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ABSTRACT

Superpixel methods provide special opportunities for delineation of agricultural parcels. For agri-
cultural parcels at smallholder farmland, the situation is more complicated. The project uses
multispectral, panchromatic and pan-sharpened images to compare SLIC, SLICO, SNIC, and
SNICPOLY. PLS predicted image is also tested to delineate boundary. To achieve better results,
aggregation is used as post-process of superpixel generation. This project executes three types of
measurements to evaluate the performances of various parameter combinations at pixel level met-
rics, at area size, and at a shape metric separately.

In general, pan-sharpened images are the best input image in all compared images. However,
there is no remarkable diversity among different pan-sharpened images. PLS model does not come
out with exceptional results. It reduces the accuracy to some extent. After tests, when the number
of superpixels is set around ten times of the ground truth parcel number, the value of compactness
is set as M = 25, a one-time aggregation delivers the best results.
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Chapter 1

Introduction

1.1 PROBLEM STATEMENT

To achieve the end of hunger by 2030, one of the United Nations’ sustainable development goals,
“Food security and nutrition and sustainable agriculture” is of great significance (United Nations,
2015). Therefore, it is important to understand agricultural fields, to know where, when and how
the crops grow. In developed nations, mature survey techniques and financial support have given
sub-cm accuracy in land delineation (European Commission, 2014). In less developed economies,
it is infeasible to quantify precisely the magnitude of agricultural parcels. Without such details,
policy-makers have a hard time to obtain robust statistics. The ability to delineate the land into
farm fields, to identify the crop in each field, to monitor crop health and so forth will be tremen-
dously supportive of building more robust food production systems.

There is the traditional definition of smallholder agriculture (SHA), which is small (less than
2 hectares) and family-run (Lowder, Skoet, & Raney, 2016). Globally, there are more than 570 mil-
lion smallholder agriculture farms and they cover around 75% of the world’s agricultural land (Lowder
et al., 2016) and produce 80% of food in less developed countries (Bayer, 2018). Accordingly,
supporting SHA farms is vital to provide research-based solutions that sustainably produce food,
reduce poverty and end hunger. However, smallholder agriculture is not homogeneous (Fan,
Brzeska, Keyzer, & Halsema, 2013), but highly heterogeneous. This means crops grow in highly
varied ways (Gollin, 2014), making it hard to identify from images directly. An agricultural par-
cel is defined as “piece of land larger than 0.25 ha with a minimum width of 30 m” (Food and
Agriculture Organization of the United Nations., 2005). The agricultural parcel is proposed as a
good unit for SHA research. This project proposes to use agricultural parcels to improve SHA and
capacitate to reach their farming potential (Bayer, 2018), to design planning and establish relevant
policies (Inan et al., 2010). The delineation of agricultural parcels is assumed to be valuable for
diverse agriculture-related agencies. Hence, an elementary requirement is to have delineations at
the parcel level.

Thanks to the “Spurring a Transformation for Agriculture through Remote Sensing” (STARS)
project, committed to “looking for ways to use remote sensing technology to improve agricultural
practices in Sub-Saharan Africa and South Asia” (ITC, 2014), we have available a good collection
of WorldView-2 and -3 satellite images providing an image time series. This allows this project to
use Very High Resolution (VHR) satellite imagery to extract field boundary information, which
may lead to improvements in agricultural practices in sub-Saharan Africa and South Asia.

This proposed research project focuses on segmentation using superpixel generation methods
and supervised feature reduction to delineate agricultural parcels from VHR automatically. A
superpixel is a kind of image patch as proposed by Ren and Malikn (X. Ren & J. Malik, 2003).
The main idea of superpixels is to aggregate a pixel-level area into a district-level area by process-
ing an image with millions of pixels into a few hundred or thousand “superpixels,” which is an
abstraction of basic image information for an over-segmentation level between pixel level and seg-
mentation level. Another objective of this project is feature reduction. Multispectral image has

1
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eight bands, not all of them are useful or irreplaceable. Feature reduction methods are assumed to
reduce redundancy and increase performance for next prediction. In this project, we would like
to use it to perform better boundary delineation. Feature reduction has two groups of methods
that compress our feature vectors and reduce their dimension. One is feature selection, which is to
extract subset variables from multi-variables for delineation parcels to gain more informative than
the original image bands. The other group is feature extraction, which applies a transformation
on the original feature vector to reduce its dimension.

The aim of the project is to develop an automatic method for agricultural parcel detection
to support food security research in areas with smallholder farming systems. The objective is to
assess the value of coupling superpixel approaches with supervised feature reduction methods to
automatically delineate parcels in very high spatial resolution images. In this project, we want to
compare different superpixel approaches, compare approaches with and without feature reduction,
compare different evaluation methods and find an optimal approach.

1.2 BACKGROUND

This section presents background knowledge on the creation of superpixels and different kinds of
superpixel algorithms.

A superpixel is a group of pixels that has been defined in the domain of image segmentation. Su-
perpixels preserve segment characteristics including texture similarity, brightness similarity, con-
tour energy and good continuation (X. Ren & J. Malik, 2003). Several algorithms exist to generate
superpixels, as shown in figure 1.1, named by Achanta (Achanta et al., 2012). State-of-the-art super-
pixel generation algorithms (Stutz, Hermans, & Leibe, 2018) exist in two categories: graph-based
algorithms and gradient-ascent-based approaches.

Figure 1.1: Sketch of a superpixel generation algorithms catalogue

Graph-based algorithms recognize the whole image as a weighted undirected graph. Each pixel
in the image corresponds with a node in the graph. The adjacency relationship between pixels

2
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corresponds with the edges of the graph. The difference or similarity between pixel features is
represented as weight on the edge. Then, the nodes are divided on the basis of various segmentation
criteria to complete the segmentation of the whole image. The graph-based approach uses the
idea of minimum spanning tree (Felzenszwalb & Huttenlocher, 2004). This algorithm is fast, but
cannot control the number of superpixels or their compactness. The normalized cut approach
is proposed for measuring the quality of an image partition (Shi & Malik, 2000). This algorithm
uses contour and texture features to globally minimize its cost function. It can generate regular
superpixels. So, the boundaries cannot be maintained well. Also, it is rather slow for large images.
The superpixel lattice approach needs the boundary map of the original image as input, which is
reverse with our project objective and cannot be used here (Moore, Prince, Warrell, Mohammed,
& Jones, 2008).

For the gradient-ascent-based algorithms, the clustering is coarse at the start, is continuously
made finer-grain by the method until convergence is reached. The watersheds algorithm gives a
general method and directly generalizes to n-dimensional images (and even to graphs) (Vincent,
Vincent, & Soille, 1991). This approach uses topological map to describe an image. The gray
value of each pixel (or cost, gradient) of each pixel indicates the altitude of the point.Each local
minimum value and its surrounding area are recognized as a basin. The boundary of these basins
is formed as superpixels. This approach runs fast and extracts closed contours. But its results can
lead to serious over-segmentation of the image. To improve robustness, mean shift is introduced,
which analyzes a complex multi-modal feature space (Comaniciu & Meer, 2002), making it run
more slowly. Mean-shift approach is based on statistic and iteration. Each point compute with
kernel function to get a stable point through limited iteration. Pixels with same stable point are
clustered as superpixel (Collins, n.d.). This approach can not set the number of desired superpixels.
TurboPixels approach uses geometric flows. Initialized seed points are evenly distributed in the
image and dilated based on the change of curvature. For computing a dense over-segmentation of
an image, TurboPixels has been proposed and this also contains the boundary of the partial image.
Its speed is improved (Levinshtein et al., 2009).

This research project focuses on segmentation detection using the SLIC superpixel algorithm
and its extended versions on a larger data frame, as an application in automatic delineation of
smallholder agricultural parcels.

1.3 RESEARCH IDENTIFICATION

This research project is about agricultural parcel delineation, and aims to investigate ways to au-
tomatically delineate agricultural fields. These agricultural fields contains legumes, maize, millet,
rice, sorghum, soybean and so on.

1.3.1 Research objective

The objective is to assess the usefulness of superpixel approaches to automatically delineate parcels
in VHR images. In the end, such an automatic superpixel method will be a useful outcome for
study areas in sub-Saharan Africa and South Asia. The main objective is divided into the following
sub-objectives:

* Delineate agricultural parcels using superpixel approaches.

* Improve with supervised feature reduction

* Evaluate the results

3
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1.3.2 Research questions

To this research objective, the following research questions are answered in this project:

Sub-objective 1 Which image format works best for this project? Which superpixel algorithm
has the best performance delineation for SHA?

Sub-objective 2 How does supervised feature reduction work with superpixels? Does supervised
feature reduction improve delineation of agricultural parcels?

Sub-objective 3 How can one evaluate the results of agricultural boundary delineation in SHA?

