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ABSTRACT 

Studying snow cover is integral in monitoring a country’s hydrological resources and assessing climate 

change. Satellite remote sensing can support this as it covers a large spatial extent and reduces the need for 

human excursions. Optical remote sensing is specifically advantageous as it measures the albedo and snow 

surface properties, giving an accurate assessment of the area. However, the visible bands of such images 

show high reflectance values for both clouds and snow, often leading to misclassification and unreliable 

results. Shortwave infrared (SWIR) band, on the other hand, is extremely reflective for clouds, compared 

to snow. But due to their large wavelengths, SWIR sensors are generally not available in high spatial 

resolutions.  

 

In order to use SWIR to discriminate between clouds and snow in high resolution Visible-Near Infrared 

(VNIR) images, our study proposes the use of convolutional neural networks (CNNs). CNNs provide an 

efficient way of deep feature extraction using contextual learning. We use the fully convolutional approach 

to achieve pixel-wise classification through semantic segmentation. Moreover, we apply a novel way of 

resampling the SWIR within the CNN architecture and fusing it with the VNIR bands. This fusion based 

convolutional strategy gave an average snow-and-cloud F1 score of 0.95 compared to a score of 0.85 by a 

non-fusion based network. We performed all our experiments on the multi-resolution data available from 

Resourcesat-2 satellite, of the Indian Remote Sensing Program, using visually labeled reference pixels. We 

also compared the classification output from a subsidiary model with a pre-built cloud mask tool of 

Resourcesat-2. We found that our model achieved an F1 score of 0.91 for clouds compared to 0.65 by the 

pre-built tool. The proposed model thus showed an advantage in detecting clouds in high resolution 

optical images, captured over snow covered regions. This highlights the possible use of such methods for 

other multi-sensor fusion problems, in the future. 
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1. INTRODUCTION 

1.1. Snow and Cloud Similarity 

 

Snow is an important feature of our environment. It helps in balancing the heat flow between the Earth 

surface and atmosphere. Its presence in a basin also affects surface moisture, thereby contributing to water 

runoff (Maurer, Rhoads, Dubayah, & Lettenmaier, 2003).  It has been found that analyzing snow cover 

area (SCA) plays an extensive role in managing water resources; while studying the snowmelt can help us 

assess water requirements for agricultural & other societal needs (Tekeli, Sönmez, & Erdi, 2016; National 

Snow and Ice Data Center [NSIDC], 2017). Apart from hydrological aspects, detailed snow cover maps 

are also utilized in weather forecasting and military operations (Miller, Lee, & Fennimore, 2005). Thus, 

studying the spatial extent of snow has wide applications. 

 

Such spatial understanding has historically been made through snow surveys, which are mainly point 

measurements, and thus do not provide good estimates of the areal cover. Furthermore, as snow is 

present in a mountainous (rough/undulating) terrain, the measurement excursions can easily translate into 

becoming quite a labor intensive, expensive and hazardous activity (Man, Guo, Liu, & Dong, 2014). This 

is where Remote Sensing comes into the picture. The large extent, and high spatial resolution, captured by 

a remotely sensed imagery can help us make accurate predictions of characteristics like snow cover area 

and snow water equivalent. 

  

Optical remote sensing of snow brings its own challenges. While studies like Rango (1993) show that the 

Visible/Near-Infrared (VNIR) bands are quite helpful in capturing the albedo and areal extent of snow 

(Table 1), Nikam et al. (2017) mention that as clouds have similar reflectance values in the VNIR range, 

they become quite a hindrance while mapping snow in this spectral range. Miller et al. (2005) have further 

noted that the shortwave infrared (SWIR) band (1.6 to 2.2 μm) is a better alternative to discriminate 

between clouds and snow. The lower reflectance of snow, as compared to clouds, in the SWIR range can 

help in SCA estimation. The spectral difference between snow and clouds in the SWIR region is further 

portrayed in Figures 1 and 2. 

 

Table 1: Sensor responses to various snow properties (Rango, 1993) 
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Figure 1: Reflectance curves of water cloud, ice cloud and snow. While both snow and clouds have similar 
reflectance values in the lower wavelength regions, the gap in their reflectance values increases as we move towards 
higher wavelengths. The SWIR region (marked in red) is where snow exhibits near-zero reflectance values, whereas 
clouds exhibit high reflectance values, in sharp contrast. (Gao, Han, Tsay, & Larsen, 1998) 

 

 

  
Figure 2: A True Colour Image (on the left) of the Swiss Alps, taken by Sentinel-2A. It is very hard to detect clouds 
in such an image. In the image on the right, the SWIR channel of the same satellite helps in highlighting clouds with 
bright pixels 
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The characteristics of SWIR have been widely used by satellite sensors like Linear Imaging Self Scanner 

(LISS) – III and Advanced Wide Field Sensor (AWiFS) for snow mapping purposes (Birajdar, 

Venkataraman, & Samant, 2016; Kulkarni, Singh, Mathur, & Mishra, 2006; Srinivasulu & Kulkarni, 2004). 

But, their spatial resolution is low (23.5m and 56m of LISS-III and AWiFS, respectively). Also, the current 

cloud masking software available for LISS-III is rudimentary in nature (National Remote Sensing Centre 

[NRSC], 2017). Moreover, satellites such as Landsat and Sentinel provide cloud masks in their Level-2 

products, which is missing for any Indian Remote Sensing product. 

 
Bühler, Meier, & Ginzler (2015) report that cloud-free Near-Infrared (NIR) images, of high spatial 

resolution, have potential in measuring the small scale spatial variability of snow properties. Thus, in order 

to achieve an effective cloud mask at a higher spatial resolution, we can incorporate the characteristics of 

the LISS-IV sensor, present on the same satellite as the two sensors mentioned earlier. All the three 

sensors (AWiFS, LISS-III and LISS-IV) are available on Resourcesat-2 and work in the same VNIR range. 

LISS-IV has the highest spatial resolution (5.8m), whereas AWiFS and LISS-III carry an additional SWIR 

band. Moreover, these sensors are nadir looking and hence capture a geographic area at the same time.  

 

Our study aims to combine the characteristics of LISS-III and LISS-IV, in order to obtain a high 

resolution robust cloud mask over snow regions for Resourcesat-2 satellite. In order to implement this, we 

propose to utilize neural networks for image classification, but first, in the next section, we take a glimpse 

into traditional techniques of cloud detection. 

1.2. Feature Detection 

 

Detecting clouds in optical satellite images has traditionally been carried out through thresholding 

techniques, such as those used by Lyapustin, Wang, & Frey (2008) and Z. Zhu & Woodcock (2012). These 

techniques majorly involve arithmetic computations over a variety of bands, followed by taking thresholds 

like calculating Normalized Difference Cloud Index (NDCI), or a Normalized Difference Snow Index 

(NDSI) (Tang et al., 2010). Although pixel-wise thresholding can be fast, and computationally less 

intensive, these techniques majorly remain ineffective when detecting features in a spatio-contextual sense 

(Guirado, Tabik, Alcaraz-Segura, Cabello, & Herrera, 2017).  

 

Clouds can be of various types, depending upon their thickness (such as thick clouds, cirrus clouds), and 

all these types can have varying spectral reflectance values. Also, their texture and shape can vary 

depending on the time of the day, and wind speed. Moreover, the spectral signatures of clouds can be 

easily confused with other highly reflective land surfaces such as concrete, snow or ice (X. Zhu & Helmer, 

2018). Thus clouds form complex feature sets which can be extremely tough to detect using primitive 

thresholding techniques.  

 

There has been growing interest in using Artificial Neural Networks, and specifically Convolutional 

Neural Networks, which can perform efficient feature detection. The higher computational complexity 

that they involve is often ignored to achieve accurate results over large datasets. This has led to 

exponential work on applying neural networks for the purpose of cloud detection, such as those by 

Mateo-García, Gómez-Chova, & Camps-Valls (2017). We further discuss about such Artificial Neural 

Networks in the next section. 
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1.3. Artificial Neural Networks 

 

Artificial Neural Networks (ANNs) are computing frameworks which mimic the functioning of a 

biological brain. These frameworks can learn to perform tasks similar to how a human or an animal 

performs. The framework tries to map a set of inputs to a given set of outputs and tries to come up with 

predictions which are as close to the target set as possible. Similar to any biological neural network, this 

learning, or training, takes place iteratively, and the network tries to come closer to the desired output with 

each iteration.  

 

For creating image segments, a network is fed with an image and a corresponding set of pre-labeled pixels. 

Once the network learns attributes such as texture, tone and spatial correlation of the labeled pixels, it can 

classify the rest of the unlabelled pixels with this information. Such a trained network can then be used on 

an entirely new image, in order to classify it. 

 

Apart from object detection and image classification, these frameworks also help in other complex tasks 

such as speech recognition, stock predictions etc. With silicon chips becoming faster and cheaper, these 

frameworks have significantly helped in extracting information from vast amounts of datasets, especially 

those being produced by remote sensing products nowadays. 

 

The basic functioning of an artificial neural network, and its iterative learning process, is explained in brief 

in the following subsections. 

 

1.3.1. The Perceptron 

The most fundamental unit of an artificial neural network is the perceptron. It is also referred to as a node, 

or a neuron. It takes a weighted sum of inputs and applies a non-linear activation function to it. The 

weighted sum can also have an additional constant, a biased term, added to it. This is implemented by 

introducing an extra input having a constant value of 1 where the weight on this input is called a bias.  

 

The green oval in Figure 3 highlights the perceptron. It is made up of two functions denoted by circles 

inside. 

 

 
Figure 3: A perceptron, shown in green, taking a weighted sum of inputs {x1, x2 … xm} along with w0 as bias and 
applying an activation function to the entire sum (Raschka, 2015) 
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The output of this perceptron is given in Equation 1, where ‘f’ is a non-linear activation function, and the 

summation is performed over ‘m’ inputs. The activation function is generally of the likes of a sigmoid, or a 

hyperbolic tangent function. 

