software

does not expose their operations as web services even though OGC proposed the WPS standard in 2007

which can be used to expose GIS operations.

3.5. Proposed Solution for the Challenges facing Current WfMSs

To achieve interoperability, WfMSs should be able to create shareable and reproducible workflows. In the

previous section, we discussed the current WfMSs and the challenges they face which can affect sharing

and reproducibility of workflows. This research considers two approaches which can be used to eliminate

the challenges with current WfMSs.

The first approach focuses on the establishment of a standard workflow interchange format which can be

adopted by developers of geoprocessing software packages. This has been motivated by the differences

observed in the schema for the workflow interchange formats of the different WfMSs. Standardized

interchange format is needed to import a workflow created in a different environment. The standard

schema of BPMN, for instance, supports the translation of a graphical BPMN document to execution

standards of BPEL and also to exchange scientific workflows between different software packages

(Mendling, Mendling, & Neumann, 2004).

Apart from the need to have a standard interchange format for sharing workflows, the current WfMSs pay

more attention to modelling simple and static process thus does not offer sufficient flexibility for

heterogeneous distributed processing using web services. This makes it impossible to achieve high-level

interoperability and integrate workflow processes from different GIS systems and service providers (A.

Banati et al., 2015). Web services and ontology technology is driven by service-oriented architecture (SOA)

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

36

and represent a characteristic of platform and language independence which can be explored by current

WfMSs to achieve interoperability. The two approaches are discussed further in the following subsections.

3.5.1. Standard Workflow Interchange Format

The specification and standardization of workflow interchange format are required to achieve

interoperability among different scientific applications (Mendling et al., 2004). An interchange format

describes the structure of a file through grammar or schema for a particular application domain. A

standardized interchange format supports the integration of applications by allowing independent software

components to consume data files produced by other software packages. International bodies have been

able to come up with several standards for creating and describing geospatial processes. WfMC, for

instance, came up with XML process definition language (XPDL) in 1998 as an interchange format for

business process models. Its popularity was further enhanced when WfMC endorsed BPMN as a graphical

standard for business processes in 2004(Ko et al., 2009). Object Management Group also introduced

business process definition metamodel (BPDM) in 2004 as a rival interchange format to XPDL. Its

interchange format is defined by an XML schema and XML for Metadata Interchange (Amsden et al.,

2004). However, it was outshined by the XPDL due to the long history of XPDL, stability and strong

industry support from WfMC. BPDM has received a lot of criticism as complex and user-unfriendly

standard.

A. Comparison of XML and JSON exchange formats

The XML based formats have existed for decades and were adopted by international bodies to creates

standards for data exchange. For instance, WfMC and OGC standards are mostly XML based. However,

the advancement in technology has presented another file format which is easier for computers to parse.

JavaScript Object Notation popularly referred to as JSON provides an alternative to XML based file

formats because it parses up to one hundred (100) times faster than XML (Nurseitov et al., 2009).

Representation State Transfer (REST) architecture has quickly replaced the traditional Simple Object

Access Protocol (SOAP) architecture in the past few years because of its ease of implementation and use.

JSON is mainly used with REST architecture because of its lightweight. In as much as most of the

standards still use XML and SOAP, observation of the current trends in web service technology shows a

decline in their use in favor of RESTful services and JSON as an exchange format. Using an outdated

technology to specify standards has the potential to lower the applicability of a standard. Due to this, this

research adopts JSON as the data format for the standard workflow interchange.

B. Workflow Transformation

Having a standardized workflow interchange format, we can perform a transformation of workflows from

one WfMS to another using mapping rules specified by the constructs in different WfMSs. The concept of

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

37

our workflow transformation is motivated by the OMG Model Driven Architecture (MDA) which tries to

separate application concerns the underlying implementation technology. J. M. Morales (2004) defines a

model transformation as a set of rules that describe how a model in the source language can be

transformed into a model in a target language. In this definition, a transformation rule specifies how a

construct in one language can be mapped to a construct in a different language. This research adopts this

definition for workflow transformation to mean a set of rules that describe how a workflow in the source

WfMS can be transformed into a workflow in the target WfMS. MDA established three types of models

which are Computation-Independent models, Platform-Independent Models and Platform Specific Model

(OMG, 2003). Each of these models is implemented at different layers in the architecture and offers an

abstraction of the underlying constructs.

Figure 3.2: The Model Driven Architecture framework

Computation-Independent Model (CIM) is a model of the system and the environment in which it

operates. It helps to describe the expected use of the system. Platform-Independent Model (PIM) models

the system operation but abstracts the details of a specific platform. The Platform-Specific Model (PSM) is

a model of the system in a particular platform specified by the PIM. Mapping rules are required for the

transformation between PIM and PSM.

About this research, the standardized workflow interchange format borrows from the concept of a PIM

whereas the PSM is a representation of the same workflow in formats specific to different WfMS. The

interchange format that allows the transformation of the workflows has been discussed in Chapter 5. A

workflow engine can implement several rules to govern the transformation of workflow from one WfMS

to another. For instance, the geoprocesses can have different labels or names, yet they offer the same

Adopted from: (J. M. Morales, 2004)

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

38

functions in different WfMSs. Using mapping rules and ontology, the workflow engine can determine the

corresponding process names to support the automatic transformation of the workflow.

Figure 3.3: Architecture of Workflow Interchange formats

3.5.2. Towards a Web-based WfMS

Creating workflows is a task which requires considerable human effort and sharing them is often limited

by undocumented and non-interoperable geoprocessing implementations (Lemmens, Toxopeus, et al.,

2018). In as such, recreating the same workflow in different software packages becomes cumbersome.

Most of the GIS software packages facilitate the sharing of data between them. They are capable of

converting data from another vendor specific format to a format that can be understood by their software.

However, the sharing of processes has not been handled by these software packages. Due to this,

workflows have limited reusability outside the environment of their specific application software. Since

scientific workflows are always created to solve a particular scientific problem, the sharing of these

workflows across different software packages is becoming a necessity to allow scientist to share processes.

Web-based platforms offer an opportunity for processes owned by specific WfMSs to be exposed as web

services thereby increasing flexibility in the definition of the workflow and provide the extensible

interface. Attempts to use web-based workflow management systems in scientific processes is not new.

The OGC Testbed 13 (Pross & Christoph, 2018) demonstrated the applicability of BPEL and BPMN

using Camunda modeler to compose and execute a shareable conflation workflow from OGC web

services.

Moreover, there are also BPMN compliant web-based workflow clients that can be used in composing

workflows from web services, for instance, the web-based JBPM editor, ProcessMaker and the BPMN

modeler7. However, these WfMSs do not support reproduction of workflows from other non-

standardization compliant WfMS thereby forcing users to recreate their workflow which requires

considerable human effort. Furthermore, they do not provide a way in which users can visualize their

inputs/outputs thus require the use of third-party software.

7 https://demo.bpmn.io/

https://demo.bpmn.io/

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

39

This research proposes a web-based WfMS capable of integrating processes and data using web services as

well as offers a method for sharing workflows between different WfMS. In the following Chapter, we

discuss the composition of workflow from web services.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

40

4. WORKFLOW COMPOSITION FROM DISTRIBUTED
WEB SERVICES

In the previous chapter, we discussed the shortcomings of current WfMSs and proposed a web-based

WfMS as a perfect solution that would make it possible to create workflows from web services and

execute them using the underlying workflow engine. J. Morales & De By (2009) defined a web service as

an interface that describes a collection of operations that are network-accessible through standardized XML messaging.

However, the establishment of REST-based and light-weight exchange formats such as JSON also make it

possible to access and reuse web services. We have discussed in the previously that JSON and REST

services are gaining more acceptance today as compared to the traditional XML and SOAP-based services.

Web services offer great potential for building service-oriented architectures thereby ensuring

interoperability and accessibility of geoprocessing resources. Web services enable the use of multiple

programming languages and utilities since service providers have different implementations for their

services. These services are accessed using standards and APIs offered by service providers. The use of

web services for distributed computing has increased tremendously in the past decade. This is because of

the establishment of standards for managing the creation and sharing of geoprocessing resources. For

instance, the OGC’s WFS and WCS have made sharing of spatial data possible through the web. WFS

makes it possible to share vector data using shapefiles or GeoJSON. Current GIS software is capable of

reading and editing shapefiles and GeoJSON files. The WPS also allows consumption of remotely

distributed processes. A large volume of scientific data is becoming available recently, and this has been

attributed to the rise in production of high-resolution remote-sensing data and crowdsourcing technology

which makes it possible to retrieve data faster and in high quantity (Yue et al., 2012).

Combining several web services in a workflow is seen as the new trend towards ensuring effective and

efficient processing of real-time geospatial data. In this research, we define workflow composition as the

process of aggregating or combining web services in which the output of one service is directed to the

input interface of another service. The graphical tools, for instance, BPMN diagrams provide an intuitive

means to specify workflows by linking web services graphically using nodes and connectors thereby

offering a high-level abstraction of the underlying XML representation. The BPMN document

representing the workflow is interoperable with most BPMN compliant WfMSs and allow reproduction of

the visual workflow. Apart from BPMN, we discussed in the previous chapter that other interchange

formats of workflow could be realized through JSON. This has already been implemented by several

WfMSs such as ILWIS model builder, QGIS model, and ERDAS Spatial Modeler. However, these WfMSs

do not incorporate web services making it impossible to use remote processes. As a result, users are

forced to use locally available processes within their GIS software which are developed using the software

developers’ programming languages and utilities.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

41

4.1. Composability of Scientific Workflows

Combining heterogeneous processing web services in a workflow can often pose problems to users

because of their different requirements and implementations. For instance, the output data type of source

operation can be different from the input data type of the target operation. In the case of geospatial data,

different aspects of the data such as coordinate system and spatial resolution can lead to errors during the

execution of the workflow. Diniz (2016) in his study of the composability of scientific workflows

identified two types of errors that are associated with the incorrect composition of scientific workflows.

The first category of errors is those that make the execution of the workflow to stop while the second

category is often ignored but yield the wrong result. Some of these potential errors can be avoided during

the composition stage of the workflow.

The process of checking if participating web services can work efficiently and give the desired result is

known as workflow composability (Medjahed & Bouguettaya, 2005). Verification of composability of

workflows from web services is currently not handled by most of the WfMSs to ensure correct sequencing

and validation of incoming data. Figure 4.1: Levels of Composability of Scientific Workflowsillustrates five

levels of workflow composability examined by Diniz (2016) which includes structural composability, static

syntactic composability, dynamic syntactic composability, semantic and qualitative composability. A WfMS

should implement all the five levels of the workflow composability to yield a positive result.

Figure 4.1: Levels of Composability of Scientific Workflows

Structural composability ensures that the elements of the workflow composition are correctly connected.

Nodes represent the processing services while the data flow between services is achieved using edges. In

static syntactic composability, the output of a source service can only become an input to the target service if

both of them are of the same data type. In case they are of different data types, then the output of the

source services is automatically converted to the data type of the target service. Dynamic syntactic

composability complements the previous static syntactic composability by ensuring that the outgoing and

incoming data belong to the same type system which includes a coordinate system, geometrical dimension,

temporal and spatial resolution. Semantic composability uses the semantic information of the data and process

to ensure that they provide meaning and verifiable result. It makes use of the semantic web technology to

derive the meaning of data and processes. Semantic composability makes it possible to substitute

processes from a service ontology based on their semantic description. Ubels (2018) demonstrated the

Adopted from: Diniz (2016)

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

42

same concept to convert abstract workflows to executable workflows. Qualitative composability evaluates user

requirements against non-functional features such as response time, availability of the web service, cost,

authorization and authentication, and legal rights. Because of the limitation of time and to avoid losing

track of our objective, this research only implements structural and static syntactic levels of composability.

However, we agree that other levels of composability are very important to the discovery of web services

based on their semantic descriptions and whether they are exposed on the web.

4.2. Data Services

Composing workflows require data and processes which can be both offered as web services. OGC has

defined several standards for sharing and reusing spatial data and processes. In this section, we look at

some of the web services that offer a standardized interface to facilitate the creation and sharing of

geospatial data on the internet.

4.2.1. Web Feature Service

The OCG Web Feature Service (WFS) offers methods for creating, modifying and retrieving vector

format spatial data irrespective of the underlying data source. In this way, WFS provides an interface

which can be used to retrieve the data without accessing the database or the source file. The WFS

supports INSERT, UPDATE, DELETE, LOCK, QUERY and DISCOVERY operations on vector data

using HTTP. The OGC specification for WFS defines several methods. For this research, we focused on

three commonly used methods which include the GetCapabilities, DescribedFeatureType, and GetFeature.

The GetCapabilities method is used to request a WFS server for the list of available operations and services.

A GetCapabilities request can be issued using an HTTP GET or POST method. To make a successful

GetCapabilities request, you need the URL of the WFS server, the name of service, request and the

version of the WFS specification. A simple illustration is shown below.

WFS GetCapabilities8

http://130.89.221.193:85/geoserver/ows?

service=WFS&

request=GetCapabilities&

version=1.0.0

The GetCapabilities request returns an XML response which can be explored to reveal available

operations such as DescribeFeatureType and FeatureTypeList (List of features). From the FeatureTypeList we

obtain the metadata information for a particular FeatureType (feature type). This information illustrated in

Listing 4.1 includes the name, title, abstract or the description of the feature, keywords, and spatial

reference information.

8 Disclaimer: The links provided in the examples may have been changed by the service providers.

http://130.89.221.193:85/geoserver/ows

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

43

Listing 4.1: WFS GetCapabilities Response

1. <FeatureType>
2. <Name>triplesensor:citizen_points</Name>
3. <Title>citizen_points</Title>
4. <Abstract/>
5. <Keywords>features, citizen_points</Keywords>
6. <SRS>EPSG:4326</SRS>
7. <LatLongBoundingBox minx="-3.09847" miny="11.143" maxx="-

2.88357" maxy="11.265"/>

8. </FeatureType>
9. <FeatureType>
10. <Name>maris_mamase:conservancies</Name>

11. <Title>conservancies</Title>

12. <Abstract/>

13. <Keywords>features, conservancies</Keywords>

14. <SRS>EPSG:21036</SRS>

15. <LatLongBoundingBox minx="34.75756814360618" miny="-

1.8350609541501903" maxx="35.82124917586963" maxy="-

1.0417975842866478"/>

16. </FeatureType>

17. <FeatureType>

DescribedFeatureType is used to retrieve additional information about a particular feature type before actual

data download. This method requires the URL of the WFS server, the name of the service, version of

WFS specification, operation name, and the name of the feature type.

DescribedFeatureType

http://130.89.221.193:85/geoserver/wfs?

 request=DescribeFeatureType&

 version=1.0.0&

 TypeName= group1:waterbodies

The describefeaturetype request returns an XML response (example Listing 4.2) showing metadata about the

feature type such as the attributes of the data. In the response below, we can identify that the water bodies

feature has three attributes which include location ID (LCID), landcover type (LANDCOVER) and the

geometry (geom). The type of geometry is a multipolygon.

Listing 4.2: WFS DescribeFeatureType Response

1.
2. <xsd:schema xmlns:gml="http://www.opengis.net/gml" xmlns:group1="13

0.89.221" xmlns:xsd="http://www.w3.org/2001/XMLSchema" elementFormD

efault="qualified" targetNamespace="130.89.221">

3. <xsd:import namespace="http://www.opengis.net/gml" schemaLocation="
http://130.89.221.193:85/geoserver/schemas/gml/2.1.2/feature.xsd"/>

4. <xsd:complexType name="waterbodiesType">
5. <xsd:complexContent>
6. <xsd:extension base="gml:AbstractFeatureType">
7. <xsd:sequence>

http://130.89.221.193:85/geoserver/wfs

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

44

8. <xsd:element maxOccurs="1" minOccurs="0" name="LCID" nillable="true
" type="xsd:string"/>

9. <xsd:element maxOccurs="1" minOccurs="0" name="LANDCOVER" nillable=
"true" type="xsd:string"/>

10. <xsd:element maxOccurs="1" minOccurs="0" name="geom" nillable

="true" type="gml:MultiPolygonPropertyType"/>

11. </xsd:sequence>

12. </xsd:extension>

13. </xsd:complexContent>

14. </xsd:complexType>

15. <xsd:element name="waterbodies" substitutionGroup="gml:_Featu

re" type="group1:waterbodiesType"/>

16. </xsd:schema>

The GetFeature operation returns the selection of features from the data source. This method allows one to

specify the output data format. For this research, a GeoJSON data format is preferred because it is light-

weight and can be easily adopted by the applications. The OGC RESTful services by default provide

GeoJSON data format for GetFeature request.

SOAP GET http://130.89.221.193:85/geoserver/wfs?

 request=GetFeature&

 version=1.0.0&

 TypeName=group1:waterbodies&

 Outputformat=application/json

REST GET http://130.89.221.193:85/geoserver/wfs/1.0.0/group1:waterbodies/

 Accept : application/vnd.geo+json

4.2.2. Web Coverage Service

The OGC Web Coverage Service (WCS) is a standard that is used to retrieve raster data or coverages from

a geospatial server. This service uses GetCoverage operation to access raster data and request metadata

about the raster data through the DescribeCoverage operation. The GetCapabilities of the WCS performs the

same function as that of the WFS. However, it retrieves a list of valid WCS operations and services.

Listing 4.3 shows the contents of a WCS GetCapabilities XML response which includes a coverage ID

(wcs:CoverageId) and the bounding box (ows:BoundingBox).

GetCapabilities

http://130.89.8.26:85/geoserver/ows?

 service=WCS&

 request=GetCapabilities

http://130.89.221.193:85/geoserver/wfs
http://130.89.221.193:85/geoserver/wfs/1.0.0/group1:waterbodies
http://130.89.8.26:85/geoserver/ows

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

45

Listing 4.3: WCS GetCapabilities Response

1. <wcs:Contents>
2. <wcs:CoverageSummary>...</wcs:CoverageSummary>
3. <wcs:CoverageSummary>...</wcs:CoverageSummary>
4. <wcs:CoverageSummary>...</wcs:CoverageSummary>
5. <wcs:CoverageSummary>...</wcs:CoverageSummary>
6. <wcs:CoverageSummary>...</wcs:CoverageSummary>
7. <wcs:CoverageSummary>...</wcs:CoverageSummary>
8. <wcs:CoverageSummary>
9. <wcs:CoverageId>maris_mamase__carcap_kg_23m</wcs:CoverageId>
10. <wcs:CoverageSubtype>RectifiedGridCoverage</wcs:CoverageSubty

pe>

11. <ows:WGS84BoundingBox>

12. <ows:LowerCorner>34.763885106614055 -

1.8323458961775405</ows:LowerCorner>

13. <ows:UpperCorner>35.82010641618325 -

1.0380577375481044</ows:UpperCorner>

14. </ows:WGS84BoundingBox>

15. <ows:BoundingBox crs="http://www.opengis.net/def/crs/EPSG/0/n

ull">

16. <ows:LowerCorner>696275.4 9797373.370000003</ows:LowerCorner>

17. <ows:UpperCorner>813775.4 9885123.370000003</ows:UpperCorner>

18. </ows:BoundingBox>

19. </wcs:CoverageSummary>

20. <wcs:CoverageSummary>

The DescribeCoverage operation is important when more information about the coverage or raster data is

required. The additional information provided by the DescribeCoverage operation includes information about

the coordinate reference system, metadata about the coverage, the domain, range and formats for available

for retrieving the data.

DescribeCoverage

http://130.89.8.26:85/geoserver/ows?

 service=WCS&

 request=DescribeCoverage&

 coverageid=maris_mamase:carcap_kg_23m&

 version=1.0.0

The GetCoverage operation facilitates the acquisition of the raw raster data from the WCS server. The

interoperable data format used in this research to retrieve coverages is the GeoTIFF. This is because

GeoTIFF files can be read by most GIS software.

GetCoverage

http://130.89.8.26:85/geoserver/ows?version=2.0.0&

 service=WCS&

 request=GetCoverage&

 coverageid=maris_mamase:DMintake_kg_23m_nrdays&

 format=image/geotiff

http://130.89.8.26:85/geoserver/ows
http://130.89.8.26:85/geoserver/ows?version=2.0.0&

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

46

4.2.3. Sensor Web Enablement

Pervasive and ubiquitous computing are computer science concepts that describe the growing trend of

embedded computational capabilities. Most of today’s electronic devices are equipped with

microcontrollers which provides them with abilities to sense their environment and communicate with

each other through the internet. In what is popularly known as the Internet of Things (IoT), many devices

today are composed of a large number of sensor nodes which collect information about their

surroundings. Some of this information includes temperature, rainfall, river water levels, light intensity, air

composition, GPS locations among others. These pieces of information which are provided in real-time

can be useful for monitoring pollution, managing disaster, weather forecasting, managing natural

resources, etc. Sharing and accessing real-time information provided by the numerous sensors require a

collection of web-based services to maintain the registry of sensors and the type of information which

they transmit. However, to achieve interoperability for cross-organization activities, a web technology

standard for describing sensors, their outputs, control parameters and location should be considered (Chu,

Kobialka, Durnota, & Buyya, 2006).

The OGC (2012) established the Sensor Web Enablement (SWE) which provides a suite of standards

specifying protocols for discovery, access, and sharing of sensor data. Rouached et al. (2012) categorized

SWE framework into two categories where the interface model defines the standards for sensor related web

services and the information model defines the standards that offer specification for sensor data formats.

Figure 4.2: Sensor Web Enablement Framework

SWE Information Model

The SWE information model services provide schemas for XML encoding of observations, and

measurements as well as a description for sensor platforms regarding discovery, query, and control of

sensors. These services include the Sensor Model Language (SensorML), Observation & Measurement (O

& M) and Transducer Markup Language (TML).

SWE Interface Model

This model provides a specification of interfaces for different sensor web services. These include the

Sensor Observation Service (SOS), Sensor Alert Service (SAS), Sensor Planning Service (SPS) and Web

Source: Rouached et al. (2012)

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

47

Notification Service (WNS). Sensor Observation Service was designed to offer uniform access to

observations from different sensors, and it enables querying and updating of sensor data and metadata

(Bröring et al., 2011). The Sensor Alert Service, on the other hand, offers a notification service by pushing

sensor data to subscribed users based on a defined criterion. SOS is a pull-based service whereas SAS is a

push-based service. SPS is used for setting sensor parameters and enables the tasking of sensors. WNS is

used to manage sessions between the clients and the SWE services using asynchronous notification

mechanism.

SOS implements three operations similar to WFS and WCS regarding their functions. The GetCapabilities is

used to extract metadata information for the sensor data. Searching and retrieving observations is handled

by the SOS GetObservation operation whereas the DescribeSensor operation is used to query particular sensor

descriptions. The following properties are always associated with these operations.

Procedure: This is the sensor, instrument, method or algorithm used to make the observation.

Offering: This is a collection of observations produced by one sensor. For instance, a sensor may observe

temperature, water level, humidity, etc.

Observed property: This is a particular item referenced by its name which is observed by the sensor, e.g.,

temperature.

Feature of Interest: This is a pointer to a specific feature of interest.

GetCapabilities

https://pegelonline.wsv.de/webservices/gis/gdi-sos?

 request=GetCapabilities&

 service=SOS

DescribeSensor

https://pegelonline.wsv.de/webservices/gis/gdi-sos?

 request=DescribeSensor&

 service=SOS&

 procedure= Lufttemperatur-Frankfurt_Osthafen_24700404&

 outputformat=text/xml;subtype=”sensorml/1.0.1”&

 version=1.0.0

GetObservation9

https://pegelonline.wsv.de/webservices/gis/gdi-sos?

 request=GetObservation&

 service=SOS&

 procedure=Lufttemperatur-Frankfurt_Osthafen_24700404&

 version=1.0.0&

 offering=LUFTTEMPERATUR&

 observedProperty=Lufttemperatur&

9 Disclaimer: The links provided in the examples may have been changed by the service providers.

https://pegelonline.wsv.de/webservices/gis/gdi-sos
https://pegelonline.wsv.de/webservices/gis/gdi-sos
https://pegelonline.wsv.de/webservices/gis/gdi-sos

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

48

 featureOfInterest=Frankfurt_Osthafen_24700404&

 responseformat=text/xml;subtype=”om/1.0.0”

Integration of SWE with the Human Sensor Web to handle human generated contents which includes

textual descriptions human collected observations by sensors held by humans is a current research topic

for users of crowdsourced geoinformation (Bröring et al., 2011). Combining satellite data with the sensor

and crowdsourced geoinformation obtained through web services provide a means through which real-

time analysis of natural phenomenon can be achieved. For instance, the ongoing project of AfriAlliance

which is our case study makes use of human sensors and the traditional in-situ and satellite data to

monitor and forecast water resources (Mannaerts et al., 2017b). The OGC SOS was found to be relevant

for this research since it provides operations for retrieving sensor observations.

4.3. Processing Services

The web service technology and the advent of cloud computing have made it possible for software

application vendors to host geoprocessing services in the cloud. The different levels of cloud computing

provision such Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service

(SaaS) makes separation of concerns very possible in the geoprocessing web. Web services allow real-time

processing of geospatial data for creating value-added information. Exposing geoprocessing functions in

the cloud computing platforms has the benefits of bringing scalable, reliable and cost-effective processing

services to users (Yue et al., 2012). Remotely available processing services are essential building blocks for

geoprocessing workflows. The increasing number of distributed and heterogeneous processing web

services has motivated the establishment of a standard to facilitate publication and access to remote

geospatial processing services. For instance, the OGC WPS was established in 2007 to provide rules for

defining geoprocessing web services. However, this standard has not been adopted by several providers of

computing services because of its over-reliance on SOAP technology which is being considered out of

fashion today. Instead, they rely on their implementations using REST technology. The OGC Testbed-13

introduced a WPS implementation using REST architecture in a bid to win the growing REST community

(Gonçalves, 2017). However, this new development does not provide instructions on how to achieve

process chaining. Moreover, it has not yet been adopted as a standard. In the following subsections, we

discuss the implementation of OGC WPS and non-OGC compliant processing services.

4.3.1. OGC Web Processing Service

The OGC Web Processing Service offers a standardized interface for publishing of geospatial processes,

algorithms, and calculations. This service offers three key operations for interacting with remote processes

which are mainly the GetCapabilities, DescribeProcess and the Execute. The GetCapabilities just like other

implementations for WFS and WCS is used to request metadata information for processes available in a

WPS server.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

49

SOAP GET http://130.89.221.193:85/geoserver/ows?

 service=WPS&

 request=GetCapabilities

REST GET http://geoprocessing.demo.52north.org:8080/wps-proxy

The SOAP WPS GetCapabilities returns an XML response shown in Listing 4.4 which when explored

shows a list of services and operations available. The information about a process includes the process

identifier, title, and description (abstract). In contra, the RESTful WPS GetCapabilities request returns a

JSON object shown in Listing 4.5.

Listing 4.4: WPS GetCapabilities response using SOAP bindings
1. <wps:ProcessOfferings>
2. <wps:Process wps:processVersion="1.0.0">...</wps:Process>
3. <wps:Process wps:processVersion="1.0.0">...</wps:Process>
4. <wps:Process wps:processVersion="1.0.0">...</wps:Process>
5. <wps:Process wps:processVersion="1.0.0">
6. <ows:Identifier>JTS:centroid</ows:Identifier>
7. <ows:Title>Centroid</ows:Title>
8. <ows:Abstract>
9. Returns the geometric centroid of a geometry. Output is a single po

int. The centroid point may be located outside the geometry.

10. </ows:Abstract>

11. </wps:Process>

12. <wps:Process wps:processVersion="1.0.0">

13. <ows:Identifier>JTS:contains</ows:Identifier>

14. <ows:Title>Contains Test</ows:Title>

15. <ows:Abstract>

16. Tests if no points of the second geometry lie in the exterior

 of the first geometry and at least one point of the interior of se

cond geometry lies in the interior of first geometry.

17. </ows:Abstract>

18. </wps:Process>

19. <wps:Process wps:processVersion="1.0.0">...</wps:Process>

20. <wps:Process wps:processVersion="1.0.0">...</wps:Process>

The observable keywords of the JSON object include ProcessSummaries which in an array of processes.

