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Summary

Remote sensing technology developments increase the possibility of studying
the forest structure in detail and support sustainable forest management
goals. The usage of remote sensing data from Laser scanning sources has
also been remarkably increased for forestry applications, since conventional
field inventories are time consuming and expensive. Furthermore, remote
sensing-based methods for obtaining accurate and updated forest structure
have been under a continuous development. The principal goal of this thesis
is to develop methods using remote sensing for obtaining explicit information
on forest structure such as regeneration coverage, stem count, segmented and
classified tree species. The methods are applied in small test areas and can
be extended to larger forest areas. The study areas are chosen from small
datasets in southeast Germany, and a small forest region in Austria. A set of
indicators of forest structure including regeneration coverage, stem count by
segmentation and tree species are selected. A wide range of lidar data sources
are employed, which could provide a high amount of relevant information for
forestry applications.

The study is conducted across two temperate forest areas, and consisted of
four case studies as follows. First, the regeneration coverage from airborne
3D point cloud using the enhanced 3D segmentation method (mean shift
clustering combined with Normalized Cut) is estimated. A general framework
is proposed for delineating detectable regeneration structures. To reduce the
computational costs for the bipartition of the weighting matrix in Normal-
ized Cuts, we combined the Normalized Cut algorithm with the mean shift
clustering. The main advantage of a mean shift is to generate a small number
of clusters to represent graph nodes instead of voxels. In the second study,
features from high point density Airborne Laser Scanning data are used to
reconstruct robust lines representing single tree stems. The components of
the stem detection algorithm and the classifier parameters are learned from
a training which is a three-step procedure at point level, segment level and
object level. The outputs from classifier training are employed for modeling
and generalizing single tree stem lines. In the 3rd phase a study is carried out
to explore the potential of paraboloid surfaces for segmentation of single coni-
ferous trees, where the static segmentation failed to partition the multiple tree
clusters. The main aim is to significantly reduce over/under-segmentation. It
can be expected if single trees are identified and characterized more precisely
at object-based level by an evolutionary adaptive 3D segmentation. The
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Summary

applied adaptive criterion to the Normalized Cut method was thus concluded
to show positive potentials towards solving over/under-segmentation issues
on coniferous trees. The 4th case study is focused on the combination of
features extracted from airborne multispectral lidar and aerial imagery for
detailed tree species classification. This is done through the segmentation of
the 3D point cloud and later projection of the clusters onto the image plane to
obtain bounding polygons for each tree crown. Spectral features are derived
from pixels inside the bounding polygons. The process consisted of exploring
a wide range of feature combinations including a feature selection step to
optimize the feature space and to indicate the most relevant ones. Moreover,
combining different structural and spectral features from multispectral lidar
yielded more accurate results than fusing multispectral aerial imagery and
single wavelength lidar data. Intensity of multispectral lidar data (1064 nm)
was the most influential feature adding up to 10% to the classification accur-
acy. The experimental results showed that the lidar-based features provided
the most effective information for forest structure analysis. Using the methods
developed in this thesis, the approaches have the potential to be transferred
to other sites.
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Samenvatting

Ontwikkelingen op het gebied van teledetectie-technologie vergroten de
mogelijkheid om de bosstructuur in detail te kunnen bestuderen en du-
urzame bosbeheerdoelen te kunnen ondersteunen. De belangstelling voor
het gebruik van teledetectiegegevens van laserscanningsbronnen is ook op-
merkelijk toegenomen voor toepassingen in de bosomgeving. Momenteel zijn
de gebruikelijke methoden afhankelijk van hoge kosten van conventionele
veldinventarissen. Bovendien zijn op afstandsensoren gebaseerde methoden
voor het bestuderen van een nauwkeurige en bijgewerkte bosstructuur continu
in ontwikkeling geweest. Het belangrijkste doel van dit proefschrift is om
methoden te ontwikkelen met behulp van teledetectie voor het verkrijgen
van expliciete informatie over de bosstructuur, zoals regeneratiedekking,
stamtelling, gesegmenteerde en geclassificeerde boomsoorten. De methoden
worden toegepast in kleine testgebieden en kunnen worden uitgebreid naar
grotere bosgebieden. De studiegebieden zijn gekozen uit kleine datasets in
Zuidoost-Duitsland en een kleine bosregio in Oostenrijk. Een reeks indicatoren
van bosstructuur inclusief regeneratiebedekking, stamtelling per segmentatie
en boomsoorten worden geselecteerd. Er wordt een breed scala aan lidar-
gegevensbronnen gebruikt, die een grote hoeveelheid relevante informatie
zouden kunnen opleveren voor bosbouwtoepassingen.

De studie werd uitgevoerd in twee gematigde bosgebieden en bestond uit
vier deel-onderzoeken. In het eerste onderzoek wordt de regeneratiedekking
van 3D-puntwolken in de lucht met behulp van de verbeterde 3D- segment-
atiemethode (gemiddelde verschuivingsclustering gecombineerd met normal-
ised Cut) geschat. Een algemeen kader wordt voorgesteld voor het afbakenen
van detecteerbare regeneratiestructuren. Om de computationele kosten voor
de tweedeling van de wegingsmatrix in genormaliseerde bezuinigingen te
verminderen, hebben we het genormaliseerde-snij-algoritme gecombineerd
met de gemiddelde verschuivingsclustering. Het grootste voordeel van een
gemiddelde verschuiving is om een klein aantal clusters te genereren om
grafische knooppunten te representeren in plaats van voxels. In het tweede
onderzoek worden functies van Laser Scanning-gegevens met hoge puntdi-
chtheid in de lucht gebruikt voor het reconstrueren van robuuste lijnen die
enkelvoudige boomstelen voorstellen. De componenten van het stamdetectie-
algoritme en de classificatorparameters worden geleerd van een training die
een drietrapsprocedure is op puntniveau, segmentniveau en objectniveau. De
outputs van de classificatietraining worden gebruikt voor het modelleren en
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Samenvatting

generaliseren van enkelvoudige stamlijnen. Het derde onderzoek werd gedaan
naar het potentieel van parabolöıde oppervlakken voor de segmentatie van en-
kele naaldbomen, waarbij de statische segmentatie de meerdere boomclusters
niet kon partitioneren. Het belangrijkste doel is om over/onder-segmentatie
aanzienlijk te verminderen. Het kan worden verwacht als afzonderlijke bomen
op object-gebaseerd niveau nauwkeuriger worden gedentificeerd en geken-
merkt door een evolutionair adaptieve 3D-segmentatie. Het toegepaste ad-
aptieve criterium voor de methode Normalized Cut werd zo geconcludeerd
dat het positieve mogelijkheden toonde voor het oplossen van problemen bij
over/onder-verdeling van naaldbomen. Het vierde onderzoek concentreert zich
op de combinatie van kenmerken die zijn verkregen uit multispectrale lidar en
luchtfoto’s van de lucht voor gedetailleerde classificatie van boomsoorten. Dit
wordt gedaan door de segmentatie van de 3D-puntwolk en later de projectie
van de clusters op het afbeeldingsvlak om begrenzende polygonen voor elke
boomkroon te verkrijgen. Spectrale functies zijn afgeleid van pixels binnen
de begrenzende polygonen. Het proces bestond uit het verkennen van een
breed scala aan functiecombinaties, waaronder een functiekeuzestap om de
speelruimte te optimaliseren en de meest relevante aan te geven. Bovendien
leverde het combineren van verschillende structurele en spectrale kenmerken
van multispectrale lidar meer accurate resultaten dan het samensmelten van
multispectrale luchtfoto’s en lidar-data met één golflengte. Intensiteit van
multispectrale lidar-gegevens (1064 nm) was de meest invloedrijke functie
tot 10% aan de nauwkeurigheid van de classificatie. De experimentele res-
ultaten toonden aan dat de lidar-gebaseerde kenmerken de meest effectieve
informatie voor analyse van de bosstructuur opleverden. Met behulp van de
methoden die in dit proefschrift zijn ontwikkeld, kunnen de benaderingen
worden overgedragen naar andere gebieden.
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Zusammenfassung

Aktuelle Entwicklungen in der Fernerkundung ermöglichen neuerdings, Wald-
strukturen im Detail zu analysieren und damit eine Basis für ein nach-
haltiges Forstmanagement zu schaffen. Fernerkundungsdaten von flugzeu-
getragenen Laserscannern für Anwendungen im Bereich der Waldökologie zu
verwenden ist von zunehmenden Interesse, da konventionelle Bestandsaufnah-
men zeitaufwendig und teuer sind. Der Einsatz der Fernerkundung spielt dabei
eine entscheidende Rolle, um Methoden zur Lösung der technischen Probleme
zu entwickeln. Darüber hinaus wurden Fernerkundungsverfahren zur präzisen
und aktuellen Gewinnung Waldstrukturen kontinuierlich weiterentwickelt. Das
Hauptziel dieser Arbeit ist die Entwicklung von Fernerkundungsmethoden zur
Erlangung expliziter Informationen über die Waldstruktur wie Regeneration,
Stammanzahl, segmentierte und klassifizierte Baumarten. Die Methoden wer-
den in kleinen Testgebieten angewendet und können auf größere Waldflächen
ausgedehnt werden. Die verwendeten Datensätzen beziehen sich auf ein Un-
tersuchungsgebiet im Südosten Deutschlands (Nationalpark Bayerischer wald)
und ein kleines Testgebiet in Österreich. Indikatoren für Waldstrukturen,
darunter Verjüngung, Stammanzahl, segmentierte Einzelbäume und klassifiz-
ierte Baumarten. Umfangreiche Fernerkundungsdatensätze konnten genutzt
werden, die eine große Menge relevanter Informationen für Forstanwendungen
darstellten.

Die Studie wurde in zwei Testgebieten durchgeführt und untersucht die fol-
genden 4 Szenarien. Als erstes wurde die nachwachsende Verjüngung mithilfe
einer modifizierten 3D Segmentierungsmethode aus einer 3D Punktwolke
bestimmt. Ein allgemeine Strategie wird vorgeschlagen, um detektierbare
Verjüngungsstrukturen zu erkennen. Um die Rechenzeit des Normalized
Cuts Verfahrens zu reduzieren, werden der Normalized Cut Algorithmus
mit dem Mean Shift Clustering verfahren kombiniert. Die Verwendung der
Mean Shift Cluster besitzt den Vorteil, dass eine kleinere Anzahl von Super-
voxeln für die Erstellung der Gewichtsmatrix verwendet werden kann. In der
zweiten Fallstudie wurden Merkmale aus hochauflösenden Airborne Laser
Scanning Daten berechnet, um einzelne Baumstämme aus der 3D Punkwolke
zu rekonstruieren. Trainingsdaten werden verwendet, um Klassifikatoren
des Stammerkennungsalgorithmus zu trainieren der als 3-Stüfiges Verfahren,
einen punkt-basierten, segment-basierten und objekt-basierten Teil beinhal-
tet. Die Resultate des Klassifizierertrainings werden genutzt um einzelne
Stammlinien zu modellieren und zu generalisieren. In der dritten Studie

vii



Zusammenfassung

werden parabolischen Oberflächen verwendet, um die Segmentierung von
einzelnen Nadelbäumen zu verbessern, die wegen des statischen Abbruchkri-
teriums zu unbefriedigenden Ergebnissen führen kann. Das Hauptziel ist es, die
Über- und Untersegmentierung signifikant zu reduzieren. Dies kann erwartet
werden, falls einzelne Bäume präzise auf der Objektebene mittels einer adapt-
iven 3D Segmentierung charakterisiert werden können. Die Ergebnisse zeigen,
dass das adaptive Abbruchkriterium bei der Normalized Cut Methode zu einer
Reduktion der Über- und Untersegmentierung bei Nadelbäumen führt. Die
vierte Fallstudie verwendete multispektrale Laserscanningdaten und Luftb-
ilder für eine detaillierte Baumartenklassifikation. Hierbei wurden die Umring-
polygone der Baumcluster, die über eine Segmentierung der 3D Punktwolke
berechnet werden, auf die Bildebene projiziert. Spektrale Merkmale wurden
aus den Pixeln innerhalb der Begrenzungspolygone abgeleitet. Der gesamte
Prozess beinhaltete die Untersuchung einer umfangreichen Merkmalsraums
mithilfe einer vorwärtsgerichteten Merkmalsselektion, die den Merkmalsraum
optimiert und die relevantesten Merkmale selektiert. Die Untersuchungen
zeigen, dass die Kombination von verschiedenen strukturellen und spek-
tralen Merkmalen, die aus multispektralem lidar berechnet werden, genauere
Ergebnisse erbringt als die Fusion von multispektralen Luftbildern und lidar
Daten einer einzelnen Wellenlänge. Die Intensität von multispektralem lidar
(1064nm) erweist sich als das einflussreichste Merkmal, was zu einer 10%igen
Genauigkeitssteigerung führt. Die experimentellen Ergebnisse zeigen, dass
die lidar-basierten Merkmale die wichtigsten Informationsträger zur Wald-
strukturanalyse sind. Die in dieser Arbeit entwickelten Methoden besitzen
das Potential, auf andere Gebiete übertragen zu werden.
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1. Introduction

1.1 Importance of forest structure

Forests across the globe have an important role in several activities such as
ecosystem management, biomass production and biodiversity monitoring. The
forest coverage is subject to permanent change at different temporal and spa-
tial scales (Coppin and Bauer, 1996). Since the present-day forest inventory
requires accurate and continuously updated information it is necessary to
frequently measure essential forest variables (Asner and Martin, 2016).
In this context, the term forest structure refers to a general topic in forestry
and ecology community. Different studies have provided comprehensive sum-
marizes on the available definitions and attributes. The forest structure is not
a measurable quantity by itself. However, properties of it can be described by
means of a wide variety of variables such as species distribution, vertical and
horizontal spatial patterns, tree attributes, stand volume and/or combinations
of them at different canopy levels (McElhinny et al., 2005). Regardless of the
definitions, updated information on the forest structure variables is needed
to improve forest management strategies (Koch et al., 2009) by quantifying
the current condition for predicting future stand dynamics.
A forest is often described by a set of general characteristics including com-
position, function and structure (Franklin et al., 1981). Beside composition
(which is described as presence/dominance of species or by relative indices
of biodiversity) and function (explains types and rates of a process such as
biomass), the physical forest characteristics are explained under the general
concept of forest structure. The structural elements at tree level are described
by various attributes associated with spatio-temporal properties, such as
height, canopy closure and species composition (Latifi et al., 2015a). Quali-
fication of these elements can provide valuable information in order to assess
future forest planning and management goals.
Forest structure analysis is mainly focused on gathering detailed, precise
and updated information on vertical and horizontal structure of forest layers
(Latifi et al., 2017). Among the different structural variables, four are investig-
ated in this thesis to describe the vertical and horizontal structure of canopy
at different layers, namely 1) regeneration coverage, 2) tree stem count per
ha, 3) tree segmentation and 4) tree species classification. The first variable
refers to the proportion of the regeneration coverage which is essential for the
forest biodiversity while the following ones express the structural attributes
at single tree level. Conventional approaches for estimation of the forest
structure variables are costly and time consuming and they are limited to
small spatial extents. Remote sensing techniques based on laser scanning as
well as optical imagery can help to overcome the above mentioned limitations,
allowing for large-scale mapping of forest structure variables and reduce the
cost of measurements.
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1.2 Lidar remote sensing of forest structure

Recently, remote sensing technology has become practical for application
in forestry due to the ability of repetitive coverage at short time intervals
while providing accurate characteristics at different scales (Mas, 1999; Latifi,
2012; White et al., 2016). This provides objective and practical solutions for
developing and maintaining forest structure analysis, which in turn supports
a variety of management purposes. Different types of remote sensing data
including optical, thermal, Synthetic Aperture Radar (SAR), and Airborne
Laser Scanning (ALS) from medium to fine spatial resolution are required to
directly estimate the structural variables. Among remote sensing techniques,
ALS, also known as airborne lidar (Light Detection And Ranging), has rapidly
gained popularity over the last two decades in the forestry community due
to its unique capability to provide a quantitative 3D digital representation
of the objects of interest (Hyyppä et al., 2008; Vosselman and Maas, 2010;
White et al., 2016; Krzystek and Polewski, 2017).
ALS is an active remote sensing technique that is not affected by solar illu-
mination or shadowing, and was introduced in the 1980s for the purpose of
large-scale monitoring (Woodhouse et al., 2011). The large amount of detail
obtainable with lidar as well as its applicability in hard to access forested
areas resulted in new demands that cannot be achieved by traditional meth-
ods. Furthermore, lidar can provide both horizontal and vertical information
in 3D space, enabling the elimination of the influence of background, under-
story, and canopy geometry (Morsdorf et al., 2006). The ability to penetrate
partially the vegetation and to capture 3D structural and spatial information
has brought lidar to the stage of a powerful tool for forest structure charac-
terization (Lefsky et al., 1999). Depending on the application, lidar sensors
can be used with Unmanned Aerial Vehicles (UAVs) and Terrestrial Laser
Scanning (TLS) or mounted on airborne (ALS) and space-born platforms.
Initially, lidar was used for mapping terrain surfaces, especially in forestry
applications. Forest structure analysis using lidar data has been investigated
for management purposes at both plot and single tree level to identify the
important structural variables (Heurich, 2008; Korpela et al., 2010b; Yao
et al., 2012). A forest canopy, due to its complexity, tends to produce a
denser distribution of returns (Hardiman et al., 2013). Recent developments
in lidar technology have generated new full waveform scanners that can
record more efficiently the backscatter pulses within the travel path of a
laser beam to provide additional information about the characteristics of
reflected objects and a higher spatial point density (Reitberger et al., 2009;
Yao and Stilla, 2010; Wallace et al., 2012; Gong et al., 2015; Scaioni et al.,
2018). Furthermore, in certain practical applications Single-Photon lidar (532
nm green laser) and Geiger-mode lidar (1064 nm IR laser) have recently
gained popularity (Swatantran et al., 2016; Stoker et al., 2016; Harding et al.,
2011). Both Geiger and Single-Photon lidar systems utilize focal plane array
detectors and record the returned laser pulse using an array of receivers
instead of a single receiver. A receiver array can detect individual photons
and count photons per detector. These sensors are operated at higher flying
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altitudes and use lower laser power compared to linear mode lidar systems
(Polewski, 2017; Stoker et al., 2016). Although these new sensors have shown
some promising results in preliminary studies, the data acquired during day
time is still too noisy for commercial uses (Stoker et al., 2016). Geiger-mode
systems in particular, are impractical for analysis of vegetation coverage. Note
that throughout the work reported in this thesis, Geiger and Single-Photon
lidar systems were not used in any of the experiments.

1.2.1 Lidar remote sensing for regeneration coverage:

The distribution and coverage analysis of the understory canopy layer can be
estimated by means of lidar remote sensing. However, methods for regenera-
tion coverage prediction across temperate forests have not been fully explored
(Hill et al., 2017). Due to recent developments in full waveform lidar, the
laser beam now has a high degree of probability to travel through the canopy,
reaching young trees (regeneration) and providing a stronger ground return
signal (Lefsky et al., 2002a; Pirotti, 2011; Amiri et al., 2016).
The focus of lidar-based studies on extracting information about forest under-
story coverage has been on either separating the over- and understory layers
from each other (Zimble et al., 2003; Mund et al., 2015) or on estimating
the probability of the areas in which the understory can exhale (Hill and
Broughton, 2009). Regarding the understory, there is great practical interest
in forest ecology due to the fact that the variations along the vertical structure
of the understory is a relevant criterion later for the occurrence of dominant
tree species in the overstory canopy layer (Falkowski et al., 2009). Besides
the vertical structure, accurate information on the horizontal structure of
the understory canopy underneath the top tree layer, has a significant role
across temperate mixed stands, not only for the woody species, but for all
the herbal species close to the forest ground as well (Latifi et al., 2017).

1.2.2 Lidar remote sensing for stem detection:

The reconstruction of single tree stems at different canopy layers is an
important factor for providing essential habitat resources for further studies
(McElhinny et al., 2005; Polewski et al., 2015b; Polewski, 2017). Standard
ALS sensors with a point density up to 30 points/m2 are able to cover large
areas more efficiently in terms of time and expense. However, the ALS-based
methods fail to detect tree stems due to the low point density at the level of the
intermediate-/understory canopy layer (Vierling et al., 2013). The high point
density lidar can fill the gap between costly traditional field measurements and
low-resolution lidar data by providing a variety of intermediate-/understory
canopy layer attributes at a fine scale. In the case of high point density
ALS data, the laser beam has a better chance to penetrate the vegetation
canopy and to provide ground information, depending on parameters such
as flight altitude, pulse repetition frequency, and laser power. This enables
the detection of single tree stems more precisely compared to the common
ALS data (point density around 30 points/m2). Due to the 3D nature of the
point cloud and smaller laser footprint, from the method point of view it is
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possible to capture the information of single tree stems at intermediate and
understory canopy layers.

1.2.3 Lidar remote sensing for tree segmentation and classification:

Over time, a large number of methods have been developed for segmentation
at single tree level. The advantages and disadvantages of a particular method
can greatly affect the results of the single tree delineation and later species
classification. In the same environment, different approaches may yield differ-
ent results. Therefore, it is important to select an appropriate segmentation
method depending on circumstances such as technical capabilities, phenology
of forests, or cost of data. There have been a variety of methods developed for
single tree segmentation applied directly on 3D point clouds or on the derived
Canopy Height Model (CHM). The variables obtained from the segmentation
method using lidar data can be later used for additional approaches such as
understory coverage estimation and tree species classification (Zhao et al.,
2009; Yao et al., 2012; Amiri et al., 2016). From the accuracy point of view,
the segmentation is in an early stage and requires further research.
In practice, top-down segmentation methods such as Normalized Cut (NCut)
(Reitberger et al., 2009) applied directly on 3D point clouds for single tree
delineation tend to produce over- and under-segmentation errors based on the
forest characteristic and empirically defined control parameters. Even after
extensive calibration of the most relevant parameters using reference data,
broad-leaf trees with large crowns might be split into several tree segments
or coniferous trees might be merged into a single tree segment. These errors
later lead to incorrect estimation of timber volume. Amiri et al. (2018b)
has recently shown that the Normalized Cut segmentation used mainly for
coniferous trees can be enhanced by using an adaptive criterion approach
instead of using a static Normalized Cut threshold.
Previous studies have shown that vegetation species diversity in temperate
forests can be substantially affected by changes in the forest structure (Ellison
et al., 2005). Different structural features related to tree crowns and height
can be derived from a 3D ALS point cloud and can be afterwards considered
for tree species classification. The initial idea for using lidar features for clas-
sification was related to the different crown and height properties of various
tree species (Ørka et al., 2010). Beyond the multi-echo detection capability,
lidar may also provide valuable information on overlapped crowns of different
tree species. The 3D coordinates, intensity, and pulse width features are
obtained using a Gaussian waveform decomposition into a sum of components
(Mallet and Bretar, 2009). The decomposition is used to characterize the
different target objects along the path of a laser beam (Guo et al., 2011). The
common full waveform lidar features for classification purposes are 3D co-
ordinates, amplitudes, echo widths, cross-sections, and echo shapes (Mallet
et al., 2008). The amplitude and echo width are commonly used for single
tree species identification (Korpela et al., 2010b). In addition, the intensity
recorded by lidar sensors is a function of the reflectance property of an object
(Lefsky et al., 1999). The intensity is to some extent insensitive to ambient
light and atmospheric conditions (Killinger and Meyuk, 1987; Kasparian
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et al., 2003). This reliability enables intensity to be used for spectral separ-
ation between objects. Recent studies have shown that the lidar intensity
is the key element for distinguishing between tree species, particularly in
conjunction with structural variables (Kim et al., 2009; Yu et al., 2017; Shi
et al., 2018a). Moreover, a feature selection step that aims to select the most
relevant features has made a significant contribution to the final classification
results (Amiri et al., 2018a). Note that the accuracy of the single tree species
classification relies mainly on the single tree detection and segmentation
(Hyyppä et al., 2008). However, as mentioned before, tree segmentation can
result in large errors in terms of over/under-segmentation in complex and
dense forests where tree crowns are overlapped (Zhao et al., 2009).
Furthermore, the use of the multi-sensor (ALS and optical imagery) datasets
for forest applications has been a matter of interest due to the possibility
of combining structural and spectral information. However, in the fusion
approaches, some factors related to the integration of geometry and spec-
tral characteristics of the datasets may still affect the process of extracting
accurate tree boundaries for the classification step by producing errors. Al-
though the single wavelength lidar data is promising (up to 90% overall
accuracy) for classification of broad-leaf and coniferous trees, the conducted
analysis proved that detailed spectral information is necessary for multiple
tree species classification (Yao et al., 2012). Therefore, the addition of the
extracted spectral features from available multispectral lidar data for tree
species classification in temperate forests is highly recommended.

1.3 Research objectives

In this thesis, the primary aims were to:

• estimate the regeneration coverage of the understory canopy layer using
an enhanced 3D segmentation method and ALS point clouds.

• detect single tree stems using a feature-based classifier strategy at point,
segment, and object levels by using high density ALS point clouds.

• enhance the over/under-segmentation problems mainly for the coni-
ferous tree species using an adaptive stopping criterion approach for
top-down segmentation of ALS point clouds.

• investigate the contribution of the features extracted from multispectral
lidar data and aerial imagery, to the classification accuracy of multiple
tree species.

1.4 Study area

Considering the research objectives and the availability of data, Chapters 2,
4, and 5 are focused on the Bavarian Forest National Park (BFNP). The main
test site of this thesis was located in southeast Germany along its border
with the Czech Republic (49°3′19′′ N, 13°12′9′′ E) (Fig.1.1). This mixed
mountain forest is geographically characterized as a part of the Bohemian
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Forest region. Elevation in the BFNP ranges from 600 to 1453 m above
sea level. The climate of the region is temperate, and precipitation varies
from 1200 to 1800 mm/year. The minimum average annual temperature is
between 3◦C and 6◦C. In general, the predominant tree species in the BFNP
are Norway spruce (67%), European beech (24.5%), and Silver fir (2.6%)
(Heurich et al., 2010).

Figure 1.1: Location of the Bavarian Forest National Park, Germany.

As another test site away from the Bohemian Forest region, the lidar data
in Chapter 3 were acquired from the Hochficht forest. The area is located
along the border of Austria and the Czech Republic (48°44′11′′ N, 13°55′16′′

E) (Fig.1.2). The highest recorded elevation of the forest is 1,338 m above
sea level. The temperature is especially changing with altitude: the average
temperature is approximately 6◦C at an altitude of 750 m and about 3◦C at
an altitude of 1,300 m. The forest is a mixture of broad-leaf and coniferous
tree species.
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Figure 1.2: Location of the Hochficht forest, Austria.