 

 

1.3.2. Multi Layer Perceptron 

Any number of such perceptrons can be used with a varied set of weights. Figure 4 shows a simple neural 

network with two perceptrons sharing three inputs. 

 

 
Figure 4: A simple network having two perceptrons. Every input-output connection will have a unique weight 
associated with it (“Perceptron,” 2014)  

These perceptrons can be stacked into multiple layers to build a denser, and a computationally more 

intensive, network. Such ANNs are referred to as Multi Layer Perceptrons (MLP). Figure 5 shows a three-

layered neural network. The layer between the input and output layers is referred to as the hidden layer.  

 
  

 
Figure 5: An Artificial Neural Network containing input nodes (xi), mapped to output nodes (zk) via intermediate 
hidden nodes (yj). Every connection between two stages of nodes (a neural connection) has a certain ‘weight’ (w) 
associated with it, which is initialized randomly at first. After each forward pass of the input data, the predicted 
outputs zk are compared with actual target outputs ok. The error between this predicted set and the target set of 

outputs is passed back to the network so that the weights can be modified to decrease the error. (Templeton, 2015) 

𝑦 = 𝑓 (∑ 𝑤𝑖𝑥𝑖

𝑚

𝑖=1

+ 𝑤0) 
(1) 
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In Figure 5, weight wij acts upon the ith input and the jth node of the hidden layer. Similarly, weight wjk acts 

upon the jth node of the hidden layer and the kth output. Assuming an unbiased network, and the same 

activation function at each layer, the hidden node will produce yj and the output node will produce zk as 

given in Equations 2 and 3 respectively. 

 

 

𝑧𝑘 =  𝑓 (∑ 𝑤𝑗𝑘 ∙ 𝑦𝑗

𝑗

) 

 

(3) 

1.3.3. Backpropagation and Gradient Descent 

 

The primary purpose of a neural network is to find an optimum combination of weights, which can 

translate a given set of input data to a set of output which is as close to the desired (target) set of outputs 

as possible. Hence, for a given set of weights, the performance of such a network can be judged by the 

total error it produces between the predicted and the desired sets of outputs (Rumelhart, Hinton, & 

Williams, 1986). This total error is defined as in Equation 4. Here m is the number of samples with which 

the network is trained. 

 

𝐸 =  
1

2
∑(𝑧𝑘 − 𝑜𝑘)2

𝑚

𝑘=1

 
(4) 

 

In order to reduce this error, we need to find a set of weights which can minimize it. As zk is an outcome 

of every weight wij and wjk, we can use partial derivative of the error with respect to every weight. We can 

update the weight with the help of a simple gradient descent (Rumelhart et al., 1986) given in Equation 5. 

Here ‘𝜂’ is known as the learning rate of the network. 

 

∆𝑤 =  − 𝜂
𝜕𝐸

𝜕𝑤
 (5) 

 

This automatic weight modification (the training) is carried out till the error reaches a minimum. Literature 

suggests that any task performed by such neural networks, especially those related to semantic 

segmentation, can  lead to high levels of accuracy; like the one used by Shelhamer, Long, & Darrell (2017) 

 

1.4. Research Prospect 

 

This research aims to use the VNIR information of a high resolution sensor along with the SWIR 

information of a medium resolution sensor, in order to segregate clouds from snow effectively. The 

novelty of this work is to build a robust neural network architecture especially designed for this purpose. 

The resultant cloud mask should be effective enough on a variety of snow covered regions. Moreover, 

such a cloud mask should be applicable for high resolution Indian Remote Sensing product, which has 

been lacking till now. The objectives to be achieved, and the corresponding questions to be explored and 

answered, are as follows. 

𝑦𝑗 =  𝑓 (∑ 𝑤𝑖𝑗 ∙ 𝑥𝑖

𝑖

) (2) 
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1.4.1. Research Objectives 

 

1. To utilise the SWIR information from LISS-III and fuse it with the corresponding LISS-IV image 

using a novel neural network architecture that can generate a high resolution classified map of 

clouds and snow. 

 

2. To analyze if the requirement of the additional SWIR band was beneficial or not 

 

3. To compare the performance of the proposed architecture with more prominent cloud mask 

solutions involving traditional techniques 
 

4. To compute the SCA in a given image of a snow region, and calculate the percentage of clouds 

present. 

 

1.4.2. Research Questions 

The questions to be addressed with respect to the above objectives are as follows. 

 

Objective 1: 

a) What is the classification accuracy obtained by the proposed network? 

b) How can the network be improved to increase the accuracy? 

 

Objective 2: 

a) Was there any advantage in introducing and fusing a Shortwave Infrared band? 

 

Objective 3: 

b) Does the proposed network perform better than traditional techniques? 

c) Are the extensive computations involved in the proposed network justified? 

 

1.4.3. Thesis Structure 

 

This chapter was to set a background of the research prospect, highlight the motivation, the objectives 

and give a glimpse of the methodology that would be adopted. Chapter 2 gives a background on a special 

type of ANN, and explains why it would be beneficial for our problem statement. This chapter also gives 

an overview of some of the prominent cloud masking utilities available as of now. Furthermore, Chapter 

3 explains the characteristics inherent in our network, while Chapter 4 guides through the process of 

building an optimum architecture. The dataset used in this study is explained in Chapter 5, and Chapter 6 

is where we observe the network’s performance and make a comparative analysis. Finally, we conclude the 

thesis in Chapter 7, highlighting the scope of further research. 
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2. BACKGROUND 

This chapter discusses some of the current state-of-the-art cloud mask utilities available with the remote 

sensing community, and then subsequently gives an idea about Convolutional Neural Networks, which 

form the backbone of our cloud detection algorithm. 

2.1. Cloud Mask Utilities 

 

The inspiration behind this work was the Fmask algorithm created by Z. Zhu & Woodcock (2012). The 

algorithm builds over the traditional ACCA algorithm (Irish, Barker, Goward, & Arvidson, 2006) to detect 

clouds, cloud shadows along with semi-transparent clouds and their shadows on Landsat imagery. This 

algorithm was found to be very effective on a large set of freely available Landsat images and thus was an 

asset to the remote sensing community. Usability of this algorithm led to its further improvement and 

application on Sentinel-2 data as well (Z. Zhu, Wang, & Woodcock, 2015). The algorithm detects clouds 

by a series of spectral tests to generate a cloud probability mask, while it uses thresholds on NDSI and 

Brightness Temperature to create a snow layer as well.  

 

The algorithm detects cloud shadows by incorporating a couple of geometry based techniques, which can 

match a shadow region to that of the nearest cloud object. To calculate this, the algorithm heavily depends 

upon the satellite’s metadata, apart from the actual images. The metadata carries information about the 

sensor’s view angle, solar zenith angle and solar azimuth angle, which are required for the aforementioned 

geometrical techniques. Altogether, Fmask applies a scene based threshold to all the pixels in a 

neighbourhood, and classifies the pixels into clouds, cloud shadows, and snow; in that priority. It fails to 

understand the spectral-spatial difference among the different class objects on its own, as it highly 

depends on the threshold values which have been applied. 

 

Although there exists a cloud mask utility for AWiFS and LISS-III products (National Remote Sensing 

Centre, 2017), this utility is not built for high resolution LISS-IV images. Moreover, it uses spectral 

attributes to only detect clouds and cloud shadows from the input image. Like the Fmask software 

described above, it also requires separate meta files to perform the classification.  

 

Thus, as these utilities are sensor specific, heavily dependent on the associated metadata files, and majorly 

use spectral thresholds for cloud determination, there lies a scope to build more flexible and robust 

algorithms which can segregate between snow and cloud features in a more spatio-contextual sense. 

Convolutional Neural Networks, a variation of Artificial Neural Networks, help in such a feature detection 

scenario. The next section discusses how such networks operate. 

2.2. Convolutional Neural Networks 

 

A Convolutional Neural Network (also called as a CNN or a ConvNet) is a special type of Neural 

Network where the hidden neurons ‘convolve’. Each neuron in the hidden layer of a ConvNet is at a time 

exposed to only a small region of the previous layer. It performs the weighted sum, followed by 

activations, for this small region, and then slides, or convolves, onto a neighbouring region using the same 

set of weights. This procedure is carried out till the entire previous layer (an image, in our case) has been 

covered by this neuron.  
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The procedure described above is unlike the one followed in a regular neural network, where the hidden 

neuron is ‘fully connected’ to all the neurons of the previous layer. The difference in neural connections 

between the network structures is highlighted in Figure 6. We can see that the number of weights which 

need to be learnt, with respect to every hidden neuron, in a CNN is lesser as compared to a regular neural 

net. This greatly reduces the computations required over an image. 

 

 

 
Figure 6: Difference in neural connections between (a) a regular neural net, where the hidden neuron is connected to 
all the pixels of the previous layer i.e. it is fully connected; and (b) a Convolutional Neural Network where the hidden 
neuron is at a time connected to only a small region of the previous layer. The different colours depict different 
positions of that neuron, where the weights used remain the same (Santos, 2019) 

 

The weights of this convolving neuron are also often visualized as a two dimensional matrix, called a 

kernel, or a filter. This kernel performs a weighted sum at a position, and generates a pixel for the next 

layer. It then slides to cover the rest of the input image and generates a feature map as the next layer. The 

local region to which a filter is exposed to is known as the ‘receptive field’. This is better portrayed in 

Figure 7 and 8.  
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Figure 7: A 3x3 kernel (a), which will convolve upon a 5x5 input image (b). Different shades of green 
represent different DN values.  
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Figure 8: The kernel acting upon the input image. Light blue is the receptive field, whereas the pixel formed after the 
weighted sum, is in blue (“Convolutional Neural Networks - Basics,” 2017) 

 

2.2.1. Layers in a CNN 

 

Apart from the convolutional layer, a CNN is majorly made up of activation layers and pooling layers. 

