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ABSTRACT 

The accurate assessment of AGB/ carbon stock and carbon sequestration in the forest is the burning issue 

to the global community for taking mitigation and adaptation measures. REDD+ activities need to be 

evaluated scientifically which requires MRV mechanism of carbon emissions to follow the UNFCCC 

principles that would be transparent, consistent, comparable, complete and accurate. Quantification and 

monitoring of tropical rainforest carbon sequestration are essential to understanding the role of the tropical 

rainforest on the global carbon cycle. The important forest inventory parameters such as tree height and 

diameter at breast height (DBH) are needed to assess biomass and carbon stock. These tree parameters can 

be acquired by direct measurement and indirect estimation. The measuring of tree height and DBH from 

the direct field-survey is time-consuming, labor-intensive, and costly. However, it is quite challenging to 

acquire accurate tree height from the field due to the multi-layer canopy structure of the tropical forest.  

 

Remote sensing is a suitable and cost-effective technique to assess biomass and carbon stock due to periodic 

monitoring of forest ecosystem. Three sources of remotely sensed data such as airborne laser scanning 

(ALS), radio detection and ranging (RADAR), and optical images (e.g., satellite or aerial images) can be used 

to extract the tree parameters. Unmanned aerial vehicles (UAVs) can acquire high resolution remotely sensed 

data to estimate biomass and carbon stock. The application of UAV is effective and efficient in assessing 

biomass with a relatively low cost for a small area at regular intervals. The purpose of this study is to assess 

forest aboveground biomass/carbon stock and carbon sequestration using high-resolution UAV images. 

The DSM, DTM, and orthomosaic were generated based on structure from motion (SfM) and 3D point 

clouds filtering techniques. The canopy height model (CHM) was generated from the DSM and DTM. The 

height extracted from the CHM and the predicted DBH calculated from the CPA based on the quadratic 

model were used as input in the generic allometric equation to estimate AGB and carbon stock. 

 

The F-test and t-test revealed that the tree height extracted from CHM and the field-measured tree height 

had no significant difference. The relationship between field DBH and manually delineated CPA was made 

and showed the highest coefficient of determination and lowest RMSE for the quadratic model. The model 

validation also performed and showed a strong correlation between observed DBH and predicted DBH. 

The results of the F-test and t-test revealed that there was no statistically significant difference between 

field-based AGB and UAV-based AGB. The total amount of sequestered carbon for one year was assessed 

6.32 Mg ha-1. The difference of UAV-based AGB with and without inflated/deflated height was found 21.66 

Mg ha-1 which is equivalent to 8.73% of original estimated UAV-based AGB without inflation and deflation 

of height. The single factor/ one-way ANOVA test revealed that there was a statistically significant 

difference between estimated UAV-based AGB with 8.94% inflation and deflation of height and UAV-

based AGB without inflation/deflation of height. The average variation of biomass due to 1% inflation and 

deflation of CPA was 2.47 Mg ha-1 and showed statistically insignificant influence on biomass estimation. 

For 5% inflation and deflation of CPA, the average variation of biomass was estimated 12.37 Mg ha-1. 

Despite its large variation, it had no statistically significant difference from original biomass, but the amount 

of AGB was observed very much close to the estimated amount of sequestered biomass for one year. On 

the other hand, the average variation of biomass 24.70 Mg ha-1 was estimated due to 10% inflated and 

deflated CPA that showed a statistically significant difference and it affected 9.96% variation of AGB from 

the original biomass. The estimated amount of carbon due to CPA error was double compared to the 

amount of sequestered carbon for one year. To summarise, this study showed a novelty by assessing carbon 

sequestration using UAV images for two consecutive years. 

 

Keywords: Above ground biomass, carbon sequestration, Unmanned Aerial Vehicle, error propagation, 

canopy height model, Digital surface model, Digital terrain model 
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1. INTRODUCTION 

1.1. Background Information 

Environmental degradation from deforestation and forest degradation as well as land use change is one of 

the major concerns for the global community because 17% of total greenhouse gas (GHG) are being 

released from this source (IPCC, 2003). The importance of forests as both a sink and a source of greenhouse 

gas emissions is globally recognized (Brown, 2002). Around 30% of the earth’s land surface is covered by 

the forest while 45% of the total carbon is stored on land (Saatchi et al., 2011). Tropical rainforests have 

been considered as one of the dominant types of forest that can play a crucial role in the context of 

biodiversity conservation and climate change mitigation and adaptation. They can sequester and store more 

carbon than any other forests (Gibbs et al., 2007). As stated by Saatchi et al. (2011) tropical forests can 

sequester around 247 billion tons of carbon, of which 78.14% is sequestered in aboveground biomass while 

the 21.86% of carbon is stored in belowground biomass. Tropical forests are recognized as the potential 

sink of sequestering carbon from the atmosphere through protecting forested lands, slowing deforestation, 

reforestation and agroforestry (Brown et al., 1996). However, deforestation and forest degradation occurred 

in tropical forests due to natural and anthropogenic interventions (Ota et al., 2015). According to the 

Intergovernmental Panel on Climate Change (IPCC), 1.6 billion tons of carbon are being released every 

year, exclusively from deforestation and forest degradation (IPCC, 2003). The tropical forest located in 

Southeast Asia contains 26% of the world’s tropical carbon, and unfortunately, this region is experiencing 

more deforestation and forest degradation since 1990 (Saatchi et al., 2011). The climate change issue has 

brought attention to the global community to protect the forest from deforestation and forest degradation, 

specifically tropical forest. In 2005, UNFCCC commenced a process called “Reducing Emissions from 

Deforestation and Forest Degradation, plus the role of conservation, sustainable management of forests 

and enhancement of forest carbon stock (REDD+)” which is one of the key climate change mitigation 

mechanism. Sustainable, consistent and robust monitoring, reporting and verification (MRVs) mechanism 

should be operationalized to implement the REDD+ program successfully in every country. The estimation 

of AGB and carbon stock is a prerequisite to achieving the objectives of REDD+ program and eventually, 

to get the benefit from the newly emerging issue namely carbon trading. 

 

Carbon stock is typically measured from the above ground biomass by assuming that half of the biomass is 

carbon (Basuki et al., 2009). Cutting trees and weighing their different parts is the destructive method for 

accurate estimation of biomass and carbon (Ebuy et al., 2011). This method is costly, labor-intensive and 

time-consuming. This destructive method is supportive and helpful to develop allometric equations to assess 

biomass and carbon stock (Clark et al., 2001). The forest parameters such as DBH, tree height, and wood 

density are required as input in these allometric equations to estimate the forest aboveground biomass/ 

carbon stock (Basuki et al., 2009, Ketterings et al., 2001).  

 

Remote sensing techniques are a better choice than field measurement for capturing the spatiotemporal 

information of forest biophysical properties to assess biomass and carbon stock (Ota et al., 2017). Owing 

to applications in the forestry sector, there are mainly three sources of remotely sensed data such as (i) 

airborne laser scanning (ALS), (ii) radio detection and ranging (RADAR) (e.g., synthetic aperture radar), and 

(iii) optical images (e.g., satellite or aerial images). 
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The data acquisition using UAV-based platform has high operational flexibility in terms of cost, time, 

platforms, place and repeatability compared to the satellite-based platform and traditional manned 

photogrammetric operations (Stöcker et al., 2017). UAV has the capability of providing high spatial and 

temporal resolution data which is useful in assessing AGB and carbon stock (Fritz et al., 2013). UAV 

platform can capture high-resolution images that can be used effectively and efficiently to generate the digital 

terrain model (DTM), digital surface model (DSM), and ortho-mosaic image (Stöcker et al., 2017).  

 

The captured images from the UAV platform are used to generate DSM, DTM, and orthomosaic based on 

structure from motion (SfM) technique. Structure from motion (SfM) represents the process to obtain a 

three-dimensional structure of a scene of an object from a series of digital images (Micheletti et al., 2015). 

SfM photogrammetry is cost and time-effective to estimate forest AGB and carbon stock. SfM uses a 

sequence of overlapping images to produce a sparse 3D model of the scene. SfM photogrammetry approach 

is capable of generating a digital surface model, reflecting the top of the canopy in the case of a forest and 

a digital terrain model (Mlambo et al., 2017). Canopy height model (CHM) can be generated from DSM and 

DTM. From CHM, the tree height can be extracted that would be the input for allometric equations to 

assess biomass and carbon (Magar, 2014). 

 

Among all biophysical parameters of the tree, diameter at breast height (DBH) is one of the essential 

variables to assess the biomass and carbon because it explains more than 95% variation in biomass (Gibbs 

et al., 2007). Studies have proved that there is a significant relationship between CPA and DBH (Anderson 

et al., 2000). The correlation was demonstrated between CPA and all parts of trees such as foliage mass, 

branch mass, stem mass for biomass (Kuuluvainen, 1991). The above ground biomass and carbon stock can 

be assessed based on the relationship between CPA and DBH using regression model and allometric 

equations (Basuki et al., 2009; Chave et al., 2005). 

1.2. Problem Statement and Justification  

Most of the studies on assessment of AGB/carbon stock and carbon sequestration in tropical rainforest has 

been conducted using optical images (Du et al., 2012; Dube & Mutanga, 2015; Gibbs et al., 2007; Lu et al., 

2004; (Powell et al., 2010). The data collected from optical remote sensing can have problems due to clouds, 

shadows, high saturation, low spectral variability, 2-D in nature and it is quite challenging to assess AGB 

and carbon stock using these data (Kachamba et al., 2016). Although some medium-resolution remote 

sensing data such as Landsat, Sentinel, etc. are freely available, it is difficult to use them to assess the forest 

aboveground biomass and carbon stock due to pixel size, resolution versus tree crown size. Some very high-

resolution data such as QuickBird, IKONOS, etc. can estimate biomass accurately, but they are costly and 

need highly technical knowledge to process. (Koh & Wich, 2012). The application of radar backscatter to 

estimate AGB/carbon stock is challenging and leads to underestimation of AGB in the tropical forest 

because of its high density and complex structure(Minh et al., 2014; Villard et al., 2016). L-band radar data 

can be used to estimate AGB accurately up to 150 Mg ha-1 and it tends to saturate with AGB is greater than 

150 Mg ha-1 (Villard et al., 2016). The decrease of intensity of radar backscatter also known as saturation 

effect is the main reason for under-estimation of AGB (Minh et al., 2014). Recently, Lidar has proved to be 

the best remote sensing technique to estimate biomass/ carbon stock accurately and precisely. However, it 

is very expensive to assess biomass and carbon stock over a large area (Strahler et al., 2008). Unmanned 

aerial vehicles (UAVs) can acquire high resolution remotely sensed data to estimate biomass and carbon 

stock. The application of UAV is effective and efficient in assessing biomass with a relatively low cost for a 

small area (Senthilnath et al., 2017).  Furthermore, limited expertise is good enough to operate and acquire 

data from the UAV platform. 
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Conventional remote sensing techniques can provide horizontal forest structure accurately rather than 

vertical forest structure. On the contrary, UAV is capable of providing horizontal and vertical forest 

structure (Böttcher et al., 2009). In tropical rainforests, the estimation of above ground biomass and carbon 

stock is quite challenging because of its complex stand structure and plentiful verities of species composition 

(Nelson et al., 2000). A very limited number of researches were carried out using UAV images and Lidar in 

a tropical forest. Clark et al. (2001) stated that the research on carbon flux and atmosphere is still insufficient 

in a tropical forest. Based on that reason, it is essential to conduct research on quantifying and monitoring 

carbon sequestration in a tropical forest. Few studies were carried out to estimate carbon sequestration 

annually using high resolution remotely sensed data. The research on the accuracy of the assessment of the 

AGB and carbon stock and specifically carbon sequestration using high-resolution UAV images of two 

consecutive years would be helpful in the decision-making process to implement the REDD+ initiatives, 

sustainable forest management and eventually natural resources management using its mechanism on MRV. 

Despite having some benefits UAV also has limitations. The captured images by the UAV can only cover 

the upper canopy of the tree. In the tropical forest, the lower canopy of trees is not visible because it is fully 

or partially covered by the upper canopy trees. The point clouds are generated based on the captured images 

that covered upper canopy, and it has an impact on assessing the total AGB and carbon stock. The different 

sources of error or uncertainty have direct effects on AGB/ carbon stock and especially sequestration 

estimation. The choice of remote sensing techniques influences the level of uncertainty in the estimate of 

biomass (Gonzalez et al., 2010). The major sources of error in assessing AGB/carbon stock and carbon 

sequestration are UAV data processing, tree parameter collection, allometric equations, ground-based 

sampling, regression modeling. In a tropical forest, the measurement of height is challenging because of the 

complex nature of the structure. It is quite challenging to extract accurate height form UAV-derived point 

clouds. The height variation affects the total AGB/carbon stock estimation, and finally, it influences 

assessing carbon sequestration. The variation of the amount of AGB and carbon stock of two years due to 

height error might be affected more on carbon sequestration estimation. The manually delineated CPA or 

automatic segmented CPA might have a certain level of inaccuracy, and it also has effects on biomass and 

carbon sequestration estimation because the predicted DBH is found based on CPA. In order to have 

complete and accurate biomass and carbon stock estimation, the identification and estimates of error are an 

essential part of the process (Brown, 2002). Therefore, it is significant to identify and quantify these errors 

and analyze the effect on biomass estimation and more specifically, how will that affect the carbon 

sequestration. 

