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ABSTRACT 

Crop production is crucial information for food security analysis. Crop production is defined as a product 

of crop area (CA) and yield. Therefore, crop area should be estimated accurately to obtain reliable crop 

production information. Agricultural census contains accurate information about CA but it is costly, and it 

lacks appropriate temporal and spatial information for reliable frequent crop area estimate. Hyper-temporal 

remote sensing can capture the general agro-climatic conditions but it is too coarse spatially to capture 

variability in CA over fragmented landscapes. High-resolution remote sensing can capture the variability of 

CA but it can not capture the climatic conditions due to its low temporal resolution and subsequently fewer 

images may be available (i.e. because of persistent cloud cover during crop growing seasons). SPOT-VGT 

NDVI series (1999-2017) was used to identify agro-ecological zones through ISO-DATA unsupervised 

classification. Then these zones were integrated with reported crop area statistics through stepwise linear 

regression to produce coarse field fractions (1km-resolution). Landsat-8 images (2013-2017) were used to 

extract moderate resolution (30m) long-term average dry and wet seasons NDVI per each agroecological 

zone. Dry and wet seasons NDVI, elevation, slope, and 1km field fractions were incorporated in a 

generalised additive model (GAM). Through the Google Earth platform, 271 frames (30mx30m) were 

visually interpreted to estimate field fractions of these frames for model calibration and validation. The 

overall deviance explained by the model was 62%. The 1km field fraction was found to be the most 

important predictor in our model as it explained 24% of the deviance. As many researchers focus on wet 

season NDVI, our results showed that the dry season NDVI was the second important predictor and 

explained 16% of model deviance. Elevation added more explanatory power to the model (i.e. explained 

15% of the deviance). The field fractions predictions (30m-resolution) produced by our final global model 

explained 77% of the variation in 81 actual fractions observations. To demonstrate the capabilities of the 

developed global GAM (i.e. over whole Oromia region), a localised GAM was developed within one 

agroecological zone and then the global GAM and local GAM were evaluated with an independent test set. 

The global model performed closely to the local model.  These results supports that hyper-temporal remote 

sensing can be effective in addressing the climatological differences regarding CA estimation. The method 

can be applied by governments and researchers for further studies and to aid in decision making regarding 

cropping and food security policies. Future work should consider involving additional predictors to the 

GAM such as: socio-economic variables, other vegetation indices, and radar images. 
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1. INTRODUCTION 

1.1. Background and motivation  

Food security is one of the major concerns in the future due to global population growth and climate change 

(Misra, 2014). Agriculture is a main source of food and income particularly in Ethiopia. The contribution of 

agriculture to the gross domestic product (GDP) in Ethiopia was 37.23% in 2016 (The World Bank, 2018). 

Agriculture is considered as the largest economic sector in Ethiopia, where approximately 12 million 

smallholder farming households represent 95% of the agricultural production and 85% of the employment 

(FAO, 2018). 

The policy makers in Ethiopia need to formulate policies and take decisions to secure food and reduce 

poverty levels. Reliable production estimations help in the determination of the food deficit over a certain 

area and thus guide further steps to analyse the causes and to develop effective responses (Li, Liang, Wang, 

& Qin, 2007). 

The definition of cropland in this study follows the definition of arable land by FAO (2011). It represents 

land under temporary crops, meadows, and land temporarily fallow (less than five years). Crop production 

for a given field or another geographic unit is defined as the product of the crop area (CA) and crop yield 

(Husak et al., 2008; See et al., 2015). Crop area (i.e. harvested area) is therefore an essential input to food 

security analysis (Debats, Luo, Estes, Fuchs, & Caylor, 2016; See et al., 2015) in addition to early warning 

systems for instance FAO Global Information and Early Warning System (GIEWS) (FAO, 2018).  

In Ethiopia, the agricultural fields are small and heterogeneous and moreover the landscape characterised 

to be complex, fragmented (Eggen, Ozdogan, Zaitchik, & Simane, 2016). Therefore, innovative 

technologies are required for locating and mapping the fields (Jin, Azzari, Burke, Aston, & Lobell, 2017). 

Due to the inadequate agricultural statistics and reports; accurate and timely information is essential for 

agricultural field mapping (Carletto, Jolliffe, & Raka, 2013; Li et al., 2007). 

The traditional methods for CA estimation that governments rely on include census through ground surveys. 

Although the census data has its importance as a source of information for CA estimation and food security 

analysis (Frolking et al., 2002), but it is too generalized (i.e. administrative level) and due to the cost and 

labour-intensive requirements; census takes place every five or ten years which makes it an inefficient 

method. The World Bank (2011) reported that developing countries face challenges to collect and report 

agricultural statistics that are sufficient for agricultural monitoring. They mentioned among other reasons: 

financial limits, lack of labour and inadequate statistical methodologies. To lower the cost of exhaustive field 

surveys, the area frame sampling (AFS) method was applied. In AFS, samples of information about 

agricultural fields collected on different scales; those samples can be collected through field surveys, farmers 

interviews, very high-resolution imagery and aerial photographs and then generalised over the required area 

(Husak & Grace, 2016). All the sources of information in the AFS method shared common challenges; they 

are very also costly, time-consuming and labour-intensive. Moreover, in most of the cases, the samples are 

too few to be generalised over large areas (Marshall et al., 2011). 

Given the mentioned challenges regarding traditional methods, remote sensing has proven to be effective 

for land cover mapping generally and agricultural mapping particularly. Remote sensing provides large 

coverage, spatially detailed and continuous information on surface conditions through time. The ‘large 

coverage’ minimises the cost efficiently compared to other traditional methods, the ‘spatially detailed’ 

information allows for critical spatial analysis for CA, and finally the ‘continuous information’ facilitate 

studying the dynamics of the landscape and related factors. Remote sensing is needed most in the developing 

countries with limited financial resources because it is very difficult to develop a regional or national 
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monitoring program for agricultural studies since such programs require wide geographic coverage and 

repetitive information (Wardlow, Egbert, & Kastens, 2007). Remote sensing has been integrated with 

agricultural statistics for CA estimation in several ways. Remote sensing images have been used for designing 

sampling schemes for field surveys (Carfagna & Gallego, 2005). Some researchers integrated remote sensing 

data with agricultural statistics through regression models to estimate spatially explicit CA at coarse 

resolution (de Bie et al., 2008; Khan et al., 2010). 

Many image classification methods have been used to detect the agricultural fields boundaries and CA 

estimating using satellite images (for an overview on methods see Ozdogan, Yang, Allez, & Cervantes, 2010; 

Xie, Sha, & Yu, 2008). Examples include: sub-pixel approaches (Verbeiren, Eerens, Piccard, Bauwens, & 

Van Orshoven, 2008), maximum likelihood technique (Martinez-Beltran & Calera-Belmonte, 2001), K-

nearest neighbour classifier (Seetha, Sunitha, & Devi, 2012), fuzzy classification (Murmu & Biswas, 2015), 

and machine learning methods such as support vector machines (Kuwata & Shibasaki, 2015). Most of the 

image classification methods utilise only the spectral information of the satellite images. However, ancillary 

and spatial information (i.e. contextual information) have been used in many studies to improve the accuracy 

of the crop fields delineation and CA estimation as well (Ruiz, Recio, Fernández-Sarría, & Hermosilla, 2011). 

The CA estimation of small and heterogeneous fields using remote sensing represents a challenge. The 

coarse resolution satellite images are available more frequently and over long time periods which allow 

characterising the long-term trends of climate and landscapes (i.e. agroecological zones) (Tumlisan, 2017; 

Vintrou et al., 2012). However, the coarse resolution suffers from the mix pixel effect (i.e. different land 

cover types within a pixel) (Foody, 2000). In contrast, high-resolution images allow to detect the 

heterogeneity of the landscapes, but this kind of data have less frequent (i.e. longer revisit time) and available 

over short time frames. In other words, hyper-temporal (i.e. coarse resolution) remote sensing brings the 

time dimension. Whereas high-resolution remote sensing usually available in a single date or few multi-date 

images. There is no generally accepted definition for coarse, moderate, and fine resolution, however, for this 

research purposes coarse resolution is defined as greater than 250m, moderate as 30m and fine resolution 

as less than 5m. 

The accurate estimation of locations and areas of agricultural fields depends on understanding the factors 

that affect the spatio-temporal distribution of the fields. The main environmental factors that influence the 

distribution of agricultural fields include terrain and soil properties (Marshall et al., 2011) in addition to 

climate (Iizumi & Ramankutty, 2015). According to FAO (1978), agroecological zones are geographic units 

with similar climatic and soil conditions. In large scale CA estimation, the area under study probably consists 

of different agroecological zones particularly in heterogeneous landscapes in Africa (Hentze, Thonfeld, & 

Menz, 2016; Vintrou et al., 2012).  

In such kind of landscape, the relationships between biophysical variables and CA are complex. Therefore, 

many studies utilised statistical models and remote sensing to capture these complex relationships. 

Generalised additive models (GAMs) were used for CA estimation in fragmented landscapes (Grace, Husak, 

Harrison, Pedreros, & Michaelsen, 2012; Grace, Husak, & Bogle, 2014; Husak et al., 2008; Marshall et al., 

2011). GAMs are practical for such relationships because the relationships in the model are data-driven and 

no prior distribution is assumed (Hastie, Tibshirani, Hastie, & Tibshirani, 2016). 

From remote sensing perspective, estimating the probability of an area being cropped can be transformed 

into CA by handling the probabilities as crop field fractions and hence multiplying the fields extent fractions 

by the produced cell size (Marshall et al., 2011). In the context of this research, the terms ‘fields extent 

fractions’ and ‘crop field probabilities’ will be used interchangeably. 

An improved method that uses a combination of low and medium spatial resolution imagery together with 

sourcing from reliable tabulated databases (e.g. census) can allow to utilise the advantages of both types of 

data and fill the data gaps. Hence, this study aimed at combining different Earth observation data with 

varying spatial and temporal resolution to estimate the fields extent fractions at moderate resolution (30m). 

Also, it used ancillary topographic and agricultural census data to furthe improve the estimation of fields 
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extent fractions. The method developed in this research integrates these multi-spatial and hyper-temporal 

datasets in a generalised additive model (GAM) for estimating field fractions for smallholder farms in a 

fragmented and complex landscape.  

1.2. Crop area and remote sensing methods 

This subsection provides a brief overview of remote sensing techniques used for CA estimation. For each 

category of methods (e.g. manual methods, pixel-based, object-based), a brief description of the category in 

addition to common strengths and drawbacks is provided. Under these categories, the methods and popular 

algorithms are described in addition to examples of previous studies used these algorithms for CA. However, 

some of these studies inherited CA estimate within the context of land cover mapping. 

1.2.1. Manual methods 

The manual method relies on defining crop area based on visual interpretation. These methods used to be 

applied in earlier stages of remote sensing. The methods under this category usually need high-resolution 

imagery to facilitate the process of visual interpretation. The common disadvantages of those methods that 

they are: costly, time-consuming, and biased. 

1.2.1.1. Pixel count: 

In the pixel count method, the number of pixels classified as crop will be multiplied by the pixel size to 

obtain CA. This method requires high-resolution images to be applied since in coarse images the 

classification will be more difficult. In coarse images, the chance of getting mixed pixels is higher and 

therefore the classification accuracy will be lower. The major limitation of the pixel count method is that it 

is subject to the subjectivity of the analyst (Gallego, 2006). The analyst may tune the classification results to 

a desired number of pixels. The reliability of CA estimation using pixel count depends highly on the 

classification accuracy. The bias is approximately the difference between commission and omission errors 

(Carfagna & Gallego, 2005). 

Singh et al. (1993) applied pixel count for Wheat acreage in India. The authors used 10x10km sample sites. 

The authors achieved an accuracy of 90% at 90% confidence level. However, the bias was probably 

underestimated and these results appeared better than what they actually were (Gallego, 2004). 

Fang (1998) found that the spectral mixing issue lowered the accuracy of pixel count method and increased 

the bias. The author obtained higher accuracy for early planted rice (i.e. 90%) while the semi-late rice was 

mixed with residential areas and sparse forests. The accuracy dropped to 81% for semi-late rice. 

1.2.1.2. Area frame sampling: 

Remote sensing with area frame sampling has been utilised at two stages: at the design stage and the 

estimation stage (Carfagna & Gallego, 2005). At the design level, remote sensing is used for stratifying the 

area into different agricultural strata (i.e. approximate agricultural percentage per stratum) through visual 

interpretation (Cotter & Tomczak, 1994) or existing land cover maps (Carfagna & Gallego, 2005). To 

elaborate, remote sensing can be used for multi-stage sampling. Stratification based on photo interpretation 

as a first stage and then concentrate the surveys in agricultural areas. Remote sensing may be used at the 

design level to define the optimum sample allocation through spatial autocorrelation determination (i.e. to 

collect spatially uncorrelated samples and reduce the cost) (Carfagna & Gallego, 2005; Gallego, Feunette, & 

Carfagna, 1999). At estimation level, after collecting the ground samples a statistical relationship is developed 

between the measurements from the sample and the full coverage of remotely sensed imagery (e.g. 

regression) (Alonso & Cuevas, 1993). However, the AFS method needs high spatial resolution data and 

ground surveys to collect those samples which increase the cost significantly. 

Additionally, the efficiency of the method depends highly on the complexity of the landscape. The method 

is less effective in complex landscapes with mixed crops (Carfagna & Gallego, 2005). Whereas in 
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homogenous landscapes with large fields, the method can be considered efficient (Hanuschak, Hale, Craig, 

Mueller, & Hart, 2001). 

Pradhan (2001) used SPOT-XS images in addition to existing land use data to stratify his study area to 

produce an effective sampling scheme for CA estimation. Then the author applied remote sensing as a 

regressor to produce the CA estimate. In spite of the highlighted advantages by the author for using remotely 

sensed data for sampling optimisation, the high cost of the field data collection remained. 

Dong et al. (2017) utilised remote sensing for stratification to exclude non-agricultural areas and a classified 

image for regression. The study was conducted in a complex landscape in China. The authors achieved an 

efficiency factor of 2.5. This means the accuracy that they achieved from their 202 ground segments after 

using classified RapidEye images as a regressor to adjust for bias was equivalent to the accuracy that could 

be obtained using 505 ground segments. No doubt, area frame sampling aided by remote sensing is more 

efficient than ground surveys only, however, still high cost for samples collection remains. 

1.2.1.3. Screen digitisation: 

This method relies on displaying remotely sensed images (sometimes with other auxiliary data such as soil 

maps) and interactively (i.e. manually) delineating the fields (Liu et al., 2005). This method should be applied 

by a good visual interpreter since its accuracy depends on visual interpretation. 