1.3.3 Innovation aimed at

In this project, we use superpixels instead of pixels to delineate agricultural parcels and compare dif-
ferent methods for superpixel generation to find proper parameters automatically at a large scale.
There have been several SLIC implementations (scikit, gdal, grass), but seldomly these have tar-
geted agricultural parcel delineation and delineation for SHA. This is considered a more challeng-
ing endeavor. With this project, we want to determine whether superpixel algorithms are suitable
for agricultural boundary delineation and learn about appropriate values for algorithm parame-
ters in automatic parcel delineation in SHA. Another important innovation is the change from a
classical RGB color space, and these superpixel methods working in a new supervised space cre-
ated using Partial least squares algorithm, which is used as “a projection to latent structures (Wold,
Sjöström, & Eriksson, 2001)”. This should positively affect the identification of agricultural parcel
in complex landscapes.

1.3.4 Method adopted

The workflow in figure 1.2 shows an overview of the method followed to reach the objectives and
answer research questions. More details is explained in Chapter 4.

4
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Figure 1.2: The workflow adopted for this research project

1.4 THESIS OUTLINE

Chapter 2 is a literature review on agricultural boundary delineation, superpixel application, fea-
ture reduction using partial least squares model and SHA parcel delineation.

Chapter 3 describes the study area, satellite images and reference data, software and hardware
used in this research project.

Chapter 4 explains superpixel methods, pan-sharpening process, partial least squares algo-
rithm, aggregation method and evaluation measurements applied in this research.

Chapter 5 presents results with various values of different parameters and evaluation scores of
them.

Chapter 6 depicts the general routine of this project and describes general routine of this project
and discuss about two issues which are worth continuing to study.

Chapter 7 answers the former questions and summarize conclusions and give some recommen-
dations for further work.

5
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Chapter 2

Literature Review

This chapter provides background information of relevant scientific literature to current state of
agricultural parcel delineation, the use of superpixel approaches, feature reduction for object recog-
nition and related work of segmentation.

2.1 AGRICULTURAL PARCEL DELINEATION

For normal agricultural census, land data are collected on parcel level and the total area of each
farm owner is derived by summing the areas of all parcels (FAO, 2010). This report makes a
distinction between a parcel, a field and a plot and states, which helps this project understand the
standard of parcel and common situation. There are paths, cadastral boundaries and/or hedges
between parcel by parcel. The ideal situation is that one specific crop is cultivated in one parcel,
while mixed cultivation happens. Information on agricultural parcel was pointed out that plays
an essential role. Methods of agricultural parcel delineation could be generally divided into three
parts: edge detection, line segment detection and object recognition.

Edges in an image have the obvious feature that the brightness or intensity of the image changes
sharply (Marr & Hildreth, 1980). Delineation of edge information is a process of detecting the
abrupt change of reflection values in an image, and enhancing the differences between the sides.
A gradient edge detector has its not-to-be-ignored effect of directionality. The output after ap-
plication of a gradient filter displays results in some identified direction. Thus, based on normal
gradient edge detector techniques, there are sometimes steps as post-processing, like weighted ad-
dition filter to improve results (Rydberg & Borgefors, 2001).

Line segments as low-level feature in an image provide core information about the geometric
content of the image (Grompone Von Gioi, Jakubowicz, Morel, & Randall, 2010). The ordinary
method is to apply an edge detector followed by a Hough transform that extracts all lines that con-
tain a number of edge points exceeding a threshold. The Hough transform is a feature extraction
method for detecting curves. It exploits the duality between points on a curve and parameters of
that curve. It can be used for arbitrarily complex shape delineation (Ballard, 1981). This transform
method gives this project some thoughts to consider.

When considering agricultural parcels as the objects of interest, object-based image analysis
(OBIA) can be superior in the identification of complete and closed contours. The challenge that
object recognition meets is that an object can cast an infinite number of different 2D images on
the canvas, based on the object’s position, pose, lightness, background et al. As part of object
recognition (Star, 2010), there is a single direction in agricultural parcel delineation: image seg-
mentation analysis (Blaschke, 2010). Segmentation is the “first essential and important step of
low-level vision” (Nikhil & Sankar, 1993). Segmentation is a process of partitioning the image
into homogeneous regions, and as such is popular in computer vision. It is addressed with vari-
ous techniques, like the integration of spectral and spatial information (Benediktsson & Ghamisi,
2015).

7
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2.2 SUPERPIXEL APPROACHES

Because of over-segmentation issues in raw imagery, superpixels group pixels similar in color, tex-
ture (Reso, Jachalsky, Rosenhahn, & Ostermann, 2013) and other low-level properties. Thus, it
captures redundancy in the image, reduces image complexity, and avoids under-segmentation (X.
Ren & J. Malik, 2003) in the hope to create visually meaningful regions (Stutz et al., 2018). It also
greatly improves the speed of computation. Compared to pixel-based operations, superpixel tech-
niques are good at describing the boundaries between objects and improve speed as a pre-processing
step. Treated as a group of connected, similar pixels makes superpixels less sensitive to noise and
segmentation scale (Zhang, Jia, & Hu, 2015). Also, superpixels are more flexible and adaptive to
local structures of objects in image compared with a regular pixel-based graph (Zhang et al., 2015).

2.3 FEATURE REDUCTION USING PARTIAL LEAST SQUARES

Feature reduction can be categorized as supervised, semi-supervised and unsupervised operations
over the input data. Supervised feature reduction methods use labeled data for feature reduction
and evaluate feature relevance by measuring the feature correlation with the class label (Sheikhpour,
Sarram, Gharaghani, & Chahooki, 2017). Unsupervised methods use data without labels. Thus,
these algorithms do not use label information, and this may typically lead to lower performance (Zhao
& Liu, 2007). Therefore, these authors propose a method that uses both (a small set of) labeled
and (a large set of) unlabeled data in feature analysis to provide “an effective way to address the
small-labeled-sample problem.”

Feature reduction can be categorized as feature selection and feature extraction. The main idea
in these methods is to extract useful and neat data, eliminate irrelevant and redundant data (like
noise and duplicates) and improve the characteristic performance of data (Huang, 2015; Chan-
drashekar & Sahin, 2014; Khalid, Khalil, & Nasreen, 2014).

As one specific feature reduction method, partial least squares (PLS) is a statistical method,
which is also called as a structural equation modeling (Haenlein & Kaplan, 2004). The basic PLS
algorithm derives a linear model. This model allows two matrices X and Y to project into two
different new spaces and builds linear relationship between two new spaces. PLS can handle large
data matrices and generates reliable models (Geladi & Kowalski, 1986). Among supervised feature
selection methods, ranking by regression coefficients is one of the commonest and simplest ways
to select features (Nagaraja & Abd-Almageed, 2015).

2.4 RELATED WORK

Several solid results have been achieved by previous researchers on the development of agricultural
parcel delineation, for instance, on how do delineate differently sized objects.

High-resolution remote-sensing images provide substantial and useful information to delineate
parcels. In the work of Garcia-Pedrero et al. (García-Pedrero, Gonzalo-Martín, & Lillo-Saavedra,
2017), after superpixel generation, superpixels are used for supervised classification to determine
which adjacent superpixels can be merged. The authors use machine learning ideas to achieve the
post-processing step, which motivated this research.

Lu et al. (Lu, Oki, Shimizu, & Omasa, 2007) compare several feature extraction and classifica-
tion methods to map agricultural land using airborne hyperspectral data. The methods they com-
pare include principal components analysis (PCA), decision boundary feature extraction (DBFE),
maximum likelihood classification (MLC), extraction and classification of homogeneous objects
(ECHO), and image separation into vegetated and non-vegetated area by NDVI. Their work shows
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the importance of proper selection of feature methods and the ability of high-resolution images to
characterize complex agricultural lands.

Among SHA, the size differences between parcels can be distinctive, setting a condition that
superpixel approaches may have a hard time handling. Arbelaez et al. (Arbeláez, Pont-Tuset, Bar-
ron, Marques, & Malik, 2014) proposed a method to produce contours with a multiscale technique.
First, a high-performance hierarchical segmenter was created to effectively uses multiscale infor-
mation. Then, they explored efficiently their combinatorial space, combined multiscale regions
into highly accurate object candidates and finally, grouped them. The results showed the potential
of multiscale combinatorial grouping.

There is another method for differently sized objects using a pyramid attention network (Li,
Xiong, An, & Wang, 2018). In this work, spatial pyramid pooling is applied to exploit the mul-
tiscale context information for a good descriptor of overall scene interpretation. These models
have, however, shown high quality boundaries on several tests while usually needing substantial
computing resources and scale choices.

