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ABSTRACT 

It is estimated that 70% of the land rights in the world remain unregistered. Traditional field surveying 

approach is costly and labour intensive. Imagery-based cadastral mapping along with automatic feature 

detection techniques are recently being exploited by researchers to accelerate this process. Most prior 

studies are explored on rural or agricultural areas with relatively simple morphology and clear boundaries, 

based on image segmentation or edge detection. Our research seeks to propose a novel strategy for 

cadastral boundary detection in complexed urban environments. We introduce a technique based on deep 

Fully Convolutional Networks (FCNs), which can automatically learn high-level spatial features from 

images, to extract cadastral boundaries. Our strategy combines FCNs and a grouping algorithm using the 

Oriented Watershed Transform (OWT) to generate connected contours. These contours are presented 

hierarchically in an Ultrametric Contour Map (UCM). We call this workflow of producing connected 

cadastral boundaries FCN-OWT-UCM.  

 

FCN-OWT-UCM is tested in two case study locations in Rwanda, Busogo and Muhoza, using images 

acquired by Unmanned Aerial Vehicles (UAV) in 2018. The performance in Muhoza is slightly better than 

Busogo. An average of 0.47 in precision (correctness), 0.52 in recall (completeness) and 0.49 in F-score 

(the harmonic mean between precision and recall) are achieved. The proposed method is compared with 

state-of-the-art Multi-Resolution Segmentation (MRS) and Globalized Probability of Boundary (gPb) in 

both study sites and gains better overall accuracy. In conclusion, FCN-OWT-UCM is able to effectively 

extract urban cadastral boundaries, the accuracy of which largely depends on the proportion of visible 

boundaries. This automated method could minimize manual digitization and reduce field work, thus 

facilitating the current cadastral mapping and updating practices.  

 

Keywords: deep learning, fully convolutional networks, cadastral boundaries, contour detection, 

unmanned aerial vehicles. 
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1. INTRODUCTION 

1.1. Background and justification 

Cadastres, which record the physical location and ownership of the real properties, are the basis of land 

administration systems (Luo, Bennett, Koeva, & Lemmen, 2017). Nowadays, cadastral mapping has 

received considerable critical attention. An effective cadastral system formalises private property rights, 

which is very important to promote agricultural productivity, secure effective land market, reduce poverty 

and support national development in the broadest sense (Williamson, 1997). However, it is estimated that 

over 70% people in this world do not have access to a formal cadastral system (Enemark et al., 2016). The 

key obstruction is the use of traditional field surveying approach to record land parcels, which is often 

claimed to be time-consuming, costly and labour intensive. 

 

In response to the problem, Enemark, Bell, Lemmen, and Mclaren (2014) proposed fit-for-purpose (FFP) 

land administration, suggesting that land administration systems should be designed to meet the current 

needs of a specific country, rather than following strict technical standards. One of the key principles of 

the FFP approach is using ‘general’ rather than ‘fixed’ boundaries. Boundaries measured through on-site 

cadastral survey using total station or Global Navigation Satellite System (GNSS) with a precise location 

are considered as fixed, while boundaries delineated from high-resolution imagery are called general 

(Crommelinck et al., 2016). General boundary approaches extract cadastral boundaries by visually 

interpreting and manually digitizing from georeferenced high-resolution imageries. In this regard, huge 

fieldwork surveying tasks could be avoided. Therefore, although less spatially precise, general boundary 

approaches are much cheaper and faster than conventional cadastral survey. Typically, high-resolution 

satellite images (HRSI) have been used for interpreting general boundaries, but there are still obstacles 

such as high-cost, cloudy or dated imagery (Ramadhani, Bennett, & Nex, 2018). 

 

Nowadays, Unmanned Aerial Vehicles (UAV) are increasingly being used as a low-cost, affordable 

platform which can support in acquiring high-resolution data. UAVs can fly under clouds and capture sub-

meter level imagery in a cheap and timely fashion. Several studies already focus on using UAVs for 

cadastral mapping. Cunningham, Walker, Stahlke, Wilson and Opportunity (2011) used UAVs as a 

substitute of field surveys for cadastral mapping in rural Alaska. From their experiences, property lines 

could be well defined through meetings with involved stakeholders using the accurate orthophoto. 

Rubinov, Biraro, Fuller and Bennett (2015) claimed that UAVs have the potential to revolutionise land 

administration activities for its flexible maneuverings and supplying of high-quality, high-resolution 

imagery. Koeva, Muneza, Gevaert, Gerke, and Nex (2018) introduced the whole workflow of using UAVs 

for map creation and updating, consisting of flight planning, data acquisition, image processing and 

orthophoto creation.  

 

To further expediting the mapping process, automatic boundary detection techniques from UAV images 

are being explored by researchers. In practice, cadastral boundaries are often marked by physical objects, 

such as roads, building walls, fences, water drainages, ditches, rivers etc. (Luo et al., 2017). Such 

boundaries are visible in UAV images and bear the potential to be automatically extracted through image 

analysis algorithms. However, due to the inherent complexity of cadastral boundary, automatic detection 

often shows a certain error rate and needs to be manually corrected through post-processing steps 
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(Crommelinck et al., 2016). Despite the needs for post-editing, these semi-automatic approaches still turn 

out to be cheaper and faster than digitizing from scratch for all boundaries.  

 

The most commonly used techniques for semi-automatic boundary delineation are based on image 

segmentation and edge detection (Crommelinck et al., 2016). Segmentation refers to partitioning images 

into disjoint regions, inside which the pixels are similar to each other with regard to spectral characteristics 

(Pal & Pal, 1993). On the other hand, edge detection techniques model edges as sharp discontinuities in 

brightness and colour (Bowyer, Kranenburg, & Dougherty, 2001). These techniques are based on low-

level features and are not accurate enough. For cadastral boundary detection, the semantic gap between 

high-level boundary concept and low-level visual cues forms the main challenge. More reliable and 

informative features should be constructed to bridge the semantic gap, thus more advanced feature 

extraction techniques are needed. 

 

Recent studies indicate that deep learning methods such as Convolutional Neural Networks (CNNs) are 

highly effective for extraction of higher-level representations needed for detection or classification from 

raw input (Zhu et al., 2017), which brings in new opportunities in cadastral boundary detection. Fully 

Convolutional Networks (FCNs) are a more recent deep learning method. In contrast to traditional CNNs, 

which predict only the label of the central pixel of the image, FCNs directly perform pixel-wise predictions. 

The input image of an FCN can have arbitrary size, and all the pixels of the input will be labelled. 

Therefore, compared to CNNs, FCNs can largely reduce computational cost and processing time. The 

superiority of FCNs in feature learning and computational efficiency makes them promising for the 

detection of visible cadastral boundaries. However, very little research uses FCNs in extraction of 

cadastral boundary. To the best of the author’s knowledge, only Musyoka (2018) applied FCNs in 

agricultural field boundaries delineation and achieved better accuracy and visual quality compared to 

Multi-resolution segmentation, globalized probability of boundary (gPb) and Canny detector.  

 

What’s more, most automatization for boundary detection was explored on rural areas or agricultural 

fields with very clearly visible boundaries, including the prominent work by Babawuro and Beiji (2012), 

Nyandwi (2018), Wassie, Koeva, Bennett and Lemmen (2018), Musyoka (2018) etc.. Urban areas with 

more complexed morphology are very challenging for standard techniques such as image segmentation 

and edge detection. The former is in high risk of over-segmentation as there are often many different 

objects within one land parcel. For the latter, all the outlines of these objects will be detected by edge 

detectors, leading to many false detections.   

 

Taking above challenges and opportunities into consideration, this study aims at using fully convolutional 

networks for extracting cadastral boundaries from UAV images. Special focus is given to urban and sub-

urban areas. The detection results of FCNs are fragmented boundaries. A grouping method to connect the 

disjoint boundaries automatically is also investigated in this research by using Oriented Watershed 

Transform (OWT) (Arbeláez, Maire, Fowlkes, & Malik, 2011). The final result is presented as an 

Ultrametric Contour Map (UCM), representing the connected boundaries at different levels of detail. 

1.2. Research problem 

There is a clear need for innovative and automatic cadastral boundary delineation methods to face the 

challenge of 70% unregistered land rights. Much effort is already put into automatic techniques such as 

image segmentation and edge detection. However, these methods are mostly applied in rural areas with 

simple landforms and clear boundaries. Furthermore, there is still need to improve the accuracy and 

computational efficiency. Recent research shows that deep learning has great ability in learning features 

from raw image, but very limited research uses FCNs in cadastral boundary detection, especially in urban 
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region. Therefore, extracting cadastral boundaries in urban and sub-urban environment using FCNs from 

UAV images forms the problem of this research. To connect the disjoint boundaries, a workflow of FCN-

OWT-UCM is introduced to further modify the result. 