1.3. Research Objective 

 General Objective 

This study is aiming at the assessing of AGB/ carbon stock, carbon sequestration and evaluating the effects 

of height and CPA delineation error on biomass estimation from very high-resolution UAV images based 

on SfM photogrammetry approach at Kebun Raya UNMUL (University of Mulawarman) Samarinda 

(KRUS) Education Forests, East Kalimantan, Indonesia. 

 Specific Objectives 

1. To estimate the AGB/carbon stock of tropical rainforest for 2017 and 2018. 

2. To assess the amount of sequestered carbon in the tropical forest for one year using UAV images. 

3. To assess the accuracy of aboveground biomass of tropical rainforest estimated from UAV images. 

4. To assess the effect of the error of tree parameters extracted from UAV images on AGB estimation. 
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1.4. Research Questions 

1. What is the estimated amount of the AGB/carbon stock for 2017 and 2018? 

2. What is the estimated amount of sequestered carbon? 

3. What is the accuracy of the aboveground biomass estimated from UAV images? 

4. What is the error of UAV-derived tree height and how does that affect the AGB estimation? 

5. How much the CPA delineation error affect the AGB estimation? 

1.5. Research Hypothesis 

1. Ho: There is no significant difference between estimated biomass from UAV imagery and field-

based biomass. 

Ha: There is a significant difference between estimated biomass from UAV imagery and field-based 

biomass. 

2. Ho: The error of UAV-derived height has no significant influence on the AGB/ carbon estimation. 

Ha: The error of UAV-derived height has a significant influence on the AGB/ carbon estimation. 

3. Ho: The error of CPA delineation has no significant influence on the AGB/ carbon estimation. 

Ha: The error of CPA delineation has a significant influence on the AGB/ carbon estimation. 

1.6. Conceptual Diagram 

The conceptual diagram was developed after identifying and defining the problem of the study. The 

relevant systems, sub-systems, elements and potential interactions among them were identified and 

illustrated using Figure 1. 

Figure 1: Conceptual diagram 
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2. STUDY AREA, MATERIALS, AND METHODS 

2.1. Study Area 

UNMUL Samarinda botanical garden also known as ‘KRUS’ located in the Samarinda City of East 

Kalimantan province, Indonesia which was belonging to CV. Mahakam wood before 1974. CV. Mahakam 

wood handed over an area of 300 hectares to the rector of Mulawarman University in 1974. Then the area 

was used as a conservation forest area and a suitable place for conducting research and educational activities 

on tropical forest. On 9 July 1974, the area was inaugurated as educational forests. In 2001, 300 hectares 

was reduced by 62 hectares because the area was allocated for a recreational botanical garden tourist spot 

(Wikipedia, 2015). The map of the study area is shown in Figure 2. 

 

 

Figure 2: Map showing the study area 

 Geographical Location 

Kebun Raya Unmul Samarinda education forest is located between 117° 12' 15.388'' E - 117° 13' 35.786'' E 

and 0° 26' 17.435'' N - 0° 27' 32.769'' N. The study area is located in urban villages namely Laterite and 

Mugirejo under the North Samarinda and Sungai Pinang administrative districts respectively (Faculty of 

Forestry, University of Mulawarman, 2018). 

 Climate and Topography 

The average annual rainfall is 2000 mm while the rainfall is observed slightly lower from June to October. 

The daily maximum temperature is observed 33.200 C while 24.500 C is observed as the daily minimum 

temperature (Faculty of Forestry. University of Mulawarman, 2018). Very dry years occasionally occur due 

to the effect of the Southern Oscillation phenomenon and El Niño (Guhardja et al., 2000). The soils of the 
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study area are Podzolic Kandic, Podromolic Chromic, and Cambisol. The 60-70% of the study area consists 

of forest areas with ramps up rather steep slope.   

 Vegetation  

The study area is largely a forest area with vegetation cover logged secondary dry forest (logged-over areas), 

and thickets with an area covering around 209 hectares while 29% of the area is the non-forested area. 

Among the 70% of secondary forests, the dominant species are Artocarpus spp, Macaranga spp, 

Eusideroxylon zwageri, Pentace spp, etc. (Faculty of Forestry. University of Mulawarman., 2018). 

2.2. Materials 

 Field Equipment 

The tools and equipment mentioned in Table 1 were used in the study to measure and collect the required 

data from the field. 

Table 1: List of field equipment and its uses 

Name of tools/ equipment Uses 

UAV Phanton4 DJI 2-D image capturing 

Measuring tape (50m) Identification of the outer boundary of plots 

Diameter tape (5m) Measurement of tree DBH 

Handheld GPS (Garmin) Navigation and X, Y coordinate reading 

Field data sheet and pencil Data recording 

Range finder/ Haga altimeter Measurement of tree height 

Leica DISTO D5 Height measurement 

Tablet Navigation 

Santo Clinometer Slope measurement 

DGPS GCPs and plot center location 

 Data Processing Software 

The different types of software were used to process and analyze the collected data from the study area. The 

list of software and their uses are mentioned in  

Table 2. 

 

Table 2: List of software and uses 

Name of software Uses 

ArcMap 10.6.1 Data processing and visualization 

Pix4D Photogrammetry processing 

Erdas Imagine Resampling of ortho-mosaic image 

Microsoft Excel Data analysis 

Cloud compare 3-D point cloud visualization 

Microsoft Word Reports and thesis writing 

Mendeley Desktop Citation and references 

Lucidchart Flowchart drawing 

Microsoft power point Presentation of thesis 
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2.3. Research Methods 

The research method encompasses the fieldwork design, spatial and statistical analysis and estimating the 

AGB/AGC and carbon sequestration and lastly evaluating the influence of height and CPA delineation 

error on assessing AGB. The research method of this study was comprised of five parts (see Figure 3): 

 

(i) The first part was the biometric data collection, processing, and analysis. It involved the field 

observation and acquiring required tree parameters using the above-mentioned instruments in 

Table-1; 

(ii) The second part was capturing digital images using a UAV platform. Then the data was 

processed by Pix4D software to generate DSM, DTM and orthophoto; 

(iii) The third part was the extraction of tree height from CHM generated from DSM and DTM; 

(iv) In the fourth part, aboveground biomass (AGB)/ carbon stock and carbon sequestration were 

assessed using tree height and predicted DBH extracted from UAV data in the third part. 

(v) In the fifth and the last part, the effect of the height and CPA delineation error on aboveground 

biomass was assessed. 

 Workflow of the Methods 

 
Figure 3: Workflow of the method 
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 Pre-field Work 

The pre-fieldwork activities such as preparing data collection sheet (see Appendix 1), black and white paint 

marker and plastic tubes to set the ground control points (GCPs) (see Appendix 2), tree tag, testing of 

equipment and tools to be used in the field, checking GPS and batteries condition of UAV were done before 

going to field. Possible plots were identified in the orthomosaic images of 2017 and loaded in the tablet to 

ease the identification of the plots as well as navigation. 

 Plot Size 

Circular plots with an area of 500 m2 (radius 12.62m) were used in flat terrain to collect the biophysical 

parameters of trees. Circular plots are preferred compared to square and rectangular plots because of 

delineating the outline of the plots is relatively easy and less error-prone (Mauya et al., 2015). A study 

conducted by Ruiz et al. (2014) brought to light that no significant difference in results could be found if 

the plot size is increased beyond 500 m2. The radius of the plots was adjusted using a slope correction table 

(see Appendix 3) if any slopes existed inside the plots. Figure 4 shows a sampling of plots with an area of 

500m2 and radius 12.62m as an example. 

Figure 4: Circular plot with 12.62m radius  

Source: Asmare (2013) 

 Sampling Design 

In this study, a purposive sampling method was used to collect the field data. This sampling method is a 

non-probability method based on the judgment of researchers. The purposive sampling method was chosen 

considering the time limitation, inaccessibility in the forest, covering the variation of all forest structure, 

terrain conditions, UAV flight planning, etc. The total of 41 plots was selected to collect the biometric data. 

The distribution of sampling plots is shown in  Figure 5. 
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 Figure 5: Distribution of sampling plots in the study area 

2.4. Data Collection 

In this study, the primary, as well as secondary data were used to achieve the objectives of the research. The 

UAV images for 2017 obtained by the University of Mulawarman, Indonesia were used as secondary data. 

The following sub-sections illustrate the procedures and methods of field data as well as UAV data collection 

including the recording of the ground control point (GCP) using differential global positioning system 

(DGPS). 

 Biometric Data Collection 

Fieldwork was conducted from 01 October 2018 to 25 October 2018. First, the center of the plot was fixed; 

then the measuring tape was used to delineate the outline of the plot with a 12.62m radius which covers 500 

m2. The XY coordinate of the center of the plots and the tree location was recorded by Garmin GPS. The 

diameter of breast height (DBH) was measured using diameter tape at 1.3m above ground. The height of 

the trees was measured using a Leica DISTO D510. The tree is having DBH equal to or greater than 10 cm 

was considered because the trees that have DBH less than 10 cm cannot contribute a role significantly in 

assessing aboveground biomass (Sandra, 2002). The tree height and DBH were recorded for 943 trees from 

the 41 plots. All the measured tree parameters were documented in a datasheet that was prepared before 

going to the field and later the data were transferred into the excel sheet for analysis. The captured 

photograph during the collection of biometric data is shown in Figure 6. 
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Figure 6: Biometric data collection 

2.4.1.1.  Calculation of Biometric Data 2017 

The biometric data was collected as ground truth to be used as an accuracy assessment. To assess the 

accuracy of UAV-derived AGB for the year 2017, it was also needed biometric data for the year 2017. But 

the biometric data was not available for the year 2017. Few researchers and students of Mulawarman 

university collect data every year for their research. They used the tag in the tree mentioning the tree recorded 

parameters. During the collection of biometric data of 2018, the DBH data available for 134 trees from the 

tagged was collected. Based on the difference in size of DBH between 2017 and 2018, the annual increment 

of DBH was calculated. The annual growth of DBH was deducted from the size of DBH 2018 and 

calculated the DBH for the year 2017. The height of the tree was calculated based on the mean annual 

growth of trees in the tropical forest. The study conducted in Lambir, Sarawak, Malaysia revealed that the 

11 species of Macaranga has the lowest average growth rate of 0.18 m while the highest growth rate is 1.80 

m (Davies & Apr, 2007).  Another study conducted by Affendy et al. (2009) in secondary forest in a tropical 

area revealed that the highest height increment is 1.38m y-1 while the lowest height increment is 0.77 my-1. 

In the study area, different tree species were found, and there was no generic annual increment of height 

was not possible to apply. Different tree size has a different growth rate. Based on different literature 

regarding increment of tree height in the tropical area, the tree was classified by the size of DBH and the 

tree height was calculated for the year 2017. The calculated DBH and height of the tree was also modeled 

height and DBH which was used to assess the field-based modeled AGB 2017. 

 UAV Flight Planning 

In this study, the UAV imagery was collected from the Kebun Raya UNMUL Samarinda (KRUS) education 

forest. The flight areas were selected based on the availability of enough open space to set the ground control 

points (GCPs) as well as landing and taking off UAV. The images were collected using Phantom-4 DJI 

UAV/ Drones. The mission planning was done setting flight parameters using Pix4D capture app. The 

spatial quality of the images acquired from the UAV platform depends on flight height and front and side 
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overlap. There is a significant relationship between flight height, overlap, weather conditions and the quality 

of the point clouds (Dandois et al., 2015). Table 3 shows the image acquisition parameters that were set-up 

to obtain the high-quality photogrammetric output. 

 

Table 3: UAV flight planning 

Parameter Value 

Speed Moderate 

Angle 900 (Nadir) 

Front Overlap 75% 

Side Overlap 65% 

Flight Height 160 m -180 m 

 Ground Control Point 

The UAV flight areas were selected in such a way that enough open spaces were available to place the 

ground control points. The ground control points were used for georeferencing. The number and 

distribution of GCPs influence image orientation. So, the GCPs were evenly distributed using black and 

white spray paint in the study area. The minimum number of GCPs would be 3 and the larger the number 

of GCPS the better the accuracy (Agüera et al., 2017). The total 12 ground control point (GCP) were put in 

the study area. The coordinates of the GCPs were recorded using a differential global positioning system 

(DGPS). The distribution of GCP is shown in  Figure 7. 

  Figure 7: Distribution of ground control points (GCPs) 

 UAV Image Acquisition 

Based on the defined parameters (flight height, overlap, speed) during flight planning, UAV captured digital 

images. All the images were stored in a memory card of UAV, and the quality of images was assessed after 

extracting the images from the memory card. 
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2.5. Data Processing 

The biometric and UAV data were processed after returning from the field using different types of software. 

This section illustrates the procedures and methods of processing biometric data as well as UAV data. 

 Biometric Data 

The data collected from the field was entered the Microsoft Excel Sheet for the analysis (see Appendix 4). 

The collected field data such as plot number, tree number, coordinate of the center of the plot, coordinate 

of every single tree, tree height, DBH, plot radius was given entry in the Excel. The biometric information 

of 943 trees from 41 plots was collected and recorded. The photograph of one plot and trees with a label 

within the plots are shown in  Figure 8. 

