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ABSTRACT 

Mangrove forest which provides ecosystem services plays a pivotal rule to storage a large amount of carbon 

than any other tropical forest. However, the existing mangrove forests are threatened by deforestation and 

forest degradation. Mahakam Delta mangrove forest, East Kalimantan, Indonesia is one of the most 

extensive mangrove forests in Southeast Asia which has lost a massive part of its area due to conversion 

into aquaculture, agriculture, mining, oil exploration and settlement. UNFCCC thought REDD+ program 

and its MRV mechanism is doing its best to reduce greenhouse gases emission, which is addressed to IPCC 

for using earth observation data to mitigate climate change. UAV is one of promising advanced technology 

of remote sensing which has many benefits such as, very-height spatial resolution data, cost-effectiveness, 

reliable data quality, and multi-temporal. UAV images can be used for forest monitoring and management. 

This research aimed to assess aboveground biomass (AGB)/carbon stock using UAV images of 2017 and 

2018 as well as calculate carbon sequestration over a one-year period in a part of mangrove forest in 

Mahakam Delta, East Kalimantan, Indonesia. Fieldwork was done to collect biometric mangrove tree 

parameters such as diameter at breast height (DBH) and trees height to calculate aboveground 

biomass/carbon stock and carbon sequestration using UAV images of October 2017 and December 2018. 

These results were compared with biometric data collected in the field to assess its accuracy. 

The results show that there was a significant relationship between crown diameter derived from crown 

projection area of UAV images and the ground truth DBH of both 2017 and 2018. The results reveal that 

there was a strong relationship between trees height derived from canopy height model (CHM) of UAV 

images and trees height derived from terrestrial laser scanner (TLS) data in 2017 and 2018. AGB modelled 

from UAV images were 102 Mg/ha and 112 Mg/ha in 2017 and 2018, while ABG from biometric (i.e., 

ground truth) data in 2017 was 104 Mg/ha and in 2018 was 114 Mg/ha. According to the results from UAV 

images in the period from October 2017 to December 2018, sequestered carbon was 6 Mg/ha/year 

compared to 5 Mg/ha/years of carbon sequestration assessed using biometric ground truth data. 

 

Keywords: Mangrove, UAV, ground truth data, aboveground biomass, carbon sequestration. 
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1. INTRODUCTION 

1.1. Background 

Mangroves are coastal forests ecosystems which influenced by tides and can be found in tropic and sub-

tropic countries. Generally, the habitats of mangroves are in saline and brackish environment where located 

in humid to temperate climatic zone, approximately in latitude from 25° N to 25° S as well as facing with 

permanent tidal inundation in fringe mangrove area close to the sea and temporary spring tide flooded 

habitat (Kauffman & Donato, 2012). Mangroves forest has unique trees and shrubs which adapted to the 

daily fluctuation of saline and freshwater, ocean tides, topographic structure, sedimentation and soil deposit. 

Thus most of them have aerial roots system for respiration in interphase ecosystem between land and saline 

water (FAO, 2007). 

Mangrove forests have a lot of benefits for the local community up to national level which consists of the 

ecologic, ecosystem and social-economic value. According to ecological services, mangroves has functions 

as carbon storage/carbon sequestration, nursery, coastal protection and natural land expansion (Lee et al., 

2014), while that environment also have ecosystem functions such as biodiversity, environment protection, 

adaptation and mitigation for climate change (Tuan et al., 2012). Mangrove ecosystem also can store three 

times higher than common terrestrial forest approximately 937 Mg C/ha on average (Alongi, 2002).  

Moreover, mangroves can generate social-economic value for the local community from tourism, recreation, 

education and scientific research as well revenue from carbon trade of REDD+ program (Barbier et al., 

2011; Warren-Rhodes et al., 2011).  

Generally, the mangroves forest illustrates two different concepts. Firstly, these ecosystems represent an 

ecological of evergreen plant species to several trees families which have similar biophysical characteristics 

and environmental adaptation and similar habitat preference. Secondly, mangroves are a complex 

community of trees which has a function as coastal protection. As communities, mangroves consist of trees 

and shrubs which grow in a muddy soil of the tidal zone and are influenced by marine and estuary ecosystems 

(Lee et al., 2014). Mangrove forest is also the home for many creatures, such as fishes, crabs, shrimps and 

different kind of molluscs and aquatic creatures, where all of this avifauna utilise mangroves as nursery and 

shelter during juvenile stage (Barbier et al., 2011). 

FAO (2007), reported that there were 15.2 million hectares of mangroves in the world, where 42% is 

concentrated along of the coastline in South and South-east Asia (Gopal, 2013), and 3.1 million hectares are 

located and spreading in the archipelago of Indonesia (Giri et al., 2011). However, global destructions in 

mangroves areas occur due to economic and population growth such as urban expansion, aquaculture and 

agriculture, oil and mining, as well as overlogging (Alongi, 2002). Pendleton et al. (2012), counted that every 

year the global rate of converted mangrove is 1.9%, equal to 1.02-billion-tons of carbon dioxide emitted, 

which causes an economic loss of approximately 42 billion US$. Indonesia as the largest mangroves country 

in the world is also lost those areas, for example in Mahakam Delta, 63% of 770 square km areas were 

converted to aquaculture, oil and mining exploration, palm oil plantation and human settlement between 

1990 and 2000, which have direct negative effect in environmental, economic and social for local 

communities (A.S Sidik, 2010). 

UNFCCC (United Nation Framework Convention on Climate Change) through REDD+ program has 

technical approach or a mechanism by measurement, reporting and verification (MRV) for reduction 

emission from deforestation and forest degradation, preservation of carbon storage, increment forest carbon 

stock and sustainable forest management which addressed to IPCC (Intergovernmental Panel on Climate 

Change/scientific expert) using remote sensing data to inventory greenhouse gases, field-based data 
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collection and land cover change (US Agency for International Development, 2014). Based on this 

approach, remote sensing can be applied to provide information to deal with the issues of destructions in 

the mangroves ecosystem related to REDD+. 

Forest, which stores and sequesteres carbon has an important role to cope with climate change and is more 

adaptable to reduce emission than another environment, where store carbon mostly in the aboveground 

biomass (AGB) of trees. This means forest is the most inflounced cover types by deforestation and forest 

degradation (Gibbs et al., 2007). Estimating biomass give an overview in term of the potential of trees 

ecosystem to store or emit carbon to the atmosphere and carbon can be calculated by halving the value of 

biomass.  

Gibb et al., (2007) also described that there are six methods to estimate biomass/carbon stock, which 

comprises biome averages, forest inventory, passive optical remote sensing, very-high spatial resolution 

airborne optical remote sensing, active remote sensing and laser remote sensing. Each one of the mentioned 

method has advantages and disadvantages as well as the level of its uncertainty. In general, biomass is 

estimated using a destructive method by cutting of the trees and weighted the dry biomass. Although it has 

high accuracy, it is time-consuming, expensive and field labours involved. Whereas the other method is non-

destructive, which can be applied using a remote sensing technique (Rahman et al., 2017). These methods 

inventory trees biophysical parameters, such as diameter breast high (DBH), tree height, canopy cover and 

density, trees species and location of the trees in the field. This can be done by direct or indirect 

measurement. Then, using the allometric equation which is a mathematic equation representing the 

relationship between biomass and DBH, tree height as well as canopy cover to derive biomass/carbon stock. 

Very high spatial resolution data acquired from the unmanned aerial vehicle (UAV) become more popular 

to derive proper data such as mapping, generated the 3D model, surveillance and inspection (Nex & 

Remondino, 2014). UAV technique to assess biomass is a combination of basic photogrammetry and 

computer vision employing a sequence of images by structure from motion (SfM), and the results of this 

process are generated point clouds, 3D model and orthophoto. UAV has several benefits such as cost-

effective, very high spatial resolution image, alternative methodology generated 3D points cloud, fast 

acquired data, and bridging the gap between field data measurement and satellite imagery data.  However, it 

also has limitation, for instances flight height, endurance of battery, payload, area extends to be captured, 

the number of generated points cloud, and unable to capture understorey (Zahawi et al., 2015). 

1.2. Problem statement 

Mangroves have an important role to cope with climate change and have ecosystem services such as carbon 

storage. In fact, mangroves are one of the most prominent carbon sink ecosystems, which store carbon 

approximately 1,023 ton/ha, including both above and below ground biomass (Donato et al., 2011). 

Komiyama (2008) reported that above ground biomass of mangroves reaches 436.4-ton carbon/ha are 

varying depending on age, species and location. It is almost double compared to a tropical forest, estimated 

228.7 Mg C/ha (Baccini et al., 2012). However, estimating biomass/carbon stock in a unique mangroves 

ecosystem is challenging due to the structure of trees, habitat, location and accessibility. 

UNFCCC has the initiative REDD+ program and its mechanism MVR to monitor, verify and report carbon 

emission base on ecosystem service to obtain global benefits using remote sensing data and field-base 

measurement (Stickler et al., 2009). Monitoring could be applied to get information related to the natural 

dynamic of forest and the changes in the forest area due to natural disturbance and human encroachment 

(Giri et al., 2007). On the other hands, monitoring has to deal with multi-temporal or spatio-temporal data 

to achieve information in term of dynamic changes. 

One of the applications on monitoring, verification and reporting in term of REDD+ is using remote 

sensing data to estimate carbon stock in mangroves forest. The monitoring of mangrove requires accurate 

data to extract information to help to manage, such an important natural resource. Remote sensing is 
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essential as data source and technique to derive biometric mangrove trees parameters (e.g. DBH and height) 

to be used for biomass/carbon stock assessment and other management purpose (Boehm et al., 2013). The 

integration of remotely sensed data with ground truth would help to assess the mangrove its biomass, 

biophysical conditions and sustainable forest management. 

There are several studies which have conducted in the mangroves area to assess biomass/carbon stock using 

different remote sensing data with some benefits and drawback. The majority of them is by using satellite 

data both active and passive sensor, as well as terrestrial and airborne LiDAR ( Le Toan et al., 2004; 

Boudreau et al., 2008; Dube & Mutanga, 2015). Those data have limitations, for instances, optical remote 

sensing has medium to coarse spatial resolution, and its energy cannot penetrate cloud and other 

atmospheric disturbance. Radar has a drawback such as coarse spatial resolution, error variation related to 

topographic, and other difficulties in complex canopy structure. While Lidar required field data calibration, 

expensive, time-consuming, and cannot penetrate leaves. Based on all issues mentioned, there are a lot of 

uncertainties using these sensors. 

In contrast, there are few studies done in mangroves for forest inventory or biomass/carbon stock 

assessment using UAV (Zahawi et al., 2015; Tian et al., 2017; Otero et al., 2018). Surprisingly, those studies 

acknowledged that using UAV is a low-cost, rapid processing, time-effectiveness, reasonable accuracy and 

multi-temporal acquisition data, which is promising for monitoring application. UAV can capture a relatively 

large area with very high spatial resolution. It also flies with low altitude less than 100 m above the ground 

to minimise cloud and atmospheric disturbances as well as to get a higher quality of ground sample distance. 

Moreover, it can acquire data more rapid and frequent. 

Furthermore, UAV captures areas of interest using different sensor and camera to obtain a specific 

characteristic of the object sensed. RGB sensor is generally assembled on UAV, while others sensor, such 

as (e.g. Sequoia and FireflEYE) can be installed for a specific application such as forest, agriculture and 

urban area since they have infrared and red-edge spectral bands. Here, one of the applications of the 

multispectral sensor of Sequoia camera which has five bands namely green, red, red-edged, near infra-red 

and RGB, is to distinguish trees species by digital image classification. 

The accuracy assessment of remotely sensed data can be done using ground truth data as a reference to 

validate the derived data from UAV. Structure for motion (SfM) is applied to reconstruct 3D space image 

from 2D scene base on consecutive overlapped images to generates data such as points cloud, digital surface 

model (DSM), digital retain model (DTM), orthophoto, mosaic and finally canopy height model (CHM) 

which is the tree height in the case of inland and mangrove forest (Remondino, et al., 2014). In this case, 

ground truth data of tree height is employed to assess the accuracy of crown height measurement (CHM) 

derived from DSM and DTM data. Whereas, crown projection area (CPA) which is obtained from UAV 

mosaic images, can be segmented automatically using the OBIA technique (Blaschke, 2010), assessed by 

manual on-screen digitation. CPA can also be used to model DBH since there is a relationship between 

these two parameters. Consequently, above ground biomass (AGB) and carbon stock can be assessed using 

the estimated height and modelled DBH with reasonable accuracy. 

Therefore, this research will assess the application of UAV images to estimate above ground 

biomass/carbon stock and carbon sequestration in the mangrove area, where these areas comprise natural 

and planted mangrove ecosystem. The derived data (predicted DBH and trees height derived from CHM) 

from UAV images then will be evaluated with ground truth data for accuracy assessment. The main issues 

in this research are mangrove area which sequesters more carbon compared to another forest ecosystem. 

Thus, using two different years of UAV images data, monitoring carbon sequestration is possible. 

Meanwhile, the UAV data gives very high spatial resolution, cost-effectiveness, time-efficient and multi-

temporal acquisition data serving the purpose REDD+ MRV approaches. Looking at the scientific 

published literatures, there is hardly any publication on the use of UAV images for assessing carbon 

sequestration in the mangrove forest. We believe that this research is an innovative one.  
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1.3. Research objectives 

1.3.1. Main objectives 

The main objective of this research is to assess aboveground biomass/carbon stock using UAV 

(Unmanned aerial vehicle) images of 2017 and 2018 as well as calculate carbon sequestration over one-year 

period in a mangrove forest in part of Mahakam Delta, East Kalimantan, Indonesia. 

1.3.2. Specific objectives 

1. Assessing the relationship of crown diameter (CD) derived from the crown projection area (CPA) of 

UAV images and diameter at breast height (DBH) measured in the field.  

2. Estimating trees height using point clouds of UAV images through canopy height model (CHM) and 

assessing its accuracy using trees height derived from terrestrial laser scanner (TLS) point clouds data. 

3. Assessing above ground biomass (AGB)/carbon stock of the years 2018 and 2017 and assessing its 

accuracy using UAV images and ground truth data. 

4. Assessing carbon sequestration of mangrove forest in the period of one year between the end of October 

2017 and mid-December 2018. 

1.3.3. Research question 

1. What is the relationship between crown diameter derived from CPA of UAV images and DBH of ground 

truth data? 

2. What is the relationship between trees height derived from CHM of UAV images and trees height derived 

from TLS point clouds data? 

3. What are AGB/carbon stock modelled from UAV images in 2017 and 2018 in the study area and how 

accurate are these results compared to the biometric data?  

4. What is the carbon sequestration modelled from UAV images of the years 2017 and 2018 and how 

accurate is it? 

1.3.4. Hypothesis 

1. Ho: There is no significant relationship between crown diameter derived from CPA of UAV images and 

DBH of ground truth data.  

H1: There is a significant relationship between crown diameter derived from CPA of UAV images and 

DBH of ground truth data.  

2. Ho: There is no significant relationship between trees height derived from CHM of UAV images and 

trees height derived from TLS point clouds data.  

H1: There is a significant relationship between tree height derived CHM of UAV and trees height derive 

TLS point clouds data.  

3. Ho: There is no significant relationship between AGB/carbon stock modelled from UAV images in 

2017 and 2018 and AGB/carbon stock of biometric data in 2017 and 2018. 

H1: There is a significant relationship between AGB/carbon stock modelled from UAV images in 2017 

and 2018 and AGB/carbon stock of biometric data in 2017 and 2018. 

4. Ho: There is no significant relationship between carbon sequestration modelled from UAV images of 

the years 2017 and 2018 and carbon sequestration of the biometric data of 2017 and 2018.    

H1: There is a significant relationship between carbon sequestration modelled from UAV images of the 

years 2017 and 2018 and carbon sequestration of the biometric data of 2017 and 2018.    
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1.4. Conceptual diagram 

Mangrove forest in Mahakam Delta, Indonesia has ecosystem services and play an important role to 

sequester carbon, where mangrove can store carbon higher than another inland tropical forest. On the other 

hands, economic and population growth are pushing to convert mangroves to other land use, such as shrimp 

pond, oil palm plantation, mining area and settlement due to market demands. It means that deforestation 

and forest degradation in mangroves forest of Delta Mahakam emitted carbon due to land use land cover 

change. 

UNCFF has initiative REDD+ MVR program using remote sensing data to estimate carbon stock and 

carbon sequestration. In this thesis research, UAV images is used to estimating tree parameters, such as 

crown diameter, species, diameter breast height and trees height which are validated by ground truth data. 

Carbon stock data gives information to REDD+ MRV to offer compensation and payment for the 

Mahakam area. There is also a social responsibility from the local community to replanting shrimp ponds 

with mangroves in term of conservation and restoration. Figure 1.1 shows a conceptual diagram of this 

research. 

 
Figure 1.1 Conceptual diagram of the research. 



 

6 

1.5. Literature review 

1.5.1. Biomass and carbon stock in mangroves forest 

Mangrove is the type of vegetation grows in the area between land and sea (intertidal zone) which influenced 

by its environment such as tide, temperature, salinity and sedimentation ((Nagelkerken et al., 2008). There 

are more than 110 mangroves trees species belong to only 16 families which include 20 genera, and 54 

species are recognised as true mangroves which are growing in mangrove habitat (Kuenzer et al., 2011). 

