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To ambitious researchers  

 

 

“It is unrealistic to walk into a room and flick a switch and lights come 

on. Fortunately, Edison didn’t think so.  

 

We want to represent an idea. We want to represent possibilities. That 
some of you already know, that it is hard, it’s not easy, that in the 
process of working on your dreams, you are going to incur in a lot of 
disappointments, a lot of failures, a lot of pain. For those of you that 
have experienced some hardships, don’t give up on your dreams. The 
rough times are going to come, but they have not come to stay, they 
have come to pass.  

After we face a rejection and a NO or we have a meeting and no one 
shows up, you’re still looking at your dreams and saying to yourself: 

It’s not over, until I win. ” (Will Smith) 
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Summary 
Environmental processes are driven by weather, land, and water variables and 
their interactions that change continuously in space and time. A complete 
process description considers both spatio-temporal dependencies and 
associations between those variables. Describing the dependencies is 
challenging because natural phenomena are often observed at a discrete set 
of locations and times. In this thesis I focus on reanalysis data of ECMWF1 

(ERA-I) that are being used increasingly for those process descriptions. Major 
dilemmas locally are that observations are sparse, and the use of reanalysis 
data is prone to uncertainty because of the coarse spatial resolution and 
systematic bias. The complete study of dependencies will also lead to an 
increase in the number of involved variables. To address these problems, this 
research demonstrates the potentials of copulas. It uses two datasets: daily 
mean air temperature collected from weather stations and reanalysis data in 
the Qazvin Plain, Iran, and daily air temperature and precipitation retrieved 
from weather stations and reanalysis data in the Netherlands.  

First, copulas described the dependencies between measurements and 
reanalysis data in the absence of ancillary data in Iran. The conditional 
distribution of air temperature given the reanalysis data was estimated with 
copulas. This thesis illustrated a systematic bias in the reanalysis air 
temperature data as compared to weather station measurements. I predicted 
bias-corrected air temperatures using two new predictors based upon 
Conditional Probabilities (CP): CP-I offers a single conditional probability as a 
predictor, while CP-II is a pixel-wise version of CP-I and offers spatially varying 
predictors. The CPs reduced the bias with 44 – 68% as compared to commonly 
applied predictors. I concluded that CPs locally improved existing bias 
correction methods.  

Second, copulas took care of the spatial dependencies between weather 
variables and associations between land variables. Ancillary information was 
obtained from remote sensing images. The classical and common method for 
bias correction, i.e. a univariate Quantile Mapping (QM) produced smooth 
maps. To locally rectify for smoothness, the conditional distribution of air 
temperature given reanalysis data and elevation was estimated with copulas. 
Three Multivariate Copula Quantile Mappings (MCQMs) were proposed to 
predict bias-corrected air temperature. MCQMs reduced bias with 16-63% as 
compared to QM. The study showed that MCQMs were well able to represent 
spatial and temporal variations of air temperature and its associations with 
elevation. 

                                               

1 ECMWF: the European Centre for Medium-range Weather Forecasts  
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Third, in this thesis I exploited copulas to improve the spatial resolution of air 
temperature data. Two new interpolators were investigated embedding remote 
sensing products, in particular land surface temperature, leaf area index and 
surface elevation: a spatial copula interpolator including covariates, and a 
mixed copula interpolator. The spatial copula interpolator including covariates 
improved the spatial predictions with 46-58% as compared to the spatial 
copula interpolator, the ordinary kriging predictor and the co-kriging predictor. 
The copula-based interpolators well represented spatial variability of air 
temperature and its associations with land variables at spatial resolution of 1 
km. The methods are potentially useful for other sparsely and irregularly 
distributed weather data. 

Fourth, copulas helped me to describe the multivariate dependencies of the 
weather extremes and yield, production, and price of potatoes in the 
Netherlands. In this thesis, a procedure was proposed to select the dominant 
driving climate indices of air temperature and precipitation in space. The 
conditional distributions of the non-climatic variables given the indices were 
estimated. The non-climatic variables were predicted with relative mean 
absolute errors equal to 5.4%, 3.6%, and 27.9%, respectively. I showed in 
this study that the proposed copula-based method optimally quantified the 
impact of climate extremes including their uncertainties.   

The main conclusion drawn from this research is that copula-based methods 
can well represent the spatial variability and associations between air 
temperature and precipitation and other variables. They are also able to 
improve existing methods locally. Findings illustrate the practical advantages 
of copulas to describe multivariate dependencies, to define several predictors 
and to assess uncertainties. 
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Samenvatting  

Processen in het milieu worden gedreven door weer-, land- en watervariabelen 
en hun interacties. Deze veranderen continu in ruimte en tijd. Een volledige 
procesbeschrijving houdt rekening met zowel spatio-temporele 
afhankelijkheden als associaties tussen deze variabelen. Het is een uitdaging 
om deze afhankelijkheden te beschrijven omdat natuurlijke fenomenen vaak 
worden waargenomen op discrete locaties en tijdstippen. In dit proefschrift heb 
ik me gericht op her-analyse weergegevens die worden verstrekt Europees 
Centrum voor weersvoorspellingen op middellange termijn (ECMWF). Deze 
gegevens worden in toenemende mate gebruikt voor procesbeschrijvingen in 
het milieu. Belangrijke dilemma's zijn dat waarnemingen lokaal en schaars zijn 
en dat het gebruik van her-analyse weergegevens gevoelig is voor onzekerheid 
vanwege de grote ruimtelijke resolutie en systematische vertekening. Een 
volledige studie van afhankelijkheden zal dan ook leiden tot een toename van 
het aantal betrokken variabelen. Om deze problemen aan te pakken, heb ik in 
dit onderzoek de mogelijkheden van copulas onderzocht. Ik heb gebruik 
gemaakt van twee datasets: dagelijkse gemiddelde luchttemperatuur 
verzameld door weerstations en her-analyse weergegevens in de Qazvin Plain, 
Iran, en de dagelijkse luchttemperatuur en neerslag afkomstig van 
weerstations en her-analyse weergegevens in Nederland.  

Als eerste studie heb ik copulas gebruikt voor de Iraanse gegevens om de 
afhankelijkheden te beschrijven tussen metingen en her-analyse 
weergegevens in afwezigheid van aanvullende gegevens. De voorwaardelijke 
verdeling van de luchttemperatuur, gegeven de her-analyse weergegevens, 
heb ik geschat met copulas. Dit proefschrift liet een systematische 
onzuiverheid zien in her-analyse luchttemperatuurgegevens in vergelijking 
met metingen van weerstations. Luchttemperatuur gecorrigeerd voor 
onzuiverheid is voorspeld met behulp van twee nieuwe voorspellers op basis 
van voorwaardelijke waarschijnlijkheden (CP): CP-I biedt een enkele 
voorwaardelijke kans als voorspeller, terwijl CP-II een pixelgewijze versie van 
CP-I is en ruimtelijk variërende voorspellers biedt. De CP's verminderden de 
onzuiverheid met 44 - 68% in vergelijking met gangbare voorspellers. Ik kon 
concluderen dat CP's bestaande methoden voor de correctie van onzuiverheid 
lokaal hebben verbeterd. 

Als tweede studie namen copulas de ruimtelijke afhankelijkheden tussen 
weervariabelen en associaties met landvariabelen mee. Aanvullende informatie 
is verkregen vanuit satellitebeelden. De klassieke, gebruikelijke methode voor 
correctie van onzuiverheden, namelijk een univariate Quantile Mapping (QM), 
produceerde continue kaarten. Om plaatselijk te corrigeren voor 
discontinuiteit, heb ik de voorwaardelijke verdeling van de luchttemperatuur, 
gegeven de her-analyse weergegevens en hoogte, geschat met copulas. Ik heb 
drie multivariate kwantiel karterings methoden gebaseerd op copula’s 



 

vi 

(MCQM's) voorgesteld om luchttemperatuur gecorrigeerd voor onzuiverheid te 
voorspellen. MCQM's verminderden de onzuiverheid met 16-63% in 
vergelijking met QM’s. De studie toonde aan dat MCQM's goed in staat waren 
om ruimtelijke en temporele variaties van de luchttemperatuur en de 
associaties ervan met de hoogte weer te geven. 

Als derde studie in dit proefschrift heb ik gebruik gemaakt van copulas om de 
ruimtelijke resolutie van luchttemperatuurgegevens te verbeteren. Twee 
nieuwe interpolatoren zijn onderzocht voor het inbedden van remote sensing-
producten, in het bijzonder landoppervlaktetemperatuur, de bladoppervlakte-
index en de hoogte van het aardoppervlak: een ruimtelijke copula-interpolator 
inclusief covariabelen en een gemengde copula-interpolator. De ruimtelijke 
copula-interpolator inclusief covariabelen verbeterde de ruimtelijke 
voorspellingen met 46-58% in vergelijking met de ruimtelijke copula-
interpolator, de gewone Kriging-voorspeller en de cokriging voorspeller. De op 
copula gebaseerde interpolatoren gaven de ruimtelijke variabiliteit van de 
luchttemperatuur en de associaties met landvariabelen goed weer bij een 
ruimtelijke resolutie van 1 km. De methoden zijn mogelijk nuttig voor andere 
schaarse, onregelmatig verspreide weergegevens. 

Als vierde studie hielpen copulas mij om de multivariate afhankelijkheden te 
beschrijven tussen de extreme weersomstandigheden enerzijds en opbrengst, 
productie en prijs van aardappelen in Nederland anderzijds. Ik stel hiervoor 
een procedure voor om de dominante en drijvende indicatoren van het klimaat 
met betrekking tot de ruimtelijke luchttemperatuur en neerslag te selecteren. 
De voorwaardelijke verdelingen van de niet-klimatologische variabelen 
gegeven de indicatoren heb ik geschat. De niet-klimatologische variabelen zijn 
voorspeld en gaven relatief gemiddelde absolute fouten gelijk aan 
respectievelijk 5,4%, 3,6% en 27,9%. De studie toonde aan dat de 
voorgestelde methode die gebaseerd is op copulas de impact van 
klimaatextremen, inclusief hun onzekerheden, optimaal kon kwantificeren. 

De belangrijkste conclusie van mijn onderzoek is dat op copula gebaseerde 
methoden goed de ruimtelijke variabiliteit en associaties tussen 
luchttemperatuur en neerslag met andere variabelen kunnen weergeven. Ze 
kunnen ook bestaande methoden lokaal verbeteren. Mijn bevindingen 
illustreren de praktische voordelen van copulas om multivariate 
afhankelijkheden te beschrijven, om verschillende voorspellers te definiëren en 
om onzekerheden te beoordelen.  
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Summary in Farsi  
نه عوامل طبيعی  اين. شودیم و آب نيزمسطح هوا،  عوامل طبيعی مرتبط به ای ازمجموعه شامل محيط زيست

به طور  نيزبه يکديگر  هاآنوابسѧѧѧتگی شѧѧѧوند، بلکه نوع زمانی در نظر گرفته می-به عنوان متغيرهای مکانیتنها 
-مطالعه يک فرآيند محيطی، هم تغييرات مکانی ه منظوردر نتيجه ب د.نکیم رييتغ پيوسѧѧѧته در طول مکان و زمان

ها بايد در نظر گرفته شѧѧود. از آنجا که معمولا يک عامل طبيعی فقط زمانی عوامل مختلف و هم وابسѧѧتگی بين آن
شناخت کامل وابستگیمشخصی مشاهده و اندازه گيری میهای ها و زماندر مکان های عوامل طبيعی به شود،  

مركز  ERA-Iهواشناسي هاياست. داده دماي هوا ،در اين تحقيق مطالعهمورد  گردد. عامل طبيعیيکديگر مشکل می
به طور كلي، شـــناخت مطالعات دماي هوا و يا  به منظورگســـترده  طوربه  1بيني هوا در مقياس متوســـطاروپايي پيش

های متعددی  محلی با چالش هایهوا در مقياس دمای هایتهيه نقشѧѧهاما شѧѧوند. به کار گرفته میفرآيندهاي طبيعي 

روبرو است، به عنوان مثال: تعداد ايستگاه های هواشناسی اغلب کم بوده و ايستگاه ها به صورت پراکنده توزيع 
شی، عدم قطعيتاندشده ستماتيک در داده های نا سي هاي جهاني مدلهای از قدرت تفکيک مکانی پايين و خطاهای 

وابستگی دمای از  یدقيق شرح مورد مطالعه قرار گيرند تا بتوان ، و پارامترهای بسياری بايدهواشناسي وجود دارد

ها چالشحل اين ه منظور ب 2همبستگیاين تحقيق مزايای استفاده از توابع  در .ارائه دادعوامل طبيعی ساير هوا با 
در دو منطقه مطالعاتی  هاي هواشناسيهاي جهاني هواشناسي و ايستگاهمدلاطلاعات  ،در اين راستا. گرددارائه می

ايران، و مقادير روزانه دماي هوا و بارندگي در در دشــت قزوين اند: متوسѧѧѧط روزانه دمای هوا در در نظر گرفته شѧѧѧده
   كشور هلند.

شناسي و دادههاي ايستگاه، توصيف وابستگي بين دادهاول از روش پيشنهاديدر مرحله  در ايران  ERA-Iهاي هاي هوا
بعدي -تابع توزيع شرطي دوبدين منظور، . است همدنظر قرار گرفتهاي كمكي و بدون داده همبستگیتوابع با استفاده از 

هاي هاي ايســتگاهبا داده ERA-Iهاي ، دادههمچنين. شــودميتخمين زده  همبسѧѧѧѧѧتگیدماي هوا با اســتفاده از توابع 
 3. دو روش جديد بر اساس احتمالات شرطیبررسی شدندها مقايسه و خطاهای سيستماتيک در اين دادههواشناسي 

: در روش اول ه است که عبارتند ازهای دمای هوا ارائه شدبرای کاهش خطاهای سيستماتيک و بهبود دقت نقشه
در روش دوم يک مقدار احتمال شѧѧرطی  و ،اسѧѧت حتمال شѧѧرطی برای تمام نقاط گريد اسѧѧتفاده شѧѧدهاز يک مقدار ا

 بعدي-تابع توزيع شرطي دو موجود که از هایشده است. در مقايسه با روش در نظر گرفتهبرای هر نقطه در گريد 

درصѧѧѧد شѧѧѧده اند. در نتيجه،  68الی  44 حدود در، اين دو روش پيشѧѧѧنهادی باعث کاهش خطاها نماينداسѧѧѧتفاده می
  شوند.   احتمالات شرطی منجر به بهبود روشهای معمول میشده در اين تحقيق، مبتنی بر ارائه های روش

و  همبستگیدر ايران به كمك توابع  ERA-Iهاي هاي هواشناسي و دادههاي ايستگاهوابستگي بين دادهدوم، در مرحله 
-به كمك تابع توزيع يك 4. تناظريابي احتمالاته اســتســنجش از دور توصــيف شــدهاي كمكي با در نظر گرفتن داده

ستماتيك  سي صحيح خطاهاي  شي معمول براي ت شهابعدي، رو شده باهاي ست. نق اين روش، تغييرات مكاني  توليد 
بعدي -رطي سهدهند. به منظور در نظر گرفتن تغييرات مكاني، تابع توزيع شاطلاعات دماي هوا را به درستي نشان نمي

هاي ارتفاع و داده ERA-Iهاي هاي هواشناسي، دادههاي ايستگاهو به كمك داده همبستگیدماي هوا با استفاده از توابع 

                                               

1 the European Centre for Medium-range Weather Forecasts 
2 copulas 
3 Conditional probabilities 
4 Quantile mapping 



 

viii 

ــتا، . شــودميســطح زمين تخمين زده  تابع توزيع بر مبناي تناظريابي احتمالات  به منظورســه روش جديد در اين راس
-روش تناظريابي يك در مقايسه با بعدي-هاي جديد چندروش بر اساس نتايج حاصله، .ه است ارائه شد 1بعدي-چند

های اند. همچنين اين تحقيق نشѧѧان داده اسѧѧت که نقشѧѧهدرصѧѧد شѧѧده 63الی  16حدود  در باعث کاهش خطاها بعدي، 

سطح زمين را به بعدي، هم تغييرات مكاني دماي هوا و هم وابستگي دما با -هاي جديد چندروشبدست آمده از  ارتفاع 
  دهند. خوبي نشان مي

شه همبسѧѧѧتگیسوم، از توابع در مرحله  شدبراي بهبود قدرت تفكيك مكاني نق ستفاده  ست هاي دماي هوا ا بدين . ه ا
سنجش از دور (دو روش درونيابي با در نظر گرفتن داده منظور، سطح از قبيل هاي كمكي  شاخص  سطح زمين،  دماي 

ـــطح زمين) ارائه  ـــود كه عبارتند ازميبرگ، و ارتفاع س ـــامل متغيرهاي كمكي، و روش درونيابي ش : روش درونيابي ش
سه با روش ساس توابع  موجودهاي مختلط. در مقاي (بدون متغيرهاي كمكي) و  همبسѧѧѧتگیهمچون درونيابي مكاني بر ا

در  هاي دماي هوا درونيابي شــامل متغيرهاي كمكي باعث بهبود نقشــهدي پيشــنهاروش ، ordinary Krigingروش 

قادر به نشѧѧѧان دادن تغييرات  شѧѧѧده در اين تحقيق،ارائه های همچنين روش. اسѧѧѧته درصѧѧѧد شѧѧѧد 58الی  46حدود 
ستند. مکانی  سطح زمين در قدرت تفكيك مكاني يك كيلومتر ه ستگي دماي هوا با ارتفاع  بنابراين اين دماي هوا و واب
  هاي پراكنده و نامنظم هواشناسي سودمند هستند. ها براي تهيه نقشه از دادهروش

ستگیچهارم، از توابع در مرحله  ستگي همب ميزان توليد و قيمت  ،هاي طبيعيبعدي بين بحران-هاي چنددر توصيف واب
شد ستفاده  شور هلند ا سيب زميني در ك ستمحصول  براي انتخاب پديده  ينوين در اين تحقيق، روش بدين منظور. ه ا

شرطي چند 2غالب شد. تابع توزيع  شنهاد  شور پي ستفاده از توابع -دما و بارش در كل ك و به كمك  همبسѧѧتگیبعدي با ا
مقادير توليد در سطح، توليد و قيمت محصول طبق نتايج حاصله، هاي غالب تخمين زده شد. پارامترهاي گياهي و پديده

سبيبا خطا ست آمد 27.9و  3.6، 5.4 به ترتيب هاي ن صد بد شنهادي بر اهدر شان داد كه با روش پي ند. اين مطالعه ن
  ها را بررسي كرد.  مي توان اثرات تغييرات آب و هوايي و عدم قطعيت همبستگیاساس توابع 

شدبه طور خاص  ،اين تحقيق در خوبي قادر به نشان  با دقت همبستگیتوابع  مبتني بر هايكه روش ه استنشان داده 
ـــند. همچنين، اين روش  ـــتگي بين عوامل محيطي مي باش ـــنهادي بدادن تغييرات مكاني و وابس اعث بهبود هاي پيش

ــوند. يافته هاي حاصــل از اين تحقيق بيانگر  عملكرد در توصــيف  همبسѧѧѧѧتگیتوابع  كاربردهايروشــهاي معمول مي ش
 ت ها است. بعدي، و مطالعه عدم قطعي-وابستگي هاي چند

                                               

1 multivariate copula quantile mapping  
2 weather extreme  
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Chapter 1: Introduction 
This chapter provides a brief overview of the research topic and the reasons 
for conducting the research: motivation, scientific problems, research 
objectives and questions, innovations and scope. 

  



Introduction 

2 

1.1 Motivation 
Competition for natural resources, i.e. land and water, is increasing due to 
population growth, industrial development, agricultural intensification and 
climate change. These forces are leading to water/food scarcity, air pollution, 
drought and, subsequently, environmental degradation.  

With respect to climate change, increasing variation in air temperature and 
precipitation affects agriculture (e.g. crop production), contributing to risks for 
food security. The crop responses to those changes are representative of many 
complex processes and interactions at local scales (Challinor et al. 2009a). 
When studying those processes, it is of interest to quantify the changes in air 
temperature and precipitation because those variables result into a variety of 
climate-related crop stresses. Indeed, they are key for assessing crop water 
requirements.  

There are two common sources of weather data: weather stations and weather 
forecasting systems. The sparseness of weather stations and doubtful 
maintenance of their instruments create uncertainty about their data and, 
consequently, about the results of hydrological/agricultural studies. The 
European Centre for Medium-range Weather Forecasts (ECMWF), on the other 
hand, provides ERA-Interim (ERA-I) reanalysis weather data that are being 
used increasingly (Persson 2013). ERA-I generate the weather data at spatial 
grids that are typically of an order of 10 kilometers (see Section 3.1). Typically, 
an ERA-I archive can provide historical, real-time and forecast weather data. 
Potentially, these data could play an important role in supporting information 
systems, e.g. climate information services and irrigation advisory services.  

With regard to hydrological/agricultural studies at regional and local scales, the 
report Sustainable Development Goals (SDGs) 2018 mentions that in many 
parts of the world, such as Asia and Africa, data at those scales are needed to 
produce information required for the management of natural resources. 
Nowadays, there is substantial potential for the use of remote sensing, in 
particular, satellite measurements due to improved spectral bandwidth and 
spatial and temporal resolutions (Mulla 2013). However, satellite data 
acquisition includes the quantization of continuous information, which is 
susceptible to uncertainty because of the influence of mixed pixels, cloud 
cover, and pre-processing steps for atmospheric, radiometric, and geometric 
correction. There are, nevertheless, growing appeals for the integration of 
multi-sensor, multi-resolution products and in-situ data. The research reported 
in this thesis was carried out in a data-scarce environment and benefits from 
the use of Earth observation data. 

Returning to the topics of climate change and weather data, a main aspect of 
recent studies has been to describe their variation in both space and time, i.e. 
spatio-temporal variability, and dependencies between several weather 
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parameters, i.e. covariability. For that purpose, geostatistical methods play an 
essential role when studying the dependencies, i.e. in modeling the underlying 
process. They also offer the advantage of being able to predict spatio-temporal 
information. In recent decades it has been suggested that copulas may be used 
to construct multivariate distributions (Sklar 1973). Nevertheless, the 
exploitation of copulas in geostatistics is still in its infancy (Bárdossy and Li, 
2008; Gräler and Pebesma 2011). In this light, exploration of the potential of 
geostatistical methods for improving the modeling is of interest. The methods 
I have chosen to investigate therefore dearly belong to the domain of 
geostatistics and offer a wide range of potential applications in agricultural, 
hydrological, and climate studies.  

Weather data are essential input for developing information systems, e.g., 
climate information services, and irrigation advisory services. Processing of 
weather data to generate information at regional and local scales is a challenge 
for the analyst. In this research, I developed new copula-based methods and 
compared them with several methods commonly applied for improving 
reanalysis weather data generated by ERA-I. For the comparison, techniques 
of multi-criteria evaluation and sensitivity analysis are applied. The motivation 
behind these comparative analyses is to explore the advantage/disadvantages 
of the copula-based methods. The strength and limitation of the methods are 
discussed through chapters 4-7 in the sections: 4.5 Discussion, 5.4 Results and 
discussion, 6.5 Discussion and conclusion, and 7.5 Discussion and conclusion. 
The findings are summarized in Section 8.1. 

1.2 Problem statement  
A challenging problem in many parts of the world is the use of weather data 
for providing information at local scales. The reason for this is that weather 
stations are often sparsely and irregularly distributed in many regions. 
Hydrological/agricultural studies may find it useful to use ERA-I reanalysis data 
to address the problem of the scarceness because ERA-I produce spatially well-
dispersed weather data. Over- or underestimation and the coarse spatial 
resolution of ERA-I may, however, prohibit the use of their data for studying 
interactions between weather and non-climatic variables at local scales 
(Challinor et al. 2009a). In such cases, application of geostatistical methods 
for prediction purposes may provide an alternative solution. As regards 
predicting spatial variation of weather values, a practical side effect of the 
standard geostatistical methods is that they produce smooth maps.  

There is a further problem that has received substantial attention in most 
climate change studies. Evaluation of the implications of climate change 
requires understanding the variation in several weather variables and non-
climatic variables, i.e. covariability. A well-known technique for considering 
several dependencies is to estimate multivariate joint distributions. The 
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estimation of a d-dimensional distribution, d > 2, however, is often not 
straightforward (Salvadori et al. 2007). Previous studies have introduced 
simplifications regarding the number of variables involved in the modeling of 
the dependencies (Miao et al. 2016).  

1.3 Research questions and objectives 
Weather and land variables and their interactions change continuously in space 
and time. Modeling spatio-temporal dependencies and associations between 
those variables involves a large number of variables. I investigated copula-
based methods for describing the dependencies with the aims of being able to: 

 Refine locally reanalysis weather data retrieved from ERA-I, to deal with 
data scarcity;  

 Explore the potential of copulas for including ancillary remote sensing data 
in the modeling of dependencies; 

 Produce weather maps in a data-scarce environment and to improve the 
spatial resolution of reanalysis weather data from ERA-I; and 

 Assess the impacts of climate change on crop-related variables. 

The key contributions of this research can be found in the answers it provides 
for the following research questions:  

 How can reanalysis weather data generated by ERA-I be improved locally 
in a data-scarce environment by taking into consideration spatial 
variability and the covariability of the data?  

 What are the advantages/disadvantages of applying bias correction 
methods as seen from the perspective of the users concerned with spatial 
and temporal characteristics of weather data?  

 Does the integration of remote sensing data and statistical methods help 
improve the prediction of weather data in the spatial domain?  

 How can ancillary data be embedded as additional variables in the 
modeling of spatial random fields using multivariate distributions?   

 Can copulas describe a complex process such as the interactions between 
crop-related variables and weather data? 

 What are the impacts of weather extremes on crop-related variables? 

In line with the aims of my research, this thesis focuses on bias correction, 
interpolation, and joint behavior analysis in four real scenarios. The aims of my 
research can therefore be restated in the form of the following objectives:  

Objective 1: To develop new methods to correct for bias in daily reanalysis 
weather data from ERA-I for an agricultural area. The methods should describe 
the dependencies between reanalysis weather data and weather station 
measurements by estimating their joint distribution.  
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Objective 2: To develop new methods to correct for bias in daily reanalysis 
weather data from ERA-I that take into consideration covariability.    

Objective 3: To predict weather data that take into consideration 
dependencies between weather and land variables retrieved from remote 
sensing products.  

Objective 4: To analyze the joint behavior of climate extreme indices and 
non-climatic variables and to determine the impacts of climate change.  

1.4 Innovations and scope  
This thesis focuses on a relatively new approach for describing the 
dependencies between weather and non-climatic variables that has emerged 
following the application of an advanced geostatistical technique, i.e. copulas. 
The novel aspects of this approach lie in the integration of data/information 
from several sources and definition of copula-based predictors to improve the 
predictions of weather and non-climatic variables. The following is a brief 
description of the study in context of the research objectives.      

In an agricultural area in Iran in which weather stations are sparse, additional 
spatially distributed weather data are required for an information service (e.g. 
irrigarion advisory service). The gridded ERA-I reanalysis weather data is 
available from the European Centre for Medium-range Weather Forecasts 
(ECMWF) (Persson 2013). Air temperature data retrieved from ECMWF show a 
systematic bias concerning measurements from the weather stations. So far, 
copula-based methods for bias correction have mainly been applied to 
precipitation time-series (Laux et al. 2011; Vogl et al. 2012; Mao et al. 2015). 
Little attention has, however, been given to correction bias in air temperature 
data, in particular, in data-scarce environments. Moreover, few studies have 
considered the spatial variability weather data corrected for bias. Copula-based 
methods have been investigated with the goal of improving spatial prediction 
using the dependencies between air temperature data applied by ECMWF and 
data from weather stations.  

