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With full faith in modern engineering and little
respect for the power of nature, society continued
to build within the floodplain. When the river
overflowed its newly engineered banks, even more
development lay in its path.

Robert W. Adler, Restoring the Colorado River
Ecosystems
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Summary

Urban growth is a factor known to intensify local flooding. By orienting
urban development, land use planning may contribute to reduce flood
risk through regulatory constraints. Two case studies were developed
to determine the extent to which such strategy may be effective: Kigali,
Rwanda (where land use regulations are stringently applied) and Kampala,
Uganda (with much less effective institutions but important infrastruc-
ture investments over the last decade). Both cities are mid-sized (one to
two million inhabitants), they share a physical context of hilly terrain and
low-lying flood prone valleys but with divergent policy and institutional
organizations.

Two main hypotheses were investigated based on the case studies.
The relations between the physical system, through recurrent flooding,
and the human settlement pattern were first explored. Urban growth
is one cause of increased flooding but, in turn, flooding was thought to
contribute to the urban pattern’s evolution. Secondly, and based on this
premise, a land use management system (with regulation a prominent
component) was proposed as a flood risk mitigation strategy: these
questions hinged around the feasibility of land use controls in the specific
context of the cases (mid-to-large cities in Sub-Saharan Africa) and of
their cumulative impact over the long run.

Spatially explicit prospective simulations of urban growth, up to the
year 2030, were developed for both Kampala and Kigali to understand
the impacts of flooding and land use regulations; additionally, a set of
scenarios for Kampala was specified to explore the potential feedback
effect between exposure to recurrent flooding and urban development
patterns. The main lessons derived from these simulations were: in
Kampala, which has until the present expanded without strong land use
controls, the implementation stringent land use regulations (envisioned
already in their strategic plans) would likely result in a more compact
growth; however, in Kigali, the land use plan may have the unintended
consequence of promoting sprawling patterns. Kigali was revealed to
be a smaller urban system than Kampala, with the transitory benefit
of not being yet impacted by recurrent flooding due to the scale of
processes configuring urban growth. As for Kampala, (1) while land use
planning may reduce exposure to flooding, it is unlikely to impact runoff
generation and (2) explicitly incorporating feedback between flooding
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and urban growth makes visible a difference introduced by land use
planning: under trend (unplanned) expansion, exposure to flooding is
unlikely to constrain urban growth; however, under the double restriction
of recurrent flooding and land use controls, much less new development
is exposed to flooding.

The scenarios were carried out using a cellular automata of urban
growth, specifically designed to be integrated with the flood model (imple-
mented in OpenLISEM ). Important characteristics of the model included:
a continuous response variable, in the form of a land cover fraction
value (built-up fraction for urban development but also vegetation, bare
soil, and water fractions to complete the description of the landscape), a
suitability based allocation procedure to mimic urban agents’ locational
preference, and the potential to explicitly account for several supply
scenarios (which was especially important when considering the relation
between population growth and densification in the scenarios). The
suitability index was defined by a neighborhood effect, accounting for
the immediate context of each potential development location, as well
as ancillary variables representing accessibility, physical characteristics
(slope and wetlands location), and informal settlements location.

The cellular automata model was developed using the Upper Lubigi
sub-catchment of Kampala. The model was then expanded, calibrated,
and validated for the metropolitan areas of Kampala and Kigali. Calibra-
tion was based on the application of the Metropolis-Hastings algorithm to
determine the relative importance of each factor in the suitability index
and using the land cover maps to simulate potential supply. Simulations
using 2000 (for Kigali) and 2001 (for Kampala) as baseline years were
generated for a 15 year period; for each simulated time step, landscape
metrics were calculated. An intermediate year for which independent
land cover maps were available (2009 for Kigali, 2010 for Kampala) was
used for validation. The calibration approach proved useful in producing
patterns that better replicate the evolution of urban growth patterns,
relative to random parameters and data. However, some degree of
equifinality was discovered in the model, since the uncertainty intro-
duced by parameters was found to be less important than the amount of
information (relevant spatial determinants) when validating the model.

The scenario assumptions on the presence of a feedback (for Kam-
pala) and on the possible efficiency of land use controls were based on
statistical analysis. The potential impact of flooding on urban growth
was investigated using a structural equations model of Kampala, by
making strong assumptions on the causal structure and performing con-
firmatory analysis to test whether data conform to such assumptions.
The conclusion was, as expected, of a significant but weak restriction of
flood impacts on urban growth patterns. Land cover maps were used to
describe urban growth, the flood impacts were derived from the Open-
LISEM model of Kampala. The effects of land use regulations on urban
development patterns were calculated for Kigali using a difference-in-
differences estimator. Kigali was chosen because already a stringent
land use control system has been in place for the better part of two
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decades which, coupled with relatively rapid urban growth, provides a
quasi-experimental setting. The conclusion was land use controls had in
fact a statistically significant and strong impact on urban development.

In synthesis, this dissertation has developed a spatially explicit meth-
odological framework to simulate the relations between urban growth,
land use planning, and recurrent flooding. It was applied to two case
studies in Sub-Saharan Africa, the cities of Kampala and Kigali. The
framework is based on the integration of a cellular automata of urban
growth and a flood model to reproduce the processes configuring spatial
patterns. Scenarios, in turn, were specified based on the result of spa-
tial statistical analysis of the relation between the main variables being
explored. The results underscore the importance of opportunities but
also the pitfalls of land use regulation as a policy response for flood
mitigation.
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Samenvatting

De stedelijke groei is een factor die bekend is vanwege het feit dat
het lokale overstromingen intensiever maakt. Door het oriënteren van
stedelijke ontwikkeling, kan het plannen van landgebruik bijdragen aan
de vermindering van het risiko van overstroming door gereguleerde
beperkingen. Twee studies van gevallen werden ontwikkeld om te be-
palen in hoeverre zo’n strategie effectief zou kunnen zijn: Kigali, Rwanda
(waar de reguleringen van het gebruik van land strict worden toegepast)
en Kampala, Uganda (met veel minder effectieve instellingen maar belan-
grijke investeringen in infrastructuur gedurende het laatste decennium).
Beide steden zijn van middelmaat (één tot twee miljoen inwoners), zij
delen een fysieke context van bergachtig terrein en laagliggende, aan
overstromingen onderhavige valleien, maar met een afwijkende politiek
en institutionele organisaties.

Twee van de belangrijkste hypothesen werden onderzocht op basis
van studies van gevallen. De relaties tussen het physieke systeem, door
herhaaldelijke overstroming, en het patroon van vestiging van mensen,
werden eerst onderzocht. Stedelijke groei is één oorzaak van toenemende
overstroming, maar aan de andere kant werd gedacht dat overstroming
bijdroeg aan de ontwikkeling van de patronen van stedelijke groei. In de
tweede plaats, en gebaseerd op dit uitgangspunt, werd een beheringssys-
teem van landgebruik voorgesteld (waarin regulatie een vooraanstaand
component is) als een strategie tot vermindering van vloedrisiko: deze
vragen hingen af van de haalbaarheid van de controles van landgebruik
in de specifieke context van het geval (middelmaat tot grote steden in
Sub-Sahara Africa) en van hun accumulatieve impact op de lange termijn.

Ruimtelijk expliciete prospectieve simulaties van stedelijke groei tot
aan het jaar 2030 werden ontwikkeld zowel voor Kampala als Kigali
om de impacten te begrijpen van overstroming en landgebruik regu-
laties; bovendien was een set scenarios gespecificeerd voor Kampala om
het potentiële feedback effect te onderzoeken tussen blootstelling aan
herhaaldelijk overstromen en stedelijke ontwikkelingspatronen. De be-
langrijkste lessen voortkomende uit deze simulaties waren: in Kampala,
welke tot op heden is uitgebreid zonder sterke controles van landgebruik,
de implementatie van stricte regulaties van landgebruik (al voorzien in
hun strategische plannen) zou waarschijnlijk eindigen in meer com-
pacte groei; in Kigali echter, zou het landgebruikplan het onbedoelde
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gevolg hebben van de promotie van uitgestrekte patronen. Kigali bleek
een kleinere stedelijke systeem te zijn dan Kampala, met het tijdelijke
voordeel dat het nog geen impact had gehad van herhaaldelijke over-
stroming vanwege de schaal van processen die stedelijke groei config-
ureren. Wat Kampala betreft, (1) terwijl het plannen van landgebruik de
blootstelling aan overstroming verminderen, is het onwaarschijnlijk dat
het de generatie van afvoerwater impacteert, en (2) de expliciete opname
van feedback tussen overstromen en stedelijke groei maakt een verschil
zichtbaar welke geintroduceerd wordt bij het plannen van landgebruik:
bij trend (niet geplande) uitbreiding, is het niet waarschijnlijk dat bloots-
telling aan overstroming stedelijke groei tegenhoudt; echter, onder de
dubbele beperking van herhaaldelijke overstroming en de controles van
landgebruik, wordt veel minder nieuwe ontwikkeling blootgesteld aan
overstroming.

De scenarios werden uitgevoerd met het gebruik van cellulaire auto-
mata model van stedelijke groei, specifiek ontworpen om geïntegreerd
te worden met het overstromingsmodel (geïmplementeerd in Open-
LISEM ). Belangrijke kenmerken van het model waren: een continue re-
sponsvariabel, in de vorm van een gradatiewaarde voor landbedekking
(opgebouwde fractie voor stedelijke ontwikkeling maar ook vegetatie,
kale grond en waterfracties om de omschrijving van het lanschap de
voltooien), een allocatieprocedure gebaseerd op geschiktheid om de loc-
atievoorkeur van stedelijke agenten na te doen, en het potentieel om
expliciet rekening te houden met verschillende aanbodscenario’s (het-
geen specifiek belangrijk was bij het in acht nemen van de relatie tussen
volksgroei en de verdichting in de scenarios). De geschiktheidindex werd
bepaald door een buurteffect, goed voor de onmiddellijke context van
iedere potentiële ontwikkelingslocatie, evenals aanvullende variabelen
die de toegankelijkheid, fysieke kenmerken (locatie van hellingen en wet-
lands) vertegenwoordigen alsmede de locatie van informele vestigingen).

Het cellulaire automata model werd ontwikkeld met gebruik van de
Upper Lubigi sub-stroomgebied van Kampala. Het model werd toen uit-
gebreid, gekalibreerd, en gevalideerd voor het grootstedelijk gebied van
Kampala en Kigali. De kalibratie was gebaseerd op de toepassing van het
Metropolis-Hastings algorithme om het relatieve belang te bepalen van
iedere factor in de geschiktheidindex en door het gebruik van de land
oppervlaktemappen om potentiële bevoorrading te simuleren. Simulaties
die 2000 (voor Kigali) en 2001 (voor Kampala) als basisjaren gebruikten,
werden gegenereerd voor een periode van 15 jaren; voor iedere gesimu-
leerde tijdstap werden landschapsstatistieken berekend. Een tussenjaar
waarvoor onafhankelijke land oppervlaktemappen beschikbaar waren
(2009 voor Kigali, 2010 voor Kampala) werd gebruikt voor validatie.
De kalibreringsbenadering bleek nuttig te zijn bij het produceren van
patronen die beter de evolutie dupliceren van stedelijke groeipatronen,
relatief aan willekeurige parameters en data. Er werd echter een graad
van equifinaliteit ontdekt in het model, aangezien de onzekerheid ingevo-
erd door parameters minder belangrijk bleek te zijn dan de hoeveelheid
informatie (relevante ruimtelijke determinanten) bij het valideren van
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het model.
De scenario veronderstellingen voor wat betreft de tegenwooordigheid

van een feedback (voor Kampala) en omtrent de mogelijke efficiëntie van
controles van landgebruik, waren gebaseerd op statistieke analyse. De
potentiële impact van overstroming op stedelijke groei werd onderzocht
met behulp van een structureel vergelijkingsmodel van Kampala, door
sterke veronderstellingen te maken omtrent de causale structuur en door
bevestigingsanalyses te maken om te testen of de data overeenkomen
met die veronderstellingen. Zoals verwacht, was de conclusie dat van
een belangrijke maar zwakke beperking van overstromings impacten op
stedelijke groei patronen. Land oppervlakte kaarten werden gebruikt
om stedelijke groei te omschrijven, de overstromings-impacten werden
afgeleid van het OpenLISEM model van Kampala. De effecten van de
regulaties van landgebruik op stedelijke ontwikkelingspatronen werden
berekend voor Kigali met het gebruik van een verschil-in-verschillen
schatter. Kigali werd gekozen omdat er al een stricte landgebruik con-
trole systeem bestond voor het grootste gedeelte van 2 decennia, welke,
gekoppeld aan relatief snelle stedelijke groei, een quasi-experimentele
achtergrond verschaft. De conclusie was dat controles van landgebruik
in feite een statististisch balangrijke en een sterke impact hadden op
stedelijke ontwikkeling.

In synthese heeft dit proefschrift een ruimteijk epliciet methodolo-
gisch kader ontwikkeld om de relaties te simuleren tussen stedelijke
groei, landgebruiksplanificatie en herhaaldelijke overstroming. Het is
toegepast op twee case-studies in Sub-Sahara Afrika, de steden Kampala
en Kigali. Het kader is gebaseerd op de integratie van een cellulair auto-
mata model van stedelijke groei en een overstromingsmodel om de pro-
cessen te reproduceren die ruimtelijke patronen configureren. Scenarios,
aan de andere hand, werden gespecificeerd, gebaseerd op het resultaat
van ruimtelijk statistische analyse van de relatie tussen de belangijkste
variabelen die onderzocht werden De resultaten onderlijnen het belang
van gelegenheden, maar ook de valkuilen van de landgebruikregulatie
als een politiek antwoord voor de verzachting van overstroming.
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1Setting the scene

1.1 A rationale for looking at the urban
environment of Sub-Saharan Africa

World population estimates for 2015 attested to the global importance of
Sub-Saharan Africa: one in seven human beings lived in the subcontinent,
nearly one billion people, around 40% of them in cities (United Nations,
2018). And yet, despite a decade and a half of solid economic growth, the
number of poor increased in Africa over that period (Signé, 2018). Poverty
being a very complex social phenomenon, a myriad of factors have
contributed to this state of affairs. Signé (2018), though, emphasized
three that are especially challenging in the context of Sub-Saharan Africa1:
pro-poor policies have often been ineffective, demographic growth has
been too rapid, and economic growth did not create quality jobs.

Cities have been proposed as a solution to the economic productivity
quandary and its associated jobs problem long since before the advent of
regional economic theory, although arguably, in Sub-Saharan Africa, they
have not been successful in triggering economic development (Lall, 2017).
As argued by Baptista (2003) by means of macroeconomic modeling,
greater densities of economic activity, such as those characterizing cities,
have a multiplicative positive effect on economic output caused by the
agglomeration of economic agents. Densification in the broad sense
(of economic activities, of workers, of population), however, also poses
its own challenges. Baptista (2003) includes in his model a congestion
elasticity as well as an agglomeration elasticity to account for these.
The fundamental tenet of regional economics, then, can be boiled down
to a trade-off between the negative externalities of congestion and the
positive externalities of agglomeration.

Sub-Saharan Africa has been undergoing rapid urbanization with man-
ufacture and service sectors development lagging (Gollin et al., 2016; Lall,
2017), to a certain extent mirroring trends already experienced in Latin
America and east Asia (Glaeser and Xiong, 2017). While the experience
from these other contexts suggests development in the broad sense will
eventually follow urbanization, there is no denying the present reality of
urban systems in Sub-Saharan Africa: that of the negative externalities
of congestion outweighing the economic advantages of agglomeration
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effects. Dealing with these negative externalities requires effective and
efficient provision of infrastructure (a result only possible with strong
public institutions) and individual-level incentives to prevent overuse
(Glaeser and Xiong, 2017). One may even argue previous economic
growth was possible only when such infrastructure was supplied, as in
the largest Latin American and east Asian cities.

There is, however, a more distinct difference between the urbaniza-
tion of the past and that of the Sub-Saharan present. The cities of the
industrialized north grew in a world of seemingly boundless resources;
and even though the first discussions on the limits to growth (Mead-
ows et al., 1972) took place simultaneously with the expansion of urban
population in Latin America and east Asia, the paradigm shift towards
sustainability came after most of the urbanization dynamic had played
out. Sub-Saharan Africa, to the contrary, must seek the benefits of urban-
ization in a world constrained by the excessive consumption of humanity.
This entails the need to consider the natural environment at the forefront
of the human settlements creation process.

Within a large conceptual realm of environmental issues confronting
urban systems in Sub-Saharan Africa, Douglas et al. (2008) identified
flooding as a problem disproportionately affecting the urban poor and
increasing in magnitude across Sub-Saharan Africa. They identified
two main drivers: the physical growth of cities, which causes more
impervious areas and hence greater runoff, and climate change making
extreme events more frequent and more intense. Dodman et al. (2017)
further argued the socioeconomic and institutional setting of urban Sub-
Saharan Africa contributed to shape vulnerability, notably through urban
expansion into exposed areas and lack of infrastructure; and indeed
how the specific demographic (young societies), economic (informal and
generally poor), and governance characteristics all constituted challenges
to but also opened opportunities for risk mitigation.

Given this state of affairs, how can the generation of knowledge
contribute to improve the livelihoods of residents in Sub-Saharan Africa’s
cities? The main problem addressed in this dissertation is to understand
how land use planning responses can contribute to improve cities in Sub-
Saharan Africa and the livelihoods of their residents through flood risk
mitigation. Deeply embedded within this question is the methodological
topic of how to generate basic information to design and evaluate policy
responses in a data scarce environment.

1.2 Coupled human and natural systems in
hydrology and regional science

The notion that human agency modifies the environment has long been
acknowledged as a fundamental premise of land change science (Lambin
et al., 2001). At regional scales, the analysis of these relations permits
the integration of environmental transformations with the drivers that
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have directly caused them (Meyer and Turner, 1990): these processes
are characterized by complex interactions between the human and the
environmental elements, the environmental consequences of human
actions variously feeding back into the actions themselves.

Coupled human and natural systems (CHANS) were developed as a
framework to address precisely such problems of environmental trans-
formation. As described by Liu et al. (2007), these systems present
multiple reciprocal interactions between people and nature through com-
plex feedback loops. They are often influenced by larger-scale external
factors and their internal interactions, mediated by structures that arise
within the system (for example, urban form and infrastructure in cities).
These interactions may be non-linear. Thresholds – points at which a
system changes into an alternate state – are a particularly relevant form
of non-linearity: CHANS transform over time and over space. The ana-
lysis of such systems, therefore, crucially requires sufficient spatial and
temporal extent and detail to elucidate the most relevant dynamics of
the system.

CHANS is a specific instance of a framework to study what can be
more generally termed socio-environmental research (Binder et al., 2013;
Pulver et al., 2018). A first comparison of such frameworks, developed by
Binder et al. (2013), suggested three main characteristics to distinguish
among them: whether the relation between the social and environmental
components went one or both ways, whether it was centered on the
social or environmental perspective of the system, and whether the em-
phasis was on action or analysis. However, the rapid evolution of the
field necessitated an update on these criteria (for example, all modern
frameworks make use of bi-directional relations). Pulver et al. (2018)
undertook further analysis, based on six frameworks (in addition to
CHANS, they discussed human ecosystem framework, resilience, integ-
rated assessment of ecosystem services, vulnerability framework, and
social-ecological systems framework). They found two core features on
all of these frameworks: first, the distinction between the social and the
environmental elements, generally with an equal level of importance; and
second, the central role of components (the building blocks), connections
between components, scale, and context.

From this viewpoint, trade-offs exist between emphasis placed by
different frameworks on the importance of these four elements. CHANS,
in particular, is centered on connections rather than components: it
loosely organizes the components into two main blocks (environmental
and social) but emphasizes hierarchical connections (Pulver et al., 2018),
facilitating the exploration of relations between different scales and
across the socio-environmental divide. This fits comfortably with the
urban flooding phenomenon, as the two main systems (the urban system
and the flooding process) can be analyzed through decomposition and
characterization of internal relations before exploring feedbacks and
non-linearities between the human-environment divide. Additionally,
unlike the human ecosystem framework (which emphasizes ecosystem
management) or social-ecological systems (related mainly to common
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pool resources), CHANS is a systems approach, and thus not linked to
any particular environmental (or social) phenomenon (Pulver et al., 2018).

Likely because of cellular automata’s capabilities in replicating the
spatially explicit fractal dimensions exhibited by urban dynamics (Batty,
2009) – and especially urban growth –, the bottom-up, emergent behavior
of a system approach has long been in use by urban and regional planners.
However, focus has been on the central mechanism of the Alonso-Mills-
Muth model, the trade-off between accessibility and space (Glaeser, 2008).
The prototypical structure of cities has been built around land use and
transportation (concretely traffic, which represented the linkages within
the system); see Batty (2009): the human environment (land use and
buildings) interacting with human agents. This regional science domain
of application has concentrated only on the human element, generally
avoiding environmental dimensions (with the possible exceptions of fuel
consumption and air pollution). It is, even if an important previous
example, not a proper CHANS approach.

The application of CHANS in hydrological research is much more
recent; as late as 2012, socio-hydrology was being proposed to operation-
alize CHANS and incorporate social elements into hydrological modeling
(Sivapalan et al., 2012). Socio-hydrology as a field intends to deal with
emergent phenomena from a diversity of coupled human-water systems,
generally conceived as two-way feedbacks between human and natural
elements and which are hypothesized to have common theoretical ex-
planations (Pande and Sivapalan, 2017). Socio-hydrology does not seem
to consider any emergent phenomena, even if the framework could be
applicable to bottom-up dynamics; rather, it concentrates on problems
that commonly manifest themselves across different contexts (such as
levee infrastructure, flooding, and settlement patterns). It claims to be
distinguished by the treatment of human agency as endogenous to the
coupled system (Pande and Sivapalan, 2017).

Examples of socio-hydrological applications to flood phenomena in-
clude Chen et al.’s (2016), which describes theoretically – based on linked
differential equations – how the environmental sensitivity of a society
evolved from favoring flood (and channelization of wetlands) to conserva-
tion, as the wetlands were degraded. Their model predicts this sensitivity
will swing back to neutral as wetlands recover, although increased rainfall
could accelerate changes in social norms again favoring flood protection
over ecological integrity. Di Baldassarre et al. (2013) created a more
theoretically general model, also based on differential equations, linking
settlement patterns and location decisions, societal awareness of flood
risk, infrastructure and investments (specifically, levees to reduce flood
occurrence), social psychological shock in response to a flood event,
and the flooding itself; they were able to replicate through scenarios of
high/low cost (of investment in levees) observed patterns of settlements
choosing to “live with floods” and to “fight floods” (build levees), as
well as the shift from frequent low magnitude events to larger, more
damaging but less frequent floods, in response to levee development.

While socio-hydrology has advanced the introduction of social ele-
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ments into the analysis, one must caution the program is very far from
complete. A recent survey of applications (Xu et al., 2018) found a
large majority of cases have been developed by hydrologists. This is
manifested in a dominance of systems engineering and differential equa-
tions approaches, and questions posed in such a way as to deter social
scientists from collaborating in the field.

Given its aspiration to quantitatively integrate models and the pro-
spect of new evidence from spatially explicit analysis (Pande and Sivapa-
lan, 2017), the combination of urban growth models and flood models
may be a valuable direction in CHANS hydrological research. While con-
ceptually straightforward, the integration of urban growth and flood
models has been rare. Most case studies have analyzed the impact of
prospective land patterns on hydrological or hydraulic outcomes, among
which the work of Khan et al. (2018), Nigussie and Altunkaynak (2016),
Ciavola et al. (2014), Huong and Pathirana (2013), Kumar et al. (2013),
and Poelmans et al. (2011) are typical recent examples: the setup is for
hydrological outcomes to be treated as a dependent variable, explained
by land cover dynamics.

