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To ambitious researchers

({4
It is unrealistic to walk into a room and flick a switch and lights come

on. Fortunately, Edison didn't think so.

We want to represent an idea. We want to represent possibilities. That
some of you already know, that it is hard, it's not easy, that in the
process of working on your dreams, you are going to incur in a lot of
disappointments, a lot of failures, a lot of pain. For those of you that
have experienced some hardships, don’t give up on your dreams. The
rough times are going to come, but they have not come to stay, they
have come to pass.

After we face a rejection and a NO or we have a meeting and no one
shows up, you're still looking at your dreams and saying to yourself:

»
It's not over, until I win. (Will Smith)
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Summary

Environmental processes are driven by weather, land, and water variables and
their interactions that change continuously in space and time. A complete
process description considers both spatio-temporal dependencies and
associations between those variables. Describing the dependencies is
challenging because natural phenomena are often observed at a discrete set
of locations and times. In this thesis I focus on reanalysis data of ECMWF!
(ERA-I) that are being used increasingly for those process descriptions. Major
dilemmas locally are that observations are sparse, and the use of reanalysis
data is prone to uncertainty because of the coarse spatial resolution and
systematic bias. The complete study of dependencies will also lead to an
increase in the number of involved variables. To address these problems, this
research demonstrates the potentials of copulas. It uses two datasets: daily
mean air temperature collected from weather stations and reanalysis data in
the Qazvin Plain, Iran, and daily air temperature and precipitation retrieved
from weather stations and reanalysis data in the Netherlands.

First, copulas described the dependencies between measurements and
reanalysis data in the absence of ancillary data in Iran. The conditional
distribution of air temperature given the reanalysis data was estimated with
copulas. This thesis illustrated a systematic bias in the reanalysis air
temperature data as compared to weather station measurements. I predicted
bias-corrected air temperatures using two new predictors based upon
Conditional Probabilities (CP): CP-I offers a single conditional probability as a
predictor, while CP-II is a pixel-wise version of CP-I and offers spatially varying
predictors. The CPs reduced the bias with 44 - 68% as compared to commonly
applied predictors. I concluded that CPs locally improved existing bias
correction methods.

Second, copulas took care of the spatial dependencies between weather
variables and associations between land variables. Ancillary information was
obtained from remote sensing images. The classical and common method for
bias correction, i.e. a univariate Quantile Mapping (QM) produced smooth
maps. To locally rectify for smoothness, the conditional distribution of air
temperature given reanalysis data and elevation was estimated with copulas.
Three Multivariate Copula Quantile Mappings (MCQMs) were proposed to
predict bias-corrected air temperature. MCQMs reduced bias with 16-63% as
compared to QM. The study showed that MCQMs were well able to represent
spatial and temporal variations of air temperature and its associations with
elevation.

1 ECMWF: the European Centre for Medium-range Weather Forecasts



Third, in this thesis I exploited copulas to improve the spatial resolution of air
temperature data. Two new interpolators were investigated embedding remote
sensing products, in particular land surface temperature, leaf area index and
surface elevation: a spatial copula interpolator including covariates, and a
mixed copula interpolator. The spatial copula interpolator including covariates
improved the spatial predictions with 46-58% as compared to the spatial
copula interpolator, the ordinary kriging predictor and the co-kriging predictor.
The copula-based interpolators well represented spatial variability of air
temperature and its associations with land variables at spatial resolution of 1
km. The methods are potentially useful for other sparsely and irregularly
distributed weather data.

Fourth, copulas helped me to describe the multivariate dependencies of the
weather extremes and vyield, production, and price of potatoes in the
Netherlands. In this thesis, a procedure was proposed to select the dominant
driving climate indices of air temperature and precipitation in space. The
conditional distributions of the non-climatic variables given the indices were
estimated. The non-climatic variables were predicted with relative mean
absolute errors equal to 5.4%, 3.6%, and 27.9%, respectively. I showed in
this study that the proposed copula-based method optimally quantified the
impact of climate extremes including their uncertainties.

The main conclusion drawn from this research is that copula-based methods
can well represent the spatial variability and associations between air
temperature and precipitation and other variables. They are also able to
improve existing methods locally. Findings illustrate the practical advantages
of copulas to describe multivariate dependencies, to define several predictors
and to assess uncertainties.






Samenvatting

Processen in het milieu worden gedreven door weer-, land- en watervariabelen
en hun interacties. Deze veranderen continu in ruimte en tijd. Een volledige
procesbeschrijving houdt rekening met  zowel spatio-temporele
afhankelijkheden als associaties tussen deze variabelen. Het is een uitdaging
om deze afhankelijkheden te beschrijven omdat natuurlijke fenomenen vaak
worden waargenomen op discrete locaties en tijdstippen. In dit proefschrift heb
ik me gericht op her-analyse weergegevens die worden verstrekt Europees
Centrum voor weersvoorspellingen op middellange termijn (ECMWF). Deze
gegevens worden in toenemende mate gebruikt voor procesbeschrijvingen in
het milieu. Belangrijke dilemma's zijn dat waarnemingen lokaal en schaars zijn
en dat het gebruik van her-analyse weergegevens gevoelig is voor onzekerheid
vanwege de grote ruimtelijke resolutie en systematische vertekening. Een
volledige studie van afhankelijkheden zal dan ook leiden tot een toename van
het aantal betrokken variabelen. Om deze problemen aan te pakken, heb ik in
dit onderzoek de mogelijkheden van copulas onderzocht. Ik heb gebruik
gemaakt van twee datasets: dagelijkse gemiddelde luchttemperatuur
verzameld door weerstations en her-analyse weergegevens in de Qazvin Plain,
Iran, en de dagelijkse Iluchttemperatuur en neerslag afkomstig van
weerstations en her-analyse weergegevens in Nederland.

Als eerste studie heb ik copulas gebruikt voor de Iraanse gegevens om de
afhankelijkheden te beschrijven tussen metingen en her-analyse
weergegevens in afwezigheid van aanvullende gegevens. De voorwaardelijke
verdeling van de luchttemperatuur, gegeven de her-analyse weergegevens,
heb ik geschat met copulas. Dit proefschrift liet een systematische
onzuiverheid zien in her-analyse luchttemperatuurgegevens in vergelijking
met metingen van weerstations. Luchttemperatuur gecorrigeerd voor
onzuiverheid is voorspeld met behulp van twee nieuwe voorspellers op basis
van voorwaardelijke waarschijnlijkheden (CP): CP-I biedt een enkele
voorwaardelijke kans als voorspeller, terwijl CP-1I een pixelgewijze versie van
CP-1I is en ruimtelijk variérende voorspellers biedt. De CP's verminderden de
onzuiverheid met 44 - 68% in vergelijking met gangbare voorspellers. Ik kon
concluderen dat CP's bestaande methoden voor de correctie van onzuiverheid
lokaal hebben verbeterd.

Als tweede studie namen copulas de ruimtelijke afhankelijkheden tussen
weervariabelen en associaties met landvariabelen mee. Aanvullende informatie
is verkregen vanuit satellitebeelden. De klassieke, gebruikelijke methode voor
correctie van onzuiverheden, namelijk een univariate Quantile Mapping (QM),
produceerde continue kaarten. Om plaatselijk te corrigeren voor
discontinuiteit, heb ik de voorwaardelijke verdeling van de luchttemperatuur,
gegeven de her-analyse weergegevens en hoogte, geschat met copulas. Ik heb
drie multivariate kwantiel karterings methoden gebaseerd op copula’s



(MCQM's) voorgesteld om luchttemperatuur gecorrigeerd voor onzuiverheid te
voorspellen. MCQM's verminderden de onzuiverheid met 16-63% in
vergelijking met QM'’s. De studie toonde aan dat MCQM's goed in staat waren
om ruimtelijke en temporele variaties van de luchttemperatuur en de
associaties ervan met de hoogte weer te geven.

Als derde studie in dit proefschrift heb ik gebruik gemaakt van copulas om de
ruimtelijke resolutie van luchttemperatuurgegevens te verbeteren. Twee
nieuwe interpolatoren zijn onderzocht voor het inbedden van remote sensing-
producten, in het bijzonder landoppervlaktetemperatuur, de bladopperviakte-
index en de hoogte van het aardoppervlak: een ruimtelijke copula-interpolator
inclusief covariabelen en een gemengde copula-interpolator. De ruimtelijke
copula-interpolator inclusief covariabelen verbeterde de ruimtelijke
voorspellingen met 46-58% in vergelijking met de ruimtelijke copula-
interpolator, de gewone Kriging-voorspeller en de cokriging voorspeller. De op
copula gebaseerde interpolatoren gaven de ruimtelijke variabiliteit van de
luchttemperatuur en de associaties met landvariabelen goed weer bij een
ruimtelijke resolutie van 1 km. De methoden zijn mogelijk nuttig voor andere
schaarse, onregelmatig verspreide weergegevens.

Als vierde studie hielpen copulas mij om de multivariate afhankelijkheden te
beschrijven tussen de extreme weersomstandigheden enerzijds en opbrengst,
productie en prijs van aardappelen in Nederland anderzijds. Ik stel hiervoor
een procedure voor om de dominante en drijvende indicatoren van het klimaat
met betrekking tot de ruimtelijke luchttemperatuur en neerslag te selecteren.
De voorwaardelijke verdelingen van de niet-klimatologische variabelen
gegeven de indicatoren heb ik geschat. De niet-klimatologische variabelen zijn
voorspeld en gaven relatief gemiddelde absolute fouten gelijk aan
respectievelijk 5,4%, 3,6% en 27,9%. De studie toonde aan dat de
voorgestelde methode die gebaseerd is op copulas de impact van
klimaatextremen, inclusief hun onzekerheden, optimaal kon kwantificeren.

De belangrijkste conclusie van mijn onderzoek is dat op copula gebaseerde
methoden goed de ruimtelijke variabiliteit en associaties tussen
luchttemperatuur en neerslag met andere variabelen kunnen weergeven. Ze
kunnen ook bestaande methoden lokaal verbeteren. Mijn bevindingen
illustreren de praktische voordelen van copulas om multivariate
afhankelijkheden te beschrijven, om verschillende voorspellers te definiéren en
om onzekerheden te beoordelen.

Vi
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Chapter 1: Introduction

This chapter provides a brief overview of the research topic and the reasons
for conducting the research: motivation, scientific problems, research
objectives and questions, innovations and scope.
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1.1 Motivation

Competition for natural resources, i.e. land and water, is increasing due to
population growth, industrial development, agricultural intensification and
climate change. These forces are leading to water/food scarcity, air pollution,
drought and, subsequently, environmental degradation.

With respect to climate change, increasing variation in air temperature and
precipitation affects agriculture (e.g. crop production), contributing to risks for
food security. The crop responses to those changes are representative of many
complex processes and interactions at local scales (Challinor et al. 2009a).
When studying those processes, it is of interest to quantify the changes in air
temperature and precipitation because those variables result into a variety of
climate-related crop stresses. Indeed, they are key for assessing crop water
requirements.

There are two common sources of weather data: weather stations and weather
forecasting systems. The sparseness of weather stations and doubtful
maintenance of their instruments create uncertainty about their data and,
consequently, about the results of hydrological/agricultural studies. The
European Centre for Medium-range Weather Forecasts (ECMWF), on the other
hand, provides ERA-Interim (ERA-I) reanalysis weather data that are being
used increasingly (Persson 2013). ERA-I generate the weather data at spatial
grids that are typically of an order of 10 kilometers (see Section 3.1). Typically,
an ERA-I archive can provide historical, real-time and forecast weather data.
Potentially, these data could play an important role in supporting information
systems, e.g. climate information services and irrigation advisory services.

With regard to hydrological/agricultural studies at regional and local scales, the
report Sustainable Development Goals (SDGs) 2018 mentions that in many
parts of the world, such as Asia and Africa, data at those scales are needed to
produce information required for the management of natural resources.
Nowadays, there is substantial potential for the use of remote sensing, in
particular, satellite measurements due to improved spectral bandwidth and
spatial and temporal resolutions (Mulla 2013). However, satellite data
acquisition includes the quantization of continuous information, which is
susceptible to uncertainty because of the influence of mixed pixels, cloud
cover, and pre-processing steps for atmospheric, radiometric, and geometric
correction. There are, nevertheless, growing appeals for the integration of
multi-sensor, multi-resolution products and in-situ data. The research reported
in this thesis was carried out in a data-scarce environment and benefits from
the use of Earth observation data.

Returning to the topics of climate change and weather data, a main aspect of
recent studies has been to describe their variation in both space and time, i.e.
spatio-temporal variability, and dependencies between several weather
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parameters, i.e. covariability. For that purpose, geostatistical methods play an
essential role when studying the dependencies, i.e. in modeling the underlying
process. They also offer the advantage of being able to predict spatio-temporal
information. In recent decades it has been suggested that copulas may be used
to construct multivariate distributions (Sklar 1973). Nevertheless, the
exploitation of copulas in geostatistics is still in its infancy (Bardossy and Li,
2008; Graler and Pebesma 2011). In this light, exploration of the potential of
geostatistical methods for improving the modeling is of interest. The methods
I have chosen to investigate therefore dearly belong to the domain of
geostatistics and offer a wide range of potential applications in agricultural,
hydrological, and climate studies.

Weather data are essential input for developing information systems, e.g.,
climate information services, and irrigation advisory services. Processing of
weather data to generate information at regional and local scales is a challenge
for the analyst. In this research, I developed new copula-based methods and
compared them with several methods commonly applied for improving
reanalysis weather data generated by ERA-I. For the comparison, techniques
of multi-criteria evaluation and sensitivity analysis are applied. The motivation
behind these comparative analyses is to explore the advantage/disadvantages
of the copula-based methods. The strength and limitation of the methods are
discussed through chapters 4-7 in the sections: 4.5 Discussion, 5.4 Results and
discussion, 6.5 Discussion and conclusion, and 7.5 Discussion and conclusion.
The findings are summarized in Section 8.1.

1.2 Problem statement

A challenging problem in many parts of the world is the use of weather data
for providing information at local scales. The reason for this is that weather
stations are often sparsely and irregularly distributed in many regions.
Hydrological/agricultural studies may find it useful to use ERA-I reanalysis data
to address the problem of the scarceness because ERA-I produce spatially well-
dispersed weather data. Over- or underestimation and the coarse spatial
resolution of ERA-I may, however, prohibit the use of their data for studying
interactions between weather and non-climatic variables at local scales
(Challinor et al. 2009a). In such cases, application of geostatistical methods
for prediction purposes may provide an alternative solution. As regards
predicting spatial variation of weather values, a practical side effect of the
standard geostatistical methods is that they produce smooth maps.

There is a further problem that has received substantial attention in most
climate change studies. Evaluation of the implications of climate change
requires understanding the variation in several weather variables and non-
climatic variables, i.e. covariability. A well-known technique for considering
several dependencies is to estimate multivariate joint distributions. The
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estimation of a d-dimensional distribution, d > 2, however, is often not
straightforward (Salvadori et al. 2007). Previous studies have introduced
simplifications regarding the number of variables involved in the modeling of
the dependencies (Miao et al. 2016).

1.3 Research questions and objectives

Weather and land variables and their interactions change continuously in space
and time. Modeling spatio-temporal dependencies and associations between
those variables involves a large number of variables. I investigated copula-
based methods for describing the dependencies with the aims of being able to:

o Refine locally reanalysis weather data retrieved from ERA-I, to deal with
data scarcity;

. Explore the potential of copulas for including ancillary remote sensing data
in the modeling of dependencies;

. Produce weather maps in a data-scarce environment and to improve the
spatial resolution of reanalysis weather data from ERA-I; and

o Assess the impacts of climate change on crop-related variables.

The key contributions of this research can be found in the answers it provides
for the following research questions:

o How can reanalysis weather data generated by ERA-I be improved locally
in a data-scarce environment by taking into consideration spatial
variability and the covariability of the data?

o What are the advantages/disadvantages of applying bias correction
methods as seen from the perspective of the users concerned with spatial
and temporal characteristics of weather data?

o Does the integration of remote sensing data and statistical methods help
improve the prediction of weather data in the spatial domain?

o How can ancillary data be embedded as additional variables in the
modeling of spatial random fields using multivariate distributions?

o Can copulas describe a complex process such as the interactions between
crop-related variables and weather data?

o What are the impacts of weather extremes on crop-related variables?

In line with the aims of my research, this thesis focuses on bias correction,
interpolation, and joint behavior analysis in four real scenarios. The aims of my
research can therefore be restated in the form of the following objectives:

Objective 1: To develop new methods to correct for bias in daily reanalysis
weather data from ERA-I for an agricultural area. The methods should describe
the dependencies between reanalysis weather data and weather station
measurements by estimating their joint distribution.



Chapter 1

Objective 2: To develop new methods to correct for bias in daily reanalysis
weather data from ERA-I that take into consideration covariability.

Objective 3: To predict weather data that take into consideration
dependencies between weather and land variables retrieved from remote
sensing products.

Objective 4: To analyze the joint behavior of climate extreme indices and
non-climatic variables and to determine the impacts of climate change.

1.4 Innovations and scope

This thesis focuses on a relatively new approach for describing the
dependencies between weather and non-climatic variables that has emerged
following the application of an advanced geostatistical technique, i.e. copulas.
The novel aspects of this approach lie in the integration of data/information
from several sources and definition of copula-based predictors to improve the
predictions of weather and non-climatic variables. The following is a brief
description of the study in context of the research objectives.

In an agricultural area in Iran in which weather stations are sparse, additional
spatially distributed weather data are required for an information service (e.g.
irrigarion advisory service). The gridded ERA-I reanalysis weather data is
available from the European Centre for Medium-range Weather Forecasts
(ECMWF) (Persson 2013). Air temperature data retrieved from ECMWF show a
systematic bias concerning measurements from the weather stations. So far,
copula-based methods for bias correction have mainly been applied to
precipitation time-series (Laux et al. 2011; Vogl et al. 2012; Mao et al. 2015).
Little attention has, however, been given to correction bias in air temperature
data, in particular, in data-scarce environments. Moreover, few studies have
considered the spatial variability weather data corrected for bias. Copula-based
methods have been investigated with the goal of improving spatial prediction
using the dependencies between air temperature data applied by ECMWF and
data from weather stations.

To add more information for bias correction, I extended the one-dimensional
quantile mapping to a multivariate copula quantile mapping (MCQM). To my
knowledge no previous research has applied MCQM to a data-scarce
environment. I, therefore, explored whether adding ancillary information can
improve the spatial variability and covariability of air temperature.

Essentially, the spatial prediction of weather data needs to consider both
spatial variability and dependency with other variables, i.e. covariability. Few
studies have shown how to embed ancillary data in the modeling of a spatial
process. Moreover, common geostatistical methods produce smooth maps.
Consequently I investigated the potential of two copula-based interpolators for
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improving the spatial resolution of ECMWF air temperature data by using
remote sensing products.

In studies of local climate change, it is of interest to quantify changes that
impact crops, particularly the impact of changes on crop yield (Pirttioja et al.
2015; Challinor et al. 2013). The impact on crop production and price have
rarely been studied. Copulas describe the joint behavior of climate extreme
indices and non-climatic variables, e.g. yield, production, and prices of
potatoes in the Netherlands. For the study I selected seven climate extreme
indices related to variations in air temperature and precipitation data.

1.5 Outline

This thesis comprises eight chapters. The developed methods in chapters 4-7,
each is based upon one of the above objectives. They are all based on ISI-
indexed journal articles that have been already published or are being revised
for publication.

Chapter 1: Introduction. The motivation, scientific problems, research
questions and objectives are described. Here answers are provided for the
questions of why (the motivation), what (research questions and objectives)
and how (methods).

Chapter 2: Copulas. This chapter describes the main copula theorems, explains
how a joint cumulative distribution is estimated by fitting copulas to data, and
indicates which predictors can be defined to predict random variables.

Chapter 3: Case studies. The first three objectives of the research focus on
data from Iran (my home country), while the fourth objective focuses on data
from the Netherlands. The methods used are, however, generic and can be
applied in different cases.

Chapter 4: The use of bivariate copulas for bias correction of air temperature
data sourced from ECMWF. The study presents two methods for predicting
weather data that are based upon conditional probability (CP): CP-I offers a
single conditional probability as the predictor, whereas CP-II provides spatially
varying predictors.

Chapter 5: Multivariate copula quantile mapping for bias correction of air
temperature data generated by ERA-I. This chapter presents three multivariate
copula quantile mappings (MCQMs): MCQM-I uses the dependence between air
temperature and elevation, MCQM-II uses the dependence between air
temperatures at a single location and its nearest neighbor; and MCQM-III
combines the first two methods.

Chapter 6: Copula-based methods for interpolation of air temperature data
using collocated covariates. 1) A spatial copula interpolator including
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covariates to consider two types of dependencies that are spatial dependences
of air temperature at a single location and its nearest neighbors, and non-
spatial dependencies between air temperature and its collocated covariates at
that location. 2) A mixed copula interpolator extends the first method by
including the non-spatial dependencies of air temperature and its collocated
covariates at the nearest neighbors.

Chapter 7: Evaluating the effects of climate changes on crop production and
price using multivariate distributions -a new copula application. Here a
comprehensive copula-based analysis is presented for assessing the impact of
climate change on the yield, production, and price of potatoes.

Chapter 8: Synthesis. I summarize the results and synthesize the research
findings, pointing out significances, obstacles, prospects and limitations.
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Chapter 2: Copulas

It illustrates the main copulas theorems, how a joint cumulative distribution is
estimated by fitting copulas to data, and what predictors can be defined to
predict random variables.

Copula /kopjula/: the name comes from the Latin for "link" or "tie".



Copulas

2.1 Main definitions

I devoted this section to giving a brief overview of copulas and basic
probabilistic properties of distributions. I recommend Section 3.2 in Nelsen
2006, for a good “Geometric description” that defines copulas without a
reference to distributions. In the following, the uppercase letters denote
“variables,” and the lowercase letters denote their “values”. I, also, use a
lowercase letter to indicate a density function whereas an uppercase letter for
a cumulative function.