Depending on the need, a network can also be ‘regularized’ with certain layers. 

 

2.2.1.1. Activation Layer 

The activation layer applies a non-linear function to the previous layer. The non-linearity is maintained so 

that the output from this layer is differentiable, and we can obtain a gradient from it. Different types of 

activation functions are given in Equations 6-10: 

 
1. Sigmoid Function: 

 

𝑦 =  
1

1 + 𝑒−𝑥
 (6) 

 

 

2. Hyperbolic Tangent:  

 

𝑦 = tanh(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (7) 

 

 

3. Rectified Linear Unit (ReLU): 

 

𝑦 = {
𝑥, 𝑥 ≥ 0 
0, 𝑥 < 0

 
(8) 
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Using ReLU, compared to other conventional non-linear functions such as the hyperbolic tangent, 

decreases training time considerably (X. X. Zhu et al., 2017). 

 
4. Leaky ReLU: 

𝑦 = 𝑓(𝑥) = {
𝑥, 𝑥 ≥ 0 

𝑎𝑥, 𝑥 < 0
 

(9) 

 

Here ‘a’ is a positive constant, generally less than 1 

 

5. Softmax: 

𝑦𝑖 = 𝑓(𝑥𝑖) =  
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑘
𝑗=1

 
 

(10) 

 

This layer is generally used at the end of the network, for classification. 𝑦𝑖 represents the activation for the 

ith class out of a total of ‘k’ classes. The output channels in the previous layer should be equal to the 

number of classes required, k. 

 

2.2.1.2. Pooling Layer 

 

This layer is used to select a specific activation from a window. It can be of two types: Max pooling, and 

average pooling. For a given window size, max pooling will give the maximum activation as the output, 

whereas in average pooling, the mean of all activations will be given as output (Figure 9). 

 

 

 

Figure 9: Pooling operation being performed on an image (on the left). A window of 2×2 (shown in grey area) is 
pooled at a time, to give the output on the right. 

 

2.2.1.3. Regularization Layer 

 

Regularization is a process to prevent overfitting of the training data. Apart from techniques such as 

weight decay, and early stopping, we can incorporate certain types of layer which inhibit overfitting in 

neural networks. Such layers are: 

 
1. Dropout: 

Dropout was introduced as a regularizer in Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 

2014. The authors introduced a model where the units are present with a probability ‘p’. They hypothesize 
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that this model prevents units from getting adapted to each other, and therefore also reduces the effect of 

noise present in the training data. By using this approach, the test accuracy increases for large datasets. 

 

 
2. Batch Normalization: 

The data over which a neural network needs to be trained (called a batch), is not fed as a whole. It is fed in 

mini-batches, and the training, through gradient descent, takes place one batch at a time. A Batch 

Normalization (BN) layer (Ioffe & Szegedy, 2015) first normalizes the output of the previous layer, using 

the mean and standard deviation of the particular batch, and then linearizes all the outputs with the help 

of learnable parameters γ and β. This approach reduces the need for dropout.  

In Equation 11, 𝑥𝑖 is the ith output from the previous layer which has been normalized with respect to the 

batch mean and batch standard deviation to produce 𝑥̂𝑖. 

 

𝑦𝑖 = 𝐵𝑁𝛾,𝛽(𝑥𝑖) = 𝛾𝑥̂𝑖 +  𝛽 (11) 

2.2.2. CNNs as Feature Detectors 

 

CNNs provide hierarchical feature learning. This means that the initial layers of a network extract basic 

features such as edges first, and the activations from these layers are pooled to form more complex 

features (such as objects) in the deeper layers. The fact that the filters focus on only one small region at a 

time, a convolutional layer helps in understanding the local relationship between pixels. It then auto-

correlates this information to form edges, or objects, depending upon the depth of the layer. 

Comparatively, a fully connected layer in a regular MLP, looks at the entire image, and tries to understand 

a more global relationship among pixels. Hence CNNs become better feature detectors than regular MLPs 

(Ben Driss, Soua, Kachouri, & Akil, 2017).  

 

Although research in neural networks has been taking place since the 1980s, one of the pioneering 

convolutional network was LeNet-5 in 1998. Since 2010, ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) started taking place annually, and varied research teams across the academia and 

industry forayed into developing their own network topologies on the ImageNet database. With AlexNet 

(Krizhevsky, Sutskever, & Hinton, 2012) winning the 2012 ILSVRC, and matrix multiplications becoming 

easier with GPUs, there has been extensive reliability on deep, convolutional networks for solving image 

classification problems. This eventually led to the development of networks such as GoogLeNet, 

VGGNet and ResNet. Libraries and toolboxes, such as Caffe, TensorFlow and MatConvNet helped 

implement these networks. 

 

The advantage of this research boom has been that we can use such networks (pre-trained on large 

datasets), fine tune and deploy them for the problem, and data of our choice. We now see extensive use of 

such deep learning, computer vision frameworks for varied domains such as medical image processing, 

and remotely sensed images. 

 

2.2.3. CNNs for Remote Sensing and Cloud Detection 

 

Over the past decades, remotely sensed images have largely become open sourced, contributing to 

extensive research on automated image classification techniques on such images. From k-means clustering, 
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to object-based analysis, researchers have now started applying neural nets to classify remotely sensed 

images. Such automated, machine learning methods have made large scale data classification easier, 

compared to traditional methods of spectral-spatial classification (Maggiori, Tarabalka, Charpiat, & Alliez, 

2017).  

 

Along with being applied for SAR data (Cozzolino, Martino, Poggi, & Verdoliva, 2017; Geng, Wang, Fan, 

& Ma, 2017; Li et al., 2017; Mullissa, Persello, & Tolpekin, 2018), CNNs have shown high classification 

result for LiDAR (Savchenkov, Davis, & Zhao, 2017; Yang et al., 2017) and especially for High Resolution 

optical imagery (Bergado, Persello, & Stein, 2018; Wiratama, Lee, Park, & Sim, 2018; Zhang, Niu, Dou, & 

Xia, 2017). With this as a motivation, we further explored how deep convolutional networks could be 

applied for cloud detection purposes. 

 

Studies such as Hughes & Hayes (2014) have used exhaustive amounts of training data to create deep 

neural nets for clouds, cloud shadows, and snow detection, but these networks are not convolutional in 

nature, and require post-processing for snow-cloud correction. Other studies like Le Goff, Tourneret, 

Wendt, Ortner, & Spigai, 2017 and X. Zhu & Helmer, 2018 have incorporated deep neural nets for cloud 

detection. But these are either not developed for snow covered areas, or most of them fail to distinguish 

snow and cloud pixels efficiently. Mohajerani, Krammer, & Saeedi (2018) have also developed a CNN for 

cloud detection, but then again use a separate snow/ice removal framework in the pre-processing stage. 

Zhan et al., (2017) have further developed a deep convolutional network for distinguishing clouds from 

snow which majorly uses a multiscale prediction strategy, combining low-level feature maps with high 

level feature maps. But their intermediate feature maps are of varying spatial resolutions, and they 

interpolate the maps separately before combining. We propose that similar networks can become robust 

on snow covered regions by incorporating a SWIR channel on the input dataset, and resampling it within 

the convolutional architecture. Thus, our major study will focus on how we can build an effective 

convolutional network that works on a VNIR-SWIR composite. 
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3. NETWORK CHARACTERISTICS 

This chapter highlights the traits of the convolutional neural networks adopted for the study. 

3.1. Filter Parameters 

The network is made up of a variety of hidden layers. Each neuron of a convolutional layer is represented 

as a stack of filters sliding over an input stack of image channels. This neuron produces a single, unique 

band as a feature map (Figure 10). Thus, the number of neurons in a convolutional layer also defines the 

number of channels (feature maps) that the layer will produce as its output. Each filter stack is given by 

the dimensions D×F×F, where F is the width of a square filter, and D is the depth of the filter stack, 

which is the same as the number of input channels to the layer. 

 

 

 
Figure 10: A filter stack corresponding to a convolving neuron, producing a feature map. ‘D’ filters, each having 
dimensions of F×F, have unique trainable weights. 

 

To put this together, we represent a convolutional layer as D×F×F×K, where K is the number of neurons, 

representing the number of output channels that it produces. The number of pixels by which a filter slides 

across a two-dimensional image matrix is called the ‘stride’, S. Horizontal and vertical stride is kept the 

same in this study. As the filter stack working on an F×F receptive field produces just one pixel as an 

output, the final feature map produced is smaller in dimension, compared to the input feature. In order to 

keep the dimensions of the input and output feature maps the same, we sometimes add additional zero-

valued rows and columns as the outskirts to the image matrix. This phenomenon is called padding. For 

our study, the number of such rows and columns added are the same, denoted by P. 

 

For an input image band of dimensions H×W, a convolutional layer produces an output feature map of 

dimensions H’×W’ given in Equation 12. 

 

𝐻′ =  
𝐻 − 𝐹 + 2𝑃

𝑆
+ 1 

 

(12a) 

 

𝑊′ =  
𝑊 − 𝐹 + 2𝑃

𝑆
+ 1 

 

(12b) 
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In some convolutional layers, we also apply a dilation factor to the filter. This increases the spatial support 

of the filter, without increasing the number of trainable weights per layer (Persello & Stein, 2017). The 

dilation is achieved by inserting zeros between filter elements, as shown in Figure 11.  

 

     
Figure 11: Filters with increasing spatial support. From left to right - filters having a dilation factor of 1, 2 and 3 
respectively. Light blue region depicts the receptive field, whereas weights are applied only on the dark blue pixels. 
Rest of the pixels on the receptive field have a weight value 0 associated with them.  