Each process has a unique identifier, title, process version, url among others. In contra to the result in

Listing 4.4, the RESTful WPS GetCapabilities responses miss the description of a process.

http://130.89.221.193:85/geoserver/ows

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

50

Listing 4.5: RESTful WPS GetCapabilities Response

The DescribeProcess operation provides more information about a particular process. These include input

requirements, allowable formats and the output information for a process.

SOAP GET http://130.89.221.193:85/geoserver/ows?

 service=WPS&

 request=DescribeProcess&

 identifier=JTS:centroid

REST GET http://geoprocessing.demo.52north.org:8080/wps-

proxy/processes/org.n52.wps.server.algorithm.JTSConvexHullAlgorithm

The identifier parameter specifies the identity of the processes to describe. An example of the result of the

DescribeProcess operation is shown in Listing 4.6 and contains information about the process including

ows:Identifier, ows:Title, ows:Abstract (description), DataInputs and ProcessOutputs. The input and output

parameters specifications included the identifier, title, abstract, multiplicity and supported data type and

format.

Listing 4.6: WPS DescribeProcess using SOAP Bindings

1. <wps:ProcessDescriptions xmlns:xs="http://www.w3.org/2001/XMLSchema
" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:wps="http://www.

opengis.net/wps/1.0.0" xmlns:xlink="http://www.w3.org/1999/xlink" x

mlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xml:lang="en" service="WPS" version="1.0.0" xsi:schemaLoc

ation="http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/

wps/1.0.0/wpsAll.xsd">

2. <ProcessDescription wps:processVersion="1.0.0" statusSupported="tru
e" storeSupported="true">

http://130.89.221.193:85/geoserver/ows

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

51

3. <ows:Identifier>JTS:centroid</ows:Identifier>
4. <ows:Title>Centroid</ows:Title>
5. <ows:Abstract>
6. Returns the geometric centroid of a geometry. Output is a single po

int. The centroid point may be located outside the geometry.

7. </ows:Abstract>
8. <DataInputs>
9. <Input maxOccurs="1" minOccurs="1">
10. <ows:Identifier>geom</ows:Identifier>

11. <ows:Title>geom</ows:Title>

12. <ows:Abstract>Input geometry</ows:Abstract>

13. <ComplexData>

14. <Default>

15. <Format>

16. <MimeType>text/xml; subtype=gml/3.1.1</MimeType>

17. </Format>

18. </Default>

19. <Supported>...</Supported>

20. </ComplexData>

21. </Input>

22. </DataInputs>

23. <ProcessOutputs>

24. <Output>...</Output>

25. </ProcessOutputs>

26. </ProcessDescription>

27. </wps:ProcessDescriptions>

The RESTful WPS DescribeProcess request provides a JSON object shown in Listing 4.7. We observed

similar keywords to the result of the SOAP-based request which included Title, Identifier, Input, ComplexData

and Output.

Listing 4.7: RESTful WPS DescribeProcess Result

The Execute operation is a request to run the specified process with the supplied input parameters to

produce the required data outputs. Since the WPS execute request is complex, it is always sent in the body

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

52

of a POST form. WPS execute allows passing data by value or by reference using WFS or WCS. In the

example shown in Listing 4.8 below, the value of the input data has been specified by reference using

WFS. An example of a RESTful WPS Execute request body where data is passed by value is shown in

Listing 4.9. Passing of data by reference is more preferred for this research as compared to by value since

it can be achieved by the OGC WFS and SOS.

Listing 4.8: WPS Execute Request's Body for SOAP Binding

1. <?xml version="1.0" encoding="UTF-8"?>
2. <wps:Execute version="1.0.0" service="WPS" xmlns:xsi="http://www.w3

.org/2001/XMLSchema-

instance" xmlns="http://www.opengis.net/wps/1.0.0" xmlns:wfs="http:

//www.opengis.net/wfs" xmlns:wps="http://www.opengis.net/wps/1.0.0"

 xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:gml="http://www.o

pengis.net/gml" xmlns:ogc="http://www.opengis.net/ogc" xmlns:wcs="h

ttp://www.opengis.net/wcs/1.1.1" xmlns:xlink="http://www.w3.org/199

9/xlink" xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 http:

//schemas.opengis.net/wps/1.0.0/wpsAll.xsd">

3. <ows:Identifier>gs:Centroid</ows:Identifier>
4. <wps:DataInputs>
5. <wps:Input>
6. <ows:Identifier>features</ows:Identifier>
7. <wps:Reference mimeType="application/json" xlink:href="

http://localhost:8585/geoserver/ows/wfs?SERVICE=WFS&VERSION=1.0.0&R

EQUEST=GetFeature&TYPENAME=topp:tasmania_state_boundaries&OUTPUTFOR

MAT=application/json" method="GET"/>

8. </wps:Input>
9. </wps:DataInputs>
10. <wps:ResponseForm>

11. <wps:RawDataOutput mimeType="application/json">

12. <ows:Identifier>result</ows:Identifier>

13. </wps:RawDataOutput>

14. </wps:ResponseForm>

15. </wps:Execute>

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

53

Listing 4.9: WPS Execute Request's Body for RESTful Binding

4.3.2. Non-OGC Compliant Processing Services

Several geoprocessing services are also available which do not follow the standards of the OGC WPS.

Workflow should incorporate such services to give users opportunities to use a variety of services in their

workflows. Example of non-OGC compliant processing services includes the RESTful coordinate

transformation service that takes an input point and transforms it from the source to the target

coordinates system.

http://gip.itc.nl/services/wcts.py?

 coords=6.5823,52.1487&

 sourcecrs=4326&

 targetcrs=28992

http://gip.itc.nl/services/coordinatetransform/6.5823,52.1487/4326/28992

The specification of the above coordinate transformation can be described in the following manner using

the OGC WPS.

REST endpoint10

The REST endpoint for this service is http://gip.itc.nl/services/coordinatetransform.

Input Metadata Value

 identifier: coords

 abstract: Input Coordinate

 data type: vector geometry (point)

 optional: false

6.5823,52.1487

10 Disclaimer: The links provided in the examples may have been changed by the service providers.

http://gip.itc.nl/services/wcts.py
http://gip.itc.nl/services/coordinatetransform

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

54

 identifier: sourcecrs

 abstract: Source SRS

 data type: integer

 optional: false

4326

 identifier: targetcrs

 abstract: Target SRS

 data type: integer

 optional: false

28992

Output Metadata Value

 identifier: result

 abstract: Result of Coordinate transformation

 data type: vector geometry (point)

4.4. OGC Process Chaining

The OGC process chaining is a concept where two or more WPS are combined into a single powerful

WPS. The process chaining behaves more like function calling in programming where one function’s

output becomes an input to another function. Chaining processes is a useful feature of WPS which

enables the creation of complex workflows from web services (Meek et al., 2016). The OGC WPS

standard 1.0 Open Geospatial Consortium (2012) recommends three ways in which process chaining can

be achieved.

1. By use of BPEL engine to orchestrate services.

2. By designing a WPS that calls other WPS processes in a sequence.

3. By cascading services in a chain as part of the execute request.

The use of a BPEL engine to orchestrate services allows the workflow engine to monitor and manipulate

services. BPEL engines are capable of converting a BPMN document to an executable BPEL script.

However, the use of BPEL has brought discussion among the scientific community since BPEL does not

have a standardized graphical notation to represent workflows and relies heavily on BPMN (Meek et al.,

2016). This has influenced the scientist to prefer using BPMN engines to execute workflows. BPEL

scripts are based on SOAP architecture which is becoming less popular nowadays because of the

increasing adoption of RESTful services. The second approach to achieve process chaining by calling

processes within a WPS seems a perfect solution however it cannot be used for RESTful processing

services because the current WPS specifications only implement process chaining for WPS SOAP

bindings. The second approach also works only when the processing services are being offered by a single

WPS server thereby limiting opportunities for distributed processing. This research adopts the third

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

55

approach to chaining processes within an execute request because it provides more flexibility for

incorporating OGC WPS and non-OGC RESTful processing services.

4.5. Workflow Engine

The composition of web services only yields a visual and textual representation of the workflow. To

execute the workflow and produce some meaningful result, a workflow engine is required. The Workflow

Management Coalition (WfMC), Hollingsworth (1995), defines a workflow engine as a software service that

provides the runtime execution environment for a workflow instance. Workflow engines are responsible for

coordination of the execution process of the entire workflow by ensuring that data flows sequentially to

linked processes. Workflow engines should be able to handle errors that occur during the execution of the

workflow and convey a message with the error information to the user. A workflow engine that gives

users the ability to orchestrate and execute distributed web services is desirable to support scientific

research.

The WfMC’s workflow architecture identifies major components and five interfaces to these components

as demonstrated in Figure 4.3: The WfMC Workflow Architecture. The process definition tools consist of

all the processes available for composing a workflow. In the case of this research, the process definition

tools represent a list of geoprocesses which have been exposed as web services. The workflow enactment

service consists of one or more workflow engines where management and execution of workflow instance

take place. The Workflow API provides an interface where workflow clients can make requests to the

workflow engine which include execution of a defined workflow, passing of relevant data and

transformation of workflow interchange formats of different WfMSs.

Figure 4.3: The WfMC Workflow Architecture

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

56

The WfMSs which were discussed in the previous chapter have their workflow engines which can execute

their workflow specifications. For instance, an ILWIS workflow can only be executed by an ILWIS

engine. Likewise, a BPMN document can only be executed using a BPMN engine. This is a limitation to

the current WfMSs since the execution of external processes cannot be achieved. This limitation of

current WfMSs motivated the implementation of our workflow engine. Our workflow engine performs

the following functionalities some of which cannot be achieved by the current WfMSs.

i. Translate the JSON representation of the workflow to an executable script which can be

executed by the workflow engine. This involves automatic creation of WPS execute body using

XML for OGC compliant WPS.

ii. Control and coordinate the execution of the workflow by orchestrating web services according to

the order of the service composition.

iii. Generate downloadable results and provide users with the ability to view their result as a Web

Mapping Service (WMS).

iv. Transform workflow produced by one WfMS to another WfMS.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

57

5. SUPPORTING SHAREABILITY AND
REPRODUCIBILITY OF WORKFLOWS

In the previous chapters, we discussed the current WfMSs and the challenges they face to support the

shareability and reproducibility of workflows. It was realized that to make workflows shareable and

reproducible; a standard workflow interchange format is required which can facilitate the transformation

of workflows from one platform to the other. We also proposed a web-based WfMS with a client

component allowing users to create and edit workflows, and a workflow engine that can execute and

transform workflows from different WfMSs. This chapter proceeds with the discussion on the

methodology to adopt in transforming workflows from one WfMS to another to realize shareability and

reproducibility. Kechagioglou & Lemmens (2018) identified two important considerations to ensure

successful transformation of workflows from one WfMS to another. The first consideration which

supports shareability involves the conversion of notation specific constructs from the source software

through an intermediate then to the target WfMS while still maintaining the semantics and data flow in the

workflow. WfMSs should provide sufficient constructs and metadata for expressing the flow logic in their

workflows. The second consideration is responsible for the reproducibility of the workflow. It involves

the detection of corresponding operators, for instance, internal names of processes in different WfMSs

making it easy to reconstruct the workflow based on the input and output requirements of the target

WfMS’s operation. A study by Ubels (2018) found out that corresponding operators of the target WfMS

and their notations can be obtained using Semantic Web technology, operations ontology, and Linked

Data. Though this was demonstrated with a proof of concept using ArcGIS desktop application, his

concept can still be useful for web services provided the software vendors to expose APIs for their

various GIS software.

5.1. Supporting Shareability through Standard Interchange Format

5.1.1. Mapping Workflow Constructs of different WfMSs

As was observed in Chapter 3, most GIS software packages have adopted JSON as the primary data

format for representation of their workflows. However, it was found that all the GI software packages

have their schema for their workflow interchange format. As a result, there is a desire to come up with a

standardized interchange format for scientific workflows to achieve interoperability. Mendling et al. (2004)

observed that for universal interchange format to be successful, it should reflect at least the commonly

used grammar among different software packages. In that regard, this research attempted to consolidate

the schema of workflow interchange formats of various GI software packages which are already discussed.

Additionally, it also looked at the XML-based BPMN documents and OGC Geoprocessing Workflow

supported by WPS, to identify common constructs for the JSON schema.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

58

The mapping between elements of BPMN, OGC GPW, ILWIS, and QGIS was obtained based on the

schema and structure of the workflow exchange formats that were discussed in Section 3.1 and Section

3.2. For example, Table 5.1 below shows that a BPMN serviceTask element can have a corresponding

name of the operation in OGC GPW and ILWIS, and algs in QGIS. However, there are certain keywords

which did not have a one-to-one match because of the different implementation of the corresponding

WfMSs.

These findings correspond to the work done by Kechagioglou & Lemmens (2018) where they observed

the relationship between BPMN document and ILWIS workflow. There are however some differences in

this research as compared to their study. In their study, they used the BPMN scriptTask element to map to

the operation element of ILWIS. However, this research is based on using web services, and therefore we

adopt serviceTask instead of scriptTask. This research has also identified additional elements such as id,

inputSet, outputSet, and implementation.

Table 5.1: Mapping Workflow Elements for different Workflow Specifications

BPMN OGC GPW ILWIS QGIS

process process workflow values

serviceTask operation operation algs

inputSet DataInputs inputs inputs

outputSet ResponseForm outputs outputs

dataInput Input input params

dataOutput RawDataOutput output

sequenceFlow connection

incoming receive fromOperationID ValueFromOutput

outgoing reply toOperationID

id identifier longname consoleName

implementation resource

5.1.2. Standard JSON Schema for Sharing Workflows

Based on the findings in the previous section, the JSON schema for standard interchange format was

recommended to have the four main components which include an identifier, metadata, operations, and

connections. Figure 5.1 illustrates the relationship between a workflow and its components. A workflow

must contain metadata and one or many operations. Moreover, a workflow must also contain a definition

of the connections between its operations. An operation, on the other hand, can be connected to another

operation (s). An operation has metadata which describes it as a processing resource. It also contains one

or more input (s) and output (s). It can also be observed that a workflow can be an operation. The

attributes of the diagram are discussed in the following paragraphs and a concrete class diagram which

describes the whole workflow and its elements is shown later in Figure 5.2.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

59

Figure 5.1: Abstract Class diagram for a Workflow

A. Identifier

This is a unique number which is used to refers to a particular workflow. The keyword used for this is

“id,” and the value is of the integer data type.

B. Metadata

This object contains the descriptive details of the workflow which includes the name of the workflow and

description. The description of the workflow entails what the function of the workflow itself. The

produced JSON schema for the metadata property is shown in Listing 5.1.

i. longname: String data type.

ii. description: String data type.

Listing 5.1: JSON schema for workflow metadata property

1. {
2. "$schema": "http://json-schema.org/draft-04/schema#",
3. "type": "object",
4. "properties": {
5. "metadata": {
6. "type": "object",
7. "properties": {
8. "longname": {
9. "type": "string"
10. }

11. },

12. "required": [

13. "longname"

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

60

14.]

15. }

16. },

17. "required": [

18. "metadata"

19.]

20. }

C. Operations

A workflow can have one or more operations. An operation is used synonymously to mean a process or

activity in the workflow. The operations of a workflow are contained in an array object having the

keyword “operations.” The general properties of every operation are as shown in the table below. A JSON

scheme was produced from these properties which are illustrated in Listing 5.2.

Property Description

id Integer type specifying the index of the operation in the operations array.

metadata JSON object providing descriptive information of the operation

inputs An array of input data.

outputs An array of output data.

Listing 5.2: JSON schema for the properties of an operation

1. {
2. "$schema": "http://json-schema.org/draft-04/schema#",
3. "type": "object",
4. "properties": {
5. "id": {
6. "type": "integer"
7. },
8. "metadata": {
9. "type": "object"
10. },

11. "inputs": {

12. "type": "array",

13. "items": {}

14. },

15. "outputs": {

16. "type": "array",

17. "items": {}

18. }

19. },

20. "required": [

21. "id",

22. "metadata",

23. "inputs",

24. "outputs"

25.]

26. }

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

61

a.) Identifier

The identifier of an operation is a unique integer number that is used to show the index of an operation in

the workflow. This number is generated by the workflow editor and is not part of the metadata of an

operation.

b.) Metadata

The metadata object of an operation contains properties which are obtained from the metadata definition

of the process. For instance, the OGC WPS Get Capabilities requests, identifies that a process has the

following metadata definitions.

Property Description

ows:Identifier An identifier which uniquely identifies a process in the WPS server.

ows:Title It refers to the long name of the process.

ows:Abstract The description of the WPS process.

The metadata of QGIS algorithms also contains some of the following properties:

Property Description

name Name of the algorithm.

consoleName It refers to the internal name of the algorithm.

description Description of the algorithm.

pos The position of the visual object for the algorithm specifying the X and Y screen

position.

The standardized JSON interchange format consolidates the metadata schema of the selected GI software

packages (ILWIS and QGIS), and the OGC WPS Get Capabilities is illustrated below. The corresponding

JSON schema for the metadata property is shown in Listing 5.3.

Property Description

longname Long name of the operation.

label A label is representing the internal name of the operation. This uniquely

identifies the operation. Operations can have the same long name but

different labels.

description Description of the operation and what it does.

inputparametercount Input parameter count is referring to the number of inputs that an

operation can have.

outputparametercount Output parameter count is referring to the number of outputs that an

operation can yield.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

62

url Uniform resource locator (URL) referring to the address of the operation

endpoint.

resource Resource identifies the owner of the process; for instance, a WPS or an

ILWIS process.

position The position of the visual object for the process specifying the X and Y

screen coordinates

Listing 5.3: JSON schema for the operation's metadata property

1. {
2. "$schema": "http://json-schema.org/draft-04/schema#",
3. "type": "object",
4. "properties": {
5. "metadata": {
6. "type": "object",
7. "properties": {
8. "longname": {
9. "type": "string"
10. },

11. "label": {

12. "type": "string"

13. },

14. "url": {

15. "type": "string"

16. },

17. "resource": {

18. "type": "string"

19. },

20. "description": {

21. "type": "string"

22. },

23. "inputparametercount": {

24. "type": "integer"

25. },

26. "outputparametercount": {

27. "type": "integer"

28. },

29. "position": {

30. "type": "array",

31. "items": [

32. {

33. "type": "integer"

34. },

35. {

36. "type": "integer"

37. }

38.]

39. }

40. },

41. "required": [

42. "longname",

43. "label",

44. "url",

45. "resource",

46. "description",

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

63

47. "inputparametercount",

48. "outputparametercount",

49. "position"

50.]

51. }

52. },

53. "required": [

54. "metadata"

55.]

56. }

c.) Inputs

An operation can have one or more inputs. The inputs of an operation are therefore contained in an array

object. The OGC WPS DescribeProcess request indicates a detailed description of the process with a

specification for the required inputs and output parameters. The input of a WPS process has some of the

following properties.

Property Description

ows:Identifier The unique identifier for the input.

ows:Title The name of the input.

@minOccurs It specifies the minimum required occurrence of the input. When the value of the

@minOccurs is 0, this implies that the input is optional. On the other hand, if the

value of @minOccurs is 1, the input is mandatory.

ows:Abstract The description of the input

ows:DataType The data type of the input object. However, it is mostly used when the input is

not a geodata, for instance, numeric, Boolean or textual inputs. In case of a vector

or raster input, the data type is obtained from the mime type format. If the mime

type contains an XML or GML or JSON or WKT, then the data type is treated as

a vector or geom. Otherwise, if the mime type contains an image, then the data

type is treated as coverage or raster.

When we consider QGIS workflow interchange format, the input has the following properties.

Property Description

identifier The keyword for the identifier is assigned based on the

name of the input feature specified by the user. Its value

is a JSON object.

name Name of the input

processing.core.parameters.ParameterVector

processing.core.parameters.ParameterRaster

This can be a vector or raster. It was highlighted in

Section 3.4 that QGIS workflow interchange format

does not store metadata for textual inputs.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

64

optional Optional indicating whether an input is mandatory or

not. A mandatory input has a Boolean value of true.

description Description of the input.

value Value of the input.

After considering the schema for the input of the WPS process, ILWIS operations, and QGIS algorithms,

this research came up with the following input properties for the standard workflow interchange format.

A JSON schema for the input property was produced as illustrated inListing 5.4.

Property Description

id Integer data type referring to the index of the input in the inputs array object.

identifier String data type for the identifier

name String data type

type This represents the data type of the input item. The inputs were categorized into

the following data types; Coverage, Vectors, Boolean, Text and Numeric.

description String data type.

optional Boolean data type.

URL URL specifying the path to input data. This is used when data is passed by

reference

value The value of the input in case data is passed by value.

Listing 5.4: JSON schema for an operation's input

1. {
2. "$schema": "http://json-schema.org/draft-04/schema#",
3. "type": "object",
4. "properties": {
5. "id": {
6. "type": "integer"
7. },
8. "identifier": {
9. "type": "string"
10. },

11. "name": {

12. "type": "string"

13. },

14. "type": {

15. "type": "string"

16. },

17. "description": {

18. "type": "string"

19. },

20. "optional": {

21. "type": "boolean"

22. },

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

65

23. "url": {

24. "type": "string"

25. },

26. "value": {

27. "type": "string"

28. }

29. },

30. "required": [

31. "id",

32. "identifier",

33. "name",

34. "type",

35. "description",

36. "optional",

37. "url",

38. "value"

39.]

40. }

d.) Outputs

ILWIS workflow modeler and WPS DescribeProcess requests have the same schema for a process output as the
input. However, QGIS has a different output schema from its inputs. It only contains the description of the output

and the screen coordinates of the output. It was mentioned in Section 3.3.2 that since QGIS does not store a detailed
definition for its output, conversion of QGIS workflow to an independent workflow format can be a bottleneck.

This is because very little information can be deduced from their output schema. This research, therefore,
recommends using the schema definitions used by ILWIS and WPS process description. The following output
properties are suggested for the standard workflow interchange format. A corresponding JSON schema for the

output object was produced as illustrated in

Listing 5.5.

Property Description

id An integer data type representing the index of the

output in the outputs array object.

identifier String data type.

name String data type.

type This represents the data type of the input item.

The inputs were categorized into the following

data types; Coverage, Vectors, Boolean, Text and

Numeric.

description String data type.

value The raw value of the input.

Listing 5.5: JSON schema for an operation's output

1. {
2. "$schema": "http://json-schema.org/draft-04/schema#",

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

66

3. "type": "object",
4. "properties": {
5. "id": {
6. "type": "integer"
7. },
8. "identifier": {
9. "type": "string"
10. },

11. "name": {

12. "type": "string"

13. },

14. "value": {

15. "type": "string"

16. },

17. "description": {

18. "type": "string"

19. },

20. "type": {

21. "type": "string"

22. }

23. },

24. "required": [

25. "id",

26. "identifier",

27. "name",

28. "value",

29. "description",

30. "type"

31.]

32. }

D. Connections

This object represents the linking of operations. An output of operation becomes an input to another

operation. BPMN, OGC GPW, ILWIS, and QGIS address the issues of process chaining differently.

Whereas WPS uses nested XML for chaining processes, ILWIS uses connection parameters of processes

and inputs. BPMN, on the other hand, uses incoming and outgoing elements to specify data flow. Section 2.2

illustrates the concept of building a topological relationship between processes from a directed acyclic

graph (DAG) model. Given two operations A and B with process IDs 0 and 1, this concept can be

illustrated in the following two notations.

i. Using the operation IDs

The connection is from 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐼𝐷 0 → 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐼𝐷 1

ii. Using the parameter IDs

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

67

The data flow is from 𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐼𝐷 0 → 𝐼𝑛𝑝𝑢𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐼𝐷 0

The recommended properties of the connections are explained in the following manner. A JSON schema

conforming to these properties for the connection object was produced as illustrated in Listing 5.6.

Property Description

fromOperationID This is an integer value which represents the ID of the parent operation

from which the connection originates.

toOperationID This is an integer value which represents the ID of the child operation to

which the connection is made.

fromParameterID This is an integer value representing the ID of the output data of the

parent operation.

toParameterID This is an integer value representing the ID of the input data of the child

operation.

Listing 5.6: JSON Schema for connection property

1. {
2. "$schema": "http://json-schema.org/draft-04/schema#",
3. "type": "object",
4. "properties": {
5. "fromOperationID": {
6. "type": "integer"
7. },
8. "toOperationID": {
9. "type": "integer"
10. },

11. "fromParameterID": {

12. "type": "integer"

13. },

14. "toParameterID": {

15. "type": "integer"

16. }

17. },

18. "required": [

19. "fromOperationID",

20. "toOperationID",

21. "fromParameterID",

22. "toParameterID"

23.]

24. }

When the individual schemas for the workflow elements described in the previous sections are combined,

we develop a standard JSON interchange schema which can be adopted by software developers to

represent their workflows. The complete JSON schema is shown in Appendix A. while the visual

presentation is as illustrated in the class diagram of Figure 5.2. A workflow engine that is implemented in

Chapter 6 maps the constructs of this standard interchange schema to the workflow interchange formats

of specific software packages that allow transformation of workflows from one WfMS to another. This

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

68

enables sharing of workflows across different software packages without the need to recreate the

workflows in a different environment.

Figure 5.2: Class diagram for the Workflow Schema

5.2. Provenance Support for Reproducibility

Reproducibility allows a workflow created for a particular scientific problem to be reused by different

users through repetition of steps to produce scientifically similar results. In Section 2.3.1, we discussed

that to ensure reproducibility and repeatability, sufficient provenance information is desired. Provenance is

used with workflows to capture information such as processes and their execution environment, input

parameters provided to processes, a log of processes, connections, intermediary and final outputs. We

discussed four main factors affecting reproducibility in Section 2.4 which includes the availability of third-

party resources, nature of the input data, execution environment and provision of enough metadata for

the workflow. The standardized workflow interchange schema mentioned in the previous section captures

provenance for most of the required information to ensure successful reproducibility. For instance, it

stores information about the third-party resources such as web services which include the name of the

resource, the URL of the service provider, the internal name of the process, input and output parameters

with their definitions and the connections between the processes. The OGC standards that were

considered in Chapter 4 provide a framework for defining how data is shared among the processes. Since

these standards are stable and are not prone to change frequently, they make it possible to reuse data

hosted in remote databases.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

69

Provenance information about the resources makes it possible to discover processes and data required to

reproduce workflows in different WfMSs. This involves the detection of corresponding operators, for

instance, internal names of processes in different WfMSs making it easy to reconstruct the workflow based

on the input and output requirements of the target WfMS’s operation. One method of discovering

processes and data from provenance information in a workflow is by using semantic web technologies.

This has been demonstrated by (Ubels, 2018). Due to time constraints, this research does not implement

his method. However, we implement a simple search alternative to illustrate reproducibility of

geoprocessing functions in different GIS WfMSs from a list of selected operations illustrated in Appendix

D. The flowchart illustrated in Figure 5.3 describes the steps required to find the best match for a process

name of a different GIS tool by a specified keyword. The first step in the flowchart uses keywords

comprising of label, longname and description of the process obtained from the provenance of the

workflow in the JSON interchange format to search the database for processes with similar keywords. The

search result in an array of matching processes and the number of hits from the keyword. The next step

determines if the array is empty in which case the process terminates implying there was no search result.

In case the size of the array is greater than zero, the next step is invoked where the processes are listed

ordered by the number of hits found. The process with the highest number of hits is chosen as the best

match. The algorithm represented in the flowchart is implemented in 6.6.

Figure 5.3: Flowchart for process discovery

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

70

5.3. REST API to Support Reuse

In this section, we provide a means in which software developers can reuse our services to support sharing

and reproducibility of workflows. A RESTful API was implemented with the endpoint definitions shown

in Table 5.2 capable of receiving and executing requests from users.

Table 5.2: RESTful API for Service Reuse

REST endpoint Purpose

http://130.89.221.193:75/workflow/execute

Body/Payload: Workflow (JSON text)

Headers: {“content-type”: “Application/json”}

Workflow execution

http://130.89.221.193:75/workflow/transform/

 < string:source>/

 < string:target>

Body/Payload: Workflow (JSON text)

Headers: {“content-type”: “Application/json”}

Or

Body/Payload: Workflow (XML text for BPMN

source)

Headers: {“content-type”: “text/xml”}

Workflow transformation

To execute a workflow, use the REST API, the workflow JSON format is loaded as a payload to the

HTTP POST request. JSON specification for the workflow is based on the schema defined in the

previous section.

