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ABSTRACT 

Trees in the forest comprise a significant component of an ecosystem that effects the environment, and 
human life. However, trees outside forest also play an important role in ecological functions. In recent 
years, there has been high demand from different stakeholders such as environmentalists, authorities, and 
foresters in acquiring tree inventories. Traditionally, individual tree identification is conducted through 
sampling or visual interpretation of aerial photography. Nowadays, remotely sensed data such as very high 
spatial resolution satellite images can provide fast, accurate, and detailed information of trees, even over 
large areas. However, using satellite images is challenging due to the first, irregularity of tree crown 
projected area; second, poor separability between tree crown and similar background. This research 
investigates the identification of tree crown projected area from high spatial resolution, airborne synthetic 
aperture radar (SAR) system. 
 
The SAR system can provide reliable and detailed information on spectral and geometrical properties of 
an individual tree. The spatial profile of tree crown in this study was modelled by a bell-shaped curve 
model. The difference between tree crown spatial profile which is affected by speckle and irregularity of 
tree crown with bell-shaped profile considered as noise. The smoothing property of the scale-space 
method allowed to successfully remove this noise. Identification of trees from gray level image due to the 
effect of sun illumination angle is challenging. The shadow problem has solved by using Pauli 
decomposition of SAR data. 
 
In this research the main focus was on extracting this information by using the Gaussian scale-space blob 
method which is proper for tree delineation as an object that occurs naturally at different scales. 
According to this method a stack of images with successively removing image structures by increasing 
scale from fine to coarse can be derived. The behaviour of tree crown polygon over different levels of 
scale can be analytically described. In the present study, the scale parameter is equally treated with space 
and gray-level value. Therefore, the scale-space representation contains the feature information explicitly 
over scale and relation between them. Blob is defined as a significant feature which is stand out 
significantly in the gray-level image. To be specific the definition is referred to a region is either 
significantly brighter or darker than background and neighbourhood. The significant blob can be select 
out of many blobs which are produced by other scale-space detectors. 
 
The Accuracy assessment is conducted using manual delineation of same high-resolution airborne SAR 
data. Three detection, extensional, and position uncertainty assessment show that the scale-space blob 
method in comparison to formal scale-space method provide accurate detection and approximation of 
tree crown. The study concludes that the proposed approach can be used for individual tree detection 
from SAR data. The obtained information from this method can be used by different stakeholders for 
different environmental issues such as biomass estimation.  
 
 
 
Keywords: individual tree detection, individual tree delineation, scale-space, SAR, multi-scale method, 
feature detection, blob detection, gray-level image 
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1. INTRODUCTION     

1.1. Background and justification 
Trees, mostly in forest, are an essential component of an ecosystem that affects the environment, habitat 
life, and human life. However, trees outside the forest are also an important component of the ecosystem 
because they play a prominent role in the food security1, and ecological functions such as biodiversity 
conservation; erosional control; air quality improvement; water protection; carbon sequestration (Dida et 
al., 2013). According to FAO (2002), ‘trees outside forest’ is defined as those trees that are neither in the 
forest nor in other woodland. Acquisition of inventories of these trees is a key variable in the assessment 
of the applications mentioned above. Thus, in recent years there has been an increasing demand for 
acquiring trees inventories from different stakeholders, such as environmentalists, city planners, urban 
authorities, foresters, and farmers. Stakeholders need detailed and up to date information for promoting 
sustainable tree management. Yadav et al. (2017) are referred sustainable tree management to a system 
that: maintains tree population; promotes biodiversity; conserves trees; removes dangerous or hazards 
trees; establishes tree inventory with age and species classification; just to name a few.  
 
One of the purposes of sustainable forest management activities is related to global warming which is the 
increase in greenhouse gases emission. Trees can reduce this increasing emission and improve air quality. 
Trees can reduce this increasing emission and improve air quality. Trees are sequestering carbon dioxide 
(CO2) as one of their major input, for photosynthesis purpose and even giving more oxygen (O2) to the 
atmosphere. Carbon sequestration is estimated by mapping the carbon stock of trees and monitoring their 
variation over time (Koch, 2010). Mapping trees carbon stock can be fulfilled based upon their biomass2 
estimation (Vashum & Jayakumar, 2012). Estimating tree’s biomass provides a reliable perspective of their 
potential in carbon store and sequestration within the ecosystem. Therefore, to accomplish accurate 
modeling of biomass estimation there is a great demand for tree measurements which are accurate and up 
to date.   
 
A tree, within a group or standing individually, may have different spatial patterns and characteristics. To 
assess their patterns and characteristics, various geometrical and physical parameters such as location, 
diameter at breast height (DBH), basal area (BA), height, crown size, and species identification are used 
(Gomes & Maillard, 2016). Among these variables, tree crown size is a prominent variable since it is 
significantly correlated with the growth of the tree (Lin et al., 2017). Based on an existing definition’s 
review, for consistent reporting, common tree related definitions are required. In addition in line with the 
focus of present research, to improve the fitting precision and prediction accuracy of the whole tree 
biomass model, introduction of the tree crown projection area for each tree can be efficient (Zhang et al., 
2011). Throughout this study, the crown projected area (CPA) as shown in Fig. 1.1 refers to vertically 
projecting the crown primitive (Gschwantner et al., 2009). From tree CPA measurement, it is possible to 
derive the size of the tree crown followed by its position. In addition, tree crown shape can be described 
by different mathematical models such as Pollock, Gaussian, and Paraboloid. Ramezani (2015) identified 
tree species based on Pollock parameters. Moreover, according to prior studies, CPA is highly correlated 
                                                   
1 Trees have important role in insurance of the provision of ecosystem services to the sustainable agriculture system. 
2 Biomass definition gives by all mixture of organic materials such as wood, agriculture crops or wastes, in particular which 
utilized as an energy source. 
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with height and carbon stock of tree (Zhang Li-fu et al., 2011; Paper, 2014; Mbaabu et al., 2014). Shah et 
al. (2011) investigated that there is a linear relationship between the CPA and the DBH of a single tree. 
Based on the inventories obtained from a tree CPA, various related information such as mapping 
structural attributes (height, basal area, biomass, volume); monitoring disturbance (logging, fire, 
windthrow, insect damage); monitoring photosynthetic processes (growing season length); monitoring 
change (deforestation, degradation, reforestation) can be derived. This information is critical to the series 
of activities in relevance tree management and conservative outside the forest (e.g., growth level 
assessment and biomass estimation). In addition, they can be useful for horticulture 3  counting and 
monitoring relevant damage and accident prevention. 
 
Nowadays, trees inventory data are derived widely using different kinds of remote sensing (RS) data 
acquisition approaches, instead of using traditional methods such as random sampling or visual 
interpretation of aerial photography (USDA, 2002). Some of the recently developed RS approaches, that 
are used commonly for tree inventories measurement, are global positioning system (GPS), satellite 
images, and unmanned aerial vehicle (UAV) respectively (OpenForests.com). During recent years, by the 
development of these methods, obtaining information is time and cost effective. On the contrary of 
traditional approaches, these methods can reproduce advance information as well as detailed data of tree 
inventories even for large areas. Also, using remotely sensed data acquisition approaches can be useful 
when a parameter measurement from a sampling method is not efficient, e.g., tree crown boundary 
measurement (Schmitt et al., 2015). In other words, the main advantage of these approaches in regard to 
the topic of this study is providing up-to-date information and a synoptic view over large areas, since 
some of the forest inventories change rapidly. Therefore, RS data sources provide reliable and detailed 
information with sufficient spectral and geometrical details which is the most appropriate data source to 
delineate and detect individual tree CPA boundary. In this way, an automated individual tree detection 
algorithm relates tree counting, and tree delineation corresponds to defining a position and tree crown 
boundary. 
 
Although using RS data sources is an efficient way of deriving detailed information and advanced 
knowledge, the tree is a complex object in terms of retrieving crown projected area (Ardila et al., 2012). As 
it appears from Fig. 1.1 extracting tree crown boundary from images is challenging due to the tree crown 
irregularity. To recognise tree CPA, a wide range of automatic and semi-automatic image analysis methods 
is available, especially from passive remotely sensed images (Ardila, 2012). To highlight the progress in 
image analysis, a comprehensive review of previously introduced methods and data sources is discussed in 
the following section.  

 
Fig. 1.1. This figure provides front view and top view of a tree with shadow (gray circle) at left and at the right, 

respectively. We tried to model the tree crown boundary by the red line. However, obviously tree crown is a complex 
spatial object to fit a model. Source: (Adopted from lecture slides, 2018 y.a.hussin@utwente.nl). 

                                                   
3 Horticulture is the science or art of fruits, vegetables, flowers, or ornamental plants cultivation include orchards.  
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1.2. Research gap identification  
This research is undertaken to identify the CPA of individual trees outside the forest from a very high 
spatial resolution (VHR) airborne F-SAR images. To be specific, it appears from previous studies that the 
spatial resolution of optical satellite images from different perspectives is primary concern in individual 
tree crown identification. Mapping tree CPA from different spatial resolution RS images has been dealing 
with various limitations. One of the main limitations is relating to vision4 definition of tree CPA boundary 
since the tree crown boundary only exists as a meaningful object over a limited range of scales. For 
example, branches and leaves of an individual tree may be discernible in the VHR remotely sensed data, 
whereas it is not simple to group them correctly to recognise a tree crown. Tree crowns may have merged 
at a coarser scale level of RS data with its neighbors, or even they are not detectable due to the limited 
spatial resolution of images in relevant tree size on the ground. Therefore, in one hand a method which 
can provide a multiresolution representation of the tree CPA in an image is crucial. On the other hand, 
most of the researchers have addressed VHR optical remotely sensed data as an appropriate data source; 
however, still, there are some deficiencies. Ardila (2012) mentioned some of the main constraining issues 
of VHR images concerning individual tree CPA detection, despite the fact that optical VHR images can 
provide efficient spectral and geometrical information. One of the major limitations of the VHR passive 
satellite images as depicted from Fig. 1.2, is that the spectral separability between tree crown canopies with 
large variance and other similar background classes (e.g., grasses and shrubs), is poor (Tolpekin et al., 
2010). In addition, tree crown size variation brings the difficulty of analysis whereby an individually 
detected tree may represent a separate branch or group of trees (Pu & Landry, 2012). In this way, for the 
purpose of tree CPA boundary detection and delineation, noise can be defined as the excessive precision 
of the tree crown boundary shape. Therefore, high spatial resolution images contain more noise due to the 
irregular canopy profile; see Fig. 1.3. The predominant difference between spatial profile line of tree 
crown and Gaussian function line illustrates this noise and effect of speckle in high-resolution SAR image. 
As another example of popular data source, Khosravipour (2017) detected individual trees from light 
detection and ranging (LiDAR). Tree identification from LiDAR dataset provides tree height information 
explicitly. Thus, the problem of poor spectral separability with the background can be covered. In 
principle, the contrast between spectral bands of converted LiDAR point cloud to raster, especially for 
similar background vegetation type is low. However, the contrast in height of tree and background is 
substantial. The main problem of this dataset is high costs for trees outside the forest and large areas. 
Moreover, the accuracy of results depends on the quality of the digital surface model (DSM). Another 
source of experimental limitations is corresponding to a tree located under other trees, different sun 
illumination angle, or tree in the shade (Wulder et al., 2000).  
 
