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Summary 
Deterioration of estuarine and coastal water quality has become a worldwide 
issue of substantial concern as anthropogenetic actions increase and climate 
change tends to cause main changes to the hydrological cycle. The acquisition 
of water quality information using radiometric measurements of the water’s 
optical properties has developed quickly in recent years. Developments in 
algorithms and results improvement, sensor technology and reliability, and 
data availability have led to established practices in remotely-sensed 
observations with potential implications to water resources management. 
Using remotely sensed observations have played a significant role to develop 
satellite-derived products for providing vital information on most important 
water quality variables such as Chlorophyll-a (Chla), Suspended Particulate 
Matter (SPM), and Coloured Dissolved Organic Matter (CDOM) with the 
required accuracies for management organizations. This study investigates 
how these water quality variables can be estimated from remote sensing 
observations by means of a quantitative approach in complex coastal areas. 
This is important with respect to the Sustainable Development Goals (SDGs) 
to better understand the capability of the state of art of remote sensing 
technology to monitor long-term spatio-temporal variation of water quality in 
estuarine and coastal waters as a consequence of climate change, global 
warming, pollution and population increase, transportation changes and 
human activities. 
 
The thesis presents how remote sensing techniques and observations can be 
employed to accurately retrieve water quality variables in complex coastal 
waters at both the water surface and Top Of Atmosphere (TOA) levels in the 
frame of proposing and evaluating the latest remote sensing methods and 
techniques established based on radiative transfer modeling, advanced 
retrieval methods, developed algorithms and optimal instruments and sensors.  
This dissertation is composed of six chapters: Chapter 1 is introductory and 
describes the optical remote sensing of water quality, the challenges and 
requirements to apply the remote sensing techniques in the coastal waters, 
the importance of the study area and the proposed methods and algorithms in 
this study. Chapter 2 deals with application and validation of a new and 
developed radiative transfer hydro-optical model (i.e., the 2SeaColor model) 
to accurately retrieving water quality variables at water surface level under 
various Solar Zenith Angles (SZAs) and water turbidity conditions by using in-
situ hyperspectral measurements. Chapter 3 deals with application and 
validation of a proposed radiative transfer atmospheric-hydro-optical model 
(i.e., the coupled 2SeaColor- MODerate resolution atmospheric TRANsmission 
(MODTRAN) model) to simultaneously retrieve water quality variables and 
atmospheric properties (i.e., visibility and aerosol type) at TOA level by using 
MEdium Resolution Imaging Spectrometer (MERIS) images. Chapter 4 deals 
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with 15-years water quality monitoring in complex coastal waters of the Dutch 
Wadden Sea by using time series of diurnal in-situ hyperspectral 
measurements and multi-sensor satellite images of MERIS, Sentinel-2 
Multispectral Instrument (MSI) and Sentinel-3 Ocean and Land Colour 
Instrument (OLCI) images. Chapter 5 deals with the problem of the sea-bottom 
effect in the shallow coastal waters and develops a refined hydro-optical model 
(i.e., the Water-Sea Bottom (WSB) model) to evaluate the sea-bottom effect 
on remote sensing observations in these areas. Further analysis and 
investigations in this chapter lead to proposing a new near-infrared bottom 
effect index (i.e., the NIBEI) to distinguish optically shallow waters from 
optically deep waters. Chapter 6 discusses the main objectives of this 
dissertation and explains how these objectives are achieved and provide 
research recommendations for future studies. 
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Samenvatting 
De achteruitgang van de waterkwaliteit van rivierdelta’s en kustgebieden heeft 
zich wereldwijd ontwikkeld tot een punt van aanzienlijke zorg, daar de 
antropogenetische activiteit toeneemt terwijl klimaatverandering grote 
veranderingen in de waterkringloop dreigt te veroorzaken. Het verzamelen van 
informatie over de waterkwaliteit via radiometrische metingen van de optische 
eigenschappen van water heeft zich snel ontwikkeld in de laatste jaren. 
Ontwikkelingen in algoritmen en verbeteringen in de resultaten, de 
sensortechnologie en de betrouwbaarheid, en de beschikbaarheid van 
gegevens hebben geleid tot een gevestigde praktijk in het verrichten van 
remote sensing waarnemingen, met mogelijke implicaties voor het 
waterbeheer. Het gebruik van remote sensing waarnemingen heeft een grote 
rol gespeeld bij het ontwikkelen van uit satellietdata afgeleide producten voor 
het verschaffen van vitale informatie over de belangrijkste 
waterkwaliteitsvariabelen zoals Chlorofyl-a (Chla), Zwevend stof (SPM), en 
Gekleurd opgeloste organische stoffen (CDOM), met een nauwkeurigheid zoals 
gewenst door bestuursorganisaties. In deze studie wordt onderzocht hoe men 
deze waterkwaliteitsvariabelen kan afleiden uit remote sensing waarnemingen 
door middel van een kwantitatieve benadering geschikt voor complexe 
kustgebieden. Dit is belangrijk in verband met de Water en Duurzame 
Ontwikkelingsdoelstellingen en voor het verkrijgen van een beter begrip over 
het vermogen van de huidige stand van de remote sensing technologie om 
lange-termijn ruimtelijke en temporele variaties in de waterkwaliteit van 
rivierdelta’s en kustwateren te monitoren in relatie tot klimaatverandering, 
globale opwarming, de bevolkingsdichtheid en de toename ervan, 
veranderingen in de scheepsvaart en menselijke activiteit in het algemeen. 
De dissertatie laat zien hoe remote sensing technieken en waarnemingen 
kunnen worden ingezet voor het nauwkeurig bepalen van 
waterkwaliteitsvariabelen in complexe kustwateren via metingen zowel op 
zeeniveau als met satellieten vanuit de ruimte. Dit vindt plaats vanuit het 
perspectief van het voorstellen en evalueren van de nieuwste remote sensing 
methoden en technieken gebaseerd op stralingstransportmodellen, 
geavanceerde bepalingsmethoden, ontwikkelde algoritmen en optische 
instrumenten en sensoren.  
 
Dit proefschrift bestaat uit zes hoofdstukken. Hoofdstuk 1 is een inleiding en 
beschrijft de optische remote sensing van de waterkwaliteit, de uitdagingen en 
voorwaarden waaraan moet worden voldaan om de remote sensing technieken 
toe te kunnen passen in kustwateren, het belang van het gekozen studiegebied 
en de voorgestelde methoden en algoritmen in deze studie. Hoofdstuk 2 
behandelt de toepassing en de validatie van een recent ontwikkeld hydro-
optisch stralingstransportmodel (genaamd 2SeaColor) voor het nauwkeurig 
schatten van waterkwaliteitsvariabelen uit in-situ hyperspectrale metingen op 



xx 

zeeniveau onder diverse zonnestanden en waterturbiditeitscondities. In 
Hoofdstuk 3 is dit model gekoppeld met het MODTRAN atmosfeermodel voor 
het simultaan afleiden van waterkwaliteitsvariabelen en 
atmosfeereigenschappen (horizontaal zicht en aerosoltype) uit MERIS 
satellietbeelden. Hoofdstuk 4 gaat over het monitoren van de waterkwaliteit in 
de complexe kustwateren van de Waddenzee door het gebruik van tijdreeksen 
van dagelijkse in-situ hyperspectrale metingen tezamen met diverse 
satellietbeelden afkomstig van MERIS, de Sentinel-2 MSI en de Sentinel-3 OLCI 
instrumenten. Hoofdstuk 5 behandelt het probleem van het zeebodemeffect in 
ondiepe kustwateren en de ontwikkeling van een verfijnd hydro-optisch model 
genaamd WSB waarin dit effect is opgenomen en waarmee men het effect van 
dit fenomeen op remote sensing waarnemingen in deze gebieden kan 
onderzoeken. Verdere analyses en onderzoeken in dit hoofdstuk leiden tot het 
voorstellen van een nieuwe nabij-infrarode bodemeffect index (NIBEI) om 
optisch ondiepe wateren te kunnen onderscheiden van optisch diep water. 
Hoofdstuk 6 bediscussieert de voornaamste doelstellingen van deze dissertatie 
en verklaart hoe deze doelstellingen zijn bereikt en geeft aanbevelingen voor 
toekomstige onderzoekstudies.   
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The core idea of the dissertation is to exploit multiple observations including 
time-series of in-situ hyperspectral measurements and multi-sensor satellite 
images for optical remote sensing of water quality in complex shallow coastal 
areas. To understand the importance and scope of this subject, we have to 
return to the origin of ocean-colour remote sensing from space. The Coastal 
Zone Color Scanner (CZCS), the first satellite sensor to monitor ocean color, 
was launched by NASA in 1978. At that time, the main objectives of the mission 
were moderate: to record water-leaving radiance values at a limited number 
of bands in the visible region of the spectrum, and then retrieve the 
concentrations of phytoplankton pigments from the recorded signal at the 
water surface level. The regular water retrieval algorithms were established 
based on the assumption that the water components (e.g., phytoplankton 
pigments) and the atmospheric effect on the received signal at TOA level could 
be separated by using radiative transfer models of the atmosphere. Then the 
atmospherically corrected signals were used in standard empirical algorithms 
to retrieve phytoplankton pigment concentrations. Aside from the sensor name 
as the Coastal Zone Color Scanner, it was soon recognized and acknowledged 
that these standard methods are not reliable enough in coastal, and other 
optically-complex areas, in which the presence of other water quality variables 
(e.g., SPM and CDOM) plays a role in the amount of the received signal from 
water surface level to the TOA level. As a result, the reliability of retrieving 
phytoplankton pigment concentrations from remote sensing observations 
remained questionable in these complex waters.  
 
With respect to the CZCS experience, and after learning from extensive 
theoretical studies and observations collected from in-situ platforms and 
aircraft, the requirements and scope of the remote sensing of coastal waters 
have been improved dramatically over the years. As more knowledge was 
obtained about the optical properties of aquatic constituents and their effect 
on the ocean color, it became more feasible to realize an accurate retrieval of 
water components other than phytoplankton from remote sensing 
observations. 
 
Investigating these possibilities required sensors with the higher spectral 
resolution, higher signal-to-noise ratio and improved calibration than the CZCS 
sensor. Therefore, new ocean-color sensors have emerged with different types 
of instruments and capabilities. New algorithms were developed in parallel, to 
tackle these new challenges in remote sensing of coastal waters. For example, 
there has been a progress in treating the water-atmosphere interaction as a 
coupled system, and explaining the measured signal simultaneously in terms 
of atmospheric and water properties; using regular empirical algorithms for the 
retrieval of water quality variables has been replaced by algorithms that are 
established based on theoretical considerations and radiative transfer 
modeling; novel and influential statistical and mathematical methods capable 
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of dealing with a nonlinear multi-variable system are now applied to tackle the 
problem. Most of these improvements are focused on developing remote 
sensing of water quality in coastal, turbid, shallow and other optically-complex 
water, and this dissertation has the same objective. This chapter gives a short 
general introduction and describes the importance of water quality in coastal 
areas, application of remote sensing techniques and observations, challenges 
and problems, available methods and techniques, proposed new solutions and 
the sub-objectives of this dissertation. 

1.1. Why monitoring of water quality in coastal areas 
In a world where coastal areas are home to approximately one-third of the 
world’s population (UNEP, 2006), monitoring is essential to discover whether 
there are significant changes taking place in these natural environments (Burt 
et al., 2014; Zielinski et al., 2009). Coastal waters are the critical habitat for 
many marine species and are the basis for many economic concerns important 
to society and local economies, including fisheries, coastal recreation, and 
tourism activities (Halliday et al., 2014; Van der Wal and Pye, 2003; Zielinski 
et al., 2002). Monitoring water quality in coastal areas is crucial considering 
coastal resource consumption and aquatic resources management. Maintaining 
water quality in a decent condition is also vital for other sectors, including 
fisheries and the aquaculture industry. 
 
Global urbanization of coastal regions, massive discharges of sewage, 
effluents, industrial and agricultural run-off have a significant influence on the 
quality of coastal waters by changing the nutrient components, triggering toxic 
algal blooms influencing biodiversity, recreation, tourism fisheries, and other 
activities (Mishra et al., 2015). Therefore water sector decision-makers and 
coastal planners must monitor the quality of water to protect these vital areas 
while having obligations to avoid deterioration under some of the European 
instruments. In December 2000, the European Parliament adopted the Water 
Framework Directive (WFD) (WFD, 2000). Based on the WFD regulations, all 
Member States are responsible for the safeguarding of good environmental 
quality by 2015 while a monitoring programme was established to observe the 
quality of the water in coastal and inland waters. Accordingly, the Marine 
Strategy Framework Directive followed the same objective in order to monitor 
and protect coastal waters aiming to maintain them in a suitable ecological 
status (Mélin et al., 2011).  

 Why the Wadden Sea? 

One of the crucial European coastal ecosystems that has drawn great attention 
in Europe is the Wadden Sea. With an area of almost 8000 km2 and a length 
of about 500 km, the Wadden Sea is considered as being the largest mudflat 
area in the world. Conservation of this tidal ecosystem as the largest unbroken 
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system of intertidal mudflats in the world, and as one of the 193 natural World 
Heritage sites, has become compulsory since July 2009 (Sijtsma et al., 2015). 
Accordingly, particular attention has been paid by the Netherlands, Denmark, 
and Germany to protect this area (Bartholdy and Folving, 1986; Brockmann 
and Stelzer, 2008; Staneva et al., 2009). Therefore, following the WFD 
regulations and considering the importance of the Wadden Sea, home to more 
than 10 percent of 29 species and also a breeding and wintering area for up to 
12 million birds per annum (Allan, 2008; CWSS, 2008), this research focused 
on monitoring of water quality in this unique coastal area. 

1.2. Challenges and problems of remote sensing 
 approaches 
Maintaining coastal areas in a healthy state requires a continuous approach to 
capture information on dynamic events which might have a substantial impact 
on ecosystems such as unexceptional phytoplankton blooms or changes caused 
by storms and by tracking the spatio-temporal variations of water quality 
variables (Brando and Dekker, 2003; Bukata et al., 1995; Garaba and Zielinski, 
2015). SPM, Chla, and CDOM concentrations (referred to as water constituent 
concentrations, WCCs) are amongst the most important water quality variables 
that need to be monitored to understand the process of such dynamic events 
and their impact on aquatic ecosystems. Reliable estimates of SPM are crucial 
for many water quality studies, as SPM is responsible for most of the scattering, 
which affects the water reflectance by modifying the light field (Kirk, 1994). 
Accurate estimation of SPM concentration and its variation is considered as a 
factor of great interest for sediment transport and may indicate the transport 
of organic toxins (e.g., Malmaeus and Håkanson, 2003; Ruddick et al., 2008). 
Hydro-chemical and ecological models need reliable SPM values to use as a 
proxy for terrestrial input, re-suspension or the sedimentation of particles 
(Blaas et al., 2007; Fettweis and Van Den Eynde, 2003; Lindstrom et al., 
1999). SPM contains both inorganic and organic fractions. The inorganic 
fraction consists mostly of mineral particles originating from river discharge 
and erosion. The organic part of SPM consists of organic detritus, 
phytoplankton, and bacteria (Bowers and Binding, 2006; Bukata et al., 1995; 
Jerlov, 1976). Accurate estimation of Chla concentration, as the main proxy 
measure of phytoplankton abundance, is also a key factor to the understanding 
of the planetary carbon cycle as a crucial indicator of eutrophication in marine 
ecosystems (Murphy et al., 2001; Werdell et al., 2009). Chla amounts are 
influenced by anthropogenic nutrients of agricultural and industrial origin, 
whereby fisheries and aquaculture can be affected by Chla abundance (Peters 
et al., 2004). In addition to Chla and SPM, CDOM is another relevant 
component in water quality studies since it controls the functioning of 
ecological processes and biogeochemical cycles of marine ecosystems. CDOM 
is produced by phytoplankton degradation and bacterial decomposition while 
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riverine discharge is another main source of CDOM in most coastal waters (Yu 
et al., 2016b; Zielinski and Brehm, 2007). Long-term tracking of variations in 
these WCCs reveals important patterns, which allow trends, cycles, and rare 
events to be identified (Burt et al., 2014). 
 
Monitoring of WCCs using field measurements and laboratory analysis requires 
conventional cruise surveys with satisfactory temporal and spatial coverage. 
Unfortunately, this is often not feasible for most coastal regions due to lack of 
financial resources and technical equipment while it is impossible in practice to 
collect in-situ measurements for large regions using cruise measurements.  
 
Remote sensing is an efficient technique that provides information on WCCs on 
high spatio-temporal scales and can considerably overcome some of these 
deficits in the current in-situ monitoring programs (Kirk, 1994; Philippart et 
al., 2013; Watson and Zielinski, 2013). Satellite remote sensing of coastal 
water quality is especially important since it is the only remotely sensed 
property that directly identifies a biological component of the ecosystem (Casal 
et al., 2015). Regarding the spatial and temporal sampling capabilities of 
satellite data, remote sensing of coastal waters is considered as the principal 
source of data for investigating spatio-tempral WCC variations and 
phytoplankton biomass in many coastal areas’ estuaries (Le et al., 2013b). In 
many coastal waters, like the Wadden Sea, remote sensing has often been 
applied to produce tidal flat maps (e.g., sediment type maps or finding 
locations with seagrass) (Niedermeier et al., 2005; Wang, 1997; Wimmer et 
al., 2000). However, there is still a pressing need on optical remote sensing 
for quantitative monitoring of WCCs in complex coastal waters (Hommersom, 
2010). Recent studies show that remote sensing of the coastal area seems 
both possible and beneficial. Nevertheless, ocean color products in these areas 
may comprise errors of up to 50% due to the following major problems: 

 Atmospheric correction methods 

Eliminating the effect of the atmosphere and performing a suitable atmospheric 
correction method is the most challenging task to translate remote sensing 
observations to reliable water quality products in remote sensing of ocean 
colours, especially in coastal waters (Salama et al., 2004; Wang, 2007; Wang 
et al., 2009, 2007; Wang and Gordon, 1994; Wang and Shi, 2007). Different 
atmosphere correction methods aim to exclude the effects of the atmosphere 
on the received TOA signal as the result of atmospheric scattering and 
absorption (Schroeder et al., 2007). Indeed, in many cases, less than 10% of 
the received TOA radiance at satellite images carries information on the optical 
properties of water components while 90% of the received signal is produced 
by the atmospheric scattering. Therefore, the accuracy of the atmospheric 
correction approach to remove the effect of the atmosphere is the most 
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important and critical issue affecting the reliability of generated water products 
by using remote sensing techniques. Once an appropriate atmospheric 
correction has been applied, water-leaving reflectance can be linked to water 
optical properties and retrieved water quality variables. As a result, many 
different researches have been conducted to improve the accuracy of 
atmospheric correction methods in remote sensing of ocean color. For 
example, Gordon and Wang (1994) proposed the standard atmospheric 
correction of the black pixel approach by assuming zero water-leaving 
reflectance due to the high absorption by seawater in the Near-Infra-Red 
(NIR). This method can be performed by extrapolating the aerosol optical 
properties to the visible from the NIR spectral region of wavelength (Goyens 
et al., 2013). Although this method works well over open oceans, it does not 
necessarily lead to accurate results over turbid coastal waters (Jamet et al., 
2011) where higher concentrations of Chla and SPM can cause a significant 
water-leaving reflectance in the NIR (Siegel et al., 2000). Consequently, the 
black pixel assumption tends to overestimate the aerosol scattered radiance 
and thus underestimates the water-leaving radiance in these areas (IOCCG, 
2000). Indeed, most of the atmospheric correction methods fail in coastal 
waters due to the complexity of the recorded TOA radiance signals by satellite 
sensors (Carpintero et al., 2015) as these signals are associated with aerosols 
from continental sources (Mélin et al., 2007). Besides, in coastal waters, 
photons from nearby land areas can enter the field-of-view of the sensor (the 
adjacency effect) and contribute to total NIR backscatter (Santer and 
Schmechtig, 2000), whereas in shallow waters, TOA radiances can also be 
influenced by the bottom effect (Hommersom, 2010a). In recent years, some 
studies have been conducted to improve the atmospheric correction over turbid 
waters (Hu et al., 2000; Ruddick et al., 2006; Wang and Shi, 2007). For 
example, some efforts were made to improve the atmospheric correction 
method by assuming a zero water-leaving reflectance in the shortwave 
infrared, even in the case of highly turbid waters (Wang, 2007; Wang and Shi, 
2005). However, in further studies, researchers found that for extremely high 
turbidities, even in the shortwave infrared region, the water-leaving 
reflectance was not negligible (Wang et al., 2011). In addition, other studies 
focused on the non-negligible water-leaving reflectance assumption in the NIR 
(Doxaran et al., 2014; Salama and Shen, 2010). For example, Carder et al. 
(2002) investigated the ratio of water-leaving reflectance at two NIR bands. 
This ratio was either assumed constant (Gould et al., 1999) or estimated from 
neighboring pixels of open oceans (Ruddick et al., 2000). Although the 
assumption of a known relationship between the values of water-leaving 
reflectance in two NIR bands is necessary, it is not sufficient. Indeed, accurate 
information about visibility and aerosol type is still needed (Salama and Shen, 
2010). Shen et al. (2010) used the radiative transfer model MODTRAN to 
perform atmospheric correction for MERIS images over highly turbid waters. 
As shown by Verhoef and Bach (2007), for assumed visibility and aerosol type, 
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MODTRAN can be used to extract the necessary atmospheric parameters to 
remove the scattering and absorption effects of the atmosphere and to obtain 
calibrated surface reflectance, as well as correcting the adjacency effects. 
However, this technique assumes a spatially homogeneous atmosphere (Shen 
and Verhoef, 2010), while in reality not only visibility but also the aerosol type 
may vary spatially within the extent of satellite images (in the presence of local 
haze variations). For example, in the case of coastal waters, some aerosol 
types (e.g., urban or rural) might exist in the regions close to the land, and 
other pixels might have the maritime aerosol type. Consequently, the 
assumption of a homogeneous atmosphere may lead to the wrong 
establishment of visibility and aerosol model in different parts of the image and 
may result in overestimation or underestimation of WCCs from ocean-color 
observations. This case is even more complicated in the Wadden Sea. 
Therefore, regular atmospheric correction algorithms have a higher probability 
of failure in this complex turbid water, where not only substantial SPM 
concentrations can occur but also the atmosphere is mostly heterogeneous 
over the region due to local haze variations (Creutzberg, 1961; Arabi et al., 
2016; Hu et al., 2000; Ruddick et al., 2000; Shen et al., 2010; Shen and 
Verhoef, 2010; Siegel et al., 2000; Wang et al., 2009; Wang and Shi, 2005; 
Pasterkamp et al., 2003; Peters et al., 2004; Salama et al., 2012; Van der 
Woerd et al., 2003). In this dissertation, we propose a coupled atmospheric-
hydro-optical radiative transfer model (i.e., the 2SeaColor-MODTRAN model) 
to treat the non-homogeneous atmosphere in highly turbid waters of coastal 
areas. This method is based on a TOA radiance approach, where atmospheric 
correction is not needed since the sensor radiances are simulated and 
compared to the measured TOA radiances in the spectral bands of the sensor 
to retrieve surface and atmospheric properties simultaneously. Chapters 3 and 
4 are directed towards this issue, while the proposed method is also 
implemented in multi-sensor satellite images of MERIS, MSI and OLCI and its 
capabilities are validated against in-situ measurements, since water-leaving 
reflectance is obtained as a by-product in this approach. 

 Water quality retrieval algorithms 

A suitable water quality retrieval algorithm is the key step to link the water 
leaving reflectance to the water quality variables in remote sensing of ocean 
color. Especially in coastal waters, where not only high concentrations of SPM 
can occur but also there may be a mixing of Chla, SPM, and CDOM 
(Hommersom, 2010; Pitarch et al., 2016), it is crucial to implement and 
validate a self-consistent, generic and operational hydro-optical model that can 
be applied to these complex water bodies. Although there are already many 
available empirical water retrieval algorithms for accurate retrieval of water 
quality variables (Matthews, 2011), these algorithms are not practical to be 
used for different coastal waters. Accordingly, many studies have focused on 



General Introduction 

8 

developing different hydro-optical models. For example, Gordon et al. (1988) 
developed a semi-analytical optical model which predicts the upwelling spectral 
radiance as a function of the phytoplankton pigment concentration at the sea 
surface level for open oceans. Based on Gordon’s model, the variations in the 
phytoplankton backscattering and absorption, and the associated detrital 
material determine the radiance values variations. Lee et al. (2002) developed 
a multiband quasi-analytical algorithm based on Gordon’s model to retrieve 
backscattering and absorption coefficients from remote sensing reflectance 
spectra for both open oceans and coastal waters. However, both the Gordon 
and Lee models suffer from early saturation at high turbidities (Salama and 
Shen, 2010). Fettweis et al. (2007) developed a semi-analytical algorithm to 
investigate the relationships between the backscattering coefficient, the 
absorption coefficient, water leaving reflectance and WCCs in the 
Belgian/Dutch coastal area. However, also their model was only appropriate 
for low turbidity waters. Indeed, most hydro-optical models are not capable 
enough to simulate water leaving reflectance values under the condition of high 
WCCs in turbid waters. Therefore, saturation occurs when modeling water 
turbidities at high turbidity, and consequently retrieving WCCs from remote 
sensing measurements over turbid waters will often fail.  
 
In this dissertation, in Chapter 2, we introduce a new hydro-optical model (i.e., 
2SeaColor model) which comprises an analytical forward model including an 
inversion scheme for the simultaneous retrieval of WCCs from in-situ 
hyperspectral measurements of remote sensing reflectance. This model has 
been developed while maintaining a relative simplicity by applying the two-
stream approach including direct sunlight, based on Duntley (1942). The model 
considers multiple scattering, which delays the saturation of water reflectance 
under high turbidity conditions. Most hydro-optical models consider only single 
scattering (Salama and Verhoef, 2015), and therefore saturate in producing 
water leaving reflectance (Rrs) values already at moderate turbidity conditions. 
Moreover, the 2SeaColor model includes incident direct sunlight while it 
computes the Directional-Hemispherical Reflectance Factor (DHRF) as a 
function of the SZA. Consequently, by analyzing a time series of nearly 
continuous high quality in-situ hyperspectral measurements recorded over 
multiple years at the Dutch Wadden Sea, we explore and test the model-based 
retrievals under various SZAs using the 2SeaColor model. 

 Bottom effect 

In many coastal areas, in addition to the concentration of water constituents 
present in the water column, the sea-bottom effect can contribute to the 
observed water leaving reflectances at the water surface level and accordingly 
to the TOA radiances at satellite level when the water is sufficiently shallow 
and is sufficiently clear (i.e., optically shallow waters) (Lee and Carder, 2002; 
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IOCCG, 2000). The effect of the sea bottom on water color differs with respect 
to the water depth, water clarity, the type of water constituents, and the type 
of sea-bottom. The sea-bottom can be sandy or rocky and can be covered by 
a combination of benthic organisms (e.g., molluscs, algae). The occurrence of 
these factors can interfere with the correct retrieval of WCCs from 
hyperspectral measurements or satellite images depending on local water 
depth and transparency of the water (Lee et al., 1999; Martinez and Calway, 
2012). Accordingly, water retrieval algorithms have a higher probability of 
failure in shallow coastal waters in which not only a mixture of WCCs may 
occur, but also the sea-bottom affects the watercolor. Therefore, it is important 
to identify optically shallow areas in coastal areas to establish where water 
retrieval algorithms may fail, and how we can improve the reliability of ocean-
colour products, and extend their domain of applicability (Sathyendranath and 
others, 2000). Although bathymetry maps can be used to determine the 
shallowness of water in remote sensing studies of coastal areas (Pattanaik et 
al., 2015), these maps are not always available for all regions (Giardino et al., 
2012). 
 
On the other hand, the effect of the sea-bottom varies depending on water 
turbidity and/or on water depth variation in tidal areas (Giardino et al., 2014; 
Maritorena et al., 1994; Mgengel, 1991). Therefore, using bathymetry maps 
cannot always help to improve the accuracy of WCC products over turbid tidal 
areas. As a result, hydro-optical models should include the sea-bottom effect 
in order to accurately retrieve WCCs from atmospherically corrected water-
leaving reflectance (Gitelson et al., 2008; Lee et al., 2002a). In this 
dissertation, in Chapter 5, we develop a new hydro-optical model termed  
Water - Sea Bottom (WSB), by incorporating the sea-bottom effect for 
modeling of the above water reflectance to better understand the effect of 
bottom albedo on field and satellite observations of ocean color. Using the 
developed WSB model, we define a novel near-infrared bottom effect index 
(i.e., NIBEI) to distinguish optically shallow waters (contaminated by sea-
bottom effects) from optically deep waters. We use the NIBEI to improve the 
reliability of generated WCC maps from MERIS and OLCI. 

 Availability of remote sensing observations 

Using remote sensing techniques for monitoring of water quality in complex 
coastal waters requires the availability of high-quality remote sensing 
observations in water surface and/or satellite levels which might not be readily 
available in many cases.  At the water surface level, availability of proximal 
sensing observations is dependent on many factors such as having access to 
advanced instruments/sensors, doing a consistent survey on the automatic 
sensors, performing regular calibration/validation on instruments and having 
a suitable meteorological condition (Wernand et al., 2006). Moreover, it is vital 
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to apply suitable data quality control and to flag the recorded dataset to extract 
high-quality observations (Arabi et al., 2016; Cadee and Hegeman, 2002; 
Hommersom et al., 2010; Philippart et al., 2013, 2010; Van der Woerd and 
Pasterkamp, 2008). At TOA level, availability of observations is even more 
difficult. Only a limited number of satellites are practical to be used for water 
quality monitoring (Niedermeier et al., 2005; Wang, 1997; Wimmer et al., 
2000). Moreover, not only all satellites images are not free, but also many 
satellite images are not usable due to the occurrence of series cloud/rain or 
local haze at the time of satellite overpass (Arnone et al., 2006). With the 
unique opportunity of having access to the full archive of 15 years of daily in-
situ hyperspectral measurements and multi-sensor satellite images of MERIS, 
MSI, OLCI between 2003 and 2018 over the Dutch Wadden Sea, Chapter 4 
aims to apply quantitative remote sensing techniques for long-term monitoring 
of WCC variations at both water surface and TOA levels for the Dutch Wadden 
Sea. 

1.3. Objectives  
The main objective of this dissertation is remote sensing monitoring of water 
quality in the complex shallow tidal waters of the Dutch Wadden Sea. To 
achieve this main objective, four sub-objectives have been defined, as listed 
below. Further, each of these sub-objectives is addressed in various chapters 
of this dissertation. 
1. Evaluation and validation of the 2SeaColor model’s performance to retrieve 

WCC retrievals from in-situ hyperspectral measurements under various 
SZAs and water turbidity conditions. (This topic is published in the journal 
Remote Sensing of Environment (RSE) in 2018). 

2. Evaluation and validation of the proposed coupled 2SeaColor-MODTRAN 
model’s performance to retrieve WCCs from MERIS images (This topic is 
published in the journal Remote Sensing in 2016). 

3. Implications of the 2SeaColor and coupled 2SeaColor-MODTRAN models 
for 15-years of monitoring of WCC variations in the Wadden Sea using time 
series of in-situ hyperspectral measurements and multi-sensor satellite 
images (MERIS, MSI, and OLCI), respectively (This topic is under review 
in the journal of Remote Sensing of Environment).  

4. Improving the reliability of generated WCC maps using the coupled 
2SeaColor-MODTRAN model over the Wadden Sea from MERIS and OLCI 
images by applying the proposed NIBEI (This topic is under review in the 
journal of Remote Sensing of Environment). 

1.4. Dissertation outline 
This dissertation consists of six chapters following the objectives. Besides the 
“general introduction (Chapter 1)” and “concluding remarks and prospects 
(Chapter 6)”, four chapters are published in, or under review, to peer-
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reviewed ISI journals. Each of the published (submitted) chapters addresses 
one of the research sub-objectives described above. 
 
In Chapter 2, the radiative transfer model 2SeaColor is inverted against time 
series of in-situ hyperspectral measurements. The 2SeaColor-retrievals of 
Chla, SPM are validated against time series of in-situ Chla and SPM 
concentrations collected in the NIOZ Jetty Station (the NJS), Texel, at the inlet 
to the Dutch Wadden Sea. Moreover, the performance of this model is 
evaluated under conditions of various SZAs and water turbidity while the effect 
of the tide on the variation of WCC retrievals is also evaluated. 
 
In Chapter 3, the validated 2SeaColor model’s simulations are coupled with 
the atmospheric radiative transfer model MODTRAN and the coupled hydro-
optical-atmospheric model named 2SeaColor-MODTRAN is proposed to retrieve 
Chla from time series of MERIS images under local haze variations and high 
turbidity. The capabilities of the 2SeaColor-MODTRAN model in doing the 
atmospheric correction and WCC retrievals are then validated against in-situ 
measurements and are compared with retrievals of the standard MERIS Case 
2 regional (C2R) model at the location of the NJS, Dutch Wadden Sea. 
 
In Chapter 4, The 2SeaColor and coupled 2SeaColor-MODTRAN model are 
applied to 15 years of time series of in-situ hyperspectral measurements and 
multi-sensor satellite images of MERIS, MSI, and OLCI, respectively. The long-
term variations of WCC retrievals at the water surface and TOA level are 
compared, and simultaneous maps of WCCs over the Dutch Wadden Sea using 
MERIS and OLCI images are generated. 
 
In Chapter 5, a new hydro-optical model called WSB is developed to deal with 
the sea-bottom effect in the shallow waters of the Dutch Wadden Sea. As the 
results of WSB simulations, the new bottom-effect index NIBEI is defined to 
distinguish optically shallow waters from deep ones for the shallow waters of 
the study area. The proposed NIBEI is applied to the generated WCC maps 
using the 2SeaColor-MODTRAN model to exclude the optically shallow waters 
from consideration and to improve the reliability of these maps.  
 
In Chapter 6, concluding remarks and prospects related to this dissertation 
are described. It provides the main conclusions, implications, and 
recommendations for further research. 
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Chapter 2 Remote sensing of water quality at 
water surface level using in-situ hyperspectral 
measurements* 
 
 

 

                                               
* This chapter is based on:  
Arabi, B., Salama, M.S., Wernand, M.R., Verhoef, W., 2016. Remote Sensing of Water 
Constituent Concentrations Using Time Series of In-situ Hyperspectral Measurements in 
the Wadden Sea. Remote Sensing of Environment Journal, 216 (2018) 154–170, 
https://doi.org/10.1016/j.rse.2018.06.040. 
 
Arabi, B., Salama, M.S., Verhoef, W., 2018. Evaluation of Tidal Effect on Water 
Constituent Variations Using Optical Observations and Tide Gauge Recordings in the 
Dutch Wadden Sea. The 2018 IEEE International Geoscience and Remote Sensing 
Symposium (IGARSS 2018), Valencia, Spain, 22-27 July 2018. 



Remote sensing of water quality at water surface …  

14 

ABSTRACT  

This study aimed to investigate the capability of the two-stream radiative 
transfer model 2SeaColor for the simultaneous retrieval of Chla, SPM and 
CDOM concentrations from remote sensing measurements under various 
conditions (i.e., SZAs and water turbidity levels). For this evaluation, a time 
series of diurnal in-situ hyperspectral measurements of remote sensing 
reflectance (Rrs) concurrent with in-situ measured Chla and SPM concentrations 
between 2008 and 2010 by the NJS, located in the Dutch part of the Wadden 
Sea, was used. Validation of the model retrievals against in-situ measurements 
showed an acceptable accuracy (Chla: R2 = 0.80 and RMSE = 2.98 (mg m-3);  
SPM: R2 = 0.89 and RMSE = 2.53 (g m-3)) with good agreement between the 
temporal trends of measured and retrieved concentration values over multiple 
years. However, the model inversion results yielded less good estimates at 
SZAs > 60° during winter. 
 
Furthermore, the effect of the tide on the variation of daily time series of Chla 
and SPM concentrations was analyzed. At the particular NJS location, the tidal 
effects on the concentrations of SPM and Chla were found to be small. The 
capability of the 2SeaColor model to retrieve reliable estimates, and the 
favorable location of the NJS, which is little influenced by tidal phase variations, 
contribute to a better understanding of the long-term variability of Chla and 
SPM concentrations.  
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2.1. Introduction 
Conservation of European coastal waters in a healthy environmental state has 
become a high priority as regulated in the “Marine Strategy Framework 
Directive, 2008/56/EC” (Mélin et al., 2011). One of the most important coastal 
ecosystems, which has drawn great attention in Europe, is the Wadden Sea. 
Conservation of this tidal ecosystem as the largest unbroken system of 
intertidal mudflats in the world, and as one of the 193 natural World Heritage 
properties, has become compulsory since July 2009 (Sijtsma et al., 2015). 
Accordingly, particular attention has been paid by the Netherlands, Denmark, 
and Germany to protect this area since the early years of the last century 
(Bashir, 2016). Maintaining this coastal area in a healthy state requires a 
continuous monitoring approach that can capture the dynamics of WCCs. 
Remote sensing is an efficient technique that provides information on these 
constituents on high spatio-temporal scales (Kirk, 1994; Philippart et al., 
2013). In the Wadden Sea, remote sensing has often been applied to produce 
tidal flat maps (e.g., sediment type maps or finding locations with seagrass). 
For example, radar and laser data have been used to detect the land-water 
boundaries (Niedermeier et al., 2005; Wang, 1997; Wimmer et al., 2000). 
However, there are only a few studies available on remote sensing algorithms 
of optical properties that can be applied for continuous monitoring of WCCs in 
this area (Hommersom, 2010). Recent studies show that remote sensing of 
this complex coastal area seems both possible and beneficial. Nevertheless, 
ocean color products may comprise errors of up to 50% due to the following 
major problems (Arabi et al., 2016; Cadee and Hegeman, 2002; Hommersom 
et al., 2010; Philippart et al., 2013, 2010; Van der Woerd and Pasterkamp, 
2008) : 

 Atmospheric correction methods 

Satellite images are widely used for remote sensing of WCCs in coastal areas. 
However, performing an accurate atmospheric correction is a most challenging 
task which may cause significant errors especially in coastal waters studies 
(Salama et al., 2004; Wang, 2007; Wang et al., 2009, 2007; Wang and 
Gordon, 1994; Wang and Shi, 2007). One possible approach to minimize the 
problem of atmospheric effects on remote sensing of coastal waters is using 
ground-based water leaving reflectance measurements which are collected at 
the study site (Loisel et al., 2013; Salama et al., 2012; Wernand and Woerd, 
2010). In the present study, we had the opportunity to work with a unique 
dataset of time series of diurnal in-situ hyperspectral water leaving reflectance 
concurrently with in-situ measured Chla and SPM concentrations collected on 
a regular basis (noon time) throughout multiple years at the NJS. By using this 
continuous in-situ dataset, the effect of the atmosphere on the remote sensing 
dataset could be minimized. Accordingly, it was feasible to have the best 
validation of the hydro-optical model using this dataset, which was collected 
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over different seasons and conditions. On the other hand, eliminating the effect 
of the atmosphere as the most important source of models’ retrieval errors 
makes it better possible to evaluate the contribution of other factors (e.g., 
water turbidity and SZAs) to the model’s retrieval accuracy. 