Regarding environmental adaptation, mangrove has two type of rooting systems comprise of aerial root and 

below ground root due to salinity and an anoxic factor of its location (Adame et al., 2017). 

Mangroves have valuable ecosystem services such as timber and non-timber product, coastal protection, 

environmental control, water catchment, wildlife habitat, tourism, education and research as well as carbon 

sequestration (Barbier et al., 2011). In term of carbon stock and carbon sequestration, mangrove act as a 

potential sink which store and release carbon into the atmosphere (Figure 1.2). Surprisingly, some studies 

reveal that mangrove store more biomass than other tropical forests in below ground biomass(Soares et al., 

2005; Donato et al., 2011). Aboveground biomass is living biomass that contains leaves, trunk, branch and 

stem while below ground biomass refer to roots, litter, the dead body of the tree, and soil organic matter 

(Gibbs et al., 2007). Biomass is calculated as the total dry weight of the trees per unit area that usually defined 

in ton per hectare (Mg/Ha). 

 

 

 

 

 

 

 

 

 

 

 (Modified from: https://blueocean.net/mangroves-super-forests-must-protect/). 

 

The destructive method is the direct measurement to quantify biomass by harvesting trees, oven-drying until 

constant weight and weighing the total mass of the trees. While the non-destructive method is to make the 

relationship between biometric trees parameters to calculate the weight using the allometric equation 

(Gonzalez de Tanago et al., 2018; Disney et al., 2018). In term of carbon stock calculation, it is referred to 

50% of biomass or approximately 47% which depend on species (Brown, 2002; IPCC, 2006). 

1.5.2. Unmanned Aerial Vehicle 

Unmanned aerial vehicle (UAV) is also recognised as an unmanned aerial system (UAS), the remotely-

piloted aerial system (PRAS), or drone which become popular for multi-applications in recent years due to 

the quality of high spatial resolution aerial images, initially were used for military purposes (Colomina & 

Molina, 2014). UAV is new platform run by a small fix-wing or rotary-wing aircraft using remotely pilot 

system which consists of compact and affordable GPS receiver, an inertial measuring unit (IMU) and sensor 

or camera for capturing the images (Torresan et al., 2016).  

Figure 1.2 Carbon flux in mangrove. 

https://blueocean.net/mangroves-super-forests-must-protect/
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Figure 1.3 Structure from motion. 

UAV offers a fine spatial resolution, cost-effectiveness, reliable data quality, a multi-temporal and consistent 

outcome which have potential applications for forest management and inventory such as tree segmentation 

and tree detection (Wallace et al., 2016). Furthermore, the relationship of canopy measurement derived from 

UAV image and ground truth inventory data has a strong correlation in local scale or species level to generate 

the robust result of forest inventory (Zhang et al., 2016). 

The products of UAV image acquisition are consecutive overlapped images, which are processed using the 

structure for motion (SfM) method to generate derived results such as 3D point cloud, orthophoto, digital 

surface model, a digital terrain model and canopy height measurement. SfM method has four stages to 

reconstruct 3D point clouds that consist of matching point through the whole consecutive overlapped 

images, recognize the structure and motion recovery of object in the images, refining the existing structure 

and calculate the camera position for additional images, as well as using bundle block adjustment to refine 

the structure and motion of the image (Nex, 2018). Figure 1.3 illustrates the SfM between the two adjection 

image to reconstruct the structure and motion of an object in the images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Modified from: https://blackboard.utwente.nl/bbcswebdav/pid-1118314-dt-content-rid-

2896431_2/courses/M18-EOS-103/04_SfM.pdf). 

1.5.3. The Crown cover of tree 

Tree crown diameter and tree projection area represent the canopy cover of trees in two dimensions which 

measured in meter and meter square respectively. Crown of the tree represents the information of growth 

of tree, shadow, stream, purify air particles, wind protection as well as biomass and carbon sequestration 

which affected by species, the age of the tree, resources supply, habitat, location and environment (Pretzsch 

et al., 2015). The crown diameter is calculated by measuring two perpendicular directions of the crown area 

and come up with the average of two values while crown projection area was calculated by delineating 

outermost perimeter of canopy cover in two dimensions horizontal projection (Gschwantner et al., 2009;  

Pretzsch et al., 2015). Figure 1.4 represents the measurement of the crown projection area and crown 

diameter. 

The crown of trees can be estimated using remote sensing images, some researches have proved that there 

is high correlation between the area of crown of trees or crown projected area (CPA) and diameter at breast 

height (DBH). Therefore, CPA can be used to calculate volume or biomass of trees (Pham et al., 2019; 

Wannasiri et al., 2013; Hirata et al., 2014). Popescu et al., (2003) have explained that using crown diameter 

on remote sensing image and point cloud of Lidar could improve significantly the estimation of volume and 

biomass, while Galvincio & Popescu, (2016) were employed Lidar to estimate quantitative biophysical 

parameters such as tree height, CPA and crown diameter and revealed that this method can improve the 

estimation in local-individual tree level. 

https://blackboard.utwente.nl/bbcswebdav/pid-1118314-dt-content-rid-2896431_2/courses/M18-EOS-103/04_SfM.pdf
https://blackboard.utwente.nl/bbcswebdav/pid-1118314-dt-content-rid-2896431_2/courses/M18-EOS-103/04_SfM.pdf
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 (Modified from: Gschwantner et al., 2009 and Pretzsch et al., 2015). 

1.5.4. Canopy height model 

Tree height is one indicator of the growth system of vegetation that can be calculated using direct 

measurement or estimation using 3D point cloud. As shown in Figure 1.5, the digital surface model (DSM) 

is a 3D surface model that include vegetation, building, and an artificial object, while the digital terrain model 

(DTM) represent the 3D ground surface. Thus, CHM of tree height is generated by subtracting DTM from 

DSM. 

Source http://www.charim.net/datamanagement/32  

 

 

Figure 1.4 Measuring crown projection area and crown diameter. 

Figure 1.5 DSM and DTM. 

http://www.charim.net/datamanagement/32
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Growing system and environmental characteristic of trees can be obtained using a method to estimate 

biophysical parameters such as tree height applying the crown height model (Díaz-Varela, 2015). 

Conventional survey method cannot produce data with sufficient and reliable accuracy, especially high 

spatial resolution in a landscape level in order to quantify the structure while using UAV through SfM 

method we can obtain accurate data related to vegetation characteristic (Cunliffe et al., 2016). Moreover, 

CHM is needed to obtain a spatial representation of trees for modelling, inventory, monitoring and 

sustainable management of forest (Selkowitz et al., 2012). 

In term of quantity and accuracy assessment of DSM and DTM, Zarco-Tejada et al., (2014) acknowledge 

that in agriculture and environment sector UAV which is cost-effectiveness and compact camera platform 

offer similar accuracy compared to the expensive and complex system of Lidar platform. 

1.5.5. Error measurement of tree height using handheld laser instrument 

The complexity of tree structure leads to generate error using handheld laser height measuring instrument 

such as Disto Leica due to the distance between sensed object and observer, while hand movement also 

creates an inaccurate estimation of true height (Bazezew, 2017). As can be noticed in Figure 1.6, the observer 

has to have a clear view to see and measure the top of the trees and must consider the distance between the 

observer and trees, for example, 20 – 30 m. In fact, it is difficult to have appropriate space to observe tree 

height in the forest as a result of tree structure complexity, leaves and branch occlusion as well as density. 

Moreover, measuring large and high trees in close distance using a handheld laser scanner tends to produce 

underestimate measurement and create an error (Larjavaara & Muller-Landau, 2013). 

Terrestrial laser scanner offers the accuracy in millimetre detail of the object observed height which also 

allows fast acquisition, automatically measurement and multitemporal for forest application (Liang et al., 

2016). TLS is also used to measure the biophysical parameters such as tree height and DBH to calculate 

aboveground biomass/carbon stock which provides high accuracy estimation (Wilkes et al., 2017; Bazezew, 

2017 ). 

 (Modified from: Bazezew, 2017). 
 

 

 

Figure 1.6 Tree height error due to the stand distance position using handheld laser height measuring 
instrument. 
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2. MATERIALS AND METHODOLOGY 

2.1 Study area 

Study area is located in Tani Baru Village, Anggana District, Kutai Kartanegara Region, East Kalimantan 

Province, Indonesia, which is situated on latitude 0°32'20.95"S and longitude 117°34'8.19"E. It is a 

conservation area of mangrove forest, where some of the areas were replanted after were converted into 

shrimp ponds. The study area is remnant mangroves forest which consists of old (natural) and planted 

mangroves. The study area location can be seen in Figure 2.1 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The study area is located in the equator zone; thus, the climate is humid, and rainfall happens during the 

year. The average temperature of the study area is approximately in the range of 23 - 32 °C, while the average 

rainfall in the dry season (July-September) is 35–40 cm/month and in the wet season (October – June) is 

67–70 cm/month (Rahman et al., 2017). The annual precipitation in the study area is more than 2500mm. 

Sidik, (2009) divides vegetation zone based on the distance from the sea into Pedada, Bakau, Transition, 

Nypa and Nibung. Padada is situated close to the delta front and dominated by Sonneratia alba and Avicennia 

spp, while Bakau zone is dominated by Rhizophora spp. The transition zones are with many species such as 

Avicennia spp., Sonneratia caseolaris, Rhizophora spp, Bruguiera spp., Xylocarpus granatum and nipa. Meanwhile, Nipa 

and Nibung zone are located in the central and upper area of Mahakam Delta. 

The study area is part of Tani Baru Village which covers an area of 71 km². Tani Baru is located in Anggana 

District which has 43,990 inhabitants in 2017 consist of 23,341 male and 20.469 female. While the growth 

rate in Anggana District is 3.96 % and population density is 24  per square km in 2017 (BPS, 2018). The 

majority of inhabitants is Bajau and Bugisness, where the fisherman is the main source of livelihood 

(Persoon & Simarmata, 2014). 

2.2 Materials 

During the research work of this thesis, materials were used, namely data, equipment and software, which 

used for fieldwork planning, data acquisition, data pre-processing, data processing and analysis, data and 

result presentation as well as thesis writing.  These materials are described in the following subsections. 

Figure 2.1 Location of the study area. 
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2.2.1 Data 

The list of data and sources of the data used in this research consists of two types, primary and secondary 

data. Primary data were collected during fieldwork, while secondary data were obtained from other sources, 

such as institution, internet, and literature review. Collected data in fieldwork comprises ground truth data 

(biometric) of DBH, tree height and species, while coordinate of sample plot and tree were retrieve by GPS 

handheld. Moreover, GPC were collected using GNSS RTK, and UAV image 2018 were collected using 

DJI Phantom 4.  

On the other hand, secondary data of Google Earth image were employed to recognise the study area to 

determine the sample plot and UAV flight plan. TLS and UAV image 2017 were used to retrieve trees 

parameters such as tree height, CPA, crown diameter and canopy cover. In term of literature review, it was 

done to search for the mean annual increment of the mangrove growth rate of DBH and height as well as 

woody density for tree-specific mangrove species, namely Avicennia spp, Rhizophora spp, and Xylocarpus 

granatum. While other literature review performed to find an allometric equation for mangrove to calculate 

biomass and conversion factor to calculate carbon stock. Data, the source of data and type of data are 

illustrated in Table 2.1. 

Table 2.1 Data and source of data used in this research. 

Data Sources of data Type of data 

Sample plot plan, flight plan Google Earth image Secondary 

DBH, tree height, species Ground truth Primary 

Tree height of TLS Terrestrial laser scanner (TLS) Secondary 

Coordinate of sample plot and 
tree 

Global satellite system (GPS) 
handheld 

Primary 

Ground control points (GCPs) 
Global navigation satellite 
system real-time kinematic 
(GNSS RTK) 

Primary 

UAV image 2017 University of Mulawarman Secondary 

UAV image 2018 Unmanned aerial vehicle (UAV) Primary 

Growth rate of mangrove Literature review Secondary 

Wood density Word Agroforestry Secondary 

Allometric equation Literature review Secondary 

Conversion factor Literature review Secondary 

 

2.2.2 Software 

There are several software packages that were used to pre-process, process, analyze and interpret data in 

this research during planning, fieldwork data collection, pre-processing, processing, analysis, and writing 

report. Here, Google Earth Pro was used to download fine resolution image of the study area in order to 

make flight planning and sample plot design.  PIX4D Capture, PIX4D Ctr+DJI and PIX4D Mapper were 

used to make a flight plan, capture image using DJI Phantom 4 and image processing through Structure 

from Motion (SfM). Coordinate data of sample plot and trees that collected using GPS were processed via 

Garmin Map Source. 

Arc GIS was used for the segmentation of crown canopy, resampling image of DTM, generating CHM and 

map layout. While Microsoft Excel and R-Studio were used to calculate and analyse statistical data, as well 

as making tables and diagrams. In term of the research thesis, Microsoft Word and Mendeley were used 

during thesis writing and retrieving citation. Moreover, Microsoft PowerPoint was used during 

presentations. Table 2.2 shows the list of software used in this research. 
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Table 2.2 Software used in this research. 

Software Purpose 

Pix4D Capture UAV flight planning 

Pix4D Ctrl+DJI UAV drone imagery captured 

Pix4D Mapper UAV image processing 

Google Earth Pro Download image, plotting coordinate 

Garmin Map Source GPS handheld data retrieving 

ArcGIS Manual on-screen segmentation of CPA, resampling image, generating CHM, layout 

R-studio Statistical data analysis 

Microsoft Excel Calculation, statistic data, table and diagram  

Microsoft Word Writing report 

Microsoft PowerPoint Presentation 

Mendeley Citation and reference 

2.2.3 Equipment 

Implementation of fieldwork required equipment to collect ground truth or measure trees parameters, e.g., 

DBH, trees height, setting sample plots. In the same time, they were used for GCP(s) and UAV imaging 

campaign. Compass was used for navigation. For tree height measurement two instruments were used: Leica 

DISTO D510 laser ranger and TLS RIEGL VZ 400. Diameter Tape 5 m were used to measure DBH of the 

individual tree inside the sample plot, while 30m measuring tape was used to measure the radius of the plot 

from the centre of the circular 500m2 plot, i.e.,12.6m. 

Tree tags were used for numbering the trees in order to easily identify them during the data collection inside 

the sample plot. Handheld Garmin GPS E-Trax 30x was used to mark the coordinates of the plot centre 

and tree coordinates. Moreover, the digital camera was used to capture images of the plot in order to 

reconstruct the trees setup inside the plot and capture images for documentation. Table sheets were used to 

record fieldwork measurements of DBH and tree height, while some other stationaries were also used during 

fieldwork. TLS RIEGL VZ 400 was used to collect three-dimension point clouds to derived tree parameters. 

For UAV image rectification, ground control point was used inside the study area. Before UAV image 

acquisition and GCP measurement, tie mark was placed on the ground which was used as GCP location, 

then the X, Y, Z coordinates of the centre of tie marks were measured using GNSS RTK Leica GS 18 T. 

In terms of UAV image acquisition of 2018, DJI Phantom 4 was used to capture the images of the study 

area. The equipment is shown in Table 2.3. 

Table 2.3 Fieldwork equipment. 

Equipment Purpose 

Compass Navigation 

Leica DISTO D510 laser 

ranger 
Tree height measurement 

Diameter tape 5 m DBH measurement 

Tape 30 m Diameter sample plot 

Tree tag Numbering trees 

Garmin GPS E-Trax 30x Navigation, marking coordinates 

Digital camera Capturing pictures 

Table sheet Recoding tree height, DBH, coordinate, trees species 

TLS RIEGL VZ 400 Tree height measurement derived from laser point cloud data 

GNSS RTK Leica GS 18 T Measuring the GCPs 

DJI Phantom 4 Collecting UAV imagery data 

Ties mark paper GCP ties mark 
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2.3 Research method 

Figure 2.2 shows the research methods flowchart. 

 

Abbreviation 

AGB : Aboveground biomass GCP(s) : Ground control point(s) 

CHM : Canopy height model GNSS : Global navigation satellite system 

CPA : Crown projection area RTK : Real-time kinematic 

DBH : Diameter breast height SfM : Structure from motion 

DSM : Digital surface model TLS : Terrestrial laser scanner 

DTM : Digital terrain model UAV : Unmanned aerial vehicle 

Figure 2.2 Flowchart of research method. 
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The methods used in this research are explained in the following steps: 

1. Fieldwork Planning. 

This step has included recognising the study area using Google Earth image to identify coverage area, design 

sample plot and UAV flight plane. Furthermore, fieldwork planning was included in the preparation of 

fieldwork equipment to collect data and calculating the budget. On the flowchart, this step refers to UAV 

flight planning and field work planning. 

2. Data Acquisition. 

Fieldwork data acquisition was done to collect biometric tree data (e.g., DBH, tree height, species), 

coordinate of sample plot, coordinate of the tree, TLS trees height measurement, GCPs coordinate and 

UAV images which were held from 13 – 24 October 2018. This step refers to UAV images 2018 data 

acquisition, GCP(s) measurement, ground truth data measurement and tree height measurement using TLS. 

3. Biometric data processing. 

This step included the processing of biometric data e.g., DBH and tree height measured by Diameter Tape, 

Leica DISTO D510 laser ranger; tree height derived from TLS point cloud, growth rate increment and woody 

density to calculate aboveground biomass and carbon stock of biometric in 2018 and 2017 as well as 

biomass/carbon sequestration using allometric equation and the conversion factor. These processes refer 

from the step of data entry to step of carbon sequestration biometric and step of the literature review. 

