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ABSTRACT 

As the urban population is increasing rapidly, the growth and persistence of slum settlements in the cities 

have become an important issue to be addressed. Remote sensing imagery is one of the common data 

sources for producing slum maps. Studies have been developed for the different purpose of slum mapping 

based on remote sensing method. However, only a few studies have analysed the temporal dynamics of 

slums. This study aims to explore the potential of using machine learning algorithm to analyse the 

temporal dynamics of temporary slums based on the very high resolution (VHR) imagery in Bangalore, 

India. The study proposes two fully convolutional networks (FCNs) based approaches to generate slum 

change maps and assesses their performance. The study takes the advantage of machine learning and 

develops two approaches applying FCNs architecture with dilated convolutions to classify the images. For 

one approach, the resulted slum maps from the land cover classification are used for post-classification 

change detection. For another approach, the FCNs is used to directly classify the changed slum areas in 

the image. The performance of 3 × 3 kernel and 5 × 5 kernel for the networks in both of the approaches 

are examined. After producing the change maps for temporary slums, the temporal dynamics are analysed. 

It is found that 7,173 m2 of land changed into temporary slums in our study area per year from 2012 to 

2016, while 8,390 m2 of the existed temporary slums disappeared per year. Most of the slums appeared on 

the vacant land and disappeared into green land. The accuracies of the change maps are assessed by a 

confusion matrix and trajectory error matrix (TEM). The post-classification results obtained 53.80% for 

F1-score, while the change-detected networks results obtained 53.68%. For TEM, post-classification 

results scored higher for overall accuracy but lower for the accuracy difference of change trajectory than 

the change-detected networks results. The study concludes that FCNs-based slum classification can have 

high accuracy in the city of Bangalore. However, using these classification results for post-classification 

cannot generate very accurate change maps based on the assessment of the confusion matrix. The FCNs-

based change-detected networks cannot produce accurate change maps in terms of the size as well. But, 

both of the two approaches give an accurate location of where the change is. This shows a potential of 

using machine learning algorithms to detect the change location of slums in VHR imagery. 

 

Keyword: slum, fully convolutional networks (FCNs), very high resolution (VHR) imagery, change 

detection 

  



ii 

ACKNOWLEDGEMENTS 

With the deepest respect, I would like to express my gratitude to my supervisors, Dr Monika Kuffer and 

Dr Claudio Persello. They have provided huge helps to me for accomplishing this topic. Their patient 

consulting and valuable suggestions always encouraged me from the beginning.  

I would like to thank all the staff at ITC for their kind help during my 18-months study. And I am grateful 

for having so many wonderful classmates in UPM.  

I also would like to acknowledge the support from my friends, especially Yayuan and Jingxuan for their 

accompanies in the Netherlands, as well as Xijia Zhu for her continuous support from China. 

Last but not least, many thanks to my parents. Without their unfailing love, I will never have this chance 

to chase my dream. 



iii 

TABLE OF CONTENTS 

 

1. Introduction ........................................................................................................................................................... 1 

1.1 Background justification .......................................................................................................................... 1 

1.2 Research problem indentification........................................................................................................... 2 

1.3 Research objective .................................................................................................................................... 3 

1.3.1          General objective .............................................................................................................................. 3 

1.3.2          Sub-objectives .................................................................................................................................... 3 

1.4 Research questions .................................................................................................................................... 3 

2. Literature review ................................................................................................................................................... 5 

2.1 Image-based slum mapping ..................................................................................................................... 5 

2.2 FCNs based slum mapping ..................................................................................................................... 6 

2.2.1           Background ....................................................................................................................................... 6 

2.2.2           Application ........................................................................................................................................ 7 

2.3 Transfer learning and domain adaptation ............................................................................................. 7 

2.4 Change detection ....................................................................................................................................... 7 

3. Study area and data descirption .......................................................................................................................... 9 

3.1 Study area ................................................................................................................................................... 9 

3.2 Data description ..................................................................................................................................... 10 

4. Methodology ....................................................................................................................................................... 11 

4.1 Pre-processing of the data .................................................................................................................... 11 

4.1.1           Resampling ..................................................................................................................................... 11 

4.1.2          Selection of study tiles ................................................................................................................... 11 

4.2 FCN-based land cover classification ................................................................................................... 12 

4.2.1           Reference data preparation ......................................................................................................... 12 

4.2.2           FCNs architecture – 5x5 .............................................................................................................. 13 

4.2.3           FCNs architecture – 3x3 .............................................................................................................. 14 

4.2.4           Training the networks .................................................................................................................. 15 

4.3 Change detection .................................................................................................................................... 16 

4.3.1           Post-classification change detection .......................................................................................... 16 

4.3.2           Change-detected network ............................................................................................................ 16 

4.4 Accuracy assessment ............................................................................................................................. 17 

4.4.1           Confusion matrix .......................................................................................................................... 17 

4.4.2           Trajectory error matrix ................................................................................................................. 18 

5. Results .................................................................................................................................................................. 20 

5.1 FCN-based land cover classification ................................................................................................... 20 

5.1.1            Performance of 5 × 5 network and 3 × 3 network ............................................................... 20 

5.1.2            Noise reduction for land cover classification .......................................................................... 21 

5.1.2.1         Majority Analysis .......................................................................................................................... 21 

5.1.2.2         Classification clumping ............................................................................................................... 21 

5.1.2.3        Accuracy comparison ................................................................................................................... 22 

5.2 Change detection result ......................................................................................................................... 22 

5.2.1           Performance of 5 × 5 networks and 3 × 3 networks ............................................................. 22 

5.2.2           Accuracy comparison ................................................................................................................... 22 



iv 

5.2.3        Change-detection maps .................................................................................................................... 25 

6. Disscusion and limitation .................................................................................................................................. 26 

6.1           Temporal dynamics of slum in Bangalore in the study area ...................................................... 26 

6.1.2        Area of slum changing ..................................................................................................................... 26 

6.1.3        Pattern of slum changing ................................................................................................................. 27 

6.2           Methodological advantages and disadvantages ............................................................................ 28 

6.2.1        Post-classification change detection .............................................................................................. 28 

6.2.2        Change-detected networks .............................................................................................................. 28 

6.2.3        Accuracy assessment ........................................................................................................................ 29 

6.3           Limitations ......................................................................................................................................... 29 

7. Conclusion and recommadation ...................................................................................................................... 31 

7.1           Conclusion ......................................................................................................................................... 31 

7.2           Recommendations ............................................................................................................................ 32 

Appendix ...................................................................................................................................................................... 38 

 

 

 

 



v 

LIST OF FIGURES 

Figure 1: Simple ANNs architecture .......................................................................................................................... 6 

Figure 2: Simple illustration of convolution .............................................................................................................. 6 

Figure 3: Slums in the city of Bangalore, Source: (Krishna et al., 2014) ............................................................... 9 

Figure 4: Example of one rapidly changing slum area, source: Google Earth ................................................. 10 

Figure 5: Flowchart of the methodology ................................................................................................................ 11 

Figure 6: Distribution of study tiles ......................................................................................................................... 12 

Figure 7: Not matched Slum boundary data example .......................................................................................... 12 

Figure 8: Kernels with increasing receptive field ................................................................................................... 14 

Figure 9: Two 3 × 3 convolutions replacing one 5 × 5 convolution ................................................................. 14 

Figure 10: Classification map example of 2016, showing pixel islands (reclassified from the original   

classification result) .................................................................................................................................................... 20 

Figure 11: Comparison of the original classification and majority analysis result ............................................ 21 

Figure 12: Comparison of the original classification and classification clumping result ................................. 21 

Figure 15: Example with low accuracy but correct location for change ............................................................ 25 

Figure 16: Diagram of temporary slum changing situation ................................................................................. 26 

Figure 17: Example of vacant land changing into slums ...................................................................................... 27 

Figure 18: Example of slums changing into green land ....................................................................................... 28 

 



vi 

LIST OF TABLES 

Table 1: Summary of image dataset used in this study .......................................................................................... 10 

Table 2: Land cover class for reference data........................................................................................................... 13 

Table 3: Structure of the 5 × 5 FCNs architecture ................................................................................................ 13 

Table 4: Structure of the 3 × 3 FCNs architecture ................................................................................................ 15 

Table 5: Land cover class label of classification map after reclassifying ............................................................ 16 

Table 6: Class for change-detected net reference data .......................................................................................... 16 

Table 7: Sub-groups in TEM ..................................................................................................................................... 18 

Table 8: Land cover class label for TEM ................................................................................................................ 18 

Table 9: F1-scores of temporary slum class, showing the accuracies of two networks ................................... 20 

Table 10: F1-scores showing the accuracies after noise reduction ...................................................................... 22 

Table 11: F1-scores showing the accuracy of two networks, testing tiles .......................................................... 22 

Table 12: F1-scores of changed slum area in post-classification result .............................................................. 23 

Table 13: F1-scores of change detection result for each tile ................................................................................ 23 

Table 14: F1-scores of the training and testing tiles .............................................................................................. 24 

Table 15: TEM indices for two change detection methods ................................................................................. 25 

Table 16: Comparison of areas of changed slums ................................................................................................. 26 

Table 17: Proportion of different temporal dynamics, 2012 to 2016 ................................................................. 27 

Table 18: Changing rate of different temporal dynamics, 2012 to 2016 ............................................................ 27 

 

 

 



MAPPING THE TEMPORAL DYNAMICS OF SLUMS FROM VHR IMAGERY 

1 

1. INTRODUCTION 

1.1 Background justification 

The developing world is experiencing rapid urbanization. In 2018, an estimated more than half of the 

world’s population resided in urban settlements and by 2050 urban areas are expected to house 68% of 

people globally (UN-DESA, 2018). However, lack of cities’ capacity to meet this sharply increasing 

housing demand coming together with the inability to provide infrastructure and basic service brings out 

the growth and persistence of slums (Kohli, Sliuzas, Kerle, & Stein, 2012). The definitions of slums vary 

across the world. As globally commonly used definition, UN-Habitat has defined that a slum is 

characterized by lack of one or more of the following: durable housing, sufficient living space, easy access 

to safe water, access to adequate sanitation and security of tenure (UN-Habitat, 2007). Upgrading slums to 

ensure access to adequate and affordable housing and basic services has become one of the targets to 

realize the Sustainable Development Goals (SDGs) by the United Nations (United Nations, 2015). 

