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ABSTRACT 

Despite the benefits offered by forest, forests still face numerous threats from both biotic and abiotic factors 

that need to be assessed.  Traditional forest surveys are effective but are limited by the area of coverage. 

Therefore, assessing  stress caused by biotic and abiotic factor using remote sensing to complement field 

survey is vital for maintaining healthy and productive forests over large areas. Most studies have focused on 

monitoring forest health using remote sensing data acquired from satellites and manned aircraft. The use of 

Unmanned aerial systems (UAS) offers new tools and methods  for better and improved forest health 

assessment by offering datasets with very high spatial resolution. Data acquired from this platform can be 

used in unique ways and methods for monitoring forest health. In this study, we categorized the forest 

health into three classes, i.e., healthy moderate and severe. The primary objective was to evaluate the levels 

of the health status of individual trees affected by a combination of drought and pests.  High spatial multi-

spectral imagery was acquired using a parrot sequoia multispectral camera being mounted on the Unmanned 

aerial vehicle (UAV) flown over two different sites. Traditional field-based health assessments were carried 

out by taking into account of crown defoliation and discoloration in both sites.  The crown of each tree was 

delineated through segmentation of the acquired multispectral images. The acquired multispectral image was 

used to calculate the three vegetation indices. The vegetation indices were  compared in classifying the 

different health status of the forest while using two different non-parametric classifiers. Further, the 

calculated vegetation indices were used all together as one to classify forest health status. Our results showed 

that multi-spectral imagery obtained  with UAV could be useful in categorizing different forest health status.  

The research found out that among the vegetation indices, soil adjusted vegetation index (SAVI)  performed 

better than normalized difference vegetation index (NDVI) and normalized difference  red-edge (NDRE) 

in both sites. Better results were acquired when all the vegetation indices were used at once  to categorize 

the forest health classes. Random forest classifier slightly had a higher notch as a type of classifier over SVM  

across all the two sites.  

Keyword: Forest health, unmanned aerial system, Pest, Vegetation indices, Classification, Assessment  
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1. INTRODUCTION  

1.1. Context and background 

Forests cover about a third of the total earth land surface (Ellison et al. 2017) and are part and parcel of the 

natural ecosystem. Forest are essential in providing both social economic and ecological services that are 

important to the well being of the human population and ensuring ecological stability around the world 

(Pscheidt & Deangelis 2004). Forests, for example, capture and store carbon which is very crucial in 

controlling carbon fluxes around the world (de Jong et al. 2018). Forest also determines downstream water 

supply by influencing the water movements in the watershed hydrological cycle. Most of the terrestrial 

biodiversity depend on the forest as their habitat. Furthermore, the forest can also be associated with 

Sustainable Development Goals (SDGs), for instance, more than one billion of the population around the 

world rely on the forest for their daily income activities that contribute their livelihood wellbeing (Chao 

2012). Forest provides food for both animals and human beings, fuel, medicine, construction materials and 

fiber that is of use for various purposes. 

 

However, the forest around the world faces numerous threats from drought, wind fire, air pollution, and 

pest infestation. Severe drought causes a reduction on net primary production and water usage which 

eventually leads to the death of trees, furthermore, drought causes reduced nutrient cycling and 

decomposition in trees which leads to the development of flammable organic material that can intensify fire 

outbreaks (Dale 2001). Wind causes the uprooting and breaking of tree stems and branches. Sometimes 

wind caused disturbances are amplified by rain, by loosening of soils that eventually causes excessive 

uprooting. (Gandhi et al. 2007). Massive, intense fire has a significant role in maintaining the health of a 

forest although sometimes they bring about excessive damages that cause the death of trees (Castello & 

Teale 2011). Air pollution causes the deposition of acid in the atmosphere which when mixed with rain 

forms acid rain ( Johnson & Jacob 2010).  The acid deposition by rain causes soil acidity this affects the 

availability of a nutrient in the soils which would eventually enable plants not to withstand factors such as 

drought and pest outbreaks (DeHayes et al. 1999). Also, the deposition of acid rain may cause foliar injury 

(Fischer et al. 2007). Pests deteriorate the health of the forest by introducing diseases to the tree which 

would eventually kill the trees (Food and Agriculture Organization of the United Nations 2009). 

Furthermore, some pests like defoliators excessively feed on the trees leaves while others bore holes in the 

back of the trees rendering the tree dead (Pscheidt & Deangelis 2004).  

 

Surveillance of forest forms a major role in monitoring and effective forest health management. Studies 

have suggested that early assessment of trees that are facing disturbances can be a significant step in forest 

health management. The surveys are usually conducted by detecting symptoms or changes regarding the 

specific disturbances to the trees. Traditionally different methods of surveys have been used to monitor the 

state of forest health including detecting stress levels based on a visual examination in its early stages which 

at times is difficult and subjective. The use of Near-infrared spectroscopy has proven to be a challenge 

because these methods require extensive fieldwork for data collection and analysis which is expensive due 

to a huge number of workforce required and the expensive equipment required for this kind of work (Finley 

& Chhin 2016). Models have also been developed that gauges the forest health by using absence and 

presences of bird species (Nature Cconservancy 2017). Long-term forest inventories have been used in 

forest health monitoring since they provide valuable information about the changing trends in the forests. 
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However, these inventories are not sufficient enough to detect short and abrupt changes (Lausch et al. 

2017). The above current methods of detecting, assessing, and monitoring forest health are sometimes not 

feasible, i.e., on a large-scale basis and need to be complimented. 

 

Due to the inability of traditional ground survey methods to cover large areas, modern remote sensing 

methods have been suggested as the potential complement in monitoring and mapping the health status of 

forests. In order to fulfill the objective of forest health monitoring and mapping using remote sensing, there 

is a great need to know the importance of correctly knowing the data sources and the technique to be applied 

(Dash et al. 2017a). The choice of suitable sensors and resolution in remote sensing is normally determined 

by the physiological impact of the disturbances or agent affecting the forest health that can be observed 

based on the spectral properties of the leaves or foliage ( Wulder et al. 2006). By selecting, the appropriate 

sensor and defining the best resolution large areas or even the whole area can be assessed with increased 

and improved precision ( Wulder et al. 2006). One of the most common methods of conducting forest 

health survey using remotesensing over a large area is by aerial survey that often is also known as aerial 

sketch mapping. Aerial sketch mapping involves manual delineation of outbreaks and damages caused by 

forest disturbances. The method is conducted by a  very skilled specialist aboard the airplane (Stone et al. 

2012). The method is usually very accurate but is unable to detect different classes of forest disturbances 

outbreak and damages. Furthermore, the method itself will produce information that lacks spatial 

information regarding the damages reported due to lack of location measuring devices ( Johnson & Ross 

2008).  

 

Acquiring digital spatial data, on the other hand, provides more advantageous capability as compared to 

aerial surveys. The main advantage is the spatial accuracy of the data obtained, allowing for further analysis 

of the digital image and providing the best level of consistency.  (Dash et al. 2017a). Most studies that have 

been conducted have applied the use of satellite images to calculate and determine the spatial extent of 

damages caused by forest disturbances at a landscape and regional level using moderate spatial resolution 

images(5-30m)(Jonikavičius and Mozgeris 2013; Havašová et al. 2015; Meigs et al. 2011). The growing use 

of high-resolution satellite (<5m) in the last decade has gained popularity among researchers because of its 

capability to monitor and map forest health status at individual or cluster level in a particular forest stand 

(Adamczyk and Osberger 2015;Nicholas C. Coops et al 2006;Hart and Veblen 2015;Hicke and Logan 2009; 

Stone et al 2012). The high-resolution images have been reported to be much better in forest health 

assessment than using medium resolution (Wulder et al. 2006; Franklin et al. 2003). 

 

Up to date the detection of forest disturbances in forestry has been a major area of focus in the field of 

remote sensing.  However, very few studies have shown the use of satellite images(Poona & Ismail 2013), 

aerial survey multi-spectral data,(Leckie et al. 2004) and hyper-spectral data (Calderón et al. 2015; N C Coops 

et al. 2003) in mapping and assessing the impact of disturbances  to forest health. This is not as compared 

with the field of agriculture where many studies have been conducted to assess the health status of the crops. 

Assessing crop health is easy because its symptoms are normally shown in the upper part of the plant, and 

furthermore, the area covered by crops is relatively small as compared to forests (Sankaran et al. 2010). 

 

The use of reflectance ratio or vegetation indices (VIs) provides some of the best means in remote sensing 

for identifying and highlighting slight changes that occur in plants. The slight changes can be further be used 

to gauge the health status of the plant, or crop (Lausch et al. 2017). The vegetation indices are normally 

calculated on the digitally-acquired images. Vegetation indices can, therefore, be defined as the grouping of 

reflectance from the surface along two or more wavelength with the intention of highlighting specific 

characteristics of the vegetation (Tuominen et al. 2009a). Each calculated vegetation index is designed to 

show or highlight a particular property in a plant that could be linked to its current status (Al-Kindi et al. 
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2017).  There are different categories of vegetation indices, and among these categories, there are different 

examples or type of vegetation indices. Firstly we have the carbon vegetation indices that aim at looking at 

the state of plants senescence. Examples of such indices include the normalized difference lignin index 

(NDLI)  and the cellulose absorption index (CAI) (Tuominen et al. 2009a). The light efficiency index 

category looks at how efficient the plant is able to utilize light for photosynthesis.  Examples include the 

photochemical reflectance index (PRI) and the structure insensitive pigment index (Barton & North 2001). 

The leaf pigment vegetation index provides information on stress-related pigments in the plant. Examples 

in this category are the anthocyanin reflectance index and the carotenoid reflectance index (Sims & Gamon 

2002). Water content vegetation index provides us with the amount of water available in the canopy with 

less water content indicating the plant is undergoing stress. Examples of water content VIs include the 

moisture stress index (MSI) and the normalized difference water index (NDWI) (Tuominen et al. 2009a).` 

 

Lastly, the most common and used category of vegetation indices are the green vegetation indices(Hart and 

Veblen 2015; Havašová et al. 2015; Minařík and Langhammer 2016). Green vegetation indices aim at 

quantifying the chlorophyll content of plants. They are the most strongly recommended category as they 

can detect slight variations within tree canopies; thus, one can easily distinguish different levels of forest 

health. Also, green vegetation indices can measure and quantify diverse aspects such as chlorophyll 

concentration, canopy area, and canopy structure which most of the time can indicate the level of 

disturbances in a forest. It can be further used to assess forest health (Tuominen et al. 2009a). Among the 

green vegetation indices, NDVI has popularly been used in forest health assessment studies because it has 

a good overall measure of greenness in vegetation (Havašová et al. 2015).On the other hand, normalized 

difference red edge index (NDRE.)is a broadband version of NDVI, and it is usually very sensitive to small 

abrupt changes in chlorophyll content as it utilizes the region along the red edge as compared to NDVI 

which utilizes the maximum and the minimum region of the red edge (Eitel et al. 2011). Soil adjusted 

vegetation index soil (SAVI), on the other hand, was established to modify NDVI so as to counter the 

effects of soil brightness when vegetation is low (Qi et al. 1994). The use of green vegetation indices in 

forest health assessment has shown  acceptable accuracies  especially in detecting outbreaks of forest 

disturbances (Meng et al. 2016; Xiao and McPherson 2005; Adamczyk and Osberger 2015), and also in 

mapping their damaging  effects (Hart and Veblen 2015; Havašová et al. 2015; Lehmann et al. 2015). 

 

Image classification is another technique that can be applied to acquired images so as to categorize the 

different levels of forest health. Classification is the grouping of pixel or objects that are similar in spectral 

characteristic together. There are different techniques in classification, and they include the parametric and 

non-parametric techniques. The parametric techniques such as maximum likelihood were traditionally being 

applied in classification of images, but recently the non-parametric techniques such as Classification and 

Regression Trees (CART), k-Nearest Neighbors (kNN), decision tree, Support Vector Machine(SVM)  and 

Random Forests (RF) algorithms have extensively been used adopted. The most commonly used one is the 

random forest and the SVM, although random forest has minimally been applied in the field of forest health 

(Lausch et al. 2017). 

1.2. Problem statement  

Collecting and use of spatial digital images from satellite and the manned platforms are normally time-

consuming and at times relatively costly. Due to this, images from these platforms are regarded as not 

suitable for forest health assessment, because they are not able to clearly detect outbreaks of forest 

disturbances early enough. They also do not provide the continuous monitoring of risk areas and 

furthermore because of their moderate resolution capability they can miss out on small patches in a forest 

that requires full attention (Dash et al. 2017a). Unmanned aerial vehicles (UAVs) developments in recent 
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years have provided new methods of acquiring very high-resolution images while at the same time offering  

short temporal interval images  at very low cost. With the numerous advantages rendered by UAVs, still, its 

use in forest health assessment is scarce. For example, Näsi et al. (2015) using hyperspectral images acquired 

from  UAV  was able to classify Norway spruce forest that had been attacked by  European spruce bark 

beetle into three classes, i.e., infested healthy and dead.  The overall accuracy achieved by his classification 

was 76% with kappa statistics of  0.6. Lehmann et al. (2015) used UAV mounted with a compact camera to 

categorize five classes of forest health based on their defoliation status. The UAV was used on oak-

dominated forest sites that were being attacked by the oak splendor beetle. Their classification research 

managed to get an overall Kappa Index of Agreement of 0.81 and 0.77 on two sites. Dash et al. (2017b) 

Collected multispectral images from UAV and used to identify physiological stress on tree plantation at their 

early stages. Their results showed that psychological stress could be early be detected using the red-edge 

band rather than the Near-infrared data. They further used a non-parametric method to model the 

physiological stress using vegetation indices and the resultant weighted kappa from their classification was 

0.69.   