To transform a workflow, the user must specify the source specification and the target in the endpoint. For

instance, the following are valid examples of REST endpoints. The workflow specification of the source

system is assigned to the payload in the POST request.

http://130.89.221.193:75/workflow/execute
http://130.89.221.193:75/workflow/transform/

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

71

REST endpoint11 Transformation

http://130.89.221.193:75/workflow/transform/pim/bpmn Platform independent workflow

specification to BPMN specification.

http://130.89.221.193:75/workflow/transform/pim/qgis Platform independent workflow

specification to QGIS specification.

http://130.89.221.193:75/workflow/transform/ilwis/qgis ILWIS to QGIS workflow specification.

http://130.89.221.193:75/workflow/transform/qgis/bpmn QGIS to BPMN workflow specification

http://130.89.221.193:75/workflow/transform/pim/ilwis

Platform independent workflow

specification to ILWIS specification.

11 Disclaimer: The links provided in the examples may have been changed by the service providers.

http://130.89.221.193:75/workflow/transform/
http://130.89.221.193:75/workflow/transform/
http://130.89.221.193:75/workflow/transform/
http://130.89.221.193:75/workflow/transform/
http://130.89.221.193:75/workflow/transform/

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

72

6. PROTOTYPE IMPLEMENTATION

In the previous chapters, we discussed two methods which can facilitate sharing and reproduction of

geoprocessing workflows. These included shareable processes which are exposed as web services in

composing workflows and also providing a standard workflow interchange format for representing

workflows. We discussed in Chapter 3 that to compose workflows from web services, we require a web-

based workflow client and a backend workflow engine which provides functionalities which current

WfMSs cannot offer. The most important feature which current GIS WfMSs cannot provide is the ability

to use cloud-based processing services. Cloud-based computing allows users to perform geocomputation

utilizing state-of-the-art high-performance computing technologies which cannot be provided by personal

computers. In Chapter 4, we discussed how we can use web services to compose workflows using the

standards proposed by OGC for web processing services and data services. We also discussed the OGC

process chaining which provides another way of modelling the sequence of workflow execution. The fifth

chapter of this research proposed a standard workflow interchange format based on a JSON schema

which can be used to create a platform independent model for transforming workflows from different

WfMSs. We found out several constructs of particular WfMS which are semantically related and can be

mapped using the standard interchange format.

In this chapter, we take a different approach which involves the development of a prototype system that

can achieve all the concepts we discussed in the previous chapters. In the next Section, we present the

architecture of the prototype system and its requirements.

6.1. System Architecture

A system architecture consists of the components making up a system, their functions, and interactions to

provide the desired objective of the system. The system's components follow a design principle in

computer science known as separation of concerns where each of them addresses a separate concern (Singh,

2016). We used this principle in our implementation to ensure a scalable application that supports reuse of

modules and also provide independent developments and maintenance. Figure 6.1 illustrates this principle

through the multi-tier client-server architecture which separates the presentation layer, processing layer

and database layer. The presentation layer is visible to users and provides a thin client allowing them to

create and modify workflows from available web services. The processing layer is made up of distributed

processing servers providing OGC WPS compliant and non-OGC compliant RESTful services.

Abstracted from the users is the processing engines from which these web processing services lies which

include ILWIS, QGIS, 52North WPS Servers, etc. The database layer is responsible for proving access to

data through the data services such as WFS, WCS and SWE’s SOS. For simplicity, the system’s

components were distinguished into two categories: client-side components and the server-side

components.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

73

Figure 6.1: System Architecture

6.1.1. Client-Side Components

The client-side components include the software and libraries which are needed to build the client

application. Since this is a web application, it requires a JavaScript enabled web browser. Most of the

modern web browsers are JavaScript enabled and can be used to run the web application. This particular

web application was built using the following JavaScript libraries.

Ext JS

Ext JS is a popular JavaScript framework for building interactive cross-platform web applications. Ext JS

uses scripting techniques of AJAX, DHTML, and DOM which are essential for asynchronous

programming and it complies with the model-view-controller (MVC) architectural pattern thereby granting

separation of concerns. Making a graphical user interface (GUI) with Ext JS does not involve a lot of

programming work since most of the components are inherited from already implemented classes. We

used ExtJS to build the GUI of the applications and provide data access using AJAX technology.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

74

D3 JS

D3 JS is a JavaScript library used in creating dynamic and interactive data visualizations in web browsers.

It uses the client stack web technologies mainly Scalable Vector Graphics (SVG), HyperText Markup

Language (HTML) and Cascading Style Sheet (CSS). We use the D3 library in our prototype system for

visualization of the workflow elements using BPMN diagrams. The visual workflow was translated

automatically to a textual JSON representation using the standardized workflow interchange format

proposed in Chapter 5. We also used D3 JS to display time-series of sensor data obtained using the Sensor

Observation Service (SOS).

OpenLayers

OpenLayers is another JavaScript library used for displaying map data in the web browsers. OpenLayers

offers a dynamic display of maps and allows users to interact with the features in the map using map

events. OpenLayers provides a display for map tiles and vector data using WMS and WFS respectively. We

used OpenLayers to display input and output maps of the workflow.

6.1.2. Server-Side Components

The server-side components of the web application provide the functions of a workflow engine as well as

support interactions with the database. Some of the functions include the transformation of workflow

from one interchange format to another, the orchestration of services to obtain the execution sequence

and coordinate the execution of the workflow. For demonstration purpose, we implemented non-OGC

RESTful services for ILWIS operations and other RESTful services to enable execution of workflow

using other REST-based clients. The following components are part of the server.

Apache HTTP Server

Apache HTTP server was used to render web pages to the client as well as provide an interface between

the client and the other server applications. The version of Apache HTTP server used for this

demonstration was 2.4. The installation and setup of Apache HTTP Server are available as documentation

in the Apache website.

Apache Tomcat and GeoServer

We installed GeoServer in two servers to act as providers for distributed processing and data services.

Using the GeoServer manual, we set up the WCS, WFS, and WPS. GeoServer is a Java Servlet application,

and that was the motivation for using Apache Tomcat since it is built to run Java servlet applications. This

set up used Apache Tomcat version 9 and GeoServer version 2.8. Since these services run on Java, it

required the installation of Java Runtime Environment (JR) version 8. This research also made use of the

GeoServer managed by 520 North organization to offer data and processing services.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

75

Python

The prototype system used Python as a server-side programming language. The choice for python was

inspired by the fact that it has a lot of libraries developed for geocomputation such as GDAL and Numpy.

A lot of GIS software also have a python module which provides an API for which this prototype can

consume their functions. For instance, ILWIS and QGIS python connectors. The version of Python

programming used was Python 3.6.

GIS Processors

To enable us to study and demonstrate the functions of our system regarding sharing processes and

workflows, this research relied on ILWIS and QGIS. These are open source GIS software applications

which gave us the opportunity to explore their internal operations using their python connectors.

6.2. Generic Workflow Client

As a proof of concept, a generic workflow client was developed (see Figure 6.2) which allows the visual

composition of workflow from web services. The workflow client has three main panels; the first panel is

made of up of web services which are further divided into processing and data services sub-panels. The

processing services are listed in a tree view with the root referring to the name of the processing server

offering the services while the children are made of the individual processes. The default set up is made up

of five processing servers offering OGC compliant WPS and non-OGC compliant RESTful processing

services. The metadata for a particular processing service can be viewed by right-clicking the process from

the tree and selecting the appropriate menu from the menu item. The data services sub-panel provide a list

of WCS, WFS and SOS web services that are used for this demonstration. The second panel comprises of

a visual editor for composing workflows from the listed web services. The processing services are added

to the editor by dragging and dropping the listed services from the tree view which automatically draw a

rectangular object for the chosen process. Whenever a new web service is added to the editor panel, a

textual representation of the workflow as a JSON object is automatically created from the visual

representation based on the schema which was discussed in Section 5.1.2. The JSON text similar to the

one shown in Listing 6.1 can be saved to a local folder and reused in the future to run the same workflow

with different data using the same processes. The third panel is responsible for the visualization of data

and results in a map and chart.

To achieve structural composability, we use nodes to represent processes and edges to define connections

between processes. The user specifies the sequence of processing by creating links from the source to the

target process. Swapping processing services of different service providers is possible to enable users to

perform the same operation in a separate processing server from the former and achieve high reliability.

The data services are passed to the processes by reference to the path of the data. This can be

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

76

accomplished by manually typing the path of the data in the settings of the process or by dragging and

dropping the service from the list of data services available. The workflow client takes care of the static

syntactic compatibility by checking that the data type of a source process output is the same for the target

process input. In case of different data types, for example, connecting a raster output to a vector input, an

error message is displayed to warn the user. Verifying the workflow for semantic composability discussed

by Diniz (2016) is not supported for this implementation because of the different schema used for our

JSON representations of the workflow.

Figure 6.2: The Generic Workflow Client's User Interface

This interface was built using the ExtJS framework and the map rendered using OpenLayers which are

already discussed in the previous Section. The source codes for this implementation are available in the

GitHub12.

12 https://github.com/robertohuru/WorkflowApp

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

77

Listing 6.1: Snippet of the JSON Representation of a Workflow

To run the workflow, the JSON file is sent via HTTP POST to the workflow engine for execution. The

workflow client also allows users to download the resulting data of each operation using WCS and WFS.

The supported WCS output format is Geotiff while WFS is GeoJSON.

6.3. Data Services

Our implementation makes use of the OGC standards for data access and sharing for raster, vector and

sensor data. These standards enable users to create, share and combine the traditional satellite and in-situ

data with the crowdsourced geoinformation or Volunteered Geographic Information. Combination of

data obtained from the three sources has several benefits when used in a workflow. One of the most

important benefit is the ability to incorporate the use of most recent data in a workflow which can

supplement traditional satellite and in-situ data. This becomes useful for scientists involved in research

including disaster management, air pollution, water resource monitoring and management among others.

The OGC specified three standards for data services which we already discussed in Section 4.2. In the

following section, we discuss the implementation of these standards in our prototype system. For the

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

78

demonstration of these services, we used GeoServer. However, the same functions can be provided using

other servers such as the Mapserver.

6.3.1. Web Feature Service

In Section 4.2.1, we discussed three operations for the OGC Web Feature Service (WFS) that we found to

be relevant for this research. These operations were the GetCapabilities, DescribeFeatureType, and

GetFeature. We implement GetCapabilities to retrieve the metadata of all the features within a given WFS

server. The GetCapabilities operation requires the URL of the WFS server, service type, request and the

version of the GeoServer. In the web client, users can specify the URL for their WFS server using the

configuration section.

The response from a GetCapabilities is an XML text which we convert to a JSON format. From this

response, we select five properties of the feature which include the feature’s name, title, abstract, default

coordinate system and the WFS GeoJSON path for retrieving the data. We implement

DescribeFeatureType to help us get more information about a particular feature. For our proof of

concept, we preferred using GeoJSON because it is lightweight and integrates very fast in modern

browsers and with OpenLayers. We, however, note that some WFS servers provide their data in other

formats which are not GeoJSON.

Table 6.1: WFS Operations

WFS GetCapabilities

http://130.89.221.193:85/geoserver/ows?

service=WFS&

request=GetCapabilities&

version=1.0.0

DescribedFeatureType

http://130.89.221.193:85/geoserver/wfs?

 request=DescribeFeatureType&

 version=1.0.0&

 TypeName= group1:waterbodies

GetFeature

http://130.89.221.193:85/geoserver/wfs?

 request=GetFeature&

 version=1.0.0&

 TypeName=group1:waterbodies&

 Outputformat=application/json

Listing 6.2: Snippet for the Python implementation of WFS GetCapabilities

1. #!C:/Users/Bob/AppData/Local/Programs/Python/Python36/python
2. import json
3. import cgi
4. import requests
5. import xmltodict
6.

http://130.89.221.193:85/geoserver/ows
http://130.89.221.193:85/geoserver/wfs
http://130.89.221.193:85/geoserver/wfs

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

79

7. print("Content-type: application/json")
8. print()
9.
10. params = cgi.FieldStorage()

11. # URL of the WFS Server

12. url = params.getvalue('url')

13. if url is None:

14. url = "http://130.89.8.26:85/geoserver/ows?"

15.

16. # Result of the GetCapabilities

17. results = requests.get(url+"service=WFS&request=GetCapabiliti

es")

18. features = []

19. if results.text == "":

20. features = []

21. else:

22. # parse the XML response to a JSON object

23. jsonResponse = xmltodict.parse(results.text)

24. for row in jsonResponse['wfs:WFS_Capabilities']['FeatureT

ypeList']['FeatureType']:

25. feature = {}

26. if "mapserv.exe?" in url:

27. feature['url'] = url + "service=WFS&request=GetFe

ature&typeName="+row['Name']+"&outputFormat=geojson&srsname=EPSG:38

57"

28. else:

29. feature['url'] = url + "service=WFS&request=GetFe

ature&typeName=" + row['Name'] + "&outputFormat=application/json"

30. feature['name'] = row['Name']

31. feature['title'] = row['Title']

32. feature['abstract'] = row['Abstract']

33. feature['defaultCRS'] = row['DefaultCRS']

34. results = requests.post(url + "service=WFS&request=De

scribeFeatureType&typeName="+row['Name']+"&outputFormat=application

/json")

35. results = json.loads(results.text)

36. feature['properties'] = results['featureTypes']

37. features.append(feature)

38.

39. print('{"success":"true", "features":', json.dumps(features),

 '}')

We implemented the code snippet in Listing 6.2 to retrieve metadata information for features using the

WFS GetCapabilities and DescribeFeatureType operations. The result was wrapped in a JSON object

(Listing Listing 6.3) which is submitted to the workflow client. The workflow client implements an ExtJS

tree view panel where the leaf represents the title for each feature.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

80

Listing 6.3: JSON object for GetCapabilities request

6.3.2. Web Coverage Service

The OGC Web Coverage Service discussed in Section 4.2.2 specifies three operations which we

considered relevant for this research. These operations include the GetCapabilities, DescribeCoverage,

and GetCoverage. The implementation for WCS is similar to that of WFS which has been discussed in the

previous Section. However, instead of GeoJSON, we now use Geotiff as the data format. Our choice for

using Geotiff for our proof of concept is motivated by the fact that most GIS software can read GeoTIFF

files and thus making this file format platform independent.

Table 6.2: WCS Operations

GetCapabilities

http://130.89.8.26:85/geoserver/ows?

 service=WCS&

 request=GetCapabilities

DescribeCoverage http://130.89.8.26:85/geoserver/ows?

 service=WCS&

 request=DescribeCoverage&

 coverageid=maris_mamase:carcap_kg_23m&

 version=1.0.0

GetCoverage http://130.89.8.26:85/geoserver/ows?version=2.0.0&

http://130.89.8.26:85/geoserver/ows
http://130.89.8.26:85/geoserver/ows
http://130.89.8.26:85/geoserver/ows?version=2.0.0&

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

81

 service=WCS&

 request=GetCoverage&

 coverageid=maris_mamase:DMintake_kg_23m_nrdays&

 format=image/geotiff

6.3.3. Sensor Observation Service

The Sensor Observation Service discussed in Section 4.2.3 specifies three operations which we considered

relevant for this research. These include the GetCapabilities, DescribeSensor, and GetObservation. We

implemented GetCapabilities and Describe Sensor to obtain metadata information about sensors and their

observed properties.

Table 6.3: SOS Operations

GetCapabilities

https://pegelonline.wsv.de/webservices/gis/gdi-sos?

 request=GetCapabilities&

 service=SOS

DescribeSensor

https://pegelonline.wsv.de/webservices/gis/gdi-sos?

 request=DescribeSensor&

 service=SOS&

 procedure= Lufttemperatur-Frankfurt_Osthafen_24700404&

 outputformat=text/xml;subtype=”sensorml/1.0.1”&

 version=1.0.0

GetObservation

https://pegelonline.wsv.de/webservices/gis/gdi-sos?

 request=GetObservation&

 service=SOS&

 procedure=Lufttemperatur-Frankfurt_Osthafen_24700404&

 version=1.0.0&

 offering=LUFTTEMPERATUR&

 observedProperty=Lufttemperatur&

 featureOfInterest=Frankfurt_Osthafen_24700404&

 responseformat=text/xml;subtype=”om/1.0.0”

6.4. Processing Services

The processing services are vital for composing workflows in our web client. Without a process, we

cannot create a workflow to consume available data. Our implementation gives users the opportunity to

add the URL or endpoints to the processing services which they would want to use in defining their

https://pegelonline.wsv.de/webservices/gis/gdi-sos
https://pegelonline.wsv.de/webservices/gis/gdi-sos
https://pegelonline.wsv.de/webservices/gis/gdi-sos

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

82

workflows. To achieve this, we observe two approaches where one is based on a standard OGC WPS, and

the other is based on Non-OCG RESTful services.

6.4.1. OGC Web Processing Service

In Section 4.3.1, we discussed the three operations of the OGC Web Processing Service which are

relevant for this research. They include the GetCapabilities, DescribeProcess and Execute operations. We

implement the GetCapabilities and DescribeProcess to help retrieve metadata information about web

processes. A Python function was implemented which uses the HTTP GET method to obtain this

information from a WPS server specified by the user. An OGC compliant WPS was used which was

provided by the implementation of GeoServer WPS extension 13 and 52North WPS solution 14. The

response of the GetCapabilities and DescribeProcess operations are used to build a list of operations

which are then sent to the workflow client in a JSON object.

Table 6.4: WPS Operations

GetCapabilities http://130.89.221.193:85/geoserver/ows?

 service=WPS&

 request=GetCapabilities

DescribeProcess

http://130.89.221.193:85/geoserver/ows?

 service=WPS&

 request=DescribeProcess&

 identifier=gs:Centroid

During our discussion of the standard schema for sharing workflows in Section 5.1.2, we proposed that

the schema for a processing service should have four main attributes. These include the id, metadata,

inputs, and outputs. Based on the attributes of OGC WPS discussed in Section 3.1.2 and the mapping

between the OGC WPS XML schema and our proposed standard schema as was observed in Section

5.2.3, we implemented a method to automatically obtain a JSON object with a list of all the processes in a

WPS server. This method makes use of the WPS GetCapabilities and DescribeProcess operations. For

instance, the GetCapabilities and DescribeProcess operations in the table above returns the XML

responses whose snippet are as follows.

Listing 6.4: OGC WPS GetCapabilities response for gs:Centroid operation

1. </wps:Process>
2. <wps:Process wps:processVersion="1.0.0">
3. <ows:Identifier>JTS:centroid</ows:Identifier>
4. <ows:Title>Centroid</ows:Title>
5. <ows:Abstract>
6. Returns the geometric centroid of a geometry. Output is a single po

int. The centroid point may be located outside the geometry.

7. </ows:Abstract>

13 https://docs.geoserver.org/stable/en/user/services/wps/index.html
14 http://geoprocessing.demo.52north.org:8080/latest-wps/WebProcessingService

http://130.89.221.193:85/geoserver/ows
http://130.89.221.193:85/geoserver/ows
http://geoprocessing.demo.52north.org:8080/latest-wps/WebProcessingService

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

83

8. </wps:Process>

Listing 6.5: XML Snippet for OGC WPS DescribeProcess for gs:Centroid

1. <wps:ProcessDescriptions xmlns:xs="http://www.w3.org/2001/XMLSchema
" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:wps="http://www.

opengis.net/wps/1.0.0" xmlns:xlink="http://www.w3.org/1999/xlink" x

mlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xml:lang="en" service="WPS" version="1.0.0" xsi:schemaLoc

ation="http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/

wps/1.0.0/wpsAll.xsd">

2. <ProcessDescription wps:processVersion="1.0.0" statusSupported="tru
e" storeSupported="true">

3. <ows:Identifier>gs:Centroid</ows:Identifier>
4. <ows:Title>Centroid</ows:Title>
5. <ows:Abstract>Computes the geometric centroids of features</ows:Abs

tract>

6. <DataInputs>
7. <Input maxOccurs="1" minOccurs="1">...</Input>
8. </DataInputs>
9. <ProcessOutputs>...</ProcessOutputs>
10. </ProcessDescription>

11. </wps:ProcessDescriptions>

Listing 6.6: Code snippet for mapping of WPS process definition to standard JSON schema

1.
2. if url is None:
3. url = "http://130.89.221.193:85/geoserver/ows?"
4. results = requests.get(url + "service=WPS&request=GetCapabilities")

5. if results.text == "":
6. results = []
7. xpars = xmltodict.parse(results.text)
8. jsonjson1 = json.dumps(xpars)
9. d = json.loads(json1)
10. processes = []

11. for row in d['wps:Capabilities']['wps:ProcessOfferings']['wps

:Process']:

12. process = {}

13. identifier = row['ows:Identifier']

14. process['id'] = identifier

15. # Add metadata to process

16. metadata = {}

17. metadata['resource'] = 'WPS'

18. metadata['url'] = url

19. metadata['description'] = abstract

20. process['metadata'] = metadata

21. response = requests.get(url + "service=WPS&request=Descri

beProcess&identifier= " + identifier)

22. response = xmltodict.parse(response.text)

23. jsonjson2 = json.dumps(response)

24. b = json.loads(json2)

25.

if 'ProcessDescription' in b['wps:ProcessDescriptions']:

26. for item in inputs:

27. input = {}

28. input['id'] = 0

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

84

29. input['identifier'] = item['ows:Identifier']

30. input['name'] = item['ows:Title']

31. input['url'] = ""

32. input['value'] = ""

33. if item['@minOccurs'] == '0':

34. input['optional'] = True

35. else:

36. input['optional'] = False

Using our implementation, we can obtain the corresponding JSON definition of the above responses

based on our proposed standard schema as shown in the Listing below. The id corresponds to the

identifier of the WPS operation. This particular operation has only one input which is a vector and one

output which is also a vector. For our implementation, the vector data are assigned a data type named geom

while the raster data type is assigned coverage. The metadata of the operation provides it a description, label,

longname, URL of the WPS server where the operation resides, resource specifying that this operation is

being offered as a WPS.

Listing 6.7: JSON representation for WPS gs:Centroid operation

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

85

The JSON object listing the WPS operations is then passed to the ExtJS tree view panel as a data store

which is used to make the tree view in the web client. The WPS execute operation allows execution of

WPS processes by performing a POST request to the WPS server URL with a payload containing the

XML definition of the process. Listing 6.8 shows an example of a WPS execute body in XML format. An

implementation which automatically generates an executable XML script using WPS specifications is

implemented in Section 6.4.1.

Listing 6.8: Sample WPS Execute Body.

1. <?xml version="1.0" encoding="UTF-
8"?><wps:Execute version="1.0.0" service="WPS" xmlns:xsi="http://ww

w.w3.org/2001/XMLSchema-

instance" xmlns="http://www.opengis.net/wps/1.0.0" xmlns:wfs="http:

//www.opengis.net/wfs" xmlns:wps="http://www.opengis.net/wps/1.0.0"

 xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:gml="http://www.o

pengis.net/gml" xmlns:ogc="http://www.opengis.net/ogc" xmlns:wcs="h

ttp://www.opengis.net/wcs/1.1.1" xmlns:xlink="http://www.w3.org/199

9/xlink" xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 http:

//schemas.opengis.net/wps/1.0.0/wpsAll.xsd">

2. <ows:Identifier>gs:BufferFeatureCollection</ows:Identifier>
3. <wps:DataInputs>
4. <wps:Input>
5. <ows:Identifier>CoverageA</ows:Identifier>
6. <wps:Reference mimeType="image/tif" xlink:href="http://130.89

.8.26:85/geoserver/maris_mamase/ows?version=2.0.0&service=WCS&reque

st=GetCoverage&coverageId=maris_mamase:DMintake_kg_23m_nrdays&forma

t=image/geotiff" method="GET"/>

7. </wps:Input>
8. <wps:Input>
9. <ows:Identifier>CoverageB</ows:Identifier>
10. <wps:Reference mimeType="image/tif" xlink:href="http://

130.89.8.26:85/geoserver/maris_mamase/ows?version=2.0.0&service=WCS

&request=GetCoverage&coverageId=maris_mamase:DMprod_kg_ha_250m2&for

mat=image/geotiff" method="GET"/>

11. </wps:Input>

12. <wps:Input>

13. <ows:Identifier>operator</ows:Identifier>

14. <wps:Data>

15. <wps:LiteralData>add</wps:LiteralData>

16. </wps:Data>

17. </wps:Input>

18. </wps:DataInputs>

19. <wps:ResponseForm>

20. <wps:RawDataOutput mimeType="image/tif">

21. <ows:Identifier>result</ows:Identifier>

22. </wps:RawDataOutput>

23. </wps:ResponseForm>

24. </wps:Execute>

6.4.2. Non-OGC Compliant RESTful Services

Non-OGC compliant RESTful services are not easy to model in a workflow because they don’t follow any

standards making it almost difficult to obtain their metadata information which is required to understand

the service requirements concerning inputs and output parameters. In Section 4.3.2, we discussed how

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

86

common RESTful services like coordinate transformation could be interpreted and mapped into a similar

WPS specification. We use the same concept to implement four RESTful services to demonstrate how

non-OGC compliant RESTful services can be accommodated in a workflow.

Table 6.5: Non-OGC Compliant RESTful Services

Name Description Example usage

AggregateRainfall Aggregate CHIRPS

rainfall data for a given

start and end period.

Returns a raster image.

It uses ILWIS processes.

http://130.89.8.26/aggregaterainfall/

2018-01-01/2019-01-01/sum

BinaryMathraster Returns a raster

generated by pixel-by-

pixel addition of two

source rasters. Source

rasters must have the

same bounding box and

resolution.

http://130.89.221.193:75/binarymathraster/

path2raster1/pathr2aster2/add

PublishRaster publishes a raster map to

the specified GeoServer.

It returns the namespace

of the published map.

http://130.89.221.193:75/publish/raster/

path2raster/GEOSERVERURL/workspace/

username/password

Demand Returns the biomass

demand for the specified

period. This REST

service invokes an

ILWIS workflow and

passes the start and end

dates.

http://130.89.8.26/demand/

2018-01-01/2019-01-01

For an illustration of our implementation of the RESTful services, we only focus on the aggregaterainfall

operation. The operation takes three inputs of data type string representing the start and end dates of the

period of interest, and the type of aggregate operator to apply on the data. It returns a raster or a coverage.

Therefore, we can implicitly define the JSON representation of this service using the following notation.

http://130.89.8.26/aggregaterainfall/
http://130.89.221.193:75/binarymathraster/
http://130.89.221.193:75/publish/raster
http://130.89.8.26/demand/

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

87

Listing 6.9: JSON representation for the AggregateRainfall RESTful service.

The workflow client implementation allows users to define their REST endpoints and specify input and

output requirements for the service. This automatically generates the JSON representation similar to the

one used in the example above.

Figure 6.3: RESTful Service Definition through the Workflow client

6.5. Workflow Engine

In Section 4.5, we discussed that our prototype would need a workflow engine component to coordinate

execution of the workflow. We discussed that current GIS WfMSs have their workflow engines, but they

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

88

have a limitation on using web services. We also discussed that several BPMN compliant workflow

engines are capable of executing service-based workflows using Business Process Execution Language

(BPEL). However, we noted that most of them are commercial and require considerable human effort to

compose and execute workflows. BPMN compliant workflow engines are also designed for business

processes and do not support visualization of execution results. We, therefore, proposed to implement a

workflow engine which offers a “one-stop shop” functionality for users to compose, execute and view

results of their workflow composition just like it is possible in many GIS WfMSs. This section discusses

the implementation of a workflow engine that can support the following functions which were discussed

earlier.

i. Translate the JSON representation of the workflow to an executable script which can be

executed by the workflow engine. This involves automatic creation of WPS execute body using

XML for OGC compliant WPS.

ii. Control and coordinate the execution of the workflow by chaining web services according to the

order of the service composition.

iii. Generate downloadable results and provide users with the ability to view their result as a Web

Mapping Service (WMS).

iv. Transform workflow produced by one WfMS to another WfMS.

The implementation of this workflow engine used Python programming language and was built on

PyCharm IDE.