To address slum issues, slum maps provide information about spatial characteristics of slum locations, 

extents and structures. Assisted by a slum map, the government or local authority can improve the 

accessibility and availability of infrastructures in slums, e.g., some governments are not providing basic 

services and infrastructures as they have no awareness of the existence of slums (Mahabir et al., 2016), and 

even ignore the existence of slums (Beukes, 2015). It can also help to prioritize the areas which need to be 

upgraded (Kuffer, Pfeffer, & Sliuzas, 2016). With the development of the remote sensing technology, 

satellite imagery has become a common data sources for producing slum maps. However, most indicators 

of slums as defined by UN-Habitant cannot be mapped directly in the satellite image. Therefore, 

researchers have worked on the conceptualization of slums based on images, e.g., in form of the generic 

slum ontology (GSO)(Kohli et al., 2012). This proposed GSO provides a framework of identifying slums 

at three levels of the built environment morphology: the environs level, the settlement level and the object 

level. 

Image based conceptualization of slums often refer to building characteristics, such as roof materials, 

shape and density (Kuffer, Pfeffer, & Sliuzas, 2016). Such characteristics can be used for slum 

identification from remote sensing imagery, while some other abstract variables are not directly reflected 

in the images, for instance, land-tenure rules, distribution of wealth and power, market mechanisms and 

social customs (Rindfuss & Stern, 1998). For instance, in Bangalore, slums are characterized by limited 

space between each shelter and a jumbled pattern of units (Krishna, Sriram, & Prakash, 2014). Slums in 

Sao Paulo State are featured with small roof size, high density and limited green space (Novack & Kux, 

2010). With these physical characteristics, it is doable to detect, identify and even monitor slums from 

remote sensing imagery. This would complete slum information provided in the national census, knowing 

that this data is often very uncertain, e.g., they often cover only part of the slums (Ranguelova et al., 2018). 

Compared with the census method, remote sensing is less labour and time consuming. Moreover, remote 

sensing methods offer slum information at higher temporal resolution while the temporal gap between 

two census datasets is commonly 10 years, extending to several decades in some cases (Mahabir, Croitoru, 

Crooks, Agouris, & Stefanidis, 2018). Recently, an increasing number of very-high-resolution (VHR) 

sensors are more available, thus VHR imagery is becoming a new data source with the opportunity of 

slum identification at settlement as well as dwelling level. 
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There are three main study purposes of slum mapping based on remote sensing method: where, when and 

what (Kuffer, Pfeffer, & Sliuzas, 2016). “where” is about the location of the slums in urban region. 

“when” is to measure the temporal changes of slums. And “what” is related to the questions such as the 

population of slums (Kit, Lüdeke, & Reckien, 2013) and allocation of basic service in slum areas 

(Gruebner et al., 2014). Unlike the other two aspects, only a few studies have been performed to analyse 

the temporal dynamics of slums. Examples are the automated identification of change patterns of slums in 

Hyderabad (Kit & Lüdeke, 2013) and the change detection of Kibera informal settlements (Veljanovski, 

Kanjir, Pehani, Otir, & Kovai, 2012). One reason for the lack of studies is the availability of data and the 

required local knowledge (Kuffer, Pfeffer, & Sliuzas, 2016), but also the complexity to produce change 

detection results (Pratomo, Kuffer, Kohli, & Martinez, 2018). For example, the change captured might be 

the real change but the pixel differences caused by image conditions. A further issue relates to the 

transferability of mapping methods across multi-temporal images. Transferability is the ability to transfer 

the method or algorithm developed in one image to another image and achieving comparable mapping 

accuracies (Kohli, Warwadekar, Kerle, Sliuzas, & Stein, 2013). It is a key point, but also a main bottleneck, 

to realize the automated slum mapping globally (Sliuzas, Kuffer, Gevaert, Persello, & Pfeffer, 2017).  

1.2 Research problem indentification 

As mentioned above, not many studies have analysed the temporal dynamics of slums and none of them 

has used machine learning methods. This thesis will focus on developing a transferable slum mapping 

approach that allows mapping slums in multi-temporal VHR imageries.  

Researchers have been working on various approaches for slum identification based on VHR imagery, 

including: texture analysis (Kuffer, Pfeffer, Sliuzas, & Baud, 2016);  object-based image analysis 

(Hofmann, Strobl, Blaschke, & Kux, 2008); landscape analysis (H. Liu, Huang, Wen, & Li, 2017); and  

machine learning (Duque, Patino, & Betancourt, 2017).Convolutional Neural Networks (CNNs), which 

are specific technique in the machine learning field, have drawn increasing attention in solving remote 

sensing classification tasks and tended to have higher accuracy than other methods when aiming at 

extracting slum areas at the city scale (Kuffer, Pfeffer, & Sliuzas, 2016). CNNs can extract image features 

by itself instead of being provided by handcrafted features (Nielsen, 2015). Mboga, Persello, Bergado, & 

Stein (2017) presented that CNNs had a better performance than Support Vector Machine (SVM) 

algorithm with Grey-Level Co-Occurrence Matrix (GLCM) features in informal settlements identification. 

Fully Convolutional Networks (FCNs) for semantic image segmentation is a particular case of CNNs (W. 

Sun & Wang, 2018). By replacing the fully connected layers in a CNNs architecture into a convolution 

layer, FCNs maintain the structure of the original image (Fu, Liu, Zhou, Sun, & Zhang, 2017).  Unlike 

CNNs, in which the output must be the same size as the input, FCNs allows taking images of any size as 

an input (Zhu et al., 2017). The study of Persello & Stein (2017) has shown that slums can be effectively 

detected in VHR images by FCNs technique. However, FCNs have not been used for analysing the 

temporal dynamics of slums.  

This study intends to analyse the potential of transferring a FCN-based classifier trained to identify slums 

from time to time and also from image to image. Therefore, temporal dynamics and changes will be 

detected with the help of the developed approach.  
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1.3 Research objective 

1.3.1          General objective 

In this study, the main research objective is to develop a FCNs-based approach to map slums and analyse 

their temporal dynamics using VHR imagery. 

1.3.2          Sub-objectives 

i. To identify slum and non-slum-area from VHR imagery by applying fully convolutional 

networks (FCNs). 

ii. To analyse the temporal dynamics based on the resulted slum maps. 

iii. To evaluate the outcomes of change detection for temporal dynamics. 

1.4 Research questions  

1. To identify slums and non-slum areas from VHR imagery by applying convolutional neural networks 

method. 

• What are the physical and morphological characteristics of slums in Bangalore? 

• What is the best strategy to create samples for training, validation and testing? 

• What is the optimal FCN architecture to identify slum-areas in terms of accuracy and 

computational costs? 

2. To analyse the temporal dynamics based on the resulted slum maps. 

• What is a suitable method to extract the temporal dynamics of slum? 

• What change characteristics can be observed from the slum maps? 

3. To evaluate the outcomes of change detection for temporal dynamics. 

• What are the optional methods to assess the accuracy of multi-temporal change detection 

outcomes? 

• What is the assessed accuracy of the mapped temporary dynamics of slums? 
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2. LITERATURE REVIEW 

This chapter reviews the thesis-related literature. The first section overviews the efforts in image-based 

slum mapping. In the second section, the basic concepts of CNNs and FCNs and their application in the 

urban remote sensing field are presented. The next sections provide a review of transfer learning and 

domain adaptation in satellite image classification. This chapter ends by the summarizing change detection 

methods for slum identification. 

2.1 Image-based slum mapping 

Many efforts have been made to establish a general objective measurement for slums, in practice, the 

definitions of slum vary from city to city globally. For examples, in Egypt, slums have been redefined by 

two distinctive terms: “Unsafe areas” and “Unplanned areas” (Khalifa, 2011).  While the Egyptian 

“Unplanned areas” are characterized by its non-compliance to planning and building laws and regulations, 

the slums in Romania are often former worker’s houses (Iacoboaea, 2009). The concept of “slum” can be 

regarded in a relative way. It can be viewed differently according social class, culture and ideology (Gilbert, 

2007). Therefore, most studies of slums have three different lines of direction: social-economic and policy, 

physical characteristics using approaches such as remote sensing and slum modelling using approaches 

such as cellular automata (Mahabir et al., 2016). With the improved image data resolution and 

methodological advances, remote sensing studies are able to provide more information about slums. 

Compared with census-based data, remote sensing image data can provide a synoptic view with the ability 

to capture the situation on the ground (Mahabir et al., 2018). And recently, the increasing availability of 

high- and very high-resolution (H-/VH-R) imagery offers an opportunity to study slums with more spatial 

details, making the identification of slums from large settlement scale to small individual dwelling scale 

possible.  