Liu et al. (2005) applied on-screen digitisation for CA estimate in China. Their method was applying manual 

delineation of landcover classes based on visual interpretation of Landsat (TM and ETM). The authors 

utilised other data sources to aid in visual interpretation (e.g. Soil type, DEM, climate, Roads, rivers). They 

were able to achieve 94.9% accuracy for the cropland in classification using ground validation data. The 

authors subtracted the non-agricultural areas -identified using aerial photos- from the agricultural polygons 

delineated. However, the authors indicated that due to the mixed pixel effect, their CA was overestimated 

27.5% compared to the CA after subtracting non-agricultural area within the delineated polygons. 

Crowdsourcing is a new concept that evolved under screen digitising. In crowdsourcing, the information 

about crop area is collected by a network of volunteers (Minet et al., 2017). Many projects have been 

developed for agricultural land cover mapping through crowdsourcing such as: Collect Earth (Bey et al., 

2016), Geo-Wiki (Fritz et al., 2012), DIYlandcover (Estes et al., 2016). In South Africa for example, Estes 

et al. (2016) showed that overall accuracy of 91% for cropland mapping was achieved through 

crowdsourcing. The main advantage of crowdsourcing that too many interpreters (i.e. volunteers) can be 

involved and subsequently large volume of agricultural land use data can be collected in short time (Minet 

et al., 2017). 

See et al. (2013) used crowdsourcing for mapping cropland in Ethiopia. The authors asked users to provide 

a qualitative measure for agricultural abundance (i.e. none, low, medium, high) by interpreting Google Earth 

images through Geo-Wiki platform. The authors interpolated the collected crowdsourced data using inverse 

distance weighted method (IDW) to produce the cropland map for Ethiopia (1km-resolution). The authors 

used 493 validation points (i.e. crop/non-crop) from different sources (e.g. existing land cover maps, 

another independent crowdsourcing dataset) for accuracy assessment. The authors showed that the 

crowdsourced cropland map of Ethiopia had higher accuracy compared to some other existing global land 

cover datasets (i.e. GLC-2000 and GlobCover). The overall accuracy was 89.3%. However, the authors 

indicated errors might be due to the interpretation mistakes by the users and the sampling density (i.e. more 

samples needed for interpolation). 

1.2.2. Pixel-based classification 

Pixel-based classification is utilising the spectral information of individual pixels of remote sensing images 

through classification procedures (Ozdogan et al., 2010). Basically, each pixel will be assigned to a class 

based on the spectral information of that pixel. The spatial context (i.e. surrounding pixels) is not considered 

in such methods. The common advantage of the methods under this category that they are easy to 

implement and more efficient compared to the manual methods. They also utilise the rich spectral 
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information of moderate resolution EO imagery. The most common methods for CA under this category 

are: unsupervised classification, supervised classification, fuzzy classification (Murmu & Biswas, 2015), and 

spectral mixture (Wang & Uchida, 2008). Traditional methods such as supervised and unsupervised 

classification assume that the individual pixels are homogenous (Smith & Fuller, 2001). Therefore, in 

complex and fragmented landscapes, these methods are not expected to perform well due to pixel 

heterogeneity (Murmu & Biswas, 2015; Tran, Julian, & De Beurs, 2014). Another complication for these 

methods that the pixels within a field parcel may exhibit differences in term of spectra (Forkuor, Conrad, 

Thiel, Ullmann, & Zoungrana, 2014). The fuzzy and spectral mixture relax the pixel homogeneity 

assumption. Those two methods were used to address the mixed pixel issue (Lobell & Asner, 2004; 

Musande, Kumar, & Kale, 2012). In these two methods, the fractions of different land cover types are 

determined based on training data. However, pixel-based methods suffer from an issue called ‘salt’ and 

‘pepper’ effects (i.e. sparse pixels) (Belgiu & Csillik, 2018). 

1.2.2.1. Unsupervised classification: 

In unsupervised classification, statistical algorithms are used for partitioning the image into distinct clusters 

based on error function (Enderle & Weih, 2005). In this method, the user should determine the number of 

desired clusters and criteria for ending the aggregating of pixels into clusters (i.e. stop merging clusters). 

Then later the analyst will assign classes of land cover to the clusters. The advantage of unsupervised 

classification appears when no prior knowledge about the study area is available. In other words, in some 

cases the analyst may not be able to identify the different classes in the area. Thus, the software will identify 

automatically the possible classes in the area. For example, in fragmented landscapes with small farms it is 

difficult to identify classes due to the heterogeneity of the landscape. Unsupervised classification requires 

very little user interaction in the stage of clustering but it requires a lot of field work or visual interpretation 

in the stage of assigning labels to the clusters (Xiong, Thenkabail, Gumma, et al., 2017). The most common 

algorithms of unsupervised classification are: K-means and ISO DATA clustering. 

In remote sensing applications, usually multisource data are integrated to fill the gaps in the data. Gumma 

et al. (2011) applied K-means unsupervised classification for rice area estimate in a fragmented landscape in 

Nepal. They clustered MODIS images (250m) using K-means and then the clusters were labelled using field 

data and visual interpretation of high-resolution images (through Google Earth platform). The authors used 

intensive field data to handle the mixed pixel effect and determine the field fractions. They indicated that to 

label the clusters, intensive field data and a large volume of high-resolution images are needed. However, 

the authors achieved an overall accuracy of 82% validated through ground truth data. The rice area derived 

in that study explained 99% of the variation in the reported national crop statistics. 

In West Africa, Vintrou et al. (2012) used ISO-DATA clustering of MODIS NDVI series (250m-resolution) 

for crop area estimation. They produced 20 clusters and then crop/non-crop classes were assigned to the 

clusters through visual interpretation (using Landsat-ETM+) and field data. The field fractions that they 

produced were not quantitative. The authors assigned 1 and 0.5 as field fractions for pure and mixed pixels 

respectively. For validation, they classified SPOT images (2.5m) acquired in November 2007 to estimate the 

CA. In addition, they collected ground data in 2009 and 2010 at six validation sites to check the accuracy of 

the interpretation of SPOT images.  They reported that their CA estimate assessed the overall CA in five 

sites out of six. The results showed that the MODIS product gave more accurate CA estimation than some 

global products such as: GLC2000 and GLOBCOVER land cover. The MODIS product resulted in less 

than 6% difference in CA compared to the reference data that they obtained from SPOT classification. 

However, they mentioned that their CA product doubled the reported CA by FAO. However, the authors 

indicated that the accuracy of CA estimate was affected by the complexity of the landscape (and the input 

coarse resolution). 

A study by Shen et al. (2015) proposed using moderate resolution imagery to guide a stratified sampling by 

UAV for CA in China. They used unsupervised classification and visual interpretation over SPOT 5 image 

to determine the rice areas, then they developed a sampling frame based on the classified image to determine 
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the distribution of the transects of the UAV. They achieved an accuracy of 95% in CA estimation at 95% 

confidence interval when 2% of the population was sampled. 

1.2.2.2. Supervised classification 

Supervised classification is based on developing training samples either from field work or visual 

interpretation. In both cases, the process is time-consuming and costly (e.g. cost of high-resolution images). 

In this process, training data is used to extract the statistical measures of the samples and then assigning 

each pixel to a class using certain classifier such as: Maximum Likelihood, Minimum Distance, Mahalanobis, 

and kNN (Nearest Neighbour) (Richards, 2012). 

Maximum likelihood (ML) method relies on assigning probabilities (i.e. probability of belonging to certain 

class) to the pixels based on a statistical model (i.e. variance and covariance calculations). The main problem 

with this method is that it assumes the probability density function for a class is normally distributed. In the 

real world, distributions are more complex (Choodarathnakara, Kumar, & Koliwad, 2012). 

Supervised classification is difficult to be repeated over time (Zhong, Gong, & Biging, 2014) which limit its 

use for monitoring programs. In fragmented landscapes such as in Africa, supervised classification can lead 

to high uncertainty (Xiong, Thenkabail, Gumma, et al., 2017). 

Kerdiles et al. (2014) used maximum likelihood classifier for estimating crop area in North China Plain. The 

authors used Spot-5 images to estimate CA for maize and soybean. Their product explained 62% of the 

variation in 83 ground segments. However, the authors indicated the cost of field surveys needed in such 

approaches is high. 

Delrue et al. (2013) applied maximum likelihood classifier for crop mapping in central Ethiopia. The authors 

used Disaster Management Constellation (DMC) (32m-resolution) images and Landsat 7 (30m-resolution) 

for classification. They used ground surveys data and delineated segments through the Google Earth 

platform to train and validate the model. The authors achieved an overall accuracy of 49% and 37% using 

only Landsat 7 collection and using only DMC collection respectively. Merging the two collections the 

authors achieved 44% overall accuracy. The authors concluded that the small size of the farms and the 

complexity of the landscape represented a challenge to achieve satisfactory results. However, the authors in 

another experiment applied climatological zones stratification using ISO-DATA clustering to improve 

accuracy. They trained a neural network model (discussed below) per strata and they found that the accuracy 

ranged from 65% to 91% for the four strata that they produced. The authors concluded that the small size 

of farms remained a challenge to achieve good results over the whole study area. 

Some studies utilise multitemporal information from remote sensing in addition to the multispectral 

information. Arvor et al. (2011) applied the maximum likelihood classifier over MODIS enhanced 

vegetation index (EVI) time series from 2005 to 2008. The authors achieved 85.5% accuracy for an 

agricultural mask that they developed in Amazonia in Brazil. They concluded that the vegetation index time 

series with maximum likelihood classifier showed high ability to determine cultivated areas. The authors 

showed that a post-classification process was needed to handle the ‘salt’ and ‘pepper’ effect resulted from 

using a pixel-based classifier. 

With the evolution in computers technology, machine learning methods became more popular. Image 

machine learning is a branch of artificial intelligence, in which the heuristic and expert knowledge are used 

to train the computer to automatically extract the objects of interest (Yang & Li, 2012). The most common 

supervised machine learning algorithms are artificial neural network (ANN), support vector machines 

(SVM), decision trees (DT) and random forest (RF).  These learning methods are non-parametric. Unlike 

parametric classifiers, such as maximum likelihood, non-parametric classifiers are data-driven and they 

overcome the issue of distribution assumptions (Rogan & Chen, 2004). 

In ANN technique, the neural network learns from the training data set to extract the classification rules 

and then those rules will be applied over the whole input image (Civco, 1993; Mondal, Kundu, Chandniha, 

Shukla, & Mishra, 2012). ANN has many advantages in image classification. It can handle complex pattern 

relationships for rules extraction and it can handle noisy data (Mas & Flores, 2008). However, ANN can 
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suffer from overfitting with small size training set and moreover it is complicated and computationally 

intensive technique (Mas & Flores, 2008). 

Kussul et al. (2015) used ANN for regional CA estimate in Ukraine. The authors used multitemporal Landsat 

8 images (30m-resolution) from April to August 2013. The authors achieved an overall accuracy of 85% for 

classification. Then they compared their CA estimate to official statistics. Their results showed the error was 

±28% compared to official statistics. 

SVM algorithm builds a hyperplane that separates the dataset into a predefined number of classes utilising 

training data (Huang, Davis, & Townshend, 2002). The hyperplane represents the decision boundaries that 

produces the minimum misclassification over the training data (i.e. an iterative process) (Mountrakis, Im, & 

Ogole, 2011). 

Lambert et al. (2016) applied SVM for cropland mapping over Sahelian and Sudanian agroecosystems. The 

authors used multispectral ProbaV (100m) time series of 11 months. The authors trained the model over 

four spectral bands and five temporal features. The temporal features that they used were maximum of the 

red band, minimum and maximum of NDVI and the decrease and increase of the slope of NDVI profile. 

They achieved an overall accuracy of 84% and F-score for cropland of 74%. Validation samples were 

developed using high-resolution images through the Google Earth platform. The authors concluded that 

the errors were due to data availability and the fragmented landscape. 

Decision tree is an algorithm to classify image pixels through sequential decisions. Decision tree algorithm 

consists of a root node, intermediate nodes, and terminal nodes. Using training data, a decision is made at 

each intermediate node to determine the next step in the hierarchical process. Until the pixel reaches a 

terminal node and then it will be classified into certain class (Friedl & Brodley, 1997). 

In India, Sharma et al. (2013) applied the decision tree method for land cover mapping including agricultural 

landscape. The authors used a single date image of Landsat TM (30m-resolution). For agricultural land, the 

authors achieved 96% producer’s accuracy and 75% user’s accuracy. However, the authors indicated that 

the method needs a large volume of ground data and finer spatial resolution to capture the variability at fine 

scales. In their study, DT was compared to ISO-DATA algorithm and maximum likelihood classifier. DT 

was found to be superior to those other traditional algorithms. The overall accuracy of DT classifier was 

90% compared to 76.7% and 57.5% for maximum likelihood and ISO-DATA respectively. 

Shao and Lunetta (2012) used MODIS NDVI series from 2000 to 2009 for land cover mapping (including 

agriculture) in North Carolina in the US. Although the landscape is homogenous compared to the landscape 

in Ethiopia, the authors showed that the purity of training pixels affected the classification accuracy 

significantly. The authors compared the accuracies of DT, SVM, and neural networks using pure pixels for 

training and using heterogeneous pixels (i.e. dominant cover >75% was assigned to the pixel). They found 

that the overall accuracy was 91%, 89%, and 85% for SVM, neural network, and DT. Whereas using 

heterogenous pixels, the accuracy dropped to 64%, 58%, and 55% for SVM, neural network, and DT. This 

indicates much more challenges if these methods applied in a complex and fragmented landscape. 

Some methods are designed to group several weak learners to form a strong learner. Such methods are called 

ensemble methods. One of the most common ensemble methods is Random Forest. It is an ensemble 

learning method which can be used to solve both classification and regression problems although it has 

been used rarely for regression issues in the agronomical applications (Jeong et al., 2016). In the case of the 

RF, these weak learners are the individual decision trees. RF method has been proved that it works well in 

heterogeneous landscapes (Tatsumi, Yamashiki, Canales Torres, & Taipe, 2015). Random forests method is 

more common in crop classification and yield prediction more than crop area estimation (Crnojevic, 

Lugonja, Brkljac, & Brunet, 2014; Nitze, Schulthess, & Asche, 2012; Ok, Akar, & Gungor, 2012; Tatsumi 

et al., 2015). Recently, RF is rarely used in pixel-based for CA and instead it is usually combined in an object-

based classification framework (see subsection 1.2.3.2 below) 

Mutanga et al. (2014) compared the performance of RF and SVM for identifying land cover types in a 

fragmented landscape. They used RapidEye (5m-resolution) images to identify the landcover types. The 
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authors achieved an overall accuracy of 93% and 91% for RF and SVM respectively. The authors concluded 

that these methods are powerful for mapping in fragmented landscapes but high-resolution images are 

needed which increase the cost. However, the number of user’s defined parameters required for RF is less 

than SVM (Pal, 2005). 

1.2.2.3. Fuzzy classification 

Compared to the hard classification methods mentioned above, the fuzzy classification handles the sub-

pixel heterogeneity. This method allows for multiple classes per pixel. The multiple classes are expressed in 

terms of probabilities or membership of the land cover types per pixel (Zhang & Foody, 1998). This method 

consists of two stages: fuzzy parameters determination from training data and fuzzy partition of pixels 

(Wang, 1990). The membership functions (i.e. functions to identify the fractions) are defined through 

maximum likelihood function. More details about the calculations are provided by Wang (1990). 