1.5 Thesis outline

This thesis comprises six chapters, including a general introduction, four core
chapters, and a synthesis. Each core chapter has been provided as a standalone
research article that has been published or submitted to peer-reviewed ISI
journals. The structure of the chapters is as follows. Chapter 1 presents
the research background, main objectives, and the thesis outline. Chapter
2 presents the enhanced 3D segmentation approach using lidar data for
estimation of regeneration coverage in the understory canopy layer under leaf-
on conditions. Chapter 3 introduces a three step classifier training approach
using 3D shape descriptors to extract single tree stems in high point density
ALS data. Chapter 4 evaluates the novel adaptive stopping criterion for a
top-down segmentation approach focused on coniferous trees and examines
the utility of quadratic surfaces for classifier training. Chapter 5 describes
multiple tree species classification using a feature-based strategy extracted
from multispectral lidar data and aerial imagery. Finally, Chapter 6 provides
an overview of the significant research findings of the thesis. The contributions
of the studies mentioned in this thesis for the forest structure analysis and
management are discussed. Furthermore, future research possibilities that
could lead to further enhancement of the methods are described.
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2Estimation of regeneration
coverage in a temperate forest by
3D segmentation

This chapter is based on:
Amiri, N., Yao, W., Heurich, M. & Krzystek, P. (2015). Regeneration detection by 3D
segmentation in a temperate forest using airborne full waveform Lidar data. Proceedings
of SilviLaser 2015 : 14th conference on lidar applications for assessing and managing forest
ecosystems: 28-30 September 2015, La Grande Motte, France.

Amiri, N., Yao, W., Heurich, M., Krzystek, P., & Skidmore, A. K. (2016). Es-
timation of regeneration coverage in a temperate forest by 3D segmentation using airborne
laser scanning data. International journal of applied earth observation and geoinformation,
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Abstract

Forest understory and regeneration are important factors in sustainable
forest management. However, understanding their spatial distribution in
multilayered forests requires accurate and continuously updated field data,
which are difficult and time-consuming to obtain. Therefore, cost-efficient
inventory methods are required, and Airborne Laser Scanning (ALS) is a
promising tool for obtaining such information. In this study, we examine a
clustering-based 3D segmentation in combination with ALS data for regener-
ation coverage estimation in a multilayered temperate forest. The core of our
method is a two-tiered segmentation of the 3D point clouds into segments
associated with regeneration trees. First, small parts of trees (super-voxels)
are constructed through mean shift clustering, a nonparametric procedure
for finding the local maxima of a density function. In the second step, we
form a graph based on the mean shift clusters and merge them into larger
segments using the normalized cut algorithm. These segments are used to
obtain regeneration coverage of the target plot. Results show that, based on
validation data from field inventory and Terrestrial Laser Scanning (TLS),
our approach correctly estimates up to 70% of regeneration coverage across
the plots with different properties, such as tree height and tree species. The
proposed method is negatively impacted by the density of the overstory be-
cause of decreasing ground point density. In addition, the estimated coverage
has a strong relationship with the overstory tree species composition.
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2.1 Introduction

The process of forest regeneration, understanding as young trees below
5 m height, is a central component in forest succession, which ensures
a continuous forest cover and adds structural complexity (Swanson et al.,
2010). Therefore, it plays an important role in maintaining biological diversity
in forest ecosystems. Regeneration appears either as advanced regeneration
under canopy gaps or on open areas after large scale natural disturbance and
forest management actions. Information on understory vegetation can benefit
the assessment of tree species richness and vertical structure of forests (Wing
et al., 2012).
Conventional forest inventory of the understory is based on limited sample
plots, which are used to calculate means and confidence intervals for the larger
forest areas. However, one of the main disadvantages of this approach was
the limited number of plots which often covered less than a few percent of the
total forest area (Köhl et al., 2006). Therefore, it was not possible to extract
area-wide information. In addition, ground-based methods for understory
inventory are generally time-consuming and labor-intensive (Tuanmu et al.,
2010; Wing et al., 2012). Remote sensing can provide objective, cost-effective,
and practical solutions for developing and maintaining automated area-wide
forest mapping (Janssen and Huurneman, 2000). Passive remote sensing
methods are useful alternative tools for gathering information across large
areas (Wing et al., 2012). However, because of the complexity of the overstory,
they cannot penetrate the forest ground layer.
ALS systems with direct measurement of 3D structural information have
been shown to be a promising tool for characterizing vegetation (Lefsky et al.,
2002b). The decomposition of waveforms can overcome the limitations of
conventional first/last pulse data in the analysis of the forest understory by
providing the intensity and pulse width (Reitberger et al., 2009). In addition,
based on former approaches, the waveform decomposition process gives higher
spatial point density and information about the vertical structure of the
understory (Yao et al., 2013). Therefore, after waveform decomposition, full
waveform ALS data are more representative in multilayered forests (Eskelson
et al., 2011; Latifi et al., 2015b).
Efforts towards the application of ALS data for understory and regeneration
studies have been promoted in earlier research. However, so far, only limited
experiments have been done to estimate regeneration coverage in multilayered
forests using ALS data (Yao et al., 2013). Su and Bork (2007) examined
the CHM (Canopy Height Model) frequency histograms of a first/last pulse
ALS system and tested two thresholds of 0.3 m and 1.3 m to separate
the overstory and understory in aspen forests. Hill and Broughton (2009)
detected the presence of regeneration in temperate broadleaf forests, using
leaf-off and leaf-on ALS data. Later, Morsdorf et al. (2010) tested both
height and intensity information to detect canopy layers (understory and
a shrub layer) in a dry Mediterranean forest. They applied a supervised
cluster analysis, assuming that intensity measurements of some tree species
can improve the classification; however, they achieved an accuracy rate
of 48% in detecting understory. Korpela et al. (2012) used ALS data to
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study the understory by designing a conceptual model for the transmission
losses of laser pulse intensity through the overstory. Their results showed
that it is impossible to obtain normalized second-return intensity data from
the forest floor or ground vegetation. Ferraz et al. (2012) used mean shift
clustering on ALS data in a multilayered forest to detect suppressed trees,
and achieved a detection rate of 12.8%. Yao et al. (2013) noted the potential
of height distributions and geometric properties for regeneration detection
using full waveform ALS data. Latifi et al. (2015b) highlighted the value
of Lidar metrics for characterizing the structural properties of the lower
forest layer in temperate mixed stands. These studies indicate that the
problem of correctly detecting regeneration using ALS height distributions
is related to the presence of ground vegetation and overlapping crowns
in the overstory. Although the availability of ALS data and appropriate
post-processing methods has increased, there is still limited experience in
applying them to estimate regeneration coverage in multilayered forests. In
the mean shift clustering-based approach on ALS data, multiple clusters may
correspond to a single tree. This fragmentation in the understory level makes
it difficult to distinguish whether the cluster belongs to the regeneration or it
is a part of neighboring single tree. Therefore, an approach that can provide
regeneration coverage based on automated segmentation of forest understory
structures in 3D space is needed.
The objectives of this study are (i) to estimate the regeneration coverage
with an adapted 3D segmentation algorithm using full waveform ALS data,
(ii) to investigate the effect of overstory density and tree species composition
on the accuracy of estimated regeneration coverage. Moreover, we provide a
sensitivity analysis for specific control parameters of the method.
The remainder of this work is structured as follows: Section 2 describes the
details of our approach; Section 3 illustrates the study area, materials, and
field measurements. The results are presented in Section 4 and discussed in
Section 5. Finally, the conclusions are stated in Section 6.

2.2 Method

We use an adapted 3D segmentation algorithm (see (Yao et al., 2013)), to
estimate the regeneration coverage (the ratio between the area covered by
regeneration trees and the total area of the sample plot). The 3D segmenta-
tion algorithm is a two-tiered segmentation procedure. The normalized cut
segmentation as the core part of our method is computationally expensive. To
reduce the computational costs for the bipartition of the weighting matrix
in normalized cuts, we combine the normalized cut segmentation with the
mean shift clustering. The advantage of a mean shift is to generate a small
number of clusters to represent the graph nodes instead of voxels. The former
approach by (Yao et al., 2013) also confirmed that the mean shift clusters
can better indicate smaller trees in the understory, which is not possible to
do using the normalized cut segmentation based solely on voxels. The ground
truth data is available as proportional values of regeneration coverage. The
steps of the entire procedure are as follows: (i) above-ground height threshold
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determination, (ii) local tree maxima filtering, (iii) mean shift clustering, (iv)
feature derivation for mean shift clusters, (v) normalized cut segmentation
, and (vi) height filtering of the segmentation results. In the following, we
explain the steps of the adapted 3D segmentation.

2.2.1 Above-ground height threshold

The input data after waveform decomposition with superimposed Gaussian
functions is a set of 3D point clouds with 3D coordinates Xi(xi, yi, zi) and
two physical properties (intensity and pulse width) for each point (Reitberger
et al., 2009). The derived 3D point clouds from decomposition contain the
entire overstory, understory, and ground vegetation (herbal layer). To focus
on regeneration, we need to remove the points belonging to the ground
vegetation up to a height of 1 m from the ground surface level, which is
estimated from a given Digital Terrain Model (DTM). This height threshold
value in the 3D segmentation affects the results of the regeneration coverage
estimation by commission and omission errors.

2.2.2 Local tree maxima filtering

In our approach, within each grid cell, the highest 3D point is estimated from
a given DTM. The local maxima positions are provided by the watershed
segmentation on the Canopy Height Model (CHM), and act as prior know-
ledge to detect where the overstory trees are located (see (Reitberger et al.,
2009)). This prior knowledge is directly included in the similarity function of
normalized cut segmentation (see Section 2.4).

2.2.3 Mean shift clustering

In forestry applications, ALS point clouds are noted as a multimodal dis-
tribution where each mode as a local maximum both in height and density,
corresponding to a crown top (Ferraz et al., 2012). Our experiment investig-
ates the ability of mean shift clustering combined with the normalized cut
segmentation to extract the modes of point clouds in each cluster. Although
the mean shift procedure is able to define the modes of a density function,
this procedure requires a testing framework because of the complexity of
the understory. Here, our approach is to segment vertical and horizontal
structures of the forest understory in 3D space.
The mean shift is a nonparametric, feature-space clustering technique, which
neither requires prior knowledge of the cluster number nor constrains the
shape of the clusters (Comaniciu and Meer, 2002; Wu and Yang, 2007). For
each point in 3D space, the mean shift in a defined kernel window performs a
gradient ascent procedure on the local estimated density until convergence to
the local maxima. In this technique, for given n points of Xi, i = 1, 2, ..., n
in 3D space, the probability density function with the obtained kernel K(X)
is:

fhr,K(X) =
1

nh3
r

n∑
i=1

K(
X −Xi

hr
) (2.1)
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where hr as the kernel bandwidth is the smoothing parameter that specifies
the contribution of each point in Eq. 2.1. The kernel bandwidth hr refers to
the kernel radius. K is a nonlinear function of the distance from the points
in 3D space to the center of kernel X. The modes of the density function are
located at the zeros of the gradient function ∇f(X) = 0. Assuming that g is
the derivative of the kernel profile k, g(X) = −k′(X) (see (Yao et al., 2013);
Comaniciu and Meer (2002)), the mean shift vector is calculated as:

mhr (X) =

∑n
i=1Xig(‖(X−Xi

hr
)‖2)∑n

i=1 g(‖(X−Xi

hr
)‖2)

−X (2.2)

In Eq. 2.2 the most computationally expensive component of the mean shift
vector is related to the identification of neighboring points in 3D space,
which is defined as the kernel radius hr (Yao et al., 2013). This parameter
depends on the local forest structure (Ferraz et al., 2012). Therefore, we use
a cylinder-shaped kernel because it can model the shape of a tree better than
a spherical kernel. The kernel radius hr affects the segmentation procedure
and has to be set in advance by empirical experiments. The determination of
the optimal value is based on the assumed reasonable size of the regeneration
trees which we want to cluster (Yao et al., 2013).
Besides the radius hr, the height of kernel H is also an important parameter,
which has to be defined in advance. The kernel height H is included in the
Gaussian function of the mean shift vector to determine whether or not a
point Xi belongs to the cylinder-shaped kernel. In our study, the Gaussian
kernel profile g is defined as:

g(‖X−Xi‖2
hr

) = e
−‖X−Xi‖

2h2
r for Xi ∈ Cylinder {hr, H}

g(‖X−Xi‖2
hr

) = 0 for Xi /∈ Cylinder {hr, H}

(2.3)

For any point in the 3D space located within the cylinder-shaped kernel
with the predefined kernel height H, the Gaussian kernel profile in Eq. 2.3 is
applied. Fig. 3.1a shows the cylinder-shaped kernel for the density estimation
with the mean shift vector, and Fig. 3.1b presents the 2D Gaussian kernel
profile. The mean shift vector always points toward the direction of the
maximum increase in density (see (Ferraz et al., 2012)).

2.2.4 Feature derivation for mean shift clusters and normalized cut
segmentation

After applying the mean shift to the 3D point clouds, for each cluster, we
estimate four groups of features. These features are: (i) Shp = {Sx, Sy} to
describe the horizontal position of the clusters, (ii) Svp = {Sz} to describe
their vertical position, (iii) SI = {SI} as an overall mean intensity for the
entire mean shift cluster, and SW = {SW } as a mean pulse width for the
entire cluster.
The normalized cut segmentation (see (Shi and Malik, 2000)) is a spectral
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Figure 2.1: (a) Cylinder-shaped kernel with mean shift vector in 3D space; (b)
2D Gaussian kernel profile, where the horizontal axis represents the distance
d from the kernel center X to a point Xi; d = ‖X −Xi‖.

method for data clustering. The two disjointed segments A and B of the
graph are found by maximizing the similarity of the connected clusters and
minimizing the similarity between segments A and B (see (Reitberger et al.,
2009)). The corresponding normalized cut function is:

NCut(A,B) =
Cut(A,B)

Assoc(A, V )
+

Cut(A,B)

Assoc(B, V )
(2.4)

with Cut(A,B) =
∑
i∈A,j∈B wij as the total sum of the weights between the

segment A and B, while Assoc(A, V ) =
∑
i∈A,j∈V wij is the sum of weights

of all edges ending in segment A in Eq. 2.4 (see (Reitberger et al., 2009; Yao
et al., 2013)). This property uses the eigenstructure of the object similarity
function to construct a low-dimensional representation of the points (Polewski
et al., 2015a). The normalized cut segmentation is applied to the mean shift
clusters. The similarity function for normalized cut is based on the pair-
wise similarity of the clusters. The mentioned segmentation is controlled by
several parameters whose values can be optimized in experiments. The most
important control parameter that controls the subdivision of the graph is the
normalized cut threshold NCutThres. Another one is the minimum number
of points in a segment NCutminpoints. In this study, these parameters are
empirically defined.
In order to set up the weighting matrix W , we introduce the function

w(i, j) =

{
e−P (i,j) × e−Z(i,j) × e−F (i,j) × e−M(i,j) if Dxy

ij < rxy

0 otherwise
(2.5)
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with

P (i, j) =

(
Dhp

ij

σhp

)2

, Z(i, j) =

(
Dvp

ij

σvp

)2

,

F (i, j) =

(
DIW

ij

σIW

)2

,M(i, j) =

(
Dmax

ij

σM

)2
(2.6)

that consists of similarities wij between mean shift clusters i and j, which
are located within a cylindrical volume of predefined radius and unlimited
height around cluster i. The Dxy

ij in Eq. 2.5 describes the horizontal distance
between clusters i and j. The P (i, j) and Z(i, j) elements weight the quadratic

Euclidean distances between the clusters. The component Dhp
ij = ‖Shpi −S

hp
j ‖

is the horizontal, and Dvp
ij = ‖Svpi −S

vp
j ‖ the vertical distance between clusters

i and j. They are weighted separately in consideration that trees generally
have greater height than width. An increase in the vertical distance between
two clusters i and j has to lead to an attenuation of their weights wij , but
with a smaller magnitude compared to the horizontal distance. Here, the
knowledge on the appearance of trees is used implicitly. Fig. 3.2 presents
the horizontal and vertical quadratic distances between clusters to further
construct the normalized cut segments.

Figure 2.2: Horizontal and vertical quadratic distances between mean shift
clusters in 3D space; Credits: Yao et al. (2013).

The F (i, j) element is the quadratic Euclidean distance between two arbitrary
feature vectors derived from the 3D point clouds. In Eq. 2.7, theDIW

ij describes
the quadratic distance between the mean intensity and mean pulse width of
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clusters i and j, as follows:

F (i, j) =
(SIi − SIj )2 + (SWi − SWj )2

σ2
IW

(2.7)

Furthermore, the M(i, j) element is the largest horizontal distance of two
mean shift clusters i and j to the closest local maximum of CHM. By including
this element into the similarity function, we are encoding prior knowledge
about likely tree positions obtained from watershed segmentation, as the local
maxima in CHM correspond, with high probability, to dominant overstory
trees (see (Reitberger et al., 2009)). Fig. 3.3 illustrates the M(i, j) element
in the weighting matrix W . The parameters σhp, σvp, σIW , and σM control
the sensitivity of the impact factors P (i, j), Z(i, j), F (i, j), and M(i, j) in
Eq. 2.6.

Figure 2.3: Dependence of prior knowledge term M(i, j) of clusters i and j
on their distance to the local maximum of CHM.

2.2.5 Height filtering of tree segments

We filter the segments generated in the previous step by removing those
with heights greater than 5 m. The remaining segments contain laser points
corresponding to the regeneration trees. Fig. 3.4 shows the 3D point clouds in
a sample plot associated with the segments before and after height filtering
of the segmentation results.
The 5 m height filtering excludes points that belong to the dominating
trees in the overstory. It is not sufficient to apply a simple height filter to
the ALS point cloud height distributions, as this is unlikely to distinguish
whether a return came from the lower parts of the overstory or from the
adjacent surface of the understory (Hill and Broughton, 2009). In addition, a
significant number of segments that are extracted with direct height filtering
as regeneration are likely to overlap or cover the same subsets of point clouds
belonging to the single trees. Therefore, the disadvantage of direct height
filtering of the 3D point clouds would be a high commission error rate in the
regeneration coverage results.
In each sample plot, the remaining 3D segments that are very likely to be
regeneration are converted to 2D polygons, and their area is calculated. The
regeneration coverage is the ratio between the areas covered by the remaining
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segments to the total area of same plot. Later, for comparison with the
reference data, the results are presented in percentages.

2.2.6 Evaluation

The evaluation is performed based on the area covered by regeneration
in percentage, which is compared to the reference data for each dataset
separately. In the 2012 dataset, the reference data for the regeneration at
single-tree level (geographical coordinates) is not available. Therefore, the root
mean square deviation (RMSD) method is applied to represent the differences
between the estimated regeneration coverage by the 3D segmentation and
the reference data. Eq. 2.8 shows the RMSD:

RMSD =

√∑n′

q=1(Êq − Eq)2

n′
(2.8)

where n′ is the number of sample plots, Eq is the reference regeneration

coverage for the q‘th sample plot, and Êq is the estimated regeneration
coverage by the 3D segmentation.

Figure 2.4: Height filtering of 5 m on the tree segments in a sample plot
with 20% reference regeneration coverage; (a) overview of the sample plot (b)
visualization of the 3D point clouds before and (c) after applying the height
filter in the sample plot.

For the 2011 and 2009 datasets, because of the availability of the reference data
at the stand level, we use the “completeness” and “correctness” measures to
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characterize the performance of the 3D segmentation. The “completeness” and
“correctness” are defined in Eq. 2.9 and 2.10, respectively. The regeneration
segments (areas) estimated by the 3D segmentation that overlap by more than
50% with the reference regeneration segments are called Area TP (TP term
refers to the true positives). In Eq. 2.9, the Areareference regeneration segments

component describes the total area of the reference regeneration segments,
and the Areaestimated regeneration segments component in Eq. 2.10 illustrates
the total area of the segments estimated by the 3D segmentation.

Completeness =
Area TP

Areareference regeneration segments
(2.9)

Correctness =
Area TP

Areaestimated regeneration segments
(2.10)

The accuracy of the estimated regeneration coverage is defined as the es-
timated regeneration coverage from the 3D segmentation with the optimal
values for the control parameters divided by the reference data in the same
plot. Furthermore, the F1score value for the 2009 and 2011 dataset is calcu-
lated to estimate the optimal kernel radius hr and height H. Eq. 2.11 shows
the F1score:

F1score =
2TP

2TP + FN + FP
(2.11)

where TP is the True Positives, FN is the False Negatives and the FP is
the False Positives of the estimated results by the 3D segmentation.

2.3 Materials

2.3.1 Study area

Our experiments were conducted in the Bavarian Forest National Park
(49◦3′19′′ N, 13◦12′9′′ E), a temperate forest located in the southeastern
part of Germany along the border with the Czech Republic, during three
time periods (2009, 2011, and 2012). The elevation of the Bavarian Forest
National Park varies between 600 m and 1453 m. The study area contains a
mixture of mountainous and subalpine forest types with a high structural
complexity, dominated by Norway spruce (Picea abies) and European beech
(Fagus sylvatica) (Heurich et al., 2010).

2.3.2 Full waveform ALS data

ALS data were acquired by the Milan Flug GmbH Company with the Riegl
LMS-680i and LMS-560Q (full waveform) scanners. Table 2.1 contains the
details of the acquisition flights, flying heights, and point densities. These
datasets did not allow multi-temporal ALS data analysis, since the reference
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data for the same sample plots were not available. For the 2009 and 2011
datasets, only a single plot was present respectively. This had to be considered
when comparing the results of the regeneration coverage of other datasets
to these. The collected waveforms were decomposed with superimposed

Table 2.1: Different ALS campaigns.

Flight time 2009 2011 2012
Riegl Scanner type LMS-560Q LMS-560Q LMS-680i
Foliage condition Leaf-on Leaf-off Leaf-on

Flight height 400 m 400 m 600 m
Pts/m2 25 25 30

Reference data TLS* data TLS* data Field inventory

* Terrestrial Laser Scanning;

Gaussian functions (see (Reitberger et al., 2009)), resulting in the 3D point
clouds (see (Polewski et al., 2015a)). Furthermore, a DTM with a grid size
of 1 m and absolute accuracy of 25 cm was generated by in-house filtering
algorithms of the data provider for all the sample plots (see (Reitberger et al.,
2009; Heurich, 2006)). This was generated from the acquired ALS data in
2003. The calibration for the intensity and pulse width was achieved using
the intensity and pulse width of the emitted Gaussian pulse with the help of
a calibration flight at the airport (see (Yao et al., 2013)).

2.3.3 Reference data

The reference data of the study for the 2012 dataset were recorded by
proportional values using the ocular method on sample plots in 2013. The
method was based on a visual estimation of the area occupied by the canopy
cover of each forest layer (see (Paletto and Tosi, 2009)) using the principle of
the Braun-Blanquet method (Braun-Blanquet, 1928). In each plot, between
1 to 40% coniferous and 1 to 50% deciduous regeneration coverages were
recorded. For the 2011 and 2009 datasets, the reference data were captured
by multi-station Terrestrial Laser Scanning (TLS) with a very high scanning
resolution of 1 cm at the medium distance of 100 m which is equivalent to
an angular resolution of 2′′. In the two corresponding plots, we validated the
proposed experiment by a cover-based evaluation method. The evaluation was
realized by pixel-wise overlap comparison of estimated regeneration coverage
and ground truth. All the TLS points between 1 m and 5 m height above
the ground were first cropped out by visual inspection. Then, filtering was
applied by a simple threshold to eliminate outliers (such as points below
DTM) and stem points of overstory trees. A geo-referenced raster with a grid
size of 3 m (the mean size of regeneration trees) was constructed to have a
binary mask in which a grid cell indicates “true” if points of regeneration
trees fall in it.
We tested the proposed method on 23 circular sample plots in the 2012 dataset
with an area size of 500 m2 for each plot. From the 2011 dataset, a particular
plot with an area of 919 m2, and from the 2009 dataset, another unique
plot with an approximate area of 2450 m2 were available. Tree numbers
(with diameter >7 cm) were calculated from the number of trees in each plot
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divided by the area in ha (hectare). Furthermore, the trees were divided into
three layers with respect to the top tree height htop of the plots, where htop
was defined as the average height of the 100 highest trees per ha (Heurich,
2008). From these layers, we assumed 66% of the top tree height htop belonged
to the overstory. Then, the overstory density for each plot was defined as the
relationship between tree numbers in 66% of the top tree height htop layer
and the total number of trees in the plot. Note that the definition of the stem
density (trees/ha) was limited to mature trees.

2.4 Results

2.4.1 Regeneration coverage estimation

The 3D segmentation was applied to the sample plots of each dataset separ-
ately. For the current experiment, we defined the standard control parameters
for all the plots in advance. The control parameters for the mean shift were
2.4 m for the radius hr and 3.5 m for the kernel height H. The minimum
number of points in a segment NCutminpoints was set equal to 12 based on
the field inventory and forest characteristics. The main control parameter of
the normalized cut segmentation, the normalized cut threshold NCutThres,
was defined empirically as 0.23. The parameters σhp, σvp, σIW , σM were also
assigned experimentally (see (Reitberger et al., 2009)). Fig. 3.5 summarizes
the regeneration coverage estimated by the 3D segmentation for all the sample
plots in the 2012 dataset with different overstory properties.

Figure 2.5: Estimation of regeneration coverage by 3D segmentation in the
2012 dataset vs. reference data.

Fig. 3.6a and Fig. 3.6b present the results of the 3D segmentation for the
single plots in the 2011 and 2009 datasets.
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Figure 2.6: Estimation of regeneration coverage by 3D segmentation (a) in
the 2011 and (b) 2009 datasets vs. reference data.

It can be seen in the plots with a high regeneration coverage (see the blue bars
in Fig. 3.5), such as plot 7, plot 8, and the single plot from 2011 in Fig. 3.6a,
we estimated more than 60% of the regeneration coverage correctly compared
to the reference data. A subset of approximately 30% of the regeneration
coverage could not be estimated. The highest accuracy belonged to plot 3 in
the 2012 dataset, in which more than 70% of the regeneration coverage was
estimated correctly compared to the reference data. As expected, we can see
in Fig. 3.5, on average, the lowest estimation accuracy of approximately 1%
belong to the plots with low regeneration coverage. On average, we achieved
an underestimation of 8.3% using the proposed method for the estimated
regeneration coverage.
A linear regression model in Fig. 3.7, using overstory density as the independ-
ent predictor variable, explained 62% of the variance associated with the
accuracy of the estimated regeneration coverage.