6.5.1. Translating JSON Representation to Executable Script

The workflow engine can determine from the workflow definition if an operation belongs to OGC

compliant WPS or non-OGC RESTful service. For the OGC WPS operation, we implement a method

which is capable of generating the WPS Execute script using XML from a JSON representation. This

method creates an executable WPS similar to the one discussed in Section 6.4.1 which then can be sent

through an HTTP POST request to the WPS server URL with a payload containing the XML definition

of the process. We use the function in Listing 6.10 to initialize the WPS header tag which specifies the

OGC schema locations for WPS, WFS and WCS.

Listing 6.10: WPS Root element specification.

1. def wpsHead(self):
2. root = Element('wps:Execute')
3. root.set('service', 'WPS')
4. root.set('version', '1.0')
5. root.set('xmlns:xsi', 'http://www.w3.org/2001/XMLSchema-

instance')

6. root.set('xmlns', 'http://www.opengis.net/wps/1.0.0')
7. root.set('xmlns:wfs', 'http://www.opengis.net/wfs')
8. root.set('xmlns:wps', 'http://www.opengis.net/wps/1.0.0')
9. root.set('xmlns:ows', 'http://www.opengis.net/ows/1.1')
10. root.set('xmlns:gml', 'http://www.opengis.net/gml')

11. root.set('xmlns:ogc', 'http://www.opengis.net/ogc')

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

89

12. root.set('xmlns:wcs', 'http://www.opengis.net/wcs/1.1.1')

13. root.set('xmlns:xlink', 'http://www.w3.org/1999/xlink')

14. root.set('xsi:schemaLocation',

15. 'http://www.opengis.net/wps/1.0.0 http://schemas

.opengis.net/wps/1.0.0/wpsAll.xsd')

16. return root

Listing 6.11 shows a function which was implemented for creating an executable WPS script which is then

sent to a WPS server through an HTTP POST request for execution. Line 3-44 is responsible for the

creation of the XML body of the WPS while 48 is used to submit a request to the WPS server which

executions the process based on the WPS definition.

Listing 6.11: Python Code Snippet for WPS Execute Implementation.

1. def executeWPS(operation, type='application/json'):
2. # Create the Execute body of the Process
3. root = WorkflowUtils.wpsHead(WorkflowUtils)
4. label = operation['metadata']['label']
5. ows_Identifier = SubElement(root, 'ows:Identifier')
6. ows_Identifier.text = label
7. # Append input items
8. wps_DataInputs = SubElement(root, 'wps:DataInputs')
9. for input in operation['inputs']:
10. if len(input['value']) > 0:

11. if input['type'] == 'geom':

12. wps_Input = SubElement(wps_DataInputs, 'wps:I

nput')

13. ows_Identifier = SubElement(wps_Input, 'ows:I

dentifier')

14. ows_Identifier.text = input['identifier']

15. if input['url'] == "":

16. wps_Data = SubElement(wps_Input, 'wps:Dat

a')

17. wps_ComplexData = SubElement(wps_Data, 'w

ps:ComplexData')

18. wps_ComplexData.set('mimeType', 'applicat

ion/json')

19. wps_ComplexData.text = input['value']

20. else:

21. wps_Reference = SubElement(wps_Input, 'wp

s:Reference')

22. wps_Reference.set('mimeType', 'applicatio

n/json')

23. wps_Reference.set('xlink:href', input['va

lue'])

24. wps_Reference.set('method', 'GET')

25. elif input['type'] == 'coverage':

26. wps_Input = SubElement(wps_DataInputs, 'wps:I

nput')

27. ows_Identifier = SubElement(wps_Input, 'ows:I

dentifier')

28. ows_Identifier.text = input['identifier']

29. wps_Data = SubElement(wps_Input, 'wps:Data')

30. wps_ComplexData = SubElement(wps_Data, 'wps:C

omplexData')

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

90

31. wps_ComplexData.set('mimeType', 'image/tiff')

32. wps_ComplexData.text = input['value']

33. else:

34. wps_Input = SubElement(wps_DataInputs, 'wps:I

nput')

35. ows_Identifier = SubElement(wps_Input, 'ows:I

dentifier')

36. ows_Identifier.text = input['identifier']

37. wps_Data = SubElement(wps_Input, 'wps:Data')

38. wps_LiteralData = SubElement(wps_Data, 'wps:L

iteralData')

39. wps_LiteralData.text = input['value']

40. wps_ResponseForm = SubElement(root, 'wps:ResponseForm')

41. wps_RawDataOutput = SubElement(wps_ResponseForm, 'wps:Raw

DataOutput')

42. wps_RawDataOutput.set('mimeType', type)

43. ows_Identifier = SubElement(wps_RawDataOutput, 'ows:Ident

ifier')

44. ows_Identifier.text = 'result'

45. url = operation['metadata']['url']

46. headers = {'content-type': 'text/xml'}

47. # Send the WPS execute's body to the WPS server for execu

tion

48. r = requests.post(url, data=WorkflowUtils.prettify(root),

 headers=headers)

49. return r.text

The non-OGC compliant RESTful services don’t require a similar implementation like the OGC WPS.

This service category can be implemented by making an HTTP GET request to the REST endpoint with

the specified parameters. To generate the complete URL for the RESTful service, we implemented a

simple method shown in Listing 6.12 which loops through the inputs and builds the URL by appending

the inputs to the REST endpoint.

Listing 6.12: Python Code for generating URL for RESTful web service.

1. def executeREST(operation):
2. # Create a URL for the RESTful processing service
3. endpoints = ""
4. for input in operation['inputs']:
5. endpoints = endpoints + "/" + quote(input["value"])
6. url = operation["metadata"]["url"] + endpoints
7. # Submit URL for execution
8. results = requests.get(url)
9. if results.text == "":
10. results = []

11. else:

12. results = json.loads(results.text)

13. return results

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

91

6.5.2. Process Chaining

Chaining processes is a useful feature of WPS which enables the creation of complex workflows from

distributed web processing services. In Section 4.4, we discussed three approaches in which the Open

Geospatial Consortium (2012) WPS standard 1.0 recommends chaining of services. These include:

1. Using BPEL engine to orchestrate services.

2. You are designing a WPS that calls other WPS processes in a sequence.

3. Cascading services chains as part of the execute request.

During our discussion, we identified weaknesses associated with each of the approaches based on our

interests and guided by literature material of (Meek et al., 2016). Based on our discussion of the three

approaches to process chaining, we identified that cascading service chains as part of the execute request

in a workflow in the best option for this research. This approach implements a waterfall design concept

used in software engineering where services follow a linear execution and the output of one service goes

into the input of another service. To achieved linear execution, the correct sequencing of the services is

required. In Section 2.2, we discussed an approach by Schäffer & Foerster (2008) to identify the

sequencing of services by sorting the processes based on their topological relationships and using the three

properties of DAG which include reflexivity, asymmetry, and transitivity. Following this discussion, we

implement a recursive function for obtaining the topological sequencing of operations in a workflow using

the connections of the operations specified in the workflow.

Listing 6.13: Recursive Function for Insertion Sort.

1. def recursiveF(connections, orderID, id):
2. for connection in connections:
3. if connection["toOperationID"] == id:
4. if connection["fromOperationID"] in orderID:
5. orderID.remove(connection["fromOperationID"])
6. orderID.insert(0, connection["fromOperationID"])
7. WorkflowUtils.recursiveF(connections, orderID, connectio

n["fromOperationID"])

8. return orderID

The recursive function in Listing 6.13 above uses computer science insertion sort algorithm to identify if a

source operation ID specified by fromOperationID is already in the sequence. If it is present, it removes it

and makes it the first in the sequence since it has to be executed before the rest of the operations.

Listing 6.14: Code Snippet for Finding the Execution Order of Operations

1. def getExecutionOrder(workflow):
2. operations = workflow["operations"]
3. connections = workflow["connections"]
4. # operIDs represent the IDs of all the operations
5. operIDs = set()
6. # NodeIDs represent the IDs of the parent operations
7. nodeIDs = set()
8. for operation in operations:
9. operIDs.add(operation["id"])
10. for connection in connections:

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

92

11. if connection["fromOperationID"] == operation["id

"]:

12. nodeIDs.add(operation["id"])

13. break

14. # leafIDs represents the IDs of the child operations

15. leafIDs = list(operIDs.difference(nodeIDs))

16. # orderID list the IDs of the operations in a sequential

order of execution

17. orderID = []

18. orderID.extend(leafIDs)

19. # Walk through the child operations to determine the pare

nt in the sequence

20. for id in leafIDs:

21. WorkflowUtils.recursiveF(connections, orderID, id)

22. return orderID

The getExecutionOrder() function in Listing 6.14 is where the main sequencing takes place. Line 8-13 is a

that walks through the workflow and picks the ID of the operations. The IDs are inserted to operIDs set.

The operations which have at least a child node are stored in the nodeIDs set. To obtain the nodes without

any child, we perform a set difference between the operIDs and nodeIDs. The result of this operation is

stored in the leafIDs list. In the loop of lines 20-21, we implement a bottom-up approach to identify the

parents of each childless node. The result of the ordered nodes is stored in the orderID list which is then

used to chain the processes for execution.

6.5.3. Workflow Execution

Once we have determined the order of execution of the workflow processes, we implement a function

which controls the execution by ensuring that the data flows sequentially from an output of one operation

to the target operation. This method stores the output of each operation in a JSON object which is then

submitted to the client once the whole workflow execution process is successfully terminated. In Listing

6.15 below, lines 11 to 13 are responsible for assigning the output of a previous operation to the target

operation. When two operations are connected in the workflow client, the value assigned to the input of

the target operation is specified by fromOperationID_to_toParamaterID. For instance, the input value of

“0_to_0” means that the parent operation has an ID zero (0) and its output is assigned to the first input of

the current operation which as an ID of zero (0). Lines 16 and 24 determine whether the current

operation requires a WPS or RESTful implementation. After that, a function responsible for that

particular resource is called and executed. The implementation of these processing services was discussed

in Sections 6.4 and 6.5.1.

Listing 6.15: Code Snippet for Executing the Workflow

1. def executeWorkflow(workflow):
2. operations = workflow[0]["operations"]
3. orderedIDs = WorkflowUtils.getExecutionOrder(workflow)
4. outputs = {}
5. j = 1
6. result = []
7. for id in orderedIDs:

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

93

8. operation = WorkflowUtils.getOperationByID(id, operations)

9. if len(outputs) > 0:
10. for i in range(0, len(operation["inputs"])):

11. if "_to_" in operation["inputs"][i]["value"]:

12. value = operation["inputs"][i]["value"].s

plit("_to_")

13. operation["inputs"][i]["value"] = outputs

[value[0]][0]

14.

15. output = ""

16. if operation["metadata"]["resource"] == "WPS":

17. if operation['outputs'][0]['type'] == "geom":

18. output = WorkflowUtils.executeWPS(operation,

'application/json')

19. elif operation['outputs'][0]['type'] == "coverage

":

20. output = WorkflowUtils.executeWPS(operation,

'image/tiff')

21. else:

22. output = WorkflowUtils.executeWPS(operation)

23.

24. if operation["metadata"]["resource"] == "REST":

25. output = WorkflowUtils.executeREST(operation)

The result of the workflow execution is sent to the client as a JSON object. Each operation is assigned the

path to its output data which the user can use to download the data. Our implementation allows users to

view the result of their execution using the map panel. For raster data formats, the user is required to

specify the settings for the GeoServer where the data is to be published to allow rendering of the map

using WMS. This can be achieved using the PublishRaster RESTful service which we implemented. Vector

data does not require the use of GeoServer since we can render the map as a layer using the GeoJSON

data format.

6.6. Workflow Transformation

To further reinforce our concept of enhancing shareability and reproducibility of geoprocessing

workflows, we implement a method for transforming workflows from one WfMS to another. This

method is based on our discussions in chapter three and chapter five where we proposed a platform-

independent workflow interchange schema and a framework for mapping constructs between different

WfMSs. An implementation of the algorithm for the discovery of corresponding processes in different

GIS tools which were discussed in Section 5.2 is also carried out in this section. Figure 6.4 illustrates the

workflow transformation that has been implemented for this demonstration using a BPMN, ILWIS and

QGIS workflows. The platform-independent workflow interchange schema act as a link between the

workflow schema of the different WfMSs which is a similar concept as the Model Driven Architecture

(MDA) transformations. For instance, to share an ILWIS workflow with a BPMN compliant WfMS, the

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

94

ILWIS workflow format goes through two transformations. First, it is transformed into the platform-

independent interchange format using the proposed standard schema. The second transformation

converts the platform-independent interchange format to a BPMN document.

Figure 6.4: Workflow Transformation

6.6.1. Sharing Workflows in BPMN Compliant WfMSs

We implement two-pair functions for transforming workflows from one representation format to another

which uses the schema of different interchange formats to map related constructs and keywords of

different WfMSs shown in Table 5.1. The code snippets in the Listings 6.16 and 6.17 below illustrate the

function used to transform a platform-independent interchange to a BPMN document. The function first

creates the root element which is composed of the BPMN schema. From the root element, we implement

sub-elements where the top-most sub-element is the process which corresponds to the workflow. We set

the id and process name in 17 and 19 of Listing 6.16 which correspond to the workflow id and the

longname. Line 23 to 31 are used to define the sequence flows which correspond to connections between

different operations in the workflow.

Listing 6.16: Code snippet for initializing the process element and sequence flows (connections).

1. def pimToBPMN(workflow):
2. """
3. This function trasform a workflow representation from the JSON-

based platform indipendent model to

4. XML-based BPMN document
5. :return: Generated XML-

based BPMN document which can be opened with any BPMN tool

6. """
7. # Initialize the root element of the BPMN document
8. root = WorkflowUtils.bpmnHead(WorkflowUtils)
9. itemDefinition = SubElement(root, 'bpmn2:itemDefinition')
10. itemDefinition.set("id", "ITEM_DEF_STRING")

11. itemDefinition.set("isCollection", "false")

12. itemDefinition.set("structureRef", "xs:string")

13.

14. # Set the process element

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

95

15. process = SubElement(root, 'bpmn2:process')

16. # process id corresponds to the JSON-based workflow id

17. process.set("id", "_" + str(workflow["id"]))

18. # process name corresponds to the JSON-

based workflow longname

19. process.set("name", workflow["metadata"]["longname"])

20. process.set("isExecutable", "true")

21.

22. # SequenceFlow represent the connections between tasks

23. sequenceFlow = SubElement(process, 'bpmn2:sequenceFlow')

24. sequenceFlow.set("id", "SequenceFlow_Start")

25. sequenceFlow.set("sourceRef", "StartEvent_1")

26. # The target node of the start event is the first task in

 the execution order

27. sequenceFlow.set("targetRef", "ServiceTask_" + str(Workfl

owUtils.getExecutionOrder(workflow)[0]))

28. i = 1

29. for connection in workflow["connections"]:

30. sequenceFlow = SubElement(process, 'bpmn2:sequenceFlo

w')

31. sequenceFlow.set("id", "SequenceFlow_" + str(i))

The code snippet in Listing 6.17 was used to create serviceTasks and dataInputs for BPMN document.

Line 5 creates the identifier and line 7 sets the name tag for the serviceTask. These correspond to the

operation’s id and longname in the JSON format respectively. The implementation url was set in line 9

which also corresponds to the URL in the metadata object of the JSON format. Lines 15-22 are

responsible for appending dataInputs to the BPMN document.

Listing 6.17: Code snippet for creating service tasks and data inputs.

1. for id in WorkflowUtils.getExecutionOrder(workflow):
2. operation = WorkflowUtils.getOperationByID(id, operations)
3. task = SubElement(process, 'bpmn2:serviceTask')
4. # Service Task id corresponds to the operations id
5. task.set("id", "ServiceTask_" + str(operation["id"]))
6. # Service Task name corresponds to the operation's longname
7. task.set("name", operation["metadata"]["longname"])
8. # The implementation engine of the service corresponds to the W

PS/REST endpoint

9. task.set("implementation", operation["metadata"]["url"])
10. task.set("resource", operation["metadata"]["resource"])

11. ioSpecification = SubElement(task, 'bpmn2:ioSpecification

')

12. ioSpecification.set("ioSpecification_", "ioSpecification_

" + str(id))

13. inputSet = SubElement(ioSpecification, 'bpmn2:inputSet')

14. # BPMN dataInput is mapped to the inputs of an operation

15. for input in operation["inputs"]:

16. dataInput = SubElement(ioSpecification, 'bpmn2:dataIn

put')

17. dataInput.set("id", "DataInput_" + input["name"] + "_

" + str(id))

18. dataInput.set("itemSubjectRef", "ITEM_DEF_STRING")

19. dataInput.set("name", input["name"])

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

96

20. dataInput.set("type", input["type"])

21. dataInput.set("optional", str(input["optional"]).lowe

r())

22. dataInput.set("value", input["value"])

To establish connections between processes in the process chain, we used the code snippet in Listing 6.18.

The keyword fromOperationID corresponds to BPMN sourceRef while toOperationID corresponds to targetRef.

Transformation of the JSON-based platform independent interchange format of the workflow produces a

BPMN document whose extract shows a sequence flow similar to the one in Listing 6.19.

Listing 6.18: Code snippet for mapping JSON connections to BPMN serviceFlows.

1. for connection in workflow["connections"]:
2. sequenceFlow = SubElement(process, 'bpmn2:sequenceFlow')
3. sequenceFlow.set("id", "SequenceFlow_" + str(i))
4. if i == 1:
5. sequenceFlow.set("sourceRef", "ServiceTask_0")
6. else:
7. sequenceFlow.set("sourceRef", "ServiceTask_" + str(connecti

on["fromOperationID"]))

8.
9. sequenceFlow.set("targetRef", "ServiceTask_" + str(connection["

toOperationID"]))

10. if i == len(workflow["connections"]):

11. sequenceFlow = SubElement(process, 'bpmn2:sequenceFlo

w')

12. sequenceFlow.set("id", "SequenceFlow_End")

13. sequenceFlow.set("sourceRef", "ServiceTask_" + str(i)

)

14. sequenceFlow.set("targetRef", "EndEvent_1")

Listing 6.19: An extract of a BPMN sequenceFlow for a simple workflow.

1. <bpmn2:process id="_1" name="Subworkflow" isExecutable="true">
2. <bpmn2:sequenceFlow id="SequenceFlow_Start" sourceRef="StartEve

nt_1" targetRef="ServiceTask_2" />

3. <bpmn2:sequenceFlow id="SequenceFlow_1" sourceRef="ServiceTask_
0" targetRef="ServiceTask_1" />

4. <bpmn2:sequenceFlow id="SequenceFlow_2" sourceRef="ServiceTask_
2" targetRef="ServiceTask_3" />

5. <bpmn2:sequenceFlow id="SequenceFlow_3" sourceRef="ServiceTask_
4" targetRef="ServiceTask_5" />

6. <bpmn2:sequenceFlow id="SequenceFlow_4" sourceRef="ServiceTask_
1" targetRef="ServiceTask_5" />

7. <bpmn2:sequenceFlow id="SequenceFlow_5" sourceRef="ServiceTask_
3" targetRef="ServiceTask_5" />

8. <bpmn2:sequenceFlow id="SequenceFlow_End" sourceRef="ServiceTas
k_5" targetRef="EndEvent_1" />

9. <bpmn2:startEvent id="StartEvent_1" name="Start Workflow">
10. <bpmn2:outgoing>SequenceFlow_Start</bpmn2:outgoing>

11. <bpmn2:outgoing>SequenceFlow_0okfxii</bpmn2:outgoing>

12. </bpmn2:startEvent>

13. <bpmn2:endEvent id="EndEvent_1" name="End Workflow">

14. <bpmn2:incoming>SequenceFlow_End</bpmn2:incoming>

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

97

15. </bpmn2:endEvent>

6.6.2. Sharing Workflows in Non-Standardization Compliant WfMSs

Transformation of workflows from the platform-independent JSON schema to a BPMN document

misses one crucial step which is important to illustrate reproducibility of workflows in other WfMSs which

do not implement web services. This is because these WfMSs discussed in Section 3.3 completely rely on

their process engines and internal environment to successfully execute a workflow. As a result of this,

there is a need to adopt their corresponding process names when sharing workflows. We implement two

approaches to support sharing of workflows in non-standardization compliant WfMS which make it

possible to use platform-specific process names and their definitions in terms of input and output

requirements.

The first approach occurs at the client-side of the developed application and involves using the property

window of the operation in the workflow editor panel. The user selects the endpoint for the processing

server in the drop-down select box. The selected endpoint loads new operations in the drop-down list as

shown in Figure 6.5. When a user selects the corresponding operation, the visual object for the process is

redrawn with the new definition for the selected operation.

Figure 6.5: Changing resource providers for the same process

The second approach takes place at the server-side of the application and is achieved using the workflow

engine. This approach initiated when a user chooses to export their workflow to QGIS or ILWIS

workflow interchange format. A python script was developed that takes a JSON representation of the

workflow and transform it into the interchange format of the target WfMS. The first step in the

transformation involved the implementation of the flowchart in Figure 5.3 to help in the discovery of

corresponding process names in the target software. The code snippet in Listing 6.20 was used to search

for operations based on a search string obtained from the provenance information in the workflow. Line 7

is responsible for reading the JSON file where the operations for each GIS tool is stored. Line 8 filter only

the operations of the target GIS tool which the user is interested in. In lines 13 to 15, we implement a

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

98

loop which walks through the keywords in the operations list and checks if a keyword matches the search

string. In case of a positive match, the count of hits is incremented. Lines 16 to 18 assign the maximum hits

to the max variable and the matching operation to oper variable.

Listing 6.20: Code snippet for searching an operation based on a keyword

1. def searchOperation(tool, searchString):
2. """
3. :param tool: GIS tool owning the operation
4. :param searchString: Keyword for the search
5. :return: Return the operation with the highest hit
6. """
7. json_data = open("operations.json").read()
8. operations = json.loads(json_data)[tool]
9. max = 0
10. oper = None

11. for operation in operations:

12. count = 0

13. for keyword in operation["keywords"]:

14. if keyword in searchString:

15. count = count + 1

16. if count > max:

17. max = count

18. oper = operation

19. return {"hits": max, "operation": oper}

After finding the best matching corresponding operation of the target WfMS, we use its internal name,

input and output parameter requirements in mapping the workflow from the platform-independent

interchange format to the specific interchange format. For instance, the code snippets in Appendix E

helps in transforming platform-independent workflow (PIW) to a QGIS workflow (PSW) format which

can be visualized and executed using QGIS WfMS. To illustrate the transformation, a simple workflow

involving two GeoServer operations gs:Centroid and gs:Buffer was created using the generic workflow

client. The corresponding internal process names in QGIS are qgis:polygoncentroids and

gdalogr:buffervectors respectively. The successful transformation between the two WfMS led to mapping

from the visual workflow in A to B as shown in Figure 6.6. The resulting workflow in QGIS WfMS can be

executed to produce the same result thereby ensuring reproducibility.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

99

A: Platform independent workflow

B: Platform specific workflow (QGIS)

Figure 6.6: Transformation of PIW to QGIS Workflow

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

100

7. PROOF OF CONCEPT

Having discussed in the previous chapters the theoretical concepts on workflows and the implementation

of a prototype system that facilitates sharing and reproduction of workflows, in this chapter, we

demonstrate a proof of concept based on a use case in the AfriAlliance project. The AfriAlliance project

aims to “prepare Africa for future climate change challenges by creating the opportunity for African and

European stakeholders to work together in the areas of water innovation, research, policy, and capacity

development” (Mannaerts et al., 2017a). One of the approaches towards achieving their aim is the use of a

triple-sensor approach to improve information gathering for water resource monitoring and forecasting.

Water resource monitoring entails the provision of adequate qualitative and quantitative information about

the state of the water resource at any moment (Garcia et al., 2016). Getting the latest and accurate

information for water resource monitoring or disaster management is a challenge with many satellite

products and in-situ generated data. This is because of the low temporal and spatial resolution of these

data sources. The triple-sensor approach combines three mutually independent data sources which include

space-based satellite sensors, human sensors (crowdsourced geoinformation) and physical in-situ sensors

(meteorological stations). Human sensor information is the latest source of geospatial data driven by

advancements in technology. Consumption of data generated by humans is becoming more popular

because it is more recent and provide precise information. With the latest progress in technology, a large

amount of heterogeneous and distributed geospatial data is becoming available. As a result, scientists are

faced with the challenges of combining these data to solve specific problems. One of the challenges lies in

its accessibility, reliability, and accuracy. Scientists have developed varying opinions for their choice of the

data sources where some prefer satellite to in-situ data.

On the other hand, most community-based projects would prefer to use crowdsourced geoinformation.

Through the triple sensor sensors approach, AfriAlliance propose a triple collocation method which is

derived from the observation that a particular data source would provide more reliable and accurate

information at a particular location as compared to others. In the following sections, we discuss factors

that affect the combination of the three sources of geospatial data and the triple collocation approach. We

then compose a workflow from a determined set of web services to be used in triple collocation.

7.1. Satellite, In-situ and Crowdsourced Geoinformation

Remote sensing technology and in-situ measurements observed from local weather stations are the two

traditional sources of geospatial data that have extensively contributed to scientific research. One of the

scientific application of data obtained from these sources has been in the management of water resources.

For instance, in monitoring the growth of the harmful algae blooms in recreational water bodies and

drinking water (Clark et al., 2017), evaluation of extreme precipitations for water resource and flood risk

management (Dhib et al., 2017). Better water resource management is critical to helping people,

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

101

economies, and ecosystems to thrive, reduce poverty and sustain prosperity. However, successful water

management requires detailed knowledge of the available water resources which can only be achieved

through effective monitoring and forecasting. The last decade has seen the emergence of a third data

stream (crowdsourced geoinformation) where humans are involved in scientific research by creating and

sharing information. Combining the three sources of data helps eliminate their limitations thereby

providing accurate and reliable information for effective water resource management. We discuss the

following properties that are relevant for the effective combination of data from the three sources in the

triple sensor approach. These findings are based on the report by (Mannaerts et al., 2017a).

i. Data Variable

This represents the observed climate or water variable which can include surface water level, soil

moisture, precipitation amount, vegetation condition, temperature, etc. The chosen data variable

should be the same for all three sensors.

ii. Data representation format

Another important consideration for combining satellite, in-situ and crowdsourced geoinformation is

the representation format for the data. The same representation format should be used for all three

data sources. For instance, combining a Boolean and nominal variable does not yield positive results.

The data type used in representing the data is crucial for the successful application of the triple sensor

approach.

iii. Temporal collocation

The period for which the sampling has been carried out should be the same for all the three sources of

data. For the satellite data, the sampling period can be affected by the temporal resolution of the

satellite. Most in-situ stations reporting is done regularly which can occur at an hourly or daily basis.

This is different from citizen observations which may not be done at regular intervals. Matching of the

periods for three data sources is necessary for effective comparison and validation.

iv. Spatial collocation

The observed data from the three sources must be occupying the same geographical space to be able to

align them. Low spatial resolutions for satellite products and low density of in-situ stations affect the

combination of these data sources. In as much as the crowdsourced geoinformation is increasingly

becoming available due to the growth in technology, the density of meteorological stations is still

inadequate for most parts of Africa. There has been an effort by private organizations to fill in-situ

data with their measurements. However, this again does not cover the whole African continent.

v. Coordinate System

For effective alignment, the data must be in the same coordinate system. In case the data are of the

different coordinate system, then they must be projected or transformed into one coordinate system.

However, if this is not done the triple sensor approach fails.

vi. Data Quality

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

102

The success of the triple-sensor approach in the validation of data for water resource monitoring lies

significantly in the quality of the observed data. Low quality of data is mostly attributed to citizen-

based observations. However, intensive capacity development, volunteer engagement activities, and

incentives, as well as effective infrastructure for data collection can provide reliable citizen-based data

water monitoring and forecasting.

7.2. Triple Collocation

Triple collocation (TC) is a method based on statistical covariance that is used to estimate the unknown

error standard deviations or RMSE of three independent data sources to determine their reliability

(McColl et al., 2014). Since the three data sets are mutually independent, TC assumes that each of them

has its errors which are introduced from their measurements and there is no systematic bias among them.

The following equation gives the error model for TC.