In literature, several methods are commonly used to identify slums areas from VHR imagery. Object-

based image analysis is one of the commonly used methods. It partitions imageries into meaningful objects 

and then assess their characteristics. These objects are the generations of geographic information, and 

assess their characteristics (Blaschke et al., 2014). In object-based image analysis (OBIA), the image is 

treated as a set of objects rather than pixels. Apart from the original spectral information of image, other 

properties like the object size, shape, texture and the relationship with the neighbouring objectives (Giada, 

De Groeve, Ehrlich, & Soille, 2003) are also used. While pixel-based image classification assigns pixels 

with similar spectral reflectance into same class, object-based classification segments the image into a set 

of objects as a result of variations in physical characteristics of different classes. Some literatures have 

proved that this method provides several improvements over the pixel-based classification. For instance, 

Q. Yu et al. (2006) found OBIA overcame the salt-and-pepper effect problem in traditional pixel-based 

approach for vegetation classification in the study area of Northern California. OBIA can also emulate 

human interpretation and reflect the objects in real life better (Hay, Blaschke, Marceau, & Bouchard, 

2003). In slum mapping, the accuracies of OBIA vary a lot. OBIA was found to have good performance 

when extracting objects, like roof and roads, while it has lower accuracies when the urban environment is 

complex and slums characteristics are hardly to be captured (Kuffer, Pfeffer, & Sliuzas, 2016).  
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As OBIA has difficulty in extracting slums from complicated urban environment, machine learning 

technique has been applied to slum mapping. It uses training samples from the images to learn how to 

identify different patterns in order to solve the classification problem (Richards & Jia, 2006). Various 

machine learning algorithms have been performed to identify slums, for instance, Random Forest (Wurm, 

Weigand, Schmitt, Gei, & Taubenbock, 2017) and Support Vector Machine (Leonita, Kuffer, Sliuzas, & 

Persello, 2018). Researchers aslo applied other machine learning based algorithms to address this problem. 

Markov Random Field is one of them (Graesser et al., 2012). Another machine learning algorithm, which 

is becoming increasingly popular, is Convolutional Neural Networks. The detail of this algorithm is going 

to be discussed in the next chapter.  

2.2 FCNs based slum mapping 

2.2.1           Background 

The Convolutional Neural Networks belongs to Artificial 

Neural Networks (ANNs, which is an advanced algorithm 

in computer science inspired by the human biological 

neuron (Atkinson & Tatnall, 1997). An ANNs architecture 

usually has three main layers: input layer, hidden layer and 

output layer (Figure 1). Every neuron in each layer is 

connected to all neurons in the next layer. In the learning 

process, a weighted sum (𝑦𝑖) of one neuron is calculated 

with the input (𝑥𝑖), weight (𝑤𝑖) and bias (𝑏𝑖), explained in 

equation 1 (Stanford University, 2018). 

𝑦𝑖 = ∑ 𝑤𝑖 ·  𝑥𝑖 + 𝑏𝑖

𝑛

𝑖

 

The 𝑦𝑖 of the neuron will be activated by an activation function and the most commonly used activation 

functions in ANNs are sigmoid, hyperbolic tangent function (tanh) 

and Rectified Linear Unit (ReLU) (Nielsen, 2015). Training the 

networks means tuning the weight and the bias for each neuron 

into a final result that the network can identify different classes.  

Deeper networks have several hidden layers in order to solve more 

complex problems. CNNs, which is a branch of deeper ANNs, 

employs two specific hidden layers: convolutional layer and fully-

connected layer. During the convolutional operation in one 

convolutional layer, the input is downsampled by the filters (Figure 

2), resulting in a reduction of the connection numbers as well as the 

parameter numbers. Therefore, the contextual information can be 

extracted through this process.  

The standard CNNs classify images in a “patch-based” mode, labelling every central pixel in the patches 

extracted from the input (Bergado, Persello, & Gevaert, 2016). As CNNs generates the possibility 

distribution of different classes, in order to get a classification map with various classes, a large image is 

usually separated into small patches, where CNNs are applied to predict the class. However, as remote 

sensing images consist of a large amount of information, using CNNs to classify large remote sensing 

images will have a high computational cost because of the patch cropping. To address this issue, the Fully 

Convolutional Networks (FCNs), which are based on the standard CNNs, have been proposed and 

Figure 1: Simple ANNs architecture (equation 1) 

Figure 2: Simple illustration of convolution 
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applied in this field. In FCNs, the fully connected layers are replaced by the convolutional layers, which 

allow to use discretionary sized images as an input. By training the entire image instead of training the 

patches separated from the image, FCNs reduce the computation operations as well as the implementation 

complexity  (Fu et al., 2017). 

2.2.2           Application 

A lot of complex Artificial Neural Networks have been designed in the field of computer vision and 

pattern recognition (CVPR) to solve different problems. Examples are AlexNet (Krizhevsky, Sutskever, & 

Hinton, 2012), VGG (Chatfield, Simonyan, Vedaldi, & Zisserman, 2014) and GoogLeNet (Szegedy, Liu, 

et al., 2015). In the last decade, researchers started carrying out studies using CNNs in the analysis of 

remote sensing imagery. Castelluccio, Poggi, Sansone, & Verdoliva (2015) used pre-trained CNNs adopted 

from CaffeNet and GoogLeNet to classify land use classes. CNNs has also been used in the land cover 

classification research (X. Sun, Shen, Lin, & Hu, 2017). And for slum mapping, both CNNs (Mboga et al., 

2017) and FCNs (Persello & Stein, 2017) showed promising results with overall accuracies over 80%.   

2.3 Transfer learning and domain adaptation 

The aim of transfer learning is to extract the knowledge learned from one or more source tasks and then 

applied it to a target task (Pan & Yang, 2010). Transfer learning techniques have been used in several 

studies about satellite image classification. Liu & Li (2014) proposed a model using old domain data to 

train a classifier for mapping the land use types of a target domain. Transfer learning has been used in the 

monitoring and analysis of urban villages in China with the use of landscape metrics (H. Liu et al., 2017). 

Although using trained CNNs for extracting features from high-resolution imagery via transfer learning is 

realized in the land-use classification field (Akram, Laurent, Naqvi, Alex, & Muhammad, 2018), the 

framework of using CNNs and transfer learning in slum mapping is still a gap. Besides, several transfer-

learning problems have been considered in the literature, including domain adaptation, multitask learning, 

domain generalization, sample selection bias, and covariate shift (Pan & Yang, 2010).  

Domain adaptation (DA) is a rising field of investigation in remote sensing. The purpose of DA is to 

overcome the shifts between input variables and the associated labels between the source and target 

domains (Matasci, Volpi, Kanevski, Bruzzone, & Tuia, 2015). In remote sensing field, when the source 

and target domain are related to two images acquired one the same geographical area at two different 

times, DA will be useful for image analysis (Persello & Bruzzone, 2012). It can reuse the available ground 

truth samples to classify new image that may be at different time instants and with different sensors (Tuia, 

Persello, & Bruzzone, 2016). With the help of it, we can use the scarce labelled data to classify multi-

temporal images (Jean et al., 2016), providing the resulted base maps for further change detection analysis. 

2.4 Change detection 

Singh (1989) defined Change Detection as “the process of identifying the changes in remote sensing 

images that cover the same area of the earth surface in two different times”. Many change detection 

methods have been performed in different studies. These methods are also been categorised in different 

ways by different researchers. Civco, Hurd, & Wilson (2002) identified four types for the method: 1) 

traditional post-classification; 2) cross-correlation analysis; 3) neural networks; 4) image segementation. 

Pacirici, Solimini, Del Frate, & Emery (2007) catogorised methods into two main group: unsupervised and 

supervised.  Depending on the analysis unit, Tewkesbury, Comber, Tate, Lamb, & Fisher (2015) divided 

remote sensing change detection methods into six types: 1) layer arithmetic; 2) post-classification change; 

3) direct classification; 4) transformation; 5) change vector analysis; and 6) hybrid change detection.   
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For VHR imagery, post-classification is one of the most established and wildly used change detection 

method (Tewkesbury et al., 2015). Hester, Nelson, Cakir, Khorram, & Cheshire (2010) generated post-

classification land cover change maps in the study area of North Carolina from QuickBird images and 

presented a fuzzy framework for transforming map uncertainty into change analysis. Boldt, Thiele, & 

Schulz (2012) proposed a workflow using QuickBird images to detect urban change areas by the post-

classification method. However, the biggest problems with post-classification method is the complete 

dependency on the input maps quality (Lu, Mausel, Brondízio, & Moran, 2004). 

Direct classification method only requires one classification stage, as it directly identifies the changes 

occurring in the study area. Tewkesbury et al. (2015) suggested that direct classification is a cogent tool in 

the context of data mining problems and is an ideal scenario for machine learning algorithms. Some 

studies used this strategy to detect changes. For instance, Schneider (2012) presented an approach to 

capture urban changes from dense time stacks of imagery using boosted decision trees and support vector 

machine algorithms. Gao et al. (2012) also uses this strategy to map impervious surface expansion using 

the decision tree algorithm. In this study, we would also apply direct classification method based on the 

FCN algorithms to analyse the temporal dynamics of slums.  
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3. STUDY AREA AND DATA DESCIRPTION 

3.1 Study area  

Bangalore is one of the biggest cities in India, holding more than 8 million population in the metropolitan 

area (Government of India, 2011). As more than 1300 ICT-companies (Information Technology and 

Communication) going about in the city (Dittrich, 2005), Bangalore has become the Silicon Valley of 

India. However, this development was mainly due to massive foreign investments, resulting in a highly 

competitive framework of inter-city (Dittrich, 2005). A highly fragmented and polarized urban society has 

been generated (Dittrich, 2005). The India census in 2011 reported that around 8.39% of total population 

in Bangalore city living in the slums (Census Organization of India, 2015). However, a recent research 

suggested that every fifth person in the city of Bangalore lives in a slum (Roy, Lees, Pfeffer, & Sloot, 

2018). The difference is mainly caused by the different definitions of the slums, as well as their highly 

temporal dynamics. Besides, India also sets minimum settlement size for an area to be considered as a 

slum, requiring at least 3000 population or 60 households living in a settlement cluster.1  Slum settlements 

are a big challenge which the city should address (Rains, Krishna, & Wibbels, 2017).  