9
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Chapter 3

Data

3.1 STUDY AREA

The study area of this project is a farmland area around Kofa in Nigeria, which is shown in fig-
ure 3.1. Kofa is a small village in the Southern Guinea savannah region with a tropical hinterland
climate (Ogungbile, Tabo, Duivenbooden, & Debrah, 2012). This area is used to acquire sample
images for this research as shown in figure 3.2. For the group of images for this project, the loca-
tion is between 11◦32′ N and 11◦36′ N, 8◦13′ E and 8◦19′ E. It covers an area of approximately
100 square kilometers. The landscape in Kofa is heterogeneous. Household farming is common in
both villages and owns high agricultural production potential (Dossou-Yovo et al., 2018). Farming
is the main landuse here. The important crop types are legumes, maize, millet, rice, sorghum,
soybean, spice crops and vegetables. Mixed crop parcels are common.

(a) Kofa, Nigeria in the world (b) Kofa in Nigeria

Figure 3.1: Study area

3.2 SATELLITE IMAGES

Due to the common occurrence of parcels less than 2 ha in size, very high spatial resolution images
are required. In this projects, WorldView−3 satellite images are used. The geographic coordinate
system of all images is WGS1984. The projection coordinate system of all images is UTM, Zone
32N (EPSG : 32632). The technical parameters of this satellite are shown in table 3.1.
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Table 3.1: Technical specifications of satellite images ingested

Attribute WorldView-3
Provider Digital Globe

Dynamic range 11 bits (14 bits for SWIR)
Panchromatic resolution 0.31 m

Multispectral bands 8 (+8 SWIR)
Multispectral resolution 1.24 m (3.7 m)

Tabl 3.2 shows detailed information of WorldView-3 bands. For the functional test, in the end,
images acquired at the same time at different places are required, and images acquired at different
times in the same place are needed.

Table 3.2: Band information of WorldView-3

Band no. Multispectral band Band wavelengths
1 Coastal 400–450 nm
2 Blue 450–510 nm
3 Green 510–580 nm
4 Yellow 585–625 nm
5 Red 630–690 nm
6 Red Edge 705–745 nm
7 Near-IR1 770–895 nm
8 Near-IR2 860–1040 nm

Our central image data was acquired on November 15th, 2015. It is typically the start of dry
season. This is main period of soybean planting, while the planting of maize has been completed.
Satellite images used in this project include multispectral images and panchromatic images are all
transformed and topology corrected. A sample area is fixed for detailed visualization as shown in
figure 3.2.
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(a) Multispectral image

(b) Panchromatic image

Figure 3.2: Sample of Satellite images (larger images for comparison with figures in Chapter 5)
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3.3 REFERENCE DATA

The reference data is ground truth data covering a part of the Kofa area for 2015. The geographic
coordinate system of ground truth shape file is WGS1984. It contains labels of crop system, main
crop, landcover and et al. Label of main crop is divided into eight types. Although main crop
is labeled, the label of crop system includes ”cereal-root crop mixed“, ”cereal-root crop mixed,
unknown main crop“, ”root an tuber crop“ and ”undetermined“. This mixed plantation would
give further parcel delineation a hard time.

The reference data is used for this research as following items:

a) supply training samples for supervised feature reduction.

b) compare with the delineation of agricultural parcels for evaluation.

3.4 SOFTWARE

In this project, the following software is used:
ArcGIS is used for visualization of the position of study area.
Python is used to run superpixel generation methods, feature reduction, and evaluation.
Moreover, the following Python packages would be used:

* several basic packages, like numpy, scipy, matlibplot.

These packages are used for data organization, math calculation, plot figures and so on.

* several basic geographic packages, like gdal, ogr, rasterio.

These packages are used for read and write raster and vector images, transform coordinate
systems.

* scikit-learn

This package includes the implementation of SLIC, PLS model.

* shapely

This package allows spatial analysis, including buffer, intersection, union, calculation of
geometry area, bounds and so on.

* geojson

This package is used to extract and store geometry features, transform data of geometries
using Json format and connect shapely package with basic packages.

3.5 HARDWARE

In this research, all of time complexity tests are based on the machine with parameters in table 3.3.

Table 3.3: Basic information of hardware

Item Description
Processor Inter(R) Core(TM) i7− 7700HQ @2.80GHz

RAM 16.0 GB
Operating System Windows 10

System type 64-bit Operating system, x64-based processor
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Chapter 4

Method

This chapter describes methods that have been used in sequence to achiever the research objectives
and address the research questions.

4.1 SIMPLE LINEAR ITERATIVE CLUSTERING

Simple linear iterative clustering (SLIC) is a gradient-ascent-based superpixel algorithm (Achanta
et al., 2012) by clustering pixels based on the similarity of color and closeness in xy plane. The im-
age is divided intoK segments with the same size S as much as possible. The initial cluster centers
are set at the center of each segments, which means the interval between two centroids is also S. A
gradient-ascent-based method obtains a better segmentation in every iteration until it converges.
The SLIC method convert images from RGB color image space to CIELAB color space. Because
the maximum possible distance between two colors in CIELAB color space is limited than the
range in RGB space. And CIELAB color space is widely considered as “perceptually uniform for
small color distance (Safdar, Cui, Kim, & Luo, 2017)”. This method combines a CIELAB color
vector and an XY spatial coordinates vector to form a 5-D feature vector [labxy] during initial-
ization. The image firstly is divided into regular grid with the desired number. And recognize
the centroid of grid as the initialized centroid of segments. Like k-means, 5D vectors are used to
display the location of the pixel in 5-dimensional space and to compute the cost distance, which
would both contains the color space and the physical space. For each pixel i in the neighborhood
of the centroid Ck, the distance in coordinates space is computed through:

Dcoords =
√

(xk − xi)2 + (yk − yi)2 (4.1.1)

and the distance in color space is:

Dcolor =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2 (4.1.2)

These two distance are added together with different coefficients to decide this quantity level of
distance as:

D(ik) = M

S
×Dcoords +Dcolor (4.1.3)

where S stands for the size of grid interval and M is used to control the compactness of a super-
pixel. This weighted sum of distance is the judge statement for each pixel around the cluster center
to update the label of current pixel. For each cluster centerCk, compute each pixel i from 2S×2S
neighborhood around it and compare new computed distance with the stored distance, find the
small one and change the label of this pixel to k the small one’s k. After all neighbors of all cluster
center are computed, one iteration is finished. Used current stored distance value of each pixel to
compute new cluster centers and do iteration. After iteration, enforce connectivity is processed
to use the region growing method to fine the size of each superpixel in the image and merge too
small superpixels into surrounding superpixels. The threshold of small and large sizes could be
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adjusted in coding and default as 0.5 and 3 respectively, which means that the sizes of superpixel
output are larger than half of the supposed segment size XY

K and smaller than 3 times of that.
In practical, this algorithm add Gaussian filtering before color space conversion. It is found

that using it gave better results. And it could be turned off by passing sigma = 0.

Algorithm 1: SLIC segmentation algorithm

Input:
RGB image: I[X,Y ];
Number of desired segments: K

Output:
label of each pixel in the image: label[i], i ε [1,K]

1. Gaussian filtering of image with adjustable sigma of standard deviation for Gaussian kernel
2. Convert RGB image into CIELAB space L[l, a, b]
3. Initialize cluster centers Ck = [lk, ak, bk, xk, yk]T by sampling pixels at regular grid steps S
4. Initialize stored distance attribute of each pixel i: Ds(i) =∞
5. repeat
6. for each cluster center Ck do
7. for each pixel i from a 2S × 2S neighborhood around Ck do
8. Compute the distance D(ik) between i and Ck

9. if stored distance Ds(i) > D(ik) then
10. Change the label of this pixel to current label label[i] = k
11. Update the stored distance Ds(i) = D(ik)
12. Based on Ds(i), compute locations of new cluster centers Ck(k ε [1,K])
13. until no pixel changes its distance or maximum number of iterations e has been reached
/*Enforce connectivity*/

14. Set acceptable maximum and minimum scalar of one segment
15. merge superpixels less than the minimum size of segment
16. update the label field with connected values starting at label = 1

Specific implementation steps are shown in algorithm 1.
The essential parameter k is needed and indicates the desired number of superpixels. This pa-

rameter controls the size of superpixels, and this indirectly affects the shape of superpixels. Other
parameters are used internally. The parameter M controls the compactness, and balances color
and space distances. A higherM value gives more weight to space distance, so the distance changes
largely depend on space distance and makes superpixel shapes more square/cubic, which leads to
regular placement and smooth boundaries. This parameter decide strongly image contrast and on
the shapes of objects in the image.

All these are targets for fine-tuning in this proposed work. SLIC improves regularity and
compactness in the superpixel shapes, and seamlessly accommodates gray-scale as well as color
images. Compared with other algorithms, SLIC avoids thousands of redundant distance calcula-
tions, which prominently improves the speed (time complexity from O(kne) to O(n), where k is
the number of clusters, n is the number of pixels in the image, e is the number of iterations towards
convergence). SLIC is also better than other algorithms in compactness, consistency, robustness,
depth information and gives superior performance in terms of boundary recall (Stutz et al., 2018).