Several automatic and semi-automatic image analysis methods such as local maxima, valley following, 
watershed, region-based image segmentation, and even hybrid algorithms5 have been developed to identify 
individual tree CPA from VHR images (Gomes & Maillard, 2016). These approaches attempt to recognise 
tree CPA with high precision and restrict the limitations of individual tree CPA recognition from VHR 
optical satellite images. However, the proposed methods did not cover all the restrictions of mapping 
individual tree CPA from VHR passive satellite images. Ardila et al. (2012b) developed a geographic 
object-based image analysis (GEOBIA) 6  method to address the problems of single tree crowns 
identification from VHR optical images. The study via integration of several methodology’s results aimed 

                                                   
4 Vision is defined as the process of discovering what is present in the world, and where is it (Marr, 1982). 
5 One algorithm for tree crown detection and another for tree crown delineation. 
6 Contained several methods such as multi-scale segmentation, local contrast segmentation, analysis of tree shadow, local maxima 
filtering, morphological object reshaping and region growing. 
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to extract all the spatial, spectral and contextual characteristics of trees. This study showed the capability 
of remotely sensed data in extracting detailed information on tree inventories. However, the attempt dealt 
with ample limitations related to the spatial resolution of images, adjacent tree interlock, and low contrast 
between trees and background. These restrictions correspond to some over- and under-identification 
errors. Consequently, the study recognised that may be a multi-scale approach is appropriate for tree CPA 
delineation in urban areas. In other words, all previous methods for tree crown boundary detection have 
referenced to a specific resolution and, they do not easily translate from one scale to another scale. 
However, with the use of UAV, uninhabited aerial vehicle synthetic aperture radar (UAVSAR), or some 
other satellite images, there is a possibility to obtain an image of various resolution. Moreover, identifying 
a tree crown boundary from satellite images can be done with segmentation methods. Tree crown 
boundary can be distorted by the wind; therefore, it may not be an accurate estimate of a geometrical 
parameter that can be correlated with other parameters of the tree for different applications. 
 
Brandtberg & Walter (1998) proposed a multiple-scale algorithm for automatic delineation of deciduous 
trees CPA from high spatial resolution infrared colour aerial images. They used an edge segment to 
describe a model of tree crown boundary region. The main problem of this algorithm was the necessity of 
prior knowledge about tree diameter to find an optimal window size of individual trees for low pass filter 
in the image. As a result, Brandtberg (2002) proposed to use the scale-space method to solve the problem. 
The scale-space method is a well-founded mathematical framework that generates a multi-scale 
representation of an original image. The scale-space representation at “zero scale” is equal to the original 
image, and by increasing scale, the representation is the convolution of the original image with two-
dimensional Gaussian kernel (Lindeberg & Eklundh, 1991). The underlying assumption of using the scale-
space approach for identification of tree CPA is that tree crown distribution has an approximately bell-
shaped intensity profile in the normalized vegetation index (NDVI) image (Ardila, 2012). Effect of NDVI 
on an image is mainly used to remove the shadow of trees on the ground. Mahour et al. (2016) used the 
scale-space method to detect two orchard tree types with different sizes from VHR remote sensing 
images. Thus, this study demonstrated the capability of the scale-space combined with blob-feature 
detection methods for individual tree CPA identification with accuracy higher than 80%. However, the 
study focused just on VHR images and faced with some detection problems, such as an overlapping 
circular object detected from a single tree, inaccurate tree size measurement, and lack of identification of 
small trees.  
 
Further investigation of using the scale-space methods for tree detection from VHR images carried out by 
Mahour et al. (2018). In this study, the automatic Gaussian scale-space model of individual tree detection 
and delineation from passive VHR images is improved. In the scale direction, two empirical models of the 
tree are introduced and computed to provide better tree descriptor and more accurate tree size estimation. 
Although the study increased the accuracy of the true tree detection from false detections, still some 
overestimation and underestimation problems have remained. The main deficiencies are referred to as 
false positive and false negative detections (e.g., false detection of trees with two or more sub crowns). In 
addition, the accuracy of tree size and position, and the identification of precise tree crown boundary are 
needs to address (Fig. 1.4). The information related to tree crown recognition in the proposed scale-space 
algorithms until now is implicit, means not computed. Feature is referred to interesting part of an image 
which needs to identify. The features or relation between features should be represented explicitly over 
different levels of scale to correspond to main features at the original image. Lindeberg & Eklundh (1991) 
called this method scale-space blob method. By using the suggested algorithm in the present study aims at 
obtaining features; i.e. tree crowns, which are significant in scale-space. The underlying assumption is that 
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scale-space features with high scale-space volume in scale-space associated with relevant objects in the 
image. This algorithm can be performed by making features as well as their relationship in scale-space 
representation explicit over a scale. By adding fourth dimensional gray-level landscape, predominant areas7 
in the image will be described by spatial and the gray-level values in the specific range of scale. Thus, the 
significance of the spatial features between different scale levels will be compared and the representation 
will reflect the shape of gray-level features. There will be no need for any external criteria or tuning 
parameters in the selection of proper scale.  
 
Generally, all attempts for identification of individual trees has been widely investigated either on passive 
VHR images or active LiDAR images. However, active or passive VHR images are not always available, or 
often they are costly, especially for the identification of trees outside the forest at large areas. On the other 
hand, based on best of author knowledge and extensive literature review, studies on synthetic aperture 
radar (SAR) are relatively limited. It is due to the coarse spatial resolution of available SAR images, 
whereas SAR is providing true measurements of the scattering properties of the Earth’s surface (Oliver & 
Quegan, 2004). Recently high-resolution SAR systems are getting an upsurge of attention due to the 
different capabilities such as estimation of forest biomass and volume using L wavelength tomography 
(Mercer et al., 2010; Neumann et al., 2010), or reconstruction of canopy height model using X wavelength 
interferometry (Izzawati et al., 2006). Schmitt et al. (2013, 2015b) have been investigated the potential of 
airborne interferometric SAR (InSAR8) datasets in individual tree recognition. Because of the different 
looking angle property of the SAR system, it can provide more accurate position information of single tree 
CPA measurement. Moreover, in addition to horizontal CPA information which is provided by optical RS 
data, SAR data can provide horizontal and vertical information (i.e. tree boundary height or treetop 
height) simultaneously (Varekamp, 2001). However, identifying tree CPA from SAR images is challenging 
as well. The results of individual tree recognition from InSAR image is affected by shadow and two types 
of shifts in sensor direction, i.e., in intensity maxima and tree height. In addition, all kinds of SAR data are 
suffering from the presence of speckle and even fully developed speckle in coarse resolution SAR images. 
Speckle is a multiplicative noise-like phenomenon which is present in the SAR images due to the coherent 
interference of the backscatters within per resolution cell. Fully developed speckle occurs in coarse 
resolution SAR where several random distributed scatters are present within a resolution cell (Lee & 
Pottier, 2009). Since the scale-space representation is the result of convolution of the image with Gaussian 
kernel, we assume that it can deal and reduce the effect of speckle, and additive noise of F-SAR images.  
 
Therefore, the significance of these two gaps motivated the author to investigate the capability of the 
scale-space blob methods in the identification of tree CPA boundaries from high airborne F-SAR data. 
The general idea is an implementation of scale-space methods in extracting detailed information of an 
object in the different range of scale from SAR images, which have not been explored. To reach this goal, 
this study will use high spatial resolution airborne F-SAR images. 
 

                                                   
7 These areas will be named further blob.  
8 Using difference in phase information to extract digital elevation model. 
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Fig. 1.2. An individual tree at study area with diameter information at the right top. The image demonstrates poor 
separability between tree and background (source: GoogleEarth).  

 

 
 

Fig. 1.3. a) Amplitude F-SAR image of L-band, polarization HH. The red line is a transect profile line (true signal 
component). b) Red line is the spatial profile of tree crown, and the green line is Gaussian function. The difference 

between two lines caused by noise which is related to the irregularity of tree crown object and effect of speckle.   

 

a) 

b) 
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Fig. 1.4. Denotes different kinds of tree CPA delineation errors a) Different kinds of detection errors (false positive 
and false negative), b) Positional error, c) Extensional error  

 

1.3. Research objective 
This section is illustrating the main objective of this research which follows by specific objectives related 
to data sources and the used method. To be more specific, the most controversial questions to solve 
specific objectives entirely are figured out.  

1.3.1. General objective 
The main objective of this research is: 
To explore and perform individual tree detection outside of the forest from airborne F-SAR images by 
applying scale-space methods. 

1.3.2. Specific objectives  
 

1. To generate the multi-scale representation of blobs which are correspond to individual tree CPA 
at all scale levels. 

2. To determine the significant blob in scale-space representation and extract the tree CPA boundary 
based on the spatial extent of the gray-level blob.   

3. To investigate how well the true signal component related to the tree can be separated from the 
noise and speckle.  

4. To compare the result of scale-space blob method and the combined scale-space method with the 
differential interest point detector in scale-space and random sets methods.  