 

This research, therefore, seeks to add onto the few existing studies on forest health assessment using UAV, 

with the application of a multispectral camera to determine the best vegetation indices that can be used to 

asses forest health level and best classification method. 

 

1.2.1. General objective  

To evaluate the levels of health of individual trees affected by a combination of drought and pest. 

1.2.2. Specific objectives  

1. To determine the  vegetation index that classifies  best the forest health status ( NDVI, SAVI and 

NDRE)  

2. To determine the best  classifiers that classify the forest health status (RF and SVM) 

3. To determine the area covered by different forest health classes. 

1.2.3. Research questions  

1. What accuracy is obtained when NDVI is used to classify forest health? 

2. What accuracy is obtained when SAVI is used to classify forest health? 

3. What accuracy is obtained when NDRE is used to classify forest health? 

4. What accuracy is obtained when NDVI, SAVI and NDRE are combined to classify forest health? 

5. What is the performance of the two different classifier different classifiers? 

6. What is the area covered by different forest health classes? 
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2. STUDY AREA  
2.1. Overview of the Study Area 

Crete is the biggest and the most populous island in  Greece and the fifth largest island in the Mediterranean 

Sea. Crete is divided into four regional units that are also knowns as prefectures.  The regional units include 

Chania, Rethymno, Heraklion, and Lalitha. Heraklion is the largest and capital center of Crete with Chania 

coming in second. Within Chania prefectures, there are seven municipalities units which are  Apokoronas, 

Chania, Kantanos,-Selino Kissamos, Platanias and Sfakia. Sfakia is in the southwest part of the island within 

Chania prefectures. Sfakia municipality was the main focus of our study area. Out of the seven villages 

(Patsianos, Skaloti, Agia Roumeli, Agios Ioannis, Anopoli, Askifou, Asfendou, Imbros, Chora Sfakion) in 

Sfakia, Anopoli was selected to be the location where the data collection was going to be carried out. Anopoli 

is located between latitude 35⁰ 14’ 28’’- 35⁰ 13’  46’’   and longitude  24⁰ 06’  02’’- 24⁰ 00’ 41’’within the island 

with the altitude of 900m above sea level (ASL). 

 

 
Figure 1: location of the study area, Sfakia Crete Greece. 

2.2. Study Area site  selection criteria in Anopoli  

In Anopoli village, the study area consisted of two sites as shown in Figure 1. The study sites were chosen 

with the following ideas in mind.  

2.2.1. Accessibility  

The limited budget and time available made the study to consider the accessibility of the study site. The 

chosen accessible areas permitted for easy data collection using the handheld GNSS device. It also allowed 

the pilot to be able to watch the drone from far while still conducting its mission. 
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2.2.2.  Composition  of species 

While selecting the study site, the researcher looked at the location where there was only one type of species 

and mixed species of coniferous trees. Site 1 was composed of pine and cypress trees in the higher altitude 

while site 2 composed of only pine trees located in the lower elevation sites. 

2.3. Geology   

The region can be described as a rugged marble that is characterized by rock debris and karstic formations 

that are from the dolomite massif. The soils in the area are made up of Calcaric Lithosols and are because 

of erosion from hard crystalline limestones and dolomites. The soils lack organic matter, very Stoney and 

shallow. The calcareous scree is also abundant in the soil above 900m which is as a results limestone 

weathering ((Fernández-Calzado et al. 2013). 

2.4. Climate  

The area is in the coastal Mediterranean climate and receives an annual rainfall of745- 800mm. The study 

area experiences six months of summer two months of winter while the remaining four months are divided 

in between. During March and April which is early spring, the weather is a bit windy and rainy with 

temperature ranging between 14℃ to 25℃ to, May and June the temperatures ranges between 25℃ to 

lower thirties with short rain showers. Late June and mid-September temperatures are above thirties with 

no rain. Mid-September to late October the temperatures are in the high twenties degree Celsius with 

occasional rain showers. Late October to early January the temperatures are in between 25℃ to 16℃ to 

degrees Celsius with windy, cloudy, rainy and warm days. Lastly, between early January to mid-March, the 

rainfall is high accompanied by strong winds and with temperatures ranging from 10℃ to 20℃.(Fernández-

Calzado et al. 2013).Figure 2 shows show an ombrothermic diagram that summarises the total monthly 

precipitation and the mean  monthly temperature experienced in Anopoli between the year 2015-2018. The 

data used to generate the ombrothermic diagram was made available to this study by Weather station of 

Agios Ioannis Sfakion, Crete. 

 

Figure 2: Total monthly precipitation (blue hatched) and mean monthly air temperature (red solid line)  

2.5. Vegetation   

Due to the heterogeneity of the soils and Mediterranean climate, the area is characterized by different 

vegetation that is either groups of spiny cushion-shaped short shrubs or low prickly scrub, for example, 

Berberis cretica L., Euphorbia acanthothamnos Heldr. & Sart. ex Boiss., Juniperus oxycedrus L. subsp 

oxycedrus Acantholimon androcaceum (Jaub. & Spach) Boiss., and Astragalus angustifolius Lam. The 
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common  woody tree species found in the area include Cypress, Pine, Kermes oak, Cretan maple, carob 

tree, Lentisc, and Myrtle (Kazakis et al. 2007).  

 

Within the study area, there are  8  altitudinal zones of woody vegetation as shown in Figure 3. The pines 

(Pinus brutia) forms most of the lowlands between 650- 750m above sea level  (ASL). Between  850 and 

1150 ASL  is dominated with a mixture of pine (Pinus brutia), and cypress (Cupressus sempervirensis) 

stands. As the altitude  increases further up between 1200- 1400  the dominant species is Cyprus with a 

mixture of  kermes oak (Quercus coccifera) and oriental maple (Acer sempervirens). As altitude progresses 

further up the mountain  from 1450  to the timberline at 1650m, the area is characterized by pure stands of  

Cupressus.  Anopoli village which is the study areas fall between  450m - 1000m ASL and this zone is 

composed of either pure stand of pine or a mixture of Pinus brutia and Cupressus sempervirensis. Figure 3 

shows the zonation of the woody vegetation in Sfakia where the study area is located (red circular mark) 

 

 

 
Figure 3:8 altitudinal zones of woody vegetation. altitudinal distribution of the most important tree species in the study 

area (A - Acer sempervirens, C Cupressus sempervirens, P - Pinus brutia, Q - Quercus cocciera). The red oval 

represents the exact location. 

For this study area, site 1 has a mixture of pine and Cypress trees that are composed of both young and old 

trees, and the most dominant tree species was the pine tree. The crowns in the area were approximately 4 – 

6 metres in diameter. The underneath of the trees in site 1 were covered with rocks bare soils and small 

shrubs. Site 2 was purely made of pine trees that were composed of both young and old pine trees. The 

crown diameter of the trees here was approximately between 2-5 meters. The underneath of the trees and 

the surface of the trees was covered with bare soils and very little shrubs.   
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2.6. Pests in the study  area  

The tree's health in Anopoli is damaged through a  combination of drought and three pests namely 

Thaumetopoea pityocampa Matsucoccus josephi and Marchalina hellenica. The pests have caused havoc 

and destruction to the forest in the area. This greatly affects the net forest productivity of the area.  

 

 
                         Figure 4: the destruction of forest in Anopoli caused by drought and pest. 

Thaumetopoea pityocampa is also known as pine processionary and is a member of the moth family. 

Thaumetopoea pityocampa is one of the major causes of destruction to the Anopoli forests especially the 

pine trees. The pest is easily recognized by its caterpillar-like behavior. They normally form a whitish tent-

like nest on pine trees leaves. The larvae of the species feeds on the pine trees causing defoliation on the 

entire trees leading to diebacks that leads to the eventual death of the pine trees (Hódar et al. 2003).   

 

 
Figure 5: Thaumetopoea pityocampa and its destructive effects on pine trees. 
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Honey farmers in Greece were encouraged to introduce Marchalina hellenica into the pine forest in order 

to be able to increase their honey production.  Marchalina hellenica is a sap-feeding insect that produces a 

substantial amount of honeydew. The honeydew produced is a great source of food to the bees. Studies 

have shown that 60% of the honey produced in Greece comes from the pine trees that habitat of  Marchalina 

hellenica.  Marchalina hellenica is said to be the major source of pine mortality in Greece. The pest could 

be found on the lower parts of the trees including the nests of the main trunks exposed roots and branches. 

A big population of  Marchalina hellenica in a tree causes gradual desiccation and diebacks that could be 

followed by deaths of the trees. The Marchalina hellenica are generally located in bark crevices that are 

covered by a white secretion that are waxy (Mita et al. 2002). 

 

 
Figure 6: (a)Marchalina hellenica pest (b) honeydew produced by Marchalina hellenica (c) honey production that relies 

on the honeydew produced (d) death of tree caused by the heavy infestation of Marchalina hellenica. 

 

Matsucoccus josephi is the other pest that causes the mortality and destruction of forests in Anopoli. The 

pests feed on leaves of the branches causing shortening of the needles drying of the bud and twisting of the 

twigs leading to dry, sparse tree crown that would eventually cause the death of the trees. In most cases, the 

branches of the tree dry from the lower side to the upper side .Some of the symptoms recognized in a 

heavily infested pine include: tree trunks turn reddish peeling and cracking of the trunks and extravasation 

of huge amounts of resin drops (Mendel & Schiller 1993). 
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Figure 7:(a) Matsucoccus josephi pest (b, c) destructive effects to the branches and stems (d) death of a tree 

as a result of long-term damaging effect from Matsucoccus josephi. 

2.7. Social-economic activity  

The population of the study area consists of a group of people commonly referred to as Sfakians. Majority 

of the people are pastoralist, rearing mostly sheep and goats. Other inhabitants of the areas practice 

beekeeping that produces honey for sale. Cultivation of olive tree is also a common practice in the area 

which is the source of olive oil. The area also offers tourist destination sites with beautiful gorges, mountains 

for hiking beaches and beautiful scenery. 

 
Figure 8:  some of the economic activity in Sfakia: left image honey being transported to the market. The right image 

shows goats and sheep being reared by the Sfakians. 

a 
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3. MATERIAL AND METHODS  

3.1. Fieldwork  Materials Used  

Table 1 shows the field equipment’s that were used in the field. E-Trex Garmin handheld GPS was used for 

navigation and recording the location of the collected samples filed data sheet was used for field observation 

data recording, UAV was used to fly the Sequoia camera while the Sequoia camera was used to capture 

multispectral images of the study area.   

 

Table 1: Field equipment used in the study. 

Field equipment  Purpose  

UAS (Unmanned Aerial Systems) Mounting  a sequoia  camera on   

Datasheet  Recoding  the health status  during data collection  

Garmin GPS  Data collection  of individual trees 

sequoia camera   Capturing Multispectral images.  

Universal Ground control software (UGCS) Flight planning  

3.1.1. Unmanned Aerial Systems (UAS) 

UAS is a system that contains three different elements namely: the ground control station where the UAV 

is controlled from, the aerial platform which is the flying UAV/drone and the communication element that 

provides the linkage between the transmitter and the receiver. Usually, the terms UAS and UAV are used 

interchangeably to mean the same thing, but in the real case, the UAV is the platform while the UAS entails 

the three components (Tang & Shao 2015). 

 
Figure 9: quadcopter DJI Phantom 4, ground station and the battery used by the quadcopter  

There are different categories of UAS systems which are generally categorized based on maximum take-off 

weight, flight height range in kilometers and endurance in hours as shown in Figure 10.  

 

 
Figure 10: Categories of UAS(Skrzypietz 2012) 
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High altitude long endurance (HALE) and medium altitude long endurance (MALE) are regarded as a bigger 

and complicated system than the Mini Unmanned Aerial Vehicle (MUAV). Moreover, they are capable of 

carrying more payload and travel very lengthy distances (Skrzypietz 2012).  

 

In this work, we first considered the possible pros and cons of using UAV and conventional methods of 

data collection. The major challenge that affects the application of UAV in forestry is relief and terrain which 

provides limited space for the landing and taking off the UAV. It is difficult to use some types of UAV such 

as the fixed wing in forestry due to the challenges mentioned above. On the other hand, the use of copters 

has shown more promising results due to its capability of vertical take-off and landing (VTOL).  Examples 

of copters are the quadrotors or quadcopters that consist of disposed of rotors that are horizontally aligned 

(Lehmann et al. 2015). 

 

The quadcopters have very high mobility which is enabled by their landing and take-off capabilities, precise 

movement and hovering capabilities (Ali & Gueaieb 2010). A research conducted on 11 different lightweight 

UAV with VTOL capabilities showed that the Quadcopter had been rated highly from the evaluation. The 

evaluation was determined based on different parameters which include miniaturization, stationary flight 

maneuverability, mechanics simplicity, survivability, low-speed flight, high-speed flight, and survivability 

(Green & Oh 2007).  

This research study employed the use of the use of DJI Phantom 4 drone which is an example of a 

quadcopter that can be controlled from the ground station as shown in Figure 9. Using different software, 

we can design routes and heights to be accomplished by the UAV before flying. Furthermore, the phantom-

4 is equipped with GPS and capable of performing independent missions. The DJI Phantom 4 UAV was 

further customized to accommodate an extra lightweight payload (Parrot Sequoia).  

 

3.1.2. Parrot Sequoia camera 

Parrot Sequoia is a small multispectral UAV camera that enables the capture of data required to monitor 

and respond to the health status of both agricultural and natural vegetation understudy. It has been designed 

in a certain way that its compatible and can be mounted on most UAV platforms. It contains four 

multispectral sensors, capturing data in green, red, Red-edge and Near infra-red spectral bands. At the same 

time, it contains a 16-megapixel RGB camera. The spectral range in the Sequoia allows one to capture both 

analytical non-visible data and visible image in the same flight; thus no need to re-fly the same field with 

different camera in capturing the data required.  

