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1.1 Biology and ecology of European spruce bark 
beetle (Ips typographus, L.) 

The eight-spined spruce bark beetle Ips typographus L. is one of the most 
important and serious insect pests in Central Europe which threaten the 
Norway spruce tree (Picea abies) (Lausch et al., 2011; Wermelinger, 2004). 
The flight activity of the European spruce bark beetle depends strongly on the 
air temperature as the beetles start to swarm and attack new host trees during 
the European springtime (between the end of April and the beginning of May) 
when the air temperature reaches 16.5 °C and maximum temperature does 
not exceed 26 °C (Lobinger, 1994a; Wermelinger, 2004). The male initiates 
gallery construction and then emits aggregation pheromones which attract 
other beetles to the host tree (Zuber and Benz, 1992). The spruce bark beetle 
feeds and reproduces within the phloem tissue under the bark of the infested 
trees. 
 
Moreover, in the process of the infestation, the beetle also carries pathogenic 
fungi such as blue stain fungi (Ophiostoma and Cerato-cystis species) (Krokene 
and Solheim, 1998). This combination of the beetle larva and the fungi may 
cut the translocation of water, sugar and other nutrients within the bole of the 
tree when both began to penetrate through the living phloem and xylem cells 
(Paine et al., 1997b; Wermelinger, 2004). This feeding behaviour impairs the 
transport of nutrients from the leaves massively to the roots  (Rohde et al., 
1996). From the middle of June through to the end of July, the imagoes then 
leave their host tree and attack new trees during their second stage of 
development. The development of the European spruce beetle, from laying the 
eggs to adulthood, lasts 7-11 weeks. During winter time, all the beetles at 
different development stages (larva, pupa and adult) hibernate in the galleries; 
the adults can also hibernate in stumps, litter or mineral soil over the winter. 
In general, the European spruce beetle Ips typographus, L. has one to two 
generations per year, depending on weather conditions, in particular, 
temperature. The first generation are active from April to May, while the second 
generation is active from July to August (Nikolov et al., 2014).  
 
Generally, the bark beetle infestation occurs on two levels; (i) on an endemic 
level (non-outbreak) (small bark beetle population) and (ii) on an epidemic 
level (outbreak level). During the endemic level (non-outbreak), old trees with 
big diameter (DBH), weakened by storms and drought, are susceptible to be 
attacked by bark beetles (Allain et al., 2011; Latifi et al., 2014; Lausch et al., 
2011; Lausch et al., 2013b; Wermelinger, 2004). Therefore, the structure and 
composition of a forest may not be greatly affected on top of the damage 
already inflicted by storms or drought. This is because healthy trees may erect 
defences by producing resin or latex which may contain a number of 
insecticidal and fungicidal compounds that can kill or injure attacking insects, 
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or the sticky fluid simply immobilises and suffocates them. However, on an 
epidemic level (outbreak), the large number of beetles can overwhelm a tree's 
defences, resulting in the death of even healthy trees (Christiansen and Bakke, 
1988a; Sambaraju et al., 2012; Skakun et al., 2003). 
 
Historically, in central Europe, outbreaks of bark beetle have often coincided 
with certain abiotic disturbances such as windthrows trees, heat waves, snow 
damage (Öhrn, 2012; Seidl et al., 2017b). However, recent outbreaks are 
different,  as climate moderation has acted as their initiating factor. Dry, warm 
summers have led to the desiccation of host trees, which then become stressed 
and attractive for the bark beetle. As a result, an increase in temperature may 
lead to an increase in beetle population size, as their eggs hatching and 
developing into adults sooner than usual. In addition, an increase in the beetle 
population size may have an impact on existence healthy trees, because the 
trees’ defence system cannot cope with an attack from a large number of 
beetles (Wermelinger, 2004). An increase in temperature will also stress 
healthy trees and increase the probability of an attack by bark beetles. 
Moreover, there are a number of abiotic factors that have impact on bark 
beetles and host trees including elevation, slope and aspect. These factors 
influence the interaction process between trees and bark beetle activity 
(Jönsson et al., 2009; Simard et al., 2012). Trees at a higher elevation are less 
susceptible to attack by bark beetles because elevation is a proxy for 
temperature. Thus the higher the elevation, the lower the temperature and 
that will limit the bark beetle activities. On the other hand, trees on a steep 
slope suffer more from water stress and are therefore more susceptible to 
attacks by the bark beetles (Chinellato et al., 2014). Furthermore, factors such 
as stand characteristics of the forest affect the process of bark beetle attacks. 
For example, areas of high stand density, trees with large diameters are more 
susceptible to the attack by bark beetles (Cudmore et al., 2010; Safranyik, 
1974; Skakun et al., 2003). In addition, forests with mixed tree species are 
less susceptible to attack by the bark beetles compared to pure spruce stands 
(Faccoli and Bernardinelli, 2014).  

1.2 Host tree response and control strategies 
Norway Spruce (Picea abies) trees possess defence mechanisms on several 
levels that can prevent a bark beetle attack. The first level of defence (the so-
called primary defence) is activated when the beetle attempts to tunnel under 
the bark of the trees, and the attacked tree attempts to release stored resin. 
When the first resistance is exhausted by the beetle, the second stage of the 
tree’s defence will start. During this stage, the local metabolism around the 
entrance hole changes. As such the trees produce procyanidins as a defensive 
chemical to prevent the entrance of bark beetle and to affect the establishment 
of a brood by impairing the food quality. (Rohde et al., 1996; Wermelinger, 
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2004). At the third defence level, a systemic change in the whole tree’s 
metabolism occurs. This leads to the production of fewer carbohydrates but 
more proteins, which are needed for constitutional resistance. Thus, the 
successful colonisation of the bark beetle within the tree is considered to occur 
in three successive steps. Firstly, the tree’s defences are exhausted by pioneer 
beetles that chemically emit aggregation pheromones to attract a large number 
of conspecifics for a mass attack (Wood, 1982). Secondly, mutualistic 
relationships with certain fungi play an active part in killing the trees. Thirdly, 
the ability to tolerate the defensive secretions of the attacked trees allows for 
the final colonisation of the tree (Lieutier, 2002). 
 
The infested tree exhibits three different stages of damage when it is a host of 
the bark beetle (Coulson et al., 1985; Raffa et al., 2008; Wermelinger, 2004) 
(Fig. 1.1). These stages are commonly known as green, red, and grey attacks. 
In the first stage (the green attack), the beetle starts to lay its eggs under the 
bark of the tree, and the infested trees have yet to show distinct symptoms 
observable by the human eye (Niemann and Visintini, 2005a; Wermelinger, 
2004). However, the subsequent degradation of the needles can be noted by 
regular field observations. In addition, one of the earliest signs of bark beetle 
infestation in trees is a drop in sapwood moisture, as a result of the inoculation 
of blue fungi by the beetles that bore through the bark. The spores of the fungi 
penetrate the living cells in the phloem and xylem, resulting in a disruption of 
water and nutrient flow. A decrease in the transpiration cooling process of the 
infested tree results, causing an increase in leaf and canopy temperature 
(Christiansen and Bakke, 1988a; Sprintsin, 2011). In the red attack stage, the 
needles of the tree turn from green to yellow to red-brown. Finally, the needles 
fall off, and only the grey bark remains, hence the last stage is referred to as 
a grey attack. This discolouration of the attacked trees is evident at the canopy 
level (Coulson et al., 1985).  
 
It is important to note that the length (specification) of these stages varies 
depending on the type of beetles. For example, visible symptoms of an 
attacked Norway spruce tree by the European Spruce Bark Beetle (Ips 
typographus, L.) were evident in the crown in late August (red attack). 
However, for North American and Canadian Mountain Pine Beetles 
(Dendroctonus ponderosae, Hopkins) visible symptoms of an attack were 
evident in the crown from late May to early June following the initial attack 
(Safranyik and Carroll, 2006; Sprintsin, 2011). 
 
Bark beetle outbreaks are an important factor in the ecological development of 
the forest landscape affecting forest structure and composition (Pfeifer et al., 
2011; Schowalter, 2012; Simard et al., 2012; Zeppenfeld et al., 2015), as well 
as biodiversity and ecosystem services (Thom and Seidl, 2016). Bark beetles 
can affect forest ecosystems both directly and indirectly. Direct impacts include 
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an increase in tree mortality rates and a reduction in forest stand densities 
(Bright et al., 2013; Eitel et al., 2011; Filchev, 2012a; Schowalter, 2012; 
Vanderhoof et al., 2013; Verbesselt et al., 2009). Indirect impacts include a 
reduction in carbon uptake, changes in tree species’ distribution, changes in 
erosion processes, increasing fire frequency, and nutrient cycling (Beudert et 
al., 2015; Kurz et al., 2008; Lehnert et al., 2013). Recent studies have shown 
that bark beetle infestation leads to the enhancement of biodiversity by 
opening the canopy layers and altering the microclimate conditions in the 
forest. This alteration provides the essential habitats and sources of energy for 
various organisms, allowing for species to persist in areas disturbed by the 
bark beetle (Beudert et al., 2015; Lehnert et al., 2013; Müller et al., 2008).  
 

 
 

Figure 1.1: The generalised life cycle of the European spruce bark beetle and the 
process of killing host trees. 

When forest management aims to control or preclude a mass outbreak and 
minimise economic loss, two control approaches are commonly practised: 
indirect control through long-term forest management and direct control 
management. Indirect control approaches are essential to forest health, 
improving the vitality of trees and the stability of stands; therefore, decreasing 
the possibility of bark beetle infestation and outbreak. The long-term 
management practices of indirect control include maintaining soil quality, 
encouraging mixed wood stands, and addressing thinning and harvesting time 
considering the life cycle of the bark beetle (Wermelinger, 2004). Previous 
studies have shown that thinning or lowering tree densities reduced tree 
mortality rate caused by bark beetle infestation (Egan et al., 2010; Negrón et 
al., 2017). Direct control can take many forms, such as salvage and biological 
control (trapping). Salvage includes the harvesting of storm-damaged timber 
and freshly infested trees (green attack) (Göthlin et al., 2000; Stadelmann et 
al., 2013). Harvesting of infested trees is the most common measure for 
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controlling I. typographus L. However; this action task must be completed 
before a new brood emerges and migrates (Wulder et al., 2009). Therefore, 
the removal of fallen and freshly infested trees reduces the emergence of new 
infestation locations, and it also moderates the beetle population. Biological 
control strategies, such as pheromone trapping, can be used to lure beetles. 
The main goal of this approach is to reduce bark beetle infestation in the 
remaining stands. Thus, the traps are more often used to prevent attacks on 
the remaining healthy trees than to diminish beetle populations (Lobinger and 
Skatulla, 1996).  
 
In general, the logistics of the direct (salvage) control of bark beetles require 
a mechanism for the early detection of infested trees and monitoring known 
infestation locations in the forest (Wermelinger, 2004). Traditionally, foresters 
had to look for early signs of infestation by searching for a dry brown powder 
that was produced by the bark beetles during the colonisation process when 
the beetles tunnel under the bark of the trees. Such a technique, however, is 
not practical and is inefficient for application in large areas because it is 
significantly laborious and costly.  

1.3 Remote sensing of Ips typographus, L. green 
attack 

Remote sensing has the potential to monitor and detect forest stress induced 
by pest infestations over large areas in relatively short periods of time. The 
premise of employing remotely sensed data to detect insect-infested forests is 
that distinct symptoms are observable by different portions of the 
electromagnetic spectrum, which can be acquired from remote sensing 
platforms (Chen and Meentemeyer, 2016). Depending on the stage of the 
attack, the symptoms indicate the decline in biochemical and biophysical 
properties, such as chlorophyll and water content, defoliation, treefall gaps, 
and changes in leaf area index (LAI) (Wulder et al., 2009). For example, during 
the advanced stages of bark beetle infestation (i.e. red attack), needles on 
Norway Spruce trees turn from green to yellow to red-brown, which can be 
detected by the human eye at both leaf and canopy levels (Coops et al., 2006; 
Franklin et al., 2003b; Niemann and Visintini, 2005a). As a result, these 
symptoms can be observed using the visible portion of the electromagnetic 
spectrum (400 to 700 nm), which appear similar in the human visual system. 
It is important to note that the stress exhibited by the trees mediated by the 
bark beetle is brought on gradually, and therefore, it is difficult to detect early-
stage symptoms using the visible portion of the electromagnetic spectrum. 
Instead, sensors with the capacity to detect the near-infrared spectrum (700 
to 1300 nm) are more sensitive to such physiological stress. Likewise, the 
amount of energy reflected in the short-wave infrared range (1300 to 2500 
nm) was correlated with vegetation moisture; in particular, leaf water content 
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(Aldakheel and Danson, 1997; Laurent et al., 2005). In general, the length of 
time required for a moisture deficit to produce visible symptoms in foliage can 
vary from weeks to several months. However, these changes are detectable 
with spectral data, particularly if acquired in the shortwave and thermal 
infrared spectra, where water absorption features in vegetation are well 
documented (Berni et al., 2009; Buitrago Acevedo et al., 2017; Jang et al., 
2006; Sepulcre-Cantó et al., 2006).  
 
In general, the usefulness of remotely sensed data to provide forest health-
relevant information (stress signal) depends on the spectral, spatial, temporal 
and radiometric resolution of remote sensing instrument (Chen and 
Meentemeyer, 2016; Wulder et al., 2009). Recent studies have discovered that 
the subtle changes in spectral discrepancies induced by insect infestation can 
be better detected by fine-spectral and spatial resolution data (Coops et al., 
2006; Hatala et al., 2010; Ortiz et al., 2013). For example, previous studies 
confirmed the potential of high spatial resolution data for fine-scale forest 
stress detection (Filchev, 2012a; Immitzer and Atzberger, 2014; Latifi et al., 
2014). Moreover, many forest diseases or insect infestations do not cause tree 
death instantly; therefore, continuous monitoring is essential for investigating 
and understanding the dynamic characteristics of leaf properties and canopy 
reflectance during infestation events. Such observation provides detailed 
information regarding the impact on infested trees, and it also allows for the 
exploration of diagnostic effects at any stage to detect insect infestation as 
early as possible.  
 
Many studies have attempted to use remote sensing data and techniques for 
the detection of bark beetle infestation at an early (green attack) stage. As 
Table 1 shows, most studies performed on the detection of green attacks were 
conducted at the canopy level. The literature review revealed that no previous 
studies focused on both the leaf level and the canopy level. Furthermore, the 
effect of an Ips typographus green attack on host tree biochemical and spectral 
reflectance properties has not yet been investigated in detail. To date, the 
successful detection of bark beetle green attack using remote sensing data has 
not been documented in the literature.  
 
The little attention that has been paid to the changes in biochemical and 
biophysical properties of Norway Spruce trees under bark beetle Ips 
typographus infestation and the link with variation in spectral reflectance 
behaviour may be due to several issues. First, there are biological limitation 
factors, such as the flight activity of the bark beetle, the time lapse for the 
colonisation process, and the period during which trees are yet to show visual 
signs of stress. As mentioned in section 1.1, the development of the bark beetle 
is dependent on temperature, as an increase in temperature may lead to an 
increase in the beetle population, due to eggs hatching and developing into 
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adults sooner (Bentz et al., 2010; Wermelinger, 2004). Therefore, the fading 
of the infested tree is not a consistent or linear process, but it instead depends 
on the local environment and tree conditions (Safranyik, 1974). Second, there 
are logistical and technological limitation factors. In remotely sensed and field 
survey data of bark beetle green attacks, it is evident that time plays a critical 
role (Wulder et al., 2009). For example, during a field survey, the temporal 
observation associated with beetle biology and the appearance of the 
symptoms in the tree foliage should be considered. Likewise, the flight time of 
the beetle must be considered in the case of remotely sensed surveys. For 
example, the adult bark beetle starts to attack new host trees during the 
European springtime (between the end of April and the beginning of May).  
 
This thesis is concerned with the detection of the European Spruce bark beetle 
green attack at both leaf and canopy levels using various types of remotely 
sensed data in parallel with field measurements. It also considers the impact 
of bark beetle green attack on the variation of biochemical and biophysical 
properties of the infested leaves. The relationship between bark beetle 
infestation and changes in foliar biochemical properties, such as chlorophyll 
content, chlorophyll fluorescents, nitrogen content, stomatal conductance, 
water content, and dry matter content, are examined and interpreted. 
 
  



Chapter 1 

9 

Table 1.1: Existing literature that utilised various remote sensing data (including aerial 
photography) to detect bark beetles at the green attack stage over the last 50 years. 

No Author Data used Beetle 
species level 

1 (Murtha, 1972b) aerial photography MPB canopy 

2 (Murtha and Wiart, 
1989) aerial photography MPB canopy 

3 (Runesson, 1991) aerial photography + field 
spectrometer MPB leaf and 

canopy 

4 (Gimbarzevsky et al., 
1992a) 

multi-spectral scanner 
imagery + aerial photography MPB canopy 

5 (Schweigler,2007) aerial photography NSB canopy 
6 (Ortiz et al., 2013) TerraSAR-X and RapidEye NSB canopy 

7 (Ahern, 1988b) field spectrometer 
(350 -1100nm) MPB leaf 

8 (Cheng et al., 2010) field spectrometer 
(350-2500nm) MPB leaf 

9 (Sprintsin, 2011) Landsat ETM+ MPB canopy 

10 (Heath, 2001a) Compact Airborne 
Spectrographic imager (CASI) NSB canopy 

11 (Lawrence and Labus, 
2003) hyperspectral imagery DFB canopy 

12 
(Marx, 2010; Marx 
and an der Havel, 

2010a) 
RapidEye NSB canopy 

13 (Filchev, 2012a) worldview-2 NSB canopy 
14 (Lausch et al., 2013b) HyMAP NSB canopy 
15 (Latifi et al., 2014) Landsat MSS + SPOT2&4 NSB canopy 

16 (Fassnacht et al., 
2014) HyMAP NSB canopy 

17 (Immitzer and 
Atzberger, 2014) WorldView-2 NSB canopy 

18 (Näsi et al., 2018) Hypex UAV NSB canopy 

19 (Foster et al., 2017) field spectrometer + Landsat 
TM ESB canopy 

20 (Niemann et al., 2015) VNIR-SWIR and discrete 
LiDAR MPB canopy 

21 (Mullen, 2016) Hypex & WorldView-2 MPB canopy 
22 (Roberts et al., 2005) aerial photography MPB canopy 

ESB = Engelmann spruce beetle (Dendroctonus rufipennis), MPB = mountain pine 
beetle (Dendroctonus ponderosae), NSB = Norway spruce beetle (Ips typographus) 
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1.4 Research objectives 
The main objective of this research is to utilise different remote sensing data 
and approaches at different scales (leaf and canopy) to detect early stage of 
bark beetle infestation. This includes four sub-objectives:  
 
First objective: To investigate the impact of an Ips typographus L. green 
attack on the foliar properties (i.e. foliar reflectance and biochemical 
properties) of Norway Spruce trees.  In this objective, the following research 
questions are addressed 
 How does the early stage bark beetle infestation affect foliar spectral and 

biochemical properties? 
 Does bark beetle infestation affect the accuracy of foliar biochemical 

estimations when using hyperspectral measurements? 
 
Second objective: To study the dynamics of leaf traits and canopy reflectance 
spectra of Norway Spruce trees from early to advanced stages (green to red) 
of spruce bark beetle Ips typographus, L. infestation. In this objective, the 
following research question is addressed 
 What are the spectral regions and leaf traits that are affected by infestation 

over time and how would this impact the discrimination between healthy 
and infested plots in the early stages of an attack? 

 
Third objective: To examine the sensitivity of thermal and visible-short wave 
infrared data to foliar properties under bark beetle Ips typographus, L. 
infestation.  In this objective the following research question is addressed: 
 How accurate are thermal and visible-short wave infrared data from 

Landsat-8 at detecting an early stage Ips typographus, L. green attack and 
estimating foliar properties? 

 
Fourth objective: To evaluate the potential of different spectral vegetation 
indices from multispectral satellites to detect and map bark beetle infestation 
at the green-attack stage.  In this objective the following research question is 
addressed: 
 To what extent can spectral vegetation indices from multispectral satellite 

imagery be utilised to map and detect canopy stress induced by a bark 
beetle green attack? 

1.5 Thesis outline  

This PhD thesis consists of six chapters, four of which are standalone papers. 
Three of them have been already published in peer-review ISI journals, and 
the other one are under review. The structure of the chapters is as follows: 
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Chapter 2 is about the impact of the early stage of bark beetle infestation on 
foliar properties (chlorophyll and nitrogen concentration) and reflectance 
spectra. 
 
Chapter 3 focuses on the temporal dynamics of foliar properties and canopy 
reflectance using temporally dense time series of six RapidEye senses and five 
SPOT-5 senses in parallel with field data collection. 
 
Chapter 4 examined the sensitivity of optical and thermal infrared data to 
foliar properties (chlorophyll fluorescence, stomatal conductance and water 
content) at early stage bark beetle (Ips typographus, L.)  infestation. 
 
Chapter 5 deals with using a set of spectral vegetation indices calculated from 
Sentinal-2 and Landsat-8 images to map bark beetle infestation at the green 
attack stage. Moreover, in this chapter, foliar properties such as reflectance 
spectra, chlorophyll content, water content, leaf dry matter content and 
nitrogen content were studied. 
 
Chapter 6 provides a synthesis of the results of this research, including the 
answers to the research questions. 
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Chapter 2 : European spruce bark beetle (Ips 
typographus, L.) green attack affects foliar 
reflectance and biochemical properties 
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Abstract  
The European spruce bark beetle Ips typographus, L. (hereafter bark beetle), 
causes major economic loss to the forest industry in Europe, especially in 
Norway Spruce (Picea abies). To minimise economic loss and preclude a mass 
outbreak, early detection of bark beetle infestation (so-called “green attack” 
stage – a period at which trees are yet to show visual signs of infestation 
stress) is, therefore, a crucial step in the management of Norway spruce 
stands. It is expected that a bark beetle infestation at the green attack stage 
affects a tree’s physiological and chemical status. However, the concurrent 
effect on key foliar biochemical such as foliar nitrogen and chlorophyll as well 
as spectral responses are not well documented in the literature. Therefore, in 
this study, the early detection of bark beetle green attacks is investigated by 
examining foliar biochemical and spectral properties (400 – 2000 nm). We also 
assessed whether bark beetle infestation affects the estimation accuracy of 
foliar biochemicals. An extensive field survey was conducted in the Bavarian 
Forest National Park (BFNP), Germany, in the early summer of 2015 to collect 
leaf samples from 120 healthy and green attacked trees. The spectra of the 
leaf samples were measured using an ASD FieldSpec3 equipped with an 
integrating sphere. Significant differences (p < 0.05) between healthy and 
infested needle samples were found in the mean reflectance spectra, with the 
most pronounced differences being observed in the NIR and SWIR regions 
between 730 and 1370 nm. Furthermore, significant differences (p < 0.05) 
were found in the biochemical compositions (chlorophyll and nitrogen 
concentration) of healthy versus green attacked samples. Our results further 
demonstrate that the estimation accuracy of foliar chlorophyll and nitrogen 
concentrations, utilising partial least square regression model, was lower for 
the infested compared to the healthy trees. We show that early stage of 
infestation reduces not only foliar biochemical content but also their retrieval 
accuracy. Our results further indicate that remote sensing measurements can 
be successfully used for the early detection of the bark beetle infestation. We 
demonstrated that bark beetle infestation at the green attack stage effects leaf 
spectral response as well as leaf biochemical properties and their retrievals 
from hyperspectral measurements. 
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2.1 Introduction 
Bark beetles (Ips typographus, L., and Dendroctonus spp.) are important biotic 
disturbance agents in the coniferous forests of Europe and North America, 
respectively (Christiansen and Bakke, 1988b; Fahse and Heurich, 2011; Raffa 
et al., 2008; Seidl et al., 2011; Seidl et al., 2014). In the past decades, an 
increasing number of severe bark beetle outbreaks has led to an extensive 
economic loss in the forest industry (Goheen and Hansen, 1993; Waring et al., 
2009). The economic impacts include a reduction in the commercial value of 
the infested trees and increased management costs (Schowalter, 2012). 
Besides causing economic losses, outbreaks of the bark beetle form an 
important factor in the ecological development of the forest landscape, in terms 
of forest structure and composition (Pfeifer et al., 2011; Schowalter, 2012; 
Simard et al., 2012; Zeppenfeld et al., 2015), as well as biodiversity and 
ecosystem services (Thom and Seidl, 2015). Bark beetles can affect forest 
ecosystems both directly and indirectly. Direct impacts include an increase in 
tree mortality rates and a reduction in forest stand densities (Bright et al., 
2013; Eitel et al., 2011; Filchev, 2012b; Hais and Kučera, 2008; Schowalter, 
2012; Vanderhoof et al., 2013; Verbesselt et al., 2009). Other indirect impacts 
are; reduction in carbon uptake, changes in tree species’ distribution, as well 
as changes in erosion processes, fire frequency, and nutrient cycling (Beudert 
et al., 2015; Kurz et al., 2008; Lehnert et al., 2013; Lindenmayer and Franklin, 
2002; Mikkelson et al., 2013). Additionally, recent studies showed that the 
infestation of bark beetle leads to biodiversity enhancement by opening the 
canopy layers and altering microclimate condition in the forest. This alteration 
will provide the essential habitats and sources of energy for various organisms, 
and allow them to persist in the disturbed areas by bark beetle (Beudert et al., 
2015; Lehnert et al., 2013; Müller et al., 2008).   
 
The phenology of bark beetle and the associated host responses are well 
described in Wermelinger, (2004). The infested tree goes through three stages 
of attack (Coulson et al., 1985; Sprintsin et al., 2011; Wermelinger, 2004). 
These stages are termed green, red and grey attacks, respectively. During the 
green attack stage, the foliage remains green (hence the name green attack), 
and therefore,  it is difficult to detect this stage by the human eye at leaf and 
canopy levels (Niemann and Visintini, 2005b; Wulder et al., 2006b). However, 
the subsequent degradation of the needles can be noted by regular field 
observations, as, during the red attack stage, the needles of the tree turn from 
green to yellow and red-brown. Finally, the needles fall off, and only the grey 
bark will remain, hence the last stage being called a grey attack. This 
discolouration of the attacked trees is evident at canopy level (Coulson et al., 
1985). It is expected that bark beetle infestation induces changes in the 
spectral response of the infested trees (Filchev, 2012b; Meddens et al., 2013), 
as the biophysical characteristics of the entire tree, and very likely the 



Effects (Ipstypographus, L.) green attack on leaf properties 

16 

biochemical features of the needles, change. Therefore, during the infestation 
period, the trees are subjected to increasing stress and face physiological 
change (Heath, 2001b). This is due to the interruption of the water flow and 
the deterioration of chloroplasts as the beetle drills into the tree’s cambium 
tissue  (Yamaoka et al., 1990). The fungi carried by the beetles penetrate the 
living phloem and xylem cells, hampering the translocation of water, sugar and 
other nutrients within the bole of the tree (Paine et al., 1997a; Rohde et al., 
1996; Safranyik et al., 2007; Wermelinger, 2004). This leads to a gradual 
change in  biochemical and water content in the attacked tree, thus inducing 
alterations to its spectral characteristics over the course of the infestation 
(Deshayes et al., 2006; Lawrence and Labus, 2003; Marx and an der Havel, 
2010b; Reid, 1961; Sprintsin et al., 2011; Yamaoka et al., 1990). 
 