Sklar’s theorem:

If F is a n-dimensional joint distribution function with 1-dimensional margins
F,, .., E,, then a function C exists from the unit n-cube to the unit interval such
that F(xq,...,x,) = C(Fi(x), ..., E,(x,)) for all real n-tuples (xy, ..., x,,).

The joint distribution function of two random variables X and Y is F(X,Y) where
the joint probability of P[X <x, Y <y] is equal to F(x,y). According to Sklar’s
theorem, there is a unique function C(.,.) that assigns each pair of
(u=Fx(x),v=Fy(y)) to F(x,y), where Fy and F, are continuous marginal
distributions, u is the probability of P[X <x], and v =P[Y <y] (Figure 2.1)
(Sklar 1973). This function is called a copula and is a joint distribution function
indicated as C(U,V), where U and V are uniformly distributed random variables
(Nelsen 2006). The name “copula” comes from the Latin for “tie” or “link”: a
copula joins (links) a joint distribution to its univariate marginals.

Figure 2.1 Graph of a copula (Nelsen 2006).

To understand the role of Sklar's theorem in determining the desired
distribution F(X,Y) , I summarize the fundamental equalities between
operations on distribution functions for a bivariate case as:

F(x,y) = C(w,v), (2.1)
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_0’F(X,Y) _ 9%°C(U,V)

f(x')’) - [‘)XaY - aU a_V = C(u' U) X fX(x) X fY(y)' (22)
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where F(.,.) and C(.,.) are cumulative distribution functions (CDF), f(.,.) and
c(.,.) are probability density functions (PDF), F(.|.) and C(.].) are conditional
CDF, f(.|.) and c(.].) are conditional PDF, U and V are uniformly distributed
random variables (Kuipers and Niederreiter, 2012).

Equation (2.5) shows that the joint density probability c(u,v) is equal to the
conditional density probability c(u|v). This equality holds only in a two-

c(u,v)
fr(w)
conditional PDF and CDF of copulas are indicated as c,(u) and C,(u),

respectively (Nelsen 2006, p. 41).

dimensional case, because c(u|v) = and f,(v) = 1. In some literature, the

The equations can be extended to n dimensions as:

F (%1, %3, w0, Xp) = C(Ug, Uy, ., Up)- (2.6)
n
O"F(Xy, Xq, o) Xn)
== X Axi) . .
fO Xz dn) = = oKy oK, Oz tn) fol(x‘) @7
i=

F(xg|%1, X2, ey Xn) = C(uglug, Uz, ., Up)- (2.8)

c(ug, Ug, Uz, wory Up)

2.9
c(uq, Uy, oy Uyp) (29

f(olx, X250, Xn) = fx, (X0) X c(uoltig, Uz, oy Up) = fi, (x0) X

The conditional density c(uy,uy, ..., u,) in the denominator of equation (2.9) is
obtained as c(uy,uy, ..., u,) = fol c(ug, Uy, Uy, ..., Uy )duy. This equality holds for any

joint and marginal densities in probability theory, e.g., f(x) = fy flx,y)dy.

I provide five aspects to point out the usefulness of copulas in real-world
applications:

o The definition of copulas is without indication about the underlying
process. Any joint distribution can thus be written in terms of a copula,
i.e., F(x,y) = C(u,v). This illustrates the growing interest in copulas and
their applications in diverse studies such as finance, image analysis,
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geostatistics, and in particular in the environmental sciences; hydrology,
disasters, agriculture, weather and climate.

o The definition can be extended to higher dimensions including several
random variables/fields: spatial dependences, temporal dependences,
spatio-temporal dependences, and dependences between several
variables at one point in time and space. This allows one to analyze the
resultant effects of several variables in modeling the underlying process.

e  The family distribution of C can be different from the family of F(X,Y), Fy
and F,. Therefore, copulas describe the dependences between variables in
a different configuration from marginal distributions. For example, both X
and Y can follow Gaussian distributions, but ¢ can be a non-Gaussian joint
distribution.

o Some traditional statistical methods assume identically distributed (ID)
variables to simplify the underlying mathematics related to multivariate
joint distributions. The assumption, however, may or may not be valid in
practical studies. Copulas enable to construct multivariate distributions
without the assumption of ID.

e The density function c(.,.) in equation (2.2) can be interpreted as a
measure for the strength of the dependence between the involved
variables. The function ¢ can exhibit several types of non-linear negative
or positive dependences. Hence, for mutually independent
variables, c(u,v) =1 and f(x,y) = fx(x) X fy (¥).

2.2 Estimation

For the estimation of a two-dimensional distribution using copulas, two random
variables X and Y are considered with a joint distribution F(X,Y) that is equal
to a copula C(U,V) according to Sklar’'s theorem. There are several copula
families in the literature to determine C(.) (Joe 1993; Nelsen 2003; Demarta
and McNeil 2005; Manner 2007). I choose the Gaussian, Student’s t, Clayton,
Gumbel and Frank families because other families lead to computational
limitations (Graler 2014). The Gaussian and Student’s t belong to the elliptical
copulas, whereas the remainder families are Archimedean copulas (Nelsen
2006). These families describe several types of the tail dependences and have
one parameter that is related to Kendall’'s t correlation between variables
(Table 2.1).

The parameter for each family are estimated using maximum likelihood
estimation and a starting value obtained by Kendall's t (Nelsen 2006;
Brechmann and Schepsmeier 2013). Then the best family for C is the one that
minimizes the Akaike’s Information Criteria (AIC) (Akaike, 1974). The p value
of the null hypothesis of a bivariate independence is obtained based upon the
statistical test developed by Genest et al. (2007). The p values of the null
hypothesis that the dependence structure is well represented by the best fitting
family are obtained using 100 bootstrap runs based upon the Cramér-von

12



Chapter 2

Mises statistic S,SB) for the Gaussian, Clayton, Gumbel and Frank families
(Genest et al., 2009), and based upon the White statistic for the Student’s t
family (Huang and Prokhorov, 2014). This number of bootstrap runs is
relatively small, but a larger number would substantially increase the
computational cost (Kojadinovic et al., 2011). Further note that the selection
of families depends upon both the number of observations and the probabilistic
nature of the dependence between variables.

I can now illustrate the estimation of a high-dimensional distribution. The five
bivariate families are extendable to higher dimensional ones (Nelsen 2006).
Hence, the interdependencies between these variables are restricted to one
specific family of copulas. In addition, the estimation of a multivariate copula
is generally a troublesome procedure (Nelsen 2006; Aas et al., 2009). In
geostatistics where we have a target variable to predict, an alternative to
estimate a multivariate copula, and consequently a multivariate distribution is
the use of a canonical vine or C-vine structure (Aas et al., 2009). The flexibility
of choosing several families in the vine structure to describe the multivariate
interdependencies is one of the practical advantages of copulas. Further note
that after constructing the copula, other distribution functions are retrieved
from the fundamental equalities (see Section 2.1).

Table 2.1 Five families of copulas used in this study. The best fitting family is selected
according to the lowest value of Akaike Information Criteria (AIC).

Index Name Ceo(u,v) Property index
1 Gaussian 0r(97(u), 872 (v)); R = [; f 1,2,6
—1 —1 p_[1 61.
2 Student’s ¢ tas (570,65 W) R =g ] 1,2,6
9 = degree of freedom
3 Clayton [max{(u® + v —1),0}]7 1,2,4,5,6
1
4 Gumbel exp(—[(—Inw)? + (—nw)919) 1,2,3,6
-1 e -1 "-1)
5 Frank — 1,2,6
5 In(1+ e )
1 Permutation symmetry
2 o Symmetry about medians
3 g Extreme value copula
Q
4 o Lower tail dependence
o
5 Upper tail dependence
6 Extendibility to multivariate copula
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Toy example, bivariate copulas:

The densities of Gaussian, Student’s t, Clayton, Gumbel and Frank families are
obtained for several dependence structures between two variables while the
Kendall’s 1 is equal to 0.4 in all dependences (Figure 2.2). Kendall’s t is a non-
linear measure of association between variables that can change over the
range of [-1, 1] (Figure 2.3). The Clayton and Gumbel families, however,
present only positive correlations (Figure 2.2).

Gaussian

Student’st

Clayton

Gumbel

Frank

Figure 2.2 Five families of copulas. The densities of Gaussian, Student’s t, Clayton,
Gumbel and Frank families are presented for several dependence structures between
two variables while the Kendall’s t is equal to 0.4 in all dependences. The horizontal axes
are u and v and the third axes denote the density values. Different colors indicate
different densities and are used for visualization purposes.
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Figure 2.3 The densities of Frank copula for several values of the Kendall’s 1. Different
colors indicate different densities and are used for visualization purposes.

Toy example, trivariate copulas:

As an example, let’s consider three random variables X, Y and Z with a copula
C(U,V, W), where X is the target variable. The central of the C-vine is, thus X
(Figure 2.4) and the configuration of the structure is based upon bivariate
copulas, Sklar’s theorem and the general decomposition rule of f(x, y, z) =

f2(2) X f(y]2) % f (xly, z).
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Figure 2.4 C-vine structure for three variables. A three-dimensional C-vine structure
has two trees and three bivariate copulas which can belong to three different families.

V)
Treel
C
C-vine

In this example, the copula density c(U,V, W) is first decomposed into bivariate
copulas as: c(U,W), c(U,V) and c(C(W|U),C(V|U)) (Figure 2.4). Then, each
bivariate copula is estimated in a similar way to the two-dimensional case.
Finally, the copula density is the product of all bivariate copula densities in the
structure: c(u,v,w) = c(u,w) x c(w,v) X c(CW|u),C(V|u)) . It follows that the
dependence structure between those n =3 variables is described by a

nx(n-1)

combination of n different families and in total >

parameters.

2.3 Prediction

Assume that the conditional distribution F(X].) is estimated and the random
variable X is to be predicted. Any pt" percentile in the distribution can be used
to predict X, i.e., to obtain a single value %:

% =F1'@pl), pelol] (2.10)
Zmean = E[X|.] Zf x - f(x].)dx, (2.11)
Rmedian = F_I(O-Sl-)' (2.12)

a

where = denotes # as a predicted value, E[.] denotes the mathematical
expectation. The choice of the p® percentile in (2.10) depends upon the
problem at hand. For instance, it can be obtained by a quantile mapping
procedure (see Chapter 5). The conditional expectation (2.11) and the
conditional median (2.12) are the optimal predictors, minimizing mean squared
prediction error and mean absolute prediction error, respectively (Journel
1984; Cressie 1993). There are two common procedures using copulas to
obtain %ean anNd Xpeqian : the analytical evaluation (Bardossy and Li 2008,
Gréler 2014), and simulations (Salvadori et al. 2007).

For an analytical evaluation, the equations (2.11) and (2.12) are rewritten as:
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Rmean = fol Fx_l(u) x c(ul.)du, (2.13)

Zmedian = Fx_l(c_l(o-sl-)); (2.14)

where u = Fy(x), c(.|.) is the conditional PDF and C~!(.|.) is the inverse
transformation of the conditional CDF. The new form of the conditional
expectation in (2.13) is explained based upon the equalities in Section 2.1 as:

1
Fmean = f x Fxl)dx = f Fet(u) x c(ul.) % fy()dx
X 0

dFy(x)
dx

1 1
= f Fyl(uw) X c(ul.) x dx = f Fyl(w) X c(ul.)du. (2.14)

0 0
What follows is a property of the conditional expectation using a bivariate
function f(x|y). Let (x1,v1), (x2,¥2), ..., (xn, ) be a set of paired observations
for variables X and Y. If x; > x, and y; > y, or if x;, < x, and y; < y,, the pairs
are called concordant, whereas if x; > x, and y; < y, or if x; < x, and y; > y,
they are discordant. When the number of concordant pairs n. is more than the
number of discordant pairs n;, the dependence between X and Y is positive,
whereas when n, < ng, the dependence is negative (Nelsen 2006). Hence, if a
bivariate copula represents a positive correlation, the conditional expectation
is an increasing function of the conditioning variable, i.e., if y; > y,, then
E[X|y.] > E[X] y,] (Dodds et al., 1990). If a bivariate copula represents a
negative correlation, the conditional expectation is a decreasing function,
therefore, if y; < y, then E[X| y:] < E[X| ¥,].

Regarding the simulation method, the equation (2.10) is rewritten using
copulas as:

£, = Fg'(C71(pl)). (2.15)

Several %, are obtained by generating random probabilities p on [0, 1]. The
mean of the obtained values provides %,,..,, Wwhereas choosing the median of
the obtained values is %,,.4ian- FOr a large simulations, the results are equal to
the results of the analytical evaluation (Mao et al. 2015).

Equation (2.10) is also useful to assess a y% prediction interval width (PIW).
For instance, a 95% PIW is obtained as F~*(C~*(0.975].)) — F~*(€~%(0.025].)).
The possibility of selecting several predictors is another practical advantage of
copulas. Note that the three predictors have two main parts: a marginal
distribution Fy(.) and a multivariate copula c(.].). Hence, the overall prediction
quality depends upon a good estimation of both functions.
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2.4 Implementation

I provide some sample scripts for implementing the estimations and
predictions in R using the packages copula (Kojadinovic and Yan, 2010),
spcopula (Graler and Pebesma, 2011), and VineCopula (Brechmann and
Schepsmeier, 2013).

To estimate the five families based upon maximum likelihood and to select the
best fitting family C(U,V) using AIC:

BestFittingFamily <- BiCopSelect(u, Vv, familyset = c(1:5), selectioncrit =
"AIC", 1indeptest = T, rotations = F).

To construct a C-vine structure for C(U,V,W) and estimate the bivariate
families:

vineFit <- fitCopula(vineCopula(as.integer(3)), [U,V,w]).

vineStructure <- vineCopula (RvineCopSelect([U,Vv,w], familyset = c(1:5),
vineFit@copula@vM$Matrix, rotations =T)).

To implement the three predictors, first Fy1(.)is defined by the user, e.g.,
InverseofcDF. Second, the best fitting family C(U,V) is selected:

BestFittingFamily <- BicCopSelect(U, Vv, familyset = c(1:5), selectioncrit =
"AIC", indeptest = T, rotations = F).

BestFittingFamily <- copulaFromFamilyIndex(BestFittingFamily$family,
BestFittingFamily$par, BestFittingFamily$par2).

Finally, the variable X is obtained using one of the predictors:

X_p <- InverseOofcDF(invdduCopula(v, BestFittingFamily, p).

X_mean <- integrate(function(u) (InverseofcDF(u)*dCopula(cbind(v,u),
BestFittingFamily)), 0.0, 1.0, subdivisions=1000L, stop.on.error=F).

x_median <- InverseOfCDF(invdduCopula(v, BestFittingFamily, 0.5).
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Chapter 3: Study area and data sets

The data used in this study consists of weather data (e.g. air temperature and
precipitation), data sourced from remote sensing products and statistical
databases. Bias correction and interpolation methods were applied to the data
concerning Iran, whereas copula-based joint behaviors were applied to the
data concerning the Netherlands.

19



Case studies

3.1 Qazvin irrigation network

With rainfall limited in many places, Iran is a water-scarce country. This
certainly applies to the Qazvin area, one of Iran’s oldest and most advanced
agricultural areas. Lying at an altitude of about 1,800 m above sea level, it has
an arid climate, with an average annual precipitation of about 327 mm and an
average daily temperature of 14°C. The Qazvin irrigation network, located on
the Qazvin Plain (Figure 3.1), serves a predominantly mixed farming system:
50% of the network area is cultivated with winter crops, while some 20-25%
of the area produces summer crops (Sharifi 2013). In addition to the major
grain crops of wheat, barley, maize and sorghum, alfalfa, fruit, and vegetables
are also grown. Urban settlements and areas of natural vegetation cover are
also to be found.

36.4

36.2

358

4 Weather Station
' m ECMWEF grid point
4 — Irigation Network
—

356

T T o
492 494 496 498 50 50.2 504 506 50.8 E

Figure 3.1 The irrigation network in Qazvin Plain, Iran. The area contains 24 weather
stations and a sample subset of 10 x 15 grid cells of the ECMWF dataset. The background
image has been produced from Landsat 8 RGB data.

The network is participating in a pilot study for the project “Increasing water
productivity through demand management and improved operation" (Sharifi,
2013). The objective of this project was to raise water productivity by
developing an information system to address problems in water management.
The system provides information on crop-water demands based on crop-
growth simulation models, weather data and field measurements. The study
area extends between 35.44° and 36.68° latitude (N) and 49.09° and 50.92°
longitude (E) so as to include as many weather stations as possible (24
stations, see Table 3.1).
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Table 3.1 Air temperature is measured at 24 weather stations in the study area.

Station . Stations coordinates  Ejeyvation Air
Station name - - Type temperature
1D Latitude Longitude (m) measurements
1 Abeyk 36.05 50.52 1278 C"T;ng'fgy 6-hourly
2 Magsal 36.13 50.12 1205 C"T;ng'fgy 6-hourly
3 Nirougah 36.18 50.25 1299 C"T;;g'fgy 6-hourly
a Qazvin 36.25 50.05 1280 Synoptic 3-hourly
5 Takestan 36.05 49.65 1326 Synoptic 3-hourly
6 Avaj 35.63 49.22 1888 C"T;ng'fgy 6-hourly
7 Baghkelaye 36.39 50.50 1256 C"T;;g'zogy min. & max.
8 Baghkosar 36.07 50.58 1541 C"T;;g'zogy min. & max.
9 Bouinzahra 35.77 50.07 1213 Synoptic 3-hourly
10 Bourmanak 36.59 49.38 578 C"T;;g'zogy min. & max.
11 Camp 36.28 49.99 1311 C"T;;g'z"gy min. & max.
12 Danesfahan 35.82 49.75 1303 C"T;;g'z"gy min. & max.
13 Dolatabad 36.17 49.82 1249 C"T;;g';gy min. & max.
14 Estalaj 35.56 49.29 2340 C"T;;g'zc’gy min. & max.
15 Hajiarab 35.59 49.84 1707 C"T;;g'zc’gy min. & max.
16 Hashtgerd 36.01 50.75 1601 Synoptic 3-hourly
17 Jahanabad 35.90 49.60 1372 C"T;ng'zogy min. & max.
18 Karaj 35.92 50.90 1657 Synoptic 3-hourly
19 Kouhin 36.37 49.67 1498 C“T;ng'zogy min. & max.
20 Moalem 36.45 50.48 1569 Synoptic 3-hourly
21 Niarak 36.52 49.41 1184 C"T;;g';gy min. & max.
22 Qouzlo 35.63 49.11 2061 C"T;;g';gy min. & max.
23 Razmiankia 36.55 50.21 1010 C"”t"f;g'z"gy min. & max.
24 Taleghan 36.17 50.77 1827 Synoptic 3-hourly

Depending upon the instrument used to measure air temperature and the
temporal frequency of measurement, weather stations were categorized as one

of three types:

synoptic and climatology typel stations measure air

temperature by thermometer; climatology type2 stations use a thermograph.
The synoptic stations are supposed to be able to provide more precise
measurements. The number of measured values can vary among weather
stations, caused by differences in the number of missing values at each station.
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Figure 3.2 The data frame. Daily air temperatures in June are available for 24 weather
stations and 150 grid cells of ECMWF over a period of 11 years.

The reanalysis air temperatures were retrieved for the 150 grid cells from the
ERA-Interim data assimilation system provided by the European Centre for
Medium-Range Weather Forecasts (ECMWF) (Persson, 2013). The ECMWF
forecasting system consists of several components like general circulation
models, an ocean wave model, a land surface model, a data assimilation and
forecast ensembles (Persson 2013). Reanalysis data are a multivariate,
spatially complete record of the global atmospheric circulation (Dee et al.
2011). ERA-Interim is the most widely used source of global atmospheric
reanalysis (Dee et al. 2011). The data are available at 3-hourly intervals and
can be retrieved for a 0.125° Lat/Long grid, corresponding to a spatial
resolution of 13.5 km in the meridional direction (Persson 2013). Each station
is assigned to its nearest grid cell for comparison of reanalysis values with
measured values.

Daily mean air temperature was calculated by averaging the minimum and
maximum temperatures at each station in June from 2004 to 2014. The
measurements at the stations are assigned to the reanalysis values at the
nearest grid cells. There are 150 grid cells x 11 years = 1650 reanalysis air
temperatures and 24 stations x 11 years = 264 measurements at each day of
June (Figure 3.2). Temperatures in June are used because of the importance
of this month in the cropping calendar of the irrigation network: it is the end
of the season for winter crops and the beginning for summer crops, especially
maize.

My study describes the dependencies between air temperature and non-
climatic variables, i.e. its covariates. For instance, in my research I
investigated whether considering leaf area index (LAI), land surface
temperature (LST) and surface elevation improves the results of the copula-
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based methods. The covariates were obtained with remote sensing retrieval
techniques. Landsat 8 provides several images in panchromatic, optical and
thermal bands at a spatial resolution of 30m and temporal resolution of 16
days (Zanter, 2016). Two days in June 2014 were selected as these were
Landsat 8 overpass days (Figure 3.3). In the case of LST, I followed the method
introduced by Jiménez-Munoz et al. (2014) and for LAI that of Allen et al.
(1998).