There are two types of officially identified slums: notified slums and non-notified slums (Figure 3). While 

notified slum dwellers do not merely survive but also invest in education and skill training, residents in 

non-notified slums are mostly unconnected to basic service and formal livelihood opportunities (Krishna 

et al., 2014). Krishna also categorized non-notified slums in Bangalore into three types: new migrants; very 

low-income settlements; and low-income settlements. In this hierarchy, “new migrants” is shelters 

typically characterized by blue plastic sheeting and small unite size. People live in these shelters require 

access to electricity, clean drinking water, livelihood and property security (Krishna et al., 2014). 

In India, legal notification or designation is very important for the recognition of slums by the 

government, as this is the sign that government will afford the shelters rights to the provision of clean 

water and sanitation (Nolan, 2015).  The first step in upgrading and transforming these shelters to areas of 

basic living conditions is the identification (Rains et al., 2017). Besides, these temporary slums have high 

temporal dynamics. An example shows in the Figure 4. A slum area can be seen from the satellite image on 

2015.12.17. Within 100 days, this slum area decreased sharply, indicating that temporary slums in 

Bangalore can experience rapid change within few months, even weeks. Monitoring those slums with a 

                                                      
1 http://nbo.nic.in/Images/PDF/SLUMS_IN_INDIA_Slum_Compendium_2015_English.pdf 

(b) Non-notified slum (“new migrants”) (a) Notified slum 

Figure 3: Slums in the city of Bangalore, Source: (Krishna et al., 2014) 
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high temporal granularity can help local planner understand their movements and hence provide help with 

target. Thus, this study will focus on Bangalore to explore potentials of using automated slum 

identification method, in order to analyse their temporal dynamics.  

3.2 Data description 

The basic data for this study is multi-temporal very-high-resolution imageries provided by the project 

Dynaslum (Netherlands eScience Center, 2018). All multispectral images from the WorldView satellites are 

with eight bands: Blue, Green, Red, Near Infrared 1, Coastal, Yellow, Red Edge and Near Infrared 2. Pan-

sharpened images are used in this study. A summary of image dataset is shown in Table 1.  

Table 1: Summary of image dataset used in this study 

Satellite Resolution Band number Time 

Worldview 2 0.5 × 0.5 m (multispectral) 8 bands 2012. 12. 01 

 2.0 × 2.0 m (panchromatic)  2013. 04. 24 

Worldview 3 0.3 × 0.3 m (multispectral) 8 bands 2015. 02. 16 

 1.2 × 1.2 m (panchromatic)  2016. 01. 06 

Slum boundary data delineated by experts using visual interpretation and field verification in 2017 is also 

available in the study. However, these boundary data was generated for a specific date, not matching with 

the available image data. 

  

(a) 2015.12.17 (b) 2016.01.25 (c) 2016.03.21 

Figure 4: Example of one rapidly changing slum area, source: Google Earth 
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4.   METHODOLOGY  

This chapter describes the methodology of this research. Experiments are carried out towards the sub-

objectives in the study.  The flowchart in Figure 5 illustrates the general approach briefly.  

4.1 Pre-processing of the data 

4.1.1           Resampling 

The pre-processing of the satellite images and reference data was performed at the beginning. As images 

from 2 satellites have different resolution, images from 2012 and 2013 with the multispectral resolution of 

0.5 × 0.5 m FCNs optimization were resamples to 0.3 × 0.3 m, same as the multispectral resolution of the 

2015 and 2016 images. Therefore, every pixel could represent the same geographical area in different 

images. 

4.1.2          Selection of study tiles 

Studies related to the extraction of slums often worked with smaller areas or tiles. Persello & Stein (2017) 

worked with five tiles of 2000×2000 pixels and Kit & Lüdeke (2013) also started with an urban subarea of 

60×60 m (100×100 pixels). As the later classification process was performed in MATLAB, where the 

images were stored as numeric arrays. In consideration of the capacity of the machine which was used for 

this study,   

Figure 5: Flowchart of the methodology 



MAPPING THE TEMPORAL DYNAMICS OF SLUMS FROM VHR IMAGERY 

12 

10 specific tiles, each with 1000×1000 pixels, were selected (Figure 6, details in Annex 1). The selections 

were based on three rules: 

(1) Tiles were covered by all image data. Due to the data limitation, the images of four years were not 

covering the exact same area. As this study intended to analyse the temporal dynamics of the 

slums in Bangalore from 2012 to 2016, the selected tiles should be covered by the images of four 

years.  

(2) Slums existed in the selected tiles. The judgement of whether the tile had slums or not was made 

by the help of slum boundary data delineated by experts in 2017 as well as the visual check. The 

slum boundary data will firstly give the evidence of where may have slums. Then, a check of the 

existence of those slums in 2016 was carried out visually.  

(3) Slums in the selected tiles had changes between 2012 and 2016. The temporal dynamics of slums 

can only be captured if changes happened to slums during the four years.  

4.2 FCN-based land cover classification 

4.2.1           Reference data preparation 

As mentioned in chapter 3, the data of slum boundary 

delineated by experts was available. After a visual check of 

slum polygons on tip of the used images, it was found that 

most of the slum boundaries were not accurately showing 

the outlines of slums (Figure 7), which would cause 

problems to further steps. It is because the boundaries 

were delineated using different satellite imagery of 

different time. As reviewed in Chapter 3, slums could 

experience rapid changes. Therefore, visual interpretations 

were performed to each selected tile for four years in 

order to generate reference data. The reference maps 

contained five land cover classes, namely “temporary 

Figure 7: Not matched Slum boundary data example 

Figure 6: Distribution of study tiles 
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slum”, “green land”, “vacant land”, “formal built-up” and “other” (shown in  

Table 2). Non-labelled cells are also included in each tile.  

Table 2: Land cover class for reference data 

4.2.2           FCNs architecture – 5x5 

The FCNs built in this study uses the architecture from Persello & Stein (2017) as the foundation. The 

architecture consists six convolutional layers, followed by a final classification layer with a 1 × 1 

convolution layer and a softmax loss function. The structure of this architecture is shown in the Table 3.  

Table 3: Structure of the 5 × 5 FCNs architecture 

In this study, first, a network with the kernel size as 5 × 5 was trained and validated. Then, a deeper 

network with the 3 × 3 kernel size was used to see the result being improved or not.  

The convolution layers in the architecture calculated the convolution of the input images of selected tiles, 

where the kernel size of the filter was 5 × 5. Stride was the spatial interval between the centre of 

convolutional calculation, while 1 meant there was no downsampling procedure. The number of Pad 

determined the number of zeros adding to the border of the image before performing the filter. The most 

important idea of this proposed architecture was the adoption of dilated kernels. It increased the receptive 

filed without increasing the learnable parameters in each layer (F. Yu & Koltun, 2015). A receptive field is 

the region in the input image that a neuron in the convolutional networks is looking at. Compared to 

normal kernels, dilated kernels inserted zeros between the elements in the filter. Figure 8 illustrates how 

receptive field of a 3 × 3 filter increased with the increasing dilation factors: (a) a receptive field of 3 × 3 

with dilation factor 1, which meant there was no dilation; (b) a receptive field of 7 × 7 with dilation factor 

2; (c) a receptive field of 15 × 15 with dilation factor 3. Red circle represent learnable filter weights 

(Persello & Stein, 2017). 

Leaky rectified linear units (lReLUs) was used as activations in the network (Maas, Hannun, & Ng, 2013).  
  

Class Description Label 

Temporary slum Tents with blue plastic sheeting and small unite size 1 

Green land Open land covered by vegetations 2 

Vacant land Bare soil land 3 

Formal built-up Formal buildings, roads 4 

Other Car park, water body… 5 

 Layer Module type Dimension Dilation Stride Pad  

 DK1 convolution 5 × 5 × 8 × 16 1 1 2  

 lReLUs      

 DK2 convolution 5 × 5 × 16 × 32 2 1 4  

 lReLUs      

 DK3 convolution 5 × 5 × 32 × 32 3 1 6  

 lReLUs      

 DK4 convolution 5 × 5 × 32 × 32 4 1 8  

 lReLUs      

 DK5 convolution 5 × 5 × 32 × 32 5 1 10  

 lReLUs      

 DK6 convolution 5 × 5 × 32 × 32 6 1 12  

 lReLUs      

 Class. convolution 1 × 1 × 32 × 5 1 1 0  

 softmax      
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4.2.3           FCNs architecture – 3x3 

After training the network with 5 × 5 kernel size, a network with 3 × 3 sized filters was also performed. 

The structure is shown in the Table 4. In order to keep a same output spatial dimension as the previous 

network, each block of dilated convolution layers (DK) consisted of two convolution layers, each followed 

with an activation layer. The second 3 × 3 convolution layer was fully connected to the first 3×3 

convolution, which had a receptive field same with the a 5 × 5 convolution  (Szegedy, Vanhoucke, Ioffe, 

Shlens, & Wojna, 2015). Figure 9 shows how this work in a mini network.  In (a), the first layer is a 3 × 3 

convolution, followed by a fully connected convolution on top of the 3 × 3 output of the first layer, and at 

last the receptive field is as same as in the network from (b) with one 5 × 5 convolution. The setup of (a) 

leads to a high performance vision networks with a relatively modest computation cost compared to the 

setup of (b) (Szegedy, Vanhoucke, et al., 2015).  