An extended version of SLIC is SLICO (Achanta et al., 2012); it can be seen as a parameter-free
version of SLIC algorithm. SLICO is roughly the same as SLIC except the way M is treated. The
user no longer has to set the parameter M of compactness or test different values of it. SLICO
adaptively chooses the value of the compactness parameter for each superpixel differently. During
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processing, SNICO changes the distance to color in the following way:

Dcolor =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2

max(Dcolor)
(4.1.4)

where max(Dcolor) starts as 1, and compares withDcolor at each iteration and updates to the larger
one immediately after its calculation. At the same time, SLICO keeps the step size S constant.
So the distance from a pixel i to the cluster center Ck is calculated with the new distance of color
space:

D(ik) = 1
S
×Dcoords +Dcolor (4.1.5)

4.2 SIMPLE NON-ITERATIVE CLUSTERING

Another improved version of SLIC is named Simple Non-Iterative Clustering (SNIC) (Achanta
& Süsstrunk, 2017). As the name indicates, SNIC does not need iteration. Its approach enforces
connectivity of pixels from the start, which means this algorithm requires less memory, runs faster
and yet is simpler. The specific implementation is shown in algorithm 2.

Algorithm 2: SNIC segmentation algorithm

Input:
RGB image: I[x, y]
Number of desired segments: K

Output:
label of each pixel in the image: label(i), i ε [1,K];

1. Initialize label(i)← 0
2. Convert RGB image into CIELAB color space L[l, a, b]
3. Initialize cluster centers Ck = [lk, ak, bk, xk, yk]T
4. for k ε [1,K] do
5. Initialize eltement e← {Ck, k, 0}
6. Build a priority queue Q, push e on th equeue Q
7. while Q is not empty do
8. Pop Q to get ei

9. if label[i] is 0 then
10. label[i] = ki

11. Update centroid C[ki] online with Ci

12. for Each connected neighbor j of i do
13. if label[i] is 0 then

14. Compute the distance dj,ki
=

√
‖xj−xk‖2

2
s + ‖cj−ck‖2

2
m

15. Create element ej = {xj , cj , ki, dj,ki
}

16. Push ej on Q
17. return L

Instead of using iteration, this method takes advantage of a FIFO queue data structure. The
queue used is a lists with first-in-first-out (FIFO) behavior. It is based on the principle that only
inserts happen only at the back (the rear terminal position, known as enqueuer) and deletes only
happen at the front (the front terminal position, known as dequeuer). When queueQ is not empty,
the top-most element is popped to operate.
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SNIC runs in a single iteration, does not use distance map and requires less memory. The
Berkeley 300 dataset is a valuable resource for studying statistics of natural images (Martin, Fowlkes,
Tal, & Malik, 2001). SNIC tests done by Achanta and Süsstrunk (Achanta & Süsstrunk, 2017) on
the Berkeley 300 dataset showed that this algorithm performs better than state-of-the-art algo-
rithms, including SLIC.

4.2.1 The Douglas-Peucker algorithm

An extended version of SNIC is named SNIC-based polygonal partitioning (SNICPOLY) (Achanta
& Süsstrunk, 2017). This method uses the Douglas-Peucker algorithm (Douglas & Peucker, 1973)
during post-processing to smoother boundaries. The Douglas-Peucker algorithm simplifies curves,
which helps to detach from pixel boundaries, leads to fewer boundary vertices and uses less calcu-
lation and memory.

An example of the DP algorithm is illustrated in figure 4.1 (Mokrzycki & M, 2012). In this
sketch, the vectices n1 and np are the first and the last points on a curve. In the first step, the
straight line from n1 and np is drawn. Then the longest perpendicular distance (x) to the straight
line n1np is calculated from the vertex nk. If x sits above the defined threshold value ε, the straight
line n1np is separated into two straight lines n1nk and nknp. If not, the vertex is skipped. Thus,
after going over every vertex in the curve, the line with the verticesn1 · · ·np is reduced to a number
of line segments (figure 4.1(e)). The defined threshold, also known as epsilon, is a vital parameter
of Douglas-Peucker Algorithm, and we call it the Douglas-Peucker number (dpn) in this project.

Figure 4.1: Sketch of the Douglas-Peucker algorithm

Due to pixel-level clustering, superpixels are generated with no doubt a lot of small oscillation
at the edges. After processing Douglas-Peucker algorithm, the boundaries become gentle. More-
over, in this case, agricultural parcel always have regular edges similar to rectangles. When dpn
is set as large as the short side of parcel, this algorithm gives a better simulation of agricultural
boundaries. Therefore, the Douglas-Peucker algorithm obtains good results especially as post-
process after the above superpixel algorithms.

4.3 THE PAN-SHARPENING PROCESS

In the study area of this research project, raw data is available in the form of a WorldView-3 satel-
lite multispectral image and a panchromatic image. The multispectral image has a resolution of
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1.24 m at nadir, and the panchromatic image has 0.31 m at nadir. Pan-sharpening is shorthand for
panchromatic sharpening. It means using a high-resolution panchromatic (single band) image and
a low-resolution multispectral image to derive a sharpened multispectral image. The “sharpen”
means to increase the spatial resolution of the multispectral image by that of the panchromatic
image (Padwick, Deskevich, Pacifici, & Smallwood, 2010).

One common class of algorithms for pan-sharpening is called “component substitution,” and
this include general pan-sharpening methods for WorldView images, like Brovey, Esri, IHS, Simple
mean transformation and et al (Padwick et al., 2010).

In the following equations, P stands for panchromatic image, B,G,R for red, green and blue
band of input image, respectively, NI for near infrared band of input image and Wi for required
weight of band i.

In the Brovey transformation, the general equation uses R,G,B and the panchromatic bands
(P ) as inputs to output new red, green, and blue bands. Take red band as an example as follows in
equation 4.3.1. The green and blue band are computed in a similar way:

Redout = Rin

(Bin +Gin +Rin)× Pin
(4.3.1)

The Esri pan-sharpening transformation uses a weighted average WA to create an adjustment
value (ADJ) to compute its pan-sharpened outputs. Take the red band as an example in equa-
tion 4.3.2. The green and blue bands are computed in a similar way and the near-infrared band
could also be used as an optional result:

ADJ = P −WA;
Redout = Redin + ADJ

(4.3.2)

IHS is the abbreviation of intensity-hue-saturation transformation. The intensity band can be
computed as follows , using equation 4.3.3:

Iout = Pin − Iin ×WI (4.3.3)

The simple mean transformation uses a simple mean average of the input band. This is an
example of using the red band in equation 4.3.4:

Redout = 0.5× (Redin + Pin) (4.3.4)

Another common class of algorithms for pan-sharpening is called “interpolation,” including
nearest-neighbor, bilinear, bicubic, Lanczos interpolation and so on (Opencv dev team, 2019).
Some of these methods are shown in the following figure 4.2:

Nearest-neighbor interpolation finds the closest sample from the subset of input to the query
point and applies a piecewise value. This method may cause discontinuity in the gray scale of the
image generated by interpolation, and may appear obviously jagged in the place where the gray
scale changes.

Bilinear interpolation is a 2-D extension of linear interpolation for bivariate functions on x and
y axes. In a 2D image, assume i, j are non-negative integers, and u, v are floating point numbers
in the range of [0, 1). For the target point (i+ u, j + v), the interpolated value f(i+ u, j + v) is
determined by a 2D plane consisting of 4 points around it.

Bicubic interpolation consider 4×4 pixel neighborhood around a floating point (i+u, j+v).
The value of target point is computed with a 3D surface consisting of 16 points around it.

Lanczos interpolation is a filtering algorithm over an 8× 8 pixel neighborhood. This method
uses horizontally stretched sinc function to simulates smooth interpolated values. The sketch
simply display its result in figure 4.3.
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Figure 4.2: Sketch of some interpolation methods (Cmglee,2016)

Figure 4.3: Sketch of Lanczos interpolation (black points are original values, solid blue curve is its Lanczos
interpolation, Jorge Stolfi, 2013)

4.4 PARTIAL LEAST SQUARES ALGORITHM

As one of the feature reduction techniques, the partial least squares algorithm (PLS) uses the idea of
dimensionality reduction. PLS is an extension of multivariate linear regression. Many multivariate
linear regression methods, including discriminant analysis (DA), Canonical correlation analysis
(CCA), principal components regression (PCR) have two important attributes in common. These
methods impose restrictions such that: (1) the basic factors of Y and X variables are extracted
from Y ′Y and X ′X matrices, respectively, rather than from the cross product matrix involving
the Y and X variables; (2) the number of prediction functions never exceeds the minimum of the
Y variable and the X variable. Partial least squares regression extends multiple linear regression
without imposing the restrictions employed by above-mentioned methods. In partial least squares
regression, prediction functions are represented by factors extracted from the Y ′XX ′Y matrix.
To be clear, this algorithm considers extracting the principal components of Y and X as much
as possible (PCA), and considers extracting X and Y separately and maximizes the correlation
between the principal components (CCA).