The NASA Land Processes Distributed Active Archive Centre (LPDAAC) provides
Moderate Resolution Imaging Spectroradiometer (MODIS) products. The
MODO3 product provides per-pixel digital-elevation model values in a sequence
of swath-based products at 5-minute increments. This gives elevations at a
spatial resolution of 1km. Also, surface elevation was obtained from the SRTM
dataset at a spatial resolution of 90m (Jarvis et al., 2008). The study area is a
relatively homogenous in terms land cover and topography, the main exception
being mountainous terrain in the northeastern part of the study area (Figure
3.3).

i i T
lzsa S5 ¢
"

Figure 3.3 Three covariates for air temperature. a) LAI on 6 June 2014, b) LAI on 22
June 2014, c) LST in °K on 6 June 2014, d) LST in °K on 22 June 2014, e) MODIS surface
elevation in meters, f) SRTM surface elevation in meters. LAI and LST are obtained from
Landsat 8 bands at a spatial resolution of 30m. Surface elevations are obtained from the
MODIS and SRTM datasets at spatial resolutions of 1km and 90m, respectively. Low
values of LST on 22 June indicate a greater degree of cloud covers.
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3.2 The Netherlands

Potato is a valuable crop in the Netherlands. Its growing season typically starts
in April and ends in September (Figure 3.4) (Beukema and van der Zaag 1990).
Potato farms occupy about one-quarter of the country's arable land area and
account for approximately half the total production from arable cropping
(Figure 3.5) (Beukema and van der Zaag 1990). Figure 3.6 shows the largest
change in the consumer price of goods and services in the Netherlands from
2001 to 2018 (CBS 2018). The consumer price of potatoes shows the largest
changes in nine years between 2001 and 2018 (CBS 2018).

Pre-emergence Haulm growth

9
X Tuber growth
&

<—— Planted

<—— Emergence

April  May June July August September

Figure 3.4 The potato growing season in the Netherlands (Beukema and van der Zaag
1990).
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Figure 3.5 Potatoes cultivated/harvested areas in the Netherlands in 2017.
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Figure 3.6 The largest change in the consumer price in the Netherlands from 2001 to
2018.

Annual absolute selling prices (€ per 100 kg of potatoes, including seed
potatoes), annual harvested production (in 1000 tonnes), yield (in tonnes ha-
1), the harvested and cultivated area per 1000 ha as shown in Figure 3.7, were
retrieved from the archive of the Central Bureau for Statistics (CBS) in the
Netherlands and the statistics database of the European Union (Eurostat 2018)
for the period 1980-2017.

Absolute selling prices are prices at which the producer sells to the wholesale
trade and are based upon the prices of main agricultural outputs and
inputs. These prices indicate direct flows of money into farmers' income and,
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therefore, were used for analyses of agricultural income (Eurostat 2018).
Harvested production is the weight of potatoes that have been harvested and
transported away from the field. Yield is the weight of potatoes produced per
unit area under cultivation (Eurostat 2018).

Hourly air temperature and precipitation data from 50 automated weather
stations in the Netherlands for the period 1980-2017 is available from the data
centre (KDC) of the Royal Netherlands Meteorological Institute (KNMI 2018).
In the potato growing season the number of measurements may differ between
weather station (Figure 3.8). For my study I chose 33 stations for which both
rainfall and temperature measurements were available (Figure 3.8).

Gridded reanalysis weather data at a 0.125° Lat/Long resolution is available
from the ERA-interim Archive maintained by the European Centre for Medium-
range Weather Forecasts (ECMWF) (Persson 2013). The ERA-Interim archive
is the most widely used source of global atmospheric reanalysis data (Dee et
al. 2011). For my study I selected 33 grid points from the ECMWF data nearest
to the chosen KNMI stations. Daily minimum and maximum air temperatures
were identified from the minimum and maximum values of the hourly data,
and daily precipitation was calculated as the sum of the hourly precipitation
data.
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Figure 3.7 Temporal trends in the non-climatic variable: a) yield and production, b)
price and production, c) cultivated and harvested areas of potatoes.
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Figure 3.8 Number of daily measurements during the potato growing season at 50

automated KNMI weather stations. Colored dots indicate the range of number of
measurements; the number alongside each dot is the station ID.
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Abstract

Air temperature data retrieved from global atmospheric models may show a
systematic bias with respect to measurements from weather stations. This is a
common concern in local climate studies. The current study presents two
methods based upon copulas and Conditional Probability (CP) to predict bias-
corrected mean air temperature in a data-scarce environment: CP-I offers a
single conditional probability as a predictor, CP-II is a pixel-wise version of CP-
I and offers spatially varying predictors. The methods were applied on daily air
temperature in the Qazvin Plain, Iran that were collected at 24 weather stations
and 150 ECMWF ERA-interim grid cells from a single month (June) over 11
years. We compared the methods with the commonly applied conditional
expectation and conditional median methods. Leave-k-out cross-validation and
correlation scores show that the new methods reduced the bias with 44 - 68%
for the full data set and with 34 - 74% on a homogeneous subarea. We
conclude that the two methods are able to locally improve ECMWF air
temperatures in a data-scarce area.
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Bias, copula, conditional, data scarcity, mean temperature, probability.
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Structure of the chapter

After the introduction in section 4.1, copula-based bias correction methods are
introduced in section 4.2. Our application is introduced in section 4.3, and the
results are shown in section 4.4. We discuss the results and point to further
directions of this work in section 4.5. This is followed by the conclusion in
section 4.6, and three appendices in sections Appendix 4.1, 4.2, and 4.3.
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4.1 Introduction

Assessment of the impact of climate change in agricultural areas is primarily
based upon changes in weather data such as air temperature (Challinor et al.
2009). In a data-scarce area, e.dg., where weather stations are sparse,
additional data are required. The European Centre for Medium-range Weather
Forecasts (ECMWF) provides gridded ERA-interim reanalysis weather data that
are being used increasingly (Persson 2013). They are prone to uncertainty
because of the coarse resolution of models (Durai and Bhradwaj 2014) and the
variability of model parameters in space and time (Dee et al. 2011). When
compared with the measurements from weather stations, their bias is often
considerable (Hannah and Valdes 2001), in particular, if those measurements
serve as benchmarks from which any measurement errors are ignored.

Recently, copula-based methods have been developed for deriving bias
corrected weather data at unvisited locations (Laux et al. 2011; Vogl et al.
2012; Mao et al. 2015). A copula is a joint distribution function, describing the
dependence structure between two or more variables (Sklar 1973). A good
description of copula has been provided by (Nelsen 2006). The joint distribution
function can be estimated using any distribution family that can be different
from the marginal distribution family of the involved variables (Nelsen 2006).
Mao et al. (2015) investigated bias correction methods of daily precipitation
data and showed that a copula-based bias correction performs better than
quantile mapping. After estimating the joint distribution, several methods can
be used to obtain bias corrected values at unvisited locations. Examples are
the conditional expectation (CE) (Bardossy and Li 2008), the conditional
median (CM) (Graler 2014), and the simulation method (Salvadori et al. 2007;
Nelsen 2006).

So far, Copula-based methods have been applied mainly to precipitation time-
series, where bias corrected values are obtained using the simulation method
(Laux et al. 2011; Vogl et al. 2012; Mao et al. 2015). Little attention, however,
has been given to bias correction in air temperature data in a data-scarce area.
Our main focus of bias correction is based upon the construction of the
dependence structure between measurements and ECMWF reanalysis data
using a joint distribution. The distribution is initially estimated using copulas
and is then used to reduce bias of ECMWF air temperatures at grid cells that
are often lacking a measurement from a weather station in a data-scarce area.
To reduce bias in ECMWF air temperatures at those grid cells, an important
aspect is the spatial variation of the data.

This study aims to introduce two copula-based predictors based upon
Conditional Probabilities (CP) taking care of the spatial variation of daily air
temperatures in a data-scarce area. We evaluate the performance of the
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predictors comparing to conventional methods like CE and CM in an agricultural
area in Iran.

4.2 Bias correction methods

The structural, one-sided difference between a measured value from a weather
station x, and an ECMWF reanalysis value y is defined as the bias in ECMWF
reanalysis values. We assume that the data are observed from two spatio-
temporal random variables X and Y. In our study, the basis of the copula-based
bias correction is a distribution function that allows for modeling the
dependence structure between X and Y. The purpose of bias correction is to
predict £, where ~ denotes a predicted value and |, indicates an unvisited
location. An unvisited location is an ECMWF grid point without a measurement.

We focus on a bivariate distribution F(x,y); it can be extended to higher
dimensions if more than two variables are available. The bivariate case is useful
if ancillary information is unavailable. Regarding our main objective, we aim to
introduce copula-based predictors to obtain £,. Section 4.2.1 first illustrates
both the commonly applied predictors and introduces the new predictors and
section 4.2.2 presents the estimation of marginals and copulas.

4.2.1 Copula-based predictors

The conditional expectation (CE), the conditional median (CM) and the
simulation method are commonly applied methods to obtain %,. CE and CM are
both optimal predictors, minimizing the mean squared prediction error and the
mean absolute prediction error, respectively (Journel 1984; Cressie 1993). They
obtain the bias-corrected value %, as:

CE: % =E[X|Y =yo] = [ x-f(xlyo)dx, (4.1)
CM: %, =F"(ply,), p=0.5, (4.2)

where f(.].) is conditional density distribution function, F~* denotes the inverse
transformation of the conditional distribution F(.|.), and p is the conditional
probability that determines the median. Both CE and CM are either an
increasing or a decreasing function of the conditioning variable Y depending
upon the sign of the dependence between X and Y (see Section 2.3).
Therefore, the variation of bias-corrected values follows the variation of
ECMWF reanalysis values rather than those of the measurements; this will be
further illustrated in Section 4.4.

The third method is the simulation method. It obtains m bias-corrected
values by generating m conditional probabilities p on [0, 1] as:

Rox = F 1 (prlyo) k=1, ...,m. (4.3)

32



Chapter 4

Note that the mean of {%,, ..., %y.»} provides a single value %, and that both the
value of m and the simulations themselves influence the results. For a large m,
the results of this method are equal to the results of CE (Mao et al. 2015). In
case of choosing the median of {%,, ..., %y}, this also applies to CM.

For CE, the mean value of the distribution F(x|y,) is selected as %,, whereas for
CM, this is the median value of the distribution. We may question whether
mean and median values best suit bias-corrected air temperatures. In the
following, two new methods are introduced to obtain a conditional probability
which serves as a predictor.

CP-I and CP-II are the predictors, minimizing mean absolute bias (MAB) as:

1=n
1
MAB = =[x, = F (plypl, )
i=1

where for CP-I, n = N and equals the total number of observations, whereas
for CP-II, n=M « N and equals the number of observations at the nearest M
locations to x,. The conditional probability p is iteratively estimated based upon
minimizing MAB in (4.4) resulting in the optimal p* value. The bias-corrected
value %, then equals:

%o =F 1 (plyo),p = p". (4.5)

For CP-I, the conditional probability p* is constant for all unvisited locations,
e.g. F(xyly,) = p*. Therefore, similar to CE and CM, CP-I is either an increasing
or a decreasing function of the conditioning variable, depending upon the sign
of the dependence (see Section 2.3). For CP-II, the optimal conditional
probability depends upon unvisited location and is denoted now by p;, e.g.

F(xolyo) = po-

Next we formulate the equations using copulas and investigate the use of
copulas for the construction of distribution functions. According to Sklar’s
theorem, it can be shown that F(x|y) = C(ulv) (see Chapter 2) and the
predictors are rewritten as:

CE: % = [, Fy'(w) x c(ulV = vo)du,
CM: %, = Fy'(C™* IV = vp)),p = 0.5,
CP: MAB = - %iZ%x; — Fy 1 (CT @IV = v))l, %o = Fx (€ (pIV = vo)),p = p".

where Fy! denotes the inverse transformation of the marginal cumulative
distribution function Fy, v is marginal probability i.e. v=F,(y), c(].) is the
conditional density copula, and C(.].) is the conditional cumulative copula (see
Chapter 2).
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Before introducing estimation of the distribution functions, we now explain the
implementation of CP-I and CP-II to identify the optimal conditional probability.
Initially, a probability p = 0.01 is chosen and MAB is obtained from Equation
(4.4). Then the probability p increases with steps of 0.01 until p = 1. We select
the probability p* that results into the lowest MAB. Finally, the bias-corrected
value %, is obtained from Equation (4.5). The choice for the initial probability
and for a step value equal to 0.01 are based upon our experience on the
variable of interest and uncertainty sources. We compare this value using a
sensitivity analysis on the mean absolute prediction error to assess the effect
of choosing larger or smaller increment values i.e. 0.1 or 0.001; results are
reported in Section 4.4. Note that CP-I is implemented only once, whereas CP-
II is implemented at each unvisited location separately and therefore has a
higher computational cost.

4.2.2 Distributions estimation

In practice, finite samples on X and Y are observed in space and time without
replication. Therefore, the joint distribution F(x,y) is estimated using the
assumption of stationarity (in space or time), i.e. marginal distributions and
dependence structure between X and Y are irrespective of location or time. In
the literature, reviewed in Section 4.1, the current bias correction methods
have been applied to climate time-series assuming temporal stationarity.
Hence, removing autocorrelation and heteroscedasticity that may exist in any
climate time-series, is necessary for any estimation procedure (Laux et al.
2011). To achieve our main objective, we apply a bias correction to predict %,
at an unvisited location in space, separately at each day of time-series.

Estimation of theoretical marginal distributions may affect the estimation of
the copula parameter and consequently the selection of the copula family.
Therefore, we use empirical marginal distributions. By means of kernel density
estimation, a continuous approximation of the marginal distribution are
obtained under the assumption of stationary (Silverman 1986). We evaluate
this assumption using regression analysis and the auto-correlation function
(See appendix 4.1). The choice of the method to estimate empirical marginal
probability is not unique and a more specific sensitivity analysis might help to
show the effects of other marginal distribution functions on the results. This,
however, is outside the scope of the study.

The bivariate copula C can be determined using several copula families. We
assume spatial stationarity and evaluate the assumption using a co-correlation
function (See appendix 4.1).
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4.2.3 Evaluation

We apply the leave-k-out validation (Lafon et al. 2013). The bias-corrected
values %;, at time ¢t and location s are obtained by leaving k observations out
for the same day of the year in k successive years and using the reminder of
the observations. The mean absolute error MAE;, is defined as:

k
1 ~
MAEs,t = Eles,t,i - xs,t,i| ’ (4.6)

i=1

We define three criteria based upon the mean absolute errors to compare the
presented methods at N weather stations and T days:

T N
1 1
e =13 (43 mae ) )
t=1 s=1
1 T
S5 = Z mnk(?z ) “9)

T

N
1
ras = " rane (5 Y s ) ). “9)
s=1

t=1

where the MAE is the overall mean absolute error, SES and TES are spatial and
temporal error scores (Durai and Bhradwaj 2014), % I_MAE,, and %zgvﬂ MAE;,

are spatial and temporal mean absolute errors, respectively. A low value of a
criterion indicates a good performance.

To evaluate correlations, the bias-corrected value %;, at day t and location s is
obtained using all observations. The temporal correlations r; at location s and
the spatial correlations r; at day ¢ are used to evaluate the performance of the
presented methods in reproducing temporal and spatial variation of the
measurements:

= corr({fslt, ,)?S_T}, {xs,t, ...,xS_T}), (4.10)
e = corr({&ye o R e} {Xer oo Xy })- (4.11)

We define two criteria to evaluate the correlations as:

N

ScS = ) (rank(ry)), (4.12)
T

TCS = ) (rank(r)), (4.13)
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where SCS and TCS are spatial and temporal correlation scores, respectively. A
high value of SCS and TCS indicates a good performance.

4.3 Application: daily mean air temperatures in Iran

The presented methods are applied to daily mean air temperatures in the
Qazvin irrigation network, Iran in June from 2004 to 2014 (see Section 3.1).
There are 150 grid cellsx11 years=1650 reanalysis values on each day in June
2014, and there are 24 stationsx11 years=264 measured values. The cross-
validation is carried out for measured values on each day of June between
2004 and 2014, i.e., k=11.

The time-series of the air temperature at the climatology type2 stations, e.g.,
stations 11, 13 and 21 reveals that the quality of the measurements is low
(Appendix 4.3, Figure 4.14). In Section 4.4, we report to which degree the
results of the presented methods are affected by different qualities of the
measurements at the three types of stations. Overestimation and
underestimation of reanalysis data has been observed in June 2014 (Appendix
4.3, Figure 4.14). Correlations r, between reanalysis values and measured
values in space are low at most days in June 2014 (Figure 4.1). In addition,
correlations r; at the weather stations 13 and 21 are rather weak (Figure 4.1).

To extend copulas to higher dimensions by including covariates in describing
the dependence structures, we investigate whether considering elevation
improves the results of the bias correction method. The dependence structure
between air temperature and MODIS elevation (see Section 3.1) is described
using copulas as it does not follow the lapse-rate law (Figure 4.2).
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Figure 4.1 Correlations r; and r; that indicate temporal and spatial dependences
between measurements and ECMWF ERA-interim reanalysis air temperature. a)r; at

each weather station,

b) r; at each day in June 2014.
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Figure 4.2 Variation of the mean air temperature on the 1% day of June 2014 compared
with a variation of the elevation in the study area. The mean air temperature in °C is
derived from the synoptic and climatology type 1 weather stations.
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In the pooling procedure, effects of non-stationarity may exist due to climate
change. For this time-series of 11 years, we ignore those effects, but for a
longer time-series a correction should be applied. In our study, the dependence
structures between the reanalysis values and measured values, i.e., copulas
are studied in a relatively small and homogenous area and are thus likely to
change spatially in a stationary way. An exception concerns the mountains in
the northeastern part of the study area (Figure 4.3). To evaluate the potential
effect of spatial non-stationarity, we applied the presented methods on a
complete set of 24 weather stations as well as a subset of ten stations where
the spatial variation of elevation is more homogenous (Figure 4.3).

3854
Elevation in meter

Figure 4.3 Elevations (m) are covariates for air temperature in the CP-II including
covariate. It is obtained by MODIS product at a spatial resolution of 1km. Location and
index of the weather stations are shown in this figure. We applied the presented methods
on a complete set of 24 weather stations as well as a subset of ten stations where the
spatial variation of elevation is more homogenous, i.e., the area indicated by a circle.

4.4 Results: bias-corrected values in time and space

4.4.1 Marginal distributions and copulas

Figure 4.4 shows the fit of marginal distribution functions assuming spatial
stationarity. Appendix 4.1 presents the evaluation of this assumption on each
day in June 2014.
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Figure 4.4 Empirical marginal probabilities on June 1%t. Marginal probabilities are
obtained on each day of June using eleven years series from 2004 to 2014 at 24 weather
stations. A monotone cubic spline is fitted to obtain the distribution function.

The parameters of five copula families are estimated on each day of June
assuming spatial stationarity. Appendix 4.1 further contains the evaluation of
this assumption for copulas. Table 4.1 shows the number of data used for
fitting. The p value of the null hypothesis of bivariate independence is zero,
thus rejecting the null hypothesis (Table 4.1, third column). The best fitting
family based upon the lowest AIC value turned out to be Gumbel family for 17
days in June. The p values of the Cramér-von Mises statistic S were larger
than 0.2 for all days (Table 4.1, last column), hence not rejecting the null
hypothesis. We could safely assume that the best fitting family well describes
the dependence structure.

Table 4.1 The p values and selected family on each day in June. Number of data denotes
the number of available data for fitting purposes and equals the number of
measurements from weather stations from 2004 to 2014 on each day in June. The p
value-1 is obtained under the null hypothesis of bivariate independence. The copula
families are: N=Gaussian, T=Student’s t, C=Clayton, G=Gumbel, and F=Frank. The p
values-2 are obtained by the Cramér-von Mises statistic S .

Day Number of data p value-1 Selected family p value-2
1 226 0.00 G 0.42
2 224 0.00 N 0.62
3 226 0.00 G 0.48
4 226 0.00 G 0.58
5 226 0.00 T 1.00
6 226 0.00 F 0.40
7 226 0.00 N 0.44
8 225 0.00 T 1.00
9 226 0.00 G 0.34
10 226 0.00 G 0.26
11 226 0.00 G 0.36
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12 226 0.00 N 0.62
13 226 0.00 N 0.44
14 226 0.00 N 0.64
15 226 0.00 G 0.44
16 226 0.00 G 0.52
17 226 0.00 G 0.46
18 226 0.00 F 0.44
19 226 0.00 F 0.25
20 226 0.00 G 0.34
21 226 0.00 G 0.30
22 226 0.00 G 0.79
23 225 0.00 G 0.36
24 226 0.00 G 0.54
25 226 0.00 G 0.75
26 226 0.00 G 0.68
27 226 0.00 N 0.50
28 226 0.00 F 0.44
29 226 0.00 F 0.60
30 225 0.00 G 0.54

4.4.2 Evaluation and comparison

The optimal conditional probability obtained using CP-I, and the minimum and
maximum of the optimal conditional probabilities obtained using CP-II on each
day are given in Table 4.2. The conditional probability using CP-I clearly
changes in time in the range of [0.30, 0.95]. For CP-1I, the optimal conditional
probability changes in time and space in the range of [0.02, 0.99], using M=4.
Influence of the choice of the increment value in CP-I is assessed using
sensitivity analysis (Figure 4.5). It revealed that the uncertainty is higher using
an increment value of 0.1, whereas for 0.001 no improvements were achieved.

Table 4.2 Optimal conditional probabilities. A single optimal conditional probability is
obtained using CP-I for all unvisited locations on each day whereas using CP-II, it is
obtained at each unvisited location and each day. The minimum and maximum of the
optimal conditional probabilities obtained by CP-II are mentioned here.

Day Optimal conditional Minimum and maximum optimal

probability in CP-I conditional probabilities in CP-I1
1 0.79 0.13 0.90
2 0.60 0.08 0.97
3 0.30 0.04 0.92
4 0.36 0.08 0.93
5 0.50 0.02 0.90
6 0.61 0.08 0.93
7 0.71 0.12 0.96
8 0.66 0.21 0.92
9 0.64 0.25 0.90
10 0.82 0.23 0.99
11 0.87 0.28 0.98
12 0.68 0.09 0.95
13 0.58 0.06 0.84
14 0.57 0.05 0.88
15 0.65 0.10 0.86
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16 0.65 0.09 0.94
17 0.76 0.07 0.84
18 0.55 0.10 0.74
19 0.73 0.07 0.88
20 0.69 0.19 0.91
21 0.50 0.13 0.95
22 0.83 0.19 0.98
23 0.91 0.23 0.99
24 0.64 0.14 0.96
25 0.65 0.09 0.94
26 0.79 0.17 0.92
27 0.74 0.13 0.98
28 0.83 0.10 0.95
29 0.92 0.21 0.98
30 0.79 0.16 0.99
—P(IV=0.1) —P (IV=0.01) ---P (IV=0.001)
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Figure 4.5 Influence of the choice of the increment value (IV) on a) the optimal
conditional probability in CP-I and b) the mean absolute prediction errors. Three IVs 0.1,
0.01 and 0.001 are chosen.