1.3. Research objectives and questions 

1.3.1. General objectives 

To extract cadastral boundaries from UAV images using FCNs. 

1.3.2. Specific objectives 

Objective 1: To prepare the data for cadastral boundary detection. 

Objective 2: To develop a methodology for cadastral boundary detection.  

Objective 3: To compare the performance of the proposed method with other state-of-the-art methods. 

1.3.3. Research questions 

Objective 1:  

1. How to prepare the reference data? 

2. How to design the training and testing dataset? 

Objective 2:  

1. Which FCN architecture is appropriate for boundary detection? 

2. What are the optimal hyper-parameters for the proposed FCN? 

3. How to improve the result of FCN? 

Objective 3:  

1. What are the widely accepted metrics for evaluating boundary detection? 

2. Which method achieves the best result? 

1.4. Conceptual framework 

The conceptual framework is presented in Figure 1. Frames and texts marked by green colour define the 

scope of this research. The context-specific aim is general cadastral boundary mapping. The term cadastral 

boundary is rooted in cadastre, which records the location and attributes of land parcels. The latter often 

include information on ownership, land value, etc.. The location of land parcels can be defined by fixed 

Figure 1: Conceptual framework. The concepts marked with green form the scope of this research. 
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boundary or general boundary. In line with FFP land administration, the potential for general boundary 

detection is explored in this research. The concept of FFP land administration contains three core 

frameworks, including spatial, legal and institutional aspects. These three components correspond to 

geographical, judicial and administrative context respectively and they are interrelated (Enemark et al., 

2016). Our research is under the context of spatial framework by involving UAV images and FCNs in 

cadastral mapping.  

1.5. Thesis structure 

The structure of this thesis is organized as following: 

Chapter 1. Introduction 

This chapter gives the background and justification of the research, clarifying the research problem, 

objectives and questions. The main concepts and the underlying relations are indicated in a conceptual 

framework.  

Chapter 2. Literature review 

Related concepts for cadastral boundary and state-of-the-art feature extraction techniques are reviewed in 

this chapter. Former relevant scientific literature is also reviewed in this part. 

Chapter 3. Methodology 

An overview of the research methodology and the study areas are introduced in this chapter, followed by a 

detailed description of each step, including data preparation, automation process for boundary detection, 

alternative approaches and accuracy assessment. 

Chapter 4. Results and analysis 

The experimental results are presented here with a brief explanation. The results are presented in the 

sequence of hyper-parameter tuning result for FCN, threshold tuning result for OWT-UCM and the 

accuracy assessment result for final implementation. The results of alternative approaches are also 

described and compared in this chapter. 

Chapter 5. Discussion 

In this chapter, a elaborate discussion for the obtained results is presented.  

Chapter 6. Conclusions and recommendations  

This chapter closes the thesis with concluding remarks of the whole research and recommendations for 

future study. 

1.6. Summary 

This chapter introduces the background of this research in social and academical aspects, leading to the 

actual research problem. The scope of this research and the overall structure of the thesis are illustrated to 

provide a global perception. In summary, this study aims to extract general cadastral boundaries following 

FFP land administration principles. The innovation of this research is in using FCNs and the application 

of cadastral boundary extraction in urban environments.   
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2. LITERATURE REVIEW 

2.1. Concepts related to cadastral boundaries 

The term cadastre has various definitions. United Nations Economic Commission for Europe (UNECE) 

defined cadastre as an information system which consists of two parts: “a series of maps or plans showing 

the size and location of all land parcels together with text records that describe the attributes of the land” 

(UNECE, 1996, p.11). Silva and Stubkjær (2002, p.410) described cadastre as “a systematic and official 

description of land parcels, which includes for each parcel a unique identifier”. Luo et al. (2017, p.2) 

suggested that cadastre is “a comprehensive official record of the real property’s boundary, ownership, 

and value, and is a systematically arranged public register that depends on survey measurements”.  

According to these definitions, land parcels are an essential geospatial component of a cadastre.  

 

The land parcels are defined by cadastral boundaries. There are direct and indirect cadastral surveying 

techniques for the acquisition of cadastral boundaries. Direct techniques measure the accurate position of 

a boundary through on the ground measurement; indirect techniques are those relying on remotely sensed 

data instead of going to the field (Crommelinck et al., 2016). Depending on whether the boundary is 

accurately surveyed and determined, cadastral boundaries can be defined as fixed or general (Luo et al., 

2017). Generally speaking, fixed boundaries are commonly measured by direct techniques, or some 

indirect techniques using very high-resolution data that meet the required accuracy; general boundaries are 

more likely to be visible boundaries extracted from remotely sensed data (Crommelinck et al., 2016). 

Rather than acquiring fix boundaries following advanced technical standards at a high cost, fit-for-purpose 

land administration seeks to support more rapid and low-cost cadastral mapping to safeguard people’s 

land rights. The underlying truth is that provision of tenure security does not necessarily require 

centimetre-accurate cadastral boundaries (Wassie et al., 2018). Therefore, this study focuses on delineating 

general boundaries using indirect surveying techniques. 

2.2. Prior studies for imegery-based boundary detection 

Imagery-based cadastral mapping is in recent years being explored by researchers for the purpose of quick 

and cost-effective data acquisition and updating. Manual digitization along with stakeholder consultation 

was conducted for imagery-based boundary detection in earliest practises (Manyoky, Theiler, Steudler, & 

Eisenbeiss, 2012; Ali & Ahmed, 2013; Parida, Sanabada, & Tripathi, 2014). According to these case studies, 

it can be concluded that more land parcels can be surveyed in less time by using high-resolution imagery. 

 

Recent advances in computer vision and image processing offer new opportunities for supplementing 

manual methods towards automation. Babawuro and Beiji (2012) detected field boundaries from satellite 

imagery using Canny edge detection and morphological operations, followed by a Hough transform to link 

the segmented boundaries. They noted that some boundaries are not well captured by their proposed 

method, but the exploration of integrating machine vision technology and cadastral mapping brings 

substantial benefits in minimizing human interventions. 

 

When applied to very high resolution (VHR) imagery, geographic object-based image analysis (GEOBIA) 

is gaining popularity, which is due to the realization that image objects imply more real-world value with 

object appearance and topology than only pixels (Lucian Drǎguţ, Tiede, & Levick, 2010). The most crucial 

step in OBIA is generating image objects through image segmentation. In 2018, Nyandwi applied OBIA 
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method in extracting cadastral parcels using chessboard and multiresolution segmentation within 

eCognition environment. The method was tested in one rural site and one urban site in Kigali, Rwanda, 

using pansharpened WorldView-2 imagery. For accuracy assessment, a tolerance of 5 meters was given to 

reference lines. The automation achieved 47.4% correctness and 45% completeness in rural area, while the 

results in urban areas were counter-intuitive. The author claimed that it was challenging for machine to 

extract urban parcels because the spectral reflectance for roof, garden and fences varies. 

 

Wassie et al. (2018) investigated another image segmentation algorithm using the mean-shift segmentation 

plugin from QGIS to extract cadastral boundaries. They used a pansharpened and orthorectified 

WorldView-2 image with 0.5 m resolution. Three rural areas in Amhara Region, Ethiopia were selected as 

their study area, which are taken as representatives of small holder agricultural field in sub-Saharan Africa. 

With a 0.5-meter buffer from reference boundary, their experimental results achieved 55.4%, 28.0% and 

18.9% of completeness and 16.3%, 15.9% and 7.23% of correctness for three selected sites.  

 

Point cloud is also used for cadastral mapping. Luo et al. (2017) investigated the extraction of cadastral 

boundaries from airborne laser scanned data in urban areas. They designed a semi-automatic workflow 

including automatic extraction and post-refinement. In the automatic extraction phase, the outlines of 

planar object like buildings and roads are generated using Alpha shape, Canny detector, and Skeleton 

algorithms, while the outlines of linear object like fences are delineated by means of centreline-fitting 

approach. As not all extracted outlines are cadastral boundaries, manual interventions are needed in the 

post-refinement phase. In this phase, useful line segments are determined through visual interpretation 

and gaps between line segments are manually filled. Consequently, this workflow achieved an average of 

around 80% completeness and 60% correctness with a 4-meter tolerance from reference lines.  

 

From the reviewed works, two main challenges for imagery-based boundary detection could be identified: 

1) The complexity in extracting urban cadastral boundaries. In urban area, there are different objects 

within one cadastral parcel such as buildings, gardens, pavements, fences etc. which exhibit different 

spectral information. Moreover, the outlines of these objects contribute redundant information for 

cadastral boundary delineation. Therefore, it is challenging for applying image segmentation and edge 

detection algorithms in urban areas. 2) The need for maximizing automation accuracy and minimizing 

human intervention. For instance, in the work of Luo et al. (2017), the cadastral boundaries should be 

manually determined from all the detected buildings, roads and fences, and the gaps need to be manually 

filled. The above challenges provide the predominant motivation of this research. We aim at proposing a 

novel strategy for cadastral boundary extraction, with higher level of automation and better accuracy, as 

well as good performance in challenging areas such as urban environment.  