Arora and Ghosh  (2003) compared the fuzzy classifier to crisp classifiers for areal extent of land cover 

classes including cropland in a fragmented landscape in India. They found that the fuzzy classifiers produced 

higher accuracy than the crisp classification. The difference between estimated areas and actual extent was 

13% using fuzzy classifiers compared to 34% using crisp classifier. 

1.2.2.4. Spectral mixture classification 

In addition to fuzzy methods, spectral mixture analysis was developed to handle mixed pixel effect (Adams, 

Smith, & Johnson, 1986). The basic concept of this method that assumes the spectral reflection received by 

the sensor is a linear combination of spectra from all landcover types per pixel (Adams et al., 1994). The 

result of the spectral mixture is different fractions of land cover that form the pixel.  Spectral mixture method 

is more accurate than conventional methods for area estimation of land cover (Lu & Weng, 2007). In a study 

by Batistella et al. (2004), the authors applied the spectral mixture method for estimating land cover 

proportions (i.e. including agriculture class) in a moist tropical area in Brazil. They used Landsat-TM images 

for classification and ground truth data for training and validating their product. The authors were able to 

achieve 87% and 90% for user’s accuracy and producer’s accuracy respectively. The authors implied that in 

a large complex landscape, the endmembers needed to be developed every time to apply the method. This 

suggests difficulties in repeating the method for monitoring studies for example. 

1.2.3. Object-based classification 

With the evolution in recent remote sensing data sources (particularly high-resolution), object-based 

methods have been developed. Unlike pixel-based classification, object-based classification uses the 

contextual (i.e. neighbouring pixels) information in addition to the spectral information to perform the 

classification (Li, Yang, & Wang, 2017). Object-based classification consists of two stages: segmentation and 

classification. In the segmentation stage, the study area will be partitioned into homogenous clusters (i.e. 

objects) (Wulder, White, Hay, & Castilla, 2008) based on some contextual information such as compactness 

and shape. In the classification stage, the objects will be assigned to classes based on the statistical properties 

of the object (Yeom, 2014). Compared to pixel-based methods, object-based can handle within the field 

variability better. In a complex and heterogeneous landscape, object-based provides more accurate results 

than pixel-based (Blaschke, 2010; Hussain, Chen, Cheng, Wei, & Stanley, 2013; Peña-Barragán, Ngugi, Plant, 

& Six, 2011). Moreover, dividing the area into objects solves the issue of ‘salt’ and ‘pepper’ that pixel-based 

suffers from (Belgiu & Csillik, 2018, Liu & Xia, 2010) However, object-based classification requires high-

resolution images which increase the cost considerably. The accuracy of the segmentation process depends 

heavily on the predefined parameters by the users (e.g. scale, shape, colour, compactness, smoothness) 

(Rahman & Saha, 2008). Therefore, the accuracy of segmentation affects the accuracy of the results (Liu & 

Xia, 2010). Over-segmentation (one object portioned to many) and under-segmentation (i.e. many different 

objects merged) are issues related to object-based methods (Rao, Stephen, & Phanindra, 2012). 
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1.2.3.1. Edge detection: 

In edge object-based classification, the image is segmented into objects described by their boundaries. The 

boundaries are produced through an edge filter (e.g. Prewitt, Canny detectors) and then the objects are 

closed using a contouring algorithm (Schiewe, 2002). This algorithm is highly affected by noise in input data 

(Schiewe, 2002). Edge detection for image classification was used in many studies, and it is more common 

to be used with radar images (Carvalho et al., 2010; Gambotto, 1993; Moigne & Tilton, 1995; Yang, Yang, 

Li, Yin, & Qin, 2008). 

Rydberg and Borgefors (2001) used an integrated method of edge detection and image clustering over 

multispectral imagery for CA delineation. They applied edge filters on Spot image in Sweden, then they 

matched the resulted edges with a segmented image. For clustering they used ISODATA method. They 

found that the clustering process produced too many segments. The authors achieved 87% accuracy when 

they compared the clustered image with manually digitised segments within an error of one pixel. The main 

advantage of their method that it is fully automated but an expert knowledge to determine the suitable edge 

filter to be used. 

1.2.3.2. Image segmentation: 

In image segmentation, the process is bottom-up meaning it starts from a single pixel as an object and 

merging pixels into objects. The merging process is based on predefined criteria regarding the spectral and 

contextual aspects. The percentages of the contribution of spectra and context into defining the 

homogeneity objects should be determined (Castillejo-González et al., 2009). 

In a study aimed at producing nominal cropland extent for Africa, pixel-based machine learning and 

segmentation were combined (Xiong, Thenkabail, Tilton, et al., 2017). The authors integrated Landsat 8 

images to fill gaps in Sentinel 2. They composited five bands from Landsat 8, Sentinel 2 and additionally 

slope layer. Random forest showed overfitting and therefore the combined it with SVM. Then the authors 

applied a method called Hierarchical Segmentation (HSeg) for identifying objects for cropland and non-

cropland. The authors achieved 85.9% and 68.5% for producer’s accuracy and user’s accuracy respectively. 

The authors indicated big challenges due to the complexity of the African landscape. Particularly, the authors 

showed there were difficulties in discriminating croplands from seasonal vegetation. 

Eggen et al. (2016) applied SVM over time series of Landsat 5 and Landsat 7 from 2000 to 2011 to identify 

land cover classes in Ethiopia Highlands. The authors used the spectral bands and NDVI in addition to 

digital elevation model as predictors in SVM. To overcome the salt and pepper issue, the authors applied 

image segmentation as post-processing. They validated their product using 200 validation segments per class 

developed through the Google Earth platform. The authors achieved an overall accuracy of 55%. However, 

for the agricultural category the producer’s accuracy was 51% whereas the user’s accuracy was 85%. The 

authors indicated that the main reasons for the low producer’s accuracy for cropland are the fragmentation 

of the landscape and cloud contamination of the images. 

Vogels et al. (2017) used object-based RF classifier to estimate CA in two regions in Ethiopia and The 

Netherlands. They used panchromatic WorldView-1 images (0.5m) for Ethiopia and aerial photos (0.3m) 

for The Netherlands. They applied object-based segmentation on the high-resolution images to produce 

homogeneous segments. Then they used texture variables, shape variables, brightness, slope, and difference 

between neighbouring pixels as predictors to train their RF model. Then they performed visual 

interpretation to add a label to their sample points (crop or other land cover), they achieved an overall 

accuracy of 90% and 96% for CA in Ethiopia and Netherlands respectively. 

Vogels et al. (2019) applied RF and image segmentation for irrigated smallholder farms mapping in a 

complex landscape in Central Rift Valley in Ethiopia. The authors used Spot-6 images (6m-resolution) 

during the dry season of 2013-2014. They used multi-resolution segmentation over extracted NDVI from 

Spot-6 images to produce the objects. Then random 3000 segments out of all segments were interpreted 

visually (i.e. using Spot-6, Google maps, Worldview in ArcMap) and divided into training set and validation 

set for RF classifier. For classification, they used 17 spectral variables, 8 shape variables, 22 texture variables, 
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8 neighbour variables and coordinates as predictors for the model. The authors achieved an overall accuracy 

of 95%. They concluded that this method could be used for mapping irrigated agriculture in complex 

landscapes. 

In a fragmented landscape in Madagascar, Lebourgeois et al. (2017) combined RF and object-based 

segmentation for smallholders farms mapping. They indicated that due to the complexity of the landscape, 

multi-source data should be integrated to achieve good accuracy. The authors integrated Sentinel 2 images, 

very high-resolution images (0.5m-resolution), DEM, Spot images and Landsat 8 images. The authors 

applied the segmentation over the very high-resolution image. Then they developed 4 types of variables 

based on their data: reflectance variables, spectral indices, textural indices and ancillary variables. By utilising 

ground truth polygons, the RF classifier was trained using the variables values of ground samples. They 

achieved 91.7% accuracy for crop/non-crop determination. At sub-level classification (i.e. different crops), 

the accuracy dropped to 64.4%. Despite the high resolution and ancillary data that the authors used, they 

indicated difficulties in detecting the rain-fed agricultural fields. They attributed that to the small size of the 

farms and the mixed cropping system in the study area. 

1.3. Hyper temporal NDVI 

NDVI is one of the most widely used vegetation indices in natural resources management. The NDVI 

reveals a lot of information about vegetation health. The healthy vegetation has high reflectance in Near 

Infra-red (NIR) wavelength and low reflectance in red wavelength which means the healthy vegetation has 

high NDVI values (NASA, 2000). From an agricultural perspective, the temporal profile of NDVI starts 

rising with the growth of the crops until peak productivity and then starts decreasing during senescence 

(Soudani et al., 2012). Image classification methods perform better using multi-date imagery than single date 

imagery for vegetation monitoring. The temporal variation (i.e. phenological cycles) includes important 

information to help in discriminating between different features (Gómez, White, & Wulder, 2016; Langley, 

Cheshire, & Humes, 2001). In a single date image, many features may exhibit similar reflectance properties 

while using multi-date images allow capturing the distinct phenological patterns of the features (Viña et al., 

2004). 

Applications of multi-temporal remote sensing in agriculture faced by the challenge of suitable acquisition 

imagery dates. The images are needed during or near the growing seasons for crop identification and CA 

estimation. Those times usually are during the wet season which usually is too cloudy (Belgiu & Csillik, 2018; 

Petitjean, Inglada, & Gancarski, 2012). The clouds reduce the values of NDVI due to the aerosols and water 

vapour effect which will affect the subsequent analysis procedures (Kaufman, Tanré, Markham, & Gitelson, 

1992). Hyper temporal satellites are characterized by very high temporal resolution (i.e. short revisit time) 

usually between one to two days. The short revisit time increases the probability of cloud-free pixels, but at 

the expense of spatial resolution due to the altitude of the sensors (Lefsky & Cohen, 2003).  

Although the long-term records of AVHRR data (since 1979); it is not widely used for vegetation monitoring 

due to the coarse resolution (i.e. 8km), the radiometric and spatial characteristics were designed for 

atmosphere studies and not vegetation monitoring (Yin, Udelhoven, Fensholt, Pflugmacher, & Hostert, 

2012). Nevertheless, some studies used AVHRR imagery for crop monitoring (Granados-Ramírez, Reyna-

Trujillo, Gómez-Rodríguez, & Soria-Ruiz, 2004). Due to the higher spatial resolution compared to AVHRR; 

MODIS vegetation series became more popular for land cover mapping and agricultural applications (Yin 

et al., 2012). MODIS NDVI series characterised by spatial resolution of 250m and the product is 16-days 

composite (USGS, 2014). 

In a study by Victoria et al. (2012), the authors found that using unsupervised classification over hyper 

temporal NDVI series gave very promising results when compared to agricultural statistics. They used 16-

day composite MODIS NDVI from 2005 to 2009 and applied a Fourier transformation to extract the 

seasonality of crop phenology. The Fourier transformation gives amplitude, the first harmonic (i.e. first 

cosine wave) of the temporal profile represents one cycle over the year, and the second harmonic represents 



MAPPING CROP FIELD PROBABILITIES USING HYPER TEMPORAL AND MULTI SPATIAL REMOTE SENSING IN A FRAGMENTED LANDSCAPE OF ETHIOPIA 

 

11 

two cycles over the year. Then they classified the amplitude images into ten clusters. Utilising the 

information from temporal profiles, clustered images, and higher resolution images they were able to define 

the CA. They concluded that the method is suitable for large crop areas because in the municipalities with 

CA more than 10% they achieved R² of 0.89, the municipalities with CA less than 10% they achieved only 

R² of 0.41. However, this study was applied over agricultural lands characterised by large and mechanised 

fields. The coarse resolution yields lower results for smallholder farms as mentioned before. 

SPOT-ProbaV was launched in May 2013 mainly to fill the gap of SPOT-VGT sensor (March 1998 – May 

2014), thus, the product continuity is stable over time with a maintained interval of 10-days between 

consecutive products, and it is available at resolutions from 100m to 1km (Dierckx et al., 2014). Since the 

data of Proba-V of dates before 2013 are compensated from SPOT-VGT, there are some concerns about 

the orbital drift of SPOT-VGT between 2013 and 2014, the orbital drift has impacts on the reflectance but 

less significant impacts on the NDVI (Swinnen, Verbeiren, Deronde, & Henry, 2014). 

Toté et al. (2017) found that ProbaV has a high correlation with other NDVI products such as MODIS and 

AVHRR. Chen et al. (2006) achieved better results for identifying corn growth using SPOT-Vegetation 

series rather than MODIS. They concluded that MODIS was highly affected by the soil background. Zhang 

et al. (2016) Compared the 300m ProbaV and MODIS vegetation series for crop mapping, in one site they 

found that ProbaV is slightly better than MODIS but for another site it was significantly better by 26%. 

1.4. Terrain and agriculture 

Terrain has effects on micro-climate and soil characteristics such as soil temperature which subsequently 

affect where and what crops are planted (Kumhálová, Matějková, Fifernová, Lipavský, & Kumhála, 2008). 

According to Kaspar et al. (2003), elevation and slope have direct effects on the infiltration rate due to their 

effect on the water flow. Additionally, elevation and slope affect the water storage and infiltration indirectly 

through their influence on soil characteristics and soil erosion. Based on that, the terrain has significant 

influence in CA distribution and yield.  

In a study by Recio et al. (2010), the authors tested the effect of incorporating the contextual information, 

elevation, slope, aspect, lithology, and distance to rivers into hierarchical decision trees on the accuracy of 

agricultural parcels classification. The accuracy of the classification results decreased when some data were 

added. However, they found that using the textual information, elevation, and slope increased the accuracy 

by 5%. 

Mukashema et al. (2014) applied a method using Bayesian inference to estimate the CA for coffee in Rwanda. 

Their method required very high-resolution images; they used aerial photos (0.25) and a Quick-Bird image 

(2.44m for multispectral bands and 0.61m for a panchromatic band). However, using only spectral data in 

their model they were able to achieve 50% overall accuracy in CA estimation of coffee. After incorporating 

a digital elevation model and a forest map in their model, the accuracy improved to 87%. They achieved an 

R² value of 0.92 with agricultural statistics when the results aggregated to district level. Thus, incorporating 

terrain in CA estimations is promising in improving the accuracy of the CA products. 

1.5. Problem statement 

The issues related to crop area estimate in a fragmented landscape are mainly due to gaps in the different 

data sources (i.e. agricultural statistics and remote sensing) that have been used for CA estimation. 

Agricultural statistics are usually obtained using AFS method which based either on ground surveys or 

remote sensing (Gallego, 1999; Husak & Grace, 2016; Pradhan, 2001). Agricultural statistics are too 

generalised spatially (i.e. into districts or national level) (Marshall et al., 2011) which limit their use for critical 

food security analysis. Location, extent and distribution of cropland are often unavailable from agricultural 

statistics (Lunetta, Shao, Ediriwickrema, & Lyon, 2010). Additionally, the agricultural statistics data are 

inconsistent over time (Ramankutty, 2004) which limit their use for agricultural monitoring programs. 