In Fig. 2.8, the accuracy of the estimated regeneration coverage is also plotted
against the deciduous tree species composition in the overstory. Different
tree species (either deciduous or coniferous), had different contributions to
the estimated regeneration coverage accuracy because of their structures and
reflection properties. A linear regression model using deciduous tree species
composition in the overstory as an independent predictor variable could
explain 57% of the variance associated with the accuracy of the estimated
regeneration coverage. However, as a further test, a linear regression model
using coniferous tree species composition in the overstory as an independent
predictor variable could explain 70% of the variance associated with the
estimation accuracy of regeneration coverage.
The selected group of plots from the 2012 dataset with dominant coniferous
tree species in the overstory showed a higher estimation accuracy compared
to plots with dominant deciduous trees.
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Figure 2.7: Effect of overstory density on the accuracy of estimated regenera-
tion coverage.

Figure 2.8: Effect of deciduous tree species composition in the overstory on
the accuracy of estimated regeneration coverage.

2.4.2 Sensitivity analysis

The proposed method requires proper values for the kernel radius hr and
height H parameters of the mean shift technique and the control parameters of
the normalized cut. We demonstrate the performance of the 3D segmentation
with two control parameters of the normalized cut threshold NCutThres and
the minimum number of points in a segment Ncutmin points. The results from
the variation of the minimum number of points in a segment Ncutmin points

values showed that there was no significant improvement to the accuracy
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of the estimated regeneration coverage. However, a larger normalized cut
threshold NCutThres value led to more segments, which resulted in an overall
higher completeness but lower correctness across the entire plot. This can be
attributed to the fact that the larger normalized cut threshold NCutThres is
a weaker stopping criterion for the bipartitioning process, since the segments
have to be more similar to each other to break off the segmentation, thereby
resulting in a larger quantity of smaller segments. The performances of the
3D tree segmentation algorithm for the selected plots were almost identical
if a normalized cut threshold NCutThres value smaller than 0.2 was selec-
ted. Generally, the lower threshold values seemed to not play as significant a
role as expected. Fig. 2.9 shows the sensitivity analysis with respect to the
normalized cut threshold NCutThres and the minimum number of points in
a segment Ncutmin points parameters. We used the optimal values mentioned
in Section 4.1 for the control parameters of the normalized cut.

Figure 2.9: Sensitivity analysis of the normalized cut threshold NCutThres
and the minimum number of points in a segment Ncutmin points parameters.

As a further test, in Fig. 2.10a, for the 2012 dataset, we demonstrate the
influence of the kernel radius hr variation with constant height H on the 3D
segmentation results by examining the RMSD values. The constant test value
for kernel height H was selected considering the mean height of trees with
regeneration in the study area. Furthermore, in Fig. 2.10b, we demonstrate
the sensitivity analysis for the kernel height H where the value of the kernel
radius hr and the other normalized cut control parameters during the analysis
remained constant.
In Fig. 2.10 a small value for the kernel radius hr produced several distinct
segments, while a large one aggregated small segments into larger ones. The
minimum mean RMSD value from the sensitivity analysis of the regeneration
coverage estimation by the 3D segmentation was 5.83. Therefore, the kernel
radius hr optimal value was equal to 2.4 m for the constant height H of 4 m.
In Fig. 2.10b, based on previous studies for the kernel radius hr, we selected
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Figure 2.10: Sensitivity analysis for the 2012 dataset, (a) with respect to the
mean shift kernel radius hr and (H = 4 m); (b) with respect to the mean
shift kernel height H and (hr = 2.4 m).

2.4 m as the best estimation value. The results became degraded for the plots
that had more challenging structures, such as high overstory density. Setting
smaller values for the kernel height H increased the RMSD rapidly, which
reduced the accuracy of the 3D segmentation. Smaller values led to more
underestimation in the regeneration coverage. In Fig. 2.10b, the minimum
mean RMSD value for the regeneration coverage estimation by the 3D
segmentation is 7.17. Thus, the optimal value for the kernel height H was
3.5 m for the constant radius hr of 2.4 m.
Because of the availability of TLS data as reference data for the 2009 and 2011
datasets, we performed a sensitivity analysis with correctness, completeness
and F1score measures. Fig. 2.11 shows the sensitivity analysis results of the
2009 and 2011 datasets for the mean shift kernel radius hr and height H
parameters based on varying one parameter while keeping the other one
constant.
The lower values for the kernel radius hr presented a higher estimation
accuracy. However, this led to a larger overestimation. For the kernel height
H, a low value led to underestimation in the regeneration coverage by
the 3D segmentation, whereas high values, even with higher estimation
accuracy, contained a high number of neighboring tree segments, which led
to the overestimation. Also, the best F1score value for the optimal kernel
parameters in the 2009 dataset was 0.43 for the kernel height H and 0.6
for the kernel radius hr. The test for the 2011 dataset achieved the highest
F1score value of 0.64 for the kernel radius hr and 0.6 for the kernel height
H respectively. Based on the sensitivity analysis, we selected 2.4 m for the
kernel radius hr in all sample plots and 3.5 m for the height H, where the
higher estimation accuracy for regeneration coverage and relatively lower

35



2. Estimation of regeneration coverage in a temperate forest by 3D segmentation

overestimation was available. In our method, complete tree objects could not
be extracted from the mean shift step. The provided clusters were incomplete,
and they had to be merged by the normalized cut algorithm. Therefore, we
applied the optimal values for the mean shift control parameters instead of
adaptive values.

2.5 Discussion

This study followed the two main goals of (1) assessing the regeneration
coverage estimated by the 3D segmentation in a multilayered temperate
forest and (2) comparing the estimation accuracies, which were affected by
the different overstory densities and tree species composition.
The results showed that the average over- and understory vegetation was
correlated with the height distribution. It could be used to estimate the
regeneration coverage, if confined to the height below 5 m. Moreover, the 3D
segmentation method estimated, on average, 60% of the regeneration coverage
in the temperate forest compared to the reference data (Fig. 3.5 and 3.6). How-
ever, the overstory in the leaf-on situation was the main factor in preventing
the laser beam from reaching the understory. Therefore, in the plots with
up to 2% regeneration coverage, the 3D segmentation was not successful in
constructing the 3D regeneration segments.
The correlation between the reference data and the 3D segmentation results
depended on the forest type and tree species composition in the overstory. The
results in Fig. 3.7 revealed that the average regeneration coverage estima-
tion accuracy in the understory was highly correlated with the overstory
density. In addition, the complex canopy and mixed branches reduced the
accuracy of the estimated regeneration in the 3D segmentation approach,
especially in deciduous forests such as plots 15 and 19 in the 2012 dataset. In
leaf-on conditions, an increase of 10% in the overstory density decreased the
estimation accuracy of the regeneration coverage by about 6%. In previous
studies, variations in the overstory has been shown to have a direct effect on
the presence and density of the understory (Latifi et al., 2015b; McKenzie
et al., 2000). Furthermore, every 10% increase in the deciduous tree species
composition in the overstory decreased the estimation accuracy of the regen-
eration coverage by about 4%. However, in the selected group of plots, a 10%
increase in the coniferous tree species distribution unexpectedly increased the
estimation accuracy by about 12%. This could be attributed to the geometry
of the coniferous trees with less complex branches. The highest correlation
between the 3D segmentation results and the reference data belonged to the
plots with lower overstory density and higher percentage of coniferous trees.
The main problem of the proposed method in plots with dominant deciduous
tree species was to correctly estimate the regeneration coverage when only a
small fraction of the laser beam can penetrate through the overstory. The
estimation accuracy in the selected plots was highly correlated with the
presence of deciduous trees of the overstory, since the lowest estimation
accuracies belonged to the plots with high overstory density and dominant
deciduous trees, such as plots 18 and 20 in the 2012 leaf-on dataset. Another
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Figure 2.11: Sensitivity analysis of the mean shift kernel parameters as
Completeness, Correctness and F1score (a) for the 2009 and (b) 2011 datasets.

problem could be related to the reference data collection. In the understory,
an estimation of regeneration coverage within a complex plot had difficulty
distinguishing the borders between ground vegetation and regeneration in a
3D space and predicting the coverage accurately.
The experiment was based on the three full waveform ALS datasets from
various sample plots in the study area. We were not able to perform a multi-
temporal analysis for the estimated regeneration coverage of the available
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datasets, since they were not acquired from the same sample plots. In the
available datasets, we did observe the estimated regeneration coverage by 3D
segmentation was almost independent of leaf-on and leaf-off conditions in
the forest. However, the penetration was slightly different in deciduous and
coniferous stands. Moreover, in leaf-on conditions, the crown of overstory
deciduous trees were more abundant, which led to stronger spatial evidence
of their difference from coniferous trees. It is clear from Fig. 3.5 and 3.6 that
the short trees in the multilayered temperate forest have a greater potential
to be better resolved by the 3D segmentation method. However, points of
tree crowns and branches that actually belong to neighboring trees weaken
the similarity function in the graph-based segmentation, leading to the lower
accuracy of the estimated regeneration coverage in the understory.
From the current experiment, we conclude that the 3D segmentation was able
to estimate regeneration coverage successfully in the forest understory. In
the context of regeneration coverage, studies such as (Wing et al., 2012)
reported an overall accuracy of ±22% using a density metric of ALS point
cloud to estimate aggregated understory elements, including tree regenera-
tion. Our results are somewhat inferior (approximately 30% underestimation),
although our scenario was more complex since the aforementioned study
was carried out in a single tree species forest, and different understory com-
ponents (regeneration, shrubs etc.) were not distinguished. Furthermore
(Yao et al., 2013) reported an enhanced scheme for detecting single trees
in lower forest layer. Our study confirms that their proposed methodology
can be successfully adapted for the estimation of regeneration coverage by
incorporating the influence of tree species composition and compensating for
the effect of overstory density. To render the results more transferable, ALS
data should be acquired from the equivalent sample plots during leaf-on and
leaf-off conditions.

2.6 Conclusions

This study focused on the regeneration coverage estimation in a multilayered
temperate forest by applying adapted 3D segmentation to full waveform ALS
data. Unlike other methods, our approach did not rely on a CHM, and was
directly applied to the 3D point clouds. We did not try to explain the tree
species composition in the analysis; this will constitute a future research
topic. The 3D segmentation method was able to correctly estimate up to
70% of the regeneration coverage in the multilayered temperate forest (as
compared to the reference data). Our experiment showed that the accuracy
of the regeneration coverage estimation was strongly correlated to forest char-
acteristics such as overstory density and tree species composition. Moreover,
the accuracy of the regeneration coverage estimation was negatively impacted
by the higher density of deciduous tree species in the overstory.
Further improvements to the method would be achieved by extending the
3D segmentation with a classification of regeneration into deciduous and
coniferous tree species in order to assess the influence of tree species on the
regeneration estimation results. According to previous studies, the mean pulse
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intensities and tree canopy properties were clearly different for coniferous
and deciduous trees.
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Abstract

Airborne Laser Scanning (ALS) is a widespread method for forest mapping
and management purposes. While common ALS techniques provide valuable
information about the forest canopy and intermediate layers, the point
density near the ground may be poor due to dense overstory conditions. The
current study highlights a new method for detecting stems of single trees
in 3D point clouds obtained from high density ALS with a density of 300
points/m2. Compared to standard ALS data, due to lower flight height
(150-200 m) this elevated point density leads to more laser reflections from
tree stems. In this work, we propose a three-tiered method which works on
the point, segment and object levels. First, for each point we calculate the
likelihood that it belongs to a tree stem, derived from the radiometric and
geometric features of its neighboring points. In the next step, we construct
short stem segments based on high-probability stem points, and classify the
segments by considering the distribution of points around them as well as their
spatial orientation, which encodes the prior knowledge that trees are mainly
vertically aligned due to gravity. Finally, we apply hierarchical clustering on
the positively classified segments to obtain point sets corresponding to single
stems, and perform `1-based orthogonal distance regression to robustly fit
lines through each stem point set. The `1-based method is less sensitive to
outliers compared to the least square approaches. From the fitted lines, the
planimetric tree positions can then be derived. Experiments were performed
on two plots from the Hochficht forest in Oberösterreich region located in
Austria. We marked a total of 196 reference stems in the point clouds of both
plots by visual interpretation. The evaluation of the automatically detected
stems showed a classification precision of 0.86 and 0.85, respectively for Plot
1 and 2, with recall values of 0.7 and 0.67.

42



3.1. Introduction

3.1 Introduction

Accurate measurements of forest structure are increasingly required across
large areas to support a wide range of activities related to sustainable forest
management. Cost-effective and more automated methods are needed to
provide tree attribute data for forest ecosystem services. Therefore, remote
sensing tools are increasingly being used to survey forest structures. However,
the spatial extent and spatial resolution of a given sensor are inversely related.
Airborne Laser Scanning (ALS) has become a key tool for gathering informa-
tion on 3D structure of forests (Wulder et al., 2012). The derived information
from ALS data can grant detailed estimations of forest characteristics and
single tree analysis (Yao et al., 2012; Maltamo et al., 2012). Previous studies
are showed several properties of single trees such as species, height and
crown properties which can be measured with high resolution ALS data
(Maltamo et al., 2012). However, limited persistence has been done on the
stem detection of single trees. For instance, single tree stems have been de-
termined from the interpolated CHM (Canopy Height Model) at the highest
positions(Solberg et al., 2006) or by using hierarchical clustering for stem re-
flections and reconstructions with a RANSAC-based adjustment (Reitberger
et al., 2007). Due to the low point density and lack of information about the
reflection characteristics, minor focus has been given to tree reconstruction
using laser hits on the stems (Reitberger et al., 2007; Polewski et al., 2016). In
order to detect stem of trees, data with greater precision would be required
to allow a more accurate representation of the actual discontinuities in the
single trees (Vauhkonen, 2010).
On the other hand, Terrestrial Laser Scanning (TLS) has also been proven
to be a suitable method for obtaining very detailed information about geo-
metry of trees in forests (Liang and Hyyppä, 2013). Pfeifer and Winterhalder
(2004) showed a method for reconstructing the cross section of tree stems and
branches from TLS data with free-form curves. However, the study indicated
that expected cross section reconstruction works only satisfyingly, if the
branch is covered with points from all sides which it is not possible due to
occlusions. Liang et al. (2012) presented a fully automatic algorithm based
on single-scan TLS data for stem detection and mapping with the overall
accuracy of 73%. The stem points are established using classification based
on the local covariance matrix features. The provided method is capable of
giving good parameters only when the points are evenly distributed on the
tree trunk; however the applicability of feature estimation for a group of
points has not been taken into account. Lindberg et al. (2012) projected can-
didate stem points onto a 2D plane. They applied Hough transforms to locate
circles, representing the potential stems. Heinzel and Huber (2016) used a 3D
voxel grid transformation of the input TLS point clouds to detect tree stems
using morphological operations and empirical rules. They reported detection
rates of 84% to 97% for the number and location of stems depending on the
tree DBH (Diameter at Breast Height). Olofsson et al. (2014) by voxelizing
the point cloud and analyzing the influence of different height layers could
estimate tree stem positions with an average proportion of 87%. Wang et al.
(2016) performed in the first step, RANSAC based circle fitting of projec-
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ted stem points, which is later followed by RANSAC cylinder fitting in 3D
space. Polewski et al. (2017) proposed a statistical framework for detecting
cylinders based on accumulation and voting in parameter space. The size of
the accumulation cell is determined automatically using bandwidth selection
methods for kernel density estimators, which relaxes the requirement of set-
ting this critical parameter manually or through trial-and-error. The method
is applied on a dense 3D point cloud for mapping fallen tree stems. Based on
the mentioned studies, the main advantage of TLS data lies in its capacity
to scan a sample plot in forest horizontally and vertically in detail. However,
important factors such as the occlusion effect and relatively high cost of the
instrument transportation from site to site are negatively effecting the use of
TLS data. Moreover, the co-registration of several scans covering a study area
is an essential step in the interpretation of multi-scan data acquisition. The
fully automated registration between several scans at the point level is still
challenging.
In standard operational applications of ALS, the flight heights are usually
between 400 to 800 m, resulting in point densities up to 30 points/m2. How-
ever, an alternative scenario is also possible, where the flying altitude is
significantly decreased to below 150 m, for example using a helicopter moun-
ted system or even a UAV with around 50 m flight height. This can be seen as
a middle ground between standard ALS and TLS techniques, trading off large
area coverage for increased point density. This tradeoff is due to the lower
flight altitudes associated with this technique compared to standard ALS
campaigns, which results in smaller footprints. Razak et al. (2011) used high
resolution DEMs (Digital Elevation Models) extracted from high density ALS
data to semi-automatical recognition of morphometric landslide features even
under forest canopy. Höfle et al. (2012) provided an example of high density
ALS data potential to use for urban vegetation detection purposes. They
used a high point density of 50 points/m2. Khosravipour et al. (2014) also
presented an algorithm which is able to create a pit-free CHM raster using full
waveform ALS data with 160 points/m2 density. The algorithm significantly
improves the accuracy of tree detection compared to local maxima based
methods. The data collected by high density ALS systems is less precise in
comparison with TLS. However, within an equal time frame, the area that
can be investigated by utilizing high resolution ALS is significantly larger
than the area investigated with TLS. Also the aforementioned TLS based
methods for stem detection are not practical for the applications using ALS
data, since the curvature shape of the tree trunk in ALS point clouds is not
captured as detailed as in case of TLS. On the other hand, the increased
point density, resulting from lower flight height can provide more details in
the point clouds compared to standard ALS, enabling the use of 3D spatial
descriptors to locate individual tree stems. Therefore, an automated method
for stem mapping within high-density ALS data is interesting from forestry
application point of view.
The objectives of this study are to develop a new method for single tree
stem detection based on high density ALS data using (i) point and object
part level 3D shape descriptors, and (ii) `1 regularized line fitting with a
prior on orientation. A further objective is (iii) to assess the accuracy of
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detected tree stems. This paper is motivated by the successful application
of high density ALS systems for precise monitoring of vegetation and forest
structure, reported in the aforementioned studies. Also, detected tree stems
could be used to improve the 3D segmentation algorithm as prior knowledge
in terms of the detection rate and the position of trees.
The remainder of this work is structured as follows: Section 2 focuses on the
details of our approach. Section 3 shows the experiment results. Finally, the
results are discussed with conclusions in Sections 4 and 5.

3.2 Method

We adapt the method of Polewski et al. (2015b) which is originally designed
for fallen tree segmentation, to detect the standing stems of single trees
from unstructured high density ALS point clouds. The main goal is to
detect linear structures in the ALS 3D point clouds which are likely to
represent single tree stems. The output of our method is a set of 3D lines
which correspond to detected stems. The pipeline describing our approach
is presented in Fig. 3.1. Our approach is a three-tiered detection procedure
at (i) point, (ii) segment and (iii) object levels. The segment term refers to
the grouping of points within a fixed length cylindrical neighborhood which
are likely to represent part of a tree stem. Objects refer to entire tree stems
which are composed from groups of similarly aligned segments. The method
proceeds as follows. First the likelihood of points belonging to a tree stem
is estimated. Second, the segments containing the highest probability stem
points are detected in the 3D point clouds. Finally the segments are merged
through hierarchical clustering to produce single tree stems. In the following,
we explain the steps of our method in detail.

3.2.1 Point level

In the input data depending on the forest characteristics, different objects
are present such as ground vegetation, regenerations, standing tree stems
etc. The focus of this step is to obtain for every point, an estimate of the
probability that it belongs to a tree stem. High density ALS data can provide
a range of features related mainly to the 3D structure of single trees. The
features derived from 3D point clouds can be grouped into three categories:

1. Point feature histograms (PFH): a local 3D shape descriptor of the neigh-
borhood around the target point, based on the angular relationships
between adjacent surface normals. It is useful for distinguishing between
different types of surface classes based on their shape (plane, cylindrical,
spherical, etc) (Rusu et al., 2008) (Rusu et al., 2008; Polewski et al.,
2015b).

2. Covariance features: set of features derived from eigenvalues of local
neighborhood covariance matrix around target point (see Weinmann
et al. (2015a)).

3. Normalized height: the relative point heights over the Digital Terrain
Model (DTM).
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Figure 3.1: Overview of stem detection pipeline.

For the point classification level we chose Random Forest (Breiman, 2001) as
a binary classifier due to its robust ability to estimate the class probability.

3.2.2 Segment level

This level focuses initially on generating segment candidates. For each point
with high probability, a cylindrical neighborhood with constant radius rseg
and height lseg is defined. Afterwards, all the points inside the cylinder space
are taken into account to perform the least-squares Orthogonal Distance Re-
gression (ODR) (Al-Subaihi and Watson, 2004).This is done by eigenanalysis
of the point coordinates’ covariance matrix: the ODR line’s direction is the
eigenvector corresponding to the maximum eigenvalue, and this line passes
through the points’ centroid. The ODR line becomes the segment’s axis.
We classify the candidate segments generated in the previous step into the
’positive’ and ’negative’ groups. The ’positive’ group represents the segments
which are really parts of tree stems, and the ’negative’ contains branches,
ground vegetation, and etc. The first set of segment features are derived from
a modified version of Cylindrical 3d Shape Context (CSC) built around the
segments’ axes (Polewski et al., 2015b) (see Fig. 3.2). A spatial distribution
histogram of points within the cylindrical volume around the segment axis
can then be constructed. The point counts inside the histogram bins form
the features for the classification.
The second set of features are calculated based on the angular deviation of the
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Figure 3.2: Cylindrical 3D Shape Context around a segment.

segment axes from the world Z. The segments with the deviation larger than
θthr are rejected without regard to remaining feature values. Additionally,
the point probability statistics are extracted as another group of features
for classification. In the current study, we looked at the points inside the
segment neighborhood and we created the stem point probability histograms
quantized at 0.2 intervals, resulting in 5 features.

3.2.3 Object level

The goal of current level is to take the stem segments with high probabil-
ity from the previous step and merge them to reconstruct individual tree
stems. This is based on the collinearity and mutual distances between seg-
ments.

3.2.3.1 Hierarchical clustering

In the next step of the pipeline, the representative ’positive’ segments are
merged together. For this purpose, first we have a combination of two distances
to calculate. The aggregate distance d between segments Si and Sj is the
weighted sum of angular deviation dA and the spatial distance between point
centroids dC (see Eq. 3.1).

d(Si, Sj) = dA(~Si, ~Sj) + w1.dC(S̄i, S̄j) (3.1)

In the Eq. 3.1, ~S refers to the axis and S̄ indicates the point centroid of each
segment. w1 is the weight component for the spatial distance dC . Fig. 3.3
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shows the angular deviation dA and the spatial distance dC between two
segments surrounded by cylinders.

Figure 3.3: The aggregate distance d between two segments; the angular
deviation dA is shown with green arrow and the spatial distance between
point centroids dC with red arrow.

The following hierarchical clustering scheme (Van Der Heijden et al., 2005) is
applied to merge ’positive’ segments based on the aggregate distance matrix
d explained above.

1. Assign each point to its own cluster.
2. Find the closest pair of clusters which do not trigger the stopping

criterion and merge them into one. The number of clusters reduces by
one.

3. Compute the distance D between the new cluster and each of the old
clusters.

4. Repeat steps 2 and 3 until no more clusters can be merged under the
stopping criterion.

In the current clustering process the distance D between two clusters Ci
and Cj is defined as the largest distance d from any combination of member
segments. The stopping criterion consists of two conditions. First, when
considering two clusters Ci, Cj if the spatial distance dC between any pair of
segments Sk ∈ Ci, Sl ∈ Cj is bigger than a predefined threshold dC,max then
the merging of Ci and Cj is aborted. On the other hand, the ODR line is
fitted to the set of points belonging to segments in Ci, Cj and the orthogonal
projected distance of all points to the ODR line is calculated. If the projected
distance of any point is greater than a set threshold dp,max or the angular
deviation between the fitted line and the Z axis exceeds dA,max, this also
terminates the merging for that cluster pair. Fig. 3.4 represents the stopping
criterion in the hierarchical clustering phase between segments.
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Figure 3.4: The stopping criterion for clustering the segments. The green
lines represent the segments in cluster Ci and the magenta lines show the
segments in cluster Cj , respectively. The red line is the line fitted to both
clusters’ points. The red points outside the cylinder have projected distance
greater than dp,max.

3.2.3.2 Stem line fitting

In the final step, for each cluster extracted from the merging step, containing
all the stem points, we execute the line fitting procedure. For the fitting, we
apply orthogonal distance regression with the `1 norm of residuals as the
error criterion and a prior on the line’s verticality. The problem is formulated
in terms of an energy minimization. The total energy for a line L, Etot(L) is
presented in the Eq. 3.2. The total energy Etot has 2 components, the data
goodness-of-fit term Ed (Eq. 5.6) and the angular prior term Ea (Eq. 3.4). The
α element refers to the balance coefficient between energy terms. The angular
prior was considered due to the prior knowledge that the tree stems grow
almost always vertically. Furthermore, the `1 norm is a more robust estimator
and less sensitive to outliers available in the data compared to the `2 norm
(Al-Subaihi and Watson, 2004). In our experiment, the `2 norm in the segment
level and the `1 norm is used in the object level, respectively. This decision
is related to the computational expenses of the `1 and `2 fittings. Usually,
the number of the segments to process is several orders of magnitude higher
compared to the stems obtained from hierarchical clustering. On the other
hand, the `1 version is much more computationally expensive than the `2
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based method, which makes it intractable to apply for all segments.