The general underlying model of multivariate PLS is provided in equation 4.4.1:

X = TP T + E

Y = UQT + F
(4.4.1)

where X is an n × m matrix of predictors, Y is an n × p matrix of responses; T and U are
n × l matrices that are, respectively, projections of X (the X score, component or factor matrix)
and projections of Y (the Y scores); P andQ are, respectively,M × l and p× l orthogonal loading
matrices; and matrices E and F are the error terms, assumed to be independent and identically
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distributed random normal variables. The decompositions ofX and Y are made so as to maximise
the covariance between T and U .

In this research project, a PLS algorithm can use the crop label for some of the delineated
parcels as the data of variable Y and multispectral bands as data of variable X .

4.5 AGGREGATION APPROACH

Although SLIC enforces connectivity for initially generated superpixels, that part mainly consid-
ers the size of superpixels. This part’s aggregation approach focuses on the position relationship
and statistical analysis of superpixels as discriminant conditions. This aggregation approach is
implemented as a post-processing step following superpixel generation.

Figure 4.4: Sketch of superpixel merger

The method, as the sketch shows in figure 4.4, through labeled image segments, builds an
undirected graph that includes adjacency relationships between pairs of superpixels. Each vertex
in the graph stands for a segment. We give each pair of connected segments a edge and compute
the cost of paired segments as edge’s weight. The cost is calculated though equation 4.5.1.

Cost = (R̄i − R̄j)2 + (Ḡi − Ḡj)2 + (B̄i − B̄j)2 < T (4.5.1)

For a pair of connected segments i, j, the mean values of three bands R̄, Ḡ and B̄ are calculated
and used to compare. Threshold value is tested and stated to determine whether we should merge
this pair of superpixels. This aggregation judgment condition is inspired by ”fast region merg-
ing“ (Haris, Efstratiadis, Maglaveras, & Katsaggelos, 1998). The value of threshold T is selected
by tests.

4.6 EVALUATION OF RESULTS

To evaluate the results of superpixel segmentation, this project has identified three methods to
assess results at different levels as follows. The first looks at pixel level metrics, the second at area
size, and the last at a shape metric.

4.6.1 Boundary recall

At pixel level, this project imply confusion matrix of segment boundary and ground truth bound-
ary. We are setting a desired distance threshold d to define an acceptable buffer size around bound-
aries. Buffered line sections (to avoid misunderstanding, we name it line section instead of line
segmentation) from segmentation S are compared with buffered line section from polygons from
ground truth data G. We consider as True Positive (TP) the number of pixels inside the intersec-
tion area; True Negative (TN) is the number of pixels that are within the ground truth buffer but
not within the segmentation line buffer; False Positive (FP) is the number of pixels not within the
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ground truth buffer but in the segmentation line buffer, and False Negative (FN) the number of
pixels outside of any line buffer. The boundary recall scores are defined in equations 4.6.1, 4.6.2,
and 4.6.3 as follows.

Precision = TP
TP + FP

(4.6.1)

Recall = TP
TP + FN

(4.6.2)

2
F1

= 1
Precision

+ 1
Recall

,

F1 = 2TP
2TP + FP + FN

(4.6.3)

These three scores always fall between 0 and 1. The higher score, the better the result.

4.6.2 Segmentation accuracy

At area level, the achievable segmentation accuracy(ASA) is chosen to access the accuracy of su-
perpixel segmentation. These scores are determined with equation 4.6.4.

ASAs =
∑

i maxj(Si
⋂
Gj)∑

iGi
,

ASAg =
∑

i maxj(Gi
⋂
Sj)∑

i Si

(4.6.4)

Si is a segment created by the algorithm and Gj is a ground truth segment. The subscript i
and j do not have to be different. The formula (Si

⋂
Gj) indicates the area of the intersection.

For each segment Si from created segments, the maximum intersection of a certain ground truth
segmentGj is found. ASAs is the quotient of the sum of all intersected area divided by the sum of
all Si. ASAs measures the fraction of ground truth area that is correctly represented by superpixel
methods, while ASAg measures the fraction of superpixel area that is correctly labeled by ground
truth segments.

These two scores express two qualities of correspondence relationship, while ASAs is also
known as “upper-bound segmentation accuracy.” Both have values between 0 and 1. Also, here
we have that the higher score, the better the result. As ASAs grows, ASAg reduces. This would
be hard to determine a better result. An index, the product of ASAs and ASAg is considered as
the determine condition. the The graph for ASAs − ASAg is created, using ASAs as X axis and
ASAg as Y axis. The area of rectangles at the origin coordinates and the point (ASAs, ASAs − g)
indicates the good or bad of the results. The larger area, the better the result.

4.6.3 Shape and distance metrics

At shape level, to compare the trajectories, much research has been done in the past, like formerly
used point-based distance, Euclidean distance. Point-based distance methods also include: dy-
namic time warping (DTW), longest common subsequence (LCSS), Edit distance on real sequence
(EDR). Other than these, there are shape-based distance metrics: Hausdorff distance, Frechet dis-
tance; segment-based distances: One Way Distance, LIP distance; and task-specific distances: TR-
ACLUS, road, semantic (Wang & Sadiq, 2013).

In this project, the Frechet distance is used to evaluate the ground truth line and the generated
(boundary) line segments. Compared with other methods, the Frechet distance considers in detail
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the continuity of shape. This method has an intuitive definition: suppose a man is walking his
dog. Assume the man and the dog walk along different curves with different speeds, and they are
not allowed to move backwards. The Frechet distance is the minimum length of a leash that the
man and the dog ties during their walk. A sketch is shown to illustrate in figure 4.5 (Chen, Ma,
Jing, Guo, & Xiong, 2017).

Figure 4.5: Sketch of Frechet distance

In this project, the superpixel list of curves is generated from the closed boundary of a segment,
while the ground truth list of curves is created from boundaries from ground truth shapes. Frechet
distances are found for each pair of superpixel curve and ground truth curve. The smallest distance
is considered as the quantity to compare results from different situations.
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Chapter 5

Results

We have fixed a 390× 542 image inside the whole image as an example for detailed visualization,
which has been described in chapter 3. A combination of bands 7, 5, 2 is used for false-color
synthesis to pan-sharpen and extract color information as much as possible the various agriculture
types. Before showing all the results, ground truth boundary of sample area is shown in figure 5.1
to compare with following superpixel boundaries.

Figure 5.1: Ground truth boundary (orange lines)

The test of boundary generation starts at SLIC algorithm with K = 150 and M = 15. The
results of multispectral and panchromatic sample images are presented in figure 5.2 separately. Yel-
low lines represents boundaries (All yellow lines in following figures are all generated boundaries).
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(a) Boundary from multispectral image (K = 150, M =
15)

(b) Boundary from panchromatic image (K = 150, M =
15)

Figure 5.2: Multispectral and panchromatic images generated boundaries

5.1 PAN-SHARPENED IMAGES

The pan-sharpened results of various methods are shown in figure 5.3 for component substitution
methods and in figure 5.4 for interpolation methods.

In this project, four types of component substitution methods are discussed. With over-segmentation,
four types pan-sharpened images all return some good boundary delineation. The Brovey method
increases the visual contrast of high and low parts in the data histogram. The Esri method uses
weighted averaging to adjust the result. By the weight value, the green output is made more
vibrant. After IHS component substitution, the sharpness of the image is increased compared
with the original multispectral, while the Brovey method increases it less. Brovey and IHS pan-
sharpening images have prominent boundary features, and also the texture of different agricultural
parcels. This characteristics is especially prominent in the mixed cropland. When generate super-
pixel, it is hard to determine whether texture line or boundary line.

In this project, four types of interpolation methods are discussed. Preferable interpolation
methods suggested by an official tutorial (Opencv dev team, 2019) are bilinear and bicubic (slow)
for zooming, especially for zoom factors below three. Among four typical interpolation methods
tested in this project, nearest-neighbor interpolation is simple in computation and requires little
memory, but the edge of the parcels and changes of different agricultural crops, looks more grainy.
Bilinear, bicubic and Lanczos methods overcome the shortcoming of disconnected image values.
However, the edges obtained by the bilinear method are smoothed and contours may blur. The
bicubic method comes with the effect of edge enhancement and better maintains the structure of
the image. The Lanczos method also enhances the edge, but displays too much detail of texture in
the image.

To give a qualitative comparison, three types of evaluation are used to compare the results with
the condition that K is set from 50 to 450 while M = 15 in figure 5.5.