 Hydro-optical models  

Most hydro-optical models are not capable enough to simulate water leaving 
reflectance values under the condition of high WCCs in turbid waters. 
Therefore, saturation occurs when modeling Rrs at high turbidity, and 
consequently retrieving WCCs from remote sensing measurements over turbid 
waters will often fail. For example, Gordon et al. (1988) developed a semi-
analytical optical model which predicts the upwelling spectral radiance as a 
function of the phytoplankton pigment concentration at the sea-surface level 
for open oceans. Based on Gordon’s model, the variations in the phytoplankton 
backscattering and absorption, and the associated detrital material determine 
the radiance values variations. Lee et al. (2002) developed a multiband quasi-
analytical algorithm based on Gordon’s model to retrieve backscattering and 
absorption coefficients from remote sensing reflectance spectra for both open 
oceans and coastal waters. However, both the Gordon and Lee models suffer 
from early saturation at high turbidities (Salama and Shen, 2010). Fettweis et 
al. (2007) developed a semi-analytical algorithm to investigate the 
relationships between the backscattering coefficient, the absorption coefficient, 
water leaving reflectance and WCCs in the Belgian/Dutch coastal area. 
However, also their model was only appropriate for low turbidity waters. Since 
the Wadden Sea is considered a high turbidity coastal area (Hommersom, 
2010), it is crucial to select a reliable hydro-optical model that does not 
saturate too soon for modeling of water leaving reflectance values under high 
water turbidity conditions. 
 
In this study, we implemented a new hydro-optical model which comprises an 
analytical forward model including an inversion scheme known as the 
2SeaColor model (Salama and Verhoef, 2015) for the simultaneous retrieval of 
WCCs from in-situ hyperspectral measurements of remote sensing reflectance, 
Rrs. The 2SeaColor model was developed while maintaining a relative simplicity 
by applying the two-stream approach including direct sunlight, based on 
Duntley (1942). The model considers multiple scattering, which delays the 
saturation of water reflectance under high turbidity conditions. Most hydro-
optical models consider only single scattering (Salama and Verhoef, 2015), and 
therefore saturate in producing Rrs values already at moderate turbidity 
conditions.  
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 SZA effect  

High SZA values can affect the quality of remote sensing data and accordingly 
the accuracy of WCC retrievals using different hydro-optical models. 
Geostationary satellites (e.g., GOICI which observes a region eight or more 
times a day) provide observations from the early morning to the late afternoon, 
and many data can be obtained under large SZA conditions (Chen, 2017). In 
addition, at the location of the Wadden Sea, high SZA variations can be found 
in winter around noon and in summer early in the morning or evening. 
Therefore, it is essential to use a hydro-optical model that includes the SZA 
effect when working with time series of optical measurements covering the 
whole year in this area. So far, a few studies have evaluated the effect of SZA 
on the accuracy of WCC retrievals using remote sensing measurements. For 
example, Volpe et al. (2007) assessed the uncertainties of Chla retrievals in 
the Mediterranean Sea using the OC4V4 algorithm and concluded that this 
algorithm was not capable enough to retrieve Chla concentration values at this 
region due to the weak light intensity. Chaves et al. (2015) assessed the ocean 
color products (e.g., Chla and spectral marine IOPs) from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) AQUA data in the Western 
Arctic Ocean. They found that the empirical algorithms were positively biased 
in comparison with in-situ measurements due to weak light and high latitudes. 
Li et al. (2017) investigated the performances of seven widely used Chla 
retrieval algorithms (i.e., OC2, OC3M, OC3V, OC4V4, Clark, ocean-color index, 
and Yellow Sea Large Marine Ecosystem Ocean Color Work Group) under high 
SZA conditions using the global in-situ ocean color dataset (NASA bio-optical 
marine algorithm dataset). The results showed that the performances of all 
seven algorithms decreased significantly under high SZA values compared with 
those under low to moderate SZA values. They later investigated the possibility 
of improving these models by adjusting the coefficients of the algorithms using 
the in-situ dataset under the condition of high SZA values. They showed that 
the results could not be significantly improved by adjusting the models for high 
SZA conditions. In this study, for the first time, we evaluated the effect of SZA 
on WCC retrievals using remote sensing measurements in the Wadden Sea. 
The 2SeaColor model includes incident direct sunlight while it computes the 
directional-hemispherical reflectance factor (DHRF) as a function of the SZA. 
Therefore the SZA effect on Rrs measurements is considered into this hydro-
optical model while doing WCC retrievals (Salama and Verhoef, 2015), 
although no effects of VZA are considered in this model. Consequently, by 
analyzing a time series of nearly continuous high-quality in-situ hyperspectral 
measurements recorded over multiple years at the NJS, it was feasible to 
explore and test the model-based retrievals under various SZAs using the 
2SeaColor model.  
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 Reliability of local Specific Inherent Optical Properties  

One of the challenges associated with applying remote sensing techniques in 
coastal waters is that the SIOPs show high spatial and temporal variability in 
different coastal areas (Babin, 2003; Babin et al., 2003). These variations are 
due to numerous factors, including changes in the water source, sediment 
type, phytoplankton species composition, and CDOM sources. Since the 
Wadden Sea is a vast coastal area with numerous sources of water inputs, it 
is crucial to evaluate the reliability of local SIOPs over the location and time in 
this region. (Salama and Su, 2010). However, for this area, detailed 
information about seasonal SIOPs is still lacking. For example, Peters (2001) 
documented SIOPs estimates for Chla, SPM and CDOM measurements for this 
region. However, these SIOPs were measured only at the Marsdiep inlet and 
only on two days in May 2000. Later, Babin et al. (2003) added SIOPs 
estimated in the Wadden Sea, but they merged them with the North Sea SIOPs. 
However, the Wadden Sea SIOPs are different from those of the North Sea 
(Hommersom, 2010). In this study, we used a set of measured SIOPs, which 
have been collected by Hommersom et al. (2009) at 37 locations between 2006 
and 2007 at the Wadden Sea. At the time when this study was conducted, 
these measured SIOPs were the only available ones as representative of WCCs 
in the Wadden Sea. However, some analysis was performed to ensure the 
reliability of these measured SIOPs to be implemented for the 2SeaColor 
parametrization during different seasons at the NJS.  

 Tidal variation  

In remote sensing studies in coastal regions, tidal phase variations might 
interfere with time series of optical measurements and consequently with 
retrieved WCCs using hydro-optical models (Hu et al., 2016; Wal et al., 2017). 
Many studies have been conducted to evaluate the effect of tide on retrieved 
WCCs from remote sensing observations in different coastal areas. For 
example, Eleveld et al. (2014) investigated the relationship between the tidal 
phase and retrieved SPM concentration values using MERIS images in the 
Western Scheldt located in the southwest of the Netherlands. They concluded 
that tide is one of the leading factors, affecting the variations in estimated 
surface SPM concentrations for this tidal area. He et al. (2013) generated 
hourly SPM concentration maps from the Geostationary Ocean Color Imager 
(GOCI) observations. They showed that various regions had different diurnal 
variations concerning tidal phases in Hangzhou Bay. Wang et al. (2013) 
investigated the effect of the tide on the diurnal variation of ocean optical 
properties using GOCI images in the western Pacific region. Doxaran et al. 
(2009) used a one-year time series of in-situ measurements to show the tidal 
phase effect on turbidity variations in the upper part of a micro-tidal estuary 
using MODIS images. Valente and da Silva (2009) investigated the effect of 
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tide on water turbidity and circulation in the Tagus estuary using multi-sensor 
satellite observations.  
 
The Wadden Sea is also a tidal area, which is connected to the North Sea by a 
series of tidal inlets (Ridderinkhof et al., 1990). Like anywhere else, at the NJS 
location there is a daily shift of about one hour in the tidal phase so that all 
phases pass by in about one month. Thus, the tidal phase variation might 
interfere with the time series of measurements since the in-situ Rrs 
measurements concurrent with WCCs are taken around noon local time on all 
days. Therefore, the effect of tide needs to be considered carefully when 
interpreting time series of water quality products in this region. In this study, 
for the first time, we did a brief analysis to verify whether the time series 
analysis of WCCs at the NJS is affected by tidal phase variations. Although this 
assessment is not intended as an in-depth study of tidal effects, its conclusion 
plays a vital role in following the long-term temporal courses of WCCs at the 
NJS.  
 
After mentioning the main problems of remote sensing of water quality at the 
Wadden Sea, we defined the main objectives of this study as evaluation and 
validation of the 2SeaColor model performance for WCC retrievals under 
different SZAs and water turbidity conditions at the NJS. Finally, we will discuss 
the application of this validated hydro-optical model to be implemented on the 
ground-based remote sensing measurements and satellite images. 

2.2. Study area 
The study area of this work is the Dutch Wadden Sea. This is the area located 
between the North Sea in the northwest and the mainland of the Netherlands 
in the southeast, and between the Eems-Dollard estuary in the northeast and 
the Marsdiep in the southwest (Ridderinkhof et al., 1990). This area is 
considered as a shallow, well-mixed tidal region with a surface area of 2500 
km2 and consists of several tidal basins (Ridderinkhof et al., 1990). The 
satellite image in Figure 2.1 shows the south-western part of the Wadden Sea, 
with parts of the Dutch mainland on the right and the island of Texel at the 
bottom left, and Vlieland and Terschelling to the north. As this SPOT satellite 
image (spatial resolution 20 m) shows, the bottom can be seen in large parts 
of the Dutch Wadden Sea, illustrating clearly that the sea bottom effect can 
influence remote sensing of optical measurements in this shallow coastal area 
(Lee et al., 1999). However, this was not the case for the NJS data due to the 
moderate turbidity and the depth of the water (> 5 m) at that location, so that 
the bottom effect on measured reflectance values is negligible. 
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Figure 2.1 Upper-right: the Southwestern part of the Dutch Wadden Sea in Europe; 
Upper-left: one SPOT satellite image covering the Dutch Wadden Sea and parts of 
IJsselmeer lake (8th of May 2006); bottom: the optical sensors installed on the NJS with 
the VZA of 35° (w: looking at water, s: looking at sky, 1: down-welling irradiance sensor 
at ultraviolet (ES - UV), 2: down-welling irradiance sensor (ES), 3: the surface radiance 
sensor looking to South East (Lsfc (South East)), 4: the surface radiance sensor looking 
to South West (Lsfc - South West), 5: the sky radiance sensor looking at the South East 
(Lsky - South East), 6: the sky radiance sensor looking at the South West (Lsky - South 
West)). 
 
This study focused on measurements taken at the NJS located nearby the 
Marsdiep inlet (53°00′06″N; 4°47′21″E) to the Dutch part of the Wadden Sea 
(Fig. 1). The Marsdiep inlet is located at the western border and consists of a 
deep tidal channel flanked by shallow sand and mud flats. The inlet is bordered 
by the island Texel to the north and by the town of Den Helder to the south on 
the mainland.  

2.3. Dataset 

 Time series of in-situ measurements at the NJS 

The NJS provided the dataset of the present study. This dataset contained the 
time series of in-situ hyperspectral measurements of Rrs concurrent with Chla 
and SPM concentrations (collected at noon time almost every day) from 2008 
to 2010. Fig 2.2 presents the spectral variations of the in-situ Rrs 
measurements at the NJS for this study.  
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Figure 2.2. The in-situ spectral measurements of Rrs between 2008 -2010 at the NJS. 

 
The NJS has been in operation since 2001 by the Royal Netherlands Institute 
for Sea Research (NIOZ) on the Texel Island. Every fifteen minutes in-situ 
hyperspectral measurements (surface, sky, and sun) including meteorological 
data are being collected using the newest generation of TRIOS Ramses 
hyperspectral radiometers (Fig 2.1 bottom) for “autonomous” monitoring of 
seawater since August 2001 until present (Wernand, 2011). For more detailed 
information on the measurement setup of the NJS, the readers are referred to 
Wernand (2002).  

 Time series of tidal information at the Den Helder station 

Simultaneously with recording Rrs measurements at the NJS, tidal 
measurements (water depth values, ebb and flood measurements) are 
recorded at Den Helder (52.9667° N, 4.7500° E) located only 3.7 km away 
from the NJS. Therefore, we had the opportunity to investigate the possible 
correlation between the tidal phase and the variation of WCCs at the NJS. In 
this study, three-years (2008 - 2010) of diurnal tidal measurements containing 
the water depth values in Normal Amsterdam Level (NAP) (cm) units, ebb, and 
flood tidal phase information, besides sunrise and sunset time were extracted 
from the Den Helder station to make this evaluation. 

2.4. Method 
This study followed the below steps to meet the main objectives of this 
research:  
 
(a) Perform data quality control of the NJS dataset. 
(b) Evaluate the 2SeaColor model accuracy under different SZA conditions. 
(c) Evaluate the 2SeaColor model accuracy under different water turbidity 

conditions. 
(d) Evaluate the reliability of SIOPs measured by Hommersom et al. (2009). 
(e) Analyze the effect of tide on WCC variations at the NJS. 
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 Data quality control and Rrs calculations at the NJS 

Ship-borne and unsupervised optical measurements collected by sensors 
installed on jetties, freighters or ferries can be hampered by factors like 
meteorological conditions, precipitation or the sun-glint effect. These factors 
can significantly influence the radiance and irradiance measurements and 
consequently the accuracy of the retrieved WCCs from calculated water leaving 
reflectance values. Performing data quality control by data flagging (based on 
the knowledge under which meteorological conditions the optical 
measurements were collected) is crucial in water quality studies using remote 
sensing measurements. In this study, three different kinds of data flagging, 
i.e., related to “weather conditions (e.g., precipitation, wind speed)”, “spectral 
shape” and “sun-glint contamination” were implemented to select the high-
quality measurements automatically. This implemented data flagging approach 
was proposed by Wernand (2002), based on thousands of measurements of 
incident solar irradiance as well as coastal watercolor, and the meteorological 
dataset collected at the NJS. By implementing the precipitation flag, we 
indicated whether any precipitation occurred during the time of the 
measurements. Next, the spectral shape flag detected those spectra, which 
were possibly influenced by specific dusk or dawn radiation (red coloring of the 
sky) using the band ratio of down-welling solar irradiance (ES) values. By 
implementing these two data flaggings, all unacceptable spectra were removed 
from the dataset. However, sun-glint contamination might still influence the 
quality of measured Rrs data (Wang and Bailey, 2001). To minimize the sun-
glint effect, the NJS was equipped with three optical hyperspectral sensors 
consisting of two down-looking water leaving radiance sensors (Lsfc), 90 
degrees apart in the horizontal plane (under azimuth angles of 135° and 225° 
from north), instead of the conventional single sensor measurement, as well 
as one down-welling irradiance (ES) sensor (Fig. 2.1 bottom). In this way, one 
of the two water-leaving radiance signals was always available with a minimum 
of sun-glint (Table 2.1), and the effect of sun-glint contamination was removed 
from the dataset (Wernand, 2002). After performing the mentioned data 
quality control process and extracting the high-quality spectra from all three 
sensors, the water leaving reflectance values were calculated following 
Wernand (2002), as explained in Table 2.1: 

 
Table 2.1. Water-leaving reflectance calculations at the NJS (Wernand, 2002). 

Variable  Formula Eq. 
Select East/West Lsfc sensors  Lsfc (min) = minimum of Lsfc sensors (2.1) 
Calculate Lw Lw = Lsfc (min) – (fsky × Lsky) (2.2) 
Calculate Rrs Rrs = Lw / Es (2.3) 

1 When Lsfc West was minimum, Lsky west was used to do sun-glint contamination correction and 
vice versa. 
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The calculated in-situ Rrs values using the equations mentioned above in Table 
1 were later used to perform WCC retrievals using the 2SeaColor model as 
described below. 

 The 2SeaColor model  

Table 2.2 presents the employed algorithms for the 2SeaColor 
parameterization in this study. The same set-up of Table 2.2 was successfully 
used in previous studies for the 2SeaColor model to retrieve WCCs from remote 
sensing observations at the NJS (Arabi et al., 2016). Some of the employed 
parameterizations are empirical and therefore only valid for given ranges of 
the independent variables (WCCs). For instance, the Lee et al. (1999) model 
(Eq. 2.5), is not valid for very low values of Chla (< 0.4 (mg m-3)). Therefore, 
special care was taken to ensure that each variable stayed within its valid 
range, and outside these ranges, the border value was taken. To do this, we 
implemented an automatic truncation function in MATLAB to stay within the 
valid ranges of WCCs in this study. 
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In Table 2.2, the symbols a and bb represent the absorption and backscattering 
coefficients. The subscripts Chla, SPM, CDOM, NAP, and W, denote Chlorophyll-
a, Suspended Particulate Matter, Colored Dissolved Organic Matter, Non-Algae 
Particles (NAP) and water molecules, respectively. [Chla], [SPM] are the 
concentrations corresponding to Chla and SPM, respectively. It should be noted 
that the predicted reflectance from the water by the 2SeaColor model (𝑟௦ௗ

ஶ ) is 
dependent on the SZA values (Eq. 2.18), although the range in the cosine of 
the SZA (μw) is quite moderate since the maximum SZA underwater is 
Brewster’s angle, 53° for water. The calculated IOPs using the 
parameterizations in Table 2.2 and the set of measured SIOPs valid for the 
Dutch Wadden Sea were used to model Rrs spectra by the 2SeaColor model 
(Eqs. 2.17 – 2.20). Next, an iterative optimization technique was applied for 
the model inversion to retrieve the WCCs. Within the constraints mentioned in 
Table 2.2, there are three WCCs in Eq. 2.18, Chla (mg m-3) concentration, SPM 
(g m-3) concentration and CDOM absorption at 440 nm (m-1), which uniquely 
determine the modeled Rrs spectra. These unknown variables can be retrieved 
by minimizing the differences between Rrs curves that are modeled by the 
2SeaColor model calculated in Eq. 2.20 and the measured ones calculated in 
Eq. 2.3 (Lee et al., 1999). The “Trust Region” algorithm, implemented in the 
MATLAB (The MathWorks, Inc. Natick, MA, USA) function “lsqnonlin”, was used 
to minimize the cost function. The program calculated the Root Mean Square 
Error (RMSE) between the measured and modeled values over the whole 
wavelength range of the reflectance spectra. 
 
Table 2.3. The initial guess of WCCs used in the model inversion. 

Parameter Unit Lower/upper boundary Border values Initial Guess 
Chla concentration mg m−3 0 - 50 0 , 50 0.1 
SPM concentration g m−3 0 - 100 0 , 100 20 
CDOM absorption m-1 0 - 3 0 , 3 0.25 

 
To avoid local minima, we did the minimization in numerous loops starting with 
different WCCs initial guesses as recommended by Salama and Shen (2010). 
We changed the model’s initial values and modeled the Rrs spectra. The results 
(data are not shown) showed that initial values had no significant effects on 
the minimization and thus on the retrieved parameters. 

 The 2SeaColor model’s evaluation for various SZAs and 
 turbidities 

To investigate the SZA variation effect, we categorized the time series of in-
situ Rrs measurements into different SZA groups. Considering the yearly SZA 
variation (from 30° to 75°) at the measurement site (located at 53° North) 
with an average change of almost 7.5° per month, we created six SZA groups 
(SZAs < 37.5°, 37.5° ⩽ SZAs < 45°, 45°⩽ SZAs < 52.5°, 52.5° ⩽ SZAs < 60°, 
60° ⩽ SZAs < 67.5° and 67.5° ⩽ SZAs ⩽ 75°). Regarding different water 
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turbidity conditions, we extracted the concentration ranges of in-situ Chla (mg 
m-3) and SPM (g m-3) measurements between 2008 and 2010 at the NJS 
corresponding to each SZA group separately. Then a Mean Squared Error 
(MSE) decomposition analysis was performed for different SZA groups and 
water turbidity conditions at the NJS. The MSE is one of the most widely used 
criteria for evaluation of models against in-situ measurements. We 
decomposed the MSE into three contributions due to i) unequal standard 
deviations (USD), ii) bias in the mean values (BIM), and iii) lack of (positive) 
correlation (LOC), following (Gupta et al., 2009) as expressed in Eq. 2.21. 

MSE ൌ ሺσଵ െ σଶሻଶ ൅ ሺμଵ െ μଶሻଶ ൅ 2σଵσଶሺ1 െ Rሻ (2.21) 

where 1 and 2 indicate the variables (modeled and measured values), σ and µ 
are standard deviations and means, respectively, and R is the correlation 
coefficient. The results of the MSE decomposition analysis results are presented 
in sections 2.5.1 and 2.5.2. Finally, we analyzed the reliability of measured 
SIOPs to be implemented in the 2SeaColor model parametrization at the NJS. 
For this evaluation, the occurrence of any systematic errors between modeled 
and measured Rrs spectra in different parts of the spectrum by using the 
spectral difference criteria for different SZA groups was investigated. Results 
of this evaluation are also presented in section 2.5.3. 

 The 2SeaColor’s validation 

The 2SeaColor model accuracy was evaluated at two different levels: (i) 
validating the modeled spectra against in-situ Rrs measurements at the four 
reference wavelengths of 443 nm, 490 nm, 550 nm, and 665 nm and (ii) 
validating the retrieved concentrations of Chla and SPM against in-situ 
measurements. The statistical measures of the determination coefficient (R2) 
and RMSE were used to quantify the goodness-of-fit between modeled and 
measured Rrs, and retrieved and measured in-situ Chla and SPM 
concentrations. The results of these assessments are presented in section 
2.5.4. 

 Tidal effect evaluation 

For the tidal effect evaluation, two different approaches were used in this 
study. In the first approach, the temporal variation of in-situ SPM and Chla 
concentrations corresponding to their water depth values within the yearly tidal 
cycles between 2008 and 2010 at the NJS were plotted (Figs. 2.4 and 2.5). 
Next, the correlation between time series of in-situ Chla and SPM 
concentrations at the NJS and the corresponding water depth values at the 
Den Helder station for different SZA groups were calculated to investigate the 
possible correlation between these two parameters (Table 2.10). For the 
second approach, a complete dataset of ebb and flood tidal information 
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(including water depth values during the ebb and flood, ebb and flood 
occurrence times and sunrise and sunset time per day) between 2008 to 2010 
were obtained for the Den Helder station (flood: 1076 measurements, ebb: 
1065 measurements). For times concurrent with tidal events, in-situ Rrs 
measurements at the NJS were extracted. After performing the data quality 
control process, 508 and 383 reliable in-situ Rrs measurements were selected 
under conditions of flood and ebb, respectively. Then, the 2SeaColor model 
was inverted to retrieve Chla and SPM concentrations per each Rrs 
measurement of the quality-controlled dataset. Then the differences between 
mean values of retrieved SPM and Chla concentration during flood and ebb for 
different SZA groups were evaluated as an indicator to investigate whether the 
tide causes any significant change in the WCCs (Table 2.11). 

2.5. Results 

 SZA effect on the 2SeaColor model’s accuracy  

Fig. 2.3 presents the daily variation of SZA over the year at the NJS. The 
spectral residuals (RMSE) between in-situ and modeled Rrs values over the 
whole wavelength region as a function of time (Day Of Year: DOY) are also 
presented in this figure. 

 
Figure 2.3. The spectral residual (RMSE between the best fits of modeled and measured 
Rrs) and the yearly SZA variation versus DOY for the quality-controlled meteorological, 
shape and sun-glint effect dataset between 2008 and 2010 at the NJS. 
 
The X-axis in this figure shows DOYs for three years (between 2008 and 2010). 
The left Y-axis shows the SZA values corresponding to each day (black line). 
The spectral residual (RMSE) values for each measurement are presented with 
red dots while a moving average with a span of 5 days is also used (blue 
dashed-line) to show the variation of RMSE with SZA variation better. As the 
figure shows, the spectral residual values increase (from 0.0001 to 0.0016 (sr-

1)) nearly in parallel with SZA (from 10° to 80°). By evaluating the rising trend 
of spectral residual amounts at high SZAs (SZAs > 60°), it can be concluded 
that the 2SeaColor model inversion yields worse spectral fitting results under 
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high SZAs in this region. As to the effect of SZA variation on the accuracy of 
the 2SeaColor model retrievals, the results of MSE decomposition analysis for 
all SZA groups are computed in Tables 2.4 and 2.5. In these tables, the 
distribution of the three error sources (i.e., USD: unequal standard deviations 
(second column), BIM: bias in the mean values (third column) and LOC: lack 
of correlation (fourth column) is calculated as the percentages (%) of total 
MSE. In addition, the calculated R2 values (first column) are attached to the 
MSE decomposition tables as follows: 
 
Table 2.4. The statistical measures used for evaluation of the SZAs effect on the retrieved 
Chla (mg m-3) concentrations by the 2SeaColor model. 

SZAs R2 USD (%) BIM (%) LOC (%) Total MSE 
[30° - 37.5°) 0.81 18.15 0.150 81.69 06.61 
[37.5° - 45°) 0.78 18.17 02.15 79.68 07.43 
[45° - 52.5°) 0.74 28.67 04.72 66.61 11.44 
[52.5° - 60°) 0.72 14.77 20.00  65.23 08.80 
[60° - 67.5°) 0.03 50.12 43.93 15.95 08.40 
[67.5° - 75°] 0.08 42.30 43.40 14.30 10.07 

 
As the results of Tables 2.4 show, the calculated R2 values between the 
measured and retrieved Chla estimates significantly decrease (from 0.81 to 
0.08) when SZAs becomes higher than 60°. The R2 value of Chla is around 
0.80 for 30° < SZAs < 52°, decreasing to 0.75 for 52° < SZAs < 60° and it is 
dropping to < 0.2 for SZAs > 60°. Therefore, the SZA of 60° might be 
considered as a threshold which leads to less accurate retrievals in case Rrs 
measurements are collected at SZAs > 60°. However, the total MSE values for 
all SZA groups are relatively small (between 6 and 12) and do not increase in 
parallel with the SZA. The very low R2 values (< 0.1) of Chla retrievals by the 
model in winter (SZAs > 60°) do contribute little (< 15%) to the total MSE and 
therefore cannot be considered a major source of error. This also means that 
R2 as an error measure is rather meaningless in this case. Improving the 
correlation would not help much here since the greatest contributions to the 
MSE decomposition for Chla estimates in winter (SZAs > 60°) come from the 
bias in the mean values (~ 45%) and the unequal standard deviations (~ 50%) 
while the lack of positive correlation plays the smallest role (~ 15%) in the 
total MSE. The results of the calculated R2 values, as well as the MSE 
decomposition analysis for all SZA groups for SPM estimates, are presented in 
Table 2.5. 
 
Table 2.5. The statistical measures used for evaluation of the SZAs effect on the retrieved 
SPM (g m-3) concentrations by the 2SeaColor model. 

SZAs R2 USD (%) BIM (%) LOC (%) Total MSE 
[30° - 37.5°) 0.89 01.69 21.01 77.29 4.14 
[37.5° - 45°) 0.84 01.54 10.57 87.89 8.42 
[45° - 52.5°) 0.83 01.46 10.41 88.13 10.28 
[52.5° - 60°) 0.87 01.52 14.35 84.14 11.85 
[60° - 67.5°) 0.23 0.580 31.97 67.45 36.25 
[67.5° - 75°] 0.42 0.740 41.20 58.06 65.09 
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Like for the Chla estimates, the calculated R2 values between the measured 
and retrieved SPM estimates significantly decrease (from 0.89 to 0.42) in 
winter when SZAs becomes higher than 60°. On the other hand, the total MSE 
values of SPM estimates also increase (from 4 to 65) with the SZA increase in 
winter. The total MSE values are ~ 12 for SZAs < 60°, and they increase 
dramatically to ~ 65 for SZAs > 60°. Moreover, the lack of positive correlation 
does have the most significant contribution (~ 70%) to the total MSE for SPM 
estimates in winter. Therefore, the seasonal variation of higher SPM 
concentrations in winter might be another factor besides the SZA effect that 
leads to the sudden increase of total MSE at SZAs > 60°. In the following 
section, the 2SeaColor model’s performance with respect to the variation range 
of in-situ Chla and SPM concentrations at different SZA groups is investigated.   

 Turbidity affect the 2SeaColor’s accuracy 

The ranges of in-situ Chla and SPM concentrations for the various SZA groups 
at the NJS are presented in Table 2.6: 
 
Table 2.6. The concentration ranges of in-situ Chla (mg m-3) and SPM (g m-3) 
measurements corresponding to each SZA group between 2008 and 2010 at the NJS. 

SZAs Chla (mg m-3) SPM (g m-3) 
[30° - 37.5°) 0.22 - 22.04 3.06 - 30.54 
[37.5° - 45°) 1.37 - 18.92 5.60 - 31.39 
[45° - 52.5°) 0.84 - 26.52 7.64 - 32.08 
[52.5° - 60°) 0.19 - 20.96 2.84 - 39.46 
[60° - 67.5°) 0.19 - 09.37 3.63 - 43.48 
[67.5° - 75°] 0.40 - 08.51 1.17 - 51.65 

 
As can be seen from Table 2.6, the maximum levels of in-situ SPM 
concentrations (~ 50 (g m-3)) occur during winter (SZAs > 60°) while these 
amounts are considerably higher than the maximum levels of SPM 
concentration (~ 30 (g m-3)) during spring and summer (30° ⩽ SZAs < 52.5°). 
Conversely, the maximum levels of in-situ Chla concentration (~ 30 (mg m-3)) 
occur in spring and summer, while these amounts reach their minimum values 
(~ 0.1 (mg m-3)) during winter. Therefore, the substantial variations in the 
concentration of in-situ measured Chla and SPM in different seasons in the NJS 
might be another reason for the model’s deterioration in winter, especially for 
the SPM estimates. Figs. 2.4 and 2.5 present the temporal variation of 
retrieved Chla and SPM concentration versus their corresponding in-situ 
measurements at the NJS. In these figures, the retrieved values between 
March and October (SZAs < 60°) are shown by red triangles. Blue stars show 
the retrieved values during winter (SZAs > 60°), and black dots indicate the 
in-situ Chla and SPM measurements at the NJS. In addition, the water depth 
values at the Den Helder station corresponding to each in-situ Chla and SPM 
measurement at the NJS are presented in grey bars to support the further 
analysis given in section 2.5.5. 
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(a) 

 

(b) 

 

(c) 

 
Figure 2.4. Temporal variation of retrieved Chla concentrations (mg m-3) by the 
2SeaColor model versus in-situ Chla concentrations (mg m-3) for the flagged 
meteorological, shape and sun-glint effect dataset at the NJS in (a): 2008; (b): 2009 
and (c): 2010. 
 
As can be seen in Fig. 2.4, the temporal trends of retrieved and in-situ Chla 
concentrations (mg m-3) are in good agreement (between 0 and 35 (mg m-3)) 
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with the daily Chla concentration variations between 2008 and 2010 at the 
NJS. The highest values of retrieved and measured Chla concentrations are 
mainly observed in the spring period (April, May, and June) ~ 30 (mg m-3). 
After the spring period, Chla values start to decrease in July (~ 5 (mg m-3)) 
with a slight increase in September (~ 10 (mg m-3)), and they reach their 
lowest values during winter (~ 0 (mg m-3)) (blue stars). However, 
underestimation of retrieved Chla concentrations in comparison to in-situ 
measurements in winter (SZAs > 60°) can be observed in all three years (Figs 
2.4. (a), (b) and (c)). Indeed, the low concentration of in-situ Chla 
measurements during the winter makes the water leaving the spectrum less 
sensitive to changes in Chla values. That is why the model underestimates Chla 
concentration retrievals by tending to take the lower boundaries (~ 0 (mg m-

3)) of the Chla concentration variable through optimization techniques (Table 
2.3). On the other hand, in-situ Chla concentrations occur in very low ranges 
(~ 0 to 5 (mg m-3)) during winters. Consequently, reasonable temporal 
agreement occurs between the retrieved and in-situ Chla concentrations in 
winter, with relatively low total MSE (~ 10) in the high SZA groups (SZAs > 
60° ) (Table 2.4), which also means that the low R2 (< 0.1) is harmless in 
wintertime, since the low Chla concentrations in winter (between 0 and 5 (mg 
m-3)) were predicted correctly. Therefore, it can be concluded that the 
2SeaColor model is capable enough to retrieve Chla concentrations under 
different water turbidity conditions at the NJS. The temporal variations of 
retrieved SPM concentrations versus in-situ ones at the NJS are presented in 
Fig. 2.5.   
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(a) 

 

(b) 

 

(c) 

 
Figure 2.5. Temporal variation of retrieved SPM concentrations (g m-3) by the 2SeaColor 
model versus in-situ SPM concentrations (g m-3) for the flagged meteorological, shape 
and sun-glint effect dataset at the NJS (a): 2008; (b): 2009 and (c) : 2010.    
 
As can be seen in Fig. 2.5, the temporal trends of retrieved and in-situ SPM 
concentrations (g m-3) are in good agreement (between 0 and 60 (g m-3)) with 
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the daily water turbidity variation between 2008 and 2010 at the NJS. Both 
retrieved and in-situ SPM concentrations show their highest values (between 
10 and 60 (g m-3)) from January to February, they start to decrease (from 0 
to 30 (g m-3)) from April to July and they increase again at the beginning of 
October (between 10 and 35 (g m-3)), until they reach their highest level in 
November and December (between 40 and 60 (g m-3)). On the other hand, 
some overestimation of retrieved SPM concentrations in comparison to in-situ 
measurements can be observed during winters (SZAs > 60°) in all three years. 
As the results of the MSE analysis also showed (Table 2.5), the total MSEs 
significantly (from 4 to 65 (g m-3)) increase in winter, in parallel with SZA 
increase (from 30° to 75°) while the most significant contribution to this error 
at SZAs > 60° is due to lack of correlation (~ 90%). Therefore, the higher level 
of SPM concentrations in winter in comparison to summer level (SZAs < 60°) 
might be another reason (besides SZA increase) that the total MSE values 
considerably increase during winter for SPM retrievals (from 4 to 65 (g m-3)). 
However, as explained before in section 2.1.2, and following recent studies 
(Arabi et al., 2016; Salama and Verhoef, 2015; Yu et al., 2016a), the 
2SeaColor model has been developed to deal with high turbidity. Therefore, 
this SPM overestimation might be related to the unreliability of the SIOPs 
implemented in the 2SeaColor model’s parametrization for SPM retrievals 
during winter. The main reason is that the SPM concentration levels follow a 
certain seasonal pattern over different years (Figs. 2.5 (a), (b), (c)) while there 
is no information about seasonal SIOPs at this moment for the NJS. Indeed, 
the implemented SIOPs in this study have been collected only during spring 
and summer (Hommersom et al., 2010). However, even this model 
overestimation in winter still shows fairly reasonable agreement with the trend 
of in-situ SPM concentrations for all three years. Therefore, from the results of 
this evaluation, it can be concluded that the 2SeaColor model is capable 
enough to retrieve SPM concentrations under various water turbidity conditions 
at the NJS. However, the results of winter retrievals (SZAs > 60°) show a 
considerable model overestimation in this season. It should be noted that the 
2SeaColor model also retrieves CDOM absorption at 440 nm (m-1) 
simultaneously with Chla and SPM concentration values. The trend of retrieved 
CDOM by the 2SeaColor model is presented in Fig. 2.6. However, there were 
no in-situ CDOM measurements to evaluate the agreement between the 
temporal variation of measured and retrieved CDOM absorptions. 
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(a) 

 

(b) 

 

(c) 

 
Figure 2.6. Temporal variation of retrieved CDOM absorption at 440 nm (m-1) by the 
2SeaColor model for the flagged meteorological, shape and sun-glint effect dataset at 
the NJS (a): 2008; (b): 2009 and (c) : 2010. 
 
As Fig. 2.6 shows, the temporal variability of CDOM is independent of that of 
Chla (Yu et al., 2016b). In general, the retrieved values of CDOM (blue stars) 
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are low (~ 0.5 m-1) during winter (SZAs > 60°) and increasing to ~ 1.2 (m-1) 
in spring and summer (red triangles) during three years at the NJS. Moreover, 
the temporal CDOM absorption variations follow similar trends (between 0 and 
2 (m-1)) over the years between 2008 and 2010 at the NJS. 

 Evaluation of the reliability of SIOPs  

The reliability of the measured SIOPs by Hommersom et al. (2009) used in the 
2SeaColor model parametrization, are evaluated as explained in Fig. 2.7. 
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Figure 2.7. The spectral differences between in-situ and model’s best fit Rrs 
corresponding to the different SZA groups versus wavelength for the quality-controlled 
meteorological, shape and sun-glint effect dataset between 2008 and 2010 at the NJS. 
Left: red dashed-lines present the spectral average of in-situ Rrs values, and the blue 
lines present the spectral average of the models best fits Rrs values; right: the spectral 
differences (RMSE) between in-situ and model’s best fit Rrs for the whole wavelength 
region. (a,b): data collected at SZAs [30° - 37.5°); (c,d): data collected at SZAs [37.5° 
- 45°); (e,f): data collected at SZAs [45° - 52.5°); (g,h):data collected at SZAs [52.5° 
- 60°); (i,j): data collected at SZAs [60°- 67.5°); (m,n): data collected at SZAs [67.5°- 
75°]. 
 