To add more information for bias correction, I extended the one-dimensional 
quantile mapping to a multivariate copula quantile mapping (MCQM). To my 
knowledge no previous research has applied MCQM to a data-scarce 
environment. I, therefore, explored whether adding ancillary information can 
improve the spatial variability and covariability of air temperature.  

Essentially, the spatial prediction of weather data needs to consider both 
spatial variability and dependency with other variables, i.e. covariability. Few 
studies have shown how to embed ancillary data in the modeling of a spatial 
process. Moreover, common geostatistical methods produce smooth maps. 
Consequently I investigated the potential of two copula-based interpolators for 
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improving the spatial resolution of ECMWF air temperature data by using 
remote sensing products. 

In studies of local climate change, it is of interest to quantify changes that 
impact crops, particularly the impact of changes on crop yield (Pirttioja et al. 
2015; Challinor et al. 2013). The impact on crop production and price have 
rarely been studied. Copulas describe the joint behavior of climate extreme 
indices and non-climatic variables, e.g. yield, production, and prices of 
potatoes in the Netherlands. For the study I selected seven climate extreme 
indices related to variations in air temperature and precipitation data.  

1.5 Outline  
This thesis comprises eight chapters. The developed methods in chapters 4-7, 
each is based upon one of the above objectives. They are all based on ISI-
indexed journal articles that have been already published or are being revised 
for publication.  

Chapter 1: Introduction. The motivation, scientific problems, research 
questions and objectives are described. Here answers are provided for the 
questions of why (the motivation), what (research questions and objectives) 
and how (methods). 

Chapter 2: Copulas. This chapter describes the main copula theorems, explains 
how a joint cumulative distribution is estimated by fitting copulas to data, and 
indicates which predictors can be defined to predict random variables.  

Chapter 3: Case studies. The first three objectives of the research focus on 
data from Iran (my home country), while the fourth objective focuses on data 
from the Netherlands. The methods used are, however, generic and can be 
applied in different cases.  

Chapter 4: The use of bivariate copulas for bias correction of air temperature 
data sourced from ECMWF. The study presents two methods for predicting 
weather data that are based upon conditional probability (CP): CP-I offers a 
single conditional probability as the predictor, whereas CP-II provides spatially 
varying predictors. 

Chapter 5: Multivariate copula quantile mapping for bias correction of air 
temperature data generated by ERA-I. This chapter presents three multivariate 
copula quantile mappings (MCQMs): MCQM-I uses the dependence between air 
temperature and elevation, MCQM-II uses the dependence between air 
temperatures at a single location and its nearest neighbor; and MCQM-III 
combines the first two methods.  

Chapter 6: Copula-based methods for interpolation of air temperature data 
using collocated covariates. 1) A spatial copula interpolator including 
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covariates to consider two types of dependencies that are spatial dependences 
of air temperature at a single location and its nearest neighbors, and non-
spatial dependencies between air temperature and its collocated covariates at 
that location. 2) A mixed copula interpolator extends the first method by 
including the non-spatial dependencies of air temperature and its collocated 
covariates at the nearest neighbors. 

Chapter 7: Evaluating the effects of climate changes on crop production and 
price using multivariate distributions -a new copula application. Here a 
comprehensive copula-based analysis is presented for assessing the impact of 
climate change on the yield, production, and price of potatoes.  

Chapter 8: Synthesis. I summarize the results and synthesize the research 
findings, pointing out significances, obstacles, prospects and limitations. 
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Chapter 2: Copulas 
It illustrates the main copulas theorems, how a joint cumulative distribution is 
estimated by fitting copulas to data, and what predictors can be defined to 
predict random variables. 

 

 

 

 

 

 

 

 

 

 

 

 

Copula  /kɒpjʊlə/: the name comes from the Latin for "link" or "tie". 
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2.1 Main definitions  
I devoted this section to giving a brief overview of copulas and basic 
probabilistic properties of distributions. I recommend Section 3.2 in Nelsen 
2006, for a good “Geometric description” that defines copulas without a 
reference to distributions. In the following, the uppercase letters denote 
“variables,” and the lowercase letters denote their “values”. I, also, use a 
lowercase letter to indicate a density function whereas an uppercase letter for 
a cumulative function.  

Sklar’s theorem: 

If 𝐹 is a n-dimensional joint distribution function with 1-dimensional margins  
𝐹ଵ, … , 𝐹௡, then a function 𝐶 exists from the unit n-cube to the unit interval such 

that 𝐹ሺ𝑥ଵ, … , 𝑥௡ሻ ൌ 𝐶ሺ𝐹ଵሺ𝑥ଵሻ, … , 𝐹௡ሺ𝑥௡ሻሻ for all real n-tuples ሺ𝑥ଵ, … , 𝑥௡ሻ. 

The joint distribution function of two random variables 𝑋 and 𝑌 is 𝐹ሺ𝑋, 𝑌ሻ where 
the joint probability of 𝑃ሾ𝑋 ൑ 𝑥, 𝑌 ൑ 𝑦ሿ is equal to 𝐹ሺ𝑥, 𝑦ሻ. According to Sklar’s 
theorem, there is a unique function 𝐶ሺ. , . ሻ  that assigns each pair of 
൫𝑢 ൌ 𝐹௑ሺ𝑥ሻ, 𝑣 ൌ 𝐹௒ሺ𝑦ሻ൯  to 𝐹ሺ𝑥, 𝑦ሻ , where 𝐹௑  and 𝐹௒  are continuous marginal 
distributions, 𝑢  is the probability of 𝑃ሾ𝑋 ൑ 𝑥ሿ , and 𝑣 ൌ 𝑃ሾ𝑌 ൑ 𝑦ሿ  (Figure 2.1) 
(Sklar 1973). This function is called a copula and is a joint distribution function 
indicated as 𝐶ሺ𝑈, 𝑉ሻ, where 𝑈 and 𝑉 are uniformly distributed random variables 
(Nelsen 2006). The name “copula” comes from the Latin for “tie” or “link”: a 
copula joins (links) a joint distribution to its univariate marginals. 

 

Figure 2.1 Graph of a copula (Nelsen 2006). 

To understand the role of Sklar’s theorem in determining the desired 
distribution 𝐹ሺ𝑋, 𝑌ሻ , I summarize the fundamental equalities between 
operations on distribution functions for a bivariate case as: 

𝐹ሺ𝑥, 𝑦ሻ ൌ 𝐶ሺ𝑢, 𝑣ሻ, ሺ2.1ሻ 
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𝑓ሺ𝑥, 𝑦ሻ ൌ
𝜕ଶ𝐹ሺ𝑋, 𝑌ሻ

𝜕𝑋𝜕𝑌
ൌ

𝜕ଶ𝐶ሺ𝑈, 𝑉ሻ
𝜕𝑈

𝑓௑ሺ𝑥ሻ 
𝜕𝑉

𝑓௒ሺ𝑦ሻ

ൌ 𝑐ሺ𝑢, 𝑣ሻ ൈ 𝑓௑ሺ𝑥ሻ ൈ 𝑓௒ሺ𝑦ሻ, ሺ2.2ሻ 

𝑓௎ሺ𝑢ሻ ൌ 𝑓௏ሺ𝑣ሻ ൌ 1, 𝐹௎ሺ𝑢ሻ ൌ 𝑢,  𝐹௏ሺ𝑣ሻ ൌ 𝑣, ሺ2.3ሻ 

𝐹ሺ𝑥|𝑦ሻ ൌ
1

𝑓௒ሺ𝑦ሻ
ൈ

𝜕𝐹ሺ𝑋, 𝑌ሻ

𝜕𝑌
|௒ୀ௬ ൌ

𝜕𝐶ሺ𝑈, 𝑉ሻ

𝜕𝑉
|௏ୀ௩ ൌ 𝐶ሺ𝑢|𝑣ሻ, ሺ2.4ሻ 

𝑓ሺ𝑥|𝑦ሻ ൌ
𝑓ሺ𝑥, 𝑦ሻ

𝑓௒ሺ𝑦ሻ
ൌ  𝑐ሺ𝑢, 𝑣ሻ ൈ 𝑓௑ሺ𝑥ሻ ൌ 𝑐ሺ𝑢|𝑣ሻ ൈ 𝑓௑ሺ𝑥ሻ, ሺ2.5ሻ 

where 𝐹ሺ. , . ሻ and 𝐶ሺ. , . ሻ are cumulative distribution functions (CDF), 𝑓ሺ. , . ሻ and 
𝑐ሺ. , . ሻ are probability density functions (PDF), 𝐹ሺ. |. ሻ and 𝐶ሺ. |. ሻ are conditional 
CDF, 𝑓ሺ. |. ሻ and 𝑐ሺ. |. ሻ are conditional PDF,  𝑈  and 𝑉  are uniformly distributed 
random variables (Kuipers and Niederreiter, 2012).  

Equation ሺ2.5ሻ shows that the joint density probability 𝑐ሺ𝑢, 𝑣ሻ is equal to the 
conditional density probability 𝑐ሺ𝑢|𝑣ሻ . This equality holds only in a two-
dimensional case, because 𝑐ሺ𝑢|𝑣ሻ ൌ

௖ሺ௨,௩ሻ

௙ೇሺ௩ሻ
 and 𝑓௏ሺ𝑣ሻ ൌ 1. In some literature, the 

conditional PDF and CDF of copulas are indicated as 𝑐௩ሺ𝑢ሻ  and 𝐶௩ሺ𝑢ሻ , 
respectively (Nelsen 2006, p. 41). 

The equations can be extended to 𝑛 dimensions as: 

𝐹ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ ൌ 𝐶ሺ𝑢ଵ, 𝑢ଶ, … , 𝑢௡ሻ. ሺ2.6ሻ 

𝑓ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ ൌ
𝜕௡𝐹ሺ𝑋ଵ, 𝑋ଶ, … , 𝑋௡ሻ

𝜕𝑋ଵ𝜕𝑋ଶ … 𝜕𝑋௡
ൌ 𝑐ሺ𝑢ଵ, 𝑢ଶ, … , 𝑢௡ሻ ൈ ෑ 𝑓௑೔

ሺ𝑥௜ሻ
௡

௜ୀଵ

. ሺ2.7ሻ 

𝐹ሺ𝑥଴|𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ ൌ 𝐶ሺ𝑢଴|𝑢ଵ, 𝑢ଶ, … , 𝑢௡ሻ. ሺ2.8ሻ 

𝑓ሺ𝑥଴|𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ ൌ 𝑓௑బ
ሺ𝑥଴ሻ ൈ 𝑐ሺ𝑢଴|𝑢ଵ, 𝑢ଶ, … , 𝑢௡ሻ ൌ 𝑓௑బ

ሺ𝑥଴ሻ ൈ
𝑐ሺ𝑢଴, 𝑢ଵ, 𝑢ଶ, … , 𝑢௡ሻ

𝑐ሺ𝑢ଵ, 𝑢ଶ, … , 𝑢௡ሻ
. ሺ2.9ሻ 

The conditional density 𝑐ሺ𝑢ଵ, 𝑢ଶ, … , 𝑢௡ሻ in the denominator of equation ሺ2.9ሻ is 
obtained as 𝑐ሺ𝑢ଵ, 𝑢ଶ, … , 𝑢௡ሻ ൌ ׬ 𝑐ሺ𝑢଴, 𝑢ଵ, 𝑢ଶ, … , 𝑢௡ሻ𝑑𝑢଴

ଵ
଴ . This equality holds for any 

joint and marginal densities in probability theory, e.g., 𝑓ሺ𝑥ሻ ൌ ׬ 𝑓ሺ𝑥, 𝑦ሻ𝑑𝑦௬ .  

I provide five aspects to point out the usefulness of copulas in real-world 
applications: 

 The definition of copulas is without indication about the underlying 
process. Any joint distribution can thus be written in terms of a copula, 
i.e., 𝐹ሺ𝑥, 𝑦ሻ ൌ 𝐶ሺ𝑢, 𝑣ሻ. This illustrates the growing interest in copulas and 
their applications in diverse studies such as finance, image analysis, 
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geostatistics, and in particular in the environmental sciences; hydrology, 
disasters, agriculture, weather and climate. 

 The definition can be extended to higher dimensions including several 
random variables/fields: spatial dependences, temporal dependences, 
spatio-temporal dependences, and dependences between several 
variables at one point in time and space. This allows one to analyze the 
resultant effects of several variables in modeling the underlying process. 

 The family distribution of 𝐶 can be different from the family of 𝐹ሺ𝑋, 𝑌ሻ, 𝐹௑ 
and 𝐹௒. Therefore, copulas describe the dependences between variables in 
a different configuration from marginal distributions. For example, both 𝑋 
and 𝑌 can follow Gaussian distributions, but 𝐶 can be a non-Gaussian joint 
distribution.  

 Some traditional statistical methods assume identically distributed (ID) 
variables to simplify the underlying mathematics related to multivariate 
joint distributions. The assumption, however, may or may not be valid in 
practical studies. Copulas enable to construct multivariate distributions 
without the assumption of ID. 

 The density function 𝑐ሺ. , . ሻ  in equation ሺ2.2ሻ  can be interpreted as a 
measure for the strength of the dependence between the involved 
variables. The function 𝑐 can exhibit several types of non-linear negative 
or positive dependences. Hence, for mutually independent 
variables, 𝑐ሺ𝑢, 𝑣ሻ ൌ 1 and 𝑓ሺ𝑥, 𝑦ሻ ൌ 𝑓௑ሺ𝑥ሻ ൈ 𝑓௒ሺ𝑦ሻ.  

2.2 Estimation  
For the estimation of a two-dimensional distribution using copulas, two random 
variables 𝑋 and 𝑌 are considered with a joint distribution 𝐹ሺ𝑋, 𝑌ሻ that is equal 
to a copula 𝐶ሺ𝑈, 𝑉ሻ according to Sklar’s theorem. There are several copula 
families in the literature to determine 𝐶ሺ. ሻ (Joe 1993; Nelsen 2003; Demarta 
and McNeil 2005; Manner 2007). I choose the Gaussian, Student’s t, Clayton, 
Gumbel and Frank families because other families lead to computational 
limitations (Gräler 2014). The Gaussian and Student’s t belong to the elliptical 
copulas, whereas the remainder families are Archimedean copulas (Nelsen 
2006). These families describe several types of the tail dependences and have 
one parameter that is related to Kendall’s  correlation between variables 
(Table 2.1).  

The parameter for each family are estimated using maximum likelihood 
estimation and a starting value obtained by Kendall’s  (Nelsen 2006; 
Brechmann and Schepsmeier 2013). Then the best family for 𝐶 is the one that 
minimizes the Akaike’s Information Criteria (AIC) (Akaike, 1974). The 𝑝 value 
of the null hypothesis of a bivariate independence is obtained based upon the 
statistical test developed by Genest et al. (2007). The 𝑝 values of the null 
hypothesis that the dependence structure is well represented by the best fitting 
family are obtained using 100 bootstrap runs based upon the Cramér–von 
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Mises statistic  𝑆௡
ሺ஻ሻ  for the Gaussian, Clayton, Gumbel and Frank families 

(Genest et al., 2009), and based upon the White statistic for the Student’s t 
family (Huang and Prokhorov, 2014). This number of bootstrap runs is 
relatively small, but a larger number would substantially increase the 
computational cost (Kojadinovic et al., 2011). Further note that the selection 
of families depends upon both the number of observations and the probabilistic 
nature of the dependence between variables. 

I can now illustrate the estimation of a high-dimensional distribution. The five 
bivariate families are extendable to higher dimensional ones (Nelsen 2006). 
Hence, the interdependencies between these variables are restricted to one 
specific family of copulas. In addition, the estimation of a multivariate copula 
is generally a troublesome procedure (Nelsen 2006; Aas et al., 2009). In 
geostatistics where we have a target variable to predict, an alternative to 
estimate a multivariate copula, and consequently a multivariate distribution is 
the use of a canonical vine or C-vine structure (Aas et al., 2009). The flexibility 
of choosing several families in the vine structure to describe the multivariate 
interdependencies is one of the practical advantages of copulas. Further note 
that after constructing the copula, other distribution functions are retrieved 
from the fundamental equalities (see Section 2.1). 

Table 2.1 Five families of copulas used in this study. The best fitting family is selected 
according to the lowest value of Akaike Information Criteria (AIC).  

Index Name Cθ(u,v) Property index 

1 Gaussian ∅ோ൫∅ିଵሺ𝑢ሻ, ∅ିଵሺ𝑣ሻ൯; 𝑅 ൌ ቂ1 𝜃
𝜃 1

ቃ 1, 2, 6 

2 Student’s t 𝑡ோ,ణ൫𝑡ణ
ିଵሺ𝑢ሻ, 𝑡ణ

ିଵሺ𝑣ሻ൯; 𝑅 ൌ ቂ1 𝜃
𝜃 1

ቃ ;  
𝜗 ൌ 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 

1, 2, 6 

3 Clayton ൣ𝑚𝑎𝑥൛൫𝑢ఏ ൅ 𝑣ఏ െ 1൯, 0ൟ൧
ିଵ
ఏ  1, 2,4,5,6 

4 Gumbel expሺെሾሺെ𝑙𝑛𝑢ሻఏ ൅ ሺെ𝑙𝑛𝑣ሻఏሿ
ଵ
ఏሻ 1,2,3,6 

5 Frank െ1
𝜃

lnሺ1 ൅
ሺ𝑒ିఏ௨ െ 1ሻሺ𝑒ିఏ௩ െ 1ሻ

𝑒ିఏ െ 1
ሻ 1,2,6 

1 

Pr
op

er
ty

 

Permutation symmetry 
2 Symmetry about medians 
3 Extreme value copula 
4 Lower tail dependence 
5 Upper tail dependence 
6 Extendibility to multivariate copula 
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Toy example, bivariate copulas: 

The densities of Gaussian, Student’s t, Clayton, Gumbel and Frank families are 
obtained for several dependence structures between two variables while the 
Kendall’s  is equal to 0.4 in all dependences (Figure 2.2). Kendall’s  is a non-
linear measure of association between variables that can change over the 
range of [-1, 1] (Figure 2.3). The Clayton and Gumbel families, however, 
present only positive correlations (Figure 2.2).  

 
Figure 2.2 Five families of copulas. The densities of Gaussian, Student’s t, Clayton, 
Gumbel and Frank families are presented for several dependence structures between 
two variables while the Kendall’s  is equal to 0.4 in all dependences. The horizontal axes 
are 𝒖 and 𝒗 and the third axes denote the density values. Different colors indicate 
different densities and are used for visualization purposes.  
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Figure 2.3 The densities of Frank copula for several values of the Kendall’s . Different 
colors indicate different densities and are used for visualization purposes. 

Toy example, trivariate copulas: 

As an example, let’s consider three random variables 𝑋, 𝑌 and 𝑍 with a copula 
𝐶ሺ𝑈, 𝑉, 𝑊ሻ, where 𝑋 is the target variable. The central of the C-vine is, thus 𝑋 
(Figure 2.4) and the configuration of the structure is based upon bivariate 
copulas, Sklar’s theorem and the general decomposition rule of 𝑓ሺ𝑥,  𝑦,  𝑧ሻ ൌ
𝑓௓ሺ𝑧ሻ ൈ 𝑓ሺ𝑦|𝑧ሻ ൈ 𝑓ሺ𝑥|𝑦, 𝑧ሻ.  
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Figure 2.4 C-vine structure for three variables. A three-dimensional C-vine structure 
has two trees and three bivariate copulas which can belong to three different families.    

In this example, the copula density 𝑐ሺ𝑈, 𝑉, 𝑊ሻ is first decomposed into bivariate 
copulas as: 𝑐ሺ𝑈, 𝑊ሻ,  𝑐ሺ𝑈, 𝑉ሻ  and 𝑐൫𝐶ሺ𝑊|𝑈ሻ, 𝐶ሺ𝑉|𝑈ሻ൯  (Figure 2.4). Then, each 
bivariate copula is estimated in a similar way to the two-dimensional case. 
Finally, the copula density is the product of all bivariate copula densities in the 
structure: 𝑐ሺ𝑢, 𝑣, 𝑤ሻ ൌ 𝑐ሺ𝑢, 𝑤ሻ ൈ 𝑐ሺ𝑢, 𝑣ሻ ൈ 𝑐൫𝐶ሺ𝑊|𝑢ሻ, 𝐶ሺ𝑉|𝑢ሻ൯ . It follows that the 
dependence structure between those 𝑛 ൌ 3  variables is described by a 
combination of 𝑛 different families and in total ௡ൈሺ௡ିଵሻ

ଶ
 parameters.  

2.3 Prediction  
Assume that the conditional distribution 𝐹ሺ𝑋|. ሻ is estimated and the random 
variable 𝑋 is to be predicted. Any pth percentile in the distribution can be used 
to predict 𝑋, i.e., to obtain a single value 𝑥ො: 

𝑥ො௣ ൌ 𝐹ିଵሺ𝑝|. ሻ, 𝑝 ∈ ሾ0,1ሿ, ሺ2.10ሻ 

𝑥ො௠௘௔௡ ൌ 𝐸ሾ𝑋|. ሿ ൌ න 𝑥 ∙ 𝑓ሺ𝑥|. ሻ𝑑𝑥
௫

, ሺ2.11ሻ 

𝑥ො௠௘ௗ௜௔௡ ൌ 𝐹ିଵሺ0.5|. ሻ, ሺ2.12ሻ 

where ෡  denotes 𝑥ො  as a predicted value, 𝐸ሾ. ሿ  denotes the mathematical 
expectation. The choice of the pth percentile in ሺ2.10ሻ  depends upon the 
problem at hand. For instance, it can be obtained by a quantile mapping 
procedure (see Chapter 5). The conditional expectation ሺ2.11ሻ  and the 
conditional median ሺ2.12ሻ are the optimal predictors, minimizing mean squared 
prediction error and mean absolute prediction error, respectively (Journel 
1984; Cressie 1993). There are two common procedures using copulas to 
obtain 𝑥ො௠௘௔௡  and 𝑥ො௠௘ௗ௜௔௡ : the analytical evaluation (Bárdossy and Li 2008, 
Gräler 2014), and simulations (Salvadori et al. 2007).  

For an analytical evaluation, the equations ሺ2.11ሻ and ሺ2.12ሻ are rewritten as: 
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𝑥ො௠௘௔௡ ൌ ׬  𝐹௑

ିଵሺ𝑢ሻ ൈ 𝑐ሺ𝑢|. ሻ𝑑𝑢
ଵ

଴ , ሺ2.13ሻ 

𝑥ො௠௘ௗ௜௔௡ ൌ 𝐹௑
ିଵ൫𝐶ିଵሺ0.5|. ሻ൯, ሺ2.14ሻ 

where 𝑢 ൌ 𝐹௑ሺ𝑥ሻ , 𝑐ሺ. |. ሻ  is the conditional PDF and 𝐶ିଵሺ. |. ሻ  is the inverse 
transformation of the conditional CDF. The new form of the conditional 
expectation in ሺ2.13ሻ is explained based upon the equalities in Section 2.1 as:  

    𝑥ො௠௘௔௡ ൌ න 𝑥 ∙ 𝑓ሺ𝑥|. ሻ𝑑𝑥
௫

 ൌ න  𝐹௑
ିଵሺ𝑢ሻ ൈ 𝑐ሺ𝑢|. ሻ ൈ 𝑓௑ሺ𝑥ሻ𝑑𝑥

ଵ

଴
 

ൌ න  𝐹௑
ିଵሺ𝑢ሻ ൈ 𝑐ሺ𝑢|. ሻ ൈ

𝑑𝐹௑ሺ𝑥ሻ

𝑑𝑥
𝑑𝑥

ଵ

଴
ൌ න  𝐹௑

ିଵሺ𝑢ሻ ൈ 𝑐ሺ𝑢|. ሻ𝑑𝑢
ଵ

଴
. ሺ2.14ሻ 

What follows is a property of the conditional expectation using a bivariate 
function 𝑓ሺ𝑥|yሻ. Let (𝑥ଵ, 𝑦ଵ), (𝑥ଶ, 𝑦ଶ), …, (𝑥௡, 𝑦௡) be a set of paired observations 
for variables 𝑋 and 𝑌. If 𝑥ଵ ൐  𝑥ଶ and 𝑦ଵ ൐  𝑦ଶ or if 𝑥ଵ ൏  𝑥ଶ and 𝑦ଵ ൏  𝑦ଶ, the pairs 
are called concordant, whereas if 𝑥ଵ ൐  𝑥ଶ and 𝑦ଵ ൏  𝑦ଶ or if 𝑥ଵ ൏  𝑥ଶ and 𝑦ଵ ൐  𝑦ଶ 
they are discordant. When the number of concordant pairs 𝑛௖ is more than the 
number of discordant pairs 𝑛ௗ, the dependence between 𝑋 and 𝑌 is positive, 
whereas when 𝑛௖ ൏ 𝑛ௗ, the dependence is negative (Nelsen 2006). Hence, if a 
bivariate copula represents a positive correlation, the conditional expectation 
is an increasing function of the conditioning variable, i.e., if 𝑦ଵ ൐  𝑦ଶ , then 
𝐸ሾ𝑋| 𝑦ଵሿ ൐ 𝐸ሾ𝑋| 𝑦ଶሿ  (Dodds et al., 1990). If a bivariate copula represents a 
negative correlation, the conditional expectation is a decreasing function, 
therefore, if 𝑦ଵ ൏  𝑦ଶ then 𝐸ሾ𝑋| 𝑦ଵሿ ൏ 𝐸ሾ𝑋| 𝑦ଶሿ.  

Regarding the simulation method, the equation ሺ2.10ሻ  is rewritten using 
copulas as: 

𝑥ො௣ ൌ 𝐹௑
ିଵ൫𝐶ିଵሺ𝑝|. ሻ൯. ሺ2.15ሻ 

Several 𝑥ො௣ are obtained by generating random probabilities 𝑝 on [0, 1]. The 
mean of the obtained values provides 𝑥ො௠௘௔௡, whereas choosing the median of 
the obtained values is 𝑥ො௠௘ௗ௜௔௡. For a large simulations, the results are equal to 
the results of the analytical evaluation (Mao et al. 2015).  

Equation ሺ2.10ሻ is also useful to assess a 𝛾% prediction interval width (PIW). 
For instance, a 95% PIW is obtained as 𝐹ିଵ൫𝐶ିଵሺ0.975|. ሻ൯ െ 𝐹ିଵ൫𝐶ିଵሺ0.025|. ሻ൯. 
The possibility of selecting several predictors is another practical advantage of 
copulas. Note that the three predictors have two main parts: a marginal 
distribution 𝐹௑ሺ. ሻ and a multivariate copula 𝑐ሺ. |. ሻ. Hence, the overall prediction 
quality depends upon a good estimation of both functions.  
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2.4 Implementation 
I provide some sample scripts for implementing the estimations and 
predictions in R using the packages copula (Kojadinovic and Yan, 2010), 
spcopula (Gräler and Pebesma, 2011), and VineCopula (Brechmann and 
Schepsmeier, 2013). 

To estimate the five families based upon maximum likelihood and to select the 
best fitting family 𝐶ሺ𝑈, 𝑉ሻ using AIC:  

BestFittingFamily <- BiCopSelect(U, V, familyset = c(1:5), selectioncrit = 
"AIC", indeptest = T, rotations = F). 