Pan-sharpened images get better results than multispectral image, especiallyF1 scores from fig-
ure 5.5(a). Various pan-sharpened methods return similar results, therefore pan-sharpened method
choice does not really matter. Based on figure 5.3, brovey result could incorrectly mixed texture
area and plain area. Sample mean and Esri results could not describe edges of parcels contain two
types of crop. Ihs results could not draw edges of two texture parcels. The results based on bicu-
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(a) Brovey pan-sharpening (K = 150, M = 15) (b) Sample mean pan-sharpening (K = 150, M = 15)

(c) Esri pan-sharpening (K = 150, M = 15) (d) IHS pan-sharpening (K = 150, M = 15)

Figure 5.3: Pan-sharpened images obtained from various component substitution methods

bic method nearly determine all boundaries or have a little shift. Bicubic method is chosen for
forward steps for making edges of parcels easier to interpret.
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(a) Nearest-neighbor pan-sharpening (K = 150, M = 15) (b) Bilinear pan-sharpening (K = 150, M = 15)

(c) Bicubic pan-sharpening (K = 150, M = 15) (d) Lanczos pan-sharpening (K = 150, M = 15)

Figure 5.4: Pan-sharpened images obtained from various interpolation methods

(a) F 1 score graph of various methods (b) ASAs − ASAg graph of various methods

Figure 5.5: Evaluation results of various pan-sharpening image products
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5.2 TIME COMPLEXITY OF SLIC

Because of the image sizes involved, the time complexity of superpixel generation may become
an important feature. To see the time complexity on variously sized n × n images, the values
of K and M are kept fixed at 350 and 15, respectively. The results are presented in figure 5.6.
As n grows from 10 to around 10, 000, the complexity continuously increases. When n is larger
than 10, 000, the time cost increases with some small oscillations, which happens in repeated tests
(figure 5.6(b) just displays one time result). When n is larger than 17, 500, the machine mentioned
in the hardware section could not run the process because of memory error.

(a) Time complexity of different size of image (b) Time complexity of different value of K

Figure 5.6: Time complexity tests

To see the change in performance with different values of K, the test image is fixed to that
of the example used in the pan-sharpening section, and the value of M is kept fixed at 15. The
result is shown in figure 5.6. In practice, Cython is used to improve enforceability. Cython is a
C-extension for Python. It is written in Python code that calls back C or C++ code natively at
any point, which speeds up the execution of Python code. With Cython acceleration, although
the time cost have the tendency of increase along the increase of K, it still less than one second in
the range researched (K less than 20, 000).

5.3 TUNING OF SLIC’S K PARAMETER

The first essential parameter of SLIC is the number of requested superpixelsK. Because the SLIC
algorithm enforces connectivity (described in chapter 4) by merging segments that are smaller than
set size, the number of resulting segments is always a bit smaller than the requestedK. The results
with various values forK are shown in figure 5.7 (all yellow lines are superpixel boundaries). As a
cluster algorithm, the number of desired cluster center K influences the boundary of the results.
It is obvious when comparing these four different K results.

When K is small, in this case 50, some of the boundaries provide a good shape description
of some single parcels. But when agriculture is mixed or the area contains trees, the segments
may become confused and mixed together or be divided into different segments. This situation
is less frequent with increasing K. For instance, when K is 150, though tree shadows are no
longer detected as single segments, the shapes of trees come out better. When K is 200, shapes
of trees are well-portrayed and so are some of their shadows. In the current situation, in spite of
bad visualization and divided parcels, superpixels provide good description of the parcel edges,
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(a) K = 50 (b) K = 150

(c) K = 250 (d) K = 350

Figure 5.7: Boundaries for different value of K with fixed M = 15

which is also a reason to do aggregation later. WhenK is 250, shapes of tree shadows remain well-
depicted. When K is larger, more detail is shown on the boundaries, but also with an increase in
useless boundary lines, which provides an opportunity for aggregation methods.

All graphs in figure 5.12 share the legend of (c)F1. Overall, except curves withM = 5, curves
have similar tendency in all evaluations. When K = 150 and M = 10, the result gets the best
precision, recall and F1 score. When K = 350 and M = 15, the result get shortest Frechet
distance. And this pair of values also performs well in precision, recall and F1 score. Therefore,
K = 350 and M = 25 are chosen as default value for further tests.
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(a) K = 50 (b) K = 150

(c) K = 250 (d) K = 350

Figure 5.8: Boundary comparison with ground truth parcels for different values of K with fixed M = 15 (yellow
lines are segment boundary, orange lines are ground truth boundary)
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(a) Precision scores (b) Recall scores

(c) F 1 scores (d) ASAs

(e) ASAg (f) Frechet distance

Figure 5.9: Evaluation graphs for different value of K with fixed M
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5.4 TUNING OF SLIC’S M PARAMETER

This section studies the value of compactness M , as introduced in equation 4.1.3. This parameter
allows to tune the balance between distance in coordinate space and distance in color space. The
results, using various values of M with fixed number of superpixels K = 50 in figure 5.10 and
fixed K = 350 in figure 5.11, which shows the influence of this parameter.

(a) M = 5 (b) M = 15

(c) M = 25 (d) M = 35

Figure 5.10: Boundaries for different values of M with fixed K = 50

Figure 5.10 and 5.11 show that as the value of M grows, the boundaries of segments become
straighter. And because the condition to enforce connectivity is fixed, when M is small, many
small segments are merged into the surrounding segments, which cause the number of superpixels
from final results smaller than K. As the value of compactness M grows, the number of final
superpixels grows obviously with it. At the same time, the weights of coordinate distance cost
grows and the color distance cost does not change. Therefore the output superpixels are more
and more decided by pixel position than by pixel color. This causes the final output’s superpixels
behave like regular grids.

As the authors of SLIC (Achanta et al., 2012) suggest, the range of compactness values is set
to [1, 40]. In this project, the value of compactness is tested starting at 5 with increments of 5.
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(a) M = 5 (b) M = 15

(c) M = 25 (d) M = 35

Figure 5.11: Boundaries for different values of M with fixed K = 350

The curves of different M and fixed K of SLIC show an increase from 54 to 57. When K = 50,
there is a small drop to 54 atM = 10 after that, while other results all stay around 56.5 with small
fluctuations. These curves in figure 5.12(b) and (c) show that the value of compactnessM does not
influence the results when K > 250. For the ASAs and ASAg curves, the evaluation results have
clear change from M = 5 to M = 20. For proper results for all methods, M = 25 is recognized
as default value for more and further comparisons.
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(a) Precision (b) Recall

(c) F 1 (d) ASAs

(e) ASAg (f) Frechet distance

Figure 5.12: Evaluation results for different value of M with fixed K
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5.5 COMPARISON BETWEEN THE SLIC, SLICO, SNIC, SNICPOLY ALGORITHMS

To compare the results of different runs of the SLIC algorithm, the values for M is fixed to 25,
two values for K are tested at 50 and 150 respectively for better description of edges as discussed
before. The results for small K(50) are shown in figure 5.13 and the results for large K(150) in
figure 5.14.

(a) SLIC (b) SLICO

(c) SNIC (d) SNICPOLY

Figure 5.13: Comparison of SLIC, SLICO, SNIC and SNICPOLY with fixed number of superpixels K = 50, and
compactness M = 25

As we knew at the start of this chapter, there are 34 ground truth parcels. WhenK = 50, four
methods get the number of superpixels near the number of ground truth. SLIC determines some
superpixels described as agricultural parcel. SLICO determines some edges connected to parcel
boundaries, while SLICO results are more like regular grids. SNIC boundary description is better
than that of SLICO. SLIC works better at edges with light and dark areas while SNIC works
better at borders with textured and untextured areas than SLIC. SNICPOLY provides simplified
boundaries of SNIC, which largely depend on the SNIC result.

WhenK is much larger than the number of ground truth parcels (in this case,K = 150 which
is three times larger), because of over-segmentation, the boundaries are basically extracted. SLIC
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(a) SLIC (b) SLICO

(c) SNIC (d) SNICPOLY

Figure 5.14: Comparison of SLIC, SLICO, SNIC and SNICPOLY with fixed number of superpixels K = 150,
and compactness M = 25

and SLICO do not extract edges where two sides have similar texture with a dark middle gap.
Comparing two conditions, results from SLIC are influenced by texture of agricultural field,

especially when the parcel contains two types of crops and displays clear distinctions. The results
from SLICO show more regular grids, have a balance between texture and the close connection
with edges. The results from SNIC are more rugged than that of SLIC but are less affected by
texture differences. Boundaries created by SNIC show a tendency of regular grids. And they also
have good shapes of trees and tree shadow. The results from SNICPOLY are more artificial with
fewer vertices and displays more straight lines than others.

Figures 5.15 show the evaluation with same M ,
In terms of line evaluation, the precision, recall and F1 results for different version algorithms

are presented in figures 5.15(a), (b) and (c) respectively.
In terms of area evaluation, ASAs and ASAg are used to measure different version algorithms

and the results are presented in in figures 5.15(d) and (e) .
In terms of shape evaluation, Frechet distances are used to measure different version algorithms

and the results are presented in in figures 5.15(f) .
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The precision percentage shows how many pixels are correctly recognized as boundary against
the number of selected pixels. This percentage stays at the range of [0, 1] and is expected as higher
as possible. These curves show changes of precision with the increase of number of superpixelsK
and the increase of the value of compactness M .