A considerable increase in unplanned harvesting of European forests following 
bark beetle infestation has led to increased research interest in understanding 
the dynamics and improving the management of  Ips typographus, L. 
outbreaks (Seidl et al., 2011). Furthermore, an increase in the frequency and 
severity of bark beetle outbreaks is expected due to global climate change 
(Bentz et al., 2010).  Consequently, more attention is devoted to this topic. It 
has also been evoked to increase discussion regarding salvage logging in 
protected areas in Europe (Lehnert et al., 2013). Early detection of Ips 
typographus, L. outbreaks at the green attack stage may prove an important 
step, as management aims to control this species and preclude a mass 
outbreak. At the green attack stage, the trees hold the next generation of 
beetles. Management intervention to prevent further outbreaks may, 
therefore, involve the removal of infested trees before the new brood emerges 
and migrates (Wermelinger, 2004; Wulder et al., 2009). Traditionally, foresters 
have performed field surveys to identify infested trees; such surveys are very 
laborious, costly, and therefore it is inefficient and hard to apply for 
management purposes in large areas. Remote sensing has the potential to 
detect pest infestations over large areas in relatively short periods of time. 
Employing remotely sensed data allows monitoring of the changes in leaf and 
canopy properties before and after insect infestation (Bentz and Endreson, 
2003; Deshayes et al., 2006; Dye et al., 2008; Jensen, 2009). To date, the 
utilisation of remote sensing for the monitoring and detection of bark beetles 
by forest managers has mainly focused on the last two attack stages (i.e., the 
red and grey stage) and has achieved high degrees of accuracy. During the 
last two stages of the attack, the changes in canopy colour effect the spectral 
reflectance signature which are mainly been used as an indicator to detect 
infestations (Carter et al., 1998; Franklin et al., 2003a; Heurich et al., 2010b; 
Latifi et al., 2014; Meddens, 2012; Nikolov et al., 2014; Skakun et al., 2003; 
Wulder et al., 2006b). However, detecting the infestation in the last two stages 
is not sufficient for appropriate management, as phenological research proved 
that during the red attack stage the newly developed beetles have already left 
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their host trees and started to attack new trees. Therefore, the continuing of 
an outbreak cannot be prevented by salvage logging during this stage. 
Consequently, the detection of the bark beetle at the green attack stage by 
means of remote sensing is necessary to have a meaningful effect on the 
spreading of the beetle, but is challenging due to the lack of apparent visual 
symptoms in needles. 
 
Early detection of infestations by Dendroctonus spp in lodgepole pine trees has 
been investigated at canopy level (Gimbarzevsky et al., 1992b; Heath, 2001b; 
Klein, 1973; Murtha and Wiart, 1989; Murtha, 1972a). Similarly, detection of 
a bark beetle green attack (Ips typographus, L.) at canopy level in Norway 
spruce trees has been investigated by (Immitzer and Atzberger, 2014; Lausch 
et al., 2013a; Marx and an der Havel, 2010b; Ortiz et al., 2013). However, 
these studies did not succeed in discriminating healthy from green attacked 
trees. More recently, Niemann et al. (2015) used LIDAR and hyperspectral data 
to examine the spectral properties of healthy trees and those under mountain 
pine beetle green attack and demonstrated that the most promising 
wavelengths, for the detection of mountain pine beetle at green attack stage, 
is located in the shortwave infrared region. Furthermore, Näsi et al. (2015) 
used a hyperspectral sensor (500-900 nm) mounted on an unmanned aerial 
vehicle (UAV) to map bark beetle damage at the tree level, by dividing tree 
stands into three different classes (healthy including trees with potential early 
infestation stage, red attack; and dead). They found that the healthy and dead 
trees can be classified with 90% over-all accuracy, however, when all classes 
were considered (healthy, red and dead), the overall accuracy dropped to 76%. 
At the leaf level, there are very few studies, although with different beetle and 
tree species, that have examined the differences in spectral reflectance 
between healthy needles and those that have been under bark beetle green 
attack (Ahern, 1988a; Cheng et al., 2010; Foster et al., 2017). In addition to 
a change in spectral reflectance properties, Cheng et al. (2010) observed that 
there were differences in the water content of healthy and infested needles, 
particularly, between 1318 – 1322 nm. 
 
These results show that remote sensing has the potential to detect early stages 
of bark beetle attacks. However, these studies have mostly considered the 
effect of early infestation on reflectance spectra and not on the biochemical 
properties of the needles. Therefore, it is highly important to understand 
whether, in addition to the spectral reflectance, the biochemical properties are 
also affected at the bark beetle early infestation stage. Consequently, the topic 
warrants further investigation. 
 
As mentioned earlier, it is expected that the infested tree will exhibit a change 
in terms of its biochemical and spectral properties, due to the beetle larva and 
blue stain fungi such as (Ophiostoma and Cerato-cystis species) carried by the 
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beetles starts to penetrate the living phloem and xylem cells, hampering the 
translocation of water, sugar and other nutrients within the bole of the tree 
(Paine et al., 1997a; Rohde et al., 1996; Safranyik et al., 2007; Wermelinger, 
2004).Therefore, in this study, we aim to investigate the possible early 
detection of a bark beetle green attack by examining and comparing the foliar 
biochemical (chlorophyll and nitrogen) and spectral properties (400 – 2000 
nm) of both healthy and green attacked trees. Chlorophyll and nitrogen are 
two important elements that have a key role to play in plant life and status and 
can be considered as indicators that reflect the status of plant growth and 
health (Heinze and Fiedler, 1976; van Maarschalkerweerd and Husted, 2015; 
Wang et al., 2015a; Wang et al., 2015b). As such changes, initiated by bark 
beetle attack cause stress during the infestation time, we hypothesise that 
chlorophyll and nitrogen concentrations are reduced during such an attack. 
These can thus provide suitable proxies for detecting the presence of Ips 
typographus L. during a green attack stage. Specifically, there are three main 
objectives: (a) to investigate the impact of an Ips typographus L.  green attack 
on folair spectral reflectance; (b) to examine the changes in folair biochemical 
properties due to the Ips typographus L.  green attack ; (c) to explore the 
impact of the Ips typographus L.  green attack on the estimation accuracy of 
folair biochemical properties utilizing hyperspectral measurements. 

2.2 Material and Methods 

2.2.1 Study area 

The study area is the Bavarian Forest National Park (BFNP) in south-east 
Germany, which covers an area of 240 km2 between 13°12'9" E (longitude) 
and 49°3'19" N (latitude) (Fig. 2.1). The elevation in the BFNP ranges from 
600 m to 1453 m. This region is characterised as having a temperate climate 
with a total annual precipitation along the gradient between 900 and 1800mm 
as well as a mean annual temperature that varies between 3.5 and 7.2°C 
(Bässler et al., 2008b; Lehnert et al., 2013). The area is divided into three 
ecological zones: high elevations, hillsides, and valley bottoms.  Around 90%  
of the tree stands in high elevations are Norway spruce (Picea abies (L.) Karst), 
2% are beech (Fagus sylvatica L.), and the remaining 8% are covered by other 
broad-leaves trees, mainly Common Rowan (Sorbus aucuparia). While on the 
hillsides, around 58% is occupied by Norway spruce, and the rest is a mixture 
of European silver fir (Abies alba) and beech. In the valley bottoms, 83% of 
the trees are Norway spruce, and the rest is a mix of species (Cailleret et al., 
2014b; Heurich et al., 2010a). Multiple storm events in the 1980s and a series 
of hot summers in the 1990s have led to an extensive mortality of canopy trees 
by bark beetles on about 8 000 ha (Lausch et al., 2013a). 
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Figure 2.1: The location of Bavarian Forest National park in Central Europe. 

2.2.2 Data acquisition 

The adult bark beetle starts to attack new host trees during the European 
springtime (between the end of April and the beginning of May). This process 
strongly depends on the air temperature as the beetles start their swarming 
when the air temperature reaches 16.5°C (Lobinger, 1994a; Wermelinger, 
2004). Therefore, the field data were collected in the early summer of 2015 
within 15 to 30 days from the early stages of infestation. In total 120 trees 
were measured, of which 66 were healthy, and 54 were freshly infested trees. 
An extensive field survey was conducted to identify the trees under bark beetle 
green attack by spotting piles of dry, boring dust, which had been pushed out 
onto the bark surface (Fig. 2.2). An Average of 2 – 3 branches were taken from 
each tree. Needle samples from each branch were collected separately. All the 
branches were taken from the upper part of the trees, which was exposed to 
the sunlight. The heights of the trees varied between approximately 25 and 30 
meters. A crossbow was used to shoot an arrow with a fishing line attached to 
a branch with sunlit leaves (Ali et al., 2016). The fishing line was used to feed 
a rope over the targeted branch. Once the rope was in place, the branch was 
pulled down gently until it broke off. Needles were immediately removed from 
the fallen branches and placed in a labelled plastic zip-locked bag, which was 
then covered with wet pulp paper and subsequently transported to the 
laboratory in a portable cooling box filled with frozen ice packs to keep the 
sample cool. The aim was to retard, as much as possible, any changes in the 
needles’ reflectance spectra and biochemical characteristics (Malenovský et al., 
2006). Once the spectral measurements were completed, the same sample 
branch was transported to the laboratory to measure the fresh weight, leaf 
area and the biochemical properties of the foliar samples. 
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Figure 2.2: Dry dust produced through boring by the bark beetle Ips typographus, L.; 
used to identify freshly infested trees in the field. 

2.2.3 Chemical analyses 

The concentration of Chlorophyll a and b in the collected fresh leaf samples 
was determined destructively by a spectrophotometer following the 
Lichtenthaler (1987) method using acetone (v 100%).  In addition, to 
determine foliar nitrogen, the needles were dried for 72 hours using an oven 
dryer at 60º C. The dried needles were properly grounded using mortar and 
pestle until the ground leaves became a soft powder and were passed through 
a 0.25 mm mesh screen. Subsequently, 2 mg of powdered leaves was 
transferred to a small aluminium capsule to measure the nitrogen content, 
using an organic elemental analyser (FLASH 2000). 

2.2.4 Reflectance measurements 

The leaf directional hemispherical reflectance from 350 to 2500 nm was 
measured for collected samples, using an ASD FieldSepc-3 Pro FR spectrometer 
equipped with an ASD RT3-3ZC integrating sphere (Analytical Spectral 
Devices, Inc., Boulder, Co, USA). The integrating sphere had a port diameter 
of 15 mm for a reflectance measurement. The Norway spruce needles did, 
however, not cover the entire sample port of the integrating sphere. Therefore, 
the method proposed by Daughtry et al. (1989) was applied, where a universal 
sample holder, designed by Malenovský et al. (2006), was used to 
accommodate all sizes and lengths of Norway spruce needles. For every 
measurement five to six needles were secured on the sample holder with 
cellophane tape, leaving a gap of one needle’s width between needles to avoid 
multiple reflectances of the adjusted needles (Ali et al., 2016; Daughtry et al., 
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1989). To minimise the effect of spectral signal noise, for every needle sample 
two hundred scans were averaged to present a single spectrum. The 
integrating sphere has an internal light source, and therefore, the sun angle 
and cloudiness does not affect the spectral measurement (Foster et al., 2017). 
However, to prevent possible light entering into the integrating sphere ports, 
covering the integrating sphere with a black piece of cloth is recommended by 
Mesarch et al. (1999). 
 
The measured spectral reflectance from the sample holder contained the 
effects of the gap between the attached needles to the sample holder; 
therefore, the spectral measurements were corrected by calculation of the gap 
fraction. To do so, a black painted paper mask with a 15-mm diameter circular 
aperture was precisely superimposed onto the samples and photographs were 
taken using a 16.1 megapixel Panasonic LUMIX camera  (Ali et al., 2016). 
Then, the images were imported into ImageJ software (Schneider et al., 2012), 
to compute the gap fraction, based on the illuminated area of the sample port. 
The following equation was adapted from Mesarch et al. (1999) for the Field 
ASD spectrometer and to compute the hemispherical reflectance of the sample 
needles: 
 
Reflectance   = [((𝜌 – Rd) / (1 – Rd)) × Rr] / (1 – GF);   (2.1) 
 
where: 𝜌 is the measured reflectance from the sample holder; Rd is stray light 
(ambient light) inside the integrating sphere, measured as a radiation flux of 
the empty illuminated sample port in reflectance mode; Rr, is the reference of 
sample reflectance; and GF is the gap fraction of the sample. 

2.2.5 Data pre-processing and statistical analysis 

A series of pre-processing steps were performed on the measured reflectance 
data. First, the spectral reflectance was examined, and “noisy” bands (in the 
spectral ranges 350 – 399 nm and 2000 – 2500 nm) were excluded from the 
analysis. Secondly, to eliminate and reduce the sensor noise, a Savitzky – 
Golay smoothing filter with a frame size of 15 (2nd-degree polynomial) was 
applied to the reflectance spectra (Savitzky and Golay, 1964). 
 
The significance of differences (p ≤ 0.05) in foliar reflectance as well as 
chlorophyll and nitrogen concentration between leaf samples from green 
attacked and healthy trees, was examined using Student t-tests, in order to 
determine whether there is spectral variation at any spectral band. Because 
the considered adjacent wavelengths are highly correlated, we corrected the 
p-value using Holm (1979) procedure, next the significant wavebands with 
mean reflectance spectra of both healthy and infested samples were plotted 
following the technique used by Schmidt and Skidmore (2003). 
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To investigate the relationship between the spectral reflectance of the healthy 
and infested samples and their biochemical parameters, the Pearson’s 
correlation coefficients were calculated between spectral reflectance (400 - 
2000 nm) and chlorophyll as well as nitrogen concentration for both healthy 
and infested samples to identify the most sensitive wavebands in healthy and 
infested samples.  

2.2.5.1 Partial least square regression model (PLSR) 

Partial least squares regression (PLSR) was used to investigate the impact of 
the bark beetle green attack stage on the retrieval accuracy of the chlorophyll 
and nitrogen concentrations in needles. PLSR is a regression method that takes 
into account both the variance of the explanatory and the dependent variables. 
It specifies a linear relationship between a set of dependent (Y) variables and 
a set of predictor (X) variables (Wold et al., 2001). PLSR performs particularly 
well when the various X-variables have strong correlations, as is normally the 
case with hyperspectral data. (Carrascal et al., 2009; Nicolaï et al., 2007). 
Further details on PLSR can be found in Geladi and Kowalski (1986). 
 
PLSR was used to predict the foliar chlorophyll and nitrogen concentrations 
(dependent variables) of the healthy and infested needles from spectral 
reflectance (predictor variables). PLSR models were built independently for the 
healthy and infested samples. For the chlorophyll concentration, PLSR was 
fitted to the VNIR range (400 - 790 nm), as this spectral region mainly 
contributes to chlorophyll estimation in plants (Curran, 1989; Yoder and 
Pettigrew-Crosby, 1995). However, as nitrogen is associated with many other 
leaf chemical compounds, the spectral wavebands corresponding to nitrogen 
are distributed over the whole spectrum (VIR, NIR, SWIR) (Curran, 1989; 
Peterson et al., 1988) and consequently, for the nitrogen concentration, PLSR 
was fitted to the entire spectrum (400 - 2000nm). To determine the number 
of components needed to build the PLSR model, Monte Carlo cross-validation 
(MCCV) was applied (Xu and Liang, 2001). The procedure involves adding an 
extra component to the model when the value of the root mean square error 
of cross-validation (RMSEcv) is reduced by ≥ 2 % (Darvishzadeh et al., 2008; 
Geladi and Kowalski, 1986). The performance of the PLSR models were 
assessed by computing the coefficient of determinations (R2), the normalised 
root mean square error of predictions (nRMSEP) (Kvalheim,1987), and 
normalised root mean square error of cross-validations (nRMSEcv) of predicted 
versus measured values.  
 
We further examined whether the most informative wavelengths for the 
estimation of chlorophyll and nitrogen concentrations in both healthy and 
infested samples correspond. To achieve this, the variable importance in the 
projection (VIP) was calculated for all wavebands from the PLSR models. VIP 
scores summarise the influence of individual X variables (reflectance) in the 



Chapter 2 

23 

PLSR model. A variable with a VIP score close to, or greater than 1, can be 
considered significant in a given model (Chong and Jun, 2005; Tenenhaus, 
1998; Wold et al., 1993). A detailed description of the calculation of VIP scores 
can be found in Farrés et al. (2015); Wold et al. (1993). TOMCAT and libPLS 
toolbox was used within MATLAB to establish PLSR analysis and calculate VIP 
score, respectively (Daszykowski et al., 2007; Li et al., 2014). 

2.3 Results 

2.3.1 Spectral reflectance variation due to bark beetle green 
attack 

The results demonstrated that the mean reflectance spectra of healthy and 
green attacked foliage were statistically different (p ≤ 0.05) for 917 wavebands 
out of the 1600 wavebands used in this study (Fig. 2.3). As can be seen from 
Figure 2.3, a clear distinction was observed in the mean reflectance between 
healthy and infested foliage in the visible and near-infrared regions. In the 
visible region, the mean reflectance of the infested foliage was higher than of 
the healthy leaves, in conjunction with chlorophyll degradation (Fig. 2.4). 
However, there was a larger difference (p ≤ 0.05) between infested and 
healthy needles in the wavelength range 730 – 1370 nm, as the healthy 
needles had higher reflectance compared to mean infested spectra. 

2.3.2 Impact of bark beetle green attacks on foliar biochemical 
properties 

A Student t-test demonstrated a significant difference between total 
chlorophyll and foliar nitrogen concentrations of healthy and infested leaves (p 
< 0.05). In healthy foliage, the mean and ± of the total chlorophyll 
concentration were  0.766 ± 0.140 mg/g, respectively, whereas for the green 
attacked leaves they were 0.657 ± 1.62 mg/g, respectively. Furthermore, the 
concentration of nitrogen was 1.25 ± 0.21 % within healthy leaves, while for 
the infested leaves they were 1.13 ± 0.18 %, respectively (Fig. 2.4). The 
correlation between total chlorophyll and nitrogen concentration was higher in 
needles from healthy trees (r = 0.68, p < 0.05) than in needles from green 
attacked trees (r = 0.57, p < 0.05) . 
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Figure 2.3: Mean reflectance spectra of healthy and infested leaves at the green attack 
stage. Gray areas depict the location of wavebands displaying is a significant difference 
between healthy and infested spectra. 

 
Figure 2. 4: Distribution of measured chlorophyll and nitrogen concentration for healthy 
and infested needles. There is a significant difference (p < 0.05) in chlorophyll and foliar 
nitrogen concentration between healthy and infested sample. 

2.3.3 Effects of bark beetle green attack on the retrieval 
accuracy of leaf biochemical properties. 

The impact of bark beetle green attack on the retrieval accuracy of foliar 
chlorophyll and nitrogen concentrations was assessed using PLSR. In general, 
higher accuracies were observed when healthy samples were assessed (Table 
2.1). For healthy foliage, the coefficients of determination for chlorophyll and 
nitrogen concentrations were R2 = 0.64 and R2 = 0.76, respectively. However, 
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these coefficients decreased for models fitted to data from infested foliage, 
both for chlorophyll (R2 = 0.55) and for nitrogen (R2 = 0.68) (Table 2.1). 
Similar results were discerned with the Pearson correlation coefficient between 
chlorophyll and the reflectance data, as well as between nitrogen and the 
reflectance data. As can be observed from Figure 6, significantly higher 
correlations were observed for healthy leaves than for infested leaves. In 
addition, the prediction error for chlorophyll in healthy leaves (nRSMSEp = 
0.20) was much lower than for chlorophyll in infested leaves (nRMSEp = 0.62) 
(Fig. 2.5). However, this variation in nRMSEp for nitrogen content was much 
lower (0.12 and 0.22) in both healthy and infested samples respectively. 
 

 
 

 
Figure 2.5: Measured versus predicted foliar chlorophyll (a) and nitrogen (b) 
concentration for healthy and infested samples derived from the PLSR analysis.  
 
Table 2. 1:  Number of latent variables, R2 and nRMSEp between measured and predicted 
chlorophyll and nitrogen in healthy and green attacked needles. 

Sample 
Condition Variables 

Nr. Of 
latent 

variables 
nRMSEp nRMSECV R2 

Healthy Chl 9 0.20 0.24 0.64 
N 10 0.12 0.20 0.76 

Infested 
Chl 10 0.62 0.75 0.55 
N 8 0.22 0.35 0.68 
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Figure 2. 6: Correlation between chlorophyll and nitrogen and the reflectance of 
individual wavebands. The bold lines represent the wavebands at which the reflectance 
spectra correlated significantly with the chlorophyll and nitrogen concentrations. The 
arrows show the wavebands in which recorded the highest correlation with chlorophyll 
content in both healthy and infested samples. 
 
As shown in Fig. 2.6 and 2.7, the spectral regions, in particular, the green and 
the red edge (536 - 559nm and 732 - 790nm, respectively), demonstrated the 
highest VIP (VIP > 1)  and a moderately negative correlation (r = -0.41 and -
0.32, for the green and red edge, respectively; P < 0.05) between chlorophyll 
and the reflectance spectra of  healthy foliage. The high VIP value indicated 
that the spectral feature was of major importance in estimating the chlorophyll 
concentration. A weaker negative correlation with a lower VIP score was 
observed for the infested samples (r = -0.12, P < 0.05). 
 
The spectral regions that were most sensitive to changes in nitrogen content 
were in the range of 980 - 1000 nm and 1448 - 1469 nm, where the infested 
leaves had a lower VIP score (Fig. 2.7). Furthermore, the correlation 
coefficients between foliar nitrogen concentration and the reflectance spectra 
show a distinct variation between healthy and infested foliage, especially in the 
spectral region between 720 - 1400 nm. The healthy foliage showed a 
moderately negative correlation (r = -0.30, P < 0.05), while for the infested 
foliage a positive correlation was found (Fig. 2.6). 
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Figure 2. 7: Importance of wavelengths corresponding to the highest value of variable 
importance in the projection scores of partial least squares regression in healthy and 
infested samples, used for chlorophyll and nitrogen estimation 

2.4 Discussion 
It has long been believed that the detection of bark beetle green attack using 
remote sensing data is a challenging task (Wulder et al., 2009; Niemann and 
Visintini, 2005). However, recent studies have shown that remote sensing data 
obtained across a number of wavelengths have the potential for the detection 
of bark beetle green attack (Cheng et al., 2010; Foster et al., 2017; Niemann 
et al., 2015). In this study, we investigated whether bark beetle green attack 
has a concurrent effect on key foliar biochemical properties (i.e. chlorophyll 
and nitrogen concentration) as well as spectral responses (400–2000 nm). The 
results demonstrate that the foliar reflectance of needles from green attacked 
trees differs significantly from healthy needles (p ≤ 0.05), in particular 
between wavelengths of 730 and 1370nm. Furthermore, the infestation 
significantly (p ≤ 0.05) affected the biochemical concentrations of total 
chlorophyll and foliar nitrogen and reduced their retrieval accuracy using PLSR  
(Fig. 2.3 and 2.4). 
 
The measured reflectance spectra of healthy needles matched those of similar 
studies which measured needle reflectance of Norway Spruce (Ali et al., 2016; 
Atzberger and Werner, 1998; Kováč et al., 2012). However, there were 
significant differences observed between the reflectance spectra of the healthy 
and the green attacked samples. This can be attributed to differences in their 
foliar biochemical properties, especially to their chlorophyll concentration 
which is known to be effected by vegetation stress. In our study, the 
reflectance increased in the visible region, and decreased in the NIR, for the 
green attack leaves. This is in line with the findings of Ahern (1988a), who 



Effects (Ipstypographus, L.) green attack on leaf properties 

28 

studied the spectral range of 400- 1100 nm and showed that the spectral band 
at the green peak increased for the lodgepole pine needles infested by similar 
beetle species (Mountain pine beetle) at the green attack stage. In the visible 
region, the concentration of pigments such as total chlorophyll is the main 
factor for determining leaf spectral variation and absorption peaks (Carter and 
Knapp, 2001; Demetriades-Shah et al., 1990; Feret et al., 2008; Zhang et al., 
2008). The infested trees had significantly (p < 0.05) lower chlorophyll and 
foliar nitrogen concentrations than the healthy ones, resulting in lower 
absorption and higher scattering (Fig. 2.3 and 2.4). The observed behaviour of 
the reflectance spectra in the visible region in this study is a clear indication of 
stress caused by early infestation and is in agreement with the results of earlier 
studies focused on plant stress (Carter, 1993; Carter and Knapp, 2001; Zarco-
Tejada and Sepulcre-Cantó, 2007). Furthermore, wavelength ranges between 
730-790 nm that contained the most informative spectral region regarding 
variations in chlorophyll concentration, demonstrated the greatest amount of 
dissimilarity (58 wavebands) between the healthy and infested leaf samples 
(Fig. 2.7). This spectral region is often referred as red-edge, and it responds 
quickly to changes in foliar chlorophyll (Carter, 1993; Carter and Knapp, 2001; 
Smith et al., 2004). This is in good agreement with finding by Lottering et al. 
(2016), as they studied the utility of spectral vegetation indices derived from 
WorldView-2 data in detecting and mapping G. scutellatus induced vegetation 
defoliation. Their result showed that the combination between red-edge and 
NIR region has the potential to detect stress induced by G. scutellatus insect. 
 
Moreover, as noted in Figure 2.3, the more pronounced changes in the 
reflectance spectra were observed at the wavelength region between the NIR 
and SWIR regions (730-1370 nm), where the reflectance of the infested leaves 
was distinctively lower than that of the healthy ones. This can probably be 
explained by the changes in water content that occur due to the infestation, 
which leads to a degeneration of the internal leaf structure at the cellular level 
(Miller et al., 1991; Murtha, 1978; Paine et al., 1997a; Slaton et al., 2001a; 
Zhang et al., 2012b). This result partially agrees with the findings of Niemann 
et al. (2015), who demonstrated that at the wavelength of 970 nm there was 
no separation between healthy trees and samples infested by mountain pine 
beetle, while at the wavelength of 1200 nm a significant difference existed 
between them. Additionally, Ismail and Mutanga (2010) showed the 
importance of the wavelength between 900 – 1110nm and identified both 
Ratio975 and water index has the ability to assess water stress induced by S. 
noctilio  in  P. patula  trees from an early stage of infestation when there is no 
sign of infestation at the canopy level. 
 
In addition to the variations in VIS and NIR, the reflectance spectra of healthy 
and green attacked samples were also significantly different ( p < 0.05) in two 
short-wave infrared regions (1430-1500 nm and 1897-2000 nm) (Fig. 2.3). 
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The most likely cause for this variation is the low water and nitrogen content 
in the infested samples (Curran et al., 1992; Mirzaie et al., 2014; Peñuelas and 
Filella, 1998). Physiological research has shown that the fungi carried by the 
beetles penetrate the living phloem, hampering the translocation of water, 
sugar and other nutrients within the bole of the tree (Paine et al., 1997a; Rohde 
et al., 1996; Safranyik et al., 2007; Wermelinger, 2004). Not only are the fungi 
instrumental in the decline of trees, but they also provide a necessary food 
source for insects during the infestation period (Runesson, 1991). This leads 
to a gradual decrease in needle biochemical content and water content. Foster 
et al. (2017) and Cheng et al. (2010) showed that a number of wavebands in 
the shortwave infrared region have the potential for the detection of bark 
beetle infestation at the green attack stage which is in line with our 
observation. Furthermore, in our study, we have verified that the infested trees 
had a significantly ( p < 0.05) lower nitrogen concentration than that found in 
the healthy trees. 
 
It should also be noted that we found that infestation at the green attack stage 
weakened the correlation between chlorophyll and foliar nitrogen 
concentrations. The correlation dropped from r = 0.68 to r = 0.57, which may 
be partially explained by the reduction in the range of the two parameters (Fig. 
2.4). Furthermore, the correlation between reflectance and both total 
chlorophyll and foliar nitrogen deteriorated as leaves were stressed by a bark 
beetle green attack (Fig. 2.6). The significant correlation (negative) between 
foliar nitrogen and spectral reflectance at the 700 and 1200nm (Fig. 2.6) is 
due to high concentrations of foliar nitrogen in healthy needles as they also 
contain high chlorophyll (and possibly other pigment) concentrations, lowering 
the reflectance. Under stress, trees tend to break down their pigments (Carter 
and Knapp, 2001), which probably effects the relationship between nitrogen 
and reflectance for the infested needles. Therefore, the infestation affects the 
selection of wavelengths that were most sensitive to the biochemical 
properties, in particular, the chlorophyll concentration, and their retrieval from 
spectral reflectance. This is demonstrated in Figure 2.7, where distinctively 
lower VIP scores were observed for the infested samples in the 730-790 nm 
spectral region. Consequently, the accuracy of estimation of the two 
parameters in the infested samples decreased (Table 2.1). To investigate the 
effects of bark beetle green attack on the prediction bias for total chlorophyll 
and foliar nitrogen we have used standardized residuals. In general,  as can be 
seen from figure 2.8, the infestation at the green attack stage caused under-
estimation of these two biochemical parameters from hyperspectral 
measurements.    
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Figure 2. 8: Standardized residuals of predicted total chlorophyll and nitrogen 
concentration for healthy and infested samples. 