5. To explore the possibility of using the scale-space methods on high-resolution SAR images with 
different wavelengths for identifying tree crown. 

6. To determine the accuracy of individual tree delineation from F-SAR images results by applying 
scale-space blob methods. 

a) b) 

c) 
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1.4. Research questions 
1. How to generate the multi-scale representation of gray-level image? 
2. How different properties of the scale-space blob can affect the accuracy of detection and 

delineation of tree crown boundary? 
3. Does the smoothing property of the scale-space methods suppress the noise and speckle? 
4. How different wavelengths of SAR images affect the results of tree detection? 
5. Which kind of information can be obtained from different wavelengths of FSAR images? 
6. What is the probability distribution function of speckle in fine resolution SAR image? 
7. How accurate can be individual tree crown boundary detection and delineation from FSAR 

images? 
8. How well the Gaussian filter works for SAR data in case of fully developed speckle in 

asymmetrically distributed (exponential or Rayleigh distribution) single look SAR image? 
 

1.5. Thesis structure 
The thesis is structured into below main chapters: 
 

• Chapter 2 review previous attempt for individual tree detection based on two main type of data 
sources. 

• Chapter3 implies concept and methodology includes data preprocessing steps and the. 
implemented method and the uncertainty assessment. 

• Chapter 4 briefly describes the study area and characteristics of provided data for this research. 
• Chapter 5 provides the results gained in this study. 
• Chapter 6 discuss the results to provide an appropriate interpretation of them. 
• Chapter 7 ends this study by providing the conclusion and recommendations for further 

investigations. 
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2. LITERATURE REVIEW 

Trees are playing a fundamental role in the environment and human life. Researchers have introduced and 
developed plenty of methodologies to identify trees generally from VHR satellite images. This chapter 
gives an overview of previous different methods that have applied on different satellite images to identify 
individual trees outside the forest. The choice of a spatial resolution of the RS data source to identify tree 
CPA has been a controversial issue since it restricted to several factors, e.g. the size of a tree, a spatial 
resolution of an image, cost of data source, spectral and temporal characteristics of an image. Thus, the 
chapter is divided into two sections: first, the image analysis methods have applied on two main data 
sources (i.e. SAR and optical), second, different multi-scale methods. In the end, summarization of the 
method which constitutes the main concept of the present study is provided.  

2.1. Individual tree detection from SAR images 
In the last few years, a variety of spaceborne and airborne SAR images with different quality9 have been 
produced. In principle, SAR systems measure the local interaction between an incident wave and the 
Earth (Oliver & Quegan, 2004). SAR provides multidimensional measurements of scattering properties of 
the Earth, i.e. surface scattering from top of the canopy, volume scattering, surface and volume scattering 
from the ground. Variety of product can be formed from the SAR data which known as ‘complex image’ 
based on an application at hand. For instance, the amplitude A, the phase φ, the intensity10 I (i.e. 𝐼 = 𝐴,), 
and the logarithm base 10 intensity log I. In working with all kinds of SAR products, must take account of 
coherent speckle for all measurements or inferences, as an inherent property. Speckle is a multiplicative 
noiselike11 phenomenon which happens in case of interference between many discrete backscatters within 
per resolution cell.  Finding an appropriate image processing method to convert the electromagnetic 
scattering properties to application related information is what concerns a lot of researchers (Oliver & 
Quegan, 2004). Section 4 concerned about speckle distribution of airborne FSAR and Sentinel-1 images, 
and how the scale-space method can deal with it.   
 
There is a large volume of published studies throughout the world using different SAR data on forest 
mapping and monitoring, extracting tree volume, forest biomass, forest structure and type, forest fire, 
thermal state, and to name a few (Balzter, 2001; Heiko Balzter et al., 2007; Vashum & Jayakumar, 2012; 
Tanase & Aponte, 2015). As an example, Olesk et al. (2016) focused on developing semi-empirical models 
for forest height estimation by using a combination of temporal single polarimetric InSAR and LiDAR 
data.  
In the scale of an individual tree, Loong et al. (2013) co-registered two single scatter SAR images of the 
same area in sub-pixel level to extract height of oil palm tree via using phase information. However, only 
recently two papers have investigated the potential of airborne SAR data for individual tree recognition. 
Schmitt, et al., (2013b) used single-pass millimeterwave InSAR data to clarify the potential of fine-

                                                   
9 Different wavelengths, and different polarimetric capabilities of SAR sensors. 
10 The word “intensity” is synonymous with power or energy.  
11 Speckle is not noise, since it is a real electromagnetic measurement and can be exploited as product such as interferometry 
products.  
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resolution airborne InSAR data (decimetre in range and azimuth resolution) for the analysis of forest areas 
on a single tree level. The results of the Local maxima technique with prior derived knowledge on tree 
height from interferometric phase information are served as a preliminary tree hypothesis. In the end, the 
3D-georeferenced positions of trees in a world coordinate system are used as inputs for tree crown 
recognition. As a second attempt, Schmitt et al. (2015) represented an unsupervised approach to multi-
aspect millimeterwave TomoSAR data for segmentation and individual tree reconstruction. Important and 
efficient tree parameters such as tree location, tree height, and tree crown diameter have been derived. 
However, he mentioned the limitation of SAR imagery due to the side-looking in detecting small trees 
which are surrounded by large trees.  

2.2. Individual tree detection from optical images 
Ample automatic and semi-automatic methods have been developed for recognition of individual tree 
crowns and the characteristic extraction in passive optical satellite images (Larsen et al., 2011). Local 
maxima, valley following, watershed segmentation and region growing are four of the most common 
algorithms used in individual tree identification and delineation of their spatial patterns. However, several 
approaches utilized hybrid methods; one algorithm for tree detection and another for delineation of tree 
crown, or one approach used as an initial approximation and another to fine-tune the results (Gomes & 
Maillard, 2016). Even in some researches more than two techniques are applied (Larsen et al., 2011). 
Furthermore, different tree species may have different tree crown texture and shape (e.g., conifers, 
broadleaves, and deciduous) which is an important factor in the implementation of different tree crown 
boundary delineation methods.  
 
Local maxima is the simplest filtering technique that can be used to identifying tree crowns based on the 
gray level image. By scanning the entire image using a search window, the brightest gray pixel of that 
image is detected as the center of the tree crown boundary. Although, it shows promising results for 
conifers with high reflectance gray level pixel at the top of the tree. The results are susceptible to crown 
size variation, search window size and spatial distribution of tree. For instance, it increases commission 
and omission errors for small and large search windows, respectively. On the other hand, valley following 
is consisting of an analogy that delineating tree crowns by identifying the shaded spots between tree 
crowns (valleys), then the bright spots will be crowns (hills). The performance of this method is good in a 
combination of low solar elevation angle images and conical shape trees. However, it leads to group 
multiple small trees in one segment, in particular, if the trees are asymmetric with different species and 
crown size. Another technique similar to valley following is the watershed method which is related to 
defining segments based on thresholding process on gray values of the image. To prevent over-
segmentation, the selection of markers which represent the tree crowns center has been implemented 
(Gomes & Maillard, 2016). Region growing algorithm generates segments and expands the region from 
seed points based on predefined criteria. The results of tree crown delineation are promising for trees with 
complex shapes, whereas the algorithm is too complex due to several different rules for different 
environments. Moreover, it is sensitive to the branch of similar trees (Larsen et al., 2011). As an example 
of hybrid methods, the GEOBIA method which is a combination of multi-scale segmentation, local 
contrast segmentation, analysis of tree shadow, local maxima filtering, morphological object reshaping and 
region growing is investigated by Ardila et al. (2012b). The classification rules are determined for multiple 
scale segmentation of trees, as an object of interest. This classification can modify the labelling and shape 
of trees on the image to consider all spatial, spectral, and contextual information of trees within the urban 
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forest12. The method is bias in the detection of small and adjacent overlapped trees with low contrast with 
the background. It resulted to false negative errors and false positive errors. In addition, the precision of 
method in a delineation of tree CPA boundary is not acceptable. All these studies head us to use a multi-
scale approach due to the inherent definition of different tree CPA sizes on a different scale of satellite 
images.  
 
 
 
 
 
 
  

                                                   
12 All individual and group of stands trees either within or close to the urban areas.  
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3. CONCEPT AND METHODOLOGY 

The major concern of this study is establishing a viable representation of a data-driven model, in which 
information can be correlated to measurements and their spatial disposition without depending on any 
specific external parameters. The research steps contain pre-processing and method parts to reach the 
mentioned objectives in section 1.3 is depicted in Fig. 3.1.  
 

 
Fig. 3.1. Schematic flowchart for tree CPA detection from airborne F-SAR images by using both scale-space and 

scale-space blob algorithms. 

Data 

Process 

Flow 
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3.1. Data preprocessing 
 

3.1.1. SAR data calibration 
SAR images are estimating complex backscattering at each pixel as a linear measurement system. 
Therefore, there are different representation images of a complex SAR data (i.e.  A, φ, I, and  log I). 
According to Oliver & Quegan (2004), an efficient radiometric calibration of these images can provide a 
true measurement of the scattering properties of the Earth’s surface. Therefore, the available F-SAR data 
depends on the research purpose can be radiometrically corrected based on 𝛽1, 𝜎1, or 𝛾1 (Keller et al., 
2016). 𝜎1, which known as radar cross section (RCS) or backscattering coefficient 	is the measure of the 
target’s reflectivity in direction of radar receiver (Nicolaescu & Oroian, 2001). In the lack of any prior 
knowledge or assumption about the target’s reflectivity, 𝜎1 can be estimated based on the intensity image. 
The average of intensity measurements 13  gives the best estimation of 𝜎1 . This process of intensity 
averaging is known as ‘multilooking’.  In addition, in calibrated data, each pixel correlated with estimation 
of the backscattering coefficient 𝜎1 in dB, which is linearly scaled (Oliver & Quegan, 2004). The “dB” 
image known as log transformed image or log image. The F-SAR image can be unity scaled to dB values 
for any type of the calibration by taking below formula (taking 10log71 of each pixel intensity): 
 

 
𝐼89 = 10	log	(〈𝑓|𝐼>?|,〉), 

 
 

where 𝐼>? is the input image, the meaning of multi-looking or spatial averaging is defined by 〈	. 〉, and |. | 
denotes the matrix norm of the intensity image. 𝑓:	ℝ → ℝ stands for the scale factor which has been 
selected based on the product and radiometric calibration type (Table 3.1).  