To construct a C-vine structure for 𝐶ሺ𝑈, 𝑉, 𝑊ሻ  and estimate the bivariate 
families:  

vineFit <- fitCopula(vineCopula(as.integer(3)), [U,V,W]).  

vineStructure <- vineCopula (RVineCopSelect([U,V,W], familyset = c(1:5), 
vineFit@copula@RVM$Matrix, rotations =T)). 

To implement the three predictors, first 𝐹௑
ିଵሺ. ሻ is defined by the user, e.g., 

InverseOfCDF. Second, the best fitting family 𝐶ሺ𝑈, 𝑉ሻ is selected: 

BestFittingFamily <- BiCopSelect(U, V, familyset = c(1:5), selectioncrit = 
"AIC", indeptest = T, rotations = F).  

BestFittingFamily <- copulaFromFamilyIndex(BestFittingFamily$family, 
BestFittingFamily$par, BestFittingFamily$par2).  

Finally, the variable 𝑋 is obtained using one of the predictors:  

x_p       <- InverseOfCDF(invdduCopula(v, BestFittingFamily, p).  

x_mean <- integrate(function(u)(InverseOfCDF(u)*dCopula(cbind(v,u), 
BestFittingFamily)), 0.0, 1.0, subdivisions=1000L, stop.on.error=F).  

x_median  <- InverseOfCDF(invdduCopula(v, BestFittingFamily, 0.5). 
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Chapter 3: Study area and data sets 
The data used in this study consists of weather data (e.g. air temperature and 
precipitation), data sourced from remote sensing products and statistical 
databases. Bias correction and interpolation methods were applied to the data 
concerning Iran, whereas copula-based joint behaviors were applied to the 
data concerning the Netherlands.   
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3.1 Qazvin irrigation network  

With rainfall limited in many places, Iran is a water-scarce country. This 
certainly applies to the Qazvin area, one of Iran’s oldest and most advanced 
agricultural areas. Lying at an altitude of about 1,800 m above sea level, it has 
an arid climate, with an average annual precipitation of about 327 mm and an 
average daily temperature of 14°C. The Qazvin irrigation network, located on 
the Qazvin Plain (Figure 3.1), serves a predominantly mixed farming system: 
50% of the network area is cultivated with winter crops, while some 20-25% 
of the area produces summer crops (Sharifi 2013). In addition to the major 
grain crops of wheat, barley, maize and sorghum, alfalfa, fruit, and vegetables 
are also grown. Urban settlements and areas of natural vegetation cover are 
also to be found.  

 
Figure 3.1 The irrigation network in Qazvin Plain, Iran. The area contains 24 weather 
stations and a sample subset of 10 × 15 grid cells of the ECMWF dataset. The background 
image has been produced from Landsat 8 RGB data. 

The network is participating in a pilot study for the project “Increasing water 
productivity through demand management and improved operation“ (Sharifi, 
2013). The objective of this project was to raise water productivity by 
developing an information system to address problems in water management. 
The system provides information on crop-water demands based on crop-
growth simulation models, weather data and field measurements. The study 
area extends between 35.44º and 36.68º latitude (N) and 49.09º and 50.92º 
longitude (E) so as to include as many weather stations as possible (24 
stations, see Table 3.1).  
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Table 3.1 Air temperature is measured at 24 weather stations in the study area.  

Station 
ID Station name 

Stations coordinates Elevation 
(m) Type 

Air 
temperature 

measurements Latitude Longitude 

1 Abeyk 36.05 50.52 1278 Climatology 
type1 6-hourly 

2 Magsal 36.13 50.12 1205 Climatology 
type1 6-hourly 

3 Nirougah 36.18 50.25 1299 Climatology 
type1 6-hourly 

4 Qazvin 36.25 50.05 1280 Synoptic 3-hourly 

5 Takestan 36.05 49.65 1326 Synoptic 3-hourly 

6 Avaj 35.63 49.22 1888 Climatology 
type1 6-hourly 

7 Baghkelaye 36.39 50.50 1256 Climatology 
type2 min. & max. 

8 Baghkosar 36.07 50.58 1541 Climatology 
type2 min. & max. 

9 Bouinzahra 35.77 50.07 1213 Synoptic 3-hourly 

10 Bourmanak 36.59 49.38 578 Climatology 
type2 

min. & max. 

11 Camp 36.28 49.99 1311 Climatology 
type2 

min. & max. 

12 Danesfahan 35.82 49.75 1303 Climatology 
type2 

min. & max. 

13 Dolatabad 36.17 49.82 1249 Climatology 
type2 

min. & max. 

14 Estalaj 35.56 49.29 2340 Climatology 
type2 

min. & max. 

15 Hajiarab 35.59 49.84 1707 Climatology 
type2 

min. & max. 

16 Hashtgerd 36.01 50.75 1601 Synoptic 3-hourly 

17 Jahanabad 35.90 49.60 1372 Climatology 
type2 min. & max. 

18 Karaj 35.92 50.90 1657 Synoptic 3-hourly 

19 Kouhin 36.37 49.67 1498 Climatology 
type2 min. & max. 

20 Moalem 36.45 50.48 1569 Synoptic 3-hourly 

21 Niarak 36.52 49.41 1184 Climatology 
type2 

min. & max. 

22 Qouzlo 35.63 49.11 2061 Climatology 
type2 

min. & max. 

23 Razmiankia 36.55 50.21 1010 Climatology 
type2 

min. & max. 

24 Taleghan 36.17 50.77 1827 Synoptic 3-hourly 

 
Depending upon the instrument used to measure air temperature and the 
temporal frequency of measurement, weather stations were categorized as one 
of three types: synoptic and climatology type1 stations measure air 
temperature by thermometer; climatology type2 stations use a thermograph. 
The synoptic stations are supposed to be able to provide more precise 
measurements. The number of measured values can vary among weather 
stations, caused by differences in the number of missing values at each station. 
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Figure 3.2 The data frame. Daily air temperatures in June are available for 24 weather 
stations and 150 grid cells of ECMWF over a period of 11 years.  

The reanalysis air temperatures were retrieved for the 150 grid cells from the 
ERA-Interim data assimilation system provided by the European Centre for 
Medium-Range Weather Forecasts (ECMWF) (Persson, 2013). The ECMWF 
forecasting system consists of several components like general circulation 
models, an ocean wave model, a land surface model, a data assimilation and 
forecast ensembles (Persson 2013). Reanalysis data are a multivariate, 
spatially complete record of the global atmospheric circulation (Dee et al. 
2011). ERA-Interim is the most widely used source of global atmospheric 
reanalysis (Dee et al. 2011). The data are available at 3-hourly intervals and 
can be retrieved for a 0.125º Lat/Long grid, corresponding to a spatial 
resolution of 13.5 km in the meridional direction (Persson 2013). Each station 
is assigned to its nearest grid cell for comparison of reanalysis values with 
measured values.  

Daily mean air temperature was calculated by averaging the minimum and 
maximum temperatures at each station in June from 2004 to 2014. The 
measurements at the stations are assigned to the reanalysis values at the 
nearest grid cells. There are 150 grid cells × 11 years = 1650 reanalysis air 
temperatures and 24 stations × 11 years = 264 measurements at each day of 
June (Figure 3.2). Temperatures in June are used because of the importance 
of this month in the cropping calendar of the irrigation network: it is the end 
of the season for winter crops and the beginning for summer crops, especially 
maize.  

My study describes the dependencies between air temperature and non-
climatic variables, i.e. its covariates. For instance, in my research I 
investigated whether considering leaf area index (LAI), land surface 
temperature (LST) and surface elevation improves the results of the copula-
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based methods. The covariates were obtained with remote sensing retrieval 
techniques. Landsat 8 provides several images in panchromatic, optical and 
thermal bands at a spatial resolution of 30m and temporal resolution of 16 
days (Zanter, 2016). Two days in June 2014 were selected as these were 
Landsat 8 overpass days (Figure 3.3). In the case of LST, I followed the method 
introduced by Jiménez-Muñoz et al. (2014) and for LAI that of Allen et al. 
(1998). 

The NASA Land Processes Distributed Active Archive Centre (LPDAAC) provides 
Moderate Resolution Imaging Spectroradiometer (MODIS) products. The 
MOD03 product provides per-pixel digital-elevation model values in a sequence 
of swath-based products at 5-minute increments. This gives elevations at a 
spatial resolution of 1km. Also, surface elevation was obtained from the SRTM 
dataset at a spatial resolution of 90m (Jarvis et al., 2008). The study area is a 
relatively homogenous in terms land cover and topography, the main exception 
being mountainous terrain in the northeastern part of the study area (Figure 
3.3).  

 
Figure 3.3 Three covariates for air temperature. a) LAI on 6 June 2014, b) LAI on 22 
June 2014, c) LST in ºK on 6 June 2014, d) LST in ºK on 22 June 2014, e) MODIS surface 
elevation in meters, f) SRTM surface elevation in meters. LAI and LST are obtained from 
Landsat 8 bands at a spatial resolution of 30m. Surface elevations are obtained from the 
MODIS and SRTM datasets at spatial resolutions of 1km and 90m, respectively. Low 
values of LST on 22 June indicate a greater degree of cloud covers.  
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3.2 The Netherlands 
Potato is a valuable crop in the Netherlands. Its growing season typically starts 
in April and ends in September (Figure 3.4) (Beukema and van der Zaag 1990). 
Potato farms occupy about one-quarter of the country's arable land area and 
account for approximately half the total production from arable cropping 
(Figure 3.5) (Beukema and van der Zaag 1990). Figure 3.6 shows the largest 
change in the consumer price of goods and services in the Netherlands from 
2001 to 2018 (CBS 2018). The consumer price of potatoes shows the largest 
changes in nine years between 2001 and 2018 (CBS 2018).  

 
Figure 3.4 The potato growing season in the Netherlands (Beukema and van der Zaag 
1990).  
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Figure 3.5 Potatoes cultivated/harvested areas in the Netherlands in 2017.  

 
Figure 3.6 The largest change in the consumer price in the Netherlands from 2001 to 
2018. 

Annual absolute selling prices (€ per 100 kg of potatoes, including seed 
potatoes), annual harvested production (in 1000 tonnes), yield (in tonnes ha-

1), the harvested and cultivated area per 1000 ha as shown in Figure 3.7, were 
retrieved from the archive of the Central Bureau for Statistics (CBS) in the 
Netherlands and the statistics database of the European Union (Eurostat 2018) 
for the period 1980-2017. 

Absolute selling prices are prices at which the producer sells to the wholesale 
trade and are based upon the prices of main agricultural outputs and 
inputs. These prices indicate direct flows of money into farmers' income and, 
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therefore, were used for analyses of agricultural income (Eurostat 2018). 
Harvested production is the weight of potatoes that have been harvested and 
transported away from the field. Yield is the weight of potatoes produced per 
unit area under cultivation (Eurostat 2018).  

Hourly air temperature and precipitation data from 50 automated weather 
stations in the Netherlands for the period 1980-2017 is available from the data 
centre (KDC) of the Royal Netherlands Meteorological Institute (KNMI 2018). 
In the potato growing season the number of measurements may differ between 
weather station (Figure 3.8). For my study I chose 33 stations for which both 
rainfall and temperature measurements were available (Figure 3.8).  

Gridded reanalysis weather data at a 0.125º Lat/Long resolution is available 
from the ERA-interim Archive maintained by the European Centre for Medium-
range Weather Forecasts (ECMWF) (Persson 2013). The ERA-Interim archive 
is the most widely used source of global atmospheric reanalysis data (Dee et 
al. 2011). For my study I selected 33 grid points from the ECMWF data nearest 
to the chosen KNMI stations. Daily minimum and maximum air temperatures 
were identified from the minimum and maximum values of the hourly data, 
and daily precipitation was calculated as the sum of the hourly precipitation 
data.  
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Figure 3.7 Temporal trends in the non-climatic variable: a) yield and production, b) 
price and production, c) cultivated and harvested areas of potatoes. 
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Figure 3.8 Number of daily measurements during the potato growing season at 50 
automated KNMI weather stations. Colored dots indicate the range of number of 
measurements; the number alongside each dot is the station ID. 

 



 

29 

Chapter 4: The use of bivariate copulas for bias 
correction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is submitted as: Alidoost F., Stein A., Su Z. The use of bivariate copulas for 
bias correction of reanalysis air temperature data. PLOS ONE.  
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Abstract 
Air temperature data retrieved from global atmospheric models may show a 
systematic bias with respect to measurements from weather stations. This is a 
common concern in local climate studies. The current study presents two 
methods based upon copulas and Conditional Probability (CP) to predict bias-
corrected mean air temperature in a data-scarce environment: CP-I offers a 
single conditional probability as a predictor, CP-II is a pixel-wise version of CP-
I and offers spatially varying predictors. The methods were applied on daily air 
temperature in the Qazvin Plain, Iran that were collected at 24 weather stations 
and 150 ECMWF ERA-interim grid cells from a single month (June) over 11 
years. We compared the methods with the commonly applied conditional 
expectation and conditional median methods. Leave-k-out cross-validation and 
correlation scores show that the new methods reduced the bias with 44 – 68% 
for the full data set and with 34 – 74% on a homogeneous subarea. We 
conclude that the two methods are able to locally improve ECMWF air 
temperatures in a data-scarce area.  
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Bias, copula, conditional, data scarcity, mean temperature, probability.  
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Structure of the chapter 

After the introduction in section 4.1, copula-based bias correction methods are 
introduced in section 4.2. Our application is introduced in section 4.3, and the 
results are shown in section 4.4. We discuss the results and point to further 
directions of this work in section 4.5. This is followed by the conclusion in 
section 4.6, and three appendices in sections Appendix 4.1, 4.2, and 4.3.  
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4.1 Introduction 
Assessment of the impact of climate change in agricultural areas is primarily 
based upon changes in weather data such as air temperature (Challinor et al. 
2009). In a data-scarce area, e.g., where weather stations are sparse, 
additional data are required. The European Centre for Medium-range Weather 
Forecasts (ECMWF) provides gridded ERA-interim reanalysis weather data that 
are being used increasingly (Persson 2013). They are prone to uncertainty 
because of the coarse resolution of models (Durai and Bhradwaj 2014) and the 
variability of model parameters in space and time (Dee et al. 2011). When 
compared with the measurements from weather stations, their bias is often 
considerable (Hannah and Valdes 2001), in particular, if those measurements 
serve as benchmarks from which any measurement errors are ignored.  

Recently, copula-based methods have been developed for deriving bias 
corrected weather data at unvisited locations (Laux et al. 2011; Vogl et al. 
2012; Mao et al. 2015). A copula is a joint distribution function, describing the 
dependence structure between two or more variables (Sklar 1973). A good 
description of copula has been provided by (Nelsen 2006). The joint distribution 
function can be estimated using any distribution family that can be different 
from the marginal distribution family of the involved variables (Nelsen 2006). 
Mao et al. (2015) investigated bias correction methods of daily precipitation 
data and showed that a copula-based bias correction performs better than 
quantile mapping. After estimating the joint distribution, several methods can 
be used to obtain bias corrected values at unvisited locations. Examples are 
the conditional expectation (CE) (Bárdossy and Li 2008), the conditional 
median (CM) (Gräler 2014), and the simulation method (Salvadori et al. 2007; 
Nelsen 2006).  

So far, Copula-based methods have been applied mainly to precipitation time-
series, where bias corrected values are obtained using the simulation method 
(Laux et al. 2011; Vogl et al. 2012; Mao et al. 2015). Little attention, however, 
has been given to bias correction in air temperature data in a data-scarce area. 
Our main focus of bias correction is based upon the construction of the 
dependence structure between measurements and ECMWF reanalysis data 
using a joint distribution. The distribution is initially estimated using copulas 
and is then used to reduce bias of ECMWF air temperatures at grid cells that 
are often lacking a measurement from a weather station in a data-scarce area. 
To reduce bias in ECMWF air temperatures at those grid cells, an important 
aspect is the spatial variation of the data. 

This study aims to introduce two copula-based predictors based upon 
Conditional Probabilities (CP) taking care of the spatial variation of daily air 
temperatures in a data-scarce area. We evaluate the performance of the 
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predictors comparing to conventional methods like CE and CM in an agricultural 
area in Iran.  

4.2 Bias correction methods 
The structural, one-sided difference between a measured value from a weather 
station 𝑥, and an ECMWF reanalysis value 𝑦 is defined as the bias in ECMWF 
reanalysis values. We assume that the data are observed from two spatio-
temporal random variables 𝑋 and 𝑌. In our study, the basis of the copula-based 
bias correction is a distribution function that allows for modeling the 
dependence structure between 𝑋 and 𝑌. The purpose of bias correction is to 
predict 𝑥ො଴ where ෡  denotes a predicted value and ଴ indicates an unvisited 
location. An unvisited location is an ECMWF grid point without a measurement.  

We focus on a bivariate distribution 𝐹ሺ𝑥, 𝑦ሻ; it can be extended to higher 
dimensions if more than two variables are available. The bivariate case is useful 
if ancillary information is unavailable. Regarding our main objective, we aim to 
introduce copula-based predictors to obtain 𝑥ො଴. Section 4.2.1 first illustrates 
both the commonly applied predictors and introduces the new predictors and 
section 4.2.2 presents the estimation of marginals and copulas. 

4.2.1 Copula-based predictors  

The conditional expectation (CE), the conditional median (CM) and the 
simulation method are commonly applied methods to obtain 𝑥ො଴. CE and CM are 
both optimal predictors, minimizing the mean squared prediction error and the 
mean absolute prediction error, respectively (Journel 1984; Cressie 1993). They 
obtain the bias-corrected value 𝑥ො଴ as: 

CE:     𝑥ො଴ ൌ 𝐸ሾ𝑋|𝑌 ൌ 𝑦଴ሿ ൌ ׬ 𝑥 ∙ 𝑓ሺ𝑥|𝑦଴ሻ𝑑𝑥௫ , ሺ4.1ሻ   

CM:      𝑥ො଴ ൌ 𝐹ିଵሺ𝑝|𝑦଴ሻ,   𝑝 ൌ 0.5, ሺ4.2ሻ 

where 𝑓ሺ. |. ሻ is conditional density distribution function, 𝐹ିଵ denotes the inverse 
transformation of the conditional distribution 𝐹ሺ. |. ሻ, and 𝑝 is the conditional 
probability that determines the median. Both CE and CM are either an 
increasing or a decreasing function of the conditioning variable 𝑌 depending 
upon the sign of the dependence between 𝑋  and 𝑌  (see Section 2.3). 
Therefore, the variation of bias-corrected values follows the variation of 
ECMWF reanalysis values rather than those of the measurements; this will be 
further illustrated in Section 4.4. 

The third method is the simulation method. It obtains 𝑚  bias-corrected 
values by generating 𝑚 conditional probabilities 𝑝 on [0, 1] as: 

𝑥ො଴,௞ ൌ 𝐹ିଵሺ𝑝௞|𝑦଴ሻ, 𝑘 ൌ 1, … , 𝑚. ሺ4.3ሻ 
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Note that the mean of ሼ𝑥ො଴,ଵ, … , 𝑥ො଴,௠ሽ provides a single value 𝑥ො଴ and that both the 
value of 𝑚 and the simulations themselves influence the results. For a large 𝑚, 
the results of this method are equal to the results of CE (Mao et al. 2015). In 
case of choosing the median of ሼ𝑥ො଴,ଵ, … , 𝑥ො଴,௠ሽ, this also applies to CM. 

For CE, the mean value of the distribution 𝐹ሺ𝑥|𝑦଴ሻ is selected as 𝑥ො଴, whereas for 
CM, this is the median value of the distribution. We may question whether 
mean and median values best suit bias-corrected air temperatures. In the 
following, two new methods are introduced to obtain a conditional probability 
which serves as a predictor. 

CP-I and CP-II are the predictors, minimizing mean absolute bias (MAB) as: 

𝑀𝐴𝐵 ൌ
1
𝑛

෍|𝑥௜ െ 𝐹ିଵሺ𝑝|𝑦௜ሻ|
௜ୀ௡

௜ୀଵ

, ሺ4.4ሻ 

where for CP-I, 𝑛 ൌ 𝑁 and equals the total number of observations, whereas 
for CP-II, 𝑛 ൌ 𝑀 ≪ 𝑁 and equals the number of observations at the nearest M 
locations to 𝑥଴. The conditional probability 𝑝 is iteratively estimated based upon 
minimizing MAB in (4.4) resulting in the optimal 𝑝∗ value. The bias-corrected 
value 𝑥ො଴ then equals: 

𝑥ො଴ ൌ 𝐹ିଵሺ𝑝|𝑦଴ሻ, 𝑝 ൌ 𝑝∗. ሺ4.5ሻ 

For CP-I, the conditional probability 𝑝∗ is constant for all unvisited locations, 
e.g. 𝐹ሺ𝑥଴|𝑦଴ሻ ൌ 𝑝∗. Therefore, similar to CE and CM, CP-I is either an increasing 
or a decreasing function of the conditioning variable, depending upon the sign 
of the dependence (see Section 2.3). For CP-II, the optimal conditional 
probability depends upon unvisited location and is denoted now by 𝑝଴

∗, e.g. 
𝐹ሺ𝑥଴|𝑦଴ሻ ൌ 𝑝଴

∗.  

Next we formulate the equations using copulas and investigate the use of 
copulas for the construction of distribution functions. According to Sklar’s 
theorem, it can be shown that 𝐹ሺ𝑥|𝑦ሻ ൌ 𝐶ሺ𝑢|𝑣ሻ  (see Chapter 2) and the 
predictors are rewritten as: 

CE: 𝑥ො଴ ൌ ׬  𝐹௑
ିଵሺ𝑢ሻ ൈ 𝑐ሺ𝑢|𝑉 ൌ 𝑣଴ሻ𝑑𝑢

ଵ
଴ ,    

CM: 𝑥ො଴ ൌ 𝐹௑
ିଵሺ𝐶ିଵሺ𝑝|𝑉 ൌ 𝑣଴ሻሻ, 𝑝 ൌ 0.5, 

CP: 𝑀𝐴𝐵 ൌ
ଵ

௡
∑ |𝑥௜ െ 𝐹௑

ିଵሺ𝐶ିଵሺ𝑝|𝑉 ൌ 𝑣௜ሻሻ|௜ୀ௡
௜ୀଵ , 𝑥ො଴ ൌ 𝐹௑

ିଵሺ𝐶ିଵሺ𝑝|𝑉 ൌ 𝑣଴ሻሻ, 𝑝 ൌ 𝑝∗. 

where 𝐹௑
ିଵ denotes the inverse transformation of the marginal cumulative 

distribution function  𝐹௑ , 𝑣  is marginal probability i.e. 𝑣 ൌ 𝐹௒ሺ𝑦ሻ , 𝑐ሺ. |. ሻ  is the 
conditional density copula, and 𝐶ሺ. |. ሻ is the conditional cumulative copula (see 
Chapter 2).  
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Before introducing estimation of the distribution functions, we now explain the 
implementation of CP-I and CP-II to identify the optimal conditional probability. 
Initially, a probability 𝑝 ൌ 0.01 is chosen and MAB is obtained from Equation 
(4.4). Then the probability 𝑝 increases with steps of 0.01 until 𝑝 ൌ 1. We select 
the probability 𝑝∗ that results into the lowest MAB. Finally, the bias-corrected 
value 𝑥ො௦బ

 is obtained from Equation (4.5).  The choice for the initial probability 
and for a step value equal to 0.01 are based upon our experience on the 
variable of interest and uncertainty sources. We compare this value using a 
sensitivity analysis on the mean absolute prediction error to assess the effect 
of choosing larger or smaller increment values i.e. 0.1 or 0.001; results are 
reported in Section 4.4. Note that CP-I is implemented only once, whereas CP-
II is implemented at each unvisited location separately and therefore has a 
higher computational cost. 

4.2.2 Distributions estimation  

In practice, finite samples on 𝑋 and 𝑌 are observed in space and time without 
replication. Therefore, the joint distribution 𝐹ሺ𝑥, 𝑦ሻ  is estimated using the 
assumption of stationarity (in space or time), i.e. marginal distributions and 
dependence structure between 𝑋 and 𝑌 are irrespective of location or time. In 
the literature, reviewed in Section 4.1, the current bias correction methods 
have been applied to climate time-series assuming temporal stationarity. 
Hence, removing autocorrelation and heteroscedasticity that may exist in any 
climate time-series, is necessary for any estimation procedure (Laux et al. 
2011). To achieve our main objective, we apply a bias correction to predict 𝑥ො଴ 
at an unvisited location in space, separately at each day of time-series.  

Estimation of theoretical marginal distributions may affect the estimation of 
the copula parameter and consequently the selection of the copula family. 
Therefore, we use empirical marginal distributions. By means of kernel density 
estimation, a continuous approximation of the marginal distribution are 
obtained under the assumption of stationary (Silverman 1986). We evaluate 
this assumption using regression analysis and the auto-correlation function 
(See appendix 4.1). The choice of the method to estimate empirical marginal 
probability is not unique and a more specific sensitivity analysis might help to 
show the effects of other marginal distribution functions on the results. This, 
however, is outside the scope of the study.  

The bivariate copula C can be determined using several copula families. We 
assume spatial stationarity and evaluate the assumption using a co-correlation 
function (See appendix 4.1). 
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4.2.3 Evaluation 

We apply the leave-k-out validation (Lafon et al. 2013). The bias-corrected 
values 𝑥ො௦,௧ at time 𝑡 and location 𝑠 are obtained by leaving 𝑘 observations out 
for the same day of the year in 𝑘 successive years and using the reminder of 
the observations. The mean absolute error 𝑀𝐴𝐸௦,௧ is defined as:  

𝑀𝐴𝐸௦,௧ ൌ
1
𝑘

෍ห𝑥௦,௧,௜ െ 𝑥ො௦,௧,௜ห

௞

௜ୀଵ

, ሺ4.6ሻ 

We define three criteria based upon the mean absolute errors to compare the 
presented methods at 𝑁 weather stations and 𝑇 days:  

𝑀𝐴𝐸 ൌ
1
𝑇

෍ ൭
1
𝑁

෍ 𝑀𝐴𝐸௦,௧

ே

௦ୀଵ

൱

்

௧ୀଵ

, ሺ4.7ሻ 

𝑆𝐸𝑆 ൌ ෍ ቌ𝑟𝑎𝑛𝑘 ൭
1
𝑇

෍ 𝑀𝐴𝐸௦,௧

்

௧ୀଵ

൱ቍ

ே

௦ୀଵ

, ሺ4.8ሻ 

𝑇𝐸𝑆 ൌ ෍ ቌ𝑟𝑎𝑛𝑘 ൭
1
𝑁

෍ 𝑀𝐴𝐸௦,௧

ே

௦ୀଵ

൱ቍ

்

௧ୀଵ

. ሺ4.9ሻ 

where the 𝑀𝐴𝐸 is the overall mean absolute error, 𝑆𝐸𝑆 and 𝑇𝐸𝑆 are spatial and 
temporal error scores (Durai and Bhradwaj 2014), ଵ

்
∑ 𝑀𝐴𝐸௦,௧

்
௧ୀଵ  and ଵ

ே
∑ 𝑀𝐴𝐸௦,௧

ே
௦ୀଵ  

are spatial and temporal mean absolute errors, respectively. A low value of a 
criterion indicates a good performance. 