2.5 Implications for remote sensing applications 
Our study confirms the importance of hyperspectral measurement as well as 
foliar biochemical properties (i.e. chlorophyll and nitrogen) for the detection of 
Ips typographus, L. green attack. An extension of this finding would be to 
investigate the up-scaling of our findings to the canopy level. However, this 
forms a challenge as many factors such as logistical and technological aspects 
may limit the scaling up to the canopy level (Foster et al., 2017; Wulder et al., 
2009). One of the critical logistical factors that affect a remotely sensed survey 
for green attacked trees is the timing of the optimal conditions for image 
acquisition. In addition, spatial and spectral resolutions play an important role 
in the studies of bark beetle green attack. However, this limitation may be 
overcome by utilising a UAV-based application and newly available 
multispectral satellite data, such as provided by Sentinel-2. In our study, the 
estimation accuracy of foliar chlorophyll and nitrogen concentration using 
hyperspectral measurements decreased when the tree was infested by bark 
beetle green attack. This might be used as an indicator for the efficient 
landscape-wide detection of bark beetle green attack. It is, however, important 
to note that retrieval accuracies for the total chlorophyll and foliar nitrogen 



Chapter 2 

31 

concentrations at the leaf level would probably be different from those at the 
canopy level, because structural and external factors such as illumination and 
atmospheric conditions may affect the reflectance spectra at the canopy level. 
Additionally, we found that the wavelength region between 730 and 790 nm 
(red-edge) is the most informative spectral region regarding variations in 
chlorophyll concentration due to bark beetle green attack (Fig. 2.6 and 2.7). 
This portion of the spectrum can be found in new multispectral satellites such 
as Sentinel-2, World View-2&3 RapidEye and therefore it might be possible to 
scaling up our findings to the canopy level, particularly considering the high 
spectral and spatial resolution data. Further investigation will show how 
accurate green attack stages can be detected with different air and spaceborne 
sensors. 

2.6 Conclusion 
This study demonstrates that reflectance properties of healthy and green 
attached Norway spruce trees are significantly different in 917 wavebands 
between 400-2000 nm. We also observed differences in the biochemical 
properties chlorophyll and nitrogen between healthy and green attacked 
needles by the bark beetle (Ips typographus, L.). Furthermore, the results 
demonstrated that the relationship between reflectance and both chlorophyll 
and nitrogen deteriorated as the leaves became stressed by a bark beetle 
green attack. Such an infestation affected the estimation accuracy of 
chlorophyll and nitrogen concentrations, examined using PLSR and 
hyperspectral reflectance data. The research findings indicate that 
hyperspectral measurements are promising, and present a powerful tool to 
determine the damage caused by bark beetle green attack at the leaf level. 
Further research is required to assess whether or not, the findings of the 
current study can be verified at the canopy level using different remote sensing 
data.  
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Chapter 3: Timing of red-edge and shortwave 
infrared reflectance critical for early stress 
detection induced by bark beetle (Ips 
typographus, L.) attack  
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Abstract  
Forest disturbance in Europe, induced by European spruce bark beetle Ips 
typographus, L., results in regional-scale dieback. Early stress detection in 
Norway spruce stands caused by bark beetle infestation at the green attack 
stage (when trees are yet to show distinct symptoms observable by the human 
eye) is crucial and can lead to effective forest management and reduce 
economic losses. This study aims to investigate and understand the dynamics 
of leaf traits and reflectance of Norway spruce (Picea abies) trees during bark 
beetle green attack. Using temporal high-resolution images from RapidEye and 
SPOT-5 in parallel with the collection of field data, we examined which spectral 
regions and leaf traits are affected by infestation over time and how they affect 
discrimination between healthy and infested plots at the early stage of attack. 
To achieve this aim, we used a novel approach by targeting both leaf and 
canopy level. We measured leaf reflectance spectra and six leaf traits (water 
content, nitrogen, chlorophyll fluorescence, chlorophyll, and stomatal 
conductance) from 66 healthy and 54 infested trees at three consecutive 
repeated time measurements in the summer of 2015 in the Bavarian Forest 
National Park. Concurrently, canopy reflectance and spectral vegetation indices 
(SVIs) were extracted from seven RapidEye images and six SPOT-5 images. 
Results showed significant differences (p ≤ 0.05) in the studied leaf traits 
between healthy and infested samples, and this difference increased with the 
progression of infestation. We found that leaf and canopy reflectance were 
significantly higher (p ≤ 0.05) for the infested trees by bark beetle than the 
healthy ones in the ‘red edge’ (680–790 nm) and ‘shortwave infrared’ (1110–
1490 nm) spectrum throughout the infestation event. Our results further 
demonstrated that the spectral vegetation indices calculated from the red-edge 
and SWIR spectral bands, such as NDRE, DSWI, LWCI and NDWI, were able to 
differentiate between healthy and infested trees earlier than the other SVIs. 
The new insight offered by these results is that the red-edge and SWIR spectral 
information from multispectral satellites has the potential to considerably 
improve monitoring and detection of forest stress and has important 
implications for European field bark beetle management and future studies. 
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3.1 Introduction 
Insect outbreaks are one of the key natural disturbances in conifer forests that 
trigger large-scale tree mortality, with noticeable effects on ecosystem services 
(Aakala et al., 2011; Raffa et al., 2008; Thom and Seidl, 2016). One of the 
insects that can create large-scale disturbances in short periods of time is the 
European spruce bark beetle (Ips typographus, L.) (hereafter, referred to as 
the bark beetle) (Fahse and Heurich, 2011). During recent decades, bark 
beetle frequency and intensity have dramatically increased (Bentz et al., 
2010). For example, in the Norway spruce forests in Central Europe, spruce 
bark beetles have killed a large number of Norway spruce trees in the order of 
tens of millions of hectares (Lausch et al., 2013a; Meddens et al., 2012; Raffa 
et al., 2008). Similarly, in British Columbia, Mountain pine beetles 
(Dendroctonus ponderosae) have killed several million hectares of pine trees 
since 1999 (Aukema et al., 2008; Westfall and Ebata, 2009). Bark beetles and 
their host trees are susceptible to climatic change, in particular, decreasing 
precipitation and increasing temperature (Netherer and Schopf, 2010). 
Because the global average temperature is predicted to increase by 1.4–5.8°C 
by 2100, enhancements of the intensity and incidence of bark beetle outbreaks 
are expected (Morris et al., 2018; Netherer and Schopf, 2010; Overbeck and 
Schmidt, 2012; Seidl et al., 2011). The bark beetle population has rapidly 
changed from one to three generations per year, as regional and global 
temperatures have increased (Bentz et al., 2010). Beetle survival rates have 
also increased during the winter at northern latitudes, particularly in the old 
spruce forests of northern and central Europe that have thus far been spared 
from major outbreaks (Morris et al., 2018; Öhrn, 2012). Furthermore, 
simulation studies on the bark beetle population have shown an increase in 
temperature at higher latitudes and have identified high-risk areas for bark 
beetle outbreaks and related tree mortality in the future (Bentz et al., 2010; 
Cailleret et al., 2014). 
 
The extensive increment in harvesting of European conifer forests, due to bark 
beetle infestation, has resulted in further research that focuses on various 
underlying forces to reduce further bark beetle outbreaks (Seidl et al., 2011). 
One of the common techniques used to combat this threat is to cut and remove 
the infested trees at an early stage to protect neighbouring unaffected trees 
(Fahse and Heurich, 2011). This step should be performed during the early 
phase of the infestation —the so-called ‘green attack’—and before beetle larvae 
are fully developed and able to infest other nearby trees (Wermelinger, 2004). 
At this stage, the beetles carry pathogenic blue stain fungus (Ophiostoma and 
Ceratocystis species) and will transfer it to the host trees. This fungus affects 
the translocation of nutrients and water within the trunk of an infested tree 
(Paine et al., 1997; Rohde et al., 1996). As a result, the initial response of the 
hosted trees by bark beetles is to close their stomata, a process which 
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decreases the water content due to the shutting down of the stem (Edburg et 
al., 2012). This behaviour (closing stomata) of the infested trees leads to a 
decrease in photosynthesis as a result of CO2 limitation (Flexas et al., 2004) 
and eventual death through water stress.  
 
Traditionally, foresters had to look for early signs of infestation by searching 
for a dry brown powder that was produced by the bark beetles during the 
colonisation process when the beetles tunnel under the bark of the trees 
(Abdullah et al., 2018a). Such a technique, however, is not practical and is 
inefficient for application in large areas because it is significantly laborious and 
costly. Remote sensing data and techniques are a useful alternative for 
effective forest management. The premise of employing remotely sensed data 
to monitor and identify stressed or insect-infested forests is that the infested 
trees show symptoms detectable by remote sensing sensors (Chen and 
Meentemeyer, 2016).   
 
Previous studies have shown the significant potential of remote sensing data 
for detecting the advanced stages of bark beetle infestation (so-called ‘red-
attack’ and ‘grey-attack’) (Coops et al., 2006; Filchev, 2012; Franklin et al., 
2003; Hais et al., 2009; Havašová et al., 2015; Meddens et al., 2013; Skakun 
et al., 2003; White et al., 2007; White et al., 2006; Wulder et al., 2006). A 
red-attack is the advanced stage of bark beetle infestation, in which the 
attacked trees develop stress symptoms by turning their needles’ colour from 
green to yellow to red-brown. Subsequently, the needles fall from the infested 
trees, and only the grey bark remains; hence, this stage is termed ‘grey attack’ 
(Coulson et al., 1985). It is important to note that the early detection (green 
attack) of a bark beetle attack is crucial for preventing an outbreak, and 
salvage logging which is performed for loss recovery and appropriate bark 
beetle management (Fahse and Heurich, 2011). 
 
Timing plays a critical role in remote sensing and field surveys of bark beetle 
green attack (Wulder et al., 2009). An operational survey has to be performed 
when the infestation is in its early phase and should consider the temporal field 
observation associated with beetle biology and the appearance of the 
symptoms in the tree foliage. In other words, in remote sensing-based surveys 
of green attack, the swarming event of the beetles must be considered. For 
example, the European spruce bark beetle (Ips typographus, L.) starts to 
swarm when the air temperature reaches 16.5°C (Lobinger, 1994; 
Wermelinger, 2004). To date, the identification of green attack has been less 
satisfactory due to many biological, technical and logistical 
constraints/limitations. These issues include the flight activity of the bark 
beetle, the time duration required for the colonisation process and the period 
when the infested trees have yet to show distinct symptoms capable of being 
observed by human eye. Hence, it is important to consider biological as well 
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as logistical factors when using remotely sensed data to detect bark beetle 
green attack (Wulder et al., 2009).  
 
Numerous studies have focused on using single-date remote sensing data or 
have compared the utility of different remotely sensed data from different 
sensors, to detect early infestation stages; hence, very little attention has been 
paid to investigating the temporal response of trees under bark beetle attack. 
For example, early detection of a different beetle (Dendroctonus southern pine 
beetle (spp) in lodgepole pine trees) has been investigated by Gimbarzevsky 
et al. (1992), Murtha (1972) and Murtha and Wiart (1989) using multispectral 
aerial photographs. However, it has been challenging in these studies to 
differentiate between green attacked trees and the healthy ones. Similarly, 
Heath (2001) encountered similar challenges when using airborne 
hyperspectral data from CASI (Compact Airborne Spectrographic Imager). On 
the other hand, a number of studies have attempted to detect the early stage 
of Ips typographus, L. green attack using different remote sensing data and 
techniques. Ortiz et al. (2013) used TerraSAR-X and single-date high-
resolution data from the RapidEye satellite. Lausch et al. (2013b) used a single 
date airborne hyperspectral HyMAP image data for detecting bark beetle green 
attack. More recently, Immitzer and Atzberger (2014) and Näsi et al. (2018) 
have used WorldView-2, and hyperspectral data obtained from an unmanned 
aerial vehicle (UAV) to detect bark beetle green attack. 
 
As mentioned previously, during the colonisation process, the beetles inoculate 
the host trees with pathogenic fungi, such as Ophiostoma and Cerato-cystis. 
Therefore, the infested trees will develop stress symptoms, due to changes in 
biochemical and spectral properties. As a result, the biochemical properties 
such as leaf water content, chlorophyll, nitrogen, and stomatal conductance 
are expected to decline within trees colonised by bark beetles (Abdullah et al., 
2018a).   
 
Given the above biological and logistical factors, continuous monitoring is 
essential for investigating and understanding the dynamic characteristics of 
leaf properties and canopy reflectance under bark beetle infestation, which 
may help to detect and monitor changes at an early stage. Such observation 
provides detailed information regarding the impact of bark beetle on infested 
trees and it also allows us to explore the diagnostic effects at any stage and to 
achieve and detect the possible effects of bark beetle infestation as early as 
possible. Therefore, in this study for the first time, we sought to investigate 
the temporal effect of bark beetle attack on infested trees in the early 
development phase (green until the red attack stage). To do this, we targeted 
both the foliar and canopy levels by continuously monitoring the changes using 
temporal field data measurements and temporal remote sensing satellite data 
from RapidEye and SPOT-5. The main goals of this study are  (i) to analyse the 



Dynamics of leaf and canopy properties under (Ips typographus, L.) Infestation 

38 

temporal dynamics for a number of leaf traits influenced by bark beetle attack 
from the beginning of infestation until the advanced  stage of attack (red 
attack) and (ii) to identify and explore remote sensing time-series indices 
effective for explaining changes in leaf traits, as well as for detecting early 
stages of bark beetle infestation.   

3.2 Material and methods  

3.2.1 Study area  

The study site is the southern part of Bavarian Forest National Park (BFNP), 
which is located in south-eastern Germany along the border of the Czech 
Republic, and it lies between 13°12'9" E (longitude) and 49°3'19" N (latitude). 
The BFNP established in 1970 and extended in 1977, covering an area of 240 
km2. Depending on the elevation in the BFNP, which ranges from 600 m to 
1450 m, the mean annual temperature fluctuates between 3.5° and 9°C, and 
the total annual precipitation varies from 900 to 1800 mm (Bässler et al., 
2008; Heurich et al., 2010). 
 
In the BFNP three major forest types can be recognised; these are, highlands, 
hillsides, and valleys. The highlands above 1100 m are dominated by Norway 
spruce (Picea abies), and some Mountain ash (Sorbus aucuparia); in the 
hillsides, with elevation between  600 – 1100 m, is mixed forest including 
Norway spruce (Picea abies), European beech (Fagus sylvatica), White fir 
(Abies alba), and Sycamore maple (Acer pseudoplatanus); in the valleys, 
spruce forests exist, including Mountain ash, Norway spruce, and birches 
(Betula pendula, Betula pubescens) (Cailleret et al., 2014; Heurich et al., 
2009; Latifi et al., 2018). Since 1984, the forests of BFNP have been affected 
by the spruce bark beetle (Ips typographus, L.), which have caused extensive 
disturbance and economic losses to timber production in this region (Cailleret 
et al., 2014). 

3.2.2 Field data collection 

From mid-May to mid-July 2015, an extensive field survey was conducted to 
collect field measurements, in which the selected sample trees were visited on 
three separate occasions (Table 3.1). We divided the study site into healthy 
Norway spruce trees stands as well as stands with trees freshly infested by 
bark beetles. Considering the nature of the forest heterogeneity in tree species, 
tree age and density, 30 healthy plots were randomly selected. To select the 
green attacked trees, we conducted an extensive field survey to search for dry 
brown powder around the trees. Altogether, we selected 120 trees (66 healthy 
and 54 green attacked) to measure foliar properties. The collected tree 
samples were divided between 30 healthy and eight infested plots. Bark beetle 
outbreaks generally occur over the course of several years, and to avoid mixed 
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reflectance from previous years’ attacked trees and green attacked trees, only 
those plots that showed freshly infested or green-attacked trees were 
considered. A Leica GPS 1200 differential global positioning system (DGPS) 
(Leica Geosystems AG, Heerbrugg, Switzerland) was used to locate the centre 
of each plot (Abdullah et al., 2018b). 
  
From each tree, an average of two to three branches were taken from the 
upper canopy exposed to sunlight. Because the height of Norway spruce trees 
reaches 25 to 30 m, we used a crossbow to shoot an arrow with a fishing line 
into a branch with sunlit leaves. Full details regarding the use of the crossbow 
can be found in Ali et al. (2016). Next, to measure leaf traits, needle samples 
were removed from collected branches. In the field, total chlorophyll, 
chlorophyll fluorescence and stomatal conductance were measured. A 
handheld chlorophyll content meter (CCM) was used to measure both 
chlorophyll and chlorophyll fluorescence. From the fallen branches, an average 
of ten readings were immediately taken using the CCM. To measure the needle 
stomatal conductance, a steady-state instrument (SC-1 Leaf Porometer) was 
used. This instrument computes stomatal conductance utilising a leaf clip 
chamber that can monitor the relative humidity (RH %) released from the leaf 
stomata.  
 
The needle samples were covered by wet paper and placed in a labelled plastic 
zip-locked bag in order to transport to the laboratory in a portable cooling box. 
In the laboratory, an ASD FieldSepc-3 Pro FR spectrometer equipped with an 
ASD RT3-3ZC integrating sphere (Analytical Spectral Devices, Inc., Boulder, 
Co, USA) was used to measure the directional hemispherical reflectance from 
350 to 2500 nm for the collected samples. The details concerning the 
measurements of hemispherical needle reflectance can be found in Abdullah et 
al. (2018) and Malenovský et al. (2006). To calculate leaf water content, fresh 
weight (Fw/g) and leaf surface area (LA cm2) were determined for the collected 
samples using a digital scale and an AMH 350 leaf area meter. The needle 
samples were then oven-dried for 72 hours at 60°C until a constant weight was 
obtained. Finally, to measure the nitrogen concentration of the dried needles, 
an organic elemental analyser (FLASH 2000) was used. 
Leaf water content (Cw) was determined using the following equations: 
 
Cw (g/cm2) = (Fw – Dw) / LA (3.1) 
 
where Fw, Dw, and A represent fresh leaf weight (g), dry leaf weight (g). The 
studied leaf traits (total chlorophyll, chlorophyll fluorescence, nitrogen 
concentration, water content, and stomatal conductance) were continuously 
measured at three different times for the representative trees (Table 3.1). 
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Table 3. 1: The leaf traits measured and overview of satellite data acquisition in the 
Bavarian Forest National Park, 2015. The () are the SPOT-5 data and (•) are the 
RapidEye data. T1, 2, and 3 represent first, second, and third field measurements, 
respectively. 

 

3.2.3 Satellite imagery 

We identified two series of high-resolution multispectral satellite data, namely 
RapidEye and SPOT-5 (Table 3.1). The RapidEye orbit system consists of five 
satellites, each of them collecting radiation in the five spectral bands blue, 
green, red, red edge and near-infrared (NIR). In this study, seven RapidEye 
images were captured within the time period May 2015 to September 2015. 
They were systematically geo-corrected radiance and orthorectified at 5 m  
spatial resolution and matched each other with sub-pixel accuracy (RapidEye, 
2011; Tyc et al., 2005). 
 
For the SPOT-5, we used six images from L2A reflectance product, that 
provides data with atmospheric and topographic corrections as well as with 
corresponding masks, clouds, and shadows. It captures data in 4 spectral 
bands (green, red, near infrared and shortwave infrared). The SPOT-5 L2A has 
10 m spatial resolution when acquired within the Take-5 initiative (Meygret, 
2007).   

3.2.3.1 Ancillary data (reference disturbance data) 

Vector-based reference data of the green attacked areas in 2015 were obtained 
from the Bavarian Forest National Park (BFNP) administration (Abdullah et al., 
2018b). The reference data is produced from aerial colour-infrared (VIS and 
NIR) images with 0.1 m spatial resolution. The aerial images were obtained 
during the flight campaign that were carried out in September 2016, and for 
which the new deadwood (grey attack stage) from the 2015 infestation was 
documented by stereo photogrammetry. For more detailed information about 
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the processing and interpretation of aerial images in the BFNP see Heurich et 
al. (2009) and Lausch et al. (2013a). 
 
The data were rasterised into 5 m × 5m grid cells to match with a spatial 
resolution of RapidEye, and 10 m × 10 m grid cells to match with a spatial 
resolution of SPOT-5 data. From the rasterised data 299 infested plots were 
selected to extract the reflectance value (Fig. 3.1).   
 

 
Figure 3. 1: Distribution of sample plots in the southern part of Bavarian Forest 
National Park, Germany. 

3.2.3.2 Spectral vegetation indices 

Several spectral vegetation indices exist in the literature that are used for the 
estimation of vegetation biochemical properties  (Collins and Woodcock, 1996; 
Eitel et al., 2006). In this study, spectral vegetation indices linked to measured 
leaf traits were calculated from the spectral reflectance data collected from the 
SPOT-5 and RapidEye images (Table 3.2). The spectral reflectance and SVIs 
value were extracted from satellite images for the selected 30 healthy and 299 
infested sample plots. The value extraction was done using ENVI-IDL5.5 
spectral analysis toolbox. From the calculated vegetation indices, time series 
data stacks were then generated from each sample plot. The time series data 
were then subjected to further analysis.  
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Table 3. 2: List of spectral vegetation indices calculated from SPOT-5 and RapidEye data 
for both healthy and infested sample plots. 

 

3.2.4 Data analysis 

To understand the temporal variations in all the measurements (leaf traits and 
extracted canopy reflectance data), we first explored the temporal variation 
from the time-series data (T1–T3). At the leaf level, mean and standard error 
values were calculated for both the healthy and infested sample trees to 
determine the temporal variation in the biochemical components. In addition, 
we conducted a Student t-test to investigate whether the variations in the 
measured leaf traits were significantly different (p < 0.05) between healthy 
and green attacked samples. Similarly, an unpaired Student t-test was used to 
examine whether the temporal variation in leaf reflectance spectra correlated 
with the bark beetle infestation and to identify the wavelength regions which 
were significantly different between the healthy and infested samples.  
 
At the canopy level, box plots and Student t-tests were applied. Firstly, a box 
plot was used to explore temporal variations in the extracted spectral 
reflectance data in the given years. Secondly, a t-test was used to examine 
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whether there were significant differences (p < 0.05) in reflectance data 
between these two sample plots (healthy and infested). Moreover, from the 
calculated spectral vegetation indices, the mean and standard errors were 
extracted for each sample plot, and a temporal comparison was made. 

3.3 Results 

3.3.1 Temporal response of measured leaf traits under bark 
beetle 

The results of the temporal variation demonstrated that there was a clear 
distinction between healthy and infested sample trees from the Time-1 (T1) to 
Time-3 (T3) measurements (Fig. 3.2). In the healthy leaves, the mean of the 
total chlorophyll concentrations were 337, 403, and 399 mg/m2 at T1 and T3 
respectively. However, for the infested samples, the mean of the total 
chlorophyll concentrations were lower, viz. 317, 301, and 275 mg/m2, 
respectively. Similar trends were observed for the other leaf traits, where all 
measured leaf traits values decreased within the infested samples from T1 to 
T3. For example, the stomatal conductance which was measured at the 
beginning of the infestation at T1 for the infested leaf was higher when 
compared to the ones at T3, whereas, for the healthy leaves, the opposite 
result was observed.  
 
This was further confirmed by the results of the Student t-test, which showed 
a significant difference   (p < 0.05) between healthy and infested samples in 
all measured leaf traits (chlorophyll fluorescence, chlorophyll, nitrogen 
concentration, stomatal conductance, and leaf water content ). At the 
beginning of the infestation (T1), the differences were smaller between the two 
sample groups (healthy and infested) for all studied leaf traits. However, there 
was a larger difference between the infested and healthy needles at T2 and T3, 
as the infested trees developed signs of stress (Fig. 3.2). 
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Figure 3.2: Temporal variation of the measured leaf traits for healthy and infested 
samples. Blue and black lines represent healthy and infested plots, respectively.  T1, T,2 
and T3 represent first, second, and third measurements, respectively. (*) Hardly 
significant, (**) significant, (***) Strongly significant. 
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Further analysis of the leaf spectral reflectance spectra values showed that the 
mean reflectance spectra of green attacked samples was higher than for the 
healthy ones in the visible and shortwave infrared region (Fig.3.3). The 
difference (p < 0.05) was stronger during T2 and T3, as the infested trees 
showed increased stress symptoms.   
 

 
 
Figure 3. 3: Mean reflectance spectra of healthy and green attacked leaves at three 
consecutive repeated time measurements in the summer of 2015. Blue and black lines 
represent healthy and infested leaves, respectively. Wavebands in which there is a 
significant difference between healthy and green attacked leaves are presents in Gray. 

3.3.2 Temporal response of canopy spectral data to bark 
beetle infestation 

We assessed the response of canopy reflectance to bark beetle attack 
employing a time series of remotely sensed images from RapidEye and SPOT-
5. The reflectance data were extracted from each image and for both sets of 
satellite data (RapidEye and SPOT-5). We found a symmetrical change of 
reflectance data for both sets of satellite data (Figs. 3.4 and 3.5). For example, 
for the RapidEye imagery, the reflectance of red-edge and NIR bands were 
higher for the infested plots than the healthy ones on May 13. The variation of 
these two spectral bands increased with the progression of infestation on July 
2 and the later images. Moreover, a Student t-test of spectral bands revealed 
similar findings, as the red-edge was significantly different (p < 0.05) between 
healthy and infested plots for all RapidEye imagery considered in this study, 
while the variation in NIR between healthy and infested plots showed a 
significant difference (p < 0.05) from July 2 and later (Fig. 3.4). For the SPOT-
5 imagery, the reflectance of SWIR appears to be the most sensitive to the 
bark beetle stressor, as it was significantly different (p < 0.05) from May 11 
onwards (Fig. 3.5). 
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Figure 3. 4: (A) Temporal variation of canopy reflectance for healthy and infested plots 
in the Bavarian Forest National Park using RapidEye satellite data. Red and Green boxes 
represent infested and healthy plots, respectively (B) Unpaired t-test canopy reflectance 
between healthy and infested samples. Dark squares indicate spectral wavebands that 
were significantly different (P ≤ 0.05). The red box shows the spectral region that was 
significantly different overall temporal data considered in this study 
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Figure 3. 5: (A) Temporal variation of reflectance spectra for healthy and infested plots 
in the Bavarian Forest National Park using SPOT-5 satellite data. Red and Green boxes 
represent infested and healthy plots, respectively (B) Unpaired t-test of canopy 
reflectance between healthy and infested samples. Dark squares indicate spectral 
wavebands that were significantly different (P ≤ 0.05). The red box shows the spectral 
region that was significantly different overall temporal data considered in this study 
 
Further analysis regarding the SVIs shows that there were a big overlap 
between healthy and infested plots in May for both RapidEye and SPOT-5. 
However, as infestation progresses, this variation becomes larger and more 
distinct (Figs. 3.6 and 3.7). For the RapidEye data, the difference between the 
healthy and infested plots by means of spectral vegetation indices values 
started to change from July 2nd using NDRE and NGRDI, while the other indices 
started to enlarge the variation at the later dates considered in this study (Fig. 
3.6). A similar result was found using a reflectance difference index, as the 
red-edge and NIR bands became statistically different from May, becoming 
progressively more pronounced at later dates.  
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Using SPOT-5, the spectral vegetation indices calculated from the combination 
of SWIR and other spectral bands, such as DSWI, LWCI and NDWI, exhibited 
a larger difference between the healthy and infested plots at the earlier stage 
of infestation (Fig. 3.7). This is also confirmed in the result of the  Student t-
test analysis, where the SWIR was significantly different (P < 0.05) for all dates 
considered in this study.  
 

 

 

 

Figure 3. 6: Temporal variation of studied spectral vegetation indices for healthy and 
infested plots in the Bavarian Forest National Park using RapidEye satellite data. Green 
and black lines represent healthy and infested plots, respectively.  
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Figure 3. 7: Temporal variation of studied spectral vegetation indices for healthy and 
infested plots in the Bavarian Forest National Park using SPOT-5 satellite data. Green 
and black lines represent healthy and infested plots, respectively.  