Khan et al. (2018) projected possible future trend conditions of Dhaka,
Bangladesh, from the baseline of 2010 to 2050. The urban growth
model of Dhaka was built using the Dinamica EGO model (Soares-Filho
et al., 2002) and applying a memetic algorithm (Veerbeek et al., 2015) to
calibrate the weight of different determinants (both historical land use
and other maps). The outputs of this urban growth model were used
jointly with the characteristics of a major flood event, which occurred in
2004 (and was simulated in a spatially explicit manner), to understand
what damage would happen should a similar event take place again: they
predicted a substantial increase in overall damage, as well as identifying
key factors (particularly urban growth patterns, current and prospective)
and uncertainties (such as the effect of climate change, deliberately
excluded, or possible flood protection infrastructure, as well as possible
changes to urban growth patterns).

Nigussie and Altunkaynak (2016) applied the SLEUTH model (Clarke
et al., 1997) to Istanbul and generated four scenarios with increasing
levels of exclusion (constraints on urban growth); the two most restrict-
ive modeled the urbanization of a former military base, which impacts
the Ayamama watershed within Istanbul. To assess the hydrological
impact, they used HEC-1 to calculate the output hydropgraphs only
for the Ayamama watershed – and found the projected urbanization
of the military base, despite greater constraints, increases peak dis-
charge and reduces time to peak for Ayamama. Ciavola et al. (2014)
modeled economic and demographic trends to estimate future land
demand and allocated it, also with the SLEUTH model; based on the scen-
arios, they estimated nutrient load and runoff for selected catchments
of the Delaware-Maryland-Virginia, U.S. Kumar et al. (2013) developed
a simple cellular automata model of Roorkee, India to simulate urban
growth; they assessed the runoff impacts using the NSCS method. Huong
and Pathirana (2013) simulated future land cover trends with the Din-
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amica EGO model (Soares-Filho et al., 2002), jointly with an atmospheric
forcing model. Land cover simulations were used solely to explore the
sensitivity of atmospheric conditions to land systems. Hydraulic flood
routing was estimated assuming their study area as uniformly urban.

Poelmans et al. (2011) used a cellular automata-based model of urban
growth to project the expansion of Brussels within the Moleenbeek
catchment; they further specified scenarios of future climate (for 2050,
based on the application of regional circulation models) and coupled
these with rainfall-runoff and a 1D hydrodynamic model. Ultimately, they
produced maps of flooded area and estimates of peak flow incorporating
both climate change and urban growth as drivers.

Relatively few urban growth studies have explored the obverse of this
modeling disposition, i.e. treat land dynamics as (partially) a consequence
of potential (or actual) flood risk. In their study of La Paz, Mexico, Steinitz
et al. (2005) used a normative buffer to frequently flooded but usually
dry watercourses as a proxy of recurrently flooded areas and restricted
their development for constrained development scenarios. Sakieh et al.
(2017) designed a suitability-based urban growth model (with neighbor-
hood land use modifying the suitability value) to explore polycentric
urbanization of Gorgan, Iran; they compared an urban suitability layer
with an environmental risk layer as guides for prospective allocation.

Interpreted within a CHANS framework, neither of these approaches
fully satisfies the two-way feedback envisioned by the socio-hydrology
perspective. The state of knowledge, with technical tools capable of
but not used to explore a spatially explicit two-way feedback between
human and natural subsystems, invites the reflection: can the integration
of urban growth models and flood models be used to endogenize the
boundary conditions, i.e. dynamically link the evolution of urban and
flood patterns? Given the presence and influence of large uncertainties,
inherent to spatial modeling, what can and cannot be learned from such
systems and with these methodologies?

1.3 Research aims: urban flooding as a coupled
human and natural system

The conceptualization of urban flooding analysis within a CHANS frame-
work becomes relatively straightforward, as can be seen in figure 1.1,
when formulated abstractly. As proposed in this dissertation, the core of
the system is composed of three elements: the built-up land, the natural
landscape (which includes natural ecosystems and elements, notably
wetlands and undeveloped floodplains), and urban growth. The first two
components describe the basic characteristics of a city and the latter, the
main dynamic change to the spatial structure they jointly determine.

The physical reality of urban flooding is, as well, conceptually simple.
The hydrological analysis of rainfall-runoff results in estimates of how
much rainfall is infiltrated into the soil or intercepted and how much
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Figure 1.1 Conceptual framework: urban floods as CHANS

becomes water flowing over the landscape. Soil properties, such as
infiltration, and vegetation characteristics are parts of the natural land-
scape. Sene (2010, p. 110) describes the physical processes: rainfall is
either infiltrated into the soil, intercepted (mainly by vegetation), or flows
over the landscape; terrain, through elevation and other characteristics,
routes the water flowing over the surface. Changes in land cover patterns
are known to affect the flood patterns: as more areas are urbanized,
imperviousness increases (and so does the fraction of rainfall flowing
over the landscape), resulting in more and faster flooding (Smith and
Ward, 1998). Translated into the terms of the system proposed in figure
1.1: the amount of rainfall and the physical characteristics of the natural
landscape determine how much water becomes infiltrated and how much
runs off the terrain, a portion eventually becoming flood. By sealing
the surface of the soil, the buildings that are part of the built-up land
increase the amount of runoff.

The social dynamic is perhaps more complex, as it cannot be fully
understood without reference to the natural environment nor with so
few elements: (1) urban growth increases the amount of built-up land,
and decreases that of the natural environment; (2) the amount and
location of urban growth are determined by population growth and by
societal preferences, some physical (including the characteristics of the
built-up land, feeding back into urban growth) and others normative:
the values and institutional actors through which society decides on
regulations and infrastructure, as well as taxation and attitudes toward
natural systems; in particular, (3) land use regulation re-distributes
the location of urban growth and may constrain its amount, (4) some
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infrastructure, specifically drainage infrastructure, reduces flooding by
deliberately modifying the environment, (5) road infrastructure attracts
urban development.

Note of figure 1.1 that the connections of interest within the modeling
of this dissertation are shown as solid lines, other long run connections
– notably the relations between land and climate and between society’s
institutions (in the broadest sense of including institutional actors but
also the societal norms and values that empower them) and the main
instruments of the land use planning system (infrastructure investment
and land regulation) – not directly modeled are represented as dotted
lines.

A CHANS framework, applied to urban flooding, collates the need of
accessible land for urban development and the flood impacts of surface
sealing in the landscape. From these conditions follow the two research
questions around which this dissertation is organized, namely: (1) How
do urban growth and flood processes interact? (2) To what extent can land
use planning contribute to mitigate the impact of floods on urban spatial
patterns? Re-stated in terms of the conceptual framework (figure 1.1),
special interest is placed by this structuring of the research questions
on the cross-connections between the natural system and the human
system, both direct (the relations between urban growth and flood) and
indirect (the effects of infrastructure, the product of a societal process,
on both flood and urban growth).

Within this scope, the following objectives were defined to operation-
alize the study:

To quantify the relationship between land cover change and flood
hazard for selected case studies.

1. To generate land cover data models appropriate for reflecting urban
dynamics and as inputs for flood modeling.

2. To analyze land cover change and flood patterns and their main
determinants.

3. To design and calibrate a modeling tool that can replicate existing
land cover and flood patterns, and simulate alternative conditions
in metropolitan contexts.

To explore the potential of land use regulation and infrastructure
investment in reducing the impact of pluvial flooding.

1. To formulate scenarios for selected metropolitan areas incorporat-
ing land use regulation.

2. To simulate, using the developed tool, the defined scenarios and
assess the impacts of flooding on the urban system.

These questions are tackled through the deployment of spatially
explicit quantitative models that describe the non-linear relations relating
most elements in figure 1.1: the development of a cellular automata
model of urban growth (describing the evolution of the human and
natural environment as urban growth occurs) and the applicationof
the openLISEM rainfall-runoff model (Jetten, 2018), which converts the
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characteristics of the environment and of a rainfall event into flooding.
Societal effects – population growth and the norms and values behind
regulation and infrastructure aspects of land use planning – are explored
by means of scenario planning and the comparison between two case
studies (as one selected case study, Kampala, is prototypical of a Sub-
Saharan land use planning system, with weak institutions and ineffectual
implementation of plans, in contrast to the second case study, Kigali,
an example of a very stringent application of land use regulations; see
subsection 1.4.2).

1.4 Methodological approach

1.4.1 Building a CHANS model for urban flooding

The practice of model development as a means of understanding and of
acting upon the world must be purposeful and deliberate (see van Vliet
et al., 2016, Magliocca et al., 2015, and the references therein, specifically
the sections on the model development cycle). Yet a clear definition of
intent is but the first step in an often meandering process that should
lead to the understanding synthesized in the model itself.

Rosenblueth and Wiener (1945) described the construction of know-
ledge as starting with a closed box relating inputs to outputs. Sev-
eral alternative configurations could, conceivably, relate the same in-
puts/outputs. Scientific progress is achieved by gradually opening the
closed boxes and determining their inner configuration. This view coin-
cides with contemporary notions on the design of models (concretely,
agent based models, although they are valid in general) embodied in
the KISS approach (the “keep it simple stupid” of military fame). KISS-
based models begin relating the minimum amount of variables through
the least possible amount of mechanisms (Edmonds and Moss, 2005).
New ones, both variables and mechanisms, are subsequently added as
needed (Edmonds and Moss, 2005) – which is to say, closed boxes are
progressively opened.

How complex should the model ultimately be? (How many boxes
should be opened, how many variables and mechanisms added?) The
principle of parsimony (Seasholtz and Kowalski, 1993) posits as few
as possible to reach, from given inputs, a certain level of accuracy in
the prediction of outputs (Pitt et al., 2002). Given input and output
data for a single case, initially the addition of complexity to the model
increases both generalizability – the capacity of the model to predict
outputs for a new, unseen sample of inputs – and goodness-of-fit (how
good the model is in predicting the originally given output from the given
input). As model complexity increases further, beyond a certain level so
does goodness-of-fit but not generalizability (this is because the model
begins to fit noise, i.e. random error, in addition to signal in the data, a
phenomenon known as overfitting); indeed, generalizability eventually
decreases as uncertainty becomes more important than the meaning in
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the data (Pitt et al., 2002). Thus, all else held equal, one should prefer
simpler models to more complex ones.

Yet all things are never equal: a complex model opens more boxes
– offers more knowledge – than a simple one, provided it is generaliz-
able. Hirschman (1985) elegantly developed this argument in an essay
aptly titled “Against Parsimony: Three Easy Ways of Complicating some
Categories of Economic Discourse”: his argument, economic theory had
simplified human behavior to the point that phenomena amenable to
theoretical analysis had been excluded from traditional economic sci-
ence. He thus illustrated the dangers of oversimplification against which
Einstein, in a famous maxim, warned, “A scientific theory should be as
simple as possible, but no simpler” (cited in Jørgensen and Bendoricchio,
2001, page 51). One should also note the arguments of Edmonds and
Moss (2005), cited here to describe the KISS paradigm but who, in fact,
summarize this approach as a starting point to criticize simplicity for
simplicity’s sake in agent based model development.

Sources of increasing model complexity in the context of this disser-
tation are: feedback effects, static vs. dynamic relations, and the number
of key variables (see table 1.1 for an overview).

1.4.2 Study Areas: Kampala, Uganda and Kigali, Rwanda

Cities of Sub-Saharan Africa offer a valuable opportunity to study the
relations between urban growth, flooding, and spatial planning. Sub-
Saharan Africa is undergoing a process of rapid urbanization with annual
population growth rates of larger cities over 3.00% (Cobbinah et al., 2015).
This accelerated growth has resulted in a substantial increase of of urban
footprints in many cities of Sub-Saharan Africa over the last 15 years
(Sliuzas, 2004; Vermeiren et al., 2012; Nduwayezu et al., 2016; Hou et al.,
2016; Pesaresi et al., 2016). Many cities in Sub-Saharan Africa present
a tropical climate characterized by highly localized, intense, and short
rainfall events that typically lead to rapid flooding; generally, climate
patterns show high variability between and within years (Douglas et al.,
2008).

The cities of Kampala, Uganda and Kigali, Rwanda were selected as
case studies for this dissertation. As noted by Goodfellow (2013a), both
cities share many characteristics – overall population (between one and
three million residents) and rates of urbanization, physical environment
(hilly terrain with large wetland areas), political regimes, and structure
of the national economies. However, they have diverged in one crucial
aspect: Kigali has opted, since circa 2009, for a land use planning system
based on the stringent application of regulation; Kampala has tolerated
a much more chaotic situation (Goodfellow, 2013a) but with a recent
history of systematic investment in large urban infrastructure projects
(roads and drainage).

The choice of study areas, therefore, provides sufficient variation in
terms of urban development, climate, and policy to fruitfully explore the
urban flooding as a CHANS, as hypothesized.
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Figure 1.2 Study areas: metropolitan areas of Kampala, Uganda and Kigali,
Rwanda

Kampala, Uganda

Kampala (see figure 1.2) is Uganda’s largest city and its major center
of commerce, as well as being – with two a half million residents – one
of the largest city in East Sub-Saharan Africa (United Nations, 2018).
The Kampala metropolitan area, located at latitude 0◦19′N and longitude
32◦35′E , covers approximately 325km2. The city proper is divided into five
districts, although a significant part of new development occurs beyond
the city boundaries. Kampala is located north of Lake Victoria, in a hilly
terrain that also contains large areas of wetlands. Its tropical weather
and soil infiltration properties already lead to large runoff volumes, a
main cause of recurrent flooding, which has been exacerbated by urban
growth (Sliuzas et al., 2013).

Kampala has expanded, over the last twenty years, at a very fast
rate. Abebe (2013) reported its urban footprint expanded from 117.0km2

in 1995 to 324.6km2 in 2010, a threefold increase. Vermeiren et al.
(2012) estimated the city had experienced exponential growth since
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the 1970s. These figures mirror the recorded population increase, from
964 thousand in 1995 to 2.6 million in 2015 (United Nations, 2018): an
annual growth rate of over 5.0%.

Kigali, Rwanda

Kigali, Rwanda (see figure 1.2) is a city of around one million residents
(United Nations, 2018), the largest urban agglomeration and administrat-
ive center of Rwanda. Kigali is located near the Equator, at coordinates
1◦57′S 30◦4′E , in the Central Plateau, a large region of hills and valleys
formed by the folding and erosion of soil strata (Habonimana et al.,
2015). The Nyabugogo river is located to the north-west of Kigali. While
recurrent flooding is less frequent than in Kampala, perhaps because
the city is smaller and has until recently developed at a slower pace,
important areas within Kigali show a high propensity to flooding and
this hazard was incorporated into land use regulations to mitigate its
impacts (Bizimana and Schilling, 2010).

Kigali suffered considerable dislocation as a consequence of the 1994
genocide and its aftermath. Since then, however, it has exhibited the
fast paced growth typical of Eastern Sub-Saharan Africa (in part due to
returning refugees; see Goodfellow & Smith, 2013). Nduwayezu et al.
(2016) reported Kigali’s urban footprint increased from 42.1km2 in 1999
to 95.5km2 in 2014, more than doubling in 15 years. The total population
of Kigali, during 2000-2015, rose from 498 thousand to 951 thousand
(United Nations, 2018), an annual growth rate of 4.4%.

1.4.3 Dissertation outline

This dissertation can be thought of as the development of an increasingly
complex coupled urban growth and flood model, ultimately used to simu-
late integrated scenarios of rainfall, policy, and demographic conditions.
Chapter 2 reports on the development of land cover data models, which
are a static representation of urban growth in various moments in time.
Chapter 3 makes use of statistical techniques to unpack the feedback
relation between flood and urban growth. Chapters 4 and 5 develop an
urban growth model based on cellular automata. Chapter 4 summarizes
the development of a prototype model for the Upper Lubigi catchment
of Kampala, chapter 5 improves and extends this model and develops
techniques to calibrate it for Kampala and for Kigali. Chapter 6 examines
the effects of land use planning on urban patterns in Kigali. Chapter 7
unifies all methods by integrating the flood model with the urban growth
model and by using them to simulate prospective scenarios that compare
trend conditions to alternative future patterns envisioned in the land use
plans of each city.

Table 1.1 shows how the different models reported are organized in
terms of complexity. Generally, the links between land cover and flood
were first established and then land use planning elements were intro-
duced. Furthermore, the results from simpler static models informed
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Table 1.1 Organization of models to explore the relations between spatial
planning, urban growth, and flooding

Static Dynamic
A⇒ B Ch. 2: Ch. 4 & 5:

B = land cover B = land cover
A = reflectance (physical
variable)

A = spatial determinants

Technique: Spectral mix-
ture analysis and box-
plots

Technique: cellular auto-
mata and Monte Carlo for
calibration

Ch. 6:
B = land cover
A = land planning instru-
ments
Technique: difference-in-
differences model

A a B Ch. 3: Ch. 7:
B = land cover B = land cover
A = flooding A = flooding
Technique: Structural
Equations Modeling

Technique: cellular auto-
mata and flood model
Simulation of rainfall
Scenarios of development
supply (including land
use plans)

more complex dynamic ones and the results from models assuming
exogeneity influenced feedback models. An advantage which follows
from access to two case studies is that, at different stages of the model
development, the most appropriate case can be used to generate a spe-
cific component. However, there are also problems of interpretation
when comparing both cases: firstly, since methodologies often need
case-specific adjustments, should one attribute the differences between
cases to a substantive phenomenon or to the methods?; secondly, and
closely linked to the former: when a result is derived for one case study,
to what extent can one extrapolate it to the other case study? Chapter 4
was a follow up to Sliuzas et al. (2013) and, because of this, limited to the
Upper Lubigi subcatchment. Similarly, chapter 3 only analyzed Kampala,
because it is there where the relation between recurrent flooding and
urban growth is more apparent. Chapter 6 only concerns Kigali because it
is there where one can find a strict application, and therefore a potential
effect, of land use planning instruments. All other chapters (2, 5, and 7)
were developed for the metropolitan region of both Kampala and Kigali.
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2Sub-pixel land cover maps to
explore urban dynamics in
Sub-Saharan Africa

Abstract

The methodology to and results of generating sub-pixel land cover classi-
fications for two time series (Kampala, 2001-2016 and Kigali, 2000-2015)
of impervious surface, vegetation, soil, and water are presented and
discussed. The estimation of sub-pixel land cover fractions was achieved
through the application of supervised and unsupervised classification
methods, the results of which are matched to a conceptual model of land
cover.

Keywords: Urban expansion, spectral mixture analysis, Informality,
Flooding, Kigali (Rwanda), Kampala (Uganda)

2.1 Introduction

Urban areas in Africa are growing both in population and in their physical
urban footprint; this growth is occurring in a context of weak institutions
which have led to the prevalence of unplanned growth (Güneralp et al.,
2017). The management of these cities requires constant monitoring
of long term urbanization trends, to guide the construction of physical
infrastructure but also its environmental and human impacts (e.g. the
effect of urban growth on recurrent flooding).

This chapter summarizes the application of two methods operation-
alizing linear unmixing to generate long term land cover maps of urban
systems based on mid-resolution imagery (Landsat images). The first
method is a straightforward application of a supervised spectral mixture
analysis (SMA), yielding results at sub-pixel level in the form of land
cover fractions for each pixel. The second method consists of applying
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an unsupervised classification algorithm which makes use of SMA to
generate land fraction maps, subsequently interpreted as land covers.
The resulting classifications from these methods were assessed in terms
of validation (comparison to independently derived land cover, from
available high resolution imagery) and verification of the built-up land
cover fraction.

The method was deployed to generate land cover maps for Kampala,
Uganda (2001, 2005, 2010, 2016) and for Kigali, Rwanda (2000, 2009,
2015). The land cover maps derived in this chapter were used as inputs
for further models throughout this dissertation.

2.2 Spectral mixture analysis: method and data

2.2.1 Spectral mixture analysis

SMA is a sub-pixel classification technique which considers the reflect-
ance of any given pixel for any given band to be a function of the fraction
of land cover and the land cover’s reflectance value at this band, for a
set of land cover classes. In particular, spectral linear unmixing assumes
that, for a set of bands and land cover classes, the reflectance values of
each pixel can be linearly decomposed:

x =
M∑
1

Sa+w (2.1)

with x a vector of n spectral bands, a a vector with the fraction of M
endmembers, S an M × n for which each entry is a reflectance value of
an endmember for a specific band, each row represents an endmember’s
spectral signature (across all bands), and each column, the different
endmember’s reflectance at that wavelength, and w a vector of error
terms.

SMA was implemented in R (R Core Team, 2017), using the library
developed by Lehnert et al. (2016).

2.2.2 Data

For Kampala, Landsat images from row 171 and path 60 were acquired
for 2001, 2005 (ETM+ sensor), 2010 (TM sensor), and 2016 (OLI sensor).
Six bands (1-5 and 7) were selected from images sensed by the TM and
ETM+, thus excluding the thermal band, which has a lower spatial resol-
ution. To ensure comparability, six bands with equivalent wavelengths
(bands 2-7) were selected from the 2016 image, sensed with the OLI.

For Kigali, three Landsat images, from path 172 and row 61, were
acquired for the dates: July 12, 2015 (OLI/TIRS sensor); June 25, 2009
(TM sensor), and September 12, 2000 (ETM+ sensor). Six bands from each
image (excluding the thermal band of images from sensors TM and ETM+,
and choosing bands with similar wavelengths from the image sensed by
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the OLI to enhance comparability across time) were selected. For each
band of all images, the pixel values were normalized to the range of 0.00
to 1.00.

2.2.3 Endmember selection strategies

Land cover in urban areas, derived from remote sensing, has been con-
ceptualized over many years as composed of, mainly, three materials:
impervious surface (buildings and pavements), vegetation, and bare soil
(Ridd, 1995); a fourth element often included is water (Small, 2001), if
large bodies of it exist within the extent being analyzed, and it is charac-
terized by a very low albedo. These categories of land cover have been
found to be lineally separable using SMA (Small, 2001; Kuang et al., 2014).
Therefore, the conceptual model of land cover materials characterizes
each pixel–a 900m2 square–as composed of four fractions, corresponding
each to a land cover type and which sum 1.00. A subset of “pure” pixels
show a fraction equal to 1.00 for one land cover type, and thus fractions
of 0.00 for all other types. These pixels become key when applying the
SMA, since they may be selected as endmembers in the process of linear
unmixing.

To generate this classification of four land cover fraction maps, we
operationalize the analysis by creating an auxiliary model of pixels with:
(1) very high albedo (bright pixels in the visible spectrum), which may
be either built-up structures or certain bare soils, (2) very low albedo
(black features such as pavements or materials absorbing radiation such
as water), (3) vegetation, and (4) bare soil. Since some features exhibit
similar spectral signatures in the visible or near infrared wavelengths, it
is possible to generate from the data several high albedo and low albedo
groups (distinguishable in lower wavelengths). Hence the usefulness
of this auxiliary model in matching auxiliary categories to land cover
categories in a many-to-one manner.

The identification of pixels corresponding to endmembers was achieved
using two different strategies, one for Kampala and another for Kigali;
note that for these two methods, the result is a set of pixel locations:

For the Kampala case study, endmember samples were digitized by
visual inspection of Landsat (combination of bands 4-3-2, the so-called
false color, and of bands 7-5-4) and available high resolution imagery (of
2004, 2010, and circa 2016).

1. In first stage, four endmembers were selected. These were: high
albedo (generally consisting of buildings, certain pavements, and
soils), low albedo 1 (water, shadow, certain vegetation types such as
wetlands), vegetation (typically shrubs, trees, and grassland), and
soil (including most types of bare soils, although, as noted, certain
smooth and very high albedo soils may be classed as high albedo).

2. To advance temporal consistency, the four endmembers for every
year were sampled at the same locations: all selected locations
corresponded to places that did not undergo land cover change.
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3. Since these models ultimately caused a radical underestimation of
built-up land cover fraction, a fifth endmember was added to the
sample: low albedo 2 (dark buildings).