As the left panels of this figure show, by using Hommersom’s SIOPs, good fits 
are found between measured and modeled Rrs spectra while the calculated 
RMSE are in very low range groups (0.0001 < RMSE < 0.00022) for all SZAs. 
However, as the right panels of this figure show, many zero-crossings occur 
constantly at nearly the same spectral positions. For example, there are 
systematic Rrs underestimations around 410 nm and 600 nm for all SZA groups. 
In addition, another systematic Rrs overestimation can be observed in the Near 
Infrared Red (NIR) part of the spectrum (between 780 and 900 nm). Regarding 
the similar patterns of zero-crossings as well as the very low spectral residuals 
(0.0001 < RMSE < 0.00022) for all SZA groups (Fig. 2.7 right panel), it can be 
stated that the SIOPs measured by Hommersom et al. (2009) is suitable to be 
implemented for the 2SeaColor model parametrization at the NJS. However, 
there is a slight mismatch between the real and implemented SIOPs for the 
2SeaColor model parametrization at this region. Therefore, modifying these 
SIOPs with respect to the seasonal patterns of WCCs at the NJS may lead to 
improved retrieval results. On the other hand, the right panels of Fig. 2.7 show, 
the calculated RMSE values between the measured and modeled Rrs spectra 
increase (from 0.00010 to 0.00021) in parallel with the SZA increase (from 
30° to 75°). The RMSE values are around 0.00013 for 30° < SZAs < 52°, 
increasing to 0.00016 for 52° < SZAs < 60° and rising to around 0.0002 for 
SZAs > 60°. On the other hand, the amplitudes of Rrs values also increase 
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(from 0.01 to 0.02) (Fig. 2.7, left panels) in parallel with the SPM level increase 
from spring to winter (Table 2.6). The Rrs amplitude values are around 0.012 
for 30° < SZAs < 52°, increasing to 0.015 for 52° < SZAs < 60° and are rising 
to around 0.02 for SZAs > 60°. This can be other evidence of the lower 
reliability of the retrieved WCCs during winter under high SZA conditions at the 
NJS (Table 2.5). However, it is uncertain whether the higher spectral residuals 
and consequently the worse retrieval results during winter are caused by the 
seasonal pattern of SPM concentrations and lack of seasonal SIOPs, or by the 
SZA effect. 

 Validation of the 2SeaColor model performance  

The results of the 2SeaColor model validation for modeling Rrs spectra and 
retrieving Chla and SPM concentrations are provided in Figs. 2.8, 2.9 and 2.10, 
respectively. 

(a) (b) 

 
(c) (d) 

 
Figure 2.8. Comparison between the 2SeaColor model’s best-fit spectra and in-situ Rrs 
measurements for the quality-controlled dataset between 2008 and 2010 at the NJS for 
wavelengths: (a) 443 nm; (b) 490 nm; (c) 550 nm and (d) 665 nm. 
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Fig. 2.8 presents the results of the 2SeaColor model validation for modeling 
Rrs spectra for the four wavelengths at 443 nm, 490 nm, 550 nm and 665 nm 
for the flagged meteorological, shape and sun-glint effect dataset between 
2008 and 2010 at the NJS. As this figure shows, the modeled best fitting 
spectra agree very well with measured spectra at the selected wavelengths. 
The related error statistics are also presented in Table 2.7. 
 
Table 2.7. The model’s performance evaluation for Rrs model’s best-fit spectra against 
in-situ ones for the quality-controlled dataset between 2008 and 2010 at the NJS for 
wavelengths at 443 nm, 490 nm, 550 nm, and 665 nm. 

 
The high R2 values (R2 > 0.95 for all selected wavelengths) and small RMSE 
values (0.00015 < RMSE < 0.00035) for all the quality-controlled datasets 
show that the 2SeaColor model is capable of accurately reproducing the 
measured reflectance spectra for varying WCC values at the NJS. The accuracy 
of the 2SeaColor model for retrieving Chla and SPM concentrations for the NJS 
dataset with and without winter retrievals are also illustrated in Figs. 2.9 and 
2.10, respectively. 

(a) (b) 

 
Figure 2.9. Left: comparison between retrieved and in-situ measurements of Chla 
concentration (mg m-3) for the quality-controlled dataset between 2008 and 2010 at the 
NJS; right: the same after removing winter retrievals. 
 
Fig. 2.9 presents the results of the 2SeaColor model validation for retrieving 
Chla concentrations from a time-series of daily quality-controlled Rrs 
measurements for three years at the NJS. As Fig. 2.9 left shows, the model is 
less successful in achieving reasonable retrievals in winter under high SZAs. 
However, by removal of the winter retrievals, the retrieved-measured Chla 
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scatter plot shows significant improvement (Fig. 2.9 right). The related error 
statistics are also presented in Table 2.8. 
 
Table 2.8. The model’s performance evaluation of Chla retrievals for the quality-
controlled dataset with and without winter retrievals between 2008 and 2010 at the NJS. 

SZA groups / statistical measures R2 RMSE (mg m-3) 
All dataset (Fig. 9 left) 0.79 2.57 
SZAs < 60° (Fig. 9 right) 0.80 2.98 

 
As Table 2.8 presents, the calculated R2 and RMSE values of the Chla estimates 
slightly improve (R2 from 0.79 to 0.80; RMSE: from 2.57 to 2.98) when the 
winter retrievals are removed. However, for both groups (with and without 
winter data), the statistical measures still indicate a reasonable agreement 
between the retrieved and in-situ Chla concentrations for three years at the 
NJS. 

(a) (b) 

 
Figure 2.10. Left: comparison between retrieved and in-situ measurements of SPM 
concentration (g m-3) for the quality-controlled dataset between 2008 and 2010 at the 
NJS; right: the same after removing winter retrievals. 

 
Fig. 2.10 also presents the results of the 2SeaColor model validation for 
retrieving SPM concentrations from a time-series of daily quality-controlled Rrs 
measurements for three years at the NJS. As Fig. 2.10 left shows, retrievals 
are less successful in winter under high SZAs. However, by removal of the 
winter retrievals, the retrieved-measured SPM scatter plot shows improvement 
(Fig. 2.10 right). The related error statistics are also presented in Table 2.9. 

 
Table 2.9. The model’s performance evaluation of SPM retrievals for the quality-
controlled dataset between 2008 and 2010 at the NJS. 

SZA groups / statistical measures R2 RMSE (g m-3) 
All dataset (Fig. 2.10 left) 0.66 7.65 
SZAs < 60° (Fig. 2.10 right) 0.89 2.53 
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As Table 2.9 shows, the calculated R2 and RMSE values of the SPM estimates 
improve significantly when the winter retrievals are removed. Indeed the 
model shows much better performance to retrieve SPM concentrations after 
removing the winter retrievals (R2 = 0.89, RMSE = 2.57 (g m-3)). However, as 
explained before in section 2.5.3, it is uncertain whether this model’s 
deterioration in winter is due to the seasonal pattern of SPM concentrations or 
due to the SZA effect. Moreover, the accuracy of the 2SeaColor model to 
retrieve SPM concentration is, as expected, (Salama et al., 2011; Salama and 
Stein, 2009), better than that for Chla after removal of winter retrievals. The 
R2 values are 0.89, and 0.80 and the RMSE values are 2.98 and 2.53 for 
retrieved Chla and SPM estimates, respectively. 

 Tidal effect 

To investigate the possible correlation between WCC variations and the tidal 
cycles over the year at the NJS, the two figures that were produced in section 
2.5.2 to present the time series (Fig. 2.4: Chla concentrations versus water 
depth values, Fig. 2.5: SPM concentrations versus water depth values) can be 
used. These figures show the temporal variation of the in-situ Chla and SPM 
concentrations (black dots) in comparison with their water depth values (grey 
bars), respectively. As these figures show, no temporal relationship can be 
found to prove that the concentration of Chla and SPM values at the NJS are 
affected by the level of water depth. The scatter plots of in-situ Chla and SPM 
concentrations at the NJS, and their corresponding water depth values at the 
Den Helder station are also presented in Fig. 2.11. 

(a) (b) 

 
Figure 2.11. Left: scatter plot of in-situ Chla concentrations (mg m-3) at the NJS versus 
water depth values (cm) at the Den Helder station for the quality-controlled dataset 
between 2008 and 2010; right: the same, for in-situ SPM concentrations (g m-3). 

 
As can be seen from these figures, no relationships are found between in-situ 
Chla and SPM concentrations and their corresponding water depth values. The 
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calculated correlation estimates between time series of in-situ Chla and SPM 
concentrations at the NJS corresponding to their water depth values at the Den 
Helder station at different SZA groups are also presented in Table 2.10. 

 
Table 2.10. The calculated correlation between in-situ Chla (mg m-3) and SPM (g m-3) 
concentration values between 2008 and 2010 at the NJS and their water depth values 
(cm) corresponding to different SZA groups. 

SZAs / water constituents Chla (mg m-3) SPM (g m-3) 
[30° - 37.5°) -0.02 -0.12 
[37.5° - 45°) -0.34 -0.41 
[45° - 52.5°) -0.14 -0.30 
[52.5° - 60°)   0.09 -0.01 
[60° - 67.5°)   0.03  0.07 
[67.5° - 75°]  -0.01 -0.04 

 
As shown in this table, there are no explicit relationships between measured 
measurements (i.e., Chla and SPM) and their corresponding water depth 
values. Table 2.11 presents the mean values of retrieved Chla and SPM 
concentrations by the 2SeaColor model during the flood and ebb tide for 
different SZA groups between 2008 and 2010. 
 
Table 2.11. The mean values of retrieved Chla and SPM concentrations for the flood and 
ebb groups corresponding to their SZA degrees for the quality-controlled dataset 
between 2008 and 2010 at the NJS. 

SZA / water constituent Chla (mg m-3) SPM (g m-3) 
flood ebb flood ebb 

[30°- 37.5°) 07.02 07.10 17.25 19.15 
[37.5° - 45°) 09.77 08.66 17.66 20.61 
[45° - 52.5°) 09.93 08.78 20.39 22.86 
[52.5°- 60°) 08.10 07.93 24.60 26.01 
[60°- 75°] 04.87 04.97 25.94 28.86 

 
As Table 2.11 shows, there is no large difference between the mean values of 
retrieved Chla and SPM concentrations under the conditions of flood and ebb 
for different SZAs, since the mean differences are less than 1.15 (mg m-3) and 
less than 3 (g m-3) for Chla and SPM, respectively, for all groups. Only for SPM, 
we found that the mean values at flood tend to be slightly lower, which might 
be due to the inflow of relatively clear water from the North Sea. 

2.6. Discussion 
In-situ hyperspectral measurements recorded from fixed offshore platforms 
can be a cost-effective solution to provide continuous observations for long-
term water quality monitoring (Zibordi et al., 2009, 2006). In this study, the 
two-stream radiative hydro-optical modeling of 2SeaColor was applied for the 
simultaneous retrieval of Chla, SPM and CDOM absorption from a time-series 
of in-situ Rrs measurements recorded between 2008 and 2018 at the NJS 
located at the Dutch Wadden Sea. Based on the results of this study, the 
2SeaColor model shows a good performance in modeling water leaving 
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reflectance spectra (Table 2.7) and retrieving Chla and SPM concentration 
values (Tables 2.8 and 2.9) using the implemented parameterization in this 
work (Table 2.2). The trends of retrieved Chla and SPM values (Figs. 2.4 and 
2.5) show higher values of Chla (between 10 and 35 (mg m-3)) in spring and 
lower ones in winter (between 0 and 5 (mg m-3)), as well as low values of SPM 
in spring and summer (between 5 and 30 (g m-3)), and higher values (between 
10 and 60 (g m-3)) in winter. These results are in agreement with previous 
studies for the long-term monitoring of Chla and SPM concentration variations 
during cruise measurements in the Dutch Wadden Sea (Hommersom, 2010; 
Hommersom et al., 2009). 
 
Furthermore, the performed analysis in the present study revealed that the 
accuracy of the model deteriorates during winter when the SZA effect and 
seasonal pattern of WCCs play a role in the quality of in-situ Rrs measurements, 
affecting thereby the accuracy of the retrievals. The results of this study have 
significant implications for the assessment of the causes and the consequences 
of long-term WCC dynamics in the complex turbid waters of the Dutch Wadden 
Sea using ground-based measurements and satellite images as follows: 

 Water quality monitoring using in-situ measurements 

The tidal effect evaluation of this study shows that the NJS is located at a 
favorable location at the Dutch Wadden Sea, where tides do not significantly 
influence WCCs (Table 2.10). This conclusion helps to investigate the monthly, 
seasonal and annual variation of WCCs retrieved by the 2SeaColor model from 
time series of in-situ Rrs measurements at the NJS, without concerns about the 
tidal effect on the variation of these WCCs. Otherwise, the studying of the 
temporal course would become very complicated. In other words, it is fortunate 
that tidal effects were small, since otherwise, we could hardly follow the 
seasonal courses. Once a hydro-optical model is considered sufficiently valid 
for WCC retrievals, its temporal predictions can be used for the long-term water 
quality monitoring at the Dutch Wadden Sea. The validated 2SeaColor model 
was applied to every fifteen minutes of in-situ Rrs measurements collected for 
more than one decade (from 2002 till present) at the NJS for the simultaneous 
retrieval of WCCs. These long-term retrievals can later be used to conduct the 
phenological analysis of Chla concentration and investigation of SPM variation 
at this area. Of particular interest when conducting Chla phenological analysis, 
is whether any significant decreasing trend from 2002 until present might 
indicate the influence of prior nutrient reduction management actions. This has 
remarkable applications for identifying positive anomaly occurrences and may 
operate as a warning for water management actions (Arabi et al., 2016). In 
addition, considering the fair accuracy of the 2SeaColor model (Tables 2.8 and 
2.9), these accurate long-term observational baselines of SPM and Chla can be 
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used as an indicator to check the accuracy of retrieved WCCs using other water 
retrieval algorithms in the complex Dutch Wadden Sea. 

 Water quality monitoring using satellite images 

Using a hyperspectral optical model like 2SeaColor, which has been validated 
under different conditions, and coupling its output to an atmospheric Radiative 
Transfer (RT) model like MODTRAN following Arabi et al. (2016), allows 
generating TOA radiance signals for any hyperspectral or multispectral sensor, 
thus creating a flexible solution that can be applied with any given optical 
sensor system. The modeled TOA radiance data can next be used in an 
optimization loop to retrieve all relevant WCCs. Then we will be able to produce 
retrieved WCCs using satellite images of the Dutch Wadden Sea. Regarding the 
atmospheric correction, two approaches can be followed: either the 
atmospheric parameters (aerosol type and visibility) for the whole image are 
estimated first, and next applied to the whole image, or the atmospheric 
correction parameters are retrieved pixel by pixel, along with the WCCs, in 
which case the spatial variation of atmospheric properties is accommodated 
(Arabi et al., 2016; Shen and Verhoef, 2010). At present, there is a full archive 
of MERIS images of the Dutch Wadden Sea which have been captured from 
2002 to 2012. In addition, there is free access to OLCI Sentinel-3 images of 
the Dutch Wadden Sea since February 2016 (Harvey et al., 2014). Therefore, 
producing WCC maps retrieved from time series of MERIS (from 2002 to 2012) 
and OLCI (2016 till present) images will be the next objective of this research. 
These maps can be used as baseline data for the long-term spatio-temporal 
monitoring of the area. However, due to the shallowness of large parts of the 
Dutch Wadden Sea, considering the bottom effect into the hydro-optical 
retrieval model to produce more reliable WCC maps from satellite images is 
recommended for these further studies. 

2.7. Conclusion 
From the performed analysis and evaluation of this study, we conclude that: 
(1) the 2SeaColor model is accurate enough to retrieve the concentrations of 
Chla and SPM during spring and summer for a period of three years (from 2008 
to 2010) at the NJS located in the Dutch part of the Wadden Sea; (2) the 
2SeaColor model’s retrievals of Chla and SPM deteriorate in winter. For Chla, 
the levels of Chla during winter are too low to be well detectable, and for SPM 
the concentrations in winter are higher than in the rest of the year. It is 
therefore uncertain whether the worse results during winter are caused by the 
seasonal pattern of the concentrations, or by an SZA effect; (3) the SIOPs 
measured by Hommersom et al. (2009) were found valid for the retrieval of 
Chla and SPM concentrations. However, measuring seasonally varying SIOPs 
is recommended for further studies; (4) at the NJS the tide has little observable 
effects on the diurnal changes of SPM concentration. 
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Chapter 3 Remote sensing of water quality at 
the top of atmosphere level using satellite 
images* 

                                               
* This chapter is based on:  
Arabi, B., Salama, M.S., Wernand, M.R., Verhoef, W., 2016. MOD2SEA: A Coupled 
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Observations in Complex Turbid Waters. Remote Sensing. 2016, 8(9), 722., 
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ABSTRACT  

An accurate estimation of Chla concentration is crucial for water quality 
monitoring and is highly desired by various government agencies and 
environmental groups. However, using satellite observations for Chla 
estimation remains problematic over coastal waters due to their optical 
complexity and the critical atmospheric correction. In this study, we coupled 
an atmospheric and a water optical model for the simultaneous atmospheric 
correction and retrieval of Chla in the complex waters of the Wadden Sea. This 
coupled model called 2SeaColor-MODTRAN combines simulations from 
MODTRAN and the two-stream radiative transfer hydro-optical model 
2SeaColor. The accuracy of the coupled 2SeaColor-MODTRAN model was 
validated using a matchup data set of MERIS observations and four years of 
concurrent in-situ measurements (2007–2010) at the NJS location in the Dutch 
part of the Wadden Sea. The results showed that MERIS-derived Chla from 
2SeaColor-MODTRAN explained the variations of measured Chla with a 
determination coefficient of R2 = 0.88 and an RMSE of 3.32 (mg m−3), which 
means a significant improvement in comparison with the standard MERIS Case 
2 regional (C2R) processor. The proposed coupled model might be used to 
generate a time series of reliable Chla maps, which is of profound importance 
for the assessment of causes and consequences of long-term phenological 
changes of Chla in the turbid Wadden Sea area.  
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3.1. Introduction 
Effective management of water quality in coastal regions and turbid waters 
requires accurate information about WCC changes on prolonged time scales. 
Although this may sound simple, it is an extremely challenging task. One of 
the most important WCCs is Chla concentration, which is an important factor 
controlling light attenuation in the water column and is used as a measure of 
the eutrophic state (Le et al., 2013). Chla concentration is a very crucial factor 
to understanding the planetary carbon cycle (Casal et al., 2015) and is 
considered as an important indicator of eutrophication in marine ecosystems 
that may influence human life (Moradi and Kabiri, 2015; Werdell et al., 2009). 
Chla abundance can be affected by anthropogenic nutrient supply from 
industrial and agricultural sources, where simultaneously the aquaculture 
industries and fisheries are influenced by Chla abundance (Peters et al., 2004). 
 
Long-term monitoring of Chla concentration using field measurements and 
laboratory analysis requires conventional cruise surveys with satisfactory 
temporal and spatial coverage. Unfortunately, this is often not feasible for most 
coastal regions due to lack of financial resources and technical equipment while 
it is impossible in practice to collect in-situ measurements for the whole regions 
using cruise measurements.  
 
The spatio-temporal coverage provided by remote sensing can considerably 
overcome some of these deficits in the current in-situ monitoring programs for 
WCCs (Van der Woerd and Pasterkamp, 2004). Satellite ocean color is 
especially important since it is the only remotely sensed property that directly 
identifies a biological component of the ecosystem (Casal et al., 2015). 
Regarding the spatial and temporal sampling capabilities of satellite data, 
remote sensing of ocean color is considered as the principal source of data for 
investigating long-term changes in Chla concentration and phytoplankton 
biomass in many coastal areas’ estuaries (Le et al., 2013b).  
 
The maintenance of a good environmental status in European coastal regions 
and sea has become a crucial concern embodied in European regulations 
(Marine Strategy Framework Directive, Directive 2008/56/EC of the European 
Parliament and the Council, “establishing a framework for community action in 
the field of marine environmental policy”) (Mélin et al., 2011). One of the most 
important European coastal zones which have aroused increasing attention 
from all of Europe is the Wadden Sea. For the assessment of the current role 
of the Wadden Sea as a source of Chla and organic matter, and for the ongoing 
discussion on eutrophication problem areas, it is of great interest to obtain 
more detailed knowledge on the phytoplankton and Chla changes and their 
regulating factors in this turbid coastal region of the North Sea (Hommersom 
et al., 2010). In addition, monitoring of this area is mandatory due to its nature 
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reserve status and its July 2009 inclusion on the UNESCO World Heritage List 
(Hommersom, 2010a). Recently some research into the analysis of long-term 
variations and trends in the optically active substances (Chla, SPM, CDOM) and 
watercolor changes using in-situ measurements have been conducted over 
different parts of the Wadden Sea (Hommersom et al., 2009; Philippart et al., 
2013, 2007; Poremba et al., 1999). However, using satellite observations for 
Chla estimation remains problematic in this area due to its optical complexity 
and the critical application of an accurate atmospheric correction. Recent 
efforts show that researchers are confronted with two main problems in 
improving the accuracy of derived water parameter concentration using remote 
sensing techniques in the Wadden Sea. First, most atmospheric correction 
methods fail in this region (Bartholdy and Folving, 1986; Gemein et al., 2006). 
Second, the general water property retrieval models do not work well in this 
complex turbid water (Hommersom and Researcher, 2015). Thus, the main 
purpose of this research is to tackle these two problems aiming to increase the 
accuracy of Chla concentration retrieval from earth observation data in this 
area. 

 Atmospheric correction  

Quality of the atmospheric correction is one of the most limiting factors for the 
accurate retrieval of water constituents from earth observation data in coastal 
waters (Schroeder et al., 2007). The standard atmospheric correction method 
by Gordon and Wang (Gordon and Wang, 1994) assumes a zero water-leaving 
reflectance due to high absorption by seawater in the NIR and can be 
performed by extrapolating the aerosol optical properties to the visible from 
the NIR spectral region (Goyens et al., 2013). This is not always the case when 
in turbid waters (which often are optically complex) (Jamet et al., 2011), higher 
concentrations of Chla and SPM can cause a significant water-leaving 
reflectance in the NIR (Siegel et al., 2000). Indeed, most of the atmospheric 
correction methods fail in these areas due to the complexity of the recorded 
TOA radiance signal at satellite images (Carpintero et al., 2015) as these 
signals are associated with aerosols from continental sources (Mélin et al., 
2007). In addition, in coastal waters, photons from nearby land areas can enter 
the field-of-view of the sensor (the adjacency effect) and contribute to total 
NIR backscatter (Santer and Schmechtig, 2000), whereas in shallow waters, 
TOA radiances can also be influenced by the bottom effect. 
 
Consequently, the black pixel assumption tends to overestimate the aerosol 
scattered radiance and thus underestimates the water-leaving radiance in 
these areas (IOCCG, 2000). In recent years, some studies have been 
conducted to improve the atmospheric correction over turbid waters (Hu et al., 
2000; Ruddick et al., 2006; Wang et al., 2009). For example, some efforts 
were made to improve the atmospheric correction method by assuming a zero 
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water-leaving reflectance in the shortwave infrared, even in the case of highly 
turbid waters (Wang, 2007, 2005). However, in further studies, researchers 
found that for extremely high turbidities, even in the shortwave infrared region, 
the water-leaving reflectance was not absolutely equal to zero (Wang et al., 
2011). In addition, other studies focused on the non-negligible water-leaving 
reflectance assumption in the NIR (Carder et al., 2002; Doxaran et al., 2014; 
Salama and Shen, 2010). For example, Carder et al. (2002) investigated the 
ratio of water-leaving reflectance at two NIR bands. This ratio was either 
assumed constant (Gould et al., 1999) or estimated from neighboring pixels of 
open oceans (Ruddick et al., 2000). Although the assumption of a known 
relationship between the values of water-leaving reflectance in two NIR bands 
is necessary, it is not sufficient. Indeed, accurate information about visibility 
and aerosol type is still needed (Salama and Shen, 2010). Shen et al. (2010) 
used the radiative transfer model MODTRAN to perform atmospheric correction 
for MERIS images over highly turbid waters. As shown by Verhoef and Bach 
(2007), for assumed visibility and aerosol type, MODTRAN can be used to 
extract the necessary atmospheric properties to remove the scattering and 
absorption effects of the atmosphere and to obtain calibrated surface 
reflectance, as well as correcting the adjacency effects. However, this 
technique assumes a spatially homogeneous atmosphere (Shen and Verhoef, 
2010), while in reality not only visibility but also the aerosol type may vary 
spatially within the extent of satellite images (in the presence of local haze 
variations). For example, in the case of coastal waters, some aerosol types 
(e.g., urban or rural) might exist in the regions close to the land, and other 
pixels might have the maritime aerosol type. 
 
Consequently, the assumption of a homogeneous atmosphere may lead to the 
wrong establishment of visibility and aerosol model in different parts of the 
image and may result in overestimation or underestimation of WCCs from 
ocean-color observations. The C2R processor provided by ESA for MERIS L1 
products in the MERIS regional coastal and case 2 water projects (Koponen et 
al., 2007), performs atmospheric correction pixel by pixel and contains 
procedures for determining inherent optical properties that are delivered as 
MERIS L2 products, including reflectance, inherent optical properties (IOPs), 
and water quality parameters . However, the C2R processor may be invalid for 
very Chlorophyll-rich waters like some eutrophic lakes (Duan et al., 2012) and 
for highly turbid waters (Shen et al., 2010). In this paper, by applying radiative 
transfer modeling for the non-homogeneous atmosphere and comparing the 
results with the C2R processor, we tried to improve the atmospheric correction 
technique over this coastal area. 
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 Hydro-Optical model  

After improving the atmospheric correction technique, WCC-dependent optical 
modeling of turbid waters is the next step. Improving the accuracy of water 
properties retrievals in coastal waters requires generic models that can be 
applied to these complex water bodies. For open oceans, estimation of Chla 
from earth observation data is well established (O’Reilly et al., 1998). An 
empirical algorithm is in use that, with slight modifications for the actual band 
settings, has proven to work well for instruments like SeaWiFS (Sea-Viewing 
Wide Field-of-View Sensor), MODIS and MERIS (Arnone et al., 2006; Dasgupta 
et al., 2009; O’Reilly and Maritorena, 2000). However, satellite estimation of 
Chla concentration is still difficult for coastal waters, where Chla, SPM, and 
CDOM occur in various mixtures which complicate the derivation of their 
concentrations from reflectance observations (Salama et al., 2012). Therefore, 
there is a pressing need to develop, implement and validate a self-consistent, 
generic and operational retrieval model of water quality in turbid waters.  
 
In this study, the forward analytical model of 2SeaColor (Salama and Verhoef, 
2015) was applied for the first time to retrieve Chla concentration in the 
Wadden Sea. The 2SeaColor model is based on the solution of the two-stream 
radiative transfer equations for incident sunlight and also performs well for 
turbid waters, while the commonly applied water quality algorithms might 
suffer from saturation in the presence of high turbidity. 
 
After defining the main problems of remote sensing of coastal waters described 
above, and motivated by the need for a high-quality, satellite-based long-term 
Chla retrieval in the turbid waters of the Wadden Sea, this research focused 
on the following objectives: (1) improving the accuracy of Chla concentration 
(mg m−3) retrieval from MERIS data by applying the coupled 2SeaColor-
MODTRAN model for the Wadden Sea and (2) comparing the accuracy of the 
coupled 2SeaCoLoR-MODTRAN in performing atmospheric correction and 
retrieving Chla concentration values with the ESA standard C2R processor. The 
paper is arranged as follows: the case study is described first. Then, the 
datasets used for C2R and MODTRAN simulations as well as the 2SeaColor 
model are briefly introduced. Next, we validate the derived Chla concentration 
and water-leaving reflectance values for both 2SeaColo-MODTRAN and C2R 
processor against the in-situ measurements at the NJS. Then, we evaluate the 
remote sensing (2SeaColor-MODTRAN and C2R) retrievals and compare the 
variation of 2SeaColor-MODTRAN results with similar in-situ studies in the 
Wadden Sea. Finally, we suggest some recommendations for further remote 
sensing studies in complex turbid waters like the Wadden Sea and discuss the 
applicability of this approach to other estuaries and satellite ocean color 
missions.  
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3.2. Materials and methods  

 Study area 

The Dutch Wadden Sea is a coastal area located between the mainland of the 
Netherlands and the North Sea. The area is located between the Marsdiep near 
Den Helder in the southwest and the Dollard near Groningen in the northeast 
and comprises a surface area of 2,500 km2 (Figure 3.1). This region is a 
shallow, well-mixed tidal area that consists of several separated tidal basins. 
Each basin comprises tidal flats, subtidal areas, and channels. Basins are 
connected to the adjacent North Sea by relatively narrow and deep tidal inlets 
between the barrier islands (Zimmerman, 1976). 

 
Figure 3.1. One Landsat-8 OLI image covering the Dutch Wadden Sea and parts of 
IJsselmeer lake acquired on 20 July 2016 (Color composite of red: band-5, green: band-
3 and blue: band-1). 
 
The high near-surface concentrations of water constituents, as well as the 
spatial, tidal and seasonal variations of the optically active substances (Chla, 
SPM, and CDOM), make this region an optically very complex area and a good 
representative for remote sensing studies in turbid coastal waters 
(Hommersom, 2010a).  

 In-situ dataset  

The in-situ data have been extensively used to investigate the accuracy of 
remote sensing radiometric products (i.e., the remote sensing reflectance) 
from the recorded TOA radiance in satellite observations like MERIS images 
(Zibordi et al., 2011). In this study, the in-situ above-water radiometric 
dataset was provided by the research jetty of the Royal Netherlands Institute 
for Sea Research (NIOZ) at Texel, located in the Dutch part of the Wadden 
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Sea. Every quarter of an hour, radiometric color measurements of the water, 
sun, and sky (including meteorological conditions), as well as Chla and mineral 
concentration, were recorded for over a decade. The data were collected at the 
NJS (53°00′06″N; 4°47′21″E) (Ly et al., 2014), where the newest generation 
of hyperspectral radiometers was installed for “autonomous” monitoring of the 
Wadden Sea from 2001 until the present (Wernand, 2011). The footprint size 
of the radiometer is less than a meter, and the viewing direction is not nadir 
but oblique, so the measurements on the ground are only partially 
representative of the nadir water reflectance from 300 m pixels as sensed by 
MERIS.  

(a) 

 

(b) 

Figure 3.2 (a) The location at the NJS sampling station in the western part of the Dutch 
Wadden Sea; (b) The optical system mounted on a pole on the platform of the NJS in 
the Wadden Sea (Wernand, 2011). 

 
In addition, SIOPs of water constituents in the Wadden Sea were obtained from 
Hommersom et al. (Hommersom et al., 2009), who documented SIOP 
measurements in 2007 at 37 stations in this area. 
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 Satellite images 

The MERIS sensor, operational on board the European environmental satellite 
ENVISAT between 2002–2012, was primarily intended for the ocean, coastal 
and continental water remote sensing. MERIS was an orbital sensor with 15 
bands covering the spectral range from 400 nm to 950 nm and was succeeded 
by OLCI on board Sentinel-3 beyond 2015 (Zibordi et al., 2009). The high 
sensitivity and large dynamic range of the MERIS sensor have been widely 
used for ocean and coastal water remote sensing (Zibordi et al., 2013, 2006). 
In this study, ocean color data were obtained from ESA archive of MERIS 
images (full resolution: 300 m) covering the Wadden Sea during 2002–2012 
(data provided by European Space Agency). MERIS has a revisit time of three 
days over the Dutch Wadden Sea at around 10:30 a.m. local time. The MERIS 
1b image provides TOA radiance information and some environmental 
parameters for each pixel. Some of these environmental parameters (such as 
SZA, VZA, relative azimuth angle (RAA), water vapor (H2O) and ozone (O3)) 
were used as input parameters to perform MODTRAN simulations in this study. 

 In-situ and satellite images data matchups 

Validation of ocean color products (i.e., IOPs and water-leaving radiance), 
theoretically, should be performed from in-situ measurements acquired 
simultaneously to the satellite overpass over the same location (the so-called 
matchup points) (Loisel et al., 2013). In this study, the following criteria were 
used to find matchup points between satellite observations and in-situ 
measurements: (1) all available MERIS images over the Dutch part of Wadden 
Sea between 2002 and 2012 were checked to select the cloud-free images; (2) 
a narrow time window of ±1 h was used; (3) five-by-five pixel kernels centered 
on the in-situ measurement coordinates were then extracted from the MERIS 
images using BEAM software (version 5.0) (no aggregation method was used 
to avoid possible spectral contamination); (4) finally, 35 suitable MERIS images 
were concurrent with in-situ-measured concentrations of Chla at the NJS 
during 2007–2010. 

3.3. Methodology 
The accuracy of the coupled 2SeaColor-MODTRAN model in doing the 
atmospheric correction and deriving Chla concentration values was evaluated 
against in-situ measurements and was compared with C2R results. 

 The Coupled 2SeaColor-MODTRAN model 

The developed 2SeaColor-MODTRAN method combined two look-up tables 
(LUTs) from 2SeaColor and MODTRAN as schematically shown in Fig 3.3.  
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Figure 3.3. Diagram of the coupled 2SeaColor-MODTRAN model (pixel-based). 
 
These LUTs were generated by simulating the water-leaving reflectance for 
varying ranges of the governing biophysical variables (with respect to the 
range of these WCCs at the NJS (Table 3.1)) and MODTRAN parameters based 
on different combinations of visibilities and aerosol models at specific viewing-
illumination geometries for every MERIS image, separately. Table 3.1 presents 
the LUT composition of the 2SeaColor model and the MODTRAN input variables 
in this assessment. 

 
Table 3.1. Lookup table composition of 2SeaColor-MODTRAN model. 

LUT Variables Range Increment Unit 
Chla 0 - 150 5, 0.1 mg m-3 
SPM 0 – 150  5; 0.1 g m3 
CDOM absorption 0 – 2.5 1; 0.1 m-1 
Visibility 5 – 50 1  km 
Aerosol type Rural, Maritime, Urban - - 

 
The details on the simulation of Rrs by the 2SeaColor model and TOA radiance 
by the MODTRAN radiative transfer code are described as follows: 

3.3.1.1. Reflectance simulation by the 2SeaColor forward model 

The 2SeaColor model is based on the solution of the two-stream radiative 
transfer equations including direct sunlight, as described by Duntley (1942, 
1963) (Duntley, 1963, 1941). Both the analytical forward model and the 
inversion scheme are provided in detail in Salama and Verhoef (Salama and 
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Verhoef, 2015). The reflectance result predicted by the 2SeaColor model is    
𝑟௦ௗ

ஶ , the directional-hemispherical reflectance of the semi-infinite medium, 
which is linked to IOPs by Salama and Verhoef (2015): 

1 2 1

1 2 2
sd

w

x
r

x 
  


   
(3.1) 

where x is the ratio of backscattering to absorption coefficients (x = bb/a), and 
μw is the cosine of the SZA beneath the water surface. The reflectance factor 
𝑟௦ௗ

ஶ  can be approximated by Q × R(0-) under sunny conditions, where Q = 3.25 
and R(0-) is the irradiance reflectance beneath the surface (Maritorena et al., 
1994), which can be converted to above-surface remote sensing reflectance 
(Rrs) by Lee et al. (2002). 

0.52 (0 )

1.7 (0 )rs

R
R

Q R






 (3.2) 

Total absorption and backscattering coefficient of water constituents (a and bb) 
were calculated using Eqs. (3.3) and (3.4) respectively (Hu et al., 2000; 
IOCCG, 2000). 

𝑎ሺ𝜆ሻ ൌ 𝑎ௐሺ𝜆ሻ൅𝑎஼௛௟௔ሺ𝜆ሻ ൅ 𝑎ே஺௉ሺ𝜆ሻ ൅ 𝑎஼஽ைெሺ𝜆ሻ (3.3) 

𝑏௕ሺ𝜆ሻ ൌ 𝑏௕௪ሺ𝜆ሻ ൅ 𝑏௕,஼௛௟௔ሺ𝜆ሻ ൅ 𝑏௕,ே஺௉ሺ𝜆ሻ  (3.4) 

where the subscripts W, Chla, NAP and CDOM stand for water molecules, 
Chlorophyll, non-algae particles and colored dissolved organic matter, 
respectively, as implemented in Suhyb Salama and Shen (2010), the 
absorption coefficients of the water constituents (a) are parameterized by  
Bricaud et al. (1981) and Lee et al. (1999, 1998). Also, the backscattering 
coefficients of the water constituents (bb) were parametrized by Doxaran et al. 
(2009) and Morel and Maritorena (2001). 
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In Table 3.2, [Chla], [SPM] and 𝑎஼஽ைெ(440) stand for Chla concentration, SPM 
concentration and the CDOM absorption at 440 nm, respectively. The 
absorption and backscattering coefficients of water molecules (aw and bbw) 
were taken from previous studies (Lee et al., 1998; Mobley, 1994; Pope and 
Fry, 1997) and a0 and a1 were given in Lee et al. (1998). The initial values of 
non-algae particle absorption (𝑎ே஺௉

∗ (440) = 0.036 (m2 g−1)), spectral slope of 
non-algae particles (𝑆ே஺௉= 0.011 (nm−1)), spectral slope of CDOM (𝑆஼஽ைெ= 
0.013 (nm−1)) and specific scattering coefficient of non-algae particles 
(b୒୅୔

∗ (550) = 0.282) were taken from  Hommersom et al. (2009) SIOP 
measurements at 37 stations in the Wadden Sea. Also, the initial values of γ 
and I (γ = 0.6 and I = 0.019) for the North Sea were taken from Doxaran et 
al. (2009) and Petzold (1972), respectively. In this study, we used the 
2Seacolor forward model and the various parameterizations described in Table 
3.2 to simulate the water-leaving reflectance (Rrs spectra) values for a series 
of combinations of Chla, SPM and CDOM concentration (Table 3.1) and for the 
given SZA associated with every MERIS image, separately. The simulated 
values of Rrs spectra for all MERIS bands were stored in a water LUT for the 
MERIS bands and then used as Rrs input parameters for MODTRAN to calculate 
the TOA radiances in the MERIS bands. 