3.4 Discussion 
In this study, we demonstrated that the measured leaf traits and leaf 
reflectance spectra from infested trees differed significantly (p ≤ 0.05) from 
healthy ones during T1, T2, and T3 measurements (Figs. 3.2 and 3.3). 
Furthermore, the red-edge and SWIR spectral bands from RapidEye and SPOT-
5 were influential in the separating between healthy and infested plots. 
Moreover, we found that red-edge and SWIR bands maintained their sensitivity 
for monitoring and detecting bark beetle infestation from the early to the 
advanced stages of infestation (Figs. 3.4 and 3.5).  
 
The absolute difference in measured leaf traits between the healthy and 
infested trees increased from T1 to T3. In particular, stomatal conductance and 
chlorophyll fluorescence exhibited significant differences between the healthy 
and infested trees (Fig. 3.2). A possible explanation for this result might be 
that the initial impact of bark beetles on the infested trees shuts down the 
translocation of water in the tree due to the blue stain fungi introduced to the 
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trees during the infestation process. Because the hydraulic systems of plant 
and stomatal conductance are closely correlated with each other (Ewers et al., 
2007), infested trees tend to close their stomata to preserve water. Therefore, 
the stomatal closure is the first sign of stress that induces the physiological 
response of infested trees to preserve water. It is well-known that physiological 
factors, such as plant water content, can control the temperature of plants 
through the stomatal transpiration process (Oerke et al., 2006). Moreover, the 
stomatal closure leads to a drop in photosynthesis activity due to the CO2 
limitation, and, therefore, the chlorophyll fluorescence decreases (Flexas et al., 
2004; Zweifel et al., 2009). Hence, the distinct variation observed in stomatal 
conductance between healthy and infested trees is attributed to differences in 
the measured leaf traits—in particular, leaf water content and chlorophyll 
fluorescence (Fig. 3.2). These findings match those observed in earlier studies 
that the initial impact of mountain pine beetles on infested trees causes a drop 
in the sapwood moisture and, hence, stomatal closure (Yamaoka et al., 1990). 
Likewise, our findings are in agreement with those of (Cheng et al., 2010), who 
studied the impact of a similar species, the mountain pine beetle 
(Dendroctonus spp) on the leaf water content of lodgepole pine using 
hyperspectral data.  
 
Another important finding at the leaf level was that the difference in reflectance 
spectra between healthy and infested samples increased with the progression 
of infestation from T1 to T3 (Fig. 3.3). Noticeable changes were perceived at 
the visible wavelengths, in particular, from 680–790 nm and in the shortwave 
infrared wavelengths 1110 –1490 nm. The reflectance of the infested leaves in 
the visible spectrum from T1 was distinctly higher than that of the healthy 
ones. This result was likely due to having significantly (p ≤0.05) lower 
chlorophyll in infested leaves than the healthy leaves from T1 to T3, causing 
lower absorption and higher scattering in the visible wavelengths (Fig. 3.2) 
(Carter and Knapp, 2001; Zhang et al., 2008). Furthermore, we reported that 
the reflectance of the healthy leaves was higher in the NIR region and lower in 
SWIR than that observed in the green attacked ones. Physically, the 
reflectance at the leaf level is a function of dry matter, water content, 
chlorophyll and internal leaf structure (leaf thickness) (Ali et al., 2016; Pu and 
Gong, 2011; Slaton et al., 2001). Hence, the observed reflectance pattern of 
the infested samples may have been due to the decrease in water content (Fig. 
3.2) which is caused by bark beetle infestation. 
 
Similarly, at the canopy level, both red-edge and SWIR bands from RapidEye 
and SPOT-5, respectively, showed a significant difference between the healthy 
and infested sites for all the dates considered in this study (Figs. 3.4 and 3.5). 
When implemented as a time series, they showed distinct temporal variation 
in reflectance and indices values between the healthy and infested sites, 
especially during the later stages of infestation. For example, the NDRE 
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calculated based on the combination of the red-edge and NIR bands is shown 
to be more sensitive than the other SVIs due to the stress induced by bark 
beetle infestation. The NDRE is known to detect stress or any forest health 
decrease earlier than NDVI (Eitel et al., 2011). In our study, the NDRE started 
to differentiate between the healthy and infested plots from 2nd July, while the 
other SVIs showed a difference almost one month later (Fig. 3.6). This result 
is in agreement with our earlier findings (Abdullah et al., 2018b) in which the 
NDRE calculated from the Sentinel-2 imagery possessed the most sensitive 
indices to differentiate between the healthy and green attacked sample plots.  
All the indices, such as DSWI, NDWI and LWCI, which employed the SWIR 
bands, were mostly sensitive to stress caused by variations in water content 
and were able to discriminate healthy from infested sites. For example, the 
DSWI and NDWI showed significant differences between the two groups on 
June 5th and July 10th, respectively. This is due to the significantly lower water 
content (P < 0.05) of the infested samples, and, therefore, their spectral 
reflectance in the SWIR region were highly affected  (Figs. 3.2 and 3.5). This 
also accords with our earlier observation (Abdullah et al., 2018b), which 
showed the SWIR bands from Sentinel-2 and Landsat-8 were sensitive to 
detecting bark beetle infestation at the early phase of the attack. Likewise, 
Foster et al. (2017) identified the shortwave infrared region as key for 
detecting the early stages of beetle infestation in Engelmann spruce trees.  
 
Based on the temporal variations in the canopy reflectance values and 
measured SVIs, here we identified for the first time in the European situation 
(and in contrast to earlier works in the US) that mid-June to the beginning of 
July is an appropriate time frame for the early stress detection induced by bark 
beetle infestation (Fig. 3.3, 3.4 and 3.5). This is the most initial period when 
the spectral difference between infested and healthy plots peaks. Although this 
time period may be slightly late for appropriate bark beetle management, our 
study has however shown the impending role of multispectral satellite 
(RapidEye and SPOT-5) data for monitoring and detecting forest stress induced 
by bark beetle attacks, and thus, has important implications for European field 
bark beetle management and future studies. However, further research is 
essential to explore the potential of other spaceborne sensors in detecting 
canopy reflectance changes due to bark beetle infestation during the early 
stage of an attack.  

3.5 Conclusion   
This study presents an innovative approach to investigate the temporal 
response of leaf properties and canopy reflectance spectra to European bark 
beetle infestation using a temporally dense time series of seven RapidEye 
senses and six SPOT-5 senses in parallel with the collection of field data at 
three consecutive repeated time measurements. Remote-sensing-based SVIs 
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complemented the ground data collected, providing additional information to 
help characterise the temporal response of infested trees through time and 
across the landscape. In conclusion, our key concept is that we show for the 
first time that: 
 All measured leaf traits from infested trees differed significantly from 

healthy trees during Time-1, -2, and -3 measurements. 
 The red-edge and SWIR were important spectral regions at both leaf and 

canopy levels for detecting subtle changes in Norway spruce trees due to 
bark beetle infestation. 

 The earliest period at which the spectral difference between infested and 
healthy plots peaks is mid-June to the beginning of July. 

We recommend that further studies should investigate different remote 
sensing datasets and monitor over a longer period to show the relationship 
between bark beetle infestation and the changes in biochemical variables and 
spectral reflectance more clearly. 
 

 



53 

Chapter 4: Sensitivity of Landsat-8 OLI and 
TIRS Data to Foliar Properties of Early Stage 
Bark Beetle (Ips typographus, L.) Infestation 
  

                                          
 This chapter is based on: 
 
Abdullah, H., Darvishzadeh, R., Skidmore, A.K., and Heurich, M. ,2019. Sensitivity of 
Landsat-8 optical and thermal infrared data to foliar properties at early stage bark beetle 
(Ips typographus, L.) infestation. Remote sensing, 4, 398. 
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Abstract  
In this study, the early stage of European spruce bark beetle (Ips typographus, 
L.) infestation (so-called green attack) is investigated using Landsat-8 optical 
and thermal data. We conducted an extensive field survey in June and the 
beginning of July 2016, to collect field data measurements from several 
infested and healthy trees in the Bavarian Forest National Park (BFNP), 
Germany. In total, 157 trees were selected, and leaf traits (i.e. stomatal 
conductance, chlorophyll fluorescence, and water content) were measured. 
Three Landsat-8 images from May, July, and August 2016 were studied, 
representing an early stage, advanced stage, and post-infestation, 
respectively. Spectral vegetation indices (SVIs) sensitive to the measured 
traits were calculated from the optical domain (VIS, NIR, and SWIR), and 
canopy surface temperature (CST) was calculated from the thermal infrared 
band using the mono-window algorithm. The leaf traits were used to examine 
the impact of bark beetle infestation on the infested trees and to explore the 
link between these traits and remote sensing data (CST and SVIs). The 
differences between healthy and infested samples regarding measured leaf 
traits were assessed using Student’s t test. The relative importance of the CST 
and SVIs for estimating measured leaf traits was evaluated based on the 
variable importance in projection (VIP) obtained from the partial least squares 
regression (PLSR) analysis. A temporal comparison was then made for SVIs 
with a VIP > 1, including CST, using statistical significance tests. The clustering 
method using a principal components analysis (PCA) was used to examine 
visually how well the two groups of sample plots (healthy and infested) are 
separated in 2-D space based on principal component scores. Finally, linear 
regression (LR) was used to generate the leaf traits maps using the SVI that 
have highest VIP score and then used to produce a stress map for the study 
area. The results revealed that all measured leaf traits were significantly 
different (p < 0.05) between healthy versus infested samples. Moreover, the 
study showed that CST was superior to the SVIs in detecting subtle canopy 
changes due to bark beetle infestation for the three months considered in this 
study. The results showed that CST is an essential variable for estimating 
measured leaf traits with VIP > 1, improving the results of clustering when 
used with other SVIs. Likewise, the stress map produced by CST and leaf traits 
well presented the infestation areas at the green attacked stage. The new 
insight offered by this study is that the stress induced by the early stage of 
bark beetle infestation is more pronounced by Landsat-8 thermal bands than 
the SVIs calculated from its optical bands. The potential of CST in detecting 
the green attack stage would have positive implications for forest practice. 
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4.1 Introduction 
Forests are important ecosystem with economical, social, and ecological 
values. The economic value of timber in a forest is typically threatened by 
natural disturbances such as fire, drought, wind, snow, and insect or disease 
outbreaks (Morris et al., 2017; Tchakerian and Coulson, 2011). In Europe, the 
European spruce bark beetle (Ips typographus, L.) is a common disturbance 
agent in forests dominated by Norway spruce (Picea abies)  (Schelhaas et al., 
2003). Bark beetle infestation extends across ten million hectares of trees in 
Europe. Much public money has been invested to compensate forest owners 
for their economic loss and for the cost of reforestation (Eidmann, 1992; 
Pasztor et al., 2014; Seidl et al., 2008). Besides the negative impact on timber 
production, bark beetles can also have a positive impact on the ecosystem by 
providing a suitable habitat in the form of opening forest canopy, increasing 
habitat heterogeneity and biodiversity, all of which enhance the survival of 
other species (Lehnert et al., 2013; Müller and Bütler, 2010). 
 
The principle of bark beetles killing host trees has been well described in 
Wermelinger (2004). After a successful attack, the trees change colour in three 
stages; referred to as green, red, and grey attack, respectively (Raffa et al., 
2015; Wermelinger, 2004). The green attack is the early stage of bark beetle 
infestation in which the colonised trees are yet to show distinct symptoms 
observable by the human eye (Niemann and Visintini, 2005a; Wulder et al., 
2006c). A red-attack is evidence of the advanced stage of bark beetle 
infestation, in which the attacked trees develop stress symptoms involving 
turning the colour of their needles from green to yellow to red-brown. 
Subsequently, the needles fall from the infested trees, and only the grey bark 
remains; hence, this stage is termed ‘grey attack’ (Coulson et al., 1985). 
 
Detection of bark beetle infestation at the green attack stage means locating 
infested trees at the stage where the beetle larvae are still within the tree. 
Effective measures to manage the beetles can then be undertaken. This will 
ultimately help reduce the number of infested trees, lessening the economic 
loss. Visual inspections during field surveys and pheromone traps have 
traditionally been used to detect bark beetle infestations in Norway’s spruce 
forests. However, these methods are subjective, very laborious, costly, and 
only able to cover relatively small areas. Remote sensing presents an 
alternative to existing methods for monitoring and detecting infestations on 
large spatial scales (Wulder et al., 2006a). To date, remote sensing data have 
been successfully used to detect the advanced stages (red and grey attacks) 
of bark beetle infestation.  
 
For example, many studies have employed spectral vegetation indices (SVIs) 
from low-to-medium resolution satellite data to detect the advanced stages of 
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bark beetle infestation (red and grey attack) (Filchev, 2012a; Franklin et al., 
2003b; Hais et al., 2009; Havašová et al., 2015; Meddens et al., 2013; Wulder 
et al., 2006c); however, to date, the identification of European spruce bark 
beetle (Ips typographus, L.) green attack has been less satisfactory due to 
many biological, technical and logistical constraints/limitations. These issues 
include the flight activity of the bark beetle, the time duration required for the 
colonisation process and the period when the infested trees have yet to show 
distinct symptoms capable of being observed by human eye. Hence, it is 
important to consider biological as well as logistical factors when using 
remotely sensed data to detect bark beetle green attack (Wulder et al., 2009) 
 

 
Figure 4. 1: Studies that have used remote sensing data to attempt detecting bark beetle 
infestation at the green attack stage. 
 
There are very few studies that have paid particular attention to investigating 
the impact of bark beetle green attack on biochemical properties and 
physiological status of infested trees. However, they studied different beetle 
(mountain pine beetle) and tree (lodgepole pine) species. For example, 
Yamaoka et al. (1990) documented a decline in sapwood moisture content 
resulting from mountain pine beetle attack. Likewise, Cheng et al. (2010) 
revealed water deficit and changes in chlorophyll content of artificially stressed 
pine trees by mountain pine beetle. They also identified the wavelength range 
between 950 nm and 1390 nm as a good spectral region able to separate 
healthy from green attacked trees. In general, moisture stress in vegetation 
may result in non-visual symptoms that are detectable with remote sensing 
data, particularly in the shortwave and thermal infrared regions, where water 
absorption features exist (Berni et al., 2009; Buitrago Acevedo et al., 2017; 
Jang et al., 2006; Sepulcre-Cantó et al., 2006). However, the majority of the 
studies on bark beetle (either mountain pine beetle or spruce bark beetle) 
green attack detection with remotely sensed data have mainly utilised optical 
remote sensing data (Fig. 4.1). There are few published examples of studies 
which investigate the use of temperature, and none which focus on the impact 
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of European spruce bark beetle infestation on biochemical properties and 
physiological status of infested trees in the TIR domain. To our knowledge, 
only one study, by Hais and Kučera (2008), has investigated the impact of bark 
beetle (Ips typographus, L.) infestation at the advanced stages (Gray attack) 
on surface temperature using thermal infrared (TIR) data. Their study 
examined the effect of spruce bark beetle infestation and clear-cutting on 
surface temperature between 1987 and 2002 in the central part of Sumava 
National Park in the Czech Republic. Further, Sprintsin et al. (2011) used 
surface temperature calculated from the Landsat 7 ETM+ to detect an early 
stage of mountain pine beetle infestation in British Columbia. Although 
Sprintsin et al. (2011) suggested that temperature condition indices (TCI) used 
in their study have the potential to differentiate between healthy and green 
attacked pine they could not validate their results due to lack of ground 
reference data for their green attacked study areas.  
 
Numerous studies have shown the significant potential of TIR data to elucidate 
plant biophysical and biochemical properties (Buitrago et al., 2016; Neinavaz 
et al., 2016; Ullah et al., 2014). For example, the primary absorption feature 
that is associated with leaf water content can be observed in both shortwave 
and thermal infrared regions (Table 4.1) (Fabre et al., 2011; Kümmerlen et 
al., 1999). As such, several studies have shown that TIR data have great 
potential to detect plant diseases and pathogens before the plants develop 
visual stress symptoms (Aldea et al., 2005; Moller et al., 2007; Ni et al., 2015; 
Oerke et al., 2006; Xu et al., 2006). Moreover, retrieving the canopy surface 
temperature (CST) from TIR data is widely used to track vegetation water 
status (Hunt and Rock, 1989). The surface temperature is interrelated with 
plant functions, such as evapotranspiration which is controlled by stomatal 
conductance. (Kim et al., 2016; Xu et al., 2006). Therefore, alterations in these 
processes will lead to changes in the air and the surface temperature of leaves 
(Doughty et al., 2011; Gersony et al., 2016; Stoner and Miller, 1975; 
Vanderhoof et al., 2013). Furthermore, physiological studies have shown that 
the reduction of leaf water content disturbs stomatal conductance and leads to 
an increase in leaf surface temperature (Pierce and Congalton, 1988; Pierce et 
al., 1990; Schulze and Hall, 1982). 
 
In addition to water content and stomatal conductance, recent studies have 
shown that there is a strong relationship between canopy surface temperature 
and photosynthetic activity, which can be measured by chlorophyll 
fluorescence (Ni et al., 2015). Chlorophyll fluorescence has been found to be 
a reliable indicator for examining the impact of different stressors (drought, 
insect infestation, and pathogens) on plant photosynthesis and the 
physiological state of vegetation (Méthy et al., 1994; Porcar-Castell et al., 
2014). When leaf transpiration rate decreases (i.e., by closing stomata) both 
chlorophyll fluorescence and photosynthetic activity will decrease, while heat 
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dissipation will increase (McFarlane et al., 1980). Hence, chlorophyll 
fluorescence has been used as a reliable indicator for monitoring plant water 
stress (Campbell et al., 2007; Yamaoka et al., 1990). 
  
In this study, for the first time, we sought to explore and compare the potential 
of both optical and thermal infrared (TIR) data from Landsat-8 for detection of 
pre-visual symptoms induced by European spruce bark beetle green attack. 
We studied the impact of spruce bark beetle green attack on leaf properties 
(foliar stomatal conductance, chlorophyll fluorescence, and water content). To 
do this, canopy surface temperature (CST) and spectral vegetation indices 
(SVIs) were calculated using three Landsat-8 images for May, July, and August 
2016, as these months, represent the time of early, advanced, and after spruce 
bark beetle green infestation, respectively. Our study benefits from valuable in 
situ measurements of leaf traits at the time of infestation that have been used 
to explain the impact of bark beetle attacks on Landsat 8 optical and TIR data. 
Our objectives were as follow: (i) to assess the potential of CST and SVIs 
calculated from Landsat 8 data to differentiate between healthy and infested 
sample groups; (ii) to study the temporal variation of CST and SVIs under 
spruce bark beetle infestation; and (iii) to evaluate the utility of CST and a 
number of SVIs to estimate measured leaf traits within infested and healthy 
samples. 

4.2 Material and Methods 

4.2.1 Study site and in situ data collection 

The field campaign was conducted during June and July 2016 in the Bavarian 
Forest National Park (BFNP), which is a 24.222 ha forest located in south-
eastern Germany along the border with the Czech Republic, between 13°12'9" 
E (longitude) and 49°3'19" N (latitude) (Fig. 4.2). The BFNP was established 
in 1970, and significantly extended in 1997. Depending on the elevation within 
the BFNP, which ranges from 600 m to 1453 m, the mean annual temperature 
fluctuates between 3.5°C and 9°C, and the total annual precipitation varies 
from 900 mm to 1800 mm (Bässler et al., 2008a; Heurich et al., 2010a). The 
first bark beetle infestations began in 1984 and, to date, more than 7000 ha 
have been affected. The strict non-intervention policy of the National Park 
offers the possibility of studying bark beetle dynamics without human 
interference (Cailleret et al., 2014b; Heurich et al., 2010a).   
 



Chapter 4 

59 

 
Figure 4. 2: The location of Bavarian Forest National Park in Central Europe. 
 
We sampled trees from healthy stands and stands with trees freshly infested 
by the bark beetle. For the healthy stands, we randomly selected plots (30 m 
× 30 m) from all over the national park. To select the green attacked trees, 
we conducted an extensive field survey to search for dry brown powder around 
the trees. Care was taken to only consider those plots with all trees freshly 
infested or which were dominated (80%) by freshly green-attack trees. In this 
way, we were assured that the extracted remote sensing signature from these 
plots would not have mixed effects from the attacked trees of previous years. 
In total, 40 healthy and 21 infested plots were sampled. The centre of each 
plot was measured using Differential Global Positioning System (DGPS) Leica 
GPS 1200 (Leica Geosystems AG, Heerbrugg, Switzerland) with an accuracy of 
better than 1 m after post-processing (Abdullah et al., 2018b). Each of 61 
selected plots measured  30 × 30 m to encapsulate the spatial resolution of a 
Landsat-8 data, which allows for a 30 m radius buffer zone around the ‘central 
pixel’ location for uncertainty in spatial registration of image pixels. By doing 
this we minimized the potentially confounding influence (mixed pixels) of green 
attacked Norway spruce trees.    
 
From each plot, three to five trees were selected as representative for the plot. 
Because the height of Norway spruce trees reaches 25 to 30 m, we used a 
crossbow to shoot an arrow with a fishing line attached to a branch with sunlit 
leaves. The fishing line was used to feed a rope over the targeted branch from 
the upper canopy. Once the rope was in place, the branch was pulled down 
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gently until it broke off. Full details regarding the use of the crossbow can be 
found in Ali et al. (2016) .n. On average two to three branches, exposed to 
sunlight, were taken from the upper part of each tree. Next, needle samples 
were taken from the collected branches to measures leaf traits. 

4.2.2 Measurement of leaf properties 

In this study, a steady-state instrument (SC-1 Leaf Porometer) was used to 
measure the needle stomatal conductance. This instrument computes stomatal 
conductance using a leaf clip chamber that can monitor the relative humidity 
(RH%) released from the leaf stomata. To measure the stomata, a number of 
needles were gently attached to cover the chamber port. Since stomata are 
sensitive to environmental conditions and physical stress, all the 
measurements were taken under similar environmental conditions (clear sky, 
between 11 am to 3 pm local time). An average of three to four measurements 
was taken for each sampled tree within each plot (SC-1 Operator’s Manual, 
2016). 
 
Immediately after the stomata measurement, a chlorophyll content meter 
CCM-330 was used to measure the chlorophyll fluorescence ratio (CFR). This 
instrument uses the emission ratio of fluorescence at both the red (700 nm) 
and the far red (735 nm) part of the electromagnetic spectrum, as proposed 
by Gitelson et al. (1999). On average ten readings were taken per sample from 
each branch. Then, the leaf water content (CW, mg/cm2) was computed using 
fresh and dry weight. To do this, three grams of the freshly harvested needles 
were weighed from each sample. A portable leaf area meter (AM-350) was 
used to measure the total needles’ surface area for each of the three grams 
considered. Norway spruce needles are cylindrical and, therefore, this surface 
area was multiplied by a universal conversion factor of 2.57 (Waring, 1983). 
Then, to acquire the hemispherical-surface projection of the sample surface 
needles, the total area obtained was divided by 2. Finally, the needle samples 
were oven dried for 72 hours at 75 ºC, and the dried weight of each sample 
was measured. The leaf water content (Cw) was computed using the following 
equation (Colombo et al., 2008):  
 

𝐶w ൌ
Wf െ Wd

A
 

Where Wf and Wd are the fresh and dry weight, respectively, and A is the 
sample leaf area.  

4.2.3 Landsat-8 imagery and pre-processing  

Cloud-free Landsat-8 images were obtained from the USGS Global Visualization 
Viewer (http://glovis.usgs.gov/) for the months May, July and August 2016. 
According to the Bavarian Forest National Park authorities, the bark beetles of 
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the infestation in 2016 had started to swarm on May 10, 2016. Therefore, the 
May image was designated as the early stage of bark beetle infestation.  
 
Landsat-8 has two sensors called OLI and TIRS. The OLI sensor collects data 
from nine spectral bands ranging from 0.43 – 2.29 nm with a 30 m spatial 
resolution, while the TIRS sensor collects data from two thermal bands ranging 
from 10.6 – 12.5 nm with a 100 m spatial resolution resampled to 30 m in the 
delivered data product (Table 4.1). 
 
For both the OLI and the TIRS sensor, radiance values were calculated, using 
the coefficient supplied by USGS. Secondly, for OLI data, a radiometric 
calibration was applied to convert the radiance value to Top-of-Atmosphere 
(TOA) reflectance. Then, MODTRAN4-based atmospheric correction software 
(FLAASH) was used to convert the TOA Reflectance to surface reflectance 
(Adler-Golden et al., 1999). Full details regarding the use of FLAASH can be 
found in (Module). Finally, the reflectance values of the infested and healthy 
plots were extracted from the Landsat-8 scenes and were used for further 
analysis. 

4.2.3.1 Spectral vegetation indices 

Several spectral vegetation indices exist in the literature that are used for 
estimation of vegetation biochemical properties  (Collins and Woodcock, 1996; 
Eitel et al., 2006). In this study, spectral vegetation indices linked to measured 
leaf traits were calculated from the spectral reflectance data collected from the 
Landsat OLI sensor. In previous work, the selected SVIs have shown sensitivity 
to stress-induced variations in chlorophyll and also water content, which are 
all important indicators of tree health. This sensitivity could potentially be used 
to assess stomatal closure and tree water stress due to insect infestation. The 
mathematical transformation for computing these vegetation indices is given 
in (Table 4.2). 
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Table 4.1: The Landsat-8 sensors, the operational land imager (OLI), and the thermal 
infrared sensor (TIRS) spectral bands and their spatial resolution. 

Bands Wavelength 
(micrometers) 

Resoultion 
(meters) 

Band-1 (Coastal aerosol) 0.43–0.45 30 
Band-2 (Blue) 0.45–0.51 30 

Band-3 (Green) 0.53–0.59 30 
Band-4 (Red) 0.64–0.67 30 

Band-5 (Near Infrared –NIR) 0.85–0.88 30 
Band-6 (SWIR-1) 1.57–1.65 30 
Band-7 (SWIR-2) 2.11–2.29 30 

Band-9 (Panchromatic) 0.50–0.68 15 
Band-10 (Cirrus) 1.36–1.38 30 

Band-11 (Thermal infrared-
TIRS1) 10.60–11.19 100 (resampled to 

30) 
Band-12 (Thermal infrared-

TIRS2) 11.50–12.51 100 (resampled to 
30) 

 
Table 4.2: List of spectral vegetation indices calculated from Landsat-8 optical bands. 
Index Formula Full name Reference 
Cigreen (NIR/Green)-1 Chlorophyll index 

green 
(Hunt et al., 
2011) 

CVI NIR × (Red / Green2) Chlorophyll vegetation 
index 

(Hunt et al., 
2011) 

CI (Red – Blue) / Red Coloration index (Escadafal et 
al., 1994b) 

GVI NIR - Green Green difference 
vegetation index 

(Tucker et 
al., 1979) 

DVI 2.4 × (NIR – Red) Difference vegetation 
index 

(Bannari et 
al., 1995) 

GVMI [(NIR+0.1)-
(SWIR+0.02)]/[(NIR+0.1)+(SWIR+0.02)]

Global vegetation 
moisture index 

(Ceccato et 
al., 2002) 

GARI [NIR-(Green-(Blue-Red))]/[NIR-
(Green+(Blue-Red))] 

Green atmospherically 
resistant vegetation 
index 

(Gitelson et 
al., 1996) 

GLI [2×(Green-Red-
Blue)]/[2×(Green+Red+Blue)] 

Green leaf index (Gobron et 
al., 2000) 

LWCI [log(1-(NIR-SWIR))]/[log(1-
(NIR+SWIR))] 

Leaf water content 
index 

(Cohen, 
1991) 

NLI (NIR2 – Red) /( NIR2 + Red) Nonlinear vegetation 
index 

(Goel and 
Qin, 1994) 

PVR (Green – Red) / (Green + Red) Normalized Difference 
Photosynthetic vigour 
ratio 

(Metternicht, 
2003) 

SIWSI (NIR-SWIR1) / (NIR+SWIR1) Normalized Difference 
860/1640 

(Fensholt and 
Sandholt, 
2003) 

BGI Costal / Green Blue-green pigment 
index 

This study 

RDI SWIR2 / NIR Ratio Drought Index (Pinder and 
McLeod, 
1999) 

NDVI (NIR – Red) /(NIR + Red) Normalized difference 
vegetation index  

(Tucker, 
1979) 

TNDVI Log [(NIR-Red)/NIR+Red) × 0.5] Transformed NDVI (Bannari et 
al., 2002) 
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4.2.3.2 Canopy surface temperature (CST) 

The Landsat-8 TIR sensor provides data from two bands (band 10 and band 
11) in the thermal domain. However, band 11 is no longer operational for 
quantitative analysis, as reported by USGS (https://landsat.usgs.gov/using-
usgs-landsat-8-product). Therefore, in our study, band 10 with wavelengths 
ranging from 10.60 to 11.19 nm was utilised to retrieve canopy surface 
temperature CST.  
 