4. For this fifth endmember, it was not possible to sample the same
location over the four years analyzed, because of the relatively rare
occurrence of pure examples of these features within the city of
Kampala.

For the Kigali case study, endmembers were selected using the un-
supervised classification method proposed by Du et al. (2005):

1. The starting point (denoted m0) is the pixel that is the maximum
value of the sum of reflectance for all bands. This is a pixel with
very high albedo.

2. Using only m0 as the only spectral signature determining S, a pre-
liminary classification, Class0, is performed.

3. From the resulting classification, m1 is selected as the spectral
signature from pixel with the largest error w1, as estimated from
equation 2.1.

4. m0 is discarded. Class1, the first classification of the method, is
performed using only m1 as spectral signature S.

5. From the results of Class1, the spectral signature of the pixel with
the largest error (w2) was extracted and denoted m2.

6. Class2, the second classification, was performed using both m1 and
m2 as S.

7. Steps 5 and 6 were repeated: for each classification performed, the
pixel with the greatest error was extracted and added to S; then,
a new classification with the updated S was generated. When S
reached six rows (equal to the maximum number of available bands
for Landsat in a single year), Class6 was generated.

8. The pixel corresponding to each row in S was extracted from the
full database, including its coordinates (x , y).

9. The principal components of the normalized bands of all years (i.e.,
stacking up the three years into a single image of 18 bands and
calculating the principal components of this image) were taken as
input data, excluding only the pixels corresponding to cloud cover
in the 2000 image.

Both methods were applied to each case study and the best results
were obtained for each case by the selected method (supervised end-
member selection for Kampala, unsupervised endmember selection for
Kigali). Each method presents advantages and limitations: the endmem-
ber selection of the supervised approach need not be linearly separable,
unlike the unsupervised approach. Thus, while the unsupervised results
are guaranteed to be correct from a formal perspective, they will not
necessarily correspond to the four categories of materials of the concep-
tual model. The supervised endmembers necessarily result all land cover
categories being sampled, since they were purposefully selected with the
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conceptual model in mind. The unsupervised methodology does have
the clear advantage of being fully replicable; supervised classifications
are always subject to criticism, since many more potential endmember
samples exist than those ultimately selected (although this objection is,
to a point, answered by acceptable validation results).

2.2.4 Implementation of spectral mixture analysis

Since the result of the Kigali SMA were six categories but their corres-
ponding classification (into high albedo, low albedo, vegetation, or soil)
was not known, they were first sorted into one of these groups before
being finally classified into land cover. The interpretation of endmember
fractions proceeded as follows: the predicted fractions map correspond-
ing to each endmember was reclassified into two, with the 95th percentile
as the limit between them; patches of approximately 100 pixels of the
category with larger fractions, recognizable at a scale of 1 : 50000, were
compared to high resolution imagery when available (2008 and circa
2015) and to the original composites of Landsat imagery. Based on this
comparison, each endmember was classed into: low albedo (easily recog-
nizable due to the open water of the Nyabugogo River/Lake Muhazi in
the north-eastern corner of the study area), high albedo (purely white in
most Landsat composites), bare soil (yellow or light brown in the Landsat
combination of bands 7-5-2), or vegetation (bright red in a Landsat false
color combination).

The conversion of the auxiliary fractions into the final land cover
fractions resulted from applying a rule-based approach. Categorical land
cover maps were used as an indication of where potentially impervious
surfaces may occur. For Kampala, maximum likelihood classification
was used to sort cells into three categories: built-up, non-built, and water;
built-up included buildings and pavements. The 2010 land cover map
was adopted from Abebe (2013). To generate the 2016 map, a supervised
classification was applied using Abebe’s 2010 map as sample and the
corresponding Landsat image as spectral data; similarly, Abebe’s 1995
land cover map of Kampala was used to generate supervised classifica-
tions for 2001 and 2005 (with each year’s corresponding Landsat image
as spectral input). For Kigali, the GHSL of 2000 and 2014 (Pesaresi
et al., 2016) were adopted as categorical maps of built-up land; for the
year 2009, an unsupervised classification was created and the results,
re-grouped into built-up, non-built, and water.

All categorical maps of Kampala were manually edited by visual in-
spection at a scale of approximately 1:50000. The objectives of this
editing process were: (1) where and when (for the entire 2016 image
and for the central part of Kampala, 2010 and 2004) high resolution
imagery was available, to manually re-classify cells originally sorted into
the built-up category but that were actually bare soil, (2) to ensure that
large patches (e.g. 100 cells, i.e., visually evident at mid-resolution) that
were classed as non-built in a later year were not classed as built-up in
the immediately preceding year–the assumption here being that there
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was little to no large scale demolishing, and indeed when inspecting
these cases, it was generally apparent that they conform to classification
(methodological) errors rather than substantive phenomena. Since cat-
egorical maps of Kigali were based on a methodology already controling
for these biases, no edit was performed for the Kigali maps.

Based on these categorical maps, the following rules were then imple-
mented to regroup the auxiliary fractions into land cover fractions:

• All cells classified as water in the categorical classification are taken
as having a water fraction of 1.00

• If a cell is built-up, according the categorical classification:

– The sum of high albedo and low albedo fractions results in the
impervious surface fraction (in the case of Kampala, only low
albedo 2 was summed into the impervious surface fraction).

– The auxiliary vegetation fraction equals the final vegetation
land cover fraction (in the case of Kampala, to the vegetation
fraction was added the low albedo 1 fraction); the auxiliary
bare soil fraction equals the final bare soil fraction

• If a cell is not built-up, according the categorical classification:

– The sum of high albedo and auxiliary bare soil fractions equals
the final bare soil land cover fraction

– The sum of low albedo (in the case of Kampala, of both low
albedo 1 and low albedo 2) and auxiliary vegetation fractions
equals the final vegetation land cover fraction

These rules seek to reflect the observable fact that high and low
albedo fractions within the urban footprints of Kampala and Kigali (and
generally of any city) are more likely to be impervious surface (a building
with a white roof, asphaltic pavement or roof, etc.) than it is to be
vegetation or bare soil. It does, however, introduce some degree of
error, as high albedo smooth soils may be difficult to identify. The use
of GHSL corrects, as much as possible, this bias, since it is a method
that improves on traditional approaches in distinguishing bare soil from
built-up (Pesaresi et al., 2016); further, the manual edits to the categorical
maps also reduce this error.

The 2005 land cover map of Kampala exhibited a missing data prob-
lem because of the malfunction in the Scan Line Corrector of the ETM+
sensor in the Landsat 7 satellite. The gaps of the 2005 map were filled
by a Krige extrapolation of impervious surface and vegetation fractions:
a semivariogram was estimated based on the cells with data of 2005,
it was fitted using an exponential model, and this model was used to
calculate values for cells in the area with no data.

2.2.5 Validation of land cover maps

The validation strategy of the produced final land cover maps was ad-
opted from Kuang et al. (2014). The impervious surface fraction was
validated by:
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1. reclassifying the map into 10 categories: ranges of 0.00 − 0.10,
0.10− 0.20,..., up to 0.90− 1.00;

2. within the area defined by each range, 10 points (at least 270m, or
nine cells, apart) were randomly sampled, although some ranges
covered such a small area that the constraint prevented the al-
gorithm from finding 10 points;

3. for each point, a square of 3× 3 cells was digitized following the
lattice defined by the land cover map and taking as the central cell
that over which the point was overlayed;

4. the impervious surface fraction of each square was digitized from
available high resolution imagery at a scale of 1 : 650 approximately.
For Kampala, this included aerial imagery provided by the city for
2004 and 2010, as well as satellite imagery from ArcGIS circa 2017;
for Kigali, aerial imagery provided by the city for 2008 and satellite
imagery from ArcGIS circa 2017;

5. these results were compared to the average impervious surface
from the Landsat impervious surface fraction within each square, by
calculating the root mean square error (RMSE) and the correlation
between the data sets (the coefficient of regression for a linear
model between them, with the high resolution imagery data as the
dependent variable).

Note that the built-up land cover fraction includes pavements–it could
perhaps be better described as impervious surface. In consequence,
when digitizing the validation data, both buildings and paved areas
(particularly roads) were included.

2.3 Land cover maps: results and discussion

2.3.1 General patterns and validation of impervious surface
fractions

The generated patterns of built-up land cover fraction of both Kampala
and Kigali are shown in figure 2.1.

Two simultaneous dynamics are apparent for Kampala in figure
2.1. Firstly, the city is undergoing a rapid outward expansion, a res-
ult broadly consistent with previous studies of urban growth of Kampala
(Abebe, 2013; Vermeiren et al., 2012), much of it along the main road
network, which has already surpassed the limits of the Kampala City
Council Authority–the city proper’s boundary. Secondly, a very signific-
ant amount of land use intensification has occurred, as witnessed by
the increase of impervious surface in central locations (presumably a
combination of more buildings for urban activities and new paved roads).
Note that very rarely do impervious surface fractions over 0.80 appear
in the maps–and the fractions of 2001 and 2005 are generally below the
0.40 threshold.
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Figure 2.1 Built-up fractions for Kampala (2001-2016) and Kigali (2000-2015)

Kigali, as shown in figure 2.1, experienced a similar dynamic of out-
ward expansion and intensification, which is predicted by the theory
of urban location for cities undergoing very rapid population growth
(Brueckner, 1987). However, Kigali is remarkable in that there is a change
in the pattern of urban growth: For 2000-2009, greenfield development
(especially towards the north of the city) resulted in the creation of new
urban areas, essentially separate from the main urban patch that existed
in 2000. In a second phase (2009-2015), both this new urban area and the
older ones (i.e. existing in 2000) expanded outwards, which paradoxically
resulted in the intensification of the urban fabric of Kigali. One may
speculate two causes, not mutually exclusive, explain this dynamic. On
the one hand, as noted by Goodfellow (2013a), around 2009 Kigali (and
the Rwandan State) embarked upon an urban modernization project for
the city highly reliant on the stringent implementation of a land use plan.
On the other, Kigali presents a very irregular terrain, even more so than
Kampala. Constraints due to excessive slopes may have partially caused
the discontinuity.

The RMSE and correlation between the validation data and the land
cover estimates is summarized in table 2.1. The sample size of the
validation data is also reported. Recall most validation samples will have
less than the 100 target points because areas of some built-up fraction
ranges are so small that not enough points can be selected for sampling
(and, since Kampala is a larger city than Kigali, the samples of Kampala
are larger that those of Kigali precisely for this reason). Note also the
validation data of Kampala, 2016 is larger than 100: this is because data
collected for previous, discarded land cover models was kept for the
final evaluation.

RMSE for Kampala (2005, 2010, and 2016) estimates vary between
0.218 and 0.237 and the correlation between the predicted value of the
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Table 2.1 Comparison of impervious surface fraction results between land
cover data set (Landsat based) and HRI data

City LS model year HRI data RMSE Corr.1/ n
Kampala 2016 2015 0.2371 0.7684 119

2010 2010 0.2237 0.9069 93
2005 2004 0.2177 0.8619 82

Kigali 2017 2015 0.1507 0.7406 64
2008 2009 0.1590 0.7419 58

1/ Regression coefficient of LS data model on HRI data model

Landsat-based model and the high resolution sample was relatively high,
over 0.768 for all years (table 2.1). These results are reasonably good,
although the errors are higher than those reported for more industrial-
ized contexts (see Kuang et al., 2014–their RMSE is below 0.175 and the
correlation, higher than 0.89). This is likely a limitation posed by the
phenomenon of urban land cover in Kampala and perhaps in other cities
of Sub-Saharan Africa (though notably not Kigali), since there is a much
larger fraction of bare soil relative to large cities of China and the US,
Kuang et al.’s case studies. Like Kuang et al. (2014), the mid-resolution
land cover model overestimates the impervious surface area fraction
(even more so than their results), as witnessed by correlations that are
less than 1.00 for all years. This limitation is also likely inherent and
related to smooth, high albedo soil surfaces, the largest of which were
manually edited out of the urban footprint maps but which likely remain,
especially at sub-pixel level.

The RMSE and correlation between the high resolution land cover and
the Landsat-based models for Kigali (table 2.1) are better than what was
obtained for Kampala and similar to the errors reported by Kuang et al.
(2014). Like Kampala, the results for Kigali show an overestimation of the
impervious surface land cover, evident in correlations lower than 1.00.
The results of Kigali show that the endmember spectra of this urban
region are better at separating soil from impervious surface; possible
explanations could include soil colors that are more distinct from built-
up objects in Kigali (although Kigali is geologically more complex than
Kampala), the use of different materials for building in these two cities,
or an effect due to greater wetness of the soil and vegetation in Kampala,
relative to Kigali. Alternatively, the unsupervised classification method
does produce better results than supervised approaches (although the
question would remain, in this case, why was the unsupervised algorithm
incapable of improving on the results of Kampala too?)

2.3.2 A discussion on methodological choices and results

While ideally the product of this chapter would have been a unified
method and results of comparable quality for both case studies, it is
important to emphasize the priority is to ensure the best possible land
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cover data models (in terms of validation, i.e., correspondence to each
case studies’ land patterns). Indeed, given a choice between methodolo-
gical uniformity and known limitations vs. reducing these limitations to
the minimum, the latter road has been taken. This is because the land
cover maps are inputs, crucial yet not central to the overall academic
argument developed in this dissertation (in other words, the crucial
aspect of them relates to their accuracy, not generalizability).

Several, unreported, land cover models were developed through the
application of SMA for each case study. They differ in endmember selec-
tion and are variants of the two general approaches discussed in section
2.2. For each case, unsupervised endmember selection processes were de-
ployed, seeking four, five, or six endmembers; these models used either
transformed data of all available imagery jointly (as reported in section
2.2) or separately for each year. Similarly, several supervised endmember
samples, of four endmembers (high and low albedo, vegetation, and soil)
were generated for each city. From this relatively large pool of potential
models, the final result was selected.

Two properties were used to judge each land cover model. The first, a
verification issue, was consistency of urban patterns in time; the second,
validation (comparing the land cover data model to independent data).
Generally, making allowances for the additional error introduced by the
presence of large bare soil areas, the validation property was acceptable
(note, though, verification was first examined and used to discard land
cover models; so it is likely the less successful models, verification-wise,
would have been equally unsuccessful in terms of validation). However,
the verification aspect often represented an insurmountable obstacle to
accepting a land cover data model.

The fundamental problem of verification is the following: both case
studies represent cities undergoing rapid population growth and, con-
sequently, a physical expansion of the built-up area. On aggregate terms,
this means that if the built-up land cover fraction map of a later year were
to be subtracted to an earlier year, one should expect the overwhelming
majority of cells to be greater than 0.00 (negative values correspond to
either classification errors or, more rarely, demolitions). Further, the
total area of negative cells (the summation of negative cell values times
the cell area) should be very small, since they are errors.

Table 2.2 shows the breakdown for such map algebra operations
(which amount to maps of urban growth) for each pair of succeeding
years. As can be seen, the internal consistency of the selected built-up
land cover fraction maps is very good and the overall error, small. In
most alternative (discarded) versions of the land cover data models, the
total negative areas represented up to 40% or more of the total change
(note that, while the percentages on table 2.2 may seem large, they
are estimated relative to the change, not the total cells as is usual; no
change cells make up over 80% of all cells); further, when examining
the pattern, it was evident the cause of this large error was systematic
under- or overestimation of the built-up fraction for a given year (this
was especially true when the urban core around the CBD was the area
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Table 2.2 Urban growth: resulting areas per built-up fraction (ha)

Built-up fraction range
City Period < −0.01 [−0.01, 0.01] > 0.01
Kampala 2001-2005 1124.8 1.1 4071.5

21.6% 0.0% 78.3%
2005-2010 1567.3 0.8 5458.7

22.3% 0.0% 77.7%
2010-2016 1461.3 0.3 9729.2

13.1% 0.0% 86.9%
Kigali 2000-2009 911.4 0.6 13410.0

6.4% 0.0% 93.6%
2009-2015 133.8 0.1 1608.5

7.7% 0.0% 92.3%
Percentages relative to sum of change area (row).

showing a concentration of negative cells).

2.4 Synthesis

The land cover fraction maps for four categories (built-up, vegetation,
soil, and water) were presented and discussed. The methodologies
through which they were generated were documented. The validation
and verification of the resulting models were summarized; they were
discussed in the context of (unreported) discarded land cover models.

In general, both cities were found to expand both outwards from
urban centralities (greenfield development) and by intensification of cent-
ral locations. This pattern is consistent with theoretical consequences of
exogenous population growth (Brueckner, 1987). The expansion of Kigali
was also affected by the implementation of the land use planning system
circa 2009 (see OZ Architecture et al., 2007 and SURBANA International
Consultants PTE Ltd., 2013, as well as the results of chapter 6), which
encouraged more compact development.

Land cover data models of Kampala and of Kigali show consistency in
time (relatively few cells exhibit larger built-up fractions for earlier years
than for later years), a property used to verify an observed characteristic
of each urban system, i.e. that they are experiencing evident urban
growth. Land cover maps were also found to be acceptable in terms of
validation (by comparing them to independent data derived from high
resolution imagery).

In sum, the land cover map results reported in this chapter were
judged to be accurate and, thus, an acceptable input for further modeling
developed in this dissertation.
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2.5 Appendix

Figure 2A.1 pixels excluded through manual editing process in Kampala
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3Structural equations modeling of
the impact of flooding on urban
patterns1

Abstract

Recent developments in socio-hydrology, as well as microeconomic mod-
els of urban location, suggest exposure to natural hazards may constrain
urban development. Cities in Sub-Saharan Africa often suffer recurrent
flooding and weak institutional settings which preclude land use planning
systems becoming effective risk mitigation tools. How does human beha-
vior on location choice factor into this context? A structural equations
model was developed to understand the causal paths between population
growth, hydrological impacts, and urban growth, using data from eight
catchments of the Kampala metropolitan region over three periods (2001-
2005, 2005-2010, and 2010-2016). Urban growth is conceived as being
triggered by exogenous population growth which also increases flooding
via the larger impervious urban areas it causes, re-distributing urban
growth away from subcatchments with larger hydrological impacts. The
structural equations models are generally found to fit the data, providing
evidence to confirm the hypothesized causal paths. Marginal effects of
peak flows on urban growth were found to be statistically significant,
although small (0.2 standard deviations from the mean). Direct effects of
population growth on urban growth were much larger (between 0.6 and
3.0 standard deviations from the mean, depending on the causal path).
The constraining effect of recurrent flooding is, thus, not large enough
to mitigate flood risk by itself, but it does open a window of opportunity
for land use planning in the face of rapid population and urban growth.

Keywords: land cover change, flood impact, path analysis, structural
equations modeling, Kampala (Uganda)

1This chapter is based on: Pérez-Molina et al. (2019a).
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3.1 Introduction

Kampala, Uganda is a city of over two million residents (United Nations,
2018) which undergoes widespread and recurrent flooding due to relat-
ively small rainfall events and low infiltration soils (Sliuzas et al., 2013).
Such flooding results in impacts on the quality of life of urban resid-
ents, particularly the poorest (Isunju et al., 2016), as well as repeated
disruption of city functions, especially transportation (Lwasa, 2010).

During the last twenty years, the city of Kamapala has embarked,
with the World Bank, in a program of systematic investment on road
and drainage infrastructure (World Bank, 2013). Specifically, the main
drainage channels of the city have been designed and are being expanded,
to increase their capacity to carry runoff and thus reduce impacts of
flooding on city functions. The rate of progress in improving drainage
has been slow; work has concentrated on two out of the main eight
primary drainage channels (Nakivubo and Lubigi). Thus, flooding is
expected to remain a problem, even after the infrastructure investment
program has been completed.

In this context, two research questions can be posed, to clarify the
impact of urban growth on flooding: (1) To what extent are urban agent’s
location choices influenced by flooding? (2) How does this influence
manifest itself, if at all, on aggregate urban patterns? The hypothesis is
that flooding acts as a constraint on urban development; but the aggreg-
ate effect of this constraint should be limited, since many urban agents
who otherwise would be excluded from desirable locations are likely
willing to accept the risk of natural hazards if compensated through
greater accessibility or amenities.

These issues were addressed by deriving a causal path analysis model,
based on microeconomic theory and the socio-hydrology framework. In
this way, relevant factors were organized to reflect the relations expected
from the theory. Structural equations models are used to test whether the
data assembled to describe Kampala is consistent with the hypothesized
causal paths. The results are discussed in view of the need to markedly
improve the capabilities of land use planning systems, especially with
regard to regulation, in Kampala.

3.2 Conceptual framework and previous work

3.2.1 Socio-hydrology and feedback mechanisms between human
settlement patterns and flooding

During the last decade, the advent of socio-hydrology (Sivapalan et al.,
2012) has promoted (mainly from the hydrological viewpoint, see Xu et
al., 2018) the exploration of relations between hydrological and human
systems. Conceptualizations of human settlement patterns and flooding,
particularly those considering the well known levee effect, have provided
important insights on the analysis of dynamic interactions and feedbacks,
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3.2. Conceptual framework and previous work

conceiving both hydrological and social subsystems as linked processes.
Notable among them is the effort of Di Baldassarre et al. (2013), who
simulate the interplay between economics (overall wealth and population
size), technology (levees), society (awareness of potential risk), and urban
development patterns (affected by the memory of past floods).

While conceptual improvements have contributed to clarify the issues
and to provide mathematical frameworks for exploring specific cases, the
development of evidence by means of case studies has been limited. Hall
et al. (2014) characterized these low dimensional models as indicative
and complementary to the more complex (and data-demanding) process-
based or comparative case study analysis. After searching the literature
for empirical case studies, three (Odongo et al., 2014; Chen et al., 2016;
Zischg et al., 2018) have been chosen because they provide insights
into the methods to derive substantive conclusions on socio-hydrologic
processes.

Zischg et al. (2018) adopted a backcasting approach. They modeled
river morphology (before and after the construction of levees and the
deepening of river channels), land use patterns (based on current and
historical buildings, as well as with alternative zoning scenarios, i.e.
eliminating buildings according to constraint maps), and an inundation
model plus vulnerability functions to estimate damage (by assigning
flood depths to the buildings identified as part of the land use pattern)
for the Emme River in Switzerland. Based on these elements, they evalu-
ated possible alternative paths by simulating the 1910-2015 period and
tracing the evolution of flood costs.

Chen et al. (2016) also simulated a relatively long time series (1948-
2015) for the Kissimmee catchment, using a model similar to Di Bal-
dassarre et al. (2013); this catchment was first channelized to mitigate
flooding (during the 1960s) and it was later restored to promote wetland
health (in the 1990s). Chen et al. (2016) simulated these management
strategies as the product of a change in values and in relative power
of upstream vs. downstream population, although informed by flood
damage (i.e. as flood control measures were successful, society placed a
decreasing importance on flood in determining policy). A feedback effect
was thus introduced between flood, values, and policy, with land use
consequences in terms of total wetland area.

Odongo et al. (2014) identified causal cascades and quantified them,
with limited data, using path analysis for the Lake Naivasha land use/water
abstraction system. Causal cascades were triggered by economic develop-
ment evidenced in flower production area (upstream) and in population
growth (downstream), leading to ecological and hydrological impacts.
This case is, methodologically, the most similar to the results reported in
this chapter, as it applies path analysis, it is also located in Sub-Saharan
Africa, and makes use of limited data (the latter two conditions being
linked and explaining the choice of method) to tackle a feedback between
human land use and its hydrological impacts.