Collecting data for agricultural statistics is expensive, time-consuming and labour intensive. 
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Regarding the use of remote sensing sensors for CA estimation, usually there is a trade-off between the 

spatial resolution and temporal resolution due to design restrictions (Chen, Huang, & Xu, 2015). The coarse 

resolution images have a very high temporal resolution which allows capturing the general agroclimatic 

conditions necessary for crop growth. However, the accuracy of detecting the CA in fragmented landscapes 

using coarse resolution is low due to the heterogeneity of the landscapes particularly in areas with 

smallholders farms (typically ≤2 ha) (Estes et al., 2016; Jain, Mondal, DeFries, Small, & Galford, 2013; See 

et al., 2015 ). 

On the other hand, the high, as well as moderate resolution images, can provide high accuracy results for 

CA estimation in smallholder farms areas (Neigh et al., 2018) but at the expense of the temporal resolution 

which will affect the data availability due the clouds effects during crops growing season (Chen et al., 2018; 

Estes et al., 2016; Reiche, Verbesselt, Hoekman, & Herold, 2015). High-resolution images usually 

characterised by relatively small coverage which will require mosaicking process, this process may result in 

spectral differences due to the vegetation phenology, atmospheric effects, and bidirectional effects (Estes et 

al., 2016; McCarty, Neigh, Carroll, & Wooten, 2017). Additionally, high-resolution images are often available 

at high cost.  

To test the possibility of coming over these issues, in this study a method for crop probabilities estimation 

was developed and evaluated. The method used the temporal characteristics of coarse resolution images for 

capturing the different climatological trends in the study area (i.e. defining agroecological zones). The spatial 

characteristics of moderate spatial resolution images integrated with coarse resolution images to improve 

the spatial resolution and the accuracy of crop probabilities. In addition to assessing inclusion of other 

terrain auxiliary data to improve the prediction of crop probabilities in a study area characterised by having 

small farms, complex climate and ecosystems. Inputs derived from these different sources were involved in 

a generalised additive model (GAM) as an attempt to address the gaps mentioned above in estimating crop 

field probabilities in a complex landscape with smallholder farms. 

1.6. Research objectives and questions 

The main aim of the research is to develop a new method to estimate the fraction (probability) of crop area 

in topographically complex and highly fragmented landscapes of Ethiopia integrating coarse and moderate 

resolution remote sensing with agricultural census data. To achieve this aim, the underlying objectives are: 

1. To identify agroecological zones using hyper-temporal NDVI. 

a) Can hyper-temporal (1km spatial resolution) NDVI effectively stratify topographically complex and 

highly fragmented landscapes into agroecological zones, i.e. homogenous regions exhibiting similar 

phenological patterns? 

 

2. To evaluate the use of agroecological zones coupled with agricultural statistics for coarse probabilistic 

crop mapping. 

a) Can agroecological zones effectively disaggregate agricultural statistics to 1km spatial resolution 

pixels? 

 

3. To establish and evaluate GAMs to estimate crop field probabilities using moderate (30m) resolution 

NDVI and terrain data in addition to coarse field fractions. 

a) Do moderate resolution NDVI for both dry and wet season improve the predictions of crop field 

probabilities? 



MAPPING CROP FIELD PROBABILITIES USING HYPER TEMPORAL AND MULTI SPATIAL REMOTE SENSING IN A FRAGMENTED LANDSCAPE OF ETHIOPIA 

 

13 

b) Do moderate resolution topographic predictors improve the predictions of crop field probabilities? 

c) Do coarse filed fractions produced using coarse spatial resolution hyper temporal NDVI improve 

the moderate resolution GAM? 

 

4. To evaluate the inclusion of coarse field fractions as a predictor in a global GAM for whole Oromia 

versus developing localised GAMs for each agro-ecological zone. 

a) Are there differences between using global GAM incorporating the coarse field fractions from 

agroecological zones and using separated GAMs for each agro-ecological zone in terms of model 

performance?       
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2. STUDY AREA AND DATA 

2.1. Study area 

2.1.1. Geography: 

Oromia region located in the middle and extends to the south of Ethiopia, it is situated between 3º 30' and 

10º 23'N latitude 34º 7'E and 42º 55'E longitude (Figure 1). The Ethiopia Rift which is part of The Great 

African Valley passes through the central part of Oromia. The total area of Oromia is approximately 

353,690km², and it consists of 12 administrative zones (Ethiopian Government, 2018). Oromia is one of 

the biggest regions in Ethiopia; the capital Addis Ababa is located in the region. The landscape in Oromia 

is characterised to be heterogeneous and fragmented in addition to the smallholder farming systems (Eggen 

et al., 2016) which make Oromia attractive to test the proposed methodological framework. Moreover, 

Oromia consists of 188 districts (i.e. the largest in Ethiopia). A large number of districts is preferable for 

our method because it guarantees that the statistical models used to derive crop area a high degree of 

freedom (Pandey & Bright, 2008). 

2.1.2. Topography and climate: 

The altitudes vary a lot in the study area, it ranges from 298m to 4385m above the mean sea level. The 

landscape in Oromia has diverse structures including rugged mountain ranges, undulating plateaus, 

panoramic gorges and deeply incised river valleys, and rolling plains (Ethiopian Government, 2018). 

Oromia consists of three climatic zones: tropical (49.8%), sub-tropical (42.2%), and temperate (7.5%) 

climate. The average annual rainfall in Oromia is between 200-2400mm, and the average annual temperature 

ranges between 7.5 – 27.5ºC (Embassy of the Kingdom of the Netherlands Ethiopia, 2015). 

In Ethiopia, there are two growing seasons: the Meher (major season with 96% of total production) and the 

Belg (mainly by smallholders) (Alemayehu, Paul, & Sinafikeh, 2012). 

2.1.3. Population and agricultural activities: 

According to a census that was held in 2007, the population in Oromia region is 26,993,933 (Central 

Statistical Agency of Ethiopia, 2010) which makes Oromia is the most populous region in Ethiopia. 

Agriculture is the main source of livelihood for most of the people in Oromia, it represents 56.2% of the 

regional economy (Embassy of the Kingdom of the Netherlands Ethiopia, 2015). The farming system in 

Oromia is mixed of livestock and crops. The main crop types that cultivated in the region are maize, teff, 

wheat, barley, peas, bean and oilseeds (Ethiopian Government, 2018). 

In the Meher season, rains start in June-July and end in September-October. Meher is considered as the 

main season in Oromia. The main crops grown during Meher season in Oromia are: Pulses, Cereals, Teff, 

Wheat, Barley, Maize and Sorghum (FAO, 2007b).  

The Belg season is shorter and less intensive; it receives rains start in February and end in April-May. The 

short cycle crops usually harvested in April-May by the end of the rainy season (FAO, 2007b). The dominant 

crops during this season are: Potatoes and Yams (Husak et al., 2008). 

The climatic conditions for the major crops as indicated by Chamberlin & Schmidt (2011): Teff is grown in 

areas with altitudes between 1800-2100m, average annual rainfall in range 750-1000m, and temperature 

between 10-27 ̊ C. Maize is grown in areas lower than 2400m and rainfall between 800-1500mm. The Maize 

produced by Oromia represents 60% of the total production of Ethiopia. Sorghum is usually grown in 

relatively low areas with altitude less than 2400m and drier areas with annual average rainfall less than 

250mm. Wheat is grown in altitudes between 1600-3200m, rainfall between 400-1200mm, and temperature 

between 15-25 ˚C.  

Climatic conditions affect farming systems and therefore different farming systems follow different climatic 

zones. Seed farming complex can be found in dry to wet areas with altitudes between 500 – 3200m; seed 
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farming has large range of moisture conditions since it accommodates cereals, oilseeds and pulses. Shifting 

cultivation and pastoral complexes are found in tropical areas. In low altitude arid and semi-arid regions, 

rain-fed crops are limited due to the lack of rainfall (Chamberlin & Schmidt, 2011). For details about farming 

systems and climatic zones in Ethiopia see (Amede et al., 2017). 

 

Figure 1: Study area location 

2.2. Data used 

In this research, data from different sources have been used to estimate the field fraction. The data included: 

SPOT-ProbaV NDVI, Landsat 8 NDVI, Shuttle Radar Topography Mission (SRTM), DigitalGlobe images 

through Google Earth platform, and agricultural census data. 

2.2.1. Agricultural Census data 

The district agricultural census data (September 2001- August 2002) was used for this study. To the limit of 

our knowledge, this is the most recent census data available at district (i.e. woreda) level. The annual survey 

is done in Ethiopia by the Central Statistics Agency (CSA) but that data is at regional or zonal level (Wolaita) 

level (Cochrane & Bekele, 2018). As indicated by (Hazell & Wood, 2008), the global growth of arable land 

was 9% (i.e. around one mha) from 1961 to 2002. Thus, an assumption was made that the production can 

change rapidly but the extent of the fields is stable through a period less than 20 years. Therefore, using this 

data and the below remotely sensed data (with different temporal windows) was feasible. The survey was 

done by the Ethiopian Central Statistical Authority (CSA) and the data was provided by the second 

supervisor of this study. The data was provided in tables format, the tables contained the districts and the 

crop areas in hectares. For the present study, the census data used included the total of both seasons (i.e. 

Meher and Belg) for temporary crops. 
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2.2.2. SPOT-ProbaV NDVI 

The method used coarse SPOT-ProbaV NDVI series (between 1999 and 2017). The SPOT-ProbaV sensor 

has a revisit time of one day (i.e. daily images) and spatial resolution of 1 km spatial, however, the NDVI 

product is a 10-day maximum value composite (Wolters et al., 2018). SPOT-ProbaV NDVI was presented 

as values (0-255) as that was the native representation of the data by the providers (Wolters et al., 2018). 

Omitted pixels in SPOT-ProbaV (i.e. missing, cloud, snow, sea, and background) contain data flags (Wolters, 

Dierckx, Dries, & Swinnen, 2015) which help to process the data based on this quality information. 

2.2.3. Landsat 8 

The study area is covered by seven Landsat-8 scenes, thus, for each scene coverage, a pair (i.e. dry season 

and wet season) of Landsat-8 images per year from 2013 to 2017 were obtained. The images from 2013 to 

2017 were used because of the availability of Landsat data. Landsat 7 has issues of black lines since 2003 

due to the failure of the scan line corrector (U.S. Geological Survey, 2018). Landsat 5 was decommissioned 

since 2013 and therefore it does not provide recent data to produce updated maps. This should not be mixed 

with the assumption above (subsection 2.2.1). The field extent is stable but discriminating active fields from 

fallow lands at certain date of time depends on the dates of the Landsat images because dry and wet seasons 

will be extracted from Landsat-8 images. To avoid the spectral differences can appear by fusing Landsat 8 

with old Landsat 5; only Landsat 8 was used. The images are freely available at Earth Explorer platform 

(https://earthexplorer.usgs.gov/), due to the huge data size, the Landsat data was obtained and 

preprocessed through the Google Earth Engine platform. 

2.2.4. SRTM 

The Shuttle Radar Topography Mission (SRTM) was used to get the terrain information. SRTM is a digital 

elevation model with 30 meters spatial resolution, the data can be gathered freely at the United States 

Geological Survey (USGS) website. A slope layer was derived from the DEM using ArcGIS software. 

2.2.5. Training and validation set 

For training and validating our model 271 area frames sized 30mx30m were distributed randomly over the 

study area (Figure 2). Each area frame contained a grid of 16 points with a distance of 9 meters between the 

points. The choice of 16 points grid considered a balance between representative coverage and the amount 

of visual work that would be required to conduct the interpretation. Those points were interpreted visually 

using Google Earth into field and non-field then the percentage of the field per frame was obtained by 

dividing the number of field points by the total number of points within the frame. 

The study area was mainly covered by ‘DigitalGlobe’ constellation in which all sensors have a sub-meter 

resolution (DigitalGlobe, 2019). This dataset was used to develop and validate the produced field fraction 

at 30m through the global models for whole Oromia.  

Google Earth has been used in many studies for collecting reference data, particularly for land cover 

mapping (Defourny et al., 2009; Fritz et al., 2011) and urban land use mapping (Malarvizhi, Kumar, & 

Porchelvan, 2016). Regarding the positional accuracy of Google Earth, Potere (2008) concluded that Google 

Earth images could be used with other moderate resolution remote sensing, the author assessed the 

positional accuracy based on global 436 ground control points to reach that conclusion. 
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Figure 2: The distribution of the validation sample observations 
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3. METHOD 

The method outlined as producing 1km field fractions by incorporating agricultural census data with hyper 

temporal NDVI, developing and evaluating two global GAMs for predicting crop field probabilities (i.e. 

using only moderate resolution dry and wet season NDVI, elevation and slope, the other model added the 

1km fractions as a categorical predictor (Figure 3). In other words, the two global models (with and without 

1km field fractions input) were compared. Moreover, an experiment was carried out to demonstrate the 

differences between the better global model (i.e. from the previous comparison) and a local GAM developed 

within one agroecological zone differ to elaborate on the global model capabilities (not shown in the 

flowchart). 

 

 

Figure 3: Flowchart of the research method 

3.1. Estimation of field fraction at coarse resolution (identify agroecological zones) 

3.1.1. SPOT-ProbaV NDVI preprocessing: 

Using hyper-temporal NDVI series such as SPOT-ProbaV allows for feasible clouds compensation and 

capturing the long-term trends in the vegetation (see subsection 1.2.4). Flagged pixels (see subsection 2.2.2) 

were replaced by zero value. Then those pixels have been compensated using Savitzky –Golay filter (Savitzky 

& Golay, 1964) through TIMESAT software. In this method, a piecewise regression will be fitted within a 

temporal window (i.e. NDVI multi-date observations) to reconstruct the series. Defining too small window 

can overfit the series while too large value may over smooth (Chen et al., 2004). Regarding the software, 

half window size should be defined by the user. In the present study, 4 was defined as a half window size as 

suggested by Chen et al. (2004) that size is appropriate. 



MAPPING CROP FIELD PROBABILITIES USING HYPER TEMPORAL AND MULTI SPATIAL REMOTE SENSING IN A FRAGMENTED LANDSCAPE OF ETHIOPIA 

 

19 

3.1.2. NDVI stratification: 

After preparing the Proba-V NDVI series, all the time series images were stacked. Then the ISO data 

unsupervised clustering method (Dhodhi, Saghri, Ahmad, & Ul-mustafa, 1999) was used to produce 

mixtures of land covers exhibiting similar surface responses to climate (i.e. agroecological zones). The 

unsupervised classification was used since the design of the method relies on minimising the user’s 

interaction. One hundred fifty clusters were produced since a hierarchical clustering analysis was planned to 

be done then the number of produced clusters was not a critical parameter. The number of iterations was 

defined as 50 iterations with convergence threshold 0.95. The hierarchical clustering method identifies the 

groups within the dataset to reduce the number of clusters without losing the structure of the data 

(Gonçalves, Netto, Costa, & Zullo Junior, 2008). In other words, the cluster analysis merges the clusters 

into new groups based on certain statistics (e.g. mean) without dissolving the variability of the data. 