To minimise and reduce the effects of different climatic conditions on CST 
retrieval, the mono-window algorithm, proposed by Qin et al. (2001), was 
applied. The core of this method is the equation transferring thermal radiance, 
which converts digital satellite values to a radiometric value (Markham and 
Barker, 1986). To apply this algorithm, a number of parameters such as 
emissivity, air transmittance, and effective mean atmospheric temperature are 
required. The air transmittance and mean atmospheric temperature are 
estimated using another two additional parameters, namely: air surface 
temperature and water vapour content. Water vapour was calculated using 
relative humidity ratio and air surface temperature (Liu and Zhang, 2011). The 
following equations summarise the steps required when using the Mono-
Window algorithm for retrieving CST. 
 
First, digital values (DVs) of band 10 are converted to TOA spectral radiance 
using the equation: 
 
Ly   = ML × Qcal + AL (4.1) 
 
where Ly is TOA spectral radiance received by the sensor measured in mW cm-
2 sr-1 μm-1; ML is the band specific multiplicative rescaling factor for band 10 
equal to 0.0003342; Qcal is the actual band 10 digital number (DN), and AL is 
a band-specific additive rescaling factor equaling 0.1. This information was 
obtained from the metadata file and USGS Landsat-8 product use 
documentation (https://landsat.usgs.gov/using-usgs-landsat-8-product ). 
The next step was to convert spectral radiance to satellite brightness 
temperature (blackbody temperatures) by expressing Planck´s function. The 
equation used was proposed by Markham and Barker (1986) : 
 
Bt   = [K2 / log(1+K1 /Ly)] – 273.15 (4.2) 
 
where Bt is the satellite brightness temperature in Celsius, K1 and K2 are 
calibration constants (774.89 and 1321.07, respectively) of Landsat-8 
representing at-sensor spectral radiances of Landsat TM Band 10, and Ly is the 
satellite spectral radiance retrieved from Equation 1. The brightness 
temperature calculated with this second equation is called the top of the 
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atmospheric temperature (Zhang et al., 2006). The following additional 
parameters were measured: : 
 
1.Land surface emissivity  
 
The brightness temperature derived from Equation 2 refers to a black body 
target. Since the target bodies on land surfaces are not perfect black bodies, 
the thermal emissivity of the land surface must be retrieved from the area 
being studied (Gartland, 2012). Several factors such as plant chemical 
composition and surface roughness affect the estimation of canopy surface 
emissivity from remote sensing data (Snyder et al., 1998). Several methods 
have been proposed to retrieve emissivity from remote sensing data, such as 
image classification and the NDVI-based threshold approach. Image 
classification based on Landsat imagery is not an appropriate method for the 
estimation of land surface emissivity due to the spatial resolution, with one 
pixel possibly comprising different land cover classes (Dozier and Warren, 
1982). As a result, the NDVI-based threshold is a more appropriate approach 
for the calculation of ground emissivity using Landsat imagery (Vlassova et al., 
2014). The NDVI-based approach was first proposed by Van de Griend and 
Owe (1993) and was later modified by Valor and Caselles (1996). In this study, 
we followed the approach by Valor and Caselles (1996) using NDVITHM to 
calculate emissivity for the study area as follows: 
 
ɛ = ɛv × Pv + (1 – Pv) + 4 < dɛ > Pv × (1 – Pv) (4.3) 
 
where ɛ is ground emissivity; ɛv is emissivity for pure vegetation covered area; 
dɛ is the constant value of topography factor  (0.01), and Pv is the proportion 
of vegetation, obtained from NDVI, based on the following equation proposed 
by Carlson and Ripley (1997): 
 
Pv  =  (NDVI – NDVIg)  / (NDVIv -  NDVIg) (4.4) 
 
where Pv  is the proportion of vegetation for each pixel; NDVIg  is the NDVI 
value in bare soil ( NDVI < 0.2); and NDVIv is the NDVI value for purely 
vegetation-covered areas  (NDVI > 0.5). Further details regarding emissivity 
based NDVI estimation can be found in (Sobrino et al., 2008). 
 
2. Estimation of atmospheric transmittance 
 
The atmospheric transmittance was estimated using water vapour content 
based on the formula by Qin et al. (2001):  
 
Wc = 0.0981 × [10×0.6108× exp ((17.27×(T0))×RH]+0.1697 (4.5) 
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where Wc is the water vapour content in g/cm2, T0 is the near-surface or air 
temperature in degrees Celsius and RH it is the relative humidity.  
Both near-surface temperature and relative humidity (RH) data were obtained 
from climate-station Waldhäuser located in the BFNP at 950 m above sea-level 
on a south-west slope. 
Based on the air surface temperature and humidity ratio data from the 
Waldhäuser station, the water vapour content ranged between 1.6 and 3.0 
g/cm2 with our data being captured in the summertime. Thus, the following 
formula was used to estimate atmospheric transmittance: 
 
Ƭ=   1.031412 – 0.11536 × Wc  (4.6) 
 
where Ƭ is the atmospheric transmittance, and Wc is the estimated water 
vapour content obtained from the previous equation. 
 
3. Mean atmospheric temperature 
 
The final parameter required for the calculation of CST using the mono-window 
algorithm is mean atmospheric temperature. The Landsat data were captured 
in May, July and August, 2016., which meant summer conditions. Therefore, 
the following formula was used to estimate the mean atmospheric temperature 
(Qin et al., 2001; Sun et al., 2010) : 
 
Ƭa = [16.0110 + 0.92621 × (T0)]-273.15 (4.7) 
where Ta is the mean atmospheric temperature in degrees Celsius, and T0 is 
the surface air temperature in Kelvin. Data on air temperature were obtained 
from the Waldhäuser weather station. 
Finally, the mono-window algorithm was employed to retrieve canopy surface 
temperature over the study area, as follows: 
 
CST = (A × (1 – C –D) + [B × (1 – C – D) + C+D] × Bt – D × Ta) / C (4.8) 
 
where CST is the canopy surface temperature in degrees Celsius, Bt  which is 
the effective temperature viewed by the satellite under an assumption of unity 
emissivity in degrees Celsius, and Ta is the mean atmospheric temperature in 
degrees Celsius. In addition, the parameters A and B have standard values 
proposed by Qin et al. (2001) which are -67.355351 and 0.458606, 
respectively, while the parameters C and D are obtained using the following 
formulae: 
 
C = ɛ × Ƭ (4.9) 
 
and 
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    D= (1 – Ƭ ) × [1 + (1- ɛ) × Ƭ ] (4.10) 
 
where ɛ is emissivity estimated from Eq.3, and Ƭ  is atmospheric transmittance. 

4.2.4 Statistical Analysis 

To fulfil the objective of this research, three statistical analyses were employed, 
namely, statistical significance test (Student t-tests), partial least squares 
regression (PLSR), and principal components analysis (PCA).The Student t-
tests were used to assess the impact of bark beetle infestation at the green 
attack stage on the measured leaf traits (foliar stomatal conductance, 
chlorophyll fluorescence, and water content) and remote sensing data (SVIs 
and CST). Next, to identify the key SVIs for estimating the studied leaf traits 
(foliar stomatal conductance, chlorophyll fluorescence, and water content) 
Variable Importance in Projection (VIP) was calculated from the PLSR analysis. 
The VIP scores are useful in understanding X space predictor variables (SVIs 
& CST) that best explain dependent (Y) variables (leaf traits). The ‘VIP method 
selects those X variables that contribute most to the underlying variation in 
the X variables. This includes the variation not related to y, but describing 
interferences, that is so-called orthogonal variation’ (Farrés et al., 2015). To 
achieve this, PLSR analysis was employed. The PLSR ‘is a regression method 
that takes into account both the variance of the dependent and the predictor 
variables. It specifies a linear relationship between a set of dependent (Y) 
variables (leaf traits) and a set of predictor (X) variables’ (CST and SVIs) (Wold 
et al., 2001). The PLSR was used for the Landsat-8 image captured in July 
2016, as it matched the time of field data collection. Three independent PLSR 
models were built for each leaf trait separately as well as for each sample group 
(green attacked and healthy samples). In general, a VIP score > 1 unit 
indicates that the contribution of the variable (CST or SVI) was significant, and 
the greater the VIP value, the larger is the contribution of the variable to the 
model (Chong and Jun, 2005). 
 
Moreover, to investigate the potential of separating healthy plots from infested 
ones in a 2-D space, the clustering method using PCA was employed. In other 
words, PCA was used to determine the importance of each SVI for 
discriminating between healthy and infested plots during all three months 
considered in this study. PCA is an unsupervised technique and has been 
successfully used in many remote sensing studies as a data reduction approach 
(Maitra and Yan, 2008). The mean centring and unit variance producer were 
used to preprocess the data. The SVIs (those having a VIP score higher than 
one for both healthy and infested sample plots) were treated as independent 
variables, and for each image date considered in this study, two PCA models 
were built as follows: (a) a PCA model including all selected SVIs and CST (VIP 
> 1); (b) a PCA model including only SVIs. This step is essential because it 
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allows us to understand and identify the most effective SVIs in terms of making 
a significant contribution to discriminating healthy from freshly infested spruce 
plots (Figure 4.3). 
 
From the selected SVIs, those that have VIP > 1, a box plot technique was 
used to explore the temporal variation between healthy and infested plots for 
all three months considered in this study. The values of SVIs and CST were 
normalized between 0 and 1 using the MinMax normalisation method.  

4.3 Mapping bark beetle green attack infestation 
To generate the map of bark infestation, we considered the SVI with the 
highest VIP score as the most important variable to estimate studied leaf traits. 
Linear regression was used to generate maps of the measured leaf traits (foliar 
stomatal conductance, chlorophyll fluorescence, and water content), and the 
generated maps of leaf traits were used as a proxy to produce a map of bark 
beetle green attack. To do this, we classified the produced maps using the 
range of the leaf traits from the field (Table 4.3). The final map contains three 
classes corresponding to the stress intensity in each trait. Following this, to 
validate the generated map of infestation, ancillary vector-based reference 
data of the green attacked areas in 2016 were obtained from the Bavarian 
Forest National Park (BFNP) administration (Abdullah et al., 2018b). The flight 
on 11 Jun 2017 documented new dead wood (grey attack stage) from the 
previous year 2016, with reference data collected from airborne colour-infrared 
(VIS and NIR) aerial images (CIR) with 0.1 m spatial resolution. Full details 
about the processing and interpretation of aerial photography in the BFNP can 
be found (Heurich et al., 2009; Lausch et al., 2013a). The reference data 
(ground truth) were in the form of polygons and were rasterised into 30 m  
30 m grid cells to match with the produced maps from Landsat-8 SVI. In total, 
417 pixels were used as the ground truth data. Furthermore, land cover data 
obtained from the national park administration were used to mask out non-
spruce stands and young stands. This is because bark beetles only infest old 
and mature Norway spruce (Picea abies (L.) Karst). The masked land cover 
was overlaid on the classified leaf traits maps in this study (Fig. 4.3). Finally, 
the total number of pixels (ground truth) located within each (stress class) 
were extracted and calculated. 
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Table 4. 3: Stress level categories classified using the range of the leaf traits (leaf water 
content, stomatal conductance, and chlorophyll fluorescence ) from the field, in the 
Bavarian Forest National Park, July 2016. 

 Severely 

stressed 

Moderately 

stressed 

Healthy 

Leaf water content (g/cm2) < 0.0135 0.135 – 0.0145 > 0.0145 
Stomatal conductance 
(mmol/m2s) 

< 103 103 - 120 > 120 

Chlorophyll fluorescence ratio < 1.17 1.17 – 1.25 > 1.25 
 

 
 
Figure 4. 3: The framework of the research methodology. 

4.3 Results 

4.3.1 The importance of CST versus SVIs to estimate 
measured leaf properties 

Infestation by bark beetle caused substantial changes in all studied leaf traits 
during the green attack stage. The result of the Student’s t-test demonstrated 
a significant difference (p < 0.05) between healthy and infested leaves for all 
the studied leaf traits (chlorophyll fluorescence, leaf water content, and 
stomatal conductance) (Fig. 4.4). Furthermore, as can be seen from figure 4.5, 
the VIP scores show that CST significantly contributes to the estimation of 
studied leaf traits (chlorophyll fluorescence, water content, and stomatal 
conductance) for both healthy and infested plots. However, among the SVIs 
only 5 out of 23 had a VIP score above one for both healthy and infested sample 
plots; these five indices are CIgreen, CVI, CI, NLI, and BGI (Fig. 4.5). The 
single bands of Landsat-8 showed the lowest VIP score for all measured leaf 
traits. 
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Figure 4. 4: Distribution of measured leaf traits for healthy and infested needles, in the 
Bavarian Forest National Park, July 2016. There is a significant difference (p < 0.05) in 
all measured leaf traits between healthy and infested samples. 

 
Figure 4. 5: PLSR variable importance in the projection (VIP) for predictor (CST and 
SVIs) and response variables (measured leaf traits ) in the Bavarian Forest National Park, 
July 2016. (vertical black line represents VIP ≥ 1) 

4.3.2 Temporal response of CST and SVIs under spruces bark 
beetle infestation 

To assess the temporal variation of the CST and those SVIs that obtained a 
VIP score > 1, we studied the boxplots for all three months considered in this 
study. Figure 4.6 shows a comparative time-series of CST and SVIs for healthy 
and infested sample plots. As can be seen from this figure, the CST in infested 
and healthy plots differ from the SVIs by exhibiting increased temperature from 
the beginning of the infestation in May, whereas almost all other indices show 
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no differences between healthy and infested plots. Similarly, in July, when the 
infestation is still at its early stage (green attack), CST shows high potential 
for discriminating between healthy and infested sample plots. However, in 
August, when the infested plots entered into the advanced stage (in which the 
infested trees developed stress symptoms by turning their needles’ colour from 
green to yellow to red-brown and can be detected by the human eye), CST as 
well as CIgreen, NLI, and BGI are significantly different (p < 0.05) between 
healthy and infested plots. 
 
The selected SVIs, which had a VIP value > 1 (CST, CIgreen, CVI, CI, NLI, and 
BGI) have been used to build the PCA model. As shown in Figure 4.7, in May, 
when the infestation is in its early stage, there is an apparent overlap and 
mixed scattering between healthy and infested sample plots when SVIs were 
applied in the model. However, in July and August, when CST is included into 
the model, the majority of healthy plots tend to be on the negative side of PC1, 
while the infested plots are relatively scattered on the positive side of PC1. In 
general, we observed distinct improvement to differentiate between healthy 
and infested plots when both CST and SVIs were used to build the PCA model. 
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                       May                                   July                  August 

Figure 4. 6: Temporal variation of the SVIs and CST (VIP >1 ) for healthy and green 
attacked sample plots in the Bavarian Forest National Park. Blue and red boxes represent 
healthy and infested plots, respectively. A * indicates the significant different 
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                        A                              B 

  

  

  
Figure 4. 7: Cluster plots based on the first two principal components (PCs), blue squares 
and red circles represent healthy and infested plots, respectively. (A) Cluster plots based 
on all spectral indices VIP >1 including CST (B) Cluster plots based all spectral indices 
VIP >1 excluding CST. 

4.3.3 Mapping bark beetle green attack and validation 

As shown in Figure 4.5, CST recorded the highest VIP score in all measured 
leaf traits, and therefore we considered it as the most important variable for 
predicting studied leaf traits. The CST was then used to estimate leaf traits 
(foliar stomatal conductance, chlorophyll fluorescence, and water content) and 
generate maps using the SLR model (Table 4.4). Following this, based on the 
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defined threshold value (Table 4.3), stress maps were generated using leaf 
traits’ data. These maps were then overlaid with ground truth reference data 
(417 pixels) to calculate those pixels located within each stress class. Figure 
4.8 and Table 5 depict those areas (pixels) that were located in each class. As 
can be seen from Table 5, 274 pixels out of 417 (66%) from ground truth data 
were located with the severely stressed class; following this, 89 (21%) pixels 
were located in the moderately stressed class and the remaining 54 (13%) 
pixels where located within the healthy class . 
 
Table 4. 4: Regression equations between canopy surface temperature (CST) and 
measured leaf properties. 

Equation No. Regression equations 

1 Leaf water content = -0.0004 CST + 0.0203 

2 Stomatal conductance = -6.4377 CST + 255.66 

3 Chlorophyll fluorescence = -0.0264 CST + 1.68 

 
Table 4. 5: Assessment of the generated map using reference data obtained from Aerial 
photography. 

Forest stress classes Pixels correctly matched 

Severely stressed  274 

Moderately  stressed  89 

Healthy   54 

Reference pixels (aerial photography)  =  417 pixels (30m). 
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Figure 4. 8: The map showing the distribution of Norway spruce stands under different 
stress levels in the Bavarian Forest National Park, July 2016. The map was produced 
using canopy surface temperature and measured leaf traits (foliar stomatal conductance, 
chlorophyll fluorescence, and water content) 

4.4 Discussion 
In the present study, for the first time, we assessed the potential of CST and 
SVIs to discriminate between healthy and green-attacked trees by European 
spruce bark beetle (Ips typographus, L.). The results confirmed the superiority 
of CST in discriminating subtle differences between healthy and infested trees, 
compared to other utilised SVIs at different stages of bark beetle attack. 
Furthermore, all three considered leaf traits in this study exhibited significant 
differences (p < 0.05) between the two sample groups (healthy and infested), 
and CST was found to be an essential indicator (VIP > 1) to estimate them.  
 
Of all 23 remote sensing variables (CST, SVIs, and single bands) used, the 
variable importance in projection (VIP > 1) showed that CST was by far the 
best at estimating studied leaf traits (Fig. 4.5). This result reaffirms findings 
by (Berni et al., 2009), who used TIR data obtained fixed-wing UAVs to study 
thermal water stress over the peach trees . Moreover, apart from the 
importance of CST in estimating leaf properties, we found that CST better 
discriminates between infested and healthy trees than other SVIs. In July and 
August, CST was significantly higher (p < 0.05) for the infested plots than for 
healthy ones (Fig. 4.6).. For example, in May, just at the beginning of the 
infestation, a slightly higher CST was observed for the infested plots, whereas 
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the SVIs showed no difference between the two groups. According to bark 
beetle phenology studies, the flight activity of bark beetles and their successful 
attack on living trees starts in late spring when the air temperature reaches 
16.5ºC (Lobinger, 1994b; Wermelinger, 2004). The new insight offered by this 
result is the potential of CST to detect the subtle changes induced by bark 
beetles at this stage is quite important and promising. Likewise, in July, when 
the infestation had progressed, and the infested trees were completely 
stressed, CST maintained its sensitivity in differentiating between healthy and 
green-attacked sample plots (Fig. 4.6). It is well-known that physiological 
factors, such as plant water content, can control the temperature of plants 
through the stomatal transpiration process (Oerke et al., 2006). Therefore, the 
distinct variation in CST between healthy and infested plots is attributed to 
differences in the measured leaf traits, in particular, leaf water content. As 
depicted in Figure 4.4, the amount of water content was significantly lower (p 
< 0.05) in the infested plots than in the healthy ones. This may be attributed 
to the spores of fungi and the drilling activities of the beetle itself that affect 
the living cells in the phloem and xylem and, therefore, disrupt the flow of 
water and cause stomatal closure in infested trees (Yamaoka et al., 1990). This 
result further confirms our earlier finding (Abdullah et al., 2018a) showing a 
decrease of foliar biochemical properties (chlorophyll and nitrogen 
concentration) in trees infested by bark beetles (I. typographus, L.) at the 
green attack stage. Likewise, our findings are in agreement with (Cheng et al., 
2010), who studied the impact of a similar species (the mountain pine beetle, 
Dendroctonus spp) on leaf water content using hyperspectral data. Infested 
trees tend to close their stomata to prevent further water loss and hydraulic 
failure (Ewers et al., 2007). This stomatal closure will temporarily offset xylem 
cavitation and cause damage to the photosynthetic apparatus (Chaves et al., 
2003). However, this behaviour leads to other physiological changes in the 
infested trees, such as a decrease in the transpiration cooling process and, 
therefore, an increase in leaf surface temperature. Over time, this will affect 
the process of photosynthesis and cause a change in foliar colour (Larcher, 
2003). These findings match those observed in earlier studies that the TCI 
index retrieved from the Landsat 7 ETM thermal band could detect areas under 
mountain pine beetle (Dendroctonus spp) green attack (Sprintsin et al., 2011). 
 
In August, when the infestation had progressed and the subsequent 
degradation of the needles could be observed in the field (the infested trees 
developed stress symptoms by turning their needles’ colour from green to 
yellow to red-brown), the variation of SVIs became more evident between 
healthy and infested plots. CST, Cigreen, NLI and BGI were shown to have the 
potential to detect the infested trees at that time. However, for effective 
management, identifying infested trees at that stage is too late, because the 
beetles will have already left the infested trees, and logging operations will not 
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have any effect on the population dynamics of the beetles at that time anymore 
(Fahse and Heurich, 2011; Wermelinger, 2004; Wulder et al., 2009).  
 
In addition to the temporal variation, we also observed that CST improved 
discrimination between healthy and infested plots when using PCA analysis for 
all dates considered in this study (Fig. 4.7). In May, when the PCA model was 
built based on optical data only, the two groups of sample plots had mixed 
scattering and exhibited an apparent overlap, whereas, when CST was included 
into the model the healthy plots were separated from the infested ones. This 
indicates the increased sensitivity of Landsat-8 TIR data to changes at canopy 
level induced by bark beetle at a very early stage in May. One possible reason 
for such sensitivity of CST to spruce bark beetle infestation in May could be 
due to the nature of spruce bark beetle outbreaks, which generally occur over 
the course of several years. In other words, the healthy trees are always 
surrounded by other healthy trees, while, for infested trees in most cases, the 
infestation occurs close to the previous year’s infestation (Lausch et al., 2011). 
Therefore, the open areas and dead trees around newly infested trees can lead 
to an increase in surface temperature. To confirm this, we further analysed 
and calculated the CST for different habitat types in the landscape. To do this, 
a habitat map obtained from the national park administration was used to 
extract the CST for each habitat type (Dupke et al., 2017). As can be observed 
from Figure 9, the results revealed that clear-cut areas, followed by lying dead-
wood and standing dead-wood areas, had the highest CST for all three months. 
In contrast, mixed stands showed the lowest CST. This is supported by 
Peterson et al. (1986) who found that forest structure (i.e. canopy closure) is 
negatively correlated with simulated thermal data from the Thematic Mapper 
Simulator (TMS). 
 
Similarly, Junttila et al. (2016) and Hais and Kučera (2008) have shown that 
higher surface temperatures were detected in dead-wood stands and clear-cut 
areas, respectively. Furthermore, a water body had the lowest CST, which 
supports the hypothesis that more moisture in healthy tree needles decreased 
their surface temperature. This also corresponded with our in-situ 
measurements that showed green-attacked trees had lower water content and 
more closed stomata than healthy trees (Fig. 4.4). The clear-cut area and 
dead-wood stands had no foliage and, thus, no leaf surface area for 
evapotranspiration. This resulted in higher canopy temperatures in the cleared 
and dead-wood stands than in intact stands. 
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Figure 4. 9: Mean canopy surface temperature over different habitat classes in the 
Bavarian Forest National Park – 2016. The graph shows that standing dead-wood, lying 
dead-wood, clear-cut and rocky areas recorded high surface temperature comparing to 
other forest classes. 
 
Moreover, an equally significant aspect of CST was found when used to 
estimate measured leaf traits (foliar stomatal conductance, chlorophyll 
fluorescence, and water content) and producing the stress map for the study 
area (Fig. 4.8). The stress map highlighted the sensitivity of CST for detecting 
canopies that are stressed by bark beetle green attack. In general, the majority 
(66%) of ground truth data were located within the severely stressed class — 
however, 13% where falsely located in the healthy class (Table 4.5). 
Consequently, CST derived from Landsat-8 TIR data might be used to generate 
hotspot maps of stressed areas within the forest that show high potential areas 
of bark beetle green attack. Such maps can provide valuable information to 
the forest management practice when they aim to control this species and 
preclude a mass outbreak. Furthermore, such maps can also be used to 
improve the bark beetle modelling community. For example, in our study and 
the previous studies by (Hais and Kučera, 2008) the highest temperature was 
observed over the dead-wood stands. Such information on the dead-wood 
stands combined with the less reliable information from green attacked areas 
can be used to improve the accuracy of predisposition models (Netherer and 
Nopp-Mayr, 2005)  

4.5 Conclusion 
The results of this study showed the potential of CST retrieved from the 
Landsat 8 TIR band to detect early-stage bark beetle infestation. We further 
found that the infestation at the green attack stage affected the leaf stomatal 
conductance, chlorophyll fluorescence, and water content. The CST has the 
highest VIP value for estimating all three leaf traits measured in this study for 
July. In addition, we found that CST maintained its sensitivity for monitoring 
and detecting bark beetle infestation before, during and after infestation. In 
conclusion, our key concept is that we show for the first time that satellite TIR 
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data has a high potential to detect bark beetle green attack and examining the 
link between the leaf traits and thermal remote sensing data is an important 
step that further improves our understanding of the relationship between Earth 
Observation data and plant traits for forest areas under bark beetle green 
attack. It is important to note that TIR images obtained from Landsat-8 are 
the only available satellite images that provide data at 30 m spatial resolution. 
However, the original data were acquired at 100 m, so the actual footprint of 
the pixel is larger. Therefore, further research investigating different TIR data 
with higher spectral and spatial resolution, such as TIR from airborne 
hyperspectral measurements, may improve the use of thermal imagery for 
bark beetle green attack detection in Norway spruce forests. 
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Chapter 5: Sentinel-2 accurately maps green 
attack stage of European spruce bark beetle 
(Ips typographus, L.) compared to Landsat-8  
 

 

  

                                          
 This chapter is based on: 
 
Abdullah, H., Darvishzadeh, R., Skidmore, A.K., and Heurich, M. Sentinel-2 accurately 
maps green attack stage of European spruce bark beetle (Ips typographus, L.) compared 
to Landsat-8. Remote Sensing in Ecology and Conservation. 2018, 1–21. 
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Abstract  
Natural disturbances induced by insect outbreaks have increased in forest 
ecosystems over the past decades. To minimise economic loss and prevent a 
mass outbreak, early detection of bark beetle green attack – a period when 
trees have yet to show visual signs of infestation stress – is therefore crucial 
to effective and timely forest management. In this study, we evaluated the 
ability of spectral vegetation indices extracted from Landsat-8 and Sentinel-2 
imagery to map bark beetle green attack using principal component analysis 
(PCA) and partial least square discriminate analysis (PLS-DA). A recent 
infestation map produced through visual interpretation of high-resolution aerial 
photographs validated the final infestation output maps. Leaf spectral 
measurements alongside total chlorophyll and nitrogen concentration, leaf 
water content, and leaf dry matter content were measured to assess the impact 
of bark beetle green attack on foliar properties. We observed that the majority 
of Spectral Vegetation Indices (SVIs) calculated from Sentinel-2, particularly 
red-edge dependent indices (NDRE 2 and 3) and water-related indices (SR-
SWIR, NDWI, DSWI, and LWCI), were able to discriminate healthy from 
infested plots. In contrast, only the water-related indices (NDWI, DSWI, and 
RDI) from Landsat-8 were able to discriminate between healthy and infested 
plots efficiently. The total number of pixels identified as harbouring a green 
attack that matched with ground truth data (aerial photography) was higher 
for Sentinel-2 (67%) than for Landsat-8 (36%) SVIs, indicating the elevated 
sensitivity of Sentinel-2 imagery to changes induced by bark beetle green 
attack. We also determined that foliar chlorophyll and leaf water content were 
significantly higher (p < 0.05) in healthy trees than in green attacked trees. 
Our study highlights the potential of Sentinel-2 data for the early detection of 
bark beetle infestations and the production of reliable infestation maps at the 
green attack stage. 
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5.1 Introduction 
Insect infestations, as by the European spruce bark beetle (Ips typographus 
L.), form the main disturbance events in European forests as they destroy more 
forested areas than all other natural disturbances together. Historically, storms 
and snow breakage events in Europe and North America have provided a large 
surplus of suitable breeding material for bark beetles, leading to outbreaks 
(Giunta et al., 2016; Seidl et al., 2017a). Recent outbreaks are different, 
however, with climate change (more drought and severe storm events) 
appearing to be the initiating factor (Marini et al., 2016; Netherer et al., 2015; 
Thom and Seidl, 2016). Increasing temperatures may result in an increased 
incidence of drought, possibly affecting tree health. Drought facilitates beetle 
outbreaks by stressing trees and increasing the frequency and severity of bark 
beetle outbreaks (Bentz et al., 2010; Faccoli and Bernardinelli, 2014; Filchev, 
2012b; Thom and Seidl, 2016). A warmer climate may increase storm 
frequencies, and severity of wind throws, thus providing more breeding 
material for bark beetles (Marini et al., 2016). Furthermore, as the 
development of the bark beetle is dependent on temperature, an increase in 
temperature may thus lead to an increase in the beetle population size, due to 
their eggs hatching and developing into adults sooner (Bentz et al., 2010; 
Wermelinger, 2004). In recent decades, therefore, increasing disturbances due 
to insect outbreaks have been widely documented across different parts of the 
world (Lausch et al., 2013a; Seidl et al., 2014; Wulder et al., 2006a).  
 