 

Table 3.1. Scale factor depends on the product and radiometric calibration type 

Input image 
Product type Scale factor (𝑓) 

 𝛽1 𝜎1 𝛾1 

slc RGI-SR, INF-SR 1 sin	(θJKL) tan	(θJKL) 

amp RGI-SR, GTC-IMG 1/tan	(θJKL) cos	(θJKL) 1 

 
 
The amplitude image from GTC-IMG product is used to compute 𝜎1 . The airborne F-SAR images 
includes all HH, HV, VH, and VV polarisation for all wavelengths. This kind of SAR images is called full 
polarised. The radiometric calibration computation is repeated for all different full polarised wavelengths. 
As an example, the results of the L band of subset 3 is shown at Fig. 3.2. Throughout this research, RCS is 
referred to as the mean intensity (𝜎), since the data is properly calibrated. 
 
 
 
 
 

                                                   
13 Called “incoherent averaging” since phase information is discarded. 
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3.1.2. Speckle distribution 
To describe the original data distribution and also the smoothing effects of radiometric calibration as well 
as Gaussian scale-space, the “equivalent number of looks” (ENL) is applied. The ENL is the number of 
averaged intensity values per pixel (Anfinsen et al, 2009). The below equation is carried out ENL over a 
small and homogenous subset of intensity, 
 

 ENL = 	
(mean),

variance
 

 
(3.1) 

 
It is applied mostly to describe the properties of the original data14. For display purpose, to reduce 
dynamic range 𝐴 = √𝐼 is preferred. The L-look data generally have ‘square root gamma distribution’  
 

 𝑃Z(𝐴) = 	
,

[(\)
	]\
^
_
\
	𝐴,\`7𝑒`\Z

a
^b         𝐴 ≥ 0. 

 
(3.2) 

In 3.1, 𝑃Z(𝐴)	is the probability distribution of amplitude image, 𝐿 in this equation is equal to ENL, and as 
mentioned before 𝜎 is referred to RCS. The model of the intensity distribution of SAR data with more 
than one look assume to have a gamma distribution function (Oliver & Quegan, 2004). On the other 
hand, speckle noise is appearing in the SAR images due to the coherent interference of the backscatters 

                                                   
14 It is not necessarily integer number.  

Fig. 3.2. Radiometrically calibrated representation of the fully polarized amplitude 
image of L-band, subset 3. 
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(Lee & Pottier, 2009). Fully developed speckle occurs in coarse resolution SAR where several random 
distributed scatters are present within a resolution cell, when the range distance is larger than the radar 
wavelength (Lee & Pottier, 2009). In contrast, speckle in fine spatial resolution SAR is not fully developed 
and has different characteristics from speckle in coarser spatial resolution SAR images. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To determine the speckle distribution of SAR data, small homogeneous subsets from different 
polarization of L, X, S, and C bands amplitude images are extracted. The intensity image obtained based 
on the amplitude images. Here only the probability distribution of a polarization HH of L-band is 
presented. According to Oliver & Quegan (2004) and as presented  in Fig 3.3,  the F-SAR image has a 
gamma probability distribution15 function.  
 

3.1.3. Pauli decomposition 
To retrieve information about the target, transmitted and backscattered wave information which is 
described in the scattering matrix (equation 3.1) can be used (Sakshaug, 2013).  
 
 

                                                   
15 Gamma distribution is family of probability distributions with two-parameter such as exponential distribution. 

Fig 3.3. a) intensity image, L band, polarisation HH b) two-look gamma distribution with histogram. 

a) b) 
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 𝑆 = e
𝑆ff 𝑆fg
𝑆gf 𝑆gg

h (3.3) 

 
  

In this research, it has been assumed that 𝑆fg = 𝑆gf , as in monostatic system16 reciprocity performs. 

Thus, the reformed scattering matrix for pixel 𝑖  is 𝑆> = [𝑆ff √2𝑆fg 𝑆gg]
m

 . In addition, via 
appropriate statistic characterization, the difference between log transformed HV and VH	is calculated. Fig. 
3.4 presents this difference which can also show the strength of noise in this data. In addition, this 
histogram indicates that the data is properly calibrated. The standard deviation is equal to 0.001563282 
with the mean of 7.977679e-05.  
 
According to Sakshaug (2013), representation of all the polarimetric information of F-SAR image can be 
employed via the Pauli decomposition of the scattering matrix in a single RGB image (Fig. 3.4). The Pauli 
basis expresses the measured scattering matrix as a linear combination of three scattering mechanism  
 
 

 𝑆,×, = 	𝛼 r1 0
0 1s + 	𝛽 r

1 0
0 −1s + 	𝛾 r

0 1
1 0s 

(3.4) 

 
 
Where 
 

 𝛼 = 	 vwwx	vyy
√,

 , 𝛽 = 	 vww`	vyy
√,

	, 𝛾 = 	√2𝑆fg (3.5) 

 
The interpretation of the RGB image in Fig. 3.4 can be described based on a value for each of the 
coefficients per pixel as below (Lee et al, 2004): 
 

- The sea appears blue on the RGB image. So, the magnitude of first polarimetric channel |𝐻𝐻 +
𝑉𝑉|, is large in comparison to other channels, i.e. the 𝐻𝑉 amplitude is weak and the 𝐻𝐻𝑉𝑉∗ 
phase argument is almost zero. This channel indicates the odd or single bounce scatters which is 
characteristics of surface scattering.  

 
- The white and red are dominant colors over the buildup areas, vehicle, and man-made objects. 

Between all polarimetric channels, equal amplitudes appear in white, whereas red pixels 
correspond to 𝜋  for 𝐻𝐻𝑉𝑉∗ phase argument. They are depicting double or even bounce 
scattering. 
 

- The green color denotes forested area, i.e. wave reflection from a canopy. The 𝐻𝑉 component 
would be dominant, and it would be interpreted as volume scattering.  

                                                   
16 In monostatic radar system, transmitter and receiver stations are sharing a common antenna. So, it will generate three bands 
instead of four bands.  
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Fig. 3.4. Pauli decompositions of subset3, X-band. The resulting coefficients 𝛼, 𝛽, and 𝛾 are associated to the 

blue, red and green colors in the image respectively.  

 
Although in the research done by Mahour et al, (2016) on VHR optical images the shadow effect removed 
by applying NDVI but applying radar vegetation index (RVI) on F-Sar image to reach same purpose did 
not respond. Thus, as it is apparent from Fig. 3.4, the main advantages of using the Pauli decomposition 
for this research is removing the shadow. 
 

3.2. Theoretical background and relation to previous works 
An inherent property of some features is that they are only meaningful over a certain range of scale. For 
instance, the tree crown object as discussed in the introduction chapter only exists and detectable on a 
certain resolution of satellite images. They are not detectable from coarse resolution images due to the 
small tree size in comparison pixel size. Therefore, considering the vision phenomenon of tree crown 
detection from satellite images, including the notion of scale in an image analysis approach is necessary. 
 
Brandtberg & Walter (1998) presented a multi-scale method to recognise deciduous trees crown from 
VHR infrared colour aerial images. They used an edge segmentation algorithm at the current scale to 
describe a model of tree crown boundary region. The transformation of scale done based on scale interval 
significance value. The main problem of this algorithm was the necessity of prior knowledge about tree 
diameter to find an optimal window size of individual trees for low pass filter in the image. As a result, 
Brandtberg (2002) proposed to use the scale-space method which does not need any prior knowledge. The 
scale-space representation of an image in computer vision, proposed by Lindeberg (1994). 
 
Scale-space methods are a bottom-up multi-resolution representation framework, to deal with features 
such as tree crowns which occur at the different level of scales. Scale-space treats scale parameter 
continuously as well as other parameters of images which allow to ‘select’ an image at any resolution. By 
increasing scale from fine to coarse, the resolution of the image will decrease and blurred, whereas spatial 
sampling such as a number of pixels at all scales is remained the same. On the contrary of other multi-
scale approaches, scale-space is based on precise mathematical definitions of tree model, which can be 
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illustrated analytically over different scales. This applied for individual tree detection first from VHR 
colour infrared aerial photographs by Brandtberg (2002), then from VHR satellite image by  Mahour et al., 
(2016). Mahour et al., (2016) detected two types of orchard trees, i.e., walnut and peach, from worldwide-2 
image.  
 
The purpose of the present research is complementing previous works first by indicating the capability of 
scale-space methods in feature detection without using any external criteria; second, investigating the 
scale-space methods in tree CPA detection and delineation, as an object of interest, from airborne F-SAR 
image. The complementation of previous works can be fulfilled by consideration of the computational 
aspects follows by adding means of significant features and explicitly of scale. Thus, every scale-space blob 
includes explicit information about which gray-level blob with a relevant scale. The presented 
methodology in this research is general and can be applied for any features. Measuring significance 
behavior of features over a different range of the scale is one of the primary issues to address in case of 
speckle and noise presence. Via adding explicit gray level blob detection to raw Gaussian scale-space 
representation, the significance image can be obtained. The core of the proposed idea in this research is 
that 𝐿 should reproduce the intrinsic characteristics of the gray level image, instead of some external 
criteria or optimized parameters. By this way, the data-driven model can: 1) detect significant features; 2) 
relation between these features at a different scale; 3) feature’s occurrence scale.  
 
The outline of this chapter organized as follows:  
Section 3.2.2 provides the definition of a blob in the gray-level image follows by precise mathematic 
definition in section 3.2.3. The justification behind the idea of linking between gray-level blobs over scales 
into scale-space blobs to address previous problems is illustrated in section 3.2.4. Implementation of scale-
space has done via sampled Gaussian kernel which results in a tree model; see section 3.2.5 and 3.2.6. In 
the section 3.2.7 of methodology chapter, a brief description of scale linking of a blob and common 
configurations to generate significance scale of each blob represented follows by scale refinement in 
section 3.2.7. Finally, significant blob with its effective scale has extracted based on scale-space blob 
volume and median set theory in sections 3.2.8, and 3.2.9 subsequently.   
 