3.3.1.2. TOA radiance simulation by MODTRAN 

MODTRAN is the successor of the atmospheric radiative transfer model 
LOWTRAN (Kneizys et al., 1988). It is publicly available from the Air Force 
Research Laboratory in the USA. The latest version of MODTRAN (5.2.1) 
contains large spectral databases of the extraterrestrial solar irradiance and 
the absorption of all relevant atmospheric gases at a high spectral resolution. 
The accurate calculation of multiple atmospheric scattering makes it a very 
appropriate tool for reliable simulation and interpretation of remote sensing 
problems in the optical and thermal spectral regions (Verhoef and Bach, 2003). 
To apply MODTRAN simulations, first of all, several parameters describing the 
real atmospheric conditions should be determined as inputs for this model. 
Table 3.3 shows the standard definition of MODTRAN inputs with respect to the 
ranges of average values of atmospheric and geometric variables variation 
over one image for four years of all available MERIS images between 2007 and 
2010 over the Dutch part of the Wadden Sea. In the MERIS image, some of 
the local atmospheric (O3, H2O) and geometric variables (VZA, SZA, and RAA) 
can be used as input for MODTRAN. Note that for every MERIS image a 
separate input file was created by establishing the local atmospheric (O3, H2O, 
CO2) and geometric variables (VZA, SZA, RAA) of that specific run to MODTRAN 
(Fig 3.3). These parameters could be retrieved from MERIS ancillary data per 
pixel using Matlab. 
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Table 3.3. Input parameters for MODTRAN4 simulations. 
Parameter Range or Value Unit 
Atmospheric profile Mid Latitude Summer - 
Correlated-k option Yes - 
DISORT number of streams 8 - 
Concentration of CO21 380 – 390 ppm 
H2O 0.5 – 4.5 g cm−2 
O3 250 – 450 DU 
SZA 30 – 80 degree 
VZA 5 – 30 degree 
RAA 0 – 150 degree 
Visibility 5 – 50 (1 km increment) km 
Aerosol Model Rural, Maritime, Urban - 
Surface height 0 km 
Sensor Height 800 km 
Molecular band model resolution 1.0 cm−1 
Start, ending wavelength 350−1000 nm 

1 Annual CO2 concentration level can be in Global Greenhouse Reference Network  Global Greenhouse 
Reference Network 2017. Available online: http://www.esrl.noaa.gov/gmd/ccgg/. 

 
In this study, we varied the aerosol type (rural, maritime and urban) and 
visibility (5 to 50 km with 1 km step) and thus made a total of 135 scenarios 
for each LUT and given atmospheric state and angular geometry, which were 
extracted from the MERIS image ancillary data per image. For each scenario, 
the MODTRAN Interrogation Technique (MIT) was applied by using surface 
albedos of 0.0, 0.5 and 1.0 (the MIT technique is explained in detail by Verhoef 
and Bach, (2003)). The output .tp7 file of MODTRAN quantified the TOA 
radiance spectrum for each simulated wavelength from 350 nm to 1000 nm. 
Then in the MIT, the .tp7 file was used as input to derive three MODTRAN 
parameters (gain factor (G), path radiance (L0), and spherical albedo (S)). 
These parameters are spectral variables depending on various atmospheric 
conditions Verhoef and Bach (2003). The spectral response functions (SRF) of 
the MERIS bands were convolved with the MODTRAN parameters to compute 
L0, G and S for every MERIS band and these simulations were stored in the 
atmospheric LUTs (Atmos LUTs MERIS). 

3.3.1.3. The 2SeaColor-MODTRAN retrievals 

The simulated TOA radiance of MERIS data in the MODTRAN output file, LTOA 
(Wm−2 sr−1 µm−1), Can be expressed in surface reflectance r by the following 
equation (Berk et al., 2011): 

 TOA 0 1

Gr
L L

Sr
 


 (3.12) 

where r is the hemispherical reflectance (= πRrs) leaving the water surface, L0 
is the total radiance for zero surface albedo (Wm−2 sr−1 µm−1), S is the 
spherical albedo of the atmosphere and G is the overall gain factor. In this 
study, the LUTs of water-leaving reflectance generated by the 2SeaColor model 
were used as Rrs input parameters of Equation (3.12) to calculate TOA radiance 
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for all combinations of water properties and atmospheric conditions and then 
organized in a water-atmosphere LUT (water-atmosphere). The simultaneous 
retrieval of Chla, SPM, CDOM concentration, aerosol type, and visibility was 
then performed by spectrally fitting the 2SeaColor-MODTRAN-simulated TOA 
radiances (using RMSE) to MERIS TOA radiances for all MERIS bands except 
the band numbers 1, 2 and 11. Band 11 is located in the O2-A absorption band 
and can give erroneous results due to sampling errors of MERIS. Bands 1 and 
2 gave systematic deviations in Rrs after atmospheric correction. The cause of 
this problem is presently still unknown. In this retrieval, Chla retrieval using 
the coupled 2SeaColor-MODTRAN model was performed in two steps. First the 
increments of 5, 5 and 1 were taken for Chla concentration (mg m−3), SPM 
concentration (g m−3) and CDOM absorption at 440 nm (m−1), respectively, to 
find an approximate solution. Later, in the refined step, the step size of the 
LUTs composition was reduced to 0.1 for all water constituents in the identified 
rough range resulting from the first step. Applying this approach led to 
speeding up the running of the Matlab code and to obtain more precise results. 
Although Fig. 3.3 suggests the storage of a fixed LUT for water Rrs for each 
MERIS image, this LUT was only generated in a loop, and not stored, in order 
to reduce memory requirements. The best fitting combination of water 
properties and atmospheric conditions was found during the generation of the 
water LUT, but this water LUT was never stored as such, contrary to the 
atmospheric LUT, which was actually stored. This approach also allowed 
greater flexibility by applying the two-step procedure in finding the best-fitting 
water properties, by first applying a rough search in the first round with large 
steps in the three concentrations, and in the next round a refined search with 
small steps over much smaller ranges. It should be noted that the current 
procedure applied to a single pixel per matchup date is not suitable to be 
applied pixel by pixel, and this issue is left for a future study. 

 MERIS Case-2 regional processor 

The C2R (Doerffer and Schiller, 2007), available in the Basis ERS and ENVISAT 
(A) ATSR and MERIS Toolbox (BEAM) software, has been widely used to derive 
WCCs from MERIS images (Ambarwulan et al., 2012; Attila et al., 2013; 
Beltrán-Abaunza et al., 2014; Smith et al., 2013). The C2R processor consists 
of two procedures, one for atmospheric correction and one for the bio-optical 
part for retrieving the IOPs of water columns. The Neural Networks (NNs) in 
C2R were trained with Hydrolight (Mobley, 1994) simulations and in-situ 
measurements in the German bight and from other cruises in European seas. 
More details can be found in (Doerffer and Schiller, 2007). The output of the 
C2R processor, including IOPs: the absorption coefficient of Chla at wavelength 
443 nm (aChla (443)), the absorption coefficient of CDOM (aCDOM (443)), the 
total absorption (atot (443)), and the scattering coefficient of SPM (bSPM (443)) 
were then used to define WCCs such as Chla and SPM. Equations to relate 
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BEAM processor IOPs to water quality concentrations of Chla and SPM are 
presented as follows: 

[Chla] = 21 × aChla (443)1.04 (3.13) 

[SPM] = 1.72 × bSPM (443) (3.14) 

where [Chla], [SPM], achla(443) and bSPM(443) stand for Chla concentration, 
SPM concentration, the Chla absorption at 443 nm and SPM scattering 
coefficient at 443 nm, respectively. 

 Validation 

To evaluate the accuracy of the coupled 2SeaColor-MODTRAN model and the 
C2R processor, we applied these two models to the 35 matchup moments of 
MERIS observations and four years of concurrent Chla measurements (2007–
2010) at the NJS, separately. The validation of model simulations was 
performed in two different levels of atmospheric correction and water retrieval 
models. Since the NJS is located close to the land, for every image, the darkest 
pixel from 5 by 5 pixels around the location of this station was extracted first. 
By selecting the darkest pixel from the 5 × 5 neighborhood centered on the 
jetty station, we exclude cloudy and land pixels, as well as water pixels close 
to the shore that are possibly influenced by an adjacency effect due to the near 
land area. Of course, an underlying assumption in our approach is that the 
water of the darkest pixel has the same composition as found at the location 
of the jetty station. However, since the water current is mostly strong near the 
inlet to the Wadden Sea, we are confident that the water is well-mixed, and 
local gradients in water properties are small. 

3.3.3.1. Atmospheric correction 

The accuracy of atmospheric correction methods using the coupled 2SeaColor-
MODTRAN model and C2R processor was evaluated against the in-situ water-
leaving reflectance for all 35 matchups between 2007 and 2010 at the NJS. 
Four statistical parameters, the RMSE, R2, the normalized root mean square 
error (NRMSE) and relative root mean square error (RRMSE) were used to 
quantify the goodness-of-fit between derived and measured water-leaving 
reflectance values at the NJS data where near-concurrent (±1 h) MERIS 
measurements were available. To do this, three MERIS bands 3, 5 and 7 were 
selected. Finally, the accuracy of the proposed 2SeaColor-MODTRAN model in 
doing atmospheric correction was compared against C2R processor products. 
The results of this assessment are presented in section 3.4.2. 

3.3.3.2. Water model inversion 

The accuracy of retrieved Chla concentration values using the coupled 
2SeaColor-MODTRAN model and the C2R processor were evaluated against in-
situ Chla measurements for all 35 matchup points at the NJS between 2007 
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and 2010. The results of this evaluation are presented in section 3.4.3. It 
should be mentioned that in view of the main objective of this study (retrieval 
of Chla concentration), investigation of changes in other water constituents 
(SPM and CDOM concentration) was considered to fall outside of the scope of 
this study, although these were retrieved along with Chla using 2SeaColor-
MODTRAN. In addition, the visibility and aerosol type were retrieved 
simultaneously with WCCs which were used in the model to simulate water-
leaving reflectance values based on the best matching TOA radiance by 
2SeaColor-MODTRAN coupled model. 

3.4. Results 

 The MODTRAN simulations 

The case of the three aerosol types (i.e., rural, maritime and urban) for 
visibility of 20 km on 7 October 2007 was used as an example to display the 
result of applying MODTRAN to the MERIS bands for three atmospheric 
conditions. We used the MIT method (Verhoef and Bach, 2003) to derive L0, G 
and S values using surface albedos of 0.0, 0.5 and 1.0 for the mentioned 
visibilities and aerosol types in these figures. 
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(a) 

 

(b) 

 

(c) 

 
Figure 3.4. (a to c) L0, G and S values at the visibility of 20 km and different aerosol 
types; (d) The atmospheric parameters L0, S, and G for the maritime aerosol type and a 
visibility of 20 km. 
 
The atmospheric path radiance L0 represents the case when the surface 
reflectance is zero, and the radiance at the top of the atmosphere comes from 
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atmospheric scattering alone. As Fig. 3.4 shows, L0 values decrease with 
wavelength, which means at longer wavelengths the atmosphere scatters less. 
The S presents the spherical albedo values which are not large and show a 
similar trend to L0. The gain factor G contains the product of the extraterrestrial 
solar irradiance and the total two-way transmittance through the atmosphere 
and shows a maximum at about 500 nm. L0, G and S vary with different 
combinations of aerosol types and visibilities, while for maritime and rural 
aerosol types, they have similar values. The urban aerosol model has a 
stronger absorption and always has lower values when compared to the other 
two aerosol models. Examples of the MODTRAN path radiance simulations (L0) 
from 7 October 2007, for visibilities of 5, 10 and 40 km while water-leaving 
reflectance is zero as representative for a range of haze conditions and three 
different aerosol models are presented in Fig. 3.5. 
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(a) 

 

(b) 

 

(c) 

 
Figure 3.5. TOA radiance simulated by MODTRAN for (a) rural, (b) maritime and (c) 
urban aerosol types respectively. 
 
As this figure shows, the calculated TOA radiances for the urban aerosol type 
show a lower range of variation compared to the maritime and rural cases. All 
the values of TOA radiance for the urban aerosol type are between 0 and 60 
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(Wm−2 sr−1 µm−1), while these values for maritime and rural ones vary between 
0 and 80 (Wm−2 sr−1 µm−1). On the other hand, the simulated TOA radiances 
by MODTRAN differ significantly not only with the aerosol type but also with 
visibility. Lower visibility gives higher TOA radiances. Consequently, a wrong 
assumption about visibility or aerosol type leads to a wrong calculation of 
water-leaving reflectance and as a result, the water parameter concentrations 
may be overestimated or underestimated. 

3.4.1.1. Atmospheric correction validation 

The results of performing of the coupled 2SeaColor-MODTRAN model and the 
ESA MERIS standard C2R processor to derive water-leaving reflectances for 
MERIS bands of 3, 5 and 7 against in-situ measurements are shown in Fig. 3.6. 
The statistical analysis regarding this assessment is presented in Table 3.4. 

(a) 

 

(b) (c) 

 

(d) 

 

(e) (f) 

 
Figure 3.6 Comparison between MERIS-retrieved values and in-situ measurements for 
Rrs for 35 matchups in 2007−2010 at the NJS; (a to c) represent the retrieved Rrs using 
the coupled 2SeaColor-MODTRAN model against in-situ measurements for MERIS band 
of 3, 5 and 7 (band centers: 490, 560 and 665 nm), respectively; (d to f) represent the 
retrieved Rrs values using C2R processor against in-situ measurements for MERIS bands 
centers of 3, 5 and 7 (band centers: 490, 560 and 665 nm), respectively. 

 
As can be seen from Fig. 3.6, the coupled 2SeaColor-MODTRAN model provides 
significant improvements in the atmospheric correction and the resulting 
water-leaving reflectance in comparison with C2R processor in all MERIS bands 
of 3, 5 and 7. More details of this evaluation are presented in Table 3.4. 
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Table 3.4. Models’ performance evaluation in atmospheric correction part. 
Statistical 
Measures R2 RMSE (%) NRMSE (%) RRMSE (%) 

Model/bands 3 5 7 3 5 7 3 5 7 3 5 7 
Coupled model 0.84 0.81 0.80 0.2 0.3 0.3 13 14 39 21 20 30 
C2R 0.69 0.68 0.62 0.4 0.5 0.6 28 24 25 44 33 54 

 
As the statistical measures show, performing atmospheric correction by 
applying the MODTRAN lookup table proposed in the coupled 2SeaColor-
MODTRAN model resulted in a reasonable accuracy against in-situ above the 
water radiometric dataset for 35 matchups between 2007−2010 at the NJS for 
bands 3, 5 and 7 respectively. In addition, the 2SeaColor-MODTRAN coupled 
model shows significant improvement especially in band 3 with R2 = 0.84, 
RMSE = 0.0022, NRMSE = 13.18% and RRMSE = 21.08% in comparison with 
C2R. The standard C2R processor also shows higher accuracy for band 3 (R2 = 
0.69, RMSE = 0.0047) in comparison with bands 5 (R2 = 0.68, RMSE = 0.0058) 
and 7 (R2 = 0.62, RMSE = 0.0063), respectively. 

 Water retrieval validation 

The comparisons of C2R and 2SeaColor-MODTRAN Chla retrieval against in-
situ measurements are shown in Fig. 3.7 and related statistical analysis are 
presented in Table 3.5. 

(a) (b) 

 
Figure 3.7. Comparison between MERIS-derived and measured log Chla (mg m−3) for 35 
matchup moments. 
 
Assessing the model accuracy using R2 and RMSE shows the reasonable 
agreement between the measured and retrieved Chla (mg m−3) for all the 
matchup points during 2007–2010 at the NJS with a significant regression (Fig. 
3.7: R2 = 0.88 and RMSE = 3.32 (mg m−3)) during the period of four years. In 
addition, the comparison of this model with the C2R processor shows 
significant improvement in the retrieval of Chla. The result of this comparison 
is presented in Table 3.5. 
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Table 3.5. Models performance evaluation Chla retrieval. 

 
There are several possible reasons for the improvement of 2SeaColor in the 
retrieval of Chla in comparison with the C2R procedure, but the most obvious 
one is probably that the SIOPs used in the training of the C2R neural networks 
might be more generic and thus different from the ones used in this study and 
which are more applicable to the Wadden Sea. In addition, the derived Chla 
data for 35 matchups between 2007–2010 by the coupled 2SeaColor-
MODTRAN model was examined to see how well the in-situ values (mg m−3) 
agreed with those derived from the MERIS images (mg m−3) at the NJS (Fig. 
3.8). In this figure, the X-axis presents the date while the Y-axis presents the 
Chla concentration for in-situ data (in blue), the coupled 2SeaColor-MODTRAN 
model (in red) between 2007 and 2010. 

 
(a) 

 

(b) 

 
  

Statistical Measures R2 RMSE NRMSE (%) RRMSE (%) 
Coupled 2SeaColor-MODTRAN model 0.88 3.32 15.25 53.31 
C2R 0.17 4.42 20.30 70.98 
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(c) 

 

(d) 

 
Figure 3.8. (a to d) The four-year comparison of derived Chla values using the coupled 
2SeaColor-MODTRAN model (red line) and in-situ measurements (blue line) (mg m−3) 
from 2007−2010 at matchup moments. 
 
As Fig. 3.8 shows, the derived Chla concentration values using the coupled 
2SeaColor-MODTRAN model shows reasonable agreement during 2007–2010, 
with maximum retrieved values of around 40 (mg m−3) and minimum values 
just above zero. However, despite the agreement between MERIS-derived and 
in-situ Chla in a four-year period, systematic overestimations at high Chla 
concentration values (during April and May) (mg m−3) were also identified. 
Chla products, particularly during the phytoplankton bloom seasons of spring 
and summer, require further development. This overestimation might be 
explained by the Chla parametrization of the Lee et al. (1999) model since it 
appears that the Chla model calibration based on that model does not fit that 
well for the Wadden Sea. This Chla overestimation using satellite images was 
also in agreement with a Chla retrieval overestimation in most of the European 
seas studies by Zibordi et al. (2013). 
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3.5. Discussion 
Accurate estimation of water-leaving reflectance from satellite sensors is a 
fundamental goal for ocean color satellite missions Zibordi et al. (2012). The 
commonly applied atmospheric correction methods based on zero water-
leaving reflectance in the near-infrared bands fail when applied to turbid waters 
since the high concentrations of water constituents lead to a detectable water-
leaving reflectance in the near-infrared region in the satellite image. In this 
study, we focused on the long-term retrieval of Chla concentration from MERIS 
images in the Wadden Sea, and the coupled 2SeaColor-MODTRAN model is 
proposed as a tool to improve the retrieval of Chla concentration from earth 
observation data in this area. 
 
Calculating accurate water-leaving reflectance spectra to translate them into 
Chla concentration under different atmospheric conditions is a crucial part of 
this study, since the atmosphere, in most cases, contributes more than 90% 
of the TOA radiance signal (Shen and Verhoef, 2010). We can attribute the 
success of the coupled 2SeaColor-MODTRAN model to its capability of 
combining simulations from 2SeaColor with the MODTRAN radiative transfer 
model for different combinations of aerosol type, visibility, and water 
constituent concentrations for all MERIS bands to simulate TOA radiances, 
instead of applying the routine atmospheric correction and water retrieval 
algorithms, separately. Furthermore, based on a heterogeneous atmosphere 
assumption of the coupled 2SeaColor-MODTRAN model, this technique can 
help suppress the influence of local haze variations in satellite images. Thus, 
applying this method results in a considerable improvement of the accuracy of 
the atmospheric correction, which is the most problematic part of remote 
sensing data processing for turbid waters like the Wadden Sea.  
 
However, satellite estimation of Chla concentration is still difficult for coastal 
waters, where Chla, SPM, and CDOM occur in various mixtures which 
complicate the derivation of their concentrations from reflectance 
observations. The 2SeaColor model performed well while the commonly 
applied water quality algorithms might fail in water constituent retrieval. Fig. 
3.9 shows an example of coupled 2SeaColor-MODTRAN model spectral 
matchings for 2 October 2007. 
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(a) (b) 

 

(c) (d) 

 
Figure 3.9. (a) the best match identified by the coupled model between simulated TOA 
radiances vs. pixel TOA radiance; (b) the spectral differences between observed and 
simulated TOA radiance; (c) the simulated Rrs (extracted from the best TOA radiance 
match) vs. the simulated 2SeaColor Rrs; (d) the spectral differences between simulated 
Rrs by 2SeaColor and atmospherically corrected Rrs from observed TOA radiance by 
2SeaColor-MODTRAN. 
 
As this figure shows, good matches are found between modeled and observed 
TOA radiance as well as modeled and atmospherically corrected water-leaving 
reflectance with respect to identified visibility and aerosol type by the coupled 
model. All in all, assessing the 2SeaColor-MODTRAN Chla retrievals from 
MERIS data at one location (the NJS) for a period of four years (2007–2010) 
shows reasonable agreement with in-situ measurements (R2 = 0.88, RMSE = 
33.2%). The 33.2% RMSE appears reasonable enough, as compared with the 
validation of the SeaWiFS Chla data product for global open ocean waters with 
a relative RMSE of about 58% (Le et al., 2013a). In addition, this model shows 
considerable improvement to retrieve Chla concentration from satellite images 
in comparison with similar studies for the Wadden Sea (Hommersom, 2010b; 
Hommersom et al., 2009; Philippart et al., 2013, 2007; Poremba et al., 1999). 
The results of retrieved Chla concentration using this coupled model are within 
the range of measured Chla concentration (mg m−3) on the ground reported 
by other researchers, while a clear seasonal pattern is observed with the peak 
values during spring (in May). For example, Hommersom (2010b) reported 
Chla concentration range variations in the Wadden Sea during eight surface 
water sampling campaigns in 2006−2007 in 156 stations while Chla also 
showed a strong seasonal pattern with the highest values during spring in May. 
Chang et al. (2006) showed the higher Chla concentrations occurred in May. 
Reuter et al. (2009) provided continuous data on Chla concentration of the 
Wadden Sea at a time series station established in autumn 2002 by the 
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University of Oldenburg. They reported a clear seasonal pattern in Chla 
concentration between 2007 and 2008 which has the highest values in May 
and the lowest values in November. Tillmann et al. (2000) showed a large 
variability of Chla concentration over the year in the Wadden Sea. Winter 
concentrations were much lower than summer concentrations while in spring 
a phytoplankton bloom with peak concentrations occurs. Cadée (1996) showed 
that yearly patterns of Chla concentration were similar in the Wadden Sea, 
although the overall inter-annual variability is large, as well as the maxima 
measured during spring bloom (in May). All in all, regarding the reasonable 
agreement of the 2SeaColor-MODTRAN results with in-situ measurements and 
considering the turbid nature and complex heterogeneity in the turbid Wadden 
Sea, the performance of this coupled model should be regarded as encouraging 
and satisfactory enough.  
 
It is also worth mentioning that in shallow coastal waters like the Wadden Sea 
the bottom might influence the reflected signal to the sensor. This is not the 
case for the NJS where, due to the depth of > 5 m and the high turbidity of 
the water (Table 3.1) near the NJS and the surrounding area, the bottom effect 
on observed reflectance is negligible. This has been confirmed in the quality 
check of the NJS data and the corresponding MERIS pixels. However, in the 
other shallower parts of the Wadden Sea, the bottom effect might contribute 
substantially in the visible region of the spectrum. As can be seen in Fig. 3.1, 
the effect of the bottom is visible in large areas of the Wadden Sea satellite 
image. Thus, for shallow waters, it is recommended in future studies to develop 
water constituent retrieval algorithms by incorporating sea bottom effects in 
the hydro-optical model. We speculate that developing a hydro-optical model 
including the bottom effect may lead to significant improvements in the derived 
WCCs from earth observation data in this shallow coastal region. That is why, 
in the next phase of this research, we are going to include the bottom effect 
contribution into the TOA radiance calculation to derive and provide Chla 
concentration maps over the Wadden Sea.  
 
For the Wadden Sea, and many other estuaries, knowledge of local SIOPs to 
locally calibrate retrieval algorithms is often lacking, and more research is still 
needed. For the Wadden Sea, Peters (2001) reported a complete set of SIOPs 
for Chla, SPM and CDOM measurements. However, the data of Peters were all 
collected at one location (the Marsdiep inlet) and only for two days (in May 
2000). After that, the only published set of SIOP measurements in the Wadden 
Sea was constructed by Hommersom et al. (2009). Using Hommersom’s 
measurements, SIOPs increased the accuracy of the derived Chla 
concentration significantly in comparison to previous efforts in this region. 
However, Hommersom’s measurements lack seasonal information on the 
SIOPs while there is currently not much information on the SIOPs to be the 
basis for a hydro-optical model for the Wadden Sea. Without any doubt, having 
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seasonal SIOPs may lead to improved accuracy of retrieved Chla using this 
coupled model. Thus, more in situ data (especially on SIOPs) is still necessary 
for the model calibration.  
 
Although our current efforts are centered on validating the proposed coupled 
atmospheric-hydro-optical model in the highly turbid Wadden Sea using MERIS 
satellite images, it is unclear how broadly applicable this coupled model will be 
and to what extent these findings could be generalized. Thus, we suggest 
extending this study to other parts of the world using various ocean color 
remote sensors. However, to apply this method to other regions, first, the 
availability of valid SIOPs (water quality constituent’s absorption and 
backscattering coefficient), in addition to the accurate ecological and 
geophysical knowledge of the interest area (i.e., the ranges of WCCs) are 
needed. Furthermore, spectral response functions of the desired sensor as well 
as atmospheric parameters and illumination geometry of the satellite image to 
run MODTRAN are required. As a consequence, access to accurate in-situ 
water-leaving reflectance and WCC is essential for the assessment of primary 
data products from satellite ocean color missions (Zibordi et al., 2009) using 
the proposed approach.  
 
The Water Framework Directive regulations from the European Union force 
member states to monitor all their coastal areas (Environment Directorate-
General of the European Commission, 2000). Availability of one decade of 
MERIS images (2002–2012) over the Wadden Sea, allows providing long-term 
Chla distribution maps using this coupled model with reasonable accuracy and 
to conduct a one-decade phenological analysis in this area. To provide Chla 
concentration maps with reasonable accuracy, the proposed method should be 
applied pixel by pixel for the whole region of interest. To speed up the pixel-
based approach, a filter can be introduced to remove those combinations of 
visibilities and aerosol types from the MODTRAN LUT which result in negative 
water-leaving reflectance values in any band, by considering the recorded TOA 
signal per pixel. On the other hand, other WCCs like SPM and CDOM as well as 
visibility and aerosol model maps can be produced as the output of the 
2SeaColor-MODTRAN code. Of particular interest when analyzing the variability 
in the MERIS-derived Chla data trend for the Wadden Sea is whether any 
significant decreasing trend from 2002–2012 would indicate the effect of prior 
nutrient reduction management actions. This has significant implications for 
identifying positive anomaly events and may act as an alert for management 
actions. Clearly, climatic variability needs to be considered carefully when 
interpreting the long-term data trends and when making management 
decisions (Le et al., 2013a). 
 
Furthermore, this established MERIS-based Chla data record may serve as 
baseline data to continuously monitor the estuary’s eutrophic state, and the 
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validated algorithm may extend such observations to the future using various 
satellite continuity missions. The OLCI, embedded on the Sentinel-3 platform, 
is a sensor especially adapted for aquatic remote sensing (Harvey et al., 2014) 
and succeeded the MERIS sensor in 2015 (Saulquin et al., 2016). The launch 
of Sentinel-3 and OLCI will secure future consistent operational monitoring by 
medium resolution data for water quality assessment also of coastal zones and 
bays (Harvey et al., 2014). OLCI is designed mainly for global biological and 
biochemical oceanography, which constrains its spatial resolution. On the other 
hand, the asymmetric view of OLCI will offer sun-glint free images in 21 
spectral bands (from ultraviolet to near-infrared wavelengths) with improved 
spatial coverage and temporal frequency. OLCI will provide high quality optical 
ocean observations (e.g., normalized water-leaving radiance, inherent optical 
properties, spectral attenuation of down-welling irradiance, photosynthetically 
active radiation, particle size distribution) and allow more accurate retrieval of 
the ocean color variables (e.g., Chla, SPM and CDOM concentrations) 
(Malenovský et al., 2012) where the OLCI bands are optimized to measure 
ocean color over open ocean and coastal zones. Sentinel-3 was successfully 
launched in February 2016 and will give free access to satellite data of the 
Wadden Sea. It is expected that the 2SeaColor-MODTRAN coupled model will 
also operate successfully to derive Chla concentration using OLCI images for 
highly turbid waters and that it will result in an accuracy improvement in 
atmospheric correction and Chla retrieval aspects in comparison with the 
MERIS sensor. Thus, applying this method for further studies using OLCI data 
over the Wadden Sea is recommended. 

3.6. Conclusions 
A coupled atmospheric-hydro-optical model (2SeaColor-MODTRAN) has been 
proposed and validated to derive long-term Chla concentration (mg m−3), 
visibility and aerosol type from MERIS observations for the turbid coastal area 
of the Wadden Sea. At one location, the model validation showed a good 
agreement between MERIS-derived and measured Chla concentration for a 
period of four years (2007–2010). We attribute the success of this approach 
to the simultaneous retrieval of atmosphere and water properties. In addition, 
we have found that water and atmospheric properties have different effects on 
TOA radiance spectra and therefore these are separately retrievable from 
MERIS data if the coupled 2SeaColor-MODTRAN model is used. Using this 
coupled atmospheric-hydro-optical model led to considerable improvement for 
the simultaneous retrieval of water and atmosphere properties using earth 
observation data, with significant results in the accuracy in comparison with 
other algorithms applied to derive Chla in the Wadden Sea. 
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Chapter 4 Long-term variability of water 
constituent concentrations in the Wadden Sea: 
integration of in-situ and satellite observations* 
  

                                               
* This chapter is based on:  
Arabi, B., Salama, M.S., Pitarch, J., Verhoef, W., 2020. Integration of in-situ and multi-
sensor satellite observations for long-term water quality monitoring in coastal areas. 
Remote Sensing of Environment Journal, 239 (2020) 111632. 
https://doi.org/10.1016/j.rse.2020.111632. 
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ABSTRACT  

Recently, there is a significant effort in the integration of in-situ and satellite 
observations for effective monitoring of coastal areas, as stated by Copernicus: 
the European Earth Observation Programme. In this study, 15-years diurnal 
variation of water constituent concentrations (WCCs) retrieved from the 
integration of in-situ and multi-sensor satellite images was tracked by using 
Radiative Transfer (RT) modeling in the Dutch Wadden Sea, The Netherlands. 
First, the existing RT model of 2SeaColor was applied for simultaneous retrieval 
of WCCs (i.e., Chla, SPM, CDOM) from time series of in-situ hyperspectral 
measurements collected in a daily basis between 2003 and 2018 at the NIOZ 
jetty station (the NJS) located in the Dutch part of the Wadden Sea. Second, 
the existing coupled RT model of coupled 2SeaColor-MODTRAN was applied, in 
the same area for the same period, to retrieve WCCs from time series of multi-
sensor satellite images of MERIS, Multispectral Instrument on board Sentinel-
2 (MSI), and Ocean and Land Colour Instrument on board Sentinel-3 (OLCI). 
At the location of the NJS, a direct comparison of retrievals (Taylor diagram 
and statistical analysis) from in-situ and satellite observations showed that 
both RT models of the 2SeaColor and coupled 2SeaColor-MODTRAN are 
comparable in terms of obtained coherent results at water surface and TOA 
level: (the Coefficient of Determination: R2 ~ 0.70 for Chla, SPM and CDOM; 
the Correlation Coefficient: R > 0.80 for Chla, SPM and CDOM and the Root 
Mean Square Error (RMSE): 8 (mg m-3), 5.5 (g m-3), 0.18 (m-1) for Chla, SPM 
and CDOM, respectively). Finally, the coupled 2SeaColor-MODTRAN model was 
applied to MERIS and OLCI images to generate WCCs over the study area. The 
established long-term WCCs data and the generated maps of this research 
have remarkable applications for recognizing anomaly events and can be 
served as a warning for management actions at the complex coastal waters of 
the Wadden Sea.  
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4.1. Introduction 
In a world where coastal areas are home to approximately one-third of the 
world’s population (UNEP, 2006), monitoring is essential to discover whether 
there are significant changes taking place in these natural environments (Burt 
et al., 2014; Zielinski et al., 2009). Coastal waters are the critical habitat for 
many marine species and are the basis for many economic concerns important 
to society and local economies, including fisheries, coastal recreation, and 
tourism activities (Halliday et al., 2014; Van der Wal and Pye, 2003; Zielinski 
et al., 2002). Monitoring of these essential global resources is a key feature of 
a sustainable future considering the provided facts (i.e., Goal-14: Conserve 
and sustainably use the oceans, seas and marine resources) by the recent 
Sustainable Development Goals’ (SDGs) report (McInnes, 2018) which says 
(the facts are taken from the SDGs report directly):  
 
 “Over three billion people depend on marine and coastal biodiversity for 

their livelihoods.” 
 “Globally, the market value of marine and coastal resources and industries 

is estimated at $3 trillion per year or about 5 percent of global GDP.”  
 “Marine fisheries directly or indirectly employ over 200 million people.” 
 “Coastal waters are deteriorating due to pollution and eutrophication. 

Without concerted efforts, coastal eutrophication is expected to increase in 
20 percent of large marine ecosystems by 2050.” 

 
Moreover, as it is reported in Goal-6 (i.e., Ensure access to water and 
sanitation for all) of SDGs, it is crucial to have effective and global water quality 
monitoring since inadequate water quality directly influence peoples’ lives by 
having negative impacts on their livelihood choices, food security, etc., 
(McInnes, 2018). However, at the current time, there is a continuous 
deterioration of coastal waters owing to global urbanization of coastal regions, 
massive discharges of sewage, effluents, industrial and agricultural run-off 
which causes a significant impact on the quality of coastal waters. This may 
lead to change the nutrient components and triggering toxic algal blooms and 
influence biodiversity, recreation, tourism fisheries, and other activities (Mishra 
et al., 2015). In recent decades, water sector decision-makers and coastal 
planners have been urged to establish regulations for effective monitoring of 
these vital areas in order to avoid more deterioration and to sustainable 
conservation of these natural resources. With this respect, in December 2000, 
the European Parliament adopted the Water Framework Directive (WFD) (WFD, 
2000) to force all members’ states to observe the quality of the water in coastal 
and inland waters. Accordingly, the Marine Strategy Framework Directive 
(MSFD) followed the same objective to monitor and protect coastal waters 
aiming to maintain them in a suitable ecological status (Mélin et al., 2011). 
One of the most important European coastal areas, which has drawn great 
attention in Europe, is the Wadden Sea. Conservation of this tidal ecosystem 
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as the largest unbroken system of intertidal mudflats in the world, and as one 
of the 193 natural World Heritage properties, has become compulsory since 
July 2009 (Sijtsma et al., 2015). Accordingly, particular attention has been 
paid by the Netherlands, Denmark, and Germany to protect this area since the 
early years of the last century (Bartholdy and Folving, 1986; Brockmann and 
Stelzer, 2008; Staneva et al., 2009).  
 
Maintaining this area in a healthy state requires a continuous approach to track 
the spatio-temporal variation of water quality variables in order to capture 
information on dynamic events which might have a substantial impact on 
ecosystems such as changes caused by storms or unexceptional phytoplankton 
blooms (Brando and Dekker, 2003; Bukata et al., 1995; Garaba and Zielinski, 
2015). SPM, Chla, and CDOM concentrations are amongst the most important 
water quality variables that need to be monitored to understand the process 
of such dynamic events and their impact on aquatic ecosystems. Tracking of 
long-term variation of these water constituents reveals important patterns, 
which allows trends, cycles, and rare events to be identified (Burt et al., 2014).  
 
The first constituent to be monitored is Chla. Accurate estimation of Chla 
concentration, as the main proxy measure of phytoplankton abundance, is a 
key factor to the understanding of the planetary carbon cycle as a crucial 
indicator of eutrophication in marine ecosystems (Murphy et al., 2001; Werdell 
et al., 2009). Chla amounts are influenced by anthropogenic nutrients of 
agricultural and industrial origin, whereby fisheries and aquaculture can be 
affected by Chla abundance (Peters et al., 2004). The second constituent to be 
monitored is SPM. A reliable estimate of SPM concentration is crucial for many 
water quality studies, as SPM is responsible for most of the scattering, which 
affects the water reflectance by modifying the light field (Kirk, 1994). Accurate 
estimation of SPM concentration and its variation are considered as factors of 
great interest for sediment transport and may indicate the transport of organic 
toxins (e.g., Malmaeus and Håkanson, 2003; Ruddick et al., 2008). Moreover, 
hydrochemical and ecological models need reliable SPM values to be used as a 
proxy for terrestrial input, re-suspension or the sedimentation of particles 
(Blaas et al., 2007; Fettweis and Van Den Eynde, 2003; Lindstrom et al., 
1999). SPM contains both inorganic and organic fractions. The inorganic 
fraction consists mostly of mineral particles originating from river discharge 
and erosion. The organic part of SPM consists of organic detritus, 
phytoplankton, and bacteria (Bowers and Binding, 2006; Bukata et al., 1995; 
Jerlov, 1976). In addition to Chla and SPM, CDOM is another relevant 
component in water quality studies since it controls the functioning of 
ecological processes and biogeochemical cycles of marine ecosystems. CDOM 
is produced by phytoplankton degradation and bacterial decomposition while 
riverine discharge is another main source of CDOM in most coastal waters (Yu 
et al., 2016b; Zielinski and Brehm, 2007).  
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One way to obtain information on Chla, SPM and CDOM concentrations and 
variations is to direct water sampling and to collect in-situ measurements. 
Indeed using in-situ measurements provide most accurate and reliable 
information. However, monitoring of WCCs using in-situ measurements and 
direct water sampling needs conventional cruise surveys with satisfactory 
spatial and temporal coverage. Unfortunately, this is not often practical for 
various coastal waters due to lack of technical equipment and financial 
resources (Friedrichs et al., 2017; Philippart et al., 2013; Vries et al., 1998).  
 
