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ABSTRACT 

The relatively low cost and usefulness of UAV coupled with advances in photogrammetry and computer vision 
have caused a global rise in the use of UAV for surveying. Images obtained from UAV has been used to derive 
forest parameters to estimate aboveground biomass and carbon. However, the quality of results obtained from 
UAV image processing needs further assessment.  

The sensors onboard UAV’s cannot penetrate forest canopy cover which makes it difficult for UAV to image the 
forest floor, especially in a dense canopy forest. With the difficulty of UAV mirroring the forest floor, fewer points 
will be generated on the forest floor, but many points will be generated on top of the forest canopy. With fewer 
points on the forest floor, poor Digital Terrain Model (DTM) will be generated in contrast to the Digital Surface 
Model (DSM) created where many points are created and used.  

In this study, the quality of DTM generated from UAV images under four canopy density classes (open canopy 
plantation, medium canopy plantation, dense canopy plantation, and dense riparian forest) and its effect on the 
estimation of aboveground carbon was assessed. The accuracy of UAV-DTM was assessed by comparing to field 
point obtained from a Real-Time Kinematic (RTK) survey and calculating the root mean square error. Canopy 
Height Models (CHM) per canopy density class were developed from the UAV and field point data to estimate 
tree height. The t-test was used to determine the similarity/difference between tree height estimated from UAV 
and field point data at 95% confidence interval. Furthermore, manual digitizing was used to extract the crown 
projection area (CPA) which was used with its associated field measured DBH to develop a mathematical model. 
The CPA-DBH model developed was used to predict DBH that could not be measured. From the forest 
parameters (DBH and tree height), an allometric equation and conversion factor were used to estimate 
aboveground carbon. Aboveground carbon was estimated from both UAV and field point data, and the t-test was 
used to determine if there is a statistical difference.  

From the accuracy assessment, the riparian forest exhibits the highest error.  Also, the field point elevation in open, 
medium, and dense canopy was not different to UAV derived elevation unlike the riparian forest. According to 
the DBH-CPA model developed, there was a positive relationship between the CPA and DBH. The result of the 
tree height estimated from UAV and field point shows that there is no significant difference between tree height 
estimated from UAV and field data for open, medium, and dense canopy density but the tree height estimated 
from UAV in the riparian forest is significantly different from field point estimated tree height. The t-test for 
aboveground carbon estimated also shows that there is no statistical difference in UAV and field point estimated 
aboveground carbon for open, medium, and dense plantation canopy. However, aboveground carbon estimated 
from UAV and field point data in the riparian forest is statistically different.  

In conclusion, forest canopy density influences the estimation of aboveground carbon in the riparian and plantation 
forests. The difference in the riparian forest is significant while that of the open, medium, and dense canopy 
plantation is not.   
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1. INTRODUCTION 

1.1. Background 

Global warming is caused by the rise in the concentration of greenhouse gases (such as carbon dioxide) in the 
atmosphere, resulting in trapping longwave radiation (Grace et al., 2014). Global warming has many undesirable 
effects such as temperature and sea level rise, more extended drought, precipitation change, and hurricanes (NASA, 
2018). The increase in greenhouse gases is mostly due to human activities such as deforestation, forest degradation, 
industrialization, land use and land cover changes (Baccini et al., 2012; Malhi, 2010).  

Forests are vital in mitigating global warming as it absorbs a large part of carbon dioxide (CO2) emitted into the 
atmosphere through photosynthesis (Gibbs et al., 2007). About 31% of total land on Earth is forest which stores 
more carbon dioxide than any other ecosystem (Saatchi et al., 2011). Although forest stores CO2, degradation and 
destruction of forest releases an enormous amount of CO2 into the atmosphere, hence increasing the volume of 
greenhouse gases (Mohren et al., 2012). According to the 2013 report on climate change by the Intergovernmental 
Panel on Climate Change (IPCC), about 10% of net global emission is due to the conversion of forest land to 
other land use (IPCC, 2013).  

Among the different forest types, the tropical forest has the most substantial CO2  sequestration rate (Mohren et 
al., 2012). However, the frightening rate of tropical forest degradation and deforestation has made CO2 the highest 
anthropogenic contributor to greenhouse gases, next to only fossil fuels (Hirata et al., 2009). To reduce the 
emission of greenhouse gases, United Nation Framework Convention on Climate Change (UNFCCC) was 
established and is based on monitoring and reporting the status of forest carbon (Peltoniemi et al., 2006).  
 
The United Nation Framework Convention on Climate Change (UNFCCC) introduced the Reducing Emission 
from Deforestation and Forest Degradation (REDD+) program to mitigate global warming through forest carbon 
sequestration (Scheidel & Work, 2018). The REDD+ program was initiated to protect the forest by reducing forest 
degradation and deforestation among member countries (Graham et al., 2017). The participating countries report 
annually on their CO2 emission and sequestration through the Monitoring, Reporting, and Verification (MRV) 
mechanism (UNFCCC, 2018). Introduction of the REDD+ programme has led to scientific research for methods 
to assess the compliance of participating countries to the REDD+ program (Castedo-Dorado et al., 2012).  

The MRV of forest carbon stock requires methods that are affordable and give accurate estimates of forest biomass 
(Kauranne et al., 2017). Forest biomass is the plant-produced organic materials above the soil (such as stalk, seeds, 
leaves) and roots (Hussin, 2018). Forest biomass includes both below and above-ground forest biomass; however 
aboveground forest biomass accounts for about 70% to 90% of total forest biomass (Cairns et al., 1997). Forest 
aboveground biomass estimation is crucial in aboveground carbon stock mapping as aboveground carbon is about 
47-50% of forest aboveground biomass (Zaki et al., 2016). Aboveground carbon can give indications of the carbon 
sequestration rate, the forest carbon stock, and the possible carbon emitted into the atmosphere during forest fire, 
deforestation or forest degradation (Blanc et al., 2009). Hence there is a need to estimate aboveground carbon 
accurately.  

Aboveground carbon can be accurately estimated using the harvesting method which involves felling, drying and 
weighing all parts of a tree but the method leads to forest degradation, deforestation, and release of carbon (Basuki 
et al., 2009). In addition, the process is expensive in terms of labor, time, cost and covers a small area (Hussin, 
2018).  Although the harvesting method has many disadvantages, it is required to develop an allometric equation 
that can be used to estimate subsequent forest biomass using non-destructive methods (Yuen et al., 2016). Input 
for allometric equations can include diameter at breast height, tree height, crown projection area, and tree species 
(Basuki et al., 2009). Estimating forest aboveground biomass through the non-destructive method requires accurate 
measurement or estimates of forest parameters and using an appropriate allometric equation (Kankare et al., 2013). 
The non-destructive method includes field measurement and remote sensing methods. Field measurement is 
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expensive (cost, time, and energy) and covers a small area while remote sensing provides a cost-effective means of 
measuring forest parameters over large and inaccessible areas (Böttcher et al., 2009). Moreover, remote sensing 
data can be used to develop a systematic observation for monitoring and evaluating past and present carbon stock 
which can be used to project future carbon stock changes thereby explaining the carbon stock dynamics of the 
area.  

Optical remote sensing data can be used to map aboveground carbon, but the spatial resolution significantly affects 
the accuracy of aboveground carbon estimated. With a medium or coarse resolution (5m or higher) optical remote 
sensing data, it might be difficult to identify individual trees depending on the size, spacing and crown projection 
of the tree. The estimated aboveground carbon from medium or coarse optical satellite image can be influenced 
by soil, grass, or any other feature if the pixel that contains the tree also entails these features. To be able to map 
accurately aboveground carbon, it is necessary to extract individual trees from the background (soil, branches, or 
weed) to reduce or eliminate the background influence on aboveground carbon estimated. Boisvenue et al. (2016) 
compared aboveground carbon estimated from field measurements and optical remote sensing. The results from 
the studies indicated that medium resolution optical remote sensing data could not be accurately used to estimate 
aboveground carbon. The availability of high-resolution (below 5m) optical satellite data has shown more promise 
in mapping aboveground carbon with satellite imagery as it entails enough details to identify individual trees. Baral 
(2011) estimated aboveground carbon from high-resolution satellite imagery (1 m) and concluded that high-
resolution satellite imagery could be used to estimate aboveground carbon. However, the disadvantages are that 
cloud and shadow which affect optical remote sensing data can lead to data occlusion (Rodríguez-Veiga et al., 
2017). Also, the optical satellite images can only provide two-dimensional (2D) but not three-dimensional (3D) 
forest parameter such as tree height.  

Light Detection and Ranging (LiDAR) data are remotely sensed data that can be used to extract 3D forest 
parameters (Jung et al., 2011). Research has shown that LiDAR data can be used to acquire forest parameters that 
can be used to estimate forest aboveground biomass and carbon with high accuracy (Brovkina et al., 2017; Ene et 
al., 2016; Ferraz et al., 2016; Hyyppä et al., 2012). However, LiDAR data can be expensive for regular forest 
monitoring and is not readily available everywhere (Pirotti, 2011). 

Unmanned Aerial Vehicles (UAV’s) are relatively new devices that can be used to acquire high spatial and temporal 
resolution imagery (Turner et al., 2012). The UAV image acquisition can be planned to suit the intended purpose 
while reducing the effect of weather on the image quality which is vital in reaching the REDD+ MRV goals (Getzin 
et al., 2012). Unmanned Aerial Vehicle (UAV) can also be used to supplement field-based forest inventory 
measurement as it can be used to acquire images at any time of the day provided illumination and weather 
conditions are good (Messinger et al., 2016). 

There are three main types of UAV namely: fixed wing, rotor based, and a hybrid version (combination of fixed 
wing and rotor functionality) (Chapman, 2019). Unmanned Aerial Vehicle’s (UAV) can carry different cameras 
such as red-green-blue (RGB) camera, multispectral camera (such as Sequoia), and even LiDAR sensor but this 
usually depends on the weight of the UAV and the camera (PrecisionHawk, 2018). Unmanned Aerial Vehicle 
(UAV) was used mainly for military purposes until recently where many civil applications (such as forestry and 
agriculture) also employ UAV’s (Shahbazi, Théau, & Ménard, 2014). 

The emergence of UAV coupled with the advance in computer vision and photogrammetry has made it possible 
to obtain 3D information from 2D images at a relatively low cost. Sensors onboard the UAV are used to obtain 
cloud-free, high temporal, and spatial resolution images (Tomaštík et al., 2017) which are processed using Structure 
from Motion (SfM) technique to obtain 3D information (MathWorks, 2018). Structure from motion is a 
photogrammetric method of acquiring 3D information from overlapping 2D images through stereo vision (Nex, 
2018b). For the structure from motion technique to work, images with overlaps captured at different location 
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(Figure 1-1) are used to identify similar features (tie point) in the overlapping images.  
 

 
Figure 1-1: A series of overlapping photographs as input for structure from motion (Westoby et al., 2012). 

These tie points are identified and traced from one image to the other and used to estimate the initial camera 
position and coordinates of features (point clouds). From the tie points, the camera position and geometry of the 
scene (image block) are automatically reconstructed (Westoby et al., 2012). The initial solution is then iteratively 
enhanced using least-squares minimization (Snavely et al., 2008). The camera position and point clouds derived 
from the structure from motion method are relative because it is not referenced to real-world coordinates, has no 
scale and orientation which can be provided by ground coordinates. The generated point clouds which are in a 
“relative image space coordinate system” are then georeferenced to a “real world object space coordinate system” 
with the aid of ground control points (Westoby et al., 2012).  