3.2.1. Scale-space representation (𝑳) 
The scale-space theory considers a stack of images as seen in Fig. 3.5 including the original image f(x, y) at 
the bottom of the Gaussian scale-space representation (Lindeberg, 1994). For an image f: ℝ, → ℝ, the 
scale-space representation L:ℝ, ×	ℝx → 	ℝ, at zero scale, is equal to the original image 

 
 

𝐿(𝑥, 𝑦; 0) = 𝑓,  𝑓(𝑥, 𝑦)	∀	(𝑥, 𝑦) ∈ 	ℝ,. 
 

(3.6) 

 
𝐿	 is convolution (∗)  of f  with two-dimensional Gaussian kernel, and the result of the convolution 
operation is 
 

 𝐿(𝑥, 𝑦; 𝑡) = 𝑔(𝜉, 𝜂; 𝑡) ∗ f = � f(𝑥 − 𝜉, 𝑦 − 𝜂)		𝑔(𝜉, 𝜂; 𝑡)𝑑𝜉	𝑑𝜂
	

(�,�)∈ℝa
, 𝑡 ≥ 0. (3.7) 

 
As 𝑡 is increasing, the spatial resolution of image decreases, and features suppress symmetrically. The 
input is two-dimensional image f resulting into a smoothed image from finer to coarser scale with different 



INDIVIDUAL TREE DELINEATION FROM HIGH RESOLUTION SAR IMAGE USING THE SCALE-SPACE BLOB MEGHOD  
 

20 

scale level of features. The final image is smoothed one-parameter family of derived images (Fig. 3.5). The 
essential condition in the scale-space stack of images is that each feature at a coarse scale must have a 
response at a fine scale.  
 

 
Fig. 3.5. Stack of images in scale-space representation. By increasing 𝑡 the level of scale will be coarser. 

 
The method uses the two-dimensional Gaussian smoothing function 𝑔(𝑥, 𝑦; 𝑡) (expression 2.1) to provide 
the multi-scale representation of the original image 𝑓 from a fine scale to a coarse scale. Gaussian kernel 
ensures that features at coarser scale referred to features at finer scale, and no new artificial features will be 
created (Lindeberg, 1994). In addition, the convolution of one Gaussian kernel with a Gaussian kernel is 
another Gaussian kernel. Thus the 𝐿 at coarse scale is computed from the convolution of 𝑔 with 𝐿 at a 
finer scale, successively. Scale parameter at the current scale or resolution image is shown by 𝑡 and it 
corresponds to 𝜎,. 

 𝑔(𝜉, 𝜂; 𝑡) =
1
2𝜋𝑡

	𝑒`(�ax�a)/,� (3.8) 

 
The local extrema regions in  𝐿 across different scales is known as blob. There are several methods for 
blob detection that can be used with the Gaussian scale-space such as Laplacian of Gaussian, the 
difference of Gaussian, and determinant of Hessian. Furthermore, scale variation is playing a dominant 
role during scale-space blob detection. In the study investigated by Mahour et al. (2016) , scale-space blob 
detection done with the use of the determinant of Hessian  
 

 det 	ℋ𝐿(𝑥, 𝑦; 𝑡) = 𝑡,�𝐿��𝐿�� − 𝐿��, � (3.9) 
 
ℋ𝐿 is the Hessian matrix of 𝐿. 𝐿��, 𝐿�� , and 𝐿��,  are second derivatives of 𝐿. The normalized scale of 
ℋ𝐿 used for automatically scale selection. The local extrema of Hessian operator with respect to the 
object location in two-dimensional image function are assumed as blobs. Therefore, the 	ℋ𝐿  detects a 
local maximum in scale-space among the three directions, i.e., space (𝑥, 𝑦)  and scale 𝑡 , where it is 

Original image 
 

Increasing 𝑡 
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maximum in all three directions. 𝑡	in the scale-space corresponds to the size of the tree radius (𝑟), where 

𝑟 = √2𝑡, and (𝑥, 𝑦) determines the position of tree. 
 

3.2.2. Definition of gray-level blob 
The primary definition of blob can figure out directly from topological properties of a gray-level image. 
Blob is a connected region which is either considerably brighter or considerably darker than its 
background and neighborhood17 (Lindeberg, 1994). The blob should have an adequately large area and 
remain stable over enough large interval in 𝐿. Thus, naturally, the blob with this definition should have 
some significance measure with it. In addition, the definition of scale-space blob with associated at least 
one local extremum that is arising in the 𝐿 is related to gray-level blob as well. The basic idea of the blob is 
evident from Fig. 3.6. Simple definition is that let the blob grow spatially and include all lower gray-level 
values until it merges with another blob. Moreover, the image denotes that every blob in the two-
dimensional surface is delimiting with one local extremum which gives rise to a blob, and a saddle point 
which extent a blob. It is essential to define gray-level blob extent and other characteristics. Therefore, 
from the precise mathematical definition of the gray-level blob and some blob descriptor quantities, 
ultimately generating significance image is possible.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                   
17 There are separate systems correspond to the bright blob on dark background and dark blob on bright background. 

a) 

b) 

Fig. 3.6. Representation of gray-level blob definition a) The three bright gray-level blobs with 
the dark background at fixed level of scale. b) Schematic two-dimensional shape of the same 

three gray-level blobs at figure a (adapted from (Lindeberg & Eklundh, 1991)). 

Local extremums 

Saddle points 
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3.2.3. Mathematical definitions of the blob descriptors  
According to Lindeberg & Eklundh (1991) for the original gray-level image 𝑓:	ℝ, → 	ℝ at a fixed level of 
scale, assume two local maximums 𝐴, 𝐵 ∈ ℝ, . 𝑝Z,9 is one of the infinite paths (𝑃Z,9)  between 𝐴, 𝐵 , 
whereas the gray-level function along all these paths is assumed to be minimum. The base level 𝑍���� of 
local extrema, 𝐴 can be defined as 

 
 

𝑍����(𝐴) = {max(𝐵 ∈ 𝑀)	max(𝑝Z,9 ∈ 𝑃Z,9)min¢𝑓(𝜉	, 𝜂), (𝜉	, 𝜂) ∈ 𝑝Z,9}}	 
 

(3.10) 

where 𝑀 is the set of all extremas. In addition, the support region of the blob 𝐴 is the projection of all 
points 𝑟 ∈ ℝ,	which are more than the 𝑍����  

 
 
𝐺�¥¦¦§¨©(𝐴) = 	 ¢𝑟 ∈ ℝ,:max�𝑝Z,9 ∈ 𝑃Z,9�min{𝑓(𝜉	, 𝜂) 	≥ 	𝑍����(𝐴), (𝜉	, 𝜂) ∈ 𝑝Z,9}}.  

 
(3.11) 

The blob contrast definition gives by the difference between the local maximum and a base level of local 
maximum 
 

 𝑐�«§�(𝐴) = 𝑓(𝐴) − 𝑍����(𝐴). (3.12) 
 
Eventually, the blob volume definition in three-dimension (i.e. spatial 𝑥, 𝑦 and gray-level 𝑧) is  
 

 𝐺�«§�(𝐴) = {(𝑥, 𝑦, 𝑧) ∈ 	ℝ, × ℝ ∶ ](𝑥, 𝑦) ∈ 𝐺�®¯¯°±�(𝐴)_ ∧ �𝑍����(𝐴) < 𝑧 ≤ 𝑓(𝑥, 𝑦)�}. (3.13) 

 
The significance of the blob can be denoted based on the size of this volume which will be called the gray-
level blob volume. The gray-level blob volume is an appropriate inherent property of the blob since it has 
both information on the spatial extent and signal amplitude.  
 

 
Fig. 3.7. Descriptive definitions of a gray-level blob in three directions of space (𝑥, 𝑦), and gray-level(𝑧): base level, 

area, support region, contrast, and volume (Source: Lindeberg & Eklundh, 1991). 
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3.2.4. The motivation for linking between gray-level blobs for tree CPA identification 
In the scale-space representation for tree CPA detection, a set of smoothed images is just giving an 
implicit overview of tree profile gray-level values. On the other hand, giving a definition of gray-level blob 
at a fixed level of scale is not sufficient to extract image features. Explicit information in family of 
smoothed image related to gray level blobs and a relation between gray level blobs at different scale levels 
is required to prevent noise sensitivity. The gray-level blob at one fixed level is noise sensitive because of 
two or several local maximums which are located close to each other. Generally, these kinds of noise 
sensitivity lead to false detection. To be specific, this problem has been evident in the results of the 
previously applied scale-space methods concerning tree detection is related to trees with two or more sub 
crowns or close trees (Fig. 3.8). In this case, the scale-space feature detection at a fixed scale gives false 
several detections of the same tree. Linking between blobs of different scales is to determine significant 
blob based on image inherent properties. In other words, without prior knowledge about tree location, 
image scale, or shape of a tree18. By linking gray-level blobs over scale and consider their behavior we can 
obtain more stable descriptor, scale-space blobs. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.8. Closely located trees, or trees with two sub-crowns. It leads to false detections at one fixed level of scale.  

 
Therefore, defining a hierarchical relation between gray-level blobs over the scale, and use blob natural 
geometrical property to select significant blobs. Then by using scale-space, these properties can be 
converted to original descriptors. Thus, the closely located peaks at fine scale will be related to one peak 
with high gray-level blob volume at a coarser scale. The method calls ‘scale-space blobs’ with four-
dimensional space (x, y), gray-level(Z), and scale (t).  
 

3.2.5. Computational implementation of the scale-space  
The definition of scale-space representation, which is presented in section 3.2.2, is continuous and 
therefore is impractical on discrete images since it is continuous. To apply scale-space on a discrete image, 
there are mainly two different approaches are generally used: the sampled Gaussian kernel, and the 
discrete Gaussian kernel. The difference between them becomes evident at a fine level of scale. 
Convolving the discrete image 𝑓 with the sampled gaussian kernel is the simplest and straightforward 
approach to implement scale-space. The discrete Gaussian kernel is a more natural and refined approach 

                                                   
18 Except assumption of bell-shaped for tree crowns.  
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to implement the scale-space theory on a discrete image. It gives a well-defined scale-space for discrete 
signals since the discrete scale-space only discretise the space coordinates. However, in blob detection 
from SAR images at fine level of scale there is a high effect of speckle. Thus, in the present study the 
implementation of scale-space has done via using the sampled Gaussian kernel.  
 