2.3. Feature detection techniques 

In the context of computer vision and image processing, the term feature refers to salient visual cues in 

digital images, such as corners, edges and blobs (Li, Wang, Tian, & Ding, 2015). Feature detection 

techniques including edge detection and segmentation have been applied by researchers in imagery-based 

cadastral mapping practices.  

 

Segmentation is a process of dividing an image into non-overlapping segments that are homogeneous in 

terms of brightness, colour, texture, etc. (Pal & Pal, 1993). Supervised and unsupervised approaches are 

developed for image segmentation. Supervised method is often performed by training a classifier such as 

Convolutional Neural Networks (CNN) and Support Vector Machines (SVM). Unsupervised method 

defines segmentation parameters to describe characteristics like colour, texture, intensity, size and shape of 

image segments (Crommelinck et al., 2016). The image is then segmented based on these parameters. 
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Researchers claimed that segmentation-based approaches have two general drawbacks: sensitive to intra-

parcel variability and dependent on parameter selection. The later often requires a prior knowledge or trial 

and error (García-Pedrero, Gonzalo-Martín, & Lillo-Saavedra, 2017). Multiresolution segmentation (MRS) 

is one of the most popular segmentation algorithm (L. Drǎguţ, Csillik, Eisank, & Tiede, 2014). We choose 

MRS as a representative of image segmentation and compare it with our proposed method. 

 

Classical edge detection aims to detect sharp changes in image brightness through local measurements, 

including first-order and second-order derivative based detection (Arbeláez et al., 2011). First-order 

derivative based approaches (e.g. Prewitt, Sobel) detect edges using the minimum and maximum in the 

first derivative with local derivative filters, while second-order derivative based approaches (e.g. Laplacian 

of Gaussian) using zero-crossings in the second derivative (Li et al., 2015). Derivative based edge 

detection is simple but noise-sensitive. Amongst others, Canny detector is justified by many researchers as 

a predominant one, for its better performance and capacity to reduce noise (Crommelinck et al., 2016). 

More recently, a remarkable progress in edge detection is the advances of learning based edge detection, 

which combines multiple low-level image cues into statistical learning algorithms for edge response 

prediction (Li et al., 2015). Globalized probability of boundary (gPb) is considered as one of the state-of-

the-art methods. It involves brightness, colour and texture cues into a globalization framework using 

spectral clustering (Arbeláez et al., 2011). In this research, we also take gPb as a comparison algorithm 

against our proposed method. 

 

In recent years, machine learning based feature detection techniques became the new trend. CNN is a 

remarkable representative. CNNs can learn complex hierarchical features at different layers of the network 

corresponding to different levels of abstraction (Bergado, Persello, & Gevaert, 2016). Traditional CNNs 

are usually made up of two main components, convolutional layers for extracting spatial-contextual 

features and fully connected feedforward networks for learning the classification rule (Bergado et al., 2016). 

In 2015, Long, Shelhamer, and Darrell proposed an fully convolutional network, which is adapted from 

contemporary CNNs. In an FCN architecture, the fully connected layers in traditional CNNs are replaced 

by convolutional layers. This is the reason why it is called fully convolutional networks. As compared to 

CNNs, the superiority of FCNs lies in the ability to perform pixel-wise prediction and accept arbitrary-

sized input.   

 

As mentioned before, FCNs can predict every pixel of the input. This is mostly realized by a downsample-

then-upsample scheme (Persello & Stein, 2017). In most cases, downsampling are first adopted to capture 

large spatial patterns in the image, and then the coarse feature maps extracted through this process are 

connected back to the pixels by upsampling. SegNet is one of the famous representatives among them. It 

consists of an encoder network, a corresponding decoder network and a SoftMax layer (Badrinarayanan, 

Kendall, & Cipolla, 2017). The encoder network is used for feature extraction, including convolutional 

layers and max-pooling. Specifically, the convolutional layers used here is identical to the VGG 16 

network (Simonyan & Zisserman, 2014). The decoder network is used to upsample the low-resolution 

encoder feature map to input-resolution map, including upsampling layers and deconvolutional layers. 

Upsampling layer uses pooling indices of the corresponding encoder max-pooling step, thus no need for 

learning to upsample. SegNet is proved to be efficient in terms of memory and computational time. Figure 

2 shows the structure of SegNet. 
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In 2017, Persello and Stein proposed a novel FCN architecture (called FCN-DKs) using dilated kernels 

(DKs) to enlarge spatial support instead of downsampling. Correspondingly, no upsampling module is 

needed. The output feature map of every layer has the same spatial resolution as input. This proposed 

architecture is simpler and more flexible compared to existing FCNs. Table 1 shows the structure of FCN-

DKs. FCN-DKs achieved very good performance in detecting informal settlements from VHR satellite 

images. Classification result showed that the proposed FCN outperformed state-of-the-art techniques 

such as Support Vector Machine (SVM) and CNNs in terms of accuracy and processing time. Inspired by 

their research, FCN-DKs is finally selected in this research to conduct cadastral boundary detection. 

Modifications are made for FCN-DKs to satisfy the demands of current study. 

 
Table 1: Architecture of FCN-DKs 

Layer Module type dimension dilation stride pad 

 

DK1 

convolution 5×5×4×16 1 1 2 

lReLU     

max-pool 5×5  1 2 

 

DK2 

convolution 5×5×16×32 2 1 4 

lReLU     

max-pool 9×9  1 4 

 

DK3 

convolution 5×5×32×32 3 1 6 

lReLU     

max-pool 13×13  1 6 

 

DK4 

convolution 5×5×32×32 4 1 8 

lReLU     

max-pool 17×17  1 8 

 

DK5 

convolution 5×5×32×32 5 1 10 

lReLU     

max-pool 21×21  1 10 

 

DK6 

convolution 5×5×32×32 6 1 12 

lReLU     

max-pool 25×25  1 12 

classification 
convolution 1×1×32×2 1 1 0 

SoftMax     

 

Figure 2: Architecture of SegNet (source: Badrinarayanan, Kendall and Cipolla, 2017) 
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2.4. Summary 

Core concepts, prior studies and relevant feature detection techniques are reviewed in this chapter. The 

motivation of this research and the applied techniques are justified by basing this study on existing 

scientific literature. The major challenges for imagery-based boundary detection are identified, which are 

the difficulties in detecting urban cadastral boundaries and improving the level of automation as well as 

accuracy. FCN-DKs is determined to be adapted for boundary detection in our research, for its simple 

structure and good performance. We select MRS and gPb as representative image segmentation and edge 

detection algorithms to be compared with the proposed method.  
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3. METHODOLOGY 

3.1. Study area 

For the purpose of the study, two sites within Musanze district, Amajyaruguru province of Rwanda, 

representing urban setting and sub-urban setting respectively, were selected as case-study location. The 

selection is based on the availability of UAV images and the morphology of cadastral boundaries. The 

urban site is located in Muhoza sector and the sub-urban site is in Busogo sector. Figure 3 gives an overall 

view of the study area as well as the UAV images. 

Figure 3: Study area (Busogo and Muhoza) and UAV images. Five tiles in each site (green frames) are selected to feed FCN. 
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In 1962, land ownership in Rwanda had changed from customary law to a system of state ownership. In 

2005, a new policy was accepted called Organic Land Law (OLL) with the aim to improve land tenure 

security. Rwanda is one of the countries which first tested the FFP approach. Since 2008, the country has 

been fully covered by aerial images acquired and processed by a Dutch company (Maurice, Koeva, Gerke, 

Nex, & Gevaert, 2015). Even compromising with accuracy, Rwanda generated its national cadastral map 

based on these aerial images using participatory mapping approach. However, due to the continuously 

changing environment, the data is currently outdated. New technologies supporting cheap, efficient and 

fit-for-purpose accurate cadastral mapping will largely facilitate the data updating practices in Rwanda. 

Therefore, the selection of the study area has been led by the impending local demand for data update.   

3.2. Overall methodology 

 

Figure 4: Overall methodology.  
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The flowchart above shows the overall methodology of this research, including three major parts, data 

preparation, boundary detection and accuracy evaluation, corresponding to the three research objectives. 