A dilation factor of d applied to F × F weights would resize the filter to a dimension F’ given in Equation 

13. When dilation is used, F’ will replace F in Equation 12.  

 

𝐹′ = 𝑑(𝐹 − 1) + 1 (13) 

 

For simplicity, we train the network on a square input image, of dimension M, i.e. H = W = M. By 

keeping the stride for each convolution as 1 pixel, we use an appropriate combination of F, P, and d to 

keep the dimensions of input-output feature maps the same at every layer. This is done so that we can 

achieve pixel-wise classification in a fully convolutional sense (Shelhamer et al., 2017). Each convolutional 

layer is then followed by a Batch Normalization layer and a leaky ReLU activation function.  

3.2. Merging and Pooling 

 

During our experiments, a max pooling layer is also applied. It carries a window of size Sp×Sp pixels, and 

moves with a stride of Sp pixels. We do not use padding in these layers. By keeping P = 0 and F = S = Sp 

in Equation 12, we see that these layers can downsample an input feature map by a factor Sp.  

 

A SWIR band of an optical satellite data might not be in the same resolution as the other VNIR bands. In 

order to use these bands for cloud cover analysis, we need to fuse, or merge them together by 

concatenation. This requires all bands to be in the same dimensions. To carry this out, we resample the 

bands either by max pooling or transposed convolutions (explained in the next section), which is then 

followed by a concatenating operation. The resampling and the concatenation is incorporated within the 

CNN architecture, and the network is trained in an end-to-end manner. This approach has shown higher 

accuracy as compared to traditional methods where resampling and fusion precede and are performed 

separately from the CNN training (Bergado et al., 2018). 

 

In order to achieve classification maps in the same dimensions as the input, high resolution VNIR images, 

we have adopted the fully convolutional approach for semantic segmentation, as proposed by Shelhamer  

et al., 2017. As our CNN can reduce the dimensions of an intermediate feature map by a factor of Sp, or it 

might consist of a band in a lower dimension (such as SWIR), we use transposed convolutions which 

bring all bands and feature maps to a common, higher dimension. 
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3.3. Transposed Convolutions 

 

Transposed convolutions are reverse operations compared to a regular, forward convolution. This means 

that, from the output feature of a regular convolution, a transposed convolution can help achieve a feature 

map which is of the same dimensions as the input of the regular convolution. Thus, for a forward 

convolution decreasing the dimensions of an input feature map by a factor S, a transposed convolution 

will increase the dimensions of a given feature by the factor S. The utility of such an operation is that it can 

help decode compressed feature maps, or help in upsampling any given feature channel.  

 

To maintain the same connectivity pattern as its corresponding regular convolution, a transposed 

convolution often involves adding multiple rows and columns of zeros to a feature map. This acts as a 

disadvantage because it involves a lot of unnecessary zero-valued multiplications (Dumoulin & Visin, 

2016). 

 

A transposed convolutional layer having an input feature of dimensions M×M, will produce an output 

feature map of dimensions M’×M’, given by Equation 14. Here, p is called the cropping factor, and all 

other terms have the same meaning as used earlier. 

 

𝑀′ = 𝑆(𝑀 − 1) + 𝐹 − 2𝑝 (14) 

3.4. Learning Algorithm 

 

The network is trained by minimizing a cross entropy loss function. The objective of the training is to 

reduce the error computed by this (loss) function, for a weight vector w used by the network. This loss 

function is given in Equation 15.  

𝐸𝑁(𝒘) =  − ∑ 𝒛𝑖 ∙ log(𝒚𝑖)

𝑁

𝑖

 

 

(15) 

Here, N are the number of training samples (pixels) in a mini-batch, z and y are one-dimensional vectors 

having size equal to the number of classes in the input image. z is made up of zeroes, except at the index 

corresponding to the pixel’s labeled class, which has a value of one. y is made up of normalized values 

coming from softmax output of the final classification layer (Equation 10 in Section 2.1.1). For each 

iteration of a mini-batch, the weights are modified in the direction of decreasing error, as given by 

Equation 5 in Section 1.2.3. The weight modification in every new sweep (through a mini-batch) can be 

accelerated if we incorporate the modified weights from the previous sweep (Rumelhart et al., 1986). This 

is shown in Equation 16, where t represents the tth sweep through a mini-batch, α is the momentum and 𝜂 

is the learning rate. Both α and 𝜂 range between 0 and 1. Such gradient descent methods have shown 

better generalization than adaptive methods such as Adam and AdaGrad (Wilson, Roelofs, Stern, Srebro, 

& Recht, 2018). 

∆𝒘𝑡 =  − 𝜂
𝜕𝐸𝑁(𝒘)

𝜕𝒘𝑡
+  𝛼∆𝒘𝑡−1 (16) 

 

In order to avoid overfitting, the loss function of Equation 15 is penalized by a squared L2 norm of the 

weight vector w. The contribution of this norm is controlled by a parameter λ, known as weight decay. 

The modified loss function is given as QN(w) in Equation 17. 

 

𝑄𝑁(𝒘) =  𝐸𝑁(𝒘) +  𝜆 ‖𝒘‖2
2 (17) 
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4. METHODOLOGY 

This chapter first talks about a general configuration that we used to build our network. The configuration 

was inspired by the FuseNet architecture proposed by Bergado et al., (2018). The chapter further talks 

about a baseline architecture that we started off with. Subsequently, in Section 4.4, it shows how the 

parameters of the baseline architecture were fine-tuned. This was done in order to achieve optimum 

performance measures, like those explained in Section 4.5. Finally, in order to understand the relevance of 

SWIR, and to highlight the usability of CNNs over traditional thresholding algorithms, Section 4.6 

explains how the network models were modified in this regard. 

4.1. General Configuration 

 

A general configuration of the network models experimented with is shown in Figure 12. A Batch 

Normalization layer followed every convolutional and transposed convolutional layer. The convolutional 

layers further had a leaky ReLU (with a=0.1) activation function. The activation used towards the end of 

the Concatenated Feature Block (CFB) was a softmax function, which could segment the data into four 

classes. This was done because we wanted our data to be segmented into Clouds, Snow, Shadows and Rest 

of the region. Moreover, all the convolutional layers were designed such that the output feature maps of a 

layer were of the same dimensions as the layer’s input feature maps. 

 

The output of the softmax activation (the predicted map of Figure 12), and a set of manually (visually) 

labeled reference pixels were then supplied to a cross entropy loss function, to calculate the error between 

predicted and the true (reference) class of every pixel. The feature blocks were fed with (or trained by) 

image patches, as explained in the next section.  

 

 
 

Figure 12: General CNN structure for cloud detection adopted from Bergado et al. (2018) 
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4.2. Training Setup 

 

Initially, all the available dataset was normalized. To train our neural networks, 2000 ‘patches’ were 

randomly chosen across each of the training tiles (for tiles and dataset, refer Chapter 5). These patches 

were fed in a mini-batch size of 32 i.e., 32 patches per iteration (forward and backward pass) and a total of 

250 such iterations to make one ‘epoch’. For every M×M patch selected from the SWIR band, 

corresponding 4M×4M patches were selected from the three VNIR bands, and fed to the SWIR Feature 

Block (SFB) and VNIR Feature Block (VFB), respectively (Figure 13). As our networks were built to make 

predictions at the higher (VNIR) resolution, a corresponding 4M×4M patch was also selected from the 

visually labeled reference map (Chapter 5). This helped in calculating the loss function, and hence in 

training the networks. As these patches were chosen randomly, it is possible that they overlapped amongst 

themselves and incorporated a sense of redundant learning of contextual information.   

 

Furthermore, to assess the training, 500 patches were randomly chosen across the same tiles for validation 

purposes. The loss function and its convergence over the validation set was used to analyze the networks’ 

robustness. We trained the networks for 200 epochs initially, and then gradually reduced the number of 

epochs to 70, and then 40. This was because the loss function had converged significantly way before the 

40th epoch, and there was no further drop in its value. The learning rate was logarithmically reduced 

between 10-6 and 10-7, with a step size equal to the number of epochs. The weight decay and momentum 

were kept as 5×10-4 and 0.9, respectively. The filter weights had a normalized initialization (Glorot & 

Bengio, 2010) and all the experiments were carried out using the MatConvNet library version 1.0-beta-23, 

compiled with CUDA 10.0 and cuDNN 7.4. 

4.3. Baseline Architecture 

 

A baseline architecture was developed, called Fuse1, so that the fusion takes place at the lower (SWIR) 

resolution. The VFB was made by operating two layers of convolutions on the input VNIR image. The 

leaky ReLUs in the VFB were followed by a max pooling layer each. Two layers of max pool were 

introduced to bring the VFB at the resolution of SWIR. Parallelly, the SWIR band was convolved with 

1×1 convolutions to make the SFB. Both blocks were concatenated at the same (lower) resolution. The 

CFB further involved two layers of convolutions, with different dilation factors and was finally upsampled 

using two layers of transposed convolutions. This was done so that the predictions could be made at the 

higher (VNIR) resolution. Figure 13 shows how the feature maps transition in the baseline architecture, 

whereas Table 2 specifies the intricacies of the CNN layers used. 

 
Table 2: CNN parameters for the baseline architecture (Fuse1). The VFB, SFB, and CFB correspond to VNIR 
Feature Block, SWIR Feature Block and the Concatenated Feature Block, respectively 

VFB SFB CFB 

Conv9-1-8 

maxpool 

Conv9-1-16 

Maxpool 

Conv1-16 

Conv5-1-64 

Conv5-2-64 

TConv4-2-1-64 

TConv4-2-1-64 

Conv1-1-4 

 

In Table 2, every convolutional layer is represented as Conv<filter width>-<dilation factor>-<number of 

filters>. Example: a Conv5-2-64 layer means 64 filters of size 5×5, with a dilation factor of 2. All 

convolutional filters move with a stride of 1. Appropriate padding was applied to keep the dimensions of 
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the input and output feature maps the same. Max pooling layers are represented as maxpool, all of them 

having a 2×2 window, moving with a stride of 2. Transposed Convolutions are represented as 

TConv<filter width>-<stride or upsampling factor>-<cropping factor>-<number of filters>. The filter 

width, the upsampling factor (or stride) and the cropping factor are related as in Equation (14). As we 

wanted our network to semantically segment the data into four classes, the last convolutional layer had 

four channel outputs. 