Etot(L) = Ed(L) + αEa (3.2)

Ed(L) =
∑
i

‖ L(Pi)− Pi ‖2 (3.3)

Ea(L) = | arccos
Z.w

|Z|.|w|
| (3.4)

In the Eq. 5.6, element Pi, i ∈ 1..n refers to the ith point inside the cluster. Fur-
thermore, Z element in the Eq. 3.4 represents Z axis of world coordinate
system. L(P ) term is the projection of point P onto line L and w indicates
L’s direction vector. The line L is parametrized using 4 values a = [a1, ..., a4]
(Al-Subaihi and Watson, 2004) showed in the Eq. 3.5:

L(a, t) =

a1t+ a2

a3t+ a4

t

 (3.5)

where t is the location parameter. Note that the z component of w is always
positive with a value of 1, and therefore the angle between the world Z axis
and w always lies in the interval [0; π2 ]. This allows us to drop the absolute
value on the angular prior term Ea since the arccosine is guaranteed to be
positive in the mentioned interval.
For the optimization of the orthogonal distance fitting, a two-step method
similar to Liu and Wang (2008) as well as Watson (2002) is used. The first
step for the re-parametrization computes the projection of all fitted points
Pj onto the current line L(a, t) to minimize the distance from Pi to L:

min
tj
‖ L(a, tj)− Pj ‖, j = 1, ..., n (3.6)

The line positions tj corresponding to the orthogonal projection onto L can
be recovered using Eq. 3.7, where p0 = [a1, a3, 0]:

tj =
(Pj − p0).w

w.w
(3.7)

In the second step, we minimize the energy similar to Etot, but with the
projected line positions fixed at {tj}, with respect to shape parameters only,
i.e.:

min
a

∑
i

‖ L(a, ti)− Pi ‖2 +αEa(a) (3.8)

For minimizing the objective (Eq. 3.8) the BFGS quasi-Newton method is
applied (Wright and Nocedal, 1999). The derivative of the energy’s data term
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with respect to any parameter ak is expressed as follows (rj = Pj − L(a, tj)
is the j − th residual):

∂Ed(a)

∂ak
= −

∑
j

rj
||rj ||

{∂p0

∂ak
+ tj

∂w

∂ak
} (3.9)

By splitting the computation into two steps and fixing the tj values, the
problem is considerably simplified, because otherwise the terms tj in Eq. 3.9
would depend on ak, leading to the necessity of calculating the derivative of
the product ∂[tj(a) ·w(a)]/∂a. Therefore, the derivatives with respect to the
entire parameter vector are:

∇aEd(a) = −
∑
j

rTj
||rj ||

tj 1 0 0
0 0 tj 1
0 0 0 0

 (3.10)

As for the angular deviation term Ea, only the axis parameters a1, a3 have a
non-zero derivative, given by:

∇a1,a3Ea(a) =

[
a1

a3

]
1√

1− 1
||w||2 ||w||3

(3.11)

We iteratively execute steps 1 and 2 in sequence until convergence is reached. Due
to the non-convexity of the optimization problem, local optima may exist. To
remedy that, we perform multiple restarts of the optimization with randomly
initialized starting line hypotheses, and pick the lowest-energy solution. This
yields the final fitted lines representing the detected single tree stems for all
clusters.

3.3 Experiments

3.3.1 Materials

Experiments were conducted in the Hochficht forest close to Holzschlag in
Oberösterreich region which is located in Austria. The study area is a type of
mountainous forest with a high structural complexity, dominated by Norway
spruce (Picea abies), European beech (Fagus sylvatica) and Silver fir (Abies
alba). Two sample plots with the approximate area size of 6844.7 m 2 and
17907 m2 and a mean tree density of 272 trees/ha were selected in the mixed
forest to construct the experiment. The high density ALS data was acquired
in leaf-on condition by the FMM GmbH Company with the VUX-1 scanner
integrated in the VP-1 pod in September 2015 with an average point density
of 300 points/m2. We assumed that the data is given in a georeferenced
coordinate system. The flying altitude between 150-200 m resulted in an
average footprint size of 88 mm. Fig. 3.5 shows a sample scene in the 3D
point clouds associated with the visible single tree stems
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Figure 3.5: A point cloud visualization of sample forest scene with multiple
visible stems (point clouds of scene colored by height over DTM).

3.3.2 Training classifier

We used parts of test plots and two additional plots to train the classifier in
the point and segment levels. In the available 3D point clouds, a significant
percentage of the stems is not at all represented (specially for the deciduous
trees). For every single tree with visible stem, the points and segments were
manually marked and assigned either the stem or the non-stem class by visual
interpretation, resulting in training sets for binary classification. The total
number of the marked points and segments were 20000 and 564, respect-
ively. This represented about 28% of the total number of the stem points and
about 3% of the generated segments in plots 1 and 2.

3.3.3 Reference data

The schematic class labels which groups individual segments into tree stems
were later obtained based on the relative segment positions and orientations
using visualization. In some cases a single tree stem was represented in the
point cloud, but it was missing from the reference data, due to the lack of
evidence in the 3D point clouds. The total number of the labeled stems were
196.

3.3.4 Choice of parameters

The various control parameter values that we used in our experiment for each
level is summarized in the Tabel4.2. The values were assigned experimentally
based on the forest characteristics.
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Parameters symbols values
Cylinder radius rseg 0.5 m
Cylinder length lseg 2.0 m
Angular deviation θthr 30◦

Spatial distance weight w1 10
Maximum spatial distance dC,max 0.6 m
Maximum projected distance dp,max 0.6 m
Maximum angular deviation dA,max 20◦

Balance coefficient of energy terms α 0.1× np

Table 3.1: Control parameters for the single tree stem detection method; np
refers to the number of points inside the clusters.

3.3.5 Evaluation

In the current experiment we use the ”recall” and ”precision” measures to
characterize the detection performance between detected and reference tree
stems. The ”recall” is defined as the ratio of the reference stem numbers
which have at least one associated detected stems to the total number of
reference stems. The ”precision” expresses the count of detected stems that
were successfully connected to reference stems as a fraction of the total
number of detected tree stems. We considered the detected and reference
stems as matched if the average projected distance between them was not
more than 30 cm. This value was derived based on the maximum DBH of
trees in the target area.

3.4 Results and Discussion

The procedure for stem detection was applied to the both plots. The output
of the single tree stem detection consists of a number of point sets which
correspond to the individual stems. The method takes the advantage of
the increased point density, which makes more laser reflections available
underneath the canopy for regions of test plots dominated by conifers, due
to the smaller footprint size compared to the standard ALS. In contrast, the
deciduous tree stems are missing in the point clouds due to the dense canopy
cover in leaf-on state, and no benefit was achieved despite the lower footprint
size. In case that only sparse understory is below the tree base height, stem
points are successfully detected by the expressed classifier training and stem
line fitting method.
Fig. 3.6 shows the stem detection results for a sample plot (mixed with
deciduous and coniferous trees) in three main levels of point, segment and
object. The sample plot contains deciduous and coniferous trees. In Fig. 3.6a
the classification results at the point level based on the high and low point
probability on the tree stems are presented. The ”positive” and ”negative”
groups of segments are classified using shape context, angular deviation from
the world Z and point probability statistics in the Fig. 3.6b. Finally, at the
object level stems with the fitted ODR line (orthogonal distance regression
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with the `1 norm) after merging are indicated in the Fig. 3.6c. In the current
figure, we used the minimum stem point probability threshold of 0.6 to
remove low probability points from the analysis.

Figure 3.6: The detection results for a sample plot:(a), (b) and (c) correspond
to point, segment and object levels, respectively (see Sections 3.2.1-3.2.3). At
point level in (a), the red color shows low and blue high probability. The solid
green bars in (b) indicate tree stems classified as positive and red bars refer
to unmatched tree stems with references. The points which do not belong to
the detected stems are removed from analysis and colored as cyan. Orange
ellipses outline examples of the false alarms. The fitted magenta lines in (c)
represent the reference tree stems which overlap with colored detected stems
(ODR with the `1 norm).

The detection performance of the proposed method is presented by Fig. 3.7. Note
that in the current test plots, due to the point density and forest character-
istics (particularly deciduous trees) up to 30% of the visible tree stems could
not be detected. Specifically, in the lower canopy layer limited number of
tree stems can be found since most of them are covered by taller tree stems
and understory vegetation. Therefore, the majority of the detected stems are
located in the upper and intermediate layer of the forest.
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Figure 3.7: Single tree stem detection performance with probability threshold
of 0.4 to 0.6 for the test plots.

Here, we focus on the detection accuracy of tree stems that are derived from
the 3D point clouds. In the plot 1, the good trade off results between recall
and false positive rate are 0.84 and 0.25, respectively. Also, for the plot
2, the results are 0.63 for the recall and 0.13 for the false positive rate is
achieved. By increasing the precision rate, the recall rate is decreased. The
average rate of false detected tree stems in the plot 1 and 2 amount to 0.25
and 0.21, respectively. However, no improvement is achieved in the lower
layer and deciduous trees since (i) laser hits at the stem of small trees rarely
happen, (ii) the stem points are missing for the trees with compact canopy.
The restrictions of the approach are that only trees in visible stem in the
3D point cloud visualization can be detected. This problem could be allevi-
ated by acquiring an even denser point cloud e.g. by using UAV-based laser
scanning, where more stem hits are to be expected. As mentioned before,
the method fails in the regions with high concentration of deciduous trees
where stem hits are rare and stems points cannot be clearly clustered. In
case of deciduous trees, it is not clear if an increase of the nominal point
density of a ALS data with reducing flight height can provide more visible
stems. Perhaps conducting the data acquisition in leaf-off state could remedy
this problem. The current point density, did not allow to reconstruct the
cylindrical shape of stems. Therefore the stem diameter estimation requires
higher point density which is left for the future work. From the application
point of view, the processing of large areas requires implementing a tiling
scheme due to the memory usage of the spatial index structures as well as the
large number of generated segment candidates. Moreover, the transferability
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of 3D descriptors is not perfect, in the sense that in our experiment we had
to train and test our method on the same area. Another limitation is related
to the optimization problem of the line fitting step. Due to the non-convexity,
which does not guarantee global optimality, it might happen that the fitted
line converge to local optimum.

3.5 Conclusions

The study presents a novel method for detecting stems of single trees based
on the high density ALS data. Our results demonstrate that the classification
precision is achieved to 0.86 and 0.85, respectively for two sample plot 1
and 2, with recall values of 0.7 and 0.67. In future work, we would like
to utilize the stems obtained from the proposed method to enhance the
segmentation and delineation of single trees by providing prior knowledge
about tree locations. Additionally, higher point density could lead to more
precise reconstruction of the stems.
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Abstract

The development of new approaches on individual tree crown delineation for
forest inventory and management is an important ongoing research issue. The
increasing availability of high density ALS (Airborne Laser Scanning) point
clouds offers the opportunity to segment the individual tree crowns and
deduce their geometric properties with high accuracy. Top-down segmentation
methods such as normalized cut are established approaches for delineation of
single trees in ALS point clouds. However, overlapping crowns and branches
of nearby trees frequently cause over- and under-segmentation due to the
difficulty of defining a single criterion for stopping the partitioning process. In
this work, we investigate an adaptive stopping criterion based on the visual
appearance of trees within the point clouds. We focus on coniferous trees due
to their well-defined crown shapes compared to deciduous trees. This approach
is based on modeling the coniferous tree crowns with elliptic paraboloids
to infer whether a given 3D scene contains exactly one or more than one
tree. For each processed scene, candidate tree peaks are generated from local
maxima found within the point cloud. Next, paraboloids are fitted at the
peaks using a random sample consensus procedure and classified based on
their geometric properties. The decision to stop or continue partitioning is
determined by finding a set of non-overlapping paraboloids. Experiments were
performed on three plots from the Bavarian Forest National Park located in
Germany. Results show that, based on validation data from field inventory, our
approach improves the segmentation quality by up to 10% across plots with
different properties, such as average tree height and density. This indicates
that the new adaptive stopping criterion for normalized cut segmentation
is capable of delineating tree crowns more accurately compared to a static
stopping criterion based on a constant NCut threshold value.
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4.1 Introduction

Accurate measurements of forest resources are essential for precise and sus-
tainable forest management (Chang et al., 2013). Single tree attributes such
as tree crown base height, volume, DBH (Diameter at Breast Height), po-
sition, height and species are required for quantitative forest analysis and
ecosystem services (Hu et al., 2014; Yao et al., 2012). Currently, most of those
variables are estimated by measuring a set of sample plots manually in field
surveys. Therefore, forest inventories are expensive and time consuming. Dur-
ing the last years, many studies have been focused on decreasing costs by
developing inventory methods that are based on remote sensing techniques.
Airborne Laser Scanning (ALS) has become a key tool for gathering inform-
ation on 3D structures in forests (Wulder et al., 2012). The information
derived from ALS data can provide detailed forest characteristics and serve
as a basis for single tree analysis (Wagner et al., 2008; Reitberger et al.,
2009). The information extracted from segmented trees, e.g. tree height or
crown diameter, is often used in the role of independent variables in allometric
modeling of additional individual tree characteristics such as stem volume,
leaf area index and biomass as well as entire forest stands (Yao et al., 2012; Yu
et al., 2011). Therefore, any inaccuracy of the tree delineation, which is often
caused by over- or under-segmentation, will transfer to these characteristics.
Various number of methods for detecting and delineating single tree crowns
using ALS point clouds have been proposed in literature based on two main
types of data: the ALS derived CHM (Canopy Height Model) and the original
ALS point cloud. In the first type, tree crowns are found with the watershed
algorithm (Pyysalo and Hyyppä, 2002) or with a slope-based segmentation
(Hyyppä et al., 2001; Persson et al., 2002). The study of Persson et al. (2002)
indicates a detection rate of 71% for a boreal forest dominated by spruce and
pine trees. Later, Solberg et al. (2006) proposed a region growing method
that starts from local surface maxima and finds crown polygons. The method
was applied to a structurally heterogeneous spruce forest with an overall
detection rate of 66% on the CHM, which was smoothed with a Gaussian
filter. Heurich (2008) demonstrated that the segmentation method of Persson
et al. (2002) leads to an average detection rate of 45% in the Bavarian Forest
National Park. The segmentation results of the mentioned studies illustrate
the strong dependency on the forest type.
On the other hand, point cloud based methods take advantage of the captured
3D information and focus on the detection of the single tree objects, which
are either the tree as a whole or parts of the tree like stems and branches
(Wu et al., 2016; Zhang et al., 2003). Several approaches have been developed
for extracting single trees from ALS 3D point clouds. Morsdorf et al. (2004)
used the k-means clustering algorithm to segment single trees from raw ALS
point clouds. However, the accuracy of their study highly depends on seed
points extracted from the CHM. Wang et al. (2008) subdivided the forest
into different layers and applied a 2D morphological algorithm to obtain tree
crowns. Reitberger et al. (2009) introduced a novel normalized cut segment-
ation method that extracts single trees using a graph cut approach. The
study successfully showed that the overall accuracy of individual tree crowns
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Figure 4.1: Overview of single tree segmentation strategy using adaptive
stopping criterion.

in heterogeneous forest types could be significantly improved, especially in
the lower forest layers (up to 20%). Lee et al. (2010) proposed an adaptive
region growing and clustering approach to detect single trees directly within
raw point clouds. Li et al. (2012) developed a spacing-based algorithm which
utilizes a region growing approach to segment trees in a coniferous mixed
forest. Véga et al. (2014) suggested the PTrees method to extract trees in a
forest from ALS data. The method is a multi-scale dynamic segmentation
at point cloud level. Wu et al. (2016) developed an automated segmentation
method which captures topological structure of forest and assesses topological
relationships of tree crowns by using a graph theory-based localized contour
tree method, achieving an overall accuracy of up to 94%.
The forest structure has a strong impact on the single tree segmentation
performance. Tree crowns have a complex shape that varies significantly from
species to species. The accuracy of single trees delineation algorithms mainly
depends on the forest complexity (Str̂ımbu and Str̂ımbu, 2015; González-
Ferreiro et al., 2013; Vauhkonen et al., 2011). Moreover, the segmentation
algorithms are controlled by many parameters, which are hard to estimate
when the methods are applied to other forest types. This specification can be
either explicit, as with the number of seed points in k-means, or implicit like
the NCut threshold for spectral clustering methods. The incorrect setting
of such parameters may lead to over- or under-segmentation effects in the
delineated trees (Str̂ımbu and Str̂ımbu, 2015; Khosravipour et al., 2014; Yao
et al., 2014; Li et al., 2012; Heurich, 2008). Although the control parameters
can be estimated by a grid search method for a localized forest area, their
transferability to larger scenes can be poor. Therefore, if the fixed scheme of
control parameters in the segmentation algorithm is replaced by an adaptive
scenario applied on the decision level, a more flexible tree crown delineation
procedure is to be expected.
The main objective of this study is to develop a new adaptive stopping
criterion, applicable to top-down segmentation methods for precise delineation
of single trees in ALS 3D point clouds. Their parameters can be automatically
trained from reference segmentations, alleviating the burden of manual, trial-
and-error parameter setting. Moreover, the adaptive procedure is based solely
on the appearance of the target objects (tree crowns) within the point cloud,
and is independent of any internal features of the underlying segmentation
method. For the time being, we restrict our attention to coniferous trees whose
well-defined crown shape can be easily modeled by an elliptic paraboloid
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(Koop, 1989; Husch et al., 2002). This study is motivated by the successful
application of an adaptive stopping criterion for lying dead tree segmentation
based on the normalized cut algorithm (Polewski et al., 2015b). Here, we
extend the idea of an appearance-based adaptive stopping criterion to the
domain of single tree segmentation. We conducted a series of experiments on
sample plots from the Bavarian forest National Park to assess the performance
of the proposed method using validation data from the field inventory. In
our experiments, the normalized cut algorithm was used in the role of the
segmentation method, but any other top-down clustering procedure could be
applied instead.
The remainder of this work is structured as follows: Sections 2 and 3 describe
the details of our approach; Section 4 illustrates the study area, materials,
and field measurements. The results are presented and discussed in Section
5. Finally, the conclusions are stated in Section 6.

4.2 Top-down segmentation

4.2.1 Main foundation

The segmentation of point clouds into individual objects in the scene is an
initial step in processing 3D point clouds. The main objective of the segment-
ation processes is to divide points with similar attributes into homogeneous
clusters. Among the various approaches, a popular paradigm is top-down
segmentation, where initially all objects are assigned to a single cluster, which
is then recursively partitioned. The subdivision continues until the predefined
stopping criterion is met. However, the main difficulty of these methods is
to define an appropriate stopping criterion which yields meaningful clusters
under varying input scenarios.

4.2.2 Normalized cut segmentation

The normalized cut algorithm (Shi and Malik, 2000) is a top-down method
for data segmentation. This method to construct a low-dimensional represent-
ation of the input 3D points uses the eigenvalues associated with the object
similarity matrix (Polewski et al., 2015b). A graph is constructed based on the
similarity matrix which quantifies pairwise compatibility between primitives
from a predefined set, such as cubic voxels or irregular super-voxels provided
by any kind of pre-segmentation like mean shift of k-means. A recursive
bisection of the graph’s vertices into disjoint clusters A and B is performed
such that the within-cluster similarity is maximized while simultaneously the
inter-cluster similarity is minimized. The corresponding normalized cut is:

NCut(A,B) =
Cut(A,B)

Assoc(A, V )
+

Cut(A,B)

Assoc(B, V )
(4.1)

with Cut(A,B) =
∑
i∈A,j∈B wij as the total sum of the weights between the

segment A and B, while Assoc(A, V ) =
∑
i∈A,j∈V wij is the sum of weights

of all edges ending in segment A. The similarity function for normalized cut
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is based on the pair-wise similarity of the clusters. The mentioned segmenta-
tion is controlled by several parameters whose values can be optimized in
experiments. The most important parameter that controls the subdivision
of the graph is the normalized cut threshold NCutthr, which has no phys-
ical interpretation. During the segmentation, when the NCut value of the
obtained clusters A and B exceeds NCutthr the similarity between A and B
is too high and the process must be terminated. Clearly, choosing a suitable
threshold is critical to obtaining a reasonable segmentation, because a too
small NCutthr will lead to under-segmentation with clusters consisting of
unrelated objects. On the other hand, a too big value will result in over-
segmentation and many small clusters. In real world applications, setting the
most suitable value for this static threshold is challenging due to different
input characteristics.

4.2.3 Other top-down algorithms

Although normalized cut is the most prominent representative of the top-
down segmentation algorithms, other methods have also found use in various
clustering applications. Two methods from the graph-cut family are Min
Cuts (Wu and Leahy, 1993) as well as MinMax Cut (Nie et al., 2010), which
partition the graph according to different optimization objectives. Also, a
recursive, bisecting version of K-means has been developed (Savaresi and
Boley, 2001). Essentially, any of these mentioned algorithms could benefit
from the proposed adaptive stopping criterion approach. In this work we
decided to utilize the normalized cut procedure as the core method, because
(i) the implementation could potentially be modified to optimize one of the
other related criteria from the spectral clustering family (Min Cuts, MinMax
Cut) with moderate effort, and (ii) the normalized cut has already been
applied in literature for the studied problem of tree segmentation.

4.3 Adaptive stopping criterion

4.3.1 Outline

Consider a point cloud representing a forest scene with multiple coniferous
trees. The normalized cut algorithm recursively partitions the 3D data,
starting with the entire point cloud, until the level of single trees is reached.
Let Si represent an intermediate point cluster obtained at recursion level m of
the partitioning. Si may contain one or more trees. The main idea behind our
adaptive stopping criterion is to detect tree crowns by fitting local quadric
surfaces to candidate tree tops, and using this information to determine
whether the currently processed cluster of points represents a single or multiple
trees. In the former case, the segmentation is stopped, otherwise the current
cluster is split and the partitioning process continues. The method proceeds
as follows. We use a local maxima detection approach to find candidate peaks
of single trees. Then, we apply the RANdom SAmple Consensus (RANSAC)
method to estimate the best fitting quadratic surface parameters for points
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around each detected local maximum. The signed distances between the fitted
surface and local points are binned to form histogram features. These features
provide a basis for classifying the neighborhood of each local maximum either
as a true tree top or a false positive. After classification in a probabilistic
manner, the spatial overlap ratios opr (proportion of shared volumes) between
all pairs of positively classified candidate tree tops are calculated. If a pair of
fitted surfaces have an overlap ratio below a threshold value maxopr , then
it is decided that the current cluster contains more than one tree and the
segmentation has to proceed. If no such pair is found, the stopping criterion
is activated and the segmentation of the current cluster is terminated. The
entire processing pipeline is presented in Fig.4.1. In the following, we explain
the steps of our method in detail.

4.3.2 Local maxima detection

The input ALS data is a set of 3D point clouds with 3D coordinates
pi(xi, yi, zi) for each point. In our approach, the local maxima are detected
only within a currently segmented scene in the normalized cut segmentation
process. We examine a spherical neighborhood around each point to determ-
ine whether is has the locally maximal z coordinate or not. The neighborhood
radius is balanced between allowing nearby tree tops and not producing too
many insignificant local maxima. Note that, we do not apply smoothing step
to the original point clouds. Fig.4.2 shows the detected local maxima for two
clusters Si and Sj with true tree tops and a false positive, respectively.

Figure 4.2: Detected local maxima for two pair of clusters Si; Sj . The Si
represents a cluster with 2 true tree tops; the Sj shows a false positive
scenario in the cluster with at least one false detected local maximum.

63



4. Adaptive stopping criterion for top-down segmentation of ALS point clouds

4.3.3 Shape fitting with RANSAC

The RANdom SAmple Consensus algorithm (Fischler and Bolles, 1981) is a
general robust parameter estimation approach designed to deal with a large
proportion of outliers in the input data. In this step, the mentioned algorithm
is applied to estimate the best fitting elliptic paraboloid parameters around
each local maximum based on points inside a cylinder with a predefined
length cyll and radius cylr. The mentioned parameters of the cylinder are
defined experimentally. The center of the paraboloid is indicated by the
detected local maximum, and RANSAC is used to compute the remaining
paraboloid parameters. Fig.4.3 illustrates the fitted elliptic paraboloids based
on detected local maxima for two clusters Si and Sj .

Figure 4.3: Fitted paraboloid surfaces on detected local maxima. The Si
represents a cluster with two true tree tops; the Sj shows a false positive
cluster with at least one wrong detected local maximum.

4.3.3.1 Elliptic paraboloids

A second order algebraic surface is given by the following general equation

ax2 + by2 + cz2 + 2fyz + 2gzx+ 2hxy + 2px+ 2qy + 2rz + d = 0 (4.2)

E =


a h g p
h b f q
g f c r
p q r d

 (4.3)
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where E stands for the coefficient matrix of the surface. The quadratic
surfaces have different standard form types. In this study, we use the elliptic
paraboloid, a quadratic surface which has an elliptical cross section (Dai
et al., 2007). We assume the paraboloid axis is known and coincides with
the world Z axis due to the phenomenon of gravitropism of trees. Therefore,
the simplified version of the Eq.4.2 as an elliptic paraboloid of height Z,
semi-major axis a and semi-minor axis b without any rotation angle can be
specified parametrically as a function of (x, y):

Z(x, y) = − (x− xc)2

a2
− (y − yc)2

b2
+ zc (4.4)

The paraboloid’s center (xc, yc, zc) is fixed to the current detected local
maximum, whereas the semi-axis lengths a and b need to be determined
through RANSAC estimation.

4.3.3.2 Details of RANSAC estimation

Consider two samples (x0, y0, z0) and (x1, y1; z1) with (xc, yc, zc) as the fixed
center of paraboloid. For the mentioned samples, by using the following
equation (Eq.4.5) it is possible to calculate the axis lengths a and b.[

(x0 − xc)2 (y0 − yc)2

(x1 − xc)2 (y1 − yc)2

] [
1/a2

1/b2

]
=

[
z0 − zc
z1 − zc

]
(4.5)

After calculating the axis lengths a and b, for all points their distances to
the paraboloid surface are determined. Additionally, the absolute distance
|z − zi| is taken as the error measure for the RANSAC.

4.3.4 Classification

Although the RANSAC procedure yields the optimal paraboloid shape
anchored at the chosen local maximum, it is still possible that the para-
boloid does not represent a true, distinct tree top, but rather is located at
the side of an adjacent, dominant tree (see Fig.3). Therefore, it is necessary
to further classify each fitted paraboloid based on its spatial characteristics
in order to retain only the ones representing true tree tops. We use the
kernelized logistic regression (KLR) with L2 norm regularization as classi-
fier. Logistic regression models the probability distribution of the class label
Y and histogram features X (see section 3.4.1) as follows:

P (Y = 1|X = x) =
1

1 + exp[−
∑N
j=1 αjk(xi, X)]

(4.6)

where j, j = 1...N denotes N feature vectors of training examples and Y the
corresponding binary label. The term k represents a positive semi-definite
kernel function.
Training the model amounts to maximizing the regularized log-likelihood of
the training examples in the Eq.6 as:

max
α

`(α)− λ

2
αTKα (4.7)
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where K = (k(xi, xj))1..N,1..N represents the design matrix, and the ex-
pression αTKα denotes the L2 norm regularization term. Eq.7 represents
a convex optimization problem and we solved it by the Newton-Raphson
method (Roscher et al., 2012). The model’s log-likelihood and the functional
form of the used Gaussian kernel are given respectively by Eqs.8 and 9.

`(α) =

N∑
j=1

logP (Y = yi|X = xi) (4.8)

Kγ(xi, yj) = exp(−1

2

|xi − xj |2

γ
) (4.9)

where xi and xj are two sample feature vectors. The two main parameters,
Gaussian kernel bandwidth γ and regularization coefficient λ, are determined
through grid search on an exponential grid, using Cohen’s kappa coefficient
as the error measure and 10-fold cross-validation.
We classify the candidate local maxima (and their associated paraboloids)
of single coniferous trees into two classes of ”positive” and ”negative”, re-
spectively. The ”positive” class corresponds to true tree tops, whereas the
”negative” class indicates false positives. See Sec. 4.2 for a description of the
training procedure.