Boundary references are prepared with a 0.4-meter tolerance in the first part. In the second part, 

fragmented boundaries generated by FCN and connected boundaries produced by FCN-OWT-UCM are 

obtained in sequence. In this part, a systematic hyper-parameter tuning is conducted to get an optimal 

FCN, as well as a threshold tuning to find out the best threshold for UCM. In line with ISO standard, 

precision-recall framework is used for absolute accuracy evaluation in part three. We also compare the 

results of FCN and FCN-OWT-UCM with gPb-OWT-UCM and MRS as relative accuracy evaluation. 

3.3. Data preparation 

The UAV images used in this research were acquired for the its4land1 project in Rwanda in 2018. All data 

collection flights were carried out by Charis UAS Ltd. These images have three bands (RGB). The spatial 

resolution was resampled from 0.02 m to 0.1 m considering of the balance between accuracy and 

computational time. Five tiles of 2000×2000 pixels were selected from each study site for the experimental 

analysis. Among them, three tiles were used for training (named TR1, TR2, TR3) and two for testing 

(named TS4, TS5) the algorithm (Figure 5&6).  

 

For each tile, RGB layers and boundary reference were prepared as input for the classification task. The 

reference data was acquired by merging 2008 national cadastre and Rwandan experts’ digitization. The 

2008 national cadastre is outdated currently, hence experts’ digitization is provided as supplements. This 

acquired reference was presented as polygons in a shapefile format showing the land parcels. However, to 

feed the FCN, the boundary reference has to be in a raster format with the same spatial resolution as RGB 

layers. Therefore, a series of transformation needs to be conducted. We first converted the polygons into 

lines of the boundaries. Rather than rasterizing the boundary lines directly, we built a 0.4 m buffer for the 

boundaries before rasterization. As a result, the boundary class in the reference dataset has a equal 

thickness of 8 pixels corresponding to 0.8 m ground sampling distance (GSD). Figure 5 and Figure 6 

visualize the RGB layers and boundary reference for the selected tiles in Busogo and Muhoza. 

 

We use the buffer with a uniform width of 0.4 m because the thickness of the boundary class directly 

affects the detection results. If the width of boundary class is only one single pixel, any slight displacement 

in detection will be regarded as a wrong detection. Therefore, a certain tolerance is often used in cadastral 

mapping. According to International Association of Assessing Officers (IAAO, 2015), the horizontal 

spatial accuracy for cadastral maps in urban environment is usually 0.3 meters or less, and in rural areas an 

accuracy of 2.4 meters is sufficient. Nevertheless, FFP approach advocates the flexibility in terms of 

accuracy to best accommodate social needs (Enemark et al., 2016). Complying with FFP land 

administration, we choose a 0.4-metre tolerance for urban and peri-urban environments in this research. 

When adopting for other applications, this number can be adjusted correspondingly and according to the 

demands.  

 

 

 

 

 

 

 

 

                                                   
1 https://its4land.com/ 
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Figure 5: The UAV images and boundary reference (yellow lines) for selected tiles in Busogo. 

Figure 6: The UAV images and boundary reference (yellow lines) for selected tiles in Muhoza. 
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3.4. Automation process 

3.4.1. FCN for boundary detection 

The FCN used in this research is modified from the architecture of FCN-DKs as described in the paper 

of Persello and Stein (2017). Figure 7 shows the architecture of the proposed FCN. It consists of 15 

convolutional layers interleaved by batch normalization and Leaky Rectified Linear Units (Leaky ReLU). 

The classification is performed by the final SoftMax layer.  

The core components of our network are the convolutional layers. Each convolutional layer consists of a 

bank of filters containing learnable weights and a bias term (Figure 8). The filter bank can be defined by a 

4-D array H×W×D×K, in which H, W and D namely represent the height, width and depth of one filter, 

and K is the number of filters. Among them, H, W and K are manual defined hyper-parameters, while D 

equals the number of channels of input image. Additional hyper-parameters for the convolutional layer are 

stride (S) and zero-padding (P). The stride is the interval by which we move the filters, and zero-padding 

refers to adding zeros surrounding the margins of input image before convolution. Given an input image 

of M×N×D, the size of output image can be expressed as following:  

𝑀′ × 𝑁 ′ × 𝐾 = (
𝑀 − 𝐻 + 2𝑃

𝑆
+ 1) × (

𝑁 − 𝑊 + 2𝑃

𝑆
+ 1) × 𝐾                      (4.1) 

In this research, we use dilated convolution, which can capture larger receptive field without 

downsampling the image. This is realized by dilated kernels (DKs), which are obtained by inserting zeros 

between original filter elements. A dilation factor d means inserting d-1 zeros between each filter element. 

The size of the dilated kernel then becomes 𝐻′ × 𝑊′ = [𝑑(𝐻 − 1) + 1] × [𝑑(𝑊 − 1) + 1] . Therefore, the 

receptive field can be expanded exponentially without increasing the number of learnable parameters. In 

Figure 7: Architecture of the proposed FCN. 

Figure 8: Convolution of an input image with a filter bank (source: Persello & Stein, 2017). 
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our network, we use 3×3 kernels in the convolutional layers which are dilated increasingly from 1 to 15 to 

capture larger and larger contextual information. As a result, a receptive field of up to 241×241 pixels is 

achieved in the final layer. In each convolutional layer, zero paddings are used to keep the output feature 

maps at the same spatial dimension as the input. Therefore, the proposed FCN can be used to classify 

arbitrarily sized images directly and obtain correspondingly-sized outputs.  

 

Batch normalization layer is used to normalize each input mini-batch. During a regular training process, 

the inputs to each layer are cumulatively calculated by all preceding layers. The small changes in network 

parameters will be magnified in deeper layers. Therefore, the distribution of each layer’s input to a learning 

system changes as parameters of previous layers change. This phenomenon is called internal covariate 

shift and often requires lower learning rate and strict parameter initialization (Ioffe & Szegedy, 2015). Ioffe 

and Szegedy (2015) solved this problem by building batch normalization layer as part of the model 

architecture to normalize inputs of each layer. We took the advantage of their research and introduced 

batch normalization layer in our network. 

 

Leaky ReLU is the activation function of the network. Generally speaking, the activation function is a 

transfer function which is added to the output of every layer. ReLU is considered as the most commonly 

applied activation function. It returns the value of zero given a negative input, and returns itself if the 

input is positive. Therefore, the function of ReLU can be written as 𝑓(𝑦) = 𝑚𝑎𝑥 (0, 𝑦) . However, this 

function suffers from the so called ‘dying ReLU’ problem. For negative values, the correspondent 

activations are 0 with constant 0 gradients, hence the weights are unable to be adjusted through gradient 

descent in backpropagation. Leaky ReLU fixes the problem by giving a small, non-zero gradient to 

negative values instead of hard-zero (He, Zhang, Ren, & Sun, 2015). The function of Leaky ReLU can be 

expressed as: 

𝑓(𝑦) = {
𝑎𝑦, 𝑦 < 0

𝑦, 𝑦 ≥ 0
                                                                 (4.2)     

Figure 9 shows the function curves of ReLU and Leaky ReLU. The latter is used in our proposed FCN. 

After constructing the framework of the FCN, hyper-parameters need to be defined. We designed a 

systematic tuning process to find out the optimal values for filter size, patch size, network depth, and the 

number of training patches. We chose one of our study areas, Muhoza, as a representative to carry out 

fine-tuning. The training and validation patches were generated from TR1, TR2 and TR3. TS4 and TS5 

were used for testing the network performance. The hyper-parameters achieved the best classification 

result were selected for final implementation in both study sites. The results for parameter-tuning are 

stated in chapter 4. 

Figure 9: The function curves of ReLU (left) and Leaky ReLU (right) (source: He et al., 2015). 
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3.4.2. Obtaining connected boundaries 

FCN is trained for binary classification to distinguish between cadastral boundaries and rest on the UAV 

data set. Fragmented boundaries are obtained after this step. To further improve this result, the output 

feature map is then used to connect disjoint boundaries by applying Oriented Watershed Transform 

(OWT) (Arbeláez et al., 2011). The output feature map of FCN is a probability map showing the 

probability of each pixel being a boundary. Using the watershed transform (WT), the probability map can 

be converted into regions and arcs. These arcs are the potential locations of the boundaries, and the 

boundary strength of each arc is calculated by the average probability of all the pixels on the arc. One 

problem here is the probability of each pixel being a boundary varies at different orientation and the 

largest probability is finally assigned to each pixel as its boundary strength. Therefore, some weak arcs 

could be affected by its neighbouring strong arcs and end up with strong strength, as those intersecting 

pixels used its largest probability. OWT fixed this problem by calculating the probability of each pixel at 

the orientation of the arc. Therefore, the upweighted arcs could be corrected.  