The generated points are classified into the ground and non-ground points. The ground points are interpolated to 
obtain a Digital Terrain Model (DTM) while all the points are interpolated to get a Digital Surface Model (DSM). 
Orthophotos are then generated from the DSM and image block through the orthorectification process (Nex, 
2018a). The orthorectification process is the process of removing the effect of tilt and relief from an image to 
produce a constant scale planimetric image (Esri, 2016b).  

The DTM, DSM, and orthophoto obtained from UAV data can be used to estimate forest parameters (DBH, tree 
height, and species). Crown projection area (CPA) can be derived from the orthophoto and research has proved 
that there exists a relation between field-measured DBH and the crown projection area (Hirata et al., 2009; 
Shimano, 1997). This implies that from the crown projection area, DBH can be estimated. The arithmetic 
difference between the DSM and DTM can be used to obtain the canopy height model (Lisein et al., 2013). With 
the crown projection area (CPA) and canopy height model, the tree height can be estimated.  With these parameters 
(DBH and tree height), an appropriate allometric equation and a conversion factor can be used to estimate 
aboveground carbon.  

1.2. Research problem 

The relatively low cost and usefulness of UAV have caused a global rise in the use of UAV for surveying. However, 
the quality of the result obtained from processing UAV images should be assessed. 

Berhe (2018) and Odia (2018) used UAV acquired images to extract forest parameters (such as crown projection 
area and tree height). These parameters were input in an allometric equation to estimate aboveground carbon. The 
result from the research indicated that the accuracy of aboveground carbon estimated depends on the accurate 
estimation of the crown projection area and tree height.  
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Object-Base Image Analysis (OBIA), a remote sensing processing method that does not use only spectral 
information but also textural and geometric properties to detect features can be used to generate crown projection 
area with reasonable accuracy depending on the image resolution and canopy layers (Gomes & Maillard, 2016). 
However, tree height which is estimated from the Digital Surface Model and Digital Terrain Model can be 
inaccurate especially in a dense forest. 

Unlike Radio Detection and Ranging (RADAR), UAV sensors cannot penetrate canopy cover making it very 
difficult for UAV to image the forest floor especially in a dense canopy forest (Wallace et al., 2016). If the forest 
floor is difficult to image, then less tie points and subsequently few points will be generated on the forest floor in 
contrast to the top of the canopy where more tie points will be generated. The generated points are used to create 
the Digital Terrain Model (DTM) and Digital Surface Model (DSM) but the quality of the DTM and DSM depends 
on the quality, quantity, and distribution of points used (Nex, 2018a). Due to this, the quality of DTM generated 
in a dense forest will be poor compared to the generated DSM where more points are generated on the forest 
canopy. With an accurate DSM but a less accurate DTM, the tree height estimated may not be representative of 
the actual tree height and may result in inaccurate estimation of aboveground carbon (Ota et al., 2015).  

To improve the estimation of tree height, some researchers proposed using the mean of the pixels per crown 
projection area (Ota et al., 2015; Ioki et al., 2014). However, Ota et al., (2015) in their research concluded: “to 
accurately estimate AGB, we need a more accurate DTM than the DTM derived from aerial photographs using 
the Structure from Motion approach.” 

Although research has been carried out in accessing the quality of Digital Terrain Model and its effect on the 
estimation on canopy height model, no study has been found that considered the influence of canopy density 
on the estimation of UAV generated DTM as different forest canopy density will have different effect on point 
generated and subsequently DTM created.  

The canopy density of the forest depends on the forest type. Plantation forest has trees planted at regular interval 
hence reducing the effect of intermingling crown and canopy layer. Also, the canopy density of the plantation 
depends on the age of the plantation forest. Unlike plantation forests, natural and riparian forests have different 
tree species at irregular spacing hence increasing the crown intermingling effect and making the canopy denser. 
Also, the different tree species have different growth and development. Hence the tree layers will be different 
which also makes the forest canopy denser and difficult for the UAV to image the forest floor. All these affect the 
quality of the Digital Terrain Model generated from UAV. Hence, the main aim of this study is to assess the 
accuracy of UAV-DTM generated under different forest canopy density (open, medium and dense) and its effect 
on the estimation of aboveground carbon. 

1.3. Research objectives 

The primary objective of this research is to assess the quality of UAV-DTM generated under different canopy 
density and its effect on the estimation of aboveground carbon.  

The specific objectives are: 
a) To assess the accuracy of DTM generated from UAV images under different forest canopies. 
b) To model the relation between CPA and field measured DBH. 
c) To model tree height from field point and UAV data. 
d) To evaluate the effect of different canopy density on the estimation of aboveground carbon. 

1.4. Research questions 

a) What is the accuracy of UAV-DTM compared to field points under different forest canopy density? 
b) What is the relation between CPA and field measured DBH? 
c) What is the difference in tree height generated from UAV-CHM and field-CHM? 
d) What is the difference in the aboveground carbon estimated from UAV dataset compared to field point? 
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1.5. Research hypothesis 

a) H0: There is no relation between root mean square error and canopy density.  
H1: There is a relation between root mean square error and canopy density. 

b) H0: There is no relationship between CPA and field measured DBH.  
H1: There is a relationship between CPA and field measured DBH.  

c) H0: There is no significant relationship between UAV-CHM and field CHM.  
H1: There is a significant relationship between UAV-CHM and field CHM. 

d) H0: There is no significant difference in aboveground carbon estimated from UAV and field data. 
H1: There is a significant difference in aboveground carbon estimated from UAV and field data. 

1.6. Conceptual diagram 

The system boundary for this research is Asubima forest in Ghana. The input to this system is the sun which emits 
rays. The emitted sun rays interact with the atmosphere. Some of the emitted sun rays are absorbed and reflected 
by the atmosphere, while others are transmitted. The transmitted sun rays reach the system (forest) and interact 
with the trees in the forest system.  

The trees also interact with the atmosphere by absorbing carbon dioxide and releasing oxygen during the day. At 
night, the trees release a small amount of carbon dioxide. The interaction between the sun rays, atmosphere and 
trees in forest results in changes to tree height and DBH through photosynthesis.  

The UAV interacts with the sun rays which interact with the trees. From this interaction, the amount of 
aboveground carbon stored in the trees can be estimated. The conceptual diagram below (Figure 1-2) shows the 
various systems and interactions within the system. 

 
Figure 1-2: Conceptual diagram of system interactions 

The UAV used in this study has only RGB camera on-board, hence can only receive rays from the sun in the 
visible wavelength range. The visible rays cannot penetrate the canopy but hit the top of the tree canopy and is 
reflected. In an open space, the sun rays hit the ground and reflected. The sensor on the UAV receives the reflected 
rays. The research mainly uses the interactions between the UAV and forest canopy to investigate the accuracy of 
UAV-DTM and its effect on estimating aboveground carbon.   
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2. STUDY AREA, MATERIALS, AND METHOD 

2.1. Study area 

The research was carried out in Asubima forest which is a degraded forest in the Ashanti region of Ghana and 
under the authority of Offinso District Forestry Commission. The geographical location of the reserve is between 
621700m E – 628000m E and 812800m N – 822600m N. The forest is about 100 km from Kumasi (Ashanti 
regional capital) and shown in Figure 2-1 below.  
 

  
Figure 2-1: Map of Asubima forest reserve, Ghana.  

The forest was hugely degraded due to activities such as forest fire, illegal farming and logging. In an attempt to 
reforest the area which lies in the dry semi-deciduous ecological zone, a private forestry company (FORM Ghana) 
was given about 3,500 ha out of 11,130 ha for teak plantation through the Public Private Partnership (PPP) 
agreement (Wanders, 2017). The PPP agreement was between the Forestry Commission of Ghana, traditional 
landowners, and Form Ghana with the aim of restoring the degraded forest through the establishment of forest 
plantation (World Bank, 2016).  

2.1.1. Climate  

There are two main climate seasons namely the wet (rainy) and dry seasons. The dry season generally begins from 
November to March and July to August while the wet season begins from March to July and September to October. 
The area has an annual average temperature and rainfall of 260C and 1227 mm respectively with the warmest 
months between February and March (Wanders & Tollenaar, 2017).  

2.1.2. Vegetation 

The composition of tree species in the study area is about 90% of Tectona grandis (teak) and about 10% of mixed 
indigenous species such as Triplochiton scleroxylon (Wawa), Milicia excelsa (Odum), and Entandrophragma cylindricum 
(Sapele). The natural and riparian forest were conserved.  
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Enrichment planting was carried out in the riparian forest to improve the riparian forest which enhances 
biodiversity, reduce erosion, and protects the water from erosion. The riparian forest also serves as habitat for 
wildlife and controls pollution of the stream.  

2.2. Material 

Different field equipment, as shown in Table 2-1 below, were used to acquire the data needed for this study. 

Table 2-1: List and use of field equipment 

I.D Purpose Field instrument 

1 Taking pictures of forest canopy density Canon EOS 60D camera with fisheye lens  

2 To measure 3D ground data  Trimble R10 RTK system with external radio and 
elevated external antenna for base 

3 To mount base of Trimble R10 equipment Tripod  

4 External power supply  Boliden car battery 

5 For UAV survey DJI Phantom 4 Pro 

6 To establish temporary GCP GCP plastic target 

7 To measure the height of trees Suunto clinometer 

8 To measure the diameter of trees Diameter tape  

9 To measure base to aid tree height measurement Measuring tape  

10 Record measurement on field Data recording sheet 

11 UAV flight planning and navigation iPhone 6S 

12 For making way in the forest Cutlass 

In this study, Real Time Kinematics (RTK) survey points (field points), biometric data (DBH and tree height), 
hemispherical and UAV images were collected from the field and used for analysis. As the study aims to evaluate 
the error in UAV DTM, it was imperative to measure the elevation of the terrain as accurate as possible to serve 
as reference data. Hence the RTK survey was used because it can measure 3D coordinates at sub-meter accuracy 
and takes less time (Trimble, 2014). Data collection was between 20th September to 17th October 2018.  

Different software was used to acquire and process the data to obtain the required result. Table 2-2 below shows 
a list of software used.  
 
Table 2-2: List of software used 

I.D Purpose Software  

1 Spatial analysis, map making, and digitizing Arc Map 10.6.1 

2 Processing images from the hemispherical camera Gap Light Analyzer 2.0 

3 Processing UAV acquired images Agisoft Photoscan Professional 1.4.3 

4 Thesis writing Microsoft Word 2016 

5 Thesis presentation Microsoft PowerPoint 2016 

6 UAV flight planning Pix4D capture 

7 UAV setting and configuration DJI 4 Go 

8 Flowchart yED Graph Editor 

9 Statistical analysis Microsoft Excel 2016, R 

11 Referencing and citation Mendeley Desktop 

12 Extracting coordinates  Google Earth Pro 

13 Point cloud analysis LAStools 

14 Geoatabase for research Arc Catalogue 10.6.1 

15 Filtering UAV tie point Python 

2.3. Method 

The method used in the study can be grouped into three (3) parts. 
Part 1 was reconnaissance survey and data collection which involved topographic survey, biometric data collection,  
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hemispherical and UAV images capture.  
Part 2 was data processing which involved processing the data obtained in Part 1 to obtain Digital Surface Model,  

Digital Terrain Model, and orthophoto. The tree crowns were also digitized and canopy height model 
developed from both UAV and field point data. 