𝑥𝑖 = 𝛼𝑖 + 𝛽𝑖𝑇 + 𝜀𝑖

The 𝑥𝑖 is the collated observation from the ith measurement system (i Є {1,2,3}). The observation 𝑥𝑖 is

linearly related to the true value 𝑇 with an additive random error 𝜀𝑖 . The measurement systems in the case

of triple sensor represents satellite, in-situ and human sensors. TC further determines the covariance for

the three measurements by applying a formula proposed by McColl et al. (2014) which has been used to

estimate correlation coefficients for three independent data sets in various scientific studies. Since TC

assumes that the systematic errors from the three measurements are not related, their covariance is zero.

At this point, we cease discussing more about the entire formula of triple collocation since it has already

been implemented as a process in one of the GIS tools and we can reuse it in our workflow. However, in

addition to the references made in this Section, we point out to other literature materials on the same such

as (McColl et al., 2016) and (Li et al., 2017).

Triple collocation has been widely used in scientific research to estimate errors in measurements. For

instance, it was used by Leroux et al. (2011) to compare the performance of soil moisture satellite

products; Soil Moisture and Ocean Salinity (SMOS), Advanced Microwave Scanning Radiometer-Earth

Observing System (AMSR-E) and Advanced Scatterometer (ASCAT). TC has also been used to assess the

accuracy of classifications in case of earthquake damage assessment without the relying on ground truth

(Pierdicca et al., 2018).

We found TC to be relevant to this research because it provides a framework in which we can combine

satellite data, in-situ and crowdsourced geoinformation in a workflow using web services which we

discussed in Chapter 4. Satellite data are accessed using WCS whereas in-situ and crowdsourced

geoinformation are accessed using SOS. ILWIS has already implemented a geoprocessing function for

triple collocation making it easier to integrate the process as web service in a workflow.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

103

7.3. Shareable and Reproducible Workflow for Triple Collocation

7.3.1. Study Area

The study area for this demonstration is in the southwestern region of Burkina Faso, a town called Dano

which is a research area of West African AfriAlliance partner, West African Science Service Centre on

Climate Change and Adapted Land Use (WASCAL)15.

Figure 7.1: Study Area, Dano Burkina Faso.

7.3.2. Data

For this illustration, we used three sources of spatial data mainly satellite, ground stations, and citizens for

July 2015. The abstract workflow in Figure 7.3 indicates three sources for satellite-based rainfall data that

can be used for triple collocation, however for verification of our results with the work of Mannaerts et al.

(2018) we used CHIRPS16 rainfall product. The source of in-situ station data is NOAA Climate Prediction

Centre17 (CPC) while the crowdsourced geoinformation was obtained from the Water Point Data

Exchange database18 (WPDE) which uses citizen-based data collection methods to collect information on

water points status across the globe.

We implemented a web coverage service (WCS) for the CHIRPS rainfall products which provides

accessible and shareable links for the raw data in a GeoTIFF format. A sensor observation service (SOS)

was implemented for the ground station and citizen data obtained from NOAA CPC and WPDE

respectively. This was done by creating a database of all the data observations from in-situ and citizens

15 http://www.wascal.org/about-wascal/welcome-to-wascal/
16 ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CHIRP/
17 ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/V1.0/
18 https://www.waterpointdata.org/water-point-data

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

104

and then using a python script to implement the OGC specification for SOS. By default, the SOS

GetObservation requests were implemented to return a GeoJSON output data format. Retrieval of XML

data format depending is also possible depending on the output format specified by the users. Specifying

the period for the event allows execution of the workflow with data for the observed time interval.

GetObservation http://WWW.EXAMPLE.COM/WorkflowApp/app/api/sos.py?

service=SOS&request=GetObservation&

version=1.0.0&observedProperty=Rainfall_sensors&

offering=rainfall_SENSORS&

eventTime=2015-07-01/2019-01-30T22:36:42&outputFormat=json

The implementation allows time-series inspection of in-situ and human sensor data by clicking on the

point of interest in the map. The time-series data for a selected point is plotted in a line-chart as shown in

Figure 7.2.

Figure 7.2: Time-series Analysis of Sensor Data.

7.3.3. Method

This demonstration adopted the abstract workflow, shown in Figure 7.3 below, for triple collocation

which was produced by (Mannaerts et al., 2017b). The abstract workflow provides an overview of the

operations, their input and output and hides the implementation details. Accumulated precipitation for

satellite data is derived from either CHIRPS, TAMSAT or RFE. In the previous chapters, we discussed

that to create a sharable and reproducible workflow, it must be composed of web services (Chapter 4) and

also follow a standard schema (Chapter 5) which make it possible to transform to other workflow

representation formats.

http://www.example.com/WorkflowApp/app/api/sos.py?

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

105

Figure 7.3: Abstract Workflow for the Triple Sensor Water Accounting.

Our analysis of the abstract workflow leads to the creation of a corresponding concrete workflow as

shown in Figure 7.4. From the concrete workflow, six (6) operations were identified which are required

for the triple sensor water accounting workflow. Our implementation makes use of ILWIS operations

only since we could not find corresponding operations exposed as web services for other GIS tools. The

moving average operation is required to interpolate in-situ data for a specified georeference. Our

implementation of the moving average obeys the operation input requirements for ILWIS. However, we

use a python script to iterate over the attributes and execute the moving average operation for each

specified attribute. The attributes of moving average operation are obtained from the attribute table of the

in-situ data which represents the observed dates, and we separate them by a semi-colon. We then create a

map list from the resulting maps of moving average. We use the table operations to create a point map

from the citizen-generated data. This is a two-step process which requires first creating an ILWIS table

from the GeoJSON data format obtained from the SOS GetObservation request. The second step creates

a point map from the resulting table. We implemented a second web processing service which uses ILWIS

raster operation to create a map list of available rainfall data for a selected period. The map lists of satellite

and in-situ data, together with the point map of citizen-generated data are then passed as inputs to the

triple collocation operation. Upon successful execution, the result of this workflow is an evaluation report

for triple collocation which is a point map. Though abstracted in the workflow, we use a python script to

create a GeoJSON from the point map result of triple collocation which we use for visualization in the

geoportal.

Source: (Mannaerts et al., 2017a)

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

106

Figure 7.4: Concrete Workflow for Triple Sensor Approach.

Since ILWIS also does not expose their operations as web services, we implemented web processing

services from these ILWIS operations using the OGC WPS specifications. These web services run on an

ILWIS engine which is driven by ILWIS objects. Using these web processing services together with WCS

and SOS, we compose a workflow using the standard schema we discussed in Chapter 5. The visual

representation of the workflow is as shown in Figure 7.5 while an extract from its corresponding textual

representation is as shown in Figure 7.6.

Figure 7.5: Triple Sensor Workflow Composition from Web Services.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

107

Figure 7.6: JSON extract of the Triple Sensor Workflow.

The textual representation of the workflow is shareable and reproducible for other WfMSs such as ILWIS.

Our implementation allows transformation of the textual representation to an XML based BPMN

document which can be shared and reproduced in BPMN compliant tools. We demonstrated the concept

by sharing the workflow with Camunda modeler as shown in Figure 7.7. The complete JSON and XML

textual representations for the Triple Sensor workflow can be observed in the Appendix Section.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

108

Figure 7.7: Visualization of BPMN-based Triple Sensor Workflow in Camunda modeler.

7.4. Result Discussion

The execution of triple collocation workflow realizes an evaluation report indicating the strengths and

performance of each of the three sources of data at specific locations. The report is visually illustrated in

Figure 7.8 below. Hovering the mouse over the points on the map, open a popup window which displays

the various attributes. The attributes w1, w2, and w3 correspond to the weights assigned to each of the

three sources data used as inputs in the triple collocation. For instance, w1 corresponds to the weight

assigned to the satellite sensor, w2 corresponds to in-situ sensors whereas w3 corresponds to citizen

sensors. A data source with the highest weight indicates a high confidence level associated with it for that

particular location. The report also indicates the error variances for each weight. The color symbology

assigns the color blue to high weights associated with satellite data (w1), red is associated with high

weights for in-situ data (w2) whereas green is associated with high weights for citizen data (w3).

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

109

Figure 7.8: Result Analysis of Triple Sensor Workflow Execution.

The result of the execution of Triple Sensor workflow using our approach is compared to the findings by

Mannaerts et al. (2018) in Table 7.1. The result from our approach is listed in the columns by abbreviation

A while the ones from Mannaerts et al. (2018)by B. From the observation of both findings, in-situ sensor

records the best performance in five (5) stations out of the eleven (11) used in this demonstration, the

citizen sensor five (5) whereas satellite sensor one (1).

Table 7.1: Comparison of results from the Triple Sensor Workflow to findings by Mannaerts et al. (2018)

Location

W1 W2 W3

Best performance A B A B A B

pnt_608 0.816 0.814 0.843 0.839 1.063 1.065 Citizen sensor

pnt_610 0.770 0.768 0.882 0.876 0.997 1.000 Citizen sensor

pnt_611 0.644 0.640 1.056 1.050 0.870 0.876 In-situ sensor

pnt_619 0.700 0.705 1.014 1.021 0.888 0.882 In-situ sensor

pnt_620 0.601 0.598 1.093 1.090 0.869 0.873 In-situ sensor

pnt_648 0.589 0.592 1.213 1.215 0.729 0.725 In-situ sensor

pnt_1019 0.580 0.577 1.137 1.134 0.787 0.790 In-situ sensor

pnt_1100 0.823 0.823 0.881 0.887 1.004 1.004 Citizen sensor

pnt_1101 0.984 0.982 0.735 0.744 0.911 0.912 Satellite sensor

pnt_1163 0.910 0.910 0.764 0.769 1.062 1.062 Citizen sensor

pnt_1227 0.953 0.953 0.695 0.687 0.969 0.969 Citizen sensor

From these findings, it was concluded that the satellite sensor is least preferred as a source of rainfall data

for July 2015 in this study area as compared to the in-situ and citizen sensors. This is mainly attributed to

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

110

the factors discussed in Section 7.1. The RMSE of the weights for each the sources of data using the two

approaches were obtained which shows that the weights due to satellite data are the most stable while the

weights due to in-situ data had more deviations. Since the average RMSE for satellite, in-situ and citizen

sensors using the two approaches was determined to be less than 0.05, our alternative solution provides a

reproducible result which supports the success of our method using web services for triple sensor

workflow.

 Satellite sensor In-situ sensor Citizen sensor

RMSE 0.0089442719 0.0191049732 0.0112694277

In spite of the few differences experienced, successful application of triple sensor approach using the

triple colocation method indicates a promising opportunity for improved water monitoring and

forecasting. Combining the three sources of data helps eliminate their limitations thereby providing

accurate and reliable information for effective water resource management.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

111

8. CONCLUSIONS AND RECOMMENDATIONS

8.1. Conclusions

In this research, we presented two methods for enhancing the shareability and reproducibility of

geoprocessing workflows. First, we discussed the current-state-of-art of commonly used geoprocessing

workflow management systems (WfMSs) and realized that most of them do not support the composition

of workflows from web services. This makes it difficult to share processes for conducting complex

distributed geoprocessing tasks using workflows. We agree with the discussion of J. Morales & De By

(2009) and Yue et al. (2012) that to supports distributed geoprocessing, there is a need for GIS software to

distribute their geoprocessing methods as loosely-coupled web services in the context of Service Oriented

Architecture (SOA). By doing so, they provide an interoperable computing infrastructure in which

geoprocessing workflows can be built and executed with minimal cost to the users. We also noted that the

advancement in earth observation and remote-sensing technology, and the rise of Web 2.0 had made the

production of massive geospatial data available within a short time. As a result of this, there need to be

systems capable of integrating such bulk data in a workflow for distributed computing. Since the processes

and data generated by different data providers are disparate, there is a need for standardization to ensure

interoperability and accessibility of geoprocessing resources. To support interoperability and accessibility,

the OGC has established standards for web services supported by the Web Processing Service (WPS),

Web Feature Service (WFS), Web Coverage Service (WCS) and Sensor Observation Service (SOS). We

demonstrated that WCS, WFS, and SOS have made it possible to combine satellite data, in-situ

measurements and crowdsourced geoinformation in a workflow. WPS, on the other hand, provides an

interface in which geoprocessing functions can be shared and accessed by web services. We, therefore,

implemented a generic workflow client which make it possible for users to compose workflows by

combining geoprocessing functions and geospatial data exposed as web services and execute their

workflows in the geoprocessing web without having to install any GIS software.

Secondly, we observed that current WfMSs do not have a standardized interchange format for their

workflows. Each GIS software producer comes with their schema to specify their workflows which make

sharing and reproduction of workflows impossible across different WfMSs. We noted that there are

already standards produced by the Object Management Group and Workflow Management Coalition

(WfMC) towards establishing a universal interchange format through BPMN, XML process definition

language (XPDL) and Business process definition metamodel (BPDM). However, current GIS WfMSs do

not follow these established standards mainly because they were established with a focus to business

processes and did not support light-weight exchange formats like JSON which is extensively being

adopted by the scientific community. Since most of the current GIS WfMSs support sharing workflows

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

112

through JSON, we propose a standard interchange format for sharing workflows based on JSON and also

provide a method for transforming workflows from one WfMS to another.

In this research, we were guided by the following research objectives.

1. To investigate existing workflow interchange formats and propose an interoperable standard

format for sharing workflows.

2. To devise a method for producing shareable and reproducible workflow.

3. To design and implement a prototype that facilitates the creation and sharing of workflows.

4. To demonstrate the applicability of the prototype in combining crowdsourced geoinformation, in-

situ measurements and satellite data for water resource monitoring and forecasting.

We answer the questions related to the objectives in the following ways.

Related to the first objective

i. What are the available tools/software for creating geoprocessing workflows?

In Chapter 3, we discussed available tools for creating geoprocessing workflows. In our research,

these tools are put into two categories based on their conformity to established standards. The

first category of tools conforms to established standards by organizations for managing

workflows like WfMC, OMG, and OGC. These tools were found out to be the BPMN compliant

software like JBPMN, Bonita, Camunda modeler, and Yaoqiang BPMN editor. These tools are

generic WfMSs and do not have inbuilt geoprocessing functions. They allow the composition of

workflows from distributed geoprocessing functions exposed as web processing services (WPS).

The second category of tools for creating geoprocessing workflows hardly conform to any

standard established by the standardization organization apart from the use of BPMN graphical

representations. There are four commonly used tools within the geospatial community under this

category. These include ILWIS workflow builder, QGIS processing modeler, ERDAS Imagine

Spatial Analyst, and ArcGIS model builder. An example of non-GIS WfMS which do not

conform to standards established by this research is KNIME.

ii. Which interchange formats do they use to share their workflows?

The first category of WfMSs uses BPMN schemas to share their workflows. We discussed the

schema of the tools in Chapter 3. The schema for the workflow interchange formats of these

tools is contained in the BPMN’s five XSD files which describe process semantics and its

graphical representations. These XSD files include BPMN20.xsd, Semantics.xsd, BPMNDI.xsd,

DC.xsd and DC.xsd. BPMN documents have several elements and attributes whose descriptions

are well elaborated in Section 3.1. The second category of WfMSs has developed their interchange

formats for workflows based on the different schema which raises interoperability concern.

ILWIS, QGIS, and ERDAS use JSON file formats. However, all of them have defined their

schema for their JSON files. It was not possible to determine the interchange format for ArcGIS

generated workflows. In Section 3.2, we discussed the interchange formats for ILWIS and QGIS.

iii. How can a standard interchange format be created to achieve interoperability?

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

113

To achieve interoperability, we developed a standard interchange format which reflects at least the

commonly used constructs among different software packages. In Section 5.1, we compare the

constructs used by current WfMSs and using the observed similarities and differences; we

proposed a JSON based standard interchange format in Section 5.2 which can be adopted by

software developers to share their workflows. We suggested that a workflow interchange format

should have at the top level of the hierarchy four main elements which include an identifier for

the workflow, metadata describing the purpose of the workflow, list of operations and

connections between the operations. Each operation should have at least one input and output

parameters. Metadata providing information about the operation should also be provided. The

JSON schema for the interchange format for sharing workflows that were developed is shown in

Appendix A.

Related to the second objective

i. What does it take for a workflow to be shared and reproduced?

In Chapter 2, we defined shareability of scientific workflow as the ability to transfer the workflow

from one scientist to another or one environment to another in a manner that allows readability

and understanding of the workflow that is not necessarily created by the same scientist or in the

same environment. We also discussed that reproducibility allows a workflow created for a

particular scientific problem to be reused by different users by repetition of steps to produce

scientifically similar results.

For a workflow to be shareable and reproducible, it should have the following properties which

we discussed in Chapter 2.

➢ It should be presented in an interoperable interchange format containing a well-defined

schema that is universally accepted by developers of WfMSs. A well-defined schema is

similar to what we have discussed in Section 5.1.2.

➢ Third-party resources such as web processing services used in composing the workflows

should be available and easily accessible. The developers of GIS software should avail

their geoprocessing functions as web services.

➢ There should be sufficient input data to reproduce the workflow. Whenever a mandatory

data required by a process cannot be found, the execution of the entire workflow fails.

Geospatial data varies by scale, resolution and coordinate system. When incompatible

data are used together, they introduce errors which affect the reproducibility of the

workflow.

➢ There should be sufficient metadata information for the workflow. The metadata should

provide descriptive information about the processes, input and output data, and

connections between processes.

ii. How can a workflow be composed of distributed geospatial web services?

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

114

In Chapter 4, we discussed the method by which a workflow can be composed of geospatial web

services. First, we addressed the issue of composability of workflows by looking at different levels

of composability. After that, we discussed how web services could be used to compose workflows

by looking at the OGC standards for sharing and accessing data and processes which include

WPS, WFS, WCS, and SOS. Apart from the OGC web services, we found out that there exist

other RESTful web services which do not conform to any universal standards but can also

provide geoprocessing functions. We found out that the composition of workflow from web

services require a generic workflow client that allows users to drag and drop services and connect

the processing services visually using BPMN’s graphics.

We also identified that a composed workflow would require a workflow engine in which its

execution can occur. Since current WfMSs have their limitations which we observed in Chapter 3,

we proposed a method which if implemented can be used to chain processing services using one

of the OGC process chaining techniques. Once we have chained the process, we can execute

them using the workflow engine and relay the result to the user.

iii. How can a workflow be shared across different geoprocessing tools/software?

To support sharing of geoprocessing workflows, we developed a standard interchange schema

based on JSON format which can be used in specifying a workflow. This JSON schema acts as an

intermediary between different interchange formats and allows transformation of workflow from

one WfMSs to another using the information from their interchange formats. We also noted that

the transformation of workflows between different WfMSs requires knowledge of corresponding

processes in the target software. We found out that one way which has been proved to help in the

discovery of geoprocesses is through the use of semantic web technology and ontologies. Though

this was beyond the scope of this study, we consider it as an instrumental technique that if

integrated into our method can help in sharing workflows across different geoprocessing tools.

However, an alternative solution was provided that can perform a simple search from a database

of processes and return a corresponding process based on a search keyword.

Related to the third objective

i. How can the prototype system be developed?

In Section 6.2, we discussed the implementation of the prototype system to support the

shareability and reproducibility of workflows. For the implementation of the workflow client, we

require the ExtJS JavaScript framework, D3 JS and OpenLayers while the workflow engine

requires Python programming language. A single-web page application was developed with all the

functionalities that support creation, sharing and reproduction of workflows. We used BPMN

diagrams for visual composition of the workflows where the nodes represent a web processing

service, and the edges represent connections between the processing services. The visual

representation of the workflow is automatically translated to a lightweight data exchange format

in JSON which can be sent to the workflow engine for execution. We implement several

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

115

functions for the workflow engine which support process chaining, workflow execution and

transformation of workflow from one WfMS to another.

ii. What are the requirements and procedure for setting up the system?

The required components for setting up the system are outlined in Section 6.1. These include:

➢ Apache HTTP web server version 2.4.

➢ Python 3.6

➢ Apache Tomcat 9

➢ GeoServer

➢ PostgreSQL

➢ ILWIS 3 and 4

➢ QGIS 2.18

The installation and configuration instructions that were used for these software packages are

described in Appendix F. However, in case these instructions are not sufficient, the official

installation instructions can be obtained online in the vendor's websites. The procedure for setting

up the system after installing the above software packages are as follows.

➢ Download the web files from GitHub19.

➢ Extract the files to the root folder of Apache HTTP server.

➢ Start your Apache HTTP server if it wasn’t running.

➢ Go to the preferred web browser and browse to the location of the index file.

iii. What are the limitations to this system and the problems that can be encountered?

➢ The system only works with Geotiff and GeoJSON data formats. The use of web

services which implements other data formats can lead to errors. The available download

options for data is also supported only for Geotiff and GeoJSON file formats.

➢ Since the system is based on distributed processing, availability of processes exposed as

web services is mandatory. Whenever a process has been redefined by the service

provider and is not updated in the workflow, this can affect the reproducibility of the

workflow.

➢ Availability of the data must be sustained to ensure reproducibility of the workflow. The

system fails if the path to the data is changed.

➢ Consistent internet connection is required to sustain communication between the client

and the workflow engine.

➢ Failure to adhere to the specification defined in the JSON schema for workflow sharing

can lead to errors. The required input parameters for processing services must be

supplied.

Related to the fourth objective

19 https://github.com/robertohuru/WorkflowApp

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

116

i. What are the potential characteristics of crowdsourced geoinformation, satellite and in-

situ data that affects their combination?

We discussed in Section 7.1 five essential characteristics that affect the combination of

crowdsourced geoinformation with satellite and in-situ data.

Data variable: The chosen data variable should be the same for all the sources to ensure an

effective combination. For instance, it is not possible to combine rainfall and temperature using

the triple collocation method.

Data representation format (data type): A unique representation format must be used to

describe the data in each of the three sources. For example, combining a Boolean and nominal

variable will not yield a positive result since they are incomparable.

Temporal resolution: The period in which the sampling was carried out must be the same for all

the three sources of data. For the satellite data, the sampling period can be affected by the

temporal resolution of the satellite. Most in-situ stations reporting is done regularly which can

occur at an hourly or daily basis. This is different from citizen observations which may not be

done at regular intervals. Matching of the periods for three data sources is necessary for effective

comparison and validation.

Spatial resolution: The observed data from the three sources must be occupying the same

geographical space to be able to align them. The geographical space in the triple sensor workflow

is determined by defining a region of interest. Since the satellite sensor covers a large extent,

clipping and resampling can be used to obtain data for the region of interest. The low density of

in-situ stations affects the combination of these data sources and can provide unreliable result

after interpolation. The density of crowdsourced geoinformation does not affect the combination

since it is used as the reference data to determine the region of interest.

Coordinate system: For effective alignment, the data must be in the same coordinate system. In

case the data are of the different coordinate system, then they must be projected or transformed

into one coordinate system. However, if this is not done the triple sensor approach fails.

Data quality: The success of the combination of crowdsourced geoinformation with satellite and

in-situ data using triple-sensor approach lies significantly in the quality of the observed data. Low

quality of data which is mostly attributed to citizen-based observations can provide an inaccurate

result.

ii. How can specific operations be integrated to combine crowdsourced geoinformation,

satellite, and in-situ data?

In Section 7.3.3, we discussed specific operations which are required to successfully implement

the triple sensor approach for combining crowdsourced geoinformation, satellite, and in-situ data.

Since there are no exposed web services for these operations, we implement web processing

services for these operations using the specifications for OGC WPS. Implementation of WCS for

satellite data and SOS for crowdsourced geoinformation and in-situ data was carried out. These

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

117

web services were used in the workflow client to compose a shareable triple collocation workflow

for combining data from the three sources and evaluating their performance for specific locations.

iii. What is the added value of the method to shareability and reproducibility of workflow for

integration of crowdsourced geoinformation, satellite, and in-situ data?

The approach followed by Mannaerts et al. (2018) in combining the crowdsourced

geoinformation, satellite and in-situ data was entirely based on an implementation using a desktop

GIS tool, ILWIS, which required users to install the software and execute the workflow with a

pre-processed data. Since the ILWIS version they used runs on a Windows-driven operating

system, their approach is not interoperable as it prevents the reproduction of their method in

other operating systems. Their approach also did not provide a shareable workflow specification

which can be exported to other systems. The use of pre-processed in-situ data eliminated other

vital processes in the execution chain which affects reproduction of their method. In our method,

we proposed and demonstrated two approaches for enhancing the shareability and reproducibility

of workflows. One of them being the composition of workflow from web services. This approach

makes it possible to incorporate crowdsourced geoinformation and in-situ data using the OGC

SOS specification in a workflow. The implementation of the web processing services ensures

interoperability which is very important for enhancing shareability and reproducibility of

workflows. The second approach involves the use of a standard workflow interchange schema

which acts a link to transform from one workflow interchange format to another. This makes it

possible for us to create a workflow and reuse it in different WfMSs without the need to recreate

it.

8.2. Limitations

The following limitations were encountered during the progress of this research.

➢ Insufficient provenance information for QGIS workflows makes it difficult to reproduce

workflows. There is little metadata information provided for the non-spatial input parameters.

➢ It was not possible to determine the interchange schema for ArcGIS model builder since the

workflow is stored in a format which can only be read inside the ArcGIS environment.

➢ Chaining of processes using the OGC WPS is not possible when using different WPS servers.

The HTTP POST request made for a WPS assumes all the processes are hosted in the same

server in which the request is sent.

➢ Insufficient geoprocessing web services available since current GIS software do not expose their

geoprocessing functions as web services.

➢ Different implementation requirements make the discovery of similar geoprocesses in

corresponding GIS software difficult. This is because the geoprocessing functions implemented in

each GIS software have different input requirements.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

118

➢ Our research focused on two levels of composability which included structural composability and

static syntactic composability. However, we cannot only rely on this to identify all error for

effective workflow composition. Diniz (2016), demonstrated the use of semantic composability,

however, since we propose a different schema for our workflows, it was not possible to use his

methods to check for semantic composability of our workflows.

➢ Despite getting similar results with Mannaerts et al. (2018) when using our method for

demonstrating the triple sensor workflow as illustrated in Section 7.4, we were not able to provide

a quantitative measure for shareability and reproducibility of the workflow. There does not exist

such a justifiable method which has been used to measure shareability and reproducibility of

scientific workflows quantitatively. However, we found out that research by Zhao et al. (2012)

addressed factors that can affect the reproducibility of scientific workflows.

➢ Reproduction of ILWIS workflows from JSON file formats into the ILWIS WfMS is not

supported. This made it difficult to test the reproducibility of workflows in ILWIS. ILWIS

currently support only exporting of workflows from their internal format to the interoperable

JSON format.

8.3. Suggestions for OGC Standards

➢ The OGC process chaining should extend to compliant and non-compliant OGC WPS RESTful

bindings. The current implementations of process chaining only support compliant OGC WPS

SOAP bindings. In the case of OGC WPS RESTful services, the identifier keyword in the body

of HTTP POST request should be optional.

➢ The body of Execute request of WPS should contain a keyword for the URI of the WPS server

for every WPS process in the chain. This should be implemented in such a manner that each

process in the chain is independent of the WPS server used in the HTTP POST request to enable

service calls to different WPS servers. Currently, the executing body of a process chain assumes

that all the processes are provided by one WPS server making it impossible to chain WPS of

different WPS servers within a WPS execute the operation.

➢ Introduce JSON-based RESTful bindings for SOS. Currently, only WFS support RESTful

bindings.

➢ The default data format for WPS execution result should be a GeoTIFF or GeoJSON for WCS

and WFS respectively. This introduces a uniform format thereby reducing complexity for the

orchestrating engine when passing data between different processes in a workflow.

8.4. Suggestion for GIS Software Developers

➢ Standard workflow exchange schema: We propose a standard workflow exchange schema for the

developers of GIS WfMSs. Since most of the GIS WfMSs use JSON file format, our proposed

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

119

workflow exchange format which is also JSON based provides a universal means in which

interoperability can be achieved for sharing their workflows.

➢ Web Service Enablement: We recommend to GIS software developers to implement their

workflow editors to allow composition of workflow from web services using WPS, WCS, and

WFS. Currently, none of the GIS WfMSs support composition of workflows from web services.

Though most of their WfMSs are desktop based, we believe that web services offer a more

reliable environment for executing complex processes and bulk data.