Remote sensing is an efficient technique that can provide information on WCC 
variations on high spatio-temporal scales (Harvey et al., 2014; Kirk, 1994; 
Philippart et al., 2013; Salama et al., 2012a; Shen et al., 2010; Van der Wal 
et al., 2005). Optical remote sensing of water quality using satellite images is 
the backbone of aquatic ecosystem studies as it can provide a long-term 
spatio-temporal determination of WCC patterns, although operational 
applications are still limited by deficits of in-situ verification. That is why the 
integration of in-situ and satellite observations is a great step to reduce 
uncertainties in long-term water quality studies (Chen et al., 2007, 2004)  
Indeed, combination of WCCs data obtained from in-situ and satellite 
observations is an optimal remote sensing approach to provide high temporal 
resolution information on water surface properties with the final aim of 
generating more accurate WCC maps for effective monitoring of coastal regions 
(Lawford et al., 2013). However, this is a challenging task due to the main 
problems of i) availability of long-term observations and ii) reliability of 
retrieved information (Doerffer and Fischer, 1994; Eleveld et al., 2014; Lee et 
al., 2011; Reid et al., 1990; Ryu et al., 2008; Van Raaphorst et al., 1998; 
Wang et al., 2007; Zibordi et al., 2012) as follows:  
 
First, in water-surface level, availability of long-term remote sensing 
observations is dependent on many factors such as having access to advanced 
instruments/sensors, doing a consistent survey on the automatic sensors and 
performing regular calibration/validation on instruments (Wernand et al., 
2006). Moreover, it is vital to apply suitable data quality control approach on 
the recorded dataset to extract high-quality observations (Arabi et al., 2016; 
Cadee and Hegeman, 2002; Hommersom et al., 2010; Philippart et al., 2013, 
2010; Van der Woerd and Pasterkamp, 2008). Availability of long-term 
observations in TOA level is even more difficult. Only a limited number of 
satellites are practical to be used for water quality monitoring where some of 
them may not cover the region of interest (Niedermeier et al., 2005; Wang, 
1997; Wimmer et al., 2000). Moreover, not only all satellites images are not 
free, but also many satellite images are not usable due to the occurrence of 
series cloud/rain or local haze at the time of satellite overpass (Arnone et al., 
2006).  
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Second, retrieving reliable information from the high-quality in-situ dataset or 
clear satellite images is complicated due to high turbidity, the mixture of WCCs 
and local haze variations in the atmosphere. As a result, most of the regular 
atmospheric correction methods and water retrieval algorithms fail for accurate 
retrieval of WCCs in these areas (Albert and Mobley, 2003; Salama et al. 2004; 
Ceyhun and Yalçin, 2010; Garcia et al., 2018; Gitelson et al., 2008; Lee et al., 
2001; Maritorena et al., 1994; Salama et al., 2012a; Sathyendranath and 
others, 2000; Shen and Verhoef, 2010; Shi and Wang, 2007; Siegel et al., 
2000). With the unique opportunity of having access to the full archive of 15-
years of diurnal in-situ hyperspectral measurements and multi-sensor satellite 
images (MERIS, MSI, OLCI), and having access to developed RT models of 
2SeaColor (Salama and Verhoef, 2015) and coupled 2SeaColor-MODTRAN 
(Arabi et al., 2016), evaluated and validated over the Dutch Wadden Sea, the 
main objective of the research was to combine in-situ and satellite observations 
for long-term water quality monitoring in this complex study area. Following 
the mentioned objective, the current paper is arranged as follows: the study 
site and the used datasets are described in sections 4.2 and 4.3. The 
methodology is described in section 4.4, and the results, implications and some 
recommendations for further studies are described in sections 4.5 and 4.6. 

4.2. Study area 
The case study of this research is the Dutch Wadden Sea. This region covers a 
surface area of approximately 2500 km2 and is located in the north of the 
Netherlands. The area is shallow, leading to surfacing mudflats with low tide 
and re-suspension due to tidal currents. The region contains 11 islands, which 
extend from west to east (Dube, 2012). Fig. 4.1 shows an OLCI satellite image 
covering the parts of the Dutch mainland and the island of Texel at the bottom 
left and the islands Vlieland and Terschelling to the northeast from Texel. The 
location of the NJS (53°00′06″N; 4°47′21″E) is shown by a red dot in the 
Western-South of the image. 
 

Figure 4.1. One OLCI image covering the 
Dutch Wadden Sea and parts of Ijsselmeer 
lake (5th of March 2018); the location of the 
NJS is shown in red dot; image color 
composition using OLCI bands: red: band-
18; green: band-9; blue: band-4. 



Chapter 4 

81 

The climatological condition of the Dutch Wadden Sea, by having mostly cloudy 
and rainy days, fair concentrations of WCC besides the shallowness of the 
water, make this region as a complex case study for water quality monitoring 
using remote sensing approaches (Hommersom, 2010). 

4.3. Dataset 
The used dataset in this research contained three groups of in-situ Chla and 
SPM concentrations, in-situ hyperspectral measurements and multi-sensor 
satellite images as follows: 

 In-situ Chla and SPM concentrations 

The first used dataset of this study was a time series of in-situ measurements 
of Chla (mg m-3) and SPM (g m-3) concentrations collected in a daily basis 
under the condition of SZAs < 60° between 2008 and 2010 at the NJS. This 
dataset was taken from other study conducted by Arabi et al. (2018) and was 
used to show the temporal agreement of retrieved Chla and SPM 
concentrations from in-situ hyperspectral measurements and satellite images 
with in-situ ones at the NJS (Fig. 4.13). 

 In-situ hyperspectral measurements 

In this study, we used a time series of in-situ hyperspectral measurements 
collected between 2003 and 2018 at the NJS. There is a radiometric setup 
mounted 5 meters above the water surface at this station which is responsible 
for the automatic recording of every fifteen minutes of hyperspectral 
measurements between 350 nm between 950 nm (increment: 1 nm) since 
2002 till present (Wernand, 2011). This radiometric setup contains six TRIOS 
sensors which includes one Ramses-ACC sensor for measuring down-welling 
irradiance values (Es), one Ramses-ACC-UV sensor for measuring down-welling 
irradiance values at ultraviolet (Es - UV), and two pairs of Ramses-ARC sensors 
for measuring sky radiance values (Lsky) and surface radiance values (Lsfc) 
looking to South-West and South-East, separately (Fig. 4.2). 
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Figure 4.2. The optical sensors with the VZA of 35° installed on the NJS, Marsdiep inlet 
(53°00′06″N; 4°47′21″E), the Dutch Wadden Sea (Wernand, 2011); w: looking at 
water; s: looking at sky; 1: down-welling irradiance sensor at ultraviolet (ES - UV); 2: 
down-welling irradiance sensor (ES); 3: the surface radiance sensor looking to South-
East (Lsfc (South-East)); 4: the surface radiance sensor looking to South-West (Lsfc (South-West)); 

5: the sky radiance sensor looking at the South-East (Lsky (South-East)); 6: the sky radiance 
sensor looking at the South-West (Lsky (South-West)). 
 
For this study, we used those hyperspectral measurements which were 
recorded from 9:30 a.m. to 11:30 p.m. (UTC) per day. The reason for this time 
selection was to select those measurements which were in concurrent with the 
time of MERIS, MSI and OLCI overpass, simultaneously, at the study area. 
Moreover, we excluded those hyperspectral measurements which were 
recorded during winter time and under the condition of SZAs > 60° from the 
dataset. As Arabi et al. (2018) showed, these measurements are not reliable 
enough for doing retrievals by hydro-optical models. They pointed the effect of 
high SZA, higher sensitivity of the measurements to sun-glint and skylight and 
lack of information about the seasonal SIOPs, as the main reasons behind the 
model's deterioration during winter (Arabi et al., 2018). Accordingly only the 
hyperspectral measurements collected from March to September (SZAs < 60°) 
were selected for further analysis. 

 Satellite images 

We used three multispectral satellite images of MERIS, MSR, and OLCI in this 
study. We did data quality control check on satellite images by exclusion all 
cloudy and hazy images. Also, as it was explained above, we used only those 
images which were captured from March to September over the study area 
(SZAs < 60°). Below the description of these satellites and the number of the 
used images per each satellite is described in details: 
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4.3.3.1. MERIS images 

We used a full archive of MERIS images captured between 2003 and 2012. The 
MERIS sensor (full resolution: 300 m) was operational on the board of the 
European environmental satellite ENVISAT in March 2002 (Shen et al., 2010). 
The high sensitivity and extensive dynamic range of the MERIS sensor have 
been widely used for ocean and coastal water remote sensing studies (Majozi 
et al., 2014; Pasterkamp et al., 2003; Pitarch et al., 2017). The MERIS sensor 
had a revisit time of three days on average at around 10:30 a.m. (UTC) over 
the study area with 15 bands covering the spectral ranges from 400 nm to 950 
nm (Salama et al., 2009). In this study, we used 207 cloud-free MERIS images 
(SZAs < 60°) from which 145 images were in concurrent with in-situ 
hyperspectral measurements at the NJS (MERIS-matchups). 

4.3.3.2. MSI images 

European Space Agency (ESA) launched MSI on board Sentinel-2 in June 2015 
which opened a potential in remote sensing of coastal waters (Orlandi et al., 
2018; Pahlevan et al., 2017). The MSI sensor has a revisit time of five days at 
around 11 a.m. (UTC) over the study area with 13 bands covering the spectral 
ranges from 400 nm to 2400 nm. The MSI spatial resolution is much higher 
than MERIS and OLCI images (10 m, 20 m, and 60 m) and varies in different 
bands (Table 4.1). At the time this study was conducted, there were 24 cloud-
free MSI images over the Dutch Wadden Sea between 2015 and 2018 (SZAs 
< 60°) while 20 images were in concurrent with in-situ hyperspectral 
measurements at the NJS (MSI-matchups). 

4.3.3.3. OLCI images 

MERIS was put out of operation in April 2012 and was succeeded by OLCI, 
embedded on the Sentinel-3 on platform A in February 2016 and was continued 
on Sentinel-3 on the platform B since April 2018 (Saulquin et al., 2016). OLCI 
is designed mainly for global biological and biochemical oceanography, which 
constrains its spatial resolution (full spatial resolution: 300 m). The asymmetric 
view of OLCI offers sun-glint free images with 21 bands covering the spectral 
ranges from 400 nm to 1020 nm which are optimized to measure ocean color 
over open ocean and coastal zones (Woerd and Wernand, 2015). The OLCI 
sensor has a revisit time of two-three days at around 10 a.m. (UTC) over the 
study area. The first available OLCI product was observed in November 2017, 
and there were in total 20 cloud-free OLCI images (SZAs < 60°) available over 
the Dutch Wadden Sea till the end of 2018 from which 17 images were in 
concurrent with in-situ hyperspectral measurements at the NJS (OLCI-
matchups). An overview of the MERIS, MSI and OLCI bands is presented in 
Table 4.1. 
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Table 4.1. MERIS, MSI and OLCI configuration. 
 Band centre (nm) Band width (nm) Spatial resolution (m) 
Sensor/ 
band number MERIS MSI OLCI MERIS MSI OLCI MERIS  MSI OLCI 
1 412.5 443.9 400 10 27 15 300 60 300 
2 442.5 496.9 412.5 10 98 10 300 10 300 
3 490 560 442.5 10 45 10 300 10 300 
4 510 664.5 490 10 38 10 300 10 300 
5 560 703.9 510 10 19 10 300 20 300 
6 620 740.2 560 10 18 10 300 20 300 
7 665 782.5 620 10 28 10 300 20 300 
8 681.2 835.1 665 7.5 145 10 300 10 300 
8a - 864.8 - - 33 - - 20 - 
9 708.7 945 673.7 10 26 7.5 300 60 300 
10 753.7 1373 681.2 7.5 75 7.5 300 60 300 
11 761.8 1613 708.7 2.5 143 10 300 20 300 
12 778.7 2202 753.7 15 242 7.5 300 20 300 
13 865 - 761.2 20 - 2.5 300 - 300 
14 885 - 764.3 10 - 3.7 300 - 300 
15 900 - 767.5 10 - 2.5 300 - 300 
16 - - 778.7 - - 15 - - 300 
17 - - 865 - - 20 - - 300 
18 - - 885 - - 10 - - 300 
19 - - 900 - - 10 - - 300 
20 - - 940 - - 20 - - 300 
21 - - 1020 - - 20 - - 300 

4.4. Methodology 
The flowchart in Fig. 4.3 depicts the methodology used to conduct this 
research. 

 
Figure 4.3. The flowchart of the implemented approach in this research. 
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The methodology of this work can be briefly explained within below main steps: 
 
a) Select high-quality in-situ hyperspectral measurements and cloud-free 

multi-sensor satellite images under the condition of SZAs < 60°. 
b) 15-years WCC retrievals from daily in-situ hyperspectral measurements 

using the RT model of 2SeaColor at the NJS. 
c) 15-years WCC retrievals from MERIS, MSI and OLCI images using the 

coupled RT model of coupled 2SeaColor-MODTRAN at the NJS.  
d) Comparison between retrieved WCCs from in-situ hyperspectral 

measurements and multi-sensor satellite images at the NJS.  
e) Generate retrieved WCC maps using the coupled 2SeaColor-MODTRAN 

model from satellite images over the Dutch Wadden Sea. 
 
The details of the methodology of our study are described in details as follows: 

 Data quality control approach 

The in-situ hyperspectral measurements of this study were recorded 
automatically by the sensors mounted on the NJS (Fig. 4.2). Therefore, we 
needed to perform a suitable data quality control approach to extract the high-
quality measurements from the full archive of the dataset. To do this, we used 
an advanced data quality control approach proposed by Marcel Wernand 
(2002). He developed and improved his proposed approach based on 
thousands of incident solar irradiation as well as coastal colour measurements 
and meteorological dataset collected at the NJS containing four steps of 1) sun-
glint effect (2) meteorological, (3) spectral shape and (4) minimal solar light 
flagging as follows: 

4.4.1.1. Sun-glint effect flagging 

We applied the sun-glint flagging to the automatic selection of those 
measurements which were affected by the least effect of sun-glint 
contamination (Wernand, 2002). To perform this data flagging, the NJS was 
equipped with two pairs of sky radiance (Lsky) and surface radiance (Lsfc) 
sensors, looking at South-East (Lsky (South-East), Lsfc (South-East)) and South-West, 
(Lsky (South-West), Lsfc (South-West)), separately (Fig. 4.2). Per each pair, Lsky and Lsfc 
sensors were 90° apparat in the horizontal plane (under azimuth angles of 
135° and 225°). One down-welling irradiance sensor (Es) was also installed per 
each pair. This way one of the two water-leaving radiance signals was always 
available with a minimum of sun-glint. The selection was made by comparing 
the spectral values at the wavelength of 550 nm between Lsfc (South-West) and Lsfc 

(South-East) per each pair of spectra recorded at the same time. Then the 
spectrum with lower Lsfc amplitude was selected for further analysis assuming 
that this spectrum was affected the least amount of sun-glint (Wernand, 2002). 
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4.4.1.2. Meteorological data flagging 

We applied the meteorological data flagging to the automatic selection of those 
measurements which were recorded under favorable meteorological 
circumstances (i.e., no precipitation and/or high humidity) (Wernand, 2002). 
Based on this meteorological data flagging, the values of Es measurements at 
two wavelengths of 940 nm (water vapor absorption wavelength) and 370 nm 
(ultraviolet (UV)) were selected per each spectrum. Then the band ratio of r2 
= ES (λ = 940 nm)/ES (λ = 370 nm) was calculated per each spectrum. In case 
r2 was equal to or smaller than 0.2 (mW m-1 nm-1 sr-1), the precipitation 
condition was detected, and the spectrum was removed from the dataset. In 
case r2 was between 0.2 and 0.25 (mW m-1 nm-1 sr-1), high humidity condition 
was detected, and the spectrum was removed from the dataset. Otherwise (r2 
> 0.25 (mW m-1 nm-1 sr-1)), the dry condition was detected at the time of data 
collection, and the spectrum was used for further analysis (Wernand, 2002). 

4.4.1.3. Spectral shape flagging 

We applied the spectral shape flagging to the automatic detection of those 
measurements which were possibly influenced by specific dusk (red coloring of 
the sky) or down radiation. To perform this spectral shape flagging, the values 
of  ES measurements in two wavelengths of 470 nm and 680 nm were selected 
per each spectrum. Then the band ratio of r3 = ES (λ = 470 nm) / ES (λ = 680 
nm) was calculated per each spectrum. In case, in normal daylight, r3 was 
greater than one (r3 > 1) the spectrum was used for further analysis (Wernand, 
2002). 

4.4.1.4. Minimal data flagging 

We applied the minimal data flagging to set the minimum incoming ES level 
from which was expected a detectable signal back from the water column. To 
perform this minimal data flagging, the values of ES measurements at a 
wavelength of 480 nm, r4 = Es (λ = 480 nm) were extracted per each spectrum. 
In case r4 > 20 (mW m-2 nm-1), the measurement was used for further analysis 
(Wernand, 2002). The implemented data flagging of this research are 
summarized in Table 4.2: 

 
Table 4.2. The implemented flags for doing data quality control (Wernand, 2002). 

Flag name1 SZA  Sun-glint  Meteorology  Spectral shape Solar light  
Threshold2 SZA<60° minimal value of r1 r2 > 0.25 r3 > 1 r4 > 20 
Status accepted accepted accepted accepted accepted 

1 More detailed information on this proposed data flagging can be found in Wernand (2002). 
2 r1 = (Lsfc (South-West; South-East)(550 nm)); r2 = ES(940 nm)/ES(370 nm); r3 = ES(470 nm)/ES(680 nm); 
r4 = Es(480 nm). 
 
In this study we applied the above-mentioned data quality control approach to 
the full archive of the NJS data to extract high-quality measurements for 
further analysis as follows: 
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 Rrs measurements of the NJS  

The extracted high-quality hyperspectral measurements were used to 
simulates in-situ water leaving reflectance values (Rrs) as follows: 

𝑅௥௦ ൌ  
𝐿௦௙௖ െ ሺ𝑓௦௞௬ ൈ 𝐿௦௞௬ሻ

𝐸ௌ
 (4.1) 

where Rrs is the water leaving reflectance values, Lsfc is water surface radiance 
values, and Es is down-welling irradiance values. fsky = 0.0265 is the average 
value of the sky correction factor which was taken from the NASA report by 
Mueller et al. (2004). It should be noted that concerning the sun-glint 
contamination, the Lsfc (South-West) was used when its values at 550 nm were 
minimum and accordingly Lsky (South-West) was used for the sky correction and 
vice-versa. The simulated high-quality Rrs values were later used for the 
retrieval of WCCs using the 2SeaColor model as is described in the following 
sections: 

 The 2SeaColor model 

In this study, we applied the 2SeaColor model developed by Salama and 
Verhoef (2015) for simultaneous retrieval of WCCs retrieval from simulated Rrs 
values at the NJS. This model has already shown high accuracy for the retrieval 
of water optical properties in turbid waters in the Dutch Wadden Sea and other 
coastal areas in previous studies (Arabi et al., 2018; Ambarwulan et al., 2011; 
Arabi et al., 2016; Yu et al., 2016a). The 2SeaColor model simulates Rrs values 
defined by the solution of the two-stream radiative transfer equations 
containing direct sunlight, as explained by Salama and Verhoef (2015): 

𝑟௦ௗ
ஶ ൌ

√1 ൅ 2𝑥 െ 1

√1 ൅ 2𝑥 ൅ 2𝜇௪
 

(4.2) 

𝑅௥௦ ൌ
0.52 ൈ 𝑅ሺ0ିሻ

1 െ 1.7 ൈ 𝑅ሺ0ିሻ
  (4.3) 

Where 𝒓𝒔𝒅
ஶ  is the directional-hemispherical reflectance of the semi-infinite 

medium, μw is the cosine of the SZA beneath the water surface. R(0-) is the 
irradiance reflectance beneath the water surface which is equal to 𝒓𝒔𝒅

ஶ /Q under 
the sunny condition and Q = 3.25. Rrs is the calculated water-leaving 
reflectance values. The ratio of x is based on the simple equation of x = bb/a 
while bb is total backscattering coefficient and, a is to the total absorption 
coefficient as follows (Salama et al., 2009): 

𝑎ሺ𝜆ሻ ൌ 𝑎ௐሺ𝜆ሻ൅𝑎஼௛௟௔ሺ𝜆ሻ ൅ 𝑎ே஺௉ሺ𝜆ሻ ൅ 𝑎஼஽ைெሺ𝜆ሻ (4.4) 

𝑏௕ሺ𝜆ሻ ൌ 𝑏௕௪ሺ𝜆ሻ ൅ 𝑏௕,஼௛௟௔ሺ𝜆ሻ ൅ 𝑏௕,ே஺௉ሺ𝜆ሻ  (4.5) 
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where the subscripts of W, Chla, NAP and CDOM stand for water molecules, 
Chlorophyll-a, Nan-algae Particles, and Coloured Dissolved Organic Matter, 
respectively. In this study, we applied the same parametrization approach 
proposed in Table 4.3 by Arabi et al. (2018) to calculate the absorption and 
backscattering coefficients of WCCs in the study area. 

4.4.3.1. Applying the 2SeaColor model on in-situ Rrs measurements 

We applied the 2SeaColor model inversion for simultaneous retrieval of Chla, 
SPM concentrations and CDOM absorption from the time series of quality-
controlled Rrs measurements collected every fifteen minutes from 9:30 a.m. to 
11:30 p.m. (UTC) between 2003 and 2018 at the NJS. To do the model 
inversion, we used a spectral optimization technique by minimizing the 
differences between the simulated and measured Rrs. Table 4.3 presents the 
initial values of Chla, SPM concentrations beside CDOM absorption to perform 
the optimization as follows: 

 
Table 4.3. The initial guess of WCCs used in the model inversion (Arabi et al., 2018). 

Variable Unit Lower/upper boundary Border values 
Chla concentration mg m-3 0 - 100 0 - 100 
SPM concentration g m-3 0 - 100 0 - 100 
CDOM absorption m-1 0 - 1.5 0 - 1.5 

 
To show the diurnal variation of WCC retrievals, per each day, the daily average 
of retrieved Chla (mg m-3), SPM (g m-3) and CDOM absorption (m-1) were 
computed, separately. The results of the 2SeaColor model’s WCC retrievals are 
presented in Fig. 4.5. 

4.4.3.2. Evaluation of the 2SeaColor performance 

We evaluated the performance of the 2SeaColor model to simulate Rrs spectra 
against in-situ Rrs measurements at the three reference wavelengths of 490 
nm, 550 nm, and 665 nm. Four statistical parameters of R2, RMSE, Normalized 
Mean Square Error (NRMSE), and Relative Root Mean Square Error (RRMSE) 
were used to quantify the goodness-of-fit between simulated and measured Rrs 
values for the quality-control NJS dataset. The results of this statistical analysis 
are presented in Fig. 4.6 and Table 4.7. 

 The coupled 2SeaColor-MODTRAN model 

In this study, we applied the coupled TOA radiance approach of 2SeaColor-
MODTRAN proposed by Arabi et al. (2016) for the simultaneous retrieval of 
WCCs from multi-sensor satellite images of MERIS, MSI, and OLCI. This model 
has already shown high accuracy for the retrieval of WCCs from MERIS images 
over the Dutch Wadden Sea under various condition of water turbidity and 
atmospheric local haze variations with considerable improvement in 
comparison to MERIS regional Case 2 water algorithm (C2R) (Doerffer and 
Schiller, 2007) in previous studies (Arabi et al., 2016).  
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Following Arabi et al. (2016), per each image, a LUT of Rrs simulations 
generated based on different combinations of WCCs by using 2SeaColor model 
were combined with a LUT of atmospheric parameters generated based on 
different combinations of aerosol types and visibilities by using the RT model 
of MODTRAN (Berk et al., 2011).  As a result, a bigger LUT of TOA radiances 
were generated based on different combinations of water turbidity and 
atmospheric conditions per each image, separately. By finding the best spectral 
fit (RMSE) between the TOA radiances LUTs and the pixel TOA radiance, the 
simultaneous concentrations of WCC were retrieved from satellite images.  
 
Moreover, by applying this coupled 2SeaColor-MODTRAN model, the 
atmospheric properties of visibility and aerosol type were also retrieved 
simultaneously besides the WCCs. However, evaluation of the retrieved 
atmospheric properties by this model was outside the scope of this research 
and, therefore, was not presented in this manuscript. In the following sections, 
more details on applying the coupled 2SeaColor-MODTRAN model on multi-
sensor satellite images of this research are presented. 

4.4.4.1. LUT processing for generating Rrs values  

The 2SeaColor model was used to model Rrs values for the different 
combinations of Chla, SPM, and CDOM concentration values per given SZA at 
the recording time of each Rrs measurement at the NJS, separately. Table 4.4 
shows the LUT composition of the 2SeaColor model in this study. 
 
Table 4.4. The input variables to build-up the LUTs of calculated Rrs spectra using the 
2SeaColor model. 

Variable Source Unit Values  Step2  Step 
Chla  case study status mg m-3 0 - 100 0.1 5 
SPM  case study status g m-3 0 - 100 0.1 5 
CDOM  case study status m-1 0 - 1.5 0.1 0.5 
SZA1 SZA formula degree 30 - 60 - - 

1 SZA can be calculated concerning the date, time, zone and the geographical location 
(the NJS) of each measurement, separately, using SZA formulas. 
2 The WCC steps varied while the coupled 2SeaColor-MODTRAN model was applied to 
the single location of the NJS and the study area. 

 
The calculated Rrs values by Eq. (4.3) using the 2SeaColor model were stored 
as an Rrs LUTs and was later combined with the modeled atmospheric 
parameters LUTs using MODTRAN as follows: 

4.4.4.2. LUT processing for generating atmospheric parameters  

We used the radiative transfer model MODTRAN 5.2.1 (Berk et al., 2011) to 
calculate the MODTRAN parameters describing the atmospheric effect, which 
comprise the atmospheric path radiance (L0), the total gain factor (G) and the 
spherical albedo (S). MODTRAN needs several input variables including aerosol 
type, visibility, environmental variables (e.g., carbon dioxide, ozone, water 
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vapor) and illumination geometry (i.e., SZA, VZA, RAA) to describe the real 
condition of the atmosphere at the time of satellite image overpass. 
 
In this study, we ran a MODTRAN programme for modeling atmospheric 
parameters for a given atmospheric state and angular geometry, per each 
image, separately. We obtained the environmental variables from Global 
Reference Networks concerning the location of the study area and each satellite 
image capturing date, separately. We defined the visibility steps considering 
that a change in lower visibilities (e.g., 4 km) has much more effect on the 
TOA radiances than a change at higher visibilities (e.g., 40 km). Therefore, we 
used Inverse Visibility (IV) to obtain almost perfect linear increments in AOT 
(Aerosol Optical Thickness). Based on this method, values of IV were set equal 
to 100 divided by the actual visibility (100 / Vis). We ran MODTRAN with the 
values 1, 2, 3, ... , 25 for IV and, therefore, with the corresponding actual 
visibilities (100, 50, 33.3, …, 4 km). By varying the visibility, we were able to 
produce a series of corresponding atmospheric parameters (e.g., atmospheric 
path radiance, transmittance) at all wavelengths. We used three aerosol types 
of urban, maritime and rural in this study. The Mid-Latitude Summer 
atmospheric vertical profile and the Full Width at Half Maximum (FWHM) of 10 
nm were used to run MODTRAN. The summary of the input variables to run 
MODTRAN and their corresponding variations in the study are described in 
Table 4.5. 
 
Table 4.5. The input variables, their used sources, units, ranges, and steps to run 
MODTRAN in this research. 
Variable Source Unit Range  Step  
Atmospheric profile study area status - Mid-Latitude Summer constant per image 
CO2 1, 2   global websites ppm 380 - 410  constant per image 
O3 global websites DU 250 - 450 constant per image 
H2O global websites g cm-2 0.5 - 4.5  constant per image 
Surface height water surface height km 0 constant value 
Sensor height3 sensor height km 800/786/814 constant per image 
Correlated-k option4 (Berk et al., 2011) - Yes constant value 
DISORT number of streams (Berk et al., 2011) - 8 constant value 
Start, ending wavelength5 sensor band coverage nm 350 - 1000 1 
SZA6 satellite image degree 30 - 60 constant per image 
VZA  satellite image degree 5 - 30 constant per image 
RAA  satellite image degree 0 -150 constant per image 
Visibility study area status km 1 - 100 100, 50, 33.3, …, 4 
Aerosol-type study area status - maritime,urban,rural - 

1 Environmental variables were found in Global Reference Networks concerning the geographic 
location of the study area and the satellite image capturing date.  
2  The ranges of environmental variables were determined with respect to their annual variations at 
the Dutch Wadden Sea between 2003 and 2018. 
3 The sensor height varied concerning the altitude of each satellite orbit (MERIS: 800 km, MSI: 786 
km and OLCI: 814 km) from the Earth, separately. 
4  Detailed information on the correlated-k option and DISORT number of streams values can be 
found in MODTRAN user’s manual 5.2.1 (Berk et al., 2011).  
5  Start and ending wavelengths varied concerning each satellite band coverage, separately. 
6 Illumination geometry (SZA, VZA, RAA) were extracted from MERIS, MSI and OLCI images directly. 
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MODTRAN obtained these input variables from a .tp5 text file and stored its 
simulation results as a .tp7 text file. This .tp7 file was used later as input to 
calculate the MODRAN atmospheric parameters of L0, G and S. Finally, TOA 
radiances, LTOA (Wm−2 sr−1 μm−1), in the sensor’s bands were calculated in 
surface reflectance r by the following equation (Verhoef and Bach, 2003): 

TOA 0 1

Gr
L L

Sr
 

  
(4.6) 

where LTOA is the modeled TOA radiance values (W sr−1 m−2 nm−1), and r is the 
hemispherical water-leaving reflectance (=πRrs). For making LUTs TOA 
radiances in the sensor’s spectral bands, reflectance spectra generated by the 
2SeaColor model at 1 nm resolution were convolved with the spectral response 
functions of MERIS, MSR, and OLCI, respectively, and the same was done with 
high-resolution MODTRAN spectra of the atmospheric parameters before 
applying Eq. (4.6). The simultaneous retrieval of WCCs was performed by 
finding the best fit (RMSE) between the pixel TOA radiance spectrum and the 
modeled TOA radiances (Eq. (4.6)). The spectral fitting was performed using 
lsq function in Matlab. To find the best TOA spectral fitting using the coupled 
model, for MERIS, all bands were used except the band numbers 1, 2 and 11 
and 12, and for OLCI all bands were used except the band numbers 1, 2, 3, 
13, 20 and 21. Bands 11 and 13 are located in the O2-A absorption band for 
MERIS and OLIC, respectively, and can give erroneous results due to sampling 
errors. For MSI, all bands were used except the band numbers 2, 9, 10, 11. 
Per each sensor, other excluded bands gave systematic deviations in Rrs after 
atmospheric correction. The cause of this problem is presently still unknown.  

4.4.4.3. Applying the coupled 2SeaColor-MODTRAN model on multi-sensor 
satellite images 

The above approach was applied to the MERIS and OLCI images, directly, since 
they provide TOA radiances per pixel. The MSI image offers TOA reflectance 
information. Therefore, the MSI TOA reflectances were, first, inverted to MSI 
TOA radiances using ENVI 5.5. Moreover, the spatial resolution of each band 
of MSI sensor was resized to 300 m, separately, to provide the same spatial 
resolution with MERIS and OLCI sensors (full spatial resolution: 300 m). The 
reason to resize these MSI pixels was that the high spatial resolution of MSI 
images (10 m, 20 m, and 60 m) was not an advantage when comparing to in-
situ measurements from the single location of the NJS.  
 
We applied the coupled 2SeaColor-MODTRAN model on all available cloud-free 
satellite images of MERIS (207 images), MSI (24 images) and OLCI (20 
images) between 2003-2018. First, we applied this coupled model one single 
location of the NJS. For this one pixel retrieval, the small steps of 0.1 were 
taken for Chla concentrations (mg m-3), SPM concentration (g m-3) and CDOM 
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absorption at 440 nm (m-1), respectively, to find the more accurate solution 
(Table 4.4). The results of these retrievals are presented in Fig. 4.8. However, 
the current procedure is not suitable to be applied pixel by pixel over the 
image. This issue is explained in detail in section 4.4.6. 

4.4.4.4. Evaluation of the coupled 2SeaColor-MODTRAN model’s 
performance 

We validated the accuracy of the coupled 2SeaColor-MODTRAN model’s 
atmospheric correction approach against in-situ Rrs measurements using 145 
MERIS, 20 MSI, and 17 OLCI-matchups at the three band centers of 490 nm, 
550 nm, and 665 nm. To do this, we first selected a narrow window (five by 
five pixels) around the NJS from every satellite image, separately. Next, 
following Arabi et al. (2016), we extracted the darkest pixel among these five 
by five pixels per image using Matlab assuming that this darkest pixel was the 
least contaminated by the adjacency effect from the neighboring coastal area 
(Bulgarelli and Zibordi, 2003). The simultaneous retrieval of WCCs was 
performed by spectrally fitting the coupled model-simulated TOA radiances 
(using RMSE) to TOA radiances as it was explained in section 4.4.4.2. Fig. 4.4 
shows the general view of implication and validation of the coupled 2SeaColor-
MODTRAN model at the NJS. However, it should bear in mind that this TOA 
coupling approach does not apply atmospheric correction directly and only 
compares the simulated TOA radiances with the ones recorded at satellite 
sensors. Therefore, to retrieve the water-leaving reflectances (r) at each band 
the inverse Eq. (4.6) was used as follows: 

 
(4.7) 

where r the hemispherical water-leaving reflectances (=πRrs), LTOA is the 
modeled TOA radiances (W sr−1 m−2 nm−1), L0 is the atmospheric path 
radiance, G is the total gain factor and, S is the spherical albedo simulated by 
MODTRAN. The statistical parameters of R2, RMSE, NRMSE, and RRMSE were 
applied to evaluate the goodness-of-fit between measured and derived Rrs 
values for all matchups. The results of this validation are presented in Fig. 4.9 
and Table 4.8. 
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 Comparison of WCC-retrievals from in-situ 
 measurements and multi-sensor satellite images 

The statistical parameters of R2, RMSE, NRMSE, and RRMSE besides the Taylor 
diagram (Taylor, 2001) were used to quantify the agreement of retrieved Chla 
concentration (mg m-3), SPM concentration (g m-3) and CDOM absorption (m-

1) by using the coupled 2SeaColor-MODTRAN model at TOA level from MERIS, 
MSI and OLCI images against the retrieved ones by using the 2SeaColor model 
at water surface level from in-situ Rrs measurements. The results of these 
evaluations are presented in Figs. 4.11 and 4.12 and Table 4.9. 

 Spatio-temporal variability of WCCs using satellite 
 images over the study area 

After evaluating the accuracy of the coupled 2SeaColor-MODTRAN model’s 
simulations, we applied this model on MERIS, MSI and OLCI images over the 
study area to generate WCC maps. We presented these maps using two MERIS 
and OLCI images captured during high and low tidal phases, respectively. The 
reason to choose these images in different tidal phases was the location of the 
shallow waters of the Dutch Wadden Sea in a tidal area where the variation of 
WCCs is considerably affected by the tide. We obtained the corresponding tidal 
phase information (high or low tide) for each image overpass in the study area 
from the Den Helder station also located at the western inlet of the Dutch 
Wadden Sea. The date and tidal information of these images are provided in 
Table 4.6. 
 
Table 4.6. Images dates, SZA and tidal phases at the study area. 

Satellite Date Tidal phase1 SZA  
MERIS  14-08-2002 high 41° 
MERIS  19-04-2009 low 43° 
OLCI  05-05-2018 high 39° 
OLCI  06-06-2018 low 36° 

1 The phase of the tide (high: flood or low: ebb) at satellite overpass in the Dutch Wadden Sea. 
 
To apply the model in a pixel-by-pixel approach for the whole region of interest, 
a small LUTs for WCCs and atmospheric properties of visibility and aerosol type 
were selected. For WCC retrievals, the steps of 5 were taken for Chla 
concentrations (mg m-3) and SPM concentration (g m-3), respectively. For 
CDOM absorption (m-1), only steps of 0, 0.5, 1 and 1.5 were taken (Table 4.4). 
For atmospheric properties, the best spectral fitting match was found by 
considering only the first five visibilities that would generate non-negative 
reflectances in all selected bands and three aerosol types. This approach 
worked super-fast when applied using MatLabR2017B on a personal PC 
[Processor: Intel (R) cORE (tm) i7 - 4700 MQ, CPU: 2.40 GHz, RAM: 7.88 GB]. 
In total, the average number of pixels per image was equal to 70,000. The 
total number of LUT cases for each pixel is 15 (5 visibility, 3 aerosol types) 
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times the number of water cases (in total 21 × 21 × 4 = 1764 cases). The 
computation time to generate each map was thirteen minutes. In this approach 
six output maps were generated, containing aerosol type, visibility, Chla 
concentration, SPM concentration, CDOM absorption, and the RMSE spectral 
error. The generated WCC maps are presented in section 4.4.5. It should be 
mentioned that applying the coupled 2SeaColor-MODTRAN model on MSI 
images did not lead to high-quality WCC maps. Therefore the generated maps 
by MSI images are not presented in this manuscript. 

4.5. Results 

 Long-term variability of WCCs at water surface level 
 using in-situ Rrs measurements  

Fig. 4.5 presents a 15-year variation of retrieved WCCs by the 2SeaColor model 
(section 4.4.3) from the quality-controlled in-situ Rrs measurements collected 
every fifteen minutes between 2003 and 2018 at the NJS. As it was explained 
in section 4.4.3.1, per each day, the daily average of retrieved WCCs is 
computed, separately, to show the diurnal variation of these retrievals. 
 

(a) 
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(b) 

 
(c) 

 
Figure 4.5. The diurnal variation of retrieved WCCs using the 2SeaColor model from time 
series of in-situ Rrs measurements collected between 2003 and 2018 at the NJS (SZAs 
< 60°); (a): Chla concentrations (mg m-3); (b): SPM concentrations (g m-3); (c): CDOM 
absorption at 440 nm (m-1). 
 