Minimising the number of clusters (i.e. independent variables) increases the degree of freedom. Regression 

models become more robust with higher degrees of freedom (Pandey & Bright, 2008). 

Therefore, the median of each cluster (for the whole time series) has been extracted and then SPSS software 

was used to run the hierarchical cluster analysis. The median is less sensitive than the mean (Hippel, 2005). 

After that the resulted clustered image was converted into shapefile to be integrated with the agricultural 

census data. 

3.1.3. Regression analysis: 

The data from agricultural census tables have been attached to the administrative shapefile of Oromia 

region, then an intersection was performed between the NDVI clusters shapefile and the agricultural census 

data and new areas based on the intersection were calculated. As a result, the new attribute table contained 

the areas of the NDVI clusters within each district. Then the cropped area from the agricultural census was 

related to the NDVI clusters using a step-wise regression to produce the field fraction at 1km resolution. 

This process was based on the fact that agricultural fields show distinctive temporal NDVI profiles (i.e. 

phenological cycles) compared to other types of land cover (Sakamoto et al., 2005). Step-wise regression is 

an automated procedure that eliminates uncorrelated or redundant data. The regression model was used can 

be expressed by:  
Y = β 1C1 + β2C2 + β3C3 + … + βnCn 

Where Y is the cropped areas from agricultural statistics, β1, β2, β3, …, βn are the coefficients, C1, C2, C3, …, 

Cn is the NDVI clusters areas within district. The model was forced through origin because not every pixel 

contains agricultural fields. The regression model was carried on SPSS software environment. The regression 

model distributed the cropped areas over the study area at 1km resolution based on the occurrences of the 

different NDVI clusters within each district. Thus, the coefficients represented above are the proportion of 

the agricultural fields within the NDVI clusters (i.e. field fractions at 1km). This regression method to 

downscale agricultural census data from the district level to 1km resolution was developed by de Bie et al. 

(2008). The authors achieved adjusted R² of 45% using a validation set of 3272 segments for rainfed wheat. 

However,   Khan et al. (2010) also illustrated the method in southern Spain, their 1km field fraction map 

explained 68% of the variation in 1415 validation samples of wheat fields which supported the use of the 

method. 

3.2. Estimation of field fraction at fine resolution (30m) 

3.2.1. Landsat NDVI selection and pre-processing: 

Before starting downloading the Landsat 8 scenes, the phenology (i.e. temporal behaviour) of the NDVI 

clusters were used to determine the dry season and wet season windows Landsat 8 images per each cluster. 

The wet season and the dry season were determined both because they explain different variations regarding 

the land cover types. For example, cropland tends to have low dry season NDVI and high wet season NDVI 
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while forests and other natural vegetation tend to have high NDVI values throughout the year. In contrast, 

bare lands tend to have low NDVI throughout the year. 

A simulation of a year temporal profile was produced per cluster by extracting the median of each decade 

through the years which resulted in 36 observations (i.e. three observation per month) time series for a year 

simulation. The delayed moving average method (Reed et al., 1994; Verdin et al., 2000)  was used to extract 

the start and the end of the wet season. Reed et al. (1994) suggested using nine observations for biweekly 

series (i.e. four months interval) in the United States. Taking into consideration the Meher season extends 

for three months, thus, taking less interval would allow capturing the changes in the trend. Therefore, nine 

decades (i.e. three months interval) were used as a moving window. To apply the method, the edge of the 

series (i.e. last nine decades in the year) was padded by the same values of the first nine observations in the 

year. Then the moving average was calculated from the beginning of the year up to observation 36th. In the 

delayed moving average method, the start of the season is when the original temporal NDVI profile crosses 

the smoothed profile in the upward direction, in contrast, the end of the season is when the original profile 

crosses the smoothed profile in the downward direction (Figure 4). This process was carried using Excel 

software. 

 

 

Figure 4: An example of the delayed moving average method on one of the NDVI clusters. Grey shaded area 
denotes the wet season windows. 

After the start and the end of the season have been extracted for each cluster, Google Earth Engine was 

used to prepare and download the Landsat 8 NDVI images. A built-in function was used to mask out the 

clouds from the reflectance images between 2013 and 2017. Then the median of the wet season and the 

median of the dry season within each year and then among all the years were extracted. All the extracted 

images were mosaiced using ArcGIS software to cover the whole study area. 

3.2.2. Global GAMs development and evaluation: 

GAMs were developed by Hastie and Tibishirani (1986), it represents a relationship between supporting 

data (i.e. predictors) and a target or a response variable. GAMs can be explained through the generalised 

linear models (GLMs) and the additive models (AMs). GLM is a class of linear models; they are used to 

predict a mean of a response variable based on many explanatory variables (i.e. predictors). GLMs establish 

a linear relationship between the response variable and the predictors (Khuri, Mukherjee, Sinha, & Ghosh, 
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2006). GLMs consist of three components: the response variable, the linear function of the predictors and 

the link function. It can be written as following:  
f(μ) = β0 + β1X1 + β2X2 + β3X3 + … + βnXn 

where f(μ) is the link function and β0  is intercept, β1, β2, β3, …, βn are the coefficients and X1, X2, X3, …, 

Xn are the predictors. In the case of a binomial response variable, the most common link function is the 

logit link which predicts the probability of the occurrence of the response variable. This kind of model called 

logistic regression (Bewick, Cheek, & Ball, 2005). The logit function for a probability (p) is expressed as: 

 
logit (p) = log [p/ (1- p)] 

In AMs, the coefficients are replaced by smoothing functions such as splines. The AMs can be expressed 

as:  
Y = β0 + S1X1 + S2X2 + S3X3 + … + SnXn 

where Y is the response variable, S1, S2, S3, …, Sn are the smoothers (i.e. smoothing functions). 

The combined models of GLMs and AMs give the GAMs which can be written as following: 

 
f(μ) = β0 + S1X1 + S2X2 + S3X3 + … + SnXn 

In GAMs, instead of using slope coefficients to capture the impact of the predictors on the response 

variable, local smoothing functions for each predictor are used. 

Despite that logistic GLM can be used to model binomial response variables, the rationale for using GAM 

was the expected nonlinear relationships between the crop field probabilities and both NDVI and terrain 

since GAM relaxes the linearity assumption of GLM (Hastie et al., 2016). For example, the agricultural fields 

are expected to have a nonlinear relationship with elevation (i.e. crop field probability increases with 

elevation then decreasing with very high altitudes) (Husak et al., 2008). The crop field probabilities are 

expected to be negatively correlated with slope and dry season NDVI. On the other hand, they are expected 

to increase with the increase of wet season NDVI. All these relationships were found to be nonlinear in 

fragmented and complex landscapes (Grace, Husak, Harrison, Pedreros, & Michaelsen, 2012; Kathryn 

Grace, Husak, & Bogle, 2014; Husak et al., 2008; Marshall et al., 2017). Therefore, using fixed slopes in 

regression (i.e. linear relationships) is impractical. In contrast, GAMs have two main limitations: GAMs 

produce graphical function forms between the response and the predictors instead of explicit equations 

(Liew & Forkman, 2015), and overfitting (Maloney, Schmid, & Weller, 2012). 

To summarise that, logistic GAM was preferred to logistic GLM to relax the linearity assumption and 

capture the complex non-linear relationships between agroclimatic drivers and crop area. The distribution 

and nature of the variables used in any model affect the type of the model. The independent subframe points 

that were absence/presence of agricultural fields; and the goal was to predict crop field probabilities. Thus, 

logistic GAM (with logit function) was used. A typical logistic model usually used to model binary response 

variables, however, in the present study the response variable is field fractions resulted from dividing the 

proportion of crop subframe points by the total number of points within the frame (i.e. 16 points). In such 

a case, field fractions would show greater variation than just binary, therefore, quasibinomial distribution 

was applied (Consul, 1990).  

Before developing the GAM, the independent data set (see subsection 2.2.5) was divided into calibration set 

and validation set by 70% and 30% respectively (i.e. 190 and 81 observations). 

Then a logistic GAM model was developed (globally over whole Oromia) in R software using ‘mgvc’ 

package (Wood, 2013) between the 30m frames with the following covariates: dem, slope, dry and wet 

season NDVI. Splines smoothers were used as smoothing functions (Wood, 2013). The model was forced 

through the origin because not every pixel contained agricultural fields. Another GAM model included the 

1km fractions as a categorical predictor was developed to assess the effect of including the potential 

agroecological zones. Our estimated field fractions at 1km resolution is a semiquantitative variable which 
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means it is quantities (i.e. field fraction) based on a categorical variable (i.e. NDVI clusters). This kind of 

variables has limited outcomes (i.e. too many pixels with a same value). Therefore, it was included as a 

categorical variable to be used as a predictor in GAM in the context of the present study. To elaborate, all 

the zero fractions represented by one category and each fraction greater than zero represented by a category. 

Both models were evaluated using out of sample validation (i.e. the 81 observations). Based on that, the 

highest-performing model was applied over the whole of Oromia to produce 30m-resolution field fractions. 

3.2.3. Global GAM and local GAM 

To achieve objective 4, new binary 508 area frames sized 30mx30m were distributed randomly over one of 

the produced agroecological zones, the chosen stratum had the largest value in terms of fields extent fraction 

at 1km resolution. The 508 area frames were classified through Google Earth imagery to crop/non-crop, 

crop areas appeared in 389 observations (all sampled area frames contain more than 90% crop area), and 

119 area frames were non-crop. This sample was created as only binary observations because the objective 

was to compare the previously developed GAM (global) to a localised GAM within one agroecological zone 

and not to relate the predicted fractions to actual field fraction like the previous case. 

The dataset was divided into a training set and a testing set with 70% and 30% respectively (i.e. 356 and 152 

observations) with considering the representativeness of both binary classes within both training and testing 

sets. 

To make the global model comparable to the local model (i.e. local model uses binary response); the global 

model was redeveloped using binary response (i.e. crop/no-crop). The training fractions data in section 

(3.2.2) (i.e. the 190 frames) was converted into binary (1 for values greater than 0). 

Then, a local GAM within only the chosen zone was developed through R software between the training 

binary area frames and the four predictors. The resulted predictions were evaluated using the testing set (i.e. 

the binary 119 frames). Finally, the predictions that produced using the binary global GAM were evaluated 

against the same testing set to determine how important to develop localised GAMs per each agroecological 

zone. 

Basically, this experiment was done as a demonstration of the capabilities of the global model to compete 

with the local model in predicting field fraction. In other words, comparing a model that uses agroecological 

zones as a predictor (i.e. global) and one that uses it to categorise the model (i.e. localised). The local model 

is expected to perform better but the purpose of the experiment is to assess the differences between the 

two models and evaluate our global model. In case the global model performed close to the local, that 

supports the use of the global model developed in (section 3.2.2). 
 

 

 

 

 

 

 

 

 



MAPPING CROP FIELD PROBABILITIES USING HYPER TEMPORAL AND MULTI SPATIAL REMOTE SENSING IN A FRAGMENTED LANDSCAPE OF ETHIOPIA 

 

23 

4. RESULTS 

4.1. Field fractions at coarse resolution 

4.1.1. NDVI clustering (agroecological zoning): 

After the filtering process of NDVI series, a stack of the whole series from 1999 to 2017 was clustered into 

150 clusters using ISODATA classification algorithm. An optimum number of clusters to stratify the area 

into appropriate agroecological zones is unknown. Therefore a hierarchical cluster analysis was performed 

to merge relatively similar clusters. As a result, 60 clusters were created, Figure 5 shows the spatial 

distribution of the merged clusters. 

 
Figure 5: Merged NDVI clusters (60 clusters) 

To elaborate on the meaning of relatively similar clusters mentioned above, some examples of the temporal 

behaviour of NDVI long term median among different clusters are shown in Figure 6. 

NDVI long time series can be used to provide indications about dominant land cover types, each temporal 

profile (i.e. profile line) in Figure 6 represents a cluster before the merge (i.e. out of the initial 150 clusters). 

Figure 6-a shows three initial classes were merged to form cluster 33. The figure indicates presence of 

agriculture with monomodal distribution. Some parts of cluster 33 located west to the rift valley and some 

parts located east to the valley. That zone is a relatively hot zone in drier areas. The amount of rainfall in 

this zone is not sufficient for crop growing in two seasons. By checking rainfall data (not shown here), this 

cluster located in relatively dry areas (i.e. <350mm). The season starts around decade 19 (beginning of July) 

and ends around decade 30 (beginning of October); this is a typical Meher season. Some examples of crops 

perhaps grown within that cluster are: Maize and Horse beans. 

Figure 6-b indicates agricultural land mixed with other land cover types with bimodal rainfall (I.e. two 

growing seasons). Cluster 35 was not merged with any other initial cluster and remained as single cluster 

before and after the hierarchical analysis (just the number of the cluster changed). The first season starts 

around decade 9 (end of March) is shorter than the second season which starts around decade 25 (beginning 

of August). Also the amount of greenness is different between the two seasons as can be seen from Figure 
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6-b. The two seasons for this cluster match the start for both Belg and Meher seasons in Ethiopia 

(Alemayehu, Paul, & Sinafikeh, 2012). As mentioned before Belg is shorter than Meher and less intense 

which justify the less amount of greenness in the first season showed in the figure. Examples for crops 

perhaps grown within this cluster during the Belg season are Sweet Potatoes and Yams. While crops perhaps 

grown during Meher within cluster 35 are: Teff and other cereals, grains and pulses.  In this cluster, the 

Meher season starts slightly late. Most parts of this cluster located in areas wetter than the previous cluster 

(i.e. >450), however, some small parts located within relatively drier areas. That indicates this cluster falls 

within tropical and sub-tropical climatic zones. 

 

 

Regarding non-agricultural clusters, Figure 6-c represents temporal behaviour for initial clusters 1 and 3 

which have been merged to form cluster 5 after the hierarchical clustering. The behavior of these clusters 

can be described as stable (i.e. no abrupt change in greenness) and low through the year which indicates 

bare land or water dominance within clusters 1 and 3 and because of very low value more likely to be water. 

On the other hand, the behaviour in Figure 6-d characterised to be stable also but high greenness amount. 

Clusters in Figure 6-d are dominant by forested areas with an increase of greenness around May and again 

around August. The increase of greenness in these clusters related to rainfall since the date of increase 
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Figure 6: Some examples of the grouped clusters through hierarchical clustering, profiles (lines) denotes 
the initial classes behavior, titles named groups denote the cluster number after merge 



MAPPING CROP FIELD PROBABILITIES USING HYPER TEMPORAL AND MULTI SPATIAL REMOTE SENSING IN A FRAGMENTED LANDSCAPE OF ETHIOPIA 

 

25 

coincide with dates of seasons in some other clusters (for example cluster 35 in Figure 6-b). The 

interpretations of these examples have been confirmed visually using Google Earth imagery.  