A very important component of the parrot sequoia is the irradiance sensor that should be placed on top of 

the camera. The sensor reads the same channel of light that is being picked from the bottom and together 

the irradiance and the multispectral cameras are recording not only the GPS location but also the IMU data 

and reflection data that are then used by processing software to reconstruct the data in a very accurate way 

(Deng et al. 2018). Combining these technologies enables extreme precision in the task of forest health 

monitoring. This means that drones that are fixed with automatic control such as phantom-4 can be used 

to trigger the capturing sensors automatically in the sequoia making the data required simple and automated. 

When the Sequoia images are used with postprocessing software, it can generate index maps that are useful 

in vegetation monitoring.  In this study, the Sequoia Camera was mounted on the Phantom-4 UAV. Figure 

11 show how the parrot sequoia looks like, while Table 2 shows its technical description. 
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Figure 11: a) SEQUOIA Camera (b)The sunshine recorder(c) SEQUOIA Camera mounted on DJI Phantom 4 

quadcopter. 

Table 2: Technical details of Parrot Sequoia camera 

RGB sensor (rolling shutter) Descriptions 

Pixel size 1.34 μm 

Focal length 4.88 mm 

Resolution 4608×3456 

  

4 x monochrome sensors (global shutter) Descriptions 

Pixel size 3.75 μm 

Focal length:  3.98 mm 

Resolution:  1280 x 960 

Red:  640-680 nm 

Green:  530-570 nm 

Red Edge:  730-740 nm 

Near Infrared:  770-810 nm 

3.1.3. GNSS handheld device  

Satellite positioning system or global navigation satellite systems are satellite systems that are used for 

navigation purpose and locating areas. Examples of these satellite system include the global positioning 

system (GPS) Glonaas, Galileo and Beidou. Some of these systems are designed for navigational purpose 

around the world like GPS, while others were designed to be used at regional level like the Beidou. There 

are components that form the satellite-based positioning system. One of them is the user segments which 

entails the person using the system. Secondly, there is a control segment which controls the satellite in their 

b 
a 

c

b 
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orbit and sends out indication about errors. Lastly, there are the space segments that contains a constellation 

of satellites. The communication among this segment works through sending of binary codes through high 

electromagnetic radiation known as a carrier wave (wave modulation). Different positioning system uses 

different codes and modulations sometimes when sending information across the segment different kinds 

of interference influence the time and speed at which the information is reaching the segments. This includes 

the accuracy of the timing device the atmosphere and redirections that is created by obstacles. To get the 

estimate position of a place, the recommended number of satellites should be more than or equal to three. 

At times the accuracy of the location might not be accurate this because of some typical error usually 

experienced by the positioning system(Knippers & Tempfli 2013). Examples of these errors are as shown 

in Table 3. 

 

Table 3: Typical errors experienced by the handheld GNSS 

Type of error  Error in  Metres 

Satellite clocks  2 

Orbit errors  2.5 

Ionosphere  5 

Troposphere  0.5 

Receiver noise  0.3 

Multipath  ? 

 

In order to get a better accuracy of location, there are ways in which one could try and improve the 

positioning system. This includes eliminating random errors, use of better-quality receivers, employing the 

use of differential global Satellite positioning system (DGPS), and the use of a network augmenting system. 

Specifically, with multipath errors, one can reduce it by using the GPS on clear open skies, use of a better 

antenna and using an intelligent software which eliminates erroneous signals. One of the options for getting 

better accuracies is to use a better receiver. There are different kind of receivers, which include those that 

use code only like the hand-held GNSS, those that use the code and phases like the single frequency receivers 

and DGPS and lastly those that use code and phase on both frequencies which are known as dual frequency 

receivers (Knippers & Tempfli 2013). Table 4 shows the expected accuracies from different system receivers 

available. 

 

Table 4: Expected accuracies from different kind of receivers 

System   Accuracy in Metres 

Standalone code single frequency  5-10 

Standalone code dual frequency  2-5 

Standalone phase 2-3 

Differential code 0.5 

Differential phase 0.05 

Assisted network positioning  <1 

 

For this study due to the unavailability of a more accurate receiver system we used Etrex -30 GPS which a 

standalone code dual frequency with an accuracy ranging from 2 to 5 meters. In the first site, the GNSS 

handheld Device was able to attain an accuracy of two meters while in the second site the GPS accuracy 

was between 3 to 5 meters.   
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3.1.4. Flight planning tool: Universal ground control software (UGCS) 

Due to the terrain in the area, it was necessary to have planning software that would consider the issues of 

fluctuating terrain. In this case, the universal ground control software (UGCS) was used. UGCS software 

was chosen as a flight planning software because it allows the importation of Keyhole Markup Language 

(KML) files of the study area and automatically converts them into flight paths. It also allows planning in 

the terrain following mode which enables the UAV to maintain a constant altitude above the ground level. 

This is made possible by using the default provided SRTM or importing digital elevation model. In addition, 

the UGSC further offers an easy way of conducting aerial surveys by letting the selection of preinstalled 

camera setting or creating a new one to suit the camera on board the UAV. Based on the camera setting 

chosen the area scan and photogrammetry tools will automatically calculate the paths to be followed by the 

UAV. UGCS provides a telemetry window that can be viewed from the laptop with display information 

about radio link, charge level of the battery, GPS signal quality, current course heading, speed, altitude and 

many more which are very crucial when flying a drone in a hilly place. Finally, for large area surveys, UGCS 

is an effective software due to its mission planning and automation, photogrammetry geotagging tools. It 

enables the importation of DEM and KML files which allows for customization of the flight plans and lastly 

the ability to have battery change option for long routes. 

 

In this study, the areas to be surveyed were created on Google Earth Pro. The created polygons were then 

saved as KML file which was later imported into the UGCS software. A combination of the default SRTM 

of the area and the KML files was used by the software to develop the flight plan. Additional setting such 

as the speed of the UAV (5m/s) the flying height (80m) and the overlaps (80%) was set and fed into the 

software to finalize the flight plan. The final flight plan was then sent to the UAV to conduct the mission. 

 

 
Figure 12: flight plans on Universal Ground control software (site 1 right image, site 2 left image) 

3.2. Data and software used 

3.2.1. UAS data  

Two UAS image covering two different selected sites of the forest were used. The UAS images consisted of 

Four bands namely red, green Near infra-red (NIR) and the red edge. The UAS image on the first study site 

was acquired   15th September 2018 while the images of the second site were acquired on 18th of September 
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2018. The images were acquired with a Projected Coordinate System of WGS_1984_UTM_Zone_35N. 

Both images of Site1 and Site2 were acquired at a resolution of 8.55cm.  

3.2.2. Topographical map and shapefiles 

A topographical map was also used in this study. The topographical map aided in navigation and the 

selection of the study sites. The topographical scale boundary for the study site was 1:25000.  

3.2.3. Software  

The facilitation of the research was enabled using different software as shown in Table 5. Pix-4 d software 

was used for photogrammetry processing of UAS images. Ecognition was used for segmentation 

classification and accuracy assessments. Arc GIS software was used to perform some of the GIS operations 

and analysis. ERDAS software was used to calculate the vegetation indices and performing prepossessing 

of the images. Microsoft office was also used in the study. 

 

Table 5: Software used in the study 

Software  Purpose 

ArcGIS Georeferencing  of orthophoto maps presentation  

Pix4D Photogrammetry processing  

Erdas  Filtering and resampling of UAV images vegetation 

indices 

Ecognition  Segmentation  classification and accuracy 

assessments  

Microsoft  office   Field validation data entry and Thesis writing  

SPSS Statistical analysis  

 

3.3.  Research Method  

The study applied three steps; the firsts steps   included field data collection of UAV images and collection 

of training and validation sample. Secondly, there was the image processing part which included 

segmentation calculation of vegetation indices and classification. The last step involved the determination 

of the accuracy of the map produced through accuracy assessments technique.  Figure 13 shows the flow 

chart of the steps. 
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 Figure 13: flow chart describing the methods applied in this study. 

 

3.3.1. Field observations  

Sample trees location representing different forest health classes was collected across the study sites to be 

used for training and validation in classification. Determination of the classes of data to be collected in the 

field had been developed as shown in appendix 30. For this case, a classification schema had to be used. 

The classification scheme of forest health assessment used the requirements set by the European  

Commission Regulation (EEC) No. 926/93 (CEC, 1993) often used to assess forest dist+urbances. The 

scheme used in this study was adapted to make it broader due to the cons of remote sensing methods for 

distinguishing detailed forest features, compared to fieldwork inventories.  

 

 

https://www.sciencedirect.com/science/article/pii/S0303243414002360?via%3Dihub#bib0015
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Table 6: Classification schema applied to study sites                                                                                                                      
UN/ECE AND EU CLASSIFICATION SCHEMA MODIFIED AND ADAPTED CLASSIFICATION 

SCHEMA 

Class Defoliation Discoloration Class Defoliation Discoloration 
Healthy 10% 10% Healthy 10% 10% 

Slight  10–25%  10–25% Moderate  >10-60% >10-60% 

Moderate  25–60% 25–60% 

 Severe  >60% > 60% Severe  >60% >60% 

 Dead 100% 100% 

 
Total of 109 s tree samples representing three classes was collected in site 1 while a total of 125 samples 

were collected in site 2. 70% of the collected samples were later selected randomly used for training purposes 

while 30% of the data set were also selected randomly for validation purposes. 

3.3.2. Mosaicking  

A stationary image acquired from a stationary camera has a small Field of View (FOV). This means that it 

is impossible to see what is there in the surroundings. Therefore, several images need to be stitched together 

to form a mosaic to increase the field of view. Image mosaicking is a common and best way of obtaining a 

larger field of view so that the image scene can be increased. The principle behind this process is the several 

images that are captured as the camera moves and contain geolocation are stitched together to obtain a 

single large image. As the UAV mounted with camera moves, several images are captured which later are 

mosaiced to produce an entire scene of view. Image mosaicking addresses the most common challenge of 

increasing the field of view without losing spatial resolution (Huang et al. 2008). The process of image 

mosaicking is divided into three steps. Firstly, the features points are established and selected at each image 

secondly the corresponding features among the images are established also known as feature matching. 

Finally, the transformation of the mosaiced image is made while using points that are corresponding to 

create an orthophoto (Xu et al. 2016). The process of image mosaicking was carried out in PIX4D software. 

For site1, A total of 376 images from each multispectral camera were stitched to form the four different 

bands. A total of 245 images each from the multispectral camera were mosaiced for the second site to create 

the four band images. 

 

3.3.3. Filtering and re-sampling of the mosaiced UAS images  

In order to improve the visual interpretability of the UAV image an image enhancement technique known 

as image filtering had to be done. Filtering works by magnifying the small differences in the images. The 

process of image filtering occurs when a kernel that has weight factors is passed on the original image. The 

result obtained from the process is as a result of multiplication of weight factors by the digital number from 

the original image and addition of all the product outcome. So to be able to carry out manual delineation of 

trees and conduct segmentation, low pass filter was applied on the UAV images of both sites (Tolpekin & 

Stein 2013). Resampling of an image is the calculation of a new pixel value from an already existing pixel of 

an image. The images from both sites were resampled to 0.2 meters  nearest neighbour technique as studies 

had shown that segmentation of individual trees worked best in the ranges of 0.2-0.5m resolution (Baboo 

& Devi 2010). The purpose of resampling using the nearest neighbor algorithm was to preserve the spectral 

characteristic of the trees and to make ready the image for segmentation. 

3.4. Manual  Delineation of trees 

Manual delineation of individual trees was carried out right after the field work to aid in the determination 

of segmentation accuracy. The manual delineation was done on the image that was resampled and filtered.  

The individual trees were delineated based on specific criteria mentioned below.  
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1. Only the trees that were observed in the field were delineated; this was done both in site1 and in 

site 2. 

2. A scale of 1;400 in Arc GIS was used across all the two sites for delineation purposes.  

3. The diameter of the crowns was used as a reference for tree delineation. 

3.5. Calculation of vegetation indices from the bands created  

In remote sensing, forest health status can be assessed using features known as vegetation indices that are 

usually calculated from the remotely sensed dataset (Tuominen et al. 2009b). The reflectance property of 

the vegetation is what is used to generate these indices. The calculated vegetation indices are used to 

highlight a specific vegetation characteristic or feature. In this study, Greenness (chlorophyll concertation) 

Vegetation indices was used to map forest health status this is because of their capability to quantify diverse 

aspects such as chlorophyll concertation,  canopy area, and canopy structure which at most time can indicate 

the level of forest health  in a forest  (Tuominen et al. 2009b). From literature reviews, three common 

greenness vegetation indices have been widely used in forest health mapping or monitoring. They include 

NDVI, SAVI, and NDRE. 

3.5.1. Normalized Difference Vegetation index (NDVI) 

It is one of the most commonly used vegetation indices .It measures the amount/level of greenness in the 

vegetation (Bannari et al. 1995). NDVI calculation is computed by the reflectance of the red band and NIR 

infrared as shown in equation 1: 

                                                                                                                    Equation 1 

3.5.2. Normalized Difference Red Edge Index (NDRE) 

Normalized Difference Red Edge Index (NDRE) uses the reflectance along the red edge region as compared 

to the NDVI which employs the reflectance of maximum and minimum of the red edge region. This index 

is very sensitive small and abrupt chlorophyl changes(Tuominen et al. 2009a). Because of its sensitivity, 

NDRE has been used in a variety of forest health application such as fire damage diseases mapping bark 

beetle damage and drought stress. In a research conducted by Eitel et al., (2011) NDRE was able to detect 

stress symptoms earlier than the other vegetation indices in coniferous trees. Equation 2 shows how NDRE 

is computed.   