➢ ILWIS Developers: (i) Capture the screen position of the processes (nodes) in the workflow

exchange format to facilitate visual recreation of the workflow; (ii) Consider removing irrelevant

keywords in the schema of the workflow exchange format which can increase the complexity of

the workflow. For instance, the keywords like change, show and local in inputs and outputs, and final

in operation metadata are not necessary; (iii) Implement a method to reproduce ILWIS generated

workflows from JSON format. Currently, ILWIS only support exporting workflow to a JSON file

but importing the workflow back to ILWIS is not possible.

➢ QGIS Developers: (i) Provide a consistent schema for the workflows which captures enough

metadata for the workflow. For instance, currently, the schema only provides metadata

information for spatial inputs while non-spatial data are assigned as values with no description

provided.

8.5. Recommendations for Future Work

➢ Semantic Web and Ontology: Future work should employ the use of Semantic web technology

and Ontology to discover geoprocessing functions of GIS software and web services based on

their descriptions. This research can extend on the previous research Ubels (2018) on the use of

semantic web technology to facilitate discovery of geoprocessing functions.

➢ XML to JSON transformations: Kechagioglou & Lemmens (2018) has been researching on

sharing geoprocessing workflows of ILWIS with BPMN. Our approaches differ slightly in that we

focus on using JSON while they use XML and BPMN schema. The future work can find out how

to perform transformation between XML and JSON schema. Also, workflow engines for

executing BPMN workflows should be addressed in future work.

➢ Verification of composability of geoprocessing workflows: There was not enough time to

perform complete verification of workflow composability as per our discussion in Section 4.1.

Our research focused on structural and static syntactic composability which cannot provide the

much-required verification of composability. Application of dynamic syntactic composability,

semantic composability, and qualitative composability is needed to ensure higher reliability during

workflow execution.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

120

➢ A measure of shareability and reproducibility: Even though this research provided a method for

enhancing shareability and reproducibility of workflows, this has not been proven since we could

not obtain a quantifiable measure for shareability and reproducibility. A method for determining

shareability and reproducibility is needed to improve the applicability of our method.

➢ ERDAS and ArcMap extension: Future work should provide an extension for ERDAS and

ArcMap which are also commonly used GIS WfMSs. Although ArcMap model builder support

sharing of workflows using Python files, much is still needed to transform ArcMap workflows to

shareable file formats like JSON.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

121

LIST OF REFERENCES

Amsden, J., Frank, J., Gardner, T., Irassar, P., Iyengar, S., Johnston, S., & White Stephen. (2004). Business

Process Definition Metamodel. Retrieved from

https://www.omg.org/bpmn/Documents/BPDM/OMG-BPD-2004-01-12-Revision.pdf

Assumpcao, T. H., Popescu, I., Jonoski, A., & Solomatine, D. P. (2018). Citizen observations contributing

to flood modelling: Opportunities and challenges. Hydrology and Earth System Sciences, 22(2), 1473–

1489. https://doi.org/10.5194/hess-22-1473-2018

Banati, A., Kacsuk, P., & Kozlovszky, M. (2015). Four level provenance support to achieve portable

reproducibility of scientific workflows. In 2015 38th International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 241–244). IEEE.

https://doi.org/10.1109/MIPRO.2015.7160272

Banati, A., Kacsuk, P., & Kozlovszky, M. (2016). Evaluating the reproducibility cost of the scientific

workflows. In 2016 IEEE 11th International Symposium on Applied Computational Intelligence and

Informatics (SACI) (pp. 187–190). IEEE. https://doi.org/10.1109/SACI.2016.7507367

Barga, R., & Gannon, D. (2007). Scientific versus Business Workflows. In Workflows for e-Science (pp. 9–16).

London: Springer London. https://doi.org/10.1007/978-1-84628-757-2_2

Bechhofer, S., Buchan, I., De Roure, D., Missier, P., Ainsworth, J., Bhagat, J., … Goble, C. (2013). Why

linked data is not enough for scientists. Future Generation Computer Systems, 29(2), 599–611.

https://doi.org/10.1016/J.FUTURE.2011.08.004

Belhajjame, K., Vargas-Solar, G., & Collet, C. (2002). A flexible workflow model for process-oriented

applications. In Proceedings of the Second International Conference on Web Information Systems Engineering (pp.

72–80). Saint-Martin d’Heres, France: IEEE Comput. Soc.

https://doi.org/10.1109/WISE.2001.996468

Bröring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding, T., Stasch, C., … Lemmens, R. (2011). New

Generation Sensor Web Enablement. Sensors, 11, 2652–2699. https://doi.org/10.3390/s110302652

Burattin, A. (2015). Introduction to Business Processes, BPM, and BPM Systems (pp. 11–21). Springer,

Cham. https://doi.org/10.1007/978-3-319-17482-2_2

Chu, X., Kobialka, T., Durnota, B., & Buyya, R. (2006). Open sensor web architecture: Core services. In

Proceedings - 4th International Conference on Intelligent Sensing and Information Processing, ICISIP 2006 (pp.

98–103). IEEE. https://doi.org/10.1109/ICISIP.2006.4286069

Clark, J. M., Schaeffer, B. A., Darling, J. A., Urquhart, E. A., Johnston, J. M., Ignatius, A. R., … Stumpf, R.

P. (2017). Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters

and drinking water sources. Ecological Indicators, 80, 84–95.

https://doi.org/10.1016/J.ECOLIND.2017.04.046

Curcin, V., & Ghanem, M. (2008). Scientific workflow systems - can one size fit all? In 2008 Cairo

International Biomedical Engineering Conference (pp. 1–9). IEEE.

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

122

https://doi.org/10.1109/CIBEC.2008.4786077

Decker, M., Che, H., Oberweis, A., Stürzel, P., & Vogel, M. (2010). Modelling Mobile Workflows with

BPMN. In 2010 Ninth International Conference on Mobile Business and 2010 Ninth Global Mobility

Roundtable (ICMB-GMR) (pp. 272–279). IEEE. https://doi.org/10.1109/ICMB-GMR.2010.12

Dhib, S., Mannaerts, C. M., Bargaoui, Z., Retsios, V., & Maathuis, B. H. P. (2017). Evaluating the MSG

satellite Multi-Sensor Precipitation Estimate for extreme rainfall monitoring over northern Tunisia.

Weather and Climate Extremes, 16, 14–22. https://doi.org/10.1016/J.WACE.2017.03.002

Diniz, F. D. E. C. (2016). Composition of Semantically Enabled Geospatial Web Services. MSC Theses,

142.

Garcia, L., Rodriguez, D., Wijnen, M., & Pakulski, I. (2016). Earth Observation for Water Resources

Management. Washington DC. Retrieved from

https://openknowledge.worldbank.org/bitstream/handle/10986/22952/9781464804755.pdf?seque

nce=3&isAllowed=y

Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., … Myers, J. (2007). Examining

the Challenges of Scientific Workflows. Computer, 40(12), 24–32.

https://doi.org/10.1109/MC.2007.421

Gonçalves, P. (2017). OGC Testbed-13: Application Deployment and Execution Service ER. Retrieved from

http://docs.opengeospatial.org/per/17-024.html#OGC_16_035

Goodchild, M. F. (2007). Citizens as sensors: the world of volunteered geography. GeoJournal, 69(4), 211–

221. https://doi.org/10.1007/s10708-007-9111-y

Hollingsworth, D. (1995). The Workflow Reference Model. Workflow Management Coalition (Vol. 59). Hampshire,

UK. https://doi.org/citeulike-article-id:1378584

Juhnke, E., Dornemann, T., Kirch, S., Seiler, D., & Freisleben, B. (2010). SimpleBPEL: Simplified

Modelling of BPEL Workflows for Scientific End Users. In 2010 36th EUROMICRO Conference on

Software Engineering and Advanced Applications (pp. 137–140). IEEE.

https://doi.org/10.1109/SEAA.2010.32

Kechagioglou, X., & Lemmens, R. (2018). Sharing geoprocessing workflows with Business Process Model

and Notation (BPMN). Research Paper, 2–7.

Ko, R. K. L., Lee, S. S. G., & Lee, E. W. (2009). Business process management (BPM) standards: a survey.

Business Process Management Journal, 15(5), 744–791. https://doi.org/10.1108/14637150910987937

Lemmens, R., Schouwenburg, M., Retsios, B., Mannaerts, C., & Ronzhin, S. (2018). Using ILWIS

Software for teaching Core Operations in Earth Observation, 2–4.

Lemmens, R., Toxopeus, B., Boerboom, L., Schouwenburg, M., Retsios, B., Nieuwenhuis, W., &

Mannaerts, C. (2018). Implementation of a comprehensive and effective geoprocessing workflow

environment. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences -

ISPRS Archives, 42(4W8), 123–127. https://doi.org/10.5194/isprs-archives-XLII-4-W8-123-2018

Leroux, D. J., Kerr, Y. H., Richaume, P., & Berthelot, B. (2011). Estimating SMOS error structure using

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

123

triple collocation. In International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 24–27). IEEE.

https://doi.org/10.1109/IGARSS.2011.6048888

Li, X., McColl, K. A., Lyu, H., Xu, X., Derksen, C., Lu, H., & Entekhabi, D. (2017). Validation of the

SMAP freeze/thaw product using categorical triple collocation. In 2017 IEEE International Geoscience

and Remote Sensing Symposium (IGARSS) (pp. 1596–1598). IEEE.

https://doi.org/10.1109/IGARSS.2017.8127277

Mannaerts, C., Maathuis, B., Wehn, U., Gerrets, T., Riedstra, H., Becht, R., … Kwast, H. V. D. (2017a).

Deliverable Title Constraints and Opportunities for Water Resources Monitoring & Fore-

casting using the Triple Sensor approach Status Final Related Work Package WP4 Deliverable lead

ITC Versions and Contribution History. Retrieved from https://afrialliance.org/wp-

content/uploads/sites/33/2018/02/D4.4-Constraints-Opportunities-MF-Triplesensor-final.pdf

Mannaerts, C., Maathuis, B., Wehn, U., Gerrets, T., Riedstra, H., Becht, R., … Kwast, H. V. D. (2017b).

Deliverable Title Constraints and Opportunities for Water Resources Monitoring & Fore-casting using the

Triple Sensor approach Status Final Related Work Package WP4 Deliverable lead ITC Versions and Contribution

History. Retrieved from https://afrialliance.org/wp-content/uploads/sites/33/2018/02/D4.4-

Constraints-Opportunities-MF-Triplesensor-final.pdf

Mannaerts, C., Retsios, B., & Maathuis, B. (2018). Deliverable D4 . 6 (report supplement) Description of the

Demonstration Package for Monitoring and Fore- casting Water & Climate using a Triple Sensor approach (Vol.

6).

McColl, K. A., Roy, A., Derksen, C., Konings, A. G., Alemohammed, S. H., & Entekhabi, D. (2016).

Triple collocation for binary and categorical variables: Application to validating landscape

freeze/thaw retrievals. Remote Sensing of Environment, 176, 31–42.

https://doi.org/10.1016/j.rse.2016.01.010

McColl, K. A., Vogelzang, J., Konings, A. G., Entekhabi, D., Piles, M., & Stoffelen, A. (2014). Extended

triple collocation: Estimating errors and correlation coefficients with respect to an unknown target.

Geophysical Research Letters, 41(17), 6229–6236. https://doi.org/10.1002/2014GL061322

Medjahed, B., & Bouguettaya, A. (2005). A multilevel composability model for semantic Web services.

IEEE Transactions on Knowledge and Data Engineering, 17(7), 954–968.

https://doi.org/10.1109/TKDE.2005.101

Meek, S., Jackson, M., & Leibovici, D. G. (2016). A BPMN solution for chaining OGC services to quality

assure location-based crowdsourced data. Computers and Geosciences, 87, 76–83.

https://doi.org/10.1016/j.cageo.2015.12.003

Mendling, J., Mendling, J., & Neumann, G. (2004). G.: A Comparison of XML Interchange Formats for

Business Process Modelling. IN: PROCEEDINGS OF EMISA 2004 - INFORMATION SYSTEMS

IN E-BUSINESS AND E-GOVERNMENT. LNI, 56, 129--140. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.87.3243

Mendling, J., & Weidlich, M. (2012). Lecture Notes in Business Information Processing: Preface. Lecture

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

124

Notes in Business Information Processing, 125 LNBIP. https://doi.org/10.1007/978-3-642-33155-8

Morales, J., & De By, R. A. (2009). Design templates for real-time geo-processing workflows. In Digital

earth in action. Beijing, China: International Society for Digital Earth (ISDE). Retrieved from

https://webapps.itc.utwente.nl/library/2009/conf/morales_des.pdf

Morales, J. M. (2004). Model-driven Design of Geo-information Services. University of Twente, Enschede, The

Netherlands. Retrieved from

https://webapps.itc.utwente.nl/librarywww/papers_2004/phd/morales.pdf

Nurseitov, N., Paulson, M., Reynolds, R., & Izurieta, C. (2009). Comparison of JSON and XML Data

Interchange Formats: A Case Study. In Proceedings of the ISCA 22nd International Conference on Computer

Applications in Industry and Engineering. San Francisco, California, USA. Retrieved from

https://www.cs.montana.edu/izurieta/pubs/IzurietaCAINE2009.pdf

OGC. (2012). OGC Sensor Observation Service. OGC Implementation Standard, 163. https://doi.org/OGC

12-006

OMG. (2003). MDA Guide v1.0.1. Object Management Group. Retrieved from

https://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-

2_MDA_Guide_v1.0.1.pdf

OMG. (2011). Notation (BPMN) Version 2.0. OMG Specification, Object Management Group, (January).

https://doi.org/10.1016/S0020-1693(97)05933-1

Open Geospatial Consortium. (2012). OGC Web Processing Service 1.0. Agenda, 1–18.

Pierdicca, N., Anniballe, R., Noto, F., Bignami, C., Chini, M., Martinelli, A., & Mannella, A. (2018). Triple

collocation to assess classification accuracy without a ground truth in case of earthquake damage

assessment. IEEE Transactions on Geoscience and Remote Sensing, 56(1), 485–496.

https://doi.org/10.1109/TGRS.2017.2750770

Pross, B., & Christoph, S. (2018). OGC Testbed-13: Workflows ER. Retrieved September 18, 2018, from

http://docs.opengeospatial.org/per/17-029r1.html

Rosser, J. F., Jackson, M., & Leibovici, D. G. (2018). Full Meta Object profiling for flexible geoprocessing

workflows. Transactions in GIS, 22(5), 1221–1237. https://doi.org/10.1111/tgis.12460

Rouached, M., Baccar, S., & Abid, M. (2012). RESTful sensor web enablement services for wireless sensor

networks. In Proceedings - 2012 IEEE 8th World Congress on Services, SERVICES 2012 (pp. 65–72).

IEEE. https://doi.org/10.1109/SERVICES.2012.48

Schäffer, B., & Foerster, T. (2008). A client for distributed geo-processing and workflow design. Journal of

Location Based Services, 2(3), 194–210. https://doi.org/10.1080/17489720802558491

Scheider, S., & Ballatore, A. (2018). Semantic typing of linked geoprocessing workflows. International

Journal of Digital Earth, 11(1), 113–138.

https://doi.org/10.1080/17538947.2017.1305457org/10.1080/17538947.2017.1305457

Schmidt, M. T. (1999). The evolution of workflow standards. IEEE Concurrency, 7(3), 44–52.

https://doi.org/10.1109/4434.788778

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

125

Simonis, I., De Lathouwer, B., & Taylor, T. (2016). Sensor Web Enablement (SWE) for citizen science. In

IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 3618–3620). IEEE.

https://doi.org/10.1109/IGARSS.2016.7729937

Singh, A. (2016). Understanding Separation Of Concern in ASP.NET MVC. Retrieved February 19, 2019,

from https://www.c-sharpcorner.com/UploadFile/56fb14/understanding-separation-of-concern-

and-Asp-Net-mvc/

Sonntag, M., Karastoyanova, D., & Deelman, E. (2010). Bridging the gap between business and scientific

workflows: Humans in the loop of scientific workflows. Proceedings - 2010 6th IEEE International

Conference on e-Science, EScience 2010, (December), 206–213. https://doi.org/10.1109/eScience.2010.12

Taylor, I. J., Deelman, E., Gannon, D., & Shields, M. S. (2007). Workflows for e-Science: Scientific

Workflows for Grids. Workflows for E-Science: Scientific Workflows for Grids, 1–523.

https://doi.org/10.1007/978-1-84628-757-2

Ubels, S. (2018). Understanding abstract geo-information workflows and converting them to executable

workflows using Semantic Web technologies MSc Thesis Sam Ubels Department of Geoinformation

Processing Faculty of Geoinformation Science and Earth Observation University of.

Werling, M. (2008). OGC® OWS-5 GeoProcessing Workflow Architecture Engineering Report.

Engineering.

Yue, P., Foerster, T., & Zhao, P. (2012). The Geoprocessing Web. Computers & Geosciences, 47, 3–12.

https://doi.org/10.1016/J.CAGEO.2012.04.021

Yue, P., Sun, Z., Gong, J., Di, L., & Lu, X. (2011). A provenance framework for Web geoprocessing

workflows. In IEEE International Geoscience and Remote Sensing Symposium (pp. 3811–3814). IEEE.

https://doi.org/10.1109/IGARSS.2011.6050061

Zhao, J., Gomez-Perez, J. M., Belhajjame, K., Klyne, G., Garcia-Cuesta, E., Garrido, A., … Goble, C.

(2012). Why workflows break — Understanding and combating decay in Taverna workflows. In

2012 IEEE 8th International Conference on E-Science (pp. 1–9). IEEE.

https://doi.org/10.1109/eScience.2012.6404482

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

126

Appendix

Appendix A: JSON Schema for Workflow Sharing

1. {
2. "$schema": "http://json-schema.org/draft-04/schema#",
3. "type": "object",
4. "properties": {
5. "workflows": {
6. "type": "array",
7. "items": [
8. {
9. "type": "object",
10. "properties": {
11. "id": {
12. "type": "integer"
13. },
14. "metadata": {
15. "type": "object",
16. "properties": {
17. "longname": {
18. "type": "string"
19. }
20. },
21. "required": [
22. "longname"
23.]
24. },
25. "operations": {
26. "type": "array",
27. "items": [
28. {
29. "type": "object",
30. "properties": {
31. "id": {
32. "type": "integer"
33. },
34. "metadata": {
35. "type": "object",
36. "properties": {
37. "longname": {
38. "type": "string"
39. },
40. "label": {
41. "type": "string"
42. },
43. "url": {
44. "type": "string"
45. },
46. "resource": {
47. "type": "string"
48. },
49. "description": {
50. "type": "string"
51. },
52. "inputparametercount": {
53. "type": "integer"
54. },
55. "outputparametercount": {
56. "type": "integer"
57. },
58. "position": {

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

127

59. "type": "array",
60. "items": [
61. {
62. "type": "integer"
63. },
64. {
65. "type": "integer"
66. }
67.]
68. }
69. },
70. "required": [
71. "longname",
72. "label",
73. "url",
74. "resource",
75. "description",
76. "inputparametercount",
77. "outputparametercount",
78. "position"
79.]
80. },
81. "inputs": {
82. "type": "array",
83. "items": [
84. {
85. "type": "object",
86. "properties": {
87. "id": {
88. "type": "integer"
89. },
90. "identifier": {
91. "type": "string"
92. },
93. "name": {
94. "type": "string"
95. },
96. "type": {
97. "type": "string"
98. },
99. "description": {
100. "type": "string"
101. },
102. "optional": {
103. "type": "boolean"
104. },
105. "url": {
106. "type": "string"
107. },
108. "value": {
109. "type": "string"
110. }
111. },
112. "required": [
113. "id",
114. "identifier",
115. "name",
116. "type",
117. "description",
118. "optional",
119. "url",
120. "value"
121.]
122. }

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

128

123.]
124. },
125. "outputs": {
126. "type": "array",
127. "items": [
128. {
129. "type": "object",
130. "properties": {
131. "id": {
132. "type": "integer"
133. },
134. "identifier": {
135. "type": "string"
136. },
137. "name": {
138. "type": "string"
139. },
140. "value": {
141. "type": "string"
142. },
143. "description": {
144. "type": "string"
145. },
146. "type": {
147. "type": "string"
148. }
149. },
150. "required": [
151. "id",
152. "identifier",
153. "name",
154. "value",
155. "description",
156. "type"
157.]
158. }
159.]
160. }
161. },
162. "required": [
163. "id",
164. "metadata",
165. "inputs",
166. "outputs"
167.]
168. },
169. {
170. "type": "object",
171. "properties": {
172. "id": {
173. "type": "integer"
174. },
175. "metadata": {
176. "type": "object",
177. "properties": {
178. "longname": {
179. "type": "string"
180. },
181. "label": {
182. "type": "string"
183. },
184. "url": {
185. "type": "string"
186. },

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

129

187. "resource": {
188. "type": "string"
189. },
190. "description": {
191. "type": "string"
192. },
193. "inputparametercount": {
194. "type": "integer"
195. },
196. "outputparametercount": {
197. "type": "integer"
198. },
199. "position": {
200. "type": "array",
201. "items": [
202. {
203. "type": "integer"
204. },
205. {
206. "type": "integer"
207. }
208.]
209. }
210. },
211. "required": [
212. "longname",
213. "label",
214. "url",
215. "resource",
216. "description",
217. "inputparametercount",
218. "outputparametercount",
219. "position"
220.]
221. },
222. "inputs": {
223. "type": "array",
224. "items": [
225. {
226. "type": "object",
227. "properties": {
228. "id": {
229. "type": "integer"
230. },
231. "identifier": {
232. "type": "string"
233. },
234. "name": {
235. "type": "string"
236. },
237. "type": {
238. "type": "string"
239. },
240. "description": {
241. "type": "string"
242. },
243. "optional": {
244. "type": "boolean"
245. },
246. "url": {
247. "type": "string"
248. },
249. "value": {
250. "type": "string"

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

130

251. }
252. },
253. "required": [
254. "id",
255. "identifier",
256. "name",
257. "type",
258. "description",
259. "optional",
260. "url",
261. "value"
262.]
263. },
264. {
265. "type": "object",
266. "properties": {
267. "id": {
268. "type": "integer"
269. },
270. "identifier": {
271. "type": "string"
272. },
273. "name": {
274. "type": "string"
275. },
276. "type": {
277. "type": "string"
278. },
279. "description": {
280. "type": "string"
281. },
282. "optional": {
283. "type": "boolean"
284. },
285. "url": {
286. "type": "string"
287. },
288. "value": {
289. "type": "string"
290. }
291. },
292. "required": [
293. "id",
294. "identifier",
295. "name",
296. "type",
297. "description",
298. "optional",
299. "url",
300. "value"
301.]
302. },
303. {
304. "type": "object",
305. "properties": {
306. "id": {
307. "type": "integer"
308. },
309. "identifier": {
310. "type": "string"
311. },
312. "name": {
313. "type": "string"
314. },

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

131

315. "type": {
316. "type": "string"
317. },
318. "description": {
319. "type": "string"
320. },
321. "optional": {
322. "type": "boolean"
323. },
324. "url": {
325. "type": "string"
326. },
327. "value": {
328. "type": "string"
329. }
330. },
331. "required": [
332. "id",
333. "identifier",
334. "name",
335. "type",
336. "description",
337. "optional",
338. "url",
339. "value"
340.]
341. }
342.]
343. },
344. "outputs": {
345. "type": "array",
346. "items": [
347. {
348. "type": "object",
349. "properties": {
350. "id": {
351. "type": "integer"
352. },
353. "identifier": {
354. "type": "string"
355. },
356. "name": {
357. "type": "string"
358. },
359. "value": {
360. "type": "string"
361. },
362. "description": {
363. "type": "string"
364. },
365. "type": {
366. "type": "string"
367. }
368. },
369. "required": [
370. "id",
371. "identifier",
372. "name",
373. "value",
374. "description",
375. "type"
376.]
377. }
378.]

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

132

379. }
380. },
381. "required": [
382. "id",
383. "metadata",
384. "inputs",
385. "outputs"
386.]
387. }
388.]
389. },
390. "connections": {
391. "type": "array",
392. "items": [
393. {
394. "type": "object",
395. "properties": {
396. "fromOperationID": {
397. "type": "integer"
398. },
399. "toOperationID": {
400. "type": "integer"
401. },
402. "fromParameterID": {
403. "type": "integer"
404. },
405. "toParameterID": {
406. "type": "integer"
407. }
408. },
409. "required": [
410. "fromOperationID",
411. "toOperationID",
412. "fromParameterID",
413. "toParameterID"
414.]
415. }
416.]
417. }
418. },
419. "required": [
420. "id",
421. "metadata",
422. "operations",
423. "connections"
424.]
425. }
426.]
427. }
428. },
429. "required": [
430. "workflows"
431.]