In Fig. 4.5 the x-axis shows the number of different years between 2003 and 
2018. To have a better visual presentation, each year is divided to four sections 
concerning the occurrence of four seasons at the Dutch Wadden Sea: winter 
(from January to March), spring (from April to June), summer (from July to 
September) and autumn (from October to December). The y-axis shows the 
daily average values (from 9:30 a.m to 11:30 p.m.) of retrieved WCCs from 
in-situ Rrs measurements. As it was explained before, due to the SZA flagging 
data proposed by Arabi et al. (2018), only the WCC retrievals from March to 
September (SZAs < 60°) are presented per each year. Moreover, there was 
no data recorded during the spring and summer in 2007 at the NJS. That is 
why there is a gap to report the variation of retrieved WCCs in 2007.  
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As can be seen from Fig. 4.5 (a), the highest values of retrieved Chla 
concentrations (mg m-3) are mainly reported during spring period (April, May, 
and June) ~ 45 (mg m-3) with the similar temporal trend within multiple years. 
After the spring period, retrieved Chla concentration values start to decrease 
in July (~ 10 (mg-3)) and increase again in September (~ 30 (mg m-3)). This 
increase in the retrieved Chla concentration values is even more pronounced 
between 2014 and 2018 which cause the second peak of the retrieved Chla 
concertation values during September (~ 35 (mg m-3)) in these years. The 
retrieved SPM concentrations from in-situ Rrs measurements show their highest 
values (~ 65 (g m-3)) at the beginning of spring in March (Fig. 4.5 (b)). They 
start to decrease from May to July (~ 25 (g m-3)) and increase again between 
August and September (~ 40 (g m-3)). The retrieved CDOM absorptions (m-1) 
show a slight decrease during July (~ 0.8 (m-1)) and reach their lowest values 
in September (~ 0.4 (m-1)) (Fig. 4.5 (c)).  
 
Moreover, as can be seen in Figs. 4.5 (a) and (c), the temporal variation of 
CDOM absorptions (m-1) is independent of that of the retrieved Chla 
concentrations values (mg m-3) (Yu et al., 2016). Overall it can be concluded 
that the diurnal variation of retrieved WCCs at the NJS show almost the similar 
temporal trends over multiple years from 2003 to 2018 while these patterns 
slightly differ after 2014. Moreover, the provided information on variation 
ranges of retrieved WCC are within the ranges of in-situ ones measured by 
other researchers in the study area (Chla: 0 - 100 (mg m-3); SPM: 0 - 100 (g 
m-3); CDOM absorption at 440 nm: 0 - 2 (m-1)) (Cadée, 1996; Hommersom et 
al., 2009; Reuter et al., 2009; Tillmann et al., 2000).   

4.5.1.1. Validation of the 2SeaColor model’s simulations 

Below we present the validation of the 2SeaColor model to simulate Rrs values 
against in-situ Rrs measurements at the three wavelengths of 490 nm, 550 nm, 
and 665 nm as follow: 
 

(a) 

 

(b) (c) 

 
Figure 4.6. First column: comparison between the 2SeaColor model's best-fit spectra 
and in-situ Rrs values (sr-1) for the quality-controlled dataset between 2003 and 2018 at 
the NJS; second column: comparison between MERIS-atmospheric corrected Rrs and in-
situ Rrs values (sr−1) for 145 matchups between 2003 and 2012 at the NJS; third column: 
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comparison between MSI-atmospheric corrected Rrs and in-situ Rrs values (sr−1) for 20 
matchups between 2015 and 2018 at the NJS; fourth column: comparison between 
OLCI-atmospheric corrected Rrs and in-situ Rrs values (sr−1) for 17 matchups in 2018 at 
the NJS for band centers of the first row: 490 nm; second row: 560 nm and third row: 
665 nm.   
 
The related statistical analysis of this evaluation is presented in Table 4.7 as 
follows: 
 
Table 4.7. Evaluation of the 2SeaColor models’ best-fit spectra against in-situ Rrs values 
(sr-1) for the quality-controlled dataset collected every fifteen minutes between 2003 and 
2018 at the NJS (SZAs < 60°) for wavelengths of 490 nm, 560 nm, and 665 nm. 
Statistical analysis R2 RMSE × 10-2 NRMSE (%) RRMSE (%) 
490 nm 0.97 

0.98 
0.98 

0. 02 
0. 03 
0. 02 

03.1 
02.6 
01.8 

03.3 
02.8 
03.2 

560 nm 
665 nm 

 
As can be seen from Table 4.7, there is a robust agreement between the 
simulated and in-situ Rrs values for the quality controlled dataset which are 
recorded every fifteen minutes between 2003 and 2018 at the NJS. The 
calculated R2 values are greater than 0.95, and RMSE values do not exceed 
0.0003 for all three selected wavelengths. Moreover, the calculated NRMSE 
and RRMSE show reasonable estimates (NRMSE and RRMSE < 3.5%). 
 
Moreover, the robust agreements between simulated and in-situ Rrs values can 
be considered as an approval that the implemented parametrizations of the 
2SeaColor model (taken from Table 2 Arabi et al. (2018)) are suitable enough 
for these long-term WCC retrievals in this study. Therefore, it can be stated 
that the 2SeaColor model is capable enough to accurately simulate Rrs values 
for a period of 15-year in different dates, seasons (SZAs < 60°) and water 
turbidity conditions at the NJS. Moreover, as Arabi et al. (2018) showed 
2SeaColor-WCC retrievals are in very good agreement (R2 > 0.80 and RMSE < 
3 for Chla and SPM) against in-situ WCC measurements collected in a daily 
basis at the NJS between 2008-2010 (Arabi et al., 2018). 
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(a) (b) 

 
Figure 4.7. Comparison between the 2SeaColor-WCC retrievals against in-situ ones 
collected between 2008 and 2010 at the NJS (SZAs < 60°): (a) Chla (mg m-3); and (b) 
SPM (g m-3) (Arabi et al., 2018). 

Therefore, with respect to high accuracy of the 2SeaColor model for accurately 
simulate Rrs spectra (Fig. 4.6 and Table 4.7) at this study and for accurately 
retrieve WCCs (Fig. 4.7) in previous studies (Arabi et al., 2018), these 15-
years diurnal retrieved WCCs can be considered as the reliable representatives 
of actual values of WCC at the NJS.  

These results are important to analyze temporal course (monthly, seasonal and 
annual variations) of WCCs at the study site. Of particular interest when 
analyzing the long-term variability in these constituents’ trends, is whether any 
significant decreasing trend from 2003 to 2018 would indicate the effect of 
prior nutrient reduction management actions (Le et al., 2013). More 
importantly, since the in-situ Rrs measurements are contaminated the least by 
the effect of atmosphere at water surface level, these long-term in-situ Rrs-
WCC retrievals can be considered as a reliable source of information to be 
compared with satellite-WCC retrievals. 

 Long-term variability of WCCs at TOA level using multi-
 sensor satellite images  

Fig. 4.8 presents 15-year variations of retrieved WCCs at a single location of 
the NJS using the coupled 2SeaColor-MODTRAN model (section 4.4.4) from all 
available cloud-free multi-sensor satellite images of MERIS (2002-2012), MSI 
(2015-2018) and OLCI (2018). 

  

0 5 10 15 20 25 30 35 40 45 50

In-situ Chla [mg m-3]

0

5

10

15

20

25

30

35

40

45

50
Retrieved Chla from in-situ R

rs
measurements

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

In-situ SPM [g m-3]

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70
Retrieved SPM from in-situ R

rs
measurements



Long-term variability of water constituent concentrations in the Wadden Sea 

100 

(a) 

 
(b) 

 
(c) 

 
Figure 4.8. Variation of retrieved WCCs using the coupled 2SeaColor-MODTRAN model 
at the NJS (SZAs < 60°) from: black circle: 207 cloud-free MERIS images captured 
between 2003 and 2012; blue stars: 24 cloud-free MSI images captured between 2015 
and 2018; cyan circle: 20 cloud-free OLCI images captured in 2018; (a): retrieved Chla 
concentrations (mg m-3); (b): retrieved SPM concentrations (g m-3); (c): retrieved CDOM 
absorption at 440 nm (m-1). 
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Like before, the x-axis of Fig. 4.8 shows the number of different years between 
2003 and 2018 and the y-axis shows the retrieved WCCs from MERIS (black 
circles), MSI (blue stars) and OLCI (cyan circles) images using the coupled 
2SeaColor-MODTRAN model. As it was explained before, The MERIS sensor 
worked only between 2003 and 2012 and the first images of MSI and OLCI 
sensors were available since 2015 and 2018, respectively. Therefore, there is 
a gap to show the variation of WCC retrievals between 2012 and 2015 in these 
figures. 
 
As can be seen in Fig. 4.8, due to a limited number of available cloud-free 
satellite images in comparison to in-situ Rrs measurements, it is more difficult 
to detect the temporal variations of retrieved WCCs from TOA level. Overall 
MERIS retrievals (207 images) show a denser temporal pattern in comparison 
to MSI (24 images) and OLCI retrievals (20 images) while almost similar 
temporal patterns can be seen from MERIS-WCC retrievals from 2003 to 2012. 
Moreover as Figs. 4.8 (a), (b) and (c) show, the retrieved WCCs from MERIS, 
MSI and OLCI are in similar ranges (Chla: 0 - 50 (mg m-3), SPM: 0 - 45 (g m-

3) and CDOM absorption 0 - 1.2 (m-1) while OLCI-retrievals slightly show lower 
amplitudes in comparison to MERIS and MSI retrievals. 

4.5.2.1. Validation of the coupled 2SeaColor-MODTRAN model’s 
simulations 

Fig. 4.9 presents the evaluation of the coupled 2SeaColor-MODTRAN model’s 
performance to do the atmospheric correction (Eq. (4.7)) against in-situ Rrs 
measurements at the three band centers of 490 nm, 550 nm, and 665 nm 
using MERIS, MSI, and OLCI matchups as follows: 
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Figure 4.9. Comparison between the coupled 2SeaColor-MODTRAN-atmospheric 
corrected Rrs and in-situ Rrs values (sr−1) at the NJS; first column: 145 MERIS-matchups 
between 2003 and 2012; second column: 20 MSI-matchups between 2015 and 2018 at 
the NJS; third column: 17 OLCI-matchups in 2018 for band centres of first row: 490 nm; 
second row: 560 nm and third row: 665 nm. 
 
The related statistical analysis of this evaluation is presented in Table 4.8: 
 
  

(b) 

 

(c) (d) 
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Table 4.8. Evaluation of the coupled 2SeaColor-MODTRAN model’s best-fit spectra for 
145 MERIS-matchups, 20 MSI-matchup and 17 OLCI-matchups against in-situ Rrs values 
(sr-1) at the NJS between 2003-2018. 
Statistica
l analysis R2 RMSE × 10-2 NRMSE (%) RRMSE (%) 

Band 
centre/ 
images 

MERIS MSI OLCI MERIS MSI OLCI MERIS MSI OLCI MERIS MSI OLCI 

490 nm 0.79 0.73 0.80 0.10 0.26 0.07 09.4 09.8 09.7 13.6 14.4 13.6 

560 nm 0.84 0.68 0.82 0.13 0.21 0.05 07.4 08.4 09.4 08.1 15.2 05.4 

665 nm 0.87 0.74 0.86 0.09 0.17 0.03 06.3 09.9 09.2 12.6 14.6 10.1 

 
As the results of this evaluation show, there is a reasonable agreement 
between in-situ and atmospherically-corrected Rrs values from MERIS, MSI and 
OLCI matchups at three band centers of 490 nm, 560 nm and 665 nm (R2 ~ 
0. 70, RMSE < 0.0035, NRMSE < 10% and RRMSE < 16%). However, OLCI 
atmospherically-corrected Rrs values show the most robust agreement (R2 ≥ 
80, RMSE ≤ 0.001) against in-situ Rrs measurements in comparison to the 
MERIS and MSI ones. This might be due to the higher signal-to-noise ratio and 
due to the availability of more number of spectral bands (16 bands in total) to 
be used for the WCC retrievals using the OLIC sensor in comparison to MERIS 
(i.e., 12 bands) and MSI (i.e., 8 bands) sensors (Table 4.1, Fig. 4.4). That is 
to say that more band information provides more WCCs accuracy. On the other 
hand, MSI atmospherically-corrected Rrs values show the lowest accuracy in 
comparison to OLCI and MERIS ones (R2 ~ 70, RMSE ~ 0.002). The reason 
could be due to the usage of only limited numbers of spectral bands (i.e., 8 
bands) for simultaneous retrieval of five variables (i.e., Chla, SPM, CDOM, 
visibility, and aerosol type) by the coupled 2SeaColor-MODTRAN model. 
Therefore, it is reasonable that the model’s accuracy decreases in case of 
applying the coupled 2SeaColor-MODTRAN model on MSI images in 
comparison to MERIS and OLCI images.  
 
Overall, considering the results of performed statistical analysis in Table 4.8, 
the capability of the coupled 2SeaColor-MODTRAN model can be considered 
good enough for doing atmospheric correction from all multi-sensor satellite 
images of MERI, MSI, and OLCI. Moreover, as Arabi et al. (2016) reported in 
previous studies, there is a reasonable agreement (R2 > 80, RMSE < 4 for Chla 
and SPM) between the coupled 2SeaColor-MODTRAN WCC retrievals from 
MERIS-matchups concurrent with in-situ WCCs between 2008 and 2010 at the 
NJS with considerable improvement in comparison to standard C2R model 
(Arabi et al., 2016). 
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Figure 4.10. Comparison between the coupled 2SeaColor-MODTRAN model's retrievals 
against in-situ WCCs for 13 MERIS-matchups (SZAs < 60°) between 2008 and 2010 at 
the NJS: (a) Chla (mg m-3); and (b) SPM (g m-3) (Arabi et al., 2016) 
So far, the validation of the coupled 2SeaColor-MODTRAN model’s performance 
to retrieve WCC is only evaluated using MERIS images (Arabi et al., 2016) 
while there are no in-situ measurements of Chla and SPM concentrations since 
2010 at the NJS to evaluate the WCC-retrievals from MSI and OLCI images. 
However, as it was shown in section 4.5.1, the WCC-retrievals from in-situ Rrs 
measurements can be used as reference indicators to evaluate the agreement 
of satellite retrievals with actual WCCs at water surface level at the NJS. 

 Correlation of WCC retrievals from satellite images and 
 in-situ Rrs measurements  

Below the agreement of retrieved WCCs from satellite images at TOA level with 
the ones retrieved from in-situ Rrs measurements at water surface level are 
presented: 
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(b) 

 
(c) 

 
Figure 4.11 Comparison between the 2SeaColor-retrievals from in-situ Rrs measurements 
and the coupled 2SeaColor-MODTRAN retrievals from 145 MERIS-matchups (black 
circles), 20 MSI-matchups (blue stars) and 17 OLCI-matchups (cyan circles) at the NJS; 
(a): retrieved Chla concentrations (mg m-3); (b) retrieved SPM concentrations (g m-3); 
(c) retrieved CDOM absorption at 440 nm (m-1). 
 

Fig. 4.12 and Table 4.9 present the detailed statistical analysis of this 
evaluation: 
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Table 4.9. Statistical measures implemented in this study to evaluate the agreements 
between in-situ Rrs and satellite WCC-retrievals. 

Constituent Satellite-
matchups 

Standard 
deviation 

Correlation 
coefficient 

RMSE 
(RMSD) 

R2 NRMSE 
(%) 

RRMSE 
(%) 

Chla (mg m-3) MERIS 13.29 0.85 06.89 0.72 16.44 52.63 
MSI 13.85 0.84 07.51 0.70 22.05 62.08 
OLCI 06.79 0.91 03.97 0.82 08.84 40.84 

SPM (g m-3) MERIS 07.32 0.86 03.92 0.73 05.50 11.00 
MSI 09.99 0.86 05.22 0.72 09.41 21.96 
OLCI 06.88 0.96 02.32 0.92 05.67 16.53 

CDOM (m-1) MERIS 0.255 0.83 0.139 0.68 11.96 27.38 
MSI 0.280 0.83 0.162 0.67 16.16 39.66 
OLCI 0.193 0.93 0.096 0.86 07.86 14.26 

 
Taylor diagram in Fig. 4.12 presents a summary of the statistical measures 
and relationships between the retrieved WCCs from multi-sensor satellite 
images and the ones from in-situ Rrs measurements which are used as a 
reference indicator (named as in-situ Rrs retrievals in these diagrams). The 
statistical measures of retrieved WCCs from three different satellite sensors 
are presented by three different capital letters of A, B and C for MERIS, MSI, 
and OLCI, respectively. As can be seen Figs. 4.12 (a), (b) and (c), these 
statistical measures are simultaneously compared with each other for three 
different types of sensors. Moreover, in each diagram, the distance between 
the satellite indicator of A, B or C and the point labeled as “in-situ Rrs retrievals” 
is a measure of how realistically each satellite reproduces the retrievals at 
water surface level. To do this evaluation, for each retrieved water constituent 
of Chla (mg m-3), SPM (g m-3) and CDOM (m-1), three statistical measures are 
calculated between the satellite and in-situ Rrs retrievals named as: (i) the 
standard deviation (black color), (ii): the Pearson Correlation Coefficient (blue 
color), and (iii) the Root Mean Square Deviation (RMSD = RMSE) (green color). 
 
As can be seen from these Taylor diagrams, the OLCI retrievals (indicated by 
C) agree the best with in-situ Rrs retrievals for all three constituents of Chla, 
SPM and CDOM (correlation coefficient > 0.90, standard deviation estimates < 
7) while for each retrieved-constituent the estimated RMSD values is less than 
4 and lies the nearest with the “in-situ Rrs retrievals” on the x-axis. Moreover, 
as Table 4.9 shows, OLCI-WCC retrievals show the most robust agreements 
with the in-situ Rrs retrievals (R2 ≥ 0.82, NRMSE < 9%, RRMSE< 45%) in 
comparison to MSI and MERIS retrievals. Therefore, it can be stated that the 
OLCI is the most practical sensor to be used for the retrieval of WCCs in 
comparison to MERIS and MSI sensors in this study. The MERIS (indicated by 
A) and MSI (indicated by B) retrievals also agree well with in-situ Rrs retrievals 
with similar correlation coefficients ≥ 0.83. However, MERIS-retrievals have 
lower amplitudes of the variations (i.e., the standard deviation) in comparison 
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to MSI-retrievals and accordingly smaller RMSD estimates for all three 
constituents of Chla, SPM, and CDOM. Further statistical analysis presented in 
Table 4.9 is also another evidence of the better agreement of MERIS-retrievals 
with in-situ Rrs retrievals (R2 ≥ 0.68, NRMSE < 17% and RRMSE < 55%) in 
comparison to MSI ones. Therefore, it can be concluded that the MERIS sensor 
can be rated as the second practical sensor to be used for WCC retrievals in 
this study. The last practical sensor for WCC retrievals in this study is MSI with 
highest RMSD estimates in comparison to MERIS and OLCI sensors while these 
estimates show larger variations with in-situ Rrs retrievals for all three Chla, 
SPM, and CDOM constituents. Furthermore, the lowest estimates of R2 and the 
highest estimates of NRMSE and RRMSE (Table 4.9) show that MSI-retrievals 
have lower correlations and agreements with in-situ Rrs retrievals in 
comparison to MERIS and OLCI ones. 
 
Overall, considering the reasonable accuracy of the coupled 2SeaColor-
MODTRAN model for doing atmospheric correction (Fig. 4.9, Table 4.8) and 
reasonable agreement of 2SeaColor-MODTRAN WCC retrievals with the 
retrieved WCCs from in-situ Rrs measurements in different seasons (SZAs < 
60°) and under different water turbidity and atmospheric conditions (Figs. 4. 
11 and 4.12, Table 4.9), the retrieved WCCs from time series of multi-sensor 
satellite images of this study can be considered reliable enough. Below we 
present the long-term variations of retrieved WCCs from the integration of 
multi-sensor satellite images and in-situ Rrs measurements at the NJS. 

 Long-term variability of WCCs from the integration of in-
situ measurements and satellite images 

Fig. 4.13 presents the diurnal variation of retrieved WCCs by using the 
2SeaColor model from quality-controlled in-situ Rrs measurements and by 
using the coupled 2SeaColor-MODTRAN model from cloud-free MERIS, MSI and 
OLCI images between 2003 and 2018 at the NJS. Moreover, the collected in-
situ Chla and SPM concentrations between 2008 -2010 at the NJS (grey stars) 
are also presented in these figures. These in-situ of Chla and SPM 
concentrations are taken from Arabi et al. (2018). 
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(a) 

 
(b) 

 
(c) 

 
Figure 4.13 Diurnal variation of WCCs at the NJS: red dot: retrieved from in-situ Rrs 
measurements using the 2SeaColor model between 2003 and 2018; black circle: 
retrieved from 207 MERIS images using the coupled 2SeaColor-MODTRAN model 
between 2003 and 2012; blue stars: retrieved from 24 MSI images using the coupled 
2SeaColor-MODTRAN model between 2015 and 2018; cyan circle: retrieved from 20 
OLCI images using the coupled 2SeaColor-MODTRAN model in 2018; grey stars: 
measured in-situ values between 2008 and 2010; (a): Chla concentrations (mg m-3); 
(b): SPM concentrations (g m-3); (c): CDOM absorption at 440 nm (m-1);. 
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In these figures, the x-axis shows the number of different years and the y-axis 
shows diurnal values of retrieved WCCs from in-situ Rrs measurements using 
the 2SeaColor model (red triangles) besides the values of retrieved WCCs from 
MERIS (black circles), MSI (blue stars) and OLCI (cyan circles) images using 
the coupled 2SeaColor-MODTRAN model. As it was explained before, due to 
the SZA flagging data proposed by Arabi et al. (2018), only the WCC retrievals 
from March to September (SZAs < 60°) are presented per each year.  
 
From Fig. 4.13 (a), it can be seen that the trends of retrieved Chla 
concentrations (mg m-3) from MERIS, MSI and OLCI images follow almost 
similar temporal patterns with the ones retrieved from in-situ Rrs 
measurements within multiple years between 2003 and 2018. Moreover, these 
patterns agree well with the detected pattern of in-situ Chla concentrations 
collected between 2008 and 2010 at the NJS. However, slight overestimations 
can be observed for the MERIS-Chla retrievals in comparison with the retrieved 
ones from in-situ Rrs measurements and measured in-situ ones at the NJS. 
Similar temporal trends can also be detected between SPM-retrievals (g m-3) 
from multi-sensor satellite images and from in-situ Rrs measurements for the 
period of 15-years while only, small underestimations are observed for the 
satellite-SPM retrievals in comparison with the ones retrieved from in-situ Rrs 
measurements. Moreover, the temporal patterns of satellite retrievals fit very 
well with the retrieved ones from in-situ Rrs measurements and measured ones 
at the NJS. The story is the same for retrieved CDOM absorption (m-1) with 
similar temporal pattern and agreement between satellite and in-situ Rrs 
retrievals. However, there was no measured CDOM absorption (m-1) at the NJS 
to be compared with remote sensing retrievals at this study.  
 
Overall from the evaluation of these long-term retrievals, it can be concluded 
that the diurnal variation of retrieved WCCs from the integration of satellite 
images and in-situ measurements show similar temporal patterns, ranges and, 
good agreement for a period of 15-years. The combination of these retrievals 
from different satellite and in-situ sensors are important to fill gaps in time in 
order to long-term water quality studies, satellite validations and instruments 
calibrations. Moreover, they have significant applications to provide high-
temporal resolution information to be used on multi-temporal analyses on a 
weekly, monthly, seasonal and annual basis of water quality monitoring and 
for frequently updating of the generated WCC maps at the study site.  

 Spatio-temporal variability of WCCs using satellite 
 images in the study area 

Figs. 4.14, 4.15 and 4.16 show the generated WCC maps using the MERIS and 
OLCI images described in Table 4.6. The date and tidal phase are indicated 
above each map. The location of the NJS (located at bottom-left of each map) 
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and the North arrow (located at upper-right of each map) are presented in pink 
color. For each figure, the legend is shown in the last map considering the 
minimum and maximum level of the retrieved values for all dates.   
 

(a) (b) 

(c) (d)  

 
Figure 4.14. The generated Chla concentration (mg m-3) maps using the coupled 
2SeaColor-MODTRAN model over the Dutch Wadden Sea and the IJsselmeer lake from: 
(a) the MERIS image captured during high tidal phase on 14-08-2002; (b) the MERIS 
image captured during low tidal phase on 19-04-2009; (c) the OLCI image captured 
during high tidal phase on 05-05-2018; (d) the OLCI image captured during low tidal 
phase on 06-06-2018. 
 
As can be seen from these maps, the variation ranges of the Chla concentration 
level are similar in all maps (0 to 90 (mg m-3)). However, the different spatial 
variability of Chla concentration level is observed on various dates. For 
example, the retrieved Chla level is ~ 80 (mg m-3) in the IJsselmeer lake in 
the image captured in Fig. 4.14 (a), (b) and (d) while these values show a 
lower level (~ 50 (mg m-3)) for the same area in Fig. 4.14 (c).  
 
The retrieved SPM concentration (g m-3) maps, which are generated, 
simultaneously with the Chla concentrations maps from the same images are 
presented in the below figure.  
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(a) (b) 

 
(c) (d)  

 
Figure 4.15. The generated SPM concentration (g m-3) maps using the coupled 
2SeaColor-MODTRAN model over the Dutch Wadden Sea and the IJsselmeer lake from 
(a) the MERIS image captured during high tidal phase on 14-08-2002; (b) MERIS image 
captured during low tidal phase on 19-04-2009; (c) OLCI image captured during high 
tidal phase on 05-05-2018 (d) OLCI image captured during low tidal phase on 06-06-
2018. 
 
As can be seen from Fig. 4.15, the retrieved SPM concentration maps show 
almost similar range (between 0 to 100 (g m-3)) and similar spatial pattern for 
all four dates. The SPM concentrations level are ~ 40 (g m-3) in internal parts 
of the IJsselmeer lake and reach their highest level (~ 100 (g m-3)) around the 
inner islands of the Dutch Wadden Sea while show their lowest level in the 
external part of Texel island in the neighborhood of the North Sea (between 0 
and 10 (g m-3)).  
 
The maps of retrieved CDOM absorption (m-1) for the same images are also 
presented in Fig. 4.16.  

  



Chapter 4 

113 

(a) (b) 

(c) (d)  

 
Figure 4.16. The generated CDOM concentration (m-1) maps using the coupled 
2SeaColor-MODTRAN model over the Dutch Wadden Sea and the IJsselmeer lake from: 
(a) the MERIS image captured during high tidal phase on 14-08-2002; (b) the MERIS 
image captured during low tidal phase on 19-04-2009; (c) the OLCI image captured 
during high tidal phase on 05-05-2018; (d) the OLCI image captured during low tidal 
phase on 06-06-2018. 
 
As can be seen from Fig. 4.16, the CDOM absorption at 440 nm (m-1) change 
between 0 to 1.5 (m-1) over the study area for all four maps. However, high 
spatio-temporal variability of CDOM absorption is observed in different parts of 
each map. For example, the retrieved CDOM absorption shows a high level (~ 
1.2 (m-1)) in the IJsselmeer lake in Fig 4.16. (d), but lower CDOM absorption 
level is observed for the same areas in the other three maps (Figs. 4.16 (a), 
(b) and (c)). It should be mentioned that regarding the small steps of CDOM 
in water properties LUT over the study area (Table 4.4), the generated maps 
show only four groups of CDOM absorption values (0, 0.5, 1, 1.5 (m-1)).   
 
Fig. 4.17 shows the generated maps of spectral residual errors (RMSE) 
between the best fits of observed and modeled TOA radiances using the 
coupled 2SeaColor-MODTRAN (described in section 4.4.4):  
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(a) (b) 

 

(c) (d) 

 

Figure 4.17. The generated maps of the TOA radiances spectral residual errors (RMSE) 
(W m−2 sr−1 µm-1) between the best fits of 2SeaColor-MODTRAN modeled and observed 
TOA radiances over the Dutch Wadden Sea and the IJsselmeer lake; (a): the MERIS 
image captured during high tidal phase on 14-08-2002; (b): the MERIS image captured 
during low phase on 19-04-2009; (c): the OLCI image captured during high tidal phase 
on 05-05-2018; (e): the OLCI image captured during low tidal phase on 06-06-2018. 
 
As Fig. 4.17 (a) shows, the estimated TOA radiances spectral residual errors 
(RMSE (W m−2 sr−1 µm-1)) for the MERIS image captured during the high tidal 
phase, do not exceed ~ 30% inside the study area for all maps. However, these 
errors reach their maxima (shown in bright-red color) of ~ 100% in the shallow 
areas close to the land during both high and low tidal phases (Figs. 4.17 (a) 
and (b)). This RMSE increase is even more apparent in the map which is 
generated from the MERIS image during low tidal phase (Fig. 4.17 (b)). The 
same applies to OLCI images captured during high and low tidal phases, 
respectively (Figs. 4.17 (c) and (d)). As a result, it can be concluded that the 
generated WCC maps can be considered satisfactory enough over the deep 
parts of the study area with low spectral RMSE (e.g., external parts of the 
Dutch Wadden Sea close to the North Sea and the IJsselmeer lake). However, 
the retrieved WCCs are questionable over the areas with very high spectral 
residual errors mainly located in shallow parts of the study area. Further 
investigations showed that for each image similar aerosol types and visibilities 
are present over the regions with high spectral residual errors (results are not 
presented). On the other hand, some channels are visible in the generated 
maps. Thus it can be stated that the sea bottom effect plays significant role at 
the received signal at TOA level on satellite images and accordingly is the main 
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reason for the model’s failure to accurately simulate TOA radiances over the 
shallow waters of the study area (Arabi et al., 2018; Yu et al., 2016). Although 
it is not the case for the NJS data where, due to the depth of > 5 m, the bottom 
effect on observed reflectance is negligible. Therefore, to generate reliable 
WCC maps over the shallow parts of the Dutch Wadden Sea, the sea bottom 
impact should be taken into account in the retrievals. Otherwise one can never 
tell whether the retrieved spatial variations in WCCs are real or just artifacts 
caused by observation of the sea-bottom.  

4.6. Discussion 
Optical remote sensing of water quality is dramatically improving by developing 
new approaches for integration of earth observations data with in-situ 
measurements in support of critical activities such as the effective monitoring 
of complex coastal regions and aquatic ecosystems. Quantitative remote 
sensing of water quality benefits from observation complementarities and 
synergies by combining in-situ measurements and satellite images to provide 
more precise and higher temporal resolution monitoring (Teillet et al., 2002). 
In this study, we combined in-situ and remote sensing observations for long-
term monitoring of multi-variate water constituent concentrations of Chla, 
SPM, and CDOM using radiative transfer modeling in complex coastal waters 
of the Dutch Wadden Sea.  
 
In the first phase of this study, we used the RT model of the 2SeaColor for 
simultaneous retrieval of WCCs from time series of in-situ Rrs measurements 
collected in a daily basis between 2003 and 2018 at the NJS, Dutch Wadden 
Sea. The performed statistical analysis and model’s validation showed that the 
2SeaColor model is capable enough for accurate estimates of WCCs within 
different dates, seasons and water turbidity conditions for a period of 15-years 
at the NJS (Figs. 4.6 and 4.7, Table 4.7). Relying on the capability of the 
2SeaColor model for an accurate estimate of WCCs, these retrievals were used 
as a reference indicator to evaluate the long-term variation of WCCs from TOA 
level using multi-sensor satellite images.   
 
In the second phase of this study, we used the RT model of the coupled 
2SeaColor-MODTRAN model for simultaneous retrieval of WCCs from multi-
sensor satellite images of MERIS, MSI and OLCI between 2003 and 2018 at 
the same study site. Performed statistical analysis and model’s validation 
showed that the atmospherically corrected-Rrs values from multi-sensor 
satellite images by using the coupled 2SeaColor-MODTRAN model were in 
reasonable agreement with in-situ Rrs measurements (Fig. 4.9 and Table 4.8) 
while OLCI images slightly showed better performance in comparison to MERIS 
and MSI images. Moreover, performed statistical analysis showed that there 
are a reasonable agreement and correlation between variations of retrieved 
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WCCs from satellite images with the ones retrieved from in-situ Rrs 
measurements in different dates, seasons (SZAs < 60°), water turbidity and 
atmospheric conditions within a period of 15 years at the NJS (Fig. 4.11 and 
Table 4.9).  
 
Furthermore, the produced Taylor diagrams for three constituents of Chla, SPM 
and CDOM from MERIS, MSI and OLCI images showed that OLCI retrievals fit 
the best with in-situ Rrs retrievals in comparison to MERIS and MSI-retrievals 
(Fig. 4.12, Table 4.9). Accordingly, long-term variability of WCC retrievals from 
the integration of in-situ and satellite observations was presented while both 
WCC retrievals at TOA and water surface level were in good agreements and 
followed similar temporal patterns at the NJS (Fig. 4.13).  
 
Finally, we applied the coupled 2SeaColor-MODTRAN model on MERIS and 
OLCI images to monitor the spatio-temporal variation of WCCs over the Dutch 
Wadden Sea (Figs. 4.14, 4.15 and 4.16). The results indicate that applying this 
model on MERIS and OLCI images lead to generating high-quality WCC maps 
while the quality of generated maps by MSI remains questionable. The reason 
might be due to this fact that applying the coupled 2SeaColor-MODTRAN model 
on MSI images requires to resize the sensor spatial resolution to 300 m. This 
could influence the quality of generated WCC maps although the model’s 
validation at the single location of the NJS is fairly reasonable.   

 Implications 

The established reliable long-term WCC variations in high temporal resolution 
obtained from integration of in-situ measurements and satellite images may 
be used as baseline information for sustainable management of water 
resources, and the validated algorithms may be served for the future satellite 
images using oncoming satellite missions. Moreover, a similar approach to 
exploit the integration of space and ground-based observations for quantitative 
water quality monitoring can be implemented in various critical coastal areas 
worldwide. Providing such information has great potential to empower decision 
makers and water managers to detect possible alert and supports the recent 
global goals (i.e., Goal 14: Conserve and sustainably use the oceans, seas and 
marine resources) by SDGs program  (McInnes, 2018) which aims in (the goals 
are taken from the SDGs report directly):  
 
 “14.2 By 2020, sustainably manage and protect marine and coastal 

ecosystems to avoid significant adverse impacts”. 
 “14.5 By 2020, conserve at least 10 percent of coastal and marine areas, 

consistent with national and international law and based on the best 
available scientific information”. 
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 “14.A increase scientific knowledge, develop research capacity and transfer 
marine technology, taking into account the Intergovernmental 
Oceanographic Commission Criteria and Guidelines on the Transfer of 
Marine Technology ”. 

 “14.C Enhance the conservation and sustainable use of oceans and their 
resources by implementing international law as reflected in UNCLOS, which 
provides the legal framework for the conservation and sustainable use of 
oceans and their resources, as recalled in paragraph 158 of The Future We 
Want”.  

 Recommendations  

It is recommended to investigate the potential of integration of in-situ 
measurements with earth observation data obtained from recently launched 
and future satellite sensors to be served for automatic monitoring of water 
quality. The hyperspectral satellite mission of Environmental Mapping and 
Analysis Program (EnMAP) will be launched in 2020 by Germany with the main 
goal of global monitoring of Earth’s environment and to model and measure 
the key dynamic processes of the Earth’s ecosystems (Kaufmann et al., 2008). 
The EnMAP will provide earth observation data with a high radiometric, 
temporal (4 days) and spatial (30 m) resolution while covering a broad spectral 
range (420 nm-2450 nm). The integration of hyperspectral satellite images 
provided by EnMAP with in-situ hyperspectral measurements helps to exploit 
their synergies and complementarities to reduce uncertainties for effective and 
automatic monitoring of water quality monitoring and will provide information 
on the status and evolution of various terrestrial and aquatic ecosystems. 
 
It is recommended to establish denser in-situ measuring stations in coastal 
waters to support and validate the spatio-temporal water quality information 
provided by satellite images. Although this might not be readily feasible due to 
lack of budget and facilities in many vast areas or underdeveloped countries, 
the density of measuring in-situ stations in time and space can be optimal by 
some factors: 1) detecting crucial sites of a coastal area with more necessity 
to be monitored due to risks of fishery, human activities, climate change; 2) 
considering the climatological condition of the study site for expecting more 
cloud-free images in specific seasons; 3) considering time tracking of available 
satellites covering the study site to reduce mismatch between in-situ 
measurements and satellite images; and 4) obtaining updated information 
about topography and ecosystem of the region for best establishment of 
spatio-temporal stationarity. 
 
It is recommended to develop a hydro-optical model which includes the impact 
of the sea-bottom to improve in the derived WCCs from MERIS and OLCI 
images (Arabi et al., 2018; Yu et al., 2016). Although the spatial variation of 
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retrieved using MERIS and OLCI images in deep waters of Dutch Wadden Sea 
are considered satisfactory enough (Fig. 4.17), in the shallow areas and the 
regions close to the land, the coupled model failed to simulate TOA radiances 
accurately (Fig. 4.11). The reason was due to this fact that in the shallower 
parts of the study area, the sea bottom might contribute significantly in the 
visible region of the spectrum and consequently is as the main reason for the 
model’s failure to accurately simulate TOA radiances (Arabi et al., 2018; Yu et 
al., 2016). As a result, in the next chapter of this thesis, we will develop a 
WCCs retrieval algorithm by incorporating the sea bottom effect in the hydro-
optical model and evaluate the reliability of generated WCC maps by using the 
new model. 

4.7. Conclusion 
15-years monitoring of WCCs from the integration of in-situ and satellite 
observations using radiative transfer modeling is studied in the Dutch Wadden 
Sea, the Netherlands. From the results of this research, it is concluded that: 
 
1) The two-stream radiative transfer model of 2SeaColor accurately illustrates 

the temporal variation of  WCCs retrieved from in-situ Rrs measurements 
between 2003 and 2018 at the NJS. 

2) The coupled radiative transfer model of 2SeaColor-MODTRAN accurately 
illustrate the temporal variation of WCCs retrieved from MERIS (2003-
2012), MSI (2015-2018) and OLCI (2018) images at the NJS. 

3) There are similar temporal trends and good agreements between the 
retrieved WCCs by the 2SeaColor at water surface level and the ones by 
the coupled 2SeaColor-MODTRAN model at TOA level. 

4) The provided high-temporal resolution information on water quality 
variables obtained from the integration of ground and space remote 
sensing observations in this study is vital for decision-makers to detect 
unexpected alters and effective monitoring of the study area. 