 

 
  

(a)  (b)  (c)  

Figure 8: Kernels with increasing receptive field 

   Figure 9: Two 3 × 3 convolutions replacing one 5 × 5 convolution 

(a) two 3 × 3 convolutions (b) one 5 × 5 convolution 
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Table 4: Structure of the 3 × 3 FCNs architecture 

Layer Module type Dimension Dilation Stride Pad 

DK1 convolution 3 × 3 × 8 × 16 1 1 1 

lReLUs     

convolution 3 × 3 × 16 × 16 1 1 1 

lReLUs     

DK2 convolution 3 × 3 × 16 × 32 2 1 2 

lReLUs     

convolution 3 × 3 × 32 × 32 2 1 2 

lReLUs     

DK3 convolution 3 × 3 × 32 × 32 3 1 3 

lReLUs     

convolution 3 × 3 × 32 × 32 3 1 3 

lReLUs     

DK4 convolution 3 × 3 × 32 × 32 4 1 4 

lReLUs     

convolution 3 × 3 × 32 × 32 4 1 4 

lReLUs     

DK5 convolution 3 × 3 × 32 × 32 5 1 5 

lReLUs     

convolution 3 × 3 × 32 × 32 5 1 5 

lReLUs     

DK6 convolution 3 × 3 × 32 × 32 6 1 6 

lReLUs     

convolution 3 × 3 × 32 × 32 6 1 6 

lReLUs     

Class. convolution 1 × 1 × 32 × 5 1 1 0 

softmax     

4.2.4           Training the networks  

Training of the network was accomplished with MATLAB. As mentioned in chapter 4.1.2, ten image 

patches of 1000 × 1000 pixels were selected as the study tiles. Among those, four tiles were used for 

training and the rest six for testing. The testing tiles were selected according to two rules:  

(1) The training tiles covered all the land cover classes. 

(2) Every slum change trajectory was included in the training tiles. This was the preparation for later 

change detection step. 

In total, 40 images with 40 corresponded reference maps (4 images from different time for each tile) were 

the input data for the networks. 1000 labelled patch randomly picked from each training tile were used as 

the training set. The networks were trained with a learning rate of 10-4 for 100 epochs and a learning rate 

of 10-5 was used to train another 30 epochs. This two-stage training provided a substantial reduction in the 

training error at the first stage and a more stable training and validation with a lower learning rate at the 

second stage. Besides, the networks were trained using stochastic gradient descend with a momentum of 

0.9.  

All the trainings were performed on a desktop workstation with an Intel Xeon E5-2643 v3 CPU and a 

NVIDIA Quadro GPU. 
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4.3 Change detection 

In this study, we carried out two change detection methods to analyse the temporal dynamics of slums. 

On the one hand, we used the land cover classification results to perform the post-classification method. 

On the other hand, we directly trained the FCNs to classify the changed areas in slum. 

4.3.1           Post-classification change detection 

Post-classification change detection method was employed after the independent land cover classification 

from FCNs. Each multi-temporal image for every tile was classified separately, with the same category 

label. Therefore, a land cover change would be detected as a change in the label between two images. In 

this study, for later analysis, the exact transformation patterns from temporary slums to other land cover 

class or from different land cover classes to temporary slum were expected. We first reclassified the 

classification results from different years (Table 5). By doing plus operation for raster calculation, every 

change trajectory would have a unique value. For instance, a pixel with a value of 1234 means that this 

pixel is classified as temporary slum in 2012, changing into green land in 2013. In 2015, this pixel is 

classified as vacant land and becomes a pixel of formal built-up in 2016. 

Table 5: Land cover class label of classification map after reclassifying 

4.3.2           Change-detected network 

4.3.2.1         Image preparation  

Except the post-classification change detection method, we also applied an FCN-based network which 

directly detect the changed areas of slum. The input images to this network would be stacked images of 

different years. The images with n bands at one year and m bands at another year were combined into one 

image with (n + m) bands. In this study, the 1st to 8th bands of the stacked image were from an earlier year 

image and the 9th to 16th bands were from a later year image at the same tile.  

4.3.2.2         Reference data preparation 

The reference data for change-detected net was based on the land cover reference data was prepared for 

all four years in chapter 4.2.1. The reference data consisted of four classes described in the Table 6.  

Table 6: Class for change-detected net reference data 

Class Description Land cover in T1 Land cover in T2 Label 

Increased slum Temporary slum did not exist 

in T1 but appeared in T2. 

Green land 

Vacant land 

Formal built-up 

Other  

Temporary slum 1 

Decreased slum Temporary slum existed in T1 

but disappeared in T2. 

Temporary slum Green land 

Vacant land 

Formal built-up 

Other 

2 

 
Year 

Land cover class label  

 Temporary slum Green land Vacant land Formal built-up Other  

 2012 1 2 3 4 5  

 2013 10 20 30 40 50  

 2015 100 200 300 400 500  

 2016 1000 2000 3000 4000 5000  
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Unchanged slum Temporary slum stayed 

unchanged between T1 and T2 

Temporary slum Temporary slum 3 

Other  Other land cover  Green land 

Vacant land 

Formal built-up 

Other 

Green land 

Vacant land 

Formal built-up 

Other 

4 

T1: An earlier year   T2: A later year    

4.3.2.3         Training the network 

The networks used to directly detect the changed slum areas shared a same architecture with the one 

proposed in the chapter 4.2. We used the same training and testing tiles for the change-detected networks, 

with newly generated images and reference data. Similarly, a 5 × 5 would be trained and validated at first, 

followed by a 3 × 3 network, to see the result being improved or not. As the image data became the 

stacked images with 16 bands, the dimension of the first convolution layer in the network was changed in 

to 5 × 5 × 16 × 16 (or 3 × 3 × 16 × 16). Besides, the number of classes in the change-detected network reference 

data was 4. The dimension of the last convolution layer was also changed from 1 × 1 × 32 × 5 into 1 × 1 × 32 × 4. 

The training was performed separately for every time period. For example, to capture the changed areas between 

2012 and 2013, 10 stacked images from 2012 and 2013 and their corresponded reference maps were the input data 

for the networks.  

4.4 Accuracy assessment 

In this study, mainly two method to assess the accuracy of classification and change detection results have 

been applied. One is confusion matrix and another is trajectory error matrix (TEM). 

4.4.1           Confusion matrix 

The performance of the machine learning based classification results were evaluated by the quantitative 

indices from confusion matrix, comparing the classification result with the reference data. The Producer 

accuracy (PA) and User accuracy (UA) were included to reveal the wrong classification of each class. 

Producer accuracy (calculated using equation 2), which is also explained as precision by Radoux & Bogaer 

(2017), is the fraction of correctly classified pixels with regard to all pixels of that class in the reference 

map. The value illustrates how well the pixels in reference map are classified. User accuracy (calculated 

using equation 3) explained as recall, is the fraction of correctly classified pixels with regard to all pixels of 

that class in the classified map, illustrating the reliability of classed in the classification map. In these two 

equations, 𝐶𝑖𝑖 = number of pixels correctly classified by the class 𝑖, 𝐶+𝑖 = column total of class 𝑖, 𝐶+𝑖 = row total of 

class 𝑖.  

Producer accuracy (PA) =
𝐶𝑖𝑖

𝐶+𝑖

∙ 100 

User accuracy (PA) =
𝐶𝑖𝑖

𝐶𝑖+

∙ 100 

In addition, F1-score of the classification result is calculated as well, in order to show a harmonic value 

balancing precision and recall. The equation of three values are shown in the equation 4. 

F1score = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= 2 ∙

𝑃𝐴 ∙ 𝑈𝐴

𝑃𝐴 + 𝑈𝐴
 

(equation 2) 

(equation 3) 

(equation 4) 
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4.4.2           Trajectory error matrix 

Trajectory error matrix was proposed by (Li & Zhou, 2009) to analyse multi-temporal images. One of the 

most important idea in this study is classifying the possible trajectory combinations of land cover change 

into six confusion sub-groups. Pratomo et al. (2018) used this framework to assess the temporal 

transferability of OBIA rulesets for slum detection. Based on these two studies, we determined our sub-

groups in the TEM (Table 7). In S1, both reference data and classification map agree that a sample stayed 

unchanged. In S2, both reference data and classification map agree that a sample were changing with a 

same trajectory, i.e. changing from slum to non-slum and then becoming slum again. In S3, both reference 

data and classification result tell that a sample did not changed while the classification result was wrong, 

i.e. staying unchanged as a non-slum area in reference data while in classification map it stayed unchanged 

as a slum area. In S4, reference data suggests a sample as unchanged, but it is a changed area in 

classification map, while in S5 is vice versa. Finally, in S6, both reference data and classification map show 

changes, but the trajectory is different, i.e. the reference data suggested a sample changed from slum to 

non-slum and then stayed, while the classification map detected it as a slum changing to non-slum and 

then becoming slum again.  

Table 7: Sub-groups in TEM 

Groups Classification result 

situation 

Interpretations 

S1 Correct Correctly detected as non-changed with correct classification 

S2  Correctly detected as changed slum with correct trajectory 

S3 Incorrect Correctly detected as non-changed with incorrect classification 

S4  Incorrectly detected as changed slum 

S5  Incorrectly detected as non-changed 

S6  Correctly detected as non-changed with incorrect classification 

After determining the sub-groups, the classification result of land cover was reclassified into binary 

images, combining the classes of Green land, Vacant land, Formal built-up and Other into a new class of 

“Non-slum”. Similar to chapter 4.3.1, we also assign a unique class value to different years (Table 8). The 

binary classification maps for four years were stacked into one composite map. Therefore, every possible 

trajectory would have one unique value. For instance, a pixel of 2112 means that this pixel belonged to a 

non-slum area in 2012 and was classified as slum in 2013 and 2015, finally changed into non-slum in 2016. 