Timely, accurate and cost-effective information is needed to mitigate and 
control bark beetle outbreaks, to guide forest managers in identifying areas 
infested by beetles, as well as to define the timing of bark beetle control 
activities (Wulder et al., 2009). To obtain this information, the operation survey 
needs to take place at the time when the infestation at its early stage (the 
green attack). The green attack stage is the first interaction between the beetle 
and the host tree, and occurs when the host is being colonized by the bark 
beetle. During this stage, the infested tree is still physiologically green and 
very much alive, although exhibiting stress in the near infrared (invisible to the 
human eye) (Niemann and Visintini, 2005). Furthermore, during the green 
infestation, the newly hatched generation of beetles is developing within the 
inner bark of the infested trees. Therefore, management intervention to 
prevent further outbreaks may involve the removal of infested trees before the 
new brood emerges and migrates (Wermelinger, 2004; Wulder et al., 2009).  
 
Traditionally, foresters perform field surveys to identify infested trees during 
the early green attack stage using conventional survey methods (looking for 
sawdust). Such surveys are very laborious and therefore make screening large 
areas for green attack difficult. Nowadays, remote sensing provides new 
opportunities to detect and map bark beetle infestation. Remotely sensed data 
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rely on spectral signatures from different regions in the electromagnetic 
spectrum. Unique spectral signatures have been linked to different functional 
and structural plant traits, such as pigments at 400–700 nm, leaf structure at 
700-1100 nm and plant water content, nitrogen concentration, Leaf Area Index 
and Specific Leaf Area at 1100 to 2400 nm (Ali et al., 2016; Gitelson et al., 
2002; Mahlein et al., 2013; Viña et al., 2011; Wang et al., 2015a). Stress 
affects plant biophysical and biochemical properties and therefore affects 
spectral signature. For example, chlorophyll degradation and nitrogen 
deficiency lead to an increase in reflectance spectra in the visible region (the 
red and green bands in particular). As a result, this wavelength region has 
been widely used as a stress indicator when utilising remote sensing data 
(Hendry et al., 1987). Significantly, the reflectance at the red portion of the 
visible region has been shown to be less sensitive to initial loss of chlorophyll 
content (Carter, 1993). This is due to the high spectral absorption by 
chlorophyll in this spectral region, which saturates the red reflectance at low 
chlorophyll content (Jacquemoud and Baret, 1990). In contrast, the reflectance 
at the green and red-edge wavelengths (centred in 550 nm and 700 nm, 
respectively) of the VIS region are more sensitive to changes in plant 
chlorophyll content (Eitel et al., 2011). Furthermore, the red-edge region has 
superior sensitivity when detecting changes that are induced in plants by 
stressors such as dehydration, disease, and insect attack, and can, therefore, 
improve the early detection of plant stress (Ahern, 1988b; Carter and Knapp, 
2001; Carter and Miller, 1994; Eitel et al., 2011). Moreover, the NIR and SWIR 
regions have been used widely to assess water content and nitrogen 
concentration in plants (Ayala-Silva and Beyl, 2005; Carol et al., 2004; 
Jackson, 2004; Munoz-Huerta et al., 2013). 
 
Several studies have utilised spectral vegetation indices (SVIs) from low-to-
medium resolution satellite data to study bark beetle infestation. These studies 
have mainly focused on the last two infestation stages (red and grey) of attacks 
(Filchev, 2012b; Franklin et al., 2003; Hais et al., 2009; Havašová et al., 2015; 
Koch et al., 2010; Meddens et al., 2013; Wulder et al., 2006b). However, for 
effective and proper forest management, the detection of infestation should be 
early enough to allow for timely intervention to minimise the outbreak. Several 
studies have explored the use of commercial remote sensing data such as 
Worldview-2 (Filchev, 2012b; Immitzer and Atzberger, 2014), RapidEye (Marx 
and an der Havel, 2010b; Ortiz et al., 2013) and HyMAP airborne hyperspectral 
data (Lausch et al., 2013b) for the early detection of bark beetle attack, but 
with very limited success.  
 
The SVIs were introduced to improve interpretation of vegetation signals when 
using remote-sensing data and can be used to measure vegetation status while 
minimising solar irradiance and soil background effects (Darvishzadeh et al., 
2009; Jackson and Huete, 1991; Moulin, 1999). Additionally, the combination 
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of different spectral bands is closely related to biophysical and biochemical 
properties of foliage vigour associated with plant health and can be used to 
detect morphological and physiological changes caused by insect outbreaks in 
the forest canopy (Rullan-Silva et al., 2013).  Therefore, SVIs may be expected 
to perform better than individual spectral bands when it comes to detecting 
stress induced by the bark beetle. This is especially valid when using low-to-
medium resolution data that include the red-edge spectral domain (Jackson 
and Huete, 1991; Zhang et al., 2012). This study evaluates the ability of 
different SVIs from Sentinel-2 and Landsat-8 imagery to detect and help map 
bark beetle infestation at the green attack stage. Furthermore, we also study 
the impact of bark beetle green attack on foliar biochemical and biophysical 
properties and their spectral reflectance using foliar spectral data collected 
from ASD Fieldspec3. 

5.2 Material and Methods 

5.2.1 Study area and field data collection 

The study area is the Bavarian Forest National Park, which is a 24,369 ha forest 
located in south-eastern Germany along the broader with the Czech Republic, 
between 13°12'9" E (longitude) and 49°3'19" N (latitude). This region is 
characterised as having a temperate climate with an annual precipitation of 
between 900 and 1800 mm, and a mean annual temperature of between 3.5° 
and 9°C (Bässler et al., 2008b). The forest is dominated by Norway spruce 
(Picea abies) (67%) and European beech (Fagus sylvatica) (24.5%) (Cailleret 
et al., 2014a). Outbreaks of the bark beetle (Ips typographus, L.) began in 
1984 and have caused extensive disturbance to this forest. As such, the area 
is a suitable study site for research on bark beetle infestations and outbreaks 
(Heurich et al., 2010a). 
 
During June and the beginning of July 2016, an extensive campaign was 
conducted to collect field measurements. The study area was divided into two 
different strata based on their tree condition: stands with healthy trees and 
stands with trees freshly infested by the bark beetle. To select the healthy 
stands, a stratified random sampling strategy was adopted. While, for the 
recently infested stands, the presence of bark beetle green attack had to be 
confirmed in an intensive field survey by searching for piles of dry, boring dust 
pushed out onto the bark surface of the tree when the beetle tunnels under 
the bark. According to the Bavarian Forest National Park authorities and our 
field survey, the infestation of bark beetles in 2016 clearly indicated outbreak 
conditions.  
 
To avoid mixed reflectance from healthy and green attacked trees, only plots 
fully under bark beetle green attack that covered an area of 30 m × 30 m were 
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selected. In total, 40 and 21  plots were selected in healthy and infested 
stands, respectively (Fig. 5.1).  The centre of each plot was measured using 
Differential Global Positioning System (DGPS) Leica GPS 1200 (Leica 
Geosystems AG, Heerbrugg, Switzerland) with an accuracy of better than 1m 
after post-processing. Each plot was designed as a 30 × 30 m square and 
within the plot stand characteristics including DBH, canopy cover, height and 
tree density were measured. At each plot, three to five trees were selected as 
representative and needle samples from each of these trees were collected 
separately. All the samples were taken from the trees’ top layer exposed to the 
sunlight. A crossbow was used to shoot an arrow attached to a fishing line at 
a branch with sunlit leaves (Ali et al., 2016).  
 
Leaf spectral reflectance and traits including total chlorophyll, leaf water 
content (Cw), leaf dry matter content (LDMC), and foliar nitrogen 
concentration were measured for healthy and infested samples (Table 5.1). In 
the field, the concentration of chlorophyll was determined using a CCM 
chlorophyll meter. On average ten readings were immediately taken from each 
fallen branch with the CCM. The needles were then removed from the fallen 
branches, covered with wet pulp paper and placed in a labelled plastic zip-
locked bag. They were transported to the laboratory using a portable cooling 
box; this was done to retard possible changes in the needles’ reflectance 
spectra and biochemical characteristics. The leaf directional hemispherical 
reflectance from 350 to 2500 nm was measured for the collected samples, 
using an ASD FieldSepc-3 Pro FR spectrometer equipped with an ASD RT3-3ZC 
integrating sphere (Analytical Spectral Devices, Inc., Boulder, Co, USA). 
Further details concerning the measurements of hemispherical needle 
reflectance can be found in Abdullah et al. (2018), Ali et al. (2016), Daughtry 
et al. (1989), and Malenovský et al. (2006). The needle samples were then 
dried for 72 h using an oven at 60° C, until they reached constant weight, to 
calculate leaf dry matter and water content (see Table 5.1). To determine foliar 
nitrogen, the dried needles were ground using mortar and pestle until they 
became a soft powder, after which they were passed through a 0.25 mm mesh 
screen. Subsequently, 2 mg of powdered leaves were transferred to a small 
aluminium capsule to measure the nitrogen content using an organic elemental 
analyser (FLASH 2000). The studied leaf traits (chlorophyll, water content, dry 
matter content, and nitrogen concentration) from the measured representative 
trees in each plot were then averaged to obtain the leaf traits at the plot level, 
hereafter referred to as plot level parameters. 
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Table 5. 1: The leaf traits measured for healthy and infested samples in this study. Fw, 
Dw and A represent fresh leaf weight (g), dry leaf weight (g), leaf dry mass per unit area 
(Cm), and leaf area (cm2 ), respectively. 

 

 
Figure 5. 1: Location of healthy and green attacked sample plots in the Bavarian Forest 
National Park in July 2016. 

5.2.2 Satellite imagery 

Open access multispectral satellite imagery from Sentinel-2 and Landsat-8 was 
selected for this study. To fulfil the aims of this research, cloud-free satellite 
data were acquired on 8 and 10 July 2016 from Sentinel-2 and Landsat-8, 
respectively.  Landsat-8 data were obtained from USGS Global Visualization 
Viewer (http://glovis.usgs.gov/), and the Sentinel-2 data were obtained from 
the ESA Scientific Hub (https://scihub.copernicus.eu). Both images were 
geometrically corrected in the Universal Transform Mercator (UTM) coordinate 
system and matched each other with sub-pixel accuracy.  Sentinel-2 delivers 
high spatial (10 to 20 m) and spectral (13 bands) image data. Also, it is the 
first freely available optical satellite providing three spectral bands in the red-
edge spectral region.  

Leaf traits Equation unit Reference 

Leaf water per 
mass area (Fw-Dw)/A Mg/cm2 

(Danson et al., 
1992, Ceccato 
et al., 2001) 

Leaf dry matter 
content (LDMC) Cm / (Cm-Cw) Mg/g (Vile et 

al.,2005) 

Nitrogen ----------- % PerkinElmer 
2400 CHN/O 

Chlorophyll ------------ Mg/m2 chlorophyll 
content meter 
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To prepare the satellite images for further analysis, a series of pre-processing 
was applied. First, for Landsat-8, image radiometric calibration was applied to 
convert the pixel values to Top-of-Atmosphere (TOA) reflectance. A 
MODTRAN4-based atmospheric correction software package (FLAASH) 
developed by the Air Force Phillips Laboratory, Hanscom AFB, and Spectral 
Sciences, Inc. was used to convert the TOA Reflectance to surface reflectance 
(Adler-Golden et al., 1999) using ENVI software. For Sentinel-2, the TOA 
reflectance data were corrected to surface reflectance using the SEN2COR 
atmospheric correction software developed by ESA 
(http://step.esa.int/main/third-party-plugins-2/sen2cor/). Secondly, the 
bands with a similar spatial resolution were stacked. In general, six bands from 
Landsat-8 were used and stacked together, namely the bands 2,3,4,5,6 and 7, 
which have a 30 m spatial resolution. From the Sentinel-2, the bands 2,3,4 
and 8, with a 10 m spectral resolution, were first resampled to 20 m and then 
stacked with bands 5,6,7,9, 12 and 13. The three bands with a 60 m spatial 
resolution (1,10,11) are mainly relevant for atmospheric corrections and were 
not used in this study. Finally, the spectral reflectance values of the sample 
plots were extracted from the Landsat-8 and Sentinel-2 scenes and used for 
further analysis. To synthesise and compare leaf reflectance data with canopy 
reflectance data (from Sentinel-2 and Landsat-8 data), the reflectance spectra 
collected from ASD FieldSepc-3 Pro FR spectrometer equipped with an ASD 
RT3-3ZC integrating sphere were simulated by convolving to the spectral 
resolution of Sentinel-2 and Landsat–8 using the linear interpolation method. 
 

 
 

Figure 5. 2:The flow chart of the methodology used in this study 
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5.2.3 Spectral vegetation indices calculation 

Spectral reflectance data from Sentinel-2 and Landsat-8 images were used to 
calculate the most widely used vegetation indices to detect changes in plant 
photosynthetic activity and biochemical stress, among other forms of 
vegetation stress (Collins and Woodcock, 1996; Eitel et al., 2006). Spectral 
vegetation indices include optical vegetation canopy (greenness), which is a 
combined property of foliar biochemical (chlorophyll, nitrogen, leaf water 
content) and other canopy properties (Jiang et al., 2008). To prevent using 
multiple copies of similar band combinations such as (red and NIR) in this 
study, we attempted to use statistically-independent spectral indices. In 
addition, we employed the raw spectral bands as independent indices and only 
those bands that were significantly different (p ≤ 0.5) between healthy and 
infested sample plots (Table 5.2). The selected SVIs are sensitive to stress-
induced variations in chlorophyll content (VIS), biomass (NIR), and water 
content (SWIR). Further, depending on their use, we categorised the 
vegetation indices into three groups: (a) chlorophyll and other pigments, (b) 
indices used for detection of water stress, and (c) the raw spectral bands from 
Sentinel-2 and Landsat-8. ENVI software was used to compute spectral 
vegetation indices. The equations for computing the vegetation indices are 
provided in (Table 5.2). 

5.2.4 Statistical analysis 

Three statistical analyses were employed in this study: one-way ANOVA, 
principal component analysis (PCA), and partial least square discriminant 
analysis (PLS-DA). ANOVA tests were performed to: (a) ascertain the effect of 
bark beetle green attack on measured leaf traits, including leaf and canopy 
reflectance data, and  (b) to evaluate whether SVIs’ between the two sample 
groups (healthy and infested) were significantly different. Moreover, to visually 
examine how well the two sample plots (healthy and infested) are separated 
in 2-D space based on principal component scores, the clustering method using 
principal component analysis is employed in this study. As such, PCA was used 
to evaluate the potential for different spectral vegetation indices to 
differentiate between healthy and infested sample plots. PCA is an 
unsupervised technique and remains a popular method used to reduce the 
dimension of multivariate data sets and to extract features (Hotelling, 1933; 
Pearson, 1901). The unit variance and mean centring producer were used to 
pre-process the data. To build the PCA model, spectral vegetation indices were 
treated as independent variables, and the SVIs data of all 60 sample plots (21 
infested and 40 healthy plots) were analysed. PCA models were built 
independently for each SVIs group as follows: (a) including all SVIs (pigment, 
water, and raw bands); (b) including only pigment-related indices; and (c) 
including only water-related indices. This step is important because it allows 
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us to understand and identify the most effective spectral indices group for 
separating the healthy from the infested sample groups (Fig. 5.2).   
 
In order to identify the key SVIs influencing the spectral separability between 
the healthy and infested plots, and to map bark beetle green attack, a novel 
method known as a Random Frog (RF) was used. The RF is a state-of-the-art 
variable selection algorithm, and it is a computationally efficient method using 
the context of the reversible jump Markov chain Monte Carlo (MCMC) technique 
(Green, 1995). It performs a search in the model space via both fixed-
dimensional and trans-dimensional moves between different models. After a 
pseudo-MCMC chain is calculated, this can be used to calculate a selection 
probability (SP) value for each variable included in the model. The key variables 
can be identified regarding the ranking of all variables based on the SP value. 
A detailed description of the calculation of RF can be found in Yun et al. (2013). 
To achieve this, partial least squares-discriminant analysis (PLS-DA) was 
employed as a modelling method in RF (Li et al., 2012). PLS-DA is a 
classification technique allowing for the identification of variables that improve 
the separation or classification between different groups (Wold et al., 2001). 
 
In our study, SVIs with an SP value > 0.50 were selected as an important 
variable to map bark beetle green attack. Following this, the selected SVIs 
from both satellites (Sentinel-2 and Landsat-8) were used to map bark beetle 
green attack. The box plot technique was used to display the distribution of 
SVI values for healthy and infested plots. The threshold values for green-
attacked pixels were identified for each selected SVI. The criteria for selecting 
the threshold values were based on the area (value) of each SVI, which 
essentially characterised the difference (no overlap) between healthy areas 
and those infested by bark beetle green attack (Fig. 5.9). Consequently, a 
conditional decision was made using the identified threshold values from each 
SVI to identify those pixels in the images falling within the identified threshold 
range (assigned as 1) and those pixels falling outside of the threshold range 
(assigned as 0). For example, the following conditional decision was utilised to 
extract the threshold value from NDRE-2: 

𝐺𝑟𝑒𝑒𝑛 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 ൌ ൜
1, 𝑖𝑓 0.45 ൑ 𝑁𝐷𝑅𝐸2 ൑ 0.80
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                       ሺ5.1ሻ 

From the conditional statement the following threshold values are extracted: 
if the value of  NDRE-2 is higher than 0.45 and less than 0.80, a 1 (green 
attack)  will be assigned to that cell location on the output raster; otherwise, 
a 0 (false) will be assigned on the output raster. Similar conditions were applied 
to the other selected SVIs (Figure 8) 
Finally, to generate the final infestation map, the following equation was 
applied to sum the infestation maps generated from each SVIs: 

𝐹𝑖𝑛𝑎𝑙 𝑖𝑛𝑓𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛  𝑚𝑎𝑝 ൌ ൜
1, 𝑖𝑓  𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝐴 𝑎𝑛𝑑 𝐵 𝑎𝑛𝑑 𝐶 … ൌ 1                        
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ሺ5.2ሻ 
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All of the above statistical analyses were carried out using MATLAB 2016b 
(MathWorks Inc, Natick, USA) and ArcMap (v.10.3). 

5.2.5 Ancillary data and accuracy assessment 

To assess how successfully the infestation maps produced in this study 
matched with the existing infestation areas, reference data corresponding to 
the locations of infested trees obtained from the Bavarian Forest National Park 
administration were used for validation of the output infestation maps.  The 
flight on 11 Jun 2017 documented new dead wood (grey attack stage) from 
the previous year 2016, with reference data collected from airborne colour-
infrared (VIS and NIR) aerial images (CIR) with 0.1 m spatial resolution. Full 
details about the processing and interpretation of the aerial photography in the 
Bavarian Forest National Park can be found (Heurich et al., 2009; Lausch et 
al., 2013a). 
 
The infestation data were in the form of polygons and were rasterised twice; 
firstly into 20 m × 20 m grid cells to match the generated map of infestation 
from Sentinel-2 SVIs, and secondly into 30 m × 30 m grid cells to match the 
infestation map generated from Landsat-8 SVIs (Fig. 5.2). Since bark beetles 
only infest old and mature Norway spruce (Picea abies (L.) Karst), the non-
spruce stands and young stands were masked using land cover data obtained 
from the national park administration (Dupke et al., 2017). The masked land 
cover was overlaid on the infestation maps generated in this study and 
compared with the rasterised reference data. Finally, the total number of pixels 
that correctly matched with the reference pixels (ground truth) were extracted 
and calculated (Fig. 5.2). 
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Table 5. 2: Spectral vegetation indices applied to leaf reflectance measurements, 
Sentinel-2 and Landsat-8 in the study area. 

Index 
Sensor 

Equation Reference Landsat-
8 

Sentinel-
2 

(chlorophyll, pigments, greenness) 

Canopy Chlorophyll 
Content Index 

(CCCI) 
× √ 

𝑁𝐼𝑅 െ 𝑅𝑒𝑑𝑒𝑑𝑔𝑒1
𝑁𝐼𝑅 ൅ 𝑅𝑒𝑑𝑒𝑑𝑔𝑒1

 

------------------------ 
𝑁𝐼𝑅 െ 𝑅𝑒𝑑
𝑁𝐼𝑅 ൅ 𝑅𝑒𝑑

 

(Barnes et 
al., 2000) 

Chlorophyll Green 
(Chlgreen) × √ ൬

𝑅𝑒𝑑𝑒𝑑𝑔𝑒 3
𝐺𝑟𝑒𝑒𝑛

൰
ିଵ

 
(Gitelson et 
al., 2006) 

Leaf Chlorophyll 
Index (LCI) × √ 

𝑁𝐼𝑅 െ 𝑅𝑒𝑑𝑒𝑑𝑔𝑒1
𝑁𝐼𝑅 ൅ 𝑅𝑒𝑑

 (Pu et al., 
2008) 

Normalized 
Difference Red-Edge 

2 (NDRE2) 
× √ 

𝑁𝐼𝑅 െ 𝑅𝑒𝑑𝑒𝑑𝑔𝑒1
𝑁𝐼𝑅 ൅ 𝑅𝑒𝑑𝑒𝑑𝑔𝑒1

 (Haboudane 
et al., 2004) 

Normalized 
Difference Red-Edge 

3 (NDRE 3) 
× √ 

𝑁𝐼𝑅 െ 𝑅𝑒𝑑𝑒𝑑𝑔𝑒2
𝑁𝐼𝑅 ൅ 𝑅𝑒𝑑𝑒𝑑𝑔𝑒2

 This study 

Chlorophyll 
vegetation index 

(CVI) 
√ √ 𝑁𝐼𝑅 ൬

𝑅𝑒𝑑
𝐺𝑟𝑒𝑒𝑛^2

൰  
(Vincini et 
al., 2008) 

Green Difference 
Vegetation Index 

(GDVI) 
√ √ NIR െ Green (Tucker et 

al., 1979) 

Green leaf index 
(GLI) √ √ 

2 ൈ ሺ𝐺𝑟𝑒𝑒𝑛 െ 𝑅𝑒𝑑 െ 𝐵𝑙𝑢𝑒ሻ

2 ൈ ሺ𝐺𝑟𝑒𝑒𝑛 ൅ 𝑅𝑒𝑑 െ 𝐵𝑙𝑢𝑒ሻ
 (Gobron et 

al., 2000) 
Green Normalized 

Difference 
Vegetation Index 

(GNDVI) 

√ √ 
𝑁𝐼𝑅 െ 𝐺𝑟𝑒𝑒𝑛
𝑁𝐼𝑅 ൅ 𝐺𝑟𝑒𝑒𝑛

 (Fu et al., 
2008) 

Normalized 
Difference 

Vegetation Index 
(NDVI) 

√ √ 
𝑁𝐼𝑅 െ 𝑅𝑒𝑑
𝑁𝐼𝑅 ൅ 𝑅𝑒𝑑

 (Tucker, 
1979) 

Normalize Green 
(NG) √ √ 

𝐺𝑟𝑒𝑒𝑛
ሺ𝑁𝐼𝑅 ൅ 𝑅 ൅ 𝐺𝑟𝑒𝑒𝑛ሻ

 This study 

Normalized 
Difference 
Green/Red 

Normalized green 
red difference index 

(NGRDI) 

√ √ 
𝐺𝑟𝑒𝑒𝑛 െ 𝑅𝑒𝑑
𝐺𝑟𝑒𝑒𝑛 ൅ 𝑅𝑒𝑑

 

 

(Hunt et al., 
2011) 
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Normalized 
Difference NIR/Blue 

Blue-normalized 
difference 

vegetation index 
(BNDVI) 

√ √ 
𝑁𝐼𝑅 െ 𝐵𝐿𝑈𝐸
𝑁𝐼𝑅 ൅ 𝐵𝐿𝑈𝐸

 

 

(Hancock and 
Dougherty, 

2007) 

Simple Ratio Blue / 
Red 

SR-Blue/Red) 
√ √ 

𝐵𝑙𝑢𝑒
𝑅𝑒𝑑

 
 

This study 

Chlorophyll index 
green (CIG) √ √ ൬

𝑁𝐼𝑅
𝐺𝑟𝑒𝑒𝑛

൰ െ 1  (Gitelson et 
al., 2003) 

Green Index (GI) √ √ 
𝐺𝑟𝑒𝑒𝑛

𝑅𝑒𝑑
 

(Gamon and 
Surfus, 
1999) 

Plant biochemical 
index (PBI) √ √ 

𝑁𝐼𝑅
𝐺𝑟𝑒𝑒𝑛

 This study 

Coloration Index 
(CI) √ √ 

ሺ𝑅𝐸𝐷 െ 𝐵𝐿𝑈𝐸ሻ

𝑅𝐸𝐷
 

(Escadafal et 
al., 1994a) 

Plant pigment ratio 
(PGR) √ √ 

𝐺𝑟𝑒𝑒𝑛 െ 𝐵𝐿𝑈𝐸
𝐺𝑟𝑒𝑒𝑛 ൅ 𝐵𝐿𝑈𝐸

 (Metternicht, 
2003) 

Water indices 

Disease Stress 
water index (DSWI) √ √ 

𝑁𝐼𝑅 ൅ 𝐺𝑟𝑒𝑒𝑛
𝑆𝑊𝐼𝑅 ൅ 𝑅𝑒𝑑

 (Galvao et 
al., 2005) 

Vegetation Moisture 
Index (VMI) √ √ 

ሺ𝑁𝐼𝑅 ൅ 0.1ሻ െ ሺ𝑆𝑊𝐼𝑅 ൅ 0.02ሻ
ሺ𝑁𝐼𝑅 ൅ 0.1ሻ ൅ ሺ𝑆𝑊𝐼𝑅 ൅ 0.02ሻ

 

(Ceccato et 
al., 2002) 

Leaf Water Content 
Index (LWCI) √ √ 

𝑙𝑜𝑔ሺ1 െ ሺ𝑁𝐼𝑅 െ 𝑆𝑊𝐼𝑅ሻሻ
െ𝑙𝑜𝑔ሺ1 െ ሺ𝑁𝐼𝑅 െ 𝑆𝑊𝐼𝑅ሻሻ

 (Cohen, 
1991) 

Normalized 
Difference Infrared 

Index (NDWI) 
√ √ 

𝑁𝐼𝑅 െ 𝑆𝑊𝐼𝑅
𝑁𝐼𝑅 ൅ 𝑆𝑊𝐼𝑅

 
(Hardinsky 
and Lemas, 

1983) 

Simple Ratio SWIR 
(SR-SWIR) √ √ 

𝑆𝑊𝐼𝑅1
𝑆𝑊𝐼𝑅2

 This Study 

Ratio Drought Index 
(RDI) √ √ 

𝑆𝑊𝐼𝑅1
𝑁𝐼𝑅

 
(Pinder and 

McLeod, 
1999) 

5.3 Results 

5.3.1 Impact of bark beetle green attack on measured leaf 
traits 

The results of the ANOVA test showed significant differences (p < 0.05) 
between healthy and infested samples for all measured leaf traits in this study 
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except for nitrogen concentration at plot level (Fig. 5.3). At the leaf level, 
chlorophyll and leaf water content were significantly higher for healthy than for 
infested foliar. In contrast, smaller differences were observed in foliar nitrogen 
concentration (p < 0.04) between these two groups. Leaf dry matter content 
(LDMC) was significantly higher for the infested leaves. Similarly, at plot level, 
higher chlorophyll and water content was observed for the healthy plots (Fig. 
5.3). 