 

 
Figure 13: Features transitioning in the baseline architecture. Features are represented as A, B which means B bands 
of size A×A. 

 

4.4. Experiments on the Baseline Architecture 

 

Initially, we kept the patch size (value of M, in Section 4.2) as 32 pixels. We then fine-tuned our model to 

achieve higher classification accuracy in a manner listed below.  

  

1. We first made a comparative study on the two types of pooling. This was to observe the effect of 

pooling on VNIR feature maps. All the max pooling layers in the VFB were changed to average 

pooling layers. We then experimented downsampling with evenly-strided convolutional layers, to 

understand if the learnable filter weights bring any advantage or not. 

 

2. We then experimented with multiple fusion strategies. Instead of downsampling VNIR and 

concatenating at the lower resolution, we concatenate at the higher resolution. This was done by 

upsampling the baseline SFB with two layers of TConv4-2-1-16. This helped in doubling the 

SWIR resolution twice. In this model, the TConv layers and the maxpool layers in the original 

CFB and VFB, respectively, were discontinued with. Table 3 showcases the structure of this 

model, called Fuse2. 

 
Table 3: CNN structure for Fuse2 

VFB SFB CFB 

Conv9-1-8 

Conv9-1-16 

Conv1-1-16 

TConv4-2-1-16 

TConv4-2-1-16 

Conv5-1-64 

Conv5-2-64 

Conv1-1-4 



 

20 

 

Further ahead, we designed two more models called Fuse6 and Fuse7. Fuse6 had the same SFB 

and CFB as Fuse2 (Table 3), where the SFB was concatenated with the original VNIR bands 

directly. In Fuse7, the VFB of Fuse1 was concatenated with the original SWIR band and the CFB 

remained the same. 

 

3. Next up, we used the baseline architecture of Fuse1, and modified the filter sizes in the VFB. We 

replaced the 9×9 filters with filters of size 3×3, 5×5, 7×7, 11×11 and 13×13. 
 

4. Finally, the effect of changing the patch size was also studied, by modifying the value of M to 20, 

50 and then 70. 

 

Although the network was prepared to predict four classes, we majorly focussed on attaining high 

accuracies (as explained in the next section) for Clouds and Snow. Hence, we refer to our optimum 

architecture as CloudSNet. 

4.5. Performance Metrics 

 

We analyzed all our experimental network models of Section 4.4, based on a combination of metrics. 

These were as follows: 

 

Overall Accuracy 

Overall Accuracy (OA) is the total number of correctly predicted pixels, divided by the total number of 

labeled reference pixels. We compute the overall accuracy on all the image tiles. 

 

Producer’s Accuracy 

Producer’s Accuracy (PA) is the number of pixels correctly predicted for a class divided by the total 

number of reference pixels for that class.  

 

User’s Accuracy 

User’s Accuracy (UA) is the number of pixels correctly predicted for a class divided by the total number of 

predicted pixels of that class. We focus on the PA and UA of Clouds and Snow only. Moreover, we look 

at PA of Clouds, UA of Snow, and PA of Snow as we want our networks to detect as much of the true 

cloud pixels, and the least amount of false-snow pixels. 

 

F1-Score 

OA can be highly biased if there is an uneven class distribution in the image. PA and UA help in this 

regard by highlighting the effectiveness of a class’s prediction. Thus, the harmonic mean of the PA and 

UA, known as the F1 score, acts as a useful metric to assess any classifier’s performance. We use the 

average F1 score of Snow and Clouds to compare our network models. 

 

Visual Inspection 

Human, visual inspection is handy when comparing the usefulness of different class maps. We majorly 

checked if the classified outputs were smooth and free of noise. Moreover, we noted if and why multiple 

classes were getting confused with each other. 
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Computation Time 

An important measure of performance is the computation time involved. As different type of CNNs and 

their layers involve complex matrix multiplications, it becomes relevant to understand how much time is 

being spent on training the network models. All our processing took place on a desktop with an Intel 

Xeon CPU E5-2695 v2 having 128GB RAM and working at 2.4GHz. The training process was accelerated 

by an NVIDIA Tesla K20Xm GPU. 

 

4.6. Network Comparisons 

 

In order to study the effectiveness of the optimum network obtained through Section 4.4 we compared its 

performance in a manner described in this section. 

4.6.1. Fully Convolutional Networks 

Our central hypothesis is that using a resampled SWIR should help in an easier detection of clouds (over 

snow) in high-resolution optical images. To test this hypothesis, we use the optimum model of Section 4.4 

and compare its performance with similar fully convolutional networks that only take the VNIR bands or 

the SWIR band as the input. We refer to these networks as FCNVNIR and FCNSWIR, respectively. 

 

4.6.2. Cloud and Shadow Mask Generator for RS-2 

We also compared our network structure with Resourcesat-2’s Cloud and Shadow Mask Generating 

(CSMG) software of National Remote Sensing Centre (2017), which uses the traditional threshold-based 

algorithms. This software tool works on LISS-III data, not on LISS-IV, and classifies the input raster into 

Clouds, Shadows, and Rest. In order to compare our network model with this software tool, we modified 

CloudSNet in the following aspects: 

  

1. We used Band 5 from AWiFS (in a manner described in Section 5.3.1) as the SWIR input, and for 

every M×M patch used for this band, we took a 2M×2M patch on the VNIR bands of LISS-III. 

 

2. As the final classification should be on the higher resolution (i.e. 2M×2M in this case), 

CloudSNet2 was prepared by removing an appropriate upsampling/downsampling layer from 

CloudSNet. 

 

3. The original output from CloudSNet2 had four classes. We combined the ‘Snow’ with the ‘Rest’ 

pixels so that the comparison with CSMG could be more viable. 
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5. DATASET 

This chapter talks about the data that we’ve used, and how it has been made compatible for the CNN 

classifier. 

5.1. Satellite and Sensors 

 

The dataset used was that of Resourcesat-2 satellite, from the Indian Remote Sensing programme. The 

satellite carries three multispectral pushbroom scanners, majorly meant for monitoring crops, providing 

assistance to farming activities, and managing water resources. The satellite operates in a sun-synchronous 

orbit 817 km above the Earth, with all the sensors looking at nadir.  

 

The three sensors in their decreasing spatial resolutions are AWiFS, LISS-III and LISS-IV. All sensors 

acquire data in the same spectral bandwidth of visible and near-infrared bands. The AWiFS and LISS-III 

additionally capture short-wave infrared signals, whereas LISS-IV has an off-nadir viewing capability. The 

details of the sensors are specified in Table 3. Band 5 corresponds to the SWIR band, while bands 2, 3 and 

4 correspond to the VNIR bands. 

 
Table 4: Sensor specifications of Resourcesat-2 (National Remote Sensing Centre, 2003) 

Specification AWiFS LISS-III LISS-IV 

Input Resolution (m) 56 23.5 5.8 

Output Resolution (m) 56 24 5 

Spectral Bands (µm) 

B2    0.52 – 0.59 

B3    0.62 – 0.68 

B4    0.77 – 0.86 

B5    1.55 – 1.70 

B2    0.52 – 0.59 

B3    0.62 – 0.68 

B4    0.77 – 0.86 

B5    1.55 – 1.70 

B2    0.52 – 0.59 

B3    0.62 – 0.68 

B4    0.77 – 0.86 

 

Swath (km) 740 140 70 

Revisit (days) 5 24 5 

 

5.2. Study Area 

 

The area we chose for our study was the state of Uttarakhand in India. The northern part of the state has 

a mountainous region expanding to nearly 47,000km2 (“Uttarakhand,” 2017), with most of it lying in the 

Greater Himalayan (Himadri) range. The region has some of the highest and the most rugged mountains 

in the world, which are covered with thick snow throughout the year. Thus, the area provides a wide 

variety of snow-covered regions, fit to be analyzed for our problem statement.  

 

Recent studies using LISS-IV have found that the state is home to some of the most vulnerable glaciers in 

the country (Rawat, 2018). Since major glaciers such as Pindari and Gangotri are situated here, their 

potential vulnerability can risk in massive floods in the adjoined areas. Hence developing cloud-free snow 

cover maps becomes essential for water resource management, as well as for predicting floods and 

assessing potential risk. Thus, our study can contribute to such a scenario. 
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We chose Path 97, Row 49 from the orbital pass of Resourcesat-2. The satellite captures this scene at 

around 5:34 in the morning. Figure 14 highlights the area of study. 

 

 

 

 
 

Figure 14: Top - The red box indicating the study area, in the state of Uttarakhand. Above – A LISS-IV False Colour 

Composite belonging to Path 97 Row 49 of Resourcesat-2, captured on 13th May, 2015 
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5.3. Data Preparation 

 

To train and build our Neural Network, we looked for images from various dates where LISS-IV data was 

present. The scenes we chose were captured on 9th October 2014 and 13th May 2015. These consisted of a 

homogenous amount of clouds and snow, where the features were not easy to distinguish from each 

other. The VNIR bands of LISS-III and LISS-IV were separately stacked together to form False Coloured 

Composites.  

 

Eight square regions, of 100km2 each, were selected from these two scenes. Four of these regions were 

kept for training and validating the CNN classifier, while the remaining four were used to test the 

classifier’s performance. Figure 15 highlights the eight regions. 