5) Generating reliable WCC maps over the complex waters of the Dutch 
Wadden Sea require a water retrieval model which considers the sea 
bottom effect.  
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Chapter 5 The sea - bottom effects on radiances 
and the retrievals* 
 
 

  

                                               
* This chapter is based on:  
Arabi, B., Salama, M.S., van der Wal, Daphne., Pitarch, J., Verhoef, W., 2020. The impact 
of sea bottom effects on the retrieval of water constituent concentrations from MERIS 
and OLCI images in shallow tidal waters supported by radiative transfer modeling. 
Remote Sensing of Environment Journal, 237 (2020) 111596. 
https://doi.org/10.1016/j.rse.2019.111596. 
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ABSTRACT  

The Dutch Wadden Sea includes large areas of optically shallow water where 
the sea bottom is visible from above, and there may be a substantial influence 
on the water-leaving reflectance. If not treated, the effect of bottom 
reflectance will interfere with the correct retrieval of WCCs from hyperspectral 
and multispectral remote sensing data. To study this phenomenon in more 
detail, the semi-infinite 2SeaColor radiative transfer (RT) model was modified 
into a finite water layer model, bounded by a diffusely reflecting surface at the 
bottom. From simulations with the new model, called Water - Sea Bottom 
(WSB) model, it was observed that ratios of spectral bands in the near infrared 
can be employed as a bottom effect index (BEI), and to distinguish it from 
currently existing BEIs using visible light, it was called NIBEI, near infrared 
bottom effect index. The NIBEI from bands at 750 nm and 900 nm is nearly 
insensitive to the WCCs and increases with the shallowness of the water, and 
therefore can be used as a robust flag to detect optically shallow waters. This 
flag can be applied to exclude optically shallow waters from consideration in 
WCC retrieval algorithms. This concept has been tested on the MERIS and OLCI 
images of the Dutch Wadden Sea. A LUT of TOA radiance was generated using 
the 2SeaColor and MODTRAN models. The LUT was applied to MERIS and OLCI 
images to retrieve WCCs in the study area. The results indicate that flagging 
for optically shallow waters helps to improve the reliability of WCC retrievals, 
but it will remain a challenge to differentiate the combination of effects of the 
sea bottom, water constituents and atmospheric properties from TOA radiance 
spectra alone.   
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5.1. Introduction 
The Wadden Sea is a UNESCO World Heritage (Hommersom, 2010) and is 
considered one of the most important coastal areas in Europe (Cadée, 1982). 
Monitoring this area is mandatory following the European Marine Strategy 
launched in 2002 and to adhere to the Marine Framework Directive (Long, 
2011). Remote sensing data provide more cost-effective information than 
alternative field-survey methods for monitoring of this vast coastal area 
(Mumby et al., 1999). Using earth observation is a big step of change from the 
station-oriented monitoring to the system-oriented monitoring over this highly 
dynamic coastal area (WFD, 2000). Fortunately, this area is observed by the 
most operational satellites for water quality studies like the MERIS and OLCI 
(Ambarwulan et al., 2011; Matthews et al., 2012). At present, there is a full 
archive of MERIS images between 2002 and 2012 over the Wadden Sea. OLCI, 
on board of the Sentinel-3 mission series of satellites, is an improved successor 
of the MERIS sensor and in orbit since February 2016, with higher accuracy, 
greater wavelength region coverage, and more spectral bands. It is expected 
that products from the OLCI sensor can improve both the geographical and 
temporal coverage of WCC retrievals (Harvey et al., 2014). OLCI images are 
free for users to be downloaded. Therefore, there is a great opportunity to 
produce WCC maps of Chla, SPM, and CDOM using these satellite images and 
track the spatio-temporal variation of these concentrations for more than one 
decade over this coastal area. Such products can contain very significant 
information for the environmental decision makers concerning maintenance 
and conservation (Doerffer and Fischer, 1994; Eleveld et al., 2008; Peters et 
al., 2005; Pitarch et al., 2016). However, producing accurate and reliable WCC 
maps over this complex coastal area is a big challenge. Studies have reported 
three main problems, i) atmospheric correction issues, ii) WCC retrieval 
algorithms and iii) the effect of the sea-bottom on the observed remote sensing 
data, in the use of remote sensing techniques in this complex coastal area 
(Bartholdy and Folving, 1986; Dekker et al., 2001; Hommersom et al., 2010; 
Hommersom, 2010a, 2010b; Peters et al., 2004; Philippart et al., 2013; 
Salama and Shen, 2010; Staneva et al., 2009; Van der Woerd and Pasterkamp, 
2004; Malthus and Mumby, 2003). 
 
The Dutch Wadden Sea is a highly turbid coastal area located on the coast of 
northwestern continental Europe, with many rainy and cloudy days during a 
year (Creutzberg, 1961). That is also the reason why regular atmospheric 
correction algorithms have a higher probability of failure over these waters 
(Pasterkamp et al., 2003; Peters et al., 2004; Salama et al., 2012; Van der 
Woerd, Hans et al., 2003), where not only substantial SPM concentrations can 
occur but also the atmosphere is mostly heterogeneous over the region due to 
local haze variations (Arabi et al., 2016; Hu et al., 2000; Ruddick et al., 2000; 
Shen et al., 2010; Shen and Verhoef, 2010; Siegel et al., 2000; Wang et al., 
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2009; Wang and Shi, 2005). Besides the atmospheric correction problem, the 
accuracy of water retrieval algorithms remains problematic where Chla, SPM, 
and CDOM concentrations have high spatio-temporal variation over this coastal 
area (Arabi et al., 2018). These WCCs vary independently from each other, 
and their effect needs to be considered, separately, in water retrieval 
algorithms (Salama et al., 2012; Van der Woerd and Pasterkamp, 2008). 
Furthermore, depending on the local water depth, water transparency and the 
nature of the bottom surface, the sea-bottom may have a substantial influence 
on water leaving reflectances recorded at sensor level in this shallow coastal 
area (Casey, 2007; Ceyhun and Yalçin, 2010; Hommersom, 2010a; Mobley, 
2003). This can interfere with the correct retrieval of WCCs from water leaving 
reflectances using different water retrieval algorithms. Therefore the hydro-
optical algorithms should include the sea-bottom effect in order to accurately 
retrieve WCCs from atmospherically corrected water-leaving reflectance 
(Gitelson et al., 2008; Lee et al., 2002a). Although many studies have been 
conducted to improve the accuracy of atmospheric correction methods and 
hydro-optical models for water quality monitoring in this area, producing WCC 
maps is still a big challenge due to the complexity of this optically shallow water 
system (Hommersom et al., 2010; Philippart et al., 2013).  
 
In their most recent effort, Arabi et al. (2018) evaluated the performance of a 
two-stream radiative transfer modeling with the 2SeaColor model (Salama and 
Verhoef, 2015) for the simultaneous retrieval of Chla, SPM and CDOM 
concentrations from time series of in-situ hyperspectral measurements 
collected on different dates, varying SZAs and water turbidity conditions for 
the Dutch Wadden Sea. They showed that the accuracy of the 2SeaColor model 
for WCC estimation against in-situ WCCs is reasonable enough at the location 
of the NJS located at the western inlet to the Dutch Wadden Sea. However, the 
effect of the bottom was not considered on the accuracy of WCC retrievals in 
their study. In another study, Arabi et al. (2016) coupled the 2SeaColor model 
with the MODTRAN atmospheric RT model to the simultaneous retrieval of 
WCCs and atmospheric properties (i.e., visibility and aerosol type) from MERIS 
images over the Dutch Wadden Sea. By applying this model, they succeeded 
to accommodate local haze variations over the MERIS images while the results 
showed significant improvements in both the atmospheric correction and WCC 
retrievals in comparison to the standard MERIS C2R processor (Doerffer and 
Schiller, 2007). However, the accuracy of generated maps using their proposed 
coupled model remained a concern due to the shallowness of the Wadden Sea 
and the significant effect of the sea-bottom on the satellite images. 
 
Although there are some studies of bottom reflectance in shallow waters, most 
of these studies have focused on habitat classification mapping or bathymetry 
by establishing the statistical relationships between image pixel values and 
field measured water depth values, which requires a high level of spatial and 
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spectral details (Bresciani et al., 2016; Chybicki, 2017; Giardino et al., 2014, 
2012; McKinna et al., 2015; Mgengel and Spitzer, 1991; Pattanaik et al., 2015; 
Sari, 2013; Stumpf et al., 2003; Yanjiao et al., 2007). For example, Brando et 
al. (2009) applied an integrated physics-based mapping approach to retrieve 
bathymetry, substratum type and WCCs using airborne hyperspectral 
observations at Moreton Bay, Australia. Their investigations suggested that the 
quantitative identification and screening of the optically deep waters and the 
quasi-optically deep waters led to improved precision in the depth retrieval. Hu 
et al. (2010) and Hu (2009) proposed the Floating Algae Index (FAI) to detect 
cyanobacteria and macro-algae in the freshwater lake Taihu and the Yellow 
Sea (China) from MODIS images. Their investigations showed that the FAI was 
sensitive to turbid waters and shallow depths. Lee et al. (2002) used measured 
hyperspectral data from both optically deep and shallow environments and 
inverted the remote-sensing reflectance spectra to accomplish a simultaneous 
retrieval of WCCs, bottom depths, and bottom albedos by an optimization 
technique. However, one of the first steps in deriving WCCs from satellite 
images in shallow waters is the differentiation between optically shallow and 
optically deep waters. In clear shallow regions, the Rrs values will be enhanced 
by light reflected from the sea-bottom, depending on both water turbidity and 
metrical bottom depth. Regions with either low turbidity or a small depth or 
both are typically characterized as optically shallow waters, where regular 
water quality retrieval algorithms cannot detect WCCs. Note that the term 
“optically shallow” is also dependent on the wavelength of the incident light, 
since the effects of turbidity vary substantially with the total absorption 
coefficient, which is strongly spectrally dependent (Albert and Mobley, 2003; 
Cannizzaro and Carder, 2006; Carder et al., 1986; Durand, 2000; Lee et al., 
1999, 1998; Li et al., 2003; Lyzenga, 1978; Maritorena et al., 1994; McKinna 
and Werdell, 2018; Volpe et al., 2011). 
 
Using bathymetry maps or estimating water depth values in coastal areas using 
different retrieval algorithms may not always be beneficial in satellite remote 
sensing of shallow coastal waters. First, the water depth values vary in time 
and space, especially in tidal areas (Chybicki, 2017). Second, such products 
do not necessarily help to discriminate optically deep from shallow waters, 
which is also dependent water turbidity and absorption (Albert, 2004; Lee et 
al., 1998; Reichstetter et al., 2015; Yang and Yang, 2015). Until now, some 
limited studies have focused on this subject. In their most recent effort, Li et 
al. (2017) introduced a bottom effect index (BEI) to separate optically shallow 
waters from optically deep waters to retrieve CDOM concentrations in Saginaw 
Bay, in the U.S. However, applying their BEI required reliable bathymetry data, 
which are not available for all coastal waters. Later, McKinna and Werdell 
(2018) developed an approach to flag optically shallow waters using MODIS 
images at Great Barrier Reef, Australia. However, their approach was 
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dependent on simultaneous input data such as bathymetry, water clarity and 
seafloor albedo which are not always available for all regions. 
 
With respect to all problems mentioned above, a major objective of the present 
paper was to develop an image based flagging approach to detect optically 
shallow waters without the requirement of ancillary data (i.g., bathymetry 
maps). To do this, we first evaluate the effect of the sea-bottom on remote 
sensing observations of water leaving reflectances and satellite images using 
radiative transfer modeling. Then we define an appropriate flagging index and 
show its application using MERIS and OLCI images. The paper is structured as 
follows: we describe the location of the Dutch Wadden Sea, its environmental 
characteristics and the water depth variation in different parts of this region 
(section 5.2). We introduce the characteristics of satellite images which were 
used in this study (section 5.3). Next, we explain the methodology of this 
research (section 5.4) and discuss the results (section 5.5) and come to 
conclusions in the final sections (5.6 and 5.7).   

5.2. Study area 
The Wadden Sea is the largest unbroken coastal tidal and mudflat system in 
the world and characterized by a mosaic of sand and mudflats, tidal channels, 
salt marshes, seagrass meadows, mussel banks, sandbars and barrier islands 
extending over a transboundary area (Hommersom, 2010b). Since July 2009, 
conservation of this tidal ecosystem has become compulsory due to its 
inclusion on the UNESCO World Heritage List. The Wadden Sea World Heritage 
property comprises the Dutch Wadden Sea conservation area and the German 
Wadden Sea National Parks of Lower Saxony and Schleswig-Holstein. The site 
represents over 66% of the whole Wadden Sea and is home to numerous plant 
and animal species. It is also a breeding and wintering area for up to 12 million 
birds per annum, and it supports more than 10 percent of 29 species (CWSS, 
2008).  
 
The case study of this research is the Dutch Wadden Sea. It is located in the 
north of the Netherlands and partly sheltered from the North Sea by a chain of 
barrier islands. It covers a total surface area of 2500 km2 and extends to 
German and Denmark. The area is shallow, leading to surfacing mudflats with 
low tide and re-suspension due to tidal currents (Dube, 2012). Tides influence 
the water depth and therefore, determine which tidal flats surface and which 
are submerged (Van der Wal and Pye, 2003). The variation in tidal level 
depends on the location: the highest tidal ranges in the Wadden Sea are found 
in the corner of the German Bight (> 3 m), and the least differences are found 
near the islands Texel and Fanø (~ 1.5 m) (Postma, 1982; Dijkema et al., 
1980). Tide also causes strong tidal currents in the Wadden Sea, which lead to 
high mixing (Hommersom, 2010a). The bottom level in this area varies from 
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about 25 m in the tidal channels up to +1 m above mean sea level on the tidal 
flats (Vledder, 2008). Fig. 5.1, right, shows the bathymetry of the Dutch 
Wadden Sea while X- and Y-axes present the geographical coordinates of the 
Dutch RD (rijksdriehoek) -system in km, and the scale bar presents the water 
depth variations (m). Fig. 5.1, left, shows a SPOT satellite image covering the 
southern part of the Wadden Sea with parts of the Dutch mainland on the right 
and the island of Texel at the bottom left and the islands Vlieland and 
Terschelling to the northeast from Texel.  
 

 

 
Figure 5.1. left: a SPOT- 4 image captured on 8th of May 2006 with a spatial resolution 
of 20 m covering the western part of the Dutch Wadden Sea (acquired from ESA official 
website: https://www.esa.int/ESA); right: the bathymetry map of the whole Dutch 
Wadden Sea (Vledder, 2008). 
 
As can be seen from the bathymetry map (Fig. 5.1, right), the bottom depth 
relative to mean sea level is less than 5 m in most parts of the Dutch Wadden 
Sea. Therefore this area can be considered a good example of shallow coastal 
waters for remote sensing studies. Also since Fig. 5.1, left, shows that the 
bottom of the sea can easily be seen from space, influenced by water clarity 
and the tidal phase at the time of satellite overpass. Altogether, the fair 
concentrations of Chla, SPM, and CDOM, the influence of the tide, the 
occurrence of many cloudy days, and the shallowness of the water, make the 
Dutch Wadden Sea a very complex case study for remote sensing of coastal 
areas. 
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5.3. Dataset 
In this study, we used MERIS and OLCI images. MERIS and OLCI are likely the 
optimal past and present sensors for near real-time frequent monitoring 
applications for spatially constrained inland and coastal waters (Matthews et 
al., 2012). MERIS was one of the instruments on board of the ENVISAT mission 
and monitored the Earth between 30 April 2002 and 8 April 2012. The high 
sensitivity and extensive dynamic range of the MERIS sensor (full spatial 
resolution: 300 m) have been widely used for ocean, lakes and coastal water 
remote sensing studies (Majozi et al., 2014; Odermatt et al., 2012; 
Pasterkamp et al., 2003; Pitarch et al., 2017). The MERIS sensor had a revisit 
time of three days on average at around 10:30 a.m. (UTC) over the Dutch 
Wadden Sea with 15 bands covering the spectral ranges from 400 nm to 950 
nm. MERIS was put out of operation in 2012 and was succeeded by OLCI, 
embedded on the Sentinel-3 on platform A in February 2016 and was continued 
on Sentinel-3 on the platform B since April 2018 (Saulquin et al., 2016). OLCI 
has the same spectral bands as MERIS plus six extra bands at 400 nm, 673.75 
nm, 764.37 nm, 767.5 nm, 940 nm, and 1020 nm. The OLCI sensor (full spatial 
resolution: 300m) has a revisit time of two-three days on average at around 
10:00 a.m. (UTC) over the Dutch Wadden Sea. An overview of the MERIS and 
OLCI bands is presented in Table 5.1. 

 
Table 5.1. MERIS and OLCI spectral band configurations. 

 Band center (nm) Band width (nm) 
Band number / Sensor MERIS OLCI  MERIS OLCI 
1 412.5 400  10 15 
2 442.5 412.5  10 10 
3 490 442.5  10 10 
4 510 490  10 10 
5 560 510  10 10 
6 620 560  10 10 
7 665 620  10 10 
8 681.2 665  7.5 10 
9 708.7 673.7  10 7.5 
10 753.7 681.2  7.5 7.5 
11 761.8 708.7  2.5 10 
12 778.7 753.7  15 7.5 
13 865 761.2  20 2.5 
14 885 764.3  10   7.5 

  15 900   767.5  10 2.5 
16 - 778.7  - 15 
17 - 865  - 20 
18 - 885  - 10 
19 - 900  - 10 
20 - 940  - 20 
21 - 1020  - 40 

5.4. Methodologies 
In the following subsections, the methodology of this work will be discussed in 
detail. 
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 The Water - Sea Bottom (WSB) model 

We extended the 2SeaColor model by incorporating the sea bottom effect for 
modeling Rrs as a function of five independent variables, namely Chla, SPM, 
CDOM, bottom albedo (ba) of the sea-bottom, and water depth (wd). The 
improved model, called Water - Sea Bottom (WSB), was used to evaluate the 
sensitivity of Rrs values to the sea-bottom effect in different parts of the 
spectrum. The 2SeaColor model is based on a two-stream approach, first 
proposed by Duntley (1941), with direct solar radiation included as a source of 
incident flux. The model predicts the directional-hemispheric reflectance factor 
(DHRF) of a semi-infinite water layer as: 

1 2 1

1 2 2
sd

w

x
r

x 
  


 
 (5.1a) 

where x is the ratio of the backscattering to the absorption coefficient (x = bb 

/ a), and µw is the cosine of the SZA beneath the water surface. The reflectance 
factor 𝑟௦ௗ

ஶ can be approximated by Q × R(0−) under sunny conditions, where Q 
= 3.25 and R(0−) is the irradiance reflectance beneath the surface (Morel and 
Gentili, 1993). The model also gives the reflectance for diffuse incident light, 
called the bi-hemispheric reflectance factor or BHRF, which is given by 
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dd
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   (5.1b) 

If sunlight dominates over the diffuse incident flux from the sky, only Eq. (5.1a) 
is applied in practice. In the extensive literature on two-stream approximations 
of radiative transfer, particularly in Duntley (1941), one can find quite different 
expressions for these reflectance factors, but the ones presented above are 
particularly suitable for model inversion purposes since x can be derived easily 
from the reflectances. Derivations of Eqs. (5.1a-5.1b) are given in Appendix A. 
For more details on the 2SeaColor model, readers are referred to Salama and 
Verhoef (2015). To incorporate the sea-bottom effect in the 2SeaColor model, 
the semi-infinite water layer was replaced by a finite layer of given metrical 
depth d, and the number of model outputs was extended with extra reflectance 
and transmittance factors that enable calculating the effect of a sea-bottom 
with a given Lambertian reflectance rb on the water-leaving reflectance. In 
Verhoef (1985) the adding equations for calculating the reflectance of the 
combination of a turbid medium layer and a background surface with a 
reflectance rb were given by Eqs. (26a-b), slightly adapted here for a 
Lambertian background:   
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where the double subscripts indicate the types of flux on incidence and exit, 
respectively, and s stands for direct solar flux and d for semi-isotropic diffuse 
flux. Reflectances caused by volume scattering inside the layer have the 
symbol ρ, and transmittances have the symbol τ. The direct transmittance for 
sunlight is τss. The resulting DHRF of the combination water - bottom is called 
rsd, and the bi-hemispherical reflectance factor (BHRF) is rdd. To generate input 
spectra of the bottom reflectance, the sub model BSM (brightness-shape-
moisture) is applied. This model is based on the statistical Global Soil Vectors 
(GSV) approach of Chongya and Hongliang (2012) and more recently also used 
by Verhoef et al. (2018). This also implies that vegetated sea-bottoms are not 
yet considered in the current approach. The model has four input variables, 
dry soil brightness, two spectral shape variables, and the volumetric soil 
moisture percentage. In this particular application, only the dry soil brightness 
variable was varied to generate spectra of constant shape. Dry soil brightness 
in this context is formally defined as the square root of the sum of the three 
squared weight coefficients applied to the basis spectra to fit a given soil dry 
spectrum. Changing soil brightness affects the whole soil spectrum 
proportionally, while the spectral shape is preserved. The so-called irradiance 
reflectance just beneath the water surface is: 
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where 𝐸ௌሺ0ሻ and 𝐸ௗ
ିሺ0ሻ are the direct solar irradiance and the diffuse 

downward irradiance incident at the top of the water layer, respectively. To 
include the effect of the water-air interface, we finally estimate the water-
leaving remote sensing reflectance by Mobley (2003): 
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 (5.5) 

In the turbid medium scattering model for the water layer, a similarity 
transform (Van de Hulst, 1980) was applied in such a way that all forward 
scattering greater than the backscatter coefficient was ignored, so that 
effectively isotropic scattering results. Accordingly, the beam extinction 
coefficient c in (m−1) was reduced to: 
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2 bc a b   (5.6) 

where a is the absorption coefficient and bb the backscattering coefficient. This 
means that the forward scattering peak due to Mie scattering by particles in 
the water is ignored and treated as the light that is not scattered at all. The 
transformed single scattering albedo ω is given by: 
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The similarity transform, effectively resulting in an isotropic scattering 
approximation, simplifies the description of radiative transfer in the layer in 
matrix-vector form to: 

1
2

1
2

0 0 0 0
d

'
d

( )

s s sE k E k E

E s E k E
c z

E s E k E

     
     

  

  

       
                    
                  

(5.8) 

where z is the metrical depth, Es is the direct solar flux, 𝐸ି is the downward 
diffuse flux, 𝐸ା is the upward diffuse flux, k is the extinction coefficient for 
direct sunlight, and κ the one for diffuse light. The extinction coefficients for 
diffuse and direct light are given by κ = 2, and k = 1/µw, respectively, where 
µw is the cosine of the under water solar zenith angle. A generic solution of Eq. 
(5.7) can be formulated in matrix-vector form by: 
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where (b) and (t) stand for the bottom and the top of the layer, respectively. 
The direct transmittance of the layer is given by τss = exp(‒kcd), where d is 
the metrical thickness of the water layer. The other reflectance and 
transmittance quantities are given in Appendix A. We conducted a series of 
simulations with the developed WSB model to investigate the sea-bottom effect 
on the Rrs spectra at the sea surface level. The used values of the variables in 
the Rrs simulations by the WSB model are presented in Table 5.2. 
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Table 5.2. The variables, units and their corresponding values for simulations of Rrs 
spectra using the WSB model. 

Variable Unit Values 
Chla mg m-3 0  100                         
SPM g m-3 0  50                
CDOM m-1 0                                    
Bottom albedo  0.1  0.3  0.5 
Water depth  m 0 .05 .1  .2  .4  .6  .8  1  1.2 1.4  1.6  2  5  20  50  

 
The resulting Rrs spectra using the WSB model are presented on a logarithmic 
scale in Fig. 5.2. 

 
Figure 5.2. Spectra of 10log(Rrs) generated by the WSB model for fifteen water depths 
(wd), three bottom albedos (ba), two concentrations of Chla (mg m-3), and two of SPM 
(g m-3) including clear water. Water depth (wd) is indicated above each graph: clear 
water in blue, high Chla in green, high SPM in red, both high in yellow. Line brightness 
modulated by bottom albedo. 
 
From Fig. 5.2 it is obvious that depending on water turbidity all parts of the 
spectrum are affected by bottom albedo. For clear water, the influence of 
bottom albedo (in the blue-green parts of the spectrum) could reach the 
surface, affecting thereby Rrs, for water depths up to 50 m. However, in the 
near infrared (wavelengths > 750 nm), the Rrs spectra are unaffected by 
bottom albedo for water depths > 2 m. There, the shape of the spectrum is 
completely determined by the absorption of water itself (Ruddick et al., 2006), 
although the magnitude of the spectrum is still dependent on the scattering 
due to the Chla and SPM concentrations together. Plotted logarithmically, this 
gives a series of spectra that are shifted parallel in the vertical direction. For 
clear water with a depth > 2 m, the slope of the spectrum between 750 nm 
and 900 nm is slightly larger than for turbid waters, but other simulations (not 
shown here) revealed that for low concentrations of Chla or SPM the spectral 
shape was practically the same as for high concentrations. So, with the 
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exception of absolutely pure water, spectral shapes in this region are nearly 
invariant, regardless of WCCs. This phenomenon was termed “similarity 
spectrum” by Ruddick et al. (2006), and normalization of NIR spectra by the 
reflectance at one wavelength (e.g., 750 nm) gives nearly a single normalized 
spectrum that is independent of WCCs. 

 The Near-Infrared Bottom Effect Index (NIBEI) 

As it was found in Fig. 5.2 that for depths of less than 2 m the spectral shapes 
start deviating from the ones for deeper waters, optically shallow waters can 
be discriminated from optically deep waters by detecting deviations from the 
expected similarity spectrum. A first obvious candidate index for this is the 
ratio of the reflectances at 750 nm and 900 nm, which measures the spectral 
slope over this interval. From inspection of Fig. 5.2 one can observe that this 
slope is constant for waters deeper than 2 m, but for optically shallow waters 
it first increases sharply, reaches a maximum at about 0.4 m depth and finally 
declines to less than the deep water level. The sharp increase of the ratio is 
believed to be caused by a rising reflectance due to the bottom effect beginning 
at 750 nm, while at 900 nm the water layer is still optically deep. This ratio 
(750 nm / 900 nm) is very sensitive to the bottom effect in the NIR and 
therefore it was called NIBEI, the near infrared bottom effect index. With 
respect to the location of band centers of 700 nm and 900 nm in MERIS and 
OLCI images, separately, the NIBEI is defined as follows: 
 
Table 5.3. The NIBEI formula for satellite images. 

Satellite 750 nm 900 nm NIBEI for satellite images1 

MERIS band-10  band-15 TOA radiance (band-10)/TOA radiance (band-15) 

OLCI band-12 band-19 TOA radiance (band-12 )/TOA radiance (band-19) 
1 NIBEI formula = the ratio of TOA radiance values at spectral bands of 700nm/900nm. 
 

It should be noted that the NIBEI values are constant for reflectances (Fig. 
5.2), but at the TOA level, they are influenced by the atmospheric gain and 
path radiances. Per image, the TOA NIBEI is most influenced by visibility and 
SZA. Therefore, the NIBEI values are not constant for different satellite images 
and vary considering the date and atmospheric condition of each image, 
separately. However, in the future, it might even be possible to derive the best 
atmospheric correction from the requirement that NIR spectra for deep waters 
must have a fixed shape, regardless of WCCs. In that way, it would be possible 
to apply a fixed value for NIBEI (after atmospheric correction) for all images. 
However, it will remain a much bigger challenge to differentiate the 
combination of effects of the sea-bottom, WCCs, and atmospheric properties 
from radiance spectra alone. Therefore, it is suggested here to follow an 
intermediate approach by flagging optically shallow waters as objects that are 
too complex for further spectral analysis and to estimate WCCs only from pixels 
that have been identified as optically deep waters.  
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5.4.2.1. The implication of the NIBEI 

We applied the NIBEI to distinguish the optically shallow waters from optically 
deep waters using MERIS and OLCI images over the Dutch Wadden Sea. To do 
this, first, we generated a NIBEI map for each image using the NIBEI formula 
described in Table 5.3. Next, we determined a NIBEI threshold to distinguish 
contaminated sea-bottom pixels from optically deep waters using these NIBEI 
maps. As explained in section 5.4.2, an image-based inspection was needed to 
determine the NIBEI threshold per each image, separately. However, 
determining the right NIBEI threshold per image could be done quickly and 
easily using the simple spectral band ratio of the NIBEI described in Table 5.3. 
By applying these NIBEI thresholds to OLCI and MERIS images, we generated 
the maps of discriminated optically shallow/deep pixels using Matlab. We 
presented such maps using two MERIS and OLCI images captured during high 
and low tidal phases, respectively. The reason to choose these images in 
different tidal phases was to investigate the application of the proposed NIBEI 
to detect TOA radiances (pixels) that were contaminated with the bottom effect 
in low and high tidal phases. We obtained the corresponding tidal phase 
information (high or low tide) for each image overpass in the study area from 
the Den Helder station also located at the western inlet of the Dutch Wadden 
Sea. The date and tidal information of these images are provided in Table 5.4. 
 
Table 5.4. Images characteristics, tidal phases, the NIBEI, and land-mask thresholds. 

Satellite Date SZA  Tidal phase1 NIBEI threshold 3 
MERIS  14-08-2002 41° high NIBEI values > 4 
MERIS  19-04-2009 43° low NIBEI values > 2.8 
OLCI  05-05-2018 39° high NIBEI values > 3.6 
OLCI  06-06-2018 36° low NIBEI values > 3.1 

1 The phase of the tide (high: flood or low: ebb) at satellite overpass in the Dutch Wadden Sea. 
 
The generated maps optically deep/shallow waters by applying the NIBEI using 
these four images are presented in Fig. 5.3. 

5.4.2.2. Improving the reliability of WCC retrievals by applying the NIBEI 

We evaluated the effect of applying the NIBEI in increasing the reliability of 
WCC retrievals from MERIS and OLCI images over the study area. To do this, 
first, we generated maps of the TOA radiances spectral residual errors (i.e., 
RMSE (W m−2 sr−1 µm-1) between the observed and the best fits of modeled 
TOA radiances) per each MERIS and OLCI image, separately (Fig. 5.4). To 
model TOA radiances, we used a coupled water-atmosphere model named as 
2SeaColor-MODTRAN (Arabi et al., 2016). The details of applying this model 
are described in the next section. 
 
Next, we compared the spatial variation of the calculated TOA radiances 
spectral residual errors between the distinguished optically deep and shallow 
waters with and without applying the NIBEI using the generated RMSE (Wm−2 
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sr−1 µm-1) maps. Statistical analysis was also performed for this evaluation. 
The results of this statistical analysis are presented in section 5.2. The 
goodness-of-fit between the modeled and observed TOA radiances was based 
on R2, RMSE, NRMSE, and RRMSE. 

 Modeling TOA radiances  

To simulate TOA radiances using the coupled 2SeaColor-MODTRAN model, 
first, a LUT of Rrs data was generated by the 2SeaColor model for different 
combinations of WCCs (described in detail in section 5.4.3.1). Apart from that, 
a LUT of atmospheric parameters was generated by MODTRAN for different 
combinations of aerosol type and visibility (described in detail in section 
5.4.3.2). By coupling these 2SeaColor-MODTRAN LUTs, a bigger LUT of TOA 
radiances was generated per each image, separately. The coupling of the two 
LUTs took place at the pixel level. However, the best spectral fitting match was 
found by considering only the first five visibilities that would generate non-
negative reflectances in all bands and three aerosol types. Below we explain 
how the coupled 2SeaColor-MODTRAN model was used to model TOA radiances 
for MERIS and OLCI images. 

5.4.3.1. LUT processing for generating Rrs values  

The LUT of Rrs values by the 2SeaColor model was generated using Eq. (5.1a) 
considering various combinations of WCCs and for the specific SZA value for 
each satellite image, separately. The variation ranges of WCCs for these Rrs-
LUTs is described in Table 5 as follows: 
 
Table 5.5. The used ranges and units of WCCs in the Rrs LUTs by the 2SeaColor model. 

Variable Unit Values Step 
Chla concentration mg m−3 0 - 100 5 
SPM concentration g m−3 0 - 100 5 
CDOM absorption at 440 nm m−1 0 - 1.5 0.5 

 
We used the same water models described in Table 2 proposed by Arabi et al. 
(2018) for the 2SeaColor model parametrization considering the optical 
characteristics of different water constituents in the Dutch Wadden Sea. The 
generated LUT of Rrs values by the 2SeaColor model was later coupled to the 
MODTRAN-based atmospheric properties to model TOA radiances as described 
in the following subsection. 

5.4.3.2. LUT processing for generating atmospheric parameters 

The LUTs of atmospheric parameters (i.e., L0, G and S) by MODTRAN were 
generated considering various combinations of visibility and aerosol type in 
combination with the environmental variables and illumination geometry of 
each satellite image, separately. The environmental variables in the form of 
the concentrations of O3, H2O, and CO2 were obtained from Global Reference 
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Networks considering the region of interest, time and date of the satellite 
image. The illumination-observation geometry in the form of SZA, the VZA and 
RAA were extracted from MERIS and OLCI image directly. Other input variables 
for running MODTRAN were determined following Table 3 in Arabi et al. (2016). 
For more detailed information about MODTRAN, readers are referred to 
MODTRAN 5.2.1 user’s manual by Berk et al. (2011). The variation ranges of 
visibility and aerosol type for these atmospheric parameters LUTs is described 
in Table 5.6 as follows: 
 
Table 5.6. The used visibility range and aerosol types in atmospheric properties LUTs. 

Atmospheric property Unit Variable 
Visibility km 4 - 100 
Aerosol-type - Rural, Maritime, Urban 

 

We defined the visibility increments considering that a change in lower 
visibilities (e.g., 4 km) has much more effect on the TOA radiances than a 
change at higher visibilities (e.g., 40 km). Therefore we used Inverse Visibility 
(IV) to obtain almost perfect linear increments in AOT (aerosol optical 
thickness). Based on this method, values of IV were set equal to 100 divided 
by the actual visibility (100 / Vis). We ran MODTRAN with the values (1, 2, 3, 
.., 25 for IV and therefore with the corresponding actual visibilities (100, 50, 
33.3, …, 4 km). 
 
To compensate possible biases in sensor gain values, after the sampling of 
MODTRAN spectra with the respective sensor’s spectral response functions, we 
modified the values of L0 and G to correct for the differences between the solar 
irradiance database used by the European Space Agency (ESA) and the default 
one used by MODTRAN. The ESA uses the extraterrestrial solar irradiance data 
by Thuillier et al. (2003), while in MODTRAN the corresponding data are from 
a different source (Kurucz, 1995). The performed analysis showed that the 
differences between the two sources of solar irradiance spectra were 
substantial and caused discrepancies, especially at the shorter wavelengths. 
Therefore, we used a correction factor for all MERIS and OLCI bands to modify 
the calculated MODTRAN parameters L0 and G according to the solar irradiance 
values used by ESA. During the LUT generation, TOA radiances in the sensor’s 
bands are calculated as follows: 

TOA 0 1

Gr
L L

Sr
 


 

(5.10) 
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where LTOA is the modeled TOA radiance value (W m−2 sr−1 µm-1), and r is the 
hemispherical water-leaving reflectance (=πRrs) calculated by 2SeaColor. 

 Generating WCCs and atmospheric properties maps 

After evaluating the importance of applying the NIBEI, we generated the 
atmospheric properties, and WCC maps using the coupled 2SeaColor-
MODTRAN LUT applied to optically deep waters pixels of MERIS and OLCI 
images. The simultaneous retrieval of WCCs and atmospheric properties was 
performed by spectrally fitting of the modeled TOA radiances (using RMSE) to 
observed TOA radiances for all bands except for bands 11 and 13 for MERIS 
and OLCI respectively. These bands are located in the O2-A absorption region 
and could give erroneous results due to spectral sampling errors of MERIS and 
OLCI (Arabi et al., 2016). To speed up the computation and limit the combined 
LUT size, for every pixel and aerosol type, only five visibilities were selected 
from the atmospheric LUT. These visibilities were chosen to be less than the 
minimum required visibility for which the modeled L0 was less than or equal to 
the measured TOA radiance in all bands. This approach is equivalent to 
assuming only non-negative reflectances. 
 
Nonetheless, it dramatically increased the speed of computation when applied 
using MatLabR2017B on a personal PC [Processor: Intel (R) cORE (tm) i7 - 
4700 MQ, CPU: 2.40 GHz, RAM: 7.88 GB]. In total, the average number of 
pixels per image was equal to 70,000. The total number of LUT cases for each 
pixel is 15 (5 visibility, 3 aerosol types) times the number of water cases (in 
total 21 × 21 × 4 = 1764 cases). The computation time to generate each map 
was thirteen minutes. In this approach six output maps were produced, 
containing aerosol type, visibility, Chla concentration, SPM concentration, 
CDOM absorption, and the RMSE spectral error. 

 Validating atmospheric properties and WCCs retrievals  

We validated the accuracy of the coupled 2SeaColor-MODTRAN LUT-based 
retrievals at the NJS which is located at the optically deep water of the Dutch 
Wadden Sea (water depth > 5 m) (Wernand, 2011). For this, we used the 
inverse of Eq. (5.9) to estimate the water-leaving reflectances from TOA 
radiances (Verhoef and Bach, 2003) by using the known MODTRAN 
atmospheric parameters L0, G and S. We used 14 MERIS-matchups and 17 
OLCI-matchups concurrent with in-situ Chla (mg m-3), SPM (g m-3) and Rrs (sr-

1) measurements collected under the condition of SZAs < 60° at the NJS (Arabi 
et al., 2018). Since the NJS is located close to the shore, for every image, the 
darkest pixel from 5 by 5 pixels around the location of this station was 
extracted first using SNAP software. By selecting the darkest pixel from the 5 
× 5 neighborhood centered on the NJS, we excluded cloudy and land pixels, as 
well as water pixels close to the shore that was possibly influenced by an 
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adjacency effect due to the near land area. An underlying assumption in our 
approach was that the water of the darkest pixel had the same composition as 
the water found at the location of the NJS. However, since the water current is 
mostly strong near the Marsdiep inlet close to the NJS, we were confident that 
the water was well-mixed, and local gradients in water properties were small 
(Arabi et al., 2016). The results of this evaluation are presented in sections 
5.5.3 and 5.5.4. 

5.5. Results 
Fig. 5.3 presents the optically shallow waters distinguished from optically deep 
waters by applying the NIBEI on the images described in Table 5.4. The image 
dates and the tidal phase are indicated above each image. The detected 
optically shallow waters by the NIBEI are in grey, the land regions are in black, 
and optically deep waters are in dark-blue color. 