Part 3 was data analysis which involved analysing the result obtained from Part 2 to answer the research questions.  
From the analysis, the accuracy of the UAV DTM was assessed by calculating the root mean square error 
per canopy density class to answer research question 1. Also, the relation between the CPA and its 
associated DBH was determined to answer research question 2. Furthermore, the difference or similarity 
between tree height estimated from UAV and field data was determined to answer research question 3. 
Finally, aboveground carbon was estimated from UAV and field point data per canopy density class. The 
influence of the canopy density was determined by evaluating if the difference in aboveground carbon 
estimated from UAV and field point data was significant to answer research question 4.  

Figure 2-2 below shows a flowchart of the method.  

    
Figure 2-2: Flowchart of the implemented method 

2.4. Pre-fieldwork  

Before the fieldwork, an overview of the canopy density classes to be used for the survey was determined by 
downloading Google Earth images and observing the variation in canopy density. From the Google Earth images, 
two main canopy density classes (plantation and riparian forest) where identified.  
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The Google Earth images were also used to identify open spots where plastic ground control points (GCP) could 
be placed. Furthermore, the images were used to design the optimal locations to set the temporal benchmark to 
be used for the topographic survey.   

2.5. Fieldwork  

2.5.1. Reconnaissance and canopy density image capture 

The first activity performed during the fieldwork was reconnaissance survey to verify where the canopy density 
classes are located and also check for accessibility as the fieldwork was carried out in the raining season.   

During the reconnaissance survey, Canon EOS 60D camera with fisheye lens was used to take images of the forest 
canopy. The hemispherical images were processed using Gap Light Analyzer to obtain the forest canopy density. 
The calculated canopy density was then classified using the Forest survey of India classification reference and the 
threshold shown in Table 2-3 below.  

Table 2-3: Canopy density class (source: Forest survey of India) 

Forest canopy class Canopy cover range (%) 

Open forest 10 - 40 

Medium forest 40 - 70 

Dense forest (teak and riparian) 70 and above 

Based on the canopy density classification (Table 2-3), four canopy density classes were identified namely: open 
canopy, medium canopy, dense canopy (plantation), and dense canopy (riparian forest). Open and medium canopy 
density were in a teak plantation. The dense canopy comprised a dense teak plantation and dense riparian forest. 
These canopy density classes were stratified to analyze and estimate its effect on the quality of DTM generated by 
UAV.   

Two blocks of about 5 hectares were identified to be used for the UAV flight. Within the blocks for the UAV 
flight, the canopy density classes are located. Canopy density class of about 0.5 hectares was established and the 
DBH and height of a number of randomly selected trees measured. The trees in the plantation forest were planted 
at an interval of 3m by 3m resulting in about 1100 trees in 1 hectare (650 trees in 0.5 hectares).  Hence measuring 
the DBH and height of all the trees in each class was not possible considering the fieldwork duration.  

2.5.2. Sampling design  

Purposively sampling design was used to select the location of the canopy density classes during data collection 
because the fieldwork was carried out in the rainy season. When it rains, some part of the forest is not accessible 
due to flooding and bad condition of roads. To efficiently utilize the limited fieldwork time, a purposive sample 
design was used.  

2.5.3. UAV mission planning and image acquisition  

The UAV data acquisition was carried out using DJI Phantom 4 Pro with RGB camera. After identifying the 
canopy density classes on the field, the UAV block was selected. The UAV blocks which contains the canopy 
density class was then selected in such a way that at least two forest canopy density class were present in each UAV 
block to reduce movement during data acquisition. Figure 2-3 below shows the location of the UAV blocks. 
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Figure 2-3: UAV blocks in the study area 

Before the image acquisition, the UAV compass was calibrated for safety purposes using the DJI Go 4 while the 
Pix4D capture was used to design the flight plan. The main aim of the research was to assess the quality of DTM 
generated by UAV which is based on the points generated. To generate dense points, the acquired images must 
have high overlaps (Pix4D, 2018a; Dandois et al., 2015). Hence flight parameters that ensured the generation of 
dense points were used as shown in Table 2-4 below. 
 
Table 2-4: Parameters used for UAV image acquisition 

Parameter Flight type Camera angle Speed Altitude Forward overlap Side overlap 

Input Double grid 90o Moderate 60 m 90o 80o 

 
With the GCP fixed at an appropriate location and flight planned, the next step was to acquire the images using 
the DJI Phantom 4 Pro. Before the flight, we ensured the battery level and connection of the radio and GPS was 
good. We then flew the two blocks with the same flight plan. However, multiple batteries were used during the 
flight as the flight time exceeded the battery capacity which is about 30 minutes. 

After each flight, the acquired images stored on the memory card of the UAV was transferred onto a laptop and 
the quality of images assessed using Agisoft Photoscan Professional before going to the next site.  

2.5.4. Topographic survey  

Digital Terrain Model generally refers to the elevation of the bare ground as a raster grid (Fras et al., 2016). To 
develop a DTM, 3D points are first measured/deduced and interpolated. To obtain a good DTM, 3D points with 
elevation representative of the terrain should be used. Measuring such 3D points requires using instruments with 
acceptable accuracy although the accuracy requirements depend on the use of the DTM (Fras et al., 2016).  
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Boundary pillars have been established at the boundary of the forest by the Forestry Commission. However, the 
coordinates of these boundary pillars were obtained using handheld GPS. The handheld GPS has an error of about 
3-10 m which will not be useful for the research. This is because the boundary pillars would be used to georeference 
the UAV images which will introduce these errors in the UAV results. With wrong UAV results, the subsequent 
parameters (DBH, tree height, and tree location) will be wrong which will lead to incorrect estimation of 
aboveground carbon. Also, the boundary pillars will be used as a base station to transfer coordinates to the study 
area for the topographic survey and this will also introduce errors in the topographic survey.  

Because of this, a national benchmark established by the Survey Department of Ghana was used to transfer 
coordinates to the study area. The national benchmark is located at Offinso Municipal Assembly which is about 
65 km from Asubima forest. The Trimble R10 instrument which is a Real-Time Kinematic (RTK) Global 
Navigational Satellite System (GNSS) instrument with external radio was used for the topographic survey to obtain 
coordinates of sub-meter accuracy even under dense forest canopy (Trimble, 2014). The external radio was used 
to extend the broadcast range for the signal to 10 km to make the transfer of the coordinate faster.  

GNSS is a navigation system that comprises three main segments namely the space segment, the control segment, 
and user segment. The space segment consists of all the satellite constellation, the control segment includes all 
monitoring stations, and the user segment comprises of everyone using the GNSS system (Hexagon Positional 
System, n.d.). Coordinates obtained from GNSS are subjective to errors such as satellite orbital, clock errors, 
receiver clock error, noise, multipath, and atmospheric (ionosphere and troposphere) refraction 
(Hosseinyalamdary, 2018). The most significant contributor to the GNSS error is receiver clock. Also, multipath 
caused by reflection of GNSS signal resulting in the signals having longer travel time, would influence the accuracy 
of the coordinates measured (ESA, 2012). The accuracy of coordinates obtained from the GNSS survey is 
dependent on the errors that will be reduced or eliminated. Most of the errors can be eliminated using differential 
GPS or RTK survey, better receiver, and proper planning resulting in a sub-meter error (Hosseinyalamdary, 2018; 
Knippers & Tempfli, 2012).  

Although the instrument used gives a sub-meter accuracy, it was necessary to check the systematic error. 
Systematics errors are reoccurring errors that are constantly reflected in the measurement and are in the same 
direction (WYDOT, 2008). To identify the systematic error of the instrument, the Trimble R10 instrument was 
used to pick the location of four (4) points with known coordinates (benchmark) repeatedly (five times per 
benchmark) and the difference between the known and measured coordinates estimated (Knippers et al., 2013). It 
was detected that the systematic error was -4 mm in eastern, -6 mm in the north, and 3 cm in elevation. To correct 
the final coordinates, the same magnitude of error but in the opposite direction was added to the recorded 
coordinates after the topographic survey. 

To begin the survey, the road network from Offinso to Akumadan was extracted from the Google Earth images 
and used to optimize the suitable location to establish a new control point considering the range of the external 
radio signal. Since the range of the external radio signal used was 10 km, consecutive point along the road at a 
maximum distance of about 9.5 km from the location of the point with known coordinates (referred to as 
benchmark) was identified as shown in Figure 2-4 below.  
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Figure 2-4: Location of benchmark, consecutive point (B1 – B6) and desired base station location. 

During the GNSS survey, the tripod was set and leveled on the benchmark, and a plumb bob used to ensure the 
tripod is at the center of the benchmark. The base of the Trimble R10 was fixed on the tripod and the bubble 
centered. The external antenna was also fixed on the base station. The external radio was then connected to the 
external battery and also fixed on the base. The radio signal receiver was then attached to the range pole of the 
rover. The exact coordinate of the base station received from the Survey Department of Ghana was then entered 
as base station location. The positional accuracy was set to 0.1 m meaning the accuracy of the point to be picked 
will not be more than 10 cm as the instrument rejected all errors greater than 0.1 m until the estimated positional 
accuracy or better (less than 10 cm) is achieved. Also, measurements from angles less than 300 were ignored to 
reduce multipath error  

The height of the base station and rover stand were then measured and entered in the receiver after creating a file 
on the Trimble R10 rover to save the coordinates and the RTK mode activated for the survey to begin as shown 
in Figure 2-5 below. 

 
Figure 2-5: Summary of the GNSS setup 

After setting up the base station on the benchmark (Figure 2-5) and activating the RTK function on the rover, the 
rover was sent to B1 (Figure 2-4) to measure and save the coordinate. The base then was moved from the 
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benchmark location to B1 and setup made again. The rover was then moved to B2 and the coordinates measured 
and saved. This process was repeated until the coordinates were transferred to the desired location (Figure 2-4) in 
the plantation forest. A vehicle was used to move equipment from the old base station to a new location. While 
driving, we ensured that the radio signal was not lost by moving less than 10 Km from the base station.  

The main reason for the topographic survey was to generate DTM for the study area with more focus on the 
canopy density classes. Hence more points (minimum of 60 points per canopy density class) were picked within 
the canopy density classes while additional points were picked outside the canopy density class to improve the 
quality of DTM generated at the boundary of the canopy density class. Figure 2-6 below shows the field points per 
blocks. 

 
Figure 2-6: Field points within each UAV block 

From Figure 2-6 above, block 1 contains more field points compared to block 2 because more canopy density class 
are located in block 1 compared to block 2. Block 1 contains the medium, open and riparian class while block 2 
contains the dense canopy density class (Figure 2-3).  

As can be observed from Figures 2-3 and 2-6, the size of block 2 is not consistent. This is because only the section 
of block 2 that contained the canopy density was used for the RTK survey. Hence after the UAV image processing, 
only the section of block 2 containing the canopy density classes will be used for further analysis.  

2.5.5. Biometric data collection  

In addition to the above, the DBH and tree height were measured on the field. Before the biometric measurement, 
the UAV data were processed using Agisoft Photoscan Professional software to obtain the Digital Surface Model 
(DSM) and orthophoto of each block. The DSM and orthophoto were printed on an A3 paper to be used for 
identification of individual trees.  

To identify individual trees, big trees found in the study area was used for orientation. The planting interval in the 
plantation forest also aided the easy identification of the teak-trees. After identifying the trees on the orthophoto 
and the ground, the identified trees were marked on the orthophoto and an ID assigned. The DBH and tree height 
were measured using diameter tape and clinometer respectively.  
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Not all trees within each canopy density class could be measured (see 2.1.1), hence there was a need to develop a 
model that can predict the unmeasured DBH. To develop the model, trees of varying DBH is required to explain 
the variability in the model (Shimano, 1997). Hence, trees of varying DBH were selected and measured. Dead trees 
were not measured. 