 

 

                                                                                             Equation 2 

 

3.5.3. Soil adjusted vegetation index (SAVI) 

Soil adjusted vegetation index was made to modify the NDVI  as a countermeasure for the effect of soil 

brightness when the vegetation is low(Bannari et al. 1995). Equation 3 below describes how this vegetation 

index is computed. 

                                                                                                          Equation 3 
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From the equation, the L value usually varies with the amount of vegetation available with L= 0 show 

high vegetation and L=1 no green vegetation. Generally, L= 0.5 is the default value is commonly used. In 

this study, the L value of 0.5 was used.     

3.6. Object-Based image analysis ( OBIA)   

Object-based image analysis is the process of grouping or partitioning an image into a non-overlapping unit 

called objects or segments. The segments or objects consist of clustered pixel that shows similar 

characteristic either in a spatial, spectral or textural way. There are two processes that are entailed in OBIA. 

The first process involves performing segmentation to form segments or image object. The second process 

involves classifying the created segments based on different criteria such as textural properties or even 

custom-made properties (Blaschke 2010). 

3.6.1. Segmentation  

Segmentation is the process of partitioning a scene or image into non-overlapping categories or units. 

Segmentation is a core and fundamental process in OBIA. Therefore, it very important and crucial to 

establish homogeneous segments and categorize them into a particular object. (Möller et al. 2007). 

Segmentation techniques consist of different types, but the most common ones include; region based and 

edge-based segmentation (Kim et al. 2008). In this study, region-based segmentation was employed. 

 

 Region-based segmentation works in a way that it groups pixels that have pixel with similar values together 

while at the same time splitting pixels that are not similar. This kind of segmentation entails grouping 

together object to form larger objects. This can also be known as a bottom-up segmentation algorithm 

approach. Within the region-based techniques, there are three different types, i.e., region growing, region 

splitting band region merging (Pekkarinen 2004).  

 

The region growing algorithms, groups pixel or a region into a larger region based on the criteria for growth. 

It begins  with a set of seed points or pixel, and from the seed points, it grows the region by appending to 

each seed the neighbouring pixel around it that have similar properties to the seed such as specific rages 

colours or any other criteria such smoothness and compactness that was designated to be similar to the seed 

(Kamdi & Krishna 2012). Region splitting algorithms produces smaller units founded on the 

homogeneousness of the criterion. The smaller units are as a result of the division of larger objects. In region 

merging algorithm segments are merged from the primary region which can be a single pixel of the object 

defined (Damiand & Resch 2003). 

3.6.2. Multi-resolution Segmentation   

Multiresolution segmentation is an algorithm that is region based. Multiresolution  segmentation was used 

in this study simply because it reduces the heterogeneity of a particular object while at the same time 

capitalizing on their homogeneity  which eventually results into production of meaningful desired 

objects(Baatz et al. 2000). The steps mentioned below show how the multiresolution process takes place. 

1. The segmentation process in one image object begins from one pixel that is also known as a seed. 

The seed continuously fuses with other pixels in a chain of loops up until homogeneousness is 

fulfilled  

2. The seed will then identify the neighbouring cell that is similar, i.e., one that is the best fit and 

merges them together.  

3. If the best fit is not achievable or not achieved, then best image object will become a candidate to 

be made the new seed and will start to look for its homogeneous partners again. 
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4. In the case where the best fit is achieved the image objects are combined in a chain of the loops. 

The loops will then run until further merging of the image is impossible. The process is then again 

repeated with other image objects.  

In this study, Ecognition software was used to carry out the multi-resolution segmentation  

3.6.3. Determining the multiresolution segmentation scale  

The scale is crucial in defining the size of the object while undertaking the segmentation process. The 

presence and absence of an image object is also defined by the scale parameter. When a different scale 

parameter is used, the same image object will look differently (Drǎguţ et al. 2010). Different scale parameters 

are used for different purposes for examples when classifying land cover a higher scale will be used as 

compared to when classifying individual trees. 

 

The word “scale parameter” is, therefore, always used in the context of defining the highest allowable 

heterogeneity resultant image objects from various scale parameters. The more the image is heterogeneous 

the smaller the resultant image objects from the various scale, while the more homogeneous the data, the 

larger the image objects from various scale parameter. Varying the scale parameter allows the 

accommodation of desired objects. The homogeneous of the image object referred by the scale parameter 

is called composition of homogeneity. The composition of homogeneity relies on various factor such as 

colour, compactness, and weights given to layers (Drǎguţ et al. 2010). 

3.6.4. Estimation scale parameter (ESP) Tool 

The choice of scale parameter is very important because it has a great influence on the segments produced 

and further can also affect the classification of segments. Within an image object, the degree of homogeneity 

is usually controlled by a measure known as scale parameter. For this matter, a tool known as ESP was 

developed that uses the local variance of an object heterogeneity in an image. With ESP tools, image objects 

are created iteratively at numerous scales in a bottom approach manner and the local variance of each scale 

is being calculated. The heterogeneity, in this case, is investigated by assessing local variance which is plotted 

versus the scale. The scale in which the segmentation of a scene can be done appropriately is determined by 

the rate of change and the local variance threshold and is always in relation to data characteristic of the 

image. Different studies have indicated that the use of the  ESP tool has provided a speedy way of processing 

and producing accurate results (Drǎguţ et al. 2010). In this study, the ESP tool was incorporated in 

ecognition software and used to determine the best scale at which the image representing two sites could be 

segmented in order to be able to generate individual crowns. 

3.7. Segmentation   procedure  

A series of steps were carried out during the segmentation process this included image pre-processing 

multiresolution segmentation removal of non-forest area watershed transformation, morphology removal 

of the unwanted object and finally remaining with the desired tree crowns.  

 

 
Figure 14: Segmentation process 

 



GEO-SPATIAL ASSESSMENT OF FOREST HEALTH STATUS USING UAS TECHNOLOGY, IN ANOPOLI CRETE 

22 

3.7.1. Setting parameters in ESP tool 

 

• Scale  

Setting the scale parameter for multiresolution segmentation was done on the ESP tool. The ruleset for the 

ESP tool was created and added into the ecognition software. The ruleset was then executed to generate 

different optimum scales that were used for both sites. 

• Image Layers weighting  

Image layer weights are used to determine the band in the multispectral image that will be given priority and 

influence the segmentation process. For this study, the layer that was given weight was the near-infrared 

band with value 4 being its weight while the rest of the band were assigned the weight of 1. 

• Shape/ colour  

Shape considers the connection between the shape and colour criteria. This affects how strong the spectral 

values of the data will influence the homogeneity of the image object. When the value of the shape is 

increased the image has more uniformity spatially with less spectral uniformity vice versa. So, setting the 

shape field value to a lower value spectral homogeneous objects will be produced vice-versa. In this study, 

the shape value was set 0.8 giving little emphasis on spectral uniformity but rather spatial uniformity this is 

because of the different reflectance of different health status that can be in one tree. 

• Compactness 

Compactness reveals the solidity of image objects or segments to be produced. In this study, the 

compactness value was set to default 0.5 to produce uniform balance among objects that are compact and 

those that are not.  

 

3.7.2. Masking out non-forest  

The area under study was an open forest and because the UAS image was acquired at 11 AM when the 

shadows were noticeable in the image. Therefore, there was a need to seclude and mask out non-forest areas 

from the image. The values in the near-infrared image were used to separate the forested areas from non-

forest areas.  In both sites, pixels with NIR values, less than 0.06 were masked out as non-forest area. 

3.7.3. Watershed transformation  

Watershed transformation was done in ecognition software to try and tackle the situation that occurs in a 

natural forest which is the issue of clustering of trees in one segment. Watershed transformation splits the 

clustered crowns into individual crown using splitting threshold. The threshold, in this case, is usually 

determined based on knowledge expert of the crown.  

In watershed transformation firstly, the inverted distance map is calculated. The calculation of the map is 

founded on the image objects border to the distance of each pixel. The calculation further converts the 

highest value in an original image to become the lowest value in the inverted map (Lang et al. 2007). The 

outcome image will resemble a watershed or a catchment. When water is put in the watershed system, the 

valleys in the watershed will gather water from the local minimum. The water will fill the valleys until it 

overspills to the next valley close to it. When the individual watersheds are close to each other and they 

touch one another, and the objects are split to minimize the crown clustering. In that case, when executing 

the watershed transformation in the forest, the clustered trees are regarded as watershed under flooding 

supposition. The trees are regarded as valleys that touch each other which are further separated to individual 

trees (L. Wang et al. 2004). 

3.7.4. Morphology algorithm in eCognition software 

After carrying out segmentation, the borders of the image objects created are usually not smooth. In order 

to smooth the image object, the morphology algorithm is applied. Two morphology operations are available 
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in eCognition, i.e., open image object and closed image object. In open image object, isolated pixels are 

removed from the image object whereas in close image object surrounding isolated pixel is added to the 

image. Due to small holes created or caused by shadows and difference in spectral properties, the study 

employed the use of close image object so that the holes could be filled. Another option provided by the 

morphology algorithm is the mask structuring features that also forms the basis of morphology. There are 

two types of mask, i.e., a circular mask and a square mask. For this circular study, masks were used in this 

study since the tree crowns are circular in nature. 

 

3.7.5. Removal of undesired objects  

Once the morphology process was done there seemed to be tinny objects present in the scene. The small 

tinny objects were objects with pixel less than 200, i.e., the crown diameter of less than 2 meters(shrubs). 

The small objects were removed since they were not part of trees that were being investigated. Furthermore, 

elongated objects that had roundness value of greater than 1.1 were also removed. The removal of elongated 

objects and the very small objects was performed using the remove algorithm in ecognition. 

3.8. Segmentation accuracy assessment 

Following the segmentation, it is always necessary to test the product of the outcome by validating the 

results through accuracy assessments. Accuracy assessment of the produced segments is linked to the 

parameter setting customization and data quality (spatial and spectral resolution). Validation of the segments 

or the segmentation results has to be conducted based on the geometric and topological relationship since 

the objects were obtained through geometric and thematic characteristics of the image. The geometric 

relationship is achieved by comparing the position of the object while topology is related to overlap and 

containment (Möller et al. 2007).  

 

There are three ways in which segmentation accuracy can be performed or achieved using topological 

relationship they include: empirical goodness of fit empirical discrepancy method and analytical methods. 

Empirical discrepancy method works in a way that it looks at the difference between the segmented crowns 

and the delineated crowns (reference) to test the performance of the segmentation algorithm. The empirical 

goodness of fit methods assesses the algorithm functioning indirectly by evaluating the segmented images 

with certain quality measures established in relation to human intuition. Lastly, the analytical methods 

evaluates the algorithms of segmentation directly by taking into account the principles, requirements, 

utilities, and complexity, of the algorithms. Although it looks simple, the analytical method is unable to get 

all the properties of segmentation. Reasonable tests and research have shown that the empirical discrepancy 

methods are more effective than the analytical and goodness of fit methods assess(Zhang 1996). There are 

two types of errors that occur when segmentation is performed, and they include; over segmentation and 

under segmentation. (Liu & Xia 2010). In this case, a three-step procedure was used as proposed by (Clinton 

et al. 2010). The equations 4,5 and 6    below describe the procedure that was followed.  

 

𝑜𝑣𝑒𝑟𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑎𝑡𝑖𝑜𝑛 = 1 −
−(𝒂𝒓𝒆𝒂(𝑨𝑫𝒊 ∩ 𝑨𝑹𝒊)

𝑎𝑟𝑒𝑎(𝐴𝐷𝑖) 
                                                                                      Equation 4 

 

𝑢𝑛𝑑𝑒𝑟𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = 1 −
−(𝒂𝒓𝒆𝒂(𝑨𝑫𝒊 ∩ 𝑨𝑹𝒊)

𝑎𝑟𝑒𝑎(𝐴𝑅𝑖)
                                                                                         Equation 5 

𝑫𝒊 =
√𝑜𝑣𝑒𝑟𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑎𝑡𝑖𝑜𝑛 2+𝑢𝑛𝑑𝑒𝑟𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑎𝑡𝑖𝑜𝑛 2

2
                                                                                            Equation 6 

𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 − 𝐷𝑖𝑗) ∗ 100                                                                                       Equation 7 
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Whereby: 

 ADi = Area of detected objects that are in a one-to-one spatial relationship with reference polygons.  

ARi = Area of reference polygons  

Area (ADi ∩ ARi) = Area of reference polygons that have been correctly segmented 

 

While conducting the accuracy assessment procedure, the manually digitized polygons were used as 

reference polygon. A spatial join feature in Arc Map was used to identify segments that had a one to one 

spatial relationship with the reference polygon. Once the segment that had a spatial relationship with the 

reference had been established, an intersection in the Arc Map software was performed to determine the 

intersecting polygons. The area of the reference polygons and that of the intersects were calculated. These 

areas were used in equation 4 and 5 to determine over and under-segmentation. The over and under-

segmentation were then used to calculate the detectable error. The overall accuracy was then calculated as 

shown in equation 7. 

3.9. Statistical Comparison of classes  within  the vegetation  indices  

The polygons corresponding to the tree sampled in the field were used to extract vegetation indices values 

in Arc GIS.  The extracted values were then tested for variation within the groups(healthy, moderate and 

severe). To do this analysis of variance  (ANOVA) was used. ANOVA is a statistical test that checks if the 

population mean of several groups are equal or not. Therefore, the ANOVA was used for comparing three 

the group means for statistical significance. Furthermore, post hoc analysis was performed across all the 

vegetation indices using the Turkey test to see where the differences occurred between classes and to provide 

exact information where means are significantly different from one another. In this case before performing 

Anova and post hoc analysis three assumptions were made, and they include: 

• The vegetation indices values were normally distributed. 

• The values constitute independent random sample from the respective populations. 

• The vegetation indices values had the same variance. 