4. UAV image processing. 

PIX4D mapper was used to processing UAV images of 2018 and 2017 in order to generate 3D point clouds, 

orthophoto, DSM, DTM. In addition, GCPs were used for image geo-referencing using datum WGS 1984, 

UTM zone 50 S. Meanwhile, DTM image resampling and generating CHM were done in ArcGIS software. 

On flowchart, this step refers to the process of SfM to produce orthomosaic, DSM and DTM. 

5. Derived UAV data. 

Crown projection area segmentation was done manually using on-screen digitising on the orthophoto 

mosaic image of the UAV of 2018 and 2017. This was done using ArcGIS software for each tree throughout 

the whole plots collected in this research. Afterwards, those CPAs were used to generate CHM of 2018 and 

2017 using Spatial Analysis tool in ArcGIS. Then, CPA was also used to generate a crown diameter of trees 

for the two years of data. On the flowchart, these processes refer to the step of DSM-DTM to generate 

CHM and step of CPA to produce crown diameter. The results of the relationship between tree height 

derived from CHM and tree height derived from TLS point clouds in 2017 and 2018 are to answer research 

question 2. 

6. Analysis of UAV data. 

This part involved in analysing UAV data. First, all the trees observed in the fieldwork were selected to 

obtain a significant relationship between biometric data and UAV images data which include crown diameter 

– DBH relationship and tree height – CHM relationship for 2018 and 2017 data. Next, based on the 

relationship between crown diameter and biometric DBH, predicted or modelled DBH was calculated. 

Finally, AGB and carbon stock model in 2018 and 2017, as well as biomass/carbon sequestration, were 

calculated using predicted DBH model, CHM, wood density and applying allometric equation. On 

flowchart, these processes start from the step of CHM and crown diameter to step of calculate aboveground 

biomass/carbon stock in 2017 and 2018 as well as carbon sequestration. The results of the relationship of 

predicted DBH using crown diameter derived from CPA of UAV images and DBH ground truth data in 

2017 and 2018 are to answer research question 1. 

7. The relationship between ABG/carbon stock and carbon sequestration model and biometric. 

The last part was the comparison of modelled aboveground biomass/carbon stock of 2018 and 2017 with 

the biometric ground truth data. It includes the calculation of carbon sequestration by subtracting the carbon 

of 2017 from 2018 and the accuracy assessment. On flowchart, these steps refer to the result of the 

relationship between ABG/carbon stock model and ABG/carbon stock biometric in 2017 and 2018 as well 

as comparison between carbon sequestration model and biometric to answer research question 3 and 4. 
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2.4 Fieldwork planning 

2.4.1 Sampling plot design 

Defining sampling plot design, plot shape, and plot size are important steps to be taken before data 

collection (Laar & Akca, 2007). A circular shape plot with radii 12.62m was chosen to minimise borderline 

and perimeter of plot shape, to make the boundary of the plot easy to established and seen, to make the 

simple correction and to represent 500m² coverage area (Kershaw et al., 2017) 

Purposive sampling was used in this research due to several consideration and difficulties when working in 

mangrove forest such as time, cost, accessibility, efficiency and plot size (Schreuder et al., 2001). It was too 

difficult to use any other sampling design than purposive, since the weight of TLS is 28 kg and it needed 

extra time to set up TLS as well as retro-reflectors in the field. Here, TLS was used to assess trees height.  

Consequently, 30 sampling plots were used in this research distributed in the study area and equally spread 

in both old mangroves trees and planted mangrove to represent all variations in the study site. Fieldwork 

measurement planning also comprises preparing data tale sheets and equipment used for fieldwork 

(Appendix 1). We also tried to train our self on the use of the equipment before visiting the study area. 

Biophysical parameters of the mangrove trees were collected such as DBH, trees height, coordinates of trees 

and trees species by using Leica DISTO Laser Ranger, diameter tape 5 m and handheld GPS. 

2.4.2 UAV flight planning 

UAV flight planning including drone flight mission and global navigation satellite system (GNSS) 

measurement were used in this research. Some parameters must be defined before drone flight mission start, 

namely camera setting, ground sampling distance, flight height, image overlap, surveyed area, flight time, 

and weather condition (Nex & Remondino, 2014).  

This thesis research work used UAV RGB images that were acquired by DJI Phantom 4. Flight height of 

the drone was within a range of 100 – 200m above the ground in order to achieve very high spatial resolution 

data with GCD less than 10cm. UAV images were collected in a single grid flight fashion to reduce the time 

and save on battery power as well as using moderate speed to minimise blurring effect on the images. 

Furthermore, image overlap determined the number of images acquired which used forward overlap of 80% 

and side overlap of 60%. In addition, the study area was approximately one km², thus the UAV needed high 

power of minimum six batteries during the flights. The time of the first flights was between 10:00 and 12:00 

hr morning to minimize disturbance from sun illumination, wind, and other unreliable weather conditions. 

However, the time of the final flight was 6:35 AM. Table 2.4 below shows UAV flight plan parameters in 

the field. 

Table 2.4 UAV flight plan parameters used in this research. 

Parameters Information 

Flight height >100 m 

Flight mission Single grid 

Flight speed Moderate 

Forward overlap 80% 

Side overlap 70% 

Sensor and camera RGB 

Focal length 4 mm 

Image resolution 4000 x 3000 pixel 

Captured area  1 x 1 km 

GCP(s) 12 

GNSS data observation Real-time kinematic (RTK) 
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A special team from the University of Mulawarman was hired to collect GCP in the field using DGPS 

(Differential Global Positioning System).  The measurement of GCP included the use of GNSS RTK which 

must consider the area of interest, method, number of GCP(s), ties marks, and post-processing data. In this 

research, the surveyed area is a flat mangrove coastal zone with one km² coverage area. Absolute real-time 

kinematic was chosen as the method to acquire data, which intend to obtain reference point and GCP(s) 

with the total of 12 points, namely 6 points as GCP(s) and 6 points as checkpoints to assess the geometric 

accuracy. Moreover, ties marks that were used in the field must be visible during the flight and placed in 

stable and safe area (Figure 2.3). List of GCP(s) can be seen in appendix 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5 Field data collection 

Field data collection was held in the period 13 - 24 October 2018 in mangroves area of Tani Baru, Mahakam 

Delta, East Kalimantan, Indonesia. Data collection consisted of ground truth data of biophysical trees 

parameters and UAV image data. 

2.5.1 Ground truth data acquisition 

Data which are collected in the field were DBH, tree height, tree species, coordinate of the central plot, and 

individual tree coordinate and field photos. These data were collected in 30 sample plots in two different 

types of mangroves, namely natural and planted. Moreover, ground truth data collection was recorded by 

manually in tale sheets and later were input digitally in Excel sheets. While some other data collected in the 

field were recorded digitally using devices such as handheld GPS Garmin E-Trax 30 x, Leica DISTO D510 

laser ranger and TLS RIEGL VZ 400. 

Figure 2.3 Ground Control Points (GCP) used in the study area before UAV flight. 
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Biometric tree properties were collected following the method of Kauffman & Donato, 2012. Diameter at 

breast height (DBH) was measure approximately 130 cm above ground for Avicenia spp. and Xylocarpus 

granatum, while DBH of Rhizopora spp. was measured about 30 cm above the highest aerial root. Here, 

diameter tape 5 m was employed to measure DBH in the field. An example of DBH measurement in the 

field can be seen in Figure 2.4. Only trees with => 10cm DBH were measured because trees with DBH less 

than 10cm would have no significant contribution to the amount of biomass/carbon stock of the plot 

(Brown 2002).   

In the field, tree height which was measured using Leica Disto D510 laser ranger by taking a distance from 

tree measured approximately 10 to 20 m and depended on the density of trees (Figure 2.5). While TLS 

RIEGL VZ 400 was also utilized to measure every single tree height in the plot by placing it in four locations:  

in the centre of the plot and three locations on the border of the plot. 

Each individual tree was observed, and the measurements were recorded in a tale sheet which comprised 

number of trees inside plot, species, DBH, and trees height. It also recorded the number of plots, date 

measurements, coordinates of plot centre and coordinates of trees 

Figure 2.4 Measuring DBH using diameter type. 

Figure 2.5 Measuring tree height using Leica Disto D510 laser ranger(a) and using TLS RIEGL VZ400 (b). 
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2.5.2 UAV image data acquisition 

UAV images 2017 and 2018 were collected by a special team from the Faculty of Forestry, University of 

Mulawarman. These images were collected on 25 October 2017 and 18 December 2018. It was by chance 

that the University of Mulawarman had done the imaging survey in 2017 for PT PERTAMINA Oil company 

of Indonesia and we have used these images to assess carbon sequestration. 

In 2017, DJI Phantom 4 camera model 3610 was employed using 375 m altitude above ground and 9 mm 

of focal length to collect 54 images. While in 2018, DJI Phantom 4 FC330 using 4 mm of focal length was 

used to collect 369 images from an altitude of 165 m above the ground floor. Table 2.5 shows UAV data 

collection parameters of 2017 and 2018. 

Table 2.5 UAV data collection of 2017 and 2018. 

Information UAV 2017 UAV 2018 

Date 25 October 2017 18 December 2018 

Time 15.30 12.30 

Pixel 4864 x 3648 4000 x 3000 

Camera model DJI FC3610 DJI FC330 

Focal length (mm) 9 4 

Altitude (m) 375 165 

Number of images 

Forward overlap 

Side overlap 

54 

80% 

70% 

369 

70% 

60% 

 

PIX4D Capture was used to make UAV mission planning, which comprised parameters such as flight speed, 

angle, forward and side overlap, flight height, number of flight lines etc. The number of captured images 

was determined by area captured, flight height, focal length and forward and side overlap (Nex, 2017). Figure 

2.6 shows some of the steps in collecting UAV images using DJI Phantom 4. Before UAV images were 

acquired, GCPs had collected using GNSS RTK Leica GS 18 T which consisted of base and rover receiver, 

while tie marks were placed in GCP point locations in the field.  

 
Figure 2.6 Some steps in collecting UAV images using DJI Phantom 4 

 (Modify from: www.pix4d.com and www.questuav.com) 

http://www.pix4d.com/
http://www.questuav.com/
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2.6 Ground truth data processing 

2.6.1 Ground truth data 

Field data collection which was recorder first manually and then transferred to Microsoft Excel in a digital 

format. Microsoft Excel, R-Studio were used to record, calculate, store, present, analyse, interpret and save 

the data in different types and format. DBH and trees height data were analysed using a statistical method 

to obtain statistical parameter such as sum, mean, standard deviation, variance, maximum and minimum.  

2.6.2 Backward prediction 

The backward prediction was done to predict DBH and trees height in 2017 by subtracting the value of 

2018 data using the annual increment in each mangrove tree species. Backward prediction uses biometric 

DBH, and TLS tree height of 2018 was performed to calculate above ground biomass/carbon stock and 

carbon sequestration from 2017 to 2018. We had no choice but to do this step because there was no data 

collected in the field in 2017, e.g., DBH and trees height.  

Based on Saenger & Siddiqi (1993),  a mean annual increment of 0.74 cm DBH  and 0.40 m in the height 

of Avicennia alba was used to predict the DBH and trees height in 2017 starting from the 2018 data. While 

for Xylocarpus mekongensis, the mean annual increment of DBH was 0.34 cm and 0.30 m of was the mean 

annual increment trees height. Moreover, Srivastava et al. (1988), stated that mean annual increment of the 

diameter of Rhizophora spp. was 0.47 cm, while the annual increment of height was 0.55 m a year. These 

literatures were used to backwards predicting DBH and tree height of Avicennia spp, Rhizophora spp., and 

Xylocarpus granatum in 2017 using biometric field measurement of 2018 (Table 2.6). 

 

Table 2.6 The mean annual increment of DBH and tree height. 

Mangrove species MAI of DBH MAI of tree height 

Avicennia spp. 0.74 0.40 

Rhizopora spp. 0.47 0.55 

Xylocarpus granatum 0.30 0.34 

2.6.3 Wood density 

Wood density can be measured and retrieved easily in sample site, which usually developed by local forest 

institute (Kauffman & Donato, 2012). Here, wood density was needed as a parameter to calculate 

biomass/carbon stock using the allometric equation both for the biometric and modelled data of 2018 and 

2017. Based on Word Agroforestry Center, 2018, the wood density of Avicennia spp., Rhizophora spp., and 

Xylocarpus granatum are 0.6987, 0.8814 and 0.6721 g/cm³, respectively. Table 2.7 shows the wood density of 

mangrove tree species which used to calculate aboveground biomass. 

 

Table 2.7 Wood density of mangrove tree species. 

Mangrove species Wood density 

Avicennia spp. 0.6987 

Rhizophora spp. 0.8814 

Xylocarpus granatum 0.6721 
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2.7 UAV Image processing 

Structure from motion (SfM) is the process for analysing consecutive images to retrieve three-dimensional 

information of the scene structure and the motion of camera which comprises basic photogrammetry and 

computer vision (Nex, 2017). In this step, PIX4D Mapper and ArcGIS were used to process UAV images 

data. PIX4D Mapper was used to process raw image data to generate 3D point clouds, orthophoto, DSM 

and DTM. Ground control points were stored in text file format, which were used as GCPs and checkpoints 

in image registration. GCPs were used as input parameters in the absolute orientation of the UAV images, 

while checkpoints were used to assess the accuracy of GCPs. GCPs that appeared on the images should be 

marked in order to be used in the image rectification. Figure 2.7 shows marking GCP on the image in PIX4D 

Mapper. 

Structure from motion (SfM) using PIX4D were divided into four stages, namely initial image processing; 

generating point cloud and mesh; generating DSM, DTM, orthophoto and index; as well as resources 

information and notification (Pix4d, 2019). Some parameters must be fulfilled or checked such as the 

minimum number of points matched and additional output of raster DTM to produce digital terrain model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.7.1 Tree Reconstruction 

Tree reconstruction was performed using coordinate of centre plot, the coordinate of trees, photos of each 

plot, TLS capture image, documentation, fieldwork note and UAV image. It was a bit tricky because some 

of the plot centres and tree coordinates were shifted. The images of each plot and TLS captured images 

gave an overview to reconstruct each individual tree inside the plot since in the field tree tag was placed on 

the tree stem as a proxy of the tree. Plot area (radii 12.6 m) was used to identify the border of the plot on 

othomosaic UAV images. Afterwards, the trees could be reconstructed in the UAV 2018 image to identify 

the location of each individual trees. 

On the other hands, the issue of shifted images due to geo-referencing process occurred in both UAV 

images of 2017 and 2018. In some cases when toggling between UAV image of 2018 and 2017 the trees 

position was a bit shifted. Therefore, when we do any measurement on the canopy of the trees we must be 

careful in identifying the tree. Dealing with this issue when reconstructing tree position in the UAV image 

2017, all of crown canopy delineation in each plot on UAV image 2018 were relocated in the right position 

on UAV image of 2017. Then, fitting the position of the crown canopy of the trees in the UAV image of 

2017 could be identified in order to generate crown diameter derived CPA and tree height derive CHM. 

Figure 2.7 Marking appeared GCP on image in PIX4D Mapper. 
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2.7.2 Manual digitising of CPA 

Manual digitising of CPA in each recorded individual tree was done on the ortho-mosaic image of UAV 

2017 and 2018 using ArcGIS. The issue of identifying and matching every single tree in each plot, which 

was measured in the field in both ortho-mosaics of UAV images was very crucial. This was because we 

needed to match between the DBH measured in the field and the CPA and crown diameter (CD) on the 

image. Manual on-screen digitization of CPA was done by delineating the crown area of each individual tree.  

After that, we calculated its area to represent CPA and then CPA was used to generate CD. In this case, we 

had to make sure that we were using the same canopy the same corresponding trees on both ortho-mosaic 

images of UAV 2017 and UAV 2018. As mentioned before, this step was very critical because there was a 

little shift related to the geo-referencing and difference in spatial resolution of the UAV images in the two 

years of 2017 and 2018. It was by chance that the University of Mulawarman had done the imaging survey 

in 2017 for PT PERTAMINA Oil company of Indonesia and we have used these images to assess carbon 

sequestration. 

Identification number of trees (ID number) was crucial to distinguish every individual tree. This number 

could be used to identify the trees in other data processing steps. The ID number of trees had four digits, 

the first two figures presented the number of the plot, while the second two-digits represented the number 

of trees in each plot. For example, tree 1208, meant that tree located in plot 12 and it was tree number 08. 

This ID number of trees was applied in the manual on-screen digitising to generate CPA, assessed the CHM 

and derived CD. Figure 2.8 shows the difference between canopy projection area on othomosaic of UAV 

2017 and 2018. CPA of UAV images 2018 was larger than 2017 because tree grew and expanded its canopy. 

The growth of trees could detect by comparing CPA of UAV images 2018 and 2017. Moreover, 2018 image 

was sharper and focus because of the differences in the quality of the images and the spatial resolution.    

 
Figure 2.8 Manual digitising of CPA 2017 and CPA 2018. 

CPA segmentation was done manually on UAV ortho-photo. Afterwards, CPA was used to generate a 

crown diameter (CD). The CPA is the size or area of the crown. It is measured in square meters. The crown 

diameter was derived from the CPA (crown shape was a circle or near circle) using the following equation. 