4.3.4.1 Elliptic paraboloids features

The features for classifying the local maxima are based on projected distances
of local points to the fitted shape. Specifically, we consider all points located
in the aforementioned cylinder around the local maximum (see Sec. 3.3)
and compute an approximate projection onto the paraboloid using algebraic
distance, i.e. for a point Qi = (xi, yi, zi) we take the point (xi, yi, Z(xi, yi)),
where Z(xi, yi) is the fitted surface’s Z position at coordinate (x, y), as in
Eq. 4. We decided to use this approximate method instead of true projection
onto the paraboloid due to the fact that computing the true projection of a
point onto a quadric requires solving a 6-th degree polynomial equation for
each point (Dai et al., 2007), which could be prohibitively computationally
expensive. The signed distance from point Qi to the surface is thus zi −
Z(xi, yi). In this part of our method, the signed distances are binned to
form histogram features X for the classification purpose mentioned in the
section 3.4. These features capture the shape of point distribution around
the paraboloids apex. Fig.4.4 shows the process of generating features for the
local maxima classification. For local maxima representing true tree tops,
the distances should be approximately symmetrically distributed around
zero, while for the case of a false local maximum depicted in Fig.4.3 (Sj),
the signed distance distribution should be significantly biased towards large
positive residuals.

4.3.5 Calculating spatial overlap ratio

After the classification step, a number of fitted paraboloids remain which
represent the detected true tree tops. However, in some cases more than one
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Figure 4.4: Signed distances between data points (in red) and their approx-
imate projections (in yellow) onto the fitted paraboloid (green). Positive
and negative distances are indicated respectively by blue and red lines. (a)
Residuals around a true tree top, distributed symmetrically around zero, (b)
Residuals around false local maximum located at the side of the tree, showing
bias towards large positive values.

local maximum may represent the same tree, which makes it necessary to
filter them out. Therefore, we define a feature for a pair of paraboloids Si
and Sj which evaluates the ratio of their spatial overlap opr, i.e. the ratio of
volume shared by both shapes to the volume of an individual paraboloid. The
ratio is normalized between a value of one and zero, indicating no overlap
between the paraboloids, and one, corresponding to full paraboloid overlap. If
the overlap ratio exceeds the maximum value maxopr , then we assume that
both paraboloids represent the same tree. In the current step, since it is
difficult to analytically derive parameters for elliptic surfaces, we apply the
Monte Carlo simulation method to estimate the spatial overlap of the fitted
paraboloids. Fig.4.5 represents the idea behind calculating the intersection
volume using a random simulation method. We generate a number of sample
points N within the interior of the first paraboloid. Afterwards, for each point
we check the possibility if that point lies also in the second paraboloid. The
overlap ratio opr can be approximated as the number of points which are
located inside both paraboloids divided by the number of generated sample
points N . Note that in the current experiment, a uniform spatial distribution
of the points is generated in the entire volume of the paraboloid. To ensure this
uniformity, we perform the sampling with two steps. In the first step, we draw
the vertical distance Z from the paraboloid center randomly according to
the triangular distribution, P (Z ≤ z) ∝ z2. For the second step, we generate
a point from the interior of the ellipse which constitutes the cross section
of the paraboloid at the drawn height of z from the previous step. Fig.4.6
shows the process of uniformly sampling points in the paraboloid. In order
to maintain a uniform point density across the entire paraboloid, the local
densities in every vertical ’slice’ of the volume should be equal. However, the
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Figure 4.5: Estimating the spatial overlap ratio opr between fitted paraboloid
surfaces. The Si represents a cluster with 2 true tree tops; the Sj shows a
false positive cluster with at least one false detected local maximum.

volume of a slice at height z is proportional to z. Since the density remains
constant, the number of generated points at a layer must also be proportional
to its height. The spatial overlap ratio of paraboloids opr for the adaptive
stopping criterion method is given by algorithm Alg.1. The rnd() function in
the algorithm refers to the uniform random number generator in the range 0
to 1. This Monte Carlo based procedure yields an unbiased estimator of the
true ratio of overlapping volume.

Algorithm 1 Spatial overlap ratio

function CalculateSpatialOverlap (para1, para2, N )
for l = 1...N do

z← para1.Height
√

rnd()
θ ← 2πrnd()
r← para1.A

√
z · r · cos(θ)

x = para2.B
√
z · r · sin(θ)

y =
√
rnd()

if para2 contains (x, y, z) then
nBoth← nBoth+1

return nBoth/N
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Figure 4.6: The entire volume of a paraboloid V can be decomposed into
an infinite number of elliptical slices with infinitely small thickness dz and
volumes v(z) which are functions of their heights z. H represents the height
of the paraboloid. The number of points generated in each slice should be
proportional to its cross section area.

4.4 Experiment

4.4.1 Materials

Our experiments were conducted for three sample plots in the Bavarian Forest
National Park (49◦3′19′′ N, 13◦12′9′′ E), a temperate forest located in the
southeastern part of Germany along the border to the Czech Republic. The
sample plots contain a mixture of mountainous and subalpine forest types
dominated by Norway spruce (Picea abies) and European beech (Fagus
sylvatica) (Cailleret et al., 2014). The airborne full waveform data were
acquired using a Riegl LMS-Q560 scanner in May 2007 in a leaf-on condition
with an average point density of 25 points/m2. The flying altitude of 400
m resulted in a footprint size of 20 cm. We used the mixture-of-Gaussians
decomposition model (Reitberger et al., 2009) on the collected waveforms,
obtaining a 3D point cloud. The 3D visualization of point clouds for the plots
(coniferous-dominated stands) is shown by Fig.4.7. Table 1 summarizes the
characteristics of our sample plots, estimated based on the reference data
from field inventory.

4.4.2 Classifier training

Additionally, we chose 100 point cloud clusters from areas outside of the test
plots as training data for the local maxima classifier. The clusters consisted
both of scenes containing only a single tree and ones comprising multiple
adjacent trees, in order to ensure a possibly wide range of training scenarios
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Figure 4.7: ALS point clouds of Plot A (100% coniferous), Plot B (99%
coniferous) and Plot C (70% coniferous) colored by height over DTM.

Table 4.1: Properties of sample plots.

Property Plot A Plot B Plot C
Size [ha] 0.10 0.10 0.30
Trees/ha 450 2150 700

Ave. DBH* (cm) 46.2 17.9 35
Ave. Crown base height (m) 20.9 7.08 16.7

Ave. Tree height (m) 36.9 16.08 35.45
Dominant species Spruce Spruce Spruce

Deciduous trees[%] 0 1 29
Understory trees [Number] 0 76 11

Intermediate layer [Number] 4 85 33
Overstory trees [Number] 41 54 165

*Diameter at Breast Height.

(with the proportion of 50%-50%). These clusters were obtained from various
intermediate steps, i.e. partial segmentations, of the standard normalized
cut algorithm with the static normalized cut threshold NCutthr. For each
training cluster, the local maxima detection was performed, and each local
maximum was labeled as either a true tree top or a false positive based on
visual interpretation of the point cloud. The paraboloid-based features (see
section 3.4.1) were extracted for each local maximum. The set of all extracted
features together with the local maxima labels formed the basis for training the
classifier to detect the characteristic paraboloid shape of coniferous trees. The
classifier provides a probability of p that a local maximum represents a ’true
positive’, i.e. tree top. Later, the minimum acceptance probability threshold
minpthr

is used as a control parameter, i.e. a local maximum is processed
further is its probability p exceeds this threshold value.

4.4.3 Reference data

The ground truth data for the test plots was acquired by field measure-
ments. In each of the 3 plots, at least 40 single trees with diameter at breast
height (DBH) bigger than 10 cm were present. Several individual tree para-
meters such as total tree height, stem position, DBH and tree species were
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measured with the help of GPS and tacheometry. Moreover, the single trees in
the scene are subdivided into three layers with respect to the top tree height
htop in the plot. The top tree height htop is defined as the average height
of the 100 highest trees per ha (Heurich, 2006). The lower layer contains
all trees below 50% of htop, the intermediate layer corresponds to all trees
between 50% and 80% of htop, and the upper layer refers the rest of the
trees. Plot A has no trees at the understory layer and less than 10% of total
number of trees at the intermediate layer. However, plot B contains higher
number of trees at intermediate and understory layer compared to plots
A and C. Plot B has the highest number of trees at the intermediate and
understory layers among the other plots. In this study, we removed both
lower and intermediate layers based on the top tree height htop and focused
on the upper layer, where the single tree crowns are clearly shaped as elliptic
paraboloids. The total number of single trees in the three sample plots was
260.

4.4.4 Experimental setup

We conducted 4 groups of experiments. These experiments are concerned
with assessing the performance of the entire method for the single tree
segmentation particularly the benefit of using the newly introduced adaptive
stopping criterion. For the first two sets, we used the basic normalized cut
segmentation algorithm with normalized cut threshold NCutthr. In the other
two groups of experiments, the tree segmentation was based on our adaptive
stopping criterion. To demonstrate that our approach is independent of the
segmentation granularity, we executed the experiments with two kinds of
primitives for merging: (i) voxel-based and (ii) obtained from mean shift
clustering. In the voxel-based approach, the main idea is to subdivide the tree
into a voxel space, which results in equal-sized primitives in the form of voxels
with a side length dvox = 0.5m. On the other hand, the mean shift algorithm
generates a segmentation of the point cloud consisting of non-uniformly
sized clusters. We used a cylindrical kernel with base radius hr = 2.4m
and height H = 2.4m (See Yao et al. (2013)). The similarity function was
the standard exponential model as in Reitberger et al. (2009). The graph’s
adjacency relation was based on a cylindrical neighborhood with a predefined
radius and unlimited height, as described in our previous work (Amiri et al.,
2016). Aside from geometric information, the similarity function contained
a term reflecting the mean pulse intensities and widths averaged over the
clusters’ member points.

4.4.5 Choice of parameters

The different control parameter values that we used in our approach are
summarized in the Table 4.2. The values were assigned empirically based on
the forest characteristics. The cylinder radius cylr is based on the largest
radius of a single coniferous tree crown which we expect to find in the
plots. Similarly, the cylinder length cyll approximates the maximum expected
range of the upper tree crown in the study area. Moreover, the local maxima
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neighborhood radius rneig corresponds roughly to the average size of the tree
crown segments. All parameter values were reused for all test plots.

Table 4.2: Control parameters of the adaptive stopping criterion method for
single tree segmentation.

Parameters symbols values
Maximum overlap ratio maxopr 0.3
Minimum probability threshold minpthr

0.5
Local maxima neighborhood radius rneig 1.2
Signed distance bin width sdbw 1.0
Signed distance range sdrange 20.0
Cylinder length cyll 5.0
Cylinder radius cylr 1.0
RANSAC inlier distance sacd 0.05

4.4.6 Evaluation

The output of our processing pipeline consists of set of points which correspond
to the individual segmented trees. The matching between segmented and
reference trees was calculated using the strategy proposed by Reitberger et al.
(2009). We considered the segmented and reference trees as matched if (i)
the distance to the reference single tree is smaller than 60% of the mean
tree distance within the sample plot and (ii) the height difference between
and the height of the reference tree is smaller than 20% of the top height of
the plot. Moreover, if a reference tree is associated with more than one tree
position, the tree position with the shortest distance to the reference tree is
taken. A segmented tree cluster without a link to a reference tree is called a
false positive segment.
In the current experiment, we use the ’correctness’ and ’completeness’ metrics
to measure the quality of the obtained segmentation results. The ’correctness’
metric is defined as the number of segmented trees that were successfully
linked to reference trees as a fraction of the total number of segmented
trees. The ’completeness’ expresses the ratio of the number of reference trees
which have at least one associated segmented tree to the total number of
reference trees.

4.5 Results and discussion

4.5.1 Sensitivity analysis

Clearly, the adaptive stopping criterion approach requires proper values for
the control parameters. We conducted tests to find the most important para-
meters’ values and their sensitivity. We demonstrate the performance of the
adaptive stopping criterion with two main control parameters: the maximum
overlap ratio maxopr and minimum probability threshold minpthr

. The res-
ults from the maximum overlap ratio maxopr showed that the smaller values
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produce relatively higher correctness and completeness, respectively. A value
of 0.3 represents a good trade off between the correctness and completeness
which can successfully split the cluster into adjacent tree crowns. Fig.4.8
shows the segmentation performance by ROC curves on the sample plots
mentioned in the section 4.2 when different values of maximum overlap ratio
maxopr are applied. The three plots dominated by coniferous trees share the
properties that at the threshold of 0.3 of the spatial overlap between clusters,
over 70% of trees can be detected correctly. In plot C, which contains almost
30% deciduous trees, the true positive rate on average did not exceed 65%
for various threshold values. Among the test datasets, plot A exhibits the
relatively higher correctness and completeness rates.
In Fig.4.9 the adaptive segmentation performance for the probability threshold
of the same sample plots (see section 4.2) is presented by ROC curves. For the
minimum probability threshold minpthr

, 0.5 was selected as an optimal trade
off value. A larger minimum probability threshold minpthr

led to more seg-
ments, which resulted in an overall higher completeness but lower correctness
across the entire sample plots. The sensitivity analysis of our segmentation
method for the selected plots was similar if a minimum probability threshold
minpthr

value smaller than 0.3 was selected. Also, on the plot A the ROC
curves with different threshold values continue upwards and attain a com-
pleteness of 0.75, whereas on the other two plots, a value of 0.65 is not
exceeded. The lowest true positive rate with the highest false positive rate is
achieved by plot B. Note that the obtained values of 0.3 for the maximum
overlap ratio maxopr and 0.5 for the minimum probability threshold minpthr

were nearly optimal on all three considered plots.
Moreover, for the baseline experiment, we demonstrate the sensitivity analysis
for the normalized cut threshold NCutthr which controls the subdivision of
the segments in the procedure. Tests in terms of correctness and completeness
for the sample plots mentioned in the section 4.2 showed the best performance
was achieved by the value of 0.16.

Table 4.3: Results of analysis on the upper canopy layer for the sample plots
A, B and C.

Segmentation scenario Plot A Plot B Plot C

Completeness
Mean Shift + NCut 0.69 0.56 0.61
Voxel-based + NCut 0.66 0.58 0.61

Mean Shift + NCut (Adaptive) 0.76 0.67 0.68
Voxel-based + NCut (Adaptive) 0.77 0.67 0.69

Correctness
Mean shift + NCut 0.59 0.64 0.70
Voxel-based + NCut 0.53 0.63 0.69

Mean shift + NCut (Adaptive) 0.68 0.70 0.79
Voxel-based + NCut (Adaptive) 0.65 0.70 0.76
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4.5.2 Adaptive segmentation approach

The results of the segmentation performance on the upper canopy layer with
respect to the two set of merging primitives: (i) voxel-based and (ii) obtained
from mean shift clustering are summarized in the Table 4.3. For all plots, the
correctness and completeness terms are estimated. In the current plots, due to
the point density and forest characteristics (particularly deciduous trees) up
to 30% of the upper layer trees could not be correctly segmented. The task of
adaptive single tree segmentation in the mixed deciduous and coniferous plots
proved to be even more challenging than it was for the coniferous dominated
stands. In upper canopy layer, the reliability of the method is high because
the 3D tree structure captured within the point clouds does exhibit the full
shape of elliptic paraboloids.
The results in terms of correctness and completeness for the adaptive seg-
mentation by using two different primitives are presented. For three plots,
an improvement of 6-9% and 7-10% respectively for correctness and com-
pleteness is achieved, compared to the basic normalized cut segmentation
with mean shift primitives. Also, the adaptive approach of the normalized
cut with voxel-based primitives for the same plots compared to the basic
segmentation with voxel-based step performs a gain of 7-8% and 8-10%
respectively in terms of correctness and completeness. The experiments on
three plots confirm that the higher completeness and correctness rate can be
achieved for the adaptive normalized cut with voxel-based and mean shift
clustering primitives compared to the basic segmentation approaches. In
the case of adaptive segmentation by voxel-based primitives, for plot A the
good trade off results between correctness and completeness rate are 0.65
and 0.77, respectively. For plot B, identical correctness and completeness
results for both voxel-based and mean shift primitives are achieved. Finally,
for plot C, 0.69 for the completeness and 0.76 for the correctness rate are
accomplished. For all the plots, when the adaptive segmentation scenario
is applied, the correctness and completeness rates are both increased. The
average rate of false detected tree segments in the plot A, B and C amount
to 0.23, 0.33 and 0.31, respectively. Note that the method is evaluated by
the single trees located in the upper canopy layer.

Figures 4.10 and 4.11 show examples of the segmentation results by prim-
itives obtained from mean shift clustering for a part of test plot A. Note
that the sample plot contains only coniferous trees. The results indicate that
our method was successful in overcoming the over- and under-segmentation
problems in the test plot. Fig.4.10 presents the comparison of segmentation
results between the normalized cut combined with mean shift clustering and
the adaptive stopping criterion method. The tree clusters are classified using
fitted elliptic paraboloids and the spatial overlap ratios between them are
calculated. The red box in Fig.4.10a shows an over-segmented cluster which is
delineated as a single tree (see Fig4.10b) by using the adaptive segmentation
approach.
Moreover, the case of under-segmentation is indicated by Fig.4.11. In this
case, we used the adaptive stopping criterion method to reduce the under-
segmentation error of the normalized cut algorithm with the clusters obtained
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from the mean shift step. In Fig.4.11a, the red box is focused on an example
cluster consisting of multiple trees, which is known as under-segmentation. Us-
ing the adaptive segmentation method, it is revealed in Fig.4.11b how the
under-segmentation for the current cluster is removed.
The computational cost for both the static and the adaptive versions were
similar, which indicates that the processing time was dominated by solving
the generalized eigenvalue problem on the NCut similarity matrix. A simple
heuristic may be used to reduce the number of times the adaptive stopping
criterion is invoked: for a given point cluster, if its 3D bounding box exceeds
the dimensions of the largest possible single object (i.e. tree), the segment-
ation must continue. In principle our approach is applicable for the larger
forest areas.
Our method takes the advantage of fitting the elliptic paraboloids to the point
clouds and determining whether the currently processed cluster of points
represents a single coniferous tree or multiple trees. The sensitivity analysis
shows that for all the sample plots the same set of parameters as maximum
overlap ratio maxopr and minimum probability threshold minpthr

achieves
the best trade off values between the correctness and completeness. The
restrictions of the current approach are: (i) mainly trees in upper canopy
layer in the 3D point cloud can be segmented accurately, (ii) the method
fails in the plots with concentrations of deciduous trees where the segments’
points cannot be clearly clustered. The crown boundaries of deciduous trees
are not clear in the point clouds due to the complex geometry of these trees in
the leaf-on condition. Therefore, no benefit was achieved despite the adaptive
segmentation approach for the deciduous trees. In case that the study area is
dominated by coniferous trees, single tree segments are successfully delineated
by the classifier training and elliptic paraboloids fitting method. Moreover,
the normalized cut threshold NCutthr has no physical meaning, however our
method’s main control parameters are closely tied with the appearance of
single trees in the forest scene, which makes them more easily interpretable.
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Figure 4.8: ROC curve of single tree adaptive segmentation for the plots
A (100% coniferous), B (99% coniferous) and C (70% coniferous). Each
diagram contains 4 ROC curves which correspond to various thresholds of
the maximum overlap ratio maxopr .
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Figure 4.9: ROC curve of single tree adaptive segmentation for the plots
A (100% coniferous), B (99% coniferous) and C (70% coniferous). Each
diagram contains 4 ROC curves which correspond to various thresholds of
the minimum probability threshold minpthr

.
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Figure 4.10: Single tree segmentation results for a part of plot A: (a) corres-
ponds to the normalized cut segmentation with mean shift clustering results;
and (b) represents the adaptive stopping criterion for normalized cut segment-
ation by fitting paraboloids, respectively. Each set of colored points represents
a delineated single tree. The red boxes outline the over-segmentation issue
on an example single tree.

Figure 4.11: Single tree segmentation results for a part of plot A: (a) corres-
ponds to the normalized cut segmentation with mean shift clustering results;
and (b) represents the adaptive stopping criterion for the normalized cut
segmentation by fitting paraboloids, respectively. Each set of colored points
shows a delineated single tree. The red boxes outline the under-segmentation
issue on an example group of single trees.
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4.6 Conclusions

The study presents a novel method for single tree segmentation in temperate
coniferous forest by applying an adaptive stopping criterion to top-down
segmentation in ALS point clouds. Following the study on segmentation of
fallen stems (Polewski et al., 2015b), our results also confirm that the use of
an appearance based stopping criterion can benefit a top-down segmentation
process in different scenarios. Our method is directly applied to the 3D
ALS point clouds, targeting coniferous trees through modeling their crowns
by elliptic paraboloids. The adaptive segmentation approach on average
appears to lead to an improvement of up to 10% in both correctness and
completeness. We did not try to include the tree species composition in the
analysis; this will constitute a future research issue. Moreover, the accuracy of
the segmentation was negatively impacted by the higher number of deciduous
trees in the upper canopy layer.
Further improvements to the method would be achieved by extending the
adaptive segmentation approach to the deciduous tree species to deal with
the over- and under-segmentation problems. Although some deciduous tree
species may follow a well defined geometric crown shape, it is challenging
to propose a single model which can accurately represent all broad-leaf
trees. Moreover, higher point density ALS data as well as data acquisition
in leaf-off condition could lead to more precise reconstruction of the single
tree segments. Furthermore, we would like to utilize the stems obtained
from the proposed method by Amiri et al. (2017) to enhance the single tree
segmentation in the intermediate and lower canopy layers by providing prior
knowledge about tree locations.
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Abstract

Forest inventory and management requires precise and detailed information
about the distribution of tree species. While individual tree-based approaches
using single wavelength lidar can successfully distinguish broad-leaf and
coniferous trees, they cannot conduct more detailed tree species classification
due to limited spectral ranges. Recent advances in sensor technology have
led to the development of new Multispectral Laser Scanning (MSLS) systems
that provide up to three different wavelengths. Fusing these MSLS data with
multispectral aerial imagery significantly increases the radiometric range of
the dataset for classifying multiple tree species. Thus far, the status and
potential uses of MSLS data for classifying tree species have not been fully
explored. In this study, different feature sets were extracted from an MSLS
point cloud and multispectral aerial imagery to classify three tree species
(Norway spruce, European beech, Silver fir), and dead spruce trees with
crowns (snags) in the Bavarian Forest National Park, Germany. The MSLS
data were acquired by combining data from three different sensors under
leaf-on conditions with an average point density of 37 points/m2. First, the
combined 3D point cloud was segmented into 3D clusters using the Normalized
Cut segmentation approach. Second, various features from the MSLS point
cloud and aerial imagery were generated. Third, forward stepwise feature
selection was conducted to reduce the number of redundant or irrelevant
features. Finally, the classification was conducted using multinomial logistic
regression. We tested our classification procedure using 20 sample plots
with measured reference single trees. The results for the individual MSLS
point cloud and aerial imagery datasets showed that cross-validated (15-fold)
accuracies of 78% and 66% were achieved, respectively. An improvement of
7-13% over single wavelength approaches were achieved when the MSLSS data
are used. However, there was no considerable improvement in the classification
accuracy if the multispectral imagery features were fused with the MSLS
data features. Overall, the contribution of the MSLS point cloud radiometric
features to the classification accuracy was higher than that of the geometric
features by approximately 10%. Our results show that the features derived
from a MSLS point cloud have a great potential to improve detailed tree
species mapping.
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5.1 Introduction

Remote sensing can provide valuable information for understanding ecosystem
structures and functions over large areas (Baldeck et al., 2015) that influence
biodiversity (Turner et al., 2003). Aside from area-based approaches (Korpela
et al., 2009), a large number of studies have mentioned the fundamental
role of species identification at the single tree level in a wide range of forest
inventory and management activities (Treitz and Howarth, 2000; Heinzel
and Koch, 2012; Fassnacht et al., 2016) as well as biodiversity monitoring
(Skidmore and Pettorelli, 2015). Therefore, in order to maintain up-to-date
information, effective methods and techniques need to be developed that
accurately classify single tree species.

Single tree species can initially be identified using individual tree detection
approaches and later mapped by a classification strategy. Recent innovative
methods for single tree detection have utilized a 3D approach instead of using
the canopy height model (CHM) alone to resolve the over/under-segmentation
problems (Wang et al., 2008). The detection rates for single trees can be
improved significantly by applying the spectral clustering Normalized Cut
method (NCut) to a (super) voxel forest structure (Reitberger et al., 2009;
Yao et al., 2013), and introducing a classifier-based adaptive stopping criterion
(Amiri et al., 2018b). Moreover, to segment individual trees Str̂ımbu and
Str̂ımbu (2015) proposed an approach that captures the topological structure
of the forest in hierarchical data structures and quantifies the tree crown
component relationships in a weighted graph. Overall, accurate single tree
segmentation is an important step for high quality species determinations at
the individual tree level.