To evaluate correlations, the bias-corrected value 𝑥ො௦,௧ at day t and location 𝑠 is 
obtained using all observations. The temporal correlations 𝑟௦ at location 𝑠 and 
the spatial correlations 𝑟௧ at day 𝑡 are used to evaluate the performance of the 
presented methods in reproducing temporal and spatial variation of the 
measurements: 

𝑟௦  ൌ 𝑐𝑜𝑟𝑟൫൛𝑥ො௦,௧, … , 𝑥ො௦,்ൟ, ൛𝑥௦,௧, … , 𝑥௦,்ൟ൯, ሺ4.10ሻ 

𝑟௧ ൌ 𝑐𝑜𝑟𝑟൫൛𝑥ොଵ,௧, … , 𝑥ොே,௧ൟ, ൛𝑥ଵ,௧, … , 𝑥ே,௧ൟ൯. ሺ4.11ሻ 

We define two criteria to evaluate the correlations as: 

𝑆𝐶𝑆 ൌ ෍൫𝑟𝑎𝑛𝑘ሺ𝑟௦ሻ൯

ே

௦ୀଵ

, ሺ4.12ሻ 

𝑇𝐶𝑆 ൌ ෍൫𝑟𝑎𝑛𝑘ሺ𝑟௧ሻ൯

்

௧ୀଵ

, ሺ4.13ሻ 
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where 𝑆𝐶𝑆 and 𝑇𝐶𝑆 are spatial and temporal correlation scores, respectively. A 
high value of 𝑆𝐶𝑆 and 𝑇𝐶𝑆 indicates a good performance.  

4.3 Application: daily mean air temperatures in Iran   
The presented methods are applied to daily mean air temperatures in the 
Qazvin irrigation network, Iran in June from 2004 to 2014 (see Section 3.1). 
There are 150 grid cells×11 years=1650 reanalysis values on each day in June 
2014, and there are 24 stations×11 years=264 measured values. The cross-
validation is carried out for measured values on each day of June between 
2004 and 2014, i.e., k=11.  

The time-series of the air temperature at the climatology type2 stations, e.g., 
stations 11, 13 and 21 reveals that the quality of the measurements is low 
(Appendix 4.3, Figure 4.14). In Section 4.4, we report to which degree the 
results of the presented methods are affected by different qualities of the 
measurements at the three types of stations. Overestimation and 
underestimation of reanalysis data has been observed in June 2014 (Appendix 
4.3, Figure 4.14). Correlations 𝑟௧  between reanalysis values and measured 
values in space are low at most days in June 2014 (Figure 4.1). In addition, 
correlations 𝑟௦ at the weather stations 13 and 21 are rather weak (Figure 4.1).  

To extend copulas to higher dimensions by including covariates in describing 
the dependence structures, we investigate whether considering elevation 
improves the results of the bias correction method. The dependence structure 
between air temperature and MODIS elevation (see Section 3.1) is described 
using copulas as it does not follow the lapse-rate law (Figure 4.2).  
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Figure 4.1 Correlations 𝒓𝒊  and 𝒓𝒋  that indicate temporal and spatial dependences 
between measurements and ECMWF ERA-interim reanalysis air temperature. a) 𝒓𝒊 at 
each weather station, b) 𝒓𝒋 at each day in June 2014.  

 

Figure 4.2 Variation of the mean air temperature on the 1st day of June 2014 compared 
with a variation of the elevation in the study area. The mean air temperature in °C is 
derived from the synoptic and climatology type 1 weather stations. 
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In the pooling procedure, effects of non-stationarity may exist due to climate 
change. For this time-series of 11 years, we ignore those effects, but for a 
longer time-series a correction should be applied. In our study, the dependence 
structures between the reanalysis values and measured values, i.e., copulas 
are studied in a relatively small and homogenous area and are thus likely to 
change spatially in a stationary way. An exception concerns the mountains in 
the northeastern part of the study area (Figure 4.3). To evaluate the potential 
effect of spatial non-stationarity, we applied the presented methods on a 
complete set of 24 weather stations as well as a subset of ten stations where 
the spatial variation of elevation is more homogenous (Figure 4.3).  

 
Figure 4.3 Elevations (m) are covariates for air temperature in the CP-II including 
covariate. It is obtained by MODIS product at a spatial resolution of 1km. Location and 
index of the weather stations are shown in this figure. We applied the presented methods 
on a complete set of 24 weather stations as well as a subset of ten stations where the 
spatial variation of elevation is more homogenous, i.e., the area indicated by a circle. 

4.4 Results: bias-corrected values in time and space  

4.4.1 Marginal distributions and copulas 

Figure 4.4 shows the fit of marginal distribution functions assuming spatial 
stationarity. Appendix 4.1 presents the evaluation of this assumption on each 
day in June 2014.  
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Figure 4.4 Empirical marginal probabilities on June 1st. Marginal probabilities are 
obtained on each day of June using eleven years series from 2004 to 2014 at 24 weather 
stations. A monotone cubic spline is fitted to obtain the distribution function. 

The parameters of five copula families are estimated on each day of June 
assuming spatial stationarity. Appendix 4.1 further contains the evaluation of 
this assumption for copulas. Table 4.1 shows the number of data used for 
fitting. The p value of the null hypothesis of bivariate independence is zero, 
thus rejecting the null hypothesis (Table 4.1, third column). The best fitting 
family based upon the lowest AIC value turned out to be Gumbel family for 17 
days in June. The p values of the Cramér–von Mises statistic 𝑆௡

ሺ஻ሻ were larger 
than 0.2 for all days (Table 4.1, last column), hence not rejecting the null 
hypothesis. We could safely assume that the best fitting family well describes 
the dependence structure.   

Table 4.1 The p values and selected family on each day in June. Number of data denotes 
the number of available data for fitting purposes and equals the number of 
measurements from weather stations from 2004 to 2014 on each day in June. The p 
value-1 is obtained under the null hypothesis of bivariate independence. The copula 
families are: N=Gaussian, T=Student’s t, C=Clayton, G=Gumbel, and F=Frank. The p 
values-2 are obtained by the Cramér–von Mises statistic 𝑺𝒏

ሺ𝑩ሻ.  

Day Number of data p value-1 Selected family p value-2 

1 226 0.00 G 0.42 
2 224 0.00 N 0.62 
3 226 0.00 G 0.48 
4 226 0.00 G 0.58 
5 226 0.00 T 1.00 
6 226 0.00 F 0.40 
7 226 0.00 N 0.44 
8 225 0.00 T 1.00 
9 226 0.00 G 0.34 
10 226 0.00 G 0.26 
11 226 0.00 G 0.36 
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12 226 0.00 N 0.62 
13 226 0.00 N 0.44 
14 226 0.00 N 0.64 
15 226 0.00 G 0.44 
16 226 0.00 G 0.52 
17 226 0.00 G 0.46 
18 226 0.00 F 0.44 
19 226 0.00 F 0.25 
20 226 0.00 G 0.34 
21 226 0.00 G 0.30 
22 226 0.00 G 0.79 
23 225 0.00 G 0.36 
24 226 0.00 G 0.54 
25 226 0.00 G 0.75 
26 226 0.00 G 0.68 
27 226 0.00 N 0.50 
28 226 0.00 F 0.44 
29 226 0.00 F 0.60 
30 225 0.00 G 0.54 

4.4.2 Evaluation and comparison 

The optimal conditional probability obtained using CP-I, and the minimum and 
maximum of the optimal conditional probabilities obtained using CP-II on each 
day are given in Table 4.2. The conditional probability using CP-I clearly 
changes in time in the range of [0.30, 0.95]. For CP-II, the optimal conditional 
probability changes in time and space in the range of [0.02, 0.99], using M=4. 
Influence of the choice of the increment value in CP-I is assessed using 
sensitivity analysis (Figure 4.5). It revealed that the uncertainty is higher using 
an increment value of 0.1, whereas for 0.001 no improvements were achieved. 

Table 4.2 Optimal conditional probabilities. A single optimal conditional probability is 
obtained using CP-I for all unvisited locations on each day whereas using CP-II, it is 
obtained at each unvisited location and each day. The minimum and maximum of the 
optimal conditional probabilities obtained by CP-II are mentioned here.  

Day Optimal conditional 
probability in CP-I 

Minimum and maximum optimal 
conditional probabilities in CP-II 

1 0.79 0.13 0.90 
2 0.60 0.08 0.97 
3 0.30 0.04 0.92 
4 0.36 0.08 0.93 
5 0.50 0.02 0.90 
6 0.61 0.08 0.93 
7 0.71 0.12 0.96 
8 0.66 0.21 0.92 
9 0.64 0.25 0.90 
10 0.82 0.23 0.99 
11 0.87 0.28 0.98 
12 0.68 0.09 0.95 
13 0.58 0.06 0.84 
14 0.57 0.05 0.88 
15 0.65 0.10 0.86 
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16 0.65 0.09 0.94 
17 0.76 0.07 0.84 
18 0.55 0.10 0.74 
19 0.73 0.07 0.88 
20 0.69 0.19 0.91 
21 0.50 0.13 0.95 
22 0.83 0.19 0.98 
23 0.91 0.23 0.99 
24 0.64 0.14 0.96 
25 0.65 0.09 0.94 
26 0.79 0.17 0.92 
27 0.74 0.13 0.98 
28 0.83 0.10 0.95 
29 0.92 0.21 0.98 
30 0.79 0.16 0.99 
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Figure 4.5 Influence of the choice of the increment value (IV) on a) the optimal 
conditional probability in CP-I and b) the mean absolute prediction errors. Three IVs 0.1, 
0.01 and 0.001 are chosen. 

Two time-series of the bias-corrected values obtained by CP-I and CP-II (Figure 
4.6a and b) at the first station are compared with those of CE and CM (Figure 
4.6c and d). The spatial mean absolute errors at this station for CP-II and CP-
I were equal to 1.56ºC and 1.66ºC, whereas, for CM and CE, they were equal 
to 2.72ºC and 2.95ºC, respectively. Bias-corrected values at June 1st 2014 are 
shown in Figure 4.7. For CP-II and CP-I, the temporal mean absolute errors 
were equal to 2.17ºC and 2.23ºC at this day, whereas for CM and CE, they 
were equal to 2.41ºC and 2.49ºC, respectively.  

 
Figure 4.6 Time-series of the mean air temperatures at first station in June 2014 
obtained by the measurements, the reanalysis data, and the results of a) CP-I, b) CP-II, 
c) CE and d) CM. The vertical axis is the daily mean air temperature in ºC. The horizontal 
axis is days in June 2014.  

We note that CP-I fails to predict spatial variation and extremes in space 
(Figure 4.7c) but that CP-II is successful (Figure 4.7d) as compared to the 
spatial variation of the measurements at this day (Figure 4.7a). Spatial 
variation of the bias-corrected values obtained by CP-I (Figure 4.7c), CE 
(Figure 4.7e) and CM (Figure 4.7f) is similar to the spatial variation of the 
reanalysis air temperatures (Figure 4.7b). Spatial variation of the bias-
corrected values obtained by CP-II differs from spatial variation of the 
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reanalysis air temperatures (Figure 4.7b) because the optimal conditional 
probability obtained by this method changes in space. Bias and prediction 
errors at June 1st 2014 are shown in Figure 4.8. The mean absolute bias is 
2.84ºC at this day, whereas the mean absolute prediction errors for CP-II and 
CP-I were equal to 1.13ºC and 1.66ºC, and for CE and CM to 2.46 ºC and 
2.31ºC, respectively.  
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Table 4.3 Comparison of the bias correction methods for two experiments. The methods 
are applied to 24 weather stations in the first experiment whereas they are applied to a 
subset of ten stations in the second experiments. Total mean absolute error (MAE), 
spatial error scores (SES), temporal error scores (TES), spatial correlation scores (SCS), 
and temporal correlation scores (TCS), obtained by the conditional probabilities (CP-I, 
CP-II and CP-II including elevation), conditional expectation (CE) and conditional median 
(CM). The underlined values denote the best method. Only MAE is obtained for CP-II 
including elevation.  

 Method MAE SES TES SCS TCS 

R
es

ul
ts

 o
f 

th
e 

1st
 

ex
pe

ri
m

en
t 

CP-I 2.28 52 59 71 80 

CP-II 2.17 55 34 86 120 

CP-II including elevation 1.92 - - - - 

CE 2.45 71 116 54 49 

CM 2.41 62 91 29 51 

R
es

ul
ts

 o
f 

th
e 

2nd
 e

xp
er

im
en

t CP-I 1.44 27 70 32 80 

CP-II 1.36 19 47 37 102 

CE 1.50 28 92 20 56 

CM 1.50 26 91 11 62 

 

MAE obtained by leave-11-out cross validation for two experiments (Table 4.3) 
shows that CP-II performed best, followed by CP-I, CM, and CE. The MAE is 
slightly above 2°C for all methods whereas the average absolute bias is 3.6°C. 
The horizontal distances, different height, and differences in land cover 
between the location of a station and the grid cell centre might affect the MAE. 
Investigating the CP-II including elevation, we noticed a large improvement in 
the results: the MAE for CP-II including elevation was equal to 1.92ºC whereas 
for CP-II it was equal to 2.17ºC (Table 4.3). 
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Figure 4.7 The mean air temperatures from a) weather stations, b) reanalysis data, and 
results of c) CP-I, d) CP-II, e) CE and f) CM, for all locations at June 1st 2014. For 
experimentation in this study, a sample subset of 10 × 15 grid cells of ECMWF dataset 
is selected at a spatial resolution of 0.125º Lat/Long. The study area extends from 35.44º 
to 36.68º latitudes (N) and from 49.09º to 50.92º longitudes (E). 
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Figure 4.8 Bias (a) and prediction errors. Prediction errors are differences between the 
mean air temperatures from weather stations and the predictions obtained by b) CP-I, 
c) CP-II, d) CE and e) CM at June 1st 2014. For experimentation in this study, a sample 
subset of 10 × 15 grid cells of ECMWF dataset is selected at a spatial resolution of 0.125º 
Lat/Long. The study area extends from 35.44º to 36.68º latitudes (N) and from 49.09º 
to 50.92º longitudes (E). 

We used SES and SCS to compare the presented methods based upon errors 
and correlations in time, i.e., 30 days in June (as shown in Appendix 4.2, Figure 
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4.14). For the comparison in space, TES and TCS were used with N=24 (as 
shown in Appendix 4.2, Figure 4.15). Table 4.3 shows that CP-I resulted into 
the lowest errors in time whereas CP-II resulted into the lowest errors in space 
and highest correlations in space and time. The correlations 𝑟௧ show that CP-II 
performed better in reproducing the spatial variation of the daily air 
temperatures in the study area (Figure 4.9). The correlations 𝑟௧ obtained by 
CP-I, CE and CM are similar to the correlations between the reanalysis values 
and the measured values (Figure 4.9). This is as expected, because the 
predictor is the same for all locations in space. The correlations 𝑟௦ denote that 
CP-I performed better in reproducing the temporal variation of the daily air 
temperatures in June (Figure 4.10).  

Table 4.4 Overall score based upon Table 4.3 for two experiments. The methods are 
applied on 24 weather stations in the first experiment whereas they are applied on a 
subset of ten stations in the second experiments. The scores are obtained for each 
method based upon each criterion, i.e., each column of Table 4.3 where the lowest score 
denotes the best method. Overall score is the sum of the scores. The underlined values 
denote the best method.   

 Method Score based on Overall score 

  MAE SES TES SCS TCS  

R
es

ul
ts

 o
f 

th
e 

1st
 

ex
pe

ri
m

en
t 

CP-I 2 1 2 2 2 9 

CP-II 1 2 1 1 1 6 

CE 4 4 4 3 4 19 

CM 3 3 3 4 3 16 

R
es

ul
ts

 o
f 

th
e 

2nd
 

ex
pe

ri
m

en
t 

CP-I 2 2 2 2 2 10 

CP-II 1 1 1 1 1 5 

CE 4 4 4 3 4 19 

CM 3 3 3 4 3 16 

 

Investigating the differences in quality of the measurements at the weather 
stations, we compared the spatial mean absolute prediction error (see equation 
ሺ4.10ሻ) with the spatial mean absolute bias. In this way, we assessed the 
performance of the bias correction methods at three types of weather stations 
(Figure 4.11). This investigation showed that the predictions at two synoptic 
stations, i.e., stations 6 and 19 are influenced by different sources of 
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uncertainties in the measurements derived from three types of weather 
stations. In addition, CP-II performed better than CE and CM.  

 
Figure 4.9 The correlation coefficients r in space on each day in June 2014. 

Table 4.4 shows the score of each method based upon the criteria mentioned 
in Table 4.3. We obtained an overall score using the sum of the scores. This 
overall score shows that CP-II reduced the bias with 63 – 68% for the full data 
set and with 69 – 74% on a homogeneous subarea whereas CP-I decreased 
the bias with 44 – 53% for the complete data set and with 34 – 47% on a 
homogeneous subarea (Table 4.4 , last column). 
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Figure 4.10 The correlation coefficients r in time at each weather station. The numbers 
on the figures denote correlations. 
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Figure 4.11 Comparing spatial mean absolute prediction error (MAPE) with spatial mean 
absolute bias (MAB) at three types of weather stations. The vertical axis is error/bias in 
°C. The synoptic stations are supposed to provide more precise measurements. 

4.5 Discussion 

In this paper, we presented and evaluated two new bias correction methods 
for air temperature that take temporal and spatial variations into account. The 
CE and CM methods produce smooth maps, assuming spatial stationarity when 
estimating the dependence structures between the measured and the 
reanalysis weather data. We proposed to use different conditional probabilities 
minimizing the bias in space to improve spatial variation of the bias-corrected 
values. In addition, we described the dependence structure between the 
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measured and the reanalysis weather data using the flexibility of selecting the 
best fitting family among five copula families.  

In our application, a bivariate copula was fitted to daily observations of the 
involved variables assuming spatial stationarity, and the bias correction was 
applied separately on each day. The results showed that our methods 
performed better to correct time-series of the air temperatures, i.e., the 
temporal variation of the daily air temperatures in June 2014. Therefore, a 
practical advantage of the new methods is that they are not any longer 
restricted to remove autocorrelation and heteroscedasticity in time-series. A 
novel aspect is the potential and the use of new methods for other copula-
based methods such as interpolation and downscaling where the variable of 
interest needs to be predicted.  

By means of the comparison of the methods based upon error scores and 
correlation scores, we demonstrated that CP-I performed best in time, whereas 
CP-II performed best in space. As the copulas are generally able to describe 
spatio-temporal dependences, the use of the spatio-temporal information in 
CP-II might help to improve its performance in time as well. We selected the 
number of neighbours based upon our experience. A more generally applicable 
sensitivity analysis is necessary to show the effects of the number of nearest 
neighbours on performance of CP-II.  

We identified several routes for future research. First, we treated the 
measurements from weather stations as the benchmarks in the identification 
of bias and in the cross-validation. To address the uncertainty of the 
measurements and its impact on the results of the proposed methods, the 
proposed methods should be extended towards other datasets. In addition, 
further applications of the new copula-based methods in other case studies 
including simulation-based information should provide more insight on these 
methods. Second, we used the AIC to select the best fitting family. We realize 
though that the suitability of a copula also depends on the number of data used 
for fitting and the probabilistic nature of the bias. Further cross validations 
need to be carried out using random samples of the measurements to choose 
the copula family. Third, spatially varying conditional probabilities needs to be 
further applied in other methods, e.g., Bayes' classifier and possibly in a 
machine learning environment. Fourth, to extend the current study, the use of 
multivariate copula describing the dependence between more variables, e.g., 
air temperature, elevation and land cover might help to improve the 
performance of the presented methods. The bivariate case of the proposed 
methods in this paper is useful if such a covariate is unavailable. Finally, a 
comparison to other bias correction methods, e.g., quantile mapping might be 
included in further studies. 
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4.6 Conclusions 
We proposed to use conditional probabilities to correct for bias in the gridded 
reanalysis weather data provided by ECMWF as compared to the 
measurements from weather stations taken as the benchmarks. Cross-
validation results and correlation scores showed that the new methods perform 
better than commonly applied methods and are able to account for spatial and 
temporal variation of air temperatures at unvisited locations.  
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Appendix 4.1 Evaluating the stationarity assumption 
To evaluate the second order spatial stationarity assumption in estimating 
marginal distribution of daily air temperature, we used two methods: linear 
regression and auto-correlation function. The null hypothesis 𝐻଴  and 
alternative hypothesis 𝐻ଵ to test for second order stationarity assumption are 
then defined as:  

𝐻଴:   𝐸ሾ𝑍௦ሿ ൌ µ, ሺ4.12ሻ 

𝐻ଵ:    𝐸ሾ𝑍௦ሿ ൌ 𝛽଴ ൅ 𝛽ଵ. 𝑥௦ ൅ 𝛽ଶ. 𝑦௦, ሺ4.13ሻ 

where 𝑍௦ is the variable of interest at location 𝑠, E[] denotes the expectation, 
𝑥௦  and 𝑦௦  are the x and y coordinates of location 𝑠 and the 𝛽௝, 𝑗 ൌ 0, 1, 2 are 
regression parameters. We obtained the parameters and their p values using 
a linear model and F test (Chambers et al. 1990). We found that the values of 
regression coefficients are not significantly different from zero and their p 
values of F test are above 0.05 and 0.01 at all days (Figure 4.12). The auto-
correlation function, i.e., correlogram, describes dependences in space based 
upon the correlation per each spatial lag (Oden, 1984). The values of 
correlogram at five spatial lags are obtained from the measured values on each 
day in June between 2004 and 2014 (Figure 4.13). It is immediate that the 
correlations are decreasing by the separating distance. These results and the 
limited effects of including non-stationarity make the assumption of spatial 
stationarity a reasonable one. 

We assess the second order spatial stationarity assumption in estimating 
copula using the co-correlation function. Co-correlation function, i.e., the co-
correlogram, is an extension of the correlogram for two or more random fields 
in space. The values of the co-correlogram and the best fitting family at five 
spatial lags are obtained from measured and reanalysis values on each day in 
June between 2004 and 2014 (Table 4.5). The results show that the best fitting 
families and the correlations differ slightly at different spatial lags. Therefore, 
we conclude that the spatial stationarity is a reasonable assumption in 
estimating copula and point to further application of co-correlogram in a lag 
based bias correction methods. 
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Figure 4.12 p values of the regression parameters in trend analysis obtained by F test. 
Based upon its results, spatial stationarity is assumed in estimating the marginal 
distribution.   

 
Figure 4.13 The values of correlogram at five spatial lags. The vertical axis is Kendall’s 
 correlations obtained using the measurements on each day in June between 2004 to 
2014. The horizontal axis is spatial lags in meter. 
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Table 4.5 The values of co-correlogram and best fitting family at five spatial lags. 
Kendall’s  correlations are obtained using the measured and reanalysis values on each 
day in June from 24 weather stations between 2004 to 2014. The copula families are: 
N=Gaussian, T=Student’s t, C=Clayton, G=Gumbel, and F=Frank.  

 Best fitted family Kendall’s  correlation 
Day 1 2 3 4 5 1 2 3 4 5 

1 G G G G G 0.45 0.45 0.46 0.43 0.43 
2 N N N N N 0.35 0.37 0.37 0.34 0.34 
3 N G G G G 0.28 0.31 0.31 0.30 0.28 
4 N G G G G 0.34 0.31 0.33 0.29 0.29 
5 N T T T T 0.35 0.34 0.37 0.31 0.32 
6 F F F F F 0.36 0.34 0.32 0.29 0.30 
7 G N G G G 0.38 0.38 0.38 0.35 0.35 
8 G G G T T 0.42 0.42 0.38 0.38 0.37 
9 N G G G F 0.46 0.46 0.44 0.44 0.42 
10 G G G G G 0.37 0.39 0.40 0.35 0.38 
11 G G G G G 0.27 0.28 0.29 0.27 0.27 
12 N N N N N 0.40 0.40 0.39 0.39 0.39 
13 N N T N T 0.36 0.37 0.39 0.35 0.35 
14 N N N N N 0.33 0.38 0.38 0.35 0.35 
15 N G G G G 0.35 0.38 0.38 0.35 0.35 
16 N G G G G 0.38 0.37 0.35 0.35 0.34 
17 N G G G G 0.33 0.38 0.37 0.34 0.33 
18 F F F F F 0.25 0.31 0.30 0.30 0.28 
19 F F F F F 0.46 0.48 0.49 0.45 0.45 
20 G G G G G 0.50 0.50 0.50 0.47 0.49 
21 F G G G G 0.47 0.45 0.47 0.44 0.45 
22 G G G G G 0.38 0.35 0.36 0.34 0.33 
23 F G G G F 0.31 0.33 0.37 0.31 0.33 
24 G G G G G 0.34 0.30 0.33 0.28 0.30 
25 G G G G G 0.19 0.25 0.30 0.20 0.22 
26 G G G G G 0.23 0.31 0.34 0.29 0.29 
27 G N N N N 0.35 0.37 0.43 0.34 0.36 
28 F F F F F 0.32 0.35 0.37 0.32 0.32 
29 N F F F F 0.34 0.34 0.35 0.31 0.32 
30 G G G G G 0.32 0.31 0.32 0.29 0.31 
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Appendix 4.2 predictions in time and space 
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Figure 4.14 Time-series of the measurements from weather stations, reanalysis data 
and bias-corrected values obtained by the bias correction methods at each station in 
June 2014. The vertical axis is the daily mean air temperature in °C. The number on 
each graph denotes the weather station number. 
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Figure 4.15 The daily mean air temperatures from weather stations, reanalysis data 
and bias-corrected values obtained by the bias correction methods for all locations on 
each day in June 2014. The number on each graph denotes the day in June 2014. 
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Chapter 5: Multivariate copula quantile 
mapping for bias correction  
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Abstract  
Gridded reanalysis air temperature data retrieved from the European Centre 
for Medium-range Weather Forecasts (ECMWF) are useful for hydrological 
studies in a data-scarce agricultural area. A justified use requires to correct for 
bias, defined as the systematic difference between reanalysis values and 
measurements from weather stations. We propose three multivariate copula 
quantile mappings (MCQMs) to predict the bias-corrected air temperature at 
unvisited locations. MCQMs estimate multivariate distributions using two types 
of covariates for air temperature. Daily air temperature was retrieved at 24 
weather stations and from the ECMWF ERA-Interim archive at 150 grid cells 
for a single month over 11 years in the Qazvin Plain, Iran. Cross-validation and 
correlations showed that MCQMs reduced bias with 46% as compared with 
classical quantile mapping. The study concludes that MCQMs are well able to 
describe covariability and to represent the spatial and temporal variation of air 
temperature. 
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bias correction, copula, conditional, mean temperature, data scarce. 
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Structure of the chapter 

After the introduction in section 5.1, copulas and bias correction methods are 
presented in section 5.2. The study area and data are introduced in section 
5.3. The results are discussed in section 5.4. We conclude and point to further 
directions of this work in section 5.5. This is followed by two appendices in 
sections Appendix 5.1, 5.2.  
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5.1 Introduction 
Hydrological studies refer to air temperature as a key variable to support water 
management in an irrigation network. At local scales (Sarma, 2005), sparsely 
and irregularly distributed data from weather stations are a challenge for 
hydrological studies at unvisited locations in irrigation networks. To address 
the problem, additional spatially distributed data may be included, e.g., 
gridded reanalysis weather data from the European Centre for Medium-range 
Weather Forecasts (ECMWF). The coarse resolution of models, the mutual 
dependence of weather parameters, and variability of these parameters in 
space and time are major sources of uncertainties when using reanalysis 
weather data (Dee et al. 2011; Durai and Bhradwaj 2014).  