CPA= (radius)2 * π  

Radius = Square (CPA/ π) 

CD = Radius * 2 

Where, CPA= Crown projection area (m²), CD= Crown diameter (m), and π= 3.142 

The relationship between crown diameter and DBH was used to predict modelled DBH. Then it was 

compared to DBH measured in the field for accuracy assessment for calculating biomass/carbon stock in 

2018 and 2017 as well as biomass/carbon stock and carbon sequestration. 
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2.7.3 Extracting individual tree height of CHM 

Extracting individual tree height derived from CHM was done using CPA area using the Spatial Analyst 

Tool in ArcGIS software. In this case, CHM was overlaid and masked by the shapefile of CPA. Furthermore, 

the zonal statistic was run to calculate the maximum value in the CHM, which is the highest point in the 

canopy. Afterwards, the CPA of the individual tree is converted into a point feature. Then, the maximum 

value of CHM within CPA for every individual tree was used to retrieve tree height derived from UAV 

CHM. Then, this tree height was used to assess the relationship between tree height calculated from TLS 

and tree height derived from CHM-UAV. 

Figure 2.9 shows an example of individual tree height derived from CHM of 2017 and 2018. The value of 

tree height is retrieved from the maximum number within the crown area. It is clear that CHM 2018 is 

brighter than CHM 2017. It means the more vivid the colour is, the higher the trees are.   

2.8 Data analysis 

In this research, data analysing comprised the relationship between DBH and crown diameter, the 

relationship between tree height and CHM, aboveground biomass and carbon stock calculation which 

explained in the following section. 

2.8.1 Relationship between DBH and crown diameter 

The relationship between the diameter breast height and crown diameter to calculate aboveground 

biomass/carbon stock was done by a number of researches (Clough et al., 1999; Pouliot et al., 2002; Hemery 

et al., 2005; Fu & Wu, 2011), while some of them used remote sensing data and very high spatial resolution 

images (Brown et al., 2000; Feng, Li, & Tokola, 2010; Song et al., 2010; Panagiotidis et al. , 2017). The 

relationship between DBH and crown diameter was powerful to assess biomass/carbon stock in multi-stem 

of mangroves trees such as Avicennia spp., Rhizophora spp., and Xylocarpus granatum (Suhardiman et al., 2013). 

A number of ITC MSc theses also assessed the relationship between DBH and trees parameters derived 

from remote sensing data in a tropical forest where the majority of the trees has a single stem (Berhe, 2018; 

Odia, 2018). Instead of using the crown projection area, this study assessed the relationship between DBH, 

and crown diameter derived from the CPA of UAV. Selected trees were used to build the relationship 

between DBH and crown diameter in 2018 and 2017. The number of selected trees then were used to create 

a model and validation of predicted DBH based on crown diameter. 

Figure 2.9 Example of individual tree height derived CHM 2017 and CHM 2018. 
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2.8.2 Predicted DBH model and validation 

Predicted or modelled DBH using remotely sensed data are reported by some researches. These researchers 

have found that there was a strong relationship between DBH field measurement and predicted DBH 

derived from Lidar data (Prieditis et al., 2012; Wu et al., 2015; Shen et al., 2018). Thus, remotely sensed data, 

particularly very high spatial resolution images such as UAV is used to predict tree biophysical parameters. 

Predicted or modelled DBH and its validation were done using selected trees that used to make the 

relationship between DBH and crown diameter.  The number of selected trees were divided into 70% for 

model data and 30% for validation. The equation of predicted modelled DBH was applied on the model 

and validation data to predict DBH base on crown diameter. The R-square and RMSE then were calculated 

to see the validation results. 

2.8.3 Relationship between trees height and CHM 

Structure from motion (SfM) technique using basic photogrammetry and computer vision offers capabilities 

to retrieve three-dimensional information of trees structure using point cloud of very high spatial resolution 

and by assessing trees height  (Mohan et al., 2017; Panagiotidis et al., 2017). Crown height model (CHM) is 

an SfM product which is calculated as a relative height using DSM and DTM (Mohan et al., 2017). Then 

assessing the relationship with ground truth data is essential (Iizuka et al., 2018). The accuracy of CHM 

derived UAV as a proxy of tree height was assessed by using its relationship with trees height derived from 

TLS in 2018 and 2017 using selected trees. This step was aiming to answer the research question regarding 

the relationship between trees height and crown height model of UAV in 2017 and 2018. 

2.8.4 Calculation of aboveground biomass  

Aboveground biomass is estimated using an allometric equation which is a mathematic equation to calculate 

biomass using DBH, tree height and woody density (Chave et al., 2014a). This research has used DBH, trees 

height and wood density as explanatory variables in the allometric equation to calculate biomass. 

Aboveground biomass model was calculated and reconstructed based on selected trees and assessed its 

accuracy using aboveground biomass/carbon stock biometric. The allometric equation which was used to 

calculate biomass is based on Chave et al., (2014). 

AGB= 0.0509 * WD * DBH ² * H 

Where, AGB= above ground biomass (kg/tree), WD= wood density DBH= diameter breast height (cm), 

and H= trees height (meter) 

2.8.5 Calculation of carbon stock and carbon sequestration 

Generally, the calculation of carbon stock based on spatial extrapolation of remote sensing data and 

temporal analyse of fieldwork carbon stock measurement (Hairiah et al., 2011). Carbon stock was estimated 

using the above ground biomass (ABG) and the conversion factor (CF). Conversion factor that was used to 

calculate carbon stock both on biometric and model data was in the amount of 0.5 (Brown, 2002; IPCC, 

2006). 

C = ABG * CF 

Where, C=carbon stock, ABG= above ground biomass, CF= conversion factor (0.5) 
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3. RESULTS 

3.1 Statistics of field data collection 

This following section explains the statistic fieldwork data collection which comprises biometric DBH of 

field data collection; biometric trees height measured using Leica DISTO D510 laser ranger, trees height 

derived from TLS point clouds data and comparison trees height between biometric and TLS. 

3.1.1 Biometric DBH field data collection 

Fieldwork data collection was done in 30 circular 500m2 plots. The mangrove forest parameters which were 

collected in the mentioned plots were DBH and tree height, which contained 873 trees in total. Each plot 

had a different number of trees, and the average number of trees was 29 per plot. While the maximum and 

the minimum number of trees were 42 and 17 which were located in plot 7 and plot 18 respectively. 

Summary statistics and the number of trees in each plot are shown in Table 3.1 and Figure 3.1. While the 

location of the sample plot is depicted in Appendix 3. 

Table 3.1 Descriptive statistics of fieldwork data collection in all 30 plots. 

Statistics Number of trees 

Total 873 

Average 29 

St. Dev 7.4 

Max 42 

Min 17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Three species of mangroves grew and spread in the study area, which comprised 455 trees of Avicennia spp 

(52%), 407 trees of Rhizophora spp (47%), and 11 trees of Xylocarpus granatum (1%). The percentage of tree 

species in the study area is illustrated in Table 3.2 

Table 3.2 The number of trees according to different species. 

Species Number of Trees The percentage of tree species (%) 

Avicennia spp. 455 52 

Rhizophora spp. 407 47 

Xylocarpus granatum 11 1 

Total 803 100 

Figure 3.1 Distribution of the number of trees in each plot. 
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Figure 3.2 shows that the majority of the trees had DBH in the range 10 cm-15 cm (524 trees). Less than 

200 trees had DBH in the range 15 cm to 20 cm. The DBH between 20 cm and 25 cm were nearly 100 trees. 

The total number of DBH more than 25 cm were 79 trees. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The boxplot of the 873 trees found in 30 sample plot shows that the DBH which higher than its median of 

each plot indicated the outlier, for example in plot 18, the median of DBH was 12.9 cm, while there were 

two outlier trees had DBH less than 40 cm. The boxplot of DBH also depicted that 52 outliers spread in 20 

plots (Appendix 4 Figure 1) 

3.1.2 Biometric tree height measured Leica DISTO D510 laser ranger 

Table 3.3 shows the summary statistics of trees height measured in the field using Leica DISTO D510 laser 

ranger. The average biometric tree height in the study area was 13.3 m and 2.9 m of the standard deviation. 

Meanwhile, the maximum and the minimum measure of trees height were 22.6 m and 6.9 m respectively.  

Table 3.3 Summary statistics of biometric trees height measured in the field. 

Statistics Biometric Tree Height 

Total 11602.3 

Average 13.3 

St. Dev 2.9 

Max 22.6 

Min 6.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Histogram distribution of biometric DBH measured in the field. 

Figure 3.3 Histogram distribution of biometric trees height measured in the field. 
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Furthermore, the histogram of biometric trees height shows that it was right skewed. Nearly 180 of trees 

had a height in the range of 11 m to 12 m. When it was classified into three classes, there were 102 trees of 

low height (<10m). The dominant tree height was in the range of 10-20 m which consisted of 705 trees, 

while 17 other trees had more than 20 m height (Figure 3.3). The boxplot of biometric trees height measured 

in the field using Leica DISTO D510 laser Ranger depicts that there were 25 outliers of trees height which 

were spread in 13 plots. For instance, plot 1 had five outliers with 10.3m of the median tree height.  The 

boxplot of biometric trees height measured is shown in Appendix 4 Figure 2. 

3.1.3  Tree height derived from TLS point clouds data 

This research work also used secondary data of trees height that derived from terrestrial laser scanner (TLS) 

point clouds data. The summary statistics of TLS trees height are presented in Table 3.4 Summary statistics 

of trees height measured using TLS point clouds data. Table 3.4. It shows that the average of TLS trees 

height was 14.4 m and the standard deviation of 2.8 m. Moreover, the minimum measured trees height was 

7.2 m, while 22.9 m was the highest tree height measured by TLS.  

Table 3.4 Summary statistics of trees height measured using TLS point clouds data. 

Statistics TLS Tree Height 

Total 12537.5 

Average 14.4 

St. Dev 2.8 

Max 22.9 

Min 7.2 

 

The histogram of TLS tree height (Figure 3.4) depicts that the data was right skewed. Dividing the range of 

tree height into 1m, there were more than 140 trees belong to 12-13 m height. When TLS tree height data 

were classified into three classes, the majority of trees height was in the range of 10-20 m (counted 790 

trees). Only 51 trees and 32 trees had height less than 10 m and height of more than 20 m respectively. The 

histogram of trees height derived from TSL point cloud data can be seen in Figure 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in the boxplot of TLS trees height (Appendix 4 Figure 3), 19 trees were counted as outliers, 

located and spread in 9 plots. Plot 23 had the highest mean of trees height (18.7 m) compared to other plots, 

while the lowest mean of trees height was 11 m found in plot 18. The boxplot also shows that trees height 

more than 20 m located in plot 4, 5, 8, 14, 22 and 23, while in plot 8, it is counted as an outlier. Furthermore, 

the trees that have the height in the range of less than 10 m and counted as outliers which are in plot 1, 2 

and 7. 

Figure 3.4 Histogram distribution of trees height derived from TLS point cloud data. 
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3.1.4  Comparison biometric and TLS tree height 

The summary statistics of biometric trees height and TLS tree height in Table 3.3 and Table 3.4 exhibit that 

trees height derived from TLS had a higher value than biometric tree height.  The sum of TLS trees height 

measurements was higher than the sum of trees height measurement in the field using Leica DISTO D510 

laser Ranger. The difference between the sum of the two measurement was 935 m. This clearly shows that 

Leica DISTO D510 laser Ranger had underestimated tree height. Figure 3.5 evidently show the shift in the 

distribution of the measurements using Leica DISTO and the TLS measurement. According to Bazezew 

(2017), when the laser beam of TLS can reach the point want to be measured (i.e., top of the tree) then TLS 

is the most accurate instrument to measure trees. Furthermore, the maximum and the minimum tree height 

of TSL (22. 9 m and 7.2 m) were also higher compared to Leica DISTO data (22.6 m and 6.9 m). On the 

other hand, the standard deviation of TSL was less 0.1 m compared to Leica DISTO measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 shows the comparison of tree height derived TLS and biometric, classified by 1 m in the range 

of trees height, starting from 7 m to 23m in both data. There were large gaps in the measured trees between 

10-11 m, 11-12 m and 13-14 m. In these classes, the difference between two data were more than 20 trees. 

Leica DISTO had nearly double compared to TLS in the range of 10-11 m and 11-12 m when TLS had 

almost twice number of trees in the range of 13-14 m. Moreover, 24 measured trees had the same amount 

in the range of 20-21 m of both data.  Both datasets were right-skewed. The Leica DISTO measured tree 

height data was righter skew than TLS data. From Figure 3.5, it is clear that the majority of measured trees 

height was in the range of 10 to 17 m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Trees height measured using Leica DISTO D510 laser Ranger and TLS trees height. 

Figure 3.6 Scatterplot of TLS and Leica DISTO measured trees height regression analysis. 
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The relationship between TLS and Leica DISTO measured trees height depicted that R-square was 0.5656 

and RMSE was 2.28 m (Figure 3.6). By using linear regression, the equation had 2.1804 as an intercept and 

0.7736 as a slope. Based on data of Leica DISTO and TLS trees height, there were 213 trees of Leica DISTO 

measurement overestimate, and 660 trees underestimate compared to tree height derived TLS. 

Consequently, trees height measured by TLS will be used as the reference measured height (i.e., ground 

truth).  

3.2 Backward prediction of 2017 

The following section explained the result of backward prediction using mean annual increment/growth 

rate of DBH and tree height for three difference mangrove species. Backward prediction of DBH and tree 

height 2017 was calculated by subtracting DBH and tree height derived TLS in 2018 with mean annual 

increment. 

3.2.1 The results of backward prediction of DBH 2017 

Summary statistics of DBH 2017 presents that the average DBH was 15.5 cm, declining by 0.6 cm compared 

to DBH 2018. The maximum and the minimum DBH 2017 were 108.2 cm and 9.3 cm when the standard 

deviation was 8.9 cm (Table 3.5). 

Table 3.5 Summary statistics of DBH of 2017 calculated using backward prediction. 

Statistics DBH 2017 

Total 13514.0 

Average 15.5 

St. Dev 8.9 

Max 108.2 

Min 9.3 

 

Histogram of DBH 2017 depicts that more than 500 trees had DBH in the range of 9 - 14cm and nearly 

200 trees had a class of DBH between 14 - 19cm. Almost a hundred trees had 19 - 24cm of DBH range, 

while 83 trees were more 25cm of DBH (Figure 3.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen in the boxplot of DBH 2017, 55 trees were indicated as outliers, located in 21 plots. Six and 

four outliers were located in plot 19 and plot 7 respectively. While four outliers are in plot 25 and 30. Three 

outliers were spread in plots 8, 12, 15, 16, 17, 26, 27 and 28. Meanwhile, two outliers of DBH were in plot 

5, 10, and 18. Whereas plots 1, 4, 20, 23, 24 and 29 had one outlier. The boxplot of DBH 2017 is presented 

in Appendix 4 Figure 4. 

Figure 3.7 Histogram distribution of DBH of 2017 calculated using backward prediction. 
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3.2.2  The results of backward prediction of TLS tree height 2017 

The results backward prediction of TLS trees height of 2017 is presented as the summary statistics in Table 

3.6 which shows that the average tree height in 2017 was 13.9 m, with 2.8 m of the standard deviation. The 

maximum tree height was 22.5 m, while 6.8 m was the lowest tree height. 

 
Table 3.6 Summary statistics of TLS trees height in 2017 calculated using backward prediction. 

Statistics TLS Tree Height 2017 

Total 12129.7 

Average 13.9 

St. Dev 2.8 

Max 22.5 

Min 6.8 

 

Histogram of TLS trees height in 2017 illustrates the distribution of trees height of 2017 by 1 m range or 

class between 7 m to 23 m. The highest number of trees was in the range of 13 -14 m and the range of 7–8 

m was the lowest number of trees. By classifying trees height into three classes, 53 trees had a height of less 

than 10 m, while the majority (795 trees) were in the range class of 10-2 0 m and 28 trees had a height above 

20 m (Figure 3.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Boxplot of TLS trees height measured in 2017 concludes that plot 23 had the highest mean of trees height 

while the lowest mean of trees height was in plot 18. There were 21 outliers which indicated and spread in 

10 plots. Plot number 2, 7, 17, 19, 23, 24 and 29 had one outlier, while plot number 9, 10 and 28 had two 

outliers. Three outliers were in plot 1, and four outliers were founded in plot 5 and 8. The boxplot (Appendix 

4 Figure 5) shows the short range of trees height was in plot 28 and most of the median of trees height was 

in the range 11- 15m, and it was close to the average tree height of 2017 derived from TLS.  

3.3 UAV image processing 

The consecutive overlapped images of UAV 2018 and 2017 were processed using SfM method to produce 

orthomosaic, digital surface model (DSM) and digital terrain model (DTM). This process was done by 

employing software Pix4D MapperPro version 4.0.24.  Moreover, GPCs and checkpoints were utilised as 

geo-references in the image rectification process. While generating canopy height model (CHM) was 

executed by subtraction between DTM from DSM using ArcGIS version 10.6.1.  These UAV image 

processing of 2018 and 2017 are explained in the following sub-sections. 