3.2.6. Scale-space derivatives  
Derivatives of scale-space representation can be applied at any level of scale in scale-space. Multi-scale 
spatial derivatives of 𝐿 can be illustrated by 
 

 𝐿�µ�¶(𝑥, 𝑦; 𝑡) = 	𝜕�µ�¶𝐿(𝑥, 𝑦; 𝑡) = 𝑔�µ�¶ ∗ 𝑓 (3.14) 
 
Where  𝑔�µ�¶ indicates a |𝑛|, |𝑚| orders of derivatives of the Gaussian kernel. Scale-space derivative can 
be computed by convolving Gaussian derivative operator with the original image 𝑓 , bec ause of 
commutative property of the derivative operator with Gaussian kernel. The result of convolution in forms 
of explicit the integral is  
 

 𝐿�µ�¶(𝑥, 𝑦; 𝑡) = 	º 𝑔�µ�¶
	

�»�»∈	ℝ¼
(𝑥 − 𝑥½, 𝑦 − 𝑦½; 𝑡)	𝑓(𝑥½, 𝑦½)	𝑑𝑥½𝑦½  

 
 																										= ∫ 𝑔�µ�¶

	
�»�»∈	ℝ¼ (𝑥½, 𝑦½)	𝑓(𝑥 − 𝑥½, 𝑦 − 𝑦½; 𝑡)	𝑑𝑥½𝑦½, (3.15) 

             
and called ‘the scale-space derivatives’ of 𝑓 at scale 𝑡.  
 

3.2.7. Scale linking of blob and blob configurations 
By linking the gray-level blobs at a fine level of scale with corresponding similar blob at a coarse level of 
scale, scale-space blobs will be derived (Lindeberg & Eklundh, 1991). Therefore, the object of interest will 
have four-dimensional volumes in scale-space, named as scale-space blob volume. Furthermore, each 
scale-space blob will have a minimum scale in which it is appearing and maximum scale in which it is 
disappearing. The difference between blob appearance scale and blob disappearance scale can be denoted 
as a scale-space blob lifetime; see Fig. 3.9. Blob lifetime denotes how long the blob can survive in scale-
space. 

 Fig. 3.9. Linking between gray-level blobs yields four-dimensional scale-space blobs with 
lifetime (adopted from Lindeberg & Eklundh, 1991). 

Disappearance scale 

Appearance scale 

Scale-space blob 
lifetime 
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During the linking bob at different scale levels, blob shape can change and may be distorted. In other 
words, different kinds of phenomenon can affect the topology of the blob. Blob can disappear, split, or 
merge over the blob scale linking. These kinds of events according to the catastrophe theory called 
bifurcations. Four possible bifurcation events can restrict the accomplishment of the blob-linking 
algorithm with increasing scale level (Fig. 3.10); 
 

i. Annihilation: a blob disappears. 
ii. Merge: two or more blobs merge into one blob. 
iii. Split: one blob split into two blobs 
iv. Create: a new blob appears19 
v. Movement: blob can move 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2.8. Scale-space refinement  
During the gray-level blob linking algorithm sometimes the interval between scales to relate a fine scale 
blob or blobs to coarse scale blob or blobs is too large.  In this case, the smoothed scale is computed 
which means the number of scales will increase and all scales will shift by one. 
 

3.2.9. Blob significance measurement and effective scale 
To reach the final purpose of this study is intended structure extraction in the image, the methodology 
which can compare the significance of scale-space blobs in 𝐿  over different levels of scale based on 
appearance and significance of blob is required. Referred to the blob descriptors definition which have 

                                                   
19 The main cause is using numerical schemes to apply the scale-space theory on discrete image. since they don’t have high 
volume or lifetime, they don’t affect the final results.  

(a) (b) 

(c) (d) 

Fig. 3.10. Common four possible bifurcation events in scale-space: a) annihilation b) merge c) split d) create 
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gained until this section, in absence of any further prior knowledge, each four below-mentioned 
descriptors have the capacity to be considered as significance measure; 
 

i. Blob support region: a blob with large spatial extent can be treated as more significant in 
comparison with a blob with a small spatial extent.  
 

ii. Blob contrast: a blob having higher contrast can be treated as more significant in comparison with 
a blob with low contrast.  

 
iii. Blob lifetime: a blob with a long lifetime in scale-space can be treated as more significant than a 

blob with a shorter lifetime.  
 

iv. Blob volume: a blob with high blob scale-space volume can be treated as more significant than a 
blob with lower volume.  

 
Among these nominated measurements, four-dimensional 20  scale-space volume in scale-space is 
considered as significance measure. The initial justification is that it consists of the spatial extent, the 
contrast and the blob lifetime. Moreover, scale-space blob volume calculated based on an effective scale 
notion. It means that for each high-volume scale-space indicate the scale where the gray-level blob volume 
is high. Then the gray-level blob support region of most significant blobs extracts which can determine 
tree CPA more precisely.  
 

3.2.10. Effective scale based on random sets  
After linking blobs preformation in 𝐿 , we have multiple boundaries for the same gray-level blob at 
different scales. These multiple boundaries are modelled with random sets in this study. The coverage 
function according to Zhao (2012) of the spatial extent of all pixels in tree CPA boundary can be created 
as follows. The covering function and probability of pixels in ℝ, both are belonging to random set. If the 
pixel has be included in the boundary, then the covering function of it will be equal to 1 (e.g. centre point 
is always included). If half of the pixel is included in the boundary, then the covering function of the pixel 
will be 0.5. since we are dealing with set of pixels defined as tree CPA boundary, random set model can be 
created based on median of boundaries in  ℝ, . Therefore, median random set of multiple tree CPA 
boundaries with its representative scale, from random subsets in 𝐿  can be computed. The median 
boundary of tree CPA also includes the representative scale.  
 
 

3.3. Validation  
The performance of individual tree CPA identification is divided into three types of uncertainty 
assessment. First, assessing the true detections. Second, validating the accuracy of the spatial extent of 
detected tree CPA. Third, assessing the geometrical position of the center of a detected tree. The relevant 
method to fulfill this section is illustrated precisely below. 
 
 
 
 

                                                   
20 Space (𝑥, 𝑦), gray-level (𝑧), and scale (𝑡).  
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3.3.1. Detection 
Assessment of true individual tree detection has carried out 
based on the presence of tree or trees within the nominated 
subsets. Since the nominated subsets just contain limited 
recognizable trees, the visual assessment is sufficient. The red 
detected polygons which are false positive detections are known 
as error type 1. The trees which are not detected known as false 
negative detections, error type 2. 
 
 
 

3.3.2. Spatial extension 
To numerically assess the spatial boundary of detected individual 
trees, first manual visual digitization has done based on same F-
SAR data. Since this research is fulfilled based on small subsets 
and the selected SAR image has a high spatial resolution, 
preferably same airborne F-SAR data has selected as reference 
data. In addition, considering tree crown as a varying object 
during the time, the same image would give a better result. 
Second, the percentage of overlap between the result 
segmentation and the polygon reference boundary has 
computed. If we consider 𝐴1 as an area of reference tree CPA 
boundary, 𝐴¿ area of median blob boundary, and 𝐴vv as significance blob, then the area fit index 𝐴𝐹𝐼¿ 
and 𝐴𝐹𝐼vv according to Lucieer & Stein (2002) is 

 𝐴𝐹𝐼¿ = 	
𝐴1 −	𝐴¿

𝐴1
 (3.16) 

 

 𝐴𝐹𝐼vv = 	
𝐴1 −	𝐴vv

𝐴1
 (3.17) 

 
Respectively. If the 𝐴𝐹𝐼 = 0.0, then the overlap is best fit to reference tree CPA. If 𝐴𝐹𝐼 < 0.0 , then the 
reference tree CPA is undersegmented. Finally, if the 𝐴𝐹𝐼 > 0.0 the reference tree CPA is oversegmented. 
 
Furthermore, to evaluate the detection of tree CPA boundary,  according to Yan et al. (2013) the 
overestimation and underestimation can be calculated as follow 
 

 Overestimation = 1 −
area	(𝐴> ∩ 𝐴1)
area	(𝐴>)

 (3.18) 

 
 

 Underestimation = 1 −
area	(𝐴> ∩ 𝐴1)
area	(𝐴1)

 (3.19) 

 

Fig. 3.11. Detection errors (false positive 
and false negative errors) 

Fig. 3.12. Extensional error 
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The values of overestimation and underestimation which are close to 0, illustrate great agreement between 
reference tree CPA and significant blob. The total detection error which known as a root mean square 
(RMS) can be described as below 
 

 𝑅𝑀𝑆 =	Æ
overestimation, + underestimation,

2
 (3.20) 

 

3.3.3. Position 
 
The tree position defined by the geometry center position of tree CPA. 
Therefore, as reference data position of the center of present trees 
within the subsets carried out. Next the center position of converted 
vector polygons from three detections (i.e. scale-space blob, detℋ𝐿, 
median set) have figure out. To assess the difference between each of 
these centroids (𝑥, 𝑦) and reference tree crown centre (𝑥1, 𝑦1),  the 
Euclidean distance 𝐸 is computed as below:  
 
 
 
 
 𝐸vv = 	É(𝑥vv − 𝑥°), +	(𝑦vv − 𝑦°),	 (3.21)  
 

 𝐸¿ =	É(𝑥¿ − 𝑥°), +	(𝑦¿ − 𝑦°),	 (3.22) 
 

 𝐸Ê = 	É(𝑥Ê − 𝑥°), +	(𝑦Ê − 𝑦°),	 (3.23) 
 
Where the 𝐸vv, 𝐸¿, and 𝐸Ê are errors of detected scale-space, median set, and detℋ𝐿 respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.13. agreement assessment 
between reference and detected tree 
CPA 
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4. STUDY AREA AND DATA DESCRIPTION 

This section starts with introducing the study area of this research, and it is followed by providing a 
description of the available data.  
 