 

OWT supplies a set of closed regions surrounded by arcs with finest partition. A hierarchy of these 

regions can be built by the Ultrametric Contour Map (UCM) (Arbeláez et al., 2011). The hierarchy is 

constructed based on a graph-based region merging technique, whose merging criteria is the dissimilarity 

between regions. The average boundary strength of the common arcs separating two adjacent regions is 

regarded as the dissimilarity index. By thresholding the dissimilarity index at different scale, the most 

similar regions are merged iteratively, representing from over-segmentation to under-segmentation in the 

image.  

 

OWT-UCM is a generic algorithm in computer vision to construct hierarchical regions from segmented 

contours (Arbeláez et al., 2011). As is presented in the flowchart of overall methodology (Figure 4), we 

adopt this technique in our research as a supplement to automatically connect the fragmented boundaries 

produced by FCN. We name the proposed method combining deep learning and computer vision 

techniques as FCN-OWT-UCM. The final boundaries are derived by thresholding the UCM. Only those 

arcs with a boundary strength larger than the threshold are kept. 

3.5. Alternative approaches 

3.5.1. Globalized probability of boundary (gPb) 

Globalized probability of boundary (gPb) is proposed by Arbeláez et al. in 2011. gPb (global Pb) is a linear 

combination of mPb (multiscale Pb) and sPb (spectral Pb). The former conveys local multiscale Pb signals 

and the later introduces global information.  

 

Multiscale Pb is an extension of the Pb detector advanced by Martin, Fowlkes and Malik (2004). The core 

block of Pb detector is calculating the oriented gradient signal 𝐺(𝑥, 𝑦, 𝜃) from the intensity images. By 

placing a circular disc at pixel location (𝑥, 𝑦) and dividing it into two half-discs at angle 𝜃, we can obtain 

two histograms of pixel intensity values within each half-disc. 𝐺(𝑥, 𝑦, 𝜃)  is defined by the 𝜒2  distance 

between the two histograms. For each input image, the Pb detector divides it into four intensity images, 

including brightness, colour a, colour b and texture channel. The oriented gradient signals are calculated 

separately for each channel. Multiscale Pb modifies the Pb detector by considering the gradients at three 

different scales, which means we give the discs three different diameters. Therefore, we can obtain local 

cues at different scales, from fine to coarse structures. For each pixel, the final mPb is obtained by 

combining the gradients of brightness, colour a, colour b and texture channel on three scales.  
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Spectral Pb combines the multiscale image cues into an affinity matrix which defines the similarity 

between pixels. The eigenvectors of the affinity matrix which carry contour information are computed. 

They are treated as an image and convolved with Gaussian directional derivative filters. The sPb is 

calculated by combing the information from different eigenvectors.  

 

Generally speaking, mPb detects all the edges while sPb extracts only the most salient one from the whole 

image (Arbeláez et al., 2011). gPb combines the two and provides uniformly better performance. After 

detecting the boundary probability of each pixel using gPb, we also applied OWT-UCM to the results to 

get connected contours. The workflow of gPb-OWT-UCM was implemented to all the testing tiles. A 

uniform width of 8 pixels was assigned to the detected boundary class using morphological dilation to be 

consistent with FCN. Accuracy assessment followed the same precision-recall framework. 

3.5.2. Multiresolution segmentation (MRS) 

We conducted MRS in eCognition software (version 9.4). MRS is region-merging technique starting from 

each pixel forming one image object or region (Baatz & Schäpe, 2000). The merging criteria is local 

homogeneity, which describes the similarity between adjacent image objects. The merging procedure stops 

when all the possible merges exceed the homogeneity criteria.  

 

MRS relies on several parameters, which are image layer weights, scale parameter (SP), shape and 

compactness. Image layer weights define the importance of each image layer to segmentation process. In 

this research, we had RGB three layers in the input image. We gave them equal weights. Scale parameter is 

the most important parameter, which controls the average image object size (L. Drǎguţ et al., 2014). A 

larger scale parameter allows higher spectral heterogeneity within the image objects, hence allowing more 

pixels within one object. Defining the proper SP is critical for MRS. In our research, we selected the SP 

resorting to the automatic Estimation of Scale Parameters 2 (ESP2) tool, which was advanced by L. Drǎ

guţ et al. (2014). Shape parameter ranges from 0 to 1. It indicates a weighting between the object’s shape 

and its spectral colour. A high value in shape parameter means less importance is put on spectral 

information. We set a shape parameter of 0.3 in our research. Compactness defines how compact are the 

segmented objects. The higher the value, the more compact the image objects may be. It was set to 0.5 in 

the research.  

 

We conducted MRS to all the testing tiles and exported the output as smoothed polygons. We converted 

the polygons into lines in ArcGIS, giving it a 0.4 m buffer followed by a rasterization. The rasterized 

boundary class had 8 pixels and was compared with reference data using precision-recall measures.  

3.6. Accuracy assessment 

Describing the data quality in a commonly accepted way is essential for judging whether the data fulfils 

users’ requirements or in comparison with other data set. The International Organization for 

Standardization (ISO 19157, 2013) provided a guideline for evaluating geographic data quality. They 

defined the commonly used data quality measures, including completeness, thematic accuracy, logical 

consistency, positional accuracy and temporal accuracy. Among them, completeness and thematic 

accuracy is emphasized in our research. The former is related to the presence or absence of features and 

the latter is about the consistency between detected boundaries and the reference data.  

 

The results in this research are evaluated considering the classification accuracy on the testing tiles. The 

accuracy assessment resorted to precision-recall measures, which are a standard evaluation technique 

especially for boundary detection (Martin et al., 2004). Precision (P), also called correctness, measures the 

ratio of correctly detected boundary pixels to the total detected boundary pixels. Recall (R), also called 
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completeness, indicates the percentage of correctly detected boundaries to the total boundaries in 

reference. The F-measure (F) represents the harmonic mean between precision and recall (Hossin & 

Sulaiman, 2015). As F combines both precision and recall, it can be regraded as an overall quality measure. 

The range of these three measures is between 0 and 1. Larger values represent higher accuracy.   

 

With the following table and formulas, how to calculate precision, recall and F-score is indicated. Pixels 

labelled as boundary class in both detection and reference are called True Positive (TP), while pixels 

labelled as boundary in detection but non-boundary in reference are called False Positive (FP). The term 

of False Negative (FN) and True Negative (TN) are defined similarly (Table 2). As described in section 3.3, 

the boundary class has a uniform width of 8 pixels. By overlaying the detection result with boundary 

reference, we can get the value of TP, FP, TN and FN, hence obtaining the value of precision, recall and 

F-score accordingly (Formula 4.3, 4.4 and 4.5).  

  
Table 2: Confusion matrix for binary classification 

 Positive Prediction Negative Prediction 

Positive Class True Positive (TP) False Negative (FN) 

Negative Class False Positive (FP) True Negative (TN) 

 

P =  
TP

TP + FP
                                                                     (4.3) 

R =  
TP

TP + FN
                                                                    (4.4) 

F =  
2 × P × R

P + R
                                                                  (4.5) 

3.7. Summary 

This chapter describes the methods to achieve the research objectives in detail. Two study sites, Busogo 

and Muhoza of Rwanda are selected as representatives of sub-urban and urban settings for our research. 

The reference data is obtained by merging 2008 national cadastre and experts’ digitization. A 0.4-metre 

tolerance is assigned for the reference. A workflow of FCN-OWT-UCM is designed to obtain connected 

boundaries. This workflow is compared against state-of-the-art techniques, gPb-OWT-UCM and MRS, on 

the testing tiles. The accuracy assessment goes to precision-recall measurement. Precision is a measure of 

correctness, corresponds to thematic accuracy in ISO 19157, while recall parallels completeness in the 

international standard. F is an overall measurement combining the two. 
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4. RESULTS AND ANALYSIS 

4.1. Hyper-parameter optimization 

The strategy used for hyper-parameter optimization is varying a single hyper-parameter while keeping the 

rest fixed. Muhoza is used as a representative to carry out fine-tuning. The training patches are randomly 

extracted from the three training tiles in Muhoza, and the average F-score of TS4 and TS5 is used to 

identify the optimal hyper-parameter. 

 

Table 3 gives an overall view for the results of hyper-parameter tuning. The record of conducted tuning 

experiments are listed in Table 4. We searched the optimal value for filter size, patch size, the number of 

training patches, and network depth sequentially. Once we determine a hyper-parameter, this value will be 

fixed and applied in the following experiments. Stochastic gradient descent with a momentum of 0.9 was 

used to optimize the loss function. The training is performed in multiple stages using different learning 

rate. We use a learning rate of 10−5 for the first 180 epochs and a learning rate of 10−6 for another 20 

epochs. The implementation of the network is based on the MatConvNet library. 

 
Table 3: Results for hyper-parameter tuning 

Hyper-parameter Candidate Value Optimal Value 

Filter size 3×3, 5×5 3×3 

Patch size  45, 85, 145, 245 245 

Patch No. 900, 1500, 2100 900 

Network depth 6, 10, 15 15 

 
Table 4: Records of conducted tuning experiments 

Experiment 

No. 