 
Figure 5. 3: Mean and standard deviation for measured leaf traits at both leaf (A) and 
plot level (B). Leaf level data is obtained from the average measurements per tree and 
plot level data is obtained from the average measurements of representative trees within 
each plot. 

5.3.2 Leaf and canopy spectral variations 

Figure (5.4) shows the difference between the mean reflectance of healthy and 
infested foliage. The difference is largest in the VIS region between 520-685 
nm, the NIR (740-1130 nm) and the shortwave infrared region (1420-1850 
nm and 2000-2200 nm). Similar results have been observed at canopy level 
for the Sentinel-2 data, particularly in the NIR and SWIR infrared regions (Fig. 
5.5 A). Infested trees tend to have a higher reflectance in the VIS and SWIR 
regions than healthy trees. Moreover, the results of one-way ANOVA testing 
shows that the mean reflectance spectra of healthy and green-attacked sample 
plots were significantly different (p < 0.05) for all Sentinel-2 spectral bands at 
both leaf (simulated spectra) and canopy level. In contrast, for Landsat-8, no 
significant difference was observed at the canopy level. However, from the 
simulated leaf spectra of Landsat-8 spectral bands, low significance differences 
were observed for the red, NIR, SWIR1 and SWIR 2 bands (Table 5.3). 
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Figure 5. 4: Mean reflectance spectra of healthy and infested foliar at the green attack 
stage. Grey areas depict the location of wavebands displaying is a significant difference 
between healthy and infested spectra.  
 

 
Figure 5. 5: (A) foliar and canopy reflectance using Sentinel-2 data (B) foliar and canopy 
reflectance using Landsat-8 data. 
 
Table 5. 3: One-way ANOVA test between healthy and infested reflectance data at both 
leaf (simulated) and canopy level.  

Spectral bands 

Significance level (p < 0.05) 

Landsat -8 Sentinel- 2 

Leaf level Canopy level Leaf level Canopy level 

Blue • • ** * 

Green • • ** *** 

Red * • ** *** 

Red-edge1 Not available Not available *** *** 

Red-edge2 Not available Not available *** *** 

Red-edge3 Not available Not available ** * 

NIR * • ** ** 

NIR(a) Not available Not available ** * 

SWIR-1 * • *** *** 

SWIR-2 * • *** *** 
(●) Not significant, (*) Hardly significant, (**) significant, (***) Strongly significant. 
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5.3.3 Principal component analysis (PCA) and ANOVA test 

Significant differences (p < 0.05), were found for all SVIs calculated from 
Sentinel-2 (except SR-Blue/Red, GDVI and CI) between healthy and infested 
trees (Fig. 5.6). Whereas, the SVIs derived from Landsat-8 were only sensitive 
to changes in water content (water indices) (DSWI, NDII and LWCI), and no 
significant differences were found for the pigment indices (Fig. 5.6). Moreover, 
the results of PCA revealed that the first two components (PC 1 and 2) 
explained more than 70% of the variance in the samples of SVIs investigated 
in this study. Figure 5.7 (A, B, and C) shows the clustering of two sample plots 
(healthy and infested) within the space of the first two principal components 
(PC1 and 2). As can be seen from Figure 5.7 (A), there was a slight crossover 
between healthy and infested sample plots when all three groups of SVIs from 
Sentinel-2 data were applied in the model. In contrast, the two sample plots 
(healthy and infested) exhibited an apparent overlap and mixed scattering for 
the Landsat-8 SVI groups. Furthermore, for Sentinel-2 SVIs, the majority of 
healthy plots tended to be on the negative side of PC1, while the infested plots 
were relatively scattered on the positive side of PC1 (Fig. 5.7 (B)). Notably, no 
obvious improvement was observed when the PCA model was built 
independently for each SVI group.  
 

       

 
 
  

Figure 5. 6: Comparison of p-values from one-way ANOVA analysis between SVIs for 
healthy and infested samples (red dash line represents the significant level (p < 0.05)). 
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5.3.4 Mapping bark beetle green attack and validation 

To determine the importance of each of the SVIs when mapping bark beetle 
green attack, selection probability (SP) values were obtained from the RF 
algorithm. A total of 8 out of 24 indices shown in Figure 5.8 for Landsat-8 
indicated a higher SP (> 0.5), whereas 17 of 35 SVIs were recorded with an 
SP value of  > 0.5 for Sentinel-2 (Fig. 5.8). 

 

 

 

Figure 5. 7: Cluster plots based on the first two PCs: (A) Cluster plots based on all spectral 
indices including raw spectral bands (B) Cluster plots based on pigment indices and (C) 
cluster plots based on water-related indices.
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Figure 5. 8: Selection probability value of SVIs obtained from PLS-DA Random frog 
algorithm.  
 
Moreover, higher variation and wider threshold values were observed between 
these two sample groups (healthy and infested) using the SVIs considered in 
this study for the Sentinel-2 data than for Landsat-8 (see Fig. 5.9). Likewise, 
using raw spectral bands from Sentinel-2 indicates that red, red-edge1-3, NIR 
and SWIR bands exhibited SP values of  > 0.5. In contrast, the Landsat-8 red 
band had an SP value > 0.5. From Sentinel-2 data, the indices selected to 
generate a final infestation map included NDRE- 2, NDRE-3, GLI, GNDVI, NDVI, 
NGRDI, CIG, PGR, DSWI, LWCI, NDWI, SR-SWIR, RDI, red, red-edge1&2, NIR 
and SWIR1. However, from Landsat-8 data only CIG, GLI, NGRDI, PGR, DSWI, 
NDWI, DRI, and red were selected. 
 
Based on the defined threshold value, infestation maps were generated using 
the Landsat-8 and Sentinel-2 SVIs data. These maps were then overlaid with 
ground truth reference data to calculate matched and mismatched pixels. 
Figure 5.10 depicts those areas (pixels) correctly matched with ground truth 
data (aerial photography), as well as pixels that have been falsely identified 
from SVIs as green attacked areas. As can be seen from Table 5.4, the number 
of correctly matched pixels with reference infestation data (visual 
interpretation of aerial photography) was higher for Sentinel-2  (67 %) than 
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for Landsat-8 (36 %) SVI data. Similarly, the number of falsely identified pixels 
(mismatched pixels) that indicated green attack using SVIs was lower for 
Sentinel-2 (177 pixels) than for Landsat-8 (391 pixels). 
 
Table 5. 4: Assessment of the generated maps from Landsat-8 and Sentinel-2 SVIs using 
the reference data obtained from Aerial photography. 

Identified pixels as 
green attack from 

(SVIs) 

Reference 
pixels (Aerial 
photography) 

Pixels 
correctly 
matched 

Mismatched 
pixels Error 

Landsat-8 (612 
pixels) 

417 (30 m) 221 
(36%) 

391 64% 

Sentinel-2 (539) 687 (20 m) 362 
(67%) 

177 33% 

* The error was calculated by dividing the total number of correctly matched pixels by 
the total number of ground truth pixels.  
 

Landsat-8  
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Sentinel-2 

Figure 5. 9: The box plot shows the variation in SVI values calculated from Landsat-8 
and Sentinel-2,  between healthy and infested plots. The black and hollow boxes 
represent healthy and infested plots, respectively. The red box shows the selected 
threshold value of each SVI where there is no overlap between the two sample groups 
(healthy and infested) 
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Figure 5. 10: Map showing the spruce cover under green attack stress in the Bavarian 
Forest National Park in July 2016 based on spectral vegetation indices from Landsat-8 
and Sentinel-2 selected through the Random frog algorithm. 

5.4 Discussion 
Spectral vegetation indices (SVIs) calculated from Sentinel-2 have a high 
potential for mapping and detecting changes induced by bark beetle green 
attack, particularly the red-edge and water-related indices. These changes 
were only partly detectable by Landsat-8 due to the lower spectral and spatial 
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resolution of the OLI sensor. A greater number of pixels identifying green 
attack from Sentinel-2 SVIs matched with ground truth data (362 out of 539 
pixels), whereas Landsat-8 only matched 221 pixels (out of the 612) with 
ground truth infestation data. Furthermore, leaf-level comparisons between 
healthy and green-attacked foliar samples revealed that all leaf traits 
considered in this study were significantly different (p < 0.05), particularly for 
chlorophyll and water content. The reduction of chlorophyll and water content 
in the infested trees caused changes in the foliar spectral measurements at 
NIR and SWIR wavelengths.  
 
In our study, the stand characteristics between the healthy and infested plots 
were not significantly different (not shown). This is in line with earlier studies 
that found stand characteristics do not play a major role in infestation during 
an outbreak condition. In an epidemic level of bark beetle infestation all trees 
with different conditions (healthy and stressed) and different stand 
characteristics (large or small diameter) were under threat of this insect 
(Wermelinge, 2004; Lausch et al., 2011; Allain et al., 2011).  However, it is 
important to not that in our study, DBH with the p-value of < 0.06 was narrowly 
exceeding the threshold of  0.05, which probably indicate that this variable 
may play a role in attracting the beetles. Previous findings by Hart et al. (2015) 
and Six and Skov (2009) indicate that DBH played a major role in the endemic 
level of bark beetle infestation.  
 
A common observation in this study was that of the 19 pigment-related SVIs 
(group-1) calculated from Sentinel-2 imagery, eight (i.e., GLI, NDVI, GNDVI, 
CIG, PGR, NGRDI, and both red-edge-related indices (NDRE-2 and 3)) were 
most important having an SP value of  < 0.5 (Fig. 5.8). When only using VNIR 
bands from Landsat-8, CIG, GLI, NGRDI, and PGR have the potential to 
differentiate between healthy and infested sample plots. The underlying 
reasons may relate to the existing dissimilarities in spectral and spatial 
resolution between these two sensors (Mandanici and Bitelli, 2016). For 
example, Landsat-8 has only one spectral band (30 m) in the near-infrared 
region, while Sentinel-2 has a series of spectral bands (20 m) in the near-
infrared region (B5, B6, B7, and B8a). Furthermore, the availability of the three 
red-edge bands is a unique feature that distinguishes Sentinel-2 from Landsat-
8. In our study, the indices developed from the red-edge bands (705–783 nm) 
of Sentinel-2 (NRED2 and 3) showed the highest sensitivity to bark beetle 
green attack, and a larger threshold was identified between healthy and 
infested samples for these two indices (Fig. 5.8). This result is consistent with 
results from previous studies (Eitel et al., 2011; Krofcheck et al., 2014; 
Lottering et al., 2016; Modzelewska et al., 2017), indicating that NDRE 
calculated from RapidEye and WorldView-2 has the capacity to detect forest 
stress induced by drought and insect infestation in the early phase.  
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Interestingly, the spectral indices using the blue band (CI, SR-BLUE/RED and 
BNDVI) were unable to discriminate trees stressed by bark beetle green attack 
for both Landsat-8 and Sentinel-2 (Fig. 5.8). This is due to the reflectance of 
these sensors in the blue region of the spectrum being insufficient to detect 
spectral variation caused by bark beetle green attack. This result confirmed 
earlier findings by Arellano et al. (2015), who revealed that the blue range 
indices calculated from Hyperion images were unable to detect forest areas 
polluted by hydrocarbon in the Amazon rainforest. 
 
On the other hand, the indices calculated from a combination of SWIR and NIR 
or VIS bands (water-related indices) performed well for both Sentinel-2 and 
Landsat-8 imagery. For example, Figure 5.9 suggests that the indices DSWI, 
NDWI, RDI, SR-SWIR, and LWCI successfully differentiated healthy from green 
attacked plots using Sentinel-2. Due to the significantly lower water content 
and higher leaf dry matter content  (p < 0.05) of infested samples, their 
spectral reflectance responded more profoundly in the SWIR region at both leaf 
and canopy level than the reflectance of healthy samples did (Figure 3) (Ali et 
al., 2016; Wang et al., 2011).  This is because a reduction in leaf water content 
is responsible for changes in SWIR reflectance (Bowman, 1989). This is also 
demonstrated in Figures 5.4 and 5.5 (A and B), where distinctively higher 
reflectance in the SWIR region was observed for the infested samples at both 
leaf and canopy level. This is consistent with the study by Immitzer et al. 
(2016), which highlighted the importance of the SWIR in Sentinel-2 data for 
mapping different forest classes. Similar results have been reported for 
wavelengths in the NIR and SWIR regions, which are sensitive to forest 
disturbance caused by insect attacks. Foster et al. (2017) found that the SWIR 
region from hyperspectral measurements collected from ASD FieldSpec Pro 
was key to the detection of bark beetle (Dendroctonus rufipennis) green attack 
in Engelmann spruce (Picea engelmannii). 
 
The sensitivity of SWIR bands to variation in leaf water content is due to its 
reflective nature, allowing it to bounce off objects while remaining invisible to 
the human eye. This feature of the SWIR region makes variation in leaf water 
content easily recognisable. Furthermore, it should be noted that not only the 
SWIR region is sensitive to variation in leaf water content, but that the thermal 
infrared region may also provide sufficient information in this regard. Landsat-
8 has two spectral bands in the thermal infrared region (10.60 – 12.51 nm). 
Further research would, therefore, be useful to assess whether information 
from the thermal region can provide sufficient information for mapping bark 
beetle green attack. 
 
Furthermore, the results of PCA analysis revealed that the method using 
different SVI groups (pigment or water-related indices) did not improve 
discrimination between healthy and infested sample plots when using Sentinel-
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2 data (Fig. 5.7). However, with Landsat-8 data, the performance of the PCA 
model decreased when SVIs groups were used separately. This reduction in 
PCA performance was expected due to the spectral variation of infested plots 
not being efficiently detected by Landsat-8 images (see Fig. 5.5 (A and B)).  
 
It should also be noted that 177 and 391 pixels indicating green attack based 
on Sentinel-2 and Landsat-8 data, respectively, were mismatched with the 
ground truth data (Table 5.4). To better understand this discrepancy, we 
studied the infestation data (obtained from visual interpretation of aerial 
photography) of the previous years, 2014 and 2015, acquired from the 
Bavarian Forest National Park administration. This allowed us to check whether 
mismatched pixels are indicating green attack corresponded with previous 
infestations in 2014 and 2015. To accomplish this, a similar process (as 
explained in Section 2.5) was applied to 2014 and 2015 infestation data and 
then overlaid on the mismatched pixels.  As can be seen from Table 4, the 
results revealed that, for Sentinel-2, 12 and 57 pixels (out of the 177 
mismatched pixels) matched with the infestation data of the years 2014 and 
2015, respectively. While for Landsat-8 data, only 11 and 31pixels matched 
with infestation data for the years 2014 and 2015, respectively (Table 5.5). 
This highlights the sensitivity of SVIs calculated from Sentinel-2 for detecting 
canopies that are stressed by bark beetle green attack. It is important to note 
that all the pixels that were identified as a green attack, using both sensors 
considered in this study, were within 500 meters of the previous year’s 
infestation when analysed using a 500-metre buffer zone around these data 
(not shown). Hence, we could identify the previous years’ infestations, which 
were now at the grey attack stage. 
 
Table 5. 5: Assessment of the mismatched pixels from Landsat-8 and Sentinel-2 SVIs 
using previous years’ (2014 and 2015) infestation data (obtained from Aerial 
photography). 

Mismatched pixels as 
green attack from 

(SVIs) 

Pixels correctly 
matched with 

infestation data 
(2014) 

Pixels correctly 
matched with 

infestation data 
(2015) 

Landsat-8 (391 pixels) 11 31 
Sentinel-2 (177 pixels) 12 57 

5.5 Conclusion 
The spectral indices derived from Sentinel-2 data performed well at detecting 
changes in the leaf biochemical properties (reduction in chlorophyll, increase 
in leaf dry matter content and decrease in water leaf water content) and their 
relation to canopy reflectance. The simulated Sentinel's data also showed good 
accordance with measured leaf reflectance using an ASD spectrometer as well 
as a superior response to changes in leaf biochemical properties over the whole 
wavelength region, as almost all utilised SVIs performed well for detecting bark 
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beetle green attack. Although the total number of pixels matched with ground 
truth data (362 pixels, 67%) obtained from the Sentinel-2 may not be high 
enough for operational forestry practice and management purposes, it is a 
promising technique for alerting to bark beetle green attacks. It can aid the 
detection of bark beetle infestations in a timely manner over large areas and 
thus form the basis for accurate and efficient bark beetle monitoring. It is 
possible that another type of remote sensing data with a higher resolution 
(such as from an Unmanned Airborne Vehicle)  may provide a better result 
detecting bark beetle green attack.  As early detection of infestations is 
essential for the successful control of an outbreak (Fahse and Heurich, 2011), 
further research applying different approaches using Sentinel-2 imagery should 
be undertaken with principal component analysis (PCA) and partial least square 
discriminate analysis (PLS-DA) from this study to check the stability and 
accuracy of the threshold values identified over a period of time. 
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Chapter 6 Synthesis: Remote sensing of 
European spruce (Ips typographus, L.) bark 
beetle green attack 
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6.1 Introduction 
During the last three decades, there have been massive and increasing 
numbers of severe European spruce Ips typographus, L. bark beetle outbreaks 
in the coniferous forests in central Europe. These have resulted in significant 
ecological changes in terms of forest structure, the composition of wildlife 
habitats and degradation of large areas within existing forests (Christiansen 
and Bakke, 1988b; Fahse and Heurich, 2011; Raffa et al., 2008; Seidl et al., 
2011; Seidl et al., 2014). In other words, the bark beetle count is an agent of 
stress and change in forest structure and function and has an effect on the 
ecosystem both directly and indirectly. The direct impact of the bark beetle on 
the ecosystem includes increasing tree mortality rates, changing forest stand 
density and altering the forest microclimate by reducing the forest canopy 
layer, which can increase the amount of sunlight to the forest floor (Beudert et 
al., 2015; Kurz et al., 2008; Lehnert et al., 2013; Lindenmayer and Franklin, 
2002; Mikkelson et al., 2013).To control or preclude a mass outbreak and 
minimise the economic loss in the forest industry, early detection of a bark 
beetle infestation is an essential step. Detection of a bark beetle infestation at 
the green attack stage means locating infested trees when the beetle larvae 
are still confined within the tree. In this respect, remote sensing is a cost-
effective and repetitive technique which is an optimal approach to monitor and 
assess forest stress in comparison to the more traditional (field survey) 
approach, which is not practical and is actually inefficient in large areas 
because it is significantly laborious and costly. Therefore, the current thesis 
has studied the utility of different types of remote sensing data obtained from 
a variety of sensors, including ASD FieldSpec3 and multispectral satellites 
(RapidEye, SPOT-5, Sentinel-2 and Landsat-8) for early detection of bark 
beetle infestation at both the leaf and canopy levels. Furthermore, this study 
provided an important opportunity to advance the understanding the impact of 
early bark beetle infestation on the biochemical properties of the infested trees 
(chlorophyll, nitrogen, chlorophyll fluoresces, leaf water content, dry matter 
content and stomatal conductance) (Fig. 6.1).  
 
The results of the study have been presented and published in four scientific 
articles which form the main four chapters of this thesis (Chapter 2-5). While 
the general introduction to the bark beetle infestation, aim and objectives of 
the study are presented in Chapter one. In Chapter 2, foliar biochemical 
(chlorophyll and nitrogen concentration) and spectral reflectance properties 
(400–2000 nm) obtained from an ASD FieldSpec3 equipped with an integrating 
sphere were used to study the impact of bark beetle green attack on the 
needles of the infested spruce trees. Subsequently, in Chapter 3, temporal 
high-resolution satellite data from RapidEye and SPOT-5, parallel with field 
measurements of leaf properties , were used to understand and explore the 
dynamics of leaf traits and canopy reflectance of Norway spruce during the 
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early to advanced stage of bark beetle attack (green to red attack) (Ips 
typographus, L.). Leaf spectral measurements together with leaf traits 
(nitrogen, chlorophyll, chlorophyll fluorescence, water content and stomatal 
conductance) were studied from three repeated sequential measurements. In 
Chapter 4, the utility of thermal (TIR) and visible-short wave infrared (VIS-
SWIR) data was evaluated to detect the temporal variations of the canopy due 
to bark beetle infestation and to study thermal sensitive foliar properties (i.e. 
stomatal conductance, chlorophyll fluorescence and water content). In Chapter 
5, the potential of data from two freely available satellites—Sentinel-2 and 
Landsat-8—were compared to detect and map bark beetle infestation at the 
early stage with the use of field measured data (foliar reflectance and 
biochemical properties).  
 
Finally, this chapter (Chapter six) synthesises the main results and provides a 
summary of the main findings. The chapter further discusses the practical 
relevance of using remote sensing data for detection of bark beetle green 
attack. 

 
Figure 6. 1: Research framework and logical established links between 
chapters and utilised data. 

6.2 Effects of bark beetle green attack on foliar 
reflectance and biochemical properties  

Very few spectroscopic data are available for Norway spruce trees attacked by 
the European bark beetle at the leaf level, despite such data being highly 
beneficial for detecting pre-visual stress. Hence, we examined the potential of 
hyperspectral measurements (400–2,200 nm) from an ASD FieldSpec3 
equipped with an integrating sphere to detect possible changes in foliar 
reflectance induced by bark beetle infestation. 
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The results of this study revealed that the mean reflectance spectra of attacked 
green foliage were statistically different (p < 0.05) compared to healthy foliage 
for 917 wavebands out of the 1600 wavebands considered in this study from 
400–2200 nm. The findings demonstrated that the infestation of bark beetle 
at the green attack stage reduced the concentration of chlorophyll and nitrogen 
within the infested foliage. Previously, it was shown by Ahern (1988b) that the 
most promising spectral bands for the detection of mountain pine beetle green 
attack at the leaf level were located near the red edge of the spectrum. In 
addition, the results of variable importance in projection (VIP) obtained from 
partial least squares regression (PLSR) revealed that the wavelength range 
between 730 and 790 nm (red-edge) is the most informative spectral area 
affected by the European spruce bark beetle, and more pronounced in regards 
to chlorophyll variation between healthy and infested foliage (Fig 6.2).   
 
Our results further demonstrated that the reflectance at NIR and SWIR regions 
(730–1,370 nm) was distinctively lower for the green attacked foliage than the 
healthy ones. This phenomenon is mostly due to the deficit in water content 
observed in infested trees, leading to a degeneration of the internal leaf 
structure at the cellular level (Slaton et al., 2001b; Zhang et al., 2012a). 
 
The research also found that the infestation of the bark beetle at the green 
attack stage affected the estimation accuracy of foliar chlorophyll and nitrogen 
concentration using hyperspectral measurements and the accuracy decreased 
when the tree was infested by a bark beetle green attack. This was confirmed 
from the results of PLSR (Fig. 6.3). Accordingly, the study concluded that the 
retrieval of biochemical properties from hyperspectral measurements may be 
used as an indicator for efficient landscape-wide detection of a bark beetle 
green attack. It is, however, important to note that retrieval accuracies for the 
total chlorophyll and foliar nitrogen concentrations at the leaf level would 
probably be different from those at the canopy level because of structural and 
external factors, such as illumination and atmospheric conditions, that may 
affect the reflectance spectra at the canopy level (Ollinger, 2011; Wang, 2016). 

 
Figure 6. 2: Importance of wavelengths corresponding to the highest value of variable 
importance in the projection scores of partial least squares regression in healthy and 
infested samples. 
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Figure 6. 3: Measured versus predicted foliar chlorophyll and nitrogen concentration for 
healthy (a) and infested (b) samples derived from the PLSR analysis. 

6.3 Understanding dynamic changes of Norway 
spruce trees at both leaf and canopy level under 
bark beetle infestation during green to red attack 
stage  

Continuous monitoring is essential for investigating and understanding the 
dynamic characteristics of leaf traits and canopy reflectance experiencing a 
bark beetle infestation, in order to provide possible information about changes 
in the infested forests at the early stage of the attack and instigate possible 
management interventions. Therefore, the dynamics of leaf and canopy 
reflectance of Norway spruce trees under bark beetle Ips typographus, L 
infestation was investigated for the first time. 
 
Chapter 3 in this thesis discussed the potential use of two high-resolution 
satellites from RapidEye and SPOT-5 for the detection of a bark beetle 
infestation and monitoring possible changes in infested trees. In situ 
measurements of chlorophyll, chlorophyll fluoresces, nitrogen content, leaf 
water content and stomatal conductance were obtained for three consecutive 
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repeated time measurements during a field campaign in 2015, concomitant 
with the timing of image acquisition.  
 
The findings showed that the variation between healthy and infested trees was 
increased with the progression of infestation for all studied leaf traits 
(particularly for stomatal conductance and chlorophyll fluorescence). Stomatal 
closure is the first stress-induced physiological response of infested trees in 
order to preserve water. These findings confirm results in section 6.4 which 
showed that canopy surface temperature (CST) affected by a bark beetle 
infestation is higher compared to the healthy situation. One observed result is 
an increase in leaf and canopy temperature due to a decline in transpiration 
cooling. 
 
The spectral regions selected for differentiating and monitoring spectral 
changes induced by bark beetle infestation were the red edge and SWIR bands 
from RapidEye and SPOT-5, respectively. These two spectral regions 
outperformed other spectral regions in detecting early bark beetle infestation 
from June to July 2015 (Fig. 6.4). Similar results were observed at the leaf 
level (section 6.2), for these same two spectral regions. Furthermore, we found 
that the spectral vegetation indices calculated from the red edge and SWIR 
spectral bands,  such as NDRE, DSWI, NDWI and LWCI, were the most 
sensitive indices that differentiated healthy from infested sites (Fig. 6.4). 
 
This study concluded that red-edge and SWIR spectral bands of the 
multispectral satellites can significantly improve the monitoring and detection 
of forest stress under red attack, with subsequent important implications for 
European bark beetle management and future studies. 
 

RapidEye 

A A
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SPOT-5 

  

Figure 6. 4: (A) Temporal variation of studied spectral vegetation indices for healthy and 
infested plots in the Bavarian Forest National Park using RapidEye and SPOT-5 satellite 
data. Green and black lines represent healthy and infested plots, respectively; (B) 
Unpaired t-test of canopy reflectance between healthy and infested samples. Dark 
squares indicate spectral wavebands that were significantly different (P ≤ 0.05). The red 
box shows the spectral region that was significantly different overall temporal data 
considered in this study. 

6.4 Sensitivity of Landsat-8 OLI and TIRS Data to 
Foliar Properties of Early Stage Bark Beetle (Ips 
typographus, L.) Infestation 

Several studies have shown that TIR data have significant potential for 
detecting plant diseases and pathogens at a stage before the plants exhibit 
visual signs (Aldea et al., 2005; Moller et al., 2007; Ni et al., 2015; Oerke et 

A A A
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al., 2006; Xu et al., 2006). In this respect, Chapter 3 sought to explore and 
compare the potential of both optical and thermal infrared (TIR) data for the 
detection of pre-visual symptoms induced by a bark beetle green attack. Three 
Landsat-8 images from May, July and August 2016 were studied, representing 
early, advanced, and post-infestation stages, respectively.  
 