Table 8: Land cover class label for TEM 

Then, we generated 500 random points for each tile, in total 5000 points, which were obtained with their 

corresponding classification and reference data. This information was used as the input to determine the 

change trajectory with Table 8. Based the result, Li & Zhou (2009) proposed two indices to measure 

overall accuracy: (1) overall accuracy (AT); (2) change/no change accuracy (AC/N), and three indices to 

measure accuracy difference: (1) overall accuracy difference (OAD); (2) accuracy difference of no change 

trajectory (ADICN); (3) accuracy difference of change trajectory (ADICC). These indices were calculated 

 
Year 

Label  

 Temporary 

slum 

Non-slum  

 2012 1 2  

 2013 10 20  

 2015 100 200  

 2016 1000 2000  
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using the equations below, where 𝑆𝑖 means the number of sample points assigned to different sub-groups 

of TEM. 

𝐴𝑇 =
𝑆1 + 𝑆2

∑ 𝑆𝑖
6
𝑖=1

∙ 100 

𝐴𝐶/𝑁 =
𝑆1 + 𝑆2 + 𝑆3 + 𝑆6

∑ 𝑆𝑖
6
𝑖=1

∙ 100 

OAD = 𝐴𝐶/𝑁 − 𝐴𝑇 

𝐴𝐷𝐼𝐶𝑁 =
𝑆1

𝑆1 + 𝑆3

× 100 

𝐴𝐷𝐼𝐶𝐶 =
𝑆2

𝑆2 + 𝑆6

× 100 

 

 

  

(equation 5) 

(equation 6) 

(equation 7) 

(equation 8) 

(equation 9) 
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5. RESULTS  

5.1 FCN-based land cover classification 

5.1.1          Performance of 5 ×  5 network and 3 ×  3 network 

We trained FCNs from a simple 5 × 5 networks to a deeper 3 × 3 networks. Images from 2012, 2013, 

2015 and 2016 for each study tile were the dataset for training and validation (classification results are 

shown in Annex 2). Table 9 shows the average F1-scores of the temporary slum class in testing tiles for 

two networks (accuracy for each tile in Annex 3). Both of the networks performed good when classifying 

temporary slums in the city, reaching a high accuracy of over 80%. 

The best improvement happened to the 2016 classification, the 3 × 3 networks showed a higher accuracy 

of almost 5%. While in 2013 the 3 × 3 networks had a worse performance, but only 0.5%. On average, 

accuracy improved by 2% after applying the 3 × 3 networks. Thus, using this deeper network will boost 

the classification result. However, it requires a high computational ability and learned slower as layer 

increased to FCNs. 

Table 9: F1-scores of temporary slum class, showing the accuracies of two networks 

One classification map is shown in the Figure 10 as an example. It can be seen that there are some small 

pixel islands scattering in the map (i.e. the red square in Figure 10), which is not possibly existing in the real 

situation. These pixels or tiny patches were isolated in the image. As one individual temporary slum tent is 

about 21 × 21 pixels (determined by visual interpretation) on the image used in this study, a patch of 

 5 × 5 networks 3 × 3 networks 

 Precision Recall F1-score Precision Recall F1-score 

2012 85.57% 97.04% 90.85% 85.79% 96.99% 90.95% 

2013 84.20% 97.00% 90.03% 84.32% 96.02% 89.55% 

2015 81.55% 85.76% 83.29% 84.41% 89.69% 86.82% 

2016 74.40% 85.76% 81.97% 79.44% 89.69% 86.58% 

In total 81.10% 93.19% 86.32% 83.30% 96.55% 88.38% 

Figure 10: Classification map example of 2016, showing pixel islands 
(reclassified from the original classification result) 
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pixels which are smaller than this size would have a high possibility of being wrongly classified. Therefore, 

we considered removing those noise for further change detection process.  

5.1.2             Noise reduction for land cover classification 

To reduce the classification errors of pixel islands, we tried two related tools in ENVI: (1) majority 

analysis and (2) Classification clumping.  

5.1.2.1          Majority Analysis 

A majority analysis after classification has been performed to experiment its effect in noise reducing. It 

was done based on the “Majority/Minority Analysis” tool in ENVI. It allows the user to determine a 

certain kernel size for processing the whole image. The central pixel in the kernel would be replaced with 

the class value which made up the majority of the kernel. In this study, we set the kernel size as 21 × 21 

pixels, since a patch smaller than this size would not be an individual temporary slum in reality. Figure 11 

illustrates examples of majority analysis for classification results. Compared with the original classification, 

the majority analysis successfully removed some pixel islands and smoothened the slum boundary as well. 

5.1.2.2          Classification clumping 

Another method performed to reduce the noise was “Classification Clumping” which is also a post-

classification tool in ENVI. Unlike majority analysis, classification clumping applied morphological 

operators to the classified areas. This tool would perform a morphological filter of dilating at first, 

followed by a morphological filter of eroding. The selected class would be clumped first by a dilate 

(a)  original classification (b)  after majority 

analysis Figure 11: Comparison of the original classification and majority analysis result 

(a)  original classification (b)  after classification clumping 

Figure 12: Comparison of the original classification and classification clumping result 
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operation and then an erode operation using specified kernel size for each operation. Here, we applied a 5 

× 5 dilate operation followed by a 9 × 9 erode operation. The result after clumping is shown in Figure 12. 

Same as the majority analysis, pixels were removed and boundaries were smoothened.  

5.1.2.3        Accuracy comparison 

We also calculated the F1-scores of temporary slum class in the classification maps after operating these 

two methods (Table 10). By comparison, applying majority analysis showed a slightly higher accuracy than 

applying classification clumping. The reason why the accuracy was lower than the accuracy without noise 

reduction might be that although some inaccurate classification islands were removed, the boundaries of 

other big patches were smoothened. Therefore, those left out classified slum areas were somehow 

enlarged, leading to a decrease in the accuracy. 

We used the classification maps with the majority analysis for the next change detection step.  

Table 10: F1-scores showing the accuracies after noise reduction 

5.2 Change detection result 

5.2.1           Performance of 5 ×  5 networks and 3 ×  3 networks  

We also trained FCNs from a 5 × 5 to 3 × 3 for the change-detected networks. Same with 3 × 3 networks 

showing a better accuracy in chapter 5.1.1, it also provided a more accurate result in change-detected 

network (Table 11). Although in the time period of 2012 to 2013, the 5 × 5 networks had a higher 

accuracy, it is a small improvement of 2%. The 3 × 3 networks performed more accurately in the other 

two time period analysis.  

Table 11: F1-scores showing the accuracy of two networks, testing tiles 

5.2.2           Accuracy comparison  

We assessed the accuracy of change detection result maps by both calculating the F1-scores from the 

confusion matrix and generating the TEM. The results for two change detection method performed in 

this study was compared in this chapter. 

5.2.2.1        Confusion matrix 

We calculated the F1-score for a new class of ‘changed slum area’, consisting the pixels with every slum 

change trajectory (chapter 4.3.1) from the land cover classification. For change-detected networks, the 

increased area and decreased area (chapter 4.3.2.2) were also merged together into one class as ‘changed 

slum area’.  

  Majority analysis Classification clumping  

 2012 89.38% 87.39%  

 2013 89.19% 86.43%  

 2015 88.03% 86.21%  

 2016 86.80% 84.23%  

 In total 88.35% 86.06%  

 5 × 5 networks 3 × 3 networks 

 Precision Recall F1-score Precision Recall F1-score 

2012 - 2013 13.85% 42.26% 20.25% 12.75% 40.42% 18.31% 

2013 - 2015 34.79% 42.31% 36.01% 31.87% 52.59% 37.88% 

2015 - 2016 22.41% 47.46% 28.76% 31.52% 54.17% 36.49% 

In total 23.68% 44.01% 28.34% 25.38% 49.06% 30.89% 
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Table 12 showed the average F1-score of all the study tiles in each time period. Neither of the methods 

showed a significant advance over the other from the average accuracy in total. In the time period of 2012 

to 2013, change-detected networks performed better than post-classification. But when analysing the 

change between 2015 and 2016, post-classification acted more accurately that the change-detected 

networks. Generally speaking, the lower accuracies were obtained in the analysis between 2012 and 2013 

for both of the two methods and the higher accuracies were for the time period of 2013 to 2014.  

Table 12: F1-scores of changed slum area in post-classification result 

However, when looking into the individual accuracy of each tile, it could be seen that the accuracies varied 

a lot from tile to tile (Table 13). Higher accuracy could be over 90%, while the lowest accuracy was only 

3.86%. In fact, the accuracies of land cover classification for this tile in 2015 and 2016 were 70.48% and 

76.19% (3 × 3 network), which was also the lowest among all the tiles, resulting in the lowest accuracy 

among all the post-classification results as well. This might be ascribed to the images themselves. As the 

images were obtained in different time, the images were not exactly corresponded to each other due to the 

image registration problems resulting from the viewing angles, etc.  

Table 13: F1-scores of change detection result for each tile 

 

Moreover, we calculated the average F1-scores for training tiles and testing tiles separately (Table 14). It is 

obvious that both of the two methods performed better in the training tiles than in the testing tiles. But 

the gap between the two groups was much bigger in the change-detected networks than in the post-

classification results. Both of the methods had badly and well performed tiles. In general, post-

classification generated a more balanced results with smaller gap between the highest and lowest, as well as 

the smaller gap between the training tiles and testing tiles.  

All change maps are shown in Annex 4. 
  