 Figure 8: Plot with trees and tree tag 

 UAV Image Processing 

The photogrammetric software Pix4D was used to generate 3-D dense point cloud, DSM, DTM and 

orthophoto from UAV-derived images. This software used SfM and stereo-matching algorithms for 3-D 

reconstructions. Structure for motion (SfM) represents the process to obtain a three-dimensional structure 

of a scene of an object as well as the camera motion from a series of two-dimensional digital images. SfM 

used a sequence of overlapping images which has a minimum number of common matching points to 

produce a sparse 3D model of the scene and camera parameters (Westoby et al., 2012). In the initial 

processing, the Pix4D software executed the computation of key points, image matching, and camera 

calibration. The key points are the common points between the two images that are matched. In the figure, 

the light green images are already matched and calibrated, and the software is being tried to calibrate and 

match the dark green images. The blue points indicated the location of the GCP. After loading the images 

in the Pix4D software, the processing options were set up; then the GCPs were loaded for the 

georeferencing. In the first stage, the software computed the key points of different images of the same 

scene, and then image matching was performed based on key points. In the second stage, the software 

generated the sparse point clouds along with camera calibration. The high-quality point cloud was generated 

based on the estimated camera positions where the software computed depth information also. The point 

cloud was used to develop a digital surface model (DSM), digital terrain model (DTM), and orthophoto. 

The canopy height model (CHM) was extracted by subtracting DTM from DSM. The process of producing 
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DSM, DTM, orthomosaic and CHM were described in the following two sub-sections. The processing of 

UAV images in Pix4D software is shown in Figure 9. 

 

 

Figure 9: Image processing in Pix4D software 

 DSM, DTM, and Orthophoto Generation 

The digital surface model (DSM) is a representation of the terrain relief that includes the topography and all 

natural (trees etc.) and man-made (buildings, bridges, etc.) objects. On the other hand, the digital terrain 

model (DTM) is a representation of the terrain relief in a digital form without any objects on the earth 

surface (Nex, 2018). A canopy height model (CHM) is generated from the difference between DSM and 

DTM (Zarco et al., 2014). Digital terrain model, digital surface model, and orthomosaic were generated 

automatically after producing dense point clouds using the Pix4D software. The software generated the 

DTM based on ground pixels only using an algorithm. A DSM represents the surface model as a regular 

grid that contains the height values. A DSM can be generated from the dense point cloud, sparse point cloud 

or a mesh. The quality of DSM is also dependent on the quality of the point cloud. The DSM was generated 

by interpolation using a delaunay triangulation method. Delaunay triangulation is a geometric structure that 

generates meshes and maximizes the minimum angles (Cheng & Shewchuk, 2012). This method is 

recommended because of considering the suitability in the forestry applications. Finally, the orthomosaic 

was produced from the mosaicking of the geometrically corrected images. The schematic representation of 

DSM and DTM is shown in Figure 10. 
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Figure 10: Difference between DSM and DTM  

Source: http://www.charim.net/datamanagement/32 

 Generation of Canopy Height Model 

The canopy height model (CHM) is required to extract the tree height. The CHM was generated by 

subtracting the DTM from the DSM using the raster calculator tool in ArcMap software. The CHM 

represented the tree height values as continuous surface while DTM and DSM were used as input data. The 

individual tree height was extracted from the CHM by removing the negative values and values more than 

tree height was collected from the field (Magar, 2014). The tree height and DBH as input parameters are 

required to estimate aboveground biomass using allometric equations (Chave et al., 2014). The shapefile of 

the segmented tree, the recorded coordinates from the field, the center of the plot and circular plot were 

overlaid on the CHMs, and the highest pixel value of the CHM within the segmented individual tree crown 

was extracted as the tree height. The schematic representation of CHM is shown in Figure 11.   

Figure 11: Canopy height model  

Source: Perko et al. (2011) 

http://www.charim.net/datamanagement/32
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 Validation of tree height from UAV-CHM 

The tree height extracted from the UAV-CHM was compared with the tree height collected from the field 

using a scatter plot, F-test, and t-test. The performance was presented in terms of the model fit coefficient 

(R2), and root means square error (RMSE). Furthermore, Pearson’s correlation test was used to assess how 

the tree height is related to each other. 

2.6. Data Analysis 

Data analysis was accomplished using a suitable statistical analysis to achieve the objectives and test the 

hypothesis. The important statistical methods such as descriptive statistics, regression analysis, correlation, 

RMSE, the percentage of RMSE, F-test and t-test for two samples, and ANOVA test were applied in this 

study. The RMSE and percentage of RMSE were calculated using the equations developed by Sherali et al. 

(2003) to test the closeness of two parameters of the tree. 

Equation 1: RMSE Computation 

RMSE = √∑ (𝑌𝑖 −  Ŷ)
2𝑛

𝑖=1 /𝑛……………...…………………………………………...……………. (1) 

Equation 2: Percentage of RMSE Computation 

% RMSE = RMSE * n* 100/ Ʃ Yi .....................................................................………………………………………. (2) 

Where, 

RMSE is the root mean squared error 

% RMSE is the percentage of root mean squared error 

Yi is the original value of the dependent variable 

Ŷ is the predicted value of the dependent variable and 

 n is the number of observations. 

 Relationship between DBH and CPA 

For model development the CPA obtained from manual digitization was used as input to predict DBH. In 

this study, the linear, power, quadratic and logarithmic model was tested to choose the suitable model for 

establishing the relationship between CPA and DBH. To perform this, the area of a delineated shapefile 

was calculated using ArcMap software. The DBH of matched trees was regressed with the corresponding 

CPA using quadratic relationship. The scatter plot was plotted while the trend line was fitted. The RMSE 

and %RMSE were calculated to observe and evaluate the relationship between CPA and DBH.   

 Estimation of Aboveground Biomass (AGB) for 2017 and 2018 

The allometric equation is the commonly used method to estimate forest biomass in a non-destructive way. 

Various researchers have developed allometric equation based on a destructive method to estimate biomass 

and carbon in the different forest ecosystem and different tree species (Curtis, 2008). The region or site-

specific allometric equations must be considered to assess the biomass accurately as the equations consider 

the site effects (Basuki et al., 2009). Application of regionally or locally developed allometric equations are 

not recommended due to high species-diversity in tropical forest (Gibbs et al., 2007). The generic allometric 

equations developed by Chave et al. (2014) was considered a suitable equation to estimate above ground 

biomass in a tropical forest. The allometric equation developed by Chave et al. (2014) is shown in Equation 

3. 
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Equation 3: Allometric Equation for AGB Calculation 

AGBest = 0.0673 × (ρD2 H)0.976…………………...……………………. (3) (Source: Chave et al., 2014) 

 

Where AGBest is the estimated above ground biomass in kilograms (kg),  

D is the diameter at breast height (DBH) in centimeter (cm),  

H is the tree height in meter (m),  

and ρ is wood density in gram per cubic centimeters (gcm-3),  

0.0673 and 0.976 are constant.  

 

The aboveground biomass (AGB) was estimated for the year 2017 and 2018 using this allometric equation. 

The AGB was calculated and assessed for each plot. 

 Estimation of Aboveground Carbon for 2017 and 2018 

The carbon stock was calculated from the estimated AGB. 50% of the estimated biomass is considered as 

carbon (Houghton & Hackler, 2000; Burrows et al., 2002; & Drake et al., 2002). The carbon stock was 

calculated using Equation 4. 

. 

Equation 4: AGC Calculation from AGB 

AGC = AGB × CF…………………………………………………………………………………… (4) 

Where,  

AGC is aboveground carbon stock (Mg),  

CF is the carbon fraction (0.5) 

The total amount of sequestered carbon was assessed from the difference between the estimated amount of 

carbon for 2017 and 2018. 

 Comparison of UAV-based AGB and Field-based AGB 

The height derived from UAV-CHM and predicted DBH based on UAV CPA were used as an input 

parameter to estimate the UAV-based AGB. The field-derived tree height and DBH were used as input 

parameter for estimation of field-based AGB. The UAV-based AGB and Field-based AGB were compared 

using a scatter plot and RMSE. Furthermore, the F-test and t-test were performed to test if there is a 

significant difference between UAV-based AGB and Field-based AGB. Lastly, the mean difference between 

the UAV-based AGB and Field-based AGB was assessed and evaluated. 

2.7. Error Sources  

Almost all related researches usually concentrate on accuracy assessment in each step they take in assessing 

biomass and carbon stock and rarely consider the error propagation in final results carefully (Chave et al., 

2005). Error propagation assessment needs to be evaluated perfectly and properly to make correct 

inferences. Measurement of error is expressed in terms of accuracy. It is essential to identify and assess the 

influence of various sources of error on biomass and carbon estimation (Lo, 2005). 

 Main Sources of Error in AGB/ Carbon Estimation 

The error and uncertainty originated from the multiple sources can influence the final biomass estimation 

such as tree parameter measurement errors, errors in the allometric equation, data processing error, etc.  

Chave et al. (2004) identified four types of error that could lead to statistical error in assessing biomass and 

carbon: (i) tree measurement error; (ii) selection of allometric equations; (iii) choosing the size of the 

sampling plot; (iv) landscape-scale representation. Nguyet (2012) stated five types of error namely: (i) field-

based carbon error; (ii) height extraction error; (iii) CPA extraction error; (iv) tree detection error; (v) 
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classification error. Samalca (2007) identified two sources of uncertainty in his research like: (i) error in 

selecting sampling plots (ii) selection of sampling trees. Holdaway et al. (2014) developed quantitative 

statistical methods for propagating uncertainty in carbon estimation. They described the measurement error, 

model uncertainty, and sampling uncertainty. Moreover, when assessing the sequestration of carbon 

between two consecutive years, the error in measurement and assessed carbon sequestration might be 

greater than the actual sequestration of carbon. There were very limited researches conducted on the 

influence of height error and CPA delineation error on biomass and carbon estimation. In this research, 

DBH and height were the input parameters for biomass assessment. For this reason, the effect of height 

and CPA delineation error on AGB estimation was analyzed and discussed in this study. 

2.7.1.1. Effects of Error of Height on AGB Estimation 

The error of UAV-derived height is affected by the number of sources such as UAV quality data (point 

density, seasonality), CHM generation process (interpolation algorithm), co-registration error, flight height, 

number and distribution of GCPs. RMSE and percentage of RMSE of the estimated height were calculated 

from the difference between height measurement from the field and height extracted from CHM. The height 

derived from UAV-CHM was used to evaluate the variation of biomass due to the changes in height. How 

much AGB is underestimated or overestimated was assessed by using height from the percentage of RMSE 

calculated from UAV CHM height and field height for 2018. The single factor/ one-way ANOVA test was 

performed to evaluate the significance of the difference between UAV-based AGB without inflated/ 

deflated height and the UAV-based AGB with inflated and deflated height for 2018. The influence of the 

error of height on AGB estimation for the year 2017 was not analyzed because the biometric height for the 

year 2017 was a modeled height calculated based on annual increment. It was assumed that the effect of the 

error of height on AGB estimation would be the same. The percentage of error of estimated biomass was 

assessed and analyzed based on calculating the percentage of the mean difference between original biomass 

without inflation/deflation of height and the height inflated/deflated mean biomass values. The formula 

for calculation of the average biomass is shown in Equations-5-9. 

 

Equation 5: Mean AGB (without height inflation and deflation) calculation 

Mean AGB (without height inflation and deflation) = {(ƩAGB of 41 plots)/Number of Plots} ………..………... (5) 

 

Equation 6: Mean AGB (with height inflation) calculation 

Mean AGB (with height inflation) = {(ƩAGB with height inflation of 41 plots)/Number of Plots} ………………(6) 

 

Equation 7: Mean AGB (with height deflation) calculation 

Mean AGB (with height deflation) = {(ƩAGB with height deflation of 41 plots)/Number of Plots} ..……...…… (7) 

 

Equation 8: Biomass difference calculation 

Biomass Difference = (Mean AGB with inflated height - Mean AGB with deflated height)/2.………...…………. (8) 

 

Equation 9: Percentage of the biomass difference calculation 

Percentage of Biomass Difference= {Biomass Difference/Mean AGB (without height inflation and deflation)}……. 

×100…………………………………………………………………………………...…………………………. (9)  
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2.7.1.2. Effects of CPA Delineation Error on AGB Estimation 

The range of variation of biomass due to CPA delineation error was quantified and assessed by 1%, 5%, 

and 10% inflated and deflated CPA delineation error. In this study, the CPA was delineated manually for 

both years. It was assumed that the manually delineated CPA is more accurate and precise compared to the 

automatic segmented CPA. However, due to the quality of orthomosaic and man-made error in visual 

interpretation, the manually delineated CPA might have a certain level of inaccuracy. In this study, the 

manually delineated CPA was inflated and deflated by 1%, 5%, and 10% and accordingly plot-based AGB 

was calculated to evaluate the range of variation of biomass. After plot-based estimation of AGB with 

inflated and deflated CPA, the range of variation of biomass was calculated based on Equations-10-14. 