4.1.2. Regression for 1km field fraction estimations 

To prepare the data for regression, the agricultural census data was related to the spatial districts and then 

intersected with NDVI clusters (Figure 7). The table within Figure 7 displays an example of legend 

construction. Legend construction -in this context- is a process of determining the occurrence of NDVI 

clusters within each cluster in terms of area in hectares. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Woreda Crop area 

(ha) 

Class 48 (ha) Class 50 (ha) Class 53 (ha) Class 54 (ha) …  

Mana Sibu 23,029 1,611 0 23,907 283 …  

Nejo 14,390 279 0 8,536 0 …  

Gimbi 9,085 4,845 0 37,467 272 …  

Lalo Asabi 5,645 275 0 17,621 0 …  

Boji 12,739 3,329 0 22,512 0 …  

Ayra Guliso 16,761 3,744 0 15,922 0 …  

Jarso 18,238 302 0 10,349 0 …  

Gidami 13,953 23,962 1,707 11,899 2,105 …  

Hawa Welele 19,894 2,222 569 8,988 3,251 …  

Gawo Dale 22,139 7,855 2,023 21,577 1,785 …  

Dale Sadi 10,583 4,065 0 7,409 0 …  

Ganji 5,784 112 0 9,170 0 …  

… … … … … … …  

Figure 7: The process of legend construction (NDVI clusters cross with agricultural census) and example of the output legend 
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The relationship between occurrences of NDVI clusters (i.e. proportional areas within the district) and crop 

area was investigated through a stepwise linear regression model (Khan et al., 2010). In other words, the 

predictors are the proportional areas of NDVI clusters within each district, and the response is the crop 

area per district in hectares. The results of the regression model are shown in Table 1, the coefficient column 

in the table represents the field fraction within each cluster. Cluster 54 and cluster 11 were less significant 

than the rest of the clusters. Three NDVI clusters contained more than 50% crop per km2, 11 clusters 

contained between 50% and 10% crop per km2, and 3 clusters with crop forms less than 10% per km2. 

This regression model was able to explain 91.4% (adjusted R2) of the variation in the agricultural census 

data. The cluster values in Figure 5 were replaced by the intensities (coefficients) from Table 1 to produce 

the 1km field extent fractions map Figure 8. The total CA based on the 1km field fractions produced was 

3,954,067 while the reported CA in Oromia was 4,077,968. This suggests the method performed well in 

terms of relating agroecological zones to the reported statistics, but this should not be mixed with the 

accuracy of reported data. The agreement does not necessarily indicate high quality reported statistics. 
 

Table 1: Results of the regression model between district crop area and NDVI clusters 

NDVI cluster Coefficient Sig. 

20 0.301 0.000 

30 0.342 0.000 

33 0.307 0.000 

19 0.203 0.000 

54 0.039 0.146 

57 0.219 0.000 

35 0.614 0.000 

31 0.525 0.000 

29 0.276 0.000 

34 0.328 0.000 

11 0.023 0.113 

48 0.405 0.000 

56 0.503 0.000 

42 0.165 0.000 

59 0.411 0.000 

15 0.028 0.003 

26 0.114 0.012 
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Figure 8: Fields extent percentage per km2 

4.2. Field fraction estimations at 30m 

4.2.1. Global GAMs 

Two global GAMs were developed in this study to evaluate the effect of including the 1km field fraction to 

predict field fraction at 30m-resolution. Both models applied four environmental predictors: elevation, 

slope, dry and wet season NDVI. The two models were evaluated using threshold-independent metrics to 

assess the model performance. To assess the performance and the predictive power of the models; 

independent 81 frames (i.e. actual fractions) were used. The overall deviance of the binomial distribution 

explained by each model and the area under the curve (AUC) were obtained. AUC indicates the goodness 

of fit. A perfect model would have AUC equal to 1 and a random model (chance model) would have a value 

of 0.5 (Ormerod, Manel, & Williams, 2001). Since our response variable is not binary and it has many levels, 

thus, instead of the normal AUC, a multiclass AUC (Landgrebe & Duin, 2007) was used in the present 

study. To assess the predictive power of the two models; an independent validation set was used. The field 

fractions predicted by both models were compared to the actual fractions of the 81 frames. 

The AUC and overall deviance explained before including the 1km field fraction were 0.73 and 38.5% while 

after adding that variable the AUC and overall deviance explained improved to 0.83 and 62.2% respectively. 

The relationship between the predicted field fraction by both models and the actual fractions are shown 

below. The figure shows points in a form of vertical lines because the distribution of the sample was 

binomial with systematic grid at sub-frames level. The predicted fractions explained only 69% of the 

variations in the actual fractions when the 1km field fractions were not included (Figure 9). Including the 

1km field fractions allowed the predicted fractions to explain 77% of the variation in the actual fractions 

(Figure 10). Based on all these performance and accuracy metrics; it is very clear including the 1km field 

fractions improved the model massively. 
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The model included the 1km field fractions improved the low extremes predictions compared to the other 

model. Even though the model including the 1km field fractions improved the predictions significantly; the 

model was weak in capturing the extremes. 
 

 
Figure 9: The relationship between actual field fractions and predicted field fractions without including the 1km field 

fraction in the model 

 
Figure 10: The relationship between actual field fractions and predicted field fractions after including the 1km field 

fraction in the model 

Table (2) shows the p-values for each predictor in both models to illustrate how adding the categorical 

predictor affected the significance of each predictor. In the model without including the 1km field fractions, 

the most significant predictor was the dry season NDVI, followed by elevation. Slope was the third 

significant predictor and wet season NDVI was the least significant predictor. All predictors in this model 

were found to be significant (p<0.001) except wet season NDVI (i.e. p<0.01). Similarly, in the model 

included the 1km field fractions the relative importance remained the same as in the other model (i.e. the 

order of importance). Since the 1km field fraction variable was produced based on long term NDVI 

clustering, that variable inherits information about climatology thus it lowered the significance of all the 
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environmental predictors (i.e. multicollinearity). Out of 17 categories of 1km field fractions, 8 categories 

were found to be significant. 
 

Table 2: The p-values of the environmental predictors before and after adding the categorical variable 

Predictor Without 1km fractions With 1km fractions 

Elevation 1.75e-08 6.95e-05 

Slope 0.000108 0.000142 

Dry season NDVI 1.33e-10 4.97e-08 

Wet season NDVI 0.003176 0.096137 

 

Based on that, the final model included: elevation, slope, dry season NDVI, wet season NDVI, and the 1km 

field fractions was investigated in detail. The individual relationships (i.e. partial correlation) between each 

predictor and the field fraction (i.e. crop field probabilities). Moreover, the partial deviance explained by 

each predictor was explored. Figure 11 shows the deviance explained of the binomial distribution by each 

predictor in the improved model, among the predictors, the 1km field fractions was the most important 

predictor with deviance explained 24%. Followed by dry season NDVI with deviance explained 16%. While 

elevation explained 15%, slope explained 6% of the deviance. Wet season NDVI was the least important 

predictor with 0.6% deviance explained. 

 

 
Figure 11: Deviance explained by each predictor 

The following figures show the relationship between each predictor and the response values which in this 

case the crop field probabilities expressed as log of odds ratios. However, the log of odds ratios can be used 

to explain the relationships because those ratios are proportionally related to the probabilities (Bland & 

Altman, 2000). 

In Figure 12-a, the relationship between crop field probabilities and the elevation characterised as a nonlinear 

relationship. It can be seen that areas with elevation between 1500m and 2500m are very likely to be cropped. 

Areas lower or higher are expected to have less cultivated areas. This can be due to the preference of the 

farmers to plant on those areas and/or due to suitable landscape characteristics within these altitudes. The 

model shows more certain predictions in moderate elevation values. In contrast, the model shows wider 

confidence values (i.e. less certain predictions) at high altitude areas with low capability of discriminating 

field fractions (i.e. semi-flat line). 
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Figure 12-b shows the relationship between slope and occurrences of agricultural fields. The crop field 

probabilities are negatively correlated with slope, areas steeper than 20% are expected to have less cropped 

areas. The model shows high uncertain predictions on very steep areas (i.e. >40%) due to the small number 

of observations (i.e. the small lines along the x-axis) having very high slope values. 

Figure 12-c shows a negative correlation between the probability of an area being cropped and dry season 

NDVI. Overall, a form of exponential relationship can be seen in the figure. As dry season NDVI increases 

(i.e. most likely forest, or grass, or any other green vegetation) there is less chance of cropland. In areas with 

dry season NDVI higher than 0.51, the probability of agricultural fields declines drastically. 

In Figure 12-d, the crop field probabilities are proportional to the wet season NDVI. The graph shows that 

the model faced difficulties in discriminating agricultural fields within low wet season NDVI values, the 

curve was flatter compared to the curve of dry season NDVI. This is related to the significance and deviance 

explained. The wide confidence values at lower wet season NDVI values probably due to few samples at 

that range of NDVI. From the figure, most of the cropped areas had wet season NDVI values higher than 

0.75.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

Figure 12: Relationship between crop field probabilities expressed as log of odds ratios and smoothing term of: a) 
Elevation, b) Slope, c) Dry NDVI, d) Wet NDVI. The red line represents 0.5 field probability (zero odd ratio). The 

small lines along the x-axis are predictor’s values at sample locations. Dot lines are 2 standard error above and below. 

c) d) 
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The final global model was applied over the whole Oromia to produce 30m-resolution field fractions (Figure 

13). The 30m map showed an overall agreement with the 1km map in terms of detecting fields. However, 

the30m map showed more agricultural areas due to the extremes issue shown in the above figure. Due to 

the change in the pixel size (i.e. smaller), very high values appeared (even 99.8% fields at pixel level) in the 

map. The total agricultural area in Oromia according to our model was 10,109,174 hectares (31% of Oromia 

region) while the total area reported by agricultural census data was 4,077,968 hectares. Our model showed 

a large crop area estimation compared to the reported agricultural areas by the agricultural census, our model 

is suspected to overestimation taking into consideration the complexity of the landscape. But at the same 

time, agricultural census data is suspected to underestimate. Some areas were checked just visually to get an 

insight about the estimation, for example the southern areas in Figure 13 with dense agricultural areas, those 

areas contain large natural pastoral lands with some agricultural fields, while the agricultural census reported 

less agricultural areas in those parts (i.e. from the 1km field fractions). 
 

 
Figure 13: Map of the predicted field fraction (30m resolution) in Oromia 

4.2.2. Global GAM and local GAM 

The described global GAM above is easy to be developed since the process of creating the categorical 

predictor can be fully automated. On the other hand, developing separate models at each agroecological 

zone may result in better predictions but it can be a tedious task. Therefore, a localised GAM model was 

developed within cluster 35 (Figure 14) to be compared with the final global model produced above to 

demonstrate the differences. This cluster was chosen because it was the smallest cluster captured after 

incorporating agricultural census data to hyper temporal NDVI. Thus, less time can be consumed to run 

the experiment. 
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An independent data set within cluster 35 was used to develop the model and to test it later (Figure 14), the 

sample contained 507 binary 30x30m frames, 356 observations were used to develop the model, and 152 

observations were used to test the model later to be compared to the global model. Cluster 35 is a relatively 

topographically homogenous unit. Therefore, elevation was found to be insignificant (p-value = 0.79). It 

explained nothing of the deviance of the binomial distribution. Thus, a model including slope, dry season 

NDVI and wet season NDVI was developed. The AUC for the model was 0.96 and the deviance explained 

was 64.2%. 

 

 
Figure 14: Sample locations within NDVI cluster 35 

Table (3) lists the p-values and the deviance explained by each predictor, all variables were highly significant 

(p<0.001). However, the deviance explained by each variable differed, slope was found to be the most 

important variable in terms of deviance explained 27%. That was basically due to the presence of very steep 

areas at some edges of the cluster (Figure 15) meaning slope was the most discriminant factor between 

agricultural areas and non-agricultural areas within that zone. Dry season NDVI was the second important 

variable with deviance explained 24%. Similar to the global model, wet season NDVI was found to the least 

significant predictor with deviance explained 16%. 
 

Table 3: p-values and deviance explained by each predictor in the stratified GAM 

Predictor p-value Deviance explained (%) 

Slope 4.97e-11 27 

Dry season NDVI 2.60e-11 24 

Wet season NDVI 0.000391 16 
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Figure 15: Estimated field fraction and the effect of the edge steep areas 

 

Figure (16-a) shows that the relationship between crop field probabilities and slope, the relationship is a 

negative nonlinear relationship. The crop field probabilities decrease drastically in steeper areas (steeper than 

20%) meaning areas steeper than 20% are unlikely to be cropped. 

From Figure (16-b), dry season NDVI is showing almost semi flat behaviour which means the model 

suffered in discriminating fields from non-fields areas based on dry season NDVI. Even though the partial 

deviance explained by dry season NDVI was high. The model showed that areas with dry season NDVI 

above 0.35 are less likely to be cropped. 

In Figure (16-c), it can be seen that the crop field probabilities increase with the wet season NDVI. Unlike 

the global model, the stratified model was able to discriminate crop and no crop areas up to a value of 0.55. 

However, the model showed high uncertainty in those areas due to the few observations at that range. 

Between 0.55 and 0.85 wet season NDVI values, the model became flat which indicates difficulties in 

discriminating different levels of field fractions. However, this part of the model showed highly certain 

predictions as can be seen from the narrow confidence bands. The model showed highly uncertain 

predictions in areas with wet season NDVI values above 0.87. The fluctuations seen in mid values (e.g. at 

value 0.68) probably due to the existence of natural vegetation in the zone. 
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Finally, to assess the performance of the local GAM to the global GAM, both models were used to predict 

the agricultural fractions over the independent 156 binary frames. The stratified GAM was found to be 

slightly better than the global model, the AUC values were 0.90 and 0.89 for the stratified GAM and global 

GAM respectively. That indicates a need for other predictors at local scale, and at the same time, it indicates 

that the global GAM compensated for the information about climatology. The global model showed great 

performance compared to a local GAM developed only within only one agroecological zone. 
 

 

a) b) 

c) 

Figure 16: Relationship between crop field probabilities expressed as log of odds ratios and smoothing term of: a) 
Slope, c) Dry NDVI, d) Wet NDVI. The red line represents 0.5 probability (zero odd ratio). The small lines along the 

x-axis are predictor’s values at sample locations 
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5. DISCUSSION 

5.1. On estimating field fraction at coarse resolution (1km) 

Agroecological zones require several types of information to be identified properly such as: topography, 

climate, soil and land use (Quiroz et al., 2000; de Bie et al., 2008; de Bie et al., 2008; de Bie, Nguyen, Ali, 

Scarrott, & Skidmore, 2012; Usman, Liedl, Shahid, & Abbas, 2015). Hyper-temporal NDVI stratification 

was found to be appropriate in identifying the spatial climatological patterns based on the fact that the 

greenness of distinct zones differs (Ali et al., 2013). 