When measuring the DBH, the tape was at the height of about 1.30 meters above ground. The tree height were 
measured with Suunto clinometer by using a tape measure to measure the ground distance of 15 m or 20 m 
(depending on the distance where the top and base of the tree are observable) and taking the reading at the top 
and base of the tree. The difference between the top and base of the tree is the height.  

Using clinometer for tree height measurement can introduce some errors in the measured tree height. During the 
field measurement, error in the horizontal distance results in the wrong measurement of tree height. Also, using 
wrong angle influences the measured tree height. Moreover, in a forest environment where the tree top sometimes 
cannot be seen, the measured tree height will be wrongly measured. Luoma et al., (2017) evaluated the precision 
of tree measurement using clinometer and found that tree height measured with clinometer has a standard 
deviation of about 0.5 m. Due to all these errors, the measured tree height was not used for further analysis but 
served as a check for tree height estimated from the UAV and field point data. 

2.6. Data processing 

2.6.1. Forest canopy density classification 

The hemispherical images were processed using the Gap Light Analyser to calculate the canopy openness. The 
images were loaded and registered in the software by selecting the region to be used for the analysis. A threshold 
that represents the canopy openness/closeness was chosen to separate the open sky from forest canopy density as 
shown in Figure 2-7 below. 
 

 
Figure 2-7: Forest canopy density image (left), after applying threshold (middle), and calculating the open area in 
the image (right). 

After separating the forest canopy from the open sky, the canopy cover was calculated and classified using the 
Forest survey of India classification system (as shown in Table 2-3). 

2.6.2. UAV image processing 

The UAV acquired images were processed using Agisoft Photoscan Professional 1.4.3 software which is based on 
structure from motion principles. Figure 2-8 below shows the general workflow of UAV image processing.  
 



Assessing the accuracy of UAV-DTM generated under different forest canopy density and its effect on estimation of aboveground carbon in Asubima forest, Ghana 

 

15 

    
Figure 2-8: Photogrammetric workflow used 
 
Before the UAV image processing, the graphical processing unit (GPU) of the software was activated to enhance 
the processing speed. The images with its camera position were all loaded in the software. The images captured 
with the UAV has coordinates because the UAV has GPS receiver and an inertial measurement unit (IMU) on-
board however they are low cost and cannot give sub-meter accuracy (Nex, 2018b). The images were used for 
preliminary georeferencing. 

The image alignment, which involves finding similar features on images to reconstruct the camera position from 
each image was activated to generate tie points (Agisoft, 2018). The tie points are generated by identifying similar 
features in images. The camera location was also estimated in the image alignment process. The quality of the tie 
points were assessed by considering the number of image match per tie point. From the assessment, the tie points 
were found to have weak matches at the edges and this could be because the image overlaps are low at the edges 
(Pix4D, 2018c). Tie points are essential in generating point clouds. Hence any error in tie points generated will 
influence the quality of point clouds generated which will affect the quality of DTM and DSM produced (Pix4D, 
2018d). Although it is necessary to filter tie point, there is no available function for this in Agisoft Photoscan 
software. However Agisoft supports python application programming interface (API). Hence a code was 
developed with Python API to remove weak tie points (shown in Appendix 3).  

The camera alignment was then optimized to obtain result of higher accuracy. The camera optimization involves 
estimating the camera interior and exterior orientations and measurements while correcting for lens distortion 
through least square bundle block adjustment (Agisoft, 2018).  

The gradual selection option was then used to enhance the geometry of the overall model (Agisoft, 2018). Three 
gradual selection steps were implemented to improve the geometry. Reconstructing uncertainty was the first step 
implemented. This option eliminates bad points cause by poor geometry after which the camera optimization step 
was repeated. The projection accuracy step was then implemented to eliminates bad points caused by errors 
associated with pixel matching. After executing the projection accuracy step, the camera optimization step was 
repeated. The final step was to eliminate or minimize reprojection error by removing bad points caused by the 
residual error of a pixel to enhance the accuracy of the tie point. The gradual selection process was implemented 
to reduce projection and pixel error (Agisoft, 2018). 

To further enhance the image processing and to georeference the final output data accurately, the ground control 
points (GCP) were loaded. The images with GCP were identified and marked as accurately as possible and the 
corresponding 3D coordinate obtained during the topographic survey entered. The GCP was used to georeference 
the images. Although the UAV has GPS and inertia measurement unit (IMU) to measure coordinates, the accuracy 
of the GNSS receiver onboard the UAV is not suitable (in a high precision work) hence the GCP’s are used to 
improve the georeferencing accuracy in order to obtain objects on map whose location on ground is same or 
almost the same (Nex, 2018a). Out of the 12 GCP’s used for the survey, 8 were used as GCP’s for georeferencing 
and the remaining 4 used as checkpoints (CP). The checkpoints are not used in the bundle block adjustment but 
used in calculating the errors in the image processing by calculating the difference between the control point 
coordinates and the interpolated surface (Nex, 2018a).   

Dense point clouds were then generated and classified to ground and non-ground point clouds. The ground point 
clouds were then used to generate the Digital Terrain Model while all the point clouds were used to generate the 
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Digital Surface Model. The Digital Surface Model was used as input to generate the orthophoto. The Digital 
Terrain Model, Digital Surface Model, and orthophoto were then exported for further analysis. 

2.6.3. Generating a DTM from field measured points 

After the topographic survey in the blocks, the coordinates were exported and the systematic errors corrected. 
Apart from the systematic error corrections, no other corrections were applied because the errors were corrected 
in real time when the base station sends the correction to the rover through the radio signal.  

All the field (RTK) points were grouped per block and used to generate DTM of the blocks using ArcMap 10.6.1. 
In generating the DTM, a control experiment was set up to identify the best interpolation algorithm to use. The 
test was mainly between inverse distance weight (IDW) and triangulated irregular network (TIN) algorithms as 
these are the algorithms mostly used in UAV processing software (Pix4D, 2018b).  

TIN is created from Thiessen polygons which divides a region in such a way that every cell has one value (Tan & 
Xu, 2014). The Thiessen polygons are based on Delaunay triangulation which requires that the triangles are 
equilateral and the circumference through its three anchor points does not comprise any other anchor point 
(Knippers et al., 2013). When the condition for Delaunay triangles are fulfilled, the minimum interior angles of all 
triangles are maximized resulting in the avoidance of long, thin triangles (Esri, 2016c).  The algorithm is used to 
determine which points are used to form the Delaunay triangle. Because the node can be positioned unevenly over 
a surface, areas which are undulating can have higher resolution to explain the complexity of the area and vice 
versa (Esri, 2016c) as shown in Figure 2-9 below.  

 

 
 
 
 
 
 
 
Figure 2-9: Delaunay triangles and the associated DEM (Esri, 2016c). 

The location of the input feature used to generate the TIN remains in the same position as the nodes or edges. 
This enables the TIN to reserve the accuracy and precision of the input data while interpolating the values between 
the known points (Esri, 2016c).  

IDW interpolates the values of an unknown location using a linear combination of values at sampled points by 
assuming that closer points are more alike than those that are far apart (Li & Heap, 2008). To estimate the values 
for any location not measured, the measured values around it are used. Based on the assumption of IDW, the 
known values close to the unmeasured values have more influence on the estimated value than those farther away 
hence greater weights are assigned to points closest to the prediction location than those farther away (Esri, 2018) 
as shown in Figure 2-10 below. 
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Figure 2-10: Decrease of weight with distance illustration (Esri, 2018) 

Total of 174 field points was used for the control experiment. Forty (40) field points were excluded from creating 
the DTM and used as the reference to check the quality of the DTM estimated. The remaining field points (134) 
were used to generate the DTM using both interpolation algorithms. After creating the DTM, the validation points 
were loaded and used to extract the corresponding interpolated values from the DTM’S created. The arithmetic 
difference between the validation and interpolated elevation and root mean square error was the calculated as 
shown in Figure 2-11 below. 
 

 
Figure 2-11: Statistics of IDW and TIN interpolation  

From Figure 2-11 above, most of the arithmetic difference for TIN is 0, unlike IDW difference. Also, the root 
mean square error (RMSE) was 0.04m and 0.01m for IDW and TIN respectively. Hence, TIN interpolation 
algorithm was used for generating the DTM for all blocks.  

2.6.4. UAV DTM accuracy assessment 

The positional accuracy of the generated UAV-DTM error was assessed by comparing the DTM values to field 
points (reference). The boundary of each canopy density class was used to extract the corresponding DTM. The 
extracted DTM values were then compared to the field points measured during the topographic survey to obtain 
the error. From the errors, the root mean square error (RMSE), mean error (ME), and standard deviation (SD) 
were calculated with the assumption that the errors are normally distributed.  

The root mean square error and mean error was used to evaluate the error in the UAV DTM generated while 
standard deviation was used to determine the distribution of the error. Equations 1a – 1d below shows the various 
formulae used.  

𝑋𝑖 =  𝑃𝑖 −  𝑂𝑖          (Eq. 1a)  

ME =  
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1          (Eq. 1b) 

𝑅𝑀𝑆𝐸 = √1/𝑛 ∑𝑋𝑖
2        (Eq. 1c) 
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𝑆𝐷 =  √∑(𝑋𝑖 − �̅�)2/𝑛        (Eq. 1d) 

where 

Xi= error in elevation  

Pi= predicted value (UAV DTM) 

Oi= observed values (field point) 

RMSE = root mean square error 

ME = mean error 

SD = standard deviation 

n = number of observations 

The assumption of normal distribution of error is not always valid as the canopy density may have different 
influence on the points generated. Due to this, the elevation error was tested to determine if it is normally 
distributed or not. The quantile-quantile (Q-Q) and histogram plots were used to determine the normality of the 
error. The Q-Q plot is a graph of the empirical distribution function versus the normal distribution of theoretical 
quantile (Ford, 2015). If the distribution is normal, the Q-Q plot falls on the straight line produced. The deviation 
of the distribution from the straight line gives an indication of the non-normality of the data.   

If the error is normally distributed, the RMSE calculated will be accepted as the RMSE value as the assumption is 
valid. However, if the error is not normally distributed, robust accuracy measures such as normalized median 
absolute deviation (NMAD) will be used. The normalized mean absolute deviation was suggested because it is 
more resilient to outliers (Fras et al., 2016). The equation below is the formula for the normalized median absolute 
deviation. 

𝑁𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛 |𝑋𝑖 − �̅�|       (Eq. 2) 

where 

NMAD = normalized median absolute deviation 

Xi = error values 

�̅� = median of error 

The percentile corresponding to the NMAD value obtained will then be determined. If the percentile is less than 
95%, the corresponding 95% values will be deduced as the RMSE value since 95% is more reliable statistically. 
Hence the values corresponding to the 95% will be accepted as the root mean square error provided the error is 
not normally distributed. 

To determine if the field point elevation and the corresponding UAV elevation was statistically different, the t-test 
was used. There are three ways to use t-test namely equal mean t-test, equal variance t-test, and unequal variance 
t-test. To determine which one is appropriate for any dataset, the F test was used to determine if the two samples 
have equal variance at an alpha of 0.05 (95% confidence interval). After determining the type of t-test to used, the 
appropriate t-test was implemented also at 95% confidence interval. 

2.6.5. Canopy height model (CHM) generation 

The Digital Surface Model and Digital Terrain Model generated from UAV processing and Digital Terrain Model 
generated from field points were imported into ArcMap. The raster calculator function was used to generate the 
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canopy height model (CHM) by finding the arithmetic difference between DSM and DTM. CHM based on both 
field point and UAV was estimated using the equations below. 
 