  Post-classification  
Change-detected 

networks 
 

 2012 - 2013 43.69% 49.69%  

 2013 - 2015 61.52% 60.66%  

 2015 - 2016 55.95% 50.96%  

 In total 53.80% 53.68%  

Tile 
Post-classification  Change-detected networks 

2012-2013 2013-2015 2015-2016 2012-2013 2013-2015 2015-2016 

1 36.67% 38.42% 11.92% 22.69% 19.89% 3.86% 

2 37.19% 55.15% 55.00% 19.31% 51.32% 40.37% 

3 41.66% 70.22% 51.31% 78.46% 89.30% 73.27% 

4 28.87% 63.24% 42.71% 17.79% 54.50% 24.37% 

5 54.70% 73.69% 70.20% 91.54% 94.97% 91.29% 

6 36.13% 57.11% 47.94% 23.66% 36.65% 39.20% 

7 62.28% 82.82% 92.63% 91.29% 95.20% 96.93% 

8 * * 73.58% * * 48.65% 

9 62.58% 72.98% 63.93% 84.70% 86.48% 75.51% 

10 33.11% 40.03% 50.31% 17.78% 17.68% 16.12% 

Tile 3/5/7/9: Training tiles     * No changes in this tile 
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Table 14: F1-scores of the training and testing tiles 

5.2.2.2        Trajectory error matrix  

 In order to better understand the accuracy of 

change detection results, we also used TEM assess 

the change trajectories of temporary slums obtained 

by two methods. The classification maps for 

different year were stacked into one composite map 

(example in Figure 14). We generated 500 random 

points in two groups: 250 random points in the 

unchanged areas and 250 random points in the 

changed areas. This stratification is because of the 

limited changed areas in some tiles (example in Table 

14). If positioning the points randomly in the whole 

image without considering about this, only few 

points would be located in the changed area. The 

indices became less affected by the small amount of 

the points, resulting in a incorrectly high value. This 

is a common problems in change analysis when 

most of the study areas did not change. Completely 

random samples did not work well in this situation.  

Five indices were calculated based on the matrix 

(Table 15). For overall accuracies (AT), we obtained 

about 76.36% for the post-classification result and 

72.30% for the change-detected networks, meaning 

that 4% more sample had been classified correctly 

with the right trajectories. For two methods, the 

change/no change accuracies (AC/N) were both 

higher than the AT. This is because AC/N only 

considered whether the change maps detected 

changes or not, without considering the correctness of trajectories. For OAD, the value is opposite, which 

means AC/N is higher than AT, indicating some of the change trajectories did not match with reference 

data. And post-classification had more wrong trajectories. Besides, change-detected networks have a 

higher ADICC than post-classification, suggesting that more sample points in the change-detected 

networks results could be identified with the correct change trajectories.  

 

 

 Tile Method 2012-2013 2013-2015 2015-2016 In total  

 Training Post-classification 55.30% 74.93% 69.52% 66.58%  

  Change-detected 

networks 

86.50% 91.49% 84.25% 87.41%  

 Testing Post-classification 34.39% 50.79% 46.91% 44.21%  

  Change-detected 

networks 

20.25% 36.01% 28.76% 28.37%  

Figure 13: Example of stacked maps for change 
detection accuracy assessment 

 

Figure 14: Example of limited changed areas  
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Table 15: TEM indices for two change detection methods 

 

5.2.3           Change-detection maps 

After assessed the accuracy quantitatively, we also visually checked the change maps (Annex 4). Although 

the accuracy assessed in the previous chapter was relatively low for some maps, it showed the right 

location where changes happened to temporary slums. One example for this situation is shown in Figure 

15. The post-classification change detection result of temporary slum from 2015 to 2016 for this tile 

obtained only 42.71% for F1-score based on confusion matrix. However, when looking at the map, we 

could say that it gave the correct result of where the change was and what type of change 

(increasing/decreasing) it was. Based on this strategy, the result could also be used to identify the slum 

change location.  
  

 Indices Post-classification  
Change-detected 

networks 

 

 overall accuracy (AT) 76.36% 72.30%  

 change/no change accuracy (AC/N), 89.60% 80.12%  

 overall accuracy difference (OAD) 13.24% 7.82%  

 accuracy difference of no change trajectory (ADICN) 100.00% 100.00%  

 accuracy difference of change trajectory (ADICC) 67.18% 74.17%  

Image of 2015 

Image of 2016 

Reference data of slum change 

between 2015 and 2016 

Change map by post-classification 

change detection 

Figure 15: Example with low accuracy but correct location for change 
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6. DISSCUSION AND LIMITATION 

6.1           Temporal dynamics of slum in Bangalore in the study area 

As mentioned in chapter 1.1, only a few studies have analysed the temporal changes of slums. For 

example, Kit & Lüdeke (2013) identified three trends of slum temporal changes: densification of slum 

settlements, slum growth in fringes and the spatial focus zones where had the most slum growth. In this 

study, we intended to understand how slum were changing between 2012 and 2016 in our study area. The 

changes were about two questions: how much slum area was changing and how the slum area was 

changing. The second questions would then be divided into two sub-questions: what land cover did 

change into slum and what land cover did appear when slums disappeared. 

6.1.2         Area of slum changing 

Before discussion, the area of changed slums were calculated for the result change maps with a 

comparison to the reference data (shown in Table 16). Here, ‘Increase’ and ‘decrease’ represent the 

changes from other land cover to temporary slums and from temporary slums to other land cover. The 

overall gap between reference data and post-classification was 13,579 m2, while for change-detected 

networks was 20,579 m2. Although change-detected networks showed a comparable accuracy in the 

assessments, it had a worse performance in the area aspect than the post-classification. As the gap 

between reference data and change-detection results could not be ignored, we used the value from 

reference data for discussion. 

Table 16: Comparison of areas of changed slums 

From 2012 to 2016, 12,012 m2 of temporary slums appeared in the study area, while 1,7052 m2 

disappeared in this time period. There were also 11041 m2 of slums stayed unchanged. On average, 7,173 

m2 of land changed into temporary slums in our study area per year, while 8,390 m2 of the existed 

temporary slums disappeared, showing an entirely decreasing trend. A detailed changing pattern is shown 

in Figure 16.  

The flow of grey colour presented how many slums remained unchanged in each time period. The flow of 

green colour was the area changing from slums to other land cover, while red colour stood for the area 

 2012  2013  2015  

(m2) Increase Decrease Increase Decrease Increase Decrease 

Reference data 8873 4047 12614 9652 7203 19860 

Post-classification 7981 6377 15205 12471 10030 21980 

Change-detected networks 4826 2612 9313 13403 5654 13364 

Figure 16: Diagram of temporary slum changing situation 
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becoming slums. It suggested that with the passage of time, the less slum area stayed unchanged and more 

and more slum areas were disappearing. The largest increase of temporary slums happened between 2013 

to 2015, which is also the longest gap in our study period.  

6.1.3         Pattern of slum changing 

Table 17: Proportion of different temporal dynamics, 2012 to 2016 

 

Table 18: Changing rate of different temporal dynamics, 2012 to 2016 

 

Table 17 shows the proportion of different types of temporal dynamics from 2012 to 2016. And Table 18 

shows the changing rate of every temporal dynamic. The largest transition of the increased part was the 

changing from vacant land to the slums. About 42% of the new slums used to be vacant land, with a 

change rate of 1,447 m2 per year. An example of this transition is in Figure 17. For the slum decreasing, 

most of the temporary slums changed into green land with a change rate of 2,250 m2 per year, which is 

different from the increasing transition. A very specific example of this transition is in Figure 18. This 

transition was associated with some reforming programmes in this area. It could be seen that formal roads 

have been constructed in this area, with newly planted green land. We can infer that some reclaiming 

projects might be performed here.  

 

 Increased   Decreased   

 other → slum 0.64%  slum → green land 42.64%  

 formal built-up → slum 24.11%  slum → vacant land 36.71%  

 vacant land → slum 42.57%  slum → formal built-up 20.51%  

 green land → slum 32.68%  slum → other 0.14%  

 Increased m2 /year  Decreased m2 /year  

 other → slum 22  slum → green land 2250  

 formal built-up → slum 819  slum → vacant land 1937  

 vacant land → slum 1447  slum → formal built-up 1083  

 green land → slum 1111  slum → other 7  

 

(a) 2012 (b) 2016 
Figure 17: Example of vacant land changing into slums 
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6.2           Methodological advantages and disadvantages 

In this study, two change detection methods were employed to analyse the temporal dynamics of slums. 

Besides, two methods for accuracy assessment were employed. Discussion about these methods were also 

made in this chapter.  

6.2.1        Post-classification change detection 

For post-classification change detection, land cover classification maps were generated based on FCNs. 

The maps had a high accuracy of over 85%, indicating that using a deep learning algorithm to identify 

temporary slums from VHR imagery in urban areas is effective. This result also responds to the study 

from Persello & Stein (2017), showing their proposed framework to capture informal settlements working 

well from Dar es Salaam in Tanzania to Bangalore in India.  

However, the post-classification results did not have a good performance based on the accuracy 

assessments. It could not show the exact size of areas where changes happened. This problem is 

associated with the uncertainty of slum boundary as well, as the reference data in this study were generated 

by visual interpretation based on the author’s background and the understanding from the provided 

information. But the result change maps could tell the existence of slum changes. The changed slum areas 

in reference maps were also changing in the change-detection results, with only considering the location. 

Molenaar (2000) proposed two concepts of existential uncertainty and extensional uncertainty. Existential 

uncertainty means the uncertainty about the existence of a slum in reality. And extensional uncertainty 

implies the uncertainty of whether an area covered by a slum can be determined with limited certainty or 

not (Kohli, Stein, & Sliuzas, 2016). Based on these concepts, the post-classification method is beneficial in 

analysing the existence of changed slums, but not practical in analysing the size of changed slums. 