Figure 3.8 Histogram of TLS trees height measurements in 2017 calculated using backward prediction. 
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3.3.1  UAV 2018 image processing 

UAV 2018 images were acquired on 18 December 2018 using Phantom 4 DJI with camera model FC 3610 

was covered nearly one km² in the study area. It measured approximately 165m of flight height and using 

4mm of focal length camera and captured 369 single overlapped consecutive photos. Pixel dimension of 

UAV 2018 was 4000 x 3000, while exposure time was every 1/60 second and had f/2.8 for F-stop. The 

UAV 2018 parameters can be seen in Table 3.7. 

Table 3.7 UAV 2018 imaging parameters. 

Parameters UAV 2018 

Acquisition 18 December 2018 

No. of Photos 369 

Flight height (m) 165 

Focal length (mm) 4 

Dimension (pixels) 4000 x 3000 

F-stop f/2.8 

Exposure time (second) 1/60 

Camera model DJI FC6310 

 

Figure 3.9 represents the UAV 2018 consecutive overlap image location which illustrates the flight route of 

UAV images, coordinates and reference system and the GCPs location in the study area. The red dots were 

single images, the blue crosses were GCP while the green lines were flight route. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2 Orthomosaic, DSM and DTM of UAV 2018 

The result of UAV 2018 image processing is shown in Table 3.8 which captured 98 ha of covered area, had 

6.21 cm of ground sampling distance. Root mean square errors (RMSE) of UAV 2018 was 47 cm, and the 

number of generated tiles was 7. More than 100 million 3D densified points generated 30.27 average density 

per m³. Othomosaic had the same as image resolution as DSM, namely 6.21 cm when DTM has five times 

image resolution (30.05 cm) compared to the image resolution of othomosaic/DSM. 

In term of GCPs of UAV 2018, it shows that the RMS Error was 0.047 m. Four GCPs were used to rectify 

the images of 2018. Table 3.9 shows that GPC P07 had the highest error, which comprises -0.105 in X 

coordinate and 0.057 in Z coordinate, while GCP P05 contributes the higher error on Y coordinate (-0.069). 

RMS error consisted 7cm on X-axis, 48cm on Y-axis and 24 on Z-axis.  

 

Figure 3.9 UAV 2018 image processing. 
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Table 3.8 UAV 2018 images result. 

Parameters UAV 2018 

Ground sampling distance (cm) 6.21 

Covered area (km²) 0.98 

Georeferencing RMSE (m) 0.047 

Number of generated tiles 7 

Number of 3D densified points 107775485 

Average density (m³) 30.29 

DSM and orthomosaic resolution (cm) 6.21 

DTM resolution (cm) 30.05 

  

Table 3.9 GCPs of UAV 2018. 

GCP X Y Z 

P02 0.080 0.046 0.008 

P05 0.020 -0.069 -0.006 

P07 -0.105 -0.045 0.057 

P11 0.043 -0.015 0.002 

Mean (m) -0.012 0.001 0.015 

Sigma (m) 0.069 0.047 0.024 

RMS Error (m) 0.070 0.048 0.029 

 

Orthomosaic image of the UAV 2018 is presented in Figure 3.10. The reference system used datum WGS 

1984 when the projection employed Transverse Mercator (TM). UAV 2018 which had 369 images, covered 

98 ha and located in UTM zone 50 S. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.10 Orthomosaic image of UAV 2018. 
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Beside to generate orthomosaic, UAV image processing using Pix4D Mapper Pro also produced point 

clouds, DSM and DTM.  There was a different pixel resolution between DSM and DTM. Thus, the 

resampling process was applied to the DTM so that DSM and DTM had the same pixel size, then CHM 

could have been generated by subtracting DTM from DSM. DSM, DTM of UAV 2018 are shown in Figure 

3.11 

 

3.3.3 Generating CHM 2018 

The result of CHM UAV 2018 had the range value from -6.9 m to 29.3 m, which is represented by a colour 

ramp from blue to red. It meant the redder the colour, the higher the trees were. Figure 3.12 shows that the 

majority of the high trees mangrove in the UAV 2018 had a yellow colour, while red colour spread randomly. 

Thus, most of the trees have a height range between 10 m-20 m. In term of the red colour of CHM, this 

colour of trees also had a pattern along the river. This pattern related to the issues that fisherman preserve 

the mangroves near the river to deceive the forest ranger or local government. While low trees height area 

and shrimp ponds were represented by the blue-yellowish colour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.12 CHM of UAV 2018. 

Figure 3.11 DSM and DTM UAV 2017. 
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3.3.4 UAV 2017 image processing 

UAV 2017 images were collected on 25 October 2017 which contained 54 images in 5 flight lines. It 

employed Phantom 4 DJI with camera model FC330, while the flight height was approximately 372 m. The 

camera used 9mm of focal length, and the pixel dimension was 4864 x 3648. It captured by 1/20second 

(exposure time) which had f/4.5 for F-stop (Table 3.10). 

Table 3.10 UAV 2017 imaging parameters. 

Parameters UAV 2017 

Acquisition 25 October 2017 

No. of Photos 54 

Flight height (m) 372 

Focal length (mm) 9 

Dimension (pixels) 4864 x 3648 

F-stop f/4.5 

Exposure time (second) 1/20 

Camera model DJI FC330 

 

Figure 3.13 shows UAV 2017 by the number of photos, flight line, GCPs location which was represented 

by red dots, blue crosses and green lines as well as a reference system, using WGS 1984 UTM zone 50 S. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.5 Orthomosaic, DSM and DTM of UAV 2017 

The results of UAV 2018 image processing which produced othomosaic, DSM, DTM and points cloud, 

also provided information related to the derived products. UAV 2017 which captured 130 ha of study area 

having 9.3 cm of ground sampling distance (GSD) with 30.2 cm of RMSE. The number of generated tiles 

was 10, while the number of 3D densified points were more than 134 million and the average density of 3D 

points were 29.6 m³. Moreover, DTM image resolution had five times larger than orthomosaic and DSM. 

Base on that case, resampling was done to the DTM in order to get the same image resolution with the 

DSM. The imaging parameters of the UAV 2017 are presented in Table 3.11 

The result report of mosaicking the images of UAV 2017 is shown in Table 3.12. The report provides 

information related to GCPs. UAV 2017 used 6 GCPs to geo-referencing the images, which spread in the 

whole study area and can be seen in Figure 3.17 (in blue crosses). Regarding GCPs UAV 2017, the average 

RMS error was 30 cm, while it was higher in X-axis and Y-axis contribute twice compared to Z-axis. GCP 

P07 had the highest error in X-axis while in the Y-axis and Z-axis were much less. GCP P10 had 0.599 m 

and -0.473 m of Y and Z-axis respectively (Table 3.12) 

Figure 3.13 UAV 2017 image processing 
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Table 3.11 UAV 2017 imaging parameters. 

Parameters UAV 2017 

Ground sampling distance (cm) 9.29 

Covered area (km²) 1.28 

Georeferencing RMSE (m) 0.302 

Number of generated tiles 10 

Number of 3D densified points 134704464 

Average density (m³) 29.63 

DSM and orthomosaic resolution (cm) 9.29 

DTM resolution (cm) 46.45 

 

Table 3.12 GCPs of UAV 2018. 

GCP X Y Z 

P02 0.181 0.187 -0.105 

P03 0.340 -0.359 -0.188 

P06 -0.483 -0.385 -0.001 

P07 0.435 -0.156 -0.003 

P10 -0.228 0.599 -0.473 

P11 -0.045 0.020 0.163 

Mean (m) 0.003 -0.016 -0.101 

Sigma (m) 0.370 0.339 0.198 

RMS Error (m) 0.371 0.340 0.222 

 

The result of the orthomosaic UAV 2017 image is presented in Figure 3.14. This UAV product employed 

the same reference coordinate system as UAV 2018 products. WGS 1984 was applied as a global datum, 

and Universal Transverse Mercator was employed as a projection system, while UTM zone 50 S was used 

in the study area to calculate in the metric unit (meter). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.14 Orthomosaic UAV image of 2017. 
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After resampling DTM, it had the same image resolution as DSM (i.e., 9.29cm), thus generating CHM was 

possible. Figure 3.15 shows both DSM and DTM of 2017 had the same low value of height (-19.9 m), while 

in the highest value in DSM reaches up to 23.8 m and in the DTM was 17.3 m. It is logic that DSM is higher 

than DTM because DSM represents the surface while the terrain is illustrated by DTM. 

3.3.3 Generating CHM 2017 

Canopy height model (CHM) was derived by subtracting DTM from DSM. In this case, we have used the 

Raster Calculator-Spatial Analyse Tool in ArcGIS software. The result shows that DSM had a range between 

-19.9 m to 23.4 m, while the range of DTM was -19.9 m to 17.3m. CHM is relative height between DSM 

and DTM. CHM image showed a range of -4.9 m to 27.3 m. In term of colour in the legend, the blue colour 

was represented low value, and a high value was a red colour. Figure 3.16 shows the generated result of the 

CHM image of UAV 2017. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 DSM and DTM images of UAV 2017. 

Figure 3.16 CHM image of UAV 2017. 
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3.4 Crown Projection Area 

Crown projection area was produced by manual digitising the two dimensions of the crown area of the trees 

in every plot using orthomosaic of UAV 2018 and UAV 2017. Afterwards, CPA was employed to derive 

crown diameter.  

3.4.1 The crown projection area of 2018 

The average of the crown projection area of 2017 was 7.7 m², and 5.5 m² was the standard deviation of the 

data. While the maximum and the minimum of CPA were 67.9 m² and 1.5 m² respectively. The summary 

statistic of CPA 2018 can be seen in Table 3.13 

Table 3.13 Statistics summary of crown projection area measured from UAV images of 2018. 

Statistics CPA 2018 

Total 6729.8 

Average 7.7 

St. Dev 5.5 

Max 67.9 

Min 1.5 

The histogram Figure 3.17 of the crown projection area of 2018 reveals that the data which was right-skewed 

had a range of CPA from 1.5m² to 67.9m². Majority of trees had CPA in the extent of 1m² to 19m² that 

comprised more than 800 trees. The most frequent class was the range of 3m² to 5m² of CPA which was 

almost 250 trees. Only three frequency classes of CPA reached more than a hundred trees, while CPA 

between 1m² and three m² was nearly hundred trees.  

 

 

 

 

 

 

 

 

 

 

Based on the boxplot of CPA 2018 (Appendix 4 Figure 6), 53 outliers were in 21 plots. Seven outliers had 

the highest values which were located in plot 9 and a total of five outliers in Plot 7. Trees with large CPA 

(e.g., more than 30 m²) became an outlier in plot 4, 5, 17, 20, 27 and 30. Moreover, less than ten trees had 

CPA above 30 m², and the largest CPA had reached almost 70m². 

3.4.2 The crown projection area of 2017 

In terms of CPA 2017, the average CPA was 6.7 m² compared to 7.7 m² of 2018. The maximum and 

minimum CPA of 2017 was 62.5 m² and 1.4 m², while 5m² was the standard deviation of this dataset. 

Contrasted to 2018, all the figure of statistic summary of CPA 2018 was lower (Table 3.14). 

Histogram of the crown projection area of 2017 which had a range of CPA from 1 m² to 63 m² was right-

skewed like 2018. More than 800 trees had CPA less than 20 m², while CPA values more than 20 m² 

comprised of 19 trees. Only four classes exceeded a hundred trees in total, which located in the range of 1 

Figure 3.17 Histogram distribution of the crown projection area in 2018. 
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m² to 9 m². The total number of CPA more than 10 m² did not exceed the number of trees in the frequency 

class of 3 – 5 m². This frequency class had the highest number of the tree in CPA 2017, which contained 

more than 250 trees. Figure 3.18 illustrates the histogram of CPA 2017. 

Table 3.14 Statistics summary of crown projection area in 2017. 

Statistics CPA 2017 

Total 5872.0 

Average 6.7 

St. Dev 5.0 

Max 62.5 

Min 1.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Boxplot of CPA 2017 depicts that there were 54 outliers spread in 22 plots. The highest number of outliers 

were located in Plot 19 which consisted of 6 outliers, followed by Plot 7 with five outliers. Meanwhile, only 

eight plots did not have outliers, namely plots 2, 10, 11, 12, 21, 22, 23 and 29. There was an increase in the 

number of outliers in plot 1, 6, 16, and 26, while the number of outliers in plot 17 and 19 was less compared 

to CPA 2018.  Boxplot of CPA 2018 is shown in Appendix 4 Figure 7. 

3.5 Crown Diameter 

Crown diameter could be observed in the field, which was measured by averaging the of two perpendicular 

measurements of the crown diameter which was shown in Figure 1.4 (b) in Chapter 1. To avoid subjective 

measurements due to human error, the crown projection area was used to generate crown diameter.  

3.5.1 The crown diameter of 2018 

The statistical summary of crown diameter of 2018 is shown in Table 3.15. It shows that the average crown 

diameter was 3 m with 0.9 m of standard deviation. The maximum and minimum crown diameter of the 

trees were 9.3 m and 1.4 m, respectively. 

As shown in Figure 3.19, the histogram distribution of the crown diameter in 2018 was right-skewed. The 

highest number of trees were in the frequency class of 2.4-2.7 m, while most of the data located in the range 

of 1.7m to 4.0m of crown diameter. There were four classes in the range of 2.0 m to 3.4 m of the crown 

diameter which had the number of trees more of than 100. Moreover, the maximum crown diameter of 

2018 was in the range 9.0 m to 9.3 m which had the lowest number of trees. 

Figure 3.18 Histogram distribution of the trees crown projection area in 2017. 
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Table 3.15 Statistics summary of crown diameter 2018. 

Statistics Crown Diameter of 2018 

Total 2621.5 

Average 3.0 

St. Dev 0.9 

Max 9.3 

Min 1.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The boxplot of crown diameter 2018 (Appendix Figure 8) shows that most of the plots had the mean in the 

range 2.5 m to 3.5 m. There were 27 outliers, located in 16 plots. Plots 19 has the most outliers, followed 

by Plot 27 with three outliers. There were two outliers in plots 5, 8, 16, 25 and 30, while plots 3, 4, 9, 17, 20, 

24 and 29 had one outlier. 

3.5.2 The crown diameter of 2017 

Compared to the crown diameter of 2018, the crown diameter of 2017 was lower. The average crown 

diameter of 2017 was 2.8 m with 0.8 m of standard deviation. Also, the maximum crown diameter was 8.9m 

while the minimum was1.3 m. The summary statistics of crown diameter of 2017 is presented in Table 3.17. 

Table 3.16 Statistics summary of crown diameter 2017. 

Statistics Crown Diameter of 2017 

Total 2445.9 

Average 2.8 

St. Dev 0.8 

Max 8.9 

Min 1.3 

 

Histogram of the crown diameter of 2017 (Figure 3.20) has the same pattern of right-skewed like in 2018. 

The highest number of trees were located in the frequency class of 2.3 - 2.6 m, while the majority of trees 

with the crown diameter were in the range of 1.6 m to 3.8 m compared to 2018 data (2.0 m to 3.4 m). It also 

consists of 4 classes of the crown diameter frequency classes that had the number of the trees which were 

more than hundreds namely frequency classes 2.0-2.3 m, 2.3-2.6 m, 2.6-2.9 m, and 2.9-3.2 m. 

Regarding boxplot of crown diameter in 2017, most of the plots also had the mean in the range of 2.5 m to 

3.5 m. The outlier of crown diameter also increases to 31, where spread in 19 plots. Plot 7 was having the 

Figure 3.19 Histogram distribution of crown diameter of trees in 2018. 
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highest outliers, followed by three outliers in plots 27 and 30. While plots 3, 5, 8, 16, 25 had two outliers. 

Whereas one outlier was found in plots 1, 4, 9, 13, 14, 17, 18, 19, 20, 24, and 28. Boxplot of the crown 

diameter of 2017 is presented in Appendix 4 Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6 Crown Height Measurement 

Crown height measurement (CHM) of an individual tree was extracted by generating the maximum value 

of CHM of 2018 and 2017 using the CPA (i.e., crown) of every single tree. The result of CHM was applied 

to make a relationship with trees height measurements derived from TLS point cloud data. Then CHM was 

used to calculate aboveground biomass/carbon stock and compares it to biometric AGB. 

3.6.1 The crown height measurement of 2018 

Statistic summary of CHM 2018 shows that the average was 14.1 m which had 2.9 m of standard deviation. 

The maximum and minimum values of tree height derived from CHM of UAV 2018 were 23.4 m and 6.8 

m respectively. Table 3.17 Statistics summary of CHM 2018.shows the summary statistics of CHM in 2018. 

Table 3.17 Statistics summary of CHM 2018. 

Statistics CHM 2018 

Total 12273.4 

Average 14.1 

St. Dev 2.9 

Max 23.4 

Min 6.8 

 

Histogram of CHM 2018 Figure 3.21 was right-skewed which dominated by CHM in the range of 10 m – 

20 m. CHM 2018 started from 7 m to 24 m, and the highest number of the trees was in the frequency class 

of 13 - 14m, which included more than 150 trees. Four classes of CHM 2018 exceeded 100 trees, which 

consisted of the classes of 11 – 12 m, 12 – 13 m, 13 – 14 m and 14 – 16 m. Moreover, CHM 2018 of more 

than 20m comprises 43 trees only.  