 

Equation 10: Mean AGB without CPA inflation and deflation calculation 

Mean AGB (without CPA inflation and deflation) = {(ƩAGB of 41 plots)/Number of Plots} ………………... (10) 

 

Equation 11: Mean AGB with inflated CPA calculation 

Mean AGB (with CPA inflation) = {(ƩAGB with CPA inflation of 41 plots)/Number of Plots} ……..…………(11) 

 

Equation 12: Mean AGB with deflated CPA calculation 

Mean AGB (with CPA deflation) = {(ƩAGB with CPA deflation of 41 plots)/Number of Plot} ..……...……… (12) 

 

Equation 13: Biomass difference calculation 

Biomass Difference = (Mean AGB with inflated CPA - Mean AGB with deflated CPA)/2.…………….………. (13) 

 

Equation 14: Percentage of the biomass difference calculation 

Percentage of Biomass Difference= {Biomass Difference/Mean AGB (without CPA inflation and deflation)}……... 

×100……………………………………………………………………………………………………………. (14)  
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3. RESULTS 

3.1. Biometric Data 2018 

Diameter at breast height (DBH) and height were recorded for 943 trees collected from 41 plots in the study 

area. The analyzed results of the biometric data for the year 2018 in the form of descriptive statistics were 

presented in Table 4. 

 
Table 4: Descriptive statistics of field-measured tree DBH and height 

Descriptive Statistics for DBH and Height 

Nature of Statistics DBH (cm) Height (m) 

Mean 28.11 15.51 

Standard Error 0.54 0.16 

Median 23.6 15.4 

Mode 10 11.5 

Standard Deviation 16.45 4.86 

Sample Variance 270.51 23.62 

Kurtosis 2.07 -0.55 

Skewness 1.38 0.19 

Range 101.3 25.2 

Minimum 10 6.8 

Maximum 111.3 30.2 

Sum 26506.9 14624.68 

Count 943 943 

 

From the results as mentioned above, the average DBH was 28.11 cm while the minimum and maximum 

DBH were 10 cm and 111.3 cm respectively. The standard deviation of height was 16.45 cm. On the other 

hand, the average height was 15.51m, whereas the minimum and maximum height were 6.8 m and 30.2m 

respectively. The standard deviation of height was 4.86m. The graphical analysis was conducted for the 

distribution of field-measured DBH and height in Figure 12 and Figure 13.  

Figure 12: Distribution of field-measured DBH 2018 
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It can be mentioned from the histogram that the positive skewness is observed for the field-measured DBH. 

Considering the contribution to the total biomass, only trees with DBH of ≥10 cm was recorded in the 

field. Within the range of DBH between 10 and 19 cm, a total of 368 trees was found out of 943 trees. The 

number of trees decreased with an increase in the size of DBH.  
 

Figure 13: Distribution of field-measured height 2018 

It can be recapitulated from the histogram that the maximum number of trees are shown in the height range 

between 16m and 20m while the lowest number of trees was found in the height range between 31m and 

35m. Only three trees were also found within the height range 0-5 m.  

3.2. Biometric Data 2017 

The biometric data (DBH and Height) for the year 2017 was calculated from the biometric data 2018 based 

on an annual increment of DBH and height. Diameter at breast height (DBH) and height of 943 of trees 

were calculated based on a yearly increase of DBH and height. The analyzed results of the calculated 

biometric data for the year 2017 in the form of descriptive statistics were presented in Table 5. 

 
Table 5: Descriptive Statistics for DBH and Height 

Descriptive Statistics for DBH and Height 

Nature of Statistics DBH (cm) Height (m) 

Mean 27.11 14.41 

Standard Error 0.55 0.17 

Median 22.71 14.22 

Mode 8.63 8.92 

Standard Deviation 16.75 5.08 

Sample Variance 280.49 25.82 

Kurtosis 1.96 -0.56 

Skewness 1.35 0.21 

Range 102.32 26.35 
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Nature of Statistics DBH (cm) Height (m) 

Minimum 8.63 6.3 

Maximum 110.95 29.97 

Sum 25565.65 13588.22 

Count 943 943 

Confidence Level (95.0%) 1.07 0.32 

 

From the results mentioned above, the average DBH was 27.11 cm while the minimum and maximum DBH 

were 8.63 cm and 110.95 cm respectively. The standard deviation of height was 16.75 cm. On the other 

hand, the average height was 14.41m, whereas the minimum and maximum heights were 6.3 m and 29.97 

m respectively. The standard deviation of height was 5.08m. 

3.3. Generation of DSM, DTM, Orthomosaic and CHM 2017  

The DSM, DTM and orthomosaic image were generated using Pix4D software through the structure from 

motion (SfM) and photogrammetric image matching techniques. Total 8 ground control points (GCPs) were 

used to provide spatial referencing for the 3D model and final output produced from UAV images. Total 

of 949 UAV images was used to produce DSM, DTM and orthomosaic. A total of 5.253 km2 area was 

covered by the 9 flight blocks while the average ground sampling distance was 9.99 cm. 97% of images were 

calibrated to produce dense point clouds. The mean RMS error was 0.046 m. The average point density was 

31.85 m3. The generated DSM, DTM and orthomosaic are shown in Figure 14 and Figure 15. 
   

  Figure 14: Generated orthomosaic 2017 
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Figure 15: Generated DSM and DTM 2017 

 CHM Generation from 2017 Data 

The CHM was generated by subtracting the DTM from the DSM. The pixel value of DTM was subtracted 

from the corresponding DSM by using the raster calculator of ArcMap 10.6.1 software to produce the UAV-

CHM. The minimum value of CHM was 0 (zero) while the highest value was 55 (fifty-five). The produced 

CHM are shown in  

Figure 16. 
 

 

Figure 16: Generated CHM 2017 
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 Extraction of Tree Height from CHM 2017 

A total of 569 upper canopy trees were identified from the UAV images out of 943 trees which were located 

within the 41 plots in the study area. UAV can only observe the upper canopy and lower canopy trees were 

out of AGB estimation. Individual tree height was extracted from the generated CHM.  

 Comparison of Field-measured and UAV-derived Tree Height 2017 

Descriptive statistics analysis was performed for UAV-derived height and field-measured height. The mean 

tree height from CHM was 17.52 m while the average height from the field-derived tree was 14.41 m. The 

standard deviation for UAV-derived height and field-measured height was 4.21 m and 4.01 m respectively. 

The minimum tree height was recorded 6.3 m in the field while the minimum tree height from the UAV-

CHM was 6.70 m. On the other hand, the maximum tree height in the field was found 29.97 m whereas the 

maximum tree height extracted from UAV-CHM was 31.18 m. The height difference of two maximum 

height was only 1.21 m. The distribution of UAV-derived tree height from CHM and descriptive statistics 

are presented in Figure 17 and Table 6. 
 

 

Figure 17: Distribution of UAV-derived height 2017 

Table 6: Descriptive statistics of UAV-derived tree height 

Descriptive Statistics of UAV-derived Tree Height 2017 

Nature of Statistics UAV-derived Tree Height (m) 

Mean 17.52 

Standard Error 0.18 

Median 17.48 

Mode 14.82 

Standard Deviation 4.21 

Sample Variance 17.70 

Kurtosis -0.22 
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 Accuracy of UAV-derived Tree Height with Field-derived Tree Height 2017 

A total of 569 identified trees were used to compare the UAV-derived height and field-measured height. 

The scatter plot demonstrated the relationship between UAV-derived height and field-measured height and 

showed a strong correlation of 0.92 and coefficient of determination (R2) of 0.89. The root mean square 

error (RMSE) was ±1.57 m which is equivalent to 9.24 % of the measured tree height from the field. The 

scatter plot and regression statistics are shown in Figure 18 and Table 7. 

 

Figure 18: Scatter plot of field-measured and UAV-derived tree height 

Table 7: Regression statistics for UAV-CHM estimated tree height and field-measured tree height 

Regression Statistics 

Multiple R 0.95 

R Square 0.90 

Adjusted R Square 0.90 

Standard Error (m) 1.33 

RMSE (m) 1.57 

Observations 569 

Nature of Statistics UAV-derived Tree Height (m) 

Skewness 0.20 

Range 23.46 

Minimum 6.70 

Maximum 31.18 

Sum 10148.35 

Count 569 

Confidence Level (95.0%) 0.35 

R² = 0.899
RMSE= 1.57 m
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3.4. Generation of DSM, DTM, Orthomosaic and CHM 2018 

The Pix4D software was also used in 2018 to produce DSM, DTM and orthomosaic. Total 12 evenly 

distributed ground control points (GCPs) were used to provide spatial referencing. The total 2250 images 

were captured by UAV, and the selected better-quality images were processed separately to get better DSM, 

DTM, and orthomosaic. While processing all images together, the quality of the produced DSM, DTM and 

orthomosaic was not good. The captured images were processed in four cluster according to the flight plan. 

The four set of orthomosaic, DSM and DTM were produced to extract reasonable height from the CHM 

and better CPA from orthomosaic. The tree height and CPA were extracted from the four set of produced 

output. In one block which covers maximum plots, a total of 666 UAV images was used to produce DSM, 

DTM and orthomosaic. A total of 1.48 km2 area was covered by that blocks while the average ground 

sampling distance was 4.92 cm. 87% of images were calibrated to produce dense point clouds. The mean 

RMS error was 0.006 m. The RMSE is quite good enough than the RMSE of 2017. The number of GCP 

was greater than the GCP of 2017, and the distribution of GCP was evenly in 2018 compared to the GCP 

of 2017. The average point density was 51.57 m3 which was almost double of the point density of 2017 

because the altitude of the UAV flight for the year 2017 was 350-370m while in 2018 the flight height was 

only 160-180m. The maximum and minimum value of the DSM and DTM for 2018 was different compared 

with the DSM and DTM generated from 2017 UAV images due to the quality of the images. The tilted 

images were not calibrated and produced distorted area in the edge of the orthomosaic, DSM and DTM. 

The raster value of DSM, DTM, and CHM was high for the data 2018 compared with the raster value of 

DSM, DTM, and CHM of 2017. The high value caused for some distorted portion of the DSM and DTM. 

Despite the highest value for some portion, it gave the reasonable CHM value for each tree. The generated 

DSM, DTM and orthomosaic in one set are shown in Figure 19 and  Figure 20. 

Figure 19: Generated orthomosaic 2018 
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 Figure 20: Generated DSM and DTM 2018 

 CHM Generation from 2018 Data 

The CHM was also generated from the produced DSM and DTM of 2018. The minimum value of CHM 

was 0 (zero) while the highest value was 60 (sixty). The produced CHM are shown in Figure 21. The value 

of CHM is different from the value of CHM generated for 2017. The reason for variation for the growth of 

trees as well as the effect of point cloud density and the quality of images. 

   Figure 21: Generated CHM 2018 
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 Extraction of Tree Height from CHM 2018  

A total of 590 upper canopy trees were identified from the orthomosaic of 2018 while 569 trees were 

identified from the orthomosaic of 2017. The additional only 21 trees were identified in 2018 because these 

trees were not visible in 2017 due to their lower height. The difference of the number of trees between 2017 

and 2018 was only 21 because of the only one-year duration.  

 Comparison between UAV-derived Tree Height and Field-based Tree Height 2018 

The average tree height from CHM was 17.75 m while the mean field-measured tree height was found 15.51 

m. The difference between the two average height was calculated at 2.24 m while the field-measured tree 

height was lower than UAV-derived tree height. The minimum and maximum extracted tree height from 

CHM were 7.10 m and 31.50m. The height difference of two maximum height was only 1.30 m. The 

distribution of UAV-derived tree height for the year 2018 was shown by descriptive statistics and histogram 

(see Figure 22 and Table 8). 

 

 
 Figure 22: Distribution of UAV-derived tree height 2018 

Table 8: Descriptive statistics of UAV Height 2018 

Descriptive Statistics of UAV Height 2018 

Nature of Statistics UAV-derived Tree Height (m) 

Mean 17.75 

Standard Error 0.18 

Median 17.65 

Mode 18.5 

Standard Deviation 4.29 

Sample Variance 18.36 

Kurtosis -0.33 

Skewness 0.08 

Range 24.4 
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Nature of Statistics UAV-derived Tree Height (m) 

Minimum 7.1 

Maximum 31.5 

Sum 10473.47 

Count 590 

Confidence Level (95.0%) 0.35 

 Accuracy of UAV-derived Tree Height with Field-derived Tree Height 2018 

A total of 590 identified trees were used for descriptive statistics as well as making a comparison with field-

measured tree height. The same number of trees was considered to compare the UAV-derived tree height 

and field-measured tree height. The scatter plot demonstrated the relationship between UAV-derived height 

and field-measured height and showed a strong correlation of 0.93 and coefficient of determination (R2) of 

0.86. The root mean square error (RMSE) was ±1.58 m which is equivalent to 8.94 % of the measured tree 

height from the field.  
 

 

Figure 23: Scatter plot of UAV-derived and field-measured tree height 2018 

Table 9: Regression statistics for UAV and field height in 2018 

Regression Statistics 

Multiple R 0.93 

R Square 0.86 

Adjusted R Square 0.86 

Standard Error (m) 1.59 

Observations 590 
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Moreover, F-test was performed to determine if the estimated tree height from the UAV-CHM had an equal 

variance or unequal variance. The results are shown in the Table 10. 