432. }

Appendix B: JSON Representation for Triple Sensor Water Accounting Workflow

1. {
2. "workflows": [
3. {
4. "id": 1,

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

133

5. "metadata": {
6. "longname": "Subworkflow"
7. },
8. "operations": [
9. {
10. "id": 0,
11. "metadata": {
12. "longname": "i3:Moving Average",
13. "label": "moving_wps_average",
14. "url": "http://130.89.221.193:82/WorkflowApp/app/api/wps.py?",
15. "resource": "WPS",
16. "description": "The Moving average operation is a point interpolation which requires a

point map as input and returns a raster map as output. To the output pixels, weighted averaged
 point values are assigned.The weight factors for the points are calculated by a user-
specified weight function. The weight function ensures that points close to an output pixel obta
in larger weights than points which are farther away. Furthermore, the weight functions are imp
lemented in such a way that points which are farther away from an output pixel than a user-
defined limiting distance obtain weight zero.When interpolating point values, it is for time effici
ency reasons, strongly advised to choose a rather large pixel size for the output map. Further in
terpolation on the raster map values can be performed using the Densify operation or the Resa
mple operation.",

17. "inputparametercount": 6,
18. "outputparametercount": 1,
19. "position": [
20. 509,
21. 30
22.]
23. },
24. "inputs": [
25. {
26. "id": 0,
27. "identifier": "feature",
28. "name": "input featurecoverage",
29. "type": "geom",
30. "description": "input featurecoverage with any domain",
31. "optional": false,
32. "url": "http://130.89.8.26/WorkflowApp/app/api/sos.py?service=SOS&request=Ge

tObservation&version=1.0.0&observedProperty=Rainfall_sensors&offering=rainfall_SENSO
RS",

33. "value": "http://130.89.8.26/WorkflowApp/app/api/sos.py?service=SOS&request=
GetObservation&version=1.0.0&observedProperty=Rainfall_sensors&offering=rainfall_SEN
SORS"

34. },
35. {
36. "id": 1,
37. "identifier": "attribute",
38. "name": "attributes",
39. "type": "string",
40. "description": "The attribute(s) of the featurecoverage whose values are interpolated",

41. "optional": false,
42. "url": "",
43. "value": "Jul01;Jul02;Jul03;Jul04;Jul05;Jul06;Jul07;Jul08;Jul09;Jul10;Jul11;Jul12;Jul13;Jul

14;Jul15;Jul16;Jul17;Jul18;Jul19;Jul20;Jul21;Jul22;Jul23;Jul24;Jul25;Jul26;Jul27;Jul28;Jul29;Jul30;J
ul31"

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

134

44. },
45. {
46. "id": 2,
47. "identifier": "weight_function",
48. "name": "weight function",
49. "type": "string",
50. "description": "The method of weight function to be applied. Either Inverse Distance

method or Linear distance method",
51. "optional": true,
52. "url": "",
53. "value": "invDist"
54. },
55. {
56. "id": 3,
57. "identifier": "weight_exponent",
58. "name": "weight exponent",
59. "type": "string",
60. "description": "value for weight exponent n to be used in the specified weight functio

n (real value, usually a value close to 1.0).",
61. "optional": false,
62. "url": "",
63. "value": "1"
64. },
65. {
66. "id": 4,
67. "identifier": "limiting_distance",
68. "name": "limiting distance",
69. "type": "double",
70. "description": "value for the limiting distance: points that are farther away from an out

put pixel than the limiting distance obtain weight zero",
71. "optional": false,
72. "url": "",
73. "value": "1"
74. },
75. {
76. "id": 5,
77. "identifier": "georef",
78. "name": "georeference",
79. "type": "georeference",
80. "description": "the parameter can either be a georeference or the x extent of the the to

 be created raster",
81. "optional": false,
82. "url": "",
83. "value": "afrialiance.grf"
84. }
85.],
86. "outputs": [
87. {
88. "id": 0,
89. "identifier": "result",
90. "name": "result",
91. "value": "",
92. "description": "result",
93. "type": "string"
94. }

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

135

95.]
96. },
97. {
98. "id": 1,
99. "metadata": {
100. "longname": "i3:Create Maplist",
101. "label": "create_wps_maplist",
102. "url": "http://130.89.221.193:82/WorkflowApp/app/api/wps.py?",
103. "resource": "WPS",
104. "description": "Create a maplist from a set of raster data.",
105. "inputparametercount": 1,
106. "outputparametercount": 1,
107. "position": [
108. 394,
109. 278
110.]
111. },
112. "inputs": [
113. {
114. "id": 0,
115. "identifier": "rasters",
116. "name": "list of raster maps",
117. "type": "string",
118. "description": "A raster with multiple bands.",
119. "optional": false,
120. "url": "",
121. "value": "0_to_0"
122. }
123.],
124. "outputs": [
125. {
126. "id": 0,
127. "identifier": "raster",
128. "name": "result",
129. "value": "",
130. "description": "result",
131. "type": "maplist"
132. }
133.]
134. },
135. {
136. "id": 2,
137. "metadata": {
138. "longname": "i3:Table from GeoJSON",
139. "label": "create_wps_table",
140. "url": "http://130.89.221.193:82/WorkflowApp/app/api/wps.py?",
141. "resource": "WPS",
142. "description": "Create an ILWIS Table from a GeoJSON.",
143. "inputparametercount": 2,
144. "outputparametercount": 1,
145. "position": [
146. 806,
147. 51
148.]
149. },

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

136

150. "inputs": [
151. {
152. "id": 0,
153. "identifier": "feature",
154. "name": "GeoJSON feature",
155. "type": "geom",
156. "description": "The url of the GeoJSON which is to be imported to ilwis tbt file",
157. "optional": false,
158. "url": "http://130.89.8.26/WorkflowApp/app/api/sos.py?service=SOS&request=Ge

tObservation&version=1.0.0&observedProperty=Rainfall_citizenpoints&offering=rainfall_CI
TIZENPOINTS",

159. "value": "http://130.89.8.26/WorkflowApp/app/api/sos.py?service=SOS&request=
GetObservation&version=1.0.0&observedProperty=Rainfall_citizenpoints&offering=rainfall_
CITIZENPOINTS"

160. },
161. {
162. "id": 1,
163. "identifier": "domain",
164. "name": "Table Domain",
165. "type": "string",
166. "description": "The domain class to use",
167. "optional": true,
168. "url": "",
169. "value": "wpdx.dom"
170. }
171.],
172. "outputs": [
173. {
174. "id": 0,
175. "identifier": "result",
176. "name": "ilwis table",
177. "value": "",
178. "description": "ilwis table",
179. "type": "table"
180. }
181.]
182. },
183. {
184. "id": 3,
185. "metadata": {
186. "longname": "i3:PointMap From Table",
187. "label": "pointmapfrom_wps_table",
188. "url": "http://130.89.221.193:82/WorkflowApp/app/api/wps.py?",
189. "resource": "WPS",
190. "description": "Create an ILWIS Point map from table.",
191. "inputparametercount": 4,
192. "outputparametercount": 1,
193. "position": [
194. 682,
195. 253
196.]
197. },
198. "inputs": [
199. {
200. "id": 0,

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

137

201. "identifier": "table",
202. "name": "Input table",
203. "type": "table",
204. "description": "The url of the input ilwis tbt file",
205. "optional": false,
206. "url": "",
207. "value": "2_to_0"
208. },
209. {
210. "id": 1,
211. "identifier": "latitude_column",
212. "name": "Latitude column",
213. "type": "string",
214. "description": "Column corresponding to latitude",
215. "optional": false,
216. "url": "",
217. "value": "lat"
218. },
219. {
220. "id": 2,
221. "identifier": "longitude_column",
222. "name": "Longitude column",
223. "type": "string",
224. "description": "Column corresponding to longitude",
225. "optional": false,
226. "url": "",
227. "value": "lon"
228. },
229. {
230. "id": 3,
231. "identifier": "crs",
232. "name": "coordinate system",
233. "type": "string",
234. "description": "Spatial Reference System e.g. LatlonWGS84",
235. "optional": false,
236. "url": "",
237. "value": "wgs84"
238. }
239.],
240. "outputs": [
241. {
242. "id": 0,
243. "identifier": "result",
244. "name": "Point Map",
245. "value": "",
246. "description": "Point Map",
247. "type": "pointmap"
248. }
249.]
250. },
251. {
252. "id": 4,
253. "metadata": {
254. "longname": "i3:Create Maplist2",
255. "label": "create_wps_maplist2",

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

138

256. "url": "http://130.89.221.193:82/WorkflowApp/app/api/wps.py?",
257. "resource": "WPS",
258. "description": "Create a maplist from a set of available rainfall maps. The rainfall map p

roviders are CHIRPS, TAMSAT.",
259. "inputparametercount": 3,
260. "outputparametercount": 1,
261. "position": [
262. 261,
263. 263
264.]
265. },
266. "inputs": [
267. {
268. "id": 0,
269. "identifier": "startdate",
270. "name": "Start date",
271. "type": "date",
272. "description": "The start date",
273. "optional": false,
274. "url": "",
275. "value": "2015-06-30T22:00:00.000Z"
276. },
277. {
278. "id": 1,
279. "identifier": "enddate",
280. "name": "End date",
281. "type": "date",
282. "description": "The end date",
283. "optional": false,
284. "url": "",
285. "value": "2015-07-30T22:00:00.000Z"
286. },
287. {
288. "id": 2,
289. "identifier": "satelite",
290. "name": "Satelite product e.g. CHIRPS",
291. "type": "string",
292. "description": "The rainfall satellite product, CHIRPS, TAMSAT",
293. "optional": false,
294. "url": "",
295. "value": "chirps"
296. }
297.],
298. "outputs": [
299. {
300. "id": 0,
301. "identifier": "raster",
302. "name": "result",
303. "value": "",
304. "description": "result",
305. "type": "maplist"
306. }
307.]
308. },
309. {

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

139

310. "id": 5,
311. "metadata": {
312. "longname": "i3:Triple Collocation",
313. "label": "triple_wps_collocation",
314. "url": "http://130.89.221.193:82/WorkflowApp/app/api/wps.py?",
315. "resource": "WPS",
316. "description": "Triple Sensor Collocation can be used to validate 3 independent observ

ations at a location, when the error free true value is not known.With this you can judge, which
 water or climate observation, i.e. your citizen observation, conventional station measurement o
r a remotely sensed satellite look-up and retrieval is most reliable.",

317. "inputparametercount": 3,
318. "outputparametercount": 1,
319. "position": [
320. 521,
321. 445
322.]
323. },
324. "inputs": [
325. {
326. "id": 0,
327. "identifier": "satelite_data",
328. "name": "Satellite data",
329. "type": "maplist",
330. "description": "This is a map list of Earth observation data e.g. CHIRPS rainfall maps

",
331. "optional": false,
332. "url": "",
333. "value": "4_to_0"
334. },
335. {
336. "id": 1,
337. "identifier": "station_data",
338. "name": "Station data",
339. "type": "maplist",
340. "description": "This is a point map of In-situ or metereological station data",
341. "optional": false,
342. "url": "",
343. "value": "1_to_1"
344. },
345. {
346. "id": 2,
347. "identifier": "citizen_data",
348. "name": "Citizen data",
349. "type": "pointmap",
350. "description": "Point map of citizen generated data",
351. "optional": false,
352. "url": "",
353. "value": "3_to_2"
354. }
355.],
356. "outputs": [
357. {
358. "id": 0,
359. "identifier": "result",
360. "name": "Evaluation report",

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

140

361. "value": "",
362. "description": "Evaluation report",
363. "type": "geom"
364. }
365.]
366. }
367.],
368. "connections": [
369. {
370. "fromOperationID": 0,
371. "toOperationID": 1,
372. "fromParameterID": 0,
373. "toParameterID": 0
374. },
375. {
376. "fromOperationID": 2,
377. "toOperationID": 3,
378. "fromParameterID": 0,
379. "toParameterID": 0
380. },
381. {
382. "fromOperationID": 4,
383. "toOperationID": 5,
384. "fromParameterID": 0,
385. "toParameterID": 0
386. },
387. {
388. "fromOperationID": 1,
389. "toOperationID": 5,
390. "fromParameterID": 0,
391. "toParameterID": 1
392. },
393. {
394. "fromOperationID": 3,
395. "toOperationID": 5,
396. "fromParameterID": 0,
397. "toParameterID": 2
398. }
399.]
400. }
401.]
402. }

Appendix C: BPMN Representation for Triple Sensor Water Accounting Workflow

1. <?xml version="1.0" encoding="UTF-8"?>
2. <bpmn2:definitions xmlns:bpmn2="http://www.omg.org/spec/BPMN/20100524/MODE

L" xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI" xmlns:camunda="http
://camunda.org/schema/1.0/bpmn" xmlns:dc="http://www.omg.org/spec/DD/20100524/
DC" xmlns:di="http://www.omg.org/spec/DD/20100524/DI" xmlns:ext="http://org.eclips
e.bpmn2/ext" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w
3.org/2001/XMLSchema-

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

141

instance" exporter="org.eclipse.bpmn2.modeler.core" exporterVersion="2018.2019_thesis" id
="Definitions_1" targetNamespace="http://org.eclipse.bpmn2/default/process">

3. <bpmn2:itemDefinition id="ITEM_DEF_STRING" isCollection="false" structureRef="
xs:string" />

4. <bpmn2:process id="_1" isExecutable="true" name="Subworkflow">
5. <bpmn2:sequenceFlow id="SequenceFlow_Start" sourceRef="StartEvent_1" targetRef

="ServiceTask_2" />
6. <bpmn2:sequenceFlow id="SequenceFlow_1" sourceRef="ServiceTask_0" targetRef="

ServiceTask_1" />
7. <bpmn2:sequenceFlow id="SequenceFlow_2" sourceRef="ServiceTask_2" targetRef="

ServiceTask_3" />
8. <bpmn2:sequenceFlow id="SequenceFlow_3" sourceRef="ServiceTask_4" targetRef="

ServiceTask_5" />
9. <bpmn2:sequenceFlow id="SequenceFlow_4" sourceRef="ServiceTask_1" targetRef="

ServiceTask_5" />
10. <bpmn2:sequenceFlow id="SequenceFlow_5" sourceRef="ServiceTask_3" targetRef="

ServiceTask_5" />
11. <bpmn2:sequenceFlow id="SequenceFlow_End" sourceRef="ServiceTask_5" targetRef

="EndEvent_1" />
12. <bpmn2:startEvent id="StartEvent_1" name="Start Workflow">
13. <bpmn2:outgoing>SequenceFlow_Start</bpmn2:outgoing>
14. </bpmn2:startEvent>
15. <bpmn2:endEvent id="EndEvent_1" name="End Workflow">
16. <bpmn2:incoming>SequenceFlow_End</bpmn2:incoming>
17. </bpmn2:endEvent>
18. <bpmn2:serviceTask id="ServiceTask_2" implementation="http://130.89.221.193:82/

WorkflowApp/app/api/wps.py?" name="i3:Table from GeoJSON" resource="WPS">
19. <bpmn2:ioSpecification ioSpecification_="ioSpecification_2">
20. <bpmn2:inputSet>
21. <bpmn2:dataInputRefs>DataInput_GeoJSON feature_2</bpmn2:dataInputRe

fs>
22. <bpmn2:dataInputRefs>DataInput_Table Domain_2</bpmn2:dataInputRefs>

23. </bpmn2:inputSet>
24. <bpmn2:dataInput id="DataInput_GeoJSON feature_2" itemSubjectRef="ITEM_

DEF_STRING" name="GeoJSON feature" optional="false" type="geom" value="http://13
0.89.8.26/WorkflowApp/app/api/sos.py?service=SOS&request=GetObservation&version=1.
0.0&observedProperty=Rainfall_citizenpoints&offering=rainfall_CITIZENPOINTS" />

25. <bpmn2:dataInput id="DataInput_Table Domain_2" itemSubjectRef="ITEM_DEF
_STRING" name="Table Domain" optional="true" type="string" value="wpdx.dom" />

26. <bpmn2:outputSet>
27. <bpmn2:dataOutputRefs>DataOutput_ilwis table_2</bpmn2:dataOutputRefs

>
28. </bpmn2:outputSet>
29. <bpmn2:dataOutput id="DataOutput_ilwis table_2" itemSubjectRef="ITEM_DEF_

STRING" name="ilwis table" type="table" value="" />
30. </bpmn2:ioSpecification>
31. <bpmn2:DataInputAssociation id="DataInputAssociation_GeoJSON feature_2">
32. <bpmn2:sourceRef>GeoJSON feature</bpmn2:sourceRef>
33. <bpmn2:targetRef>DataInput_GeoJSON feature_2</bpmn2:targetRef>
34. </bpmn2:DataInputAssociation>
35. <bpmn2:DataInputAssociation id="DataInputAssociation_Table Domain_2">
36. <bpmn2:sourceRef>Table Domain</bpmn2:sourceRef>
37. <bpmn2:targetRef>DataInput_Table Domain_2</bpmn2:targetRef>
38. </bpmn2:DataInputAssociation>

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

142

39. <bpmn2:DataOutputAssociation id="DataOutputAssociation_ilwis table_2">
40. <bpmn2:sourceRef>ilwis table</bpmn2:sourceRef>
41. <bpmn2:targetRef>DataOutput_ilwis table_2</bpmn2:targetRef>
42. </bpmn2:DataOutputAssociation>
43. <bpmn2:outgoing>SequenceFlow_3</bpmn2:outgoing>
44. <bpmn2:incoming>SequenceFlow_Start</bpmn2:incoming>
45. </bpmn2:serviceTask>
46. <bpmn2:serviceTask id="ServiceTask_3" implementation="http://130.89.221.193:82/

WorkflowApp/app/api/wps.py?" name="i3:PointMap From Table" resource="WPS">
47. <bpmn2:ioSpecification ioSpecification_="ioSpecification_3">
48. <bpmn2:inputSet>
49. <bpmn2:dataInputRefs>DataInput_Input table_3</bpmn2:dataInputRefs>
50. <bpmn2:dataInputRefs>DataInput_Latitude column_3</bpmn2:dataInputRefs

>
51. <bpmn2:dataInputRefs>DataInput_Longitude column_3</bpmn2:dataInputRe

fs>
52. <bpmn2:dataInputRefs>DataInput_coordinate system_3</bpmn2:dataInputRe

fs>
53. </bpmn2:inputSet>
54. <bpmn2:dataInput id="DataInput_Input table_3" itemSubjectRef="ITEM_DEF_S

TRING" name="Input table" optional="false" type="table" value="2_to_0" />
55. <bpmn2:dataInput id="DataInput_Latitude column_3" itemSubjectRef="ITEM_D

EF_STRING" name="Latitude column" optional="false" type="string" value="lat" />
56. <bpmn2:dataInput id="DataInput_Longitude column_3" itemSubjectRef="ITEM_

DEF_STRING" name="Longitude column" optional="false" type="string" value="lon" />
57. <bpmn2:dataInput id="DataInput_coordinate system_3" itemSubjectRef="ITEM_

DEF_STRING" name="coordinate system" optional="false" type="string" value="wgs84" /
>

58. <bpmn2:outputSet>
59. <bpmn2:dataOutputRefs>DataOutput_Point Map_3</bpmn2:dataOutputRefs

>
60. </bpmn2:outputSet>
61. <bpmn2:dataOutput id="DataOutput_Point Map_3" itemSubjectRef="ITEM_DEF

_STRING" name="Point Map" type="pointmap" value="" />
62. </bpmn2:ioSpecification>
63. <bpmn2:DataInputAssociation id="DataInputAssociation_Input table_3">
64. <bpmn2:sourceRef>Input table</bpmn2:sourceRef>
65. <bpmn2:targetRef>DataInput_Input table_3</bpmn2:targetRef>
66. </bpmn2:DataInputAssociation>
67. <bpmn2:DataInputAssociation id="DataInputAssociation_Latitude column_3">
68. <bpmn2:sourceRef>Latitude column</bpmn2:sourceRef>
69. <bpmn2:targetRef>DataInput_Latitude column_3</bpmn2:targetRef>
70. </bpmn2:DataInputAssociation>
71. <bpmn2:DataInputAssociation id="DataInputAssociation_Longitude column_3">
72. <bpmn2:sourceRef>Longitude column</bpmn2:sourceRef>
73. <bpmn2:targetRef>DataInput_Longitude column_3</bpmn2:targetRef>
74. </bpmn2:DataInputAssociation>
75. <bpmn2:DataInputAssociation id="DataInputAssociation_coordinate system_3">
76. <bpmn2:sourceRef>coordinate system</bpmn2:sourceRef>
77. <bpmn2:targetRef>DataInput_coordinate system_3</bpmn2:targetRef>
78. </bpmn2:DataInputAssociation>
79. <bpmn2:DataOutputAssociation id="DataOutputAssociation_Point Map_3">
80. <bpmn2:sourceRef>Point Map</bpmn2:sourceRef>
81. <bpmn2:targetRef>DataOutput_Point Map_3</bpmn2:targetRef>
82. </bpmn2:DataOutputAssociation>

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

143

83. <bpmn2:incoming>SequenceFlow_3</bpmn2:incoming>
84. <bpmn2:outgoing>SequenceFlow_5</bpmn2:outgoing>
85. </bpmn2:serviceTask>
86. <bpmn2:serviceTask id="ServiceTask_0" implementation="http://130.89.221.193:82/

WorkflowApp/app/api/wps.py?" name="i3:Moving Average" resource="WPS">
87. <bpmn2:ioSpecification ioSpecification_="ioSpecification_0">
88. <bpmn2:inputSet>
89. <bpmn2:dataInputRefs>DataInput_input featurecoverage_0</bpmn2:dataInput

Refs>
90. <bpmn2:dataInputRefs>DataInput_attributes_0</bpmn2:dataInputRefs>
91. <bpmn2:dataInputRefs>DataInput_weight function_0</bpmn2:dataInputRefs

>
92. <bpmn2:dataInputRefs>DataInput_weight exponent_0</bpmn2:dataInputRefs

>
93. <bpmn2:dataInputRefs>DataInput_limiting distance_0</bpmn2:dataInputRefs

>
94. <bpmn2:dataInputRefs>DataInput_georeference_0</bpmn2:dataInputRefs>
95. </bpmn2:inputSet>
96. <bpmn2:dataInput id="DataInput_input featurecoverage_0" itemSubjectRef="ITE

M_DEF_STRING" name="input featurecoverage" optional="false" type="geom" value="htt
p://130.89.8.26/WorkflowApp/app/api/sos.py?service=SOS&request=GetObservation&vers
ion=1.0.0&observedProperty=Rainfall_sensors&offering=rainfall_SENSORS" />

97. <bpmn2:dataInput id="DataInput_attributes_0" itemSubjectRef="ITEM_DEF_ST
RING" name="attributes" optional="false" type="string" value="Jul01;Jul02;Jul03;Jul04;Jul05;
Jul06;Jul07;Jul08;Jul09;Jul10;Jul11;Jul12;Jul13;Jul14;Jul15;Jul16;Jul17;Jul18;Jul19;Jul20;Jul21;Jul2
2;Jul23;Jul24;Jul25;Jul26;Jul27;Jul28;Jul29;Jul30;Jul31" />

98. <bpmn2:dataInput id="DataInput_weight function_0" itemSubjectRef="ITEM_DE
F_STRING" name="weight function" optional="true" type="string" value="invDist" />

99. <bpmn2:dataInput id="DataInput_weight exponent_0" itemSubjectRef="ITEM_D
EF_STRING" name="weight exponent" optional="false" type="string" value="1" />

100. <bpmn2:dataInput id="DataInput_limiting distance_0" itemSubjectRef="ITEM_D
EF_STRING" name="limiting distance" optional="false" type="double" value="1" />

101. <bpmn2:dataInput id="DataInput_georeference_0" itemSubjectRef="ITEM_DEF_
STRING" name="georeference" optional="false" type="georeference" value="afrialiance.grf"
 />

102. <bpmn2:outputSet>
103. <bpmn2:dataOutputRefs>DataOutput_result_0</bpmn2:dataOutputRefs>
104. </bpmn2:outputSet>
105. <bpmn2:dataOutput id="DataOutput_result_0" itemSubjectRef="ITEM_DEF_STR

ING" name="result" type="string" value="" />
106. </bpmn2:ioSpecification>
107. <bpmn2:DataInputAssociation id="DataInputAssociation_input featurecoverage_0"

>
108. <bpmn2:sourceRef>input featurecoverage</bpmn2:sourceRef>
109. <bpmn2:targetRef>DataInput_input featurecoverage_0</bpmn2:targetRef>
110. </bpmn2:DataInputAssociation>
111. <bpmn2:DataInputAssociation id="DataInputAssociation_attributes_0">
112. <bpmn2:sourceRef>attributes</bpmn2:sourceRef>
113. <bpmn2:targetRef>DataInput_attributes_0</bpmn2:targetRef>
114. </bpmn2:DataInputAssociation>
115. <bpmn2:DataInputAssociation id="DataInputAssociation_weight function_0">
116. <bpmn2:sourceRef>weight function</bpmn2:sourceRef>
117. <bpmn2:targetRef>DataInput_weight function_0</bpmn2:targetRef>
118. </bpmn2:DataInputAssociation>
119. <bpmn2:DataInputAssociation id="DataInputAssociation_weight exponent_0">

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

144

120. <bpmn2:sourceRef>weight exponent</bpmn2:sourceRef>
121. <bpmn2:targetRef>DataInput_weight exponent_0</bpmn2:targetRef>
122. </bpmn2:DataInputAssociation>
123. <bpmn2:DataInputAssociation id="DataInputAssociation_limiting distance_0">
124. <bpmn2:sourceRef>limiting distance</bpmn2:sourceRef>
125. <bpmn2:targetRef>DataInput_limiting distance_0</bpmn2:targetRef>
126. </bpmn2:DataInputAssociation>
127. <bpmn2:DataInputAssociation id="DataInputAssociation_georeference_0">
128. <bpmn2:sourceRef>georeference</bpmn2:sourceRef>
129. <bpmn2:targetRef>DataInput_georeference_0</bpmn2:targetRef>
130. </bpmn2:DataInputAssociation>
131. <bpmn2:DataOutputAssociation id="DataOutputAssociation_result_0">
132. <bpmn2:sourceRef>result</bpmn2:sourceRef>
133. <bpmn2:targetRef>DataOutput_result_0</bpmn2:targetRef>
134. </bpmn2:DataOutputAssociation>
135. <bpmn2:outgoing>SequenceFlow_1</bpmn2:outgoing>
136. </bpmn2:serviceTask>
137. <bpmn2:serviceTask id="ServiceTask_1" implementation="http://130.89.221.193:82/

WorkflowApp/app/api/wps.py?" name="i3:Create Maplist" resource="WPS">
138. <bpmn2:ioSpecification ioSpecification_="ioSpecification_1">
139. <bpmn2:inputSet>
140. <bpmn2:dataInputRefs>DataInput_list of raster maps_1</bpmn2:dataInputRef

s>
141. </bpmn2:inputSet>
142. <bpmn2:dataInput id="DataInput_list of raster maps_1" itemSubjectRef="ITEM_D

EF_STRING" name="list of raster maps" optional="false" type="string" value="0_to_0" />

143. <bpmn2:outputSet>
144. <bpmn2:dataOutputRefs>DataOutput_result_1</bpmn2:dataOutputRefs>
145. </bpmn2:outputSet>
146. <bpmn2:dataOutput id="DataOutput_result_1" itemSubjectRef="ITEM_DEF_STR

ING" name="result" type="maplist" value="" />
147. </bpmn2:ioSpecification>
148. <bpmn2:DataInputAssociation id="DataInputAssociation_list of raster maps_1">
149. <bpmn2:sourceRef>list of raster maps</bpmn2:sourceRef>
150. <bpmn2:targetRef>DataInput_list of raster maps_1</bpmn2:targetRef>
151. </bpmn2:DataInputAssociation>
152. <bpmn2:DataOutputAssociation id="DataOutputAssociation_result_1">
153. <bpmn2:sourceRef>result</bpmn2:sourceRef>
154. <bpmn2:targetRef>DataOutput_result_1</bpmn2:targetRef>
155. </bpmn2:DataOutputAssociation>
156. <bpmn2:incoming>SequenceFlow_1</bpmn2:incoming>
157. <bpmn2:outgoing>SequenceFlow_5</bpmn2:outgoing>
158. </bpmn2:serviceTask>
159. <bpmn2:serviceTask id="ServiceTask_4" implementation="http://130.89.221.193:82/

WorkflowApp/app/api/wps.py?" name="i3:Create Maplist2" resource="WPS">
160. <bpmn2:ioSpecification ioSpecification_="ioSpecification_4">
161. <bpmn2:inputSet>
162. <bpmn2:dataInputRefs>DataInput_Start date_4</bpmn2:dataInputRefs>
163. <bpmn2:dataInputRefs>DataInput_End date_4</bpmn2:dataInputRefs>
164. <bpmn2:dataInputRefs>DataInput_Satelite product e.g. CHIRPS_4</bpmn2:dat

aInputRefs>
165. </bpmn2:inputSet>

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

145

166. <bpmn2:dataInput id="DataInput_Start date_4" itemSubjectRef="ITEM_DEF_ST
RING" name="Start date" optional="false" type="date" value="2015-06-
30T22:00:00.000Z" />

167. <bpmn2:dataInput id="DataInput_End date_4" itemSubjectRef="ITEM_DEF_STR
ING" name="End date" optional="false" type="date" value="2015-07-
30T22:00:00.000Z" />

168. <bpmn2:dataInput id="DataInput_Satelite product e.g. CHIRPS_4" itemSubjectRef
="ITEM_DEF_STRING" name="Satellite product e.g. CHIRPS" optional="false" type="stri
ng" value="chirps" />

169. <bpmn2:outputSet>
170. <bpmn2:dataOutputRefs>DataOutput_result_4</bpmn2:dataOutputRefs>
171. </bpmn2:outputSet>
172. <bpmn2:dataOutput id="DataOutput_result_4" itemSubjectRef="ITEM_DEF_STR

ING" name="result" type="maplist" value="" />
173. </bpmn2:ioSpecification>
174. <bpmn2:DataInputAssociation id="DataInputAssociation_Start date_4">
175. <bpmn2:sourceRef>Start date</bpmn2:sourceRef>
176. <bpmn2:targetRef>DataInput_Start date_4</bpmn2:targetRef>
177. </bpmn2:DataInputAssociation>
178. <bpmn2:DataInputAssociation id="DataInputAssociation_End date_4">
179. <bpmn2:sourceRef>End date</bpmn2:sourceRef>
180. <bpmn2:targetRef>DataInput_End date_4</bpmn2:targetRef>
181. </bpmn2:DataInputAssociation>
182. <bpmn2:DataInputAssociation id="DataInputAssociation_Satelite product e.g. CHIR

PS_4">
183. <bpmn2:sourceRef>Satellite product e.g. CHIRPS</bpmn2:sourceRef>
184. <bpmn2:targetRef>DataInput_Satelite product e.g. CHIRPS_4</bpmn2:targetRef

>
185. </bpmn2:DataInputAssociation>
186. <bpmn2:DataOutputAssociation id="DataOutputAssociation_result_4">
187. <bpmn2:sourceRef>result</bpmn2:sourceRef>
188. <bpmn2:targetRef>DataOutput_result_4</bpmn2:targetRef>
189. </bpmn2:DataOutputAssociation>
190. <bpmn2:outgoing>SequenceFlow_5</bpmn2:outgoing>
191. </bpmn2:serviceTask>
192. <bpmn2:serviceTask id="ServiceTask_5" implementation="http://130.89.221.193:82/