Boxplot of CHM 2018 shows that the median plots were in the range 10 to 15 m, while the highest was 

located in plot 23. Outliers were spread in 11 plots, which consisted of 23 outliers in total. Plot 17 and 28 

had four outliers, followed by three outliers were in plot 19. Plot 8 had the highest range of tree height, 

approximately from 8 m to 23 m, while plot 28 was the smallest range (Appendix 4 Figure 10). 

Figure 3.20 Histogram distribution of trees crown diameter in 2017. 
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3.6.2 The crown height measurement of 2017 

The maximum and minimum tree height or CHM was 22.3 m and 5.8 m respectively. While the average of 

CHM derived from UAV 2017 data was 12.4 m and the standard deviation was 2.9 m. Comparing to 2018, 

CHM of 2017 had low altitude; which was normal because the trees in 2018 were higher than in 2017. Table 

3.18 presents the summary statistic of CHM in 2017. 

Table 3.18 Statistics summary of CHM 2017. 

Statistics CHM 2017 

Total 10792.1 

Average 12.4 

St. Dev 2.9 

Max 22.3 

Min 5.8 

 

Histogram of CHM 2018 was right skew. However, it had high value in the range of 11 – 12 m. Four 

frequency classes of trees height in the range 9 – 13 m exceed 100 trees, while each class of trees height of 

11 – 12 m 12 – 13 m and 13 – 14 m have more 125 trees in total. The minimum and maximum trees height 

classes are started from 6 m to 23 m. The amount of tree having a height of less than 10 m were 89 trees, 

and 15 trees had a height more than 20 m (Figure 3.22). 

 

 

 

 

 

 

 

 

 

 Figure 3.22 Histogram distribution of trees height or CHM in 2017. 

Figure 3.21 Histogram CHM 2018. 
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Boxplot of CHM 2017 (Appendix Figure 11) shows that there were 19 outliers spread in 12 plots. Plots 28 

had the highest number of outliers (counted four outliers), followed by three outliers located in plots 10. 

Plot 1 and 2 had two outliers, while one outlier was located on plot 5, 7, 8, 9 17, 19, 20 and 29 Trees height 

more than 15m were located in plot 8, and plot 9 were identified as outliers when low altitude trees less than 

10 m were also recognized as outlier in plot 1, 7, 10, 20, 28 and 29. Most of the median in plots were in the 

range of 10 m to 15 m, while plot 23 had the highest median value around 19 m.  

3.7 The relationship between DBH and CPA 

The regression model of DBH and CPA was performed to obtain the relationship between DBH of 

biometric field measurement and CPA derived from UAV in both 2018 and 2017. Four hundred seven trees 

were selected randomly to assess the relationship between their DBH and CPA. Thus, DBH could be 

modelled through CPA and used with the CHM to assess AGB/carbon stock. 

3.7.1 The relationship between DBH and CPA of 2018 

The correlation and regression of DBH and CPA 2018 showed 0.87 in R-square, while the relationship 

between two variables consisted of intercept and slope, namely -1.6148 and 0.5795x.  Figure 3.23 shows the 

relationship between DBH and CPA in 2018. 

 
Figure 3.23 Relationship of DBH and CPA of 2018. 

3.7.2 The relationship between DBH and CPA of 2017 

The relationship between DBH and CPA in 2017 using the elected trees was assessed. The R-square was 

almost the same as R-square of DBH and CPA 2018. R2 of 2017 data was 0.874. While its intercept was -

1.4016 and 0.5251x was its slope (Figure 3.24). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24 Relationship of DBH and CPA of 2017. 
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3.8 The relationship between tree height derived TLS and tree height derived CHM of UAV 

The same 301 trees, which were selected randomly to assess the relationship between DBH and CPA, were 

used to assess the relationship between the TLS trees height and CHM or UAV trees height in both years 

of 2017 and 2018. Based on those trees, the correlation and regression were performed to observe the 

relationship between tree height derived from TLS and tree height derived CHM of UAV in 2018 and 2017. 

3.8.1 The relationship between tree height TLS and CHM of 2018 

The relationship between tree height TLS and CHM 2018 for selected trees showed a high correlation. The 

figures showed 0.85 of R-square, 0.5367 of intercept and 0.9556x of the slope. The relationship between 

tree height TLS and CHM 2018 is presented in Figure 3.25. 

 
Figure 3.25 Relationship between tree height TLS and CHM of 2018. 

3.8.2 The relationship between tree height TLS and CHM of 2017 

Compared to the relationship of tree height TLS and CHM 2018, the relationship between tree height TLS 

and CHM in 2017 was lower. It just performed 0.81 of R-square compared to 0.85. The intercept and slope 

are -0.5874 and 0.9427x respectively (Figure 3.26).  

 
Figure 3.26 Relationship between tree height TLS and CHM of 2017. 

3.9 The relationship between DBH and CD 

In this research, the crown diameter was generated and derived from crown projection area. Related to the 

objective of the research, crown diameter was used to predict the DBH model from UAV data. The 

relationship between DBH and CD was assessed because later on when we used the DBH modelled from 

CPA, the AGB was not accurately estimated. While when CD was used instead of CPA to model the DBH, 

the modelled DBH did a reasonable job with the CD to accurately estimate AGB. 
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3.9.1 The relationship between DBH and CD of 2018 

The relationship between DBH and CD in 2018 for selected trees had a high R-square of 0.80. The intercept 

and slope showed 1.623 and 0.0828x respectively. Figure 3.27depicts the relationship between DBH and 

crown diameter of 2018. 

 
Figure 3.27 Relationship between DBH and CD of 2018. 

3.9.2 The relationship between DBH and CD of 2017 

In terms of the relationship between DBH and CD 2017, it showed a similar pattern as in 2018 data. The 

R-square show the value of 0.80, which almost the same as in 2018. Moreover, the intercept and slope of 

this relationship were 1.5375 and 0.0791x respectively (Figure 3.28).  

 

 
Figure 3.28 Relationship between DBH and CD of 2017. 

3.10 Model of predicted DBH 

Model and validation of predicted DBH were performed base on 407 trees, which divided into 75% for the 

model and 25% for validation. The number of trees that were used for the model were 301 trees, while the 

other trees were for validation. 

3.10.1 Model of predicted DBH 2018 

 Figure 3.29 shows the model of predicted DBH base on the relationship of crown diameter and diameter 

breast height had high R-square (0.80). Using the equation y=10.021x – 13.329, DBH of 2018 was predicted. 

After it was performed, the RMS error of biometric DBH and predicted DBH were calculated. The result 

showed that the RMSE was 1.46 cm. 
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Figure 3.29 Relationship between CD and DBH of the model of predicted DBH 2018. 

3.10.2 Model of predicted DBH 2017 

The relationship between CD and DBH in 2017 was 0.81 for R-square, which was slightly higher compared 

to the relationship between CD and DBH in 2018. The equation to predict DBH 2017 was y=10.591x – 

13.578. The RMSE was generated by comparing DBH and predicted DBH model. In this case, the RMSE 

was slightly lower at 1.40 cm than RMSE 2018 (Figure 3.30). 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.11 Validation of predicted DBH 

Validation of the model was employed in 105 out of 406 trees (25% of selective trees). This validation was 

to test the performance of the model to predict DBH based on the relationship of CD and DBH. Validation 

also covered similar variability of the developed model. 

3.11.1 Validation of predicted DBH 2018 

Based on the scatterplot of validation model between CD and DBH 2018, the R-square was slightly higher 

than the model, namely 0.81 compared to 0.80. After running the equation model 2018 to predict DBH, the 

RMS error of the validation was calculated by subtracting predicted DBH and measured DBH. The result 

shows than RMSE was the amount of 2.54 cm.  Scatterplot validation model is presented in Figure 3.31. 

3.11.2 Validation of predicted DBH 2017 

Validation model between CD and DBH 2017 had better R-square than 2018. The R-square of validation 

model 2018 was 0.82, compared to R-square of validation model 2018. While the RMS error of 2017 was 

higher than in 2018, it was in the amount of 2.47 (Figure 3.32) 

Figure 3.30 Relationship between CD and DBH of the model of predicted DBH 2017. 
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3.12 Aboveground biomass 

Based on the calculation, there were two results of aboveground biomass which consists of aboveground 

biomass biometric and aboveground biomass model. Both calculations used the allometric equation of 

Chave et al. (2005). Above ground biomass biometric was calculated based on field measurement DBH and 

tree height derived from TLS. While aboveground biomass modelled was calculated from DBH modelled 

using crown diameter and CHM of UAV. The results of both aboveground biomass/carbon stock are 

presented in Table 3.19 while the calculation of each plot is shown in Appendix 5. 

Table 3.19 Statistics summary of aboveground biomass 

Statistics 
AGB Biometric (Mg/ha) AGB Model (Mg/ha) 

2018 2017 Sequestration 2018 2017 Sequestration 

Total 3422.8 3131.2 291.6 3374.6 3047.4 327.2 

Average 114.1 104.4 9.7 112.5 101.6 10.9 

St. Dev 58.4 55.6 3.1 50.3 48.4 2.5 

Max 293.3 273.9 19.4 274.4 258.7 15.7 

Min 33.2 28.5 4.0 48.5 42.2 5.1 

 

Figure 3.31 Relationship between CD and DBH of the validation of predicted DBH 2018. 

Figure 3.32 Relationship between CD and DBH of the validation of predicted DBH 2017. 
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Table 3.19 shows that the average aboveground biomass of biometric in 2018 and 2017 was 114.1 Mg/ha 

and 104.4 Mg/ha. Thus, the biomass was increased by 9.7 Mg/ha on average. Moreover, the aboveground 

biomass model had an average of 112.5 Mg/ha in 2018 and 101.6 Mg/ha in 2017. The model showed higher 

growth or increase in biomass was more than the biometric, in the amount of 10.9 Mg/ha on average. The 

maximum plot in biometric data stored 19.4 Mg/ha of biomass, while in the AGB model, it sequestered 

less, in the amount of 15.7 Mg/ha. On the other hand, the minimum plot in biometric has stored 4 Mg/ha 

while the modelled minimum plot was higher than biometric, which was 5.1 Mg/ha with a difference around 

1.1 Mg/ha. Overall, the value of the sum of biomass in 2018, 2017 as well as biomass sequestration of ABG 

biometric was higher than AGB model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.12.1 Comparison biometric and modelled of ABG 2018 

As shown in Figure 3.45, in 2018 aboveground biomass biometric and model shows close values. There was 

a steady difference in the amount of biomass on both data in plot 5, 17, 22, 23, 26, and 27. In those plots, 

aboveground biomass biometric 2018 was around more than 10 Mg/ha higher compared to aboveground 

biomass model. On the other hand, above ground biomass model 2018 was slightly higher than biometric 

in plots 1, 2, 3, 4, 11, and 29. Majority of plots had biomass in the extent of 50 to 100 Mg/Ha in 2018. 

As shown in the scatter plot of biometric and model of AGB 2018 (Figure 3.34), the correlation was high. 

The R-square is 0.93, while the RMS error was 15.5 Mg/ha. The intercept and slope of this correlation were 

17.242 and 0.8348x. There was high distance across the trend line in 4 plots as illustrated in the green circle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.33 Comparison biometric and modelled AGB in 2018. 

Figure 3.34 Relationship between biometric and modelled of AGB in 2018. 
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3.12.2 Comparison biometric and modelled of AGB 2017 

In term of aboveground biomass biometric and model 2017, Figure 3.47 shows a similar pattern as 2018. In 

general, aboveground biomass biometric 2017 was higher than the model. In plot number 6, 7, 21, and 28, 

both of aboveground biomass were close to biomass stored in 2017. The comparison between biometric 

and model of AGB 2017 was presented in Figure 3.35. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scatterplot of biometric and model of ABG 2017 shows a significant relationship. The R-square which was 

less than 2018 data, was 0.93, while the RMS error was slightly higher than in 2018 was 15.4 Mg/ha. 

Moreover, the result show intercept and slope were 13.906 and 0.84x. There was also large distance across 

the trend line as presented in the green circle (Figure 3.36). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.12.3 Comparison biometric and modelled of AGB sequestration 

Figure 3.37 shows biometric and model aboveground biomass sequestration. In general, the AGB modelled 

in most of the plots were sequestering higher than the biometric. There was a gradual difference in 

sequestration of biomass both of two data in plot 5, 7, 8, 20, 21, 24 and 26. In those plots except plot 5, the 

model was more sequester than biometric, while in plot 5, the only plot in which biometric was higher than 

the model. There was the same amount of sequestration of both data in plot 17and 22. Majority of the plot 

in both data sequestered in the range between 5 Mg/ha to 10 Mg/ha a year. 

 

Figure 3.35 Comparison of biometric and modelled AGB in 2017. 

Figure 3.36 Relationship between biometric and modelled of AGB in 2017. 
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The relationship between biometric and model of biomass sequestration shows that there was a significant 

relationship of biomass sequestration. The intercept and slope are 3.5911 and 0.7526x. The R-square and 

RMS error are 0.87 and 1.6 Mg/ha respectively (Figure 3.38).  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.13 Carbon stock 

In general, carbon stock was half of the biomass, which was calculated by multiple 0.5 or 0.47. In this case, 

carbon stock was computed using 0.5 as a multiplier number. Table 3.20 Statistics summary of carbon stock 

shows the average carbon stock biometric data in 2018 and 2017 were 57 Mg/ha and 52.2 Mg/ha, which 

sequestered almost 5 Mg/ha/year. Meanwhile, the carbon stock model on average stored 56.2 Mg/ha in 

2018 and 50.8 Mg/ha in 2017 and it sequestered carbon in the amount of 5.5 Mg/ha/year. Thus, the 

maximum sequestration showed 9.7 and 7.8Mg/ha in the biometric and modelled carbon stock with a 

difference of 1.9 Mg/ha. While the minimum carbon sequestration was 2.0 and 2.6 Mg/ha for the biometric 

and modelled carbon stock with a difference of 0.6 Mg/ha. The calculation of carbon stock and carbon 

sequestration each plot is shown in Appendix 6. 

3.13.1 Comparison biometric and modelled of carbon stock 2018 

As illustrated in Figure 3.39, there were four plots that stored more carbon stock than 100 Mg/ha in the 

biometric data in 2018 which comprise of plot 5, 17, 23 and 27. Only five plots of the carbon stock model 

2018 data exceeded the storage of 75Mg/ha. Most of both biometric and model of carbon stock data 

sequestered carbon stock in the range of 25 to 75Mg/ha in 2018. 

Figure 3.37 Comparison biometric and modelled of AGB sequestration. 

Figure 3.38 Relationship between biometric and modelled AGB sequestration. 
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Table 3.20 Statistics summary of carbon stock 

Statistics 
Carbon Stock Biometric (Mg/ha) Carbon Stock Model (Mg/ha) 

2018 2017 Sequestration 2018 2017 Sequestration 

Total 1711.4 1565.6 145.8 1687.3 1523.7 163.6 

Average 57.0 52.2 4.9 56.2 50.8 5.5 

St. Dev 29.2 27.8 1.5 25.2 24.2 1.2 

Max 146.6 137.0 9.7 137.2 129.3 7.8 

Min 16.6 14.3 2.0 24.3 21.1 2.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Correlation between carbon stock 2018 biometric and model shows a significant relationship. The R-square 

was 0.93, while the RMS error was 7.8 Mg/ha. Furthermore, intercept and slope of that relationship were 

8.6212 and 0.8348x. Figure 3.40 depicts the relationship between biometric and model carbon stock in 2018. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.13.2 Comparison biometric and modelled of carbon stock 2017 

Based on Figure 3.41, there was a difference between biometric and modelled carbon stock 2017, which 

was similar to carbon stock 2018 in plot 5, 17, 22, 26 and 27. While plot 6, 7, 21 and 38 were very close in 

the amount of carbon stock in 2017 both for biometric and model data. Overall, biometric data show more 

sequestration of carbon stock than the model in 2017, except in plots 1, 2, 3, 4, 9, 10, 11, 12, 18 and 29.  

Figure 3.39 Comparison biometric and modelled of carbon stock in 2018. 

Figure 3.40 Relationship between biometric and modelled of carbon stock in 2018. 
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R-square and RMS error of the relationship between carbon stock biometric and carbon stock modelled in 

2017 were 0.93 and 7.71 respectively. While the intercept and slope are 6.9529 and 0.84x. Figure 3.42 

presents the relationship between carbon stock biometric and modelled in 2017. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 3.41 Comparison biometric and modelled of carbon stock in 2017. 

Figure 3.42 Relationship between biometric and modelled of carbon stock in 2017. 

Figure 3.43 Comparison biometric and modelled of carbon sequestration. 
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3.13.3 Comparison biometric and modelled of carbon sequestration 

In terms of carbon sequestration, the overall carbon stock model shows more carbon sequestered than the 

biometric. None of the model plots sequestered more than 10 Mg/ha/year, while in the biometric data of 

plot 5 carbon sequestration exceeded 8 Mg/ha/year. The majority of biometric and model data sequester 

carbon in the range 2 Mg/ha to 8 Mg/ha a year (Figure 3.43). 

Figure 3.58 shows a significant relationship between carbon sequestration in biometric and modelled data. 

The R-square was 0.87, and the RMS error was 0.8 Mg/ha. Moreover, this relationship had an intercept and 

slope which of 1.7956 and 0.7526x, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.44 Relationship between biometric and modelled of carbon sequestration 
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4. DISCUSSION 

4.1 Uncertainties of fieldwork data measurement 

The non-destructive method becomes popular in forest inventory by a combination of earth observation 

and ground truth data rather than the destructive method by directly cutting and weighing the dry mass of 

the trees. Earth observation offers a variety of data to derive specific information related to forest inventory, 

such as using UAV, Lidar, Radar etc. While ground truth data is pivotal to access the accuracy of earth 

observation data. Fieldwork to retrieved data of forest structure in the field easy and fast and low-cost. 