Filter 

Size 

Network 

Depth 

Patch 

Size 

Patch 

No. 

Average 

F-score 

1 5×5 3 45 900 0.25 

2 3×3 6 45 900 0.34 

3 3×3 6 85 900 0.38 

4 3×3 6 145 900 0.41 

5 3×3 6 245 900 0.42 

6 3×3 6 245 1500 0.4 

7 3×3 6 245 2100 0.41 

8 3×3 10 245 900 0.43 

9 3×3 15 245 900 0.46 

4.1.1. Filter size 

Experiment 1 and 2 were used to find out optimal filter size between 5×5 and 3×3. As the receptive field 

of two layers of 3×3 filters equals to one layer of 5×5 filter, we replaced each 5×5 convolution in 

experiment 1 into two layers of 3×3 convolution in experiment 2. Therefore, by comparing the result of 

experiment 1 and 2, the optimal filter size could be decided. With a higher average F-score, 3×3 filter 

outperformed 5×5 filter and was used in later experiments. 
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4.1.2. Patch size 

The most appropriate patch size was searched by comparing experiment 2, 3, 4 and 5. In these 

experiments, the patch size varied from 45, 85, 145 to 245 while other hyper-parameters were kept stable. 

The average F-score climbed from 0.34 to 0.42 in these experiments. From Figure 10, we could notice the 

ascending trend of F-score by increasing patch size, and this trend is becoming mild in the later stage, 

closing to a saturation. The best F-score was achieved by 245×245. Therefore, patch size 245×245 was 

fixed as our optimal patch size.  

4.1.3. The number of training patches 

In experiment 5, 6, and 7, the effect of different number of training patches to accuracy were tested. The 

result is quite surprising because increasing the patch number from 900 to 1500 or 2100 led to a drop in 

average F-score. This contradicts the expectation that larger amount of training patches would improve 

the accuracy. Following the experimental results, 900 training patches are used to train the network. 

 

 

 

Figure 11: Average F-score of TS4 and TS5 in Muhoza with number of training patches. 

Figure 10: Average F-score of TS4 and TS5 in Muhoza with different patch size. 
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4.1.4. Network depth 

Experiment 5, 8 and 9 used the same filter size, patch size and patch number but different network depth. 

They were compared to identify the optimal network depth. According to Figure 12, larger F-score was 

obtained with deeper network. A network depth of 15 convolutional layers is employed for the final 

implementation. 

4.2. Threshold tuning 

As mentioned in section 3.4.2, the real-valued image of a UCM is obtained by setting a certain threshold. 

FCN-OWT-UCM results in different contours with different thresholds. Therefore, we test every tile for 

20 thresholds by increasing its value from 0 to 1 with an interval of 0.05. The optimal result with the 

highest F-score is taken as the final result of FCN-OWT-UCM, and the corresponding threshold is 

designated. The experimental results of threshold tuning for the testing tiles are shown in Figure 13. 

According to the result, in Busogo, the optimal performance was achieved with a threshold of 0.9 for TS4 

and 0.8 for TS5; while in Muhoza, the best threshold for TS4 and TS5 is 0.6 and 0.65 respectively. 

Interestingly, a common trend could be witnessed for these testing tiles in Figure 13. In the early stages of 

Figure 12: Average F-score of TS4 and TS5 in Muhoza with different network depth. 

Figure 13: Threshold tuning result for the resting tiles in Busogo and Muhoza. 
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threshold tuning, the F-score is ascending steadily. When the threshold kept increasing from around 0.3, 

the F-score remains relatively stable. The effect of changing threshold to F-score is not so obvious from 

that point onwards. 

 

Figure 14 visualizes the output boundary map under different thresholds, taking TS5 of Muhoza as an 

example. By varying the threshold from 0.05, 0.25, 0.65 to 0.95, the boundary pixels in the output map is 

decreasing continuously. The output map with a threshold of 0.05 is rather messed up. In contrast, a 

threshold of 0.95 generates a very clean output showing only the strongest boundaries. Stuck in the middle, 

a threshold of 0.65 derives the optimal result. 

 

 

 

 

Figure 14: The output boundary map of TS5 in Muhoza using different thresholds. The thresholds for (a), 
(b), (c), (d) are namely 0.05, 0.25, 0.65, 0.95. 
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4.3. Final implementation on both study sites 

The experimental results include two parts, fragmented boundaries generated by FCN and connected 

boundaries produced by FCN-OWT-UCM. The proposed method is implemented on both study sites, 

Busogo and Muhoza, to test its generalization ability. As mentioned in chapter 3, the performance of the 

proposed method is evaluated based on the testing tiles using precision-recall framework. Two testing tiles 

on each site are selected, in order to obtain an unbiased estimation. The visual and numerical results of the 

testing tiles are demonstrated in the following figures and tables. To see the results of the training tiles 

please refer to the appendix 1.  

 
 Table 5: Precision, recall, and F-score for testing tiles using FCN and FCN-OWT-UCM in Busogo. 

Method Tile P R F 

FCN 
TS4 

0.54 0.34 0.42 

FCN-OWT-UCM 0.44 0.41 0.42 

FCN 
TS5 

0.62 0.35 0.45 

FCN-OWT-UCM 0.46 0.45 0.45 

 
Table 6: Precision, recall, and F-score for testing tiles using FCN and FCN-OWT-UCM in Muhoza. 

Method Tile P R F 

FCN 
TS4 

0.61 0.38 0.47 

FCN-OWT-UCM 0.45 0.54 0.49 

FCN 
TS5 

0.66 0.33 0.44 

FCN-OWT-UCM 0.48 0.50 0.49 

 

Table 5 presents the classification accuracy of Busogo. The classification result of FCN in TS4 gets 0.54 in 

precision, which means the ratio of true boundaries to the total detected boundaries is 54%. The value of 

recall is 0.34, indicating 34% of cadastral boundaries among all the boundaries in reference are detected. 

Other results from Table 5 and Table 6 could be comprehended in the same way. Similarly, in TS5, 35% 

of cadastral boundaries are detected by FCN, and the correctness of detection is 62%. TS4 has an F-score 

of 0.42 and TS5 has an F-score of 0.45. FCN-OWT-UCM achieved different precision and recall as FCN, 

while they ended up with the same F-score in both tiles. 

  

Table 6 shows the classification result of Muhoza. In TS4, a precision (or correctness) of 0.61, a recall (or 

completeness) of 0.38 and a F-score of 0.47 are achieved by FCN. And there is a slight increase in F-score 

after applying FCN-OWT-UCM, raising to 0.49. Similar trend can also be witnessed in TS5. From FCN to 

FCN-OWT-UCM, the F-score increased from 0.44 to 0.49.  

  

The average results of two testing tiles in each study area using FCN and FCN-OUT-UCM are calculated 

respectively, to compare the results of the two study sites as well as the performance of FCN and FCN-

OWT-UCM. These results are visualized in Figure 15 and Figure 16. Comparing these two figures, the 

results of both FCN and FCN-OWT-UCM in all the metrics get a higher value in Muhoza than in Busogo. 

Moreover, in both figures, FCN-OWT-UCM manifests lower precision and higher recall than FCN. In 

Busogo, FCN-OUT-UCM has the same F-score as FCN, whereas in Muhoza, FCN-OWT-UCM 

outperforms FCN.  
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The output feature maps of FCN are presented in Figure 17. As explained in section 3.4.2, the feature 

map is a probability map showing the probabilities of each pixel being a boundary, and is used as input for 

generating connected boundaries by applying OWT-UCM. The feature maps displayed in Figure 17 are 

polarized with the majority of the pixels showing a very high (yellow pixels in the image) or very low (dark 

blue pixels in the image) boundary probability. Only a few pixels possessing moderate boundary 

probability (light blue pixels). 

 

Figure 18 and 19 visualize the final output maps of FCN and FCN-OWT-UCM. Comparing with Figure 

17, the feature maps of FCN are very close to the final output of FCN. Both FCN and FCN-OWT-UCM 

delineates very clean and clear boundaries. Although building outlines correspond to strong edges, they 

are not confused by the FCN with cadastral boundaries. However, there are still several missing fragments 

of the boundaries. These missing boundaries are mainly invisible boundaries. Besides, some boundaries 

marked by roads or building walls are also not detected by FCN. In general, most detected boundaries 

coincide with fences and hedges. FCN-OWT-UCM closed some land parcels correctly, but also brought in 

some false detections.   

 

 

 

 

 

Figure 15: Average results of two testing tiles using FCN and FCN-OWT-UCM in Muhoza. 