Two time-series of the bias-corrected values obtained by CP-I and CP-II (Figure
4.6a and b) at the first station are compared with those of CE and CM (Figure
4.6¢ and d). The spatial mean absolute errors at this station for CP-II and CP-
I were equal to 1.56°C and 1.66°C, whereas, for CM and CE, they were equal
to 2.72°C and 2.95°C, respectively. Bias-corrected values at June 15t 2014 are
shown in Figure 4.7. For CP-II and CP-I, the temporal mean absolute errors
were equal to 2.17°C and 2.23°C at this day, whereas for CM and CE, they
were equal to 2.41°C and 2.49°C, respectively.
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Reanalysis data
------ Bias correctionresults
Measurements from weather stations

Figure 4.6 Time-series of the mean air temperatures at first station in June 2014
obtained by the measurements, the reanalysis data, and the results of a) CP-I, b) CP-II,
c) CE and d) CM. The vertical axis is the daily mean air temperature in °C. The horizontal
axis is days in June 2014.

We note that CP-I fails to predict spatial variation and extremes in space
(Figure 4.7c) but that CP-II is successful (Figure 4.7d) as compared to the
spatial variation of the measurements at this day (Figure 4.7a). Spatial
variation of the bias-corrected values obtained by CP-I (Figure 4.7c), CE
(Figure 4.7e) and CM (Figure 4.7f) is similar to the spatial variation of the
reanalysis air temperatures (Figure 4.7b). Spatial variation of the bias-
corrected values obtained by CP-II differs from spatial variation of the
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reanalysis air temperatures (Figure 4.7b) because the optimal conditional
probability obtained by this method changes in space. Bias and prediction
errors at June 15t 2014 are shown in Figure 4.8. The mean absolute bias is
2.840C at this day, whereas the mean absolute prediction errors for CP-II and
CP-1I were equal to 1.13°C and 1.66°C, and for CE and CM to 2.46 °C and
2.319C, respectively.
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Table 4.3 Comparison of the bias correction methods for two experiments. The methods
are applied to 24 weather stations in the first experiment whereas they are applied to a
subset of ten stations in the second experiments. Total mean absolute error (MAE),
spatial error scores (SES), temporal error scores (TES), spatial correlation scores (SCS),
and temporal correlation scores (TCS), obtained by the conditional probabilities (CP-I,
CP-II and CP-II including elevation), conditional expectation (CE) and conditional median
(CM). The underlined values denote the best method. Only MAE is obtained for CP-II
including elevation.

Method MAE SES TES scs TCS
. CP-1 2.28 52 59 71 80
—
v e CP-II 2.17 55 34 86 120
5
ui 5 CP-II including elevation 1.92 - - - -
2 a
25 CE 2.45 71 116 54 49
[0}
a4

cM 2.41 62 91 29 51

= CP-1 1.44 27 70 32 80
£a
s E CP-II 1.36 19 47 37 102
88
ERS CE 1.50 28 92 20 56
(7))
Q o
XN cM 1.50 26 91 11 62

MAE obtained by leave-11-out cross validation for two experiments (Table 4.3)
shows that CP-II performed best, followed by CP-I, CM, and CE. The MAE is
slightly above 2°C for all methods whereas the average absolute bias is 3.6°C.
The horizontal distances, different height, and differences in land cover
between the location of a station and the grid cell centre might affect the MAE.
Investigating the CP-II including elevation, we noticed a large improvement in
the results: the MAE for CP-II including elevation was equal to 1.92°C whereas
for CP-II it was equal to 2.17°C (Table 4.3).
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18 28

Daily mean air temperature in °C

Figure 4.7 The mean air temperatures from a) weather stations, b) reanalysis data, and
results of c¢) CP-I, d) CP-II, e) CE and f) CM, for all locations at June 1st 2014. For
experimentation in this study, a sample subset of 10 x 15 grid cells of ECMWF dataset
is selected at a spatial resolution of 0.1259° Lat/Long. The study area extends from 35.440
to 36.680 latitudes (N) and from 49.09° to 50.92° longitudes (E).
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Figure 4.8 Bias (a) and prediction errors. Prediction errors are differences between the
mean air temperatures from weather stations and the predictions obtained by b) CP-I,
c) CP-II, d) CE and e) CM at June 1st 2014. For experimentation in this study, a sample
subset of 10 x 15 grid cells of ECMWF dataset is selected at a spatial resolution of 0.125°
Lat/Long. The study area extends from 35.449 to 36.68° latitudes (N) and from 49.090
to 50.920 |ongitudes (E).

We used SES and SCS to compare the presented methods based upon errors
and correlations in time, i.e., 30 days in June (as shown in Appendix 4.2, Figure
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4.14). For the comparison in space, TES and TCS were used with N=24 (as
shown in Appendix 4.2, Figure 4.15). Table 4.3 shows that CP-I resulted into
the lowest errors in time whereas CP-II resulted into the lowest errors in space
and highest correlations in space and time. The correlations r, show that CP-II
performed better in reproducing the spatial variation of the daily air
temperatures in the study area (Figure 4.9). The correlations r, obtained by
CP-I, CE and CM are similar to the correlations between the reanalysis values
and the measured values (Figure 4.9). This is as expected, because the
predictor is the same for all locations in space. The correlations r, denote that
CP-I performed better in reproducing the temporal variation of the daily air
temperatures in June (Figure 4.10).

Table 4.4 Overall score based upon Table 4.3 for two experiments. The methods are
applied on 24 weather stations in the first experiment whereas they are applied on a
subset of ten stations in the second experiments. The scores are obtained for each
method based upon each criterion, i.e., each column of Table 4.3 where the lowest score
denotes the best method. Overall score is the sum of the scores. The underlined values
denote the best method.

Method Score based on Overall score

MAE SES TES SCs TCS

= CP-1 2 1 2 2 2 9
~—
o=
= 9 CP-II 1 2 1 1 1 6
s E
23
= CE 4 4 4 3 4 19
n O
&

CM 3 3 3 4 3 16
o CP-1 2 2 2 2 2 10
o
o e
S o CP-II 1 1 1 1 1 5
« £
O T
n Y
£ ‘;} CE 4 4 4 3 4 19
3
n 9
&

CM 3 3 3 4 3 16

Investigating the differences in quality of the measurements at the weather
stations, we compared the spatial mean absolute prediction error (see equation
(4.10)) with the spatial mean absolute bias. In this way, we assessed the
performance of the bias correction methods at three types of weather stations
(Figure 4.11). This investigation showed that the predictions at two synoptic
stations, i.e., stations 6 and 19 are influenced by different sources of
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uncertainties in the measurements derived from three types of weather
stations. In addition, CP-1I performed better than CE and CM.

21 —CP4 —CE
— CP-|I —CM — Reanalysis data

Correlation

0.0

-0.5

1 10 20 30
Days in June 2014
Figure 4.9 The correlation coefficients r in space on each day in June 2014.

Table 4.4 shows the score of each method based upon the criteria mentioned
in Table 4.3. We obtained an overall score using the sum of the scores. This
overall score shows that CP-II reduced the bias with 63 - 68% for the full data
set and with 69 - 74% on a homogeneous subarea whereas CP-I decreased
the bias with 44 - 53% for the complete data set and with 34 - 47% on a
homogeneous subarea (Table 4.4 , last column).
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Figure 4.10 The correlation coefficients r in time at each weather station. The numbers
on the figures denote correlations.
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Figure 4.11 Comparing spatial mean absolute prediction error (MAPE) with spatial mean
absolute bias (MAB) at three types of weather stations. The vertical axis is error/bias in
°C. The synoptic stations are supposed to provide more precise measurements.

4.5 Discussion

In this paper, we presented and evaluated two new bias correction methods
for air temperature that take temporal and spatial variations into account. The
CE and CM methods produce smooth maps, assuming spatial stationarity when
estimating the dependence structures between the measured and the
reanalysis weather data. We proposed to use different conditional probabilities
minimizing the bias in space to improve spatial variation of the bias-corrected
values. In addition, we described the dependence structure between the
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measured and the reanalysis weather data using the flexibility of selecting the
best fitting family among five copula families.

In our application, a bivariate copula was fitted to daily observations of the
involved variables assuming spatial stationarity, and the bias correction was
applied separately on each day. The results showed that our methods
performed better to correct time-series of the air temperatures, i.e., the
temporal variation of the daily air temperatures in June 2014. Therefore, a
practical advantage of the new methods is that they are not any longer
restricted to remove autocorrelation and heteroscedasticity in time-series. A
novel aspect is the potential and the use of new methods for other copula-
based methods such as interpolation and downscaling where the variable of
interest needs to be predicted.

By means of the comparison of the methods based upon error scores and
correlation scores, we demonstrated that CP-I performed best in time, whereas
CP-II performed best in space. As the copulas are generally able to describe
spatio-temporal dependences, the use of the spatio-temporal information in
CP-II might help to improve its performance in time as well. We selected the
number of neighbours based upon our experience. A more generally applicable
sensitivity analysis is necessary to show the effects of the number of nearest
neighbours on performance of CP-II.

We identified several routes for future research. First, we treated the
measurements from weather stations as the benchmarks in the identification
of bias and in the cross-validation. To address the uncertainty of the
measurements and its impact on the results of the proposed methods, the
proposed methods should be extended towards other datasets. In addition,
further applications of the new copula-based methods in other case studies
including simulation-based information should provide more insight on these
methods. Second, we used the AIC to select the best fitting family. We realize
though that the suitability of a copula also depends on the number of data used
for fitting and the probabilistic nature of the bias. Further cross validations
need to be carried out using random samples of the measurements to choose
the copula family. Third, spatially varying conditional probabilities needs to be
further applied in other methods, e.g., Bayes' classifier and possibly in a
machine learning environment. Fourth, to extend the current study, the use of
multivariate copula describing the dependence between more variables, e.g.,
air temperature, elevation and land cover might help to improve the
performance of the presented methods. The bivariate case of the proposed
methods in this paper is useful if such a covariate is unavailable. Finally, a
comparison to other bias correction methods, e.g., quantile mapping might be
included in further studies.
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4.6 Conclusions

We proposed to use conditional probabilities to correct for bias in the gridded
reanalysis weather data provided by ECMWF as compared to the
measurements from weather stations taken as the benchmarks. Cross-
validation results and correlation scores showed that the new methods perform
better than commonly applied methods and are able to account for spatial and
temporal variation of air temperatures at unvisited locations.
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Appendix 4.1 Evaluating the stationarity assumption

To evaluate the second order spatial stationarity assumption in estimating
marginal distribution of daily air temperature, we used two methods: linear
regression and auto-correlation function. The null hypothesis H, and
alternative hypothesis H; to test for second order stationarity assumption are
then defined as:

Hy: E[Z{] =, (4.12)
Hl: E[Zs] =30 +.81'xs+ﬁ2'ys' (413)

where Z; is the variable of interest at location s, E[/] denotes the expectation,
x; and y; are the x and y coordinates of location s and the g;,j =0,1,2 are
regression parameters. We obtained the parameters and their p values using
a linear model and F test (Chambers et al. 1990). We found that the values of
regression coefficients are not significantly different from zero and their p
values of F test are above 0.05 and 0.01 at all days (Figure 4.12). The auto-
correlation function, i.e., correlogram, describes dependences in space based
upon the correlation per each spatial lag (Oden, 1984). The values of
correlogram at five spatial lags are obtained from the measured values on each
day in June between 2004 and 2014 (Figure 4.13). It is immediate that the
correlations are decreasing by the separating distance. These results and the
limited effects of including non-stationarity make the assumption of spatial
stationarity a reasonable one.

We assess the second order spatial stationarity assumption in estimating
copula using the co-correlation function. Co-correlation function, i.e., the co-
correlogram, is an extension of the correlogram for two or more random fields
in space. The values of the co-correlogram and the best fitting family at five
spatial lags are obtained from measured and reanalysis values on each day in
June between 2004 and 2014 (Table 4.5). The results show that the best fitting
families and the correlations differ slightly at different spatial lags. Therefore,
we conclude that the spatial stationarity is a reasonable assumption in
estimating copula and point to further application of co-correlogram in a lag
based bias correction methods.
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Figure 4.12 p values of the regression parameters in trend analysis obtained by F test.
Based upon its results, spatial stationarity is assumed in estimating the marginal
distribution.
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Figure 4.13 The values of correlogram at five spatial lags. The vertical axis is Kendall’s
t correlations obtained using the measurements on each day in June between 2004 to
2014. The horizontal axis is spatial lags in meter.
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Table 4.5 The values of co-correlogram and best fitting family at five spatial lags.
Kendall’s t correlations are obtained using the measured and reanalysis values on each
day in June from 24 weather stations between 2004 to 2014. The copula families are:
N=Gaussian, T=Student’s t, C=Clayton, G=Gumbel, and F=Frank.

Best fitted family Kendall’s t correlation
Day 1 2 3 4 5 1 2 3 4 5
1 G G G G G 0.45 0.45 0.46 0.43 043
2 N N N N N 0.35 0.37 0.37 0.34 0.34
3 N G G G G 0.28 0.31 0.31 0.30 0.28
4 N G G G G 0.34 0.31 0.33 0.29 0.29
5 N T T T T 0.35 0.34 0.37 0.31 0.32
6 F F F F F 0.36 0.34 0.32 0.29 0.30
7 G N G G G 0.38 0.38 0.38 0.35 0.35
8 G G G T T 0.42 0.42 0.38 0.38 0.37
9 N G G G F 0.46 0.46 0.44 0.44 042
10 G G G G G 0.37 0.39 0.40 0.35 0.38
11 G G G G G 0.27 0.28 0.29 0.27 0.27
12 N N N N N 0.40 0.40 0.39 0.39 0.39
13 N N T N T 0.36 0.37 0.39 0.35 0.35
14 N N N N N 0.33 0.38 0.38 0.35 0.35
15 N G G G G 0.35 0.38 0.38 0.35 0.35
16 N G G G G 0.38 0.37 0.35 0.35 0.34
17 N G G G G 0.33 0.38 0.37 0.34 0.33
18 F F F F F 0.25 0.31 0.30 0.30 0.28
19 F F F F F 0.46 0.48 0.49 0.45 0.45
20 G G G G G 0.50 0.50 0.50 0.47 0.49
21 F G G G G 0.47 0.45 0.47 0.44 0.45
22 G G G G G 0.38 0.35 0.36 0.34 0.33
23 F G G G F 0.31 0.33 0.37 0.31 0.33
24 G G G G G 0.34 0.30 0.33 0.28 0.30
25 G G G G G 0.19 0.25 0.30 0.20 0.22
26 G G G G G 0.23 0.31 0.34 0.29 0.29
27 G N N N N 0.35 0.37 0.43 0.34 0.36
28 F F F F F 0.32 0.35 0.37 0.32 0.32
29 N F F F F 0.34 0.34 0.35 0.31 0.32
30 G G G G G 0.32 0.31 0.32 0.29 0.31

55



The use of bivariate copulas for bias correction

Appendix 4.2 predictions in time and space
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Figure 4.14 Time-series of the measurements from weather stations, reanalysis data
and bias-corrected values obtained by the bias correction methods at each station in
June 2014. The vertical axis is the daily mean air temperature in °C. The number on
each graph denotes the weather station number.
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Figure 4.15 The daily mean air temperatures from weather stations, reanalysis data
and bias-corrected values obtained by the bias correction methods for all locations on
each day in June 2014. The number on each graph denotes the day in June 2014.
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copula quantile mapping for bias correction of reanalysis air temperature data. Journal
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Abstract

Gridded reanalysis air temperature data retrieved from the European Centre
for Medium-range Weather Forecasts (ECMWF) are useful for hydrological
studies in a data-scarce agricultural area. A justified use requires to correct for
bias, defined as the systematic difference between reanalysis values and
measurements from weather stations. We propose three multivariate copula
quantile mappings (MCQMs) to predict the bias-corrected air temperature at
unvisited locations. MCQMs estimate multivariate distributions using two types
of covariates for air temperature. Daily air temperature was retrieved at 24
weather stations and from the ECMWF ERA-Interim archive at 150 grid cells
for a single month over 11 years in the Qazvin Plain, Iran. Cross-validation and
correlations showed that MCQMs reduced bias with 46% as compared with
classical quantile mapping. The study concludes that MCQMs are well able to
describe covariability and to represent the spatial and temporal variation of air
temperature.

Keywords
bias correction, copula, conditional, mean temperature, data scarce.
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Structure of the chapter

After the introduction in section 5.1, copulas and bias correction methods are
presented in section 5.2. The study area and data are introduced in section
5.3. The results are discussed in section 5.4. We conclude and point to further
directions of this work in section 5.5. This is followed by two appendices in
sections Appendix 5.1, 5.2.
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5.1 Introduction

Hydrological studies refer to air temperature as a key variable to support water
management in an irrigation network. At local scales (Sarma, 2005), sparsely
and irregularly distributed data from weather stations are a challenge for
hydrological studies at unvisited locations in irrigation networks. To address
the problem, additional spatially distributed data may be included, e.g.,
gridded reanalysis weather data from the European Centre for Medium-range
Weather Forecasts (ECMWF). The coarse resolution of models, the mutual
dependence of weather parameters, and variability of these parameters in
space and time are major sources of uncertainties when using reanalysis
weather data (Dee et al. 2011; Durai and Bhradwaj 2014).

In our paper, weather station measurements are considered as benchmarks.
Hence, bias is defined as the difference between the reanalysis values and the
measurements from weather stations (Hannah and Valdes 2001; Persson
2013). We consider an unvisited location at the center of a grid cell
characterized by a reanalysis value, but without a measurement from a
weather station.

Various bias correction methods have been proposed in the literature: quantile
mapping (Ines and Hansen 2006), linear-scaling factor methods (Lenderink et
al. 2007) and nonlinear methods (Lafon et al. 2013). The Gamma and empirical
distributions have been used for bias correction of precipitation data and the
Gaussian distribution for bias correction of air temperature data (Teutschbein
and Seibert 2012; Lafon et al. 2013; Kum et al. 2014).

Recently, copula-based methods have been developed for deriving bias-
corrected weather data (Vogl et al. 2012; Mao et al. 2015). A copula links
univariate distributions with a multivariate distribution based upon Sklar’s
theorem (Sklar 1973; Nelsen 2006). So far, the methods have mainly been
applied to precipitation time-series retrieved from regional climate models
under the assumption of temporal stationarity. Laux et al. (2011) employed
bivariate copulas to describe dependences between daily precipitation time-
series retrieved from a regional climate model and measurements at three
locations where data are available. They fitted a bivariate copula to daily time-
series at one location, ignoring the temporal variation of the copula parameters
as well as any spatial dependency. In addition, fitting is required to remove
autocorrelation and heteroscedasticity, which may exist in a climate time-
series (Laux et al. 2011). Mao et al. (2015) investigated bias correction
methods of daily precipitation data and showed that copula-based bias
correction performs better than quantile mapping.

The aim of our study is to obtain bias-corrected daily air temperature at
unvisited locations in a data-scarce area. To do so, we developed three
multivariate copula quantile mappings. Copulas help to estimate the joint
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multivariate distributions of air temperature and its covariate, in our study:
elevation. We investigated two types of dependences: the dependence
between air temperature and elevation at a single location, the dependence
between air temperatures at a single location and its nearest neighbour. The
new methods are compared with classical quantile mapping.

5.2 Bias correction methods

5.2.1 Multivariate copula quantile mappings

Multivariate copula quantile mapping (MCQM) is a d-dimensional quantile
mapping method that relies on two conditional copula distributions (Graler
2014; Verhoest et al. 2015). From two random variables X and Y over the
same spatial domain, n samples {x,, ..., x,} are obtained from weather station
measurements and m samples {y, ..., v} from reanalysis weather data. Bias b;
at location i is:

b =x; -y, 6.1

The joint distribution function H(X,Y) is written in terms of a copula as C(U,V),
where U and V are uniformly distributed random variables (Nelsen 2006). The
empirical marginal probability u; using the rank-order-transformation equals:

rank(x;) |
u; = —— ,i=1,..,n. (5.2)

A monotone cubic spline is fitted to the pairs (x;,u;) to obtain a continuous
approximation of the marginal distribution Fy as u; = Fx(x;) (Fritsch and
Carlson, 1980). The marginal distribution F, is estimated in a similar way. Use
of an empirical distribution avoids estimating theoretical marginal distributions
that might otherwise affect the estimation of copula parameter. Further note
that the marginal distribution is assumed to be stationary (see appendix 5.1).

The purpose of quantile mapping is to predict u; at an unvisited location i. The
inverse transformation of the marginal distribution Fy! provides the bias-
corrected value %;:

X = Fy'(@), (5.3)

where the notation ~ denotes that # and # are predicted values. To obtain #;,
we develop three MCQMs including d-dimensional joint distributions where 2 <
d<3.

MCQM-I: let Z be a covariate for X and Y, e.g., elevation. Then two conditional
distributions C(U|W =w;) and C(V|W =w;) are obtained based upon bivariate
joint distributions ¢(U,W) and C(V,W) describing non-spatial dependences,
where the distributions can belong to different families and w; = F;(z;). The
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marginal probability 4; is obtained using the inverse transformation of C(U|W =
Wi) as:

ﬁi = C‘l(C(vi|W = WL)|W = Wi)- (54)

Distributions can be extended to higher dimensions if more than one covariate
is available.