 
(a) (b) 

 
(c) (d) 

 

 

 
Figure 5.3. The generated maps of optically deep waters and the detected optically 
shallow waters by applying the NIBEI over the Dutch Wadden Sea and the IJsselmeer 
lake from; (a) the MERIS image captured during high tidal phase on 14-08-2002; (b) 
the MERIS image captured during low tidal phase on 19-04-2009; (c) the OLCI captured 
during high tidal phase on 05-05-2018; (d) the OLCI image captured during low tidal 
phase on 06-06-2018. 
 
As can be seen from the above maps (in lat-long projection), pixels of optically 
shallow water, detected by the NIBEI, contain larger regions of the study area 
during the low tidal phase for both MERIS and OLCI images (Fig. 5.3 (b), (d)). 
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 Improving the reliability of WCC maps  

Fig. 5.4 shows the generated maps of spectral residual errors (RMSE) between 
the best fits of observed and modeled TOA radiances using the coupled 
2SeaColor-MODTRAN (described in section 5.4.3) with and without applying 
the NIBEI for the same images described in Table 5.4. 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

 
Figure 5.4. The generated maps of the TOA radiances spectral residual errors (RMSE) (Wm−2 
sr−1 µm-1) between the best fits of 2SeaColor-MODTRAN modeled and observed TOA radiances 
over the Dutch Wadden Sea and the IJsselmeer lake; first row: the MERIS image captured 
during high tidal phase on 14-08-2002 (a) with and (b) without applying the NIBEI; second 
row: the MERIS image captured during low phase on 19-04-2009 (c) with and (d) without 
applying the NIBEI; third row: the OLCI image captured during high tidal phase on 05-05-
2018 (e) with and (f) without applying the NIBEI; fourth row: the OLCI image captured during 
low tidal phase on 06-06-2018 (g) with and (h) without applying the NIBEI. 
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As Fig. 5.4 (a) shows, the estimated TOA radiances spectral residual errors 
(RMSE (W m−2 sr−1 µm-1)) for the MERIS image captured during the high tidal 
phase, do not exceed ~ 30% in the different parts of the image after removal 
of optically shallow waters using the NIBEI. However, these errors reach their 
maxima (shown in bright-red color) of ~ 100% at the same locations of 
optically shallow waters if the NIBEI is not implemented in the same image in 
Fig. 5.4. (b). This outcome is even more apparent for the MERIS image 
captured during the low tidal phase when the optically shallow waters, detected 
by the NIBEI, cover larger areas in Fig. 5.4 (c). As a result, a considerable part 
of the Dutch Wadden Sea shows very high spectral residual errors (~ 100%) 
if the NIBEI is not implemented on the MERIS image in Fig. 5.4 (d). The same 
applies to OLCI images captured during high and low tidal phases, respectively. 
Consequently, the retrieved WCCs (Chla, SPM, and CDOM concentration) are 
questionable over these optically shallow waters due to very high spectral 
residual errors while the NIBEI is not implemented on the images. Further 
investigations showed that for each image similar aerosol types and visibilities 
were present over the detected shallow and optically deep waters (Figs. 5.6 
and 5.7). Therefore it can be concluded that the effect of the sea-bottom is the 
main reason for the model’s failure to accurately simulate TOA radiances over 
the optically shallow waters (Arabi et al., 2018; Yu et al., 2016).  
 
Fig. 5.5 presents the spectral agreement between the modeled TOA radiances 
against the observed ones for MERIS and OLCI images at three band centers 
of 490 nm, 550 nm, and 665 nm as follows: 

(a) 

 

(b) (c) 

 
(d) 

 

(e) (f) 
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(g) 

 

(h) (k) 

 
(m) 

 

(n) (s) 

 
Figure 5.5. Comparison between the 2SeaColor-MODTRAN model's best-fit spectra and 
observed TOA radiances (Wm−2 sr−1 µm-1) over the study area for the band centres of 
first column: 490 nm; second column: 560 nm; and third column: 665 nm, and from 
first row: the MERIS image captured during high tidal phase on 14-08-2002; second 
row: the MERIS image captured during low tidal phase on 19-04-2009; third row: the 
OLCI image captured during high tidal phase on 05-05-2018; fourth row: the OLCI image 
captured during low tidal phase on 06-06-2018.   
 
As Fig. 5.5 shows, the accuracy of modeled TOA radiances against the observed 
ones decreases over the optically shallow waters in comparison to optically 
deep waters for both MERIS and OLCI images during high and low tidal phases, 
respectively. The related error statistics of this assessment are presented in 
Tables 5.7, 5.8, 5.9 and 5.10. 
 
Table 5.7. Evaluation of the 2SeaColor-MODTRAN model's best-fit spectra against 
observed TOA radiances over the study area from the MERIS image captured during high 
tidal phase on 14-08-2002. 

Statistical 
analysis 

R2 RMSE NRMSE (%) RRMSE (%) 

wavelength/ 
satellite 

deep shallow deep shallow deep shallow deep shallow 

490 nm 0.97 0.85 0.52 1.45 2.60 5.10 1.20 2.86 
560 nm 0.98 0.83 0.80 1.60 2.33 5.70 2.65 4.10 
665 nm 0.99 0.89 0.41 1.08 1.72 3.36 2.51 3.49 
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Table 5.8. Evaluation of 2SeaColor-MODTRAN model's best-fit spectra against observed 
TOA radiances over the study area from the MERIS image captured during low tidal phase 
on 19-04-2009. 

Statistical 
analysis 

R2 RMSE NRMSE (%) RRMSE (%) 

wavelength/ 
satellite 

deep shallow deep shallow deep shallow deep shallow 

490 nm 0.99 0.79 0.38 1.43 1.83 5.38 0.81 2.56 
560 nm 0.99 0.84 0.51 1.47 2.08 5.73 1.54 3.39 
650 nm 0.99 0.90 0.23 1.06 1.10 3.10 1.20 2.49 

 
Table 5.9. Evaluation of 2SeaColor-MODTRAN model's best-fit spectra against observed 
TOA radiances over the study area from the OLCI image captured during high tidal phase 
on 05-05-2018. 

Statistical 
analysis 

R2 RMSE NRMSE (%) RRMSE (%) 

wavelength/ 
satellite 

deep shallow deep shallow deep shallow deep shallow 

490 nm  0.95 0.89 0.86 2.03 1.96 3.08 1.83 3.05 
560 nm 0.96 0.88 0.98 2.14 2.45 4.22 2.32 4.73 
665 nm 0.98 0.89 0.53 2.38 1.68 5.43 2.99 7.87 

 
Table 5.10. Evaluation of 2SeaColor-MODTRAN model's best-fit spectra against observed 
TOA radiances over the study area from the OLCI image captured during low tidal phase 
on 06-06-2018. 

Statistical 
analysis 

R2 RMSE NRMSE (%) RRMSE (%) 

wavelength/ 
satellite 

deep shallow deep shallow deep shallow deep shallow 

490 nm 0.99 0.86 0.35 2.70 1.58 6.00 1.29 5.53 
560 nm 0.99 0.87 0.27 2.64 1.32 6.34 1.35 6.51 
665 nm 0.99 0.86 0.30 2.39 2.11 6.21 1.86 6.58 

 
As Tables 5.7, 5.8, 5.9 and 5.10 show, there is a strong agreement between 
the modeled TOA radiances and the observed ones for all three selected bands 
(490 nm, 560 nm and 665 nm) over the optically deep waters of the Dutch 
Wadden Sea for both low and tidal phases using MERIS and OLCI images, 
respectively (R2 > 0.95, RMSE < 1, NRMSE ~ 2.5%, RRMSE ~ 2.5%). However, 
the agreement between the modeled TOA radiances and the observed ones 
decreases over the optically shallow waters for both low and tidal phases using 
MERIS and OLCI images (R2 < 0.90, RMSE > 1, NRMSE ~ 4%, RRMSE ~ 5%). 
Therefore, it can be concluded that applying the NIBEI together with water 
retrieval algorithms to satellite images enables excluding all pixels with 
unreliable WCC retrievals due to high spectral residual errors. In other words, 
excluding the optically shallow waters from consideration by applying the NIBEI 
leads to increasing the reliability of WCC retrievals for the rest of the study 
area (identified as optically deep waters by the NIBEI). It should be noted that 
this conclusion does not necessarily mean that applying the NIBEI leads to an 
increase in the accuracy of the WCCs retrievals in optically deep waters. Since 
the accuracy of the WCC retrievals is dependent on other factors such as the 
suitability of the applied atmospheric properties and the water retrieval 
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algorithm, it is independent of the NIBEI performance. In the next section, we 
generate WCCs and atmospheric properties maps using the coupled 2SeaColor-
MODTRAN model over the masked optically shallow waters of the Dutch 
Wadden Sea and validate the accuracy of the WCCs retrievals in the NJS 
located in optically deep waters of the study area. 

 The generated maps of atmospheric properties 

The generated maps of aerosol types and visibility using the coupled 
2SeaColor-MODTRAN model from MERIS and OLCI images are presented in 
Figs. 5.6 and 5.7. For these maps, the aerosol types rural, maritime and urban 
are shown in green, blue and red color, respectively. As before, the optically 
shallow waters detected by the NIBEI are shown in grey, and the land regions 
are shown in black color, respectively. The location of the NJS is shown by a 
pink circle in the Western-South of each map (53° 00' 06"N; 4° 47' 21"E). For 
every group of generated maps, the legend is shown in the last image.   
 

(a) (b) 

 
(c) (d)  

 
Figure 5.6. The generated maps of aerosol type (rural, maritime, urban) using the 
coupled 2SeaColor-MODTRAN model over the Dutch Wadden Sea and the IJsselmeer 
lake from (a) the MERIS image captured during high tidal phase on 14-08-2002; (b) the 
MERIS image captured during low tidal phase on 19-04-2009; (c) the OLCI image 
captured during high tidal phase on 05-05-2018 (d) the OLCI image captured during low 
tidal phase on 06-06-2018. 
 
As can be seen from these maps, the aerosol type varies for each image by 
date. The dominant aerosol type is maritime for the images captured in April 
and June in Figs. 5.6 (b) and (d), while most parts of the images are diagnosed 
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as the rural aerosol type for the images captured in August and May in Figs. 
5.6 (a) and (c). Moreover, the aerosol type is homogeneous over the study 
area in Figs. 5.6 (a) and (b) while they are spatially varied in Figs. 5.6 (c) and 
(d). Overall, the rural and maritime aerosol type are mostly observed over the 
study area for all images, and the maritime aerosol type is mainly seen in the 
neighborhood of the North Sea (Figs. 5.6 (b), (c) and (d)). The urban aerosol 
type is only identified at some internal parts of the Dutch Wadden Sea and 
partly in the IJsselmeer Lake in Fig. 5.6 (d). Below the generated maps of 
retrieved visibility over the study are presented. 

(a) (b) 

 
(c) (d)  

 
Figure 5.7. The generated visibility (km) maps using the coupled 2SeaColor-MODTRAN 
model over the Dutch Wadden Sea and the IJsselmeer lake from (a) the MERIS image 
captured during high tidal phase on 14-08-2002; (b) the MERIS image captured during 
low tidal phase on 19-04-2009; (c) the OLCI image captured during high tidal phase on 
05-05-2018 (d) the OLCI image captured during low tidal phase on 06-06-2018. 
 
The generated visibility (km) maps show that the visibility range varies 
between 10 km and 50 km for all dates. Moreover, the visibility varies spatially 
while higher visibilities are observed over the North Sea (40 km - 50 km) in 
comparison to the Dutch Wadden Sea (10 km - 40 km) for all images. 
Especially for the OLCI image in Fig. 5.7 (d), some local haze variation can be 
seen in internal parts of the Dutch Wadden Sea.  
 
Below we present the validation results between in-situ hyperspectral 
measurements at the NJS and atmospherically corrected TOA radiances using 
the determined aerosol type and visibility by the model for each matchup, 
separately. It should be noted that in this TOA radiance approach, the 
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atmospheric correction is not needed since the sensor radiances are simulated 
and compared to the measured radiance signals in the spectral bands of the 
sensor to retrieve surface and atmospheric properties simultaneously. 
 

(a) (b) 

 
(c) 

 

(d) 

 

  



Chapter 5 

145 

(e) (f) 

 
Figure 5.8. First column: comparison between MERIS-atmospheric corrected Rrs and in-
situ Rrs values (sr−1) for fourteen matchups at the NJS between 2008 and 2010 at MERIS 
band centers of (a) 490 nm, (c) 560 nm and (e) 665 nm; second column: comparison 
between OLCI-atmospheric corrected Rrs and in-situ Rrs values (sr−1) for seventeen 
matchups at the NJS since April 2018 till present time at OLCI band centers of (b) 490 
nm, (d) 560 nm and (f) 665 nm. 
 
Table 5.11 presents a detailed statistical analysis of this evaluation: 
 
Table 5.11. Models’ performance evaluation in atmospheric correction part. 

Statistical 
analysis 

R2 RMSE NRMSE (%) RRMSE (%) 

Band centre/  
Satellite 

MERIS OLCI MERIS OLCI MERIS OLCI MERIS OLCI 

490 nm 0.79 0.80 0.0003 0.0007 13 9 6 13 
560 nm 0.78 0.82 0.0008 0.0005 10 9 7 5 
665 nm 0.78 0.86 0.0004 0.0003 12 9 11 10 

 
The results of this evaluation show reasonable agreement between the in-situ 
and atmospherically corrected water-leaving reflectances with respect to 
identified visibility and aerosol type for both MERIS and OLCI images (R2 ~ 
0.80, RMSE < 0.001). Therefore, it can be stated that the coupled model is 
accurate enough to atmospherically correct TOA Rrs from OLCI and MERI 
images. 

 Generating WCC maps  

Below are the generated maps of Chla concentration (mg m-3), SPM 
concentration (g m-3), CDOM absorption at 440 nm (m-1) for the same MERIS 
and OLCI images. 
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(a) (b) 

 
(c) (d)  

 
Figure 5.9. The retrieved Chla concentration (mg m-3) maps using the coupled 
2SeaColor-MODTRAN model over the Dutch Wadden Sea and the IJsselmeer lake from 
(a) MERIS image captured during high tidal phase on 14-08-2002; (b) MERIS image 
captured during low tidal phase on 19-04-2009; (c) OLCI image captured during high 
tidal phase on 05-05-2018 (d) OLCI image captured during low tidal phase on 06-06-
2018. 
 
As can be seen from Fig. 5.9, the variation range of Chla concentrations is 
similar on all dates (0 to 100 (mg m-3)). The retrieved Chla concentrations 
mainly show their maximum estimates nearby the coasts, surrounding islands 
of the Dutch Wadden Sea and the IJsselmeer lake (~ 100 (mg m-3)). These 
values decrease while moving from the shores to the internal parts of the Dutch 
Wadden Sea (~ 60 (mg m-3)) and reach their lowest amounts in the external 
parts of the Dutch Wadden Sea in the vicinity of the North Sea (< 20 (mg m-

3]) for all dates. However, spatial and temporal variability of Chla 
concentrations is observed on various dates. For example, more areas of the 
IJsselmeer lake show higher values of Chla estimates (~ 100 (mg m-3)) in April 
and August (Figs. 5.9 (a) and (b)) in comparison to May and June (Figs. 5.9 
(c) and (d)). The accuracy of MERIS retrievals against the collected in-situ 
measurements at the NJS is presented in Fig. 5.10. For OLCI images, there 
were no matching in-situ measurements of Chla concentration (mg m-3) to 
validate the retrievals. 
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Figure 5.10. The comparison of the MERIS-retrieved (blue bars) and in-situ 
measurements (red bars) of Chla concentrations (mg m−3) for fourteen MERIS matchups 
at the NJS between 2008 and 2010. 
 
In Fig. 5.10, the X-axis shows the date of each MERIS-in-situ matchups and 
the Y-axis shows the values of measured and retrieved Chla concentrations 
(mg m-3). Below the scatter plot of this evaluation is presented. 
 

 
Figure 5.11. The Comparison between MERIS-retrieved and in-situ Chla concentrations 
(mg m−3) for fourteen matchups at the NJS between 2008 and 2010. 
 
Chla retrievals from MERIS images for a period of three years (2008 - 2010) 
shows reasonable agreement with in-situ measurements (R2 = 0.79, RMSE = 
27.72%, NRMSE = 14.91%, RRMSE = 27.72). The RMSE < 30% appear 
reasonable enough, as compared with the validation of the SeaWiFS Chla data 
product for global open ocean waters with a relative RMSE of about 58% (Le 
et al., 2013). Therefore, it is concluded that the accuracy of generated Chla 
maps using the coupled 2SeaColor-MODTRAN is reasonable enough over the 
optically deep waters of the Dutch Wadden Sea. Fig. 5.12 presents four maps 
of retrieved SPM concentrations (g m-3) over the study area using the same 
MERIS and OLCI image as follows: 
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(a) (b) 

 
(c) (d)  

 
Figure 5.12. The retrieved SPM concentration (g m-3) maps using the coupled 2SeaColor-
MODTRAN model over the Dutch Wadden Sea and the IJsselmeer lake from (a) MERIS 
image captured during high tidal phase on 14-08-2002; (b) MERIS image captured 
during low tidal phase on 19-04-2009; (c) the OLCI image captured during high tidal 
phase on 05-05-2018 (d) OLCI image captured during low tidal phase on 06-06-2018. 
 
As can be seen from Fig. 5.12, the retrieved SPM concentration maps show the 
same variation range (0 - 90 (g m-3)) for all dates. However, the spatial 
variability of these estimates varies according to tidal phase variations. For 
example, most parts of the Dutch Wadden Sea are covered with high SPM 
values nearby the coasts and islands (60 - 100 (g m-3)) during the low tidal 
phase in Figs. 5.12 (b) and (d). The spread of high SPM concentrations 
decreases during the high tidal phase while the high level of SPM has only 
observed nearby the Eastern-North coasts of the study area in Figs. 5.12 (a) 
and (c). The SPM concentrations reach their lowest values in the proximity of 
the North Sea for all dates (0 - 20 (g m-3)). Below the accuracy of the retrievals 
against the collected in-situ measurements of SPM at the NJS is presented. 
However, there were no matching in-situ measurements to validate these 
retrievals using OLCI images over the Dutch Wadden Sea at the time when this 
manuscript was written. 
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Figure 5.13. The comparison of the MERIS-retrieved (blue bars) and in-situ 
measurements (red bars) of SPM concentration (g m−3) for fourteen MERIS matchups at 
the NJS between 2008 and 2010. 
 
In Fig. 5.13, the X-axis shows the date of each MERIS matchup at the NJS and 
the Y-axis shows the values of in-situ SPM and retrieved Chla concentration 
from MERIS images at the location of the NJS. Below the scatter plot of this 
evaluation is presented. 
 

 
Figure 5.14. Comparison between MERIS-retrieved and in-situ SPM concentration (g 
m−3) for fourteen matchups at the NJS between 2008 and 2010. 
 
As the results of this evaluation shows, the retrieved estimated SPM 
concentrations (g m-3) showed very good agreement with in-situ 
measurements (R2 = 0.92, RMSE = 18.7%, NRMSE = 5.29%, RRMSE = 
22.2%). Therefore, it is concluded that the accuracy of generated SPM maps 
using the coupled 2SeaColor-MODTRAN is reasonable enough over the optically 
deep waters of the Dutch Wadden Sea. 
 
Overall, considering the turbid nature and complex spatial heterogeneity of the 
Wadden Sea, the performance of the coupled 2SeaColor-MODTRAN model 
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should be regarded as encouraging and satisfactory. Not only is there a 
reasonable agreement between the coupled model’s retrievals with in-situ 
measurements at the NJS, but also the generated WCC maps are within the 
range of measured WCCs on the ground reported by other researchers (Cadée 
and Hegeman, 2002; Hommersom, 2010a; Reuter et al., 2009; Tillmann et al., 
2000). 

 Discussion 

In many coastal areas, the sea-bottom effect contributes to the observed water 
leaving reflectances at the water surface level and accordingly to the TOA 
radiances at satellite level (Lee and Carder, 2002). This can interfere with the 
correct retrieval of WCCs from hyperspectral or satellite images depending on 
local water depth and transparency of the water (Lee et al., 1999; Martinez 
and Calway, 2012). Although bathymetry maps can be used to determine the 
shallowness of water in remote sensing studies of coastal areas (Pattanaik et 
al., 2015), these maps are not always available for all regions (Giardino et al., 
2012). On the other hand, the effect of the sea-bottom varies depending on 
water turbidity and/or on water depth variation in tidal areas (Giardino et al., 
2014; Maritorena et al., 1994; Mgengel, 1991). Therefore, using bathymetry 
maps cannot always help to improve the accuracy of WCC products over turbid 
tidal areas.  
 
In this paper, we extended the 2SeaColor model by incorporating the sea-
bottom effect for modeling of the above water reflectance as a function of water 
constituents’ concentrations (Chla, SPM, CDOM), bottom albedo and water 
depth. The improved model, called Water - Sea Bottom (WSB), was used to 
better understand the effect of bottom albedo on field and satellite 
observations of ocean color. Using the developed WSB model, we assessed the 
influence of the sea-bottom on the water leaving reflectances for different 
combinations of Chla, SPM and CDOM concentration, water depth and bottom 
albedo. We found that all parts of the water leaving reflectance spectra are 
affected by water depth in various ways. However, in the NIR, the spectral 
shapes were nearly insensitive to the WCCs and spectra only increase in 
magnitude with water turbidity and the bottom albedo (Fig. 5.2). The results 
of this investigation are similar to ones obtained from measurements in a study 
conducted by Ruddick et al. (2006). As the main outcome of this investigation, 
we defined the novel index NIBEI to distinguish optically shallow waters 
(contaminated by sea-bottom effects) from optically deep waters. We later 
tested the application of applying the NIBEI on MERIS and OLCI at two aspects 
of i) generating shallow vs. optically deep water maps and ii) generating more 
reliable WCCs maps.  
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The results show that the NIBEI successfully discriminated sea-bottom 
contaminated waters from optically deep waters using MERIS and OLCI images 
(section 5.1). By generating these shallow vs. optically deep water maps using 
the NIBEI (Fig. 5.3), one can be made aware of the location of possible 
contamination by sea-bottom effects and identify waters to be excluded from 
consideration. Such products have an important application for the appropriate 
selection of in-situ measurements locations for the validation of different 
algorithms. As shown in Fig. 5.2, in the blue-green the sea-bottom can even 
have an influence on remote sensing observations for water depths up to 50 
m if the water is clear enough. Note, however, that for turbid waters the bottom 
depth will have less influence than for clear waters. Therefore, it is essential to 
accurately determine the location of optically deep waters by not only 
considering the actual water depth maps (Fig. 5.1 (right)) but also by 
discriminating optically shallow waters using the spectral index NIBEI (Fig. 
5.3). Otherwise, there is a chance that the WCC algorithm retrievals fail to be 
in good agreement with in-situ measurements due to the sea-bottom effect in 
these areas.   
 
Moreover, the results showed that applying the proposed NIBEI led to generate 
more reliable WCCs maps using MERIS and OLCI images by excluding 
contaminated sea-bottom effects pixels from consideration (section 5.5.2). 
Reliable WCC maps (Figs. 5.9 and 5.12) over the complex shallow waters of 
the Dutch Wadden Sea can provide very significant information for the 
environmental decision makers concerning maintenance and conservation of 
this vital coastal area (Doerffer and Fischer, 1994; Eleveld et al., 2008; Peters 
et al., 2005; Pitarch et al., 2016). This also creates an excellent opportunity 
for the long-term spatio-temporal monitoring of this study area considering the 
availability of MERIS (2002 - 2012) and OLCI (2018 - present) images. 
However, the improvement in accuracy of WCCs retrievals by applying the 
NIBEI was out of the scope of this study and is recommended for future 
researches to define a stronger NIBEI.  
 
Since our efforts in this paper were centered on applying the proposed NIBEI 
on MERIS and OLCI images over the Dutch Wadden Sea, it is still unknown 
how broadly applicable this index will be and to what extent our findings could 
be generalized. Thus, we suggest testing the applicability of the proposed 
NIBEI for other coastal areas using various ocean color remote sensors having 
suitable bands in the NIR region. 

5.6. Conclusion 
A new model called WSB was developed to incorporate the sea-bottom effect 
into Rrs simulations using radiative transfer modeling. From the analysis and 
validations of this study, it is concluded that: 
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1) The addition of the bottom layer to the 2SeaColor model enables to 
simulate the bottom effect on the observed water leaving reflectance 
values and facilitated the development of the NIBEI.  

2) The NIBEI accurately discriminates optically shallow water from optically 
deep waters using MERIS and OLCI images. 

3) The exclusion of optically shallow waters from the image increases the 
reliability of the derived WCCs in the optically deep waters. 

4) Generating reliable WCC maps over the complex waters of the Dutch 
Wadden Sea as in this study is a significant achievement following the 
Water Framework Directive regulations from the European Union force 
(Environment Directorate-General of the European Commission, 2000). 
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Appendix A: Water layer optical properties in the WSB model 

In the WSB model, a numerically safe solution of radiative transfer is applied 
that has been adapted from the 4SAIL vegetation canopy reflectance model 
(Verhoef et al., 2007). The numerical safety refers to the treatment of the 
possible singularity occurring when k = m, where m is the eigenvalue or the 
diffusion exponent of the two-stream system. Since the extinction coefficient 
k depends only on the solar zenith angle, and m depends on the spectral 
absorption properties of the medium, in many cases, the possibility exists that 
a combination of solar zenith angle and wavelength occurs under which this 
singularity can accidentally come to expression in the form of numerical 
instability. 
 
Radiative transfer in water can be described with a similarity transformation 
that forces quasi-isotropic scattering, which means that only two scattering 
coefficients are needed, namely σ and s, the hemispheric (back)scattering 
coefficients for incident diffuse hemispheric light and direct sunlight, 
respectively. In this case, the diffusion exponent is found from: 
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From this we also find 
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To distinguish both infinite reflectances, we write ddr r
 . For the infinite 

DHRF we find 
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The other important quantities of the model are given without derivation: 
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The function J1 was designed to intercept the (near) singularity occurring when 
k approaches m. From Eq. (A6) one can see that not only the case of the exact 
singularity is handled, but also a narrow region around it, where | k – m | < 
10−3. This guarantees a completely smooth behavior of this function, without 
any sign of numerical instability. 
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Chapter 6 Concluding remarks and prospects  
 
Monitoring of water quality is a crucial subject for the world’s population as 
inconsistencies in water consumption combined with environmental variations 
influence coastal aquatic ecosystems and fresh waters. This dissertation 
concentrates on the capabilities of optical remote sensing to be applied for 
monitoring of water quality in complex shallow coastal waters and discusses 
how to translate the recorded remote sensing observations of in-situ 
measurements and satellite images into the validated and quantified 
environmental information products fundamental for water quality 
management applications.  

6.1. Summary of conclusions 
In this dissertation we have provided an overview of the main challenges and 
problems of optical remote sensing of ocean color in shallow coastal waters to 
identify the methods that have been used to tackle these problems till now; 
and to define the methods and algorithms which have been applied in this 
study to overcome these problems (Chapter 1);  
 
Using the RT hydro-optical model of 2SeaColor makes it possible to accurately 
retrieve WCCs at water surface level using time series of in-situ hyperspectral 
measurements. The 2SeaColor model inversion against time series of in-situ 
hyperspectral measurements under the condition of SZA < 60° is very 
promising for retrieving WCCs from in-situ measurements under different 
water turbidity conditions in highly turbid coastal waters (Chapter 2).  
 
By coupling 2SeaColor model simulations to the RT atmospheric model 
MODTRAN (the coupled 2SeaColor-MODTRAN model), one can simulate TOA 
spectral radiance data comparable to satellite-observed TOA radiances, and 
therefore one can retrieve the WCCs and atmospheric properties 
simultaneously from satellite images. Applying the coupled 2SeaColor-
MODTRAN model on MERIS images makes it possible to retrieve WCCs directly 
from TOA radiances rather than from atmospherically corrected TOA 
reflectance data and shows considerable improvement in both phases of 
atmospheric correction and WCC retrieval in comparison to the standard MERIS 
C2R processor in the presence of local haze variation and high turbidity in 
coastal waters. (Chapter 3). 
 

Applying the validated 2SeaColor and 2SeaColor-MODTRAN models on 15-
years of diurnal time series of in-situ hyperspectral measurements and multi-
sensor satellite images of MERIS, MSI, and OLCI, respectively, makes it 
suitable for long-term monitoring of water quality in complex coastal waters of 
the Wadden Sea. Moreover, using the coupled 2SeaColor-MODTRAN model in 
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a pixel-by-pixel approach makes it possible to generate simultaneous maps of 
WCCs and atmospheric properties from multi-sensor satellite images of MERIS, 
MSI, and OLCI for long-term spatio-temporal monitoring of WCCs at the 
Wadden Sea. However, the reliability of spatial variations in retrieved WCCs in 
the optically shallow waters of the study area remains questionable due to the 
sea-bottom effect (Chapter 4).  
 
By developing the innovative near-infrared bottom effect index (NIBEI), one 
can accurately distinguish the optically shallow waters from optically deep 
waters from multispectral images of MERIS and OLCI. By excluding the 
contaminated bottom-effect pixels from consideration by applying the NIBEI in 
water retrieval algorithms, one can increase the reliability of generated WCC 
maps by the coupled 2SeaColor-MODTRAN model over the shallow waters of 
the Dutch Wadden Sea (Chapter 5).   

6.2. Implications 
The RT hydro-optical model 2SeaColor is capable of accurately retrieving WCCs 
from time series of in-situ hyperspectral measurements collected on a daily 
basis over multiple years under different water turbidity conditions, tidal phase 
and SZAs (up to 60°) for the shallow tidal waters of the Dutch Wadden Sea. 
This is significant since this validated RT hydro-optical model can be applied 
for long-term monitoring of WCCs without the need for tuning empirical 
coefficients from field measurements in the complex coastal region. Moreover, 
the RT model of the 2SeaColor, that has been validated for dealing with 
complex coastal waters can be readily adapted to be applied to multi-variable 
retrievals in open ocean waters. Currently, there is a growing interest in the 
retrieval of additional water component information from water surface level 
than only the Chla concentration (as the main phytoplankton pigment) in ocean 
waters. Therefore, the use of the 2SeaColor model in open oceans has great 
potential to improve the accuracy of retrieved pigment concentrations, as it 
turns out that the assumed relationship between Chla and all the other water 
constituents breaks down (Chapter 2). 
 
The coupled RT atmospheric-hydro-optical model 2SeaColor-MODTRAN can be 
applied to simulate satellite radiance data accurately, and by model inversion 
one can simultaneously retrieve WCCs, visibility and aerosol type from satellite 
images under the various conditions of high turbidity and local haze presence. 
This approach is capable of generating accurate maps of WCCs and 
atmospheric properties and of monitoring water quality in a straightforward 
operational way. This is significant since satellite remote sensing of water 
quality in the optically complex waters of the Wadden Sea is very challenging. 
This is due to the presence of fair concentrations of water constituents and 
their tidal and seasonal variations, besides the presence of cloud and local haze 
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variations due to the climatological conditions in this region. Moreover, the 
proposed coupled modeling method can be readily adapted for performing 
multi-sensor time-series studies, achieving a much denser temporal sampling 
than would be possible with a separate single sensor. This has an important 
implication for multi-sensor time series synergy studies in quantitative remote 
sensing of coastal waters. Moreover, all the above considerations suggest that 
improvements to coastal water algorithms will be of direct benefit to open 
oceans as well since in these waters it is also challenging to decouple the 
atmospheric effect from the ocean water component in the presence of spatial 
haze variations and absorbing aerosols (Chapter 3).  
 
The retrieval of WCCs by the coupled 2SeaColor-MODTRAN model inversion of 
TOA radiance data from multi-sensor satellite images, combined by using in-
situ surface reflectance, is the most reliable approach to accurately track long-
term variation of water surface properties in different seasons, SZAs, water 
turbidity and atmospheric conditions over the complex waters of the Wadden 
Sea. This is significant since the combination of optical remote sensing 
observations of multispectral sensors and in-situ hyperspectral measurements 
can give their integrated contributions for monitoring of time series of retrieved 
water surface components. These outputs have remarkable applications for 
recognizing anomaly events in the area, and the established long-term WCC 
retrievals may serve as baseline information to continuously monitor the 
estuary’s eutrophic state for sustainable management of water resources at 
this complex water. This is significant in response to the obligation of the Water 
Framework Directive regulations from the European Union to member states 
to monitor all their coastal areas (Environment Directorate-General of the 
European Commission, 2000). Moreover, these outputs can be beneficial for 
both the application-oriented and academic sectors to understand the water 
quality response to climate change, human impact, etc. Of particular interest 
when analyzing the variability in the WCC trends retrieved from in-situ 
measurements and satellite images is whether any significant decreasing trend 
from 2003–2018 might indicate the effect of prior nutrient reduction 
management actions. This has significant implications for identifying positive 
anomaly events and may act as an alert for management actions. Obviously, 
climatic variability needs to be considered carefully when interpreting the long-
term data trends and when making management decisions (Chapter 4). 
 
By applying the new NIBEI index to multispectral satellite images and 
generating the shallow vs. optically deep water maps, one can be made aware 
of the location of possible contamination by sea-bottom effects and identify 
waters to be excluded from consideration. This is significant since, in remote 
sensing of shallow coastal areas, it is essential to accurately determine the 
location of optically deep waters by not only considering the actual water depth 
maps but also by discriminating optically shallow waters. Otherwise, there is a 
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chance that the WCC algorithm retrievals fail to be in good agreement with in-
situ measurements due to the sea-bottom effect in these areas. Indeed, these 
distinguished optically shallow/deep maps have an important application for 
the appropriate selection of in-situ measurements locations for the validation 
of different algorithms. Moreover, applying the proposed NIBEI leads to 
generate more reliable WCCs maps using multispectral satellite images by 
excluding contaminated sea-bottom effects pixels from consideration. 
Providing these products over the complex shallow waters of the Dutch Wadden 
Sea is crucial as they contain significant information for the environmental 
decision makers concerning maintenance and conservation of this vital coastal 
area. This also creates an excellent opportunity for the long-term spatio-
temporal quantitative water quality monitoring in this study area considering 
the availability of MERIS (2002 - 2012) and OLCI (2018 - present) images.  

6.3 Challenges and future research 
The research recommendations provided here are established based on 
different sections of this dissertation aiming to improve the optical remote 
sensing of water quality in future studies as follows:  
 
Global water quality monitoring in aquatic ecosystems and coastal areas is in 
a pressing need. In parallel, there are increasing efforts in collecting high 
quality in-situ hyperspectral measurements using advanced instruments and 
airborne drones for quantitative monitoring of water quality in complex coastal 
waters. In principle, the developed coupled models are universally applicable, 
but SIOPs are regionally dependent and must be parameterized each time the 
retrieval method is applied to a new region for which the most suitable SIOPs 
are still unknown. Therefore it is also recommended to obtain information on 
the various ranges of possible SIOPs and their corresponding spatial/temporal 
distribution in order to apply the 2SeaColor model established based on 
possible measures of SIOPs and their spatial ranges in different coastal areas 
(Chapter 2). 
 
Systematically correcting the satellite-recorded TOA radiances for atmospheric 
contamination to automatic retrieval of WCCs from atmospherically corrected 
TOA radiances is one of the greatest challenges in global satellite remote 
sensing of coastal waters to automatic and timely monitoring of coastal waters. 
On the other hand, the availability of multi-sensor satellite images at a high 
temporal frequency is a great opportunity for continued monitoring of water 
quality at large spatial scales by using coupled RT atmospheric-hydro-optical 
models. Therefore it is recommended to apply and validate the coupled 
2SeaColor-MODTRAN model for simultaneous retrieval of atmospheric and 
water properties in other parts of the world using various ocean color remote 
sensors to understand how broadly applicable this coupled model will be and 
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to what extent these findings could be generalized. However, to apply this 
method to other regions, some additional information (e.g., availability of 
regionally valid SIOPs, ranges of water constituent concentrations, the spectral 
response functions of the desired sensor, etc.) should be considered properly 
(Chapter 3). 
 
A global and precise in-situ water quality monitoring programme is 
recommended to support the use of remote sensing observations at both water 
surface and TOA level providing validation and parameterization data. To meet 
this objective, uncertainties of collected in-situ measurements are needed to 
be determined, and quality control procedures and calibration should be 
considered carefully, and corresponding in-situ measurement protocols should 
be followed. That is also recommended to assemble and use the worldwide in-
situ (e.g., SIOPs, WCCs, and airborne/drone hyperspectral measurements) 
information collected by scientists, researchers, organizations, etc., to be used 
for validation and calibration of these water retrieval models using remote 
sensing observations in support of global monitoring of coastal water 
programs. The established and validated algorithms using worldwide in-situ 
hyperspectral and WCC measurements may also serve in the processing of 
future satellite images using oncoming satellite missions (Chapter 4).  
 
Reliable long-term WCC maps from multi-sensor satellite images in a denser 
temporal resolution and tracking long-term variations of these constituents 
from in-situ hyperspectral measurements over complex shallow waters are 
very important water quality products for water quality managers and coastal 
planners. Therefore it is recommended to consider satellite monitoring of 
coastal waters as a part of a multidisciplinary method to link scientific outputs 
to water managers’ needs and requirements. It is also recommended that the 
scientific community of water quality considers the main requirements of 
environmental and water management agencies besides stakeholders needs in 
the conceptualization phase of their projects to provide most beneficial 
products for both sides of the science community and aquatic ecosystem 
managers. This is considerable to efficient improve utilization of satellite-
derived products such as long-term generated WCC maps (Chapters 4,5).  
 
It is recommended to improve the physical-based Near-Infrared bottom effect 
index NIBEI in order to obtain information about the type of sea bottom (e.g., 
sandy, muddy, grown with vegetation, etc.) and to correct for bottom effects 
and the atmosphere in time series of multispectral satellite images (e.g., 
MERIS, OLCI). It is also recommended to promote using the NIBEI implication 
in different image processing software programs (e.g., SeaDAS, ErDAS, SNAP, 
ENVI) to be used for multi-spectral satellite image processing (e.g., OLCI, MSI, 
GOCI, MERIS) over shallow tidal areas in order to improve the reliability of 
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water constituent retrievals from satellite images by flagging shallow water 
observations (Chapter 5). 
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