3.10. Separability analysis of classes  within vegetation indices  

After the statistical comparison of the health level of forest within the vegetation indices, a further analysis 

known as separability analysis was performed on the vegetation indices to find out how their values differ 

between classes. Separability analysis is performed with the use of the mean and the standard deviation of 

the field observations. The bigger the difference of the mean between classes and the smaller the standard 

deviation difference between the classes are, the bigger the separability (Landgrebe 2005). 

  

𝑺 = (𝝁𝟏 − 𝛍𝟐)/(𝛔𝟏 + 𝛔𝟐)                                                                                                                    Equation 8 

Where  S is the separability, σ the standard deviation and   μ the mean 

 

3.11. Classification  of image objects (created segments )  

3.11.1. Support Vector Machine (SVM) Classifier  

Support vector machine (SVM) classifier algorithm is a collection of machine learning algorithms that are 

commonly employed for regression analysis and classification. In classification, the main goal of SVM is to 

develop the best boundaries or set of boundaries that are used to differentiate the classes in the feature 

space. The decision boundary is commonly referred to as hyperplane or set of hyperplanes. The classification 

in SVM depends on which side the data falls on the hyperplane. Generally, a good hyperplane or decision 
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boundary is attained by the hyperplane which has the biggest distance to the closest training data of different 

classes. This is because when there is a larger margin, there is a lower generalization error with the classifier.  

In cases where the classes are not linearly separable, SVM can solve this problem by converting the data 

using a kernel known as radial basis function (RBF) (Raj & Sivasathya 2014). 

 

SVM uses support vectors to classify data. These support vectors are also part of the training data input that 

helps in the creation of the hyperplane in the feature space. One major advantage of using the SVM 

algorithm is that the method has the lowest expected likelihood of generalization errors (Stephens & Diesing 

2014). In this study, the SVM algorithm was implemented by developing a ruleset in ecognition. Three 

vegetation indices were used independently to classify the forest health status. Subsequently, the three 

vegetation indices were combined to see the effect of their combination in the classification of forest health. 

3.11.2. Random forest   Classifier  

Random forest is a technique that entails a collection of many randomly developed classification trees. 

During the development of the random trees, two elements of randomness are normally introduced. First, 

a random bootstrap sample of the training datasets is used to develop each tree, secondly, instead of 

assessing all the characteristics for the best separation a random subset for of variables is tried at each 

separation or split of every tree. The reason behind introducing randomness in the development of the trees 

and averaging the outcomes over many trees is that the result would be lesser subjected to random variation 

in the training data and will have improved capability for generalizing pattern (Lausch et al. 2017). The 

prediction from random forest is generated for the observed data values by using the most popular class of 

each tree. Samples that do not constitute the bootstrap samples for the individual trees are called out of bags 

(OBB) sample. The OBB is used to develop cross-validated estimation error for the forest. Secondly, OBB 

is also used to determine the degree of feature importance. This occurs by shifting random value of input 

features and looking at how big the predictor error of the  OBB samples intensifies (Raj & Sivasathya 2014). 

3.11.3. Classification procedure  

Classification of image objects produced from segmentation was undertaken based on each of the vegetation 

indices separately. The vegetation indices were also  combined as features in ecognition ad used to classify 

the forest health classes. The word “combined” in this study means that the vegetation indices were used 

all together as independent predictors in ecognition software to classify the levels of forest health.Two 

classifiers namely Random Forest (RF) and Support Vector Machine(SVM) were also compared for their 

performance. The classification was divided into three classes in line with the tree health classes identified 

in the field. A total of 234 samples were chosen from both sites, 70% of which were used for classification 

and 30% were used further to access the accuracy of the results. In Site 1, out of 109 samples  76 were used 

as training samples. In site two out of 125 samples, 89 were used as training samples. 

3.12. Accuracy assessment  

An indispensable part of classification is the assessment of its accuracy.  The most common element of 

accuracy assessment is the overall accuracy, user accuracy, producer accuracy, and the kappa coefficient (Al-

Kindi et al. 2017). In this study, the computation of these elements will be presented.  

 

Error matrix or confusion matrix is a method used to characterize the accuracy of the image classification. 

Normally the confusion matrix is a table that shows the relationship between the reference image and the 

classified image, i.e., in developing a confusion matrix, a ground truth or validation data are needed. The 

validation data can be from cartographic information results of manual digitization of an image, field work, 

ground survey and the record that are obtained using a handheld GNSS. Other elements of accuracy 
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assessment can be generated from the confusion matrix, for example, overall accuracy user accuracy and 

producer accuracy (Lyons et al. 2018). 

 

Overall accuracy tells us about how the proportion of the reference data that were classified or mapped 

correctly. The overall accuracy is normally given in percentage with 100% being perfect in which all the 

ground truth data were mapped and classified correctly. Producer accuracy is the accuracy of the map from 

the mapmaker point of view. In other words, how frequently the features found in the ground are accurately 

shown on the classified image or certain features in the area being classified as such. User accuracy is the 

accuracy of the map from the map user point of view. This explains to us how frequent the class on the 

map will actually be available in the area. This is also known as reliability. Both user and producer accuracy 

are expressed as a percentage (Lyons et al. 2018).  

 

 Kappa statistics is an agreement measurement that is calculated from the difference between the real 

agreements in the error matrix as shown in equation 8. The Kappa coefficient is obtained from statistical 

calculations and test that gauges the accuracy of the classification. Kappa statistics generally gauges and 

evaluates how good the classification has performed rather than just assigning of random values (Congalton 

1991)                     

  (Congalton 1991).                                                                                 Equation 9 

where n = number of samples,  =sum of correct classified samples, =  
total number of samples.                                                                                         

Kappa statistics values range from 0 to 1 as shown in Figure 15. The ranges that characterize the kappa 

statistics are <0 poor chance of agreement,0.01 to 0.2 slight agreement, 0.21-0.40 fair agreement,0.41-0.60  

moderate agreement, 0.61-0.80 substantial agreement, and 0.81-0.99  almost perfect agreement (Viera & 

Garrett 2005).  

 
Figure 15: Kappa statistics interpretation 

 The accuracy assessment in this research was assessed using 30% of the collected data in the field, i.e. in 

site1 the classification result of the vegetation indices from both classifiers was validated using 33 

observations 11 for severely infected   12 moderately infected and 10 for healthy trees. In sites two the 

accuracy assessment was performed using 36  observation, 13 for severe 12 for moderate and 11 for severe.     

3.13. Post-classification analysis    

After the comparison of random forest and SVM classified images, the best vegetation indices that classified 

the forest health status with higher accuracy and Kappa statistic was chosen.  The selected map from the 

best vegetation indices went under further analysis whereby it was converted into polygons. The polygons 

were then used to calculate the areas covered by different forest health class .  Final maps for the two sites 
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were then prepared. Graphs were also generated illustrating the area coverage by different forest health 

status class.    

  

4. RESULTS  
4.1. Mosaicking images  

Mosaicking of the captured sequoia multispectral images was performed on the  Pix4D software to generate 

the four band. The four bands were later stacked together to form a single multispectral image. The total 

area covered by the mosaiced images in site1 and site 2 was 44.5 and 36.3 hectares respectively with an 

original resolution of 8.55 cm. Figure 16 and Figure 17 shows the orthophoto  created  as a result of 

mosaicking in site 1 and site 2 respectively. 

 

 
                               Figure 16: Site 1 results of the mosaicked images (orthophoto) 

 
                 Figure 17: Site 2 results of the mosaicked images(orthophoto) 

 b 
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4.2. Vegetation indices  

Vegetation indices were calculated using the equations 1,2,3 in ERDAS software. Figure18, and Figure 19 

shows the generated vegetation indices out of the equations. From the vegetation indices maps, the brightest 

part which shows high values which would probably indicate healthy trees while the darkest part would 

represent bare ground or water bodies. Site one had NDVI values ranging from -0.63 to 0.94, SAVI values 

ranging from -0.23 to 0.57 and NDRE values ranging from -0.81 to 0.87. Site 2 had NDVI values ranging 

from 0.93 to - 0.67 SAVI values ranging from -0.38 to 0.84 and NDRE values ranging from -0.77 to -0.83. 

 

               Figure 18: Site1 calculated vegetation indices 

 

                                              Figure 19: Site 2 calculated vegetation indices 



GEO-SPATIAL ASSESSMENT OF FOREST HEALTH STATUS USING UAS TECHNOLOGY IN ANOPOLI, CRETE 

29 

4.3. Segmentation  

Segmentation was done on both sites. In this case, the multi-resolution algorithm combined with other 

algorithms were applied to delineate tree crowns and also to mask out the non-forested area so as to avoid 

the problem of overestimating the tree crowns. 

4.3.1. Estimation of Scale parameter (ESP) 

ESP tool was used to determine the appropriate scale for multi-resolution segmentation. Figure 20 on the 

left shows the estimation of scale parameter results of the site1 image, which indicate that scale parameter 

17, 19, and 21 to be suitable to segment the image. Similarly, Figure 20 on the right shows the scale parameter 

appropriate for site 2 image, which indicates scale parameter of 12, 14 and 20 to be suitable. These scales 

are the peak values of rate of change established by ESP tool in Figure 20. 

 

          
Figure 20: ESP tool for site 1 on the left and site 2 on the right. 

4.3.2. Multiresolution segmentation and segmentation accuracy.  

Despite using ESP tool to determine the suitable scale parameter, the three different scale in each site were 

tested for segmentation accuracy, and amongst them, the one with the highest accuracy was selected for 

further analysis. In this case, the best among the three appropriate scale parameter was 17 and 14 in site 1 

and site 2 respectively. Table 7 shows the over-segmentation,  under-segmentation, Dij values and accuracy 

assessment of the best scales in both sites.  

 

Table 7: Segmentation accuracy in site and site 2 

Segmentation Accuracy assessment  Scale 19 site 1 Scale 14 site 2 

Reference area (ARi) 4415.621 4345.234 

segmented area (ADi) 4202.27 6612.457 

Intersection (ADi ∩ ARi) 4415.623 4396.623 

Over segmentation   0.263771 0.3351 

Under segmentation   -3.4E-07 -0.01183 

Total detected error (Dij) 0.186514 0.236951 

Accuracy 1- D 81.3% 76.3% 

 

Multi-resolution segmentation was then carried out using the best scale parameter in each site.  A total of 

3215 segments were generated in site 1 while  2674  segments were generated in site 2.                               

Figure 21 and  Figure 22 shows the final product of segmentation from both sites.  
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                              Figure 21: zoomed in Multi-resolution segmentation results site1 

 

 
 Figure 22:zoomed in Multi-resolution segmentation site 2 

Figure 23 shows an example of a reference polygon that was manually delineated and the automatically 

generated segment polygons that were used for segmentation accuracy. The manually delineated polygons 

are in red while the automatically generated segments are in green color. 
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Figure 23: Manually delineated(red) and the automatically generated (green) segment that used for segmentation 
accuracy in site1. 

4.4. Spectral reflectance of forest health classes  

The spectral means reflectance values of the three forest health levels according to each band were analyzed 

to see how they behave in the four spectral bands. The observations made on the field were used to derive 

the spectral reflectance  curve as seen in Figure 24 and Figure 25. The spectral reflectance in figure 24 and 

25 shows the class “healthy” being very distinct from the class “moderate” and “severe “trees  in the NIR 

region. The class severe and moderate can be seen as not very distinctive from each other. 

  

 
Figure 24: Spectral Reflectance of forest health status site 1 
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Figure 25: Spectral reflectance of forest health status site 2 

4.5. Statistical Comparison of classes  within  the vegetation  indices  

Within the vegetation indices in both sites, the ANOVA results indicated that there is a statistical difference 

between the forest health classes at 95% confidence level. As for post hoc analysis, all the class pairs in all 

the vegetation indices showed that there was statistically significant difference between them except for 

severe and moderate class which showed that there was no statistical difference in NDRE index. The 

confidence level used was 95%. Table 8 and Table 9shows the ANOVA and post hoc calculated results 

from both sites.  

 
Table 8: ANOVA test in sites 1 and site 2 

Index P-value site 1  P-value site Site 2 

NDRE 4.41E-05 4.41E-05 

NDVI 1.08E-05 1.08E-05 

SAVI 4.96E-06 4.96E-06 

 
Table 9:Post hoc analysis results 

Index health status pairswise  P-value site1 P values site 2  

NDRE Healthy-severe  0.00002 7.65E-06 

Healthy-moderate 0.04326 0.036 

severe -moderate 0.06604 0.072 

  NDVI Healthy-severe  5.48E-06 4.44E-06 

Healthy-moderate 0.026 0.027 

severe -moderate 0.037 0.039 

 SAVI Healthy-severe  2.47E-06 6.43E-06 

Healthy-moderate 0.0113 0.01 

severe -moderate 0.043 0.032 

4.6. Separability analysis of classes  within vegetation indices  

 In site 1 the  NDVI separability between class healthy and moderate was 1.7, healthy and severe was  2.8 

and moderate and severe  0.9. As for SAVI, the separability between healthy and moderate was  2.8  healthy 

and severe was  3.2 and moderate and severe  1.7. NDRE had a separability value for  healthy and moderate 

as 1.21 healthy and severe was  1.4 and moderate and severe was 0.99. Generally, the highest separability  

between classes was observed in  with SAVI while NDRE had the lowest separability   between the classes 

as shown in Table 10. 
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Table 10: Separability values for the vegetation indices site 1  

Vegetation index  Separability between classes (S) 

S (Healthy-Moderate) S(Healthy-Severe) S(Moderate-Severe) 

NDVI 1.733671 2.8154 1.645754 

SAVI 2.797303 3.170581 1.676431 

NDRE 1.215682 1.429972 0.989427 

 

In site 2 the  NDVI separability between class healthy and moderate was 1.4, healthy and severe was  1.8 

and moderate and severe  0.8. As for SAVI, the separability between healthy and moderate was  1.6 healthy 

and severe was  2.5 and moderate and severe  1.7. NDRE had a separability value for healthy and moderate 

as 1.21 healthy and severe was  1.3 and moderate and severe was  0.73.Similary as observed in Table 11 

SAVI had the highest separability between classes while NDRE had the lowest separability. 