In the three cases (Odongo et al., 2014; Chen et al., 2016; Zischg
et al., 2018), the feedback loop was decomposed into a linear causal
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path, making the problem tractable from a quantitative perspective. The
theoretically hypothesized feedback effect was incorporated (by Chen
et al., 2016 and by Odongo et al., 2014) through the dynamic nature of
the system: events from the preceding period affect the succeeding ones.
This is consistent with Shipley’s (2016, pp. 36–38) argument that feed-
backs in a causal process are a consequence of not explicitly accounting
for time. The second central element that should be highlighted is the
spatial unit: all three studies aggregate their results into (sub)catchments;
Chen et al. (2016) and Odongo et al. (2014) separate their own into up-
stream and downstream subcatchments, in recognition of the diversity
of social and physical processes occurring there. Finally, available data
was constrained: while Chen et al. (2016) deploys a full quantitative
dynamic analysis, both Odongo et al. (2014) and, more transparently,
Zischg et al. (2018) use limited time steps in their models, reflecting
the evolution of the system in time not as a strictly dynamic model but
rather as a succession of static states. Yet this is sufficient to detect and
characterize the relations between human and natural systems.

3.2.2 Urban land cover patterns and location choice under natural
hazards

The basic microeconomic model of urban location explain the choice of
urban agents as a trade-off between commuting costs and housing prices
(Brueckner, 1987). From the model, one may derive that the capital-
to-land ratio is a decreasing function and yard space, an increasing
function (Brueckner, 1983) of commuting costs; these conclusions, taken
together, mean the built-up land cover fraction is a decreasing function
of distance to the CBD. Additionally, an exogenous population increase
should lead to a physically larger city (its urban footprint increases) with
smaller dwellings and larger capital-to-land ratios in all locations (the
city densifies, see Brueckner, 1987).

Frame (1998) extended the basic model to account for the exposure
of land to flooding by introducing a loss caused by the flood, which
subtracts from the urban agent’s income. This loss affects only exposed
locations and it is also a function of the event’s severity (large floods
cause greater losses than small floods). One must note that this is
similar but not equivalent to cumulative losses from very small events
occurring very often; the difference lies in the need, for a cumulative
approach, of a dynamic system (i.e. the need to consider successive
periods), which is difficult to formalize within a static neoclassical model.
From Frame (1998), one may conclude that capital-to-land ratio is a
negative function of potential risk, which is to say there is less building
in areas of the city exposed to flood. Moreover, one can demonstrate
the existence of a critical level of potential risk; for areas within the
city, if exposed to greater potential risk than the critical threshold, no
urban development takes place. The critical level of potential risk is
a negative function of commuting costs: households are compensated
for greater potential risk (and the losses it entails) by less commuting
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3.2. Conceptual framework and previous work

Figure 3.1 Stylized urban land gradient derived from Frame (1998). Bottom
left: a monocentric city, with the center in dark grey and the periphery in light
grey; the blue line represents the river and the red line encloses the area affected
by the flood event. Right: the transect, showing the variation of strutural density
as distance from the center increases.

time. One should, again, note that the assumption of a monocentric
city has carried on from the Alonso’s original model; however, it can
be relaxed to incorporate job decentralization–the observable fact, in
Kampala as in a large variety of urban contexts, that job locations are
dispersed throughout the metropolitan area (Glaeser, 2008). Finally,
given an exogenous population increase, the critical risk level increases
(the undeveloped area within the city becomes smaller).

The physical consequences of the basic model are shown, schematic-
ally, in figure 3.1: the y-axis represents the probability of a plot being
built-up and the x-axis, the distance from the CBD. As population in a city
increases, the probability of all locations becoming built-up increases
(due to larger structural densities and to dwellings becoming smaller,
represented by the shift towards the right, i.e. away from the center,
of the urban gradient) and the urban footprint of the city also becomes
larger (at time period tn, the built-up location furthest from the CBD, area
I, is at a greater distance than the corresponding location for t0, area E).

The effects of potential flood risk are also schematized in figure 3.1:
the inner boundary shown as D for t0 and J for tn. Since from t0 to tn a
population increase has occurred, the inner boundary disappears: the
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area D was not developed whereas the area J is, albeit at a lower prob-
ability than less accessible but not exposed to potential risk locations
(corresponding to the area E, which at tn should exhibit larger structural
density, since it is not exposed to potential flood risk).

3.2.3 Proposed path models of urban growth and flooding

Causal path models are advanced, incorporating the conceptual relation-
ships described in subsections 3.2.1 and 3.2.2, as well as a conceptual
understanding of flooding within a rainfall-runoff modeling approach:
rainfall falls over the landscape, part of the water is infiltrated into
the soil and part flows over the landscape, eventually reaching drain-
age channels; there, it may overflow, if the capacity of the channel is
exceeded.

The proposed causal paths are shown in figure 3.2; variable definitions
and data sources are discussed in subsection 3.3.1. All causal paths
are triggered by an exogenous population growth (Pop Growth), which
should lead to larger urban areas (Urban Area) and urban growth (Urban
Growth); note that larger urban areas do not necessarily correspond
to bigger urban growth: for example, a spatial unit may be completely
occupied by built-up land cover (large urban area with little possibility
of urban growth). The central section of the causal paths reproduces
the relations from the rainfall-runoff approach: greater urban areas
mean more impervious area (less infiltration), ultimately resulting in
greater peak flows (Peak Flow); larger rainfall events (Rain) imply more
water eventually reaching the surface, likewise leading to greater peak
flows. These basic physical relations are captured in the causal path
corresponding to figure 3.2a.

The second causal path, figure 3.2b, controls for accessibility by
introducing the Central variable: a dichotomic variable equal to 1.00 for
the upstream part of catchments located around the CBD, as well as
the downstream part of the Nakivubo basin (which is part of the CBD
itself). This centrality variable should cause greater urban areas but
its effect on urban growth is ambiguous: while central locations are
more attractive for urban development, they are also older areas of the
city–and therefore, locations where little space is available for new urban
development.

The most complex causal path, figure 3.2c, introduces location choice
as a latent variable–an unobserved effect that can be inferred. Such
variable was hypothesized to replicate (at an aggregate level) the method-
ological approach of spatially explicit models, such as cellular automata,
dependent on a single rule (e.g. a transition rule) to find the locations
that are first chosen by urban agents. It also presents the advantage of
separating the spatial structure (with relatively little variation in time)
from the dynamic trigger of urban growth.
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Figure 3.2 Proposed causal paths. a) Reduced form causal path incorporating
main physical relations derived from location choice modeling. b) Causal path
controlling for accessibility (centrality) and physical factors. c) Causal path
incorporating location choice as a latent variable and controlling for accessibility
effects.

3.3 Structural equations modeling methodology

3.3.1 Study area and data

The metropolitan region of Kampala is formed by the city proper, the
boundary over which the Kampala Capital City Authority (KCCA) exer-
cises jurisdiction, and the surrounding areas of the Wakiso district (see
figure 3.3). Kamapala is located on the northern shore of Lake Victoria,
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Figure 3.3 Study area: catchments and their subdivisions, built-up land cover
fraction (2001-2016), and location of central areas for Kampala, Uganda.

a hilly terrain with valley floors occupied (under natural conditions) by
wetlands. As the city has expanded, the wetland areas have been con-
stantly encroached upon, increasing in this way the exposure of human
settlements to flood risk (Isunju et al., 2016).

Given its physical context and the theoretical evidence on urban
patterns, Kampala has been judged to be a representative case study
to test the impact of hydrological outcomes on urban patterns. The
analysis was operationalized by compiling data on population, built-up
land cover, rainfall, and flooding. To perform hydrological analysis, the
drainage catchments defined in the Kampala Physical Development Plan
(ROM Transportation Engineering Ltd. et al., 2012), in turn adopted from
the Drainage Master Plan, were selected (two small catchments in the
periphery, Mayanja North and Gaba, were excluded because hardly any
flooding or urban growth occur in them). All catchments were extended
beyond the KCCA using a digital elevation model provided by the KCCA.
They are shown in figure 3.3.

Each catchment was subdivided into two parts, upstream and down-
stream. The boundary between these parts follows the greatest slope and
passes through the middle point of each main drainage channel. This
distinction (between upstream and downstream) was introduced to con-
trol for variations in both hydrological and urban dynamics: generally,
upstream areas have been occupied by urban land uses for longer and
the drainage system has been channelized, downstream areas present
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better conserved wetlands (in general) with natural drainage and less
human settlement (ROM Transportation Engineering Ltd. et al., 2012).

Since the objective of this chapter is to relate the outcome of hydro-
logical processes, records in the data set are each of the upstream or
downstream area of every catchment. As there are eight catchments
in the study area, each divided in two, the cross section of the data is
composed of 16 geographical units. Data is available for the years 2005,
2010, and 2016; the final data set has, in consequence, 48 records. It is
included as part of the appendix to this chapter.

Population estimates for Kampala

Population for each hydrological unit was estimated by compiling census
data for the five sub-districts of the KCCA (shown in table 3.1). For each
intercensal period, yearly growth rates were calculated per sub-district.
The census data was adopted as base year (1991, 2002, 2014) and, with
the corresponding growth rater, was used to project population to the
target years of 2001, 2005, 2010, and 2016.

Table 3.1 Population projections for Kampala sub-districts

Census data Yearly growth rate
Sub-district 1991 2002 2014 1991-2002 2002-2014
Kampala 112787 88094 75168 −2.22% −1.31%
Kawempe 158610 262165 338665 4.67% 2.16%
Makindye 186997 303171 393008 4.49% 2.19%
Nakawa 136519 240624 317023 5.29% 2.32%
Rubaga 179328 295088 383216 4.63% 2.20%

Population projection
2001 2005 2010 2016

Kampala 90095 84668 79251 73206
Kawempe 250458 279495 310960 353430
Makindye 290142 323494 360438 410381
Nakawa 228540 257796 289183 331932
Rubaga 282025 315010 351247 400275

The built-up land cover maps were used to calculate the total built-up
area for each sub-district of the KCCA. Gross population density was
estimated by dividing the total built-up into the estimated population
for each target year. Maps of gross density were created by assigning the
estimated density to each urban pixel (defined as any pixel with built-up
land cover fraction greater than 0.00).

The final population estimate per hydrological unit was achieved by:
calculating the average (of all urban pixels) gross density per catchment
and multiplying this gross density times the total built-up area of the
hydrological unit. Population growth was calculated by subtracting the
target year population minus the preceding period’s total population
estimate. Such estimates form the data corresponding to the variable
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Pop Growth of the proposed causal path models (figure 3.2). The Pop
Growth of 2001-2005 was assigned to the year 2005, of 2005-2010 to the
year 2010, and of 2010-2016 to the year 2016 (the same procedure was
used to assign urban growth data to the different years).

Land cover data models of Kampala

The development of land cover maps for the metropolitan region of
Kampala, based on Landsat imagery and sub-pixel classification methods,
was described in the chapter 2.

Built-up land cover fractions were aggregated to estimate total built-
up areas by summing all pixels within a hydrological unit and multiplying
this value times the cell size. These estimates of total built-up area
correspond to the variable Urban Area; the variable Urban Growth was
estimated by subtracting the target year total minus the preceding period.

Rainfall data model of Kampala

Rainfall data correspond to maximum daily total per year; daily totals
were compiled for 2001-2016. Rainfall estimates were taken from the
Rainfall Estimator (RFE2.0) for Africa (Love et al., 2004), available on-line
from the IRI/LDEO Climate Data Library (International Research Institute
for Climate and Society, Columbia University, 2018). Data was queried
for coordinates 0◦18′49′′N , 32◦34′52′′E , corresponding to Kampala.

Rainfall events were simulated based on the selected daily total
(78.3mm for 2005, 165.7mm for 2010, and 89.1mm for 2016) and the pro-
cedure developed for East Africa by Fiddes and Forsgate (1974), which
is based on the Intensity-Duration-Frequency approach. Specifically, for
Kampala:

Rt =
t

24 ·
(24+ 0.33

0.33+ t

)0.95
· Rd ,T (3.1)

with Rt the rainfall depth for time t (in hours) and Rd ,T the corresponding
24h total.

First, the total rainfall was estimated for a 15min period; then, the
total rainfall corresponding to 45min was estimated; as a third step,
the total rainfall for the 15min immediately preceding (and succeeding)
the peak rain was calculated as (R45min − R15min)/2. The process was
repeated for every 15min, until a 165min event had been obtained (and, as
a final correction, the total for 60min was calculated to include the 30min
preceding and succeeding this rainfall event). Thus, a 225min rainfall
event was obtained for each year (these hyetographs are included in the
appendix).

Flood data model of Kampala

Peak flow estimates were generated using the OpenLISEM flood model
(Jetten, 2018): a rainfall-runoff flood model designed for mid spatial
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resolution (cells of 5m to 50m) and very detailed temporal resolution (0.1
to 60 seconds). The flood model for the Kampala metropolitan region was
developed by Umer et al. (2019) at a 20m resolution. A previous model
of OpenLISEM was a central component of the IFM Kampala project (see
Sliuzas et al., 2013); it concentrated on the Upper Lubigi sub-catchment
(roughly coinciding with the upstream Lubigi hydrological unit of this
chapter).

This model was re-sampled to a 50m resolution and then employed to
simulate three rainfall events. Each of these scenarios was specified with:
the corresponding rainfall event described in the preceding subsection
and the land cover model (of built-up, vegetation, and soil fractions) of
the years 2005, 2010, and 2016. Since the rainfall event is the maximum
daily rainfall event of the five-year period preceding the target year, an
implicit assumption is that the land cover of the target year is a reason-
able model for when the peak rainfall event took place. Furthermore, the
models generally reported in this chapter assume urban location choice
is informed by a relatively large event in the recent past, rather than
smaller, more recent events or larger catastrophic events of the past.

Peak flow estimates were produced for the outpoints shown in fig-
ure 3.3. Notice some upstream hydrological units (Mayanja/Kaliddubi,
Nalubaga) have two outpoints along the main drainage system: peak
flows of each were summed, although this correction was minor, since in
both cases most of the flow passed through one of the two channels in
question.

3.3.2 Structural equation models

The models proposed in figure 3.2 embody a number of hypotheses
expressed as relations between variables and formalized through para-
meters. Structural equations modeling were developed to test the validity
of such a causal arrangement. The process is described in Shipley (2016,
p. 89): (1) first, a causal path analysis must be specified; (2) this causal
structure is then translated into a set of equations (parameters in these
equations–slopes, variances, covariances–may be estimated from the
data or can be fixed as part of the causal hypothesis); (3) for each pair of
variables, the variance and covariance are calculated from the data; (4)
the maximum likelihood method is applied to determine the parameters
that are not fixed, minimizing the observed covariances (from the data)
and the covariances predicted by the model; (5) the probability of having
observed the measured minimum difference between covariances from
the data and from the model prediction is calculated (this is the null
hypothesis, that the difference between observed and predicted is due
only to random sampling variation); (6) if the calculated probability is
sufficiently small, the proposed model is rejected.

Note that structural equations modeling is a confirmatory analysis
(Shipley and Lechowicz, 2000). If the null hypothesis is true, the max-
imum likelihood χ2 statistic follows a χ2 distribution, with the degrees of
freedom dependent on the model specification and the data sample size.
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SEM analysis does not have, as an objective, to reject the null hypothesis;
rather, since there are strong theoretical reasons to opt for the causal
model, strong statistical evidence (i.e. a very low probability of the χ2

statistic) is required to reject the model. Else, the model is judged to be
a good fit to the data and to provide evidence to confirm the hypothesis.

Latent variables are variables that form part of the hypothesized
causal path and that cannot be directly observed. Information about
these variables can be obtained from other variables causally linked to
them (Shipley, 2016, p. 127). Since the latent variables have no units in
themselves, as they cannot be observed, it is a common practice to fix a
path coefficient of one of the arrows leading into the latent variable to
1.00; thus, the latent variable has the same scale as the causal parent of
the corresponding fixed path coefficient; alternatively, the variance of
the latent variable may also be fixed to 1.00 (Shipley, 2016, p. 141).

Due to the reliance of structural equations modeling on maximum
likelihood, limitations on their application due to characteristics of the
data must be addressed to validly apply the method: (1) inferential tests
are asymptotic, requiring potentially large sample sizes, (2) functional re-
lationships must be linear, (3) data must be multivariate normal (Shipley,
2016, p. 61).

All variables were transformed into their natural logarithms to im-
prove normality. A scatterplot matrix of the (transformed) data is shown
in figure 3.4; most relationships are acceptably linear, with the exception
of Rain and Central (these can be thought of as ordered categorical vari-
ables). In addition to the transformation, the Satorra-Bentler correction
(Savalei, 2014) was used to produce a χ2 estimate and probability that
are robust to non-normality.

Regarding sample size, a rule of thumb requires at least 5 records
for each parameter estimated (Shipley, 2016, p. 167). Since the sample
consists of 48 records, it is perhaps barely enough to estimate all the
parameters involved in the causal path models hypothesized in figure 3.2.
Therefore, in addition to estimating with the sample data set, the Bolen-
Stine bootstrapping method was applied, using the sample data-based
model to predict 5000 data sets, each of which imposes the covariance
structure model on the data (Kim and Millsap, 2014). For each data set,
the structural equations model was fit and the robust χ2 was estimated.
In section 3.4, Shipley and Lechowicz (2000) were followed by reporting
the 95% percentile of the Monte Carlo-based χ2 probability for each
model, in square brackets, next to the sample data-based probability
(because of severe convergence problems, the model with the latent
variable only produced 3288 valid results from the 5000 iterations; for
that model, the χ2 was reported on this smaller bootstrapped simulation).

Structural equations models were fitted using the lavaan package
(Rosseel, 2012) from R (R Core Team, 2017): the sem function was used
to fit the models using the sample data and the lavaanBootstrap function,
for bootstrapping with the Bollen-Stine bootstrapping method.
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Figure 3.4 Scatterplot matrix of input data. Black circles denote downstream
units, red crosses the upstream units. Data shown as natural logarithm trans-
formation (non-transformed values reported in supplementary material).

3.4 Results

The reduced form path model (figure 3.2a) did not show evidence of
lack of fit (χ2 = 2.425, df = 4, p = 0.658 [0.335]). Standardized path
coefficients for this model, expressed in standard deviations from the
mean, are reported in figure 3.5a: as can be seen, they are all signific-
ant (but for the path coefficient of Peak Flow on Urban Growth) at a
p = 0.01 or better; the probability of each path coefficient can be seen
in equation 3.2. Additionally, the signs of all path coefficients (figure
3.5a) coincide with the hypothesized effect (in figure 3.2a). As perhaps
should be expected, the weakest effect in terms of significance and of
marginal effect (absolute value of the path coefficient) is that of flooding
on urban growth, which suggests accessibility and other constraining
factors (especially income of urban agents, not considered because of
the aggregate level of the model and this is an individual-level effect) are
more important than physical constraints to the urban location choice
underlying the urban patterns. However, it is also important to note
the result does confirm the main hypothesis, namely that hydrological
impacts of natural systems act as a constraint on urban growth; further-
more, this effect can be detected at an aggregate (subcatchment-scale)
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level with spatial data.

UrbanArea = 0.927 · PopGrowth
(< 0.001)

PeakFlow = 0.254 · UrbanArea + 1.873 · Rain
(< 0.001) (< 0.001)

UrbanGrowth = 0.672 · PopGrowth − 0.172 · PeakFlow
(0.002) (0.090)

(3.2)

The second structural equations model, corresponding to the second
hypothesized causal path (figure 3.2b), also shows a good fit to the data
(χ2 = 1.241, df = 5, p = 0.941 [0.416]). With the exception of two path
coefficients (that of Peak Flow on Urban Growth, significant at p = 0.10,
and that of Central on Urban Growth, not statistically significant even
at p = 0.10), all path coefficients are significant at p = 0.01 or better (the
probability associated to each path coefficient can be seen in equation
3.3). Like in the structural equations model of figure 3.5a, in this second
model (figure 3.5b) the marginal effect of the hydrological impact is also
the weakest, as is nearly its significance. Yet it also provides evidence
confirming the main hypothesis (the constraint of flood risk on urban
growth).

UrbanArea = 0.834 · PopGrowth + 0.865 · Central
(0.001) (< 0.001)

PeakFlow = 0.254 · UrbanArea + 1.873 · Rain
(< 0.001) (< 0.001)

UrbanGrowth = 0.645 · PopGrowth − 0.203 · PeakFlow
(0.003) (0.051)

+ 0.331 · Central
(0.184)

(3.3)

A useful feature of structural equation models is the possibility to
decompose causal effects along different paths (Shipley, 2016, pp. 105–
109). Particularly interesting is the effect of the trigger of the urban
growth process, population growth (represented by the Pop Growth in
the causal path models proposed in figure 3.2) on urban growth. There
are two such causal effects: the direct effect, represented by the path
coefficient of the arrow directly linking Pop Growth to Urban Growth in
figure 3.5b. Because population growth causes a larger urban area, which
in turn produces greater peak flows, there is also an indirect effect: it
is the result of multiplying the path coefficients of the arrows linking
Pop Growth to Urban Area, Urban Area to Peak Flow, and Peak Flow to
Urban Growth.

The direct effect of population growth on urban growth, as can be
read off the causal model reported in figure 3.5b, is 2.963; the indirect
effect is equal to −0.040, two orders of magnitude less. The indirect
effect of population growth on peak flows, i.e. on hydrological effects, is
0.2119: about five times that of the indirect effect on urban growth. These
effects are roughly consistent with their equivalents of the first causal
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Figure 3.5 Result of path analysis for causal paths of figure 3.2: standardized
path coefficients reported for each causal link. Units of the coefficients are
standard deviations from the mean. Coefficients in bold font are significant with
probability of 0.01, in italics with probability of 0.10, unemphasized coefficients
are not significant. In model c), the path coefficient of Peak Flow on Loc Choice
was fixed to the value 0.172.

model (figure 3.5a), except that the direct effect of population growth on
urban growth is smaller. It is clear that while the constraining influence
of hydrology on urban growth exists (as predicted by the theory), it is
relatively modest: one should not rely on it solely to mitigate the effects
of natural hazards on human settlements, as other factors (in particular
accessibility) are sure to weigh more on location choice of urban agents.

A final relation of interest, the marginal effect of Central on Urban
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Growth, should be highlighted. Within this path model (figure 3.5b),
Central acts as a proxy variable for accessibility, which has a critical role
in the microeconomic theory on urban location that has been adopted as
an explanation for urban patterns. There were no firm expectations on
the sign of this path coefficient, as both a positive and negative effect
could be consistent with theory: a negative effect suggesting primarily
greenfield expansion, i.e. the city becoming physically larger, and a
positive effect suggesting urban growth through intensification (building
of smaller dwellings in open spaces of the center or substitution of single
housing units by taller buildings). Both dynamics could follow from an
exogenous population increase. The resulting coefficient was positive
but not statistically significant.

The urban patterns of Kampala, shown in figure 3.3, already suggest
the existence of clear greenfield expansion in the borders of Kampala but
also the intensification of built-up land cover in more central locations
(particularly in 2016). It would appear the results of the second structural
equations model (figure 3.5b, specifically the lack of significance of this
path coefficient) is consistent with the presented assessment of change
in the disaggregate spatial patterns: the greenfield development and
the intensification of central locations may be canceling each other out,
leading to a non-significant path coefficient of the arrow linking Central
to Urban Growth. Since the urban growth data only reflects the horizontal
expansion of built-up land cover, and not densification by multi-storey
buildings, such effects cannot be further disentangled. Alternatively, it is
also possible that an aggregate scale is too coarse to fully reflect the role
of accessibility (through the proxy variable Central) in the urban growth
patterns.

The latent variable model, figure 3.5c, results in a very poor fit to
the data (χ2 = 20.902, df = 7, p = 0.004 [0.030]), up to the point of
being rejected according to the χ2 statistic. The path coefficients of
the resulting structural equations model (figure 3.5c and equation 3.4)
do not conform especially well to the data: while the path coefficients
of Pop Growth on Urban Area and Urban Growth, as well as those of
Rain and Urban Area on Peak Flow and of Central on Urban Area are
all statistically significant and broadly in line with previous models
(see figure 3.5), the path coefficient of Central on the latent variable Loc
Choice is not significant, nor is the path coefficient of Loc Choice on Urban
Growth (and the sign of the latter contradicts theoretical expectations,
as it should be positively correlated to urban growth yet the estimated
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path coefficient is negative).