MCQM-II: we consider two bivariate joint distributions C(U,U_;) and C(V,V_))
that describe spatial dependences between air temperatures at location i and
its nearest neighbour -i and two conditional distributions C(U|U_; = u_;) and
C(V|V_; =v_;) are based upon the joint distributions, where u_; = Fy(x_;) and
v_; = Fy(y_;). The marginal probability #; is then obtained as:

0 = CTH(Cw|V_; = v_)IU_; = u_y). (5.5

Distributions can be extended to higher dimensions using more than one
neighbour where the number of observations is sufficient to obtain a
correlogram that describes dependences in space (Oden, 1984).

MCQM-III: the third method combines MCQM-I and MCQM-II. We consider two
conditional distributions C(U|U_; = u_;,W =w;) and C(V|V_; =v_;,W =w;) based
upon trivariate joint distributions C(U,U_;,W) and C(V,V_;, W) describing non-
spatial and spatial dependences. The marginal probability ; is then obtained
as:

i =C ' CWlVoy = vy , W =w)IU_; = u_y , W = wy). (5.6)

As for MCQM-II, distributions can be extended to higher dimensions. For
MCQMs, it is assumed that the conditional probability of X conditioned on its
covariate Fy(X].) is equal to the conditional probability of Y conditioned on that
covariate Fy(Y].).

5.2.2 Copula estimation in MCQMs

A bivariate copula describes the dependences between two variables. We used
five copula families among several families available in the literature (see
Section 2.2). In MCQM-III, we estimate the conditional distribution C(U|U_; =
u_;, W =w;) based upon a canonical vine or C-vine structure: c(U,W), c(U,U_))
and c(C(W|U), C(U_;|U)) (see Section 2.1). The conditional distribution C(V|.) is
estimated in a similar way.

5.2.3 Quantile mapping

A comprehensive study carried out by Teutschbein and Seibert (2012) showed
that quantile mapping (QM) performs best among the classical bias correction
methods. QM is implemented as:
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% = Fy'(v). (5.7)

QM assumes that there is a perfect dependence between variables i.e. 4; = v;.
It is sensitive to the number of quantile divisions when using an empirical
marginal distribution. There are several names in the literature for this method,
such as probability mapping, CDF matching, and quantile-quantile mapping.

5.2.4 Comparison and evaluation of the bias correction
methods

We compare MCQMs with quantile mapping using leave-K-out cross-validation
(Lafon et al. 2013). To this end, the observations in K successive years at day
j and station i are removed from the dataset and the bias-corrected values are
predicted using the reminder of the observations. The mean absolute error
MAE, j equals:

K
1 ~
MAE;; = Elei,j,k — Rkl (5.8)
=1

We determine total mean absolute error MAE, spatial and temporal error
scores, i.e., SES and TES for t days and n stations as:

t n
1 1
was =1 (1Y wasy ). 59
j=1 i=1

n t
1
SES = Z rank ?Z MAE;; | |, (5.10)
i=1 =1

t n
1
ras = (rone (1 waz, ) ). an
j=1 n i=1

The lowest score indicates the best method (Durai and Bhradwaj 2014). In
addition, we define correlations r; and r; that indicate temporal and spatial
dependences between measurements and bias-corrected values, respectively
as:

= COTT({J’C\i’l, fi,j' ey fi,t}‘ {Xi‘l, Xi’j, 'xi,t})' (512)
T,

bl = COT'T({ 21’]', fi,j ')’C\‘n,j}' {xl_j, xi'j, ey xn’j}). (513)

Spatial and temporal correlation scores i.e. SCS and TCS are then obtained as:

SCS = Z(rank(ri)), (5.14)
=1
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t
TCS = Z (rank(ny)). (5.15)
j=1
The highest score indicates the best method.

5.3 Case study: daily mean air temperature in Iran

Our methods are applied to daily mean air temperature the Qazvin irrigation
network located in the Qazvin plain, Iran in June from 2004 to 2014 (see
Section 3.1). The measurements at the stations are assigned to the reanalysis
values at the nearest grid cells. For instance, the measurements at stations
number four and eleven are assigned to the reanalysis value at a grid cell.
There are 150 grid cells x 11 years = 1650 reanalysis air temperatures and 24
stations x 11 years = 264 measurements at each day of June. Missing values
in the measurements from weather stations may occur; their number differs
between stations and days.

A comparison of the time-series of the measurements and reanalysis values
revealed systematic overestimation and underestimation (Appendix 5.2, Figure
5.7). We noted that the time-series at stations 13 and 21 have a lower
correlation with the time-series of reanalysis air temperature than the other
stations (Figure 5.1b). The time-series at those stations revealed that the
quality of their measurements, in particular, their accuracy is low (Appendix
5.2, Figure 5.7). In addition, spatial correlations between the measurements
and reanalysis air temperature are weak at most of the days in June 2014
(Figure 5.1a).

This study focuses on obtaining the bias-corrected daily air temperature at
unvisited locations at each day in June 2014. The total mean absolute bias was
equal to 3.6°C for all stations and all days. We did not consider predicting the
bias-corrected air temperature at an unvisited location using the mean
absolute bias since there is both spatial and temporal variation. The MODIS
elevations are retrieved in 22410 pixels at a spatial resolution of 1 km (see
Section 3.1). We used the same elevations for eleven years assuming that
elevation remains the same.
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Figure 5.1 Correlations r; and r; that indicate temporal and spatial dependences
between measurements and ECMWF ERA-interim reanalysis air temperature. a)r; at
each weather station, b) r; at each day in June 2014.

5.4 Results and discussion

5.4.1 Marginal distributions and copulas

Marginal distributions and copulas are estimated for each day in June 2014,
separately. The empirical marginal distribution on the first day is shown in
Figure 5.2. The method to estimate empirical marginal distribution is not
unique, and a more generally applicable sensitivity analysis might help to
explain the effects of other methods on the results. For instance, we also used
kernel density estimation and noticed that the final results of the bias
correction methods changed only slightly (results not shown). To assess spatial
stationarity, a trend surface was fitted to the measurements (Appendix 5.1).
The B, parameter has p values in the range of [0.02, 0.80] with mean value
equal to 0.19, whereas the B, parameter has p values in the range of [0.02,
0.99] with a mean value of 0.45. We were thus safe to assume spatial
stationarity when estimating the marginal distributions.
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Figure 5.2 Empirical marginal probabilities on June 1%t. A monotone cubic spline is fitted

to obtain the marginal distribution function. Marginal distribution functions are estimated
at each day of June, separately.

The parameters of five copula families and the number of data for fitting
purposes are listed in Table 5.1. We considered the elevation as the covariate
in MCQM-I1. We found that the best fitting family was the Frank family for the
joint distribution of the measurements and the elevation for all days and also,
for the joint distribution of the reanalysis air temperature and the elevation for
18 days (Table 5.1). The p values of the Cramér-von Mises statistic S*’ were
larger than 0.05 for all days showing that the best fitting family is well
describing the dependences (Table 5.1).

We considered spatial dependences in MCQM-II. The Student’s t family
dominates the dependences of the measurements for 14 days and the
dependences of the reanalysis air temperature for 15 days (Table 5.1). The p
values of The Cramér-von Mises statistic S,SB) and the White statistic were
larger than 0.1 except for the Gumbel family at five days, showing that the
best fitting family is well describing the spatial dependences (Table 5.1). The
p values were close to zero and the best fitting family was the Gumbel family
at days 1, 10, 17, 21 and 22. The low p values are related either to the
limitation of the test or to the inflexibility of those five families. The p values
were close to one for the Student’s t.

For MCQM-III, the parameters of three bivariate copulas were estimated (Table
5.2). Best fitting families turned out to be non-Gaussian families for most of
the days. The p values of the Cramér-von Mises statistic S**) were larger than
0.2 for most of the days showing that the best fitting family is well describing
the dependences.
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Table 5.1 The p value and best fitting families in MCQM-I and MCQM-II. The copula
families are: N=Gaussian, T=Student’s t, C=Clayton, G=Gumbel and F=Frank. Number
of data denotes the number of marginal probabilities of each variable used for fitting
purposes and equals to the number of weather station measurements at each day in
June during the years 2004 to 2014.

MCQM-I MCQM-II
c,w) c(V, W) c,Uu_) cV,V_)
Number

Day of data p-value Best p-value Best p-value Best p-value Best
1 226 0.36 F 0.45 F 099 T 0.00 G
2 224 0.29 F 0.42 F 099 T 1.00 T
3 226 0.26 F 0.32 F 1.00 T 099 T
4 226 0.18 F 0.25 F 1.00 T 0.29 G
5 226 0.31 F 0.44 F 1.00 T 098 T
6 226 0.21 F 0.28 F 0.59 F 0.92 F
7 226 0.15 F 0.33 F 0.51 F 098 T
8 225 0.39 F 0.41 F 1.00 T 0.93 F
9 226 0.28 F 0.31 N 0.44 F 0.62 F
10 226 0.27 F 0.46 N 0.44 G 0.00 G
11 226 0.26 F 1.00 T 0.66 G 0.93 F
12 226 0.37 F 0.27 F 1.00 T 099 T
13 226 0.29 F 0.25 F 1.00 T 1.00 T
14 226 0.19 F 0.51 N 1.00 T 0.96 F
15 226 0.09 F 0.45 N 1.00 T 098 T
16 226 0.27 F 0.20 F 1.00 T 097 T
17 226 0.17 F 0.25 F 0.40 G 0.01 G
18 226 0.10 F 0.32 C 0.60 F 098 T
19 226 0.34 F 0.37 F 0.04 C 0.96 T
20 226 0.39 F 0.55 N 0.31 C 095 T
21 226 0.27 F 0.36 N 1.00 T 0.00 G
22 226 0.31 F 0.30 F 0.86 G 0.06 G
23 225 0.25 F 0.35 N 0.63 F 099 T
24 226 0.18 F 0.28 F 0.44 N 097 T
25 226 0.07 F 0.22 N 1.00 T 099 T
26 226 0.10 F 0.36 F 1.00 T 0.07 G
27 226 0.22 F 0.50 F 0.37 F 098 T
28 226 0.22 F 0.20 N 0.39 C 0.10 G
29 226 0.21 F 0.20 F 0.64 C 0.15 G
30 225 0.09 F 0.12 C 0.61 F 0.34 G
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Table 5.2 The p value and best fitting family in MCQM-III. The copula density function
¢t = ¢(U,U_, W) consists of three bivariate copulas c¢!! = ¢(U,W), ¢'?2 = ¢(U,U_;) and ¢*3 =
c(CU_;]),c(W|U)) . The copula density function ¢? =c(V,V_;, W) consists of three
bivariate copulas ¢! = c(V,W), ¢?? =c(V,V_;) and ¢ = c(C(V_;|V),c(W|V)). The copula
families are: N=Gaussian, T=Student’s t, C=Clayton, G=Gumbel and F=Frank. Number
of data denotes number of marginal probabilities of each variable used for fitting
purposes and equals to the number of weather station measurements at each day in
June during years 2004 to 2014.

Day (’:ft"';;tt’:r p o1 p o1z p 13 p c21 p 22 p 23
1 226 0.38 F 0.00 G 0.63 N 0.27 F 0.99 T 0.81 N
224 0.40 F 1.00 T 1.00 T 0.32 F 0.99 T 0.87 N

3 226 0.32 F 0.99 T 1.00 T 0.33 F 1.00 T 0.77 N
4 226 0.23 F 0.26 G 0.76 N 0.25 F 1.00 T 0.76 N
5 226 0.44 F 0.98 T 1.00 T 0.20 F 1.00 T 0.71 N
6 226 0.36 F 0.88 F 0.67 N 0.20 F 0.63 F 0.99 T
7 226 0.23 F 0.98 F 0.49 3 0.20 F 0.62 F 0.91 N
8 225 0.34 F 0.90 F 0.41 N 0.37 F 1.00 T 0.85 N
9 226 0.42 N 0.49 F 0.14 N 0.27 F 0.54 F 0.94 N
10 226 0.48 N 0.00 G 0.44 C 0.27 F 0.35 G 0.76 N
11 226 1.00 T 0.96 F 0.57 C 0.31 F 0.68 G 0.75 N
12 226 0.31 F 0.99 T 0.99 T 0.20 F 1.00 T 0.62 N
13 226 0.26 F 1.00 T 1.00 T 0.26 F 1.00 T 0.52 N
14 226 0.42 N 0.98 F 0.56 N 0.35 F 1.00 T 0.67 N
15 226 0.45 N 0.98 T 0.52 C 0.14 F 1.00 T 0.85 N
16 226 0.35 F 0.97 T 1.00 T 0.27 F 1.00 T 0.91 N
17 226 0.20 F 0.03 G 0.44 N 0.18 F 0.44 G 0.93 N
18 226 0.35 C 0.98 T 1.00 T 0.21 F 0.64 F 1.00 T
19 226 0.46 F 0.96 T 1.00 T 0.31 F 0.02 C 0.78 G
20 226 0.48 N 0.95 T 1.00 T 0.29 F 0.35 C 0.65 G
21 226 0.52 N 0.01 G 1.00 T 0.24 F 1.00 T 0.71 N
22 226 0.32 F 0.09 G 0.59 N 0.26 F 0.83 G 0.31 N
23 225 0.40 N 0.99 T 1.00 T 0.26 F 0.62 F 0.62 N
24 226 0.26 F 0.97 T 1.00 T 0.22 F 0.56 N 1.00 T
25 226 0.13 N 0.99 T 0.51 C 0.11 F 1.00 T 0.70 N
26 226 0.29 F 0.04 G 0.51 C 0.08 F 1.00 T 1.00 T
27 226 0.39 F 0.98 T 0.99 T 0.27 F 0.40 F 0.88 N
28 226 0.15 N 0.12 G 0.57 C 0.24 F 0.27 C 0.75 G
29 226 0.22 F 0.12 G 0.52 N 0.18 F 0.62 C 0.75 G
30 225 0.23 C 0.38 G 0.64 N 0.20 F 0.54 F 0.99 T

5.4.2 Bias-corrected values

In the following, we present the bias-corrected values at the first station for all
days in June 2014 (Figure 5.3) and at 1st June 2014 for all grid cells in the
study area (Figure 5.4). Detailed comparisons for all days and all grid cells are
given in appendix 5.2.

Time-series of the bias-corrected values obtained by MCQM-I at the first station
(Figure 5.3a) showed that MCQM-I successfully corrects for bias at most of the
days as well as the days with high extremes in comparison with time-series
obtained by QM (Figure 5.3d). Mean absolute bias was equal to 4.52 °C at this
station. Mean absolute error and mean absolute prediction error were equal to
1.46°C and 1.40°C for MCQM-I, whereas for QM they were equal to 2.84°C
and 2.82°C, respectively. MCQM-I resulted in a heterogeneous map at June 1st
2014 (Figure 5.4c) in comparison with the map obtained by QM (Figure 5.4f).
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The spatial variation obtained by QM was similar to the spatial variation of the
reanalysis air temperature as shown in Figure 4.7b due to the assumption of a
perfect dependence between variables in QM. The visual comparison of the
spatial variation of the elevation (see Chapter 3, Figure 3.3) with the spatial
variation of the map obtained by MCQM-I (Figure 5.4c) revealed that this
method was able to describe the covariability between the air temperature and
the elevation. Mean absolute bias was equal to 2.83°C at this day. Mean
absolute error and mean absolute prediction error were equal to 2.07°C and
1.559C for MCQM-I, whereas for QM they were equal to 2.62°C and 1.93°C,
respectively.

(@) (b)

o F) % i [ % %
1 1

(c) (d)

Reanalysis data
------ Bias correctionresults
= Measurements from weather stations

Figure 5.3 Time-series of the daily mean air temperature obtained from: weather
stations, ECMWF ERA-interim reanalysis data, and bias correction methods at the first
station in June 2014. a) MCQM-I, b) MCQM-II, c) MCQM-II1I, and d) QM. The vertical axis
is daily mean air temperature.

Time-series of the bias-corrected values obtained by MCQM-II at the first
station (Figure 5.3b) showed that MCQM-II successfully corrects for bias at
most days except for days with extreme temperature in comparison with time-
series obtained by MCQM-I and QM (Figure 5.3a and Figure 5.3d). Mean
absolute error and mean absolute prediction error were equal to 2.62°C and
2.670°C for MCQM-II at this station, whereas for QM they were equal to 2.84°C
and 2.82°C, respectively. MCQM-II resulted in a more heterogeneous map at
June 1st, 2014 (Figure 5.4d) than the maps obtained by MCQM-I and QM
(Figure 5.4c and Figure 5.4f). Mean absolute error and mean absolute
prediction error were equal to 2.66°C and 2.15°C for MCQM-II at this day,
whereas for QM they were equal to 2.62°C and 1.93°C, respectively.

Time-series of the bias-corrected values obtained by MCQM-III (Figure 5.3c)
at the first station showed that MCQM-III performed better than MCQM-I
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(Figure 5.3a) in correcting for bias at most days except for the days with
extremes. Mean absolute error and mean absolute prediction error were equal
to 1.77°C and 1.68°C for MCQM-III at this station, whereas for QM they were
equal to 2.84°C and 2.820°C, respectively. The Figure 5.4e showed that MCQM-
III resulted in a heterogeneous map as compared with the maps obtained by
other methods at June 1st, 2014. Mean absolute error and mean absolute
prediction error were equal to 2.36°C and 1.84°C for MCQM-III at this day,
whereas for QM they were equal to 2.62°C and 1.93°C, respectively.

:EI. |
- EEEE EnEEEEE
@ b)
=
© (@
N
B - " " :
|I 7.!. . J.. . .
(©) B 0
| . i |
14.5 30

Figure 5.4 Daily mean air temperature obtained from: a) weather stations, b) ECMWF
ERA-interim reanalysis data, and the bias correction methods at June 15t 2014; c) MCQM-
I, d) MCQM-II, e) MCQM-III, and f) QM. For experimentation in our study, a sample
subset of 10 x 15 grid cells of ECMWF dataset is selected at a spatial resolution of 0.125°
Lat/Long.

5.4.3 Evaluation and comparison

Leave-K-out cross-validation was carried out where K has values in the range
of one to 11 denoting the number of measurements from a weather station at
one day for 11 years. MCQM-III was superior to MCQM-I, MCQM-II, and QM as
shown by MAE (Table 5.3). The average of absolute bias was equal to 3.6°C
whereas MAE were slightly above 2°C. SES showed that MCQM-I resulted in
more precise predictions in time, i.e., 30 days in June (Table 5.3, second
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column) whereas TES indicated that MCQM-III resulted in more precise
predictions in space (Table 5.3, third column). To extend the evaluation of the
bias correction methods beyond the cross-validation, we can perform a random
split sampling validation in a well-monitored study area. It allows potentially
more reliable uncertainty assessments. It is, however, beyond the scope of
this paper. We treated the available measurements as benchmarks during the
cross-validation. The horizontal distances, height differences and differences
in land cover between the location of a station and the centre of a grid cell is
associated with uncertainties.

Table 5.3 Total mean absolute error (MAE), spatial error scores (SES), temporal error
scores (TES), spatial correlation scores (SCS), and temporal correlation scores (TCS),
obtained by the quantile mapping (QM), and the multivariate quantile mappings (MCQM-
I, MCQM-II and MCQM-III). The underlined values denote the best method.

Method MAE SES TES SCSs TCS
MCQM-1 2.23 51 58 77 85
MCQM-II 2.40 63 88 46 65
MCQM-III 2.13 54 38 61 112
QM 2.68 72 116 56 38

MCQM-I resulted in stronger correlations in time as shown by SCS (Table 5.3,
fourth column) and correlations r; (Figure 5.5b) whereas MCQM-III resulted in
more strong correlations in space as shown by TCS (Table 5.3, last column)
and correlations r; (Figure 5.5a). A comparison based upon TCS showed that
the new methods perform better than QM in correcting reanalysis air
temperature at unvisited locations in a data-scarce area. It further revealed
that MCQM-II including only one nearest neighbour was unable to represent
the spatial variation of daily air temperature. In order to do so, MCQM-II needs
to be extended towards more nearest neighbours allowing the use of a
correlogram. A correlogram, however, faces the balancing issue between the
number of spatial bins and the number of observations. The effect of the
number of nearest neighbours on MCQM-II needs to be further investigated in
a well-monitored area. Correlations r; and r; between the measurements and
bias-corrected values obtained by QM were close to the correlations between
the measurements and the reanalysis values (Figure 5.5a and Figure 5.5b).
This was expected because of the assumption of a perfect dependence between
variables in QM (see Section 5.2.3).
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The previous comparisons showed the performance of the methods based upon
an individual criterion. To evaluate the performance based upon all criteria, we
ranked the methods in each column of Table 5.3 where the lowest rank value
denotes the best method (Table 5.4). Then, the overall score based upon the
sum of the rank values showed that MCQM-I, MCQM-I1I, and MCQM-III reduced
bias with 58%, 16% and 63%, respectively as compared with QM (Table 5.4).

A practical advantage of MCQM-III is that it predicts the spatial variation of the
bias-corrected air temperature maps in a data-scarce area (Appendix 5.2,
Figure 5.8). The use of MCQM-III, however, is limited to the availability of the
covariate at unvisited locations. We applied MCQMs to correct for bias in
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reanalysis air temperature, highlighting the potential of the methods for other
weather data. Further comparison to other bias correction methods e.g. triple
collocation analysis (Stoffelen 1998) might help to assess the performance of
MCQMs.

Table 5.4 Overall score based upon Table 5.3. The methods are ranked based upon each
criterion, i.e., each column in Table 5.3 where the lowest rank value denotes the best
method. Then, an overall score based upon the sum of the rank values is obtained for
each method. The underlined value denotes the best method.