 

 

Table 11:Separability values for the vegetation indices site 2 

Vegetation Index  Separability between classes (S) 

S (Healthy-Moderate) S(Healthy Severe) S(Moderate-Severe ) 

NDVI 1.433344 1.832791 0.883748 

SAVI 1.642345 2.457594 1.613642 

NDRE 1.344841 1.303326 0.730203 

 

4.7.  Classification of the created segments 

Figure26, Figure27, Figure28 and  Figure 29 show the classification map results of site two based on   NDVI, 

NDRE, SAVI and the combination of all the vegetation indices while Figure 30, Figure 31, Figure 32 and  

Figure33 shows the same classification results in site 2.From the classification results in both sites,  it is 

evident that differences in the classification results exist both between vegetation indices as well as between 

classification algorithm used. For example,  in some insatnces  the use  different classifiers on the same VI 

resulted  in the same trees being  classified differently. Similarly,  in some instances, the same trees also have 

been assigned different class when a different vegetation index is used. 

 

It can be noted from the results in both sites  that the different vegetation indices generated more or less of 

one class of forest health than the other, for example, it can be noted in site 2 that more of the moderate 

class was generated with NDVI as compared to the  NDRE. The different classification  result acquired by 

different vegetation indices can be seen to have greatly influenced also the overall accuracy of the generated 

maps.  
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Figure26: site 1; (a) RF classification using NDVI (b) SVM classification using NDVI 

 
Figure27:site 1;(a) RF classification using NDRE (b) SVM classification using NDRE 

 
Figure28:site 1;(a) RF classification using SAVI (b) SVM classification using SAVI 

 
Figure 29: site 1;(a) RF classification using all the vegetation (b) SVM  
classification using all the vegetation indices combined. 
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Figure 30: site 2; (a)Random forest classification using NDVI (b) SVM classification using NDVI 

  
Figure 31:site 2; (a)Random forest classification using NDRE (b) SVM classification using NDRE 

  
Figure 32:site 2; (a) RF classification using SAVI (b) SVM classification using SAVI 

  
Figure33:site2;(a) RF classification using all the vegetation(b) SVM classification using all the 
 vegetation indices combined. 

4.8. Accuracy assessments 

4.8.1. Accuracy assessment site 1  

In site1  Random forest classifier had  SAVI   obtain an overall accuracy of 79%. SAVI can detect healthy, 

moderate and severe trees with 80%, 75%, and 82% accuracy respectively. For NDRE, the overall accuracy 

achieved is equal to 63% with a kappa statistic of 0.63. The capability of detection of healthy, moderate and 

severe trees, using NDRE, is 82 %, 53% and 100 respectively. The overall accuracy of NDVI is 76%. The 

moderate, healthy and severe can be distinguished in the field with the accuracy of 90 %, 64%, and 78%  
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respectively. All the vegetation indices combined can detect Healthy, moderate and severe trees with an 

accuracy of  90 %; 77%  and 82% respectively. Tables 12, shows the summury of confusion matrix in all 

vegatattion indices  using RF classifier.  

 
Table 12: Results of error matrices site1using RF 

Random 

forest 

Classifier  

NDVI NDRE SAVI 
Combined Vegetation 

Indices 

User 

accuracy  

Producer 

accuracy  

Users 

accuracy  

Producers 

accuracy  

Users 

accuracy  

Producers  

 Accuracy  

Users 

accuracy 

Producers 

accuracy  

Healthy  90% 90% 82% 90% 89% 80% 90% 90% 

Moderate  64% 75% 53% 83% 69% 75% 77% 83% 

Severe  78% 64% 100% 27% 73% 82% 82% 82% 

Overall 

accuracy 

78% 66% 79 85% 

Kappa  0.63 0.49 0.68 0.77 

 

When SVM classifier was used, the overall accuracy of the classification accounted for was 73% with a kappa 

statistic of 0.59 using NDVI. Furthermore. NDVI had user accuracy of 89%, 62% and 73% for class healthy 

moderate and severe  respectively.  The overall accuracy generated when SVM was used to classify  NDRE 

was 64 % with a kappa statistic of 0.43, while the user accuracy obtained in the class healthy, moderate and 

severe were 90% 53% and 100% respectively. As for SAVI, the user accuracy obtained was 89% 63% and  

88%  for class healthy moderate and severe respectively, while the overall accuracy was 77%  with a Kappa 

statistic of 0.63. Subsequently when all the vegetation indices were used for classification user’s accuracy in 

healthy, moderate, and severe were 90, 71, and  89% respectively. Tables 13, shows the summury of 

confusion matrix in all vegatattion indices  using SVM classifier  in site 1. 

 

Table 13: Results of error matrices site1 using SVM 

SVM 

classifier 

NDVI NDRE SAVI Combine Vegetation 

Indices  

User 

accuracy 

Producer 

accuracy 

Users 

accuracy 

Producers 

accuracy 

Users 

accuracy 

Producers 

Accuracy 

Users 

accuracy 

Producers 

accuracy 

Healthy 89% 80% 80% 80% 89% 80% 90% 90% 

Moderate 62% 67% 50% 83% 63% 83% 71% 83% 

Severe 73% 73% 100% 27% 88% 64% 89% 73% 

Overall 

accuracy 

73% 64% 77% 82% 

Kappa 0.59 0.43 0.63 0.73 

4.8.1. Accuracy assessment site 2  

The overall accuracy   of random forest classifier in Site 2 using SAVI achieved an overall accuracy of 72%. 
SAVI can detect healthy, moderate and severe trees with 75%, 60% and 79% of accuracy respectively. For 

NDRE, the overall accuracy achieved is equal to 61% with a kappa statistic of 0.41. Its capability of detecting 

of healthy, moderate and severe trees, using is 69%, 50%, and 58% respectively. The overall accuracy of 

NDVI is 61%. The moderate, healthy and severe trees can be distinguished in the field with the accuracy of 

88% 50% and 100%  respectively. All the vegetation indices combined can detect Healthy, moderate and 

severe trees with accuracy 91 %, 70, and 73% of accuracy respectively. 
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Table 14: Results of error matrices site2 using RF 

Random 

forest 

Classifier 

NDVI NDRE SAVI Combine Vegetation 

Indices 

User 

accuracy 

Producer 

accuracy 

User 

accuracy 

Producer

s 

accuracy 

Users 

accuracy 

Producer

s 

Accuracy 

Users 

accuracy 

Producers 

accuracy 

Healthy  88% 64% 69% 82% 75% 82% 91% 91% 

Moderate  50% 92% 50% 17% 60% 50% 70% 58% 

Severe  100% 46% 58% 85% 79% 85% 73% 85% 

Overall 

accuracy 

67% 61% 72% 78% 

Kappa  0.50 0.41% 0.58% 0.67 

 
When SVM classifier was also used, the overall accuracy of the classification accounted for 64% with a 

kappa statistic of 0.46 for NDVI. The user accuracy of 88%, 48% and 100% for class healthy moderate and 

severe respectively were further obtained with the use of NDVI.  The overall accuracy generated when SVM 

was used to classify NDRE was 58 % with a kappa statistic of 0. 37 while the user accuracy obtained in the 

class healthy, moderate and severe were 69% 33% and 55% respectively. As for SAVI, the user accuracy 

obtained was 82% 63% and  65%  for class healthy, moderate and severe respectively while the overall its 

accuracy was 70% with a Kappa statistic of 0.54. Also, when all the vegetation indices were used for 

classification a user’s accuracy in healthy moderate, and severe were 90%, 70% and  69 % respectively. 

Tables 13, shows the summury of confusion matrix in all vegatattion indices  using SVM classifier  in site 2. 

 

Table 15Results of error matrices site 2 using SVM 

SVM 

classifier 

NDVI NDRE SAVI Combine Vegetation 

Indices  

User 

accuracy 

Producer 

accuracy 

Users 

accuracy 

Producers 

accuracy 

Users 

accuracy 

Producers 

Accuracy 

Users 

accuracy 

Producers 

accuracy 

Healthy  88% 86% 69% 82% 82% 82% 90% 82% 

Moderate  48% 92% 33% 8% 63% 42% 70% 58% 

Severe  64% 46% 55% 85% 65% 85% 69% 85% 

Overall 

accuracy 

64% 58% 70% 75% 

Kappa  0.46 0.37 0.54 0.62 

 

4.9. Post classification  analysis  

The best method of classifying forest health classes from the study was found to be when using all the 

vegetation indices combined using random forest classifier. In site 1 the accuracy attained from random 

forest classifier with the  use of all vegetation indices combine was found to be   84% while in site 2  the 

accuracy achieved was 78 %. The results generally show the severe, moderate and healthy class to be 

distributed throughout the study area in both sites. However, the results of site 2 could have been affected 

by sun illumination difference because the UAV flights were conducted in the forenoon. The maps that 

attained these accuracies were further converted into polygons in Arc GIS and area covered by each class 

was calculated in hectares. In site one, area covered by moderate class was approximately 9.386 hectares 

healthy class was 4.485 and lastly, the severe class was 5.275. Similarly, in site two the area covered by 
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moderate class is 4.835 hectares, healthy is 5.137 and severe is 3.479. Figure 34 and Figure 36   show the 

finals maps generated while Figure 35 and Figure 37  show the generated bar graphs showing the areas 

covered by each class in both sites. 

 

 
                                Figure 34: Final forest health map site 1 
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 Figure 35: Area in Hectares covered by each class in site 1 

 

 
           Figure 36: Final forest health Map site 2 
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Figure 37: Area in Hectares covered by each class in site 2 
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5. DISCUSSION 
 

5.1. Image Segmentation  and  Accuracy  Assesment 

The use of multi-resolution segmentation was seen as the best algorithm for segmentation because it is able 

to take into account forests that are highly heterogeneous. This is not as compared to the other algorithms 

which always considers the shape of the tree to be cone-shaped and the brightest part of the tree to be 

representing the crown. The consideration of the brightest part of the tree to be a crown and assumption 

that the tree crown is conical in shape is a perfect example of planted and managed trees or forest (Culvenor 

2002; Gonzalez et al. 2010). In this case, the forest in the study was somehow complex as it contained 

naturally growing pine and cypress trees that were not managed, the trees were of different ages with 

different crown shapes, the branches of the trees were uniquely positioned and different illumination from 

the trees. Therefore, other segmentation algorithms could not be able to factor in this complexity as 

compared to multiresolution segmentation which forms crown segments while taking into account spectrally 

and spatially similar pixel (Wang et al. 2010). 

 

The segmentation accuracies in this study were achieved on a one to one relationship matching between the 

automatically generated segments from ecognition and the manually delineated tree crowns (references). 

The segmentation accuracy for Site 1 and Site 2 were 81 %and 76% respectively. These segmentation 

accuracies are considered to be high. The most probable reason for high segmentation accuracy could be 

that the segmentation was carried out in an open forest with single dispersed trees with high contrast bare 

ground in between the trees. Segmentation in such ecosystem would be rather successful compared to a 

dense forest with overlapping tree canopies. Secondly, the high accuracy could also have been attained 

because manual delineation was only done on the tree samples that were recognized in the field rather than 

randomly selecting the trees from both sites.  

 

The obtained segmentation accuracy results were common to those achieved by Wang et al. (2004) who 

achieved an accuracy of 75.6% while segmenting tree crowns from non-tree crowns. Mohan et al. (2017) 

achieved an accuracy f-score of 86% while detecting individual trees in an  Open Canopy Mixed Conifer 

Forest. Huang et al. (2018) obtained an accuracy with f-score 98.2% and 93.1% while using watershed 

segmentation to delaminate individual tree crowns of Osmanthus and Podocarpus trees in an open forest.  

Ke et al. (2008) obtained an accuracy of 61.3% while delineating tree crowns in mixed broad leaves and 

needles trees using region growing segmentation algorithm.  

 

Site two had lower segmentation accuracy as compared to the site 1 because the second site had uncertainties 

related to shadows cast by the trees as images were aquired at forenoon.Taller trees overshadowed 

neighbouring shorter trees introducing low reflectance and reduced segmentation accuracy; Also, some of 

the shadows were segmented as trees affecting both segmentation and classification further on. 

 

One major challenge faced in both sites was the natural forest had trees that were unmanaged; hence the 

some of the branches in the trees were protruding and in some case were confused as crowns. This slightly 

affected the segmentation and further the classification accuracy. 
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5.2. Separability of classes between vegetation indices  

High separability results between classes were obtained with SAVI followed by NDVI while NDRE had 

the lowest separability values between classes. This shows that, with SAVI, the forest health classes can be 

differentiated better as compared to the NDVI and NDRE. The reason for high separability of classes 

within SAVI could be because of its countermeasure for the effect of soil brightness which normally affects 

the calculation of vegetation indices in areas where the vegetation is low. This could mean that the values 

that are generated from SAVI representing different class could have been more different from each other 

as compared to the other vegetation indices which do not offer this counter-effect measures and are easily 

influenced by soil brightness. It was noted that separability between class healthy and severe generally was 

higher as compared to moderate and severe in all the three vegetation indices. The separability between class 

severe and moderate was the lowest across all the vegetation indices indicating the difficulty in their 

separation within the vegetation indices. The reason for this low separability value could be because the 

vegetation indices values that separates them might have been close to each other. This could be  attributed 

to the lack of clearly visible difference in the reflectance values between the moderate healthy trees and the 

severely healthy trees . 