4.1. Study area 
One of the important factors in choosing the study area for each research is the availability of data. The 
study area is selected based on existing airborne SAR data which is provided by the Microwaves and Radar 
Institute of the German Aerospace Center (DLR). The reason for this selection was due to the value of 
this unique data (Horn et al., 2017) which is briefly illustrated below as well. Moreover, according to the 
focus of this study, the study area can be anywhere containing individual trees. The considered site is at 
the former military airfield of Kaufbeuren in the South of Germany, near Munich (Fig. 3.1). There are 
plenty of individual trees outside of the forest within the area of interest. Most of them located nearby the 
Barensee, roads, and buildings; see examples in Fig. 4.1.  
 

  

Fig. 4.1. The study area of interest near the Munich, Germany in 2014. The red rectangles provide the example spots 
with individual trees. The numbers are three nominated subsets which are presented in figure 3.2. 

Source: Google Earth 

1 2 

3 
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For further analysis, three small subsets of the study area that contain two or three trees are extracted; see 
Fig. 4.2. The first subset is an individual tree next to the building house with grass background. This 
subset can provide information on how well the scale-space methods can distinguish between building and 
tree with low spectral separability with a background. The second subset is chosen due to the closeness of 
trees, so the capability of the scale-space in true detection of close trees can be assessed. Finally, the third 
subset is again an individual tree next to the building with another similar background (i.e. farm field).  
 
 
 
 
 
 
 
 
 

 

Fig. 4.2. Three nominated subsets. They will name in text as subset 1, subset 2, and subset 3 respectively.  

 

4.2. Remote sensing data image description 
The available and considered data for this research based on the main objective consists of a fine spatial 
resolution SAR image. the F-SAR data includes two images of different months of the same year (Table. 
4.1). The underlying assumption depends on the quality of available data is that tree crown boundaries do 
not change during two or three years. Whereas, the bound of extracted individual tree crown boundaries 
from different years can also be evaluated with the tree growth model. The brief description of technical 
characteristics and preparation of each dataset is mentioned below. 
 

4.2.1. F-SAR data overview 
The very high-resolution SAR images used for this research is multi-look airborne F-SAR. Recently, DLR 
has introduced the F-SAR, which is one of the latest and most of the most advanced airborne SAR 
instruments. This right-looking21 SAR can acquire data in five fully polarimetric22 frequency bands; X-, C-, 
S-, L- and P simultaneously. Furthermore, it provides a very high spatial resolution of up to 0.2 meters at 
X-band (Horn et al., 2017). Table 4.1 indicates that a summary of the technical characteristics of available 
F-SAR data. 
 
 
 
 
 
 
 

                                                   
21 The interpretation of object’s shadow also prove that the sensor is right-looking.  
22 F-SAR system has all 4 channels HH, HV, VH, VV.  

1 2 3 
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Table 4.1 Characteristics of airborne F-SAR images 

Date 20-Apr-2015 24-Jun-2015 
Bands L S X X C L 

Frequency [MHz] 1325 3250 9600 9600 5300 1325 
Polarizations All bands are fully polarimetric 

Rg. resolution [m] 1.2 0.6 0.6 0.2 0.5 1.2 
Az. resolution [m] 0.3 0.2 0.2 0.2 0.2 0.3 

 
 

4.2.1.1. General properties  
The F-SAR data provided by DLR for this research depends on the research goal, contains geocoded 
amplitude products and geocoded local incidence angle in radar geometry; see Tables …... The amplitude, 
the intensity, and log-transformed image are easier to interpret, even despite speckle. Moreover, these 
images are preferred because of the lower dynamic range of the intensity which makes images more 
perceptible (Oliver & Quegan, 2004). The sounder mood of data is zero which indicates that the image is 
not acquired in nadir looking geometry. Moreover, the heading angle of the sensor is 91.164020, which 
denotes satellite look vector relative to the ground surface. Variety of product can be formed from the 
SAR data which known as ‘complex image’ based on the application at hand. For instance, the amplitude 
𝐴, the phase 𝜙, the intensity 𝐼23, and the log intensity log 𝐼. 
 
The general information of whole data is that all images are geocoded to datum WGS-84 with UL Geo: 10 
34’ 51.27” E, 47 52’ 31.06” N, and UL Map: 618211.000, 5303649.500. Moreover, the local incidence 
images based on terrain are available which gives incidence angle per pixel. The incidence angle varies 
from 57° to 71°, with a mean of 64°. From local incidence image and intensity image, calibrated intensity 
image can be obtained. The calibrated (log transformed) image is required to reduce restriction of low 
perception due to the large range of the intensity image.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                   
23 𝐼 = 𝐴,, and the word “intensity” is synonymous with power or energy.  
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5. RESULTS  

This chapter presents the results of a tree CPA delineation, as an object of interest, using the scale-space 
blob algorithm. These results are from three nominated subsets of the study area (section 4.1). Section 5.1 
provides an overview of the scale-space blob algorithm. Section 5.2 presents the final results of the applied 
methods and significant blobs. Section 5.3 has allocated to the results of tree CPA delineation of subset 2 
from different F-SAR wavelengths and their effect on outcomes. The final section presents the validation 
and comparison between the results of the scale-space blob methods and the scale-space method 
combined with detℋLblob detection algorithm. The minimum and maximum level of scale level in 
preformation of the scale-space algorithm selected initially based on a tree size in case of the image 
resolution.  

5.1. Scale-space blob results 
The scale-space blob detection algorithm to the Pauli decomposition results of the polarized FSAR data in 
L, S, X, and C bands image has applied. The first level of scale is containing a lot of small blobs due to the 
detection of the surface texture, additive noise of F-SAR images, and presence of the speckle (Fig. 5.1. a), 
whereas at coarse level of scale all image features become grouped into a single blob (Fig. 5.1. b)). The left 
images in Fig. 5.2, shows the gray level images. The top image is fine resolution image, whereas the below 
image is blurred image during scale-space analysis. The right images show the behavior of the gray-level 
blobs with increasing scale in the 𝐿. From these five images, it is apparent that by increasing scale, small 
blobs are disappearing gradually. 
 
Blobs are disappearing much more quickly in the regions close to the steep intensity gradients24. These 
results highlighted that speckle can survive for a long time in 𝐿 if they are located in regions with a lower 
gradient. Therefore, according to the definition of scale-space blob lifetime, blob lifetime cannot treat as 
an appropriate property for a significance measure. If the significance measure performs based on the 
scale-space blob lifetime, the results of blob significance are substantially overestimated. On the other 
hand, the findings provide an important evidence that the presence and effect of speckle in SAR images 
can be circumvented by the smoothing property of the scale-space, since speckle is always restricting the 
information extraction from image. Thus, during the scale-space there is no need to apply any speckle 
filter to reduce the speckle effect on image which make the analysis faster. The speckle reduction conducts 
automatically during the scale-space implementation. The effect of SAR additive noise is negatable, 
whereas it supressed by applying scale-space as well. Moreover, as we can see from Fig.5.2 the tree and 
house building are detected as single units at a coarse scale (blue arrows).  

                                                   
24 Gray-level intensity is varying faster.  
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Fig. 5.1. a) At the fine level of scale, a lot of small blobs appear due to the surface texture and presence of speckle b) 
At the coarse level of scale, the all features in the gray-level image appear as a single blob object. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a)
A
A 

b) 
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Fig. 5.2. Gray-level and gray-level blob images of the subset1, band L, F-SAR data at scale levels 𝑡 = 10, 𝑡 = 28, 
𝑡 = 52, 𝑡 = 145, and 𝑡 = 178 (from top to bottom). By increasing the scale level, the small blobs disappear 

gradually. 
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5.2. Raster to vector conversion 
The images in Fig. 5.2. has shown blob at the fixed level of scale. The blob linking algorithms is cunducted 
to indicate significance blob in the 𝐿, without any prior knowledge about scale, position, or shape of tree 
crowns. The blob with high gray-level volume in scale-space after linking blob, resulted to the scale-space 
blob volume. Determination of a significant blob has done based on high scale-space blob volume. This 
blob denotes the accurate tree CPA boundary as well as its representative scale. To show the spatial 
relation between the blobs that related to the tree CPA at different levels of scale, blobs support regions at 
range of blob lifetime, are converted to vector boundaries. These boundaries have overlapped with the 
original F-SAR image to evaluate the best fit. Fig. 5.3. is presenting a significant blob related to the tree at 
their representative scale (i.e. yellow polygon). In addition, the median set blob has shown with green 
colour.  

 
Figure 5.3. Vector boundaries (in blue) of high gray-level blob at different scales in scale-space representation. Green 

and yellow polygons are significant blob and median set, respectively. 
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5.3. Different wavelengths of F-SAR image 
In Figs. 5.4, 5.5, 5.6, and 5.7 the results for four different bands of F-SAR data, subsets 3 has represented 
(bands L, S, C, and X respectively). Bands L (30-15 cm) and S (15-7.5 cm) with long wavelengths and high 
penetration ability provide better tree CPA identifications. However, C band (7.5-3.8 cm) and specifically 
X band (3.8-2.5 cm) with low penetration strength just provide above the surface of the tree crown.  

 
 

 

Figure 5.4. Subset 3, L-band, gray level blob support regions are shown by polygon. 

  
Figure 5.5. Subset3, S-band, gray level blob support regions are shown by polygon. 

 

 

 

 
 

Figure 5.6. subset3, C-band, gray level blob support regions are shown by polygon. 
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Figure 5.7. Subset3 X-band, gray level blob support regions are shown by polygon (all colors). 

5.4. Validation 

5.4.1. Detection accuracy 
This section includes the comparison between the tree CPA detection result from the scale-space blob 
method and the detℋL . Both results are overlapped in the same image. As depicts from Fig. 5.8 detℋL 
has several false positive errors and several overlapped close detections of the same tree at slightly 
different positions (seven detections). The method requires better thresholding which does not ensure 
100% single true detection at the end. There are no criteria for this thresholding, and it is repeated until 
reach to the best result. In the other words, thresholding is a matter of try and error with possible better 
value always. However, the scale-space blob method detected the tree crown correctly.   