5.2 Related work

Over decades, optical imagery that can remotely measure the spectral reflect-
ance of an object has been used as a standard source to discriminate tree
species (Erikson, 2004; Fassnacht et al., 2016). Optical aerial instruments
can record the spectral signatures of tree species not only in the visible spec-
tral range (RGB), but also in the near-infrared (NIR), short-wave infrared
(SWIR), and even thermal infrared. Depending on the radiometric resolu-
tion, the radiation can be measured in multiple bands. Multispectral sensors
typically provide up to 10 spectral bands, whereas hyperspectral sensors
have hundreds of bands. Recently, dense matching has become a mature
technique used to reconstruct objects from a series of highly overlapping
images on the pixel level with excellent subpixel accuracy (Hirschmüller,
2008). Regarding forestry applications, this novel computer vision method
enables a dense point cloud to be generated from canopy surfaces that later
can be used for tree species classification either on the tree level, or using
an area-based approach. Moreover, multispectral and hyperspectral sensors
can be combined with lidar to enrich the limited radiometric information
of lidar. Ullah et al. (2017) demonstrated that estimating forest structural
parameters at the stand and forest compartment level can be improved by
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using point clouds generated from aerial imagery. Nevalainen et al. (2017)
combined an RGB camera and a frame format hyperspectral camera mounted
on a copter drone. They showed that the single tree detection rate is strongly
dependent on the boreal forest stand characteristics and ranges between 40%
and 95%. Moreover, the tree species classification accuracy (four different
tree species) achieved an overall accuracy of 95% and a F-score of 0.93,
respectively. However, the main drawback of these passive sensors for forest
applications is the limited forest canopy surface penetration, hence, the forest
structure beneath the canopy cannot not be fully captured in 3D.
Over the past decade, Airborne Laser Scanning (ALS) point clouds have
become beneficial for classifying tree species. Several studies have proposed
using structural features from the ALS point clouds, such as crown shapes,
height distribution percentiles, and proportions of first/single returns for
distinguishing between tree species (Brandtberg, 2007; Holmgren et al.,
2008; Ørka et al., 2009; Lindberg et al., 2015). Separating trees by height is
important for single tree classification, especially in forests where tree height
distributions differ between species (Holmgren and Persson, 2004; Brandtberg,
2007). After the advent of single full waveform lidar systems, several studies
reported accuracy improvements by applying waveform features that use
detailed backscattered pulse information, such as the intensity and pulse
width (Shang and Chazette, 2014; Hovi et al., 2016). Höfle et al. (2008) used
calibrated waveforms from the ALS data to distinguish between European
larch, English oak, durmast oak, and European beech, and found that echo
width could separate larch from broad-leaf trees. However, the responses of
the oak and beech represented by the backscatter cross-section and echo width
were similar. Reitberger et al. (2009) found that radiometric information
derived from full waveform lidar, such as the intensity and pulse width,
provide a strong basis for distinguishing between broad-leaf and coniferous
trees. Heinzel and Koch (2011) explored a set of waveform-based features
for classifying four groups of tree species in a mixed temperate forest with
an overall accuracy of 78%. Yao et al. (2012) found that single wavelength
ALS data (1550 nm) could be used to classify coniferous and broad-leaf
trees in the Bavarian Forest National Park with a maximum overall accuracy
of 90%. However, Shi et al. (2018a) found that the classification accuracy
decreases by 30% if the detailed tree species mapping (six different tree species)
is attempted for the same study area. Further, Hovi et al. (2016) focused
on systematically analyzing the identification potential of ALS point cloud
features by investigating the sources of the within-species variations. They
achieved an overall accuracy of 75% for the identification of three main
tree species in Finland using lidar waveform features. Overall, considering
the limitations of optical imagery, single wavelength ALS point clouds (full
waveform) are superior data sources for classifying tree species (Korpela
et al., 2010b). However, due to the lack of spectral information, detailed tree
species identifications have yet to reach sufficiently high accuracies (up to
90%) (Leckie et al., 2003; Yu et al., 2017).
The aforementioned results suggest that the intensity of single wavelength
lidar (full waveform) is useful for classifying tree species. Moreover, the
reflectivity of each object is dependent on the laser wavelength. For instance,
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according to Kim (2008), by using single wavelength lidar (1064 nm) under
leaf-on conditions, the average intensity values of broad-leaf trees are higher
than those of most coniferous tree species. This difference is mainly due to
differences in the tree structures. Broad-leaf trees have larger single leaves,
while coniferous trees have needles with a non-continuous leaf surface (Kim
et al., 2009). Recently, Shi et al. (2018a) verified that the intensity features
make a more significant contribution to tree species classification in mixed
temperate forests than the geometric features. Moreover, the bidirectional
reflectance and geometry of the volumetric target surfaces significantly in-
fluence the intensity values recorded by a lidar system (Fassnacht et al.,
2016).
Integrating the two different (active and passive) remote sensing approaches
combines the advantages of each method and resolves some of the disadvant-
ages when they are used alone. Previous studies reported that integrating
single wavelength ALS data with hyper/multispectral imagery can improve
the accuracy of tree species classification by at least 10% (Trier et al.,
2018). Holmgren et al. (2008) classified three tree species in a boreal forest
and achieved an overall accuracy of 96% when multispectral imagery and
ALS data were combined. Dalponte et al. (2012) combined lidar and hyper-
spectral data for the classification of tree species using Random Forest in
the southern Alps and achieved an overall accuracy of 74.9%. However, some
studies have reported serious commission errors mostly caused by ground
vegetation illuminated by the sun that were subsequently recorded by the
optical imagery (Leckie et al., 2003). Furthermore, geometric mis-registration
can limit the effective performance of the combined datasets (Yu et al., 2017).
Recently introduced MSLS technology is promising for improving forest
mapping as it can provide a denser point cloud and higher spectral informa-
tion. Few studies have focused on the potential of using MSLS point clouds
for classifying tree species (Lindberg et al., 2015; St-Onge and Budei, 2015;
Hopkinson et al., 2016; Yu et al., 2017; Axelsson et al., 2018; Budei et al.,
2018). Lindberg et al. (2015) generated MSLS data using three different
instruments during different flights with a point density of 20 points/m2 to
characterize tree species. They employed visual interpretation to show that, if
both spectral and geometric information from multi-wavelength lidar data are
used, the tree species identification performance is better than that obtained
when information from single wavelength ALS data are used. St-Onge and
Budei (2015) used the intensity-based features extracted from three spectral
channels of a Titan multispectral lidar system (Optech, 2015) to classify
broad-leaf vs. needle-leaf trees in a Canadian boreal forest and achieved a
classification accuracy over 90%. Yu et al. (2017) used the same sensor and
achieved an overall tree species classification accuracy of 85.6% for 3 different
tree species in southern Finland using intensity-based features. Hopkinson
et al. (2016) compared terrain and forest canopy attributes extracted from
each wavelength of two multispectral lidar datasets (multisensor and single-
sensor). They achieved an overall accuracy of 78% for the classification of
land surface and vegetation (8 classes) by integrating spectral and structural
information. Axelsson et al. (2018) used the Optech Titan X System to
investigate ten tree species in a boreal forest, and achieved a cross-validated

85



5. Tree species classification by fusing multispectral lidar and aerial imagery

accuracy of 76.5% using the height and intensity distribution of features from
the tree segments. Budei et al. (2018) classified 10 tree species using the
Optech Titan system with an overall accuracy of 75%. So far, combinations of
various features from MSLS point clouds have been mainly used to examine
tree species classification in boreal forests.

In summary, the classification of coniferous and broad-leaf trees with single
wavelength ALS data (full waveform) is possible with high accuracy. Further-
more, the fusion of single wavelength ALS data with hyper/multispectral
imagery improves the tree species classification accuracies. Therefore, from a
research point of view, it is meaningful to determine if combining multispec-
tral data from lidar and aerial imagery significantly improves the classification
accuracy in temperate forests. Moreover, due to the expected high dimen-
sional feature space, techniques are mandatory to reduce the huge number of
predictive variables to the most prominent ones.

The main objectives of this study were to evaluate the accuracy of tree species
classification in a temperate forest located in southwest Germany using (i)
multispectral aerial imagery features, (ii) MSLS point cloud features, (iii)
combined features from both datasets, and (v) single spectral channel (1550
nm, 1064 nm, and 532 nm) features. Additionally, the classification perform-
ance of the combined features extracted from each spectral channel (1550
nm, 1064 nm, and 532 nm) and aerial imagery was assessed. Furthermore,
we assessed the classification accuracy and identified the most important
features based on a specific feature selection approach.

The remainder of the paper is structured as follows: Section 3 illustrates
the study area, materials, and field measurements. Section 4 describes the
details of our approach. The results are presented and discussed in Section
5. Finally, the conclusions are stated in Section 6.

5.3 Experiment

5.3.1 Materials

Located in the Bavarian Forest National Park, our study area is a temperate
and complex forest situated in the south-eastern part of Germany along the
Czech Republic border covering an area of 24,250 ha. The forest is dominated
by Norway spruce (Picea abies) with European beech (Fagus sylvatica) and
Silver fir (Abies alba). Rare tree species are also present in the park, such as
white birch (Betula pendula), sycamore maple (Acer pseudoplatanus), and
common rowan (Sorbus aucuparia) (Cailleret et al., 2014). Fig.5.1 shows in
yellow the sample plots site where the experiments were carried out on a
color infrared orthophotograph of the Bavarian Forest National Park.

Acquisition of the multispectral aerial imagery (color infrared) was conducted
on June 23, 2016 under leaf-on conditions over the Bavarian Forest National
Park using a DCM camera with a ground sample distance of 20 cm. Addi-
tionally, Global Positioning System (GPS) and Inertial Navigation System
(INS) data were acquired to provide initial information about the exterior
orientation. The mean above-ground flight height was 2918 m. The images
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Figure 5.1: Color infrared orthophotograph of the Bavarian Forest National
Park (park area in green), with the test area containing sample plots for
classifying tree species marked in yellow.

had an end-lap of 75% and side-lap of 60%. They contained three spectral
bands ch: near-infrared nir, red r, and green g. The aerotriangulation was
calculated using the Trimble/INPHO© software using as input the aerial
images, the camera calibration model, and the image measurements for the
control points. The Trimble/INPHO© software also generated orthophotos
utilizing the digital surface model of the forest area. Radiometric corrections
were later applied to the orthophotos. A color infrared image of the study
area that presents the difference between the trees (living vegetation) and
snags (standing dead spruce trees with crowns) by color, is shown in Fig.5.2.

Table 5.1: Flight campaigns of multispectral lidar data.

Riegel scanner type LMS-680i LMS-Q780 VQ-880-G

Platform type Airplane: Airplane: Airplane:
D-HALL/AS350 Tecnam P2006T Tecnam P2006T

Spectral wavelength (nm) 1550 1064 532

Beam divergence (mrad) 0.5 0.25 0.2

Flight speed (m/s−1) 50 90-100 90-100

Flight height (m) 300 550 550

Footprint size (mm) 150 137 110

The main goal of the experiment was to combine three different full waveform
lidar sensors that each provided a specific spectral wavelength. The multis-
pectral lidar data were acquired on August 18, 2016 during leaf-on conditions
using three Riegl scanners: LMS-680i, LMS-Q780, and VQ-880-G. Note that
the weather conditions remained constant during data acquisition. The com-
bined 3D point cloud with an average point density of 37 point/m2 contained
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Figure 5.2: A forest scene in the color infrared aerial image with a ground pixel
resolution of 20 cm. Snags (standing dead spruce trees with crowns) appear
in gray, while the living trees are shown in red (broad-leaf and coniferous
trees).

three different spectral channels (1550 nm (Ch1), 1064 nm (Ch2), and 532
nm (Ch3)). Table 5.1 contains the acquisition flight details.

The VQ-880-G and LMS-Q780 sensors were flown in an one airplane, while
the LMS-680i instrument was carried in another airplane. The MSLS data
are visualized in Fig.5.3. Prior to the segmentation step (see subsec.5.4.3),
the spectral Ch2 and Ch3 channels were horizontally and vertically shifted
to the Ch1 reference channel. The reference channel had been geometrically
calibrated in advance based on vertical and planimetric objects, such as
enclosed building polygons and flat areas, respectively.

5.3.2 Reference data

The ground truth data for the sample plots were acquired by field measure-
ments and included 586 single trees that were measured from 20 circular
sample plots with an area of 500 m2 for each plot. The reference trees positions
(all trees with DBH (Diameter at Breast Height) > 7 cm) were measured from
the center of the plot with a vertex for the distance and a compass for the
angle using the Leica GS GPS system (see Bässler et al. (2008)). Moreover,
the DBH values for all the trees and heights of all trees were measured. The
measurement campaign was conducted during the summer of 2017. Based
on the available ground truth data and, due to the lack of reference data
for some of the rare species, we selected three species for the study: Norway
spruce (Picea abies), European beech (Fagus sylvatica), and Silver fir (Abies
alba). Additionally, we added snags (standing dead spruce trees with a crown)
to the list of tree classes to be identified. The distribution of the four tree
classes in the sample plots for the classification were as follows: Norway
spruce (43%), European beech (30%), Silver fir (10%), and snags (16%).

The reference data were unbalanced and dominated by beech and spruce
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trees. Therefore, the reference data were balanced for the classifier and the
experiment was run 20 times by randomly selecting a subset of the dominant
class each time so that the reference data contained no more than 32% of any
class. The single trees were subdivided into three canopy layers with respect
to the top tree height htop in the plot that was defined as the average height
of the 100 tallest trees per ha (Van Laar and Akça, 2007; Heurich, 2008). We
focused on the upper canopy layer that contained trees with heights that
were at least 80% of the htop and could be identified in the reference data
using a matching strategy.
For matching, we selected the aforementioned tree classes in the upper canopy
layer from the reference data and linked them to the correctly segmented
single trees by conducting the following procedure. We followed the strategy
proposed by (Reitberger, 2010) to match the reference and segmented single
trees. The single tree positions from the Normalized Cut segmentation (NCut)
(see subsec.5.4.3) were matched with the reference trees if, (a) the distance
from the center of a segment to the reference tree was smaller than 60% of
the mean tree distance of the plot, and (b) the height difference between htop
and the height of the reference tree was smaller than 20% of htop (Heurich,
2008). If a reference tree was assigned to more than one tree position detected
by the NCut segmentation, the tree position with the minimum distance
to the reference tree was selected, otherwise, it was removed from further
analysis. The matched 3D tree segments in the upper canopy layer were
extracted and assigned to the corresponding reference trees for all sample
plots. The final number of the matched tree segments with the reference data
in the upper canopy layer that were used for further classification analyses
are summarized in Table5.2.

Table 5.2: The number of matched trees in the upper canopy layer with the
overall tree species percentage in the plots.

Tree species (%) Number of trees

Norway spruce 35 161

European beech 30 138

Silver fir 15 67

Snag 18 82

5.4 Method

5.4.1 Pre-processing of lidar data

A full waveform lidar system provides the reflected digitized (typically 15
cm) waveform at regular intervals and includes information regarding the
reflected intensity and pulse width. An appropriate waveform decomposition
is required to obtain these parameters. By using superimposed Gaussian
functions, the 3D coordinates (xv, yv, zv) of each reflecting object v hit
by the laser pulse were obtained along with the intensity Iv and pulse
width PWv as physical properties (Reitberger et al., 2009). Overall, this
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decomposition generated a point cloud for the forest area represented by the
vector Pn(xn, yn, zn, In, PWn), n = 1, ..., N (N is the total number of points
in the point cloud) (Amiri et al., 2016). The intensity In can be interpreted as
the pulse energy and is equal to the area of a single Gaussian function. This
value is dependent on the traveling distance rn (in one direction) and must
be normalized with respect to a reference distance rref according to Eq.5.1
(Hopkinson, 2007; Briese et al., 2008; Reitberger et al., 2008).

Icorrn = In(
rn
rref

)m (5.1)

The m parameter could be estimated from lidar data acquired in a special
calibration flight (Reitberger, 2010). In this study, we used the theoretical
value m = 2. Commercial software packages, such as Riegl RiAnalyze© can
provide the amplitude an and/or the reflectance ρn. The latter is also often
referred to as an intensity and refers to the fraction of incident optical power
reflected by a target at a certain wavelength. The amplitude an is defined
by each hardware manufacturer (see Riegl (2012)). In Riegl scanners, the
amplitude an is defined as a linear measure for the pulse energy. The reflect-
ance ρn is often referred to extending Eq.5.1 and following the suggestions
of Höfle and Pfeifer (2007), the range-independent reflectance ρn can be
approximately converted from the amplitude an by the following formula
(Riegl (2012), private communication (Riegl, Nov.2017)):

ρn = ρref ( an
aref

)( rn
rref

)2ηatm (5.2)

Eq.5.2, refers to an instrument whose emitted laser beam that perpendicularly
hits a target area of 100% reflectance (=ρref ) and measures at a distance
of rref and an amplitude of aref . The term ηatm = exp(0.0000978 × 2 ×
(rn− rref )) describes the atmospheric attenuation (the loss of energy through
the scattering and absorption of photons from the laser beam (1550 nm) in
the atmosphere) is assumed to cover a visual range of 23 km (Reitberger,
2010). Note that the reflectance ρn values are also affected by the angle of
incidence (the angle between the emitted laser beam and the target surface
normal)(Kashani et al., 2015). However, we assumed that the incident angle
was unknown and thus, this effect has been neglected.
The ρn reflectance values were calculated from the LMS-Q780 and VQ-880-G
scanner data using the Riegl RiAnalyze© software. By default, these values
were corrected considering the traveling distance rn. However, for the LMS-
680i scanner data, the Riegl RiAnalyze© software could only provide the
amplitude values. Therefore, the amplitude an for each reflection point Pn
was approximately converted to the reflectance ρn using Eq.5.2. In order to
obtain reasonable values for the parameters aref and rref , a sample of the
amplitude an = 165 in Eq.5.2 was taken as the mean value from four small
concrete areas (4 x 4 m) located on an airfield (see Fig.5.4). Each area was
selected in the nadir of four different lidar strips that had approximately the
same flying height rn = 420m. Finally, we defined that the aref = 250 and
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Figure 5.3: Vertical profile of a forest scene in the 3D point cloud; a) 532 nm
spectral wavelength, b) addition of the 1064 nm wavelength, and c) the 1550
nm wavelength is combined with the 532 and 1064 nm wavelengths.

rref = 600m parameters should refer to a reflectance of ρref = 100%. This
in turn means that according to Eq.5.2, the amplitude an = 165 is equivalent
to a reflectance of ρref = 31%. After the pre-processing step, a final visual
inspection of the overlaying lidar strip areas showed there were no tiling
effects.

5.4.2 Outline of method

The method used in our study was as follows. We segmented the lidar
point cloud (MSLS and single wavelength) into 3D segments representing
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Figure 5.4: The four selected small target areas located on the airfield that
were used for the amplitude calibration (aref ).

Single tree species classification

Geometric features

Radiometric features

Bag-of-Words model (BoW)

Channel means and covariances features
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segmentation

projected 3D clusters  

aerial  
imagery

MSLS  
point cloud

Feature
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Classification
individual  

tree
species

Feature
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Figure 5.5: Overview of the feature-based strategy for tree species classifica-
tion.

single trees using the Normalized Cut (NCut) algorithm (Shi and Malik,
2000; Reitberger et al., 2009) (see subsec.5.4.3) after performing the above
mentioned pre-processing step (see subsec.5.4.1). The procedure recursively
partitioned the 3D input data, beginning with the entire point cloud until the
level representing single trees was achieved. The aim of the segmentation step
was to divide points in the cloud with similar attributes into homogeneous
3D segments (Amiri et al., 2018b). We regarded this phase as an external
procedure and the tree species classification step was our main focus. After
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the 3D point cloud was segmented, the convex hulls of each segment were
projected onto the image plane to generate 2D polygons. As the coverage
of the single trees in the upper canopy layer was better, we only considered
the tree crowns that were visible from the top that could be identified in
the reference data using the matching strategy (see subsec.5.3.2). We then
extracted features in both the 2D image raster and in the 3D point cloud
spaces. The forward stepwise selection method was applied to extract the
most significant features for the tree species identification. The final selected
features were used in a multinomial logistic regression for classification. A
schematic of the entire processing procedure is presented in Fig. 5.5. This
method is explained in detail by the following subsections.

5.4.3 Normalized Cut segmentation

The Normalized Cut algorithm (Shi and Malik, 2000) is a top-down method
for segmenting objects over a discrete graph structure G = (V,E) where the
vertices V represent the individual objects and the edges E correspond to the
neighborhood topology. In order to construct a low-dimensional representation
of the input 3D points as objects, the method uses the eigenvalues associated
with the object similarity matrix (Polewski et al., 2015b). The goal is to
partition the input 3D point clouds into disjointed segments where the
Normalized Cut criterion is minimized. A recursive bisection of the graph’s
vertices V into disjointed segments A and B was performed while maximizing
the intra-segment similarity of the objects is equivalent to minimizing their
inter-segment dissimilarity (see Reitberger et al. (2009)). The frequently
applied Normalized Cut is:

NCut(A,B) =
Cut(A,B)

Assoc(A, V )
+

Cut(A,B)

Assoc(B, V )
(5.3)

where Cut(A,B) =
∑
i∈A,j∈B wij is defined as the total sum of the weights

between the A and B segments, while Assoc(A, V ) =
∑
i∈A,j∈V wij is the

sum of the weights of all the edges ending in segment A. The Normalized
Cut segmentation is based on multiple control parameters whose values can
be optimized experimentally. The Normalized Cut segmentation (NCut)
is based on multiple control parameters whose values can be optimized
experimentally. The main control parameter values for the Normalized Cut
segmentation (NCut) that we used in our experiment are summarized in the
Table 5.3.

Table 5.3: Main control parameters for the single tree segmentation using
the Normalized Cut method.

Parameters Symbols Values

Normalized Cut threshold NCutThre 0.16

Minimum number of points
in a segment

Minnum 10
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Table 5.4: Description of the generated features for each tree segment i.
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5.4.4 Feature extraction

The different feature sets derived from the multispectral aerial imagery and
MSLS point cloud can be grouped into the categories presented below. All
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generated features are summarized in Table 5.4.

5.4.4.1 Multispectral imagery features

Values from the multispectral aerial imagery were extracted for each 3D
tree crown polygon projected onto the image plane. These features can be
grouped into the following three categories:

i) Channel mean values and covariance matrix:
The mean values of each spectral channel ch over all pixels inside the
2D polygon meanch and the six independent inter-channel variances
and covariances Covch1ch2 were extracted (ch refer to the near infrared
nir, red r, and green g bands (see subsec.5.3.1)).

ii) Haralick texture features:
In 1973, Haralick and Shanmugam introduced a popular statistical
technique for extracting textural features (Haralick and Shanmugam,
1973). The Haralick texture features (GLCM) are computationally
simple but efficient for many texture classification problems. In this
study, first the images were converted to grayscale by taking the mean
value of all the channels. For each tree segment, the minimum enclosing
rectangle of the crown polygon (all pixels inside the rectangle) were
used for GLCM calculations. Then, for each pixel a set of the 14 Har-
alick features GLCM.[H] (H stands for contrast, correlation, variance,
energy, entropy, homogeneity, and others) were calculated. In order
to have each of the features rotationally invariant, the features were
calculated for K rotations that result in K values from different image
orientations. We used 4 orientations (K = 0°, 45°, 90°, and 135°) to
obtain the rotationally invariant values. A window size of 5 × 5 pixels
was chosen. Furthermore, we introduced six levels of quantization q
(2, 4, 8, 16, 32, and 64) in order to determine the optimal number of
gray levels that would provide the most discriminative features for the
classification task. Therefore, we tried different gray level quantizations
because we did not know in advance which level would yield the optimal
result. The subsec.5.4.5 feature selection step is capable of handling
this increased number of features. Finally, per bounding box, the mean
values GLCM.[H]µq and the standard deviations GLCM.[H]σq of the
14 GLCMs after the K orientations were calculated, respectively.

iii) Gabor features:
This model is an established method for representing high-level char-
acteristics used for classification purposes (Toldo et al., 2010). The
main aim of the Bag-of-Words (BoW) model is to approximate the
feature vectors using a vector quantization algorithm with a set of
prototypes. As proposed by Weinmann et al. (2015a), our BoW model

S
BoW.[C]nd

b
i contained eight geometric features generated from the local

covariance matrix. In the BoW model, C stands for the linearity, planar-
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ity, scattering, omnivariance, anisotropy, eigenentropy, sum of eigen
values, and change of curvature that are commonly used in 3D ALS
data processing (Weinmann et al., 2015b; Hackel et al., 2016). The
frequency histograms for each feature were then constructed using 2-14
bins b that generated a simple BoW model. This was conducted for
seven spherical point neighborhood sizes with radii of nd = 0.2-1.6 m
(0.1) that were later used for computing the covariance matrix. The
radii later were divided into the three groups of 0.2 m, 0.3-0.8 m and
1.1-1.6 m. The optimal neighborhood radii nd were defined using the
tree crown diameters from the reference data to limit the generated
feature count and prevent overfitting problems.

5.4.4.2 MSLS point cloud features

For each tree segment i, the following features Si = {Shi , S
g
i , S

d
i , S

single
i , Sni , A

p
i

,mineci , S
IH

i , SPW
H

i , SIi , S
BoW.[C]nd

b
i , Suki } were extracted from the MSLS point

cloud represented by Pn(xn, yn, zn, ρn, PWn) (n = 1, ..., N1 (N1 refers to the
number of points in the tree segment i)). The features can be divided into
three main groups:

i) Geometric features:
The features included: percentiles of the point height distribution in
a tree segment Shi (referred to as the height dependent variables) at
10% intervals from h = 10%-90%; the axis lengths of a paraboloid

fitted to a tree crown [S
g(a)
i , S

g(b)
i ]; the percentage of points per height

layer of a tree Sdi (referred to as the density dependent variables) at 10
intervals from d = 1-10; and the point count ratios by reflection type
(single Ssinglei , first Sn1

i , middle Sn2
i ) (see Reitberger et al. (2009)). Ad-

ditionally, for each tree segment i, the crown polygon area Api and
the minimum enclosing circle of the projected polygon mineci were
extracted.

ii) Radiometric features:
The mean intensity of the single SI1i and first SI2i reflections, the in-

tensity S
IHj
i histograms, and the pulse widths S

PWH
j

i (j = 1, ...10) were
extracted for each spectral channel within each 3D tree segment i
(Reitberger et al., 2009; Yao et al., 2012). Furthermore, the number
of spectral bands in the MSLS data offered a unique opportunity to
measure the band variances and covariances that were impossible for
approaches that use single wavelength ALS data. Six independent band
variance and covariance features Suki (the intensity covariance between
channels u and k (u = 1, ..., 3; k = u, ..., 3)) were obtained that corres-
ponded to the upper triangle of the band covariance matrix.

iii) Bag-of-Words model:
This model is an established method for representing high-level char-
acteristics used for classification purposes (Toldo et al., 2010). The
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main aim of the Bag-of-Words (BoW) model is to approximate the
feature vectors using a vector quantization algorithm with a set of
prototypes. As proposed by Weinmann et al. (2015a), our BoW model

S
BoW.[C]nd

b
i contained eight geometric features generated from the local

covariance matrix. In the BoW model, C stands for the linearity, planar-
ity, scattering, omnivariance, anisotropy, eigenentropy, sum of eigen
values, and change of curvature that are commonly used in 3D lidar
data processing. The frequency histograms for each feature were then
constructed using 2-14 bins b that generated a simple BoW model. This
was conducted for seven spherical point neighborhood sizes with radii of
nd = 0.2-1.6 m (0.1) that were later used for computing the covariance
matrix. The optimal neighborhood radii nd were empirically determined
using the tree crown diameters of the study area to limit the generated
feature count and prevent overfitting problems.

5.4.5 Feature selection

In this study, we used a large number of features to classify the tree species. All
the features presented in subsec.5.4.4 sum up to a long list with around 4000
elements. However, only a small number of the features were meaningful
and suited for the classification. The high number of features raises the
methodical problem that the large hyper-dimensional feature space faces a
spare number of samples (Fassnacht et al., 2016). Therefore, a feature selection
method needs to be applied that identifies and removes the irrelevant and
redundant attributes from the data that do not contribute to the accuracy
of the classification model. Guyon and Elisseeff (2003); Liu et al. (2010);
Weinmann et al. (2015a) reported on feature selection techniques for finding
the most robust subsets of the relevant features to optimize the classification
accuracy and to improve the computational efficiency. They are subdivided
into wrapper methods, filter methods, and embedded methods.