 

 
Figure 15: Scenes from 9th October, 2014 (left) and 13th May, 2015 (right). Regions marked with yellow were used 
for training and validation, while the regions marked with blue were used for testing the classifier. 

 

5.3.1. SWIR Resampling 

 

For training the classifier, we used a lower resolution SWIR band. To classify LISS-IV, we used Band 5 

from LISS-III of the same date. And to perform classification on LISS-III data, we used Band 5 from 

AWiFS, even though LISS-III has its own SWIR. 

 

The original SWIR bands of LISS-III and AWiFS are in 24m and 56m respectively (Table 3), whereas the 

VNIR bands of LISS-IV and LISS-III are in 5m and 24m respectively. As our classifier required the SWIR 

channel’s resolution to be an even multiple of VNIR’s resolution, we resampled the SWIR of LISS-III and 

AWiFS to 20m and 48m, respectively, using nearest neighbor interpolation.  
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5.3.2. Reference Labels 

 

As our CNN carries out supervised classification, we provided it with reference data, for learning. 

Reference labels were created visually for tiles selected in Figure 2. The labels created were at the higher 

resolution from the available bands. They segment the tiles into Clouds, Snow, Shadows and Rest of the 

region. Figure 16 shows the reference labels created for tile 1. The number of pixels per class (at the 

resolution of LISS-IV) for every tile has been described in the Appendix. 

 

 

 
 

Figure 16: Tile No. 1, Clockwise from top left - False Colour Composite of LISS-IV, Band 5 (SWIR) of LISS-III of 
the same area and Reference labels created for this tile  

 

 

 

 

Clouds 

Snow 

Shadows 

Rest 



 

26 

6. RESULTS AND DISCUSSION 

This chapter is divided into three sections. In the first section, we first understand how changing different 

parameters and network training strategies affect the performance metrics, to build a CloudSNet. The 

following section compares the performance of CloudSNet with the similarly-structured FCNVNIR and 

FCNSWIR to understand the relevance of SWIR resampling. Finally, we compare CloudSNet2 and compare 

it with the CSMG. 

 

6.1. Sensitivity Analysis 

 

In this section we study the effect of changing the downsampling operation, the fusion style, the filter 

size(s) and the patch size (M), in that order. 

6.1.1. Downsampling Operations 
 

We analysed the effect of pooling operations in the VFB.  Figure 17 shows the overall accuracy obtained 

through different pooling operations on the image tiles. 

 

 

 
Figure 17: Overall Accuracy of different tiles, using different pooling strategies 

 

Both the pooling operations gave similar performance over most of the tiles. Average Pooling gave a 

significantly higher accuracy over Tile 4, whereas Max pooling gave higher accuracy over tiles 3 and 8. 

One possible reason is that Tiles 3, and 8 are spatio-spectrally diverse, whereas Tile 4 is spectrally uniform 

and has fewer variations. Hence, detecting the maximum activations from a local neighborhood of tiles 3 

and 8 helps in feature detection, whereas averaging over the local activations is optimum for Tile 4. 

Additionally, the final predicted maps through max pool have smoother class boundaries, compared to 

average pooling (Figure 18). This is because, at the boundaries of different spatial features in an image, 

filters detecting maximum activations in a local neighborhood will help segregate the features; whereas 

averaging over the local neighborhood at the boundaries will not help in distinct segregation. 
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Figure 18: Classified maps of Tile No. 4 incorporating Max pooling (left) and Average Pooling (right). The predicted 
maps through Max Pooling have smoother boundaries.     

We also experimented downsampling with Convolutional layers having an even stride. In this case, the 

learned downsampling gave more or less the same PA and UA for clouds and snow, as the pooling layers 

did (Figure 19). Hence, the additional trainable parameters that the convolutional layers involved did not 

help improve the accuracy much.  Furthermore, average pooling gave a higher total PA for clouds. 

 

 
Figure 19: Comparing the performance of various downsampling operations. ‘max’ is max pooling, ‘avg’ is average 
pooling, and ‘conv’ is downsampling with convolutions having even stride. 

Thus, we chose max pooling for all our subsequent experiments, as it helped in smoother class 

predictions, and did not involve trainable parameters. 

 

6.1.2. Fusion Strategy 

 

The different fusion strategies we experimented with are explained in Table 4. Fuse1 was the baseline 

architecture, and all other network models were derived from it after slight modifications. Fuse2 and 

Fuse6 involve transposed convolutions on SWIR and there are no downsampling operations involved 
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here before the concatenation. Comparatively, Fuse1 and Fuse7 involve concatenation at the lower 

resolution, and hence their VFBs involve downsampling. The fusion styles described in Table 5 were 

majorly used to assess the total Producer’s Accuracy of Clouds and Snow across all the tiles. These are 

shown in Figure 20. 

 
Table 5: Fusion Experiments 

Network Style 
Resolution at 

Concatenation 

Fuse1 
SFB merged with VFB 

Low 

Fuse2 High 

Fuse6 SFB merged with VNIR High 

Fuse7 SWIR merged with VFB Low 

 

 
Figure 20: Producer's Accuracy of Clouds (left) and Snow (right) through different fusion styles 

 

From Figure 20 we see that Fuse6 gave a higher PA for Clouds, while Fuse2 gave a higher PA for Snow. 

Both these networks employ the learned upsampling of SWIR, extracting information which helped 

discriminate between the snow and cloud features. Comparatively, the downsampling of VNIR bands in 

Fuse1 and Fuse7 gave lesser accuracy in this regard. Moreover, clouds could be detected easily by 

concatenating the convolved SWIR directly with the original VNIR bands, and not requiring additional 

VFB (Fuse6 gave a higher cloud PA than Fuse2).  

 

Furthermore, Fuse2 gave the highest overall accuracy, jointly followed by Fuse1 and Fuse7 (Figure 21). 

The latter two networks, both concatenated at the lower resolution, gave the highest average F1 score. 

The overall accuracy was computed over four classes (Clouds, Snow, Shadows and Rest) and the F1 score 

was averaged over two classes (Clouds and Snow). As the VNIR bands are more feature rich, compared to 

the SWIR, multiple convolutions on them before the concatenation helped in an accurate prediction of all 

four classes. Fuse1 and Fuse7 also gave a higher User Accuracy for the two main classes (Appendix), and 

thus, the final network (fusing style) selection depends from case to case. A network could be selected 

depending on the priority given to either PA or UA, for either Snow, Clouds or both.  
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Figure 21: Overall Accuracy (top) of different concatenation strategies, and their average F1 scores (above) 

There were some noticeable disadvantages of using transposed convolutions on the SWIR. From Figure 

22 we see that Fuse6 and Fuse2, both made up of upsampled SWIR, take nearly twice as much time for 

training, compared to other network structures. Also, the final class boundaries produced by them are 

quite uneven. Comparatively, the maxpool layers of Fuse7 and Fuse1 give much smoother boundaries, 

and the classes are more uniform (Figure 23). The lack of uniformity in transposed convolutions is 

because of the insertion of additional zeros to their input feature maps, which dilates the local spatial 

neighborhood. 

 
Figure 22: Training time for different fusion strategies 

From these experiments, we see that although having dense convolutions on the SWIR helps in cloud 

detection, upsampling through transposed convolutions can make the classes ‘patchy’, with uneven class 

boundaries. Moreover, multiple convolutional layers on the VNIR bands certainly helped in snow 

estimation (as the PA for snow is higher for Fuse2, compared to Fuse6 in Figure 20). 
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Figure 23: Tile no. 3 (top), classified map by Fuse1 (above, left) and classified map by Fuse2 (above, right). Regions 
marked with red have mixed, non-uniform classes for Fuse2, compared to Fuse1. 

 

6.1.3. Filter Size 

 

We compared different filter sizes on the VFB. As this decides the receptive field and the spatial window 

sliding over an area, the filter size becomes an important parameter in extracting and understanding spatial 

features, especially from VNIR bands. The VNIR bands give us most of the information related snow 

extent, presence of shadow regions, and the prevalence of the ‘Rest’ class. The information from these 

bands also helps in segregating ‘Rest’ regions, and thin Clouds, as both these features have similar spectral 

properties in the SWIR band. Thus, optimizing the convolutions on the VNIR bands help in 

understanding (and sharpening) class boundaries.  

 

The baseline architecture had 9×9 filters in the VFB. We experimented with different square filters of odd 

dimensions, starting from 3×3 to 13×13. The most optimum filter size we found was that of 5×5. This is 

because it showed the maximum performance across most of the metrics – F1 scores for Clouds, snow, 

average F1 score, Producer’s Accuracy of Clouds and Overall Accuracy. All these metrics were computed 

for the entire dataset shown to the networks, i.e. training, as well as the test tiles. Figures 24 to 26 show 

the performance of different filter sizes in the VFB against various metrics. 

 

 
Figure 24: Figures showing the F1 score of Clouds (left) and Snow (right) for different filter sizes in the VFB. Filters 
of dimension 5×5 and 9×9 give the highest scores for these metrics 
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Figure 25: Figures showing the PA of Clouds (left) and Snow (right). 5×5 filter gave the highest PA for clouds, while 

9×9 filter gave the highest PA for Snow 

 
Figure 26: Overall Accuracy (left) and the Average F1 score (right) obtained through different filter sizes 

All these networks with varying filter sizes took similar time (approximately 3000s) for training. Filters of 

size 5×5 and 7×7 showed some salt and pepper noise in a few regions. Moreover, working with 5×5 

filters was optimum as they involve some of the least number of trainable parameters, compared to other 

filters. Also, the spatial window that these filters look at, is big enough to understand the contextual 

information. 
 

6.1.4. Patch Size 

 

Increasing the patch size increases the contextual information that a network can learn, and hence should 

increase the performance accuracies. But this also depends on the average size of the objects that we are 

trying to extract from the images. The performance accuracies might start saturating or decreasing after a 

certain (patch size) value. 