Figure 16: Average results of two testing tiles using FCN and FCN-OWT-UCM in Busogo. 
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Figure 17: Output feature maps of FCN. (a), (b) are the feature maps of TS4 and TS5 in Busogo; (c), (d) are the 
feature maps of TS4 and TS5 in Muhoza. 
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Figure 18: Results of TS4 (a, c, e) and TS5 (b, d, f) in Busogo. (a, b) are boundary references; (c, d) are 
classified maps of FCN; (e, f) are classified maps of FCN-OWT-UCM. 
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Figure 19: Results of TS4 (a, c, e) and TS5 (b, d, f) in Muhoza. (a, b) are boundary references; (c, d) are 
classified maps of FCN; (e, f) are classified maps of FCN-OWT-UCM. 
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4.4. Alternative approaches 

4.4.1. Globalized probability of boundary (gPb) 

As mentioned in section 3.5.1, the output of gPb is a boundary probability map. We used OWT-UCM to 

convert the boundary probability map into hierarchical regions. The closed contours of these regions can 

be regarded as the detected cadastral boundaries. The optimal threshold for UCM was tuned 20 times for 

each tile following the same method as described in section 4.2. The records of threshold tuning are 

attached in appendix 2. To make a fair comparison with other methods, we dilated the width of output 

boundary class from one pixel to 8 pixels using morphological dilation, which equals the width of 

boundary class in reference. Figure 20 and Figure 21 shows the output of gPb-OWT-UCM on the testing 

tiles of Busogo and Muhoza. Accuracy assessment results of these tiles are presented in table 7, using 

precision-recall measures. 

Figure 20: The detected boundaries of TS4 (c) and TS5 (d) in Busogo using gPb-OWT-UCM. (a, b) are 
boundary references. The threshold of UCM is 0.15 in both (c) and (d). 
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Table 7: Precision, recall and F-score for testing tiles in Busogo and Muhoza using gPb-OWT-UCM. 

Location Tile P R F 

Busogo 
TS4 0.20 0.55 0.30 

TS5 0.22 0.68 0.33 

Muhoza 
TS4 0.18 0.41 0.25 

TS5 0.13 0.51 0.21 

 

 

 

 

 

Figure 21: The detected boundaries of TS4 (c) and TS5 (d) in Muhoza using gPb-OWT-UCM. (a, b) are 
boundary references. The threshold of UCM is 0.3 in (c) and 0.1 in (d). 
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From table 7, gPb-OWT-UCM obtained an average F-score of 0.32 in Busogo and 0.23 in Muhoza. The 

performance of gPb detector is better in Busogo than in Muhoza. Moreover, the results of gPb detector in 

both study sites held a relatively high value in recall but low in precision. Associated with figures above, 

gPb shows a very strong ability in contour detection. Almost all the contours in the images were detected 

by gPb, including fences, building outlines and even roads which were not well detected by FCN. 

However, not all the contours are cadastral boundaries. gPb detector lacks the ability to abstract cadastral 

boundaries from the detected contours. Therefore, it obtained a high recall but very low precision, 

resulting in a relatively poor F-score. 

4.4.2. Multiresolution segmentation (MRS) 

As stated in section 3.5.2, the key control of MRS is the scale parameter (SP). We applied the ESP2 tool to 

identify the proper SP. It produces fully automated three-scale level segmentations based on the local 

variance. The authors claimed that image objects of different sizes are best presented at different scales, 

hence multi-scale segmentation is more suitable than single-scale to model image objects in a scene (L. Dr

ǎguţ et al., 2014). This tool extracts 3 scale levels, representing from finest to coarser segmentation. Each 

scale parameter can be generated independently, based on the pixel level, or within a hierarchy, where a 

parent-child relationship exists between the levels. In our research, we selected the non-hierarchy version 

to capture cadastral parcels based on pixel level, as the intraclass variance is relatively large.  

Table 8: MRS results on scale level 2 and level 3 for all the testing tiles in Busogo and Muhoza. For each tile, the level 
marked by red colour is the finally selected scale level for MRS. 

Location Tile Level SP P R F 

Busogo 

TS4 
2 111 0.12 0.51 0.19 

3 301 0.14 0.32 0.20 

TS5 
2 151 0.16 0.55 0.24 

3 401 0.19 0.39 0.25 

Muhoza 

TS4 
2 251 0.18 0.54 0.27 

3 801 0.15 0.19 0.17 

TS5 
2 211 0.22 0.66 0.33 

3 1201 0.27 0.12 0.17 

 

 

 

Figure 22: The three-scale segmentations produced by ESP2 on TS4 in Busogo. (a) is level 1 with a SP of 59; (b) is 
level 2 with a SP of 111; (c) is level 3 with a SP of 301. 
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Figure 22 presents the three scale levels produced by ESP2 on TS4 in Busogo. The scale parameter for 

each level are selected automatically by ESP2. Level 1 is the finest segmentation, where the image objects 

are too small as compared to cadastral parcels. Therefore, for each testing tile, we selected level 2 and level 

3 for accuracy assessment, using the scale with highest accuracy as the final segmentation. Table 8 shows 

results of accuracy assessment on all the testing tiles. According to table 8, we selected the segmentation 

of level 3 for TS4 and TS5 in Busogo, and level 2 for TS4 and TS5 in Muhoza. The selection was based on 

a higher F-score. Numerical results indicated that MRS had better performance in Muhoza than in Busogo. 

The former achieved an average F-score of 0.3, and 0.23 for the latter. Similar to gPb detector, MRS had 

high recall value while low precision value. The final results of MRS are visualized in Figure 23 and Figure 

24. As in the case of gPb detector, buildings remain an obstruction for MRS to detect homogeneous 

cadastral parcels. 

 

Figure 23: Results for MRS on TS4 (c) and TS5 (d) in Busogo. (a, b) are boundary references. The value of SP 
is 301 in (c) and 401 in (d). 
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4.5. Performance comparison 

To get an unbiased assessment, we evaluate the performance of each method based on the average score 

of the two testing tiles in each study site. The results are displayed in Figure 25 and Figure 26. FCN-OWT-

UCM held the highest F-score in both study sites, closely followed by FCN. gPb-OWT-UCM and MRS 

took the third and fourth place in Busogo, whereas in Muhoza, their ranking was reversed. In both study 

sites, FCN outperformed other algorithms in terms of precision. The highest recall was achieved by gPb-

OWT-UCM in Busogo and MRS in Muhoza. However, these two algorithms had very poor performance 

in terms of precision. FCN-OWT-UCM had a relatively balanced precision and recall, leading to the best 

overall performance. 

 

Figure 24: Results for MRS on TS4 (c) and TS5 (d) in Muhoza. (a, b) are boundary references. The value of 
SP is 251 in (c) and 211 in (d). 
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4.6. Summary  

In this chapter, the results for hyper-parameter tuning, threshold tuning and the final implementation are 

thoroughly presented and described. The final implementation is conducted using 15 layers of 3×3 filter 

with increasing dilation factor from 1 to 15. 900 training patches (300 from each training tile) with patch 

dimension 245×245 are used to train the FCN. Final outputs of FCN-OWT-UCM is obtained by 

thresholding the Ultrametric Contour Map 20 times to select the optimal result. We present the results of 

the final implementation in two parts, fragmented boundaries of FCN and connected boundaries of FCN-

OWT-UCM. These results are then compared with gPb-OWT-UCM and MRS. From the results, we have 

the following findings: 

a) The detection results of Muhoza is better than Busogo using the proposed method.  

b) FCN-OWT-UCM can obtain slightly better or at least equal results as FCN.  

c) The output feature maps of FCN are polarized and visually similar to the final output of FCN. 

Figure 25: The performance of FCN, FCN-OWT-UCM, gPb-OWT-UCM and MRS in Busogo. 

Figure 26: The performance of FCN, FCN-OWT-UCM, gPb-OWT-UCM and MRS in Muhoza. 
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d) Most detected boundaries of FCN coincide with fences or hedges. 

e) FCN-OWT-UCM can connect the fragmented boundaries but also introduces false prediction. 

f) gPb-OWT-UCM and MRS can obtain better recall than FCN and FCN-OWT-UCM, but they have 

very poor performance in precision. As a result, FCN and FCN-OWT-UCM achieve the best overall 

performance in cadastral boundary detection.  
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5. DISCUSSION 

Considering the constraints of the invisible cadastral boundaries, land administration professionals 

perceived that a 40 to 50 percent of automatic delineation would be very significant in reducing time and 

labour involved in cadastral mapping practices (Wassie et al., 2018). This goal is reached by the proposed 

method with a 0.4-metre tolerance in both Busogo and Muhoza, indicating good generalization and 

transferability of the proposed approach in cadastral boundary mapping.  