Here, we proposed a wrapper method referred to as stepwise forward selection
(Hastie et al., 2001) that begins with a small feature set randomly selected
from the full set and then proceeds in an iterative fashion, selecting one
additional feature in each step. A single iteration inspected every available
feature by adding it to the active feature set and obtaining an estimate of the
classification error rate on the augmented data through cross-validation. The
feature that entered the active set with the lowest error rate was incorporated
into the result set, and the iterations proceeded. The process was terminated
when the inclusion of additional features ceased to decrease the classification
error rate. In order to avoid any randomness effects, the selection procedure
was repeated 5 times for each scenario (see subsec.5.5.1) and the results
were similar for all the iterations. Further, this wrapper method used the
multinomial logistic regression of the subsec.5.4.6 as the predictive model. The
final result was a list of features organized in ascending order according to
the error rate generated in the classification. In this study, the first members
on the list were interpreted as the most important features with the highest
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contribution to the classification result.

5.4.6 Tree Species classification

To classify tree species based on the features extracted and discussed in
subsec.5.4.4, we applied a multinomial logistic regression. Logistic regression
models represent the probability distribution of the class label y as follows:

p(yi = k|xi; Θ) = exp(θTk xi)/[1 +
∑
l

exp(θTl xi)] (5.4)

where xi ∈ X, i = 1, ...,M denotes the M feature vectors of the training
examples and yi represents their corresponding labels. Training the model
involves minimizing the penalized joint negative log-likelihood of the training
examples with respect to the β > 0 term, as shown in Eq.5.5:

min
Θ

M∑
i=1

−log p(yi|xi; Θ) + β||Θ||1 (5.5)

where ||Θ||1 is the regularization term that increases the sparsity of the
coefficient vector Θ. After feature selection, a few features remain and the
sparsity effect is not very significant. Therefore, a penalized logistic regression
can be applied using the following model:

1

M

M∑
i=1

L(β,X, y)− λ[
(1− α)||β||22

2
+ α||β||1] (5.6)

where α is a balance coefficient between penalties L1(lasso) and L2(ridge),
and the optimal value for λ can be selected using cross-validation. Eq.5.6 is
defined as the ‘elastic net penalty’, that is a regularized-generalized model
and is implemented in the glmnet function as an R source package.

5.4.7 Evaluation

The classification accuracy was estimated and evaluated based on the results
of the matching step between the reference data and the 3D segmented
trees in the upper canopy layer (see subsec.5.3.2) (with a proportion of 60%-
40% for training and testing the classifier) with respect to the tree species
distribution. We used 15-fold cross-validation to obtain the overall classifica-
tion accuracy, correctness, and completeness as a compromise between the
computational efficiency and reducing the effects of randomness.
Moreover, we evaluated the following combined feature scenarios for the tree
species classification: (i) imagery features, (ii) MSLS point cloud features,
(iii) combined features (from MSLS data and aerial imagery), (iv) single
wavelength (1550 nm (Ch1), 1064 nm (Ch2), and 532 nm (Ch3)) features,
and (v) combined features extracted from single wavelength lidar data (1550
nm (Ch1), 1064 nm (Ch2), and 532 nm (Ch3)) and aerial imagery.
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Table 5.5: Results of tree species classification. Best results are highlighted
in bold.

Scenario
number

Feature set Average
overall
accuracy
(%)

1 Multispectral imagery : Channel mean values and covari-
ance matrix

54

2 Multispectral imagery : Gabor 64

3 Multispectral imagery : GLCM 68

4 Multispectral imagery : Channel mean values and covari-
ance matrix + Gabor + GLCM

66

5 MSLS point cloud : Geometric 68

6 MSLS point cloud : Geometric + Radiometric 75

7 MSLS point cloud : BoW (0.3-1.6 m) 54

8 MSLS point cloud : Geometric + Radiometric + BoW
(0.3-1.6 m)

78

9 Combined*: MSLS (Geometric + Radiometric) + GLCM 75

10 Combined*: MSLS (Geometric + Radiometric + BoW
(0.3-1.6 m)) + GLCM

76

11 Combined*: MSLS (Geometric + Radiometric + BoW
(0.3-1.6 m)) + GLCM + Gabor

74

12 Single wavelength (channel Ch1) : Geometric + Ra-
diometric + BoW (0.3-1.6 m)

69

13 Single wavelength (channel Ch2) : Geometric + Ra-
diometric + BoW (0.3-1.6 m)

71

14 Single wavelength (channel Ch3) : Geometric + Ra-
diometric + BoW (0.3-1.6 m)

65

15 Single wavelength (channel Ch1) + Multispectral imagery 69

16 Single wavelength (channel Ch2) + Multispectral imagery 72

17 Single wavelength (channel Ch3) + Multispectral imagery 60

* Combined features extracted from MSLS point cloud and aerial im-
agery.
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5.5 Results and discussion

5.5.1 Main outcomes

The quantitative evaluation results of the tree species classification for the
different feature combinations is presented in Table 5.5. The numbers in
Table 5.5 refer to the average classification accuracy, and the best result
from each strategy is highlighted. Note that ca. 10% of the total trees
were removed from the further analyses due to the matching strategy and
the height filtering (see subsec.5.3.2). In Table 5.5, the initial classification
accuracy obtained using only the channel mean values and the covariance
matrix for the aerial imagery (near infrared nir, red r, and green g; scenario
1) could be improved by 14% if the GLCM features were included (scenario
3). However, as shown in scenario 2, the accuracy was approximately 4% lower
when the Gabor features were used than that with the GLCM features in
scenario 3. Overall, the Gabor features did not considerably contribute to the
classification accuracy. Further, we conducted scenarios 1 to 4 to demonstrate
the sole power of the multispectral aerial imagery and the impact of missing
lidar intensity on the tree class classification.

We continued with scenarios 5 to 8 related to the classification accuracy
provided by the MSLS point cloud. The results of scenario 6 demonstrated
that adding the radiometric features to the geometric features (scenario 5)
improved the classification accuracy by about 7%. This was consistent with
the recent studies by Heinzel and Koch (2011) and Shi et al. (2018a), who
emphasized the importance of the radiometric features from single wavelength
ALS data for tree species classification. Among the MSLS point cloud-based
features, the BoW model features alone provided the lowest accuracy by
54% (scenario 7). Comparing the results collected from different feature sets
(scenarios 9 to 11) indicated that the overall accuracy was better when using
only the MSLS point cloud features (scenario 8) than the classification based
on the aerial imagery (scenario 4), or on the combined features from both
datasets (scenarios 9 to 11).

In this study, the addition of imagery-based features to the MSLS point
cloud features did not notably contribute to the tree species identification. It
is evident from Table 5.5 that in scenario 9 the same accuracy of 75% was
achieved by adding the GLCM features to the MSLS point cloud features (ra-
diometric and geometric features). Adding the BoW model features (scenario
10) to scenario 9 only increased the accuracy by 1%. However, the Gabor fea-
tures reduced the accuracy to 74% (scenario 11). Furthermore, according to
scenarios 12, 13, and 14, accuracies of 69%, 71%, and 65% were estimated for
the single spectral channels of Ch1, Ch2, and Ch3 (when used individually),
respectively. These results were clearly worse in performance compared to
the combined features (scenarios 9 to 11) and the MSLS point cloud features
(scenario 8). Regarding the scenarios focused on the combined features from
single wavelength lidar data with aerial imagery, the best result of 72% was
achieved for the combination of the single wavelength channel Ch2 (1064
nm) and the aerial imagery features (scenario 15). The results indicated that
an overall accuracy of 69% was achieved for the fused features extracted
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from the single wavelength channel Ch1 (1550 nm) and the multispectral
imagery (scenario 16). Furthermore, in the case of the features extracted and
combined from the single wavelength channel Ch3 (532 nm) and the aerial
imagery, a classification accuracy of 60% was obtained (scenario 17).

We now focus on the detailed Norway spruce, European beech, Silver fir, and
snags mapping. The confusion matrix for the tree classes classification that
summarize the correctness and completeness are presented in Tables 5.6, 5.7
and 5.8 based on the scenarios 4, 8 and 10 from Table 5.5, respectively. The
multispectral imagery features alone (scenario 4) produced the lowest kappa
value of 0.57 (Table 5.6), while the combined features (scenario 10), provided
a remarkably higher value of 0.64 for the kappa (Table 5.8). The results
showed that the features from the multispectral aerial imagery did not
provide strong information for the detailed classification in comparison to
the features extracted from the MSLS point cloud. Furthermore, in scenarios
8 (Tables 5.7) and 10 (Tables 5.8) for Norway spruce and European beech,
very similar correctness and completeness values were achieved. However,
in Table 5.7, Silver fir and snags had slightly better accuracies in terms of
correctness and completeness compared to the ones in Table 5.8.

Table 5.6: Confusion matrix of classification performance from scenario 4
using features extracted from multispectral imagery.

Reference

Norway
spruce

European
beech

Silver fir Snag Correctness
(%)

Norway
spruce

63 5 12 1 78

P
re
d
ic
te
d European

beech
8 60 6 7 74

Silver fir 10 1 19 6 50
Snag 1 3 8 30 63
Completeness
(%)

71 67 46 51

Overall
accuracy:
66%

Kappa
value: 0.57

The highest level of accuracy (scenario 8, kappa value: 0.69, Table 5.7) was
obtained for the combination of the radiometric, geometric, and BoW model
(0.3-1.6 m) features extracted from the MSLS point cloud. High values of 95%
and 93% for correctness and completeness, respectively, were achieved for
Norway spruce. The correctness and completeness for European beech with
83% and 86%, respectively, were also fairly good. Silver fir trees that were
proportionally less represented in the study area than spruces, were classified
with 58% and 61% completeness and correctness, respectively. Finally, snags
were detected with 73% completeness and 76% correctness. The average
rate of false negatives for the fir trees and snags in scenario 8 amounted to
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Table 5.7: Confusion matrix of classification performance from scenario 8
using features extracted from MSLS point cloud.

Reference

Norway
spruce

European
beech

Silver fir Snag Correctness
(%)

Norway
spruce

76 0 0 4 95

P
re
d
ic
te
d European

beech
0 69 11 3 83

Silver fir 1 7 22 7 61
Snag 5 3 4 39 76
Completeness
(%)

93 86 58 73

Overall
accuracy:
78%

Kappa
value:0.69

Table 5.8: Confusion matrix of classification performance from scenario 10
using combined features extracted from MSLS point cloud and multispectral
imagery.

Reference

Norway
spruce

European
beech

Silver fir Snag Correctness
(%)

Norway
spruce

74 0 0 4 94

P
re
d
ic
te
d European

beech
0 69 12 3 83

Silver fir 2 7 19 8 54
Snag 5 3 6 36 71
Completeness
(%)

92 86 51 69

Overall
accuracy:
76%

Kappa
value:0.64

39% and 24%, respectively. These results might be due to the spectral and
structural similarities between these tree classes.

5.5.2 Feature assessment

In Table 5.9, we focused on analyzing the important features listed for the
scenarios 4, 8, and 10. The scenarios 8 and 10 presented the best classification
results and the scenario 4 contained all of the features extracted from the
aerial imagery. Note that these scenarios are representative for their different
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Table 5.9: List of the most important features under different classification
scenarios (each scenario is defined in Table 5.5). Each scenario has 30 fea-
tures selected via the feature selection step. The below mentioned feature
abbreviations are explained in subsec.5.4.4.

Scenarios Top five features

Scenario 4: Imagery features GLCM.[contrast]µ8 , GLCM.[correlation]σ8 ,
meannir, Covrr, GLCM.[energy]µ8

Scenario 8: MSLS point cloud fea-
tures

SI
H
6 (Ch2), SI1(Ch2), S21, Sg1.3,

SBoW.[scattering]
0.3−0.8
7

Scenario 10: Combined* features SI
H
6 (Ch2), SI1(Ch2), SI1(Ch1), S21,minec

* Features extracted from MSLS point cloud
and aerial imagery are combined. The nir
and r terms stand for the near infrared and
red bands in the aerial imagery, respectively.

dataset combinations (multispectral aerial imagery, MSLS point cloud, com-
bined aerial imagery and MSLS point cloud). After the feature selection step,
from 4000 features identified, 30 features were selected as the most important
features for the classification. The classification based on imagery features
(scenario 4) was mainly supported by the GLCM features GLCM.[contrast]µ8 ,
GLCM.[correlation]σ8 , the mean of the near infrared nir channel, the variance
of the red r channel Covrr, and GLCM.[energy]µ8 . Apparently, the contrast
represented by GLCM.[contrast]µ8 was the best discriminative feature in this
scenario mainly because of the star-shaped texture of the coniferous trees
versus the nearly smooth texture of the broad-leaf trees. The top GLCM-
based features represented by the GLCM.[contrast]µ8 , GLCM.[correlation]σ8 ,
and GLCM.[energy]µ8 clearly indicated that texture features measured from
the images were helpful for discriminating between the four tree classes. Fur-
thermore, these meaningful GLCM-based features were followed by features
describing the near infrared nir and the variance of the red r channels. This
was expected because the red edge is best suited for vegetation classification
(Schuster et al., 2012). In particular, the snags showed a specific spectral
signature in the near infrared nir channel.

In this section we focus on scenarios 8 and 10 that represented the best
MSLS point cloud cases and the combination of all features, respectively. The

intensity histogram features SI
H
6 that were provided by channel Ch2 ex-

hibited the highest contribution to the species classification. Interestingly,
the geometric features, such as the percentile of points per height layer of
a tree Shi describing the laser beam penetrations in the segmented 3D tree
clusters had less impact compared to the intensity-based features on the
classification results. This is due to the fact that these features were not
present in the final top five features list for the classification. Moreover, the
mean intensity of the single channel Ch2 reflection SI1(Ch2) has performed
better than those from channels Ch1 and Ch3. This result was consistent
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with the findings of previous studies, such as Yu et al. (2017) and Axelsson
et al. (2018) who emphasized the importance of the features extracted from
channel Ch2. Note that the classification based on the MSLS point cloud was
10% better than the classification with aerial imagery (see Table 5.5). Finally,
when we analyzed the top five features for the combined features (scenario 10)

we noticed that the top three features SI
H
6 (Ch2), SI1(Ch2), and SI1(Ch1)

were provided by the MSLS point cloud. This in turn explained why the
classification with the extracted features from the MSLS data (best case 78%
- scenario 8) was nearly identical to the classification using the combined
features (best case 76% - scenario 10) (see also Table 5.5). Interestingly,
the minimum enclosing circle of the crown polygon minec also supported
these scenarios. Apparently, the single tree crown sizes were a discriminative
feature in this scenario, mainly due to the different crown diameters between
the coniferous and broad-leaf trees.

Finally, we address the learning curves that the feature selection process
provided for each scenario. The learning curves in Fig.5.6a,b showed that
approximately 15 features for the BoW model and 20 features for the other
sets played a remarkable role in improving the accuracy. Beyond this point,
the inclusion of more features did not improve the classification accuracy. In
Fig.5.6a,b, the classification accuracy of the combined geometric and ra-
diometric features (scenario 6, Table 5.5) was better than that of the BoW
features (three neighborhood sizes). However, the BoW features appeared
to contain additional information because their inclusion increased the final
accuracy from 75% to 78% (see Table 5.5, scenarios 6 and 8). If we compared

the three BoW models in Fig5.6a,b, the 0.2 m SBoW
0.2

i point neighborhood
was the least informative. The best results were obtained for neighborhood
sizes of 0.3-0.8 m SBoW

0.3−0.8

i . Further, the feature selection performance of
the spectral channel Ch2 (1064 nm) is presented in Fig.5.6b. The best per-
formance was achieved for the combined geometric and radiometric features
(scenario 13, Table 5.5). Moreover, among the aerial imagery scenarios, the
lowest classification error was achieved using the GLCM features (scenario
3).

The important feature selection step was applied to extract robust feature
subsets that optimized the classification accuracy. It is important to note that
the accuracy was on average reduced by nearly 6% when all the generated
features (without feature selection step) were used. Recent feature selection
approaches primarily applied wrapper methods, filter methods, or embed-
ded methods (Guyon and Elisseeff, 2003). In general, the wrapper methods
(such as forward feature selection) performed better than the other men-
tioned techniques in terms of classification accuracy (Sikora and Piramuthu,
2007). However, our feature selection method required as a wrapper method
high computational effort because the classifier model needed retraining as
part of the cross-validation used for accuracy assessment purposes.
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Figure 5.6: Learning curves describing the average error as a function of
feature count; PCL −MSLS refers to the MSLS point cloud, Img is the
aerial imagery, PCL − Ch2 refers to single wavelength channel Ch2, and
BoW refers to the BoW model with various neighborhood sizes. The curves
correspond to the classification performance in terms of average error (%)
after feature selection step using features extracted from a) the MSLS point
cloud and b) the aerial imagery and single wavelength channel Ch2.

5.5.3 Comparison with related work

The results of this study should be compared to those of previous studies (Shi
et al., 2018a,b) conducted on the Bavarian Forest National Park that classi-
fied the six tree species (Spruce, Beech, Fir, Maple, Rowan, and Birch). The
accuracy of our study was 20% higher under leaf-on conditions than the
findings of Shi et al. (2018a), who used only features extracted from single
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wavelength ALS data for multiple tree species classification. However, Shi
et al. (2018b) recently showed a higher accuracy of 85% (5% improvement)
by combining the hyperspectral imagery and single wavelength ALS data
features. This was mainly related to the notable contribution of the func-
tional plant traits (equivalent water thickness, leaf mass per area and leaf
chlorophyll) and spectral features from the hyperspectral data.
Our results demonstrated that the MSLS point cloud features increased the
accuracy of the classification of four tree classes by approximately 7 to 13%
compared to the single wavelength features. Moreover, combining the features
from the aerial imagery and MSLS data did not greatly enhance the results
compared to only applying features from multispectral lidar data. Our study
verified the findings of Yu et al. (2017) (overall accuracy: 85.9%, kappa:
0.75) and Axelsson et al. (2018) (overall accuracy: 75.5%), who stated that
intensity-related features extracted from MSLS data, specifically those from
channel Ch2, were the most important for classifying tree species. We found
that in both scenarios 8 and 10 (see Table 5.9) the intensity histogram-based

feature SI
H
6 (Ch2) played a more important role in the species identification

than any other radiometric or geometric feature. As far as the classification
using single wavelengths was concerned, our findings confirmed the results
of Shi et al. (2018a) who concluded the importance of the intensity-related
features (within the top seven features) when employing an embedded feature
ranking strategy for the Random Forest classifier. Moreover, Budei et al.
(2018) showed that the intensity-based features of infrared and green channels
of a three-wavelength ALS system using the Random Forest classifier can
improve the detailed species identification accuracy in a temperate forest
compared to single channel ALS systems. Concluding, our analysis was
based on sample plots with relatively limited variability between the tree
species. Therefore, the applicability of our identified important features needs
to be tested further in other study sites.
Finally, we compare the snag classification with other approaches obtained
from the same forest site. Yao et al. (2012) tackled for the first time snag
detection using only the lidar intensity (single wavelength 1550 nm) and
geometric features such as the crown shape and point height distribution. The
study reported a classification accuracy between 71% to 73%. Recently,
Polewski (2017) presented a method that uses single tree 3D segments along
with multispectral aerial imagery. Based on features generated from the
covariance matrix of the three image channels, a two-class classification (snag
and non-snag) led to an accuracy of ca. 88% that was remarkably better than
our results. However, the study of Polewski (2017) used only reference data
generated by visual inspection of the tree point cloud and used orthophotos
superimposed with the crown polygons.
In the end, we show in Fig.5.7 a 3D point cloud representing a forest scene
with three tree species and snag classification.
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Figure 5.7: Classified individual tree classes for a sample area in Bavarian
Forest National Park (spectral wavelength of 1064 nm).

5.6 Conclusions

In summary, our experiment showed that MSLS point clouds can aid in the
characterization of tree species and snags in approaches that work at the single
tree level. The use of features extracted from the MSLS point cloud selected
using the feature selection step, mainly the intensity-related features from
spectral channel Ch2 (1064 nm), notably improved the classification rate,
achieving an overall accuracy of 78%. Moreover, the classification accuracy
did not improve when multispectral imagery were added to the MSLS data. If
no lidar-based features (geometry and intensity) were used, the combination
of features extracted from the multispectral aerial imagery led to a weak
classification accuracy of 66%.

This study performed one of the first experiments examining the applicability
of MSLS data for tree species classification on a temperate forest. Instead of
using one single instrument, we simulated MSLS data by combining sensor
data acquired from two different instruments on the same day with stable
weather conditions. The flying height and the atmospheric attenuation was
the same for the two sensors and almost the same for the third one. Of
course, this system configuration has different scan angles and different
sensors as well. All in all, we believe that this setup provided radiometric
data comparable to those captured by a single instrument consisting of three
non-collinear lidar units, e.g. the Titan sensor from Optech. Clearly, the use
of a single instrument has advantages over multiple sensors in terms of data
processing. However, both instrument approaches have the drawback that
non-collinear laser beams are used meaning that the backscattered pulses do
not necessarily result from the same part of the object.

Furthermore, as expected, the feature selection step considerably reduced
the high dimensional feature space used to optimize the classification accur-
acy. Based on the prominent features list, the feature selection procedure was
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able to identify the most discriminative features. Moreover, the classification
deteriorated by about 6% if all the extracted features without the feature
selection step had been used.
From a practical point of view, the accuracy level is not yet optimal (up to
90%). Apparently, the radiometric information from the non-collinear MSLS
data provided at three distinct wavelengths limited the classification of the
tree species and snags to this accuracy level in a temperate forest. Further
research needs to be conducted to investigate the relationships between the
structural tree crown characteristics and the MSLS point cloud-based features
to determine their impact on the classification accuracies for multiple tree
species. Furthermore, a collinear multispectral lidar system (whose emitted
laser beams strike the same target simultaneously) or the fusion of lidar with
hyperspectral imagery may improve the detailed tree species classification.
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6.1 Introduction

Forest structure analysis can describe various ecosystem services, help to
understand the underlying canopy processes, and permit projection of future
climate conditions. Therefore, accurate estimation of forest structure variables
is essential in order to fully understand changes in the forest ecosystem. In
the temperate or boreal forests of Europe, the majority of forest structural
variables are directly or indirectly measured by standard forest inventor-
ies. However, these traditional methods are time-consuming and expensive
(Hyyppä et al., 2000). Therefore, an efficient approach for measuring the forest
structural attributes is required to ensure sustainable forest management at
different scales.
As is mentioned in Chapter 1, forest structure analysis has a fundamental
role in forest management, particularly for the authorities that use methods
operating at single tree level. Although various methods for forest structure
analysis have been investigated and are well established within some of the
Scandinavian countries, this still requires detailed exploration in the central
European region. Therefore, to develop and promote the current stage, ef-
fective methods combined with available data sources are required.
Remote sensing-based methods, and particularly airborne lidar, have shown
powerful potential for supporting forest inventories during the last decades
(White et al., 2013). Forest structural variables such as tree height, DBH,
and mean tree diameter have been widely studied and measured using lidar
data across temperate and boreal forest areas. With respect to these facts,
this thesis made attempts to reach the primary aim of providing operational
methods for lidar-based analysis of forest structural variables.
The final chapter evaluates the most important conclusions of the work
carried out as the basis for this thesis. The four selected forest structure
variables, namely regeneration coverage, tree stem count per hectare, tree
segmentation, and tree species classification using lidar were studied and
quantified. Moreover, for further research it is necessary to propose new dir-
ections based on the limitations associated with the presented methods. The
main findings are categorized according to their relationships to the general
research objectives.

6.2 Estimation of regeneration coverage in a
temperate forest by 3D segmentation

Estimation of regeneration coverage using ALS data have been the focus in
earlier studies regarding the important role of the understory canopy layer
in future forest planning. The importance of the understory canopy layer
lies mainly in the changes in it that happen due to various factors such as
tree harvest (Nakamura et al., 1996), forest fire (Bataineh et al., 2006), and
insect outbreaks and infestations (McMillin and Allen, 2003). Therefore, the
understory layer’s status and dynamics turn out to be major indicators of
forest health (Kerns and Ohmann, 2004). For instance, Fig.6.1 shows natural
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Figure 6.1: An example forest scene with regeneration in the Bavarian Forest
National Park.

forest development and regeneration growth after windfalls during 1983 and
1990 in the Bavarian Forest National Park.

Remote sensing methods for 3D analysis of the forest understory have been
mostly developed via lidar data that penetrates through the overstory layer
and reaches the lower layers. However, there is still limited experience in
applying methods to estimate regeneration coverage in multi-layered forests
due to the presence of ground vegetation and overlapping crowns in the
overstory (Amiri et al., 2016).
The first objective, the structural variable of understory canopy coverage
is addressed here. One of the main aims was to propose a framework for
the reconstruction of regeneration patches within a sparse lidar 3D point
cloud. This was achieved by using the enhanced 3D segmentation algorithm
(mean shift clustering combined with Normalized Cut (Yao et al., 2013)),
starting from the single point level to construct the 3D regeneration objects
through clustering, merging, and filtering steps. The experimental results
show that under a low or moderate overstory canopy layer, the proposed
method is able to estimate the regeneration coverage with high reliability
compared to ground truth data (overall accuracy up to 70%).
From a forestry perspective, the extraction of information on regeneration as
part of the understory canopy layer is as important as information on any of
the overstory layer elements, especially in natural forest regions. Regarding
the findings of Amiri et al. (2016), full waveform lidar provides sufficient
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information for the regeneration coverage estimation, due to the high penet-
ration rate of the laser beam through the overstory trees. The study focus in
the framework of this thesis was on the estimation of regeneration coverage
at the understory canopy layer, which is spatially restricted in protected
temperate forest areas with high structural heterogeneity. The encouraging
outcomes mainly suggest the possibility of reproducing these experimental
regeneration coverage results at practical scales using full waveform lidar data
(20-30 points/m2), which is normally available from the managed and non-
managed forest administrative units in central Europe. Moreover, Fig.6.2a
clearly shows the effect and role of the high density overstory canopy layer on
the presence or absence of regeneration. Canopy gaps due to natural hazards,
cut off regions, or dead trees, as seen in Fig.6.2b, can increase the chance
of regeneration growth. The discrete ALS sensors can only record the first
and the last laser return pulses and therefore the beam is often not able to
represent precisely the details of the intermediate and understory canopy
layers. Therefore, 3D point clouds acquired with full waveform ALS scanners
can provide an accurate estimation of the regeneration coverage.