6.2.2        Change-detected networks 

On the other hand, a FCNs network with the same architecture as the one used land cover classification 

was employed to directly detect the changed slum areas. One of the problems for this method is that the 

accuracies for the training tiles were much higher than the testing tiles, indicating that the classifier learnt 

by the FCNs were not transferred well to the other images. This might also result from the reference data 

preparation. Except for the uncertainty of slum delineation which is the same in the post-classification 

process, another uncertainty is change trajectory. In this study, when selecting the training tiles, we only 

considered the trajectories between temporary slums and our determined land cover class. In fact, the 

(a) 2012 (b) 2016 
Figure 18: Example of slums changing into green land 
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objects in one land cover class might be different from each other. For example, one training tile 

contained a trajectory from concrete buildings to temporary slums and taught the networks how to classify 

it. But in testing tiles, the trajectory was from brick buildings to temporary slums. Although both from 

formal built-up class to slums, the networks had no knowledge about this specific trajectory, hence leading 

to incorrect classification. The changed-detected networks had an 87% accuracy for the training tiles, 

indicating that it has a potential to detect the changes with precise reference data.  

Besides, similar to post-classification, change-detected networks also performed well when capturing the 

existence of change. 

6.2.3        Accuracy assessment 

In this study, the confusion matrix and trajectory error matrix were employed to assess the accuracy of 

change detection results. Confusion matrix and related indices, like producer accuracy and user accuracy, 

are still a widely used method to assess the accuracy of deep learning algorithm based classification and 

change detection (Dai et al., 2018; Fu et al., 2017; Persello & Stein, 2017). Nevertheless, studies already 

stated the problems (Foody, 1992; Pontiuns, 2000). Foody (2002) also talked about the importance of 

reference data in the confusion matrix assessment. From this study, as discussed in the previous chapter, 

although the results were not performing well with low values for F1-scores, it did tell the correct location 

of where the changes happened. As confusion matrix provides a pixel-based, land cover with uncertain 

delineation will show a low accuracy around boundaries. This is the case in this study, without a standard 

definition of a slum, the boundary of changed areas is also fuzzy. Therefore, the confusion matrix cannot 

give a credible assessment with a consideration of the neighbourhood context.   

Another assessment method employed in this study was the trajectory error matrix. While the confusion 

matrix provided an assessment of ‘change/no change’ status, TEM assessed the accuracy for ‘from/to’ 

changes. As mentioned in chapter 5.2.2.2, one shortcoming for TEM is that the random samples cannot 

be completely random, especially when the changed area only cover a small proportion of the whole 

region.  

How to combine the assessment of change certainty and change trajectory will still be a topic for further 

study. 

6.3           Limitations  

First is about the image data. Although the images in this study were all from the Worldview satellites, two 

are from Worldview 02 and the other two are from Worldview 03. We resampled the images in order to 

keep a same cell size, which would also influence the image quality. Besides, the viewing-angles were 

different in these images, causing shadows as well as occlusion from high-rise buildings. Another problem 

is the registration of images. This pre-processing operation was performed manually. The images from 

different time were not able to exactly match with each other, which would influence the later change 

detection process.  

During the FCNs based classification, we used visual interpretation to generate the reference data. 

Uncertainty were encountered with whether an area was a temporary slum or not. Another issue is related 

to the lack of an exact definition of the boundary of a slum (Kohli et al., 2016). Defining an exact 

delineation between a slum area and other land cover area is always a hard task. Therefore, both the 

location and boundary issues affected the accuracy of reference data, and therefore affected the quality of 

classification and change detection results.  

For accuracy assessment, as we discussed in this chapter, the two methods which we used in this study 

could not assess the performance of our slum change maps well. Confusion matrix and its associated 

measurements could only tell the correctness of the classified label for pixel itself and could not deal with 
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fuzzy boundaries well. Trajectory error matrix had limited performance when the assessed area is small in 

the whole image.  
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7. CONCLUSION AND RECOMMADATION 

7.1           Conclusion 

The main objective of this study is to develop a FCNs-based approach to map slums and analyse their 

temporal dynamics using machine learning based on VHR imagery. To accomplish this objective, this 

study employed a FCNs-based method to map changes of slum areas in the city of Bangalore, with four 

Worldview images taken over the city from 2012 to 2016. After getting the change maps, we analysed the 

temporal dynamics of slums. Three sub-objectives were covered in order to accomplished the main goal 

by answering the related research questions. 

The first sub-objective is to identify slum-area and non-slum from VHR imagery by applying fully 

convolutional networks (FCNs). Supported by recent literature and with the help of available slum 

boundary data, we understood the characteristics of slums in Bangalore. Temporary slums, also known as 

‘Blue tent’ slums, were selected as the target slum type in this study. These slums are sheltered with blue 

plastic roof and usually cluster together. People living there commonly lack basic infrastructure. People 

living there were lack of basic infrastructure. These areas are commonly ignored by the government as 

they are not recognised slums. Therefore, investigating their dynamics is of particular interest as they do 

not appear on official maps. 

A better understanding of these slums could provide information for the improvement of these areas. 

After learning about temporary slums, we selected ten tiles as our study area and then generated the 

reference data by visual interpretation. The reference data consisted four land cover class, which were 

related to the slum change trajectories in the study area. Among them, we selected four tiles, which had all 

the land cover classes in the reference data as well as all the slum change trajectories, as our training tiles. 

Then we applied a FCNs architecture with dilated convolutions to classify the images. We experimented 

the performance between a network with 5 × 5 kernel size and from a network with 3 × 3 kernel size. 

After assessing the accuracy of the classification maps, we found that the 3 × 3 network had an accuracy 

of 88.38%, which is higher than the 86.32% accuracy of the 5 × 5 network . Therefore, we applied the 3 

× 3 network for later analysis. 

The second sub-objective is to analyse the temporal dynamic. We performed two methods to accomplish 

this sub-objective. On the one hand, the resulted slum maps from the land cover classification were used 

for a post-classification change detection. On the other hand, we used the FCNs to directly classify the 

changed slum areas in the images.  From the result, it could be observed that in general, there were 17,052 

m2 slum areas disappearing and 12,012 m2 of new slums from 2016 to 2012 in our study area. Besides, 

from the change trajectory aspect, among all the trajectories of slum increasing, temporary slums were 

commonly appearing from the vacant land. For the decreasing trajectory, the majority of the 

transformation was from slum areas to green land. 

The last sub-objective is to evaluated the outcomes of change detection for temporal dynamics. In this 

study, we applied two methods to assess the accuracy of the change detection outcomes. One is the 

confusion matrix. We assessed the performance of two change detection method results by calculating the 

F1-score from the confusion matrix. Both of the two methods obtained about 53% for the F1-score. 

Another assessment method is trajectory error matrix (TEM). Five indices were calculated to assess the 

outcomes. Post-classification had a better result in terms of overall accuracy (AT), while change-detected 

networks having more sample points with correctly classified trajectories. We also visually compared the 

change maps and reference data, discovering that although the change maps did not have a good 

performance in pixel-based accuracy assessment, it could still give the right location of where the change 
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happened. Based on the discovery, we found that both of two methods did not give a good assessment on 

the results. The generated change maps did not give an accurate result for the size of changed slums, but 

offer a valuable information of the location of where the change happened.  

7.2          Recommendations 

For future works, we listed some possible directions as followed:  

i. Discovering a ruleset of defining the slum boundary. 

In this study, we delineated the slum boundary by visual interpretation based on the author’s 

understanding. It would be a direction to analyse the delineations from different experts to see their 

difference. 

ii. Exploring techniques to improve FCNs in slum classification field. 

A FCNs architecture with dilated convolutions was used in this study. Other advanced convolution 

networks in computer vision field could also be experimented in slum classification to see if they were 

beneficial or not. 

iii. Proposing an accuracy assessment method for slum change  

In our study, we found that the methods we used could not give a good assessment on our results. 

Therefore, a measurement needs to be proposed to better assess the change location rather than the 

change of pixel label. 
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APPENDIX 

Annex 1: Images for the training and testing tiles 
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Annex 1-2: Images for the training and testing tiles 
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Annex 2-1: Land cover classification results from FCNs 
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Annex 2-2: Land cover classification results from FCNs 
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Annex 3: F1-scores of slum classification results for each tile based on FCNs 

 

 
  

Tile 
5 × 5 networks 3 × 3 networks 

2012 2013 2015 2016 2012 2013 2015 2016 

1 82.65% 85.10% 67.00% 67.92% 83.10% 86.12% 70.48% 76.19% 

2 93.92% 87.50% 79.88% 76.14% 94.59% 82.12% 83.87% 79.62% 

3 92.29% 89.12% 83.29% 86.74% 90.34% 90.11% 84.84% 78.36% 

4 92.42% 89.46% 93.62% 93.20% 90.49% 89.70% 93.31% 94.12% 

5 86.93% 91.16% 91.26% 95.97% 84.38% 87.11% 88.85% 95.80% 

6 87.16%   89.73%   86.40%   81.99% 88.51% 91.85% 94.47% 90.45% 

7 97.86% 97.82% 98.56% 94.13% 97.59% 97.40% 98.35% 91.56% 

8 * * *   85.34% * * * 92.05% 

9 89.29% 91.48% 91.63% 94.75% 88.64% 90.61% 90.78% 93.80% 

10 98.12% 98.36% 89.55% 87.24% 98.04% 97.97% 91.96% 87.02% 

       * No slum  
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Annex 4-1: Change maps of temporary slum -1 
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Annex 4-1: Change maps of temporary slum -1 
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