In our paper, weather station measurements are considered as benchmarks. 
Hence, bias is defined as the difference between the reanalysis values and the 
measurements from weather stations (Hannah and Valdes 2001; Persson 
2013). We consider an unvisited location at the center of a grid cell 
characterized by a reanalysis value, but without a measurement from a 
weather station. 

Various bias correction methods have been proposed in the literature: quantile 
mapping (Ines and Hansen 2006), linear-scaling factor methods (Lenderink et 
al. 2007) and nonlinear methods (Lafon et al. 2013). The Gamma and empirical 
distributions have been used for bias correction of precipitation data and the 
Gaussian distribution for bias correction of air temperature data (Teutschbein 
and Seibert 2012; Lafon et al. 2013; Kum et al. 2014).  

Recently, copula-based methods have been developed for deriving bias-
corrected weather data (Vogl et al. 2012; Mao et al. 2015). A copula links 
univariate distributions with a multivariate distribution based upon Sklar’s 
theorem (Sklar 1973; Nelsen 2006). So far, the methods have mainly been 
applied to precipitation time-series retrieved from regional climate models 
under the assumption of temporal stationarity. Laux et al. (2011) employed 
bivariate copulas to describe dependences between daily precipitation time-
series retrieved from a regional climate model and measurements at three 
locations where data are available. They fitted a bivariate copula to daily time-
series at one location, ignoring the temporal variation of the copula parameters 
as well as any spatial dependency. In addition, fitting is required to remove 
autocorrelation and heteroscedasticity, which may exist in a climate time-
series (Laux et al. 2011). Mao et al. (2015) investigated bias correction 
methods of daily precipitation data and showed that copula-based bias 
correction performs better than quantile mapping.  

The aim of our study is to obtain bias-corrected daily air temperature at 
unvisited locations in a data-scarce area. To do so, we developed three 
multivariate copula quantile mappings. Copulas help to estimate the joint 
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multivariate distributions of air temperature and its covariate, in our study: 
elevation. We investigated two types of dependences: the dependence 
between air temperature and elevation at a single location, the dependence 
between air temperatures at a single location and its nearest neighbour. The 
new methods are compared with classical quantile mapping. 

5.2 Bias correction methods 

5.2.1 Multivariate copula quantile mappings 

Multivariate copula quantile mapping (MCQM) is a d-dimensional quantile 
mapping method that relies on two conditional copula distributions (Gräler 
2014; Verhoest et al. 2015). From two random variables 𝑋 and 𝑌 over the 
same spatial domain, 𝑛 samples ሼ𝑥ଵ, … , 𝑥௡ሽ are obtained from weather station 
measurements and 𝑚 samples ሼ𝑦ଵ, … , 𝑦௠ሽ from reanalysis weather data. Bias 𝑏௜ 
at location 𝑖 is:  

𝑏௜ ൌ 𝑥௜ െ 𝑦௜, ሺ5.1ሻ 

The joint distribution function 𝐻ሺ𝑋, 𝑌ሻ is written in terms of a copula as 𝐶ሺ𝑈, 𝑉ሻ, 
where 𝑈 and 𝑉 are uniformly distributed random variables (Nelsen 2006). The 
empirical marginal probability 𝑢௜ using the rank-order-transformation equals: 

𝑢௜ ൌ
rankሺ𝑥௜ሻ

𝑛 ൅ 1
, 𝑖 ൌ 1, … , 𝑛. ሺ5.2ሻ 

A monotone cubic spline is fitted to the pairs (𝑥௜, 𝑢௜) to obtain a continuous 
approximation of the marginal distribution 𝐹௑  as 𝑢௜ ൌ 𝐹௑ሺ𝑥௜ሻ  (Fritsch and 
Carlson, 1980). The marginal distribution 𝐹௒ is estimated in a similar way. Use 
of an empirical distribution avoids estimating theoretical marginal distributions 
that might otherwise affect the estimation of copula parameter. Further note 
that the marginal distribution is assumed to be stationary (see appendix 5.1).  

The purpose of quantile mapping is to predict 𝑢௜ at an unvisited location 𝑖. The 
inverse transformation of the marginal distribution 𝐹௑

ିଵ  provides the bias-
corrected value 𝑥ො௜:  

𝑥ො௜ ൌ 𝐹௑
ିଵሺ𝑢ො௜ሻ, ሺ5.3ሻ 

where the notation ෡  denotes that 𝑥ො and 𝑢ො are predicted values. To obtain 𝑢ො௜, 
we develop three MCQMs including d-dimensional joint distributions where 2 ൑
𝑑 ൑ 3.  

MCQM-I: let 𝑍 be a covariate for 𝑋 and 𝑌, e.g., elevation. Then two conditional 
distributions 𝐶ሺ𝑈|𝑊 ൌ 𝑤௜ሻ and 𝐶ሺ𝑉|𝑊 ൌ 𝑤௜ሻ are obtained based upon bivariate 
joint distributions 𝐶ሺ𝑈, 𝑊ሻ  and 𝐶ሺ𝑉, 𝑊ሻ  describing non-spatial dependences, 
where the distributions can belong to different families and 𝑤௜ ൌ 𝐹௓ሺ𝑧௜ሻ. The 
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marginal probability 𝑢ො௜ is obtained using the inverse transformation of 𝐶ሺ𝑈|𝑊 ൌ
𝑤௜ሻ as: 

𝑢ො௜ ൌ 𝐶ିଵሺ𝐶ሺ𝑣௜|𝑊 ൌ 𝑤௜ሻ|𝑊 ൌ 𝑤௜ሻ. ሺ5.4ሻ 

Distributions can be extended to higher dimensions if more than one covariate 
is available.   

MCQM-II: we consider two bivariate joint distributions 𝐶ሺ𝑈, 𝑈ି௜ሻ and 𝐶ሺ𝑉, 𝑉 ௜ሻ 
that describe spatial dependences between air temperatures at location 𝑖 and 
its nearest neighbour – 𝑖 and two conditional distributions 𝐶ሺ𝑈|𝑈ି௜ ൌ 𝑢ି௜ሻ and 
𝐶ሺ𝑉|𝑉 ௜ ൌ 𝑣ି௜ሻ are based upon the joint distributions, where 𝑢ି௜ ൌ 𝐹௑ሺ𝑥ି௜ሻ and 
𝑣ି௜ ൌ 𝐹௒ሺ𝑦ି௜ሻ. The marginal probability 𝑢ො௜ is then obtained as: 

𝑢ො௜ ൌ 𝐶ିଵሺ𝐶ሺ𝑣௜|𝑉 ௜ ൌ 𝑣ି௜ሻ|𝑈ି௜ ൌ 𝑢ି௜ሻ. ሺ5.5ሻ 

Distributions can be extended to higher dimensions using more than one 
neighbour where the number of observations is sufficient to obtain a 
correlogram that describes dependences in space (Oden, 1984).  

MCQM-III: the third method combines MCQM-I and MCQM-II. We consider two 
conditional distributions 𝐶ሺ𝑈|𝑈ି௜ ൌ 𝑢ି௜ , 𝑊 ൌ 𝑤௜ሻ and 𝐶ሺ𝑉|𝑉 ௜ ൌ 𝑣ି௜ , 𝑊 ൌ 𝑤௜ሻ  based 
upon trivariate joint distributions 𝐶ሺ𝑈, 𝑈ି௜, 𝑊ሻ and 𝐶ሺ𝑉, 𝑉 ௜, 𝑊ሻ describing non-
spatial and spatial dependences. The marginal probability 𝑢ො௜ is then obtained 
as: 

𝑢ො௜ ൌ 𝐶ିଵሺ𝐶ሺ𝑣௜|𝑉 ௜ ൌ 𝑣ି௜ , 𝑊 ൌ 𝑤௜ሻ|𝑈ି௜ ൌ 𝑢ି௜ , 𝑊 ൌ 𝑤௜ሻ. ሺ5.6ሻ 

As for MCQM-II, distributions can be extended to higher dimensions. For 
MCQMs, it is assumed that the conditional probability of 𝑋 conditioned on its 
covariate 𝐹௑ሺ𝑋|. ሻ is equal to the conditional probability of 𝑌 conditioned on that 
covariate 𝐹௒ሺ𝑌|. ሻ.  

5.2.2 Copula estimation in MCQMs 

A bivariate copula describes the dependences between two variables. We used 
five copula families among several families available in the literature (see 
Section 2.2). In MCQM-III, we estimate the conditional distribution 𝐶ሺ𝑈|𝑈ି௜ ൌ
𝑢ି௜, 𝑊 ൌ 𝑤௜ሻ based upon a canonical vine or C-vine structure: 𝑐ሺ𝑈, 𝑊ሻ, 𝑐ሺ𝑈, 𝑈ି௜ሻ 
and 𝑐ሺ𝐶ሺ𝑊|𝑈ሻ, 𝐶ሺ𝑈ି௜|𝑈ሻሻ (see Section 2.1). The conditional distribution 𝐶ሺ𝑉|. ሻ is 
estimated in a similar way. 

5.2.3 Quantile mapping 

A comprehensive study carried out by Teutschbein and Seibert (2012) showed 
that quantile mapping (QM) performs best among the classical bias correction 
methods. QM is implemented as:  
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𝑥ො௜ ൌ 𝐹௑
ିଵሺ𝑣௜ሻ. ሺ5.7ሻ 

QM assumes that there is a perfect dependence between variables i.e. 𝑢ො௜ ൌ 𝑣௜. 
It is sensitive to the number of quantile divisions when using an empirical 
marginal distribution. There are several names in the literature for this method, 
such as probability mapping, CDF matching, and quantile-quantile mapping. 

5.2.4 Comparison and evaluation of the bias correction 
methods 

We compare MCQMs with quantile mapping using leave-K-out cross-validation 
(Lafon et al. 2013). To this end, the observations in K successive years at day 
𝑗 and station 𝑖 are removed from the dataset and the bias-corrected values are 
predicted using the reminder of the observations. The mean absolute error 
𝑀𝐴𝐸௜,௝ equals:  

𝑀𝐴𝐸௜,௝ ൌ
1
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௞ୀଵ
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We determine total mean absolute error 𝑀𝐴𝐸 , spatial and temporal error 
scores, i.e., 𝑆𝐸𝑆 and 𝑇𝐸𝑆 for t days and n stations as: 
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The lowest score indicates the best method (Durai and Bhradwaj 2014). In 
addition, we define correlations 𝑟௜  and 𝑟௝  that indicate temporal and spatial 
dependences between measurements and bias-corrected values, respectively 
as: 

𝑟௜ ൌ 𝑐𝑜𝑟𝑟൫൛𝑥ො௜,ଵ, 𝑥ො௜,௝, … , 𝑥ො௜,௧ൟ, ൛𝑥௜,ଵ, 𝑥௜,௝, … , 𝑥௜,௧ൟ൯, ሺ5.12ሻ 

𝑟௝ ൌ 𝑐𝑜𝑟𝑟൫൛ 𝑥ොଵ,௝, 𝑥ො௜,௝ … , 𝑥ො௡,௝ൟ, ൛𝑥ଵ,௝, 𝑥௜,௝, … , 𝑥௡,௝ൟ൯. ሺ5.13ሻ 

Spatial and temporal correlation scores i.e. 𝑆𝐶𝑆 and 𝑇𝐶𝑆 are then obtained as: 

𝑆𝐶𝑆 ൌ ෍൫𝑟𝑎𝑛𝑘ሺ𝑟௜ሻ൯

௡

௜ୀଵ

, ሺ5.14ሻ 
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𝑇𝐶𝑆 ൌ ෍ ቀ𝑟𝑎𝑛𝑘൫𝑟௝൯ቁ

௧

௝ୀଵ

. ሺ5.15ሻ 

The highest score indicates the best method. 

5.3 Case study: daily mean air temperature in Iran 
Our methods are applied to daily mean air temperature the Qazvin irrigation 
network located in the Qazvin plain, Iran in June from 2004 to 2014 (see 
Section 3.1). The measurements at the stations are assigned to the reanalysis 
values at the nearest grid cells. For instance, the measurements at stations 
number four and eleven are assigned to the reanalysis value at a grid cell. 
There are 150 grid cells × 11 years = 1650 reanalysis air temperatures and 24 
stations × 11 years = 264 measurements at each day of June. Missing values 
in the measurements from weather stations may occur; their number differs 
between stations and days. 

A comparison of the time-series of the measurements and reanalysis values 
revealed systematic overestimation and underestimation (Appendix 5.2, Figure 
5.7). We noted that the time-series at stations 13 and 21 have a lower 
correlation with the time-series of reanalysis air temperature than the other 
stations (Figure 5.1b). The time-series at those stations revealed that the 
quality of their measurements, in particular, their accuracy is low (Appendix 
5.2, Figure 5.7). In addition, spatial correlations between the measurements 
and reanalysis air temperature are weak at most of the days in June 2014 
(Figure 5.1a). 

This study focuses on obtaining the bias-corrected daily air temperature at 
unvisited locations at each day in June 2014. The total mean absolute bias was 
equal to 3.6°C for all stations and all days. We did not consider predicting the 
bias-corrected air temperature at an unvisited location using the mean 
absolute bias since there is both spatial and temporal variation. The MODIS 
elevations are retrieved in 22410 pixels at a spatial resolution of 1 km (see 
Section 3.1). We used the same elevations for eleven years assuming that 
elevation remains the same. 
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Figure 5.1 Correlations 𝒓𝒊  and 𝒓𝒋  that indicate temporal and spatial dependences 
between measurements and ECMWF ERA-interim reanalysis air temperature. a) 𝒓𝒊 at 
each weather station, b) 𝒓𝒋 at each day in June 2014.  

5.4 Results and discussion 

5.4.1 Marginal distributions and copulas 

Marginal distributions and copulas are estimated for each day in June 2014, 
separately. The empirical marginal distribution on the first day is shown in 
Figure 5.2. The method to estimate empirical marginal distribution is not 
unique, and a more generally applicable sensitivity analysis might help to 
explain the effects of other methods on the results. For instance, we also used 
kernel density estimation and noticed that the final results of the bias 
correction methods changed only slightly (results not shown). To assess spatial 
stationarity, a trend surface was fitted to the measurements (Appendix 5.1). 
The 𝛽ଵ parameter has p values in the range of [0.02, 0.80] with mean value 
equal to 0.19, whereas the 𝛽ଶ parameter has p values in the range of [0.02, 
0.99] with a mean value of 0.45. We were thus safe to assume spatial 
stationarity when estimating the marginal distributions.  
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Figure 5.2 Empirical marginal probabilities on June 1st. A monotone cubic spline is fitted 
to obtain the marginal distribution function. Marginal distribution functions are estimated 
at each day of June, separately.  

The parameters of five copula families and the number of data for fitting 
purposes are listed in Table 5.1. We considered the elevation as the covariate 
in MCQM-I. We found that the best fitting family was the Frank family for the 
joint distribution of the measurements and the elevation for all days and also, 
for the joint distribution of the reanalysis air temperature and the elevation for 
18 days (Table 5.1). The p values of the Cramér–von Mises statistic 𝑆௡

ሺ஻ሻ were 
larger than 0.05 for all days showing that the best fitting family is well 
describing the dependences (Table 5.1). 

We considered spatial dependences in MCQM-II. The Student’s t family 
dominates the dependences of the measurements for 14 days and the 
dependences of the reanalysis air temperature for 15 days (Table 5.1). The p 
values of The Cramér–von Mises statistic  𝑆௡

ሺ஻ሻ  and the White statistic were 
larger than 0.1 except for the Gumbel family at five days, showing that the 
best fitting family is well describing the spatial dependences (Table 5.1). The 
p values were close to zero and the best fitting family was the Gumbel family 
at days 1, 10, 17, 21 and 22. The low p values are related either to the 
limitation of the test or to the inflexibility of those five families. The p values 
were close to one for the Student’s t. 

For MCQM-III, the parameters of three bivariate copulas were estimated (Table 
5.2). Best fitting families turned out to be non-Gaussian families for most of 
the days. The p values of the Cramér–von Mises statistic 𝑆௡

ሺ஻ሻ were larger than 
0.2 for most of the days showing that the best fitting family is well describing 
the dependences. 
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Table 5.1 The p value and best fitting families in MCQM-I and MCQM-II. The copula 
families are: N=Gaussian, T=Student’s t, C=Clayton, G=Gumbel and F=Frank. Number 
of data denotes the number of marginal probabilities of each variable used for fitting 
purposes and equals to the number of weather station measurements at each day in 
June during the years 2004 to 2014.  

  MCQM-I MCQM-II 

  𝑪ሺ𝑼, 𝑾ሻ  𝑪ሺ𝑽, 𝑾ሻ 𝑪ሺ𝑼, 𝑼ି𝒊ሻ 𝑪ሺ𝑽, 𝑽ି𝒊ሻ 

Day Number 
of data p-value Best p-value Best p-value Best p-value Best 

1 226 0.36 F 0.45 F 0.99 T 0.00 G 
2 224 0.29 F 0.42 F 0.99 T 1.00 T 
3 226 0.26 F 0.32 F 1.00 T 0.99 T 
4 226 0.18 F 0.25 F 1.00 T 0.29 G 
5 226 0.31 F 0.44 F 1.00 T 0.98 T 
6 226 0.21 F 0.28 F 0.59 F 0.92 F 
7 226 0.15 F 0.33 F 0.51 F 0.98 T 
8 225 0.39 F 0.41 F 1.00 T 0.93 F 
9 226 0.28 F 0.31 N 0.44 F 0.62 F 
10 226 0.27 F 0.46 N 0.44 G 0.00 G 
11 226 0.26 F 1.00 T 0.66 G 0.93 F 
12 226 0.37 F 0.27 F 1.00 T 0.99 T 
13 226 0.29 F 0.25 F 1.00 T 1.00 T 
14 226 0.19 F 0.51 N 1.00 T 0.96 F 
15 226 0.09 F 0.45 N 1.00 T 0.98 T 
16 226 0.27 F 0.20 F 1.00 T 0.97 T 
17 226 0.17 F 0.25 F 0.40 G 0.01 G 
18 226 0.10 F 0.32 C 0.60 F 0.98 T 
19 226 0.34 F 0.37 F 0.04 C 0.96 T 
20 226 0.39 F 0.55 N 0.31 C 0.95 T 
21 226 0.27 F 0.36 N 1.00 T 0.00 G 
22 226 0.31 F 0.30 F 0.86 G 0.06 G 
23 225 0.25 F 0.35 N 0.63 F 0.99 T 
24 226 0.18 F 0.28 F 0.44 N 0.97 T 
25 226 0.07 F 0.22 N 1.00 T 0.99 T 
26 226 0.10 F 0.36 F 1.00 T 0.07 G 
27 226 0.22 F 0.50 F 0.37 F 0.98 T 
28 226 0.22 F 0.20 N 0.39 C 0.10 G 
29 226 0.21 F 0.20 F 0.64 C 0.15 G 
30 225 0.09 F 0.12 C 0.61 F 0.34 G 
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Table 5.2 The p value and best fitting family in MCQM-III. The copula density function 
𝒄𝟏 ൌ 𝒄ሺ𝑼, 𝑼ି𝒊, 𝑾ሻ consists of three bivariate copulas 𝒄𝟏𝟏 ൌ 𝒄ሺ𝑼, 𝑾ሻ, 𝒄𝟏𝟐 ൌ 𝒄ሺ𝑼, 𝑼ି𝒊ሻ and 𝒄𝟏𝟑 ൌ
𝒄ሺ𝑪ሺ𝑼ି𝒊|𝑼ሻ, 𝑪ሺ𝑾|𝑼ሻሻ . The copula density function 𝒄𝟐 ൌ 𝒄ሺ𝑽, 𝑽ି𝒊, 𝑾ሻ  consists of three 
bivariate copulas 𝒄𝟐𝟏 ൌ 𝒄ሺ𝑽, 𝑾ሻ , 𝒄𝟐𝟐 ൌ 𝒄ሺ𝑽, 𝑽ି𝒊ሻ  and 𝒄𝟐𝟑 ൌ 𝒄ሺ𝑪ሺ𝑽ି𝒊|𝑽ሻ, 𝑪ሺ𝑾|𝑽ሻሻ . The copula 
families are: N=Gaussian, T=Student’s t, C=Clayton, G=Gumbel and F=Frank. Number 
of data denotes number of marginal probabilities of each variable used for fitting 
purposes and equals to the number of weather station measurements at each day in 
June during years 2004 to 2014.  

  𝒄𝟏  𝒄𝟐 

Day Number 
of data p 𝒄𝟏𝟏 p 𝒄𝟏𝟐 p 𝒄𝟏𝟑 p 𝒄𝟐𝟏 p 𝒄𝟐𝟐 p 𝒄𝟐𝟑 

1 226 0.38 F 0.00 G 0.63 N 0.27 F 0.99 T 0.81 N 
2 224 0.40 F 1.00 T 1.00 T 0.32 F 0.99 T 0.87 N 
3 226 0.32 F 0.99 T 1.00 T 0.33 F 1.00 T 0.77 N 
4 226 0.23 F 0.26 G 0.76 N 0.25 F 1.00 T 0.76 N 
5 226 0.44 F 0.98 T 1.00 T 0.20 F 1.00 T 0.71 N 
6 226 0.36 F 0.88 F 0.67 N 0.20 F 0.63 F 0.99 T 
7 226 0.23 F 0.98 F 0.49 3 0.20 F 0.62 F 0.91 N 
8 225 0.34 F 0.90 F 0.41 N 0.37 F 1.00 T 0.85 N 
9 226 0.42 N 0.49 F 0.14 N 0.27 F 0.54 F 0.94 N 
10 226 0.48 N 0.00 G 0.44 C 0.27 F 0.35 G 0.76 N 
11 226 1.00 T 0.96 F 0.57 C 0.31 F 0.68 G 0.75 N 
12 226 0.31 F 0.99 T 0.99 T 0.20 F 1.00 T 0.62 N 
13 226 0.26 F 1.00 T 1.00 T 0.26 F 1.00 T 0.52 N 
14 226 0.42 N 0.98 F 0.56 N 0.35 F 1.00 T 0.67 N 
15 226 0.45 N 0.98 T 0.52 C 0.14 F 1.00 T 0.85 N 
16 226 0.35 F 0.97 T 1.00 T 0.27 F 1.00 T 0.91 N 
17 226 0.20 F 0.03 G 0.44 N 0.18 F 0.44 G 0.93 N 
18 226 0.35 C 0.98 T 1.00 T 0.21 F 0.64 F 1.00 T 
19 226 0.46 F 0.96 T 1.00 T 0.31 F 0.02 C 0.78 G 
20 226 0.48 N 0.95 T 1.00 T 0.29 F 0.35 C 0.65 G 
21 226 0.52 N 0.01 G 1.00 T 0.24 F 1.00 T 0.71 N 
22 226 0.32 F 0.09 G 0.59 N 0.26 F 0.83 G 0.31 N 
23 225 0.40 N 0.99 T 1.00 T 0.26 F 0.62 F 0.62 N 
24 226 0.26 F 0.97 T 1.00 T 0.22 F 0.56 N 1.00 T 
25 226 0.13 N 0.99 T 0.51 C 0.11 F 1.00 T 0.70 N 
26 226 0.29 F 0.04 G 0.51 C 0.08 F 1.00 T 1.00 T 
27 226 0.39 F 0.98 T 0.99 T 0.27 F 0.40 F 0.88 N 
28 226 0.15 N 0.12 G 0.57 C 0.24 F 0.27 C 0.75 G 
29 226 0.22 F 0.12 G 0.52 N 0.18 F 0.62 C 0.75 G 
30 225 0.23 C 0.38 G 0.64 N 0.20 F 0.54 F 0.99 T 

5.4.2 Bias-corrected values 

In the following, we present the bias-corrected values at the first station for all 
days in June 2014 (Figure 5.3) and at 1st June 2014 for all grid cells in the 
study area (Figure 5.4). Detailed comparisons for all days and all grid cells are 
given in appendix 5.2.   

Time-series of the bias-corrected values obtained by MCQM-I at the first station 
(Figure 5.3a) showed that MCQM-I successfully corrects for bias at most of the 
days as well as the days with high extremes in comparison with time-series 
obtained by QM (Figure 5.3d). Mean absolute bias was equal to 4.52 ºC at this 
station. Mean absolute error and mean absolute prediction error were equal to 
1.46ºC and 1.40ºC for MCQM-I, whereas for QM they were equal to 2.84ºC 
and 2.82ºC, respectively. MCQM-I resulted in a heterogeneous map at June 1st 
2014 (Figure 5.4c) in comparison with the map obtained by QM (Figure 5.4f). 
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The spatial variation obtained by QM was similar to the spatial variation of the 
reanalysis air temperature as shown in Figure 4.7b due to the assumption of a 
perfect dependence between variables in QM. The visual comparison of the 
spatial variation of the elevation (see Chapter 3, Figure 3.3) with the spatial 
variation of the map obtained by MCQM-I (Figure 5.4c) revealed that this 
method was able to describe the covariability between the air temperature and 
the elevation. Mean absolute bias was equal to 2.83ºC at this day. Mean 
absolute error and mean absolute prediction error were equal to 2.07ºC and 
1.55ºC for MCQM-I, whereas for QM they were equal to 2.62ºC and 1.93ºC, 
respectively.  

 
Figure 5.3 Time-series of the daily mean air temperature obtained from: weather 
stations, ECMWF ERA-interim reanalysis data, and bias correction methods at the first 
station in June 2014. a) MCQM-I, b) MCQM-II, c) MCQM-III, and d) QM. The vertical axis 
is daily mean air temperature. 

Time-series of the bias-corrected values obtained by MCQM-II at the first 
station (Figure 5.3b) showed that MCQM-II successfully corrects for bias at 
most days except for days with extreme temperature in comparison with time-
series obtained by MCQM-I and QM (Figure 5.3a and Figure 5.3d). Mean 
absolute error and mean absolute prediction error were equal to 2.62ºC and 
2.67ºC for MCQM-II at this station, whereas for QM they were equal to 2.84ºC 
and 2.82ºC, respectively. MCQM-II resulted in a more heterogeneous map at 
June 1st, 2014 (Figure 5.4d) than the maps obtained by MCQM-I and QM 
(Figure 5.4c and Figure 5.4f). Mean absolute error and mean absolute 
prediction error were equal to 2.66ºC and 2.15ºC for MCQM-II at this day, 
whereas for QM they were equal to 2.62ºC and 1.93ºC, respectively. 

Time-series of the bias-corrected values obtained by MCQM-III (Figure 5.3c) 
at the first station showed that MCQM-III performed better than MCQM-I 
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(Figure 5.3a) in correcting for bias at most days except for the days with 
extremes. Mean absolute error and mean absolute prediction error were equal 
to 1.77ºC and 1.68ºC for MCQM-III at this station, whereas for QM they were 
equal to 2.84ºC and 2.82ºC, respectively. The Figure 5.4e showed that MCQM-
III resulted in a heterogeneous map as compared with the maps obtained by 
other methods at June 1st, 2014. Mean absolute error and mean absolute 
prediction error were equal to 2.36ºC and 1.84ºC for MCQM-III at this day, 
whereas for QM they were equal to 2.62ºC and 1.93ºC, respectively. 

 
Figure 5.4 Daily mean air temperature obtained from: a) weather stations, b) ECMWF 
ERA-interim reanalysis data, and the bias correction methods at June 1st 2014; c) MCQM-
I, d) MCQM-II, e) MCQM-III, and f) QM. For experimentation in our study, a sample 
subset of 10 × 15 grid cells of ECMWF dataset is selected at a spatial resolution of 0.125º 
Lat/Long. 