For the curves for different K, the percentages of results from SLIC and SLICO methods
increase from K = 50 to K = 150, while the percentages of SNIC and SNICPOLY peak at
K = 100. Although there are differences between methods, generally all precision scores for
different K and fixed M are around (57 ± 2)%. Based on these four curves, the result under
K = 150 is considered as the best K.

The recall percentage shows how many pixels are correctly selected as boundary under the
number of ground truth boundary pixels. This percentage is in the range of [0, 1]. The higher the
percentage, the better the result. As the number of superpixels K grows, the recall generally also
grows. The percentages for different methods meet the same value and stay at it when K ≥ 350.
As for the change of value of compactness M , the results from SLIC give a rise from 82.5 to 98,
while other results all stay around 98 with small fluctuations at the whole range of test M .

The F1 score is a harmonic average of precision and recall, which means this measurement
combines the results of precision and recall. When F1 is higher, the result is considered as more
ideal.

Because the precisions do not change much, the F1 scores are influenced much by the recall
and the curves of F1 own the same tendency with the curves of recall. Based on the F1 scores, the
best result is the same as that of recall underK = 350 andM = 15, which is shown in figure 5.14.
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(a) Precision scores for different number of superpixels
(K) with fixed value of compactness M = 25

(b) Recall scores for different number of superpixels (K)
with fixed value of compactness M = 25

(c) F 1 scores for different number of superpixels (K) with
fixed value of compactness M = 25

(d) ASAs for different number of superpixels (K) with
fixed value of compactness M = 25

(e) ASAg for different number of superpixels (K) with
fixed value of compactness M = 25

(f) Frechet distance for different number of superpixels
(K) with fixed value of compactness M = 25

Figure 5.15: Evaluation graphs for different number of superpixels (K) with fixed value of compactnessM = 25,
images results shown in figure 5.13 and figure 5.14
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(a) Precision scores for different value of compactness (M )
with fixed number of superpixels K = 150

(b) Recall scores for different value of compactness (M )
with fixed number of superpixels K = 150

(c) F 1 scores for different value of compactness (M ) with
fixed number of superpixels K = 150

(d) ASAs for different value of compactness (M ) with fixed
number of superpixels K = 150

(e) ASAg for different value of compactness (M ) with fixed
number of superpixels K = 150 (f) Frechet distance for different value of compactness (M )

with fixed number of superpixels K = 150

Figure 5.16: Evaluation graphs for different value of compactness (M ) with fixed number of superpixels K =
350, images results shown in figure 5.13 and figure 5.14
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5.6 PARTIAL LEAST SQUARES METHOD EVALUATION

To use the PLS model, labels from ground truth data are used to build a training data set. For
this project, the ground truth data is shown in figure 5.17. Labels per crop type range from 0 to 9
corresponding with the legend from top to bottom.

Figure 5.17: Ground truth labels

For each group, counts of ground truth pixels are presented in table 5.6.

Table 5.1: Basic information ground truth data

Label Main type Pixel count
1 Non-main 4304
2 Legumes 22333
3 Maize 4187
4 Millet 12714
5 Rice 5840
6 Sorghum 2064
7 Soybean 51896
8 Spice crops 6128
9 Vegetables 29802

total 139268

To balance the training data, the same number of pixels are selected from each group to be
part of the training set. And every pixel’s eight bands data are used as training X and the pixel’s
corresponding label value is organized as its corresponding training Y to build a sample set to
build a PLS model. This model is used to predict the value of each pixel in image I and obtain a
predicted image IP . We rescale IP to a normal color range [0, 255] for display as a gray image. We
next use the predicted image IP as red band, and copy it for green and blue bands to build a RGB
image for use later in the SLIC algorithm.

The SLIC result of a PLS-predicted image IP is shown in figure 5.18.
Although the PLS model gives more categorical values of what crop a pixel would be, the

distinction between pixel values has diminished. This project assumed this method would decrease
noise effects. In practice, it also decreases the differences between.

A range of K and M values are tested and evaluated, as shown in figure 5.19. Legends of
all graphs are identical with the legend displayed in figure 5.19(c). From the ranges of different
evaluation method (comparing figure 5.5, predicted image from PLS model get lower results than
pan-sharpened image as discussed before.
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(a) PLS SLIC (b) Pan-sharpened SLIC

Figure 5.18: PLS SLIC result with fixed number of superpixels K = 150 and value of compactness M = 15
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(a) Precision scores (b) Recall scores

(c) F 1 scores (d) ASAs

(e) ASAg (f) Frechet distance

Figure 5.19: PLS evaluation results for different value of K with fixed M
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5.7 AGGREGATION

To see the comparison of different times of aggregation, two groups of parameter values are tested.
The values of the number of superpixelsK is kept fixed at 350 and 1350 respectively. For both, the
value of compactnessM is 15. The results are shown in figure 5.21. The segments after aggregation
are displayed at the top of each figure.

According to the aggregation condition, the cost (based on equation 4.5.1) of each pair of
connected segments gets accounted and is displayed in histogram of figure 5.20.

Figure 5.20: Histogram of aggregation cost

From this histogram, the threshold is tested from 2, 000 to 4, 000 with an increment step =
500. Threshold is tested and get the best result is obtained when T = 3, 000. Aggregation results
of multi-times are presented in figure 5.21.

From the first and second aggregation, trees and shadows of trees merge generally under small
K condition (K = 350). When K is large, tree segments prefer to merge not with shadow seg-
ments, which is not wanted. More aggregation methods are needed to test for further work. The
tree area influences the results of boundary delineation a lot. A more suitable way to treat tree
area is also needed.

The percentages of precision, recall and F1 scores have a little grow at first aggregation and
then decrease gradually. After aggregation, each pair of segments that meets the criteria (defined in
chapter 4) is merged. Some line segments are dissolved. The ideal situation is that those dropped
line segments are not a ground truth boundary. As the percentages go down, clearly some dropped
line segments are actually true boundaries. At the same time, ASAs and ASAg both grow when
more aggregation is allowed. This means that more and more area is labeled correctly within the
ground truth parcels. Overall, a one time aggregation with a little larger K (compare with the
number of ground truth parcels, in this case K = 150) obtains a better result.
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(a) K = 350, M = 25, 1 time aggregation, 89 segments (b) K = 1050, M = 25, 1 time aggregation, 385 segments

(c) K = 350, M = 25, 2 times aggregation, 30 segments (d) K = 1050, M = 25, 2 times aggregation, 136 seg-
ments

(e) K = 350, M = 25, 3 times aggregation, 13 segments (f) K = 1350, M = 25, 3 times aggregation, 57 segments

Figure 5.21: Various times aggregation results comparison
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(a) Aggregation start from K = 350, M = 25

(b) Aggregation start from K = 1050, M = 25

Figure 5.22: Evaluation of aggregation
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Chapter 6

Discussion

This project aimed to discover the usefulness of superpixel generation for the delineation of agri-
cultural parcels. At start, all we have is a multispectral image, a panchromatic image and ground
truth vector data. Superpixel methods work on color images. Before superpixel generation, we or-
ganized to compare a multispectral false-color image, a panchromatic image, and a pan-sharpened
image as input of our superpixel algorithms. We also proposed a PLS model to predict image value
in hope for better delineation. In this project, we focused on the SLIC algorithm and tested three
more algorithms, which are all related to SLIC. They are the SLICO, SNIC and SNICPOLY
algorithms.

To measure the results of superpixel methods, three types of evaluation are used to compare
results. These evaluation methods are the pixel-level precision, recall and F1 score, the area-level
achievable segmentation accuracy and the shape-level Frechet distance between closed-ring parcel
boundaries. These parameters are put together to pass a judgement on a results. During this
project, superpixel algorithms were developed with which oversegmentation is common; over-
segmentation gives better boundary recall scores. To achieve the eventual objective of proper
parcel delineation, aggregation methods are considered that merge adjacent superpixels to decrease
oversegmentation and retain proper boundaries at the same time. We discuss below three issues
on our assumptions and results.

6.1 BASE DATA QUALITY

Because of time limitation, only one spectral and a panchromatic image are tested in this project.
For further work, more images from different time should be researched. But in our case, this
method works same in the different area from the sample area. This sample area is selected only
because it has samples of every type of crop in ground truth data.

The ground truth data could be more accurate. There are large gaps between parcels and some
of parcels are missed, which influence the results of evaluation.

6.2 CHOICES FOR K AND M PARAMETERS

These two parameters K and M are essential switch keys in this project. They are required by
SLIC, SNIC and SNICPOLY. SLICO only requires the parameter K. SNICPOLY needs one
more parameter dpn for the degree to simplify.

6.3 AGGREGATION METHOD

As the last section of chapter 5 shows, the aggregation results do not achieve the wanted target. The
general condition that uses segment characterization with average scores shows some inappropriate
pairing of segments to merge. We studied selected ground truth data to find out reasons.
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From the labeled area, pixels are selected with values in eight bands to constitute a sample
set. Next, we organized the sample set to have equal numbers of pixels per crop type. From the
balanced sample set, we calculated the maximum, minimum, mean and standard deviation of each
band per crop type. Lines were created for each statistical indicators to simulate average spectral
curves and these are presented in figure 6.1.