 
Table 10: F-test Two-sample for Variances between UAV-CHM tree height and field-measured tree height 

Statistics UAV-CHM tree height Field-measured tree height 

Mean 17.75 17.72 

Variance 18.36 16.07 

Observations 590 590 

df 589 589 

F 1.14 
 

P(F<=f) one-tail 0.06 
 

F Critical one-tail 1.15 
 

 Decision: F-Statistics < F-Critical (P >0.05): Equal Variance 

 

From the results of the F-test, it can be recapitulated that there was an equal variance between estimated 

tree height from UAV-CHM and field-derived tree height, because the P-value (0.06) was greater than 0.05 

at α= 0.05 and F-Statistics < F-Critical. 

 

Based on the results of the F-test, the t-test assuming equal variance was conducted to determine if there 

was a statistically significant difference or not between estimated tree height from UAV-CHM and field-

derived tree height. The results are shown in Table 11. 

Table 11:t-Test: Two-Sample equal variances for estimated tree height from UAV-CHM and field-height 

Statistics UAV-CHM tree height Field-measured tree height 

Mean 17.75 17.72 

Variance 18.36 16.07 

Observations 590 590 

Pooled Variance 17.22 
 

Hypothesized Mean Difference 0 
 

df 1178 
 

t Stat 0.14 
 

P(T<=t) one-tail 0.44 
 

t Critical one-tail 1.65 
 

P(T<=t) two-tail 0.89 
 

t Critical two-tail 1.96 
 

 Decision: t-Statistics < t-Critical (P > 0.05): The null hypothesis was accepted. So, there was no 

significant difference between two means. 

 

From the results of the t-test, it can be concluded that there was no statistically significant difference between 

estimated tree height from UAV-CHM and field-derived tree height because the P-value is greater than 0.05 

at α= 0.05 and t-Statistics < t-Critical. 
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3.5. Model Development Using CPA and DBH 

To develop the relationship between CPA and field-measured DBH, the crowns of the trees were delineated 

on the ortho-mosaic image based on visual image interpretation. From the 41 plots, the trees were randomly 

selected to develop and validate the model. Out of total randomly selected trees, 60% of trees were used to 

establish the model while 40% of the chosen trees were used to validate the model. CPA of trees which had 

one to one match with field-derived DBH were used to develop the model as well as to validate the model. 

The developed four models (linear, logarithmic, quadratic and power) were compared based on RMSE and 

coefficient of determination (R2). 

 Model Development between CPA and DBH for the Data of 2017 

The manually delineated CPA and corresponding field DBH of 75 trees were chosen from the randomly 

selected 123 trees which were picked from the 41 plots to model the relationship between CPA and DBH. 

The trees were also selected in such a way that covers all size classes of CPA and DBH. The results of the 

developed model are shown in Table 12 and Figure 24. 
 

Table 12: Model Development for the Predicted DBH 

Model Equation R2 RMSE 

Linear DBH (cm)= 0.5134*CPA+ 13.872 0.8503 8.90 

Logarithmic DBH (cm)= 20.853*ln (CPA)-33.774 0.7493 11.52 

Power DBH (cm)= 4.5835* CPA0.5636 0.7996 9.39 

Quadratic DBH (cm)= -0.0009* CPA2+0.6349*CPA+11.465 0.8543 8.78 

 
 

 
 

Figure 24: Quadratic model between CPA and DBH, 2017 
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From the results of the model development between CPA and DBH, it can be recapitulated that among all 

models, the linear and quadratic models had the very nearest predictive power and errors. Among all models, 

the quadratic model had the highest predictive power and the least errors. Considering the highest predictive 

power and lowest RMSE, the quadratic model was selected for the prediction of DBH.  

 Model Validation for the Data 2017 

The predicted DBH was validated using observed DBH by scatter plot. The model was validated using 48 

(40% of selected trees) predicted and observed DBH those were chosen randomly from 123 trees from 41 

plots. The value of the coefficient of determination (R2) was found at 0.89 (see Figure 25). The value of R2 

means that 89% of the field DBH was explained by the quadratic model. The test of goodness of fit was 

performed using RMSE that value was 8.22 cm. 

 
Figure 25: Scatter plot for model validation 2017 

 Model Development between CPA and DBH for the Data 2018 

The CPA and corresponding DBH of 70 trees were chosen from the randomly selected 123 trees from the 

41 plots to model the relationship between CPA and DBH. The results of the developed model are shown 

in the Table 13 and Figure 26. 

 
Table 13: Model Development for the predicted DBH 

Model Equation R2 RMSE 

Linear DBH (cm)= 0.5263*CPA+ 15.669 0.7768 8.29 

Logarithmic DBH (cm)= 18.693*ln (CPA)-27.037 0.7423 8.71 

Power DBH (cm)= 4.9912* CPA0.5497 0.7339 8.03 

Quadratic DBH (cm)= -0.0023* CPA2+0.7705*CPA+11.531 0.7872 8.05 

R² = 0.8914
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[     

Figure 26: Quadratic model between CPA and DBH, 2018 

From the results of the model development between CPA and DBH, it can be recapitulated that the linear 

and quadratic models had the closest predictive power and errors like an established model for 2017. Among 

all models, the quadratic model had the highest predictive power and reasonable errors. Considering the 

highest predictive power and reasonable RMSE, the quadratic model was selected for the prediction of 

DBH.  

 Model Validation for the Data 2018 

The predicted DBH was validated using observed DBH by scatter plot. The model was validated using 48 

(40% of selected trees) predicted and observed DBH those were selected randomly from 118 trees from 41 

plots. The value of the coefficient of determination (R2) was found at 0.86 (see Figure 27). The value of R2 

means that 86% of the field DBH was explained by the quadratic model. The test of goodness of fit was 

performed using RMSE that value was 8.65 cm. 
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Figure 27: Model validation for observed DBH and predicted DBH 2018 

 Estimation of AGB and AGC 

UAV-based and field-based aboveground biomass (AGB) and aboveground carbon (AGC) were calculated 

for the year 2017 and 2018. The tree height and DBH recorded in 2018 were used as input in the allometric 

equation to assess biomass and carbon for the year 2018. On the other hand, the modeled tree height and 

DBH of 2017 based on annual increment were used as input in the allometric equation for the calculation 

of field-based modelled AGB and AGC for the year 2017. The UAV-CHM and predicted DBH based on 

the model were used as input for the assessment of UAV-based AGB and AGC. The biometric data was 

collected from 41 plots covering every variation in the study area. The allometric equation developed by 

Chave et al. (2014) was used to estimate the AGB.  

3.5.5.1. Plot-wise Estimation of Field-based/Modelled AGB/ AGC and UAV-based AGB/ AGC 2017 

Based on the field measured parameters, the average plot-based AGB was assessed 258.71 Mg ha-1 while 

the UAV-based AGB was estimated at 235.37 Mg ha-1. The difference between two means of field-based 

and UAV-based AGB was found 23.34 Mg ha-1. The minimum and maximum field-based AGB was found 

71.23 Mg ha-1 and 585.46 Mg ha-1respectively. On the other hand, the average field-based carbon was 

estimated 129.36 Mg ha-1 whereas, the lowest and highest carbon was assessed 35.62 Mg ha-1 and 292.73 Mg 

ha-1 respectively. The minimum and maximum UAV-based AGB was assessed 129.49 Mg ha-1 and 349.27 

Mg ha-1 respectively. On the other hand, the average UAV-based carbon was estimated 117.69 Mg ha-1 

whereas, the lowest and highest carbon was assessed 64.75 Mg ha-1 and 174.64 Mg ha-1 respectively.  
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3.5.5.2. Comparison of Field-based/Modelled AGB/AGC and UAV-based AGB/AGC 2017 

The field-based AGB was found higher than the estimated UAV-based AGB because the number of trees 

was higher to calculate the field-based AGB than the number of trees for estimating UAV-based AGB. All 

trees within the plots were considered to assess field-based AGB while some of the trees were missing in 

every plot to estimate UAV-based AGB because the UAV can only observe the upper canopy. Out of 41 

plots, the UAV-based AGB was higher than field-based AGB in 18 plots. The amount of UAV-based AGB 

is dependent on the predicted DBH that was calculated based on CPA using the quadratic model. The 

comparison between field-based AGB/AGC and UAV-based AGB/AGC are presented in Figure 28 and 

Appendix 5. 

 
Figure 28: Comparison between field-based and UAV-based AGB 2017 

3.5.5.3. Accuracy Assessment of UAV-based AGB 2017 

The accuracy assessment was performed for UAV-based AGB 2017 while the field-based AGB with the 

same number of trees which were identified from the UAV images for the year 2017 was used as reference 

AGB. The scatter plot, regression and correlation statistics, F-test and t-test were performed to assess the 

significance of the relationship between field-based AGB and UAV-based AGB. The scatter plot 

demonstrated the relationship between UAV-based AGB and Field-based AGB and showed a strong 

correlation of 0.92 and coefficient of determination (R2) of 0.85. The root mean square error (RMSE) was 

42.35 Mg ha-1 which are equivalent to 18.27 % of the field-based AGB. The scatter plot, regression statistics, 

F-test and t-test are shown in Table 14, 15,16 and Figure 29. 
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Figure 29: Scatter plot for accuracy assessment between field-based/modelled and UAV-based AGB 2017 

Table 14: Regression statistics for UAV-based AGB and Field-based AGB 2017 

 

Moreover, F-test was performed to determine if the estimated AGB from the UAV had an equal variance 

or unequal variance. The results of F-test are shown in Table 15. 

Table 15: F-Test Two-Sample for Variances for UAV-based AGB and Field-based/modeled AGB 

Statistics Field-based AGB UAV-based AGB 

Mean 231.81 235.37 

Variance 8404.10 3768.29 

Observations 41 41 

df 40 40 

F 2.23 
 

P(F<=f) one-tail 0.01 
 

F Critical one-tail 1.69 
 

 Decision: F-Statistics > F-Critical (P <0.05): Unequal Variance 

Regression Statistics 

Multiple R 0.92 

R Square 0.85 

Adjusted R Square 0.84 

Standard Error 24.47 

Observations 41 

R² = 0.8451
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From the results of the F-test, it should be recapitulated that there was an unequal variance between UAV-

based AGB and field-derived/modelled AGB because the P-value was smaller than 0.05 at α= 0.05 and F-

Statistics > F-Critical. 

 
Table 16:t-Test: Two-Sample Assuming Unequal Variances for UAV-based AGB and Field-based AGB 

Statistics Field-based AGB UAV-based AGB 

Mean 231.81 235.37 

Variance 8404.10 3768.29 

Observations 41 41 

Hypothesized Mean Difference 0 
 

df 70 
 

t Stat -0.21 
 

P(T<=t) one-tail 0.42 
 

t Critical one-tail 1.67 
 

P(T<=t) two-tail 0.84 
 

t Critical two-tail 1.99 
 

 Decision: t-Statistics < t-Critical (P > 0.05): The null hypothesis was accepted. So, there is no 

significant difference between two means. 

 

From the results of the t-test, it can be concluded that there was no statistically significant difference between 

estimated AGB from UAV data and field-derived/modelled AGB because the P-value was greater than 0.05 

at α= 0.05 and t-Statistics < t-Critical. Therefore, there was no significant difference between AGB/ carbon 

stock estimated from UAV imagery and modelled AGB calculated from modeled DBH and height. 

3.5.5.4. Plot-wise Estimation of Field-based and UAV-based AGB and AGC 2018 

The average field-based AGB was assessed 278.93 Mg ha-1 while the minimum and maximum AGB was 

84.44 Mg ha-1 and 612.01 Mg ha-1 respectively. On the other hand, the average field-based carbon was 

estimated 139.47 Mg ha-1 whereas, the lowest and highest carbon was assessed 42.22 Mg ha-1 and 306.00 Mg 

ha-1 respectively. The average UAV-based AGB was estimated 248.01 Mg ha-1 while the minimum and 

maximum AGB was 142.55 Mg ha-1 and 369.00 Mg ha-1 respectively. On the other hand, the average UAV-

based AGC was estimated 124.00 Mg ha-1 whereas, the lowest and highest carbon was assessed 71.28 Mg 

ha-1 and 184.50 Mg ha-1 respectively.  
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3.5.5.5. Comparison of Field-based AGB and UAV-based AGB 2018 

Like the comparison of 2017, the field-based AGB was generally higher than the estimated UAV-based 

AGB because the number of trees was higher to calculate field-based AGB than the UAV-based AGB. In 

14 plots, the UAV-based AGB was higher than the field-based AGB out of 41 plots. The variation of the 

amount of UAV-based AGB is dependent on the predicted DBH that was calculated based on CPA using 

the quadratic model. The detailed results of the comparison between field-based AGB/AGC and UAV-

based AGB /AGC are illustrated in Figure 30 and Appendix 6. 

 
Figure 30: Comparison between field-based and UAV-based AGB 2018 

3.5.5.6. Accuracy Assessment of UAV-based AGB 2018 

The accuracy assessment was performed for UAV-based AGB 2018 while the field-based AGB with the 

same trees which were identified from the UAV images for the year 2018 was used as reference AGB. The 

scatter plot, regression and correlation statistics, F-test and t-test were performed to assess the significance 

of the relationship between field-based AGB and UAV-based AGB. The scatter plot demonstrated the 

relationship between UAV-based AGB and Field-based AGB and showed a strong correlation of 0.90 and 

the coefficient of determination (R2) of 0.82. The root mean square error (RMSE) was 50.00 Mg ha-1 which 

are equivalent to 19.84 % of the Field-based AGB. The scatter plot, regression statistics, F-test and t-test 

are shown in Table 17, 18,19 and Figure 31. 
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Figure 31: Scatter plot for field-based AGB and UAV-based AGB 2018 

Table 17: Regression statistics for field-based AGB and UAV-based AGB 2018 

Regression Statistics 

Multiple R 0.90 

R Square 0.82 

Adjusted R Square 0.81 

Standard Error 26.64 

Observations 41 

 

Moreover, f-test was performed to determine if the estimated AGB from the UAV had an equal variance 

or unequal variance. The results of F-test are shown in Table 18. 