Rank value based on
Method Overall score
MAE SES TES SCS TCS

MCQM-I 2 1 2 1 2 8
MCQM-II 3 3 3 4 3 16
MCQM-III 1 2 1 2 1 7

QM 4 4 4 3 4 19

5.5 Conclusions

This study addressed bias correction in ECMWF reanalysis air temperature
using its covariates in a data-scarce area. We developed three multivariate
copula quantile mappings to do so. We concluded the following:

. The new methods are beneficial for the local refinement of reanalysis
weather data at grid cells without weather station measurements.

o The new methods are advantageous as they can treat covariability, i.e.,
both weather data and covariates, and hence increase the precision of the

mapping.

We see two ways to further extend the current study. First, we selected the
number and type of covariates based upon our experience. A more general
sensitivity analysis might help to show the effects of other covariates, e.g.,
land surface temperature and land cover. Second, it might be of interest to
study the ability of the new methods to reproduce other statistical moments of
the theoretical marginal distribution of air temperature. This could help to
further model extremes in air temperature.
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Appendix 5.1 Evaluating the stationarity assumption

To test for the assumption of second-order stationarity, we considered the null
hypothesis H, as:

E[X]=wn (5.16)

where X; is a random variable at location i and E[] denotes the mathematical
expectation. The alternative hypothesis H; is that there is a trend of degree
one as:

E[X;] = Bo + B1.x{ + B2.¥i, (5.17)

where x; and y; are coordinates of location i and the g; denote regression
parameters. The parameters are estimated using a generalised linear model
followed by their p values from a t test. We applied this trend to the
measurements from 24 weather stations at each day of June 2014. The values
of B, and B, were found to be not significantly different from zero, with their p
values above 0.05 at most of the days (Figure 5.6). At the six days (out of 30
days) when the p value was below 0.05, it was still above 0.01. Based on this
evidence, and the limited effects of including non-stationarity, we felt confident
to assume stationarity.

...... pvalue = 0.05
------ p value = 0.01
= p value for parameter of x coordinates
p value for parameter of y coordinates

o
(=1
-—

p value
0.75

0.50

0.25

1 10 20 30
Days in June 2014

Figure 5.6 p values of the mean parameter in the trend analysis.
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Appendix 5.2 Predictions in time and space
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Figure 5.7 Time-series of the daily air temperature obtained from: weather stations,
ECMWF ERA-interim reanalysis data, and bias correction methods, at each station in June
2014. The vertical axis is the daily mean air temperature. The nhumber on each graph
denotes the weather station number.
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Figure 5.8 Daily mean air temperature obtained from: weather stations, ECMWF ERA-
interim reanalysis data, and bias correction methods, at each day in June 2014. For
experimentation in this study, a sample subset of 10 x 15 grid cells of ECMWF dataset
is selected at a spatial resolution of 0.125° Lat/Long.
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Chapter 6: Copula-based interpolation
methods using collocated covariates
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This chapter is published as: Alidoost F., Stein A., Su Z. (2018). Copula-based
interpolation methods for air temperature data using collocated covariates. Spatial
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Abstract

This paper introduces two copula-based interpolation methods to produce air
temperature maps in a data-scarce area: a spatial copula interpolator including
covariates, and a mixed copula interpolator. The methods allow a construction
of the conditional distribution of air temperature given the collocated
covariates. Our study compared the new methods with the spatial copula
interpolator, the ordinary kriging predictor and the co-kriging predictor. Daily
mean air temperature was used from weather stations and ERA_Interim
reanalysis weather data at 174 locations in the Qazvin Plain, Iran. Spatial
copula interpolator including covariates resulted in more precise predictions as
shown by leave-two-out cross-validation. Visual inspection of air temperature
maps demonstrated that the new methods well represented spatial variability
of air temperature at a spatial resolution of 1 km. The results showed an
improved performance of the new methods to describe both spatial variability
and covariability between variables. The methods are potentially useful for
other sparsely and irregularly distributed weather data.

Keywords
copula, interpolation, covariate, data scarce, air temperature
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Structure of the chapter

After an introduction in section 6.1, the copula-based interpolation methods
are presented in section 6.2, the study area and data are introduced in section
6.3, the results are described in section 6.4, and the discussion and conclusion
are in section 6.5.
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6.1 Introduction

A copula is a multivariate joint distribution that describes the dependence
structure between variables (Nelsen, 2006). The joint distribution is estimated
using a distribution family that can be different from the family of the marginal
distributions of the involved variables. An appealing property of a copula in
describing spatial dependences is that its parameter is estimated by means of
a correlogram that describes dependences based upon the correlation between
marginals (Oden, 1984; Graler and Pebesma, 2011). The purpose of copula-
based interpolation methods is to predict the marginal probability at an
unvisited location given the marginal probabilities of the nearest neighbours.

Recently, several studies have assessed the performance of copula-based
interpolation methods and compared with kriging methods (Bardossy and Li,
2008; Haslauer et al., 2016; HeiBerer et al., 2016; Durocher et al., 2016).
Graler and Pebesma (2011) investigated the application of a multivariate
copula that models spatio-temporal random fields using vine structures in
interpolation of daily mean PMio measurements. Graler (2014) demonstrated
the potential of spatio-temporal copula interpolation with a single covariate.

This study focuses on mean air temperature. The use of these data in
hydrological models, e.g., crop growth simulations for assessing crop water
requirement has been the key to support irrigation management. Application
of hydrological models at unvisited locations remains a challenge because
weather stations are usually sparse and located at irregular positions. A
solution to this problem is to use gridded air temperature data from a weather
forecast system. The coarse spatial resolution of those data, however, is a
source of uncertainty because of the spatial variability at local scales (Aalto et
al., 2013). Hence, interpolation has to take place to predict air temperature at
unvisited locations.

Kriging is a well-established interpolation method (Cressie, 1993). Since the
twentieth century, a variety of methods has been developed. To predict air
temperature values at a spatial resolution of 1 km, typical examples are spatio-
temporal regression-kriging with incorporation of remote sensing images
(Hengl et al., 2012), generalized additive models (Aalto et al., 2013), and
residual kriging and regression kriging methods using auxiliary maps (Wu and
Li, 2013; Kilibarda et al., 2014). Parmentier et al. (2015) compared universal
kriging, generalized additive models and geographically weighted regression.
Kilibarda et al. (2014) showed the effect of daily land surface temperature on
both minimum and maximum air temperature variability.

With the aim to improve prediction of air temperature in a data-scarce area,
we present two interpolation methods based upon copulas: a spatial copula
interpolator including covariates, and a mixed copula interpolator. The first
method considers two types of dependences: spatial dependences of air
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temperature at a single location and its nearest neighbours, and non-spatial
dependences between air temperature and its collocated covariates at that
location. The second extends the first method by including the non-spatial
dependences of air temperature and its collocated covariates at the nearest
neighbours. The two methods are compared with the spatial copula
interpolator, the ordinary kriging and co-kriging predictors.

6.2 Interpolation methods

6.2.1 Spatial copula interpolator

Let f(X|X = x4, ..., X = x,,) be the conditional density distribution of the variable
X at an unvisited location conditioned on its n nearest neighbours. The
conditional expectation is the optimal predictor to derive the value of the
variable X at an unvisited location, denoted by %,. It can be shown that it
minimizes the Bayes risk (Cressie, 1993). The conditional expectation can be
either linear or nonlinear in X and it can be written using the conditional copula
density function c(U|U = uy, ...,U = u,) as:

o =E[XIX = xq, 0, X = 7] =f x-fX|X =xq, .., X = x,)dx
) b
=f Flw) - c(U|U = uy, ..., U = u,)du, (6.1)
0

where F is the marginal cumulative distribution function, i.e., u=F(x)
(Bardossy and Li, 2008). The predictor has two main parts: a marginal
distribution F(.) and a multivariate copula c¢(.|.). The last equality in (1) can be
proven by:

f(xO! ""xn) _ C(uo' "'!un) ' f(xo) Tt f(xn) _

f(xlr "'txn) B C(ulr ""un) ' f(xl) e 'f(xn) -
du

a;

FXIX=xp,, X =x,) =

c(UIU =uyq, .., U=uy)  flxo) =cU|U =uqg, ..., U =1uy,) - (6.2)
where c(uy, ..., u,) and c(uq, ...,u,) are the copula density functions. The choice
of a Gaussian distribution for f in (6.1) leads to a linear predictor that is the
equivalent to the simple kriging predictor (Cressie, 1993). Such a predictor is
able to capture extremes if it is based upon local nearest neighbours rather
than a large set of neighbouring observations.

Following section 2.2, the joint density function c(uy,...,u,) with m=n+1
variables, it is decomposed into m.(m-1)/2 bivariate copulas (Gréler, 2014)
based on a canonical vine or C-vine structure (Aas et al., 2009). For m=3,
c(ug,uq,u,) is decomposed as

c(uo, uq, uz) = c(ug, ug) X c(ug, uz) X c(C(uqluo), C(uzlug)), (6.3)
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where C(.].) is the conditional copula. The first tree in the vine structure
consists of spatial bivariate copulas, e.g., c(uyuy) X c(ug,u,) , taking the
influence of the neighbours into account. The parameter of the spatial bivariate
copula is obtained from the correlogram obtained with binned data pairs
(Graler, 2014). Pairs with distances larger than the distance in last spatial bin
are considered independent and are described by the Product copula family
(Nelsen, 2006). A polynomial of degree two fitted to Kendall’'s © values
estimates the correlation function. The remaining trees in the vine structure
consist of non-spatial bivariate copulas, e.g., c(C(uy|uy), C(uy|uyp)).

6.2.2 The spatial copula interpolator including covariates

To introduce the spatial copula interpolator including covariates, we consider
one variable X and two covariates, e.g., Y and Z. The aim is to predict %, with
a finite sample of X. Samples of Y and Z are available at all locations. The
conditional copula density function in (6.1) is then written as
c(UIU =uy, .., U =u,, V=vy,W =wy), Where vy = F,(y,), wo = Fz(z,), , denotes
an unvisited location, F, and F, are marginal distribution functions of the
covariates. The mean predictor in (6.1) equals:

1
%o = f F7r'w) c(UIU =uy, .., U = up, V=15, W = wy)du. (6.4)
0

By conditioning on ¥V and W, the collocated covariates at an unvisited location,
i.e., vy and w, are incorporated to the predictor. The conditional distribution
can be extended to higher dimensions by including more than two covariates
in a straightforward way.

In this study, we will use the empirical marginal probability u; at location i is

rank(x;)
N

defined using the following rank-order-transformation u; = n , where N

denotes the total number of observations. A similar transformation is also
applied to y; and z;. The empirical marginal distribution avoids using the
theoretical marginal distributions that might affect the estimation of copula
parameter. By means of kernel density estimation, a continuous approximation
of the marginal distribution F is obtained under the assumption of stationary
(Silverman 1986). Note that the empirical probabilities are limited to
observations and therefore, the interpolation methods are unable to predict
extreme values outside the range of the observations.

6.2.3 Mixed copula interpolator

Next we introduce the second method, the mixed copula interpolator. The
conditional distribution of X conditioned on Y and Z at location / is equal to
CU|V =v;, W =w;), where C is a conditional copula, v; = F,(y;) and w; = F;(z,).
The conditional probability p; equals:
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pi = C(ullV = Ui,W = Wi)' (65)

The conditional copula C is estimated in a similar way for the spatial copula
interpolator including covariates. The conditional probability p; is used as the
probability of nearest neighbour i for copula in (6.4) and the final form of the
predictor equals:

1
£o=| F'W - cUIU =py, .., U =p,,V = vy, W = wy)du. (6.6)
0 P1 Pn 0 0
0

Hence, the collocated covariates at the nearest neighbour, i.e., y; and z; are
incorporated into the predictor. The conditional distribution can be extended to
higher dimensions for including more than two covariates.

6.2.4 Comparison and evaluation of the interpolation methods

We compare the spatial copula interpolator including covariates (6.4) and the
mixed copula interpolator (6.6), with the spatial copula interpolator (6.1), the
ordinary kriging predictor (Cressie, 1993) and the co-kriging predictor (Stein
and Corsten, 1991). We treat available observations from n weather stations
as benchmarks for leave-k-out cross-validation to quantify the performance of
the interpolation methods. To this end, k stations are removed from the n
weather stations and predictions %;,i = 1,..,k are obtained using observations
from the reminder of the stations. Each interpolator is then applied on m =

#ik), replications of dependence structures. The mean absolute error (MAE)

and error score (ES) (Durai and Bhradwaj 2014) are determined as:

MAE = [xi; — %501, (6.7)

El

3=
gk

(

J

k
i=1

1l
[y

ES = rank(MAE), (6.8)

for each method. The smallest ES indicates the best interpolator. The overall
prediction quality depends upon a good estimation of the copula and the
marginal distributions as well as the number of the observations.

The coverage of 90%, 95% and 99% prediction intervals from the conditional
distributions F(X|.) are investigated at each weather station. The number of
observed values that fall in the intervals provides insight into the performance
of the copula-based methods. This should be interpreted with care, because
the type and number of covariates can be different in the copula-based
methods. In addition, spatial variation of mean and standard deviation of the
conditional distributions are compared at each weather station.

A 95% prediction interval width (PIW) at an unvisited location is obtained as
PIW, = F~1(€71(0.975|.)) — F~1(€~1(0.025].)), describing the uncertainty of the
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predictions (Li, 2010). The kriging methods result in the prediction error
variance s (Cressie, 1993; Kutner et al., 1996). A 95% PIW at unvisited
location under the assumption of a Gaussian joint distribution is obtained as
PIWy = (R + 1.96-55) — (% — 1.96 - ;).

The methods were implemented in R using the packages gstat (Pebesma,
2004), copula (Kojadinovic and Yan, 2010), spcopula (Grédler and Pebesma,
2011), and VineCopula (Brechmann and Schepsmeier, 2013). We contributed
to spcopula and VineCopula packages in R to interpolate the random field
spatially including more than one covariate.

6.3 Application: mean air temperature in Iran

We applied the interpolation methods to mean air temperature in the Qazvin
plain, Iran on June 6t and 22" 2014 denoted by d4 and d,,, respectively (see
Section 3.1). These two days were selected as these were Landsat 8 overpass
days and thus provided three covariates for the 19 of the 24 weather stations:
land surface temperature (LST), leaf area index (LAI) and SRTM elevation (see
Section 3.1). Five weather stations were outside the coverage of Landsat 8
images (Zanter, 2016). Investigating the correlations (Table 6.1), we ignored
LST as a covariate at d,,. The covariates are at different spatial resolutions.
Throughout we maintained a resolution of 1 km that represents spatial
variation of air temperature (Figure 6.1).

Table 6.1 Correlations between mean air temperature and its covariates on ds and dz2.
The temperature values are the combination of bias-corrected values and measurements
from weather stations. The covariates are elevation, land surface temperature (LST) and
leaf area index (LAI).

Elevation LST LAI
Mean air temperature on ds -0.25 0.24 -0.23
Mean air temperature on dzz -0.26 -0.02 -0.23
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284

Figure 6.1 Three covariates for air temperature at a resolution of 1km. a) LST and b)
LAI are obtained using Landsat 8 bands. c) Surface elevation is obtained from the SRTM
dataset. The areas A1, A2 and A3 are selected to investigate the covariability of the air
temperature.

We defined bias as a systematic overestimation and underestimation of
reanalysis weather data with respect to measurements (Persson, 2013; Mao
et al., 2015). The average bias for all stations equals 3.9°C and 3.4°C at d,
and d,,, respectively. We applied a bias correction method to obtain bias
corrected values (Alidoost and Stein, 2016). A two-sample Kolmogorov-
Smirnov test was performed of the null hypothesis that measurements
and bias corrected values are drawn from the same distribution. The p values
were equal to 0.22 and 0.65 at dy and d,,, respectively, did not reject the null
hypothesis. Based upon these results, we used a combination of measurements
and the bias-corrected values as observations for fitting purposes in the
interpolation methods (Figure 6.2).
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Figure 6.2 Spatial variation of mean air temperature at 174 locations from the weather
stations and the bias corrected reanalysis weather data on ds (a) and dzz (b).

6.4 Results

6.4.1 Distribution of the observations

The empirical marginal distribution is shown in Figure 6.3. The number of
observations in the tails of the distributions was low, i.e., there were two
extremes in the upper tail at d; and one in the lower tail at d,, (Figure 6.3).
For copula-based interpolators, in contrast to kriging predictors, it is a
challenge to estimate a skewed marginal distribution with two extreme values
out of 174 observations. They are not able to predict the extremes in leave-k-
out cross validation for k > 2. Hence, the marginal distribution function has to
be well estimated.

Figure 6.4 shows the fit to Kendall’s t values in the correlogram for six and five
spatial bins at dy and d,,, respectively. Apparently, the correlogram changes
over the range of [-0.2, 0.7] describing the positive and negative dependences.
The Student t and Clayton copulas are selected according to the lowest AIC
values at each bin at d; whereas Student t and Gumbel copulas are selected at
dys.
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Figure 6.3 Empirical marginal probabilities obtained on ds and d.. The empirical
marginal distribution function is obtained using kernel density estimation.
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Figure 6.4 Kendall’s t is obtained using observations at 174 locations on ds and dz2. A
polynomial function is fitted to obtain t at each distance. The parameters of five spatial
bivariate copulas are then estimated by maximum likelihood. The best fitting copula is
selected according to the lowest AIC values at each bin.

The multivariate distributions were estimated using the C-vine structures and
the conditional cumulative probabilities F(X|.) for 19 weather stations are
shown in Figure 6.5. The number of observed values that fall within the 90%,
95% and 99% prediction intervals for spatial copula interpolator using
covariates were equal to 15, 17 and 19 whereas for mixed copula interpolator
were equal to 14,17 and 18, respectively (Table 6.2). Hence, it showed a good
performance of the methods in fitting of the distributions.

For the ordinary kriging, the variogram is obtained for the same number of
spatial bins as the correlogram, followed by fitting a Gaussian variance function
to the variogram of the mean air temperature (Figure 6.6). We applied the co-
kriging in this study based upon the proportional model using the same
variance and covariance functions. Gaussian covariance functions were fitted
to cross variograms obtained for air temperature and its covariates.
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Table 6.2 The number of observed values that fall in the 90%, 95% and 99% prediction
intervals of the conditional cumulative probabilities F(X|.) for 19 weather stations on ds.
The observed values are the measurements from weather stations. The covariates are
elevation, land surface temperature (LST) and leaf area index (LAI).

Prediction interval

90 95 99
Spatial copula interpolator using covariates 15 17 19
Mixed copula interpolator 14 17 18
Spatial copula interpolator 15 19 19

(1a) (2.a) @a)

= u | F 1 N o I | 7:777277777777[:]7 -
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Figure 6.5 a) The conditional cumulative probabilities F(X|.) for 19 weather stations and
the spatial variation of b) mean and c) standard deviation of the conditional distributions
of the predictions on ds. The observed values in the conditional cumulative distributions
are denoted by black dots.
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Figure 6.6 The variogram obtained on ds and dzzfor the same number of spatial bins as
the correlogram. A Gaussian variogram model is fitted.
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6.4.2 Evaluation and comparison

For the leave-k-out cross-validation, we took k=2 due to low number of the
weather stations. The spatial copula interpolator including covariates resulted
into the lowest MAE using different covariates at the two days (Table 6.3). The
ES shows that the spatial copula interpolator including covariates improved
predictions of the mean air temperature with 58% comparing with the co-
kriging predictor (Table 6.3). In addition, cross-validation showed that the use
of LAI as a covariate resulted into more precise predictions.

Table 6.3 Cross-validation expressed as the mean absolute error (MAE) obtained by the
spatial copula interpolator using covariates, the mixed copula interpolator, the spatial
copula interpolator, the ordinary kriging predictor, and the co-kriging predictor. The
leave-two-out cross-validation is done for combinations of the covariates, i.e., elevation
(E), land surface temperature (LST) and Leaf area index (LAI) at two days. To compare
the five methods, an error score (ES) is obtained based upon MAE for each method. The
smallest ES indicates the best interpolator.

Spatial . )
Day Covariate int:(:szllaator (I:\:)I:: I: ic':;::?al O;:;:ﬁ;y kr?:i;g
using interpolator interpolator
covariates
E 1.550 1.669 !  1.555 1.597 1.598
LAI 1.503 1.525 |  1.555 1.597 1.595
LST 1.557 1.611 |  1.555 1.597 1.599
6 E, LAI 1.480 1.633 |  1.555 1.597 1.596
E, LST 1.529 1.654 |  1.555 1.597 1.598
LST, LAI 1.531 1.735 ' 1.555 1.597 1.599
E, LST, LAI 1.551 1.833 |  1.555 1.597 1.597
E 1.390 1.365 |  1.378 1.328 1.330
22 LAI 1.291 1.308 | 1.378 1.328 1.328
E, LAI 1.301 1.360 1.378 1.328 1.331
ES 15 a1 1 28 30 36

6.4.3 Prediction

For making predictions, we considered n = 8 nearest neighbours and three
covariates at ds. The mixed copula interpolator was able to capture extremes
(Figure 6.7.b) in contrast to the spatial copula interpolator including covariates
(Figure 6.7.a). The vegetated and non-vegetated areas based upon LAI, and
highest and lowest elevated areas (Figure 6.1) are interesting areas to consider
to which degree the new interpolation methods take the spatial variation of
covariates into account. The new methods resulted in the most heterogeneous
map and, visually, more realistic spatial patterns than the kriging methods and
the spatial copula interpolator, whereas the latter was more heterogeneous
(Figure 6.7.c) than the map obtained by the kriging predictors (Figure 6.7.d
and Figure 6.7.e). We further note that a low number of spatial bins leads to
unrealistic spatial patterns as shown in Figure 6.7.
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The boxplots (Figure 6.8) shows that copula-based methods well represent the
mean values of the observations. The issue of failing to represent extremes
using copula-based methods is related to the low number of observations in
the tails of the marginal distribution. The ranges of 95% PIW for copula-based
methods are equal to [0.6, 12.6]°C whereas for kriging methods are equal to
[4.9, 6.3] °C (Figure 6.9).