UrbanArea = 0.834 · PopGrowth + 0.865 · Central
(< 0.001) (< 0.001)

PeakFlow = 0.209 · UrbanArea + 1.980 · Rain
(0.001) (< 0.001)

LocChoice = −0.172 · PeakFlow − 0.214 · Central
(0.341)

UrbanGrowth = 0.594 · PopGrowth − 0.269 · LocChoice
(< 0.001) (0.463)

(3.4)

Synthesizing, the third structural equations model (based on a latent
variable) does not seem to be a convincing causal explanation of the
causal path models and should be rejected. Other path models are
consistent with the data, as judged by the results of the structural
equations model, and they verify the hypothesized relation between
hydrological impacts (Peak Flow) and urban growth, a result which is
also consistent with theoretical models of urban location choice and with
previous case studies from the literature. They also characterize this
relationship as statistically significant but relatively weak.

3.5 Discussion and conclusions

The causal path models developed (figure 3.2) reproduce, at an aggregate
level, the process of urban growth caused by an exogenous population
growth. They are meant to focus on the constraint posed by hydrolo-
gical outcomes on urban growth. Statistically significant but relatively
modest (negative) marginal effects of hydrological outcomes on urban
growth were found, certainly smaller than the direct positive effects of
population growth on urban growth (see figure 3.5).

From a methodological perspective, the main contribution of struc-
tural equations modeling is to capture pattern of covariation between
all variables; particularly, one may derive theoretically important causal
indirect effects, even if they are relatively weak (such is the case, for
example, of the indirect effect of population growth on urban growth via
urban area and peak flow discussed in section 3.4). Furthermore, the ana-
lysis of aggregate data presented is necessary before undertaking more
detailed models (in terms of scale and of individuals vs. areas), since
it provides a benchmark against which to test the emerging properties
of complex modeling approaches. Indeed, if the spatial effects that are
to be modeled from the bottom up do not manifest themselves at the
top level, it would be very difficult to test such bottom-up model; this
implies, though, that aggregate level explorations are necessary before
delving into the impact on the system of individual traits.

This is not to say any level of aggregation can, or should, incorporate
all key variables of a system. Accessibility to central locations was
treated, in the structural equations models, by a categorical variable
differentiating the more accessible hydrological units from the least;
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yet it is a very rough measure of accessibility (for example, within each
hydrological units, the variation of accessibility is very large). This
approach was sufficient to noticeably improve the goodness of fit of
the causal path (the model of figure 3.5b is a substantially better fit
to the data than the model of figure 3.5a, which does not include the
variable Central), but it did not provide sufficient information to replicate
the location choice process through a latent variable (Loc Choice in the
model reported in 3.5c). This is likely due to the high level of spatial
aggregation of the data, necessary to focus on the impacts of hydrological
systems but which obscures other basic relations such as the effect of
accessibility. The ultimate lesson, then, is each phenomenon imposes
on the analysis a scale and not all relations are evident at all scales. In
this specific case, should the objective be to deepen the understanding
of location choice, the methodology would have to incorporate at least
two scales–a less detailed to reflect the impact of physical phenomena
and a more detailed to capture the variation of accessibility.

A final methodological point regarding the assumptions of the causal
path analysis is important and has thus far received little attention. The
neoclassical microeconomic models which were used to construct the
causal paths make critical assumptions to simplify the mathematical ana-
lysis that justifies much of their proofs. Among these, crucially, urban
agents are assumed to be homogeneous: neoclassical microeconomic
models cannot simultaneously account for variations of space (the en-
vironment in which urban agents make lcation decisions) and variation
among the urban agents. This means, for example, that all urban agents
are assumed to share a perception of risk (Filatova et al., 2011) or, even
more importantly, all have the same income (e.g. see Glaeser, 2008,
who incorporated two income groups into the basic model to explore
public vs. private transportation but at the expense of simplifying other
elements). Microeconomic models are not tractable in the absence of
these simplifications. However, in the context of a relatively poor city
with few institutional constraints, such as Kampala, this is likely a key
methodological weakness, as the urban poor have strong incentives to
appropriate land exposed to hazards that other urban agents would
avoid. It may be an important factor contributing to the weakness of the
relation between Peak Flow and Urban Growth in the results presented.
Agent-based modeling has been proposed as a solution to these issues
(Filatova et al., 2011); but, as commented, it is difficult to apply very
stylized simulations in the absence of validation data for the relations
these models must assume.

From a policy perspective, it is important to first acknowledge that the
land use planning system of Kampala is particularly weak and ineffective,
even in the context of Sub-Saharan Africa (Goodfellow, 2013 concluded
the political bargaining environment of Uganda incentivizes political
elites to render regulations impotent). It is tempting, then, to argue
from the theory that flood mitigation should be a social consequence of
land market equilibrium. While there is indeed an effect, it is relatively
small in the broader context of important population growth. Therefore,
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land market dynamics cannot substitute a land use regulation system’s
functions in mitigating flood risk. This result is consistent with theoret-
ical arguments put forward by Tatano et al. (2004), who argue land use
regulations are necessary because of perception bias in vulnerability to
natural disasters.

In the long run, though, the constraint of hydrological outcomes on
urban growth can reinforce regulations. One can speculate that building
constraints on flooded areas, which also coincide to a large extent with
valley floors that would naturally be permanently flooded wetlands (i.e.
areas that are for multiple reasons unsuitable for urban development),
likely will generate less resistance among land owners and other urban
agents. Such restrictions could be, thus, relatively easy to implement
(although one must bear in mind Kampala presents a very complicated
political and social dynamic, clearly intersected by land issues through
the Kingdom of Buganda and mailo customary land tenure; this dynamic
has a long history and its effects on modern Kampala, via land markets
and urban patterns, has never been wholly understood). However, and
perhaps more importantly, the existing constraints posed by hydrolo-
gical outcomes on urban growth already delay urban growth in these
unsuitable areas; in this sense, they contribute by allowing the city’s
administration time to set up and improve existing land use planning
systems (a not trivial problem, given the deep social and political roots of
the land use planning system’s weakness, Goodfellow, 2013). Eventually,
in the face of pressure from population growth, this constraining effect
should fade. Has Kampala reached such a point already? Judging from
the results presented, not yet; but one must caution that sustained popu-
lation increase is changing urban growth patterns in Kampala: this can be
seen in figure 3.3, for example, as the study area has already intensified
substantially, to the point future development should mainly be green-
field beyond its limits. Additional effects of this population increase
(such as non-simple interactions between urban growth, housing size,
flood risk, and accessibility) should be expected to become increasingly
important.
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3.6 Appendix

Table 3A.1 Sample data used to estimate the structural equations
models
ID Catchment Year Pop Urban Rain Peak Urban Central

Growth Area Flow Growth
(ha) (mm) (m3/s) (ha)

1 Nakivubo 2016 11149 1792.6 89.1 91.147 92.8 1
2 Kansanga 2016 12016 865.3 89.1 30.467 78.2 1
3 Mayanja/Kalid. 2016 56455 1984.9 89.1 28.39 437.2 0
4 Kinawataka 2016 18431 1313.4 89.1 49.478 206.6 1
5 Nalubaga 2016 19442 757.3 89.1 31.6 242.4 0
6 Walufumbe 2016 12613 371.5 89.1 11.702 108.3 0
7 Lubigi 2016 69316 3233.3 89.1 93.046 430.7 1
8 Nalukolongo 2016 16167 1384.2 89.1 40.377 81.9 1
9 Nakivubo 2010 18135 1089.9 165.7 268.5 249.8 1
10 Kansanga 2010 11416 422.6 165.7 105.45 108 1
11 Mayanja/Kalid. 2010 41736 1204.2 165.7 83.23 410.2 0
12 Kinawataka 2010 12411 599 165.7 106.65 173.1 1
13 Nalubaga 2010 8954 330 165.7 117.83 128.6 0
14 Walufumbe 2010 6939 143.8 165.7 59.88 71.4 0
15 Lubigi 2010 51240 1721.7 165.7 310.01 403.9 1
16 Nalukolongo 2010 17690 574.3 165.7 135 145.4 1
17 Nakivubo 2005 8944 840 78.3 65.534 840 1
18 Kansanga 2005 6514 314.6 78.3 19.622 314.6 1
19 Mayanja/Kalid. 2005 23307 794 78.3 19.49 794 0
20 Kinawataka 2005 6522 425.9 78.3 35.276 425.9 1
21 Nalubaga 2005 4584 201.4 78.3 19.125 201.4 0
22 Walufumbe 2005 2178 72.4 78.3 6.53 72.4 0
23 Lubigi 2005 45306 1317.7 78.3 69.64 1317.7 1
24 Nalukolongo 2005 13014 428.9 78.3 30.971 428.9 1
25 Nakivubo 2016 10036 722.1 89.1 13.475 116.9 1
26 Kansanga 2016 16845 251.3 89.1 50.14 156.4 0
27 Mayanja/Kalid. 2016 22046 544.4 89.1 30.338 212 0
28 Kinawataka 2016 16962 334.6 89.1 51.142 224.7 0
29 Nalubaga 2016 7558 129.8 89.1 33.924 99.7 0
30 Walufumbe 2016 6223 50.1 89.1 18.239 54.1 0
31 Lubigi 2016 66475 881.4 89.1 10.145 528.8 0
32 Nalukolongo 2016 32132 305.3 89.1 58.51 242.9 0
33 Nakivubo 2010 8513 493.1 165.7 23.806 118.3 1
34 Kansanga 2010 5104 208 165.7 121.076 46.1 0
35 Mayanja/Kalid. 2010 5848 131.5 165.7 77.241 61.7 0
36 Kinawataka 2010 6079 283.1 165.7 176.475 86 0
37 Nalubaga 2010 3777 85.2 165.7 151.146 60.7 0
38 Walufumbe 2010 4201 65.3 165.7 37.38 45.7 0
39 Lubigi 2010 23954 552.1 165.7 36.846 212.1 0
40 Nalukolongo 2010 17986 485 165.7 167.656 159.2 0
41 Nakivubo 2005 4880 374.9 78.3 11.781 374.9 1
42 Kansanga 2005 3442 161.9 78.3 31.042 161.9 0
43 Mayanja/Kalid. 2005 2343 69.7 78.3 19.535 69.7 0
44 Kinawataka 2005 4675 197 78.3 35.222 197 0
45 Nalubaga 2005 673 24.4 78.3 19.347 24.4 0
46 Walufumbe 2005 461 19.6 78.3 9.409 19.6 0
47 Lubigi 2005 17001 339.9 78.3 9.859 339.9 0
48 Nalukolongo 2005 13094 325.8 78.3 42.792 325.8 0
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Table 3A.2 Rainfall hyetographs of simulated events

Intensity (mm/h)
Year 2005 Year 2010 Year 2016

Time Total = 89.07 Total = 165.68 Total = 78.3
0 30 3.20 5.95 2.81
45 60 4.63 8.62 4.07
60 75 6.42 11.94 5.64
75 90 9.74 18.12 8.56
90 105 17.29 32.16 15.20
105 120 42.75 79.52 37.58
120 135 129.15 240.24 113.53
135 150 42.75 79.52 37.58
150 165 17.29 32.16 15.20
165 180 9.74 18.12 8.56
180 195 6.42 11.94 5.64
195 210 4.63 8.62 4.07
210 240 6.42 11.94 5.64
Daily total 89.1 165.7 78.3
Event total 75.9 141.2 66.7

47





4A cellular automata model of
urban growth to inform flood
policy1

Abstract

Urban growth may intensify local flooding problems. Understanding the
spatially explicit flood consequences of possible future land cover pat-
terns contributes to inform policy for mitigating these impacts. A cellular
automata model has been coupled with an OpenLISEM flood model to
simulate scenarios of urban growth and their consequent flood; the urban
growth model makes use of a continuous response variable (the built-up
fraction) and a spatially explicit simulation of supply for urban develop-
ment. The models were calibrated for Upper Lubigi (Kampala, Uganda), a
sub-catchment that experienced rapid urban growth during 2004–2010;
this data scarce environment was chosen in part to test the model’s
performance with data inputs that introduced important uncertainty.
The cellular automata model was validated in Nalukolongo (Kampala,
Uganda). The calibrated modeling ensemble was then used to simulate
urban growth scenarios of Upper Lubigi for 2020. Two scenarios, trend
conditions and a policy of strict protection of existing wetlands, were
simulated. The results of simulated scenarios for Upper Lubigi show how
a policy of only protecting wetlands is ineffective; further, a substantial
increase of flood impacts, attributable to urban growth, should be ex-
pected by 2020. The coupled models are operational with regard to the
simulation of dynamic feedbacks between flood and suitability for urban
growth. The tool proved useful in generating meaningful scenarios of
land cover change that incorporate policy for flood mitigation.

Keywords: Cellular automata, Flooding, Urban growth, Kampala,
Model integration

1This chapter is based on: Pérez-Molina et al. (2017).
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4.1 Introduction

The city of Kampala is growing rapidly, as exemplified by the accelerated
increase of its urban footprint (Vermeiren et al., 2012). Because of a
weak institutional setting (Goodfellow, 2013a) but also due to a complex
physical context, this expansion has generated a number of negative
impacts; among them, increased urban development has lead to greater
runoff, a consequence of more impervious areas. As Kampala’s drainage
systems are inadequately developed and maintained – despite recent
major investments in the system which have mitigated existing problems
–, this, in turn, has contributed to aggravating local flooding (Lwasa,
2010).

The goal of this chapter is to present a geo-information technology-
based tool to explore the flooding consequences of urban development.
The selected instrument is a coupled urban growth-flood model. Em-
phasis is placed on the potential to create a diversity of meaningful land
cover and flooding scenarios. These scenarios should respond both to
policy and to social and physical factors which influence land cover pat-
terns and their ensuing flood impacts. Further, the modeling approach
must be tractable; given the complexity of emergent behavior in a city,
this is achieved by adopting a simple, and therefore understandable,
approach to geographic inputs. The urban growth model includes a
strong component of randomness to account for seemingly irrational
behavior by urban actors, such as poor enforcement of regulations or
higher willingness, notably of the urban poor, to occupy and develop
hazardous, flood-prone land.

4.2 Conceptual framework and previous work

The analysis approaches urban flooding in Kampala as a coupled human
and natural system (Liu et al., 2007; Alberti et al., 2011). In the specific
research context of flooding and landscape patterns of Kampala, urban
growth is the main mediating phenomenon between human behavior and
its physical consequences in terms of flooding. Figure 4.1 features both a
breakdown of the elements within both subsystems and the hypothesized
relationships between these.

Urban development is conceived as driven by an external demand
for land (due to population growth); the location of urban development
materializes based on three core principles: suitability of land, continu-
ation of historical development, and neighborhood interactions (van
Schrojenstein Lantman et al., 2011).

Suitability is determined by accessibility to urban centralities, follow-
ing the approach originally developed by Alonso (Glaeser, 2008; Brueck-
ner, 1987), which implies urban agents will choose to live as close as
possible to these central locations. Further, physical characteristics
of the land are also included as potential determinants – specifically,
flooded areas (wetlands, permanently flooded, or flood zones, flooded as
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Figure 4.1 Conceptual framework: interaction between land cover and flood
dynamics

a consequence of an extreme event) –, assumed to negatively impact the
prospect of urban development (e.g., see Bathrellos et al., 2017). These
physical factors follow from McHarg’s original concept of suitability as
an intrinsic and spatially specific characteristics of the land (McHarg,
1969).

The neighborhood effect assumes “transition[s] from one use of land
to another is dependent on the land use of its surrounding cells” (van
Schrojenstein Lantman et al., 2011, p. 38), a model originally proposed
by Tobler (1979).

Flood, on the other hand, is thought of as a rainfall-runoff-flooding
process: rain falls over the landscape, it is partly infiltrated into the soil
an partly flows over the land until it reaches the drainage channels, where
it may accumulate and, if so, results in inundation (Sene, 2010; Smith and
Ward, 1998). This added flooding could change the suitability patterns;
in particular, recurrently flooded locations should be less desirable for
development (Bathrellos et al., 2017). While apparently obvious, this
conceptualization assumes a short-run (event-based) view of flooding, a
physical response with potential long-run consequences. However, the
importance of this process – relative to other spatial factors determining
suitability for urban land – is uncertain and may depend on the specifics
of different sites.

Previous studies of the city of Kampala (Vermeiren et al., 2012; Abebe,
2013; Fura, 2013; Mohnda, 2013) have already quantified the impact of
the most important determinants of its urban morphology, at mid and
detailed scales. These approaches were all statistical, making use of
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Logit econometrics, without spatial autocorrelation but including neigh-
borhood effects as proxy variables of it (this methodological approach
corresponds to the classical spatial statistical models used to investig-
ate land cover and land use change; see Chomitz and Gray, 1994 for a
full discussion on the conceptual and methodological decisions in this
type of model). All show broadly consistent results: strong influence of
the neighborhood in explaining transformation into built-up land cover,
rapid growth rates of the urban footprint. The OpenLISEM integrated
flood model, coupling surface hydrology (e.g., see Baartmans et al., 2012,
Hessel et al., 2003, and Sánchez-Moreno et al., 2014) to a 2D flood model
(Delestre et al., 2014), was used by Mohnda (2013) to assess various run-
off reduction strategies in the Lubigi catchment, north of the Kampala
central business district (CBD). Habonimana (2014) examined the flood
model’s sensitivity to input parameters and to spatially explicit repres-
entations of rainfall. More generally, the results of spatial-statistical
urban growth models developed by Fura (2013) were used as inputs for
the OpenLISEM flood modeling tool to estimate a diversity of scenarios,
which included both future plausible land cover as well as interventions
on the drainage system and alternative infiltration actions (Sliuzas et al.,
2013).

The modeling exercise seeks to understand how diverse urban devel-
opment strategies, especially land policy options, can lead to different
flood dynamics. Upper Lubigi and Nalukolongo were selected as case
studies, within the city of Kampala, Uganda, to develop the urban growth
model and to test the integrated modeling ensemble (urban growth and
flood models). The urban growth model is based on cellular automata,
enhanced by including additional factors such as accessibility or phys-
ical constraints. An exogenoulsy determined land demand is allocated
assuming that higher suitability locations are chosen by urban agents
before lower suitability locations. The model was calibrated for the
Upper Lubigi sub-catchment, 2004-2010, and validated using data from
the Nalukolongo sub-catchment. Prospective urban growth scenarios
were then defined and simulated for Upper Luibigi, 2020; the runoff
and flooding patterns of these scenarios were assessed by applying the
OpenLISEM flood modeling tool using the scenarios as inputs.

The developed modeling approach integrates urban growth and flood
modeling into a single ensemble, supporting the possibility of exploring
feedback effects between human and environmental systems. Further,
the urban growth model has been designed with a continuous response
variable (the percentage of built-up land cover), and it separates a spa-
tially explicit simulation of potential supply from a suitability map con-
trolling where is development more likely; this provides flexibility to
replicate highly random trends (like urban growth in Kampala) as well as
design-oriented supply scenarios. Since data of only two time periods is
available, a second catchment – similar to the calibration location – was
selected to validate the model. Finally, the case study has been selected
partially to explore if remotely sensed and field measurement data can
contribute to mitigate data scarcity and quality problems.
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4.3 Methods: CA calibration, validation, and
integration with the flood model

A cellular automata model was developed to simulate urban growth in
the Upper Lubigi sub-catchment. In contrast to typical cellular auto-
mata models, it is based on continuous variables to characterize land
cover cell state such that all relevant categories of land can be simu-
lated concurrently; the use of such continuous-variable approach is more
broadly discussed in van Vliet et al. (2012). The model was calibrated
using land cover data from 2004 and 2010. Model development resulted
from identifying a set of potential determinants of land cover change,
from the theory on urban location (Alonso’s model, McHarg’s suitability
concept, agglomeration dynamics, see Geographical Sciences Committee
and others, 2014) and from previous statistical studies of urban growth
in Lubigi (Abebe, 2013; Fura, 2013). Information to derive land cover
data models was only available for two periods (2004 and 2010). The
land cover change model was formulated and calibrated using only data
from the Upper Lubigi sub-catchment. The lack of a third period pre-
cluded model validation on Upper Lubigi; thus, the second sub-catchment
(Nalukolongo) was added to validate the calibrated urban growth model
on exogenous data.

A set of eight factors was identified, each a potential determinant:

• Neighborhood factor: average built-up percentage within a mov-
ing window of 3 × 3 cells, estimated from the previous period’s
cumulative allocated development.

• Random factor: random number between 0.00 and 1.00, represent-
ing irrational behavior by urban agents (developers, home and land
owners, etc.)

• Travel time to CBD: a reflection of regional accessibility and possible
travel preferences by urban agents.

• Travel time to nearest subcenter: a reflection of regional accessibil-
ity and possible travel preferences by urban agents.

• Wetland factor: a representation of physical unsuitability for build-
ing in naturally flooded soils.

• Non-vegetation percentage: introducing inertia (land cover changes
tends to be stable; specified as non-vegetation to avoid endogeneity
problems caused by directly using built-up and on-road bare soil
percentages); estimated from the previous period’s simulated land
cover.

• Road density: based on 2004 data, it is an index of local accessibil-
ity.

• Flood depth in base year (2004), accounting for unsuitability of
flooded areas for urban development.

Auxiliary models, using each a single factor as determinant, were
produced. All models incorporate a correction for institutional land uses
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that tend to change very little: if land use was institutional according
to a 2002 land use map, no change is assumed to occur in those cells.
From understanding the effect of each factor, separately, on the urban
growth pattern, a combination of them was selected, guided by theories
on location of urban activities and the predictive power of alternative
modeling formulations. Different weight combinations for the spatial
factors were tested, selecting the one best replicating the 2010 land cover
map of Upper Lubigi.

The resulting calibrated model (i.e., set of spatial factors and their
weights) was used to predict urban growth patterns in the Nalukolongo
sub-catchment, since – as noted – no additional land cover data of the
Upper Lubigi area was available for validation.

The model was coupled with an flood model (a calibration of the
OpenLISEM flood modeling tool) of Upper Lubigi, calibrated by simulating
a 100mm rainfall event. In the absence of discharge rate data for primary
and secondary drainage channels, calibration of this flood model was
based on: field observations, interviews with local residents on past flood
impacts (from Oct. 2012), and comparison with model outputs of the
Kampala Drainage Master Plan (Sliuzas et al., 2013).

4.3.1 Geographical setting

The study area comprises two sub-catchments located within Kampala
(see figure 4.2). They have a combined area of 44.2km2 (63.4% is occupied
by Upper Lubigi and 36.6% by Nalukolongo). Both correspond to the
upper reaches of a hydrological system that drains inland, as opposed to
directly into Lake Victoria. They also include peripheral but important
subcenters of the city. Upper Lubigi, in particular, experienced very
rapid growth during the 2004-2010 period: the Northern Bypass, a major
regional road, was completed in 2005, attracting substantial development
in the following years.

Previous research efforts on modeling urban growth and its impact
on flooding (Sliuzas et al., 2013), have concentrated on the Upper Lubigi
sub-catchment; current results reported in this paper have built on these
efforts, developing more tightly coupled models of Upper Lubigi.