 

Hence, we analyzed the effect of varying the size of image patches (M×M) used for training our baseline 

model. We experimented with value of M as 20, 32, 50 and 70. For every M×M patch selected on the 

SWIR band, a 4M×4M patch was selected on the VNIR bands. The training time increased with 

increasing patch size, as expected. We further computed overall performance metrics for the training tiles 

(Figure 27, left), and only for the test tiles (Figure 27, right). From Figure 27 we see that the performance 

metrics across the training tiles showed an increasing trend, peaking at M equal to 50. Even for the test 

tiles, a patch size of 50×50 on SWIR gave most of the high performance values. Hence a patch size of 50 

seemed to be of optimum value. Furthermore, we noticed that increasing patch size also increased salt and 

pepper noise in the final images. 
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Figure 27: Effect of varying the patch size on performance metrics across training tiles (left) and across the test tiles 
(right). A patch size of (A, B) corresponds to A×A patches on the SWIR band, and B×B patches on the VNIR 
bands. 

6.2. Network Assessment 

Taking the analysis from the previous section into consideration, we built CloudSNet. As the transposed 

convolutions on SWIR took twice the time for training, we kept the SFB dense, but with regular 

convolutions. We used 5×5 filters in the VFB, downsampling the feature maps with maxpool layers prior 

to the concatenation, and used a patch size with M equal to 50, to train our model. We assessed the 

credibility of the architecture in two ways. First, we compared it with FCNVNIR. As FCNVNIR has the same 

structure as CloudSNet but without an SFB, comparing with it is beneficial to our study. It helps us 

understand if introducing a SWIR, by resampling and fusing it inside an FCN-on-VNIR, would be really 

advantageous in detecting clouds (over snow) as compared to a regular FCN-on-VNIR. We also 

composed an FCN-on-SWIR (FCNSWIR) and observed the differences in the three models. Second, we 

compared CSMG with CloudSNet2. As the CSMG tool performs unsupervised classification using only 

spectral attributes, by comparing it with CloudSNet2, we can analyze the effect of incorporating spatial 

information for classification. Table 6 shows the network architectures of CloudSNet (along with 

CloudSNet2), FCNVNIR and FCNSWIR. 
 
Table 6: Table showing the architecture of CloudSNet (left), FCNVNIR (middle) and FCNSWIR (right). CloudSNet2 was 

made by removing a layer of transposed convolution, and the second maxpool from CloudSNet. 
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6.2.1. Comparison with FCNVNIR and FCNSWIR 

Here, we show the comparative results of the three networks i.e. CloudSNet, FCNVNIR and FCNSWIR. We 

divide the performance metrics into two categories – major and minor. The major metrics are the 

accuracies and scores associated to clouds and snow; whereas the minor metrics are the class accuracies 

for shadows, and the Rest, along with the overall accuracy. All the metrics reported in this subsection are 

the cumulative metrics upon all the four test tiles. Table 7 shows the major performance metrics, while 

Table 8 shows the minor performance metrics. 

 
Table 7: Major performance metrics (in %) of CloudSNet, FCNVNIR, and FCNSWIR 

Network 
PA 

Clouds 

UA 

Clouds 

PA 

Snow 

UA 

Snow 

F1 Score 

Clouds 

F1 Score 

Snow 

Average 

F1 Score 

FCNSWIR 94.80 98.06 86.90 87.57 96.40 87.23 91.82 

FCNVNIR 82.86 96.28 90.94 72.16 89.07 80.47 84.77 

CloudSNet 96.90 98.45 90.40 94.73 97.67 92.51 95.09 

 
Table 8: Minor performance metrics (in %) of CloudSNet, FCNVNIR, and FCNSWIR 

Network PA Shadows UA Shadows PA Rest UA Rest OA 

FCNSWIR 48.35 55.82 84.53 62.97 88.88 

FCNVNIR 78.05 80.72 98.01 82.81 85.99 

CloudSNet 86.25 80.89 94.50 79.21 94.31 

 

From the tables above, we see that, CloudSNet gives a definite advantage for cloud detection (over snow), 

compared to a regular FCN. Moreover, we see that SWIR plays a major role in the discrimination, as using 

it in an FCN (whether as FCNSWIR or inside CloudSNet) gives nearly 91% of UA for Snow, and nearly 

96% of PA for Clouds. FCNVNIR on the other hand, gives the highest PA for Snow; which means that 

fetching out bright pixels of snow from the three VNIR bands is beneficial than fetching out dark pixels 

from SWIR.  

 

Table 7 further shows that FCNVNIR gives the least UA of snow, which means that the snow pixels which 

it predicted were the least reliable among the three networks. The confusion matrix of FCNVNIR, given in 

Table 9 shows that most of these false predictions occur on the actual cloud pixels (also seen in Figure 

28). This is because clouds have the same reflectance values as snow in the VNIR bands. Hence, using 

CloudSNet becomes beneficial as it reduces the misclassification of snow, by incorporating SWIR. 
 

Table 9: Confusion Matrix of FCNVNIR. Approximately 98% of the false predictions for snow occur on true-cloud 
pixels (Columns show the actual classes, while the rows depict the predicted classes) 

Class Clouds Snow Shadows Rest 

Clouds 2269877 42077 40151 5395 

Snow 417752 1106632 8165 1049 

Shadows 17748 35943 231986 1709 

Rest 34140 32203 16942 401153 



 

34 

Coming to the minor metrics in Table 8, we see that FCNVNIR is the most beneficial in classifying the 

‘Rest’ class. This is because the ‘Rest’ pixels show the least reflectance in Red and Green bands, easily 

contrasting with the bright neighbouring pixels of snow or clouds, and helping the CNN, in their 

classification. For this class, both FCNSWIR and CloudSNet show a high misclassification rate of Clouds as 

‘Rest’, and vice-versa (Table 10 and Table11). This is because ‘Rest’ pixels have significantly high 

reflectance values in SWIR, almost the same as that of thin clouds leading to their misclassification (as 

shown in Figure 29). Moreover, CloudSNet is better able to predict the Shadows, as the dark pixels from 

SWIR also add to the information, making the predictions more accurate. The network is also able to give 

a higher overall accuracy, showing that it was the most successful in segmenting the data semantically. 

 
Table 10: Confusion Matrix of FCNSWIR. 

Columns show the actual classes, while the rows depict the predicted classes 

Class Clouds Snow Shadows Rest 

Clouds 2597165 345 3312 47655 

Snow 11472 1057466 124332 14277 

Shadows 2893 109446 143715 1392 

Rest 127987 49598 25885 345982 

 

 
Table 11: Confusion Matrix of CloudSNet. 

Columns show the actual classes, while the rows depict the predicted classes 

Class Clouds Snow Shadows Rest 

Clouds 2654499 5829 13718 22335 

Snow 45016 1100082 16163 64 

Shadows 14022 46419 256372 113 

Rest 25980 64525 10991 386794 

 

 

 

 
 Figure 28: False predictions by FCNVNIR. From left – original Tile No. 4, its FCNVNIR classification and CloudSNet 
classification. FCNVNIR falsely classifies some of the bright regions as snow (marked in red), which were are actually 
clouds.  

 

 
 

 Clouds  Snow  Shadows  Rest 
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Figure 29: False predictions by CloudSNet. Clockwise from above, left – original tile no. 2, FCNVNIR classification, 
CloudSNet classification and the corresponding SWIR band for the tile. ‘Rest’ regions marked in yellow have 
significantly high reflectance values in SWIR. Result being, the marked regions have been misclassified as clouds by 
CloudSNet (highlighted in red), which is not the case for FCNVNIR. 

Thus, we see that fusing a medium resolution SWIR band to high resolution optical VNIR images can 

bring an advantage in segregating clouds from snow. Working with these set of resolutions separately 

cannot achieve the task as effectively as their fused product can. Our network is still far from perfect, as a 

lot of ‘Rest’ regions are being misclassified as clouds. This means that the VFB was not able to learn 

enough spectral information from the VNIR bands, to be able to segregate the ‘Rest’ regions properly. 

Such an issue can only be rectified by training the network on more, diverse dataset and optimizing the 

network parameters in the VFB. 

6.2.2. Comparison with Cloud and Shadow Mask Generator 

 

The Cloud and Shadow Mask Generator (CSMG) for RS-2 takes only spectral information into account, 

and lacks in exploiting the spatial, contextual information of the image. Hence, comparing the utility’s 

output with our proposed network architecture helps in appreciating the advantage CNNs bring in 

semantic segmentation of remote sensing images. Figure 34 shows the comparative performance of 

CloudSNet2 and CSMG software. 

 Clouds  Snow  Shadows  Rest 



 

36 

 
Figure 30: PA and F1 Score of Clouds, along with the overall accuracy across all the LISS-III tiles 

From the figure above, we see that CloudSNet2 is beneficial for cloud detection. Moreover, the maps 

predicted by the software tool are quite ‘blocky’ in nature, whereas those predicted by CloudSNet2 are 

seamless (Figure 35). Figure 35 shows the classification only for Tile 1, but the ‘blockiness’ was observed 

across all the tiles, as shown in the Appendix.  

 

 

 
Figure 31: Segmentation of Tile 1 into three classes. From left – LISS-III False Colour Composite, output from the 
CSMG, and output from CloudSNet2. The pre-built tool is able to detect most of the cloud regions correctly, but the 
transition between classes is not smooth resulting in sharp edged boundaries and a ‘blocky’ look. On the other hand, 
CloudSNet2 is able to understand the contextual information of the pixels, giving a more realistic picture with a 
higher accuracy.  

 

Thus we see that, the supervised classification by our neural network, and CNNs in general, was able to 

learn enough spatio-contextual information which a traditional, unsupervised classification algorithm 

could not. 