The spatial variation of the mean and standard deviation of the conditional
distributions (Figure 6.5) shows that there is no reason to assume any lack of
homogeneity. In fact, any pattern in the standard deviations would indicate
such lack of homogeneity. Values, however, are relatively low as compared to
the standard deviation of the observations (2.9°C). A few relatively high values
occur in the centre of the study area. These are caused by the presence of
extreme values at locations covered by the same pixels.

: .27.4

I15_3

e e

! . 27.4 ' l27,4

‘ I15.3 ‘ I15.3
(d) (&)

Figure 6.7 Daily mean air temperature predicted at a spatial resolution of 1 km on ds
based upon a) the spatial copula interpolator including covariates, b) the mixed copula
interpolator, c) the spatial copula interpolator, d) the ordinary kriging predictor, e) the
co-kriging predictor for a neighbourhood of eight locations. The circled areas denote
squares as artefacts that represent the unrealistic spatial patterns. The areas A1, A2 and
A3 as shown in Figure 6.1, are examples where the covariability becomes apparent in
the results of the new methods.

99



Copula-based interpolation methods using collocated covariates

Mean air temperature on ds
18 20 22 24 26

[
o
o
[=%

4
|
I

]
|
I
\
\

32

Mean air temperature on d,,

<+ .
o a b c d
Figure 6.8 Boxplots comparing the observations (a) with predicted values by: b) the
spatial copula including three covariates, c) the mixed copula, and d) the spatial copula
interpolator. Here, observations are a combination of bias-corrected values and
measurements from the weather stations on ds and dz-.

I4.9 &
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d I4.9

Figure 6.9 95% prediction interval widths (PIW) for each interpolation method on ds, a)
the spatial copula including three covariates, b) the mixed copula, c) the spatial copula,
d) the ordinary kriging, and e) the co-kriging. The spatial copula interpolator resulted in
the lowest uncertainty among copula-based methods. Ordinary kriging has smaller PIWs
and is based upon assuming a Gaussian joint distribution.
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6.5 Discussion and conclusion

Two dependences were characterized in spatial interpolation of a weather
variable: spatial variability and dependency with other variables, i.e.,
covariability. We developed two methods based upon spatial copulas of air
temperature, and non-spatial dependences between air temperature and its
collocated covariates. The multivariate distributions are decomposed into
bivariate copulas using vine structures that are generally well understood and
can be estimated in a straightforward way.

The new methods provide more information about the uncertainty when
interpreting the spatial variability of the PIW. We proposed to estimate the
empirical marginal distribution that describes the statistical properties of daily
air temperature without the knowledge of the theoretical form of the family’s
distribution function. The marginal distribution is, however, still assumed to be
stationary. The local marginal distribution at an unvisited location (HeiBerer et
al., 2016) might help to improve the prediction as well as the PIW.

We treated the available observations from weather stations as benchmarks
during cross-validation, but we realized that the quality of measurements
differs at each station. For example, stations 11 and 13 represent high
extremes relative to other stations at the same day. A time-series analysis of
the air temperature (not shown) revealed that the quality of measurements at
those stations is low. In particular, the correction for bias in the reanalysis
weather data and the retrieval of covariates from remote sensing images are
uncertain. A hierarchical model may be further explored to include uncertainty
aspects of those observations.

We used the AIC to select the suitable copula family. The selection of families,
however, depends upon the number of observations and further research is
needed to develop strategies for selection optimization. Although several
copula families can be found in the literature, we use five families because
obtaining the inverse of the conditional copula distribution may lead to
computational limitations. In addition, as all five families were symmetric,
alternative families can be investigated.

For the interpolation of air temperature in a data-scarce area, we selected
three covariates LST, LAI and elevation that were retrieved from remote
sensing images. Our study has shown that the covariates can easily be included
as additional information in estimating the joint distribution, thus allowing for
a richer dependence structure. The copulas are generally able to describe both
spatio-temporal and non-spatial dependences. A practical advantage of our
methods is that we can analyse the joint behaviour of more than one covariate
and their effects on the spatial variability of the daily air temperature locally.
The availability of bias-corrected values and the covariates derived from
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remote sensing images are, however, limitations for applying the methods on
daily scales.

In order to provide a scenario that can be used to evaluate the new methods
with less likely uncertain observations, we set up an experiment using the
Meuse dataset (Pebesma, 2004). The leave-k-out cross validation showed that
the average MAE values for mixed copula interpolator using Meuse variables
zinc, lead, copper and cadmium were equal to 95.3, 33.7, 7.4 and 1.0, whereas
for the co-kriging predictor they were equal to 173.2, 55.8, 12.8 and 1.8,
respectively. Further applications of the new methods in other case studies
including simulation-based information should provide more insight on these
methods in the future.

We see several ways to further extend the current study. First, we applied the
new methods in a data-scarce area, and we aimed to highlight the potential
and the use of the methods for a larger dataset as well. Further comparison to
other interpolation methods (Kilibarda et al., 2014) might help to assess the
performance of the new methods. Second, essentially, we used the
combination of the reanalysis weather data with a coarse spatial resolution and
measurements from weather stations to predict mean air temperature at a
higher spatial resolution. Such integration of bias correction and interpolation
can be further investigated as a copula-based downscaling method. Third, in
this study we selected the number and type of covariates, number of nearest
neighbours, and number of spatial bins in both variogram and correlogram
based upon our experience. A more generally applicable sensitivity analysis
might help to show the effects of these parameters on the results.

Based upon the cross-validation, width of the prediction interval and visual
inspection, we conclude that new methods allow describing both spatial
variability and covariability between weather variables and covariates using
multivariate joint distributions. In addition, the use of LAI as covariate in the
interpolation of the mean air temperature reduces the uncertainties.
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Chapter 7: Evaluating the effects of climate
extremes on crop variables using copulas
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Abstract

Climate change poses risks to agriculture and food security. To assess the
impacts, this paper models the complex dependences of climate extreme
indices and the crop-related variables: yield, production, and price of a crop.
Using a comprehensive copula-based analysis, the conditional distributions of
the crop-related variables given extremes of air temperature and precipitation
are estimated. We used potatoes in the Netherlands as a case study. Weather
data were obtained from 33 weather stations and ECMWF ERA-interim archive
during the period 1980-2017. A joint behavior analysis predicted the yield, the
production and the price with the relative mean absolute error equal to 5.4%,
3.6%, and 27.9%, respectively. The study showed that copulas adequately
describe the multivariate dependences. Those in turn are able to quantify the
impact of climate extremes, including their uncertainties.
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Climate change, Copulas, Crop, Multivariate distributions, Weather extremes.
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After an introduction in section 7.1, the application is introduced in section 7.2,
climate extreme indices and joint behavior analyses are presented in section
7.3, the results are presented in section 7.4, followed by discussions and
conclusion in section 7.5.
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7.1 Introduction

Many complex processes and interactions determine crop responses to climate
changes (Challinor et al. 2009a). Efforts have been made mainly to evaluate
the impacts of the changes on crop yield (Challinor et al. 2013; Pirttioja et al.
2015; Gaupp et al. 2017; Nguyen-Huy et al. 2018). Little attention has been
given to understand the impacts of climate change on crop production and
production’s price. Those are, however, important if say agricultural insurance
should support farmers against the impacts and economic changes or climate
information should answer stakeholders about total revenue (Dinku et al.
2011; Partridge and Wagner 2016; Anderson 2017).

An objective in local climate change studies is to quantify the changes in air
temperature and precipitation extremes as they may result in a variety of
climate-related crop stresses. Temperature affects the duration of the crop
growing season, rates of photosynthesis, respiration, grain filling and thus the
crop yield and production. Drought increases crop water stress and on the
other hand, intensive rainfall may cause a flood and waterlogged soils (Lobell
and Gourdji 2012). The assessment of impacts is primarily based upon
extremes obtained from a long time-series of data from weather stations which
are, however, sparse at local scales (Sarma 2005). Global assessments of crop
production easily ignore variation at local scales (Lobell and Gourdji 2012).
Therefore, additional spatially distributed data are needed for the assessment
at those scales.

Weather data generated by the European Centre for Medium-range Weather
Forecasts (ECMWF) are retrieved on spatial grids with coarse resolutions,
typically in the order of ten kilometers. In addition, they are prone to
uncertainty and their over- or underestimation compared to data from weather
stations is often large (Hannah and Valdes 2001; Dee et al. 2011; Durai and
Bhradwaj 2014). Hence, there is a challenge for the assessment of impacts
when using weather data from ECMWF (Challinor et al. 2009b).

Analyzing changes in climate extremes requires long-term daily data that are
not readily available in many parts of the world. The Expert Team on Climate
Change Detection and Indices (ETCCDI) defined a total of 27 indices, which
focus primarily on extremes (Sillmann et al. 2013). The study of extreme
indices has become increasingly important due to their significant impacts on
natural processes. Climate change consists of variations in several climate
extremes and their impacts usually affect several agricultural variables.
Therefore, multivariate joint distributions play an essential role in describing
joint behaviors (Miao et al. 2016). The extension of a joint distribution to a d-
dimensional distribution, d > 2, however, is often not straightforward
(Salvadori et al. 2007). In this context, copulas help to construct multivariate
distributions of related variables (Sklar 1973). While weather data are
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generally measured at a daily scale, climate indices describe the extremes at
a yearly scale, for instance, the number of cold days in a year. Crop-related
data are often recorded as seasonal and annual time-series. The use of
extreme indices thus facilitates the estimation of the joint distribution of crop
and weather variables. Applications of copulas include various practices,
whereas there is a vast literature in geostatistics and hydrology (Bardossy and
Li 2008; Graler and Pebesma 2011; Alidoost et al. 2018), meteorology and
climate research (Scholzel and Friederichs 2008), and risk assessment (Renard
and Lang 2007). Copula-based methods so far employed bivariate and
trivariate joint return periods to analyze the dependencies between extremes
indices (Miao et al. 2016; Zscheischler et al. 2017).

With the aim to assess the impact of climate changes on crop, we analyze the
joint behavior of climate extreme indices with crop-related variables, e.g.,
yield, production, and price using multivariate distributions. We selected seven
climate extreme indices, which are related to extremes in air temperature and
precipitation. Previous studies in the literature have investigated the effect of
only two or three indices on a single crop (Miao et al. 2016; Zscheischler et al.
2017). Our assessment applied on measurements from weather station is
compared with the one applied on ECMWF weather data. Our study focuses on
the use of copulas for the construction of multivariate distribution functions.
Both good description of copulas and the main theorems are available in the
literature (Nelsen 2006).

7.2 Study site and data in the Netherlands

We chose 33 KNMI stations where both rainfall and temperature measurements
are available in the Netherlands during the period 1980-2017 (see Section
3.2). We selected 33 nearest grid points to the chosen KNMI stations from the
ECMWF data. Daily minimum and maximum air temperatures are obtained
using the minimum and maximum values of the hourly data, and daily
precipitations are obtained using the sum of the hourly data for both weather
datasets. For comparison purposes, we define the bias as systematic
differences between ECMWF weather data and weather station measurements.
Note that the source of bias lies in the different number of the measurements
and the uncertainty in ECMWF weather data. The mean absolute bias was equal
to 0.799C, 0.44°C, and 1.84 mm for the daily minimum and maximum
temperature, and the daily precipitation, respectively.
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Figure 7.1 Temporal trends in the crop-related variable: a) yield and production, b)
price and production, c) cultivation and harvested areas of potatoes.

We considered potato yield, production and price in the Netherlands during the
period 1980-2017 (see Section 3.2). The yield and the production are naturally
spatio-temporal variables, but their data are available either per province or
country. There is, however, one price value for the country at each year.
Regarding the variations in the crop-related variables, there is a significant
drop in the production but not in the yield in the year 1998 (Figure 7.1b). Note
that the production is yield x area. Comparing the cultivation and harvested
areas of potatoes (in 1000 ha) revealed that the drop in the production was
related to a drop in the harvested area (Figure 7.1.c). In the following, we
investigated the climate event related to the drop.

7.3 Copula-based methods

In the following, a marginal distribution, i.e., the cumulative distribution of a
variable is estimated by fitting an empirical distribution to data. In a
multivariate case, a joint cumulative distribution is estimated by fitting copulas
to data. The estimation methods of copulas are explained in Section 2.2.
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7.3.1 Joint behavior analysis

A climate extreme index x;; at location i and year j, is obtained for N =33
locations and M = 38 years based upon the definitions provided by the Expert
Team on Climate Change Detection and Indices (Table 7.1, Sillmann et al.
2013). There are both spatial and temporal dependences between the x;;. A
crop-related variable Y is sampled by y; for M years. Based upon the estimates
of autocorrelation function, we consider the y; to be independent. We analyse
the joint behaviour using the conditional distribution of Y given x, i.e., F(Y|X =
x), where x is a climate extreme index at year j.

To retrieve x from the spatio-temporal data x;;, a marginal distribution is
estimated using x;; >0 at year j for N locations, after testing for spatial
stationarity of the mean. To do so, we evaluated the second order spatial
stationarity assumption regarding the mean value using linear regression
(Cressie 1993). Then, x can be obtained as either the median, i.e., the 50th
percentile in the distribution, the mean or the mode. We conducted a cross-
validation to compare the performance of those three predictors in selecting
the dominant driving index. Based upon the results (not shown), we chose the
median as the optimal predictor, as it minimizes the mean absolute prediction
errors (Journel 1984; Cressie 1993). In the case that the standard deviation
of x;; > 0 for N locations is zero, the average of x;; > 0 is used as x. Hence, we
reduce the dimensionality of a spatio-temporal variable X from space-time to
time. This provides a simple, but statistically sound method when we can select
a dominant driving climate index in practical applications.

The conditional distribution F(Y|X = x) is determined using the joint distribution
F(X,Y). The distribution can be extended to a d-dimensional distribution, d > 2,
using either more than one climate extreme index or more than one crop-
related variable. In our study, we choose seven climate extreme indices (Table
7.1) and analyse three joint behaviours using the distribution of: yield given
seven indices F(yield|X =x,,..,X =x;) , production given seven indices
F(production| X = x4, ..,X = x;), price given the production and seven indices
F(price|production, X = x4,..,X =x;) . Here x; is a climate index and i is
mentioned in (Table 7.1). Different combinations of indices represent different
climate conditions. In our study, the climate extreme indices are grouped as
four events: 1) cold days, cold nights and very wet days indicated by x;, x,, xs;
2) cold days, cold nights and consecutive wet days indicated by x;,x,,x,; 3)
warm days, warm nights and consecutive dry days indicated by x;,x,,x5; and
4) all the seven indices indicated by x,, ...,x,. The results of a joint behaviour
analysis applied to the weather station measurements (dataset 1) will be
compared with those applied to the ECMWF reanalysis weather data (dataset
2).

108



Chapter 7

Table 7.1 Seven climate indices based upon daily temperature and precipitation used in
this study. The Expert Team on Climate Change Detection and Indices (ETCCDI) provides
the definitions.

Index
ID

Index name

Label

Index definition

Cold days

Cold nights

Warm days

Warm nights

Very wet
days

Consecutive
dry days
Consecutive
wet days

TX10p

TN10p

TX90p

TN9Op

R95p

CCD

CWD

Number of days per each year during the reference
period when Tg < Tiop. Taj is the daily maximum
temperature on day d in year j. A cumulative
distribution is determined using daily maximum
temperatures in a five days window centered on d
during the reference period. Tiop is the daily
maximum temperature with 10™ percentile in the
distribution.

Number of days per each year during the reference
period when Tgj < Tiop. Tgj is the daily minimum
temperature on day d in year j. A cumulative
distribution is determined using daily minimum
temperatures in a five days window centered on d
during the reference period. Tiop is the daily
minimum temperature with 10" percentile in the
distribution.

Number of days per each year during the reference
period when Tg; > Toop. Tg; is the daily maximum
temperature on day d in year j. A cumulative
distribution is determined using daily maximum
temperatures in a five days window centered on d
during the reference period. Teop is the daily
maximum temperature with 90™ percentile in the
distribution.

Number of days per each year during the reference
period when Tg; > Teop. Tgj is the daily minimum
temperature on day d in year j. A cumulative
distribution is determined using daily minimum
temperatures in a five days window centered on d
during the reference period. Toop is the daily
minimum temperature with 90% percentile in the
distribution.

Number of days per each year during the reference
period when PRg; > PRosp. PRg; is the daily
precipitation amount on wet day d in year j. On a
wet day PR > 1mm. A cumulative distribution is
determined using daily precipitation on wet days
during the reference period. PRgs, is the daily
precipitation with 95 percentile in the distribution.

Largest number of consecutive days per each year
during the reference period when PRg; < 1 mm.
Largest number of consecutive days per each year
during the reference period when PRg; > 1 mm.
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7.3.2 Marginal and joint distributions estimation

We use the empirical marginal probability u; where i = 1,..,n and n denotes
the total number of observations of the variable of interest Z. Following rank-
rank(z;)

n+1 '
distribution of Z is obtained by means of kernels density estimation (Silverman

1986).

order-transformation u; = a continuous approximation of the marginal

The joint distribution function F(X,Y) is determined using a copula C(U,V),
where U and V are uniformly distributed random variables (Sklar 1973);
(Nelsen 2006). According to Sklar’s theorem, the joint probability F(x,y) is
equal to C(u,v) and the joint density f(x,y) is equal to c(u,v) X fx(x) X fy (¥),
where u = Fyx(x), v = Fy(y), and c is the copula density function (see Section
2.1). A multivariate copula describes dependences between three or more
variables. In the first two analyses, the joint distribution is an 8-dimensional
function whereas it is a 9-dimensional function in the last analysis. Following
section 2.2, the conditional distribution F(Y].) is determined using a C-vine
structure and five copula families.

7.3.3 Prediction and cross-validation

Since the conditional distribution F(Y|.) is estimated, any pth percentile in the
distribution can be used to predict y, e.g.,:

Pmean = ELV1.] = f v+ F(¥l)dy, 7.1)

y

y,=F7'@l), peloi], (7.2)

where f is the joint density function (Bardossy and Li 2008). We select the
mean predictor in (7.1), being the optimal predictor, as it minimizes the mean

squared prediction error (Cressie 1993); (Journel 1984). The relative mean
absolute error (RMAE) in percentage for M years equals:

M
RMAE = 100 x Z <|y’ Vi me“”'). (7.3)

We use RMAE to determine whether the different weather datasets produce
statistically different predictions due to the uncertainty in ECMWF weather
data. With a leave-one-out cross-validation, we assess the quality of the
predictions. To do so, one observation y; is removed and J; n.q, is predicted
using the remainder of the observations. The RMAE in percentage for M years
is then obtained in (7.3).
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7.3.4 Validation

To evaluate the performance of the joint behaviour analyses, we conduct a
leave-k-out validation. To do so, first, k observations y;,y;.4,...,yy are removed
at year j, wherej=M -m+1,..,M, and in our study m is 25% of the M years.
Then, $jmean is predicted using the observations y,,y,,...,y;-1, i.e., without any
information from the future, as is natural. The RMAE in percentage for m « M
years is then obtained as:

M
1 =9
RMAE = 100 X — Z (M) (7.4)
m. Vj
Jj=M-m+1

We perform an additional successive validation for the price. Let us consider
that the year j is a target that its climate extreme indices are available. We
want to predict both the production and the price at the target year j, where
the observations are available at the years 1,2, ...,j— 1. The target production
is predicted in the second joint behavior analysis, followed by a prediction of
the target price in the last joint behaviour using the target production. The
mean relative error is then obtained in (7.4).

7.3.5 Assessment of the impact of climate extremes on crop

To assess the effect of climate extremes on the crop-related variable, we
consider (x4, ...,x;) as a climate extreme event. The event is characterized by a
joint density f(x,,...,x;), where multivariate density function f(.) is estimated
using copulas. The joint return period T of the climate extreme indices
corresponds to the probability of P[X; > x;, ..., X; > x,] is obtained as:

_ Kr
P[X; > xq, ..., X7 > x7]’

T (7.5)
where ur = 1 year (Salvadori et al. 2007), and in our study T = 10,50,100. As
no closed form exists for P[X > x,,..,x;] , the probabilities P[.] of 100000
simulated values of (x,,...,x;) are obtained numerically using copulas and the
addition rules in the probability theory (Stirzaker 2003) as P[X; >
Xp, e X7 >x7] =1-P[X; <xy0r oor X, <x;]=1- ( T Fi () = X721 F(xi,%p) +
L= F (i), 20) + -+ (=1)77F (1, ...,x7)). The events with 9.9 < T < 10.1 years
return period are selected as representative events for the events of a T = 10
years return period. The same procedure is applied to select the events with
50 and 100 years return period. The variable Y given those events is then
predicted using the mean predictor explained in (7.1). We illustrate the

procedure using an example for the first event; the probabilities
P[X; > x1,X; > x5, Xs > x5] of 100000 simulated values of (x;,x,,x5) are obtained.

. 1 1
Then, the return levels x;,x,, and x5 with oIS PlX; > x, X, > x5, Xs > x5] < >
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are selected. Then, yield values are predicted using the conditional distribution
f(Y|xy,x5,x5) in (7.1).

7.4 Results

7.4.1 Joint behaviour analysis

Climate extreme indices are obtained using the daily weather data in the
growing season at 33 stations for 38 years, where the spatial domain is a
country for joint behaviour analyses. Figure 7.2 shows the time-series of the
dominant climate extreme index. The highest number of cold days were equal
to 26 and 24 days in the years 1984 and 1986, respectively, and the highest
number of warm days was equal to 31 days in the year 2006 which is related
to the heatwave in 2006 (KNMI 2006). The highest number of consecutive wet
days was equal to 11 days in the year 1998 (Figure 7.2), related to the flood
on 16 September 1998 caused by El Nifio (ESA/ESRIN 2018). The flood was
responsible for a large drop in the harvested area and the production at that
year.