5.4.3 Evaluation and comparison  

Leave-K-out cross-validation was carried out where K has values in the range 
of one to 11 denoting the number of measurements from a weather station at 
one day for 11 years. MCQM-III was superior to MCQM-I, MCQM-II, and QM as 
shown by 𝑀𝐴𝐸 (Table 5.3). The average of absolute bias was equal to 3.6°C 
whereas 𝑀𝐴𝐸 were slightly above 2°C. SES showed that MCQM-I resulted in 
more precise predictions in time, i.e., 30 days in June (Table 5.3, second 
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column) whereas TES indicated that MCQM-III resulted in more precise 
predictions in space (Table 5.3, third column). To extend the evaluation of the 
bias correction methods beyond the cross-validation, we can perform a random 
split sampling validation in a well-monitored study area. It allows potentially 
more reliable uncertainty assessments. It is, however, beyond the scope of 
this paper. We treated the available measurements as benchmarks during the 
cross-validation. The horizontal distances, height differences and differences 
in land cover between the location of a station and the centre of a grid cell is 
associated with uncertainties.  

Table 5.3 Total mean absolute error (MAE), spatial error scores (SES), temporal error 
scores (TES), spatial correlation scores (SCS), and temporal correlation scores (TCS), 
obtained by the quantile mapping (QM), and the multivariate quantile mappings (MCQM-
I, MCQM-II and MCQM-III). The underlined values denote the best method.  

Method MAE SES TES SCS TCS 

MCQM-I 2.23 51 58 77 85 

MCQM-II 2.40 63 88 46 65 

MCQM-III 2.13 54 38 61 112 

QM 2.68 72 116 56 38 

 

MCQM-I resulted in stronger correlations in time as shown by SCS (Table 5.3, 
fourth column) and correlations 𝑟௜ (Figure 5.5b) whereas MCQM-III resulted in 
more strong correlations in space as shown by TCS (Table 5.3, last column) 
and correlations 𝑟௝ (Figure 5.5a). A comparison based upon TCS showed that 
the new methods perform better than QM in correcting reanalysis air 
temperature at unvisited locations in a data-scarce area. It further revealed 
that MCQM-II including only one nearest neighbour was unable to represent 
the spatial variation of daily air temperature. In order to do so, MCQM-II needs 
to be extended towards more nearest neighbours allowing the use of a 
correlogram. A correlogram, however, faces the balancing issue between the 
number of spatial bins and the number of observations. The effect of the 
number of nearest neighbours on MCQM-II needs to be further investigated in 
a well-monitored area. Correlations 𝑟௝ and 𝑟௜ between the measurements and 
bias-corrected values obtained by QM were close to the correlations between 
the measurements and the reanalysis values (Figure 5.5a and Figure 5.5b). 
This was expected because of the assumption of a perfect dependence between 
variables in QM (see Section 5.2.3).  
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Figure 5.5 Correlations 𝒓𝒊  and 𝒓𝒋  that indicate temporal and spatial dependences 
between measurements and bias-corrected values, and between measurements and 
ECMWF ERA-interim reanalysis data. a) 𝒓𝒋  at each day in June 2014, b) 𝒓𝒊  at each 
weather station.  

The previous comparisons showed the performance of the methods based upon 
an individual criterion. To evaluate the performance based upon all criteria, we 
ranked the methods in each column of Table 5.3 where the lowest rank value 
denotes the best method (Table 5.4). Then, the overall score based upon the 
sum of the rank values showed that MCQM-I, MCQM-II, and MCQM-III reduced 
bias with 58%, 16% and 63%, respectively as compared with QM (Table 5.4).  

A practical advantage of MCQM-III is that it predicts the spatial variation of the 
bias-corrected air temperature maps in a data-scarce area (Appendix 5.2, 
Figure 5.8). The use of MCQM-III, however, is limited to the availability of the 
covariate at unvisited locations. We applied MCQMs to correct for bias in 
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reanalysis air temperature, highlighting the potential of the methods for other 
weather data. Further comparison to other bias correction methods e.g. triple 
collocation analysis (Stoffelen 1998) might help to assess the performance of 
MCQMs. 

Table 5.4 Overall score based upon Table 5.3. The methods are ranked based upon each 
criterion, i.e., each column in Table 5.3 where the lowest rank value denotes the best 
method. Then, an overall score based upon the sum of the rank values is obtained for 
each method. The underlined value denotes the best method. 

Method 
Rank value based on 

Overall score 
MAE SES TES SCS TCS

MCQM-I 2 1 2 1 2 8 

MCQM-II 3 3 3 4 3 16 

MCQM-III 1 2 1 2 1 7 

QM 4 4 4 3 4 19 

5.5 Conclusions 
This study addressed bias correction in ECMWF reanalysis air temperature 
using its covariates in a data-scarce area. We developed three multivariate 
copula quantile mappings to do so. We concluded the following:  

 The new methods are beneficial for the local refinement of reanalysis 
weather data at grid cells without weather station measurements.  

 The new methods are advantageous as they can treat covariability, i.e., 
both weather data and covariates, and hence increase the precision of the 
mapping.  

We see two ways to further extend the current study. First, we selected the 
number and type of covariates based upon our experience. A more general 
sensitivity analysis might help to show the effects of other covariates, e.g., 
land surface temperature and land cover. Second, it might be of interest to 
study the ability of the new methods to reproduce other statistical moments of 
the theoretical marginal distribution of air temperature. This could help to 
further model extremes in air temperature. 
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Appendix 5.1 Evaluating the stationarity assumption 
To test for the assumption of second-order stationarity, we considered the null 
hypothesis 𝐻଴ as:  

𝐸ሾ𝑋௜ሿ ൌ µ, ሺ5.16ሻ 

where 𝑋௜ is  a random variable at location 𝑖 and E[] denotes the mathematical 
expectation. The alternative hypothesis 𝐻ଵ is that there is a trend of degree 
one as:  

𝐸ሾ𝑋௜ሿ ൌ 𝛽଴ ൅ 𝛽ଵ. 𝑥௜
ᇱ ൅ 𝛽ଶ. 𝑦௜

ᇱ, ሺ5.17ሻ 

where 𝑥௜
ᇱ  and 𝑦௜

ᇱ  are coordinates of location 𝑖  and the 𝛽௝  denote regression 
parameters. The parameters are estimated using a generalised linear model 
followed by their p values from a t test. We applied this trend to the 
measurements from 24 weather stations at each day of June 2014. The values 
of 𝛽ଵ and 𝛽ଶ were found to be not significantly different from zero, with their p 
values above 0.05 at most of the days (Figure 5.6). At the six days (out of 30 
days) when the p value was below 0.05, it was still above 0.01. Based on this 
evidence, and the limited effects of including non-stationarity, we felt confident 
to assume stationarity.  

 
Figure 5.6 p values of the mean parameter in the trend analysis.   



Multivariate copula quantile mapping for bias correction  

80 

Appendix 5.2 Predictions in time and space 
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Figure 5.7 Time-series of the daily air temperature obtained from: weather stations, 
ECMWF ERA-interim reanalysis data, and bias correction methods, at each station in June 
2014. The vertical axis is the daily mean air temperature. The number on each graph 
denotes the weather station number.  
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Figure 5.8 Daily mean air temperature obtained from: weather stations, ECMWF ERA-
interim reanalysis data, and bias correction methods, at each day in June 2014. For 
experimentation in this study, a sample subset of 10 × 15 grid cells of ECMWF dataset 
is selected at a spatial resolution of 0.125º Lat/Long.  

  



Multivariate copula quantile mapping for bias correction  

86 

 

 



 

87 

Chapter 6: Copula-based interpolation 
methods using collocated covariates 
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Abstract  
This paper introduces two copula-based interpolation methods to produce air 
temperature maps in a data-scarce area: a spatial copula interpolator including 
covariates, and a mixed copula interpolator. The methods allow a construction 
of the conditional distribution of air temperature given the collocated 
covariates. Our study compared the new methods with the spatial copula 
interpolator, the ordinary kriging predictor and the co-kriging predictor. Daily 
mean air temperature was used from weather stations and ERA_Interim 
reanalysis weather data at 174 locations in the Qazvin Plain, Iran. Spatial 
copula interpolator including covariates resulted in more precise predictions as 
shown by leave-two-out cross-validation. Visual inspection of air temperature 
maps demonstrated that the new methods well represented spatial variability 
of air temperature at a spatial resolution of 1 km. The results showed an 
improved performance of the new methods to describe both spatial variability 
and covariability between variables. The methods are potentially useful for 
other sparsely and irregularly distributed weather data. 
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copula, interpolation, covariate, data scarce, air temperature 
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Structure of the chapter 

After an introduction in section 6.1, the copula-based interpolation methods 
are presented in section 6.2, the study area and data are introduced in section 
6.3, the results are described in section 6.4, and the discussion and conclusion 
are in section 6.5.  
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6.1 Introduction 
A copula is a multivariate joint distribution that describes the dependence 
structure between variables (Nelsen, 2006). The joint distribution is estimated 
using a distribution family that can be different from the family of the marginal 
distributions of the involved variables. An appealing property of a copula in 
describing spatial dependences is that its parameter is estimated by means of 
a correlogram that describes dependences based upon the correlation between 
marginals (Oden, 1984; Gräler and Pebesma, 2011). The purpose of copula-
based interpolation methods is to predict the marginal probability at an 
unvisited location given the marginal probabilities of the nearest neighbours.  

Recently, several studies have assessed the performance of copula-based 
interpolation methods and compared with kriging methods (Bárdossy and Li, 
2008; Haslauer et al., 2016; Heißerer et al., 2016; Durocher et al., 2016). 
Gräler and Pebesma (2011) investigated the application of a multivariate 
copula that models spatio-temporal random fields using vine structures in 
interpolation of daily mean PM10 measurements. Gräler (2014) demonstrated 
the potential of spatio-temporal copula interpolation with a single covariate. 

This study focuses on mean air temperature. The use of these data in 
hydrological models, e.g., crop growth simulations for assessing crop water 
requirement has been the key to support irrigation management. Application 
of hydrological models at unvisited locations remains a challenge because 
weather stations are usually sparse and located at irregular positions. A 
solution to this problem is to use gridded air temperature data from a weather 
forecast system. The coarse spatial resolution of those data, however, is a 
source of uncertainty because of the spatial variability at local scales (Aalto et 
al., 2013). Hence, interpolation has to take place to predict air temperature at 
unvisited locations.   

Kriging is a well-established interpolation method (Cressie, 1993). Since the 
twentieth century, a variety of methods has been developed. To predict air 
temperature values at a spatial resolution of 1 km, typical examples are spatio-
temporal regression-kriging with incorporation of remote sensing images 
(Hengl et al., 2012), generalized additive models (Aalto et al., 2013), and 
residual kriging and regression kriging methods using auxiliary maps (Wu and 
Li, 2013; Kilibarda et al., 2014).  Parmentier et al. (2015) compared universal 
kriging, generalized additive models and geographically weighted regression. 
Kilibarda et al. (2014) showed the effect of daily land surface temperature on 
both minimum and maximum air temperature variability.  

With the aim to improve prediction of air temperature in a data-scarce area, 
we present two interpolation methods based upon copulas: a spatial copula 
interpolator including covariates, and a mixed copula interpolator. The first 
method considers two types of dependences: spatial dependences of air 
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temperature at a single location and its nearest neighbours, and non-spatial 
dependences between air temperature and its collocated covariates at that 
location. The second extends the first method by including the non-spatial 
dependences of air temperature and its collocated covariates at the nearest 
neighbours. The two methods are compared with the spatial copula 
interpolator, the ordinary kriging and co-kriging predictors.  

6.2 Interpolation methods 

6.2.1 Spatial copula interpolator  

Let 𝑓ሺ𝑋|𝑋 ൌ 𝑥ଵ, … , 𝑋 ൌ 𝑥௡ሻ be the conditional density distribution of the variable 
𝑋  at an unvisited location conditioned on its 𝑛  nearest neighbours. The 
conditional expectation is the optimal predictor to derive the value of the 
variable 𝑋 at an unvisited location, denoted by 𝑥ො଴. It can be shown that it 
minimizes the Bayes risk (Cressie, 1993). The conditional expectation can be 
either linear or nonlinear in  𝑋 and it can be written using the conditional copula 
density function 𝑐ሺ𝑈|𝑈 ൌ 𝑢ଵ, … , 𝑈 ൌ 𝑢௡ሻ as: 

𝑥ො଴ ൌ 𝐸ሾ𝑋|𝑋 ൌ 𝑥ଵ, … , 𝑋 ൌ 𝑥௡ሿ ൌ න 𝑥 ∙ 𝑓ሺ𝑋|𝑋 ൌ 𝑥ଵ, … , 𝑋 ൌ 𝑥௡ሻ𝑑𝑥
௫

ൌ න 𝐹ିଵሺ𝑢ሻ ∙ 𝑐ሺ𝑈|𝑈 ൌ 𝑢ଵ, … , 𝑈 ൌ 𝑢௡ሻ𝑑𝑢
ଵ

଴
, ሺ6.1ሻ

 

where 𝐹  is the marginal cumulative distribution function, i.e., 𝑢 ൌ 𝐹ሺ𝑥ሻ 
(Bárdossy and Li, 2008). The predictor has two main parts: a marginal 
distribution 𝐹ሺ. ሻ and a multivariate copula 𝑐ሺ. |. ሻ. The last equality in (1) can be 
proven by: 

𝑓ሺ𝑋|𝑋 ൌ 𝑥ଵ, … , 𝑋 ൌ 𝑥௡ሻ ൌ
𝑓ሺ𝑥଴, … , 𝑥௡ሻ

𝑓ሺ𝑥ଵ, … , 𝑥௡ሻ
ൌ

𝑐ሺ𝑢଴, … , 𝑢௡ሻ ∙ 𝑓ሺ𝑥଴ሻ ∙ … ∙ 𝑓ሺ𝑥௡ሻ

𝑐ሺ𝑢ଵ, … , 𝑢௡ሻ ∙ 𝑓ሺ𝑥ଵሻ ∙ … ∙ 𝑓ሺ𝑥௡ሻ
ൌ

𝑐ሺ𝑈|𝑈 ൌ 𝑢ଵ, … , 𝑈 ൌ 𝑢௡ሻ ∙ 𝑓ሺ𝑥଴ሻ ൌ 𝑐ሺ𝑈|𝑈 ൌ 𝑢ଵ, … , 𝑈 ൌ 𝑢௡ሻ ∙
𝑑𝑢
𝑑𝑥

, ሺ6.2ሻ
 

where 𝑐ሺ𝑢଴, … , 𝑢௡ሻ and 𝑐ሺ𝑢ଵ, … , 𝑢௡ሻ are the copula density functions. The choice 
of a Gaussian distribution for  f  in ሺ6.1ሻ leads to a linear predictor that is the 
equivalent to the simple kriging predictor (Cressie, 1993). Such a predictor is 
able to capture extremes if it is based upon local nearest neighbours rather 
than a large set of neighbouring observations. 

Following section 2.2, the joint density function 𝑐ሺ𝑢଴, … , 𝑢௡ሻ  with m=n+1 
variables, it is decomposed into m.(m-1)/2 bivariate copulas (Gräler, 2014) 
based on a canonical vine or C-vine structure (Aas et al., 2009). For m=3, 
𝑐ሺ𝑢଴, 𝑢ଵ, 𝑢ଶሻ is decomposed as  

𝑐ሺ𝑢଴, 𝑢ଵ, 𝑢ଶሻ ൌ 𝑐ሺ𝑢଴, 𝑢ଵሻ ൈ 𝑐ሺ𝑢଴, 𝑢ଶሻ ൈ 𝑐ሺ𝐶ሺ𝑢ଵ|𝑢଴ሻ, 𝐶ሺ𝑢ଶ|𝑢଴ሻሻ, ሺ6.3ሻ 
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where 𝐶ሺ. |. ሻ  is the conditional copula. The first tree in the vine structure 
consists of spatial bivariate copulas, e.g., 𝑐ሺ𝑢଴, 𝑢ଵሻ ൈ 𝑐ሺ𝑢଴, 𝑢ଶሻ , taking the 
influence of the neighbours into account. The parameter of the spatial bivariate 
copula is obtained from the correlogram obtained with binned data pairs 
(Gräler, 2014). Pairs with distances larger than the distance in last spatial bin 
are considered independent and are described by the Product copula family 
(Nelsen, 2006). A polynomial of degree two fitted to Kendall’s  values 
estimates the correlation function. The remaining trees in the vine structure 
consist of non-spatial bivariate copulas, e.g., 𝑐ሺ𝐶ሺ𝑢ଵ|𝑢଴ሻ, 𝐶ሺ𝑢ଶ|𝑢଴ሻሻ.  

6.2.2 The spatial copula interpolator including covariates 

To introduce the spatial copula interpolator including covariates, we consider 
one variable 𝑋 and two covariates, e.g., 𝑌 and 𝑍. The aim is to predict 𝑥ො଴ with 
a finite sample of 𝑋. Samples of 𝑌 and 𝑍 are available at all locations. The 
conditional copula density function in ሺ6.1ሻ  is then written as 
𝑐ሺ𝑈|𝑈 ൌ 𝑢ଵ, … , 𝑈 ൌ 𝑢௡, 𝑉 ൌ 𝑣଴, 𝑊 ൌ 𝑤଴ሻ, where 𝑣଴ ൌ 𝐹௒ሺ𝑦଴ሻ, 𝑤଴ ൌ 𝐹௓ሺ𝑧଴ሻ, ଴ denotes 
an unvisited location, 𝐹௒  and 𝐹௓  are marginal distribution functions of the 
covariates. The mean predictor in ሺ6.1ሻ equals: 

𝑥ො଴ ൌ න 𝐹ିଵሺ𝑢ሻ ∙ 𝑐ሺ𝑈|𝑈 ൌ 𝑢ଵ, … , 𝑈 ൌ 𝑢௡, 𝑉 ൌ 𝑣଴, 𝑊 ൌ 𝑤଴ሻ𝑑𝑢
ଵ

଴
. ሺ6.4ሻ 

By conditioning on 𝑉 and 𝑊, the collocated covariates at an unvisited location, 
i.e., 𝑣଴ and 𝑤଴ are incorporated to the predictor. The conditional distribution 
can be extended to higher dimensions by including more than two covariates 
in a straightforward way.   

In this study, we will use the empirical marginal probability 𝑢௜ at location 𝑖 is 
defined using the following rank-order-transformation 𝑢௜  ൌ

୰ୟ୬୩ሺ௫೔ሻ

ேାଵ
,  where N 

denotes the total number of observations. A similar transformation is also 
applied to 𝑦௜  and 𝑧௜ . The empirical marginal distribution avoids using the 
theoretical marginal distributions that might affect the estimation of copula 
parameter. By means of kernel density estimation, a continuous approximation 
of the marginal distribution F is obtained under the assumption of stationary 
(Silverman 1986). Note that the empirical probabilities are limited to 
observations and therefore, the interpolation methods are unable to predict 
extreme values outside the range of the observations. 

6.2.3 Mixed copula interpolator 

Next we introduce the second method, the mixed copula interpolator. The 
conditional distribution of 𝑋 conditioned on 𝑌 and 𝑍 at location i is equal to 
𝐶ሺ𝑈|𝑉 ൌ 𝑣௜, W ൌ 𝑤௜ሻ, where 𝐶 is a conditional copula, 𝑣௜ ൌ 𝐹௒ሺ𝑦௜ሻ and 𝑤௜ ൌ 𝐹௓ሺ𝑧௜ሻ. 
The conditional probability 𝑝௜ equals:  



Copula-based interpolation methods using collocated covariates 

92 

𝑝௜ ൌ 𝐶ሺ𝑢௜|𝑉 ൌ 𝑣௜, W ൌ 𝑤௜ሻ. ሺ6.5ሻ 

The conditional copula 𝐶 is estimated in a similar way for the spatial copula 
interpolator including covariates. The conditional probability 𝑝௜ is used as the 
probability of nearest neighbour 𝑖 for copula in ሺ6.4ሻ and the final form of the 
predictor equals:  

𝑥ො଴ ൌ න 𝐹ିଵሺ𝑢ሻ ∙ 𝑐ሺ𝑈|𝑈 ൌ 𝑝ଵ, … , 𝑈 ൌ 𝑝௡, 𝑉 ൌ 𝑣଴, 𝑊 ൌ 𝑤଴ሻ𝑑𝑢
ଵ

଴
. ሺ6.6ሻ 

Hence, the collocated covariates at the nearest neighbour, i.e., 𝑦௜ and 𝑧௜ are 
incorporated into the predictor. The conditional distribution can be extended to 
higher dimensions for including more than two covariates.   

6.2.4 Comparison and evaluation of the interpolation methods 

We compare the spatial copula interpolator including covariates ሺ6.4ሻ and the 
mixed copula interpolator ሺ6.6ሻ, with the spatial copula interpolator ሺ6.1ሻ, the 
ordinary kriging predictor (Cressie, 1993) and the co-kriging predictor (Stein 
and Corsten, 1991). We treat available observations from n weather stations 
as benchmarks for leave-k-out cross-validation to quantify the performance of 
the interpolation methods. To this end, k stations are removed from the n 
weather stations and predictions 𝑥ො௜, 𝑖 ൌ 1, . . , 𝑘 are obtained using observations 
from the reminder of the stations. Each interpolator is then applied on 𝑚 ൌ

௡!

௞!ሺ௡ି௞ሻ!
 replications of dependence structures. The mean absolute error (MAE) 

and error score (ES) (Durai and Bhradwaj 2014) are determined as:  

𝑀𝐴𝐸 ൌ
1
𝑚

෍  ሺ 
1
𝑘

 ෍  |𝑥௜௝ െ 𝑥ො௜௝|ሻ

௞

௜ୀଵ

௠

௝ୀଵ

, ሺ6.7ሻ 

𝐸𝑆 ൌ 𝑟𝑎𝑛𝑘ሺ𝑀𝐴𝐸ሻ, ሺ6.8ሻ 

for each method. The smallest ES indicates the best interpolator. The overall 
prediction quality depends upon a good estimation of the copula and the 
marginal distributions as well as the number of the observations.  

The coverage of 90%, 95% and 99% prediction intervals from the conditional 
distributions 𝐹ሺ𝑋|. ሻ are investigated at each weather station. The number of 
observed values that fall in the intervals provides insight into the performance 
of the copula-based methods. This should be interpreted with care, because 
the type and number of covariates can be different in the copula-based 
methods. In addition, spatial variation of mean and standard deviation of the 
conditional distributions are compared at each weather station. 

A 95% prediction interval width (PIW) at an unvisited location is obtained as 
𝑃𝐼𝑊଴ ൌ 𝐹ିଵ൫𝐶ିଵሺ0.975|. ሻ൯ െ 𝐹ିଵ൫𝐶ିଵሺ0.025|. ሻ൯,  describing the uncertainty of the 
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predictions (Li, 2010). The kriging methods result in the prediction error 
variance 𝑠଴

ଶ  (Cressie, 1993; Kutner et al., 1996). A 95% PIW at unvisited 
location under the assumption of a Gaussian joint distribution is obtained as 
𝑃𝐼𝑊଴ ൌ ሺ 𝑥ො଴ ൅ 1.96 ∙ 𝑠଴ ሻ െ ሺ 𝑥ො଴ െ 1.96 ∙ 𝑠଴ሻ.  

The methods were implemented in R using the packages gstat (Pebesma, 
2004), copula (Kojadinovic and Yan, 2010), spcopula (Gräler and Pebesma, 
2011), and VineCopula (Brechmann and Schepsmeier, 2013). We contributed 
to spcopula and VineCopula packages in R to interpolate the random field 
spatially including more than one covariate. 

6.3 Application: mean air temperature in Iran  
We applied the interpolation methods to mean air temperature in the Qazvin 
plain, Iran on June 6th and 22nd 2014 denoted by 𝑑଺ and 𝑑ଶଶ, respectively (see 
Section 3.1). These two days were selected as these were Landsat 8 overpass 
days and thus provided three covariates for the 19 of the 24 weather stations: 
land surface temperature (LST), leaf area index (LAI) and SRTM elevation (see 
Section 3.1). Five weather stations were outside the coverage of Landsat 8 
images (Zanter, 2016). Investigating the correlations (Table 6.1), we ignored 
LST as a covariate at 𝑑ଶଶ. The covariates are at different spatial resolutions. 
Throughout we maintained a resolution of 1 km that represents spatial 
variation of air temperature (Figure 6.1). 

Table 6.1 Correlations between mean air temperature and its covariates on d6 and d22. 
The temperature values are the combination of bias-corrected values and measurements 
from weather stations. The covariates are elevation, land surface temperature (LST) and 
leaf area index (LAI).  
 Elevation LST LAI 
Mean air temperature on d6 -0.25 0.24 -0.23 
Mean air temperature on d22 -0.26 -0.02 -0.23 



Copula-based interpolation methods using collocated covariates 

94 

 
Figure 6.1 Three covariates for air temperature at a resolution of 1km. a) LST and b) 
LAI are obtained using Landsat 8 bands. c) Surface elevation is obtained from the SRTM 
dataset. The areas A1, A2 and A3 are selected to investigate the covariability of the air 
temperature. 

We defined bias as a systematic overestimation and underestimation of 
reanalysis weather data with respect to measurements (Persson, 2013; Mao 
et al., 2015). The average bias for all stations equals 3.9°C and 3.4°C at 𝑑଺ 
and 𝑑ଶଶ , respectively. We applied a bias correction method to obtain bias 
corrected values (Alidoost and Stein, 2016). A two-sample Kolmogorov-
Smirnov test was performed of the null hypothesis that measurements 
and bias corrected values are drawn from the same distribution. The p values 
were equal to 0.22 and 0.65 at 𝑑଺ and 𝑑ଶଶ, respectively, did not reject the null 
hypothesis. Based upon these results, we used a combination of measurements 
and the bias-corrected values as observations for fitting purposes in the 
interpolation methods (Figure 6.2).   
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Figure 6.2 Spatial variation of mean air temperature at 174 locations from the weather 
stations and the bias corrected reanalysis weather data on d6 (a) and d22 (b). 

6.4 Results  

6.4.1 Distribution of the observations 

The empirical marginal distribution is shown in Figure 6.3. The number of 
observations in the tails of the distributions was low, i.e., there were two 
extremes in the upper tail at 𝑑଺ and one in the lower tail at 𝑑ଶଶ (Figure 6.3). 
For copula-based interpolators, in contrast to kriging predictors, it is a 
challenge to estimate a skewed marginal distribution with two extreme values 
out of 174 observations. They are not able to predict the extremes in leave-k-
out cross validation for k  2. Hence, the marginal distribution function has to 
be well estimated.  

Figure 6.4 shows the fit to Kendall’s  values in the correlogram for six and five 
spatial bins at 𝑑଺ and 𝑑ଶଶ, respectively. Apparently, the correlogram changes 
over the range of [-0.2, 0.7] describing the positive and negative dependences. 
The Student t and Clayton copulas are selected according to the lowest AIC 
values at each bin at 𝑑଺ whereas Student t and Gumbel copulas are selected at 
𝑑ଶଶ.  
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Figure 6.3 Empirical marginal probabilities obtained on d6 and d22. The empirical 
marginal distribution function is obtained using kernel density estimation. 