 

Comparable  separability tests between classes within vegetation indices have been performed by Tuominen 

et al. ( 2009).Their research was looking how easy was it for the vegetation indices calculated from Hy map 

airborne hyperspectral scanner  to separate between healthy and defoliated trees. Their result showed that  

NDVI had the highest separability value among the 16 vegetation indices. Adamczyk & Osberger (2015) 

also Performed a separability analysis for ten vegetation indices calculated from Rapid Eye, whereby,  among 

the ten VIs they found two most suitable vegetation indices ( NDVI and NDRE ) for threshold OBIA 

classification. Their separability outcomes would be  different from the once achieved from this study 

because of the use of a different remotesensing platform with different characteristic as from the one used 

in this study.   

5.3. Forest health classification accuracy  

The difference in classification performance of indices is seen by the outcome in maps, whereby for instance 

the same trees are classified differently across different vegetation indices. This can be due to the different 

levels of separability and sensitivity of the different vegetation indices as seen in the separability  

Table 10 and Table 11. The overall classification accuracy gives poor results for NDRE vegetation indies, 

moderate classification results using NDVI, better results using SAVI vegetation indices and much better 

results when all the vegetation indices are combined. This is the true case across all the classifier used. The 

reason for higher classification accuracy when all the vegetation indices were combined could be because 

different vegetation indices are able to highlight special characteristic of vegetation that the other one cannot 

address so when they are combined together, they are able to complement each other, resulting to higher 

accuracies. Dash et al. (2017) also found out that using all the four vegetation indices (NDVI, green NDVI, 

NDRE and the nonlinear index ) in random forest classification models produced higher kappa statistics 

than when individual vegetation indices are used. 

 

From all the generated confusion matrix in this research, it can be noted that the user accuracy generated 

by moderate class are generally low compared to other classes. This shows that there is a higher chance that 

the class moderate on the map does not really represent the moderate healthy trees on the ground. However, 

across all the vegetation indices in both study areas it was noted that the user accuracy of the class healthy 

was very high this indicates that there is a likelihood that the class healthy on the map truly represents the 

healthy trees on the ground. As for the class severe, the user accuracy fluctuated between moderate user 



GEO-SPATIAL ASSESSMENT OF FOREST HEALTH STATUS USING UAS TECHNOLOGY IN ANOPOLI, CRETE 

43 

accuracy and higher user accuracy with some vegetation indices recording high user accuracy and others 

recording moderate user accuracy across the two sites. Generally, the user accuracies produced depended 

highly on the type of vegetation indices that were used to classify the status of forest health. The reason for 

higher user accuracy in the healthy class was that fewer or none of the healthy class that were misclassified 

or wrongly classified into other classes as clearly shown in the confusion matrices in the appendices. The 

low user accuracies obtained from the class moderate and the fluctuating user accuracies obtained from the 

class severe can be due to the fact that differentiating between the moderate and the severe with the classifier 

was difficult within the vegetation indices leading to the misclassification between the two classes. 

Furthermore, the samples that were collected were not enough to be able to provide much variations 

between the moderately healthy and severely healthy trees, and this can be seen in the confusion brought in 

during the classification where some of the moderate class were being classified as severe and some of the 

severe class being classified as moderate. The issues of misclassification are common during classification 

and have been experienced with other studies. For example, while classifying  the hyperspectral imagery  

into five classes (Bare soil, Healthy Broadleaves, Healthy Coniferous ,Dead trees  ,vegetated soil) to map 

bark beetle-induced tree mortality, Fassnacht et al. (2014) found out that most of the confusion of 

misclassification occurred between dead trees and sparsely populated vegetated soil further affecting their 

user accuracies . Their Studies confirms that the issues of misclassification or confusion can happen. 

 

The overall forest health classification accuracies achieved in this study can be compared to Dash et al. 

(2017) where they compared different vegetation indices, i.e.  NDVI, green NDVI, NDRE and the nonlinear 

index (NLI)  in simulated dense forest disease attacks. They found out that different vegetation indices 

performed differently when monitoring and assessing the levels of forest health. Their results showed that 

individually the best vegetation index in detecting physiological stress was the NDVI with a Kappa statistic 

of 0.57, the green  NDVI  came in second with a kappa statistic of 0.484 while the least performance was  

NLI with a kappa statistic of 0.39. From their findings, it was noted that individual vegetation indices 

performed poorly as compared to when all of them are combined. Their results achieved very kappa statistic 

of  0.64 when all the four vegetation indices were combined as compared to the individual vegetation indices. 

This is similar to the finding of this study where the use of all the vegetation indices combined produced 

the highest kappa statistics across both sites. Näsi et al. (2015)  used hyperspectral images acquired from 

UAV images to classify Norway spruce forest that had been attacked by European spruce bark beetle into 

three classes, i.e., infested healthy and dead. The overall accuracy achieved by their classification while using 

k-nearest neighbour non-parametric classifier was 76% with kappa statistics of  0.6. Lehmann et al. (2015) 

obtained a  kappa statistic accuracy of  0.81 and 0.76  at two study sites while classifying five levels of an 

infested oak forest using NDVI. Näsi et al. (2018) Classified the beetle damage in urban forests at individual 

tree level using a novel hyperspectral camera from UAV and was able to obtain an accuracy of 81% and 

kappa statistics of 0.70 also while using k-nearest neighbour classifier.   

 

In this study, three classes (healthy, moderate, severe) were used to categorize the forest health status with 

moderate being the intermediate class. Working with the intermediate class could also be the cause affecting 

the overall classification accuracy. Some studies have shown that working with intermediate classes lowered 

the overall percentage accuracy or kappa values. For example, Näsi et al. (2015) found out that when 

classifying his forest health status using three classes  (healthy, infested and dead)  his kappa statistic was 0.6 

as opposed to when he used healthy and dead which achieved a kappa of 0.8. His finding showed that 

removing the intermediate class  ‘infested’   increased the kappa statistics value. Dash et al. (2017) also found 

high and perfect classification results when using severe discoloration and healthy as opposed to 

intermediate classes such as moderate as he had earlier tested. These two examples show that using extremes 

classes of physiological stress can increase accuracy as opposed to the use of intermediate classes.  
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Looking at the vegetation indices individually the highest overall accuracy was achieved when using SAVI  

was used to classify forest health classes  while NDRE had the poorest overall classification compared to 

the rest. This  was unexpected as the NDRE is known to apply all the values along the red edge region 

making it sensitive to slight changes that occur within vegetation. High accuracy using red edge have been 

reported with different studies which are in contrary to what this study has found. For example, Adamczyk 

& Osberger (2015)  found out that red edge was more accurate in detecting stress early enough on conifer 

trees as compared to NDVI  although the forest under study was dense as compared to the open forest  in 

this present study . Other studies have shown the  NDRE  to perform moderately.For example Dash et al. 

(2017) found out that the NDREcame in second when after  NDVI in terms of performance when they 

were used to assess the different level of forest health stress in a simulated forest diseases attack. A possible 

reason for low accuracy with the use of NDRE in this study might be that assessment of tree health in the 

field was based only in the defoliation status, whereas, there are many indicators and environmental factors 

that could have been more useful training the datasets and were not collected at the time.  These datasets 

could not have been collected within the timeframe of this study. Furthermore, data collected was only 

restricted to human vision (categorizing defoliation status). Collecting data on defoliation when the tree is 

less defoliated it does not mean it is unhealthy. 

 

The tree crowns in site 2 had diameter ranges of 2-5 metres. This significantly affected the classification and 

accuracy assessment due to the fact that the handheld GNSS used to collect the tree sample had an accuracy 

of 3-5 meters. The location of most of the trees that had a diameter of less than 3 meters was not adequately 

identified leading to low classification accuracy and more misclassifications as compared to site 1. The effect 

of light (over exposed or under exposed had) could have had a negative implication on overall classification 

accuracy especially in site 2 where the flight was conducted early morning before noon when the lighting 

conditions were not the best. In site 2 you find that due to the different exposure of sunlight to the trees 

the reflectance values of the trees were affected, with trees exposed to more sunlight reflecting more. These 

means that a healthy tree that is not exposed to sunlight will reflect less NIR as compared to the healthy 

tree exposed to sunlight and the same compared to the moderate class that is exposed to sunlight. These 

would further affect the classification leading misclassification and confusing within the vegetation indices. 

The illumination issues, therefore, could not be completely be reduced by the vegetation indices. This can, 

therefore, be reduced by conducting UAV flights at noon time or during closed cloud cover. 

5.4. Comparison of the two Classifiers 

Random forest classifier achieved slightly higher accuracy than SVM. There is no big difference between 

the classification performed by RF or SVM. In the generated forest health maps, it can also be seen that the 

classifiers performed slightly differently when used to classify the same objects represented through different 

vegetation indices. For example, the same tree is assigned a different class when the two classifiers are used 

in the same vegetation index. The difference in results between random forest and SVM can be due to the 

difference in the algorithm design that are used by the classifiers to perform the classification. These 

algorithms would determine how best to classify different classes that are even very difficult to differentiate 

from each other. For example, SVM uses hyperplanes to separate classes while random forest uses a group 

of decision trees for classification explaining the reason for the slightly different in classification outcome 

and accuracy assessments results. Similar comparisons have been made between non-parametric classifiers 

in the field of forest health assessment, for example, Abdel-Rahman et al. (2014) compared how random 

forest (RF) and support vector machines (SVM) classifiers in distinguishing amongst healthy, sirex grey-

attacked and lightning-damaged pine trees using AISA Eagle hyperspectral data. Their results showed that 
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random forest achieved slightly higher accuracy of 74.5% than the  SVM which attained an accuracy of 73. 

Their study concluded that the two non-parametric classifiers performed comparatively the same in 

classification of the eight classes, although the RF achieved higher overall accuracy.  Their finding is similar 

to this present study that showed the overall accuracy attained by  RF slightly edging out  SVM with very 

small margins in the overall accuracy. 

5.5. The use of the Parrot Sequoia  multispectral camera   

The achieved results from the Parrot Sequoia camera was promising, particularly in site two where the 

classification accuracy results were very suitable when RF classifier was used. Therefore, using a UAS 

multispectral acquired imagery can be a helpful tool in forest health management both for forest manager 

and private forest owners. As presented in this study, the identification of the three different forest classes 

is possible and permits for a first evaluation of the dimension of damage in the forest stand. The use of 

multispectral band enables the detection and assessment of trees. However, this is not a diagnosing tool that 

should be providing information for the reason of stress in trees. In the case of this study, multifactorial 

processes are related to the damage and decline of the forest. Besides the biotic factors such as pest and 

several abiotic factors such as drought are also implicated in the damages of trees. In this study drought 

combine with pest infestation was the main reason for defoliation and discoloration of altering the canopy 

reflection signatures of the trees understudy. Thus, identifying the reason for stress in trees using UAV is 

limited because of the reason that several factors as mentioned earlier would result in similar features. 

Although this  drawback exits on the use of UAS, it can support ground surveys that are visually conducted 

as in this study. This is because field surveys at times can be expensive and time-consuming. 

5.6. Limitation  in the  research  

The limitation in this study is limited accessibility to study area (as a result of fluctuating terrain ) that can 

lead in the probable absence of ground-based GCPs which are very crucial in calculating the correct exterior 

orientation of the image. Although the parrot sequoia camera had its GPS and  IMU onboard, the accuracy 

from its  GPS has a positional accuracy of 3-5 meters which is low for direct processing of the image exterior 

orientation. Research on how to put onboard enhanced DGPS onboard  UAV are currently underway which 

would allow for accurate instant georeferencing hence improving the exterior orientation of the images 

acquired under such circumstances.  
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6. CONCLUSION AND RECOMMENDATION 

6.1. Conclusion 

The result obtained from this work showed that it was feasible to classify and identify individual trees 

affected at different level by pest infestation. This is as opposed to the traditional remotesensing methods 

of medium and high-resolution satellite. The Sequoia collected images were used to calculate vegetation 

indices which were later used classify the levels of forest health. The proposed method in this research 

included the use of Sequoia camera to acquire an image, mosaicking  of the UAS images, preprocessing of 

the mosaiced images, calculation of vegetation indices, multiresolution segmentation, segmentation 

accuracy, classification and accuracy assessment and calculation of areas covered by different classes of the 

forest health status.  This research had  3 objectives  and  six questions the specific conclusions are presented 

below:  

 

Question1:  What accuracy is obtained when NDVI is used to classify forest health? 

The overall classification accuracy attained when NDVI was used to classify forest health classes the were 

moderate results across the two classifiers in both sites.  In site 1, the classification by NDVI attained an 

accuracy of  78% and 75% when using RF and SVM classifier respectively. In site two  RF and SVM  

achieved an accuracy of  67% and  64%b respectively. 

 

Question2: What accuracy is obtained when SAVI is used to classify forest health? 

SAVI was able to achieve much better results than NDVI with an accuracy of 79 and 77%  within  RF and 

SVM in site 1. Whereas in site 2  RF and SVM attained an accuracy of   72% and 70% respectively. 

 

Question3: What accuracy is obtained when NDRE is used to classify forest health? 

NDRE obtained the lowest overall classification accuracy of the forest health class with site 1 achieving 

accuracies of  66% and 64%   in RF and SVM  respectively. While sites 2 obtained an overall accuracy of  

61 % and 58% in RF and SVM  respectively.  

 

Question4: What accuracy is obtained when all the vegetation indices are combined to classify 

forest health classes?  

Combination of the of all vegetation indices showed an increase in the overall classification of forest health. 

The use of the combination generated the highest accuracy in this study with site 1 have an overall accuracy 

of 84%  and 82% within RF and SVM respectively.  In site 2 still, the overall accuracy was highest with an 

accuracy of 78 and 75 when using RF and SVM respectively.  

 

Question5: What is the performance of the two different classifier different classifiers? 

This research concluded that the two non-parametric classifiers performed comparatively the same in 

classifying forest health classes although the RF achieved a slightly higher overall accuracy over SVM.  

 

Question6: What is the area covered by different forest health classes? 