Comparing climate extremes indices retrieved from both weather datasets
denotes that the bias in the precipitation data resulted in a mean absolute bias
of two, six and five days in the very wet days, the consecutive dry days, and
the consecutive wet days, respectively. Figure 7.3 shows the empirical
marginal distributions of the involved variables in the joint behavior analyses.
The bias in the last three climate extreme indices is comparatively large. In
the following, we investigate the performance of the joint behavior analyses
when using ECWMF weather data.

Focusing on potatoes, we used the weather data in the growing season to
obtain extreme indices. Restricting the data to the growing season is prone to
uncertainty because the harvested area, hence the production and
consequently the price, can be affected by for example a flood before the
growing season.
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Figure 7.2 Time-series of the dominant climate extreme index. Climate extreme indices
are obtained using the air temperature and precipitation data, retrieved from the weather
stations and the ECMWF ERA-interim archive, in the growing season of potatoes at 33
stations for 38 years.
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Figure 7.3 Empirical marginal distributions of the involved variables in the joint behavior
analyses. The involved variables are: the seven dominant climate extreme indices, yield,
production, and price. The vertical axis denotes the empirical cumulative probability.

7.4.2 Prediction and cross-validation

Boxplots in Figure 7.4 show the predictions of the crop-related variables, where
p varies in the range of [0,1] in (2), from 1980 to 2017. All observations fall in
the prediction intervals except the low production value in the year 1998.
Hence, it denotes a good performance of the joint behaviour analyses in
estimating the joint distributions. In addition, comparing the predictions
obtained by the mean predictor and the observations indicates that the joint
behaviour analyses well represents the temporal variation of the crop-related
variables. The relative mean absolute errors (RMAEs) were equal to 3.6%,
4.5% and 23.7% for the three joint behaviour analyses, where M =38 in (3)
and the climate extreme indices are obtained by the dataset 1 (Table 7.2). The
RMAE values obtained by leave-one-out cross-validation, were equal to 5.0%,
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6.1% and 40.2% for the joint behaviour analyses. As can be seen, the errors
for the price were comparatively large.
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Figure 7.4 Predictions, shown as boxplots, of production, yield and price given the
climate extreme indices obtained by the measurements dataset. The black line indicates
the predictions obtained by the mean predictor whereas the red line indicates the
observations.

For the three joint behavior analyses applied to the dataset 2, the RMAE values
by the mean predictor were equal to 3.3%, 6.3%, and 23.6%, whereas by
leave-one-out cross-validation, were equal to 4.9%, 9.8% and 38.4% (Table
7.2). Comparing the results with those obtained by weather station
measurements showed that the quality of the predictions of the yield and the
price is rather good in the presence of bias.
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Table 7.2 Relative mean absolute error (RMAE) in percentage. Dataset 1 denotes
weather station measurements, whereas dataset 2 denotes ECMWF weather data.

Yield Production Price

Prediction 3.6 4.5 23.7
~—

s Leave-one-out cross-validation 5.0 6.1 40.2
(]
©

§ Leave-k-out cross-validation 5.4 3.6 27.9

Successive validation - - 26.4

Prediction 3.3 6.3 23.6

S Leave-one-out cross-validation 4.9 9.8 38.4
Q
(]

42 Leave-k-out cross-validation 3.7 5.7 23.9
[a)

Successive validation - - 17.9

Note that the joint behavior analyses in this study were only applied to the
seven indices indicating the frequency of the weather extremes. The question
can be posed whether considering a subset of the indices can improve the
predictions. To answer this question, we conducted a sensitivity analysis using
three subsets: 1) a cold event containing cold days, cold nights and very wet
days, 2) a cold event containing cold days, cold nights and consecutive wet
days, 3) a heat event containing warm days, warm nights and consecutive dry
days. The RMAE values obtained by mean predictor (not shown) revealed that
no improvements in the predictions were achieved. The low production value
in the year 1998, however, falls in the prediction intervals of the production
given the second subset. Considering other climate indices which are
responsible for the intensity and the duration of extremes, should thus provide
more insight on the predictions.

7.4.2 Validation

Validation was carried out, where m =9 in (4), i.e., 25% of the 38 years. We
could not further increase m, because it is important to use a reasonable
number of data, here 75% of the 38 years, for estimation purposes. Using
dataset 1, the RMAE values were equal to 5.4%, 3.6% and 27.9% for the three
joint behaviour analyses, whereas the RMAE value was equal to 26.4% for the
price in a successive validation (Table 7.2). Except for the production errors,
the RMAE values of the dataset 2 are lower than dataset 1, because the number
of data in dataset 2 is higher than that in dataset 1. In all the three joint
behaviour analyses, the RMAE values were relatively low showing that the
presented copula-based analysis was able to well represent the complex
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dependences. The low number of m implies, however, a limitation on the
validation.

7.4.3 The impact of climate extremes on crop

The effect of climate extremes on the crop-related variables is assessed in two
steps: first, the determination of plausible weather extreme indices associated
with a joint return period, e.g. 10, 50 or 100 years in my study; second, the
prediction of the crop-related variables e.g. yield, production and price
conditioned on those extremes indices. Boxplots in Figure 7.5 show the
predictions of yield, production and price given climate events with 10, 50, and
100 years joint return periods. For example, the first boxplot in the first row
indicates yield variations ranging from 39 to 48 t.ha'! because of the first
event. Note that the predictions are the mean values obtained from the
equation (7.1). We compared the lowest values of the predicted yield and
production and the highest values of the predicted price with the average of
their observations. It revealed that the event four with 50 years joint return
period resulted into the largest variation among different events with different
joint return periods: 21.0% and 28.5% decreases in yield and production,
respectively, and 92% increases in price (see Figure 7.5). Note that event four
contains all the seven extreme indices. Possible source of this variation lies in
both complexity and flexibility in dependence structures: uncertainty either
increases due to the larger number of the indices in joint distributions, or it
decreases due to the larger number of indices where the joint distribution can
well represent the dependence structures. As mentioned in section 4.2, the
RMAE values obtained by cross-validation revealed that no improvements in
the predictions were achieved using events one to three. It illustrates that
event four allows for a good representation of the dependence structures. A
high dimensionality of the distribution corresponded with an advantage of
using the joint behavior analysis: using event four more information is obtained
than using events one to three by selecting a subset of the indices. Due to the
high dimension of joint distributions, the computational cost of the return
periods is considerably high. The source of this cost and, consequently, the
uncertainty in return periods lie in generating simulated values of the climate
indices through their joint distribution, in numerical evaluation of joint
probabilities using empirical copulas, and in successive procedures of the
addition rules in probability.
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Figure 7.5 Predicted yield, production and price given climate extremes with T= 10, 50
and 100 years joint return periods. The boxplots show the predictions given simulated
climate extreme indices. The joint distributions are estimated using the measurements
dataset. The colors of boxplots indicate the events as magenta: cold days, cold nights,
very wet days, blue: cold days, cold nights, consecutive wet days, orange: warm days,
warm nights, consecutive dry days, green: all the seven indices. The horizontal red line
denotes the average values of the observations.
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7.5 Discussion and conclusion

We provided copula-based joint analyses to assess the impact of climate
extreme indices on the yield, the production and the price of potatoes. The
results of the predictions, leave-one-out cross-validations, and leave-k-out
validations showed the practical advantage of copulas in estimating high
dimensional joint distributions that describe the complex dependences. The
use of C-vine structures in estimating multivariate distributions was beneficial
as it allows for a huge degree of flexibility in describing the dependences
because the involving bivariate copulas are estimated using five copula
families. In addition, the conditional distributions are useful for a
comprehensive uncertainty assessment using confidence intervals widths.

We conducted cross-validation to compare the performance of the median,
mean and mode in selecting the dominant driving index, and therefore,
reducing the dimensionality of climate extreme indices from space-time to time
(not shown). The other percentiles in the distribution should be further
explored. In addition, a sensitivity analysis might help to explain the effects of
other estimation methods of marginal distribution on the results. For validation
purposes, we chose the mean predictor. Further research will be necessary to
investigate the use of other predictors in (2) to obtain the predictions.

The presented joint behavior analyses are general and could be applied on a
different spatial domain, e.g., a province, where the price is assumed to be
invariant between provinces. A limitation of decreasing the spatial domain from
a country to province is that the number of weather stations is low to obtain
the dominant climate extreme index. This limitation can be overcome using
gridded ECMWF data which is, however, out of the scope of our paper. A bias
correction method can be further investigated to correct for bias in the indices.

We see two ways to extend the current study:

We selected the seven climate extreme indices related to the air temperature
and precipitation. The question can thus be posed whether other weather
variables like the humidity and the wind produce statistically different
predictions. In addition, whether other climate extreme indices can improve
the predictions, for example, the indices for intensity and duration of the
extreme precipitation. Due to the complexity of dependences, a challenge is to
decide which climate extreme indices are important to be included in the joint
behavior analyses. A sensitivity analysis needs to be further implemented to
address these issues. In addition, the joint behavior of climate extreme indices
and other crops like maize and wheat can be analyzed.

We neglected the effect of the conditions such as social-economic conditions,
climate change adaptation scenarios and technologies on the yield, the
production, and the price. Additional knowledge may lead to an improvement
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of the predictions, for example, the joint behaviour analysis of the price can be
extended to include social-economic information.
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Chapter 8: Synthesis

This chapter summarizes the study’s findings and synthesizes the research to
point out significant results, obstacles, prospects, and limitations.
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8.1 Findings

The research described in this thesis investigates new, innovative copula-based
methods for improving the availability of climate and weather information in
data-scarce environments. The performance of the new methods was
evaluated by comparing them with several methods commonly applied for
improving data availability. The comparison revealed a number of theoretical
and practical issues in representing spatial variability and its associations, and
when assessing the uncertainty. The following paragraphs describe the overall
findings.

Two copula-based methods for correcting bias were used to correct daily
reanalysis air temperatures for bias in an agricultural area in Iran. The copulas
described the dependencies between two sources of the air temperature data:
an ECMWF archive and a network of weather stations. After estimating joint
distributions, new predictors based upon Conditional Probabilities (CP) were
defined to obtain air temperatures at locations within the agricultural area. The
two methods for bias correction, CP-I and CP-II, performed better than
methods commonly applied (i.e. conditional expectation and conditional
median predictors) in representing the spatial and temporal variation of the
bias-corrected air temperatures.

Three new Multivariate Copula Quantile Mappings (MCQM-I, MCQM-II, and
MCQM-III) were used to study two types of dependencies: the spatial
variability of air temperature, and its association with elevations. The MCQMs
were able to accommodate those dependencies, thereby improving the
precision of the one-dimensional quantile mapping in predicting bias-corrected
air temperatures.

Among the new bias correction methods, both CP-II and MCQM-III could
improve air temperatures retrieved from ECMWF in a data-scarce environment.
The evaluation criteria showed that CP-II was superior to MCQM-III, albeit at
a higher computational cost.

A comparison of the conditional expectation and conditional median predictors
with the one-dimensional quantile mapping revealed that copula-based
methods performed better in correcting bias. This is in line with previous
studies, although my results demonstrated that there was a similarity between
these three methods. The spatial variation of the bias-corrected air
temperatures was equal to the variation of the ECMWF air temperatures but
not to that of the weather station measurements.

Two copula-based interpolators were introduced to produce weather maps in a
data-scarce environment. The methods allowed the description of two types of
the dependencies: spatial dependencies of air temperatures, and its
associations with land variables. The interpolators were compared with the
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ordinary kriging and co-kriging predictors. The spatial copula interpolator
including covariates, and the mixed copula interpolator describe both the
spatial variability of air temperatures and its association with land variables
obtained from remote sensing products. The copula-based interpolators are
potentially useful for other sparsely and irregularly distributed weather data.

The mixed copula interpolator allowed the inclusion of additional variables in
the modeling of spatial random fields using multivariate distributions. Hence,
the joint distribution contained three types of dependencies: spatial
dependencies between the variable of interest at a single location and its
nearest neighbors, non-spatial dependencies between the variable of interest
and its collocated covariates at that location; and the non-spatial dependencies
of the variable of interest and its collocated covariates at its nearest neighbors.

In the comprehensive copula-based analyses, the conditional distribution of a
crop-related variable given climate extreme indices was estimated. Then, the
distribution was employed to predict the variable under climate change. The
analyses were applied to two datasets: weather station measurements and
ECMWF weather data. The copula-based analyses helped in modeling
dependencies between the climate extreme indices and the crop-related
variables using high-dimensional multivariate distributions. This suggests that,
given climate extremes indices, the conditional distribution of a crop-related
variable is advantageous for quantifying the impacts of climate extremes,
including their uncertainties.

8.2 Significance

The research described in this thesis is unique in several aspects particularly
related to the use of copulas, Earth observation data, and the developed
functions.

The findings on the application of copulas in describing the dependencies
between several variables indicate that copulas can estimate any multivariate
distribution. A copula is neither a method nor a model, rather it is a joint
distribution function. This definition is not dependent on the underlying
statistical process and thus allows pragmatic application in agricultural and
hydrological studies. My research therefore rebuts the assertion that
“Generally, copulas are used only if Gaussian assumptions fail, e.g. fat-tailed
volatility in financial markets.”; this comment was made by an anonymous
reviewer of a paper I submitted to the Journal of Spatial Science.

This thesis delivers an important message relating to the difference between
estimation and prediction (Kutner et al. 1996). Initially, the joint distribution
is fitted to the data, and the goodness of fit is tested using statistical tests.
Next, a predictor is selected to predict the variable of interest. The choice of
predictor is not related to how good estimation is, but rather to the loss
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functions. For instance, two conditional quantiles, the mean and the median,
have been identified in the literature as the predictors that minimize squared
error loss and absolute error loss (see Section 2.3). These predictors produce
smooth maps where spatial stationarity is assumed for estimating bivariate
joint distributions. To improve spatial predictions, however, the predictors, CP-
I and CP-II were defined based upon several varying conditional probabilities.
Flexibility in selecting predictors that are different from the conventional mean
and median is a practical advantage that copulas when estimating
distributions.

The findings of my research demonstrate the advantages of using Earth
observation data in data-scarce environments. ECMWF ERA-interim archive,
MODIS products, Landsat 8 data, and the SRTM dataset are a few examples
used in my study. The results demonstrate that embedding satellite products
in multivariate distributions leads to improvements in predicting weather data.

Several salient aspects were revealed by the extensive literature review
included in the study. For instance, previously it had been reported that a
Gaussian distribution is often assumed to be suitable for estimating distribution
functions of air temperature, whereas a gamma distribution is assumed for
precipitation. Those estimation procedures are usually based upon weather
time-series (see Chapter 5). Hence, this may give the impression that air
temperature always follows a Gaussian distribution, irrespective of its domain
of distribution, i.e. spatial, spatio-temporal or non-spatial. The findings of my
study confirm that those assumptions are stochasticity assumptions and not
the property of physical processes similar to stationarity and ergodicity. In
practice, a finite sample of a random variable is observed in space and time
without replication. Most of us would make inferences about the joint
distribution from those observations. Making assumptions should, of course,
not be a concern, but rather encourage a dedicated choice with which to
proceed with the investigations.

One other practical advantage of the research is that the new methods are
generic: application of the new copula-based methods in other case studies
should provide more insight into the nature of these methods. Since R
programing software is an open source environment that has been increasingly
used for the implementation of statistical operations, this new research has
contributed to the spcopula (Graler, 2011), and VineCopula (Brechmann and
Schepsmeier, 2013) packages available in R. The functions developed in this
research will also be available on the GitHub software development platform
after publication of my research results. The availability of these functions will
assist:

e Spatial interpolation of a random field that includes more than one
covariate;
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e Definition of different predictors based upon multivariate distributions;
¢ Inverse transformation of conditional distributions;
e Calculation of conditional probability based upon multivariate distributions;

e Calculation of high-dimensional joint probabilities based upon addition
rules in probability theory; and

e production of a cross-correlogram which that has a definition similar to that
of a cross-variogram.

8.3 Obstacles

During the research some problems arose related to the uncertainty,
operational goals, and temporal characteristics of some of the bias correction
methods.

One concern about the findings of this research was that the available weather
station measurements in Iran were treated as benchmarks in the bias
correction and interpolation methods. Depending upon the instrument used to
measure air temperature and the temporal frequency of measurement, the
weather stations were categorized as one of three types: synoptic, climatology
typel, and climatology type2. Time-series of air temperature at climatology
type2 stations revealed that the quality of their measurements is low. As a
result, the degree to which the results are affected by the varying quality of
data is a source of uncertainty. Another source of uncertainty is the satellite
products, in particular covariates such as land surface temperature and leaf
area index, which were retrieved through several procedures. To my
knowledge, there is no closed-form mathematical expression for calculating
the propagation of the uncertainty in such a way that it could be used to
develop new methods. Implementation of the methods for simulation-based
information may provide an alternative approach to this issue.

Regarding operational applications that include extensive datasets, the present
research faces a limitation that emerges from finding the optimum parameters:
For instance, the use of other copula families in the C-vine structure; the
number and type of covariates; and the number of neighbors for CP-II and the
interpolators. In addition, the computational cost of copula-based methods
when working with high-dimensional distributions is relatively great. The use
of parallel evaluations, powerful processors, and comprehensive sensitivity
analysis might help to deal with this. An additional limitation is related to the
availability of remote sensing data when the new interpolation methods need
to be applied on daily scales.

This study shows that both CP-II and MCQM-III were less successful than CP-
I and MCQM-I in representing the temporal variation of biased-corrected

125



Synthesis

values. This may raise concerns about their application to predictions in time.
The use of the spatio-temporal information can improve the methods, requiring
that the developed functions need to be extended to include spatio-temporal
data frames.

8.4 Prospects

There are four new areas to be explored that relate to the utilization of copulas:
methodological development, promising applications, types of problems at
hand, and education.

In this thesis I present the initials steps in developing methods for combining
copula-based bias correction and interpolators for downscaling. In addition, the
idea of the estimating high-dimensional multivariate distributions that include
covariates opens a new approach in data/information fusion. Another
opportunity arising from the use of copulas takes advantage of spatially varying
conditional probabilities (e.g. CP-II) in Bayes classifiers and machine-learning
environments. I also identify another route for future research: that of
implementing copula-based methods of bias correction to predict bias-
corrected values at an unvisited moment in time, instead of spatially.

For the applications concerning different types of datasets, the methods of bias
correction presented can be applied to other weather parameters (such as
precipitation) obtained from weather stations and ERA-I reanalysis. A
promising, novel application of the bias correction methods is the local
improvement of the land surface parameters retrieved from the European
Centre for Medium-range Weather Forecasts (ECMWF). For instance, the daily
evapotranspiration (ET) at local scales is important information in determining
crop water requirements for use in an advisory system for irrigation. It is of
interest, therefore, to develop a copula-based method of bias correction based
upon MCQMs and apply it to evapotranspiration data obtained from Landsat
products and ECMWF data so that temporal gaps can be filled. With respect to
joint behavior analysis, a copula-based procedure can include socio-economic
information to study the effects of climate change on urban areas.

The use of new copula-based methods should be further explored for different
types of problems. In this context, estimation of high-dimensional distributions
using C-vine structures has great potential for describing complex
dependencies found in, for example, wicked problems such as climate change,
heat waves, and frequent wildfires (Aerts et al. 2016).

As I mention in Chapter 1, the exploitation of copulas in geostatistics, as well
as climate studies, is still relatively new. With this in mind, the case studies
and the functions developed through this research, together with recent
copula-based studies (Graler 2014), could have a role to play in education in
geostatistics. The main prerequisites for those who want to learn more are a
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good understanding of the geo/mathematical statistics and the basic theories
in probability.

8.5 Limitations

There are a number of issues arising from my research that will need to be
addressed in the future: numerical evaluations, non-stationarity, the First Law
of Geography, deterministic approaches, and climate impact studies.

Numerical evaluations  concern the implementations of some
mathematical/statistical operations for copula families, such as partial
derivatives and inverse transformations. These are still at an experimental
stage and are subject to change during the development of functions to
implement copula-based methods. In addition, a d-dimensional joint
probability, d > 2, is obtained using the numerical evaluations and simulations
that are associated with uncertainty. In the case of high-dimensional
distributions, however, the joint probability is close to zero.

Stationarity was assumed throughout the estimation of joint distributions. This
assumption was justified through either some statistical tests or a test scenario
(see Chapters 4 and 5). It is notable that those assumptions are justifiable in
the case that one fails to reject them (Cressie 1993). The degree to which
degree my findings alter in a non-stationary case study remains unanswered.

The First Law of Geography (Tobler’s First Law) states that “All things are
related, but nearby things are more related than distant things.” It is by now
generally accepted that geostatisticians exploit this law not only for spatial
modeling but also for spatio-temporal modeling. Among the methods I have
researched for this thesis, those considering their spatially nearest neighbors
in their formulations implicitly acknowledge the Tobler’s First Law: i.e. CP-II,
MCQM-II, MCQM-III and the interpolators. It is for this reason that much
attention should be given to the probabilistic nature of the desired variables.
For example, crop production and price in a given year do not impact those in
the following year. This explains why temporally varying predictor similar to
CP-II could not be used in the joint behavior analysis presented in Chapter 7.

For a deterministic approach, the main theories of copulas that are based upon
probabilistic explanations need to be extended. There is, however, a definition
of copulas that uses Geometric methods, without any reference to distribution
functions or random variables (Nelsen 2006). In future research it would be
interesting to find out whether the new methods I present in this thesis are
applicable in a deterministic setting.

With respect to climate impact studies, the copula-based methods assume that
weather can be defined as a stochastic or random process. Analytical skills,
therefore, are necessary to interpret the statistical characteristics of weather
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data. In addition, statistical methods are data-driven i.e. the methods are
applied to historical data and they give the desired output. In this thesis, I
used measured data retrieved from weather stations to estimate the
distribution functions and to validate the results. The cost and availability of
measured data may hinder the application of the methods.
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