 
Figure 6.4 Kendall’s  is obtained using observations at 174 locations on d6 and d22 . A 
polynomial function is fitted to obtain  at each distance. The parameters of five spatial 
bivariate copulas are then estimated by maximum likelihood. The best fitting copula is 
selected according to the lowest AIC values at each bin.  

The multivariate distributions were estimated using the C-vine structures and 
the conditional cumulative probabilities 𝐹ሺ𝑋|. ሻ  for 19 weather stations are 
shown in Figure 6.5. The number of observed values that fall within the 90%, 
95% and 99% prediction intervals for spatial copula interpolator using 
covariates were equal to 15, 17 and 19 whereas for mixed copula interpolator 
were equal to 14,17 and 18, respectively (Table 6.2). Hence, it showed a good 
performance of the methods in fitting of the distributions. 

For the ordinary kriging, the variogram is obtained for the same number of 
spatial bins as the correlogram, followed by fitting a Gaussian variance function 
to the variogram of the mean air temperature (Figure 6.6). We applied the co-
kriging in this study based upon the proportional model using the same 
variance and covariance functions. Gaussian covariance functions were fitted 
to cross variograms obtained for air temperature and its covariates. 
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Table 6.2 The number of observed values that fall in the 90%, 95% and 99% prediction 
intervals of the conditional cumulative probabilities 𝑭ሺ𝑿|. ሻ for 19 weather stations on d6. 
The observed values are the measurements from weather stations. The covariates are 
elevation, land surface temperature (LST) and leaf area index (LAI). 

 Prediction interval 
 90 95 99 

Spatial copula interpolator using covariates 15 17 19 
Mixed copula interpolator 14 17 18 
Spatial copula interpolator 15 19 19 

 

 
Figure 6.5 a) The conditional cumulative probabilities 𝑭ሺ𝑿|. ሻ for 19 weather stations and 
the spatial variation of b) mean and c) standard deviation of the conditional distributions 
of the predictions on d6. The observed values in the conditional cumulative distributions 
are denoted by black dots.  

 
Figure 6.6 The variogram obtained on d6 and d22 for the same number of spatial bins as 
the correlogram. A Gaussian variogram model is fitted.   
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6.4.2 Evaluation and comparison  

For the leave-k-out cross-validation, we took k=2 due to low number of the 
weather stations. The spatial copula interpolator including covariates resulted 
into the lowest MAE using different covariates at the two days (Table 6.3). The 
ES shows that the spatial copula interpolator including covariates improved 
predictions of the mean air temperature with 58% comparing with the co-
kriging predictor (Table 6.3). In addition, cross-validation showed that the use 
of LAI as a covariate resulted into more precise predictions. 

Table 6.3 Cross-validation expressed as the mean absolute error (MAE) obtained by the 
spatial copula interpolator using covariates, the mixed copula interpolator, the spatial 
copula interpolator, the ordinary kriging predictor, and the co-kriging predictor. The 
leave-two-out cross-validation is done for combinations of the covariates, i.e., elevation 
(E), land surface temperature (LST) and Leaf area index (LAI) at two days. To compare 
the five methods, an error score (ES) is obtained based upon MAE for each method. The 
smallest ES indicates the best interpolator.  

Day Covariate 

Spatial 
copula 

interpolator 
using 

covariates 

Mixed 
copula 

interpolator 

Spatial 
copula 

interpolator 

Ordinary 
kriging 

Co-
kriging 

6 

E 1.550 1.669 1.555 1.597 1.598 
LAI 1.503 1.525 1.555 1.597 1.595 
LST 1.557 1.611 1.555 1.597 1.599 

E, LAI 1.480 1.633 1.555 1.597 1.596 
E, LST 1.529 1.654 1.555 1.597 1.598 

LST, LAI 1.531 1.735 1.555 1.597 1.599 
E, LST, LAI 1.551 1.833 1.555 1.597 1.597 

22 
E 1.390 1.365 1.378 1.328 1.330 

LAI 1.291 1.308 1.378 1.328 1.328 
E, LAI 1.301 1.360 1.378 1.328 1.331 

ES  15 41 28 30 36 

6.4.3 Prediction   

For making predictions, we considered n = 8 nearest neighbours and three 
covariates at 𝑑଺. The mixed copula interpolator was able to capture extremes 
(Figure 6.7.b) in contrast to the spatial copula interpolator including covariates 
(Figure 6.7.a). The vegetated and non-vegetated areas based upon LAI, and 
highest and lowest elevated areas (Figure 6.1) are interesting areas to consider 
to which degree the new interpolation methods take the spatial variation of 
covariates into account. The new methods resulted in the most heterogeneous 
map and, visually, more realistic spatial patterns than the kriging methods and 
the spatial copula interpolator, whereas the latter was more heterogeneous 
(Figure 6.7.c) than the map obtained by the kriging predictors (Figure 6.7.d 
and Figure 6.7.e). We further note that a low number of spatial bins leads to 
unrealistic spatial patterns as shown in Figure 6.7.  
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The boxplots (Figure 6.8) shows that copula-based methods well represent the 
mean values of the observations. The issue of failing to represent extremes 
using copula-based methods is related to the low number of observations in 
the tails of the marginal distribution. The ranges of 95% PIW for copula-based 
methods are equal to [0.6, 12.6]°C whereas for kriging methods are equal to 
[4.9, 6.3] °C (Figure 6.9). 

The spatial variation of the mean and standard deviation of the conditional 
distributions (Figure 6.5) shows that there is no reason to assume any lack of 
homogeneity. In fact, any pattern in the standard deviations would indicate 
such lack of homogeneity. Values, however, are relatively low as compared to 
the standard deviation of the observations (2.9°C). A few relatively high values 
occur in the centre of the study area. These are caused by the presence of 
extreme values at locations covered by the same pixels.  

 
Figure 6.7 Daily mean air temperature predicted at a spatial resolution of 1 km on d6 
based upon a) the spatial copula interpolator including covariates, b) the mixed copula 
interpolator, c) the spatial copula interpolator, d) the ordinary kriging predictor, e) the 
co-kriging predictor for a neighbourhood of eight locations. The circled areas denote 
squares as artefacts that represent the unrealistic spatial patterns. The areas A1, A2 and 
A3 as shown in Figure 6.1, are examples where the covariability becomes apparent in 
the results of the new methods.  
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Figure 6.8 Boxplots comparing the observations (a) with predicted values by: b) the 
spatial copula including three covariates, c) the mixed copula, and d) the spatial copula 
interpolator. Here, observations are a combination of bias-corrected values and 
measurements from the weather stations on d6 and d22. 

 
Figure 6.9 95% prediction interval widths (PIW) for each interpolation method on d6, a) 
the spatial copula including three covariates, b) the mixed copula, c) the spatial copula, 
d) the ordinary kriging, and e) the co-kriging. The spatial copula interpolator resulted in 
the lowest uncertainty among copula-based methods. Ordinary kriging has smaller PIWs 
and is based upon assuming a Gaussian joint distribution.   



Chapter 6 

101 

6.5 Discussion and conclusion 
Two dependences were characterized in spatial interpolation of a weather 
variable: spatial variability and dependency with other variables, i.e., 
covariability. We developed two methods based upon spatial copulas of air 
temperature, and non-spatial dependences between air temperature and its 
collocated covariates. The multivariate distributions are decomposed into 
bivariate copulas using vine structures that are generally well understood and 
can be estimated in a straightforward way.  

The new methods provide more information about the uncertainty when 
interpreting the spatial variability of the PIW. We proposed to estimate the 
empirical marginal distribution that describes the statistical properties of daily 
air temperature without the knowledge of the theoretical form of the family’s 
distribution function. The marginal distribution is, however, still assumed to be 
stationary. The local marginal distribution at an unvisited location (Heißerer et 
al., 2016) might help to improve the prediction as well as the PIW.  

We treated the available observations from weather stations as benchmarks 
during cross-validation, but we realized that the quality of measurements 
differs at each station. For example, stations 11 and 13 represent high 
extremes relative to other stations at the same day. A time-series analysis of 
the air temperature (not shown) revealed that the quality of measurements at 
those stations is low. In particular, the correction for bias in the reanalysis 
weather data and the retrieval of covariates from remote sensing images are 
uncertain. A hierarchical model may be further explored to include uncertainty 
aspects of those observations. 

We used the AIC to select the suitable copula family. The selection of families, 
however, depends upon the number of observations and further research is 
needed to develop strategies for selection optimization. Although several 
copula families can be found in the literature, we use five families because 
obtaining the inverse of the conditional copula distribution may lead to 
computational limitations. In addition, as all five families were symmetric, 
alternative families can be investigated. 

For the interpolation of air temperature in a data-scarce area, we selected 
three covariates LST, LAI and elevation that were retrieved from remote 
sensing images. Our study has shown that the covariates can easily be included 
as additional information in estimating the joint distribution, thus allowing for 
a richer dependence structure. The copulas are generally able to describe both 
spatio-temporal and non-spatial dependences. A practical advantage of our 
methods is that we can analyse the joint behaviour of more than one covariate 
and their effects on the spatial variability of the daily air temperature locally. 
The availability of bias-corrected values and the covariates derived from 
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remote sensing images are, however, limitations for applying the methods on 
daily scales.  

In order to provide a scenario that can be used to evaluate the new methods 
with less likely uncertain observations, we set up an experiment using the 
Meuse dataset (Pebesma, 2004). The leave-k-out cross validation showed that 
the average MAE values for mixed copula interpolator using Meuse variables 
zinc, lead, copper and cadmium were equal to 95.3, 33.7, 7.4 and 1.0, whereas 
for the co-kriging predictor they were equal to 173.2, 55.8, 12.8 and 1.8, 
respectively. Further applications of the new methods in other case studies 
including simulation-based information should provide more insight on these 
methods in the future.  

We see several ways to further extend the current study. First, we applied the 
new methods in a data-scarce area, and we aimed to highlight the potential 
and the use of the methods for a larger dataset as well. Further comparison to 
other interpolation methods (Kilibarda et al., 2014) might help to assess the 
performance of the new methods. Second, essentially, we used the 
combination of the reanalysis weather data with a coarse spatial resolution and 
measurements from weather stations to predict mean air temperature at a 
higher spatial resolution. Such integration of bias correction and interpolation 
can be further investigated as a copula-based downscaling method. Third, in 
this study we selected the number and type of covariates, number of nearest 
neighbours, and number of spatial bins in both variogram and correlogram 
based upon our experience. A more generally applicable sensitivity analysis 
might help to show the effects of these parameters on the results.  

Based upon the cross-validation, width of the prediction interval and visual 
inspection, we conclude that new methods allow describing both spatial 
variability and covariability between weather variables and covariates using 
multivariate joint distributions. In addition, the use of LAI as covariate in the 
interpolation of the mean air temperature reduces the uncertainties.  
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Chapter 7: Evaluating the effects of climate 
extremes on crop variables using copulas  
 

 

 

 

 

 

 

 

 

 

 

This chapter is submitted as: Alidoost F., Stein A., Su Z. Evaluating the effects of climate 
change on crop yield, production and price using multivariate distributions: a new copula 
application. Journal of Weather And Climate Extremes.  
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Abstract  
Climate change poses risks to agriculture and food security. To assess the 
impacts, this paper models the complex dependences of climate extreme 
indices and the crop-related variables: yield, production, and price of a crop. 
Using a comprehensive copula-based analysis, the conditional distributions of 
the crop-related variables given extremes of air temperature and precipitation 
are estimated. We used potatoes in the Netherlands as a case study. Weather 
data were obtained from 33 weather stations and ECMWF ERA-interim archive 
during the period 1980-2017. A joint behavior analysis predicted the yield, the 
production and the price with the relative mean absolute error equal to 5.4%, 
3.6%, and 27.9%, respectively. The study showed that copulas adequately 
describe the multivariate dependences. Those in turn are able to quantify the 
impact of climate extremes, including their uncertainties.   

Keywords  

Climate change, Copulas, Crop, Multivariate distributions, Weather extremes.   
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7.1 Introduction 
Many complex processes and interactions determine crop responses to climate 
changes (Challinor et al. 2009a). Efforts have been made mainly to evaluate 
the impacts of the changes on crop yield (Challinor et al. 2013; Pirttioja et al. 
2015; Gaupp et al. 2017; Nguyen-Huy et al. 2018). Little attention has been 
given to understand the impacts of climate change on crop production and 
production’s price. Those are, however, important if say agricultural insurance 
should support farmers against the impacts and economic changes or climate 
information should answer stakeholders about total revenue (Dinku et al. 
2011; Partridge and Wagner 2016; Anderson 2017).  

An objective in local climate change studies is to quantify the changes in air 
temperature and precipitation extremes as they may result in a variety of 
climate-related crop stresses. Temperature affects the duration of the crop 
growing season, rates of photosynthesis, respiration, grain filling and thus the 
crop yield and production. Drought increases crop water stress and on the 
other hand, intensive rainfall may cause a flood and waterlogged soils (Lobell 
and Gourdji 2012). The assessment of impacts is primarily based upon 
extremes obtained from a long time-series of data from weather stations which 
are, however, sparse at local scales (Sarma 2005). Global assessments of crop 
production easily ignore variation at local scales (Lobell and Gourdji 2012). 
Therefore, additional spatially distributed data are needed for the assessment 
at those scales. 

Weather data generated by the European Centre for Medium-range Weather 
Forecasts (ECMWF) are retrieved on spatial grids with coarse resolutions, 
typically in the order of ten kilometers. In addition, they are prone to 
uncertainty and their over- or underestimation compared to data from weather 
stations is often large (Hannah and Valdes 2001; Dee et al. 2011; Durai and 
Bhradwaj 2014). Hence, there is a challenge for the assessment of impacts 
when using weather data from ECMWF (Challinor et al. 2009b).  

Analyzing changes in climate extremes requires long-term daily data that are 
not readily available in many parts of the world. The Expert Team on Climate 
Change Detection and Indices (ETCCDI) defined a total of 27 indices, which 
focus primarily on extremes (Sillmann et al. 2013). The study of extreme 
indices has become increasingly important due to their significant impacts on 
natural processes. Climate change consists of variations in several climate 
extremes and their impacts usually affect several agricultural variables. 
Therefore, multivariate joint distributions play an essential role in describing 
joint behaviors (Miao et al. 2016). The extension of a joint distribution to a d-
dimensional distribution, d > 2, however, is often not straightforward 
(Salvadori et al. 2007). In this context, copulas help to construct multivariate 
distributions of related variables (Sklar 1973). While weather data are 
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generally measured at a daily scale, climate indices describe the extremes at 
a yearly scale, for instance, the number of cold days in a year. Crop-related 
data are often recorded as seasonal and annual time-series. The use of 
extreme indices thus facilitates the estimation of the joint distribution of crop 
and weather variables. Applications of copulas include various practices, 
whereas there is a vast literature in geostatistics and hydrology (Bárdossy and 
Li 2008; Gräler and Pebesma 2011; Alidoost et al. 2018), meteorology and 
climate research (Scholzel and Friederichs 2008), and risk assessment (Renard 
and Lang 2007). Copula-based methods so far employed bivariate and 
trivariate joint return periods to analyze the dependencies between extremes 
indices (Miao et al. 2016; Zscheischler et al. 2017). 

With the aim to assess the impact of climate changes on crop, we analyze the 
joint behavior of climate extreme indices with crop-related variables, e.g., 
yield, production, and price using multivariate distributions. We selected seven 
climate extreme indices, which are related to extremes in air temperature and 
precipitation. Previous studies in the literature have investigated the effect of 
only two or three indices on a single crop (Miao et al. 2016; Zscheischler et al. 
2017). Our assessment applied on measurements from weather station is 
compared with the one applied on ECMWF weather data. Our study focuses on 
the use of copulas for the construction of multivariate distribution functions. 
Both good description of copulas and the main theorems are available in the 
literature (Nelsen 2006).  

7.2 Study site and data in the Netherlands 
We chose 33 KNMI stations where both rainfall and temperature measurements 
are available in the Netherlands during the period 1980-2017 (see Section 
3.2). We selected 33 nearest grid points to the chosen KNMI stations from the 
ECMWF data. Daily minimum and maximum air temperatures are obtained 
using the minimum and maximum values of the hourly data, and daily 
precipitations are obtained using the sum of the hourly data for both weather 
datasets. For comparison purposes, we define the bias as systematic 
differences between ECMWF weather data and weather station measurements. 
Note that the source of bias lies in the different number of the measurements 
and the uncertainty in ECMWF weather data. The mean absolute bias was equal 
to 0.79ºC, 0.44ºC, and 1.84 mm for the daily minimum and maximum 
temperature, and the daily precipitation, respectively.  
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Figure 7.1 Temporal trends in the crop-related variable: a) yield and production, b) 
price and production, c) cultivation and harvested areas of potatoes. 

We considered potato yield, production and price in the Netherlands during the 
period 1980-2017 (see Section 3.2). The yield and the production are naturally 
spatio-temporal variables, but their data are available either per province or 
country. There is, however, one price value for the country at each year. 
Regarding the variations in the crop-related variables, there is a significant 
drop in the production but not in the yield in the year 1998 (Figure 7.1b). Note 
that the production is yield × area. Comparing the cultivation and harvested 
areas of potatoes (in 1000 ha) revealed that the drop in the production was 
related to a drop in the harvested area (Figure 7.1.c). In the following, we 
investigated the climate event related to the drop. 

7.3 Copula-based methods  
In the following, a marginal distribution, i.e., the cumulative distribution of a 
variable is estimated by fitting an empirical distribution to data. In a 
multivariate case, a joint cumulative distribution is estimated by fitting copulas 
to data. The estimation methods of copulas are explained in Section 2.2.  
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7.3.1 Joint behavior analysis 

A climate extreme index 𝑥௜௝ at location 𝑖 and year 𝑗, is obtained for 𝑁 ൌ 33 
locations and 𝑀 ൌ 38 years based upon the definitions provided by the Expert 
Team on Climate Change Detection and Indices (Table 7.1, Sillmann et al. 
2013). There are both spatial and temporal dependences between the 𝑥௜௝. A 
crop-related variable 𝑌 is sampled by 𝑦௝ for 𝑀 years. Based upon the estimates 
of autocorrelation function, we consider the 𝑦௝ to be independent. We analyse 
the joint behaviour using the conditional distribution of Y given 𝑥, i.e., 𝐹ሺ𝑌|𝑋 ൌ
𝑥ሻ, where 𝑥 is a climate extreme index at year 𝑗.  

To retrieve 𝑥  from the spatio-temporal data 𝑥௜௝ , a marginal distribution is 
estimated using 𝑥௜௝ ൐ 0  at year 𝑗  for 𝑁  locations, after testing for spatial 
stationarity of the mean. To do so, we evaluated the second order spatial 
stationarity assumption regarding the mean value using linear regression 
(Cressie 1993). Then, 𝑥 can be obtained as either the median, i.e., the 50th 
percentile in the distribution, the mean or the mode. We conducted a cross-
validation to compare the performance of those three predictors in selecting 
the dominant driving index. Based upon the results (not shown), we chose the 
median as the optimal predictor, as it minimizes the mean absolute prediction 
errors  (Journel 1984; Cressie 1993). In the case that the standard deviation 
of 𝑥௜௝ ൐ 0 for 𝑁 locations is zero, the average of 𝑥௜௝ ൐ 0 is used as 𝑥. Hence, we 
reduce the dimensionality of a spatio-temporal variable 𝑋 from space-time to 
time. This provides a simple, but statistically sound method when we can select 
a dominant driving climate index in practical applications.  

The conditional distribution 𝐹ሺ𝑌|𝑋 ൌ 𝑥ሻ is determined using the joint distribution 
𝐹ሺ𝑋, 𝑌ሻ. The distribution can be extended to a d-dimensional distribution, 𝑑 ൐ 2, 
using either more than one climate extreme index or more than one crop-
related variable. In our study, we choose seven climate extreme indices (Table 
7.1) and analyse three joint behaviours using the distribution of: yield given 
seven indices 𝐹ሺ𝑦𝑖𝑒𝑙𝑑|𝑋 ൌ 𝑥ଵ, … , 𝑋 ൌ 𝑥଻ሻ , production given seven indices 
𝐹ሺ𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛| 𝑋 ൌ 𝑥ଵ, … , 𝑋 ൌ 𝑥଻ሻ, price given the production and seven indices 
𝐹ሺ𝑝𝑟𝑖𝑐𝑒|𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛, 𝑋 ൌ 𝑥ଵ, … , 𝑋 ൌ 𝑥଻ሻ . Here 𝑥௜  is a climate index and 𝑖  is 
mentioned in (Table 7.1). Different combinations of indices represent different 
climate conditions. In our study, the climate extreme indices are grouped as 
four events: 1) cold days, cold nights and very wet days indicated by 𝑥ଵ, 𝑥ଶ, 𝑥ହ; 
2) cold days, cold nights and consecutive wet days indicated by 𝑥ଵ, 𝑥ଶ, 𝑥଻; 3) 
warm days, warm nights and consecutive dry days indicated by 𝑥ଷ, 𝑥ସ, 𝑥ହ; and 
4) all the seven indices indicated by 𝑥ଵ, … , 𝑥଻. The results of a joint behaviour 
analysis applied to the weather station measurements (dataset 1) will be 
compared with those applied to the ECMWF reanalysis weather data (dataset 
2). 
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Table 7.1 Seven climate indices based upon daily temperature and precipitation used in 
this study. The Expert Team on Climate Change Detection and Indices (ETCCDI) provides 
the definitions. 

Index 
ID Index name Label Index definition 

1 Cold days TX10p 

Number of days per each year during the reference 
period when Tdj < T10p. Tdj is the daily maximum 
temperature on day d in year j. A cumulative 
distribution is determined using daily maximum 
temperatures in a five days window centered on d 
during the reference period. T10p is the daily 
maximum temperature with 10th percentile in the 
distribution. 

2 Cold nights TN10p 

Number of days per each year during the reference 
period when Tdj < T10p. Tdj is the daily minimum 
temperature on day d in year j. A cumulative 
distribution is determined using daily minimum 
temperatures in a five days window centered on d 
during the reference period. T10p is the daily 
minimum temperature with 10th percentile in the 
distribution. 

3 Warm days TX90p 

Number of days per each year during the reference 
period when Tdj > T90p. Tdj is the daily maximum 
temperature on day d in year j. A cumulative 
distribution is determined using daily maximum 
temperatures in a five days window centered on d 
during the reference period. T90p is the daily 
maximum temperature with 90th percentile in the 
distribution. 

4 Warm nights TN90p 

Number of days per each year during the reference 
period when Tdj > T90p. Tdj is the daily minimum 
temperature on day d in year j. A cumulative 
distribution is determined using daily minimum 
temperatures in a five days window centered on d 
during the reference period. T90p is the daily 
minimum temperature with 90th percentile in the 
distribution. 

5 Very wet 
days R95p 

Number of days per each year during the reference 
period when PRdj > PR95p. PRdj is the daily 
precipitation amount on wet day d in year j. On a 
wet day PR > 1mm. A cumulative distribution is 
determined using daily precipitation on wet days 
during the reference period. PR95p is the daily 
precipitation with 95th percentile in the distribution. 

6 Consecutive 
dry days CCD Largest number of consecutive days per each year 

during the reference period when PRdj ≤ 1 mm. 

7 Consecutive 
wet days CWD Largest number of consecutive days per each year 

during the reference period when PRdj > 1 mm. 
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7.3.2 Marginal and joint distributions estimation  

We use the empirical marginal probability 𝑢௜  where 𝑖 ൌ 1, … , 𝑛 and 𝑛 denotes 
the total number of observations of the variable of interest 𝑍. Following rank-
order-transformation 𝑢௜ ൌ

୰ୟ୬୩ሺ௭೔ሻ

௡ାଵ
, a continuous approximation of the marginal 

distribution of 𝑍 is obtained by means of kernels density estimation (Silverman 
1986).  

The joint distribution function 𝐹ሺ𝑋, 𝑌ሻ is determined using a copula 𝐶ሺ𝑈, 𝑉ሻ, 
where 𝑈  and 𝑉  are uniformly distributed random variables (Sklar 1973); 
(Nelsen 2006). According to Sklar’s theorem, the joint probability 𝐹ሺ𝑥, 𝑦ሻ is 
equal to 𝐶ሺ𝑢, 𝑣ሻ and the joint density 𝑓ሺ𝑥, 𝑦ሻ is equal to 𝑐ሺ𝑢, 𝑣ሻ ൈ 𝑓௑ሺ𝑥ሻ ൈ 𝑓௒ሺ𝑦ሻ, 
where 𝑢 ൌ 𝐹௑ሺ𝑥ሻ, 𝑣 ൌ 𝐹௒ሺ𝑦ሻ, and 𝑐 is the copula density function (see Section 
2.1). A multivariate copula describes dependences between three or more 
variables. In the first two analyses, the joint distribution is an 8-dimensional 
function whereas it is a 9-dimensional function in the last analysis. Following 
section 2.2, the conditional distribution 𝐹ሺ𝑌|. ሻ is determined using a C-vine 
structure and five copula families.  

7.3.3 Prediction and cross-validation 

Since the conditional distribution 𝐹ሺ𝑌|. ሻ is estimated, any pth percentile in the 
distribution can be used to predict 𝑦ො, e.g.,: 

𝑦ො௠௘௔௡ ൌ 𝐸ሾ𝑌|. ሿ ൌ න 𝑦 ∙ 𝑓ሺ𝑌|. ሻ𝑑𝑦
௬

, ሺ7.1ሻ 

𝑦ෝ𝑝 ൌ 𝐹ିଵሺ𝑝|. ሻ, 𝑝 ∈ ሾ0,1ሿ, ሺ7.2ሻ 

where 𝑓 is the joint density function (Bárdossy and Li 2008). We select the 
mean predictor in ሺ7.1ሻ, being the optimal predictor, as it minimizes the mean 
squared prediction error (Cressie 1993); (Journel 1984). The relative mean 
absolute error (RMAE) in percentage for 𝑀 years equals:  

𝑅𝑀𝐴𝐸 ൌ 100 ൈ
1
𝑀

෍  ቆ
ห𝑦௝ െ 𝑦ො௝,௠௘௔௡ห

𝑦௝
ቇ

ெ

௝ୀଵ

. ሺ7.3ሻ 

We use RMAE to determine whether the different weather datasets produce 
statistically different predictions due to the uncertainty in ECMWF weather 
data. With a leave-one-out cross-validation, we assess the quality of the 
predictions. To do so, one observation y௝ is removed and 𝑦ො௝,௠௘௔௡ is predicted 
using the remainder of the observations. The RMAE in percentage for 𝑀 years 
is then obtained in ሺ7.3ሻ.  
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7.3.4 Validation 

To evaluate the performance of the joint behaviour analyses, we conduct a 
leave-k-out validation. To do so, first, k observations y௝, y௝ାଵ, … , yெ are removed 
at year 𝑗, where 𝑗 ൌ 𝑀 െ 𝑚 ൅ 1, … , 𝑀, and in our study 𝑚 is 25% of the 𝑀 years. 
Then, 𝑦ො௝,௠௘௔௡ is predicted using the observations yଵ, yଶ, … , y௝ିଵ, i.e., without any 
information from the future, as is natural. The RMAE in percentage for 𝑚 ≪ 𝑀 
years is then obtained as: 

𝑅𝑀𝐴𝐸 ൌ 100 ൈ
1
𝑚

෍  ቆ
ห𝑦௝ െ 𝑦ො௝,௠௘௔௡ห

𝑦௝
ቇ

ெ

௝ୀெି௠ାଵ

. ሺ7.4ሻ 

We perform an additional successive validation for the price. Let us consider 
that the year 𝑗 is a target that its climate extreme indices are available. We 
want to predict both the production and the price at the target year 𝑗, where 
the observations are available at the years 1, 2, … , j െ 1. The target production 
is predicted in the second joint behavior analysis, followed by a prediction of 
the target price in the last joint behaviour using the target production. The 
mean relative error is then obtained in ሺ7.4ሻ.  