 
Fig. 5.8. Results of tree CPA detection from detℋL (red circles), and the scale-space blobs (blue, yellow, and green 

lines), subset1. 
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As can see from Fig. 5.9, the preformation of the algorithm on overlapped adjacent trees results in false 
negative detections. Further experimental analysis is required to treat the meaning of significance blob 
based on critical points, effective scale, and rescaled blob volumes. Moreover, the range of scale level in 
analysis of the scale-space algorithm based on a tree size in case of the image resolution selected initially. 
However, in another feature detection, this minimum and maximum can be different.  

 

Fig. 5.9. Results of scale-space blob method on subset 3, which contains three close trees. It presents false negative 
detection of two trees.  

 

5.4.2. Extensional accuracy  
Since in this research, we obtained a more precise boundary of tree CPA as an irregular object, the 
comparison and validation of extensional accuracy have described between the results of the significant 
blob support region at representative scale and the support region of the median set blob at representative 
scale. Table 5.1 illustrates the difference between reference tree CPA area, and support regions of median 
set and significant blob. Both are under-segmented, whereas the spatial boundary of median set which also 
depicted from Fig 5.3 has lower area difference with reference boundary. Moreover, the lower 
overestimation and underestimation proves a good match between the support region of the median set 
blob and reference polygon boundary.  
 
Table 5.1. Tree CPA extensional accuracy, L-band, subset1, difference between reference tree CPA boundary, 
median set, and significant blob support regions. 

 𝐀𝐅𝐈𝐌(𝐦𝟐) 𝐀𝐅𝐈𝐒𝐒(𝐦𝟐) 𝐀𝐅𝐈𝐝𝐇(𝐦𝟐) 𝐎𝐯𝐞𝐫𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐢𝐨𝐧 𝐔𝐧𝐝𝐞𝐫𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐢𝐨𝐧 𝐑𝐌𝐒 
Median 

set  
−0.032   0.085 0.055 0.071 

Significan
t blob 

 −0.556  0.360 0.004 0.254 

Det 
Hessian 

  0.214 0.056 0.259 0.187 
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5.4.3. Positional accuracy 
The positional accuracy has performed between centroids of reference tree CPA boundary, the significant 
blob, the median set blob, and 𝑑𝑒𝑡ℋ𝐿 . The results of the errors are presented in Table 5.2. The 
assessments show the median set provides the more precise centre of the tree. The significant blob and 
𝑑𝑒𝑡ℋ𝐿 have the same accuracy.  
 
 
Table 5.2. Tree CPA positional accuracy between reference tree CPA center and the significant blob, median set, 
𝑑𝑒𝑡ℋ𝐿.  

 Centroids Positional error (cm) 
Reference (x§, y§) = (620503, 5301010)  

The significant blob (xéé, yéé) = (620502.5, 5301012) Eéé = 	2.061 
The median set (xê, yê) = (620503.1, 5301011) Eê = 		1.004 

The 𝑑𝑒𝑡ℋ𝐿 (xë, yë) = (620502.5, 5301012) Eë = 	2.061 
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6. DISCUSSION 

In this research, the automatic delineation of the tree CPA, based on the airborne F-SAR gray-level image 
by using well-founded multi-scale scale-space method delineated. The performance of this method in 
comparison to other data sources which can directly identify tree crown, such as Lidar and UAV, is much 
more efficient. The proposed method produced superior results without any assumption, classification, 
external criteria, or thresholding in relevant prior knowledge about tree neither shape of tree crown 
boundary, in contrast to, the previous investigated scale-space method. Including scale parameter in 
computations is crucial in terms of identifying features such as tree crown boundary which spatially varies 
according to image resolution. The support region of the high-volume scale-space provides information 
about  
 

• The position and boundary extension of the tree on the ground  
• The effective scale which can be treated in further analysis. 

On the other hand, including the fourth dimension (i.e. gray-level value) increased the accuracy of tree 
detection concerning regions with poor spectral separability between tree crown and background surfaces.  
 
From another point of view, this study demonstrates a feasible application of the scale-space blob method 
on SAR images, which so far has not explored. SAR system is an important data source with different 
capabilities regard to different data such as interferometry, different wavelengths, and different 
polarizations (Schmitt et al., 2013). Although the results give better segmentation of tree CPA in 
comparison to regular shapes, they are not adopted exactly to the tree crown boundaries. This quiet poor 
localization is due to the noise in relevant image spatial resolution. These kinds of slightly coarse but 
crucial information can be easily combined with either other vector, raster data in geographic information 
system (GIS), or other SAR data. Moreover, these data have the potential to combined with applied RS 
issues concerning different environmental issues. They can result in several applications such as tree 
biomass and volume estimation, canopy height model, tree monitoring, change detection, mapping tree 
health, irrigation management, and tree inventories.  
 
In the present study, an assumption has been made to apply the proposed algorithm on three nominated 
subsets of the study area. The applicability of the proposed algorithm on the whole study area with many 
trees or on forest needs further investigations. As an example, though the scale-space blob algorithm 
offers more precise tree CPA boundary, in the identification of close trees faced some deficiencies.  
 
The tree crown reference polygon has been digitized manually based on F-SAR data. First, the manual 
digitization of tree CPA would not be applicable for the large study areas with many trees. Second, UAV 
data or LiDAR data can be an alternative reference data source which is more precise, faster, and are 
applicable for a large area. However, in case of using different these kinds of data as reference data 
sources, two limitations must be considered. The first restriction is related to the high cost of UAV or 
Lidar data over large areas, whereas their accuracy is not too high in comparison manual delineation 
(Khosravipour, 2017). Second, in case of using different data from the input image, must be assumed tree 
crown boundary does not change over time. 
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To remove the effect of tree crown shadow, NDVI was used for optical images in previous studies 
(Ardila, 2012; Mahour, 2018). In the present study, shadow effect which is more evident in X-, and C-
band images corrected via Pauli decomposition (Fig.5.6, 5.7). The Pauli decomposition has worked well 
enough, whereas using the RVI is not effective and does not provide the same results of removing shadow 
as NDVI on the optical image.  
 
This research highlighted out that the capability of the scale-space method in individual tree detection as 
an object of interest. This complies with findings of previous related works (e.g. Brandtberg, 2002; 
Mahour et al., 2016; Mahour, 2018). We end up with higher detection accuracy (should be consider for 
small subset 1,3), higher extensional accuracy (considering extracting irregular tree CPA shape adopted 
with RMS 0.071cm for the median set and RMS 0.254cm for significance blob), and improved positional 
accuracy (1.004 Euclidian median set error and 2.061 for significant blob). These findings approve and 
comply with the scale-space blob method for feature detection without any prior knowledge or criteria 
and adding fourth-dimension gray-level value gives perceptually perfect results (Lindeberg & Eklundh, 
1991).  
 
In this study the scale-space blob methods cunducted on a high-resolution SAR data. The method is, 
however, applicable for tree crown identification from images of other sensors including different 
resolution active, passive, visible, near-infrared, panchromatic bands. Applying the method on coarse 
resolution dataset the extensional and position accuracy maybe decrease, whereas coarse structures 
(spectral profile) still can be detected. Different kinds of information based on data source and application 
can be obtained. Various image features depend on an application at hands such as ridges, edges, corners, 
and blobs can be detected using the scale-space blob algorithm. As an example, the scale-space method 
can be used to detect important features from ultrasound images to asses tumor growth.  
 
Different types of development in science can restrict the application of the proposed scale-space method. 
One of the significant developments is related to a data source. In modern surveying, by improvement of 
laser scanners maybe there will be an opportunity to individual trees 3D mapping directly.  
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7. CONCLUSION AND FURTHER ANALYSIS 

7.1. Conclusion  
This research has proposed and implemented a multiscale representation of gray-level high-resolution F-
SAR image to automatic scale selection and trees CPA extraction. The scale-space blob method is the 
well-founded bottom-up method, without requirements of any prior knowledge, assumption, criteria, or 
tuning parameter about tree crown shape. It uses just a qualitative description of the gray-level image to 
determine the approximate position of the tree, the spatial extent of tree CPA, and representative scale. 
The tree CPA boundary identification is based on the well-defined notion of a blob. The blob linking 
algorithm can generate the multi-scale representation of blobs with reference to the tree crown at the 
original image. The significant blob with high gray-level volume in scale-space representation blob can 
provide natural geometrical information of tree crown. Results signified that good agreement between 
reference data and significance blob. These data can be combined with GIS data or different SAR data to 
address different environmental issues.  
 
The scale-space theory treats the tree crown as a multi-scale object on discrete SAR image perfectly. The 
smoothing property of the method treats perfectly with the presence of speckle with gamma distribution 
in the SAR image (refer to Fig. 5.2). Different bands of F-SAR image based on their frequency and 
penetration strength provides slightly different accuracy information. Depends on an application at hand, 
each wavelength can be preferred.  
 
The detection accuracy for small subsets 1, 3 with single trees, results true detections. Extensional 
accuracy, considering extracting irregular tree CPA, obtained with RMS 0.071 for the median set and RMS 
0.254 for significance blob. The positional accuracy (1.004 Euclidian median set error and 2.061 for 
significant blob) is also improved in case of choosing the best boundary at its effective scale. The 
representation of blob related to tree crown in different scale levels stresses that all levels of scale should 
be taken into account in the implementation of scale-space. The straightforward and robustness of this 
method presents the potential of it to apply on different VHR passive or active data sources from 
different platforms. Further investigations are required to choose significant blob more precisely to get the 
best boundary of tree CPA, and better detection of adjacent tree crowns.  
 
With this work we aimed to explore the possibility of applying the scale-space methods on SAR data, 
considering the presence of speckle. In addition, making scale parameter explicit in scale-space 
representation via using a gray-level image. the presented algorithm can assist other scientists, or 
stakeholders for different feature detection from different data sources.  
 

7.2. Recommendations for further analysis 
The number of selected high-volume scale-space blobs are arbitrary, whereas there is a well-defined 
ranking algorithm between the blobs. The most significant blobs stand out in comparison to other blobs. 
It would be great if there is an appropriate justification in general situations. Furthermore, to treat the 
significant blob better, the notion of effective scale and transformed blob volume could be considered in 
the calculation of the scale-space blob for each scale-space blob.  
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