CHM UAV = DSM UAV – DTM UAV        (Eq. 3a) 

CHM field point = DSM UAV – DTM field point        (Eq. 3b) 

where 

DSM UAV = UAV Digital Surface Model 

DTM UAV = UAV Digital Terrain Model 

DTM field point = Field point Digital Terrain Model 

CHM UAV = UAV derived canopy height model  

CHM field point = Field point derived canopy height model  

The CHM was used as input to extract tree height.  

2.6.6. Crown projection area (CPA) 

Research shows that there is a relation between crown projection area and DBH hence CPA can be used as a DBH 
proxy in a plantation forest but can be complicated in the tropical forest due to multiple tree height (Song et al., 
2010; Hirata, Tsubota, & Sakai, 2009). During the fieldwork, a minimum of 63 biometric data (DBH and tree 
height) per canopy density class was measured to develop a model between DBH and CPA.   

Some methods have been used to estimate crown projection area however the digitizing option was chosen in this 
study because the real shape of the tree crown, as accurate as possible, was required. Other studies used Object-
based Image Analysis (OBIA) to estimate the crown projection area. Although OBIA can be used to generate tree 
crown for a large area at a reasonable accuracy depending on the segmentation algorithm used, this research does 
not aim to compare segmentation algorithms.  

The tree crowns of different shape and species that were easily identified in the orthophoto were digitized using 
ArcMap. When tree crown was not readily observable due to the intermingling effect, the calculated canopy heigh 
model was added to aid in identification using the swipe function. Also, the individual UAV images assisted in 
identification and delineating the tree crowns.  

2.6.7. CPA-DBH relation 

The research aims to estimate aboveground carbon for trees in each canopy density class using allometric 
equations. DBH of trees is one of the inputs used in the allometric equation however not all tree DBH was 
measured on the field during the field work. The DBH and CPA were used as input to develop a mathematical 
model that can be used to predict DBH from CPA as the CPA was extracted from all the trees within the canopy 
density class. Before the model was developed, the area of the CPA was calculated.  

To determine the relation between the digitized CPA and field-measured DBH, a scattered plot was plotted and 
four trend line (linear, quadratic, exponential, and logarithmic) fitted. The four-trend line was tested to determine 
which one gave a better prediction by assessing the relation between CPA and DBH using the R-square value, 
prediction equation (to determine the accuracy of the predicted values), and RMSE to quantify the prediction 
errors. The best model was then used to predict the DBH.  

2.6.8. Individual tree height extraction 

The crown projection area digitized from the orthophoto represents individual trees on the ground. The tree height 
can be extracted from the canopy height model however the canopy height model shows different elevation values 
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within individual crown projection area which represents individual trees. Since trees grow towards the sun, the 
highest canopy height model value within each crown projection area was extracted and used as tree height. The 
highest values were extracted using the zonal statistics tool in ArcMap.  Two canopy height model values were 
calculated, one based on UAV data and the other based on field point data. The tree height estimated from these 
two canopy height models were then compared to tree height retrieved from a yield model and tree height 
measured on the field.   

2.6.9. Estimating aboveground carbon 

Tree height was estimated from UAV-CHM and field-CHM while DBH was measured/modeled. With the DBH 
and tree height, aboveground biomass was modeled using an allometric equation. The study considered a teak 
plantation and riparian forest hence two allometric equations were used for the two forest types. The allometric 
equations proposed by Polinder (2016) was used to estimate the AGB for the teak plantation while Chave et al. 
(2014) was used to estimate AGB for the riparian forest. Equation 4 below is the allometric equation used. 

aboveground biomass (Polinder, 2016) =  0.0159 +  25.752e−6D2.142H0.902   (Eq. 4a) 

aboveground biomass (Chave et al. , 2014) = 0.0673 ∗ [ƿ ∗ D2H]0.976    (Eq. 4b) 

From equations 4a and 4b above, aboveground biomass was estimated per tree for each canopy density class. The 
aboveground carbon was subsequently estimated from the aboveground biomass using the conversion factor 
propose by IPCC (2006) which states that about 47% of aboveground biomass is aboveground carbon. The total 
aboveground carbon per hectare was then calculated.  

2.7. Data analysis 

Data analysis was carried out using Excel 2016 and R software to test the proposed hypothesis, answer the research 
questions, and achieve the stated objectives of the study. The statistical analysis employed for data analysis are 
histogram, descriptive statistics, RMSE, correlation, and t-test.  

The descriptive statistics and histogram were used to get an overview and graphic description of the field measured 
DBH. The RMSE was calculated to quantify the overall error of UAV-DTM under different forest canopy density. 
A scatter plot with trend line was used to establish the mathematical relationship between the CPA and DBH. The 
t-test which can be used to determine if there is a significant difference between two variables at a specified 
confidence interval was used to compare tree height from field point and UAV.  Also, the t-test was used to 
compare aboveground carbon estimated from UAV and field point estimated tree height. 
 
 
 
 
 
 
 
 
 
 
 
 



Assessing the accuracy of UAV-DTM generated under different forest canopy density and its effect on estimation of aboveground carbon in Asubima forest, Ghana 

 

21 

3. RESULTS 

Below are the results of the data processing. All maps produced are in Universal Transverse Mercator (UTM) 
coordinates system. 

3.1. Biometric data 

The diameter at breast height was measured for 294 trees divided over the four canopy density classes. The DBH 
of all measured trees and per canopy density class was summarized using descriptive statistics to get a general 
overview of the data. Table 3-1 below shows the descriptive statistics.                 

Table 3-1: Summary of descriptive statistics of measured DBH 

 Number Minimum (cm) Maximum (cm) Mean (cm) Standard deviation Skewness 

DBH (open) 76 14.9 25.2 20.2 2.2 0.1 

DBH (medium) 74 16.3 29.2 22.1 3.1 0.5 

DBH (dense) 81 17.6 31.6 24.6 3.3 0.4 

Riparian 63 10.4 58.6 21.4 9.8 2.3 

DBH (all trees) 294 10.4 58.6 22.1 5.5 2.5 

 
The descriptive statistics above shows that the DBH in the plantation (open, medium and dense canopy)  forest 
was between 14.9 to 31.6 cm while the DBH range for the riparian forest was 10.4 to 58.6 cm. Also, skewness 
which gives an idea of the nature of data distribution shows that open, medium and dense (plantation) canopy 
have DBH which is normally distributed and slightly positively skewed while the skewness of the riparian canopy 
indicate the data is not normally distributed but positively skewed. The standard deviation, which indicates the 
spread in the data, shows that the DBH of trees in the plantation forest does not differ much unlike the riparian 
forest which has a standard deviation of 9.8. From the mean of the dataset, the trees mostly had DBH between 20 
to 25 cm. 

The get a pictorial view of the distribution of the data, histogram and the associated distribution of the data was 
plotted as shown in Figure 3-1 below. 

  
Figure 3-1: Histogram and normal distribution curve of measured DBH 

From Figure 3-1 above,  it seems DBH in open, medium, and dense canopy are normally distributed unlike DBH 
in riparian forest. The Shapiro Wilk statistical normality test at 95% (alpha of 0.05) confidence interval was 
performed to determine the normality of the measured DBH and the result shown in Table 3-2 below.  

Table 3-2: Result of Shapiro significance test 

Canopy density DBH (open)  DBH (medium) DBH (dense plantation) DBH (dense riparian)  

Significance 0.17 0.14 0.09 0.02 

 
Since the normality test was at 95% confidence, all values greater than 0.05 implies that the measured DBH are 
normally distributed. From Table 3-2 above, the data in the open, medium, and dense canopy density are normally 
distributed since the significant values are greater than 0.05 unlike the DBH data in the riparian indicating that the 
DBH in the riparian is not normally distributed.  
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3.2. Field point result 

From the control experiment that was carried out to determine which interpolation algorithm to use, the 
triangulated irregular network (TIN) interpolation algorithm was used to generate the field point DTM. From the 
field points obtained, 248 and 194 field points were used to generate the DTM for block 1 and 2 respectively and 
the result shown in Figure 3-2 below.  
 

   
Figure 3-2: DTM generated from field points 

From Figure 3-2 above, it can be seen that the DTM range is 376 to 384 m for block 1 and 354 to 368 m for block 
2, indicating that block 2 is in a low area compared to block 1. There are no abrupt changes in the elevation for 
block 1, but there seem to abrupt changes in block 2 (from upper left to upper right).  

3.3. UAV processing result 

The Digital Terrain Model, Digital Surface Model, and orthophoto obtained from UAV image processing are 
shown in Figure 3-3 and 3-4 below.    
 

 
Figure 3-3: UAV result for block 1 
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Figure 3-3 above shows the DTM range of 367 to 399 m and DSM range of 366 to 410 m. The orthophoto shows 
the extraction line (middle) and road (lower part). The riparian forest is visible, though a bit blurred, probably due 
to intermingling crowns in the upper right while the open canopy is in the upper left corner. The medium canopy 
density is in the middle part of the orthophoto and clear crowns are visible on the DSM while the dense canopy is 
visible in the lower part of the orthophoto.  

With the boundary of block 2 used for the topographic survey, the corresponding boundary was extracted from 
the UAV results and shown in Figure 3-4 below.  

 
Figure 3-4: Photogrammetric result for block 2 

Figure 3-4 above shows the DTM range of 358 to 372 m and DSM range of 359 – 392 m. The orthophoto also 
shows the riparian is located in the lower section while the dense is found in the upper section of the orthophoto. 
A road can also be observed in the middle of the orthophoto.  

To get an overview of the point clouds used to generate the DTM, DSM, and orthophoto, a section of the report 
generated after processing the UAV images is shown in Table 3-3 below. 

Table 3-3: UAV image processing information. 

Name Images used Coverage (hectares) Point cloud 
 

Point density (point/ m2) RMSE (m) 

Block 1 465 5.63 102,830,395 134  0.26 

Block 2 247 2.79 30,997,857 108  0.34 

 
From Table 3-3 above, block 1 had higher point density than block 2. Also, the georeferencing RMSE for block 1 
was better than that of block 2 because block 1 had more open spaces making it possible to properly distribute the 
GCP hence improving the georeferencing root mean square error. 

3.4. Accuracy assessment of UAV DTM 

After generating the DTM for each UAV block, the accuracy of the generated DTM was assessed by comparing 
with the field points obtained during the topographic survey. The root mean square error (RMSE), mean error 
(ME), and standard deviation (SD) were computed for each canopy density class under the assumption that the 
error is normally distributed and the result shown in Table 3-4 below.  

 
Table 3-4: UAV DTM accuracy assessment 

Canopy density class Open Medium Dense (plantation) Dense (riparian) 

RMSE (m) 1.05 1.3 1.7 3.8 

Mean error (m) 0.57 0.76 -1.1 -1.6 

Standard deviation  0.88 1.09 1.28 3.46 
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From Table 3-4 above, the open canopy has the lowest RMSE while riparian has the largest RMSE. It can also be 
observed that RMSE increases with the canopy density. Also, open and medium canopy density have a positive 
mean error while dense (both plantation and riparian) have negative mean error which imply most of the UAV-
DTM was underestimated in the dense and riparian canopy. The standard deviation of the error also increased 
with the canopy density with the lowest and highest been open and dense riparian class.  

To test the validity of the assumption that the errors are normally distributed, quantile-quantile (Q-Q) plots were 
used as shown in Figure 3-5 below.   