4.3.2 Flood modeling: calibration of OpenLISEM for Upper Lubigi

Flood modeling was implemented using the openLISEM flood modeling
tool (Jetten, 2018). Originally developed as an erosion model (De Roo
et al., 1996), it has been recently extended to simulate event-based
floods. It is a rainfall-runoff-flood model, which replicates physical
processes at very detailed temporal resolution (0.1-60 seconds) for mid
spatial resolution catchments (between 5 and 50 m cells), with the aim of
assessing flood hazard for decision support. OpenLISEM has been tested
in urban catchments of Sub-Saharan Africa (in addition to Kampala,
efforts are underway to model selected catchments in Kigali, Rwanda,
e.g. Habonimana, 2015) and on four Caribbean islands to analyze flood
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Figure 4.2 Study area: 2004 built-up percentage in Upper Lubigi and Naluko-
longo sub-catchments in Kampala, Uganda

hazard, as part of the CHARIM project (van Westen et al., 2015; Jetten,
2016).

OpenLISEM simulates the consequences of an extreme rainfall event
in terms of runoff and flood. In the first phase, runoff is determined and
accumulated towards river channels (i.e., downhill) using a kinematic
wave approach over a predefined network (this process corresponds to
urban hydrology in figure 4.1). At a second phase, water is routed through
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the channels with a 1D kinematic wave2; channel overflow resulting in
flooding is modeled as overflow from the river channels towards the
higher elevations of the floodplain, using a 2D approximation of the
shallow water equations (Delestre et al., 2014). The kinematic wave
functions for overland flow and for the channels are solved using a
four-point finite-difference solution.

The characteristics of the terrain are incorporated into OpenLISEM
as cell values in a series of input raster maps. These maps identify
the location, width and slope of channels, characterize the infiltration
properties of soils, describe interception and imperviousness (based
on land cover), and provide elevation data, used for flow routing. The
simulated physical processes for the Upper Lubigi subcatchment were:

• Rainfall. The rainstorm event is represented by a map of discrete
units, each of which has an associated hyetograph. For the Upper
Lubigi sub-catchment, a 100mm magnitude event –approximately
equal to a 1 : 10 year return period – with measurements every
10min was selected (Sliuzas et al., 2013). This event was applied to
the entire sub-catchment.

• Infiltration. The fraction of rainfall infiltrated into the soil is simu-
lated using a 1 layer Green and Ampt approach (Kutilek and Nielsen,
1994), which uses saturated hydraulic conductivity (Ksat , in mm/h),
porosity, and an initial moisture content of the top soil layer. For
each time step, the rainfall intensity is compared to the infiltration
rate to produce runoff. The infiltration characteristics of Upper
Lubigi were sampled; the results are synthesized in table 4.1.

• Land effects. Elements on the surface of land (on top of the soil)
interfere with infiltration in two ways, by storing a fraction or by
preventing infiltration.

– Canopy storage. A fraction of rainfall that does not reach the
soil because it is stored in the vegetation; it is a function of the
type of vegetation and the fraction of vegetation land cover in
every cell within the study area. Interception was estimated
as: S = 0.59 · LAI0.88, with LAI (the leaf area index) calculated
from: LAI = − ln(1 − VegFraction)/(0.4 · VegFraction) (De Jong
and Jetten, 2007).

– Impervious land cover. Certain areas covered by specific land
cover classes (buildings, tarmac) are identified as the percent-
age of each category within every cell. The area of each cell
corresponding to these land cover categories is assumed to
have 0 infiltration rate; this water volume is, therefore, added
to the non-impervious part of the cell.

• Overland flow and channel flow. The kinematic wave uses the flow
velocity based on the Manning formula. Manning’s n values for flow
resistance were estimated from a baseline resistance increased by

2Alternatively, and as implemented in other chapters of this dissertation, OpenLISEM
can also route water using a 2D kinematic wave or a 2D diffusion process.
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Table 4.1 Soil properties

Unit Porosity Bulk Density Ksat 1/ n
(cm3/cm3) (kg/m3) (mm/h)

Vegetation (grass, shrub)
Valley floor (C) 0.58 1210 1.9 5
Bottom slope (SCL-SC) 0.52 1410 16.8 9
Mid-slope (SCL) 0.54 1460 2.8 2
Hill top (SCL-SL) 0.52 1410 37.6 5
Bare soil (compacted)
Valley floor (C) 0.57 1310 0.0 8
Bottom slope (SCL-SC) 0.55 1490 6.5 5
Mid-slope (SCL) 0.58 1550 3.3 2
Hill top (SCL-SL) 0.54 1470 2.9 4

C: clay, SCL: sandy loam clay, SL: sandy loam
1/ Saturated hydraulic conductivity

the effect of the grass cover (C ): n = 0.05 + 0.1 · C . Furthermore,
the effect of buildings (built-up land cover fraction, Cb) increases
resistance by: n = n + 0.5 · Cb. The n value for the main channel
was set to nchan = 0.025 for a smooth, straight, bare soil channel.
The effect of obstructions and garbage in the channels could not
be taken into account.

Land cover data determines impervious land cover, canopy storage,
and resistance to water flow. The landscape should be described in
terms of categories corresponding to these processes: impervious land
cover is relevant for built-up land cover, tarmac, and unpaved roads –
which, because they are compacted soil, have lower infiltration rates –;
for canopy storage, the amount of vegetation is the key determinant;
off-road bare soil is also important because it indicates areas where the
infiltration rate is applied, as opposed, for example, to open water, where
no infiltration occurs. Thus, five categories have been chosen to describe
the urban landscape of the study area: built-up, tarmac, unpaved roads,
off-road bare soil, vegetation, and water.

4.3.3 Urban growth modeling of Upper Lubigi

An urban growth model, based on cellular automata, was developed to
describe land cover change processes in Upper Lubigi. Space within the
sub-catchment was idealized as an array of square cells, of 20m side,
each cell being an automaton A characterized by a set of states (G), a
set of transition rules (T) governing changes to these states, and a set of
states of neighboring cells (R):

A ∼ (G, T, R) (4.1)

The state G of the automaton A is defined as a set of continuous
variables encoding the percentages of land cover categories selected in
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subsection 4.3.2. Changes to this state are triggered by urban develop-
ment, which is an increase in the built-up fraction

The transition rules T define the state of the automaton (Gt+1) in
period t + 1, based on the automaton’s state (Gt) in the preceding time
step, and on an input, It (also corresponding to the preceding time step):

T : (Gt, It)→ Gt+1 (4.2)

This input, It , is a measure of the development potential for built-up
land cover, taken to be a representation of urban land uses’ location.

It is defined as the weighed summation of several factors, each factor
normalized between 0 and 1: (1) the neighborhood factor, defined for
each cell as the average percentage of built-up land cover within a Moore
neighborhood (i.e., the 8 cells surrounding it), (2) accessibility to urban
centralities (estimated travel time through the network to the CBD), (3)
physical factors restricting urban development, specifically an index
assigning a value of 0 to permanent wetlands, 0.5 to seasonal wetlands,
and 1 to non-wetland cells, and (4) non-vegetation percentage, a proxy for
existing built-up in the previous period (but which, unlike the built-up
percentage, mitigates potential endogeneity problems).

Following Yeh and Li (2001) and Li and Yeh (2000), the amount of built-
up land cover change is assumed to be additive – because in developing
countries, cities generally expand by greenfield projects, which shows up
in land cover maps as an additional fraction of built-up land cover.

G (1)i ,t+1 = G (1)i ,t+∆G (1)i ,t (4.3)

where ∆G(1)i ,t is the increase in built-up percentage. Therefore, for each
category, the model assigned:

∆G (1)i ,t =
{

SimDemi , if It ∈ [k, n]
0, if It ∈ [0, k]

(4.4)

such that:

n∑
i=k

∆G (1)i ,t ≈ LDt to t+1 (4.5)

with SimDemi the simulated demand alloted to cell i if this cell’s state
changes, n the total number of cells in the study area, and LDt to t+1 the
total land demand for that land use/land cover category in the time
interval t to t + 1.

Since observed development clearly expands over space, for each
simulation run, a rule was introduced: that a cell can only change once
during the entire simulation, even if it is more suitable than others.
This ensures the same cell will not be developed until saturation. The
calibration period was six years; therefore, prospective simulations are
performed for five period intervals (e.g., to simulate urban growth for
2010-2020, two sequential simulations are completed: 2010-2015 and
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2015-2020; the results of the 2010-2015 simulation are used as inputs
for the 2015-2020 simulation).

The amount of change, SimDemi , of each cell is determined by examin-
ing land cover change maps of the sub-catchment; it is a function of the
total land cover change occurring in a 6 year period, randomly distributed
in space: built-up land cover change of 2004-2010 was averaged across
cells and multiplied times a spatially random map (with values between
0.00 and 1.00) and times an expansion factor equal to 3.50; this expansion
factor is introduced to control for the intensity of development. Since
the average of a random uniform map (varying from 0.00 to 1.00) is 0.50,
an expansion factor of 2.00 implies the intensity of development follows
a purely random pattern; expansion factors greater than 2.00 should be
interpreted as increasing the level of agglomeration in new development.
G(1)i ,t=baseline + SimDemi is assumed to have a maximum value of 0.85.

Other land cover categories are updated based on the change in built-
up land cover. The increase in unpaved road fraction is assumed to be
proportional to the ratio of unpaved road to urban growth of the baseline
year of the cell. Should the sum of unpaved road and built-up land covers
exceed 1.00, unpaved road is taken as equal to 1− frBuiltUp and the cell is
assumed to be totally urbanized. Water and tarmac roads are defined as
external to the simulation, meaning they are initial conditions that do not
vary in time. When these land covers are present in a cell, allocation is
calculated for the non-paved and non-water percentage. Vegetation and
off-road bare soil are allocated to the fraction remaining after updating
all other land cover categories. Such fraction is distributed proportionally
to baseline year ratio of vegetation to off-road bare soil.

Constraints on institutional land uses (as identified in the 2002 land
use map of Kampala), which are not expected to suffer changes, are
introduced by setting SimDemi = 0 for the areas occupied by these land
uses.

4.3.4 Scenario descriptions of Upper Lubigi

Two scenarios were specified for the Upper Lubigi sub-catchment to
assess a land use policy intervention, stringent protection of wetlands.
These scenarios were projected for a 10 year period (adopting as the
baseline year 2010).

Population projections for the city of Kampala were derived from UN
statistics (United Nations, 2018); the fraction of population growth for
Upper Lubigi was estimated by multiplying the percentage of population
living in the Kawempe division (22% in 2002), based on census data.
Land demand was estimated by dividing population growth into gross
population density of the baseline year (2010). Total land demand for
the 10 year period was estimated at 426ha (Pérez-Molina, 2014).

Spatial allocation of land demand was based on the calibrated urban
growth model (i.e., the choice of factors and weights, product of the
calibration procedure). The trend scenario (P01) was calculated with
unconstrained supply of development (SimDemi > 0.00) for wetland areas.
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A defensive policy (P02), no future urban growth in wetland areas, was
simulated by setting the amount of change – SimDemi – to 0.00 for cells
within them.

Both scenarios assume improvements on the main drainage channel,
completed in 2013, were operational in 2020. Neither takes into account
potential maintenance problems, especially silting, which progressively
reduce the capacity of these drainage channels in Kampala.

4.3.5 Model integration

Model integration describes the transmission of information between
modeling components. Computationally, model integration can range
from the so-called “loose coupling” (in which data is exchanged between
models using relatively simple data formats) to “tight coupling”, which
occurs when the capabilities of one model are included into another
(McColl and Aggett, 2007). An extended discussion of model integration
can be found in Sui and Maggio (1999).

The models presented in this paper, while not fully (tightly) coupled,
are an advance on loose coupling. OpenLISEM, the selected rainfall-
runoff model, was developed using the PCRaster software (Karssenberg
et al., 2010) for dynamic and spatially explicit environmental modeling
(combined with C++). Indeed, data preparation for an openLISEM run is
carried out using a PCRaster script (Jetten, 2014). Accordingly, all digital
maps use the .map file format of PCRaster maps.

The urban growth model described in section 4.3.3 and the scenarios
of section 4.3.4 are all the result of combining data using the PCRaster
platform. Consequently, there is no need for data conversion for the
loose coupling between the urban growth and flood models of Upper
Lubigi. The basis of coupling consists in renaming the outputs of the
urban growth model in such a way that the flood model can recognize
them.

The application presented follows the pseudo-code summarized in
algorithm 1. The urban growth model was used to simulate the future
land cover of Upper Lubigi. This spatially explicit land cover forecast of
2020 was then evaluated with the OpenLISEM flood modeling tool.

4.4 Results and discussion: calibration, validation,
and prospective simulation

4.4.1 Cellular automata model calibration

The cellular automata model calibration was achieved through an incre-
mental approach to the introduction of information. In a first phase,
a set of auxiliary models were run, each using a single spatial factor
as suitability criterion. This yielded three dynamic models (based on
the neighborhood, non-vegetation percentage, and random factors) and
five static models. The results were assessed to understand the effect
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Algorithm 1 Model execution with no feedback between urban growth
and flood

Execute PCR UGM t:[2010,2015] {UGM designates the cellular automata
urban growth model. t:[2010,2015] indicates the script runs from 2010
to 2015. Input: 2010 land cover maps}
Execute PCR UGM t:[2015,2020] {Input: 2015 simulated land cover}
return Built-up, vegetation, tarmac, unpaved road maps for 2020
Execute PCR Data compilation script t:[2020] {Input: 2020 simulated
land cover and physical maps of sub-catchment}
Execute openLISEM ULFlood t:[2020] {ULFlood is the calibrated flood
model for Upper Lubigi. Input: compiled data}
return Max. flood depth and catchment flood results for 2020

of differing urban dynamics on urban growth patterns. Thus, for ex-
ample, if allocation is based solely on the travel time to the CBD, then the
growth pattern should concentrate on the southern areas of Upper Lubigi
– those closest to the CBD (see figure 4.3). Some interesting insights can
be gleamed from such analysis; for example, both the neighborhood
factor and the wetlands factor seem to drive development away from the
flood plains.

Factor selection was based on empirical and theoretical considera-
tions. From observing 2004-2010 urban growth patterns, it appears there
is a strong influence of inertia and local agglomeration: new develop-
ment tends primarily to locate in the western-most area of Upper Lubigi,
where current urban land uses are denser. Spatial statistical models
of urban growth in Upper Lubigi and Kampala support this, by finding
neighborhood factors are strong predictors of change in built-up land
cover (Abebe, 2013; Fura, 2013). Wetland areas also seem relatively free
of development, although it is unclear whether this should be attributed
to inertia/agglomeration effects (lack of existing development in the core
wetland) or to physical suitability constraints. Travel time to the CBD was
added as a theoretically central dynamic; at the Upper Lubigi scale, this
would be manifested as a pattern of urban consolidation in the south
(nearer the city center) preceding further development in the north of
the sub-catchment.

Factor weights were selected relative to the neighborhood effect:
travel time to CBD and non-vegetation factor were deemed less strong
and wetlands, most strong (evidenced in the generally clear wetland core
areas in aerial imagery, although encroachment does occur in the fringes).
Non-vegetation is, to a point, redundant to the neighborhood effect, since
both factors tend to favor locations with existing development.

Accessibility as a determinant, on the other hand, is weak probably
due to widespread congestion in Kampala, which reduces the advantages
of main roads over local unpaved roads (accessibility was estimated
under near free flow conditions). This likely weakens any accessibility
effects. The final selected weights were: 1.00 for the neighborhood factor,
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Figure 4.3 Calibration: selected spatial factors and auxiliary model results

0.500 for non-vegetation and travel time to CBD factors, and 2.00 for the
wetland factor.

As can be seen from figure 4.4, the composite suitability (S01) per-
forms better than simpler versions (S02, an equal weights average of the
same four factors, and S03 to S10, the single factor models). There is
hardly any difference in per pixel terms, but this is not surprising, as
urban growth models are better at pattern prediction than individual
location – and in fact it is not very useful to predict exact locations;
general patterns are much more relevant (van Vliet et al., 2013).

Looking at other measures, some single model factors perform slightly
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Figure 4.4 Calibration: assessment of auxiliary cellular automata models.
Difference between calibration scenario and 2010 land cover map measure [For
2010 land cover map, number of patches: 1736; edge index: 64.10]

S00: 2010 land cover map, S01: composite suitability-weighed summation, S02: four

factor summation-equal weights, S03: neighborhood factor, S04: travel time to CBD, S05:

travel time to subcenters, S06: non-vegetation factor, S07: wetlands +0.250 × random,

S08: flood depth +0.250× random, S09: road density, S10: random factor.

better than the composite (S01) in terms of per block difference (S03,
neighborhood factor; S06 non-vegetation factor, and S10, random factor).
This clearly suggests the importance of inertia, which is also partially
measured by local agglomeration (i.e., the neighborhood factor) in de-
termining urban growth of Upper Lubigi. The neighborhood factor (S03),
however, is not a good predictor for number of patches nor does ran-
domness (S10) properly simulate the edge index. One could argue the
non-vegetation factor does outperform the composite index; however,
a model based solely on this factor tells a much oversimplified story
of urban growth, one in which only locations with existing develop-
ment intensify. While this is part of the general picture, prospectively
it oversimplifies by ignoring greenfield development: a dynamic that
will become increasingly important as space is fully occupied in existing
urban areas. It also misses out on wetland encroachment from informal
development; this could be a major problem looking forward. Because
of this, for prospective modeling, it is best to choose the more complex
composite suitability index.

The selection of factors resulting in S01 permits the replication of the
observed urban growth process of Upper Lubigi in morphological terms.
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But it does not address the inherent randomness of urban growth in the
study area. Figure 4.5 shows the comparison of the model specified for
S01 to eight models (S11 to S18) in which, to the four factors selected
for S01, were added a random term with weight increasing from 0.500 to
2.00 in 0.250 increments.

As can be seen in figure 4.5, there are no clear trends: randomness
definitely does not improve the per pixel and zone differences with
respect to the 2010 land cover map. For the edge index, with exception of
S16 and S18, there seems to be a weak bell shape, with lower differences
for the extremes (S11, randomness weight of 0.500, and S17, weight of
1.75).

When analyzing the number of patches, evidence is less systematic
– perhaps because all differences are relatively small (the number of
patches of the 2010 land cover map is 1740, so the difference with
respect to it are two orders of magnitude lower). However, S17 is one
of two scenarios (the other being S14, weight of randonmness equal
to 1.00) for which the difference in the number of patches with respect
to the land cover map of 2010 is lower than for the calibrated model.
Accordingly, the randomness factor was incorporated with a weight of
1.75, based on its improvement of quantitative measures of prediction.

In terms of substantive interpretation, one can justify including ran-
domness as a reflection of informality, poor land use regulation, uncer-
tainty of assumed dynamic relationships (e.g. accessibility is strongly
affected by congestion, a factor not incorporated into the model), etc. To
ascertain how important it is, the quantitative assessment of the calibra-
tion scenarios should be expanded substantially – since the impact of
introducing randomness is not intuitively evident and visual inspection
of resulting maps is not a straightforward comparison method. But such
an exercise is beyond the scope of this chapter.

4.4.2 Cellular automata model validation

Model validation results from analyzing the urban growth process for
2004-2010 of the Nalukolongo sub-catchment. In the absence of land
cover data for a third period in Upper Lubigi, a second catchment within
the city of Kampala was chosen and used as a test case. This sub-
catchment shares characteristics with Upper Lubigi such as being an
inner suburb, including substantial wetlands, and having a main road
connecting it to the city center. It also presents some differences, such
as greater consolidation of urban areas and less undeveloped land.

Built-up land cover expansion was simulated for 2010 using 2004 as
a baseline year, and the factors and weights selected in the calibration
section: neighborhood effect, non-vegetation percentage (weight equal to
0.500), travel time to CBD (weight equal to 0.500), wetlands factor (weight
equal to 2.00), and randomness (weight equal to 1.75). The simulated
built-up pattern is reported in figure 4.6.

As can be seen, the resulting pattern is remarkably similar to the
2010 land cover map. The main differences are the greater predicted
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Figure 4.5 Calibration: introduction of randomness. Difference between calib-
ration scenario and 2010 land cover map measure [For 2010 land cover map,
number of patches: 1736; edge index: 64.10]

S01: composite suitability-weighed summation. Random factor weight increases from

0.250 to 2.00 by 0.250 increments from S11 to S18

growth in the southwest limit, relative to the land cover map, and the
lower predicted growth in the northwest.

Further, the land cover map of 2010 shows a greater degree of or-
ganization, in the sense that streets are easier to detect, whereas the
simulated map includes a scattered urban growth pattern. When ana-
lyzing the landscape metrics (figure 4.6), one can see the urban growth
model is more successful in simulating Nalukolongo’s development than
for Upper Lubigi (except for patch complexity, measured through the
edge index): per zone difference is 2%, as opposed to over 3% for Upper
Lubigi; the difference in number of patches is 20 (out of 1031 for the land
cover map) and the edge index difference is 0.10 (with a land cover map
index of 49.1); contrast this to over 20 patches of difference (out of 1736)
and less than 0.10 for the edge index (65.1 for the 2010 land cover map)
for Upper Lubigi.

In synthesis, the calibration procedure was successful, as judged by
applying the resulting model (factors and weights) to an independent
data set (the Nalukolongo sub-catchment).
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Figure 4.6 Validation: 2010 land cover map and simulated land cover. Land-
scape measures report the differences between validation scenario and 2010
land cover map measure

4.4.3 Prospective simulation of the Upper Lubigi sub-catchment

An exercise in prospective simulation has been undertaken to demon-
strate the possibilities of the modeling approach. The spatial factors and
weights of the calibration and validation results (a neighborhood factor
with a weight of 1.00, travel time to CBD with weight of 0.50, wetland
factor of weight of 2.00, non-vegetation percentage with weight of 0.50,
and random factor with weight of 1.75) was used to compute the scen-
arios. A defensive landscape strategy, no further development allowed in
wetland areas, was simulated for 2010-2020. The resulting hydrological
impacts were compared to trend conditions.

The results of the prospective simulations should be cause for con-
cern in the city of Kampala. In the face of a weak institutional position,
urban managers at the Kampala City Council Authority have attempted
to control urban encroachment into wetlands. Yet the simulation results
strongly suggest this strategy is not effective: predicted total discharge
volume, peak discharge flow, percent of rainfall discharged at the outlet,
and flooded volume at maximum flood level are all nearly identical for
scenario P01 (trend conditions) and P02 (wetland protection) at the year
2020 (see figure 4.7).

Even more problematic, relative to the baseline year conditions (scen-
ario P00, 2010 land cover map), hydrological impacts are forecast to
deteriorate substantially. Total discharge and discharge to rainfall ratio
are predicted to increase 37%, flood volume at maximum flood level by
44%, and peak discharge flow by 4%. Perhaps the only positive finding is,
flood patterns seem nearly identical for all three scenarios (figure 4.7),
which would mean current conditions will worsen but the rise of new
problematic spots will be limited.

An examination of flooded built-up area (table 4.2) also shows a
significant impacts. Total flooded built-up area increases by 59% from
baseline year conditions to 2020 scenarios –both of which predict nearly

66



4.4. Results and discussion: calibration, validation, and prospective simulation

Figure 4.7 Simulation: prospective urban growth for selected scenarios

P00: 2010 land cover map, P01: 2020 trend, P02: 2020 wetland

identical flooded areas. More troublesome, the severely flooded built-up
area (over 15cm of flood) almost doubles, from 22 to over 40ha. These
results prove that the increase in flood impact should be attributed to
greater flooding, rather than encroachment into flooded areas (since the
policy scenario P02 assumes no development happens within wetlands).

In conclusion, given flood problems already exist in Upper Lubigi,
more aggressive actions will certainly be required to mitigate the flood-
related consequences of expected urban growth.
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Table 4.2 Flood impacts on built-up land cover

P00 P01 P02
Base year Trend Wetland

Flooded area total (ha) 534 588 588
Flooded area over 15cm (ha) 114 146 146
Infiltration (mm) 75.9 67.5 67.6
Built-up total flooded (ha) 139 222 222
Built-up flooded over 15cm (ha) 22.0 40.3 40.3

4.4.4 Conceptual and computational model integration

Conceptually, model integration depends on the phenomena themselves
and whether they are well suited to each other in terms of scale and
extent. In this sense, the compatibility between urban growth and flood
events is a precondition to computationally integrate the models of these
phenomena.