Using ISODATA clustering algorithm 150 clusters were produced, the result showed that long term NDVI 

could be used for capturing the different agroecological zones. The strata showed homogenous patterns 

which can be due to many factors, for example, there was a clear pattern following the terrain changes (i.e. 

topographic uplift). The implications that can be driven from such temporal profiles of NDVI support the 

argument of the advantage of using hyper temporal NDVI stratification for delineating different mixtures 

of land cover. Different dominant land cover types can be identified through the profiles as explained in 

(section 4.1.1). The agro-ecological zones that showed bimodal phenology (i.e. two seasons) are located 

mostly in tropical areas. The crop field probabilities are expected to be high in such zones. Among these 

zones, the zones with higher rainfall amounts have a higher probability of agriculture. Compared to zones 

with bimodal phenology (i.e. one season), crop field probabilities are expected to be less in such zones. 

Monomodal behaviour of NDVI profile indicates drier areas and less rainfall amount. Stable (i.e. no peak) 

NDVI profile with low values indicates bare lands in arid or semi-arid regions. Due to lack of rainfall, less 

crop field probabilities (i.e. possibility of zero crop field probability). The stable NDVI temporal profile 

with high values indicates forested areas or green vegetation. Although such zones are located in areas with 

a high amount of rainfall, low crop field probabilities are expected within such areas. Other reasons may 

lead to low cropping areas in these zones can be inappropriate soil type for cropping, slope (i.e. very steep), 

proximity to other infrastructure (i.e. too far), protected forests. The capabilities of the stratification of long 

NDVI series to discriminate between different land cover types was shown in a study by (Ali et al., 2013). 

Regarding the number of clusters, the initial number of clusters was determined randomly just as a relatively 

large number to avoid merging clusters that supposed to be separate. That was followed by using hierarchical 

cluster analysis to merge the clusters without losing the structure (Gonçalves, Netto, Costa, & Zullo Junior, 

2008). This can be considered as a simple and time efficient approach for optimising the number of clusters 

which in this study was 60 clusters. However, de Bie et al. (2008) suggested the use of separability values 

(i.e. minimum and average separability) to determine the optimal number of meaningful ecological units. 

For future studies, separability analysis can be a better alternative to determine the optimal number of 

clusters, in this context, it is an iterative process in which several runs with different numbers of clusters are 

used and then based on divergence statistics the optimum number of clusters can be determined. The 

minimum and average separability values can be used to determine appropriate options for the number of 

clusters. 

The NDVI ecological zones explained 91.4% of the variation in the reported crop areas. The value of 

adjusted R² was comparable to another study applied using the same method. In a study by Khan et al. 

(2010) in southern Spain, the authors achieved adjusted R² of  98.8%, 97.5%, and 76.5% for rainfed wheat, 

rainfed sunflower, and barley respectively. A major difference between their study and the current study was 

that they applied the method for specific types of crops, while in the current study the objective was to 

estimate the field fraction regardless the crop type. The authors in that study found that the method was 

capable of capturing the variation between different zones (i.e. relative determination of field fractions). 

This finding supported accepting the produced 1km fractions maps in the present study. However, the effect 

of applying the method for all crops together or separately still undetected. To elaborate, the relatively lower 

adjusted R2 achieved in the current study perhaps due to including all crops. Another reason perhaps is the 
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quality of agricultural census data. More import reason could be that the landscape in Ethiopia is more 

complex and fragmented (i.e. topographically heterogenous and climate is more variable) compared to 

southern Spain. In line with that, the size of the farms in Ethiopia is probably smaller than in southern 

Spain. The distinct phenology of the agro-ecological zones are related to certain crops mixed with other 

land cover types (Waine, Taylor, & Juniper, 2014) in addition to cropping systems (Wu et al., 2010). Perhaps 

relating the temporal behaviour of agroecological zones to all crops led to an over-generalization of the 

relationship and therefore lower R2. Due to time limits, no validation set at 1km was produced to validate 

the product. For future studies validation frames of 1x1km can be developed through free cost Google 

Earth images to validate the method more critically when applied for all fields regardless of the crop type. 

For the present study what is critical is that prior probabilities of crop area were generated and significantly 

improved the estimation at higher spatial resolution. The coarse field fractions variable was included in the 

GAM as a categorical predictor which was represented in terms of levels. In other words, this variable was 

not included as a continuous predictor. Thus, the absolute value of field fraction is less important. This 

variable brings in hyper temporal data over a long time. Therefore, it captures some of the long-term 

agroclimatic conditions for agriculture which can compensate for the complexity of mapping over large 

scale areas (i.e. over different climatological conditions). As previously mentioned, there was no validation 

set developed and therefore no guarantee that if the 1km fractions produced fulfilled the relative 

determination aspect which leaves a degree of uncertainty. The high adjusted R² resulted in this study should 

not be taken as an assurance of high quality of the agricultural census data. Basically it showed that there 

was a linear relationship between the agroecological zones occurrences and the reported district statistics. 

In the present research, the 1km field fraction product was used to develop the fine resolution model, but 

this product reveals very useful information that can be applied differently. The downscaled agricultural 

census data can be useful for policy-makers because it allows them to develop policies based on critical 

spatial analysis of agricultural fields. Moreover, applying the regression model for different crops separately 

can allow for food security analysis at large scales but for more critical food security analysis, more detailed 

product is needed. 

5.2. On estimating field fraction at moderate resolution (30m) 

5.2.1. Global GAMs: 

In this study, two GAMs for crop area estimation over Oromia region were evaluated. A model used four 

environmental predictors at 30m-resolution: elevation, slope, dry season NDVI and wet season NDVI. 

Whereas another model added downscaled crop area district data (i.e. 1km field fractions). The results 

showed that inclusion of the 1km field fractions improved the global model (i.e. the explanatory and 

predictive power) to estimate field fractions at 30m-resolution. Most of the researchers in crop-related 

applications focus on collecting EO imagery over the wet season. However, our results showed that dry 

season NDVI was more important than NDVI for field fractions estimate. In fact, the dry season NDVI 

was the most important predictor out of the four environmental predictors. Elevation was found to be 

important in explaining the deviance of the field fractions and subsequently predicting the field fractions 

over Oromia. 

The produced 1km field fractions added 24% to the overall deviance explained (i.e. 62%) by the model. 

Among the other predictors, the 1km field fractions was the most important predictor. Our model utilised 

information about the relationship between agro-ecological zones (i.e. derived from hyper temporal NDVI) 

and the reported crop area. This predictor was important because agricultural field abundance is affected by 

different climatological conditions. In reality, the relationships between landscape characteristics (e.g. 

elevation, slope) and agriculture can be different among the different agroecological zones (Brink & Eva, 

2009; Grace et al., 2014). That can be explained by taking elevation as an example. In Oromia, most of the 

regions contain highlands. In such regions, farmers may plant more areas due to the high rainfall and low 
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temperature. So high field fractions can be found in many ranges of high altitudes. Whereas, in low altitude 

areas, farmers may plant different types of crops and in fewer areas. The functional form of the relationship 

will differ compared to highlands. It can be that the field fractions are high in some low altitude areas then 

continue to increase without dropping (i.e. no extreme highlands). The model based on only the four 

environmental predictors ignores such differences and subsequently showed low overall deviance explained. 

Therefore, the importance of this predictor comes from that it utilised the reported agricultural statistics 

and agroecological zones to determine the agricultural abundance at coarse level. In other words, 

agroecological zones consider the differences in landscape characteristics (i.e. terrain, climate, soil, geology) 

between the zones while the reported statistics show which agroecological zones have higher field fractions. 

In the model, the general forms of the relationships are assumed to be same among the zones, but the 

differences are captured implicitly through fulfilling fifth criterion related to the 1km field fractions. In zones 

with higher field fractions at coarse resolution, the higher proportions of moderate resolution field fractions 

occur at those zones. To summarize, the combinations of the four predictors values for high crop 

probabilities are not same for all agroecological zones. Similarly, the combinations values are not same for 

low crop probabilities among different zones. The 1km field fractions variable allows compensating for 

these differences through explaining a large part of deviance that left after using the four predictors. 

The overall explained deviance by our final model (i.e. including the 1km field fractions) was comparable to 

other studies applied to GAMs in complex and fragmented landscapes. Grace et al. (2012) incorporated 

demographic data in addition to biophysical variables in a GAM for CA. They achieved overall deviance 

explained 43% and 55% in Guatemala and Haiti respectively. Grace et al. (2014) achieved 41.9% and 81.4% 

deviance explained in 2011 and 2012 in an agricultural productive zone in Kenya. In Ethiopia, Husak et al. 

(2008) achieved 33.6% deviance explained. However, their model considered cultivated land in addition to 

grassland and shrubland for CA. Marshall et al. (2011) applied GAM for CA estimation in Niger; their model 

explained 75% of the overall deviance in CA. In all these studies, the produced CA maps were at coarse 

resolution (>2km). Unlike those studies, the present research produced the field fractions at 30m-resolution. 

This is indicating good explanatory power by our model because getting overall deviance explained value 

comparable to those previous studies but at 30m-resolution can be considered as a big step forward in CA 

mapping. The predicted field fractions by the global model included the 1km fractions showed a better 

relationship with the actual fractions. The value of R2 improved from 70% to 77% after including the 1km 

field fractions. Among the previous studies under consideration,  only Marshall et al. (2011) compared their 

predicted fractions to actual fractions, and they achieved R² of 73%. 

Regarding the relationship between the environmental predictors and probability of agricultural fields, dry 

season NDVI was found to be the most important factor. The dry season NDVI showed a negative 

correlation with cropping probabilities. The model showed an exponential relationship with a drastic 

decrease in cropping probabilities at areas with dry season NDVI greater than 0.51. As mentioned before, 

areas with high dry season NDVI represent dense vegetated areas and trees. The steepness of the 

relationship and the narrow confidence band indicated that the dry season NDVI had high capability to 

discriminate between different field fractions. It was important to use dry season NDVI due to the different 

behaviour of cropland and other green vegetation during the dry season. These land cover types are difficult 

to be discriminated through only wet season NDVI (i.e. they show high wet season NDVI values). The 

importance of dry season NDVI in the current model suggests that Oromia has large areas of forests, 

pastoral lands, or any other green vegetation. 

The second most important biophysical predictor was elevation. Based on our model, at low altitude areas 

there was less probability of cropping. Low altitude areas are expected to have high temperature and low 

precipitation relatively. Therefore, farmers avoided cropping in such areas in Oromia. According to 

Alemayehu et al. (2012), most of the smallholder farms are located in semi-humid highlands (i.e. 70% of the 

total crop area) and 26% located in relatively drier highlands. Only around 4% of the total crop area was in 

semi-humid lowlands. Our model showed that the probability of a location being cropped became high in 



MAPPING CROP FIELD PROBABILITIES USING HYPER TEMPORAL AND MULTI SPATIAL REMOTE SENSING IN A FRAGMENTED LANDSCAPE OF ETHIOPIA 

 

38 

areas with altitudes between 1500-2500m. In a good agreement with Husak et al. (2008) in central Ethiopia, 

the range found by them was 1500m to little more above 2000m. Taking into consideration that their study 

area was part of central Ethiopia which is a portion of Oromia region (i.e. their study area was smaller). 

Therefore, the range showed a difference between the current study and their study. The power of GAM it 

is that it allows capturing such complex relationships on different study areas and at different scales. For 

example, Grace et al. (2014) found that in two zones in Kenya (i.e. marginal mixed zone and high productive 

zone) the crop field probabilities were higher at low altitudes. Marshall et al. (2011) in part of Niger found 

the range of altitudes for high probabilities of agriculture was 300-400m. Therefore, using GAM allows 

determining the exact ranges of altitudes for high field probabilities. 

The model showed the flat areas are more likely to be cropped. The effect of the slope in CA variations 

comes from its direct effect on soil characteristics and infiltration rate (Kaspar et al., 2003). Infiltration rate 

would affect CA massively particularly in rain-fed agricultural systems such as in Oromia region. Steep areas 

have lower infiltration rate and higher runoff rate (Mu et al., 2015). Thus, the water storage capacity of the 

soil is low and subsequently crops may not find enough water in the soil. Farmers avoid farming in steep 

areas because soil is shallower (Mehnatkesh, Ayoubi, Jalalian, & Sahrawat, 2013), less fertile (Selassie, 

Anemut, & Addisu, 2015) and harder to work (i.e. to crop) compared to flatter areas. Shallow soils are more 

prone to soil erosion and landslides (FAO, 1999). According to the model, the cropping probability 

decreased with the steepness with extremely low cropping probability in areas steeper than 20%. This finding 

supported by FAO publication about land evaluation; the report stated the areas with slope greater than 

20% are not suitable for agricultural activities (FAO, 2007a). Similarly,  Husak et al. (2008) found that in 

Ethiopia that the cropping probability decreased drastically in areas steeper than 20% slope. In a good 

agreement with Eggen et al. (2016), they found that the largest category of agricultural lands (45% of the 

total agricultural land) in Ethiopia Highlands were located in areas with slope less than 5% and two medium 

categories (28% and 21.9%) located in slope areas between 5% to 20%. Areas with a slope between 20% 

and 40% contained 5% of the total farmland. In area steeper than 40% slope, they found only 0.1% of the 

farmland located there. 

Wet season NDVI was the least important predictor. The model showed semi-flat behaviour for the 

relationship between wet season NDVI and crop field probabilities after the other predictors were 

accounted for in the model. This indicates the wet season NDVI was not a helpful predictor in determining 

field fractions. As indicated above, in dense vegetative areas dry season NDVI tends to have high 

explanatory power, on the other hand, in those areas wet season NDVI tends to have low explanatory power 

(Marshall et al., 2011). Wet season NDVI was positively correlated with crop field probabilities. However, 

a typical form of this relationship is positive correlation up to a certain range and then the cropping 

probabilities start decreasing (due to forest areas or other densely vegetated areas) as found in these studies 

(Grace et al., 2014; Marshall et al., 2011). In the present research, the model showed a continuous increase 

for CA with wet season NDVI due to the inclusion of dry season NDVI in the model. The deviance 

explained by wet season NDVI was largely unexplained by dry season NDVI. Dry season NDVI identified 

forested and other naturally vegetated areas (i.e. negative correlation), thus, wet season NDVI in the present 

study did not show a decrease of CA in high wet season NDVI areas. That was tested by excluding the 

effect of dry season NDVI from the model. In that experiment wet season NDVI showed the typical form 

of relationships with CA. However, the model showed that areas with wet season NDVI greater than 0.75 

are very likely to be cropped. Wet season NDVI can be important in crop-specific area estimation due to 

its ability to capture different phenological stages. 