 
Figure 3-5: Q-Q of errors per canopy density class 

From the Q-Q plot, the errors follow the theoretical values which results in high R-square values. The R-square 
value explains to what extent the variance of one variable explains variance of the other variable (Nagelkerke, 
2008). While open canopy has the highest R-square, riparian canopy has a relatively small R-square implying that 
the error in the open canopy is similar to the theoretical quantile than errors in the riparian forest. From the R-
square values in Figure 3-5 above, the errors were normally distributed. Hence it was appropriate to use RMSE to 
quantify the error in UAV generated DTM.  

After quantifying the error, the next step was to determine if there was any difference in UAV and field point 
elevation and this was executed using the t-test. Prior to the t-test, F test was used to determine if the two samples 
(field point and UAV elevation) have equal variance at an alpha of 0.05 (95% confidence interval) and the result 
shown in Table 3-5 below.  

Table 3-5: F-Test Two-Sample for Variances 

  Open canopy Medium canopy Dense canopy Riparian forest 

F 0.910041736 0.645069 1.377784 0.024091 

P(F<=f) one-tail 0.320002262 0.215314 0.008414 0 

F Critical one-tail 0.717328593 0.821823 1.246413 0.745143 

 
From Table 3-5 above, P(F<=f) is greater than 0.05 for open and medium canopy inferring that the two samples 
(UAV and field-measured elevation) have equal variance. For dense canopy and riparian forest, P(F<=f) is less 
than 0.05 which suggests that UAV and field measured elevation have unequal variance. From the F-test result, t-
test with equal variance was used for open and medium canopy while t-test with unequal variance was used for the 
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dense canopy and riparian data. At 95% confidence interval, the t-test was executed and the result shown in Table 
3-6 below.  
 
Table 3-6: t-Test result 

  Open canopy Medium canopy Dense canopy Riparian forest 

t Stat -0.62319204 -0.94923 -0.93652144 4.689075794 

P(T<=t) one-tail 0.266937753 0.354110247 0.425243654 3.37781E-06 

t Critical one-tail 1.652585784 1.647559815 1.648347961 1.65647927 

P(T<=t) two-tail 0.533875506 0.425874252 0.400321458 6.75562E-06 

t Critical two-tail 1.972017478 1.964179027 1.965407333 1.978098842 

 
The t-test works with the null hypothesis that there is no significant difference in the test sample (field and UAV 
height). From t-test result above, P(T<=t) is greater than 0.05 for the open, medium, and dense canopy which 
implies that the field point elevation is not different from the corresponding UAV elevation. Hence the null 
hypothesis cannot be rejected for open, medium, and dense canopy densities. However, P(T<=t) is less than 0.05 
for riparian canopies which infers the field point elevation is different from the corresponding UAV elevation. 
Hence the null hypothesis was rejected.  

The UAV-DTM accuracy assessment answered research question 1 which is to estimate the accuracy of DTM 
generated under the four-canopy density class.  

3.5. Canopy height modeling per UAV block 

After obtaining the required output (Digital Surface Model and Digital Terrain Model), the canopy height model 
(CHM) was generated. Two canopy height models were generated for each UAV blocks, one from UAV data 
(UAV DSM and DTM) and the other field data (UAV DSM and field point DTM).  

Canopy height model represents the height of the tree and since trees cannot have negative height, all canopy 
height model values below 0 were reclassified as 0. Figure 3-6 below is the result of block 1 canopy height models. 
 

   
Figure 3-6: UAV and field point derived CHM for block 1. 
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From Figure 3-6 above, the highest tree height according to the UAV and field canopy height models are 23.3m 
and 25.6m respectively. The lowest values represent the bare ground and is in accordance with what was observed 
on the field.  

Figure 3-7 below also shows the result of block 2 canopy height models. 

   

Figure 3-7: UAV and field point derived CHM for block 2. 

From Figure 3-7 above, the highest tree according to the UAV-CHM and field points are 28.3m and 36.2m 
respectively. The lowest canopy height models were the open space and road (middle) in the study area. 

The calculated canopy height models had some negative values and this could be attributed to underestimation of 
the UAV DSM due to the presence of a felled tree, shrubs, or debris on the ground. Also, overestimation of DTM 
due to branch or leaves covering the soil could result in negative values for the estimated canopy height model. 
On bare soil, DTM and DSM would have almost the same value. However, the felled trees would reduce UAV 
derived values because the light ray does not hit the ground but the felled tree.  

3.6. Crown projection area (CPA) 

Digitizing of tree crown resulted in the generation of crown projection area (CPA) that were representative of the 
tree as shown in Figure 3-8 below.  
 

  
Figure 3-8: Digitized tree crown in block 1 and 2 
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The digitized CPA with its associated DBH was used to develop a mathematical model that predicts DBH from 
CPA.  

3.7. Tree height per canopy density class 

With the digitized crown projection area and canopy height models, the tree height was estimated from UAV and 
field point data per canopy density class and the result shown in Figures 3-9 and 3-10 below. 

  
Figure 3-9: Tree height estimated from UAV and field data for block 1 

From Figure 3-9 above, there are some difference in tree height estimated from UAV and field point data. 
Although there are differences in tree for every canopy density, the riparian forest shows the most difference in 
tree height estimated. According to UAV tree height, some trees in the upper left of the riparian are between 7 to 
10m while those trees have height between 11 to 15m according to field point tree height. The lower part of the 
medium class has some tree height classified to be between 16 to 20m when estimated from field data but are 
between 21 to 22m for tree height estimated for UAV data. Figure 3-10 is the tree height estimated for block 2. 

 
Figure 3-10: Tree height estimated from UAV and field data for block 2 
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From Figure 3-10 above, not much difference in the tree height estimated from UAV and field point data can be 
observed. However, the left side of the dense canopy shows trees with height between 8 and 10m according to the 
UAV data but those trees have height between 11 and 15m according to the field data.  

To compare the tree height estimated from UAV and field point data, the average height of tree was calculated. 
Although the tree height measured with the clinometer has error (section 2.5.5), the data can give an indication of 
the average height of the measured tree height. Table 3-7 below shows the mean height per trees in canopy density 
class. 

Table 3-7: Average tree height per canopy density class 

Aver-
age 

height 
(m) 

Open canopy Medium canopy Dense canopy Riparian forest 

UAV-
based 

Field 
point-
based 

Suunto-
based 

UAV-
based 

Field 
point-
based 

Suunto-
based 

UAV-
based 

Field 
point-
based 

Sunnto-
based 

UAV-
based 

Field 
point-
based 

Sunnto-
based 

13.6 14.3 14.1 14.2 15.3 14.9 16.1 16.9 16.7 11.6 15.8 16.1 

From Table 3-7 above, the tree height estimated from UAV and field CHM is almost the same as tree height 
measured with the clinometer in the open canopy, medium canopy, and dense canopy. However, the UAV tree 
height of trees in the riparian forest is about 4m below the height of trees estimated by the field point CHM and 
the clinometer.  

To determine if the difference in tree height is significant, the t-test was used at a confidence interval of 95%. 
Before the t-test, the F test was first executed to determine if the data has equal variance and the result is shown 
in Table 3-8 below. 

Table 3-8: F test for tree height per canopy density 

  Open canopy Medium canopy Dense canopy Riparian forest 

F 1.22642265 0.916175822 0.917349411 1.423173258 

P(F<=f) one-tail 0.18781656 0.232575873 0.267715516 0.001804243 

F Critical one-tail 1.46188457 0.820956087 0.795188171 1.220284182 

From Table 3-8 above, P(F<=f) is greater than 0.05 for open, medium, and dense canopy hence the height of trees 
from UAV and field data have equal variance. However, P(F<=f) is less than 0.05 for trees in riparian forest hence 
UAV and field measured elevation have unequal variance. From the F Test, t-test with equal variance at an alpha 
of 0.05 was used for open, medium, dense canopy while t-test with unequal variance at 95% confidence interval 
was used for riparian forest and the result shown in Table 3-9.  

Table 3-9: t-test of tree height per canopy density class 

  Open canopy Medium canopy Dense canopy Riparian forest 

t Stat 0.49938217 -0.042182521 0.502837481 -7.823209752 

P(T<=t) one-tail 0.30911611 0.483184143 0.307672962 1.37095E-14 

t Critical one-tail 1.65494017 1.647588963 1.648542529 1.647690825 

P(T<=t) two-tail 0.61823223 0.966368285 0.615345925 2.74191E-14 

t Critical two-tail 1.97569393 1.964224446 1.965710612 1.964383179 

The null hypothesis for t-test states that there is no statistical difference between the UAV estimated tree height 
and field point estimated tree height. From Table 3-8 above, P(T<=t) is greater than 0.05 for the open, medium, 
and dense canopy, hence the null hypothesis cannot be rejected for open, medium, and dense canopies. This 
implies that tree height estimated from field point data is not different from tree height estimated from UAV data. 
However, P(T<=t) is less than 0.05 for riparian canopies. Hence the null hypothesis is rejected for the riparian 
forest implying tree height estimated from UAV and field point data is different.  
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From the result above, canopy density has a significant effect on tree height estimated from UAV and field point 
data in the riparian forest but the difference in tree height estimated from UAV and field point data is not 
statistically significant for the open, medium, and dense canopies at 95% confidence interval. This answered 
research question 3. 

3.8. Crown projection area (CPA) and diameter at breast height (DBH) relation  

The DBH measured was divided into their respective classes for the CPA-DBH model development and 
validation. The data per canopy density class was divided randomly in the ratio 60:40. Thus 60% of the data (DBH 
and associated CPA) was used for model development while the remaining 40% was used for model validation. 
Out of the four models developed per canopy density class, the model that performed best considering the R-
square values are shown in Figure 3-11 below and the other three models are shown in Appendix 2.  
 

 
Figure 3-11: Model development result from each canopy density class 

From Figure 3-11 above, quadratic models performed best for all the canopy density classes. Open canopy had 
the highest R-square and dense canopy had the lowest R-square.  

Each of the models in Figure 3-11 above were used to predict DBH of the validation data. The predicted DBH 
was then compared to the field measured DBH to validate the model. RMSE was calculated to estimate the model 
error for DBH prediction and shown in Table 3-10 below.   

Table 3-10: Model development result 

Canopy density class R2 RMSE (cm) 

Open  0.9188 0.55 

Medium  0.8353 0.943 

Dense 0.8002 2.160 

Riparian 0.8252 5.238 

 
From the result in Table 3-9 above, the most errors in the prediction was in the riparian. Although there is more 
correlation between CPA-DBH of trees in riparian canopy than trees in dense canopy, the RMSE in riparian is 
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more than that of dense canopy. This suggests that how the data is selected for model development and validation 
influences the model developed. 

For validation, a scatter plot through the origin between the model DBH and the field measured DBH (for all 
canopy density class) was plotted to also determine the correlation between the two parameters and the result is 
shown in Figure 3-12 below. 

  
Figure 3-12: Linear regression through the origin between predicted and measured DBH per canopy density 
class. 

From Figure 3-12 above, the dense canopy has the highest R-square for the validation model. As observed in 
Figure 3-11 and Table 3-9, while the R-square for riparian forest is more than that of dense forest, the RMSE of 
riparian is more than dense forest. This is further evident in the validation model as the R-square of dense 
(0.9153) is greater than the R-square of riparian (0.779). 

The models developed and shown in Figure 3-11 were used to predict the DBH of trees that were not measured 
during the field. The relation developed answered research question 3.  

3.9. Aboveground carbon estimation 

Two aboveground carbon (AGC) was modeled using UAV-CHM and field-CHM for each canopy density class. 
Figures 3-13 and 3-14 below shows aboveground carbon for block 1 and 2 respectively.  
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Figure 3-13: Block 1 aboveground carbon estimated from UAV and field data. 