 
Table 18: F-test assuming variances between field-based and UAV-based AGB 2018 

Statistics Field-based AGB UAV-based AGB 

Mean 251.98 248.01 

Variance 9689.89 3757.46 

Observations 41 41 

df 40 40 

F 2.58 
 

P(F<=f) one-tail 0.002 
 

F Critical one-tail 1.69 
 

 Decision: F-Statistics > F-Critical (P <0.05): Unequal Variance 

R² = 0.8159
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From the results of the F-test, it can be recapitulated that there was an unequal variance between estimated 

AGB from UAV and field-derived AGB, because the P-value was smaller than 0.05 at α= 0.05 and F-

Statistics > F-Critical. 
 
Table 19: t-Test: Two-Sample Assuming Unequal Variances between Field-based AGB and UAV-based AGB 2018 

Statistics Field-AGB UAV-AGB 

Mean 251.98 248.01 

Variance 9689.89 3757.46 

Observations 41 41 

Hypothesized Mean Difference 0 
 

df 67 
 

t Stat 0.22 
 

P(T<=t) one-tail 0.41 
 

t Critical one-tail 1.67 
 

P(T<=t) two-tail 0.83 
 

t Critical two-tail 2.00 
 

 Decision: t-Statistics < t-Critical (P > 0.05): The null hypothesis was not rejected. So, there is no 

significant difference between two means. 

 

From the results of the t-test, it can be concluded that there was no significant difference between estimated 

AGB from UAV and field-based AGB, because the P-value was greater than 0.05 at α= 0.05 and t-Statistics 

< t-Critical. Therefore, there is no significant difference between AGB/ carbon stock estimated from UAV 

imagery and AGB calculated from field-derived data. 
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 Comparison of UAV-based AGB 2017 and UAV-based AGB 2018 

The UAV-based AGB for the year 2017 and 2018 were estimated and assessed for the 41 plots. The average 

UAV-based AGB for 2017 was estimated 235.37 Mg ha-1 while the mean UAV-based AGB for the year 

2018 was assessed 248.01 Mg ha-1.  The difference between two means of UAV-based AGB for the year 

2017 and 2018 was 12.64 Mg ha-1. For the year 2017, the minimum 129.49 Mg ha-1 AGB was assessed while 

the UAV-based AGB for the year 2018 was estimated 142.55 Mg ha-1. On the other hand, the maximum 

349.27 Mg ha-1 AGB was estimated for the year 2017 whereas the UAV-based maximum 369.00 Mg ha-1 

AGB was assessed for the year 2018. The plot-wise comparison of UAV-based AGB 2017 and UAV-based 

AGB 2018 is presented in Figure 32. 

 
 

 

Figure 32: Comparison between UAV-based AGB 2017 and 2018 
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 Assessment of Carbon Sequestration 

The UAV-based aboveground carbon for the year 2017 and 2018 was estimated and assessed for the 41 

plots. The average UAV-based AGC for 2017 was estimated 117.68 Mg ha-1 while the mean UAV-based 

AGC for the year 2018 was assessed 124.00 Mg ha-1.  The difference between two means of UAV-based 

AGC for the year 2017 and 2018 was 6.32 Mg ha-1. For the year 2017, the minimum 64.74 Mg ha-1 AGC 

was assessed while the UAV-based AGC for the year 2018 was estimated 71.28 Mg ha-1. On the other hand, 

the maximum 174.64 Mg ha-1 AGC was estimated for the year 2017 whereas the UAV-based maximum 

184.50 Mg ha-1 AGC was assessed for the year 2018. The total amount of sequestered carbon for one year 

was 6.32 Mg ha-1. The plot-wise distribution of carbon stock is shown in Figure 33. 

  
 

 

Figure 33: Comparison between UAV-based AGC 2017 and 2018 
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3.6. Effect of Error of Height on AGB Estimation for 2018 

The height obtained from the field was used as a reference height to assess the effect of the error of height 

on aboveground biomass estimation. The root mean square error (RMSE) was ±1.58 m, and the percentage 

of RMSE was calculated 8.94 % of the measured tree height from the field. The calculated average UAV-

based AGB was 248.01 Mg ha-1 while the minimum and maximum AGB were 142.55 Mg ha-1 and 369.00 

Mg ha-1 respectively without inflation and deflation of height. Based on the results of the percentage of 

RMSE, UAV-based AGB was assessed with inflated and deflated height. Firstly, 8.94% of CHM height was 

inflated with the original height for each tree, and then plot-wise AGB was estimated keeping the same 

DBH and wood density value. The calculated mean AGB was 269.83 Mg ha-1 while the minimum and 

maximum were 154.98 Mg ha-1 and 401.17 Mg ha-1 respectively. Secondly, 8.94% height was deflated with 

the UAV-CHM original height and then plot-wise AGB was estimated. The mean UAV-based AGB was 

assessed 226.51 Mg ha-1, and the minimum and maximum UAV-based AGB were 130.10 Mg ha-1 and 336.77 

Mg ha-1 respectively. The difference of two means of estimated AGB with inflated height and AGB without 

inflated/deflated height was 21.82 Mg ha-1. On the other hand, the difference of two means of estimated 

AGB with deflated height and AGB without inflated/deflated height was 21.50 Mg ha-1. The average 

difference between AGB without inflated/deflated height and with inflated/deflated height was found 21.66 

Mg ha-1 which is equivalent to 8.73% of UAV-based AGB without inflation/deflation of height. The 

comparison of UAV-based AGB with and without inflation and deflation of height is shown in Figure 34. 

 

 
 

Figure 34: UAV-AGB with and without height inflation and deflation 
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Single factor/ one-way ANOVA test was performed to determine if there was a significant difference or 

not among original estimated AGB from the UAV, AGB estimated with inflated height, and the AGB 

estimated with deflated height. The results of the ANOVA test are shown in Table 20. 

Table 20: Single factor/ one-way ANOVA test among AGB with and without inflated and deflated height 

SUMMARY 

Groups Count Sum Average Variance 

AGB without inflation and deflation of height 41 10168.37 248.01 3757.46 

AGB with 8.94% inflated height 41 11062.85 269.83 4454.54 

AGB with 8.94% deflated height 41 9287.01 226.51 3139.21 

ANOVA 

Source of Variation SS df MS F P-value F crit 

Between Groups 38459.29 2 19229.64 5.08 0.01 3.07 

Within Groups 454048.17 120 3783.73       

Total 492507.46 122         

 

From the results of the single factor/ one-way ANOVA test, it can be concluded that there was a statistically 

significant difference among original estimated UAV-based AGB, UAV-based AGB with inflated height, 

and UAV-based AGB with deflated height because the P-value (0.01) was smaller than 0.05 at α= 0.05 and 

F-Statistics > F-Critical. 

 

In conclusion, it could be mentioned that there was a significant effect of the error of height on aboveground 

biomass and carbon estimation using UAV-CHM in a tropical forest.  

3.7. Effect of CPA Delineation Error on AGB Estimation 

The range of variation of biomass due to CPA delineation error was evaluated based on 1%, 5%, and 10% 

inflation and deflation of delineated CPA. The range of variation of AGB due to 1%, 5%, and 10% inflated 

and deflated CPA delineation is presented in Table 21. 

 
Table 21: Range of variation of AGB due to CPA delineation error 

Percentage of CPA 
delineation error 

Range of Variation of 
AGB (Mg/ha) 

Average variation from 
original AGB without 

inflation/deflation 
AGB (Mg/ha) 

Percentage of 
Variation 

1% 2.36 – 7.66 2.47 0.99% 

5% 11.79 – 38.27 12.37 5.05% 

10% 23.56 – 76.45  24.70 9.96% 

 
 

Moreover, the single factor/ one-way ANOVA test was conducted for estimated AGB by 1%, 5%, and 10% 

inflated and deflated CPA to evaluate the significance of difference among the estimated AGB with and 

without inflated and deflated CPA. The results of the ANOVA test and the estimated amount of AGB with 

and without inflated and deflated CPA are presented in Table 22, 23, 24 and Figure 35, 36, 37. 
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Table 22: Single factor/one-way ANOVA test among AGB without and with 1% inflated and deflated CPA 

SUMMARY 

Groups Count Sum Average Variance 

AGB without inflated/deflated CPA 41 10168.37 248.01 3757.46 

AGB with 1% inflated CPA 41 10269.63 250.48 3825.60 

AGB with 1% deflated CPA 41 10066.76 245.53 3689.48 

ANOVA 

Source of Variation SS df MS F P-value F crit 

Between Groups 501.9018014 2 250.95 0.07 0.94 3.07 

Within Groups 450901.6757 120 3757.51 
   

Total 451403.58 122 
    

 

From the results of the single factor/ one-way ANOVA test, it can be concluded that there was no 

statistically significant difference among the original estimated UAV-based AGB, UAV-based AGB with 

1% inflated CPA, and UAV-based AGB with 1% deflated CPA because the P-value (0.94) was greater than 

0.05 at α= 0.05 and F-Statistics < F-Critical. 

 
 

 
Figure 35: Estimated AGB with 1% inflated and deflated CPA 
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Table 23:  Single factor/one-way ANOVA test among AGB without and with 5% inflated and deflated CPA 

SUMMARY 

Groups Count Sum Average Variance 

AGB without inflated/deflated CPA 41 10168.37 248.01 3757.46 

AGB with 5% inflated CPA 41 10671.20 260.27 4099.61 

AGB with 5% deflated CPA 41 9657.24 235.54 3419.43 

ANOVA 

Source of Variation SS df MS F P-value F crit 

Between Groups 12538.40 2 6269.20 1.67 0.19 3.07 

Within Groups 451060.14 120 3758.83 
   

Total 463598.54 122 
    

 

From the results of the single factor/ one-way ANOVA test, it can be recapitulated that there was no 

statistically significant difference among the original estimated UAV-based AGB, UAV-based AGB with 

5% inflated CPA, and UAV-based AGB with 5% deflated CPA because the P-value (0.19) was greater than 

0.05 at α= 0.05 and F-Statistics < F-Critical. 

 

 

 
Figure 36: Estimated AGB with and without % inflated and deflated CPA 
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Table 24: Single factor/one-way ANOVA test among AGB without and with 10% inflated and deflated CPA 

 

SUMMARY 

Groups Count Sum Average Variance 

AGB without inflated/deflated CPA 41 10168.37 248.01 3757.46 

AGB with 10% inflated CPA 41 11164.64 272.31 4444.73 

AGB with 10% deflated CPA 41 9139.08 222.90 3086.90 

ANOVA 

Source of Variation SS df MS F P-value F crit 

Between Groups 50039.40 2 25019.70 6.65 0.002 3.07 

Within Groups 451563.70 120 3763.03 
   

Total 501603.10 122 
    

 

From the results of the single factor/ one-way ANOVA test, it can be concluded that there was a statistically 

significant difference among the original estimated UAV-based AGB, UAV-based AGB with 10% inflated 

CPA, and UAV-based AGB with 10% deflated CPA because the P-value (0.002) was smaller than 0.05 at 

α= 0.05 and F-Statistics > F-Critical. 
 

 
Figure 37: Estimated AGB with and without 10% inflated and deflated CPA 
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4. DISCUSSION 

4.1. Descriptive Analysis of Tree Height and DBH 

In this study, the tree height was recorded using Leica DISTO 510 which uses laser technology to measure 

the range up to 200m. This equipment has ±1mm accuracy to measure distance up to 200m. However, it 

has also a measurement error in the multi-layer complex tropical forest. Sadadi (2016) stated in his study 

that the handheld Leica DISTO 510 has the threshold accuracy of ±50 cm while the Airborne Lidar has the 

threshold accuracy of ±10cm. The data collection by airborne Lidar is expensive. On the other hand, Leica 

DISTO is very handy to collect data. Despite having the error in tree height measurement by Leica DISTO, 

it is measurement, but the UAV CHM is just estimation. 50 cm error does not affect much on AGB 

estimation. Considering the cost-effectiveness, the Leica DISTO can become the best alternative. The DBH 

was measured using DBH tape that was precise and accurate. The results show that the field-measured DBH 

was not normally distributed and was positively skewed because the trees with DBH equal to or greater than 

10 cm were considered only. The similar study was done by Mtui (2017) in tropical forest at Ayer-Hitam in 

Malaysia found that the DBH was not normally distributed and it was positively skewed. The trees with 

DBH is less than 10 cm cannot contribute much to the total aboveground biomass assessment (Brown, 

2002). Within the size of DBH between 10 and 20 cm, the maximum number of trees were found out of all 

recorded trees. The frequency distribution curves of field-measured DBH was L-shaped, and the pattern of 

the frequency was exponentially toward the larger DBH classes. The result of this study is similar to the 

result of the study conducted by Terakunpisut et al. (2007). The number of trees was decreased with the 

increase in the size of DBH meaning the number of big trees was minimal compared to the trees with small 

size of DBH. The results of the field-measured tree height showed that the curve was almost normally 

distributed, and the skewness value was 0.19 because the maximum trees were fallen under the height class 

16-20 m that was mid-level class amongst of all height class. The results of the tree height derived from 

UAV-CHM for the year 2017 and 2018 appeared to follow the normal distribution curve while the value of 

skewness was 0.20 and 0.08 respectively (see Figure 38 and Figure 39). The similar study was done by 

Mtui (2017) in tropical forest at Ayer-Hitam in Malaysia found the normal distribution of the field-measured 

tree height and UAV-derived tree height.  