Elga et al. (2015) analyzed the problem of scale in hydrological model-
ing of urban catchments. They found that hydrological models developed
to examine the relationship between land use change and hydrology con-
centrated on infiltration and runoff production. Time scales for runoff
generation were found to range from minutes to days and spatial res-
olution, from 10−1 to 103 m (Elga et al., 2015, p. 67). Depending on
the complexity of soil patterns, infiltration could require very detailed
information: a spatial resolution of up to 1 m, with additional vertical
heterogeneity, especially in areas where soils have been disturbed by
human agency.

Urban processes operate at coarser spatial scales and are, in con-
sequence, discernible only at coarser time scales. In their review of urban
attributes, Cowen and Jensen (1998) concluded USSGS Level I and II land
use/land cover – level I aggregates all built-up into a single category,
level II disaggregates into residential, commercial/services, industry, etc.;
see Anderson (1976) – require a minimum temporal resolution of 5 to
10 years and spatial resolution of 5 to 100 m. While higher resolutions
could generally be preferred, they also lead to greater object diversity
(Bhatta, 2010), which causes problems for algorithm-based analysis.

The application described in subsection 4.4.4 presents no conceptual
integration problems. Flood depth, in the case of Upper Lubigi, was
not found to be a determinant of land cover change for 2004-2010. The
flooded area in Upper Lubigi is located mostly within a wetland (or former
wetland) area, itself unsuitable for urban development. This being so,
flood depth represents no additional constraint to urban development
and the simulation of urban growth can be then conceived as an exo-
genous input to flooding. Alternatively, the absence of flood among the
predictors of development could indicate a high level of inertia within
poverty bound populations. They stand to loose too much (low cost
access to jobs, cheap housing, livelihoods, familiar surroundings and
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social networks) by leaving a hazardous area, making them uncertain
about the benefits of moving to a safer place.

In any case, the integrated model can also be used to explore the
feedback between flooding and urban growth which may exist in other
sub-catchments. Computationally, the adjustment to algorithm 1 is
straightforward: instead of running a dynamic urban growth model (for
periods t0 to tn) and using its outputs to run the flood model (only for
period tn), both models (UGM and flood) should be run sequentially for
each period t (and for a single period, the outputs of the UGM would be
the inputs of the flood model). The outputs of this period, t , would then
be used as inputs for the subsequent period, t + 1.

More interesting are the conceptual questions which arise. For ex-
ample, during one year (the temporal resolution of the urban growth
model), up to 365 flood events may occur (the storm represents a daily
maximum). Which one should be simulated for each year? The strict
answer would be, the event which causes urban agents to change their
behavior (which convinces them to not build in flooded areas). The
best simplification to operationalize such statement is likely to select
the largest rainfall event that occurred during this year. Yet it is also
perhaps questionable whether urban growth will be significantly affected
by a single flood event of the kind often experienced in Kampala or if
a longer term cumulative effect reveals itself after a particularly severe
rainy season. Precisely because so large uncertainties remain, applying
the modeling approach to past yearly data, and in particular to the feed-
back between flood and urban growth, is a potentially profitable area of
future research.

4.4.5 Urban resilience in the Lubigi catchment

The analysis results reveal collective actions to mitigate flooding, namely
past investments in the main drainage channels and the potential of
preserving the wetlands, are not sufficient to reduce flood risk in Upper
Lubigi. Yet, simultaneously, city life in this part of Kampala continues
unimpeded, even in the face of recurring flooding. Could this be evidence
of some otherwise unsuspected source of urban resilience?

While governance and communal structures surely contribute to
urban resilience, Campanella (2006) has argued that the ultimate source
of resilience in a city is its people. However, there is no evidence of a par-
ticularly engaged citizenry in Upper Lubigi, on the subject of adaptation
to flood risk. Chereni (2016) examined the Bwaise 3 informal settlement,
located near the outlet of the Upper Lubigi sub-catchment. He found
little evidence of robust social institutions promoting resilience: social
networks somewhat influenced the adoption of mitigation measures
(58% of surveyed households adopted such measures in response to
social influence) but income level, occupation, perception of flood risk
or exposure, and even experience of past floods were all uncorrelated to
the adoption of household-level mitigation actions.
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The mismatch between suffering recurrent floods and failing to pro-
actively address such risk should perhaps be best interpreted as the
combination of an acceptance of flood inconvenience and a relatively
small damage suffered by each household, since widespread poverty
among those most affected means fewer assets exist to be damaged (such
characterization is consistent with Kampala as exemplifying a fatalistic
culture, in the sense of grid-group culture theory, see Mamadouh, 1999).
This subject requires a deeper exploration, which is beyond the scope of
this chapter. What is clear from the modeling results is that even efficient
land use planning and investments in large infrastructure systems are
not enough to reduce flood risk in Upper Lubigi.

4.5 Conclusions

This chapter has summarized the implementation of an integrated land
cover change and flood model. The modeling ensemble proved to be
operational by successfully simulating prospective land policies and as-
sessing their flood impacts. While not incorporating a feedback between
flooding and land cover change – because it was not required by the case
study at this point–, the formulation can be easily extended, should the
analysis of a specific case require it.

The scenario assessment successfully evaluated a realistic land policy,
a defensive landscape strategy such as the stringent protection of the
wetlands. This policy was predicted to be ineffective, when compared
to trend conditions. Therefore, and in a context of a study area (Upper
Lubigi) which already has flooding problems, much more aggressive
policies will be required to mitigate future urban growth impacts.

The developed urban growth model has proved capable of replicating
existing land trends using a simple, comprehensible approach. The model
divides the processes of allocation (where urban development occurs)
and the simulation of growth (how much development occurs). Allocation
is the result of a weighed summation, which results in transparency on
the choice of behavioral assumptions and their formalization into the
model. The simulation of growth, in turn, provides flexibility to tackle
diverse urban growth conditions. For the current application, SimDemi
is based on randomness, to replicate the dynamics of Upper Lubigi. It
may also be applied with development supply based on, for example,
land use regulations – such an application was successfully tested for
densification scenarios of the city of Kigali, Rwanda (Pérez-Molina et al.,
2016). In general, the use of a separate and spatially explicit model of
supply may prove useful to a class of cellular automata models (such as
Yeh and Li, 2001 or van Vliet et al., 2012) that use a continuous value as
the response variable.

The modeling ensemble was deployed in a data scarce environment.
The use of remote sensing to develop land cover data models and field
measurements of soil characteristics, complemented with digital elev-
ation models, permitted the bridging of this data gap. However, it is
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likely that considerable uncertainty was introduced into the modeling
results. Indeed, further research into error propagation remains a key re-
search need in spatial modeling. Validation of remote sensing-based data
models of land cover is an important step to control for the uncertainty
introduced into the urban growth and flood modeling results.

Joint modeling of land systems and flood can contribute to improve
land use planning in hazardous contexts. The modeling strategy could
also be profitably applied to other spatially differentiated hazards, im-
pacted by land cover changes; since it is based on PCRaster – a very
flexible environmental modeling software –, the development of other
hazard models is feasible. In synthesis, land models can be success-
fully developed and coupled with natural hazard models, and used to
formulate land policies to mitigate their impacts.
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5A Markov Chain Monte Carlo
calibration approach for dynamic
urban growth models1

Abstract

The calibration and validation processes for urban growth models of
Kampala, Uganda (2001-2016) and Kigali, Rwanda (2000-2015) are de-
scribed; calibration is based on the Metropolis-Hastings algorithm to
derive transition rules. These transition rules were used to test the
hypothesized model structure, a set of spatial factors that are potential
determinants of land cover change in Sub-Saharan Africa. The calibrated
models were used to simulate urban growth for 2001-2016 in Kampala
and 2000-2015 in Kigali. The resulting land cover predictions were char-
acterized through measures of global landscape agreement. Calibration
and validation were achieved by comparing the model predictions for
an intermediate year (2009/2010) with independent land cover data for
that period, as well as the overall trend of landscape evolution. The
validation analysis characterizes the results of model development in
terms of parameter and data uncertainty. The model distinctly improves
simulated results, relative to random parameters and data; further, un-
certainty introduced by parameters causes less problems, relative to the
prediction, than uncertainty in the spatial determinants of the model.

Keywords: Cellular automata, Calibration, Validation, Land cover
change, Urban growth model, Markov Chain Monte Carlo, Metropolis-
Hastings, Kampala (Uganda), Kigali (Rwanda)

1This chapter is based on: Pérez-Molina et al. (2019b).
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5.1 Introduction

Cellular automata models have a long history of successful use in the
field of land systems modeling, particularly in urban contexts (Santé
et al., 2010). These models conceptualize space as an array of cells. They
simulate spatial dynamics by means of transition rules that control how
the state of each one of these cells continually changes in response to
the state of surrounding cells (Rasmussen and Hamilton, 2012).

Cellular automata models, and land systems models in general, have
been primarily used to project future land cover (and land use) patterns
(van Vliet et al., 2016). The quality of these results is crucially dependent
on the success with which they can realistically replicate the funda-
mental dynamics of the land change process. Land change processes,
in particular land cover change, are generally formalized as a spatially
explicit relationship between factors representing the human locational
preferences of certain activities and the landscape resulting from the
transformation these activities cause on the environment.

The process of model development for a specific case is, therefore,
centered on model calibration and validation. The problem of calibration
is, given a set of input data, to choose the model parameters such that the
model outputs reproduce measurements of the modeled phenomenon
associated to these inputs (Rykiel, 1996; Refsgaard and Henriksen, 2004);
it is a stage of learning about the system from the data. The problem
of validation is one of assessment: given a set of model parameters and
data inputs, to determine how well do model outputs agree with data
about the modeled phenomenon (Rykiel, 1996; Refsgaard and Henriksen,
2004). Both modeling operations share the need for measurements
of the coincidence between the model results and independent data
measurements of the system’s response (Pontius Jr, 2002; Hagen-Zanker
and Martens, 2008).

This chapter is organized around the question, how can an urban
growth model be calibrated to, simultaneously, characterize the land
process dynamics and create realistic projections of trend conditions? To
tackle this issue, Bayesian econometrics is used to calibrate an upgraded
version of the cellular automata model of urban growth described in
chapter 4; specifically, models of urban growth are calibrated for the
Kampala metropolitan area for 2001-2016 and for the Kigali metropolitan
area for 2000-2015, using a Markov Chain Monte Carlo (MCMC) method –
the Metropolis-Hastings2 algorithm (see a description in Gilks, 1996 as
well as subsection 5.3.1), originally proposed in 1953 and generalized
in 1970 (Hitchcock, 2003) – to characterize the statistical distributions
of model parameters. From these distributions, one may determine the
relative importance of proximity, accessibility, and physical factors that
determine urban growth in Kampala. Urban growth is then simulated

2What is referred to in this chapter as the Metropolis-Hastings algorithm is the ran-
dom walk approach originally proposed by Metropolis and colleagues; several expositions
consider alternative algorithms, such as the Gibbs sampler, as special cases of the broader
Metropolis-Hastings framework (Chib and Greenberg, 1995).
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using Monte Carlo techniques for the entire period under study, and
these simulations are validated by comparing them to independently
derived land cover maps of Kampala for 2010 and of Kigali for 2009.

5.2 Literature review

Cellular automata have been widely, and successfully, used to model
land use and land cover change processes. General purpose models and
software, such as SLEUTH (Chaudhuri and Clarke, 2013) or DINAMICA
EGO (Rodrigues and Soares-Filho, 2018) have been adapted and applied
to a variety of specific contexts. Indeed, the flexibility permitted by
these and by customized modeling approaches that implement cellular
automata has resulted in a large variety of approaches (Verburg et al.,
2004), although generally cell-based models consider a relatively narrow
set of representations of human behaviors (van Schrojenstein Lantman
et al., 2011; Geographical Sciences Committee and others, 2014) such as
accessibility to urban centralities, agglomeration effects, and physical
suitability.

5.2.1 Cellular automata models of land systems calibration and the
map comparison problem

A recent review of calibration and validation practices (van Vliet et al.,
2016) revealed that statistical analysis and computational methods have
become the most common approaches to calibrate land change mod-
els. The majority of these statistical analysis cases, as reported in the
supplementary data, correspond to regression analysis, which is usually
static. Validation practices are less advanced: most applications base
their validation on mere locational analysis (as opposed to the global
and regional scales of the landscape) and nearly one third do not report
any validation (see the supplementary data of van Vliet et al., 2016 for a
breakdown of the data).

Why does land use modeling practice lack the calibration and, es-
pecially, validation emphasis common to other quantitative modeling
domains? A possible answer to this question relates to the complex
systems characteristics exhibited by land patterns (Batty, 2009): these
emerge from a myriad of interactions between multiple urban agents
and amount to regularities in space which are the consequence of these
interactions. The complex character of land patterns results in three
important particularities for land systems modeling: (1) urban patterns
present scaling relations in the response variable and in its determinants
(Batty, 2009), because of which parsimonious models are capable of
replicating the evolution of urban patterns; (2) extending parsimonious
models, e.g. to evaluate the impact a given determinant, poses risks of
tautology (of using the scaling relations of the determinants to predict
the scaling relations in the response variable), overfitting (an interest-
ing discussion on this subject is developed by Brown et al., 2005, in
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the context of agent-based models of land), and equifinality (van Vliet
et al., 2016); (3) given its character as emergent phenomenon, there is a
methodological question of how to describe the land pattern (a central
issue for validation and calibration of land models, since they rely on
comparison between a predicted pattern and an independently derived
map of the pattern; Hagen-Zanker & Mertens, 2008).

The problem of map comparison, and especially extending it beyond
location-to-location agreement, is not new and the complications have
been acknowledged for many years. Pontius Jr (2002) proposed an as-
sessment to understand differences between two maps as those between
location and between quantity (of a land cover category), pointing out as
well the need to consider multiple scales. van Vliet et al. (2013) exten-
ded the traditional measure of map assessment, the Kappa statistic, by
allowing for uncertainty of location in the immediate vicinity of a cell,
thus providing a more accurate assessment of the pattern agreement
– since cell-to-cell agreement may underestimate the agreement of the
overall pattern; they also introduce uncertainty by assessing expected
(simulated) rather than observed agreement. An alternative to fuzzy
measures is the use of landscape metrics as global measures of land-
scape structure; these have been implemented, in the context of Bayesian
calibration of land system models, by Verstegen et al. (2014).

5.2.2 Bayesian statistics applied to calibration of cellular automata
models of land cover

A review was conducted of previous applications of Bayesian methods
to the calibration of dynamic spatially explicit land system models. The
search was conducted in ISI Web of Knowledge for the period 2010-2018,
using the search criteria: (cellular+automata, refined by: TOPIC: ((land*
OR urban)) AND TOPIC: (Bayes*); an additional check was performed
in Google Scholar, searching for the terms: “cellular automata” AND
“metropolis hastings” AND “land”. Two calibration techniques were
found to have been implemented in dynamic models, namely Sequential
Monte Carlo and a Markov Chain Monte Carlo (MCMC) method, the
Metropolis-Hastings algorithm.

The search resulted in four cases that applied Bayesian techniques to
calibrate cellular automata models. Verstegen et al. (2014, 2016) calib-
rated an extended cellular automata model of Brazil to explain sugar cane
land cover. Their objective was to, firstly, establish the model structure
and parameterization (Verstegen et al., 2014) and, secondly, to test the
stability in time of these parameters (Verstegen et al., 2016). Rasmussen
and Hamilton (2012) created a theoretical model of range expansion,
applicable to biological invasion; population changes follow from two
parameters which represent short and long distance immigration. They
used synthetic data to test a calibration method and recover the para-
meters. Somodi et al. (2011) modeled the spread of vegetation and of
seeds for nine vegetation types, treating transition matrices for missing
vegetation maps as parameters and using Bayesian techniques to sample
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these maps. Mustafa et al. (2017) also calibrated an extended cellular
automata model of land cover change for southern Belgium, allocating
urban growth based on a weighed summation of spatial factors. The first
set of factors, the interaction effects between land uses at distance ran-
ging from one to five cells, were determined by use of Bayesian methods
whereas the weights of other static factors was set through a logistic
regression model.

Verstegen et al. (2014, 2016) and Rasmussen and Hamilton (2012)
applied Sequential Monte Carlo methods – Verstegen et al. (2014, 2016)
the Particle Filter and Rasmussen and Hamilton (2012) what they term the
Population Monte Carlo Approximate Bayesian Computation. Sequential
Monte Carlo relies on propagating forward in time the model states
of sampled sets of parameters; for periods when observations of the
system are available, the sampling process is updated so the information
from the observations is incorporated into subsequent sampling (van
Leeuwen, 2009). Mustafa et al. (2017) and Somodi et al. (2011) applied the
Metropolis-Hastings algorithm, a common type of MCMC analysis. MCMC
methods differ from Sequential Monte Carlo in the sampling scheme:
for sequential methods, each sampled instance is independent from all
other; in MCMC, these samples are correlated: the sampling scheme
creates a Markov chain in which a sampled instance depends on the
preceding – concretely, a sampled set of parameters is added to the
posterior distribution if it generates a better prediction than a random
level, and is rejected otherwise.

A key issue in the application of Bayesian methods to land use/land
cover modeling is the definition of how good a prediction is, relative to
the observed data. Verstegen et al. (2014) made use of three measures of
land patterns to judge this agreement, two global (the number of patches
and an edge index, measuring the overall complexity of the patches)
and a zonal measure, the focal average within a grid of 150 km squares.
Mustafa et al. (2017), on the other hand, used only cell-to-cell location
agreement (a local measure). The results of these two cases demonstrate
the sphere over which the calibration yields satisfactory results.

Mustafa et al. (2017) report a 32.75% cell-to-cell location agreement
between their prediction and the land use target map over a ten year
period for cells undergoing change, in line with similar cellular auto-
mata models of urban growth. Most case studies of cellular models
reporting accuracy percentages cited by van Vliet et al. (2016) report
overall percentages of over 80%; only Hansen (2014), while presenting an
overall cell-to-cell agreement of 95%, also reports a 23% agreement when
considering only the change cells. While this figure is hardly impressive,
cell-to-cell location of change cells is probably too fine a measure to prop-
erly judge the results of a land use model – indeed, it has been argued
(Hagen-Zanker and Martens, 2008; van Vliet et al., 2013) that calibration
and validation of urban growth models should aim to reproduce the
pattern, overall and regionally rather than merely at the cell level – , and
it is remarkable that such a measure was able to successfully guide the
Metropolis-Hastings algorithm.
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Verstegen et al. (2014, 2016) provide greater methodological detail on
the model development process. From a set of potential spatial factors,
chosen by expert knowledge, their method is capable of discarding
those that are irrelevant as well as determining the weight of spatial
factors that are relevant to the land cover change process. Relative to
a reference model that does not apply the Particle Filter, i.e. only the
Monte Carlo simulations, the Particle Filter reduces substantially the
RMSE of the three measures of land pattern; further, the median value of
each of these measures is better approximated by the application of the
Particle Filter. Verstegen et al. (2014) also note that, as the simulation
progresses from the time period in which the Particle Filter is applied,
the model performance decreases; in other words, they can generate
reliable information about the land use system only in the short-run;
indeed, Verstegen et al. (2016) document how the model parameters
change yearly in response to new land information.

5.3 Methods: Markov Chain Monte Carlo for
calibrating urban growth models

5.3.1 Application of Bayesian statistics with MCMC

The process of Bayesian inference begins with an initial probability
statement about the parameters before observing the data, the so-called
prior distribution, which is modified based on a combination of this prior
distribution and the data to produce a posterior distribution (Congdon,
2006). The relationship between these three elements can be expressed
by the Bayes theorem:

p (θ|y)∝ p (y |θ) · p (θ) (5.1)

with θ the set of parameters to be estimated conditional on data y (the
state of the system and its determinants), p (.|.) a conditional probability
distribution, and p(.) a marginal probability distribution. The prior
knowledge about the parameters is represented by p (θ), the likelihood
by p (y |θ), and the posterior distribution is p (θ|y) (Congdon, 2006).

As the exact estimation of the likelihoods may involve challenging
integration of expressions, it is common practice to use Monte Carlo
simulations. A number of N independent values of θ are drawn from the
parameter distribution, p (θ). The empirical distribution of the sample
{θ1, ...,θN} constitutes and approximation to the posterior distribution;
this approximation improves as N becomes larger (Hoff, 2009).

Different methods can be used to choose the θi values. The imple-
mented MCMC-based algorithm, the Metropolis-Hastings, operates as
follows (Gilks, 1996, p. 84):

• Initialize t = 1, draw a parameter value ϑ1, calculate p (ϑ1) ·p (y |ϑ1)
• For iteration t :

– Increment t
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– Sample a point ϑt from h (.)
– Sample a U (0, 1) random variable U
– If U ≤ min [1, [p (ϑt) · p (y |ϑt)] / [p (ϑt−1) · p (y |ϑt−1)]] accept
ϑt
Else, choose ϑt = ϑt−1

where h (.) is called the proposal function. The following form for pro-
posal functions was used: ϑt = ϑt−1 +N (0, s), and s was chosen so that
the acceptance rate (the total number of iterations into the amount of it-
erations for which U ≤ min [1, [p (ϑt) · p (y |ϑt)] / [p (ϑt−1) · p (y |ϑt−1)]]
is true) is approximately 0.20.

The Metropolis-Hastings is a less popular alternative, among MCMC
algorithms, to the Gibbs sampler: this is because the Gibbs sampler
does not require a proposal function; however, it does imply the need to
analytically derive the posterior distributions (see discussions on their
implementation in Chib & Greenberg, 1995 for the Metropolis-Hastings
algorithm, specifically the random walk, and Gilks et al., 1994 on the
Gibbs sampler). Given an implementation with spatial data, it is very
difficult to construct such posterior distributions for the parameters
from a theoretical standpoint alone, a problem compounded in the
specific case of land cover data by the relatively large amount of noise
in the data (in turn an unavoidable consequence of the complexity of
the process leading to the human land pattern). Because of this, the
Metropolis-Hastings algorithm was implemented.

5.3.2 Urban growth model calibration and validation

Urban growth model specification

The calibrated urban growth model is an extension of the model for the
Upper Lubigi sub-catchment (Pérez-Molina et al., 2017). Figure 5.1 schem-
atizes the elements of the model and their relationships. Key features
of this model are: the land cover and the amount of urban growth are
continuous values (fraction of built-up land cover in a cell); in the case of
urban growth, this means the existence of a limit to the resulting (after
growth has occurred) built-up fraction, in turn limiting the maximum
possible growth (increase of built-up fraction) in a different way for each
cell. Relative to the model of Upper Lubigi, two extensions have been
made: (1) the model was spatially extended, from the 27.8km2 of Upper
Lubigi, to include the entire Kampala metropolitan area, 2650km2, and it
also adopts a metropolitan area extent for Kigali (an extent of 547.7km2)
and (2) the use of principal components was introduced to deal with
correlation problems between spatial factors, specifically three factors
related to accessibility (travel time to CBD and distance to main roads)
and agglomeration (built-up neighborhood factor).

The model estimates a suitability map that synthesized six spatial
factors (maps), one of them dynamic. Each factor was normalized by
dividing the range of values into either (a) each cell value minus the
minimum of the map, if the relation between the spatial factor and urban
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Figure 5.1 Cellular automata urban growth model

growth is direct, or (b) the maximum of the map minus each cell value, if
the relation to urban growth is inverse.