However, it must consider some aspect, for instance, accessibility, security, data accuracy and the most 

important issue is data of the sample plot. Otherwise, the data does not represent the correct population. 

Fieldwork data which contains the measurement of DBH, tree height measured or derived from diameter 

tape, Leica Disto D510 laser ranger, and tree height derived TLS RIEGL VZ 400 was right-skewed. The 

positive tail distribution or called right-skewed has a majority of large value in the left side (head) and a 

majority of small value in the right side (tail), generally is presented by a power low, a lognormal or an 

exponential function (Jiang, 2013). The fieldwork measurement presented positively skewed due to the 

restriction of DBH measurement. Tree with diameter = or >10 cm was measured since the data of trees < 

10 cm DBH will not have a significant contribution to the biomass/carbon stock assessment of one sample 

plot (Brown, 2002). Otherwise, it gives a small portion to calculate biomass and difficult to identify its 

canopy cover in very height resolution image. Stem diameter of trees around 10cm also have relatively low 

height; this reason indicates that in tree height measurement using Leica Disto D510 laser ranger and TLS 

RIEGL VZ 400 also had the same distribution pattern (right-skewed) as DBH measurement.  

Figure 3.3, Figure 3.5 and Figure 3.7 show that the histograms are asymmetrical between head in left side 

and tail in the right side. It means that the majority of 873 trees have a large percentage of small DBH and 

low altitude of tree height. However, in the normal distribution, data should be bell-shaped and has two tail. 

To deal with this issue, Doanne & Seward (2011), suggest taking into account the effect of binning and the 

role of sample size, while Jiang & Liu (2013), suggest dividing the mean of the value into two part, namely 

a high proportion in the tail and low percentage in the head. However, since we have collected the data from 

10cm DBH and above because the insignificant contribution of small trees (Brown 2002), it is OK to have 

such a skewed distribution. Moreover, most of the trees in the area were planted 17-18 years ago. Therefore, 

such skewed distributions of the data are understandable.       

Regarding sample size, purposive sampling using radii 12.62m of circular shape plot was chosen in this 

research due to the challenging working in the mangrove forest. The selection of sampling design, sampling 

frame and plot configuration must have been taken into account to select an appropriate design since 

statistics theory emphasize that accurate representation of the population would lead to accurate results in 

estimating AGB (Mcroberts et al., 1992).  

Fieldwork measurement to retrieved DBH and tree height also produce an error. The result shows that tree 

height measured with Leica Disto D510 laser ranger was underestimated compared to tree height derived 

from TLS RIEGL VZ 400-point cloud. The average difference between tree height derived Leica Disto 

D510 laser ranger and tree height derived TLS RIEGL VZ was 1.1m, which shows a difference in the tree 

height measurement of, e.g., 13.3m and 14.4m respectively. The accuracy of tree height measurement also 

depends on the structure of the forest, tree height, terrain and topography, tree species, distance from the 

measurement trees, tree lean, instrument error and human error (Stereńczak et al., 2018). While measuring 

DBH in the mangroves, it has to take into account tree species, the structure of the tree, tree tilt and distance 

to measure diameter steam above the ground floor. For instance, measuring Rhizophora is more challenging 

than other mangroves, since Rhizophora has unique structure aerial root. Error measuring DBH affects 

calculate stem volume or estimate biomass/carbon stock. 
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Some research has been studied using TLS to measure DBH and tree height. The result shows that there 

was a significant relationship between measuring DBH derived TLS and direct measurement in the field 

with more than 0.98 of R-square (Heinzel & Huber, 2017; Bazezew, 2017). Moreover, Ghebremichael 

(2015), compared tree height derived TLS and tree height derived airborne Lidar, and the result shows the 

R² was 0.87. Sadadi, (2016), showed the better result of R² in the amount of 0.91 between tree height derive 

from TLS and tree height derive from Lidar data. This indicates that TLS has a promising application for 

forest inventory to obtain high accuracy for assessing tree height than using handheld Leica Disto D510 

laser ranger.  

Therefore, in this research TLS derived height was used as the ground truth to assess the accuracy of CHM 

UAV data. In the tropical inland forest, TLS may show some error in assessing trees height this is because 

lower canopy trees would block the laser beam from reaching the top of the upper canopy trees. However, 

in this research, the density of the mangrove trees was not high. Moreover, the structure of upper and lower 

canopy trees did not exist in these mangrove trees. Consequently, there was no problem for the laser beam 

of the TLS to reach the top of all trees of mangrove forest in this research (Bazezew, 2017). Therefore, TLS 

has assessed trees height accurately and it was used as the ground truth to assess the UAV CHM trees height.    

4.2 Quality of point cloud and orthophoto of UAV 

UAV data has several advantages such as very high spatial resolution, cost-effectiveness, reliable data quality, 

multi-temporal and the potential applications for forest inventory and management. The acquisition of UAV 

data in the field which comprised flight planning and set up of the devices which can take no more than an 

hour. While the flight which captured several hectares in our study area took less than 30 minutes. 

Otero et al., (2018) has explained that, in the mangroves area, UAV can facilitate data collection to reach 

remote area due to difficulties to access, the drone can be launched from land or a boat. Moreover, UAV 

can improve forest monitoring by a combination of multi-temporal data acquisition and ground 

measurement. UAV does not disturb flora and fauna in the study area, as well as provides a historical record 

and unique insight related to near real-time reporting and validation of spatial changes and process in the 

forest area. 

However, achieving the reliable quality of UAV image depends on flight height, flight pattern, overlap image, 

image rectification and point cloud. Effiom, (2018) examined the effect of flight height above the canopy 

on the calibration of the image which showed that flight height 60 m above ground level (AGL) gave 2.5 

cm spatial resolution (GCD) with RMS error of geo-referencing in the amount of 1.4 cm and 81% images 

were calibrated. While increasing or using double flight height around 120 m, AGL had GCD image 

resolution, RMS error of geo-referencing and image calibration, namely 4.9 cm, and 100%, respectively. 

This research also had the same result, when having two different flight height, which was 165 m AGL of 

UAV 2018 and 372 m AGL of UAV 2017. UAV 2018 which acquired images from 165 m above ground 

level gave batter vision with GCD of 6.21 cm, while UAV 2017 obtained 9.29 cm of GCD. The RMS error 

of geo-referencing of UAV 2018 and 2017 was 4.7 cm and 30.2cm. Both data were 100% calibrated. Higher 

GCD of UAV othomosaic 2018 gave better vision to interpret the structure of trees, especially canopy 

cover. However, it is also influenced by the movement of the canopy due to wind condition since our 

mangrove area of Tani Baru is considered as seafront area. In some parts, the canopy cover of trees was 

blurred so that it was painful and more challenging to interpret and to delineate canopy cover using manual 

on-screen digitising. Take a close up look at Figure 2.9 and see the difference between the sharpness of the 

images of 2018 and 2017 and the effect of delineating CPA of trees. 

Dandois et al., (2015) did research related to the effect of optimal altitude, overlap and weather condition 

of UAV to estimate forest structure using SfM.  Percentage of the overlap of the images, especially forward 

overlap is essential to minimising canopy height error and spatial resolution of UAV. 
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The result of this research show that UAV 2018 had forward, and side overlap was 80% and 70%, while 

UAV 2017 had 70% of forwarding overlap and 60% side overlap. Figure 4.1 shows a comparison of the 

UAV 2018, which had a higher number of the overlapping image than UAV 2017 since the forward and 

side overlap of UAV 2018 was higher than UAV 2017. There were small red and the yellow area which 

represents low overlap in the UAV images of 2018. While UAV images of 2017 had a large red and yellow 

area. Yellow and red area affect the generation of the three-dimensional point cloud, othomosaic, digital 

surface model and digital terrain model. 

Figure 4.1 Number of overlapping images in UAV 2017 and UAV 2018. 

 

The number of overlapping images computed for each pixel of the orthomosaic. Red and yellow areas 

indicate low overlap for which poor results may be generated. Green areas indicate an overlap of over five 

images for every pixel. 

According to the density of three-dimensional point cloud, UAV 2018 is better than UAV 2017 in the 

amount of 30.29 m³ and 29.63 m³. Point cloud density is also affected by flight height and image overlap. 

DSM and DTM derived from the point cloud, while the canopy height model is relative position between 

the digital surface model and digital terrain model which depends on the density of point cloud. The RMS 

error of Z-axis of 2018 was less than in 2017. Therefore, the quality of DSM and DTM were better than 

UAV 2017. 

Otero et al., (2018) have suggested that when acquired UAV images, the time and tidal position must 

consider, which have their effects when generating othomosaic and CHM. This study does not take into 

account tidal circulation, and the othomosaic revealed that UAV 2017 collected on 25 October 2017 at 3:35 

PM when the tide was low. Meanwhile, the UAV 2018 took on 18 December 2018 at 6:58 AM in inundated 

time of tide. This issue also affects generating CHM, while some part on orthomosaic was difficult to 

interpret and delineate since canopy cover was near to water body. 

The time leg between retrieving image data and biometric trees properties in the field is as an exogenic factor 

that might have an influence on data quality as a result of ground truth in the interval of the time lag, while 

topography, off-nadir viewing and illumination angle make the visibility of crown size in the image different 

than the real tree size (Song et al., 2010). Therefore, planning a fieldwork data collection and UAV image 

acquisition can be challenging. Initially, UAV 2018 image acquisition did on 14 October 2018 and 13 to 24 
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October 2018, respectively. Nevertheless, the quality of the acquired UAV images was not reasonable. Then, 

a second flight campaign of UAV image collection of 2018 was taken on 18 December 2018.  The time led 

between 2 months of data collection might have some effects on the data, particularly canopy cover and 

tree height since mangroves are in a tropical region where the growth is continuing 365 days a year. 

To do this research two data sets of two years must be available. The data collected by University of 

Mulawarman in 2017 for the benefit of PERTAMINA Oil Company of Indonesia was used in this research. 

Without this data set of 2017, it would be impossible to do this work. The researcher had no other choice 

but to use this available UAV data set of 2017.  Therefore, we had to use this data set and accept its quality.  

4.3 Estimated DBH using the crown diameter 

Trees canopy, which usually represents by crown projection area or crown diameter on a 2D remotely sensed 

data, is an important part of canopy structure of the trees which has a strong correlation to other tree 

parameters such as DBH, tree height and biomass/carbon stock (Song et al., 2010). Unlike stem diameter, 

which can be easily measured in the field, tree crown measurement is more difficult and challenging. In the 

field, the crown diameter is measured in two orthogonal/perpendicular direction (Figure 1.4), while the 

mean of the two measurements is taken as crown diameter. In addition, it also relatively subjective and 

influenced by a human error in assessing the edges of the canopy while measuring the crown diameter in 

the field. Dealing with this situation, this research used the crown projection area to derive crown diameter 

for individual trees by manual on-screen digitization crown canopy on othomosaic UAV image. In this 

research, we did not use the CPA or the size of the canopy to model DBH. We have used crown diameter 

to model DBH. The results of the use of the modelled DBH from CD in the allometric equation to estimate 

biomass/carbon stock show higher accuracy of AGB estimation than using the modelled DBH from CPA.    

The relationship between DBH and CD shows a strong correlation between DBH and CD of 2018 and 

2017, in the range of 0.80 and 0.81 of R², respectively. Some research also examines the relationship between 

crown diameter and other tree structure, such as tree height dry weight and biomass, while other research 

also uses crown diameter as a proxy of DBH using remote sensing data(Hemery et al., 2005; Fu & Wu, 2011; 

Song et al., 2010; Popescu et al., 2003; Suhardiman et al., 2016; Domiciano et al., 2016). Those researches 

also stated that there is a significant relationship between crown diameter and other tree parameters. Figure 

4.2 shows in A, the R² of the relationship between DBH and CD is 0.92, while in B, there is a strong 

relationship between crown diameter and height to assess aboveground biomass in three different mangrove 

species, namely Aigecerass corniculatum, Avicennia marina and Kandelia candel (Figure 4.2) 

Crown diameter has a significant relationship to predict aboveground biomass which is very suitable for 

multi-stem trees of mangroves and could be applied to those mangroves between muti stem and a single 

stem of mangrove (Fu & Wu, 2011). Based on the results of Fu & Wu, (2011), this method was applied to 

predict the DBH model using the relationship between crown diameter and DBH. The result shows that in 

modelled DBH 2018 the R² was 0.80 while RME error was 1.46 cm. Furthermore, the R² and RMS error of 

modelled or predicted DBH were 0.81 and 1.4 cm, respectively. The modelled DBH is also validated, and 

the result shows that RMS error was 2.50 cm for 2018 and 2.47 for 2017. 

Based on the linear model of predicted DBH 2018 and 2017, some DBH models was underestimated, and 

others were overestimated. The modelled DBH had an equation to predict DBH in 2018 and 2017 and 

fitted line related to the relationship between crown diameter and diameter breast height. The data which is 

located above the best-fitted line would be underestimated of DBH, whereas overestimate DBH means the 

data situated under fitted line. In a few cases, predicted DBH 2017 were larger than predicted DBH 2017 

since the crown diameter 2018 has nearly the same as crown diameter 2017. When applying that equation 

to predict DBH, the result shows that predicted DBH 2017 is larger than 2018. 
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(Modified from Hemery et al., 2005; Fu & Wu, 2011) 

4.4 Estimated tree heigh using CHM  

Three hundred one trees were used to perform the regression analysis between trees height measured or 

derived from the TLS point cloud and the UAV CHM. This was done before using the CHM as an input 

for modelling AGB with the modelled DBH from the crown diameter.  The average of trees height derived 

from TLS in 2018 was higher than tree height derived from CHM UAV 2018, in the amount of 13.7 m and 

13.4 m. The R2 of the TLS height and UAV CHM of 2018 and 2017 were 0.85 and 0.81 respectively. While 

the RMSE of the TLS height and UAV CHM of 2018 and 2017 were 0.5 m  and  0.9 m respectively. Tree 

heights derived from TLS in 2017 has an average and standard deviation of 13.2 m and 2.3 respectively. 

Whilst the average and standard deviation of tree heights derived CHM 2017 were 11.9 m and 2.3.  

Panagiotidis et al., (2017) did their research to determine tree height and crown diameter using high-

resolution UAV image of two different areas of broadleaves forest in the Czech Republic. In plot 1, the 

mean of tree height field measurement was 24.2 m, while estimated height using CHM was 22.3. In plot 2, 

the mean of trees height filed measurement was 27 m and the mean of tree height derived CHM 29.4 m.  

Otero et al., 2018 have done their research on deriving trees height from UAV CHM in protective 

mangroves and productive mangrove in Matang Mangrove Forest Reserve in Peninsula Malaysia. There was 

a slight difference between the average tree height derived from CHM compared to field measurements in 

the productive zone in the amount of 14 m and 13.7 m respectively. Whereas in the protective zone, the 

average tree height derived from CHM was 15.5 m, and the average tree height of fieldwork measurements 

was 14.2 m. There was a similarity of the average of trees height of mangrove forest in the area of Matang 

Mangrove Forest Reserve in Peninsula Malaysia and our Mahakam Delta Indonesia in 2018.  This research 

showed the difference between the average of trees height of 2018 from CHM is 13.4 m and TLS is 13.7 m. 

While in  2017 the average of trees height of CHM was 11.9 m and the TLS was 13.2 m. Thee results show 

that 2017 had high differences between CHM trees height and TLS backward prediction trees height. This 

means that there are errors in the CHM of 2017.  

The biometric differences between the trees height using TLS in 2018 and the backward calculation of the 

height of the tree in 2017 should be somewhere between 0.34-0.55 m. However, the difference between 

CHM 2018 and CHM 2017 estimated trees height show a difference in a range from  11.9 m to 13.2 m.  

This difference is, of course, can be justified for many reasons. The first is that we did not measure the TLS 

Figure 4.2 Relationship between crown DBH and CD (A), relationship between CD and biomass (B). 
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height in the field in 2017. We estimated according to the growth of different mangrove trees species in the 

study area according to Saenger & Siddiqi (1993) and Srivastava et al., (1988). However, these numbers are 

on average base and in some other specific areas. According to the local people, the growth in our areas is 

much higher than what these literature are showing. An example of the images of 2017 and 2018 that 

depicting the difference in the growth of mangrove trees is shown in Figure 4.3.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, the differences can be because of other imaging parameters of the two imaging campaigns of 

2017 and 2018.  The error can be rooted in flight height, overlap percentage of the sequential images, point 

cloud density, and geo-referencing. The flight height of UAV 2017 was double than flight height of UAV 

2018. While forward and side overlap of UAV 2017 was 70% and 60% compared to 80% and 70% of 

forwarding overlap and side overlap of 2018.  

The number is an overlapping image of more than five images in 2018 also greater than UAV 2017 (Figure 

4.1). The density of the 3D point cloud also influences DSM and DTM, which were the source to generate 

CHM. The density of UAV 2018 point cloud was also higher than in UAV 2017. Moreover, the RMS error 

of geo-referencing UAV 2017 was also higher than in 2018. Regarding RMS error in Z-axis, UAV 2017 had 

0.222 m compared 0.029 m of RMS error Z-axis of UAV 2018. 