These results showed that CST calculated from TIR data was superior to the 
spectral vegetation indices obtained from optical bands for detecting subtle 
canopy changes due to a bark beetle infestation for the three months studied 
(Fig. 6.5). In addition, a strong correlation between CST with leaf water 
content, chlorophyll fluoresces and stomatal conductance was observed in the 
healthy leaves (r = –0.46, –0.55 and –0.48, respectively), whereas for the 
green attacked leaves, they were r = 0.05, –0.15 and –0.25, respectively (Fig. 
6.6). CST was found to be an important variable for estimating measured leaf 
traits (VIP > 1) and improving the differentiation between healthy and green 
attacked sites when used with other SVIs. Accordingly, TIR may prove to be a 
considerably useful indicator in this context. This study concludes that the early 
stress induced by a bark beetle infestation is more effectively represented by 
data obtained from TIR compared to optical sources. This could have positive 
implications for future forest practice.  
 

Figure 6. 5: Temporal variation of CST for healthy and green attacked sample plots in 
the Bavarian Forest National Park. Green and red boxes represent healthy and infested 
plots, respectively. A * indicates the significant difference between healthy and infested 
plots, respectively. A * indicates the significant difference between healthy and infested 
plots obtained using Student t-tests,  and a blue o indicates an outlier. 

May 

 

July August 
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Figure 6. 6: Correlation between studied leaf traits (chlorophyll fluorescence, leaf water 
content, and stomatal conductance) and SVIs, in the Bavarian Forest National Park, July 
2016. 

6.5 Detection and mapping bark beetle green attack 
using spectral vegetation indices from Landsat-
8 and Sentinel-2 data  

Detecting and mapping Ips typographus, L green attack with medium 
resolution satellite data was addressed in Chapter 5. The potential of spectral 
vegetation indices from Sentinel-2 and Landsat-8 alongside field data 
measurements to detect a bark beetle green attack was investigated. 
Furthermore, the variation in reflectance spectra between healthy and infested 
plots was determined at the leaf and canopy level. 
 
The research revealed that the spectral vegetation indices from Sentinel-2 
satellite data have a strong potential to map and detect a bark beetle 
infestation at its earliest stage. Moreover, the results showed that the 
difference between the mean reflectance of healthy and infested foliage is most 
substantial in the VIS region between 520 and 685 nm, the NIR (740–1,130 
nm) and the shortwave infrared region (1,420–1,850 nm and 2,000–2,200 
nm). Similar results have been observed at the canopy level for the Sentinel-
2 data when compared with interpolated field ASD spectrometer at the leaf 
level, particularly in the NIR and SWIR infrared regions, while for the Landsat-
8, this variation was not detected at the canopy level (Fig. 6.7). Moreover, a 
good agreement exists between canopy reflectance and leaf spectra 
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(interpolated to Sentinel-2 spectral bands); in particular, for the red-edge and 
SWIR wavebands, the correlation was r = 0.50 to 0.61 (p < 0.05), while 
weaker correlations were observed between the canopy and interpolated leaf 
spectra for Landsat-8 image data for both healthy and infested plots (Fig. 6.7). 
  
The spectral bands selected as the best combination of the vegetation indices 
for detecting and mapping bark beetle green attack were found in the red-edge 
and SWIR bands in Sentinel-2, including NDRE2-3, SR-SWIR, NDWI, DSWI and 
LWCI. This confirmed our earlier research, described in section 6.3, which 
studied the temporal dynamics of canopy reflectance under a bark beetle green 
attack and revealed that both red-edge and SIWR bands were the most 
informative in terms of maintaining their sensitivity for monitoring and 
detecting a bark beetle infestation from early to advanced stages of infestation 
(Fig. 6.4). An increased numbers of pixels, identified as a green attack from 
Sentinel-2 SVIs, were matched with ground truth data (67%), while for 
Landsat-8 (36%), they were matched with ground truth infestation data. This 
result confirmed that the spectral vegetation indices calculated from Sentinel-
2 spectral bands performed better in differentiating between healthy and 
infested plots compared to Landsat-8 SVIs. 
 
The study concluded that both red-edge and SIWR regions have the potential 
to provide valuable information about infested areas and can produce a reliable 
map of which areas in a forest are affected by a bark beetle green attack.  
 

 
Figure 6. 7: foliar and canopy reflectance using (A) Sentinel-2 data (B) Landsat-8 data 
(C & D) correlation between canopy reflectance and foliar spectra (interpolated from 
Field ASD spectrometer to Sentinel-2 and Landsat-8 spectral bands) for both healthy and 
infested plots. 
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6.6 Practical relevance 
This study contributes to applied research on the field of remote sensing of 
bark beetle green attack. The findings and methods applied in this work have 
the potential to produce useful information about bark beetle infestation at an 
early stage of the attack.  
 
The results confirmed that it is possible to detect the stress induced by the 
bark beetle at an early stage, and prior information derived from field 
measurements can significantly improve this process through remote sensing 
data and approaches. This will facilitate regular monitoring of bark beetle 
infestation in conifer forests. However, the key issue is how the findings 
obtained by this research and reported in this thesis can be used for detecting 
bark beetle infestation. In other words, how, when and which spectral regions 
are capable of using driven information from space to detect a bark beetle 
green attack. We can conclude that in the remotely sensed survey of green 
attacked Norway spruce trees affected by the bark beetle, that high-quality 
observation in space, time and spectral characteristics are required, to make 
this survey useful in a management context, as outlined in the following points: 
 
Spectral information: Norway spruce trees impacted by the European spruce 
bark beetle exhibits stress symptoms in a gradual process. Therefore, it is 
necessary to use remote sensors which can record and collect information over 
all portions of the electromagnetic spectrum (visible, near infrared-shortwave 
infrared and thermal infrared). At the beginning of a bark beetle infestation, 
the most common initial response is the closure of plant stomata to preserve 
water content. Therefore, it may not be possible to detect such changes and 
physiological stress using the visible portion (400–700 nm) of the 
electromagnetic spectrum. In contrast, satellites such as Landsat-8 and 
Sentinel-2 with the capabilities to further capture information in near, 
shortwave and thermal infrared regions of the electromagnetic spectrum would 
be more sensitive to this kind of physiological stress. 
 
Moreover, in remote-sensing studies of bark beetle infestation, spectral 
characteristics is another important issue and should be considered—results 
from our study suggest that hyperspectral data are very important in 
accurately detecting forest stress induced by bark beetle green attack. 
Hyperspectral data can provide significant improvements in spectral 
information content and a closer correlation with the biochemical and 
physiological properties of targeted leaves or canopies when compared with 
data from broad-bands sensors for detecting plant stress. For example, such 
data are able to capitalise on both biochemical and structural properties of the 
target forest area and offer enhancement in detecting subtle changes in tree 
canopy reflectance due to physiological stress from insects or pathogens. The 
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hyperspectral data capturing can be performed at the early stages of bark 
beetle infestation, and hence improve an ability to detect the stress induced 
by bark beetle at its early stage. This can significantly benefit the control of 
massive bark beetle outbreaks and minimises economic losses compared to 
multispectral remote sensing, which can only detect canopy stress when 
infestations are at their advanced stages and are widespread. 
 
In the optical spectral region, we identified two spectral regions—the red edge 
and SWIR—as being the most important spectral channels at both the leaf and 
canopy levels for detecting subtle changes in Norway spruce trees under a bark 
beetle green attack. Hence, remote sensors such as Sentinel-2, RapidEye, 
SPOT-5 and the HYpex camera mounted on a UVA with the capacity to collect 
information over these two spectral regions are providing better opportunities 
to detect insect-stressed forests. 
 
Temporal information: Because Norway spruce trees infested with European 
spruce bark beetles do not die immediately, continuous monitoring of forests 
from remote sensing platforms is critically important for characterising and 
understanding the temporal response changes of infested trees. Multidate 
images, within the same months, are preferably collected when the beetles 
start to swarm during the European springtime. We reported in our studies 
that employing multi-temporal imagery from RapidEye, SPOT-5, Sentinel-2 
and Landsat-8 images are providing valuable information related to the stress 
induced by bark beetles. We were able to identify for the first time in the 
European situation (and in contrast to earlier works in the United States) that 
mid-June to the beginning of July is an appropriate time frame for identifying 
early stress induced by a bark beetle infestation. It is important to note that 
our results at the leaf level show that the foliar properties change affectedly 
within 3-4 weeks from the infestation time. Therefore, it is assumed it believes 
that using high temporal resolution data (e.g. 3-5 day) may further improve 
the time frame for early detection of European spruce bark beetle.   
  
Radiometric Resolution: One of the main issue in the study of bark beetle 
green attack when using remote-sensing data is the intra-class variability of 
the reflectance values between healthy and green attacked trees, an issue 
which is hampering the separability of infested and healthy classes. In this 
case, the radiometric resolution of remotely sensed data plays an important 
role. Radiometric resolution describes the actual information content in an 
image and offers the ability to discriminate very slight differences in energy. 
Therefore, the finer the radiometric resolution, the more sensitive it is to detect 
small differences in reflected data over different objectives on the ground. 
However, it is important to note that the radiometric resolution itself is 
insufficient for detecting such differences. For example, Sentinel-2 and 
Landsat-8 both have a radiometric resolution of 12-bits; however, in our study, 
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we showed that the potential of Sentinel-2 is higher than Landsat-8 imagery 
for determining subtle canopy changes induced by bark beetle due to the 
higher spectral and spatial resolution of Sentinel-2 data. 
 
Spatial information: spatial resolution is a key issue in remote sensing 
studies of a bark beetle green attack. Different remote sensing instruments 
capture and collect data at different levels of scale and resolution: the higher 
spatial resolution may outperform lower-resolution for bark beetle green attack 
detection. This is especially true when they combine with high spectral and 
radiometric resolution data. In other words, the combination of high spectral, 
spatial, temporal and radiometric resolution can provide valuable information 
regarding bark beetle green attack detection.    
 
Moreover, It should be noted that the importance of high spatial resolution 
data is increased when the bark beetle infestation occurs at an endemic level 
(non-outbreak). In that case, the majority of the infested trees will be within 
small isolated patches. Therefore, a higher spatial resolution is required 
because it is more appropriate for small patch detection. However, when the 
infestation is at an epidemic (outbreak) level, as was reported earlier in 
previous chapters (5), larger clusters of trees are infested; in this case, there 
is a possibility to detect the subtle spectral differences caused by a bark beetle 
green attack using moderate-resolution imagery. 
 
6.7 The relative importance of ground-based 

measurements for bark beetle green attack 
detection 

During the past decades, fundamental research has been conducted on the 
applicability of satellite remote sensing observations for forest parameter 
estimation using extensive field data measurements. The results and findings 
of these studies have been used in extensive calibration/validation experiments 
and technological innovation, to propose and develop upcoming satellite 
missions (i.e., Sentinels, EnMap, CHIME and HyspIRI).  
 
In general, the purpose in ground-based measurements is to aid the calibration 
and interpretation of remotely sensed data. However, in the field of bark beetle 
infestation, ground-based measurements can provide even more contextual 
information to obtain high accuracy results. An on-site gathering of location 
and the associated characteristics of the infested tree that properly 
characterise states, conditions, and parameters associated with the early stage 
of bark beetle infestation can add value to physical imaging remote sensing 
observations and possibilities to interlink the canopy stress assessment with 
bark beetle infestation. In other words, when both in situ and remotely sensed 
data are combined in a complimentary sense, they may provide additional 
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information in comparison to using a single source (e.g. field data or remote 
sensing data alone) would be too imprecise.  
 
As described in chapter one, the potential of remotely sensed data to provide 
stress signal induced by bark beetle infestation depends on the physiological 
response of trees and biology (lifecycle) of bark beetle. As such, in chapter 
two, we identified spectral wavebands that are sensitive to variation in 
chlorophyll and nitrogen concentration due to bark beetle green attack. 
Moreover, we showed that the most common initial response of bark beetle 
infestation is the closure of plant stomata to preserve water content. In chapter 
three we selected the best time frame for bark beetle green attack detection 
using temporal field measurements and remote sensing data. Moreover, in 
chapter four and five we demonstrated the potential of multispectral satellite 
data in detection bark beetle infestation. This information together can be used 
to; a) produce predictive Models to detect or assess forest health status under 
bark beetle infestation, and b) to propose or develop new remote sensing 
sensors to fulfil all requirements for bark beetle green attack detection.   

6.8 Implications for commercial forestry and 
protected area management: 

Prevention and suppression of bark beetle outbreaks comprise particularly 
important applied strategies in commercially managed forests (Wermelinger, 
2004). However, in protected areas, management of bark beetle infestation is 
more complicated. Bark beetles can be viewed as natural renewal agents and 
therefore an essential part of ecosystems, with the integrity of their protected 
areas being mandated to guard against human interference. However, if left 
uncontrolled, bark beetles may move outside park borders, cause damage on 
commercial forests or private forested areas (McFarlane and Witson, 2008). 
Similarly, the disturbance caused by bark beetle infestation negatively impacts 
protected areas’ visual beauty and thus potentially on the visitor experience 
(Müller and Job, 2009; Sheppard and Picard, 2006). Therefore, management 
strategies for bark beetle infestation in protected areas are always required to 
maintain a balance between ecological, social and economic demands.  
 
Various bark-beetle-infestation strategies have been adopted. These 
approaches include salvage logging, and large-scale commercial harvesting of 
infested stands at the green attack stage before the new brood emerges and 
migrates (Wermelinger 2004; Wulder et al. 2009). Forest managers need to 
know the location of green attack trees in order to strategically and 
operationally allocate resources for mitigation and control. In this regard, our 
findings can provide useful information for forest management, particularly 
with respect to the potential of Sentinel-2 data for detecting canopy stress 
induced by bark beetle infestation at the green attack stage. This strategy will 



Chapter 6 

119 

reduce the various costs involved and facilitate bark beetle survey practice 
since the data available free of charge.   
 
Moreover, our findings can improve bark beetle management activities by 
providing useful information regarding how, when and which remote-sensing 
data could be applied to such survey practice. For example, our findings in 
Chapter 3 showed that the most appropriate time for European field bark beetle 
management is between Jun to July (European conditions). Furthermore, the 
findings of our study in Chapter (2) revealed that biochemical properties (such 
as chlorophyll, nitrogen and water content) in infested trees are most likely 
affected during the green attack stage. Typically, chlorophyll, nitrogen and leaf 
water content have been used by an ecologist to study the interaction between 
the ecosystem and biological inhabitants; for example, to assess changes in 
plant health associated with environmental stress and disease (Roumet et al., 
2006). Therefore, administrative bodies of forested areas may use such 
information as an indicator for the efficient landscape-wide detection of bark 
beetle green attack.  

6.9 Future of remote-sensing platforms in 
monitoring bark beetle infestation:  UAV and 
space-borne hyperspectral satellites  

The traditional methods of remote-sensing data for bark beetle infestation still 
cannot meet the needs of forest management practice due to logistical and 
technological limitation factors as explained earlier in Chapter (1). As 
mentioned in section 6.6, in bark beetle green attack analyses, the spectral, 
spatial and temporal resolutions of remote-sensing platforms play a key role. 
In the last few decades, airborne hyperspectral sensors have been among the 
most important platforms providing high-spectral and -spatial resolution data. 
The data captured by this platform are less affected by atmospheric 
perturbation. However, airborne hyperspectral sensors are often relatively 
expensive because of their limited spatial coverage, with multiple flight lines 
typically being required to cover a study area. Further, a limitation such as; 
cloud cover and data processing is often complex and can lead to significant 
error. Similarly, due to technical and practical limitations such as challenging 
signal-to-noise ratios (SNR) in particular, as well as bottom-of-atmosphere 
reflectance, sensor cost, data volume and associated data processing costs and 
time, until now, hyperspectral satellites have been poorly represented in 
spaceborne missions compared to multispectral ones. Nonetheless, the future 
of hyperspectral remote sensing is promising, considering forthcoming 
launches of hyperspectral satellites. There are a number of hyperspectral 
satellites planned to be launched in the near and distant future. These missions 
will provide a better opportunity for bark beetle green attack detection (Figure 
6.8). 
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Figure 6. 8: The main planned hyperspectral sensors to be launched in the next five 
years. 
 
EnMap, CHIME and HyspIRI commissioned hyperspectral sensors providing 
more imagery alternatives, and their newly developed image processing 
algorithms offering more analytical tools. Hyperspectral remote sensing is 
positioned to become one of the core technologies for geospatial research, 
exploration and monitoring of forest stress and insect infestation. For example, 
EnMap, CHIME and HyspIRI can all collect data over visible to shortwave 
infrared wavelengths (400–2,500 nm). This provision is important for the study 
of bark beetle infestation as we demonstrated the potential of hyperspectral 
measurement (400–2,500 nm) for detection of Ips typographus, L. green 
attack Chapter (2). Furthermore, the HyspIRI satellite will be the first 
hyperspectral sensor in space able to provide eight spectral bands in the 
thermal infrared region from the 3–5- and 8–12-micron regions of the 
spectrum. These satellites will offer a breakthrough regarding the control, 
prevention and mitigation of large-scale bark beetle outbreaks. Our study 
Chapter (4) revealed the importance of thermal bands in detecting canopy 
stress induced by bark beetle infestation at a very early stage. Similarly, TIR 
data were found to have a stronger correlation and able to better represent 
the stress signals from leaf thermal properties (such as leaf water content, 
stomatal conductance and chlorophyll fluorescence) under bark beetle 
infestation.  
 
Furthermore, other remote-sensing platforms such as unmanned aerial 
vehicles (UAVs) as a new means of remote sensing offer significant potential 
concerning future remote-sensing applications in forest management. 
Currently, UAVs can collect data at low altitude and provide high-quality data 
comparable to airborne sensors. The advantages of UAV-collected data include 
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low cost, high accuracy abundant data, real-time capability and the ability for 
rapid data acquisition while transmitting image, video and orientation data in 
real time to ground control stations (Table.6.1).  
 
The UAV technology has developed at a significantly rapid pace, and today, 
different sensors can be attached to UAVs onboard such as positioning sensors 
(GPS), inertial navigation sensors (INS), micro-electro-mechanical systems 
(MEMS), gyroscopes, accelerometers and altitude sensors (AS), all of which 
allow for the realization of remote sensing missions. Moreover, various sensors 
such as multispectral, hyperspectral, LIDAR and thermal cameras can be 
installed onto UAV platforms. As a result, recent data collected by UAVs are 
widely used for forest management practices.  
 
The current limitation of UAVs is related to their flight time (i.e., limited battery 
power) and processing time of the imagery. However, there is growing interest 
in the forest management community in using UAVs as a promising and 
decision-support tool for forest disturbance studies, including bark beetle 
infestation management. Soon UAV can potentially fill the gap between 
satellite/airborne platforms with ‘ground truth’ data collected using ASD field 
spectrometers to study detection of bark beetle at the green attack stage. 
 
Table 6. 1: Comparison between UAV and other remote-sensing platforms. 
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6.10 Future research Avenues 
The results of this thesis outline the potential of using remotely sensed data 
for the detection of early-stage European spruce bark beetle infestation. In line 
with field data measurements and employed statistical approaches in this 
dissertation, further studies could be undertaken along two lines: to examine 
the retrieval of other foliar properties under bark beetle green attack, and the 
use of different remotely sensed datasets. 
 
In this study, we revealed that the retrieval of foliar biochemical properties 
(chlorophyll and nitrogen concentration) from hyperspectral measurements 
decreases when the trees are under bark beetle infestation, and that other leaf 
traits (e.g. leaf water content, stomatal conductance and leaf dry matter 
content) is important equally in the study of bark beetle green attack. 
Therefore, further research could be undertaken on other vegetation traits in 
the future.  
 
In Chapter 2, foliar hyperspectral measurements from ASD FieldSpec3 have 
been applied. However, due to the unavailability of airborne hyperspectral data 
(at the canopy level ) when the field survey was undertaken, optical and TIR 
data from Sentinel-2, Landsat-8, RapidEye and SPOT-5 were used in next 
Chapters. Further research is critical for exploring and comparing the utility of 
airborne hyperspectral data in both optical and TIR domains for early detection 
of bark beetle green attack. Another possible extension of this study would be 
with respect to the use of the newly available hyperspectral camera mounted 
on UAV, and future planned hyperspectral satellite like EnMap, CHIME and 
HyspIRI these sensors able to record information for red-edge, SWIR infrared 
and thermal infrared region.  
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Summary 
Forest disturbance in Europe, induced by the European spruce bark beetle Ips 
typographus, L., results in regional-scale dieback and causes major economic 
loss to the forest industry, particularly in Norway Spruce (Picea abies) forest 
stands. Early stress detection induced by bark beetle infestation (the so-called 
‘green-attack’ stage — when trees are yet to show distinct symptoms 
observable by the human eye) is crucial and can lead to effective forest 
management and reduce economic losses. In this respect, remote sensing is a 
cost-effective and repetitive technique which offers an optimal approach for 
monitoring and assessing forest stress in comparison to the more traditional 
(field survey) approach, which is not practical and is inefficient in large areas 
because it is significantly laborious and costly. 
 
The current thesis presents research regarding the potential of different types 
of remote sensing data obtained from a variety of sensors, including ASD 
FieldSpec3 and multispectral satellites (RapidEye, SPOT-5, Sentinel-2 and 
Landsat-8) for early detection of bark beetle infestation at both leaf and canopy 
levels. Moreover, the research provided an important opportunity to advance 
understanding regarding the impact of early bark beetle infestation on the 
biochemical properties of infested trees (chlorophyll, nitrogen, chlorophyll 
fluoresces, leaf water content, dry matter content and stomatal conductance). 
The leaf-level spectrometry demonstrated that a significant difference (p < 
0.05) exists in the mean reflectance spectra between healthy and infested 
needle samples at the green-attack stage, with the most pronounced 
differences being observed in the NIR and SWIR regions. The results of our 
analysis demonstrated that infestation at the green-attack stage reduced the 
foliar biochemical concentrations (chlorophyll and nitrogen) and weakened 
their correlations with reflectance. The findings confirmed the importance of 
hyperspectral measurement as well as foliar biochemical properties (i.e. 
chlorophyll and nitrogen) for the detection of Ips typographus, L. at the green-
attack stage.  
 
Furthermore, research has moved on to the spaceborne level to evaluate the 
potential of different types of multispectral satellite data (RapidEye, SPOT-5, 
Sentinel-2 and Landsat-8) in parallel with the collection of field data (leaf traits) 
for early bark beetle detection. The results from analysis of different spectral 
vegetation indices at both leaf and canopy levels under bark beetle infestation 
during the green-attack stage revealed that red-edge and SWIR in the optical 
domain were the most important spectral regions at both leaf and canopy levels 
for detecting subtle changes in Norway spruce trees due to bark beetle 
infestation. Furthermore, from the results of temporal analysis using a time 
series of seven RapidEye scenes  and six SPOT-5 scenes  in parallel with  field 
measurements, we identified for the first time in a European situation (in 
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contrast to earlier works in the US) that mid-June to the beginning of July is 
an appropriate time frame for detection of early stress induced by bark beetle 
infestation. 
 
Our study furtherhighlighted the importance and potential of thermal infrared 
data from Landsat-8 for the early detection of bark beetle infestations and the 
production of reliable infestation maps at the green-attack stage. 
 
In general, this study contributes to applied research in the field of remote 
sensing of bark beetle green attack. The findings and methods applied in this 
work can potentially be used to produce valuable information regarding bark 
beetle infestation at an early stage of the attack. Our findings can improve 
bark beetle management activities by providing useful information regarding 
how, when and which remote-sensing data could be applied to such survey 
practice, and therefore administrative bodies of forested areas may benefit 
from this information as an guidance for landscape-wide detection of bark 
beetle green attack. 
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Samenvatting 
Bosverstoring in Europa, veroorzaakt door de Europese sparschorskever Ips 
typographus, L., resulteert in een terugval op regionale schaal en veroorzaakt 
grote economische verliezen voor de bosbouwindustrie, met name de 
bosgebieden met sparren (Picea abies). Vroege stressdetectie veroorzaakt 
door schorskever infestatie (de zogenaamde 'groene-aanval'-fase - wanneer 
bomen nog verschillende symptomen moeten vertonen die door het menselijk 
oog kunnen worden waargenomen) is cruciaal en kan leiden tot meer effectief 
bosbeheer alsmede het beperken van economische verliezen. In dit opzicht is 
teledetectie een kosteneffectieve en repetitieve techniek die een optimale 
aanpak biedt voor het bewaken en beoordelen van bosstress in vergelijking 
met de meer traditionele (veldonderzoek) benadering, wat niet praktisch is en 
in grote gebieden inefficiënt is, omdat het aanzienlijk arbeidsintensief en 
kostbaar is. 
 
Het huidige proefschrift presenteert onderzoek naar het potentieel van 
verschillende soorten teledetectiegegevens die zijn verkregen door een 
verscheidenheid aan sensoren, waaronder ASD FieldSpec3 en multispectrale 
satellieten (RapidEye, SPOT-5, Sentinel-2 en Landsat-8) voor vroege detectie 
van schorskevers. op zowel blad- als kruinniveau. Bovendien bood het 
onderzoek een belangrijke mogelijkheid om begrip te kweken voor de impact 
van een vroege schorskevers infestatie op de biochemische eigenschappen van 
aangetaste bomen (chlorofyl, stikstof, chlorofylfluorescentie, 
bladwatergehalte, droge stofgehalte en stomatale geleiding). 
 
Het onderzoek op bladniveau toonde aan dat er een significant verschil (p 
<0,05) bestaat in de gemiddelde reflectantiespectra tussen gezonde en 
geïnfecteerde naaldmonsters in de fase van de groene aanval, waarbij de 
meest uitgesproken verschillen worden waargenomen in de NIR- en de SWIR-
regio's. De resultaten van de studie toonden aan dat de plaag in de groene-
aanvalfase de blad biochemische concentraties (chlorofyl en stikstof) 
verminderde en hun correlaties met de reflectie verzwakte. De bevindingen 
bevestigden het belang van hyperspectrale meting evenals biochemische 
eigenschappen van bladeren (d.w.z. chlorofyl en stikstof) voor de detectie van 
Ips typographus, L. in de fase van de groene aanval. 
 
Bovendien is het onderzoek verplaatst op ruimtebereik om het potentieel van 
verschillende soorten multispectrale satellietgegevens (RapidEye, SPOT-5, 
Sentinel-2 en Landsat-8) te evalueren, parallel met de verzameling 
veldgegevens (bladkenmerken) voor vroege schors kever detectie. De 
resultaten van de analyse van verschillende spectrale vegetatie-indices op 
zowel blad- als kruinniveau onder schorskever infestatie tijdens het groene-
aanvalstadium onthulden dat Red-Edge en SWIR in het optische domein de 
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belangrijkste spectrale gebieden waren op zowel blad- als kruinniveau voor 
detectie. subtiele veranderingen in Noorse sparren bomen als gevolg van 
schors keverplaag. Verder hebben we uit de resultaten van tijdanalyse met een 
tijdreeks van zeven RapidEye-zintuigen en zes SPOT-5-zintuigen parallel aan 
de verzameling in het veld, voor het eerst in een Europese situatie 
geïdentificeerd (in tegenstelling tot eerdere werken in de VS) ) dat medio juni 
tot begin juli een geschikt tijdsbestek is voor detectie van vroege stress 
veroorzaakt door schorskevers. 
 
Ook wezen de bevindingen van het onderzoek in hoofdstuk 4 uit naar het 
belang en het potentieel van thermische infraroodgegevens van Landsat-8 voor 
de vroege detectie van schimmelkeverbesmettingen en de productie van 
betrouwbare infestatiekaarten in het stadium van de groene aanval. 
 
Over het algemeen draagt dit onderzoek bij aan toegepast onderzoek op het 
gebied van teledetectie van schorskevers ongevallen. De bevindingen en 
methoden die in dit werk worden toegepast, kunnen in een vroeg stadium van 
de aanval nuttige informatie opleveren over de aantasting van schorskevers. 
Onze bevindingen kunnen ook de beheersing van schorskevers verbeteren 
door nuttige informatie te verstrekken over hoe, wanneer en welke teledetectie 
gegevens kunnen worden toegepast op dergelijke enquêtepraktijken, en 
daarom kunnen bestuursorganen van beboste gebieden dergelijke informatie 
gebruiken als een indicator voor een efficiënte landschaps-brede detectie van 
de groene aanval van de schorskever.  
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