Figure 38: Distribution curve of UAV-derived tree height 2017 
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Figure 39: Distribution curve of UAV-derived tree height 2018 

4.2. Model Development and Validation Between CPA and DBH 

The positive and significant relationship was found between crown projection area and diameter at breast 

height in this study like other similar studies conducted in the tropical forest. The quadratic model was 

chosen among four models due to its highest predictive power and lowest RMSE. In the dominant forest, 

the non-linear regression (quadratic) model was preferred because the growth pattern of CPA and DBH 

does not follow the linear relationship between CPA and DBH (Kuuluvainen, 1991; Köhl et al., 2006). The 

non-linear relationship is found between CPA and DBH in the forest with natural conditions where high 

competitions exist among the species as the growth of CPA slow down compared to the growth of DBH 

(Shimano, 1997). In the dense forest ecosystem, the non-linear relationship between CPA and DBH are 

found where the trees possessed DBH larger than 40 cm (Hemery et al., 2005). The study conducted by 

Odia (2018) in the tropical forest of Malaysia found the highest coefficient of determination (R2) and lowest 

RMSE for the quadratic model to establish the relationship between CPA and DBH. It was observed from 

the distribution of DBH class in the study area, around 20% of total recorded trees having the DBH more 

than 40cm. The growth of the CPA of these trees is slow compared to the growth of DBH of the same tree. 

The study area is a dense natural forest having a large diversity of species and CPA grows slowly. This was 

one of the reasons for finding a non-linear relationship between CPA and DBH. The research done by Odia 

(2018) found that almost 20% of trees having DBH more than 40cm in the tropical forest. In this study, the 

model was also validated and found a strong correlation and coefficient of determination for both years like 

the study conducted Odia (2018) in three sites of tropical forest.  
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4.3. Estimation of AGB and AGC 

The field-based and UAV-based aboveground biomass (AGB) and aboveground carbon (AGC) were 

calculated and estimated for the year 2017 and 2018. There was a difference between field-based AGB and 

UAV-based AGB for both years, and there were many reasons for the difference. One of the reasons was 

identified that the UAV could only observe the upper canopy. 943 trees were measured in the field, but only 

569 trees were found on the orthomosaic of 2017 and 590 trees on the one for 2018. 374 trees were not 

considered in the estimation of the UAV-derived biomass for the year 2017 while the 353 trees were missing 

in 2018 for biomass. Although many trees are missing from the overall estimation of biomass, the difference 

between field-based AGB and UAV-based AGB was not significant because all the missing trees contain 

small DBH and height, so they contributed less in overall biomass assessment. 

 Reason for Variation of Amount of AGB Across the Plots 

The plot-wise AGB was estimated for the 41 plots. Among 41 plots, the difference between the highest and 

lowest AGB was 226.45 Mg ha-1. In plot with lowest AGB, the maximum height was estimated 17.84m 

while the average height was found 14.43 m. The highest CPA was found 59.68 Sq.m2 while the average 

CPA was 28.46 Sq.m2. On the other hand, the plot with the highest AGB had the highest height 26.50 m 

while the mean height was estimated at 18.51 m. The highest CPA was calculated 129.33 Sq.m2 whereas the 

average size of the CPA was found 44.86 Sq.m2. The difference in average height between the two plots was 

4.08m. On the other hand, the difference in the average CPA between the two plots was 16.4 Sq.m2. The 

variation of the amount of AGB across the plots depends on the tree height, CPA and the number of trees 

also. Among all factors, the CPA influence more on biomass variation across the plots because the predicted 

DBH was calculated based on CPA. The predicted DBH was the input in the allometric equation developed 

by Chave et al. (2014) that used square power on DBH. Tree height also influences the variation of AGB 

estimation. The photographs and screenshot of the plots are presented in Figure 40 (a)-(b) and Figure 41 

(a)-(b). 

 

 
Figure 40: (a) Plot with big tree and (b) Plot with small tree 

b a 
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Figure 41: (a) Tree with small CPA and (b) Tree with big CPA 

 Comparison of AGB and AGC Assessment with Other Studies 

The estimation of aboveground biomass and carbon stock is varied in the tropical forest due to the variation 

of environmental conditions, allometric equation, type of sensor used, methods applied, management 

strategy of the forest, species types, size of trees, etc. (Sium, 2015). According to the assessment of IPCC 

(2006), the range of the estimated amount of aboveground biomass in the tropical forest of Asia is 120-680 

Mg ha-1. The result of this study was within the estimated range of the IPCC. The results of the different 

studies conducted in different forests by different researcher are presented in Table 25. 
 

Table 25: Aboveground biomass and carbon stock in different forests 

From the table mentioned above, it can be concluded that the estimated amount of AGB in this study was 

within the range of AGB assessed by other studies. 
  

Country/Region Tropical rainforest Dry evergreen forest Mixed deciduous forest 

AGBM 

(Mg ha-1) 

C-stock 

(Mg ha-1) 

AGBM 

(Mg ha-1) 

C-stock 

(Mg ha-1) 

AGBM 

(Mg ha-1) 

C-stock 

(Mg ha-1) 

Source: Adapted from Terakunpisut et al., (2007) 

Thailand 275.46 137.73 140.58 70.29 96.28 48.14 

Malaysia 225 - 446 112.5- 223 - - - - 

Cameron 238- 341 119- 170.5 - - - - 

Sri Lanka 153- 221 76.5- 110.5 - - - - 

Source: Toma et al., (2017) 

East Kalimantan, 
Indonesia 

279 139.5 - - - - 

Source: This study 

East Kalimantan, 
Indonesia (2017) 

235.37 117.69 - - - - 

East Kalimantan, 
Indonesia (2018) 

248.01 124.00 - - - - 

a b 
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4.4. Assessment of Carbon Sequestration 

The UAV-based aboveground carbon for the year 2017 and 2018 was estimated and assessed for the 41 

plots. The total amount of sequestered carbon for one year was 6.32 Mg ha-1. Sedjo (1989) applied a universal 

average rate of 6.24 Mg C/ha/yr in his study which was very much close to the result of this study. A study 

conducted by Diana et al. (2002) found the amount of sequestered carbon for the species Acacia mangium, 

Eucalyptus pelitta, and Gmelina arborea were 5.9-9.9, 7.1-7.2, 8.3-12.3 Mg ha-1y-1. The result of this study was 

similar to and within the range of AGB of these three species. A study conducted on the tropical forest by 

Brown, (1992) produced a table mentioning the amount of sequestering carbon assessed by the different 

researcher in different types of tropical forest (see Table 26). 

 
Table 26: Carbon sequestration in different tropical forests 

Forest Type Dry Matter Carbon Studied By Source 

Mg/ha/year Mg/ha/year 

Tropical rainforest 7.75- 10.19 3.88- 5.10 Bolin et al. (1986) 
(various sites) 
 

Source: Adapted 
from Brown, 
(1992) 
 

Seasonal tropical forest 5.50- 7.20 2.75- 3.60 

Rainforest (Manaus) 15.00 7.50 Cannell (1982) 

Rainforest (Ivory Coast) 12.73- 24.60 6.36- 12.30 

Amazonian rainforest 
(mean) 

12.66 6.33 Jordan (1989) 

Slash and burn (after 3 
years)  

5.26 2.62 

 

From the table, it can be mentioned that the estimated amount of sequestered carbon in this study was very 

much close to the estimated amount of sequestered carbon in Amazonian rainforest and rainforest of Ivory 

Coast. The assessed sequestered carbon in this study was higher than the range of sequestered carbon 

estimated for tropical rainforest and seasonal tropical rainforest by Bolin et al. (1986) in various sites. This 

variation occurred due to different forest structure, different tree species and the size of the trees, etc. 

4.5.  Effect of Tree Parameters Error on AGB Estimation 

The tree parameters extracted from the UAV images influence the biomass estimation. The inflated and 

deflated tree height and CPA were used to evaluate the variation of biomass. The difference of UAV-based 

AGB with and without inflated/deflated height was found 21.66 Mg ha-1 which was equivalent to 8.73% of 

original estimated UAV-based AGB without inflation and deflation of height. The single factor/ one-way 

ANOVA test revealed that there was a statistically significant difference between estimated UAV-based 

AGB with 8.94% inflation and deflation of height and UAV-based AGB without inflation/deflation of 

height. The study conducted by Okojie (2017) found that the estimation of biomass was significantly 

influenced by the variation of height. The study conducted by Hunter et al. (2013) also found that the 

influence of height imprecision on biomass assessment is approximately 6%. In this study, the difference of 

UAV-based assessed carbon with and without height inflation and deflation was bigger than the total 

amount of sequestered carbon for one year. In this study, the field-based tree height measured by Leica 

DISTO 510 was used as a reference height that has ±50 cm inaccuracy. This level of inaccuracy has 

uncertainty in assessing AGB. This level of inaccuracy was not considered in this study because there was 

no other best alternative that was cost-effective to collect tree height. Despite the certain level of inaccuracy 

in Leica DISTO 510, this height is measurement, but the CHM is an estimation. The accuracy of the CHM 

depends on the density of the point clouds. 
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The average variation of biomass due to 1% inflation and deflation of CPA was 2.47 Mg ha-1 which was 

equivalent to 0.99%, and it does not influence more on biomass estimation. For 5% inflation and deflation 

of CPA, the average variation of biomass was estimated 12.37 Mg ha-1. It had no statistically significant 

difference from original biomass, but the amount of AGB was close to the estimated amount of sequestered 

biomass for one year. On the other hand, the average variation of biomass 24.70 Mg ha-1 was estimated due 

to 10% inflated and deflated CPA that showed a statistically significant difference, and it affected 9.96% 

variation of biomass from the original biomass. The estimated amount of carbon caused inflation and 

deflation of CPA was observed double compared to the amount of sequestered carbon for one year. The 

missing tree was also responsible for the variation of AGB that was finally influenced the estimation of 

carbon sequestration. Due to the missing tree, 11.05% of AGB was underestimated in the year 2018, and 

9.02% of AGB was underestimated in the year 2017 compared with the field-based AGB. This has also 

influence on estimating carbon sequestration.  

 

The combined error from the tree height and the CPA delineation might be affected more on biomass 

estimation. The variance of the estimated amount of carbon with height and CPA inflation/deflation and 

the estimated amount of carbon without inflation and deflation might be high. This variation would be 

larger while considering error for both years. The effect of tree height and CPA delineation error on biomass 

estimation was bigger than the estimated amount of sequestered carbon. The estimated amount of 

sequestered carbon might be the reason for error of tree height and CPA delineation. The carbon 

sequestration assessment for one year might be influenced more by the error originated from the tree 

parameters extraction. The total amount of sequestered carbon might be more than the estimated carbon 

sequestration variation for the different type of error. The influence of different errors on carbon 

sequestration estimation would be less while assessing sequestered carbon for more than one year because 

the amount of sequestered carbon would be large. 

4.6. Limitations 

The conducted research has limitations. Some of the significant limitations are mentioned below that would 

be helpful to construct recommendations for similar studies in the future. 

 

✓ The handheld GPS named Garmin has a certain level of inaccuracy, and it was quite challenging to 

identify the correct location of the respective trees and plot centers; 

 

✓ Enough open space is needed to place the GCP marker inside the forest. In a tropical forest, it is a 

very challenging task to find enough open space to put the GCP as if they are evenly distributed in 

the study area; 

 

✓ In this study, Leica DISTO 510 laser ranger was used to record the tree height. In a dense tropical 

forest, it is quite challenging to measure the tree height of tall trees using Leica DISTO 510 because 

of existing understory, intermingling situation, etc. It was also experienced in this study; 

 

✓ It was not possible to select sampling plots that covered large area due to inaccessibility for mining 

activities and rugged terrain with steep slopes; 
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5. CONCLUSION AND RECOMMENDATIONS 

5.1. Conclusion 

Quantification and monitoring of carbon sequestration in the tropical rainforest is essential for 

understanding the role of the tropical rainforest on the global carbon cycle. This study explored the 

potentialities of using UAV to assess aboveground biomass/carbon stock and carbon sequestration of 

KRUS education forest of East Kalimantan, Indonesia. The study also investigated the influence of height 

and CPA delineation error on biomass and carbon sequestration estimation. To address the research 

objectives and questions, the following conclusions were made based on results.  

 What is the estimated amount of the AGB/carbon stock for 2017 and 2018? 

In 2017, the average UAV-based AGB was assessed 235.37 Mg ha-1 while the mean UAV-based AGB was 

estimated at 248.01 Mg ha-1 for 2018. The difference between the two means of AGB was 12.64 Mg ha-1. 