 

We tested the effects of different hyper-parameters of FCN to classification accuracy as a starting point 

for boundary detection. Experiments on filter size showed that two 3×3 filters performed better than one 

5×5 filter. With the same receptive field, two 3×3 filters have only 18 parameters while one 5×5 filter has 

25 parameters. What’s more, compared to single larger-sized filter, multiple small filters are interleaved by 

activation functions, resulting in better abstraction ability. Therefore, with less learnable parameters and 

better feature abstraction ability, smaller filters are preferred.  

 

Experiments on patch size demonstrated a first increase then closing to saturation trend. Larger patch size 

stands for lager contextual information, which explains for the ascending trend. However, with the 

limitation of the receptive field, when the patch size is increased further, far beyond the receptive field, the 

contextual information is saturated to the network. 

 

We also studied the effects of training sample size, however we obtained surprising result. Generally 

speaking, large training samples would improve the performance as well as generalization ability of FCN. 

However, in our experiments, increasing the number of training patches led to a slight decrease in 

accuracy. Considering the fact that we use very large patch size with dimension 245×245, and the size of 

the training tiles is 2000×2000. With 16 unoverlapped patches, we can cover the whole image. In our 

experiment, we randomly extracted 300 patches from each training tile (900 in total). There were already 

many overlapped areas. Further increasing the number of training samples does not necessarily add in new 

information. Therefore, increasing training samples did not improve the accuracy in our context. 

 

We used a network depth of 15 convolutional layers. Deeper network corresponds to larger receptive field 

and higher level of abstraction. Hierarchical features could be learnt through different layers of the 

network. Furthermore, we used an increasing dilated factor in each convolutional layer, a final receptive 

field of 241×241 was achieved. With a deep network, larger areas in the images could be scanned by the 

network, which means larger patterns could be extracted. 

 

After setting the proper hyper-parameters for FCN, the thresholds for UCM were also tuned. In this 

research, we tested 20 thresholds for UCM and selected the optimal result by validating with reference. 

However, in real classification tasks, there is no reference data available. We can only decide the threshold 

via visual perception. According to the experimental results, by increasing the thresholds, the F-score 

increases first and tends to be stable with slight fluctuation after a certain point. Therefore, in real 

practices, although influenced by human subjectivity, threshold selection will not largely affect the output. 

 

In the final implementation, results showing that the true positive detected by FCN are mainly fences and 

hedges. This can explain why the classification result in Muhoza is slightly better than Busogo, considering 

the fact Muhoza has denser buildings and fences. The output of FCN-OWT-UCM is only a slightly better 

or even equal to FCN. This is related to the output feature map of FCN, which is the input for OWT-

UCM. The feature map is polarized with mainly strong boundaries or non-boundaries. Very few weak 
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boundaries with moderate boundary probability exist in the feature map. Therefore, there are not so many 

cues for OWT to connect the fragmented boundaries correctly, resulting in just very little improvement.  

 

Compared with alternative edge detection and image segmentation approaches, FCN and FCN-OWT-

UCM achieved better overall performance. Lacking abstraction ability, standard edge detection and image 

segmentation cannot fill the semantic gap between high-level cadastral boundary concept and low-level 

image features. As a result, gPb detector and MRS achieved high recall but low precision. In other words, 

gPb cannot determine cadastral boundaries from all the detected contours, while MRS cannot eliminate 

over-segmentation caused by the spectral differences within one cadastral parcel.  

 

FCN can supply high precision, while gPb and MRS can supply high recall. Therefore, for further study, 

we can consider a combination of these methods. We can combine them in two ways. The first one is to 

involve the output of gPb or MRS along with UAV images as input for FCN. FCN has strong feature 

learning ability. It is possible that FCN can determine cadastral boundaries from the output of gPb or 

MRS, hence increasing both precision and recall. The second way is to linearly combine the feature map of 

FCN and the probability map of gPb, followed by applying OWT-UCM to the output. Therefore, 

compared to use only the feature map of FCN, OWT have additional cues from gPb to connect the 

cadastral boundaries correctly, hence increasing the accuracy. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Refelection to research objectives and questions 

The purpose of this research is to propose a novel machine-based method which can facilitate cadastral 

mapping and data upgrading practices by reducing time, cost and human intervention. This generic 

objective is divided into three specific objectives and several research questions, which form the sketch of 

the whole research. These questions are answered via our study and they are concluded as follow: 

 

Objective 1: To prepare the data for cadastral boundary detection. 

a) How to prepare the reference data? 

b) How to design the training and testing dataset? 

Data preparation is the first step. Our study areas locate in two sectors of Rwanda, Busogo and Muhoza. 

The reference data and the UAV images should be prepared as input for FCNs. Reference is adapted from 

2008 Rwanda cadastre and experts’ digitization, using a 0.4 m tolerance. Three tiles of training data and 

two tiles of testing data are selected from each site. The tile size is 2000×2000 and the spatial resolution 

for reference and input images is 0.1 m. 

 

Objective 2: To develop a methodology for cadastral boundary detection.  

a) Which FCN architecture is appropriate for boundary detection? 

b) What are the optimal hyper-parameters for the proposed FCN? 

c) How to improve the result of FCN? 

Boundary detection is the core component of the study. We adjust the architecture of FCN-DKs 

proposed by Persello and Stein (2017) for our research and optimised the hyper-parameters through a 

systematic tuning. The result of FCN is fragmented boundaries, which can be improved by using OWT-

UCM to get connected. 

 

Objective 3: To compare the performance of the proposed method with other state-of-the-art methods. 

a) What are the widely accepted metrics for evaluating boundary detection? 

b) Which method achieves the best result? 

The last step is accuracy assessment. We checked the ISO standard for describing geo-spatial data quality 

and selected metrics that can be adopted in our context. We determined to use precision-recall framework 

as it suits for binary classification tasks and under the scope of ISO standard.  In the final implementation, 

FCN and FCN-OWT-UCM outperformed gPb-OWT-UCM and MRS in all the testing tiles. 

6.2. Conclusions  

The workflow of FCN-OWT-UCM proposed in this research is capable of extracting connected cadastral 

boundaries in complexed urban environment. Experiments carried out on UAV images of Muhoza 

achieved an average of 0.47 in precision (or 47% correctness), 0.52 in recall (or 52% completeness) and 

0.49 in F-score. The results on the other study site, Busogo, achieved slightly lower result of around 0.44 

in F-score. Very clean and clear boundaries were generated by the proposed method, avoiding the effect 

of messed building contours. In both study sites, the proposed method performed better than contending 

algorithms.  

 

Relying on the strong feature learning and abstraction ability of FCN, we expand the field of automatic 

cadastral boundary mapping from rural to urban regions. The results of FCN are further processed by a 

grouping algorithm using OWT-UCM to obtain closed cadastral parcels. However, owing to the 

polarization of the feature map, the improvement is limited. We recommend to combine contour 
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detection techniques such as gPb to modify the result. So far, the technique is mainly suitable when a large 

proportion of boundaries are visible. The knowledge of the local experts is needed to correct the extracted 

boundaries and include them in a final cadastral system. We conclude that the proposed automated 

method followed by experts’ final correction and verification can reduce processing time and labour force 

of the current cadastral mapping and data updating practices. 

6.3. Recommendations  

Based on current research, recommendations for future works are listed as follow: 

1. This research focuses on automatic feature detection techniques for cadastral boundary mapping. 

Post-processing procedure to integrate the technique in real practices is not discussed. Therefore, 

designing a contextualized workflow for post-processing to better embed the automation result into 

cadastral mapping procedure is recommended.   

2. Boundary classification is a binary classification task with highly imbalanced classes. The amount of 

boundary pixels is much less than non-boundaries. Therefore, giving boundary class more weight by 

using weighted loss function in FCNs is recommended to improve the classification accuracy.    

3. Combining FCNs with state-of-the-art contour detection techniques such as gPb in cadastral 

boundary detection is also recommended. The output of gPb could serve as a low-level feature to feed 

FCN, which may generate a reasonable abstraction from the detected contours. 
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APPENDICES 

Appendix 1: The classification results of FCN on training tiles. 

Figure 1: The extracted boundaries of FCN on training tiles in Busogo and Muhoza. 
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Table 1: The classification results of FCN on training tiles of Busogo and Muhoza. 

Location Tile Precision Recall F-score 

Busogo 

TR1 0.9310         0.9386 0.9348 

TR2 0.9360 0.9405 0.9382 

TR3 0.9359  0.9414 0.9386 

Muhoza 

TR1 0.9499         0.9494 0.9497 

TR2 0.9568 0.9604 0.9586 

TR3 0.9515 0.9582 0.9548 

 

Appendix 2: The threshold tuning records of gPb-OWT-UCM on testing tiles. 

Figure 2: Threshold tuning results of gPb-OWT-UCM on the testing tiles. 

 

 

 