Figure 3-13 above shows there is not much difference in the AGC estimated from UAV and field CHM in the 
open and dense canopy unlike the riparian. The lower left and right of the riparian has trees whose aboveground 
carbon are estimated to be between 251 to 300 Kg and 301 – 350 Kg respectively according to the field data but 
estimated by the UAV to be between 151 – 200 Kg for the tree at the lower left and 251 – 300 Kg for the trees at 
the lower right of the riparian.  

Figure 3-14 below shows the map of aboveground carbon estimated for block 2.  

  
Figure 3-14: Block 2 aboveground carbon estimated from UAV and field data. 

From Figure 3-14 above, there is not much difference in the aboveground carbon estimated from UAV and field 
data. However, a glance through the maps shows some little difference in the estimated aboveground carbon. For 
instance, looking at the lower left of the field estimated aboveground carbon map, some tree were estimated to 
have 201 to 250 Kg, but those trees were estimated to be between 151 to 200 from the UAV estimated 
aboveground carbon.   

From the aboveground carbon estimated, the total aboveground carbon per hectare of canopy density class was 
calculated and the result shown in Table 3-11 below. 
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Table 3-11: Total aboveground carbon per hectare 
Total aboveground carbon per 
hectare  

Open canopy 
(9 years) 

Medium canopy 
(11 years) 

Dense canopy 
(11 years) 

Riparian forest 

UAV AGC (Mg/ha) 22.1 35.9 39.4 43.5 

Field AGC (Mg/ha) 23.6 37.4 42.5 63.7 

According to Table 3-11, riparian forest shows the most difference in total aboveground carbon estimated. While 
the field data estimated riparian forest total aboveground carbon per hectare as 63.7 Mg/ha, the UAV data 
estimated 43.5 Mg/ha as the total aboveground carbon per hectare 

To determine if there is any significant difference in aboveground carbon estimated from UAV and field data, a t-
test was used but F test was used to determine if the two samples (UAV-AGC and field-AGC) have equal variance 
at an alpha of 0.05 (95% confidence interval) and the result shown in Table 3-11 below. 

Table 3-9: F-Test Two-Sample for Variances 

  Open canopy Medium canopy Dense canopy Riparian forest 

F 1.004281281 1.091568083 0.861235467 0.731077251 

P(F<=f) one-tail 0.488584381 0.249382719 0.214214505 0.012703783 

F Critical one-tail 1.278706716 1.237653678 0.732878313 0.794297752 

 
From Table 3-11 above, P(F<=f) is greater than 0.05 for open, medium and dense canopy classes hence the two 
sample (UAV and field AGC) have equal variance. However, the P(F<=f) is less than 0.05 for the riparian forest 
meaning the two sample have unequal mean. 
 
The t-test with equal variance was then used to determine if the difference between the two samples (UAV-AGC 
and field-AGC) for open, medium, and dense canopy density are statistically significant at 95% confidence interval. 
For the riparian forest t-test with unequal variance at 95% confidence interval was used. Table 3-12 below shows 
the result of the t-test. 

Table 3-10: Aboveground carbon t-Test result 

  Open canopy Medium canopy Dense canopy Riparian forest 

t Stat -1.034981511 0.49270254 -1.05779637 -1.991135439 

P(T<=t) one-tail 0.150686138 0.311224511 0.145638809 0.023572906 

t Critical one-tail 1.649097298 1.648047653 1.651623859 1.648671941 

P(T<=t) two-tail 0.301372275 0.622449023 0.291277617 0.044145811 

t Critical two-tail 1.96657546 1.964939272 1.970516243 1.965912343 

 
From Table 3-12 above, P(T<=t) is 0.3, 0.6 and 0.2 for open, medium and dense canopy respectively which is 
greater than 0.05 indicating that there is no statistical difference in aboveground carbon estimated from UAV and 
field point in the open, medium, and dense canopy. Hence, the null hypothesis cannot be rejected in the open, 
medium, and dense canopy forest. 

However, P(T<=t) for the riparian forest is 0.04 which is less than 0.05 indicating there is a statistical difference 
in AGC estimated from UAV and field data in the riparian forest which infers that there is a statistical difference 
in aboveground carbon estimated from UAV and field point in the riparian forest. Hence, the null hypothesis is 
rejected for riparian forest.  

Estimating aboveground carbon for each canopy density class and testing the significance answered research 
question 4. 
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4. DISCUSSION 

4.1. Distribution of biometric data (DBH) 

The study area comprised of a teak plantation and riparian forest. The blocks established for this research contained 
the canopy density classes which had trees planted in 2008 and 2010. The planting year of the trees in the riparian 
forest is unknown. The trees in the open canopy were planted in 2010 while the trees in the medium and dense 
canopies were planted in 2008. Although it is expected that trees of the same species planted at the same year will 
have the same canopy density, this was not the case in the study area because of thinning. Thinning is a management 
practice that improves the growth of trees and can be defined as the removal of trees with less quality (Radío & 
Delgado, 2014). While the medium density class has been thinned twice (second thinning carried out in August 
2018, a few weeks before the fieldwork), the dense canopy has been thinned once (almost 5 years ago). The thinning 
line can be observed as a strip of lines in Figure 3-3.  

From the descriptive statistics (Table 3-1), the measured DBH was slightly positively skewed in the open, medium, 
and dense canopy density which are in the plantation forest but highly skewed in the riparian forest. The slight 
skewness could be because the trees in each canopy density was planted the same year hence there is not much 
variation in the DBH measured per canopy density. According to Doane & Seward (2011), the skewness of data 
is related to the mean, median, and mode as shown in Figure 4-1 below.  

  
Figure 4-1: Relation between skewness, mean, mode, and median (Doane & Seward, 2011). 

From Figure 4-1 above, for any data to be symmetrically skewed, the data should be normally distributed (on both 
sides) around the mean. With the mean as the central point, if the mean is greater than the median then the data is 
positively (right) skewed and vice versa. To determine if this relation exist for the measured DBH per canopy 
density, the mean and median is shown in Table 4-1 below.    

Table 4-1: Mean and median per canopy density class 

 Open canopy Medium canopy Dense canopy Riparian forest 

Mean 20.2 22.1 24.6 21.4 

Median 20.1  21.5 24.4 18.5 

Skewness 0.1 0.5 0.4 2.3 

 
From Table 4-1 above, the mean is greater than the median for all canopy density classes which explains the 
positive skewness. 

According to Table 3-1, the standard deviation (which express the spread of the data around the mean) is higher 
for the riparian forest than the other canopy density classes. The histogram of measured DBH in riparian forest 
(shown in Figure 3-1) shows that while most of the measured DBH is between 16 and 40 cm, there are some trees 
with DBH between 51 and 58.6 cm. The DBH variation is because the riparian forest unlike the plantation forest 
comprise trees of different species. These trees have different growth resulting in the variation of measured DBH. 
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The trees with big DBH (between 51 and 60 cm) are possible remnant of trees that remained after the area was 
deforested.  

Very few studies have been carried out to determine establish growth models for teak in Africa. Akindele (1991) 
developed a growth index for teak in South-western Nigeria. Akindele (1991) proposed that a nine-year-old teak 
will have mean DBH range of 11-19 cm while an twelve-year-old teak will have DBH range of 17-23 cm. From 
Table 4-1, the mean DBH for the open canopy (which is about 9 years) is 20.2 cm while the mean DBH for the 
medium and dense canopy (which is about 11 years old teak) are 22.1 cm and 24.6 cm respectively. The difference 
in mean DBH between Akindele’s growth model and field measured DBH could be because of the different 
climate condition, soil type, and management practices which all influence growth of trees (Kaosa-ard, 1995). 

4.2. UAV-DTM accuracy assessment 

The accuracy of DTM generated depends on the quality, quantity, and distribution of 3D points used (Nex, 2018a) 
which implies that if the data quality is poor, and few in quantity with bad distribution, the algorithm used to 
develop the DTM would not make any difference because the algorithm is just a tool that is used to interpolate 
the input values. According to Table 3-4, the RMSE calculated indicates that riparian forest has the most error. To 
quantify the errors in DTM, there is a need to identify where the errors are hence a map of UAV and field-point 
DTM is shown in Figure 4-2 below. 

 
Figure 4-2: Field point and UAV DTM  

From Figure 4-2, the terrain generally increases from the lower part to the top for the field point DTM, but the 
UAV DTM shows some undulations. Having a critical look at the riparian in both maps, the riparian in the field 
point DTM has low elevation while the riparian in the UAV DTM has high values. On the field, the lowest 
elevations were identified in the riparian unlike predicted by the UAV.  

During the photogrammetric processing, random sample consensus (RANSAC), Bundle Block Adjustment (BBA), 
and gradual selection process improved the quality of the generated points  (Esri, 2016a). These photogrammetric 
operations were implemented during the image processing to reduce the reprojection error and orient the images 
(Nex, 2018a). With the errors that can affect the quality of point reduced, other factors that can affect the DTM 
quality is the quantity and distribution of the points used to create the UAV-DTM.  
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To analyze the quantity of the points used to generate the DTM per canopy density, LAS points statistics was used 
to get a descriptive statistic of the points used to generate the DTM of each canopy. Also, the points per square 
meters were calculated to compare the point per canopy density generated. Table 4-2 below is the result of the 
point cloud statistics.  

Table 4-2: Points statistics per canopy density class 

Canopy class Elevation 
(minimum) 

Elevation 
(maximum) 

Elevation (mean) Point cloud count Points per square meter 

Open 378.54 383.166 380.735 749448 183 

Medium 380.66 386.656 383.59 1279569 176 

Dense 358.927 371.759 365.625 793281 154 

Riparian 371.49 379.516 374.318 250596 34 

 
According to Table 4-2, riparian has the least points per square meter while open canopy had the highest points 
per square meter. In general, the point generated decreased with increasing canopy density. The riparian forest has 
fewer points per square meter compared to the dense canopy plantation. Although both forest canopies are dense, 
the dense canopy class is a plantation forest with only teak trees planted while riparian forest has different tree 
species.  Trees of the same species have similar growth provided they have the same conditions such as soil, rainfall, 
and temperature (Kaosa-ard, 1995). Also, since the plantation is monoculture, there is little undergrowth in the 
plantation, unlike the riparian forest where the undergrowth makes the canopy denser. Furthermore, since the trees 
are planted at a regular interval (about 3 by 3m) and the trees are thinned to improve its growth, there is little 
intermingling crowns in the plantation. However, in the riparian forest, the trees are planted at irregular interval 
which causes the canopy of the trees to be intermingled and further making the canopy dense. With limited 
undergrowth and intermingling crown effect, there is a reasonable probability of the UAV mirroring the forest 
floor in the plantation, unlike the riparian forest.  

To quantify how the canopy density affects point density, the percentage decrease of points per canopy density 
was calculated with the assumption that if all canopy density was the same then the same or almost the same 
density of points will be generated. Table 4-3 below shows the decay of points per canopy density.  

Table 4-3: Ground points percentage decrease 

Canopy 
class 

Point/square 
meter 

Percentage 
decrease 

 

Open 183  

Medium 176 3.8% 

Dense 154 12.0% 

Riparian 34 65.6% 

From Table 4-3 above, points per square meter reduces by about 4% in medium and 12 % in dense canopy. 
However, the riparian forest had the most effect on the points generated.  