On the other hand, the average UAV-based carbon was estimated 117.69 Mg ha-1 for the year 2017 whereas, 

the average UAV-based carbon was estimated 124.00 Mg ha-1 for the year 2018. 

 What is the estimated amount of sequestered carbon? 

The amount of sequestered carbon for one year was estimated at 6.32 Mg ha-1. The total area of the KRUS 

educational forest is 238 hectares. Therefore, the annual amount of sequestered carbon was estimated 

1504.16 Mg.  

 What is the accuracy of aboveground biomass measured from UAV images? 

For the year 2017, the scatter plot demonstrated the relationship between UAV-based AGB and field-based 

AGB and the root mean square error (RMSE) was 42.35 Mg ha-1 which are equivalent to 18.27 % of the 

field-based AGB. For the year 2018, the root mean square error (RMSE) was 50.00 Mg ha-1 which are 

equivalent to 19.84 % of the field-based AGB. For both years, there was no significant difference between 

estimated AGB from UAV and field-based AGB, because the P-value was greater than 0.05 at α= 0.05 and 

t-Statistics < t-Critical.  

 What is the error of UAV-derived tree height and how does that affect the AGB estimation? 

The effect of height error on biomass estimation was conducted based on the percentage of the root mean 

square error (RMSE). The percentage of RMSE was calculated at 8.94% for the UAV- derived tree height 

compared to the field-measured tree height. The mean difference of UAV-based AGB without 

inflated/deflated height and the UAV-based AGB with inflated/deflated height was 21.66 Mg ha-1. The 

8.73% biomass variation was found due to height error, and it was proved to be a significant effect on 

overall plot-based biomass assessment. The resultant estimated amount of carbon stock due to height error 

was greater than the amount of sequestered carbon for one year.   

 How much the CPA delineation error affect the AGB estimation? 

The average variation of biomass due to 1% inflation and deflation of CPA was 2.47 Mg ha-1 which was 

equivalent to 0.99%. The range of variation of biomass for 1% inflated and deflated CPA was 2.36 to 7.66 

Mg ha-1, and it showed statistically insignificant influence on biomass estimation. For 5% inflation and 

deflation of CPA, the average variation of biomass was estimated 12.37 Mg ha-1 while the range of variation 

was observed 11.79- 38.27 Mg ha-1. On the other hand, the average variation of biomass 24.70 Mg ha-1 was 

estimated due to 10% inflated and deflated CPA that showed a statistically significant difference, and it 

affected 9.96% variation of AGB from the original biomass. The range of variation was calculated 23.56- 

76.45 Mg ha-1. The estimated amount of carbon due to CPA error was double compared to the amount of 

sequestered carbon for one year. 
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5.2. Recommendations 

 

✓ The handheld Garmin GPS has 5-10 m inaccuracy. It is quite challenging to identify the right tree 

in the right location. Even if the center of the plot is recorded correctly, it is easy to identify the 

tree location by tracing the direction of trees from the center. Therefore, Differential Global 

Positioning System (DGPS) should be used to record the coordinate of the plot center to ease the 

identification of individual trees within the plot because the DGPS has few centimeters error only. 

 

✓ A large number of UAV images need more processing time. The software namely Pix4D produce 

point clouds to generate DSM, DTM, and orthomosaic based on image matching technique. If 

some of the images are tilted and distorted among all images, the software takes a long time to find 

the tie points. The distorted DSM, DTM, and orthomosaic are produced due to the poor quality of 

images. If the some of the portions of the DSM, DTM, and orthomosaic are distorted, the average 

density of point clouds would be small, and the value of DSM and DTM would be higher or lower 

compared to the normal range. The processing of a small number of images is better to produce 

good quality DSM, DTM, and orthomosaic. Therefore, the study area should be small, and the 

number of images should be reasonable to produce high-density point clouds and eventually to 

generate good quality DSM, DTM, and orthomosaic. 

 

✓ The high speed of UAV produces tilted images. Therefore, the slow or moderate speed should be 

chosen as a parameter for flying UAV to get a better UAV output. 

 

✓ Sometimes, the UAV images look good visually, but at the time of processing images, the software 

does not find the tie points. It may happen for overlapping, altitude, speed, etc. of UAV flight 

planning. Therefore, if the study area is located far from the origin of the researcher, the UAV 

images should be processed before leaving the study area. 

 

✓ The software namely Avanza Map should be used to identify the individual tree within the plots 

during biometric data collection because it's very easy to operate
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APPENDICES 

Appendix 1: Biometric data collection sheet 

Collection Sheet (KRUS Education Forest, East Kalimantan, Indonesia 2018) 

Recorder: Plot No: Plot Radius: Date: 

Plot 

Centre 

Latitude:  Slope (%):  

Longitude:    

Photograph Number:  Photographer Name:  

Tree 

No. 

Latitude Longitude Species DBH 

(cm) 

Tree 

Height 

(m) 

Tree 

Shapes 

Crown 

Diameter 

(m) 

Canopy 

Density 

(%) 

Remarks 
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Appendix 2: Ground control point (GCP) marker 
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Appendix 3: Slope correction table 

 

 

Plot Size: 500 m2 

Slope% Radius(m) Slope% Radius(m) Slope% Radius(m) 

0 12.62     

1 12.62 36 13.01 71 13.97 

2 12.62 37 13.03 72 14.00 

3 12.62 38 13.05 73 14.04 

4 12.62 39 13.07 74 14.07 

5 12.62 40 13.09 75 14.10 

6 12.63 41 13.12 76 14.14 

7 12.63 42 13.14 77 14.17 

8 12.64 43 13.16 78 14.21 

9 12.64 44 13.19 79 14.24 

10 12.65 45 13.21 80 14.28 

11 12.65 46 13.24 81 14.31 

12 12.66 47 13.26 82 14.35 

13 12.67 48 13.29 83 14.38 

14 12.68 49 13.31 84 14.42 

15 12.69 50 13.34 85 14.45 

16 12.70 51 13.37 86 14.49 

17 12.71 52 13.39 87 14.52 

18 12.72 53 13.42 88 14.56 

19 12.73 54 13.45 89 14.60 

20 12.74 55 13.48 90 14.63 

21 12.75 56 13.51 91 14.67 

22 12.77 57 13.53 92 14.71 

23 12.78 58 13.56 93 14.74 

24 12.79 59 13.59 94 14.78 

25 12.81 60 13.62 95 14.82 

26 12.82 61 13.65 96 14.85 

27 12.84 62 13.68 97 14.89 

28 12.86 63 13.72 98 14.93 

29 12.87 64 13.75 99 14.97 

30 12.89 65 13.78 100 15.00 

31 12.91 66 13.81 101 15.04 

32 12.93 67 13.84 102 15.08 

33 12.95 68 13.87 103 15.12 

34 12.97 69 13.91 104 15.15 

35 12.99 70 13.94 105 15.19 
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Appendix 4: Entry of biometric and UAV data in Microsoft Excel 

Sl 
No 

Tree 
No 

X Y UAV 
Height 

CPA 
(Sq. 
M) 

Biometric 
DBH 

UAV 
DBH 

Biometric 
Height 

UAV 
AGB 

Field 
AGB 

1 3 -0.45041 117.21778 18.85 28.87 33.5 32.47 17.5 609.37 602.34 

3 7 -0.45034 117.2177 22.85 22.00 11.5 27.59 23.5 534.87 99.63 

4 9 -0.45036 117.21771 19.30 30.87 47.4 33.84 19.8 675.77 1337.87 

5 10 -0.45043 117.21771 31.50 61.72 83 51.65 30.2 2489.14 6029.43 

6 12 -0.45049 117.21779 25.60 9.29 32 17.75 24.7 252.79 771.03 

7 13 -0.45043 117.21783 26.85 47.57 41.7 44.24 25.8 1573.85 1348.95 

8 15 -0.4505 117.21774 19.85 14.13 29.4 21.62 17.8 289.71 474.65 

9 16 -0.45052 117.21775 15.62 42.86 13 41.48 14.9 818.24 81.13 

10 17 -0.45047 117.21779 26.75 116.46 87.5 68.27 25.8 3658.18 5731.78 

11 20 -0.4504 117.21782 17.20 10.85 28 19.02 17.7 196.08 429.16 

12 21 -0.45044 117.21783 18.85 26.27 36 30.66 18.3 544.72 724.11 

13 22 -0.45053 117.21775 24.10 27.60 19.3 31.59 23.2 734.06 270.32 

14 23 -0.45046 117.2178 20.63 6.78 28 15.69 19.3 160.87 466.99 

15 25 -0.45033 117.21771 13.50 17.83 15.5 24.47 12.6 253.34 97.10 

16 26 -0.45035 117.2177 11.85 53.44 15.5 47.47 11.5 812.91 88.82 

17 27 -0.45031 117.21774 18.20 18.98 34 25.34 17.3 363.01 613.10 

Total AGB in Kg 13966.9 19166.41 

Total AGB in Mg 13.96 19.16 

Total AGB (Mg ha-1) 279.33 383.32 
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Appendix 5: Comparison between field-based AGB/AGC and UAV-based AGB/AGC 2017 

Plot No Field-based AGB and AGC 2017 UAV-based AGB and AGC 2017 

AGB (Mg ha-1) AGC (Mg ha-1) AGB (Mg ha-1) AGC (Mg ha-1) 

1 409.27 204.64 271.69 135.84 

2 332.51 166.26 339.53 169.76 

3 246.65 123.33 278.34 139.17 

4 449.42 224.71 306.20 153.10 

5 125.23 62.62 171.89 85.95 

6 325.35 162.68 319.17 159.59 

7 502.61 251.30 319.97 159.99 

8 280.47 140.23 288.69 144.35 

9 280.85 140.42 252.02 126.01 

10 260.24 130.12 223.52 111.76 

11 150.91 75.45 137.26 68.63 

12 157.27 78.63 189.32 94.66 

13 201.10 100.55 243.07 121.54 

14 313.57 156.78 267.76 133.88 

15 165.20 82.60 170.13 85.06 

16 358.98 179.49 241.18 120.59 

17 155.12 77.56 166.64 83.32 

18 375.56 187.78 307.76 153.88 

19 200.41 100.21 222.74 111.37 

20 111.65 55.82 129.49 64.74 

21 251.60 125.80 246.84 123.42 

22 429.42 214.71 349.27 174.64 

23 165.84 82.92 202.64 101.32 

24 281.59 140.79 209.74 104.87 

25 222.62 111.31 216.74 108.37 

26 301.02 150.51 268.51 134.26 

27 150.63 75.32 186.31 93.15 

28 267.11 133.56 254.12 127.06 

29 260.75 130.37 232.34 116.17 

30 281.21 140.61 273.87 136.94 

31 193.74 96.87 212.81 106.40 

32 402.41 201.21 340.04 170.02 

33 181.96 90.98 186.39 93.19 

34 176.21 88.11 187.34 93.67 

35 164.20 82.10 145.63 72.82 

36 71.23 35.62 141.15 70.58 

37 585.46 292.73 331.39 165.69 

38 264.53 132.27 228.23 114.12 

39 123.03 61.51 157.95 78.97 

40 170.87 85.43 183.65 91.82 

41 259.19 129.59 248.80 124.40 
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Appendix 6: Comparison between field-based AGB/AGC and UAV-based AGB/AGC 2018 

Plot No Field-based AGB and AGC 2018 UAV-based AGB and AGC 2018 

AGB (Mg ha-1) AGC (Mg ha-1)  AGB (Mg ha-1) 

1 433.00 216.50 279.34 139.67 

2 350.64 175.32 343.34 171.67 

3 264.51 132.25 289.77 144.89 

4 474.68 237.34 313.32 156.66 

5 142.74 71.37 194.81 97.41 

6 341.32 170.66 333.93 166.96 

7 524.52 262.26 328.17 164.08 

8 296.93 148.47 307.72 153.86 

9 302.73 151.36 264.04 132.02 

10 280.69 140.35 239.56 119.78 

11 170.74 85.37 159.76 79.88 

12 173.88 86.94 199.58 99.79 

13 221.92 110.96 263.27 131.63 

14 337.13 168.57 274.38 137.19 

15 191.28 95.64 188.51 94.26 

16 380.47 190.24 258.35 129.17 

17 174.43 87.22 179.18 89.59 

18 403.38 201.69 318.34 159.17 

19 220.66 110.33 238.16 119.08 

20 125.94 62.97 150.99 75.50 

21 270.97 135.48 265.59 132.80 

22 454.81 227.41 354.17 177.09 

23 181.23 90.61 224.95 112.47 

24 302.70 151.35 235.57 117.79 

25 239.04 119.52 233.91 116.95 

26 320.18 160.09 272.11 136.06 

27 165.96 82.98 190.66 95.33 

28 290.36 145.18 272.95 136.47 

29 283.78 141.89 248.65 124.32 

30 301.60 150.80 292.22 146.11 

31 211.01 105.51 218.15 109.07 

32 420.83 210.41 358.82 179.41 

33 199.92 99.96 189.10 94.55 

34 193.54 96.77 203.95 101.98 

35 193.96 96.98 149.84 74.92 

36 84.44 42.22 147.69 73.84 

37 612.01 306.00 340.66 170.33 

38 285.57 142.78 239.37 119.68 

39 141.41 70.71 170.77 85.38 

40 188.31 94.15 193.79 96.89 

41 282.95 141.48 280.77 140.38 

 

 