7.3.5 Assessment of the impact of climate extremes on crop 

To assess the effect of climate extremes on the crop-related variable, we 
consider ሺ𝑥ଵ, … , 𝑥଻ሻ as a climate extreme event. The event is characterized by a 
joint density 𝑓ሺ𝑥ଵ, … , 𝑥଻ሻ, where multivariate density function 𝑓ሺ. ሻ is estimated 
using copulas. The joint return period 𝑇  of the climate extreme indices 
corresponds to the probability of 𝑃ሾ𝑋ଵ ൐ 𝑥ଵ, … , 𝑋଻ ൐ 𝑥଻ሿ is obtained as:  

𝑇 ൌ
μ்

𝑃ሾ𝑋ଵ ൐ 𝑥ଵ, … , 𝑋଻ ൐ 𝑥଻ሿ
, ሺ7.5ሻ 

where μ் ൌ 1 year (Salvadori et al. 2007), and in our study 𝑇 ൌ 10, 50, 100. As 
no closed form exists for 𝑃ሾ𝑋 ൐ 𝑥ଵ, … , 𝑥଻ሿ , the probabilities 𝑃ሾ. ሿ  of 100000 
simulated values of ሺ𝑥ଵ, … , 𝑥଻ሻ  are obtained numerically using copulas and the 
addition rules in the probability theory (Stirzaker 2003) as 𝑃ሾ𝑋ଵ ൐

𝑥ଵ, … , 𝑋଻ ൐ 𝑥଻ሿ ൌ 1 െ 𝑃ሾ𝑋ଵ ൑ 𝑥ଵ 𝑜𝑟 … 𝑜𝑟 𝑋଻ ൑ 𝑥଻ሿ ൌ 1 െ ቀ∑ 𝐹௜
଻
௜ୀଵ ሺ𝑥௜ሻ െ ∑ 𝐹൫𝑥௜, 𝑥௝൯଻

௜,௝ୀଵ ൅

∑ 𝐹൫𝑥௜, 𝑥௝, 𝑥௞൯଻
௜,௝,௞ୀଵ ൅ ⋯ ൅ ሺെ1ሻ଻ିଵ𝐹ሺ𝑥ଵ , … , 𝑥଻ሻቁ. The events with 9.9 ൑ 𝑇 ൑ 10.1 years 

return period are selected as representative events for the events of a 𝑇 ൌ 10 
years return period. The same procedure is applied to select the events with 
50 and 100 years return period. The variable 𝑌 given those events is then 
predicted using the mean predictor explained in (7.1). We illustrate the 
procedure using an example for the first event; the probabilities 
𝑃ሾ𝑋ଵ ൐ 𝑥ଵ, 𝑋ଶ ൐ 𝑥ଶ, 𝑋ହ ൐ 𝑥ହሿ of 100000 simulated values of ሺ𝑥ଵ, 𝑥ଶ, 𝑥ହሻ are obtained. 
Then, the return levels 𝑥ଵ, 𝑥ଶ , and  𝑥ହ  with ଵ

ଵ଴.ଵ
൑ 𝑃ሾ𝑋ଵ ൐ 𝑥ଵ, 𝑋ଶ ൐ 𝑥ଶ, 𝑋ହ ൐ 𝑥ହሿ ൑

ଵ

ଽ.ଽ
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are selected. Then, yield values are predicted using the conditional distribution 
𝑓ሺ𝑌|𝑥ଵ, 𝑥ଶ, 𝑥ହሻ in (7.1). 

7.4 Results  

7.4.1 Joint behaviour analysis 

Climate extreme indices are obtained using the daily weather data in the 
growing season at 33 stations for 38 years, where the spatial domain is a 
country for joint behaviour analyses. Figure 7.2 shows the time-series of the 
dominant climate extreme index. The highest number of cold days were equal 
to 26 and 24 days in the years 1984 and 1986, respectively, and the highest 
number of warm days was equal to 31 days in the year 2006 which is related 
to the heatwave in 2006 (KNMI 2006). The highest number of consecutive wet 
days was equal to 11 days in the year 1998 (Figure 7.2), related to the flood 
on 16 September 1998 caused by El Niño (ESA/ESRIN 2018). The flood was 
responsible for a large drop in the harvested area and the production at that 
year.  

Comparing climate extremes indices retrieved from both weather datasets 
denotes that the bias in the precipitation data resulted in a mean absolute bias 
of two, six and five days in the very wet days, the consecutive dry days, and 
the consecutive wet days, respectively. Figure 7.3 shows the empirical 
marginal distributions of the involved variables in the joint behavior analyses. 
The bias in the last three climate extreme indices is comparatively large. In 
the following, we investigate the performance of the joint behavior analyses 
when using ECWMF weather data.  

Focusing on potatoes, we used the weather data in the growing season to 
obtain extreme indices. Restricting the data to the growing season is prone to 
uncertainty because the harvested area, hence the production and 
consequently the price, can be affected by for example a flood before the 
growing season.  
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Figure 7.2 Time-series of the dominant climate extreme index. Climate extreme indices 
are obtained using the air temperature and precipitation data, retrieved from the weather 
stations and the ECMWF ERA-interim archive, in the growing season of potatoes at 33 
stations for 38 years. 
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Figure 7.3 Empirical marginal distributions of the involved variables in the joint behavior 
analyses. The involved variables are: the seven dominant climate extreme indices, yield, 
production, and price. The vertical axis denotes the empirical cumulative probability. 

7.4.2 Prediction and cross-validation 

Boxplots in Figure 7.4 show the predictions of the crop-related variables, where 
𝑝 varies in the range of ሾ0,1ሿ in (2), from 1980 to 2017. All observations fall in 
the prediction intervals except the low production value in the year 1998. 
Hence, it denotes a good performance of the joint behaviour analyses in 
estimating the joint distributions. In addition, comparing the predictions 
obtained by the mean predictor and the observations indicates that the joint 
behaviour analyses well represents the temporal variation of the crop-related 
variables. The relative mean absolute errors (RMAEs) were equal to 3.6%, 
4.5% and 23.7% for the three joint behaviour analyses, where 𝑀 ൌ 38 in (3) 
and the climate extreme indices are obtained by the dataset 1 (Table 7.2). The 
RMAE values obtained by leave-one-out cross-validation, were equal to 5.0%, 
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6.1% and 40.2% for the joint behaviour analyses. As can be seen, the errors 
for the price were comparatively large.  

 
Figure 7.4 Predictions, shown as boxplots, of production, yield and price given the 
climate extreme indices obtained by the measurements dataset. The black line indicates 
the predictions obtained by the mean predictor whereas the red line indicates the 
observations.  

For the three joint behavior analyses applied to the dataset 2, the RMAE values 
by the mean predictor were equal to 3.3%, 6.3%, and 23.6%, whereas by 
leave-one-out cross-validation, were equal to 4.9%, 9.8% and 38.4% (Table 
7.2). Comparing the results with those obtained by weather station 
measurements showed that the quality of the predictions of the yield and the 
price is rather good in the presence of bias.  
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Table 7.2 Relative mean absolute error (RMAE) in percentage. Dataset 1 denotes 
weather station measurements, whereas dataset 2 denotes ECMWF weather data.  

  Yield Production Price 

D
at

as
et

 1
 

Prediction 3.6 4.5 23.7 

Leave-one-out cross-validation 5.0 6.1 40.2 

Leave-k-out cross-validation 5.4 3.6 27.9 

Successive validation - - 26.4 

     

D
at

as
et

 2
 

Prediction 3.3 6.3 23.6 

Leave-one-out cross-validation 4.9 9.8 38.4 

Leave-k-out cross-validation 3.7 5.7 23.9 

Successive validation - - 17.9 

 

Note that the joint behavior analyses in this study were only applied to the 
seven indices indicating the frequency of the weather extremes. The question 
can be posed whether considering a subset of the indices can improve the 
predictions. To answer this question, we conducted a sensitivity analysis using 
three subsets: 1) a cold event containing cold days, cold nights and very wet 
days, 2) a cold event containing cold days, cold nights and consecutive wet 
days, 3) a heat event containing warm days, warm nights and consecutive dry 
days. The RMAE values obtained by mean predictor (not shown) revealed that 
no improvements in the predictions were achieved. The low production value 
in the year 1998, however, falls in the prediction intervals of the production 
given the second subset. Considering other climate indices which are 
responsible for the intensity and the duration of extremes, should thus provide 
more insight on the predictions. 

7.4.2 Validation 

Validation was carried out, where 𝑚 ൌ 9 in (4), i.e., 25% of the 38 years. We 
could not further increase 𝑚, because it is important to use a reasonable 
number of data, here 75% of the 38 years, for estimation purposes. Using 
dataset 1, the RMAE values were equal to 5.4%, 3.6% and 27.9% for the three 
joint behaviour analyses, whereas the RMAE value was equal to 26.4% for the 
price in a successive validation (Table 7.2). Except for the production errors, 
the RMAE values of the dataset 2 are lower than dataset 1, because the number 
of data in dataset 2 is higher than that in dataset 1. In all the three joint 
behaviour analyses, the RMAE values were relatively low showing that the 
presented copula-based analysis was able to well represent the complex 
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dependences. The low number of 𝑚  implies, however, a limitation on the 
validation.   

7.4.3 The impact of climate extremes on crop 

The effect of climate extremes on the crop-related variables is assessed in two 
steps: first, the determination of plausible weather extreme indices associated 
with a joint return period, e.g. 10, 50 or 100 years in my study; second, the 
prediction of the crop-related variables e.g. yield, production and price 
conditioned on those extremes indices. Boxplots in Figure 7.5 show the 
predictions of yield, production and price given climate events with 10, 50, and 
100 years joint return periods. For example, the first boxplot in the first row 
indicates yield variations ranging from 39 to 48 t.ha-1 because of the first 
event. Note that the predictions are the mean values obtained from the 
equation (7.1). We compared the lowest values of the predicted yield and 
production and the highest values of the predicted price with the average of 
their observations. It revealed that the event four with 50 years joint return 
period resulted into the largest variation among different events with different 
joint return periods: 21.0% and 28.5% decreases in yield and production, 
respectively, and 92% increases in price (see Figure 7.5). Note that event four 
contains all the seven extreme indices. Possible source of this variation lies in 
both complexity and flexibility in dependence structures: uncertainty either 
increases due to the larger number of the indices in joint distributions, or it 
decreases due to the larger number of indices where the joint distribution can 
well represent the dependence structures. As mentioned in section 4.2, the 
RMAE values obtained by cross-validation revealed that no improvements in 
the predictions were achieved using events one to three. It illustrates that 
event four allows for a good representation of the dependence structures. A 
high dimensionality of the distribution corresponded with an advantage of 
using the joint behavior analysis: using event four more information is obtained 
than using events one to three by selecting a subset of the indices. Due to the 
high dimension of joint distributions, the computational cost of the return 
periods is considerably high. The source of this cost and, consequently, the 
uncertainty in return periods lie in generating simulated values of the climate 
indices through their joint distribution, in numerical evaluation of joint 
probabilities using empirical copulas, and in successive procedures of the 
addition rules in probability.  
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Figure 7.5 Predicted yield, production and price given climate extremes with T= 10, 50 
and 100 years joint return periods. The boxplots show the predictions given simulated 
climate extreme indices. The joint distributions are estimated using the measurements 
dataset. The colors of boxplots indicate the events as magenta: cold days, cold nights, 
very wet days, blue: cold days, cold nights, consecutive wet days, orange: warm days, 
warm nights, consecutive dry days, green: all the seven indices. The horizontal red line 
denotes the average values of the observations.  
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7.5 Discussion and conclusion 
We provided copula-based joint analyses to assess the impact of climate 
extreme indices on the yield, the production and the price of potatoes. The 
results of the predictions, leave-one-out cross-validations, and leave-k-out 
validations showed the practical advantage of copulas in estimating high 
dimensional joint distributions that describe the complex dependences. The 
use of C-vine structures in estimating multivariate distributions was beneficial 
as it allows for a huge degree of flexibility in describing the dependences 
because the involving bivariate copulas are estimated using five copula 
families. In addition, the conditional distributions are useful for a 
comprehensive uncertainty assessment using confidence intervals widths. 

We conducted cross-validation to compare the performance of the median, 
mean and mode in selecting the dominant driving index, and therefore, 
reducing the dimensionality of climate extreme indices from space-time to time 
(not shown). The other percentiles in the distribution should be further 
explored. In addition, a sensitivity analysis might help to explain the effects of 
other estimation methods of marginal distribution on the results. For validation 
purposes, we chose the mean predictor. Further research will be necessary to 
investigate the use of other predictors in (2) to obtain the predictions.  

The presented joint behavior analyses are general and could be applied on a 
different spatial domain, e.g., a province, where the price is assumed to be 
invariant between provinces. A limitation of decreasing the spatial domain from 
a country to province is that the number of weather stations is low to obtain 
the dominant climate extreme index. This limitation can be overcome using 
gridded ECMWF data which is, however, out of the scope of our paper. A bias 
correction method can be further investigated to correct for bias in the indices.   

We see two ways to extend the current study:  

We selected the seven climate extreme indices related to the air temperature 
and precipitation. The question can thus be posed whether other weather 
variables like the humidity and the wind produce statistically different 
predictions. In addition, whether other climate extreme indices can improve 
the predictions, for example, the indices for intensity and duration of the 
extreme precipitation. Due to the complexity of dependences, a challenge is to 
decide which climate extreme indices are important to be included in the joint 
behavior analyses. A sensitivity analysis needs to be further implemented to 
address these issues. In addition, the joint behavior of climate extreme indices 
and other crops like maize and wheat can be analyzed.  

We neglected the effect of the conditions such as social-economic conditions, 
climate change adaptation scenarios and technologies on the yield, the 
production, and the price. Additional knowledge may lead to an improvement 
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of the predictions, for example, the joint behaviour analysis of the price can be 
extended to include social-economic information.  
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Chapter 8: Synthesis 
This chapter summarizes the study’s findings and synthesizes the research to 
point out significant results, obstacles, prospects, and limitations. 
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8.1 Findings  
The research described in this thesis investigates new, innovative copula-based 
methods for improving the availability of climate and weather information in 
data-scarce environments. The performance of the new methods was 
evaluated by comparing them with several methods commonly applied for 
improving data availability. The comparison revealed a number of theoretical 
and practical issues in representing spatial variability and its associations, and 
when assessing the uncertainty. The following paragraphs describe the overall 
findings.  

Two copula-based methods for correcting bias were used to correct daily 
reanalysis air temperatures for bias in an agricultural area in Iran. The copulas 
described the dependencies between two sources of the air temperature data: 
an ECMWF archive and a network of weather stations. After estimating joint 
distributions, new predictors based upon Conditional Probabilities (CP) were 
defined to obtain air temperatures at locations within the agricultural area. The 
two methods for bias correction, CP-I and CP-II, performed better than 
methods commonly applied (i.e. conditional expectation and conditional 
median predictors) in representing the spatial and temporal variation of the 
bias-corrected air temperatures.  

Three new Multivariate Copula Quantile Mappings (MCQM-I, MCQM-II, and 
MCQM-III) were used to study two types of dependencies: the spatial 
variability of air temperature, and its association with elevations. The MCQMs 
were able to accommodate those dependencies, thereby improving the 
precision of the one-dimensional quantile mapping in predicting bias-corrected 
air temperatures. 

Among the new bias correction methods, both CP-II and MCQM-III could 
improve air temperatures retrieved from ECMWF in a data-scarce environment. 
The evaluation criteria showed that CP-II was superior to MCQM-III, albeit at 
a higher computational cost. 

A comparison of the conditional expectation and conditional median predictors 
with the one-dimensional quantile mapping revealed that copula-based 
methods performed better in correcting bias. This is in line with previous 
studies, although my results demonstrated that there was a similarity between 
these three methods. The spatial variation of the bias-corrected air 
temperatures was equal to the variation of the ECMWF air temperatures but 
not to that of the weather station measurements. 

Two copula-based interpolators were introduced to produce weather maps in a 
data-scarce environment. The methods allowed the description of two types of 
the dependencies: spatial dependencies of air temperatures, and its 
associations with land variables. The interpolators were compared with the 



Chapter 8 

123 

ordinary kriging and co-kriging predictors. The spatial copula interpolator 
including covariates, and the mixed copula interpolator describe both the 
spatial variability of air temperatures and its association with land variables 
obtained from remote sensing products. The copula-based interpolators are 
potentially useful for other sparsely and irregularly distributed weather data. 

The mixed copula interpolator allowed the inclusion of additional variables in 
the modeling of spatial random fields using multivariate distributions. Hence, 
the joint distribution contained three types of dependencies: spatial 
dependencies between the variable of interest at a single location and its 
nearest neighbors, non-spatial dependencies between the variable of interest 
and its collocated covariates at that location; and the non-spatial dependencies 
of the variable of interest and its collocated covariates at its nearest neighbors.   

In the comprehensive copula-based analyses, the conditional distribution of a 
crop-related variable given climate extreme indices was estimated. Then, the 
distribution was employed to predict the variable under climate change. The 
analyses were applied to two datasets: weather station measurements and 
ECMWF weather data. The copula-based analyses helped in modeling 
dependencies between the climate extreme indices and the crop-related 
variables using high-dimensional multivariate distributions. This suggests that, 
given climate extremes indices, the conditional distribution of a crop-related 
variable is advantageous for quantifying the impacts of climate extremes, 
including their uncertainties. 

8.2 Significance  
The research described in this thesis is unique in several aspects particularly 
related to the use of copulas, Earth observation data, and the developed 
functions.   

The findings on the application of copulas in describing the dependencies 
between several variables indicate that copulas can estimate any multivariate 
distribution. A copula is neither a method nor a model, rather it is a joint 
distribution function. This definition is not dependent on the underlying 
statistical process and thus allows pragmatic application in agricultural and 
hydrological studies. My research therefore rebuts the assertion that 
“Generally, copulas are used only if Gaussian assumptions fail, e.g. fat-tailed 
volatility in financial markets.”; this comment was made by an anonymous 
reviewer of a paper I submitted to the Journal of Spatial Science.   

This thesis delivers an important message relating to the difference between 
estimation and prediction (Kutner et al. 1996). Initially, the joint distribution 
is fitted to the data, and the goodness of fit is tested using statistical tests. 
Next, a predictor is selected to predict the variable of interest. The choice of 
predictor is not related to how good estimation is, but rather to the loss 
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functions. For instance, two conditional quantiles, the mean and the median, 
have been identified in the literature as the predictors that minimize squared 
error loss and absolute error loss (see Section 2.3). These predictors produce 
smooth maps where spatial stationarity is assumed for estimating bivariate 
joint distributions. To improve spatial predictions, however, the predictors, CP-
I and CP-II were defined based upon several varying conditional probabilities. 
Flexibility in selecting predictors that are different from the conventional mean 
and median is a practical advantage that copulas when estimating 
distributions.  

The findings of my research demonstrate the advantages of using Earth 
observation data in data-scarce environments. ECMWF ERA-interim archive, 
MODIS products, Landsat 8 data, and the SRTM dataset are a few examples 
used in my study. The results demonstrate that embedding satellite products 
in multivariate distributions leads to improvements in predicting weather data.  

Several salient aspects were revealed by the extensive literature review 
included in the study. For instance, previously it had been reported that a 
Gaussian distribution is often assumed to be suitable for estimating distribution 
functions of air temperature, whereas a gamma distribution is assumed for 
precipitation. Those estimation procedures are usually based upon weather 
time-series (see Chapter 5). Hence, this may give the impression that air 
temperature always follows a Gaussian distribution, irrespective of its domain 
of distribution, i.e. spatial, spatio-temporal or non-spatial. The findings of my 
study confirm that those assumptions are stochasticity assumptions and not 
the property of physical processes similar to stationarity and ergodicity. In 
practice, a finite sample of a random variable is observed in space and time 
without replication. Most of us would make inferences about the joint 
distribution from those observations. Making assumptions should, of course, 
not be a concern, but rather encourage a dedicated choice with which to 
proceed with the investigations. 

One other practical advantage of the research is that the new methods are 
generic: application of the new copula-based methods in other case studies 
should provide more insight into the nature of these methods. Since R 
programing software is an open source environment that has been increasingly 
used for the implementation of statistical operations, this new research has 
contributed to the spcopula (Gräler, 2011), and VineCopula (Brechmann and 
Schepsmeier, 2013) packages available in R. The functions developed in this 
research will also be available on the GitHub software development platform 
after publication of my research results. The availability of these functions will 
assist:  

 Spatial interpolation of a random field that includes more than one 
covariate; 
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 Definition of different predictors based upon multivariate distributions; 

 Inverse transformation of conditional distributions;  

 Calculation of conditional probability based upon multivariate distributions; 

 Calculation of high-dimensional joint probabilities based upon addition 
rules in probability theory; and  

 production of a cross-correlogram which that has a definition similar to that 
of a cross-variogram.  

8.3 Obstacles   
During the research some problems arose related to the uncertainty, 
operational goals, and temporal characteristics of some of the bias correction 
methods.   

One concern about the findings of this research was that the available weather 
station measurements in Iran were treated as benchmarks in the bias 
correction and interpolation methods. Depending upon the instrument used to 
measure air temperature and the temporal frequency of measurement, the 
weather stations were categorized as one of three types: synoptic, climatology 
type1, and climatology type2. Time-series of air temperature at climatology 
type2 stations revealed that the quality of their measurements is low. As a 
result, the degree to which the results are affected by the varying quality of 
data is a source of uncertainty. Another source of uncertainty is the satellite 
products, in particular covariates such as land surface temperature and leaf 
area index, which were retrieved through several procedures. To my 
knowledge, there is no closed-form mathematical expression for calculating 
the propagation of the uncertainty in such a way that it could be used to 
develop new methods. Implementation of the methods for simulation-based 
information may provide an alternative approach to this issue.  

Regarding operational applications that include extensive datasets, the present 
research faces a limitation that emerges from finding the optimum parameters: 
For instance, the use of other copula families in the C-vine structure; the 
number and type of covariates; and the number of neighbors for CP-II and the 
interpolators. In addition, the computational cost of copula-based methods 
when working with high-dimensional distributions is relatively great. The use 
of parallel evaluations, powerful processors, and comprehensive sensitivity 
analysis might help to deal with this. An additional limitation is related to the 
availability of remote sensing data when the new interpolation methods need 
to be applied on daily scales. 

This study shows that both CP-II and MCQM-III were less successful than CP-
I and MCQM-I in representing the temporal variation of biased-corrected 
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values. This may raise concerns about their application to predictions in time. 
The use of the spatio-temporal information can improve the methods, requiring 
that the developed functions need to be extended to include spatio-temporal 
data frames.  

8.4 Prospects  
There are four new areas to be explored that relate to the utilization of copulas:  
methodological development, promising applications, types of problems at 
hand, and education.  

In this thesis I present the initials steps in developing methods for combining 
copula-based bias correction and interpolators for downscaling. In addition, the 
idea of the estimating high-dimensional multivariate distributions that include 
covariates opens a new approach in data/information fusion. Another 
opportunity arising from the use of copulas takes advantage of spatially varying 
conditional probabilities (e.g. CP-II) in Bayes classifiers and machine-learning 
environments. I also identify another route for future research: that of 
implementing copula-based methods of bias correction to predict bias-
corrected values at an unvisited moment in time, instead of spatially.  

For the applications concerning different types of datasets, the methods of bias 
correction presented can be applied to other weather parameters (such as 
precipitation) obtained from weather stations and ERA-I reanalysis. A 
promising, novel application of the bias correction methods is the local 
improvement of the land surface parameters retrieved from the European 
Centre for Medium-range Weather Forecasts (ECMWF). For instance, the daily 
evapotranspiration (ET) at local scales is important information in determining 
crop water requirements for use in an advisory system for irrigation. It is of 
interest, therefore, to develop a copula-based method of bias correction based 
upon MCQMs and apply it to evapotranspiration data obtained from Landsat 
products and ECMWF data so that temporal gaps can be filled. With respect to 
joint behavior analysis, a copula-based procedure can include socio-economic 
information to study the effects of climate change on urban areas.  

The use of new copula-based methods should be further explored for different 
types of problems. In this context, estimation of high-dimensional distributions 
using C-vine structures has great potential for describing complex 
dependencies found in, for example, wicked problems such as climate change, 
heat waves, and frequent wildfires (Aerts et al. 2016). 

As I mention in Chapter 1, the exploitation of copulas in geostatistics, as well 
as climate studies, is still relatively new. With this in mind, the case studies 
and the functions developed through this research, together with recent 
copula-based studies (Gräler 2014), could have a role to play in education in 
geostatistics. The main prerequisites for those who want to learn more are a 
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good understanding of the geo/mathematical statistics and the basic theories 
in probability.  

8.5 Limitations  
There are a number of issues arising from my research that will need to be 
addressed in the future: numerical evaluations, non-stationarity, the First Law 
of Geography, deterministic approaches, and climate impact studies.   

Numerical evaluations concern the implementations of some 
mathematical/statistical operations for copula families, such as partial 
derivatives and inverse transformations. These are still at an experimental 
stage and are subject to change during the development of functions to 
implement copula-based methods. In addition, a d-dimensional joint 
probability, d > 2, is obtained using the numerical evaluations and simulations 
that are associated with uncertainty. In the case of high-dimensional 
distributions, however, the joint probability is close to zero.  

Stationarity was assumed throughout the estimation of joint distributions. This 
assumption was justified through either some statistical tests or a test scenario 
(see Chapters 4 and 5). It is notable that those assumptions are justifiable in 
the case that one fails to reject them (Cressie 1993). The degree to which 
degree my findings alter in a non-stationary case study remains unanswered. 

The First Law of Geography (Tobler’s First Law) states that “All things are 
related, but nearby things are more related than distant things.” It is by now 
generally accepted that geostatisticians exploit this law not only for spatial 
modeling but also for spatio-temporal modeling. Among the methods I have 
researched for this thesis, those considering their spatially nearest neighbors 
in their formulations implicitly acknowledge the Tobler’s First Law: i.e. CP-II, 
MCQM-II, MCQM-III and the interpolators. It is for this reason that much 
attention should be given to the probabilistic nature of the desired variables. 
For example, crop production and price in a given year do not impact those in 
the following year. This explains why temporally varying predictor similar to 
CP-II could not be used in the joint behavior analysis presented in Chapter 7.  

For a deterministic approach, the main theories of copulas that are based upon 
probabilistic explanations need to be extended. There is, however, a definition 
of copulas that uses Geometric methods, without any reference to distribution 
functions or random variables (Nelsen 2006). In future research it would be 
interesting to find out whether the new methods I present in this thesis are 
applicable in a deterministic setting. 

With respect to climate impact studies, the copula-based methods assume that 
weather can be defined as a stochastic or random process. Analytical skills, 
therefore, are necessary to interpret the statistical characteristics of weather 
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data. In addition, statistical methods are data-driven i.e. the methods are 
applied to historical data and they give the desired output. In this thesis, I 
used measured data retrieved from weather stations to estimate the 
distribution functions and to validate the results. The cost and availability of 
measured data may hinder the application of the methods. 
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