In site one area covered by moderate class was approximately 9.39 hectares healthy class was 4.49 and lastly, 

the severe class was 5.28. Similarly, in site two the area covered by moderate class is 4.84 hectares, healthy 

is 5.137 and severe is 3.48. 
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6.2. Recommendation  

The results from the research used only few training samples for the analysis, i.e., 109 in site and 125 samples 

in site 1 this can be linked to not obtaining more accuracy assessment and kappa statistics. Therefore, there 

is a need to increase the number of samples collected in the subsequent works. It is crucial to include other 

characteristics for object-based classification, for example, texture, shape etc. Future research in this area 

should concentrate on looking at different time intervals of the collected images in order to be able to 

monitor the time series of the images and asses changes that occur on the individual trees. Future additional 

characteristics and indicators and environmental factors should also be included or accommodated during 

classification. Modeling factors affecting the Mediterranean forest should be the subject of future studies. 

Future research should use RTK GNNS during data collection. This would increase the accuracy of the 

samples collected and possibly result in higher classification accuracy. 
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APPENDICES 

Appendix1: PIX4d software quality check report site 1 

 
Appendix2: PIX4d software quality check report site 
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Appendix 3: ANOVA test within the NDRE in site 1 

mean 

  Sum of 

Squares 

df Mean 

Square 

F Sig. 

Between 

Groups 

0.114 2 0.057 10.966 4.41E-05 

Within 

Groups 

0.593 114 0.005     

Total 0.707 116       

 

Appendix 4:Post hoc test within the NDRE in site 1 

(I) class Mean 

Difference 

(I-J) 

Std. 

Error 

Sig. 95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

heathy moderate 0.0396 0.016 0.04426 0.001 0.078 

severe 0.0765 0.0163 0.00002 0.038 0.115 

moderate heathy -0.0396 0.0163 0.04426 -0.078 -0.001 

severe 0.0369 0.0163 0.06604 -0.002 0.076 

severe heathy -0.0765 0.0163 0.00002 -0.115 -0.038 

moderate -0.0369 0.0163 0.06604 -0.076 0.002 

*. The mean difference is significant at the 0.05 level. 

 

 

Appendix 5:ANOVA test within the NDVI in site1 

 

 

 

 

 

 
 

Appendix 6 Post hoc test within the NDVI in site 1 

 

: 

 

 

 

 

 

 

 

mean 

  Sum of 

Squares 

df Mean 

Square 

F Sig. 

Between 

Groups 

0.411 2 0.205 12.663 1.081E-05 

Within Groups 1.848 114 0.016 
  

Total 2.259 116 
   

      

(I) class Mean 

Difference 

(I-J) 

Std. Error Sig. 95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

healthy moderate 0.0758 0.0288 0.026 0.0074 0.1443 

severe 0.1451 0.0288 5.475E-06 0.0766 0.2135 

moderate healthy -0.0758 0.0288 0.026 -0.1443 -0.0074 

severe 0.0692 0.0288 0.047 0.0008 0.1377 

severe healthy -0.1451 0.0288 5.475E-06 -0.2135 -0.0766 

moderate -0.0692 0.0288 0.047 -0.1377 -0.0008 

*. The mean difference is significant at the 0.05 level. 
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Appendix 7:ANOVA test within the SAVI in site 1 

 

 

 

 

 

 

 

 

Appendix 8:Post hoc test within the SAVI in site 1 

 

 

 

 

 

 

 

 

 

 

 

Appendix 9:ANOVA test within the NDRE in site 2 

mean 

  Sum of 

Squares 

df Mean 

Square 

F Sig. 

Between 

Groups 

0.126 2 0.063 11.496 0.000 

Within 

Groups 

0.625 114 0.005     

Total 0.751 116       

 
Appendix 10:post hoc test within the NDRE in site 2 

(I) class Mean 

Difference 

(I-J) 

Std. 

Error 

Sig. 95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

heathy moderate 0.042 0.017 0.036 0.002 0.082 

severe 0.080 0.017 0.000 0.041 0.120 

moderate heathy -0.042 0.017 0.036 -0.082 -0.002 

severe 0.038 0.017 0.062 -0.002 0.078 

severe heathy -0.080 0.017 0.000 -0.120 -0.041 

moderate -0.038 0.017 0.062 -0.078 0.002 

*. The mean difference is significant at the 0.05 level. 

 

 
 

mean 

  Sum of 

Squares 

df Mean Square F Sig. 

Between 

Groups 

0.068 2 0.034 13.622 4.957E-06 

Within 

Groups 

0.284 114 0.002     

Total 0.352 116       

(I) class Mean 

Difference 

(I-J) 

Std. Error Sig. 95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

healthy moderate 0.031 0.0113 0.017 0.0046 0.058 

severe 0.059 0.0113 2.473E-06 0.0321 0.086 

moderate healthy -0.031 0.0113 0.017 -0.0583 -0.005 

severe 0.028 0.0113 0.043 0.0007 0.054 

severe healthy -0.059 0.0113 2.473E-06 -0.0859 -0.032 

moderate -0.028 0.0113 0.043 -0.0544 -0.001 

*. The mean difference is significant at the 0.05 level. 
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Appendix 11:ANOVA test within the NDVI in site 2 

mean 

  Sum of 

Squares 

df Mean Square F Sig. 

Between 

Groups 

0.321 2 0.160 13.038 0.000 

Within 

Groups 

1.180 96 0.012     

Total 1.501 98       

.  

Appendix 12:Post hoc test within the NDVI in site 2 

(I) class Mean 

Difference 

(I-J) 

Std. 

Error 

Sig. 95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

healthy moderate 0.072 0.027 0.027 0.007 0.136 

severe 0.072 0.027 0.000 0.074 0.204 

moderate healthy 0.072 0.027 0.027 -0.136 -0.007 

severe 0.072 0.027 0.039 0.003 0.133 

severe healthy 0.072 0.027 0.000 -0.204 -0.074 

moderate 0.072 0.027 0.039 -0.133 -0.003 

*. The mean difference is significant at the 0.05 level. 

 

Appendix 13:ANOVA test within the SAVI in site 2 

mean 

  Sum of 

Squares 

df Mean Square F Sig. 

Between 

Groups 

0.086 2 0.043 15.409 0.000 

Within 

Groups 

0.268 96 0.003     

Total 0.354 98       

 
Appendix 14:Post hoc test within the SAVI in site 2 

 

 

 

 

 

 

 

 

 

 

 

(I) class Mean 
Difference 
(I-J) 

Std. 
Error 

Sig. 95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

healthy moderate 0.039 0.013 0.010 0.008 0.070 

severe 0.072 0.013 0.000 0.041 0.103 

moderate healthy -0.039 0.013 0.010 -0.070 -0.008 

severe 0.033 0.013 0.032 0.002 0.064 

severe healthy -0.072 0.013 0.000 -0.103 -0.041 

moderate -0.033 0.013 0.032 -0.064 -0.002 

*. The mean difference is significant at the 0.05 level. 
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SITE 1:  CLASSIFICATION ERROR MATRIX 
Appendix 15:Site1 Error matrix of classification NDVI Using Random forest classifier 

NDVI Severe Moderate Healthy Sum 

Severe 7 2 0 9 

Moderate 4 9 1 14 

Healthy 0 1 9 10 

Sum 11 12 10 
 

   
 

 

Producer 0.64 0.75 0.90 
 

User 0.78 0.64 0.90 
 

Overall 
Accuracy 

0.76 
 

 
 

KIA 0.63 
 

 
 

 
Appendix 16:Site1 Error matrix of NDVI combined Using SVM 

NDVI severe Moderate Health
y 

Sum 

Severe 8 3 0 11 

Moderate 3 8 2 13 

Healthy 0 1 8 9 

Sum 11 12 10  

     

Producer 0.73 0.67 0.80  

User 0.73 0.62 0.89  

Overall Accuracy 0.73    

KIA 0.59    

 
Appendix 17:Site1 Error matrix of NDRE combined Using Random forest classifier 

NDRE Severe Moderate Healthy Sum 

Severe 3 0 0 3 

Hoderate 8 10 1 19 

Healthy 0 2 9 11 

Sum 11 12 10 
 

   
 

 

Producer 0.27 0.83 0.90 
 

User 1.00 0.53 0.82 
 

Overall Accuracy 0.66 
 

 
 

KIA 0.49 
 

 
 

 
Appendix 18:Site1 Error matrix of NDRE Using SVM 

NDRE severe moderate healthy Sum 

Severe 3 0 0 3 

Moderate 8 10 2 20 

Healthy 0 2 8 10 

Sum 11 12 10 
 

   
 

 

Producer 0.27 0.83 0.80 
 

User 1.00 0.50 0.80 
 

Overall Accuracy 0.64 
 

 
 

KIA 0.43 
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Appendix 19:Site2 Error matrix of SAVI Using Random forest classifier 

SAVI Severe Moderate Healthy Sum 

Severe 9 2 0 11 

Soderate 2 9 2 13 

Healthy 0 1 8 9 

Sum 11 12 10 
 

   
 

 

Producer 0.82 0.75 0.80 
 

User 0.82 0.69 0.89 
 

Overall 
Accuracy 

0.79 
 

 
 

KIA 0.68 
 

 
 

 
 
Appendix 20:Site1 Error matrix of SAVI Using SVM classifier 

SAVI Severe Moderate Healthy Sum 
 

Severe 7 1 0 8 
 

Moderate 4 10 2 16 
 

Healthy 0 1 8 9  

Sum 11 12 10 
  

   
 

  

Producer 0.64 0.83 0.80 
  

User 0.88 0.63 0.89 
  

Overall 
Accuracy 

0.77 
 

 
  

KIA 0.63 
 

 
  

 
Appendix 21:Site1 Error matrix of classification all vegetation indices combined Using Random forest classifier 

 

COMBINED VI severe moderate healthy Sum 

severe 9 1 0 10 

moderate 2 10 1 13 

healthy 0 1 9 10 

Sum 11 12 10 
 

   
 

 

Producer 0.82 0.83 0.90 
 

User 0.90 0.77 0.90 
 

Overall Accuracy 0.85 
 

 
 

KIA 0.77 
 

 
 

 
Appendix 22:Site1 Error matrix of classification all vegetation indices combined Using SVM 

 severe moderate healthy Sum 

severe 8 1 0 9 

moderate 3 10 1 14 

healthy 0 1 9 10 

Sum 11 12 10 
 

   
 

 

Producer 0.73 0.83 0.90 
 

User 0.89 0.71 0.90 
 

Overall Accuracy 0.82 
 

 
 

KIA 0.73 
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SITE TWO:  CLASSIFICATION ERROR MATRIX 
 
Appendix 23:Site2 Error matrix of NDVI combined Using Random forest classifier 

User Class \ 
Sample 

Severe Healthy Moderate Sum 

Severe 6 0 0 6 

Healthy 0 7 1 8 

Moderate 7 4 11 22 

Sum 13 11 12 
 

     

Producer 0.46 0.64 0.92 
 

User 1.00 0.88 0.50 
 

Overall Accuracy 0.67 
   

KIA 0.50 
   

 
Appendix 24:Site2 Error matrix of NDVI combined Using SVM 

User Class \ 
Sample 

severe Moderate healthy Sum 

Severe 6 0 0 6 

Healthy 0 6 1 7 

Moderate 7 5 11 23 

Sum 13 11 12 
 

     

Producer 0.46 0.55 0.92 
 

User 1.00 0.86 0.48 
 

Overall Accuracy 0.64 
   

KIA 0.46 
   

 
Appendix 25:Site2 Error matrix of NDRE Using Random forest classifier 

User Class \ 
Sample 

Severe Moderate Healthy Sum 

Severe 11 7 1 19 

Moderate 1 2 1 4 

Healthy 1 3 9 13 

Sum 13 12 11 
 

     

Producer 0.85 0.17 0.82 
 

User 0.58 0.50 0.69 
 

Overall Accuracy 0.61 
   

KIA 0.41 
   

 
Appendix 26:Site2 Error matrix of NDRE Using SVM 

User Class \ 
Sample 

Severe Moderate Healthy Sum 

Severe 11 8 1 20 

Moderate 1 1 1 3 

Healthy 1 3 9 13 

Sum 13 12 11 
 

     

Producer 0.85 0.08 0.82 
 

User 0.55 0.33 0.69 
 

Overall Accuracy 0.58 
   

KIA 0.37 
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Appendix 27:Site2 Error matrix of SAVI Using Random forest classifier 

User Class \ 
Sample 

Severe Moderate Healthy Sum 

Severe 11 5 1 17 

Moderate 2 5 1 8 

Healthy 0 2 9 11 

Sum 13 12 11 
 

     

Producer 0.85 0.42 0.82 
 

User 0.65 0.63 0.82 
 

Overall Accuracy 0.70 
   

KIA 0.54 
   

 
Appendix 28:Site2 Error matrix of classification all vegetation indices combined Using Random forest classifier 

User Class \ 
Sample 

severe moderate healthy Sum 

severe 11 4 0 15 

moderate 2 7 1 10 

healthy 0 1 10 11 

Sum 13 12 11 
 

     

Producer 0.85 0.58 0.91 
 

User 0.73 0.70 0.91 
 

Overall Accuracy 0.78 
   

KIA 0.67 
   

 
Appendix 29:Site2 Error matrix of classification all vegetation indices combined Using Random forest classifier 

 
 

  

 

 

 

 

 

 

 

 

 

Appendix 30: Fieldwork data collection form 

 

User Class \ 
Sample 

Severe Moderate Healthy Sum 

Severe 11 4 1 16 

Moderate 2 7 1 10 

Healthy 0 1 9 10 

Sum 13 12 11 
 

     

Producer 0.85 0.58 0.82 
 

User 0.69 0.70 0.90 
 

Overall 
Accuracy 

0.75 
   

KIA 0.62 
   