To identify the distribution of the ground points, a map of ground point cloud per canopy density is shown in 
Figure 4-3 and Figure 4-4. 
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Figure 4-3: Points in block 1 canopy density 

From Figure 4-3 above, both open and medium canopy have some section without ground points but this is a 

small section unlike the riparian forest where more than half of the area has no point clouds. Using an interpolation 

algorithm, the section without ground points can be assigned elevation values but the accuracy of any interpolation 

algorithm depends on the quality and distribution of points. In an area where the terrain has more details (such as 

an undulating area), the more points to use for the interpolation the better the terrain representation. 

Figure 4-4 is the ground point in block 2. 

   
Figure 4-4: Points in block 2 canopy density 

From Figure 4-4 above, ground points cover most part of the canopy hence a DTM which represents the terrain 

can be generated.  

Figure 4-3 and 4-4, it can be observed that the ground points reduce as the canopy density increases. After assessing 
the quality, quantity, and distribution of the point clouds, the riparian forest affects the quality of DTM generated 
by UAV the most.  

The result is comparable to Begashaw (2018) and Reuben (2017) who in their research indicated that points 
generated in the dense forest are less dense due to the inability of the UAV image to capture the ground resulting 
in errors in DTM generated. It is however interesting to notice that although dense canopy plantation and riparian 
forest are both dense, the riparian forest has the most effect on point generated.  
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Also, Debella-Gilo (2016) studied the accuracy of DTM generated under partly dense vegetation, a built-up area 
with complex topography and bare ground. Debella-Gilo (2016) concluded that the ground points does not deviate 
when compared to Airborne Laser Scanner (ALS) DTM except in dense forest canopies.  

Furthermore, the result is similar to Balenović et al., (2016) who also studied the accuracy of UAV-DTM 
considering three mainland cover namely; grassland, forest, and shrub. In their research,  Balenović et al., (2016) 
observed that although all the land cover they considered influence the quality of DTM, the complex nature of the 
land cover type yields the least accurate result.  

4.3. CPA-DBH relation 

The result obtained from CPA and DBH relation (Figure 3-11) shows that there is a positive relationship between 
CPA and DBH of trees which is significant. Out of the four models developed, quadratic models were chosen for 
all canopy density class. From the result, it can be observed that the R-square reduces as the canopy density 
increases. In the open canopy, the individual tree crown can be seen, hence improving the accuracy of the crown 
projection area (CPA) digitized resulting in the highest R-square for the model developed. In the medium and 
dense canopy densities, some tree canopies were intermingled, reducing the ability to identify and digitized the tree 
crown correctly. However, using the canopy height model and individual images improves the digitizing, but the 
accuracy cannot be the same as when the individual tree crown is seen on the orthophoto. The correlation in the 
riparian is the least as the trees are intermingled more than the medium and dense canopies. Also, the trees have 
different height resulting in some tree crowns partly visible in the orthophoto and canopy height model.   

The result obtained contradict Shah (2011) who found a linear relationship between CPA and DBH of trees in the 
tropical forest. However, the result is similar to Shimano (1997) who also obtained a non-linear relationship 
between CPA and DBH. Shimano (1997) explained that while the DBH grows fast, the expansion of the tree 
crown is slow. The expansion of CPA will stabilize over time while the DBH of the tree will increase resulting in 
the non-linear relation.  

4.4. Comparison of UAV and field point estimated tree height 

The average tree height estimated indicates that the tree height estimated in the open, medium, and dense canopy 
from UAV, field points, and clinometer measured is almost the same resulting in the conclusion that there is 
statistically not a significant difference in the tree height estimated from UAV and field point CHM. This is because 
of the generation of good DTM due to the quality, quantity, and distribution of UAV generated points (Figure 4-
3 and 4-4). The result is similar to Akindele (1991) whose model predicted the height of 9 and 11-year-old teak to 
be between 14 – 16 m.  

The average height of trees in the riparian forest from the clinometer and field point CHM were almost the same 
(difference of about 0.3) but differs from tree height estimated by UAV CHM by about 4 m. The underestimation 
could be due to the difficulty of UAV images mirroring some part of the riparian forest resulting in no points 
generated in some section of the riparian (Figure 4-3). Since the age of the tree in the riparian forest is not known, 
it was impossible to compare with existing models. 

4.5. Aboveground carbon estimation 

Aboveground carbon was estimated using allometric equations developed by Polinder (2016) and Chave et al. 
(2014). Both equations use DBH and height of tree as input to estimate aboveground carbon. While Polinder 
(2016) equation was used for teak trees, Chave et al. (2014) was used for the trees in the riparian forest as it has 
trees of different DBH and height. From the allometric equation and the input parameters, aboveground carbon 
per tree was estimated.  

The only variable that was different when estimating aboveground carbon is tree height (UAV and field). Tree 
height improves the estimation of aboveground carbon by about 5% (Feldpausch et al., 2011). Hence for tree 
height to influence aboveground carbon estimated, it needs to be significant. The height of trees estimated in the 
plantation forest from UAV was not significantly different to tree height estimated from field data. However, the 
tree height difference was significant when estimated from UAV and field data in the riparian forest and this could 
likely be because of the limitation of the UAV not mirroring forest floor in dense riparian forest. 
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Not all trees in the riparian forest were used to estimate aboveground carbon. Only the trees that were visible in 
the orthophoto were used and this would also influence the aboveground carbon estimated. From the individual 
UAV images, aboveground carbon of about 18% of the trees in the riparian were not estimated. However, this 
could be more as there could be some trees that were capture by the UAV images due to the dense canopy in the 
tropical forest.  

The method used in this research is similar to the method used by Berhe (2018) and Odia (2018) who also derived 
forest parameters (DBH and tree height) from UAV data to estimate aboveground carbon. Although the method 
is similar, the method implemented in this study was able to relate the estimated aboveground carbon to the specific 
tree which was a limitation in the method implemented by Odia (2018) and Berhe (2018). The limitation to Odia 
(2018) and Berhe (2018) method was because handheld GPS, which has an accuracy of 3 to 10m in the forest, was 
used to record the coordinate of trees. Hence it was difficult to relate the estimated AGC to the specific tree as 
GPS point of trees sometimes does not lie within the boundary of the corresponding tree's crown projection area. 
Also, this method quantifies the DTM errors and the possible source of the error.  

4.6. Limitations 

The benchmark that was used to transfer the coordinates to the forest reserve was far. Although the survey 
instrument has a sub-meter accuracy, it is possible that accumulated error might affect the topographic survey. 
According to the instrument (Trimble R10) specification, the horizontal and vertical error per single RTK baseline 
(distance between base and rover) less than 30 Km is 8 mm ppm and 15 mm ppm respectively (Trimble, 2012). 
Seven benchmarks were established to transfer the coordinates from Offinso to the study area (Figure 2-4); hence 
the total accumulated error is 56 mm in the horizontal (east and north) and 105 mm in elevation.  

The intermingling effect influences the crown projection area estimated. From the allometric equations used, DBH 
has more weight on the estimation of aboveground carbon than tree height. Hence the wrong estimation of DBH 
may influence the estimation of aboveground carbon especially in the riparian forest where tree crown 
intermingling is mostly observed.  

Also, the allometric equation used for the riparian forest was not developed for Ghana although it was developed 
to estimate aboveground biomass for trees in the tropical forest. It would have been better to use allometric 
equation aboveground carbon (AGC) due to the difference in climate, topography, tree species, soil, and age 
(Basuki et al., 2009).  

Furthermore, the method cannot quantify the number of trees that were missed in the riparian forest and this 
would lead to under estimation of aboveground carbon in the riparian forest.  
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5. CONCLUSION AND RECOMMENDATION 

5.1. Conclusion 

The study aimed to estimate the accuracy of DTM generated by UAV under different forest canopy density and 
evaluate its effect on the estimation of aboveground carbon. Various spatial and statistical analysis were executed 
to obtain forest parameters (DBH and tree height) which was used as input in an allometric equation to estimate 
aboveground biomass. A conversion factor was then used to estimate aboveground carbon. Based on the research 
questions and result from the analysis, the following conclusions were derived.   

5.1.1. What is the accuracy of DTM generated from UAV acquired images as compared to field point?  

From the result, the root mean square error of the elevation in the open, medium, dense, and riparian forest are 

1.05 m, 1.6 m, 1.7 m, and 3.8 m respectively. Since the RMSE increased with increasing canopy density, the null 

hypothesis was rejected.  

5.1.2. What is the relation between CPA and field measured DBH? 

From the models developed, the quadratic model was used to predict DBH in the canopy density classes. The R-
squared of the open, medium, dense, and the riparian forest canopy was estimated to be 0.9188, 0.8353, 0.8002, 
and 0.8252 respectively. From the model, there is a relation between CPA and DBH. Hence the null hypothesis 
was rejected. 

5.1.3. What is the difference in tree height generated from UAV and field point CHM? 

From the canopy height model estimated, there is no statistical difference in tree height estimated from UAV and 
field point in the open, medium, and dense plantation canopy density. However, tree height estimated in the 
riparian forest from UAV and field data are statistically different. Hence the null hypothesis was not rejected for 
open, medium, and dense canopy but rejected for riparian forest. 

5.1.4. What is the difference in the aboveground carbon estimated from UAV dataset compared to field point? 

According to the t-test, aboveground carbon estimated by UAV in open, medium, and dense plantation forest is 
not significantly different to aboveground carbon estimated from field point data. However, aboveground carbon 
estimated from UAV in the riparian forest is significantly different from aboveground carbon estimated field point. 
Hence the null hypothesis was not rejected for open, medium, and dense canopy but rejected for the riparian 
forest. 

5.2. Recommendation 

The type of data selected will affect the model development and validation process.  For instance, when small and 
big trees are used for model development and validation respectively, the model developed will be different from 
using an equal number of big and small trees. Hence care must be taken when selecting the data for model CPA-
DBH model development and validation.  

Also, the amount of points generated in the dense canopy and riparian forest are different even though both forest 
canopies are dense. The riparian forest has a lower point density compared to the dense canopy plantation. One 
common difference is that unlike teak plantation, the riparian forest has many undergrowths and intermingling 
crown making the forest canopy denser. Therefore, I recommend research into the influence of leaf area index 
(LAI) on the quality of UAV DTM generated.   

Finally, care must be taken when flying the UAV so the block for the UAV survey is not close to the boundary for 
the study to avoid edge effects. The lower part of Figure 3-3 contained a dense canopy class but could not be used 
because of edge effects which introduce error. The error is due to the fewer number of tie points at the edge hence 
reducing the quality of point cloud generated at the edge. To avoid this, the flight should be planned in such a way 
that the number of overlaps is at the edge of the UAV block is almost the same as the number of overlap at the 
middle of the UAV block (van Leeuwen, 2019). 
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6. APPENDICES 

Appendix 1: Field data collection sheet  
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Appendix 2: DBH-CPA models  

Open canopy model development 

  
Medium canopy model development  
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Riparian forest model development 

  
 
Dense canopy model development 
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Appendix 3: Python code  

 
 
import PhotoScan 
 
chunk = PhotoScan.app.document.chunk 
point_cloud = chunk.point_cloud 
projections = point_cloud.projections 
points = point_cloud.points 
npoints = len(points) 
tracks = point_cloud.tracks 
 
THRESHOLD = 5 
 
for camera in chunk.cameras: 
 center = PhotoScan.Vector([camera.sensor.width/2, camera.sensor.height/2]) 
  
 point_index = 0 
 for proj in projections[camera]: 
  track_id = proj.track_id 
  if (proj.coord - center).norm() > THRESHOLD: 
   while point_index < npoints and points[point_index].track_id < track_id: 
    point_index += 1 
   if point_index < npoints and points[point_index].track_id == track_id: 
    if not points[point_index].valid:  
     continue 
     
   points[point_index].valid = False 
 
print("Finished") 