This research does not consider the annual tide circumstances which might affect CHM. UAV 2017 images 

which were acquired at 3:35 PM on 25 October 2017 with lower water level (LWS), whereas UAV 2018 

Figure 4.3 A comparison of the growth of mangrove trees in approximately one-year (A) 2017 and (B) 2018. 
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images which were captured at 6:58 AM on18 December 2018 which might be the inundated time of the 

daily tide. 

The results illustrate the real phenomena in the study area. This mangrove area comprises of remnants of 

natural and planted mangroves. Before 1990, the study area was marginal land of mangrove forest, which 

converted into shrimp pond during 1990 – 2000. The fishermen still preserved some mangrove inside the 

area for shrimp ponds. Then, after the year 2000, the national oil and gas company (PT. PERTAMINA) has 

replanted the degraded mangroves with native mangrove species to show their efforts to improve the 

environment since they are extracting oil from this area. 

4.4.1  Mangrove Blue carbon sedimentation affecting the assessment of DTM 

Mangrove sequestering carbon known as blue carbon. A lot of the blue carbon is sequestered by below-

ground biomass. Because of the tidal activities and inundation, high tide water always brings sediments from 

rivers, waterways, deltas water and the sea to deposit the soil on top of the mangrove roots, aerial roots and 

Pneumatophores. This sedimentation process can bring 20 to 29 mm annually (Woodroffe et al., 2016) to 

be deposit soil on to on the mangrove ground. This extra sedimentation or soil deposit of approximately 2 

cm annually would rias the mangrove floor, and the digital terrain model would increase (Figure 4.5).  

During the process of SfM to produce the mosaic of UAV images DSM, DTM and consequently the CHM 

would be generated. Basically, the CHM is the height of the trees. Therefore, this soil deposit or 

sedimentation would have a significant effect on DTM and thus on the assessment of CHM. Since the time 

difference between the imaging campaign of 2017 and 2018 is about 14 months. It is believed that this soil 

deposit or sedimentation can have an effect on assessing CHM and might have affected the trees height 

assessment.     

4.5 AGB/Carbon stock estimation 

The average aboveground biomass model in 2018 and 2017 was 112.5Mg/ha and 101.6 Mg/ha while the 

average aboveground biomass biometric (i.e., estimated from measurements in the field or the reference 

ground truth) was 114.1 Mg/ha in 2018 and 104.4 Mg/ha in 2017. This result is nearly similar to Arifanti et 

al., (2019), in which they calculate land-use carbon footprint and carbon dynamic in mangroves-converted 

aquaculture in Mahakam Delta, Indonesia. The dominant mangrove species were Avicennia alba, Bruguiera 

Figure 4.4 Soil deposit and sedimentation on top of the mangrove floor. 
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sexangula, and Rhizophora apiculata which had a diameter in the range 5 – 10 cm. The average aboveground 

biomass of mangroves was 118 Mg/ha. 

Comparison between aboveground biomass biometric and the modelled AGB in 2018 and 2017 show that 

there are variabilities of above ground biomass in both data. Above ground biomass of biometric data is 

higher than the model in plots which have a high amount of biomass, namely plot 5, 17, 13, 26 and 27. It 

happens because the majority of large DBH when predicted by DBH model, were underestimated. It also 

influenced by trees height derived from CHM, since the average of trees height derived CHM is lower than 

the average of trees height derived from TLS.  

An example of high biomass plots is shown in Figure 4.5. This plot shows the biomass of 293 Mg/ha. This 

plot shows big trees in size and high-density mangrove trees. While Plot 22 is was the only plot where the 

difference between the modelled AGB and the biometric AGB is high. The AGB biometric in 2018 and 

2017 were 143 Mg/ha and 130 Mg/ha. While the modelled AGB in 2018 and 2017 were 92.7Mg/ha and 

80.1Mg/ha. We believe that the source of error in assessing the AGB in this plot was because of error in 

the assessment of CPA and height of the trees in this plot both in 2018 and 2017. Although the difference 

between the AGB of two years was reasonable (e.g. 13 and 12 Mg/ha in the biometric and the modelled 

AGB), but still the AGB was not assessed accurately. The plot has 16 Avicennia trees and 14 of Rhizophora 

which show small CPA but the reasonable size of stem. Consequently, the modelling of AGB shows an 

error.   Moreover, the majority of trees AGB in plots 1, 3, 4, 5, 11, 12, 18, 29 were overpredicted because 

trees height derived from CHM were higher than trees height derived from TLS and predicted DBH were 

also overpredicted. 

 

 

 

 

 

 

 

 

 

 

 

 

Error in aboveground biomass estimation can be influenced by many factors such as an inappropriate 

allometric equation, inaccurate measurement of variable, instrument and calibration error (Petrokofsky et 

al., 2012) while this research used a general allometric equation of mangroves, which contains diameter 

breast height, tree height and wood density. 

Moreover, the likely source of errors for collecting ground truth data in the field (i.g. measuring DBH, tree 

height, location and species) to calculate aboveground biomass to are human error and instrument error. As 

a result of the lack of information related to mangrove species, identification of mangroves was classified 

into tree species which did not represent the real specific species of mangroves.  In some case, the recorded 

location of trees using GPS handheld were shifting, since GPS did not receive appropriate signals when 

measuring location due to occlusion of high density canopy cover of mangrove forest. 

Figure 4.5 Plot-5 as an example of high biomass plots that show high-density big trees. 
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4.6 Carbon sequestration estimation 

The average carbon sequestration of the model was 5.5 Mg/ha/year, while the average carbon sequestration 

of biometric was 4.9 Mg/ha/year. There was a difference of approximately 11% between model and 

biometric. This result is close to 4.71 Mg/ha/year of annual increment of carbon sequestration based on 

DBH in Sundarbans, Bangladesh (De et al., 2011). Alongi, 2012 assessed globally the overall carbon 

sequestration which is 13.5 Mg/ha/year of carbon sequestration of mangrove forest, which comprised 

above ground and below ground biomass. Knowing that mangrove forest trees sequester carbon 2-3 times 

of the trees in the tropical in-land forest (Alongi 2002), our modelled carbon sequestration is one-third of 

the total AGB plus belowground biomass. 

Above ground carbon stock is generally calculated as 0.5 the amount of AGB biomass. In the study area, 

carbon sequestration model is higher around 0.6 Mg/ha than carbon sequestration biometric. All of the 

plots except plot 5, the carbon sequestration modelled were higher than the biometric. In plot 5, the majority 

of predicted DBH were underestimated, and there was a small difference between CHM 2018 and CHM 

2017. Therefore, modelled AGB and consequently, carbon shows less carbon sequestration than in the 

biometric data. Carbon sequestration modelled in Plot 7 and eight were more than the biometric data since 

the difference in trees height of CHM 2018 and 2017 were around 1.5 m. The average annual increment of 

tree height in biometric was 43 cm only (Saenger & Siddiqi 1993; Srivastava et al., 1988). Therefore, in those 

plots, tree height shows it affects three to four times in the allometric equation. Consequently, the modelled 

biomass and carbon stock were higher than the biometric data. 

The advantages of UAV to capture a consecutive overlapping image with fine resolution has the opportunity 

to retrieve the structure of an object in single-level. UAV can use regularly capture the same area to monitor 

forest system. This is evidence that UAV can be employed to estimate biomass/carbon stock and carbon 

sequestration in the mangrove forest. 

This research work was done in response to the call of the REDD+ MRV program for new applications of 

remotely sensed data to assess biomass/ carbon stock and carbon sequestration. The world needs new 

methods and techniques using remotely sensed data to be presented as an example for a practical, less 

expensive, reasonably accurate and operational methods to assess carbon sequestration in tropical in-land 

forests and mangrove forests.  Looking at the previous and current literatures, there is no literature on the 

use of UAV data to assess AGB/carbon stock and carbon sequestration. We believe that this research work 

is a reasonable, innovative example of the applications of multitemporal UAV images and SfM to assess 

AGB/ carbon stock and carbon sequestration.   

4.7 Limitation 

The limitations of this research are: 

1. Trees which had DBH equal and greater (=>) than 10 cm were measured in the field. 

2. The lack of information related to species of mangroves had an effect to identify the correct species. 

3. Purposive sampling plot might not represent the real mangrove forest of the study area. 

4. Backward prediction of biometric 2017 might not represent the real annual growth rate of specific trees 

in specific ages. 

5. Wood density using literature review might not be accurate. 

6. UAV image acquisition did not consider optimum flight height, image overlap, flight speed, weather, 

wind speed, tide cycles, sun-angle, and illumination. 

7. GCP did not well distributed in the whole area due to the accessibility and difficulties to find open area 

when measuring GCP using GNSS RTK in the field. 

8. Crown diameter derived CPA using manual on-screen digitation might be influenced by the human 

error, and this way to retrieve crown diameter might not represent a real condition in the field. 

9. The general allometric equation for mangrove might not be sufficient to calculate specific mangrove. 
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5. CONCLUSION 

The study used UAV (Unmanned Aerial Vehicle) images of two different years December 2018 and October 

2017 to estimate aboveground biomass/carbon stock and carbon sequestration in mangrove forest, 

Mahakam Delta, Indonesia. The conclusion was made based on the research questions and objectives. 

Research question 1. 

What is the relationship between crown diameter derived from CPA of UAV images and DBH of ground truth data? 

There was a significant relationship between crown diameter derived from CPA of UAV images and DBH 

of ground truth data in 2018 and 2017. The R² and RMS error of 2018 were 0.80 and 1.5 cm, while in 2017 

the R² was 0.81 and the RMS error was 1.4 cm. Therefore, Ho is rejected since there is a significant 

relationship between crown diameter derived from CPA of UAV image and DBH ground truth data.   

Research question 2. 

What is the relationship between trees height derived from CHM of UAV images and trees height derived from TLS point 

clouds data? 

There was a significant relationship between trees height derived from CHM of UAV images and tree height 

derived from TLS point cloud data both in 2018 and 2017. The relationship between trees height derived 

from CHM of UAV images and trees height derived from TLS in 2018 shows an R² and RMS error of 0.85 

and 0.5 m respectively. Whereas, the relationship between trees height derived from CHM of UAV images 

and trees height derived from TLS in 2017 showed an R² of 0.81 and RMS error of 0.9 m. Therefore, Ho is 

rejected since there is a strong relationship between trees height derived from CHM of UAV image and 

trees height driven from TLS.  

Research question 3. 

What are AGB/carbon stock modelled from UAV images in 2017 and 2018 in the study area and how accurate are these 

results compared to the biometric data?  

The average AGB/carbon stock modelled from UAV images in 2017 and 2018 were 101 Mg/ha and 112 

Mg/ha, while the average of AGB/carbon stock of the biometric data (ground truth) was 104 Mg/ha and 

114 Mg/ha in 2017 and 2018 respectively. There was a significant relationship between AGB/carbon stock 

modelled from UAV images and biometric data in 2017 and 2018. The relationship between AGB/carbon 

stock modelled from UAV images and biometric data in 2017 was significant with an R² of 0.93 and an 

RMS error of 15 Mg/ha. While in 2018, the R² and RMS error of the significant relationship AGB/carbon 

stock between modelled from UAV images and biometric data were 0.93 and 15 Mg/ha. Therefore, Ho is 

rejected since there is a significant relationship between the AGB/carbon stock modelled from UAV images 

of 2017 and 2018 and the biometric data of the two years.   

Research question 4. 

What is the carbon sequestration modelled from UAV images of the years 2017 and 2018 and how accurate is it? 

Carbon sequestration modelled from UAV images of 2017 and 2018 was 6 Mg/ha/year compared to 5 

Mg/ha/year of the biometric carbon sequestration of the years 2017 and 2018. There was a significant 

relationship between carbon sequestration modelled from UAV images of the years 2017 and 2018 and 

carbon sequestration of the biometric data which showed an of R² and RMS error of 0.87 and 1 Mg/ha/year, 

respectively. Therefore, Ho is rejected since there is a significant relationship between carbon sequestration 

modelled from UAV images of the years 2017 and 2018 and carbon sequestration of the biometric data of 

2017 and 2018.    
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APPENDICES 

Appendix 1: Table sheet of fieldwork data collection 
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Appendix 2: Ground control points (GCPs) 
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Appendix 3: Sample plots location 
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Appendix 4: Boxplot of the result 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Boxplot of biometric DBH distribution of all 30 plots collected in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Boxplot of biometric trees height measured in the field using Leica DISTO D510 laser Ranger. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Boxplot of trees height derived from TLS point clouds data. 
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Figure 4 Boxplot of DBH of 2017 calculated using backward prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Boxplot of TLS trees height in 2017 calculated using backward prediction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Boxplot of the crown projection area in 2018. 
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Figure 7 Boxplot of the trees crown projection area in 2017. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Boxplot of crown diameter of trees in 2018. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Boxplot of trees crown diameter in 2017. 
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Figure 10 Boxplot of CHM 2018. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Boxplot of CHM 2018. 
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Appendix 5: Aboveground biomass per plot 

 

Plot 
AGB Biometric (Mg/ha) AGB Model (Mg/ha) 

2018 2017 Sequestration 2018 2017 Sequestration 

1 55.6 49.4 6.2 72.6 65.4 7.2 

2 138.0 125.9 12.1 147.3 134.5 12.8 

3 75.2 66.5 8.7 96.6 87.0 9.6 

4 157.0 146.3 10.7 174.3 162.4 11.9 

5 293.3 273.9 19.4 274.4 258.7 15.7 

6 102.8 94.9 7.9 109.5 99.7 9.7 

7 108.4 97.5 10.9 108.0 94.9 13.1 

8 77.8 68.9 8.8 72.8 60.4 12.4 

9 72.3 63.6 8.7 80.6 70.9 9.7 

10 69.0 60.5 8.5 80.5 71.0 9.5 

11 66.9 59.5 7.4 82.4 74.3 8.1 

12 33.2 28.5 4.7 48.5 42.2 6.3 

13 87.5 77.7 9.8 83.5 72.3 11.2 

14 117.2 106.8 10.3 106.3 94.4 11.9 

15 80.3 72.8 7.5 80.3 70.8 9.4 

16 94.0 85.3 8.7 87.0 76.7 10.2 

17 201.4 189.1 12.3 180.9 168.3 12.5 

18 40.1 36.1 4.0 53.7 48.6 5.1 

19 93.7 84.7 9.0 88.1 77.6 10.5 

20 101.1 92.6 8.5 92.0 81.5 10.6 

21 102.0 93.3 8.7 104.0 92.9 11.1 

22 143.2 130.7 12.5 92.7 80.1 12.6 

23 208.0 193.4 14.6 192.1 177.1 15.0 

24 112.6 103.0 9.6 104.0 92.9 11.1 

25 107.9 100.0 7.9 96.9 87.4 9.5 

26 190.1 178.2 11.9 170.4 156.8 13.6 

27 215.8 201.2 14.7 195.0 180.0 15.0 

28 73.9 65.5 8.4 74.6 64.8 9.8 

29 72.8 64.5 8.3 87.2 77.7 9.5 

30 131.6 120.6 11.0 138.6 125.9 12.6 
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Appendix 6: Carbon stock per plot 

 

Plot 
AGB Biometric (Mg/ha) AGB Model (Mg/ha) 

2018 2017 Sequestration 2018 2017 Sequestration 

1 27.8 24.7 3.1 36.3 32.7 3.6 

2 69.0 62.9 6.1 73.6 67.2 6.4 

3 37.6 33.3 4.4 48.3 43.5 4.8 

4 78.5 73.2 5.4 87.1 81.2 5.9 

5 146.6 137.0 9.7 137.2 129.3 7.8 

6 51.4 47.5 4.0 54.7 49.9 4.9 

7 54.2 48.8 5.4 54.0 47.4 6.6 

8 38.9 34.5 4.4 36.4 30.2 6.2 

9 36.1 31.8 4.4 40.3 35.4 4.8 

10 34.5 30.2 4.3 40.2 35.5 4.7 

11 33.5 29.8 3.7 41.2 37.2 4.0 

12 16.6 14.3 2.3 24.3 21.1 3.1 

13 43.8 38.8 4.9 41.8 36.2 5.6 

14 58.6 53.4 5.2 53.2 47.2 5.9 

15 40.2 36.4 3.7 40.1 35.4 4.7 

16 47.0 42.7 4.3 43.5 38.4 5.1 

17 100.7 94.5 6.2 90.4 84.2 6.3 

18 20.0 18.1 2.0 26.9 24.3 2.6 

19 46.8 42.3 4.5 44.0 38.8 5.2 

20 50.5 46.3 4.3 46.0 40.7 5.3 

21 51.0 46.7 4.3 52.0 46.5 5.5 

22 71.6 65.4 6.2 46.4 40.1 6.3 

23 104.0 96.7 7.3 96.1 88.6 7.5 

24 56.3 51.5 4.8 52.0 46.5 5.5 

25 54.0 50.0 3.9 48.4 43.7 4.8 

26 95.1 89.1 6.0 85.2 78.4 6.8 

27 107.9 100.6 7.3 97.5 90.0 7.5 

28 37.0 32.8 4.2 37.3 32.4 4.9 

29 36.4 32.3 4.1 43.6 38.8 4.8 

30 65.8 60.3 5.5 69.3 63.0 6.3 

 