Figure 6.2: 3D point cloud (30 point/m2) visualization of two sample circular
plots with a) absence and b) presence of the regeneration (point clouds are
colored by height over DTM).
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6.3 Detection of single tree stems in forested areas
from high density ALS point clouds

Regarding the detection of single tree stems using ALS point clouds, there has
been a relatively low number of contributions that focused on the extraction
of positions of individual tree stems. However, the use of TLS data for
assessing detailed wood and leaf separation is quite well established (Liang
and Hyyppä, 2013; Pfeifer and Winterhalder, 2004). Up to now, different
studies that focused on attempts to automatically detect and reconstruct
individual tree stems from TLS point clouds have been published. However,
this thesis does not consider them because its main focus is on high density
ALS data for detection of single tree stems.
The second objective of this thesis was to develop an efficient classifier-
based method at point, segment, and object levels for reconstructing lines
representing single tree stems from a dense 3D point cloud. The common
flight height of ALS applications usually results in point densities up to 30
points/m2. However, decreasing the flight height to below 150 m leads to more
laser reflections from tree stems and significantly increases point density. So
far, there has been limited persistence regarding the stem detection of single
trees using high point density ALS data.
The main goal of the this objective was to detect linear structures in the
3D point cloud that are likely to represent single tree stems. The proposed
method was adapted from the study by Polewski et al. (2015b), which was
designed for fallen tree segmentation. It uses a line fitting and optimization
approach in the point cloud to determine the lines representing single tree
stems. In the first step, the likelihood of points belonging to a tree stem is
estimated and the segments containing the highest probability of belonging
to the class of stem points are detected. In the next step, the segments
are merged through hierarchical clustering to obtain single tree stems. The
segment refers to the grouping of points within a fixed length cylindrical
neighborhood, which are likely to represent parts of a tree stem. Objects
refer to entire tree stems that are composed of groups of similarly aligned
segments.
This method indicates that high point density ALS data has great potential
for accurately assessing forest structural variables. As seen in Fig.6.3 in
the high point density lidar data, there are a relatively higher number of
reflections from the stems compared to those in the standard ALS data (up to
30 points/m2). This renders possible the line fitting approach to locate tree
stems. As mentioned earlier, the general capacity of high point density lidar
data compared to common and low resolution lidar data for practical analysis
of forest structural variables is not yet fully explored. From a practical point
of view, high point density ALS data is highly recommended, because the
stems are poorly visible in the sparse 3D point cloud. However, even with a
dense point cloud the proposed method achieves relatively lower accuracy in
terms of correctness and completeness for broad-leaf trees than for coniferous
trees (Dersch, 2018). The stem position detection indicates that the work flow
has some limitations regarding small and very densely packed trees, especially
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in the mixed species plots where the tree crown density is high. Therefore
the method requires further investigation.

Figure 6.3: 3D visualization of single trees in the high density ALS data with
visible stems (point cloud is colored by height over DTM).

Furthermore, the results of the introduced stem detection method can be
later used in segmentation algorithms to improve the reliability of the top
trees detected through use of the local maxima. The preliminary test on
high point density ALS data shows the potential to detect and delineate
single trees from bottom to top more accurately (see master thesis of Dersch
(2018)). Fig.6.4 shows the preliminary results on broad-leaf tree delineation
based on the Normalized Cut algorithm with and without inclusion of stem
positions. The extracted stem positions in the sample study areas were
combined with the tree tops detected via local maxima. The final accuracy of
the Normalized Cut segmentation was slightly improved by merging the local
maxima and tree stem positions generated by the stem detection step. The
quantitative results in broad-leaf and mixed tree species areas show that
the correctness and completeness values were improved. Specifically, the
detected stem lines enriched the segmentation quality of the broad-leaf
trees. Although, in the cases of very close trees and dense understory, the
classifiers and feature sets used at the point and segment levels require further
development. Furthermore, the single-tree segmentation work-flow still has
difficulty partitioning tree clusters precisely. This could be due to the static
value of the Normalized Cut threshold, which needs to be replaced by an
adaptive and dynamic approach (Amiri et al., 2018b).
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Figure 6.4: a) Visualization of single tree segmentation on a sample area
dominated by broad-leaf trees. Correctness and completeness results on the
sample plot based on the b) local maxima and c) stem positions combined
with local maxima (Dersch, 2018).

6.4 Adaptive stopping criterion for top-down
segmentation of ALS point clouds

There are multiple lidar-based methods developed for single tree delineation
directly from 3D point clouds or from processed CHM. Straightforward
methods such as watershed segmentation applied on CHM extracted from
lidar achieved up to 45% delineation accuracy at the overstory level (Heur-
ich, 2008). More sophisticated top-down segmentation approaches such as
Normalized Cut applied to waveforms have been reported to deliver more
accurate results, especially on the understory level, by taking into account
all the information within the 3D data (Reitberger et al., 2009; Yao et al.,
2014). However, overlapping crowns and different geometric shapes of nearby
trees cause over/under-segmentation in the final results. In order to assess
the applicability and generality for forest inventory purposes, these methods
still need to be investigated. Therefore, the third objective of the thesis
was focused on single tree segmentation in order to reduce the effects of
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over/under-segmentation on the overstory layer by defining an adaptive
criterion for stopping or continuing the partitioning process.

Figure 6.5: Example depiction of geometry shapes of coniferous and broad-leaf
trees.

In this context, the main goal was to propose a classifier-based framework in
order to improve the segmentation accuracy based on the visual appearance
of trees within the 3D point clouds (Fig.6.5). The static scheme of the control
parameters in the segmentation algorithm can be replaced by an adaptive
scenario applied on the decision level, in order to have flexible tree crown
delineation. This was achieved by introducing an adaptive stopping criterion
based on the modeling of the coniferous tree crowns with elliptic paraboloids
to infer whether a given 3D scene contains only one or multiple trees. The
method was carried out for the coniferous trees in particular, due to the well-
defined geometry of their shapes. However, further investigation is required
of broad-leaf trees as well, because they appear to be one of the main reasons
behind the segmentation errors. In the first step, candidate tree peaks were
extracted using the local maxima approach. Then, paraboloid surfaces were
fitted at the peaks using a random sample consensus procedure and classified
by their geometric properties. At the decision stage to stop or continue the
partitioning, a set of non-overlapping paraboloids was used. The results of
the classifier learning in the adaptive segmentation algorithm, indicate that
the fitting paraboloid function and stopping criterion can both operate quite
well across such as the test plots.
The proposed adaptive segmentation method was not fully successful in
the partitioning process. In the case of clusters containing more than one
single tree but less than two trees, the classifier was not able to provide
detailed information for the decision level in the Normalized Cut algorithm
(see Fig.6.6). In addition, in the case of broad-leaf trees, the proposed method
was not successful at providing satisfactory results. Although the control
parameters for the adaptive segmentation can be estimated by a grid search
method and empirically for a localized forest area, their transferability to
larger scenes could face difficulties.

116



6.4. Adaptive stopping criterion for top-down segmentation of ALS point clouds

Figure 6.6: An example coniferous tree cluster in a point cloud where the
adaptive segmentation and paraboloid fitting was not fully successful in
decision level to continue partitioning (the red cylinder shows the detected
local maximum for the cluster).

To improve the decision level for the cases mentioned above, alpha shapes and
other basic shape descriptor methods were implemented, but the outcomes
did not show any significant improvement. Aside from these points, the
low point density at the intermediate layer, as well as the non-reliably
detected local maxima increased the difficulty of the delineation task. For
a practical application, higher point density lidar data combined with the
stem detection method proposed in Chapter 3 using 3D shape descriptors
is recommended. The idea can be implemented to deal with the mentioned
limitations regarding over/under-segmented clusters, accuracy of broad-leaf
tree segments and reliability of the local maxima. The detected stem positions
can be used in the adaptive segmentation to improve the segmentation
accuracy. The tree tops detected by the local maxima can be replaced or
improved by the stem positions, especially in the case of broad-leaf trees
where local maxima contain false negatives.
At the current stage, there is a necessity to acquire higher point density lidar
data. As already shown, standard ALS data cannot contribute to the tree
segmentation accuracy and cannot later be classified, particularly in the case
of temperate forests with complex overlapping crowns. It is worth mentioning
that the geometrical shape of different tree species can change over time due
to different factors such as the effect of neighboring trees. Therefore most of
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the shape-based classifiers in temperate forests are not yet fully successful
for finding and classifying tree species exactly.

6.5 Tree species classification by fusing multispectral
lidar and aerial imagery

Previous studies of tree species classification by the application of only geo-
metric features extracted from lidar data show promising results and can be
considered the basis for further practical application in temperate central
Europe forests. However, it is necessary to note the basic inefficiency of geo-
metrical features for providing detailed information on detailed tree species,
which keeps the mentioned approach still dependent on spectral information,
field data, and additional 3D features (Hovi et al., 2016; Ørka et al., 2009). A
study by Fassnacht et al. (2016) offers a wide range of analysis, a review
of remote sensing-based methods, and data for the purpose of tree species
classification (for further reading). While the majority of promising results
based on lidar data for tree species identification have been provided for the
Nordic boreal zone in Europe, the practicality of approaches based on the
combination of lidar and spectral (optical imagery) data have been frequently
approved in the studies carried out within the temperate zone. As an example,
Jakubowski et al. (2013) used a height threshold to separate non-canopy from
canopy elements followed by a species classification step based on optical
information.
Regardless of the methods applied, there is a high number of tree species stud-
ies on combining the features extracted from optical (mainly hyperspectral
imagery) and lidar data (Fassnacht et al., 2016). Recently, Shi et al. (2018b)
achieved a relatively high accuracy of 85% using the combined features from
hyperspectral imagery and single wavelength ALS data for the classification of
six tree species in the Bavarian Forest National Park. It is worth mentioning
the that high accuracy was mainly related to the significant contribution of
functional plant traits and their spectral features from hyperspectral data.
Although the availability of lidar data is useful for deriving information on all
the vertical canopy layers, the conducted analysis proved that the information
on the forest species composition is similarly important. Therefore, it is sug-
gested that the spectral information be extracted from commonly-available
aerial imagery across the temperate European forests and used together with
the complementary information in lidar data (Latifi, 2011). As described
above, combining spectral and spatial properties of optical imagery and lidar
data has gotten great attention for enhancing the existing results for forest
structure analysis using single sensor data for tree species classification. How-
ever, despite the reported achievements, one of the main limitations in most
single sensor-based (lidar) tree species classification methods in temperate
forests occurs due to the lack of reasonable spectral signatures of the different
tree species (Leckie et al., 2003; Lim et al., 2003; Ghosh et al., 2014).
The fourth objective was focused on tree species classification using multis-
pectral lidar data and aerial imagery. The recently developed multispectral
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lidar techniques are attractive options for forest studies, because not only
can they provide 3D structural information, but they can also add spectral
information in three different wavelengths (532, 1064, and 1550 nm) (St-
Onge and Budei, 2015; Yu et al., 2017; Axelsson et al., 2018; Amiri et al.,
2018a). The intention was to explore the potential of the features extracted
from multispectral lidar and aerial imagery for detailed tree species map-
ping in temperate forests. An improvement of 7-13% over single wavelength
lidar approaches was gained when multispectral lidar data was used. The
main results for the individual multispectral point cloud and aerial imagery
datasets show that cross-validated (15-fold) accuracies of 78% and 66% were
achieved, respectively. Moreover, the contribution of the radiometric features
of the multispectral lidar data to the classification accuracy was higher than
that of geometric features by about 10%. However, the main limitation of
the currently available multispectral lidar sensors is the non-collinearity of
the laser beams. Additionally, the spectral features extracted from multispec-
tral imagery are included in the pool of features. The selection of the most
significant features has to be done carefully: all of the features extracted by
a step-wise feature selection step are evaluated in order to select the most
significant features for the multiple tree species classification. Recent studies
showed that the spectral features extracted from 1064 nm wavelength data
provide the most promising results for the multiple tree species classification
(Yu et al., 2017; Axelsson et al., 2018; Amiri et al., 2018a).
Although the usage of the multispectral lidar data for tree species classific-
ation is still limited, the above mentioned studies show that multispectral
lidar holds the potential to provide detailed information about tree species
as long as the single sensor approach is concerned. Furthermore, advances in
sensor technology either in multispectral lidar or in fusion of hyperspectral
and lidar systems may also improve detailed classification of tree species.

6.6 Implications of lidar for forest structure analysis in
ecological studies

Research during the past decade has focused on the applicability of lidar for
forest inventory and biodiversity. Due to the ability to determine 3D surface
coverage using laser scanning sensors over forests, new possibilities have
arisen to investigate significant habitat factors. Forest soil analysis, which
has a major role in ecosystem diversity, can be conducted using lidar under
leaf-off conditions. In addition, it is important to have accurate information
about the occurrence, frequency, and reproductivity of different tree species,
which can in return help to understand and monitor biodiversity. This would
determine how structure variables at tree level would impact the biophysical
process of forest ecosystems. Furthermore, the approaches using lidar data
can result in better habitat quality maps as a basis for forest biodiversity
and management purposes.
Laser scanning has become a comprehensive tool to control and monitor
biodiversity of forest areas more sustainably, compared to conventional meth-
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ods. Lidar data is highly accurate and opens up new opportunities for forest
inventory and research application fields at single tree level. By using lidar
it is possible to have comprehensive coverage of forest dynamics to better
understand and describe forests. The estimation of forest structural variables
covers different purposes such as habitat modeling, conservation monitoring
and habitat suitability for different species.
The research conducted through the framework of this thesis on estimating
forest structural variables greatly supports the previously reported gains
from using 3D lidar data for single tree-based approaches. In this thesis,
methods have been improved for regeneration coverage estimation using 3D
segmentation, stem detection using classifier training, individual tree seg-
mentation via an adaptive stopping criterion, and feature-based tree species
classification. The method developments contribute valuable tools for forest
inventory and biodiversity monitoring in terms of providing more general-
ized and certain statements on the role of influential factors for modeling
forest habitats. The performance and quality of the methods for practical
inventories has been investigated and achieved greater accuracy than did the
conventional inventory methods.
In this respect, in Chapter 2, the regeneration coverage estimation using
full waveform lidar data was investigated and proved that by using the 3D
segmentation strategy, the detection rate of regeneration increases. The out-
comes reveal that there is a number of other parameters such as the overstory
canopy density and species composition that influence the applicability of
the proposed method. Chapter 3 is about the detection of single tree stems
using a novel classifier-based and line-fitting method and demonstrates that
by having high point density ALS data, the tree positions are detected with
high accuracy. Chapter 4 is focused on using elliptic paraboloids to deal with
over/under-segmentation problems at overstory canopy layers and training
a classifier to participate in the decision making level of the Normalized
Cut segmentation. This approach significantly improves the Normalized Cut
segmentation because the static stopping criterion based on a constant Nor-
malized Cut threshold has been replaced by an adaptive procedure. The
adaptive procedure is based on the paraboloid appearance of the tree crowns
within the 3D point cloud, and is independent of any internal features of the
underlying Normalized Cut segmentation algorithm. Specifically, the method
was applied for coniferous tree species due to their well-defined geometric
shape. It is worth mentioning that the stem detection method introduced
in Chapter 3 can be used to improve the reliability of the local maxima
and later the Normalized Cut segmentation results. Chapter 5 explores the
potential of multispectral lidar data fused with aerial imagery for tree species
classification. In particular, the findings of that chapter demonstrate that the
radiometric features extracted from multispectral lidar data have significantly
improved the classification accuracy for four tree classes up to 78%. However,
from a practical point of view this is not yet satisfactory. New collinear
multispectral lidar might help to increase the classification accuracy.
From a practical point of view, the findings of this thesis show a clear im-
provement of the single tree segmentation for coniferous trees. The adaptive
approach introduced in this study can reduce the number of over/under-
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segmented coniferous trees; however, the method needs to be improved for
broad-leaf trees. One overall solution to segment broad-leaf trees accurately is
to use data acquired under leaf-off conditions. A novel solution of this thesis
is to apply the stem detection method (Chapter 3) to high point density
ALS data. The outcomes of the thesis suggest that the single tree positions
extracted from the stem detection approach could provide complementary
information for the detection of local maxima (see Fig.6.3). This can be
counted as a new approach for the segmentation of broad-leaf trees. Accurate
estimation of the number of trees, particularly broad-leaf trees, is valuable
for a variety of forest inventory purposes and applications. In addition, these
procedures should be further investigated in order to detect unrecognized
trees in the lower and intermediate canopy layers.
The considerations in this thesis show that it is neither possible nor meaningful
to completely replace field inventories by remote sensing methods. However,
combining the benefits of each method provides a better information density
at the same or lower cost for the data collection procedures. The advantage
lies in remote sensing data due to the comprehensive coverage ability of
important forest structural parameters, which subsequently optimizes the in-
ventory process. Moreover, to capture the necessary ground reference data for
calibration of the remote sensing data field inventory is still required. However,
one disadvantage of laser scanning systems lies in the high cost of acquisition
over large areas. Further approaches at regional and global scales can benefit
from lidar data when example projects such as national lidar programs are
in operation.
Evaluations of single-tree based approaches for retrieval of forest structural
variables which are conducted in this framework can be later used to capture
the available degrees of the cost effectiveness of methods for landscape-level
forest inventories. Area-based and single tree-based methods are mainly dif-
ferent in terms of required data and computational expenses, especially for
area-wide inventories across larger spatial scales. Previous studies on the
functionality of both methods mentioned their general practicality for large
scale (regional or local) forest inventories in boreal forests (Yu et al., 2011). In
case of the non-managed, natural condition of the Bavarian Forest National
Park, this point is confirmed by studies such as Latifi et al. (2015a) including
the advantages and disadvantages of each method. The methods developed
in the context of this thesis for temperate forests are successful in extracting
structural attributes at single tree level. However, further investigations are
required for area-based practicality at local or global scales. These drawbacks
are motivations for future investigations on the additional use of spectral
information in a same spatial resolution as the lidar data. However, this can
lead to total higher efforts for developing practical and area-wide algorithms
for analysis of forest structural attributes similar to those that have been
experimentally tested in small sites within the Bavarian Forest National Park
in this thesis. Furthermore, assessing forest structure at local or global scale
is necessary for addressing the issue of sustainable management of forest
resources. To achieve this goal and to have more cost-effective approaches,
relying on space-borne lidar missions is acknowledged to be a highly relevant
solution.
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Future experiments combining the area-based and single tree-based ap-
proaches in the regions consisting of mature and young tree structures
can provide a further potential for practical forest inventories based on lidar
data. Moreover, concerning the tree species mapping in temperate forests
using remote sensing data, the efforts towards practical mapping on national
and beyond-national scales could be directed towards using a combination of
spectral and structural information offered by multispectral lidar data. Fur-
thermore, the forest management should be aware, that a sufficient number
of reference data should be guaranteed beforehand. Besides the practicality,
regional-scale applications require more single tree-type classifications which
are recently experiencing a rapidly growing trend in the remote sensing
literature (Fassnacht et al., 2016), mainly using airborne lidar data which has
been meanwhile made available for some national forest inventory programs
such as the National Ecological Observatory Network (NEON) in the United
States and the Norwegian Mapping Authority. Investing in acquisition of a
higher number of reference samples in both managed and natural temperate
forests in central Europe does not automatically guarantee a higher quality
on estimating forest structural attributes and can only be treated in a more
economical way as long as the number of reference plots sufficiently represent
the heterogeneity and species diversity existing within the forest types.

6.7 Further research

Developing better approaches is required for describing forest structural
variables, because they are the basis for monitoring forest structure status
and degradation processes. McElhinny et al. (2005) mentioned, that the
structural, functional, and compositional attributes of a single tree are highly
interdependent because the attributes from any of these groups can be
considered as surrogates for others. Therefore, it is important to estimate the
forest structure variables accurately. Moreover, a combination of structural
attributes added by species diversity and composition are also reported to be
useful measures to estimate, for example, the canopy biomass and vertical
complexity of a tree (Davey, 1984).
The current implementation of the methods in this thesis is based on the
classifier training step. The classification is done through a machine learning
approach. The machine learning methods are not an optimal solution if
detailed forest structure analysis is concerned. Deep learning approaches for
3D point clouds will provide a new way towards better forestry approaches.
Improved research on developing automatic classification solutions such as
deep learning using neural networks is currently available for the purpose of
indoor mapping, and partly for vegetation analysis. It would be interesting
to evaluate how the contribution of deep learning approaches could find
a role in forest structure analysis. As a recent development at Stanford
University, an open-source framework for semantic segmentation is now
available (PointNet++).
Furthermore, the development of new sensors will not only benefit the remote
sensing approaches, but will also improve forest structure analysis.
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Höfle, B., Pfeifer, N., 2007. Correction of laser scanning intensity data: Data
and model-driven approaches. ISPRS Journal of Photogrammetry and
Remote Sensing 62 (6), 415 – 433.
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klassifikation aus Daten flugzeuggetragener Full Waveform Laserscanner.
Verlag der Bayerischen Akademie der Wissenschaften.

Reitberger, J., Krzystek, P., Stilla, U., 2007. Combined tree segmentation
and stem detection using full waveform lidar data. International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sciences 36,
332–337.

Reitberger, J., Krzystek, P., Stilla, U., 2008. Analysis of full waveform lidar
data for the classification of deciduous and coniferous trees. International
Journal of Remote Sensing 29 (5), 1407–1431.
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Yu, X., Hyyppä, J., Vastaranta, M., Holopainen, M., Viitala, R., 2011.
Predicting individual tree attributes from airborne laser point clouds based
on the random forests technique. ISPRS Journal of Photogrammetry and
Remote Sensing 66 (1), 28 – 37.

Zhang, J., 2010. Multi-source remote sensing data fusion: status and trends.
International Journal of Image and Data Fusion 1 (1), 5–24.

Zhang, K., Chen, S.-C., Whitman, D., Shyu, M.-L., Yan, J., Zhang, C., 2003.
A progressive morphological filter for removing nonground measurements
from airborne lidar data. IEEE transactions on geoscience and remote
sensing 41 (4), 872–882.

Zhao, K., Popescu, S., Nelson, R., 2009. Lidar remote sensing of forest
biomass: A scale-invariant estimation approach using airborne lasers.
Remote Sensing of Environment 113 (1), 182–196.

Zhou, W., Huang, G., Troy, A., Cadenasso, M., 2009. Object-based land
cover classification of shaded areas in high spatial resolution imagery of
urban areas: A comparison study. Remote Sensing of Environment 113 (8),
1769–1777.

Zimble, D. A., Evans, D. L., Carlson, G. C., Parker, R. C., Grado, S. C.,
Gerard, P. D., 2003. Characterizing vertical forest structure using small-
footprint airborne lidar. Remote sensing of Environment 87 (2-3), 171–182.

140



7Biography

Nina Amiri was born on the 22th of January
1988 in Tabriz, Iran. She received her B.Sc
degree in Geomatics Engineering in Tabriz
University, Iran and her M.Sc. degree in Geo-
information Science and Earth Observation
for Environmental Modelling and Manage-
ment from Lund University, Sweden and ITC,
University of Twente, the Netherlands. In
2014, she started to pursue her Ph.D. degree
at the Faculty of Geo-Information Science
and Earth Observation (ITC), University of
Twente in collaboration with the faculty of
Geo-informatics, Munich University of Ap-
plied Sciences. Her research is focused on the
exploration of Lidar data in forest applica-
tions.

Peer-reviewed papers:

• Amiri, N., Yao, W., Heurich, M., Krzystek, P., & Skidmore, A. K.
(2016). Estimation of regeneration coverage in a temperate forest by 3D
segmentation using airborne laser scanning data. International journal
of applied earth observation and geoinformation, 52, 252-262.

• Amiri, N., Polewski, P., Yao, W., Krzystek, P., & Skidmore, A. K.
(2017). Detection of single tree stems in forested areas from high
density ALS point clouds using 3d shape descriptors. ISPRS Annals
Photogram., Remote Sens. Spatial Inform. Sci, 35-42.

• Amiri, N., Polewski, P., Heurich, M., Krzystek, P., & Skidmore, A.
K. (2018). Adaptive stopping criterion for top-down segmentation of
ALS point clouds in temperate coniferous forests. ISPRS Journal of
Photogrammetry and Remote Sensing, 141, 265-274.

• Amiri, N., Krzystek, P., Heurich, M., & Skidmore, A. K. (Revised
manuscript submitted). Tree species classification by fusing multis-

141



7. Biography

pectral lidar and aerial imagery. Submitted to: ISPRS Journal of
Photogrammetry and Remote Sensing

Conference Proceedings:

• Amiri, N., Yao, W., Heurich, M., & Krzystek, P., (2015). Regeneration
detection by 3D segmentation in a temperate forest using airborne full
waveform Lidar data. In SilviLaser 2015, 28-30 September 2015, La
Grande Motte, France.

• Amiri, N., Polewski, M. P., Yao, W., Heurich, M., Krzystek, P., &
Skidmore, A. K. (2016). Adaptive stopping criterion for normalized cut
segmentation of single trees in ALS point clouds of temperate coniferous
forests. Poster presentation at 3rd workshop SIG on forestry, 15-16
September 2016, Krakow, Poland.

• Amiri, N., Polewski, P., Yao, W., Heurich, M., Krzystek, P. & Skid-
more, A. (2016). Feature relevance assessment for single tree species
classification using ALS point clouds and aerial imagery. Proceedings
of the Young Professionals conference on remote sensing 2016, 20-21
October 2016.

• Amiri, N., Krzystek, P., Heurich, M., & Skidmore, A. Feature Relev-
ance Assessment Of Multispectral Airborne Lidar Data For Tree Species
Classification. (2018). International Archives of Photogrammetry and
Remote Sensing, (Vol. XLII-3, pp. 31-34).

142


	Summary
	Samenvatting
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Importance of forest structure
	Lidar remote sensing of forest structure
	Research objectives
	Study area
	Thesis outline

	Estimation of regeneration coverage in a temperate forest by 3D segmentation
	Introduction
	Method
	Materials
	Results
	Discussion
	Conclusions

	Detection of single tree stems in forested areas from high density ALS point clouds
	Introduction
	Method
	Experiments
	Results and Discussion
	Conclusions

	Adaptive stopping criterion for top-down segmentation of ALS point clouds
	Introduction
	Top-down segmentation
	Adaptive stopping criterion
	Experiment
	Results and discussion
	Conclusions

	Tree species classification by fusing multispectral lidar and aerial imagery 
	Introduction
	Related work
	Experiment
	Method
	Results and discussion
	Conclusions
	Acknowledgment

	Synthesis
	Introduction
	Estimation of regeneration coverage in a temperate forest by 3D segmentation
	Detection of single tree stems in forested areas from high density ALS point clouds
	Adaptive stopping criterion for top-down segmentation of ALS point clouds
	Tree species classification by fusing multispectral lidar and aerial imagery
	Implications of lidar for forest structure analysis in ecological studies
	Further research

	Bibliography
	Biography