WorkflowApp/app/api/wps.py?" name="i3:Triple Collocation" resource="WPS">
193. <bpmn2:ioSpecification ioSpecification_="ioSpecification_5">
194. <bpmn2:inputSet>
195. <bpmn2:dataInputRefs>DataInput_Satellite data_5</bpmn2:dataInputRefs>
196. <bpmn2:dataInputRefs>DataInput_Station data_5</bpmn2:dataInputRefs>
197. <bpmn2:dataInputRefs>DataInput_Citizen data_5</bpmn2:dataInputRefs>
198. </bpmn2:inputSet>
199. <bpmn2:dataInput id="DataInput_Satellite data_5" itemSubjectRef="ITEM_DEF_

STRING" name="Satellite data" optional="false" type="maplist" value="4_to_0" />
200. <bpmn2:dataInput id="DataInput_Station data_5" itemSubjectRef="ITEM_DEF_S

TRING" name="Station data" optional="false" type="maplist" value="1_to_1" />
201. <bpmn2:dataInput id="DataInput_Citizen data_5" itemSubjectRef="ITEM_DEF_S

TRING" name="Citizen data" optional="false" type="pointmap" value="3_to_2" />
202. <bpmn2:outputSet>
203. <bpmn2:dataOutputRefs>DataOutput_Evaluation report_5</bpmn2:dataOutp

utRefs>
204. </bpmn2:outputSet>
205. <bpmn2:dataOutput id="DataOutput_Evaluation report_5" itemSubjectRef="ITE

M_DEF_STRING" name="Evaluation report" type="geom" value="" />

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

146

206. </bpmn2:ioSpecification>
207. <bpmn2:DataInputAssociation id="DataInputAssociation_Satellite data_5">
208. <bpmn2:sourceRef>Satellite data</bpmn2:sourceRef>
209. <bpmn2:targetRef>DataInput_Satellite data_5</bpmn2:targetRef>
210. </bpmn2:DataInputAssociation>
211. <bpmn2:DataInputAssociation id="DataInputAssociation_Station data_5">
212. <bpmn2:sourceRef>Station data</bpmn2:sourceRef>
213. <bpmn2:targetRef>DataInput_Station data_5</bpmn2:targetRef>
214. </bpmn2:DataInputAssociation>
215. <bpmn2:DataInputAssociation id="DataInputAssociation_Citizen data_5">
216. <bpmn2:sourceRef>Citizen data</bpmn2:sourceRef>
217. <bpmn2:targetRef>DataInput_Citizen data_5</bpmn2:targetRef>
218. </bpmn2:DataInputAssociation>
219. <bpmn2:DataOutputAssociation id="DataOutputAssociation_Evaluation report_5">

220. <bpmn2:sourceRef>Evaluation report</bpmn2:sourceRef>
221. <bpmn2:targetRef>DataOutput_Evaluation report_5</bpmn2:targetRef>
222. </bpmn2:DataOutputAssociation>
223. <bpmn2:incoming>SequenceFlow_5</bpmn2:incoming>
224. <bpmn2:incoming>SequenceFlow_5</bpmn2:incoming>
225. <bpmn2:incoming>SequenceFlow_5</bpmn2:incoming>
226. <bpmn2:outgoing>SequenceFlow_End</bpmn2:outgoing>
227. </bpmn2:serviceTask>
228. </bpmn2:process>
229. <bpmndi:BPMNDiagram id="BPMNDiagram_1">
230. <bpmndi:BPMNPlane bpmnElement="Subworkflow" id="BPMNPlane_ServiceTask_1

">
231. <bpmndi:BPMNShape bpmnElement="StartEvent_1" id="BPMNShape_StartEvent_

1">
232. <dc:Bounds height="36.0" width="36.0" x="5.0" y="62" />
233. </bpmndi:BPMNShape>
234. <bpmndi:BPMNShape bpmnElement="EndEvent_1" id="BPMNShape_EndEvent_

1">
235. <dc:Bounds height="36.0" width="36.0" x="557" y="555" />
236. </bpmndi:BPMNShape>
237. <bpmndi:BPMNShape bpmnElement="ServiceTask_2" id="BPMNShape_ServiceTas

k_1">
238. <dc:Bounds height="50.0" width="110.0" x="806" y="51" />
239. </bpmndi:BPMNShape>
240. <bpmndi:BPMNShape bpmnElement="ServiceTask_3" id="BPMNShape_ServiceTas

k_2">
241. <dc:Bounds height="50.0" width="110.0" x="682" y="253" />
242. </bpmndi:BPMNShape>
243. <bpmndi:BPMNShape bpmnElement="ServiceTask_0" id="BPMNShape_ServiceTas

k_3">
244. <dc:Bounds height="50.0" width="110.0" x="509" y="30" />
245. </bpmndi:BPMNShape>
246. <bpmndi:BPMNShape bpmnElement="ServiceTask_1" id="BPMNShape_ServiceTas

k_4">
247. <dc:Bounds height="50.0" width="110.0" x="394" y="278" />
248. </bpmndi:BPMNShape>
249. <bpmndi:BPMNShape bpmnElement="ServiceTask_4" id="BPMNShape_ServiceTas

k_5">
250. <dc:Bounds height="50.0" width="110.0" x="261" y="263" />
251. </bpmndi:BPMNShape>

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

147

252. <bpmndi:BPMNShape bpmnElement="ServiceTask_5" id="BPMNShape_ServiceTas
k_6">

253. <dc:Bounds height="50.0" width="110.0" x="521" y="445" />
254. </bpmndi:BPMNShape>
255. <bpmndi:BPMNEdge bpmnElement="SequenceFlow_Start" id="BPMNEdge_Seque

nceFlow_1">
256. <di:waypoint x="41.0" y="36.0" />
257. <di:waypoint x="806" y="76" />
258. </bpmndi:BPMNEdge>
259. <bpmndi:BPMNEdge bpmnElement="SequenceFlow_End" id="BPMNEdge_Seque

nceFlow_2">
260. <di:waypoint x="569" y="495" />
261. <di:waypoint x="569" y="555" />
262. </bpmndi:BPMNEdge>
263. <bpmndi:BPMNEdge bpmnElement="SequenceFlow_1" id="BPMNEdge_Sequence

Flow_3">
264. <di:waypoint x="557" y="80" />
265. <di:waypoint x="442" y="278" />
266. </bpmndi:BPMNEdge>
267. <bpmndi:BPMNEdge bpmnElement="SequenceFlow_2" id="BPMNEdge_Sequence

Flow_4">
268. <di:waypoint x="854" y="101" />
269. <di:waypoint x="730" y="253" />
270. </bpmndi:BPMNEdge>
271. <bpmndi:BPMNEdge bpmnElement="SequenceFlow_3" id="BPMNEdge_Sequence

Flow_5">
272. <di:waypoint x="309" y="313" />
273. <di:waypoint x="569" y="445" />
274. </bpmndi:BPMNEdge>
275. <bpmndi:BPMNEdge bpmnElement="SequenceFlow_4" id="BPMNEdge_Sequence

Flow_6">
276. <di:waypoint x="442" y="328" />
277. <di:waypoint x="569" y="445" />
278. </bpmndi:BPMNEdge>
279. <bpmndi:BPMNEdge bpmnElement="SequenceFlow_5" id="BPMNEdge_Sequence

Flow_7">
280. <di:waypoint x="730" y="303" />
281. <di:waypoint x="569" y="445" />
282. </bpmndi:BPMNEdge>
283. </bpmndi:BPMNPlane>
284. </bpmndi:BPMNDiagram>
285. </bpmn2:definitions>

Appendix D: Sample operations of selected GIS tools

1. {
2. "QGIS": [
3. {
4. "name": "Raster difference",
5. "label": "saga:griddifference",
6. "inputs": [
7. "coverage",
8. "coverage",
9. "numeric"

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

148

10.],
11. "description": "Raster difference",
12. "keywords": [
13. "subtract",
14. "difference",
15. "minus"
16.],
17. "outputs": [
18. "coverage"
19.]
20. },
21. {
22. "name": "Raster division",
23. "label": "saga:griddivision",
24. "inputs": [
25. "coverage",
26. "coverage",
27. "numeric"
28.],
29. "description": "Raster division",
30. "keywords": [
31. "divide",
32. "division",
33. "quotient"
34.],
35. "outputs": [
36. "coverage"
37.]
38. },
39. {
40. "name": "Raster product",
41. "label": "saga:gridsproduct",
42. "inputs": [
43. "coverage",
44. "coverage",
45. "numeric"
46.],
47. "description": "Raster product",
48. "keywords": [
49. "product",
50. "multiply",
51. "times"
52.],
53. "outputs": [
54. "coverage"
55.]
56. },
57. {
58. "name": "Rasters sum",
59. "label": "saga:gridssum",
60. "inputs": [
61. "coverage",
62. "coverage",
63. "numeric"
64.],
65. "description": "Rasters sum",
66. "keywords": [
67. "sum",
68. "add",
69. "combine"

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

149

70.],
71. "outputs": [
72. "coverage"
73.]
74. },
75. {
76. "name": "Raster Calculator",
77. "label": "saga:rastercalculator",
78. "inputs": ["coverage", "coverage","text"],
79. "description": "Rasters Calculator",
80. "keywords": ["formular","mapcalc","expression"],
81. "outputs": ["coverage"]
82. },
83. {
84. "name": "Polygon centroids",
85. "label": "qgis:polygoncentroids",
86. "inputs": [
87. "geom"
88.],
89. "description": "Polygon centroids",
90. "keywords": [
91. "centroid",
92. "center",
93. "middle"
94.],
95. "outputs": [
96. "geom"
97.]
98. },
99. {
100. "name": "Buffer vectors",
101. "label": "gdalogr:buffervectors",
102. "inputs": ["geom","numeric"],
103. "description": "Buffer vectors",
104. "keywords": ["buffer","buffering"],
105. "outputs": ["geom"]
106. }
107.],
108. "ILWIS": [
109. {
110. "name": "Map Calc",
111. "label": "mapcalc2",
112. "inputs": ["coverage", "coverage", "operator"],
113. "description": "Perform a raster calculation on two rasters based on the applied operator",
114. "keywords": ["subtract", "difference", "minus"],
115. "outputs": ["coverage"]
116. },
117. {
118. "name": "Buffer",
119. "label": "buffer",
120. "inputs": ["geom", "numeric", "numeric", "text"],
121. "description": "Buffer vectors",
122. "keywords": ["buffer", "buffering"],
123. "outputs": ["geom"]
124. }
125.]

126. }

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

150

Appendix E: Code snippet for Transformation of PIW to QGIS Workflow

1. def piwToQgisWorkflow(workflow):
2. workflowJSON = json.loads(workflow)
3. qgisJSON = {}
4. values = {}
5. # inputs
6. inputs = {}
7. algos = {}
8. for operation in workflowJSON['workflows'][0]['operations']:
9. consoleName = ""
10. first = WorkflowUtils.searchOperation("QGIS", operation['metadata']['longname'].lower())
11. second = WorkflowUtils.searchOperation("QGIS", operation['metadata']['description'].lower())
12. third = WorkflowUtils.searchOperation("QGIS", operation['metadata']['label'].lower())
13. all = {first["hits"]: first, second["hits"]: second, third["hits"]: third}
14. keys = list(all.keys())
15. outputType = ""
16. if first["hits"] >= second["hits"]:
17. consoleName = first["operation"]["label"]
18. outputType = first["operation"]["outputs"][0]
19. else:
20. consoleName = second["operation"]["label"]
21. outputType = second["operation"]["outputs"][0]
22. params = {}
23. for input in operation['inputs']:
24. if input['optional'] == False:
25. if "_to_" not in input['value'] and (input['type'] == 'geom' or input['type'] == 'coverage'):
26. inputs[input['name'] + str(operation["id"])] = {
27. "values": {
28. "pos": {
29. "values": {
30. "x": operation["metadata"]["position"][0],
31. "y": operation["metadata"]["position"][1]
32. },
33. "class": "point"
34. },
35. "param": {
36. "values": {
37. "isAdvanced": False,
38. "name": input['name'] + str(operation["id"]),
39. "default": "",
40. "value": "",
41. "exported": "",
42. "hidden": False,
43. "optional": input['optional'],
44. "description": input['description']
45. },
46. "class": "processing.core.parameters.ParameterRaster" if input[
47. 'type'] == "coverage" else "processing.core.

parameters.ParameterVector"
48. }
49. },
50. "class": "processing.modeler.ModelerAlgorithm.ModelerParameter"
51. }
52. if input['type'] == "coverage":
53. inputs[input['name'] + str(operation["id"])]["values"]["param"]["values"][
54. "showSublayersDialog"] = True
55. if "GRIDS" in params:

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

151

56. grids = params["GRIDS"]
57. grids.append({
58. "values": {
59. "name": input['name'] + str(operation["id"])
60. },
61. "class": "processing.modeler.ModelerAlgorithm.ValueFromInput"
62. })
63. params["GRIDS"] = grids
64. else:
65. params["_RESAMPLING"] = 3
66. params["GRIDS"] = [
67. {
68. "values": {
69. "name": input['name'] + str(operation["id"])
70. },
71. "class": "processing.modeler.ModelerAlgorithm.ValueFromInput"
72. }
73.]
74. elif input['type'] == "geom":
75. inputs[input['name'] + str(operation["id"])]["values"]["param"]["values"]["shapetype"] = [

76. -1]
77. params["INPUT_LAYER"] = {
78. "values": {
79. "name": input['name'] + str(operation["id"])
80. },
81. "class": "processing.modeler.ModelerAlgorithm.ValueFromInput"
82. }
83. elif "_to_" not in input['value'] and (input['type'] != 'geom' and input['type'] != 'coverage'):
84. # if input["identifier"] == "":
85. params[input["identifier"].upper()] = input["value"]
86. if "_to_" in input['value']:
87. fromOperID = input["value"].split("_to_")[0]
88. fromOper = WorkflowUtils.getOperationByID(fromOperID,
89. workflowJSON['workflows'][0]['operations'])
90. # If output is coverage
91. if outputType == 'coverage':
92. if "GRIDS" in params:
93. grids = params["GRIDS"]
94. grids.append({
95. "values": {
96. "alg": fromOper['metadata']['longname'] + str(fromOper["id"]),
97. "output": fromOper['outputs'][0]['name'] + str(fromOper["id"])
98. },
99. "class": "processing.modeler.ModelerAlgorithm.ValueFromOutput"
100. })
101. params["GRIDS"] = grids
102. else:
103. params["_RESAMPLING"] = 3
104. params["GRIDS"] = [
105. {
106. "values": {
107. "alg": fromOper['metadata']['longname'] + str(fromOper["id"]),
108. "output": fromOper['outputs'][0]['name'] + str(fromOper["id"])
109. },
110. "class": "processing.modeler.ModelerAlgorithm.ValueFromOutput"
111. }
112.]
113. elif outputType == 'geom':
114. params["INPUT_LAYER"] = {

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

152

115. "values": {
116. "alg": fromOper['metadata']['longname'] + str(fromOper["id"]),
117. "output": fromOper['outputs'][0]['name'] + str(fromOper["id"])
118. },
119. "class": "processing.modeler.ModelerAlgorithm.ValueFromOutput"
120. }
121. else: # Just because there is no ouput datatype, assume it is a geom field
122. params["INPUT_LAYER"] = {
123. "values": {
124. "alg": fromOper['metadata']['longname'] + str(fromOper["id"]),
125. "output": fromOper['outputs'][0]['name'] + str(fromOper["id"])
126. },
127. "class": "processing.modeler.ModelerAlgorithm.ValueFromOutput"
128. }
129.
130. outputs = {}
131. for output in operation['outputs']:
132. if output['type'] == 'geom' or outputType == 'geom':
133. outputs['OUTPUT_LAYER'] = {
134. "values": {
135. "description": output['description'],
136. "pos": {
137. "values": {
138. "x": operation["metadata"]["position"][0],
139. "y": operation["metadata"]["position"][1]
140. },
141. "class": "point"
142. }
143. },
144. "class": "processing.modeler.ModelerAlgorithm.ModelerOutput"
145. }
146. elif output['type'] == 'coverage' or outputType == 'coverage':
147. outputs["RESULT"] = {
148. "values": {
149. "description": output['description'],
150. "pos": {
151. "values": {
152. "x": operation["metadata"]["position"][0],
153. "y": operation["metadata"]["position"][1]
154. },
155. "class": "point"
156. }
157. },
158. "class": "processing.modeler.ModelerAlgorithm.ModelerOutput"
159. }
160.
161. longname = operation['metadata']['longname'] + str(operation["id"])
162. algos[longname] = {
163. "values": {
164. "name": longname,
165. "paramsFolded": True,
166. "outputs": outputs,
167. "outputsFolded": True,
168. "pos": {
169. "values": {
170. "x": operation["metadata"]["position"][0],
171. "y": operation["metadata"]["position"][1]
172. },
173. "class": "point"
174. },

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

153

175. "dependencies": [],
176. "params": params,
177. "active": True,
178. "consoleName": consoleName,
179. "description": operation['metadata']['description']
180. },
181. "class": "processing.modeler.ModelerAlgorithm.Algorithm"
182. }
183.
184. values["inputs"] = inputs
185. # Description or Help Information
186. values["helpContent"] = {}
187. # Dont seem to know
188. values["group"] = workflowJSON['workflows'][0]['metadata']['longname']
189. values["name"] = workflowJSON['workflows'][0]['metadata']['longname']
190. # Algorithm or processes
191. values["algs"] = algos
192. qgisJSON["values"] = values
193. qgisJSON["class"] = "processing.modeler.ModelerAlgorithm.ModelerAlgorithm"
194.
195. return json.dumps(qgisJSON)

Appendix F: Setting up the System

The following software must be installed to reproduce the system. This demonstration was carried out in a

Windows environment.

A. Apache Server

Download and install Apache HTTP server to C:\Apache24. The following instruction will guide through

the installation and configuration process.

The default port for Apache Web Server is 80. However, our demonstration used port 82.

➢ First, ensure that you have installed the latest C++ Redistributable Visual Studio 2015. Download

it from the link below: https://aka.ms/vs/15/release/VC_redist.x64.exe

➢ Download Apache 64-bit from the link below. The version used for this set up was Apache 2.4.

https://www.apachelounge.com/download/

➢ Extract the zipped folder and copy it to the root of C:\. This will be C:\Apache24 depending on

the version of Apache you have downloaded.

➢ Add “C:\Apache24” and “C:\Apache24\bin” to your system path. To add a folder to the system

path.

➢ The next step will be to register Apache as a service. Open the command prompt as

administrator.

Run this command “httpd.exe –k install.”

➢ Go to start and search for Services. If you followed the steps successfully, Apache would be listed

as one of the services running.

➢ The project files can now be copied to C:\Apache24\htdocs folder. The destination folder should

be C:\Apache24\htdocs\WorkflowApp.

https://aka.ms/vs/15/release/VC_redist.x64.exe
https://www.apachelounge.com/download/

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

154

B. Python

➢ Go to the link and select python 3.5* 32 bit. https://www.python.org/downloads/

➢ Once downloaded, click to install using the default settings. Python will be installed to the folder:

C:\Users\YOUR_USERNAME\AppData\Local\Programs\Python\Python-35-32. Later on,

after finishing your installation, you will have to change the path of the python installation in all

the python files under the folder C:\Apache24\htdocs\WorkflowApp\app\api.

➢ Copy that path and add to your system path variable.

➢ The next steps will involve installing required Python modules.

➢ To install the modules, open your command prompt as admin and use the following command to

install each of the modules.

➢ python -m pip install “module name.”

➢ The following is the list of modules that you will install.

Module Description Command

Psycopg2 Module for connecting to Postgres

Database

python -m pip install psycopg2

requests Module for handling HTTP requests python -m pip install requests

GDAL Module for processing spatial data python -m pip install gdal

xmltodict Converting XML to python

dictionary

python -m pip install xmltodict

Numpy Used with GDAL to manipulate

geospatial data, mainly rasters

python -m pip install numpy

FLASK Module for creating REST API python -m pip install flask

python -m pip install flask_cors

python -m pip install flask_restful

The configuration of Apache and Python

➢ Edit Apache’s config file, C:\Apache24\conf\httpd.conf and add the following lines under the

tag.

AddHandler cgi-script .cgi .py

Options Indexes FollowSymLinks ExecCGI

The lines should appear as follows.

<Directory “C:/Apache24/htdocs”>

 ……………………………….

AddHandler cgi-script .cgi .py

Options Indexes FollowSymLinks ExecCGI

……………………………………

 </Directory>

➢ Now go to services and restart Apache service.

C. Installation of PostgreSQL and PostGIS

https://www.python.org/downloads/

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

155

1. Download PostgreSQL 10 for win x86-64 from this link. This is for a 64bit operating system.

2. Start the installation of PostgreSQL. The installation will prompt for a location. Use the default

location. C:\Program Files\PostgreSQL\10. Click next

3. The next prompt will be for the data directory. It will inherit the previous settings to assign the

data directory. Click next.

4. Set the root password for the database.

5. Click Next to accept the default port of 5432.

6. Next, you will be prompted for a default locale. Click next to accept it.

7. Click next to start the installation.

8. Once the installation is completed, you will be asked if you want to allow Stack Builder to

download and install tools. Check the checkbox to agree and click finish.

9. From the window that pops up, select “PostgreSQL 10 on port 5432”. Click Next.

10. The next prompt will ask you to select the application you would like to install. Select “Spatial

Extensions.” Choose the PostGIS extension you would like to install. Click Next.

11. The next prompt will ask you to review your selection and choose a download directory. Use the

default download directory given. Click Next. Wait for your download to complete. Click Next

and Agree to accept the Licence Agreement.

12. The next prompt will ask you to check the component you would like to install and uncheck

those that you wouldn’t want to install. Do not change anything. Click Next.

13. The next prompt will request you to choose the install location. Do not change anything. Click

next.

14. Next, you will be prompted to specify database connection settings. Enter the password that you

had specified in 4 above and then click Next. Wait for the installation to complete.

15. For all the confirm dialog that appears, click “Yes.”

16. Your installation is completed. Click close and Finish.

D. Apache Tomcat

Before installing Tomcat, you need to install JAVA.

1. Go to the link below to download Java. Select 64-bit and the latest version of Java.

2. https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

3. Once downloaded, install using the default settings. The Java will be installed to C:\Program

Files\Java.

4. Now, you need to set JAVA Home to the system environment variables. To do this, locate the

path of your Java installation. For this documentation, Java was installed to C:\Program

Files\Java\jdk1.8.0_151. Your installation will have a different Java version depending on your

choice.

5. Open Command Prompt (make sure you Run as administrator, so you're able to add a system

environment variable).

6. Set the value of the environment variable to your JDK installation path as follows:

setx -m JAVA_HOME "C:\Progra~1\Java\jdk1.8.0_151".

7. Finally add the C:\Program Files\Java\jdk1.8.0_151\bin to your system path variable.

http://www.enterprisedb.com/products-services-training/pgdownload#windows
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

156

Now that Java has been installed and configured in your system, you can proceed and install Apache

Tomcat.

a) Download Apache Tomcat version 9 64-bit from the following link.

http://www-us.apache.org/dist/tomcat/tomcat-9/v9.0.12/bin/apache-tomcat-9.0.12.exe

b) Click to install using the default settings. You will only need to change the following settings in

the configuration options window.

HTTP/1.1 Connector Port to 85

User name: admin

Password: tomcat

c) Set the path to your Java virtual machine (JVM). The default Java location will be selected. If no

Java path is selected, you will have to add your Java location manually. Locate your Java JRE path.

For my case, it is as follows:

C:\Program Files\Java\jdk1.8.0_151\jre

d) Follow the default settings after that and finish the installation. Apache Tomcat will be added to

your windows services automatically.

e) The installation folder for Tomcat will be as follows.

C:\Program Files\Apache Software Foundation\Tomcat 9.0

Once we have installed Apache Tomcat successfully, the next is to install GeoServer.

E. GeoServer

GeoServer is an open source server for sharing geospatial data. Designed for interoperability, it publishes

data from any major spatial data source using open standards. It implements several open standards which

include Web Feature Services (WFS), Web Map Services (WMS) and Web Coverage Services (WCS)

among others.

Installation of GeoServer

1. Download GeoServer from the following link. The version we will use is 2.9.4.

http://sourceforge.net/projects/geoserver/files/GeoServer/2.9.4/geoserver-2.9.4-war.zip

2. Extract the zipped file.

3. Inside the extracted folder, you will find geoserver.war file. Copy this file to the folder specified

by the path below.

C:\Program Files\Apache Software Foundation\Tomcat 9.0\webapps\

http://www-us.apache.org/dist/tomcat/tomcat-9/v9.0.12/bin/apache-tomcat-9.0.12.exe
http://sourceforge.net/projects/geoserver/files/GeoServer/2.9.4/geoserver-2.9.4-war.zip

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

157

4. The geoserver.war file will be extracted automatically by the running Apache Tomcat service.

Once extracted, a folder for GeoServer will be created. The directory will look as shown below.

5. In case geoserver.war is not extracted, you need to check if Apache Tomcat is running. The issue

could be that it is not running. As such, you will have to start it.

6. Once the geoserver.war is extracted, go to the following link in your browser. This will open the

GeoServer webpage.

http://localhost:85/geoserver

7. Login with the default settings for GeoServer

User: admin

Password: geoserver

8. Once logged in, you can change your password since the default password can be used to attack

your system and you may lose your GeoServer data.

Adding WPS extension to GeoServer

Refer to the following link to add a WPS extension to your GeoServer installation.

https://docs.geoserver.org/stable/en/user/services/wps/install.html

F. ILWIS

Two ILWIS versions were installed because instability was found in the way they were handling some

operations through the command line.

Download ILWIS version 3.8 from https://github.com/52North/Ilwis3Downloads/releases/tag/v3.8.5.

Extract and save the contents to C:\ilwis38.

Download ILWIS 3.8.5.2 from ftp://ftp.itc.nl/pub/52n/AfriAlliance/software/ILWIS3852.zip. Extract

and save the content to C:\ILWIS3852.

http://localhost:85/geoserver
https://docs.geoserver.org/stable/en/user/services/wps/install.html
https://github.com/52North/Ilwis3Downloads/releases/tag/v3.8.5
ftp://ftp.itc.nl/pub/52n/AfriAlliance/software/ILWIS3852.zip

A METHOD FOR ENHANCING SHAREABILITY AND REPRODUCIBILITY OF GEOPROCESSING WORKFLOWS

158

G. GeoServerJavaApp

This application was developed to publish raster files to a GeoServer. Please download the file from

https://gisedu.itc.utwente.nl/student/s1906240/GeoServerJavaApp.zip.

Extract and save to C:\GeoServerJavaApp.

Appendix G: System Configuration

Open the config.json file in C:\Apache24\htdocs\WorkflowApp. Edit this file with the settings which

have been used in the installations above. Let the IP address corresponds to the IP address of the

installation computer. The rainfall data used in our demonstration can be downloaded from the URL

below.

ftp://ftp.itc.nl/pub/52n/AfriAlliance/sampledata/ilwisout.zip.

1. {
2. "database": [
3. {
4. "host": "130.89.221.193",
5. "port": 5434,
6. "user": "",
7. "password": "",
8. "name": ""
9. }
10.],
11. "ilwis": ["C:\\ilwis38", "C:\\ILWIS3852"],
12. "working_dir" : "C:\\Apache24\\htdocs\\WorkflowApp\\app\\api",
13. "input_dir" : "D:\\ilwisout",
14. "output_dir" : "C:\\Apache24\\htdocs\\WorkflowApp\\app\\api\\files\\triplecol"

,
15. "output_url" : "http://130.89.221.193:82/WorkflowApp/app/api/files/triplecol",

16. "geojar_path" : "C:\\GeoServerJavaApp\\PublishRaster.jar"

17. }

The last step in the configuration is to start two services which are very important for the success of the

entire application. The ILWIS engine executes ILWIS functions whereas the REST service provides an

API used in execution and transformation of workflows.

Go to folder C:\Apache24\htdocs\WorkflowApp\app\api. Using your Python IDE (PyCharm is

recommended), run the files ilwis_engine.py and rest.py.

https://gisedu.itc.utwente.nl/student/s1906240/GeoServerJavaApp.zip
ftp://ftp.itc.nl/pub/52n/AfriAlliance/sampledata/ilwisout.zip