Figure 6.1: Statistical analysis per spectral band and per crop type in the sample set (x-axis: band no., y-axis:
values)

As figure 6.1 shows, sorghum differs most notably from other crops. The maximum values of
each sorghum band are respectively 236, 181, 187, 198, 181, 193, 255 and 255, while others equal
255 except the maximum of band 7 of rice, which is 235. Despite that minimum values of all other
crops equal 0, the minimum values of maize for different bands are [0, 47, 33, 39, 46, 70, 40, 21] and
the minimum values of band 3 and 4 of millet are 5 and 16. The whole image is stretched into range
[0, 255]. Samples pixels are extracted from the whole image, it is grouped by its main crop types
and expected to have individual features like spectral patterns. Unexpectedly, the samples from
non-main type have the more diverse features.

Because the results after aggregation do not get expect accuracy, this means that distributions of
sample data are not quite unified. The simple statistical data does not help much to find differences.
We also developed univariate kernel density estimate curves of each band and each crop type as
presented in figure 6.2 to display the range and density of values.

(Note: all the values mentioned are after rescaling to range [0, 255].)
Figure 6.2 displays ranges of different bands and crop types to be similar. This makes using

maximum and minimum values of the sample set useless. All these curves are simulated using
a Gaussian Kernel. Although they are smooth, there are some interesting characteristics. For
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Figure 6.2: Univariate kernel density estimate per spectral band and per crop type in the sample set (X-axis:
values, Y-axis: density)

legumes, the density of low value near 0 is a little larger than that when values near 50 in nearly
all bands. Values near 100 to 200 of band 7 and 8 of legumes have high and similar density. The
band 6 has similar curve with band 7 and 8 but is smaller and high pass section has a right shift.
Curves of band 3, 4 and 5 have the highest density around 190. The curves of vegetables have
identical features but also distinguishing ones. Another type of crop with an unusual pattern is
rice. The curves of band 2, 3, 4 and 5 of rice have almost balanced two peaks, while the curves of
6, 7 and 8 have two unbalanced peaks. All right peaks have higher density than left ones. Other
types of crop show different patterns also. Compare with average and standard deviation, density
estimate curves could be more useful to distinguish each type of crop from each other. A proper
method is wanted to organize density of each pair of segments to determine the cost function for
aggregation. More work is needed to test this assumption and problems of computation memory
and time complexity also need to be considered.

One probable reason of this problem is that in reality, the high-resolution image is clear enough
and contains more information (bare soil, for instance) in its pixels. Even in one area of known
crop at end of crop season, the crop does not cover every pixel. The pixel size is small enough
to make some of them have pure features that are different from the known crop type. This
explains that results obtained from a multispectral image are worse than those of pan-sharpened
image results. This also causes the general spectral characterization to be useless. Smooth filters,
like Gaussian filter could mitigate these pixel gaps while these filters also blur the image to some
extent. In this context, when the plants are exuberant, the surface coverage is more complete, and
the results are better. For the current situation, the density curves of each band of each type of
crop land would have different patterns, but be helpful. Due to unchangeable spectrum of certain
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objects, the density curves are like the weighted mean of two types of objects.

6.4 PARTIAL LEAST SQUARES MODEL

The partial least squares model has a good reputation but did not perform well in this project.
More tests have been attempted to find out the reason.

First, the problem mentioned in the previous section also affects the PLS model. This is due
to mixed ground truth pixels. The training data of the model contains noticeable noise.

Secondly, we use the PLS model as a pre-process. Each value is predicted pixel by pixel, which
means each pixel area is dependent on surrounding pixels and the predicted values share the same
range of Y available in the training set (introduced in section “Partial Least Squares Algorithm” of
chapter 4). The predicted value range is dramatically smaller than the original range, which sharply
decreases the distinction of each pixel, especially when using such predicted value as input of the
clustering method SLIC. For SLIC, the color distance is an essential indicator. As separate pixel
predicted values are calculated, this increases the noise in the color space, which leads to mistaken
clustering and generates untrusted superpixels.

6.5 TREE AND SHADOW AREA

Figure 5.7 presents the boundaries with different number of superpixels K. As K grows, tree
and shadow area have a greater impact on boundary delineation of agricultural area. It turns that
superpixels deliver well-described 2D shapes of tree and shadows, as shown in figure 6.3.

Figure 6.3: Tree and shadow area generated by SLIC

Because of time limitation, there is no further work on this, but two hypotheses have surfaced
about how to handle tree and shadow area. The first hypothesis is to label tree and shadow area
before boundary delineation. During superpixel generation, this area is put out of distance cal-
culation. The second hypothesis is region filling (Antonio Criminisi, Patrick Perez, & Kentaro
Toyama, 2004). The tree and shadow area is detected and refill with predicted values to pretend to
be farmland.
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Chapter 7

Conclusions and recommendations

7.1 CONCLUSIONS

This research project focuses on the performance of superpixel generation methods for the delin-
eation of agricultural parcels using very high resolution satellite images. A workflow is designed
to test and compare different methods of superpixel generation, with or without pre-processing.
One multispectral and one panchromatic WorldView-3 image from November 20XX have been
used in this project for boundary delineation.

The following answers to the research questions from chapter 1 were obtained:

a) Which image format works best for this project?

Which superpixel algorithm has the best performance delineation for SHA?

From visualization and evaluation results in chapter 5, we now know that pan-sharpened im-
ages work better than multispectral images, while the production technique of pan-sharpening
does not matter much. The Brovery and Ihs methods present better texture lines. The sample
mean method avoids pixel-level noise. All interpolation pan-sharpened methods give a better
delineation of tree and shadow area. Nearest-neighbor and Lanczos methods deliver smoother
images while linear and bicubic methods provide enhanced details.

This project compares four superpixel generation methods, SLIC, SLICO, SNIC, and SNICPOLY.
When the parameter for the number of superpixelsK is set near the real or expected number of
parcels, SLIC works best. SLIC and SNIC methods delineate meaningful boundaries. SLICO
delivers steady grids. SNICPOLY results largely depend on SNIC results. When K is large
enough, although the image may become over-segmented, the boundaries of parcels are repre-
sented and this gives a chance for aggregation. In our case, with K = 350 (nearly ten times
of the ground truth number), recall scores almost get 100 percent, and superpixels hand over
enough results of boundary.

b) How does supervised feature reduction work with superpixels?

Does supervised feature reduction improve delineation quality of agricultural parcels?

An image is composed of PLS predicted values. Although this image decreases the effect of tree
shadows, generally, the PLS-derived image performs not as good as pan-sharpened images. The
percentage of selected boundary drops by 30%. Reasons are discussed in chapter 6.

c) How can one evaluate the results of agricultural boundary delineation in SHA?

This project delivers three methods to assess results. They are a pixel-level metric, an area
size metric, and a shape metric. At pixel level, precision scores point out the percentage of
selected boundary pixels that are actual ground truth boundary pixel. The recall scores depict
the percentage of selected ground truth pixels over total ground truth pixels. F1 is a complex
of precision score and recall score. At area level, ASAs describes the proportion of correctly se-
lected segments’ area versus total ground truth area. ASAg calculates the proportion of selected

51



ASSESSING THE VALUE OF SUPERPIXEL APPROACHES TO DELINEATE AGRICULTURAL PARCELS

ground truth area against the sum of each segment. For the shape metric, the Frechet distance
is measured. This distance tells the maximum distance between segment boundary and ground
truth boundary.

d) Under which conditions for K/M do Which methods work best?

Comprehensive assessment of all evaluation methods, for small K, when K = 50, M = 25,
SNIC works best. For large K, when K = 350, M = 25, SLIC works best in our case.

e) How good is aggregation technique?

In our case, with K = 1050 (nearly thirty times of the ground truth number) and M = 25,
recall scores are almost getting 100 percent and superpixels deliver enough boundary. When
the threshold T < 3000, one-time aggregation provides the best result, which improve 2%
accuracy in pixel level.

f) What is expected for this method to work in different areas?

This method works for areas with various types of crop. If the area is covered with lush plants,
the area would be less heterogeneous and the results could be better.

7.2 RECOMMENDATIONS

The following points indicate the recommendations for future work:

* The area covered by trees needs to be separated from the agricultural area. The first way is
to mask the tree area and no longer compare pixels in it during superpixel generation. This
could need different repairs for each superpixel method, which could come with different con-
sequences. Another considerable way is using region filling to remove trees (and shadow) and
replace the value of such area with simulated values (Antonio Criminisi et al., 2004).

* Aggregation methods need more research to fix the condition to merge mixed segments. Prob-
ability density function could be consider to add into the condition equation to determine
whether merge.
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