Comparing the two global models, the difference in terms of R2 was not very high compared to the deviance 

explained by the two models. With a larger testing set, the difference is expected to be higher and the model 

including the 1km field fractions is expected to perform much better than the other model. Despite our 

model showed a high value of R2, the value was leveraged by the extremes. It can be taken as an indicator 

for the good quality of our model, but it does not reflect the actual correlation (i.e. actual correlation is 
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expected to be lower). Compared to the model developed by Marshall et al. (2011), our model was weak at 

capturing the extremes in actual field fractions. The samples that showed low actual fractions and high 

predicted fractions (i.e. lower extremes) represented densely vegetated areas (including flooded areas and 

large streams) and dense trees (including dense trees between fields).  Both classes sometimes act like 

cropland in terms of dry and wet season NDVI (i.e. low and high respectively) following rainfall events. 

This weakness in discriminating those areas can be due to the small size of the sample, in other words, the 

model needed more data to be calibrated. Basically, with small training sample the wet and dry season NDVI 

may not be able to discriminate between fields and dense trees or vegetation. That means those areas had 

elevation ranged between 1500-2500m, slope less than 20% and fell within non-zero 1km field fractions 

category. Those are the ranges for high crop field probabilities based on our model. Therefore, elevation 

and slope in addition to the 1km field fractions were not able to assist the model in discriminating them. 

The sample size is not the only factor that affects the model but also the range of observations (i.e. for field 

fractions and predictors). Regarding observations for predictors, the difficulties that our model faced in 

discriminating crop field probabilities at very high altitudes because very few observed values were at that 

high range (i.e. perhaps outliers). This effect was clear at low wet season NDVI values where the model 

showed high uncertainty. 

On the other hand, upper extremes (i.e. low predictions and high actual fractions) can be attributed to fallow 

lands (i.e. without natural grass). In Google Earth imagery, the identified fields can be fallow lands at the 

date of the extracted median of dry and wet seasons. In that particular year, our model will define the frame 

as low crop probability due to the similar characteristics between bare land and the field which was left as 

fallow land at that year (i.e. low dry and wet season NDVI). Another possible cause perhaps errors in 

defining wet and dry seasons. These errors can be due to errors by analyst or the temporal window identified 

for the delayed moving average algorithm. The relationship between errors in identifying seasons and upper 

extremes can be explained through an example. Assuming the dry season NDVI was identified wrongly for 

one of the agroecological zones, cropland and evergreen trees within that zone may both have high dry 

season NDVI and subsequently low predicted fractions. Similarly if wet season NDVI was identified 

wrongly for one of the zones, cropland and bare land may have low wet season NDVI values and 

subsequently low predicted fractions. The delayed moving average algorithm was used in the current study 

because it is simple and time efficient. 

The issue of both extremes can be attributed to misregistration errors. Google Earth images and the 

moderate resolution predictors may have alignment errors at pixel level taking into consideration the 

different sources of this data. In the present study, the native resolution of the predictors was used (i.e. 

30m). This can be improved through aggregating the predictor to coarse resolution (Grace et al., 2012; Grace 

et al., 2014; Marshall et al., 2011). However, that comes at the expense of the product spatial resolution. A 

suggestion for further studies would be aggregating into 90x90m for example. 

The abovementioned issues resulted in over-estimation of the total CA in Oromia compared to the reported 

statistics by the Central Statistics Authority (CSA). This comparison is difficult to be conducted due to the 

different definitions of CA between our product and reported statistics. Our method estimated cropland 

area including both active and fallow land (i.e. fields identified through Google Earth). Whereas in reported 

statistics only active crop land at 2001-2002 was reported. In Ethiopia, agricultural statistics are produced 

by both CSA and the Ministry of Agriculture and Rural Development (MoARD) and their estimates differed 

significantly (Carletto, Jolliffe, & Raka, 2013). Those findings were similar to the findings by Husak et al. 

(2008) in Ethiopia. The authors compared their CA estimation through remote sensing to the reported 

statistics by CSA for nine districts. They found that the remotely sensed total estimation was higher by 74% 

while for the present study our model overestimated the reported statistics by 148% (taking into 

consideration different study area size in the two studies). That was because of the extremes issues in our 

model compared to their model. However, the authors indicated a high positive correlation between the 

estimations which can be understood as an indicator of systematic bias. Another reason for the differences 
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between our product and the reported statistics is the shifting cultivation. Shifting cultivation is common in 

Ethiopia; the timely remote sensing information as used in this study can allow for capturing the changes 

while the reported statistics lack enough temporal information. Similarly, the changes in intercropping 

strategies by framers in different years my contributed to those differences. However, the agricultural census 

data in the present study was not used for validation. The method incorporated the agricultural statistics to 

determine the relative agricultural abundance with each agroecological zone at a coarse resolution to 

improve the CA estimation at finer resolution. Other data sources are available at global and regional scales 

but they are characterized with high uncertainty (Fritz et al., 2011; See et al., 2015; Vintrou et al., 2012). 

Official agricultural statistics data by CSA was considered to be the most accurate available data. 

The method showed great performance in terms of predicting moderate resolution field fractions taking 

into consideration all the issues discussed above in addition to the fragmentation of the landscape. The 

method relied on using existing and freely available data. The only time-consuming part is developing the 

calibration set. However, compared to collecting data through field surveys, the method outlined in this 

study can save massive time. The method can be used by researchers and governments for applications 

related to CA such as: environmental studies, food security analysis and crop modelling. In a country such 

as Ethiopia which lacks quality information about crop area mapping and estimate, this method can produce 

good quality crop area information for any particular year by extracting dry and wet season NDVI for that 

particular year. A possibility of utilising free Sentinel-2 images (10m resolution) for a particular year to aid 

in visual interpretation with Google Earth can be explored for further improvements. Utilizing such data 

on the same year for dry and wet season NDVI would enhance the discrimination between fallow land and 

active fields. Sentinel-2 offers higher spatial, spectral, and temporal resolution compared to Landsat-8 

(Forkuor, Dimobe, Serme, & Tondoh, 2018). Sentinel-2 has three bands in red-edge (20-m resolution). Red-

edge bands represent a steep transition in the wavelength from red portion to near-infrared portion (i.e. 

sharp increase in vegetation reflectance) (Delegido, Verrelst, Alonso, & Moreno, 2011). Those bands were 

found to help improve the accuracy agricultural mapping (Ezzahar et al., 2018; Forkuor et al., 2018; Griffiths, 

Nendel, & Hostert, 2019; Immitzer, Vuolo, & Atzberger, 2016; Lambert, Traoré, Blaes, Baret, & Defourny, 

2018). Useful indices can be extracted using these bands such as red-edge normalised index and then used 

as a predictor in GAM. Other vegetation indices -in which atmospheric and soil background effects are less 

than NDVI- can be useful to improve the accuracy of CA estimate. Examples of such indices that can be 

considered as potential predictors: enhanced vegetation index (EVI) and soil adjusted vegetation index 

(SAVI) (Sonobe et al., 2018). The capabilities of radar remote sensing can also be useful to be used in future 

studies. Radar systems are independent of weather conditions and they can penetrate clouds (Chen, 

Lasaponara, & Masini, 2017). This makes radar systems suitable for agricultural monitoring (Bargiel, 2017; 

Canisius et al., 2018; Jiao et al., 2014; Steele-Dunne et al., 2017) due to the ability to get cloud-free images 

during the growing season (Brisco, 2004). For example, Sentinel-1 radar system has spatial resolution ranges 

from 5m to 40m for different instruments and revisits time of 12 days which makes it appropriate for 

detecting temporal behaviour for crops (Veloso et al., 2017). Additionally, Sentinel-1 data can be used to 

retrieve soil moisture (Gao, Zribi, Escorihuela, Baghdadi, & Segui, 2018). Such data can be used as a 

predictor within the context of the GAM to explore its capability to improve the overall deviance of 

agricultural fields. 

For future studies, to enhance the model in detecting extremes more extreme fractions (i.e. both low and 

high) should be collected to calibrate the model. In addition to the improvements mentioned above, there 

is an alternative worthy to be explored for further studies. The agro-ecological zones can be used only for 

defining wet and dry seasons per zone or it can be used as a categorical predictor. Based on that, NDVI 

data can be extracted for a particular year or two following years. However, other temporal windows can be 

explored in the delayed average algorithm and even other algorithms to extract seasonality such as peak 

NDVI method (Sakamoto et al., 2005) can be used. By developing a lot of samples using Google Earth 

images and Sentinel-2 images and adding some potential other predictors, the method is expected to 



MAPPING CROP FIELD PROBABILITIES USING HYPER TEMPORAL AND MULTI SPATIAL REMOTE SENSING IN A FRAGMENTED LANDSCAPE OF ETHIOPIA 

 

41 

improve significantly. Due to time constraints related to this study, few samples were obtained while a 

sample size of thousands can be developed easily using the same way outlined in the current method. Other 

potential predictors to consider can be: livelihood zones (Marshall et al., 2011), demographic data (Grace et 

al., 2012), soil characteristics and population pressure (López, 2014). Socio-economic factors (e.g. 

population density, age of farmers, education, number of households) affect the agricultural distribution 

(Abah & Petja, 2015; Dang & Kawasaki, 2017; Teshome, 2014). Including such predictors to the GAM can 

improve the results significantly (Marshall et al., 2017).  

5.2.2. Global GAM and local GAM 

In a study area with fragmented landscape and high variations in climatic conditions, defining different 

homogenous zones and apply separate GAMs for each zone is expected to improve the estimations. Grace 

et al. (2014) suggested the use of separate GAMs for two different zones in Kenya named ‘Marginal Mixed 

Zone’ and ‘High Potential Zone’. Their suggestion was based on the differences (e.g. climatology, terrain, 

land use practices) between the zones and separate GAMs would allow for improved estimation of CA. 

Therefore, in the present research a local GAM within one agroecological zone was developed to be 

compared to our final global model. Due to the homogeneity of the zone, elevation was found to be 

insignificant. Contradictory to that, slope was found as the most important predictor. That was due to the 

effect of steep areas at the edge of the zone. Those steep areas were non-agricultural areas; thus, slope was 

the main variable in discriminating fields from non-fields taking into consideration the zone was dominated 

by agricultural areas. Like the global model, areas steeper than 20% are very less likely to be cropped. Despite 

ISO DATA clustering divided the study area into relatively homogenous zones but issues related to edges 

remained. That can be due to running large initial number of clusters and then merging them. As mentioned 

above, an improvement would be to use the separability analysis to determine the optimal number of zones. 

The zone was dominated by agricultural areas (i.e. highest 1km field fractions zone) and some trees including 

trees between fields. Moreover, the steep areas at the edges contained shrubs and grass. Therefore, although 

dry season NDVI showed a semi-flat negative relationship (i.e. weak discrimination) but it explained 24% 

of the binomial deviance. Dry season NDVI was used to help in differentiating fields from trees and green 

vegetation and since those classes were abundant, dry season NDVI explained a large part of the deviance. 

On the other hand, wet season NDVI was important to discriminate between fields and bare land. That can 

also be seen from the steepness of the relationships. Wet season NDVI showed great performance in 

discriminating fields and non-fields even though the model became flat above an NDVI value of 0.55. 

However, areas with dry season NDVI less than 0.35 are more likely to be cropped. In another zone 

dominated by fields and bare areas, wet season NDVI would become more important than dry season 

NDVI since both these land cover types have high dry season NDVI. 

Our global model was redeveloped using a binary response variable instead of fractions (crop/no-crop) to 

be compared to the local model. The comparison between the two models showed that the global model 

included the 1km field fractions was able to predict the crop field probabilities within that zone. The 

comparison showed very close results and the local model was not superior to the global model. However, 

there is a degree of uncertainty in this experiment. Although the two models were evaluated using the same 

testing set, different calibration sets were used to develop the models. Additionally, in the local model more 

one predictor was excluded (i.e. elevation). 

In the local model, the different forms of the relationships between the crop probabilities and the predictors 

are explicitly addressed through developing separate GAM for each agro-ecological zone. Whereas in the 

global model, the forms of the relationships are considered to be same and the differences are captured 

implicitly through the 1km field fractions (i.e. the added partial deviance explained). Based on the results, 

including the agroecological zones from hyper temporal NDVI compensated for the differences in 

climatological conditions. The process of developing a global GAM is much easier and more time efficient 

than developing separate GAMs per zone. That makes our global model a vital tool for governments and 

researchers in applications related to crop area estimation. 
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6. CONCLUSION 

In this research, a method for crop field probabilities mapping (at 30-m resolution) in a fragmented 

landscape was developed and evaluated. In this study, agroecological zones (i.e. derived from hyper-

temporal NDVI) were integrated with reported agricultural statistics to estimate coarse field fractions (at 

1km-resolution). Since the study aimed at estimating crop field probabilities at moderate resolution (i.e. 30-

m), four moderate resolution environmental factors were involved. The coarse field fractions, elevation, 

slope, dry season NDVI, and wet season NDVI were used as predictors in a generalised additive model 

(GAM). In the model, the predictors were able to explain 62% of the overall deviance in field fractions. The 

predicted field fractions by the model explained 77% (R2 value) of the variations in the actual fractions of 

81 validation observations. The 1km field fraction was found to be the most important variable (i.e. partial 

deviance explained value of 24%). Among the four environmental predictors, dry season NDVI was the 

most important predictor (i.e. 16% deviance explained) followed by elevation (i.e. 15% deviance explained). 

In other words, the inclusion of moderate resolution NDVI and terrain improved the explanatory and the 

predictive power of the model. This global GAM (i.e. over whole Oromia) was compared to a local GAM 

(i.e. within one agroecological zone) in terms of model performance. The area under curve values were 0.89 

and 0.90 for the global model and the local model respectively. Thus, including a predictor related to the 

different climatic conditions (using hyper-temporal remote sensing) in a global model can replace developing 

separate GAMs per each homogenous zone. Taking into consideration the complexity of the landscape, 

GAM was able to capture the complex relationships between field fractions and the predictors. GAM has 

this capability since it relaxes linearity assumptions compared to other models which subsequently allow 

capturing complex nonlinear relationships. The method is easy and time efficient to be applied. Most 

importantly, all the data used to conduct this study were free of cost. Therefore, this method may contribute 

to providing timely, good accuracy, moderate resolution field fractions even in fragmented landscapes for 

food security and environmental studies. Thus, the method outlined can be used effectively by governments 

(i.e. particularly in developing countries with limited funds) to produce crop area maps and subsequently 

estimate the crop production. Accurate and timely information about crop production aids governments in 

decision and policy-making process to secure food. In future studies, using the agroecological zones as a 

categorical predictor in the model without incorporating the reported statistics can be explored. Other 

sources of remotely sensed data can be utilised to derive potential predictors to improve the crop field 

probabilities estimate. The red edge bands provided by Sentinel-2 can be used to derive red-edge normalised 

index. Moreover, using radar data (e.g. Sentinel-1) may improve the model due to its capabilities (i.e. cloud 

penetration and weather-independent). Additionally, some other vegetation indices such as enhanced 

vegetation index (EVI) and soil adjusted vegetation index (SAVI) can be explored as potential predictors. 

In addition to biophysical variables, including socio-economic variables (e.g. population density, number of 

households, income) is a valuable option to consider for applying the method in future. 
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