6.3. Area Estimation 

 

Finally, we computed the Snow Covered Area (SCA) and calculated the cloud fraction percentage for 

every tile. The classification was done on LISS-IV, through CloudSNet, and the area estimates are shown 

in Table 12. Note that the SCA computed will be for the ‘visible’ snow, i.e. we do not know yet how much 

snow actually lies underneath the clouds. In such a manner, the proposed network can be used for 

calculating the cloud fraction and creating a cloud mask for other satellite sensors as well. 
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Table 12: Cloud Fraction Percentage and SCA of each tile, computed through CloudSNet classification 

Tile No. LISS-IV FCC Classified Output Cloud Fraction (%) SCA (km2) 

1 

  

46.01 24.45 

2 

 

 

 
 

29.89 29.82 

3 

 

 

 

 

 

 

26.68 31.84 

4 

 

 

 

 

 

 

62.56 17.85 
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62.67 15.83 
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46.46 27.31 
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7. CONCLUSION 

Our study proposed a novel way of introducing a SWIR band to a high resolution optical sensor. The 

procedure of resampling and fusion, inherited inside the learning of a convolutional neural network gave 

high classification accuracies for snow and clouds. Such a multi resolution fusion based model performed 

significantly higher on most of the metrics, as compared to a standalone FCN on independent bands. It 

was further found that our deep fully convolutional network was able to learn spectro-contextual 

information better than the traditional methods, helping in the semantic segmentation of spatial data. 

Thus, the weights from such a network could be adapted to create cloud masks as a part of Level-2 

products from a satellite sensor.  

 

Although our deep network lacked in some measures, such as misclassifying thin clouds, this could be 

rectified by introducing a cirrus band or by training the network on an extensive amount of images. The 

model still requires a variety of training data covering diverse topologies, tonal variations, seasons, cloud 

texture etc, which would improve the model’s generalization ability. Also, as the methodology involved 

creating visually labelled reference data, there lies a great scope of human error. A limitation of using our 

methodology is that as CNNs can have only integral strides, the resampling of different resolutions can 

only happen when they are an integral multiple of each other. If this hadn’t been the case, we would have 

directly used the original LISS-IV VNIR bands at 24m resolution with a LISS-III SWIR at 5m resolution. 

Having said that, we now answer the Research Questions, posed in Section 1.4 as follows: 

 

 

Q.1. What is the classification accuracy obtained by the network? How can the network be improved to 

increase the accuracy? 

 

The initially developed baseline architecture achieved classification accuracies of approximately 90%, on 

an average. We improved the architecture by carrying out experiments on its filter size, downsampling 

operations and fusion strategies. It was found that a filter of size 5×5 was optimum, while fusing at the 

higher resolution was effective. Employing transposed convolutions for feature extraction from the SWIR 

was found to be helpful, but it involved a lot of computation time. We built the optimum architecture 

using a combination of the above strategies and obtained ~95% class accuracies. The network could be 

further improved by training it with a variety of images, and assessing the effect of parameter changes. 

This can be done by varying spatial window sizes, increasing the number of feature maps, etc. Also, expert 

labellers could be used to make accurate reference maps, which would help in an improved training of the 

model. 

 

 

Q.2. Was there any advantage in introducing and fusing a Shortwave Infrared band? 

 

Yes. Introducing SWIR to a fully convolutional VNIR-based model was found to be advantageous. This 

was because the network could then learn enough spectro-contextual information which would help 

discriminate clouds and snow. Introducing the SWIR significantly reduced false predictions of snow (by 

nearly 20%) and increased the true predictions for clouds (by nearly 15%). This could not have been 

achieved by an FCN-on-SWIR, as it cannot detect most of the snow correctly. The proposed architecture 

could further be applied and tested on other multi resolution fusion problems as well. 
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Q.3. Does the proposed network perform better than traditional techniques? Are the extensive 

computations involved in the proposed network justified? 

 

The proposed network gives significantly higher classification accuracies, compared to traditional 

techniques used by prominent cloud mask utilities. Also, the fully convolutional approach achieved a 

realistic semantic segmentation of the image which cannot be observed through traditional techniques 

(due to their lack of incorporating spatial context). Although the network took more than an hour to learn 

from four million pixels on a high performance computer; the computations are worth it, as they prepare 

an efficient classifier robust enough to segregate clouds from snow in multiple satellite images. Moreover, 

training is a one-time effort; and once a network is fully trained on a particular type of image, it can readily 

be used to classify similar images. 

Recommendations 

 
The proposed methodology could also be adopted for other optical sensors such as the Multispectral 
Instrument (MSI) available on-board Sentinel-2, and compared with its native Cloud Mask product. As 
CNNs require an extensive amount of training data, the deep network for Sentinel-2 can be trained and 
validated by publicly available labelled datasets, such as the one by Hollstein, Segl, Guanter, Brell, & 
Enesco (2016). Furthermore, the performance of such a trained network could also be tested against the 
state-of-the-art Fmask algorithm, and with other machine learning classifiers such as Random Forests and 
Support Vector Machines. An advantage of using the proposed method on Sentinel is that it has a SWIR 
at 20m and the VNIR bands at 10m. As these resolutions are integral multiples of each other, they 
wouldn’t require a separate interpolation step as the one described in Section 5.3.1. 
 
Another novel way of approaching our problem could be through constructing a Generative Adversarial 

Network (Choe, Park, & Shim, 2018; Radford, Metz, & Chintala, 2015), where the SWIR band could be 

used as the Generator and the VNIR bands as the Discriminator. This would be based upon unsupervised 

learning, resulting in the classification of VNIR bands. As having the actual ‘ground’ truth is nearly 

impossible in our case, using such an unsupervised method would be ideal. Furthermore, after detecting 

clouds, multi-temporal images could be used to mask them out. This would assist in assessing the snow 

underneath the clouds and help in creating accurate snow cover maps, supporting climate change studies. 
. 
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APPENDIX 

DATASET 

 

Date Product Id 

9-Oct-2014 1853386251 

13-May-2015 1853386181 

 

Tile 

No. 
FCC SWIR Reference Map* 

No. of Pixels  

per Class 

1 

   

CL 902575 

SN 239900 

SH 78684 

R 261527 

2 

   

CL 64277 

SN 398185 

SH 142396 

R 686294 

3 

   

CL 352329 

SN 364082 

SH 108788 

R 203871 

4 

   

CL 1002073 

SN 120689 

SH 69046 

R 1613 
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5 

   

CL 1208895 

SN 173392 

SH 19056 

R 476 

6 

   

CL 815762 

SN 140160 

SH 65186 

R 74340 

7 

   

CL 161960 

SN 535707 

SH 36329 

R 73849 

8 

   

CL 362531 

SN 539221 

SH 104214 

R 130619 

 
   * in 5m×5m resolution 

 

 

 

 

 

 

 Clouds 

(CL) 

 Snow 

(SN) 

 Shadows 

(SH) 

 Rest 

(R) 
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INTERMEDIATE NETWORKS 

 

 

PA  

Clouds 

PA 

Snow 

UA 

Clouds 

UA 

Snow 

OA 

 

F1 

Clouds 

F1  

Snow 

Average 

F1 

Fuse1max 96.806 97.014 94.234 97.234 96.910 95.711 96.310 94.871 

Fuse1avg 97.725 96.556 94.305 97.187 97.137 95.724 96.431 95.007 

Fuse1conv 97.450 96.900 93.804 96.942 97.174 95.347 96.261 95.135 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PA  

Clouds 

PA  

Snow 

UA 

Clouds 

UA 

Snow 

OA 

 

F1 

Clouds 

F1  

Snow 

Average  

F1 

3x3 96.360 95.455 93.502 97.150 95.905 95.291 95.598 93.281 

5×5 97.724 96.556 94.304 97.186 97.136 95.723 96.430 95.006 

7×7 97.283 96.519 93.363 96.080 96.899 94.702 95.801 94.726 

9×9 96.806 97.014 94.234 97.234 96.910 95.711 96.310 94.871 

11×11 97.491 96.848 93.210 96.311 97.168 94.735 95.952 94.946 

13×13 97.740 96.754 93.952 96.702 97.244 95.307 96.276 95.095 

 

 

 

 

 

 

 

 

Fuse6 Fuse7 

SWIR 

Conv1-1-16 

TConv4-2-1-16 

TConv4-2-1-16 

⊕ VNIR 

Conv5-1-64 

Conv5-2-64 

Conv1-1-4 

VNIR 

Conv9-1-8 

maxpool 

Conv9-1-16 

Maxpool 

⊕ SWIR 

Conv5-1-64 

Conv5-2-64 

TConv4-2-1-64 

TConv4-2-1-64 

Conv1-1-4 

 

 

PA 

Clouds 

PA  

Snow 

UA 

Clouds 

UA 

Snow 

OA 

 

F1 

Clouds 

F1  

Snow 

Average  

F1 

Fuse1 96.806 94.234 97.014 97.234 94.871 96.910 95.711 96.310 

Fuse2 95.232 97.176 93.456 94.375 96.194 93.913 95.054 93.734 

Fuse6 97.581 95.490 91.472 95.533 91.364 94.428 95.511 94.970 

Fuse7 96.747 94.428 97.184 96.773 95.026 96.965 95.587 96.276 
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CLASSIFICATION INTO CLOUDS, SHADOWS, AND REST 

 

 

PA 

Clouds 

UA 

Clouds 

F1 

Clouds 

PA 

Shadows 

UA 

Shadows 

PA  

Rest 

UA  

Rest 

OA 

 

CSMG 56.559 76.037 64.867 4.229 12.995 79.469 54.814 62.311 

CloudSNet2 91.800 89.904 90.842 90.910 82.190 84.789 88.816 88.922 

 

CloudSNet2 CSMG CloudSNet2 CSMG 

    

    

    

    

  Clouds  Shadows  Rest 
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