Three factors are highly correlated to each other: (1) a neighborhood
factor, the average percentage of built-up from the preceding period
surrounding each cell (within a moving window; the size of this window,
m, is a model parameter), (2) an estimate of travel time to the CBD which
incorporates the effect of main roads, local roads, and walking, and (3) the
Euclidean distance to main roads. Each of these factors was normalized;
the neighborhood effect is thought to be directly related to urban growth
and both travel time to CBD and distance to main roads, to be inversely
related. To improve the efficiency of the calibration algorithms, the first
principal component of these three normalized factors – denoted as the
accessibility factor – was included as a determinant of urban growth
directly related to urban growth.

Three additional factors, slope percentage, informal settlement loc-
ations, and wetland locations, were also incorporated into the model
as determinants. Location maps were coded with values of 1.00 to in-
dicate the presence of an element and of 0.00 to indicate absence; they
are, therefore, inversely related to urban growth. Slope is also inversely
related to urban growth.

The cellular automata model follows the general form synthesized by
Batty (2009) and summarized in equations 5.2 and 5.3. Equation 5.2 is
called the diffusion equation by Batty (2009). Equation 5.3 corresponds
to the transition rule that controls the cellular automata’s evolution.

BUfri ,t = BUfri ,t−1 +∆BUfri ,t (5.2)

∆BUfri ,t =
{

PotSupplyi ,t , if suitabilityi ,t > thresholdt .
0, otherwise.

(5.3)
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The suitability map is a weighed summation of the four normalized
factors we have described and, by construction, it is directly related to
urban growth. The suitability value of each cell is indirectly determined
by the built-up fraction (in the preceding time step) of the surrounding
cells, where surrounding is defined by the moving window of size m.
Hence the argument here adopted that this model is an extended cellular
automata model (White, 1998), for which the state of neighboring loca-
tions are combined with other spatial factors to determine the state of
each cell.

Equations 5.2 and 5.3 are used to implement a constrained cellu-
lar automata. For any given period, the PotSupplyi ,t map is reclassified
based on an arbitrary thresholdt of suitability: the cells with high suit-
ability retain the value whereas the cells with low suitability are set to
0.00. The algorithm starts with very large thresholdt values (near 1.00)
and works its way towards smaller ones by small increments, stopping
when

∑
∆BUfrit > Land Demandt , which are approximately equal if the

difference between iterated threshold values is very small.
The potential supply of new urban development, PotSupplyi ,t is taken

as fixed, as described in subsection Calibration and validation, since this
chapter reports on a calibration exercise. It is important to note that this
element poses the general problem of a spatially explicit representation
of potential built-up increase, a problem that may have different answers
(for example, see on Upper Lubigi, Pérez-Molina et al., 2017 or on the
Rwampara wetland of Kigali, Pérez-Molina et al., 2016). This flexibility
is very important, especially when simulating forward in time from the
present into the future, for which the spatial distribution of the land
cover at the target year is unknown.

Landscape indices to evaluate cellular automata model predictions

To estimate the likelihood of a state (built-up land cover), the approach
proposed by Verstegen and colleagues was followed: three spatial met-
rics, selected “based on their complementarity (global vs. regional, con-
figuration vs. composition[)]” (Verstegen et al., 2014, 126). These are:
one focal measure, fraction of the land cover in a larger zone (estimated
as follows: the study area was divided into squares of 1.00 km to a side;
the average built-up fraction per square was estimated – input land cover
maps having a spatial resolution of 90 m), and two global measures
– total number of patches, a measure of landscape complexity, and a
landscape index defined as:

qt = et/
(
4 · √areat

)
(5.4)

with et the total length of the edge of all urban patches in t , areat the sum
of area for all urban patches in t . qt compares the perimeter of actual
patches with a “minimum” sized patch, a maximally aggregated patch
attained if all urban patches were to be grouped into a single square
patch.
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Since the global measures require binary data inputs, the results
were re-classified: a cell was considered urban if its built-up fraction
exceeded 0.35. The focal measure, however, was estimated using directly
the built-up fraction estimates. For the calculation of probability, a
single summary measure of the focal statistics is necessary; the average
across the zones was chosen and this average was used to estimate the
probability (thus the focal measure becomes global by methodological
necessity).

The probability of a given state (end-result simulation for the target
year) is given by (van Leeuwen, 2009):

p (ot|st) = A · e−1/2·(ot−st)T×Rt
−1×(ot−st) (5.5)

where ot is the observed data, st the modeled system state, p (ot|st) is
the probability that the observed values occurred, given the modeled
state variables, and Rt the covariance matrix of the observation error.

The calculation of probability requires an estimate of the covariance
matrix of the error term in the observed data (term Rt in equation 5.5).
Since the observed data is a single instance (a map of a given period), the
procedure outlined by Verstegen et al. (2014) was followed to simulate
this covariance matrix:

• The built-up percentage land cover map was transformed into
a vector map of points. A sample of 10% of these points was
randomly selected.

• The gstat tool (Pebesma and Wesseling, 1998) was used to create
100 conditional simulations, based on a semi-variogram model of
this sample.

• For each of the simulated instances, the three spatial metrics were
calculated. The error covariance matrix was derived from this
dataset.

Calibration and validation

Input data of the land cover for the urban growth model, for each case
study, consists of built-up land cover fractions for three periods: a
baseline year (2001 for Kampala, 2000 for Kigali), a target year (2016 for
Kampala, 2015 for Kigali), and an intermediate year (2010 for Kampala,
2009 for Kigali). To calibrate the urban growth model, the baseline
year was projected into the target year (i.e. the 2001-2016 period as
simulated for Kampala, and 2000-2015 for Kigali), using urban growth
between circa 2000 and circa 2015 as the potential supply. This map was
generated through map algebra, by subtracting the baseline year land
cover map from the target year map.

The objective of the model’s calibration process is to derive distri-
butions of the parameters of the model, which are: the weights of the
different spatial factors (four weights, one each for accessibility, wet-
lands, informality, and slope) and the neighborhood window size. Since
there is no prior knowledge on the weight of each factor (other than the
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assumption that, because of their normalization, they are all directly
related to urban growth, i.e. they are positive), a prior uniform distribu-
tion was adopted. As for the neighborhood size, the specification chosen
follows Verstegen et al. (2014) in defining a log-normal distribution with
a parameter such that the median value is equal to three cells (270 m)
and the mean, to five cells (450 m), because the window size is assumed
to be relatively small; however, because the model becomes undefined if
m < 90 (one cell), any sampled value under 90 m is rejected. Thus, equa-
tion 5.6 summarizes the prior parameter distributions that are inputs to
the model calibration algorithm:

wAccessibility ∼U (0.00, 2.00)
wWetlands ∼U (0.00, 2.00)

wInformality ∼U (0.00, 2.00)
wSlope ∼U (0.00, 2.00)

m ∼Lognormal (5.6, 1.0) (5.6)

The calibration itself was achieved by comparing the prediction for
the intermediate year (2009 or 2010) with the independently derived land
cover map corresponding to that year. Two chains were sampled for each
case study. Each chain for Kampala was generated with 16500 instances,
of which the first 1500 were dropped as burn-in. The full sample included,
therefore, 30000 iterations. The full sample was thinned, taking one out
of each ten iterations to reduce autocorrelation problems. The final
sample consisted of 3000 instances. For Kigali, an equivalent process
was followed: two chains of 8000 instances were sampled, with the first
500 iterations dropped as burn-in; the full sample, of 15000 instances,
was also thinned by taking one out of ten iterations, resulting in a final
sample of 1500 instances.

Sample size was defined such that the Gelman-Rubin statistic indic-
ated convergence. The statistic is defined by comparing the within (a
given chain) variance of a parameter with the between (different chains,
in this case 2) variance of said parameter. Specifically, if for a parameter
the ratio of (a) pooled variance (a weighed summation of within and
between variance) and (b) the within variance, is close to 1.00, conver-
gence has been achieved. When all parameters present such ratios, the
model has achieved convergence. See Gelman and Rubin (1992) for a full
description of the test, as well as Hartig et al. (2018) for documentation
on its implementation.

The resulting chains (samples) were analyzed using the packages
BayesianTools (Hartig et al., 2018) and coda (Plummer et al., 2006) from
R (R Core Team, 2017), as well as general statistical tools of R itself.

However, this approach leaves no independent data for validation (i.e.
data that has not been used for the model’s calibration). In consequence,
while land cover was predicted between 2000/2001 and 2015/2016
and in the entire extent, for calibration purposes the landscape indices
discussed in subsection Landscape indices to evaluate cellular automata
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Figure 5.2 Study area: simulated extents of Kampala, Uganda and Kigali,
Rwanda

model predictions were only calculated for the quadrants marked with 1
in figure 5.2 (the area within quadrants 2 was set to null data); conversely,
for validation, the predictions of the area of quadrants 2 was used,
and the area of quadrants 1 were set to null data. The quadrants were
delimited by north-south and east-west axis passing through the CBD.

Validation was achieved through Monte Carlo simulations. For each
city, 5000 instances were simulated starting with the baseline (2000/2001)
up to the target year (2015/2016), and using the same potential supply
map as the calibration process (target map minus baseline map). Sim-
ilarly to calibration, the success of the model was judged based on a
comparison of the landscape metrics of the predicted intermediate year
(2009/2010) with those of the independently derived land cover for that
year (and limited to the areas of quadrant 2).

Three alternative versions of the model were designed to compare
the uncertainty introduced into the model by spatial data vs. model
parameters; further, these alternative versions permit the exploration of
possible equifinality in the data:

1. The first validation model is termed Random parameters; it simu-
lated the evolution in the same way as the Parameterized model,
except the parameters were drawn from the prior distributions,
equation 5.6, not from the resulting posteriors (i.e. the calibrated
results).

2. The second validation model is a constrained cellular automata
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model without any ancillary information; the neighborhood factor
is the sole driver of this model and its window size parameter is
adopted from the calibration results.

3. The third to fifth validation models rearrange, in a spatially random
pattern, the normalized spatial factors: the Full random model
randomizes all four spatial factors, the Accessibility random model
only the travel time to CBD and the Euclidean distance to nearest
major road, and the Physical random, only the slope, informality,
and wetlands factors.

5.3.3 Study area

Kampala, Uganda

The extent of area simulated in Kampala, shaped like a rectangle, goes
beyond the limits of the Kampala Capital City Authority, i.e. the city
proper, to include the urban fringe where much of the recent expansion
has taken place (see figure 5.2). To the south, it is bounded by Lake
Victoria. The rectangle’s limits are, to the west, UTM 36N coordinate
430000 m, to the east, coordinate 478000 m, and to the north, coordinate
57000 m. These limits encompass all urban area existing in 2016 plus
the peri-urban interface and the surrounding rural area, in which future
urban growth will mostly occur.

Kigali, Rwanda

The administrative boundaries of Kigali correspond to a province of
Rwanda and, because of this, exceed the limits of the urban area proper.
Furthermore, Mount Kigali poses a physical barrier which blocks the city’s
westward expansion. The extent simulated was selected to encompass
the urban footprint of the city (in 2015) and a large enough area to
accommodate Kigali’s expansion (see figure 5.2). A rectangle bounded
by the (UTM 36S) coordinates 9797000 m north, 9775000 m south, 194000
east, and 167000 m west, defines the extent; the CBD is located towards
the west of this area, since most of the expected expansion of Kigali will
most likely occur towards the east due to Mount Kigali. The land cover
models of Kigali were described in chapter 2.

5.4 Results and discussion

5.4.1 Results from calibration of urban growth model

The results of parameter posterior distributions for Kampala are shown
in figure 5.3. Evidence of convergence was found in the decreasing
autocorrelation (after thinning) and, generally, trace plots ranging over
the entire parameter space. The Gelman-Rubin diagnostics for each
factor, reported in table 5.1, are all below the 1.1 threshold, indicating
convergence was achieved. Some problems were detected, such as the
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Figure 5.3 Parameter prior and posterior distributions for Kampala. Calibration
results. Top: posterior distribution histograms. Middle: trace plots. Bottom:
autocorrelation analysis

weight factor for slope not having been sampled for the larger possible
weights.

Table 5.1 Gelman-Rubin diagnostics for convergence

Parameter Kampala model Kigali model
wAccessibility 1.010 1.011
wWetlands 1.000 1.078
wInformality 1.030 1.010
wSlope 1.050 1.007
m 1.100 0.999

Two histograms produce reasonably clear results: those of the access-
ibility and slope parameters. The wetlands and informality parameters’
histograms, on the other hand, show a less defined peak, although they
also appear skewed: the wetlands histogram towards the lower values,
the informality histogram towards the larger values. The neighborhood
window size posterior distribution resembles the prior, suggesting little
signal has been achieved – and also that the window size does not greatly
affect the predictions of the model.

Mean values for the posterior distributions were selected by multiply-
ing the mean values of the thinned sample of each weight times the
following factors: 1.4 (for accessibility), 0.4 (for wetlands), 1.4 (for inform-
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ality), 1.4 (for slope), 0.4 (for the neighborhood window size). Standard
deviations for the posterior distribution, in turn, were estimated as
those of the sample times: 1.0 (for accessibility), 1.6 (for wetlands), 1.6
(for informality), 1.0 (for slope), 0.6 (for the neighborhood window size).
These numbers, reported in equation 5.7, were selected such that the
posterior fitted curves, which are all normal distributions, correspond to
the histogram of the sample by visual assessment.

wAccessibility ∼N (1.83, 0.54)
wWetlands ∼N (0.36, 0.90)

wInformality ∼N (1.47, 0.91)
wSlope ∼N (0.98, 0.38)

m ∼N (222.9, 341.7) (5.7)

Two histograms, of the parameters with better defined peaks (access-
ibility and slope), were set with standard deviations equal to those of the
sample. The two less well defined peaks (of wetlands and informality)
were fit with standard deviations that are larger than those of the sample,
and partly because of this, such fitted distributions explain less of the
sample.

The results of parameter posterior distributions for Kigali are shown
in figure 5.4. The model results were better, in formal terms, than those
of Kampala: autocorrelation decreases more rapidly, trace plots show
a better variation over the parameter space, and (with the exception of
the wetlands factor) histograms show clear signals. The Gelman-Rubin
diagnostics for each factor, reported in table 5.1, are like in Kampala
all below the 1.1 threshold, indicating convergence was achieved. Kigali
is a smaller city than Kampala and it has also been more structured,
both by a more irregular terrain and a better land use regulation system
(Goodfellow, 2013a). It is, therefore, easier to model (relative to the
“messier” situation of Kampala) since variation should be expected to be
more systematic and its scope is smaller.

In the case of the model results for Kigali, four of the five histograms
produce clear signals. The only ambiguous parameter, like the most
ambiguous of Kampala, is the wetlands factor. If any, this posterior
distribution is slightly skewed towards the larger values; in consequence,
it was modeled with a normal distribution by increasing the mean of
the data 1.2 times and increasing the standard deviation, 1.8 times – the
largest increase of all the fitted factors for either model. The mean values
of the fitted posterior distributions for the other factors were determined
by multiplying the mean values of the sampled data times: 1.2 (for
accessibility), 0.4 (for informality), 1.4 (for slope), 1.0 (for neighborhood
window size), and the standard deviations, times: 1.2 (for accessibility),
1.0 (for informality), 1.0 (for slope), 0.15 (for neighborhood window size),
seeking in all cases, as in the case of Kampala, a curve judged visually to
fit the histogram. The resulting parameters are summarized in equation
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Figure 5.4 Parameter prior and posterior distributions for Kigali. Calibration
results. Top: posterior distribution histograms. Middle: trace plots. Bottom:
autocorrelation analysis

5.8.

wAccessibility ∼N (1.42, 0.59)
wWetlands ∼N (1.31, 1.04)

wInformality ∼N (0.20, 0.39)
wSlope ∼N (1.87, 0.45)

m ∼N (275.6, 9.7) (5.8)

When comparing the results of the metropolitan areas, clearly access-
ibility and slope are the most important factors. This is unsurprising:
accessibility is, according to the theory (of urban land rent formation,
specifically the Alonso-Mills-Muth model, see Glaeser, 2008 and Brueck-
ner, 1987; the link between land rent and its associated urban location
choice by urban agents, on the one hand, and land use/land cover pat-
terns on the other has been discussed in early spatial statistical modeling,
e.g. Chomitz and Gray, 1996; on the relation between land use intensity
and urban land rent formation, see the model by Brueckner, 1983; typical
determinants and processes underlying them for cell-based urban growth
models have been discussed by van Schrojenstein Lantman et al, 2011 ),
the central factor in determining urban location. The specific context of
the two case studies, on the other hand, already suggested terrain to be a
central determinant. Kampala, for example, owes its current location to
the XIX century custom of the kings of Buganda of choosing a hilltop for
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their capital (which they would move every few years within a relatively
small area) and their tight control of foreigners within their kingdom,
forcing them to live in the capital (Southall and Gutkind, 1957). The
terrain in Kigali is, if anything, even more important (as witnessed by
the greater mean value of the fitted parameter posterior distribution for
Kigali relative to Kampala) because of the very large variation present in
Kigali’s landscape.

Informality and wetlands are weaker explanations of urban growth
patterns, although the signal of the wetlands parameter is likely better
for Kampala than for Kigali (i.e, dispersion of the sampled parameter’s
histogram is smaller) and for informality, the reverse is true.

No definitive explanation was found for the weakness (high level of
dispersion of the sampled parameter) of the wetland factor’s weight.
There is evidence of some wetlands of Kampala having been occupied
by urban development, especially in the centrally located wetland of
Nakivubo; however, it is also true that the complex land tenure system
could act in constraining expansion into some wetland areas (Mabikke,
2016). In the case of Kigali, both the better land use regulation and the
still slower growth of the city (leading to less pressure from demand
on land for urban development) explain why wetlands are relatively
free of built-up land cover. Yet the results also show some wetlands
(often centrally located) are attractive for urban growth. Indeed, wetland
locations are more important determinants of urban growth in Kigali than
in Kampala: for the weight of wetlands location, the mean of the fitted
posterior distribution is greater for Kigali than for Kampala (although
this posterior distribution of Kigali also has a larger dispersion).

The lesser role of informality could be explained by the better land
use regulation system of Kigali (see Goodfellow, 2013, for a comparison
of both systems): not only is the dispersion of the sampled parameter’s
histogram lower than for Kampala, the central tendency measure is also
smaller than for Kampala (this factor is less important for Kigali than for
Kampala). The city of Kigali is generally considered to be more effective
in controlling informal development than the city of Kampala; our results
are consistent with this view.

5.4.2 Validation and verification of urban growth model

The landscape measures for the validation simulations, using the calib-
rated model (Parameterized model) and the alternative versions of both
cities are reported in figures 5.6 and 5.7. As noted in the methodology,
these results correspond only to the area of quadrants 2 (figure 5.2).

While the definition of the landscape metrics was discussed at length,
their interpretation becomes at this point crucial to the assessment. The
Zonal average is the average of built-up fraction across all zones; be-
cause it is an average of focal averages, it represents built-up land cover
intensity: it is a measure of how much more (or less) intensification
of land does the model assume has occurred, relative to the data. Be-
cause cellular automata models rely greatly on the neighborhood factor,
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one should expect the model to predict more intensification than the
independent calibration data.

The Number of patches is a measure of how fragmented the landscape
is; more patches equal a more discontinuous urban fabric. The Edge
Index measures the complexity of these patches and, in this sense, is
also consistent with discontinuous development. However, these two
measures correspond to “urban” areas in the restricted sense of places
with high degree of built-up land cover (built-up fraction over 0.35). Thus,
while both cities (and especially Kampala) have been sprawling, it is
also possible these landscape metrics do not fully reflect such process
because of its relatively low built-up land cover fraction.

Table 5.2 Validation results: median results from Parameterized model sim-
ulations and metrics for land cover map corresponding to quadrants 2, year
2009/2010

Model prediction Land cover map
Kampala
Zonal average 0.0723 0.0731
Number of patches 1636 1400
Edge Index 52.5 43.7
Kigali
Zonal average 0.0596 0.0355
Number of patches 154 118
Edge Index 14.2 13.1

Table 5.2 presents the parameterized model’s predictions for the
intermediate year and the metrics derived form the land cover maps.
The level of intensification predicted for Kampala (Zonal average) is
essentially the same as that of the validation data; however, for Kigali,
the model assumes substantially more intensification than what was
detected in the land cover maps. Relative to Number of patches and Edge
Index, the model produces predictions of a more complex landscape
than what was detected from land cover maps, both for Kampala and for
Kigali.

The differences in Kigali can be explained by pointing out the dif-
ference between the urban growth for 2000-2009 (validation) and for
2000-2015 (calibration), see figure 5.5. When examining the latter, one
can describe the process as the original large patches that comprised the
urban core of Kigali in 2000 expanding outwards, towards the south and
north: thus a relatively compact expansion. However, the urban growth
of 2000-2009 saw the emergence of a relatively large and non-contiguous
(to the 2000 core) patch of built-up land cover. Events actually unfolded,
then, by a first stage of greenfield expansion in 2000-2009 and a later
infill development stage in 2009-2015. This is consistent with the policy
context, as the land use plans were implemented circa 2009 (Goodfellow,
2013a), which could account (jointly with terrain effects) for the change
of trajectory. More importantly, though, since calibration used the 2000-
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Figure 5.5 Urban growth patterns of Kampala and Kigali

2015 data and validation, the 2000-2009 data, the model has assumed
whatever reasons caused the more compact development to have been
uniformly influential in time but they had not yet come into play during
the validation period.

The case of Kampala (see figure 5.5) has a similar explanation (funda-
mental changes in the trend of urban development) but with no exogen-
ous cause. Rather, the trend itself evolved spatially: during 2001-2010,
urban growth occurred in a typically discontinuous horizontal expansion
at low intensity; much area was developed but at low built-up fractions.
Therefore, the complexity added to the overall landscape was not detec-
ted by the landscape metrics. Contrast this to 2010-2016, which saw
simultaneously the intensification of what had been greenfield devel-
opment in the preceding period and new greenfield development but
exhibiting larger built-up fractions. These trends, likely explained by con-
tinuing population growth and the absence of effective land use controls,
did cause a noticeably more complex simulation of the landscape result.
Since the former condition describes the data used for validation and
the latter, the calibration, the differences observed in table 5.2 can be
thus explained.

In this context, it is useful to bring into the discussion the observation
of Batty (2009), when comparing urban growth trends of London and
Las Vegas. He observed they were visually very similar, as they both
embodied the scaling relations which give predictive strength to cellular
automata. However, he noted, the technologies and patterns of human
settlement behind these trends were very different and indeed changed
substantially in time. Regarding the case studies, it is believed the
long run manifestations of the scaling relations are not yet apparent
(meaning the trends are still changing), given the limited time extent
of our modeling exercise. This affords the opportunity to discuss the
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trends and their impact on modeling.
This is not to suggest, however, that the limitations of the developed

model undermine its usefulness. Indeed, in figures 5.6 (for Kampala)
and 5.7 (for Kigali) the 95% credible interval of each landscape metric
is compared across different simulations. But for the Constrained CA
version, the discussion of overall landscape complexity holds: models
tend to predict more complex landscapes because of the difference
between calibration and validation data periods.

As noted, the Parameterized model uses the fully calibrated model
and it is, in both cases, the best prediction for 2010. They manifest the
smallest bias, regarding the over-complex prediction. The second best
prediction corresponds to Random parameterization, which draws the
parameters from uniform distributions rather than from the calibrated
posteriors. The credible intervals of the Parameterized model and Ran-
dom parameterization are very similar but the median value is better for
the Parameterized model.

The impact of spatially randomizing spatial factors (models Full ran-
dom, Accessibility random, and Physical random) is much larger. The
evident conclusion is input data is determinant when generating the
prediction of the model and, if improvements are to be prioritized in
this type of model, the quality of input data is a more fertile area than
parameterization. Furthermore, the randomization of physical factors (in-
formal settlements and wetlands locations, slope) causes more problems
than the randomization of accessibility: for Full random and Physical
random, the predictions of both Kampala and Kigali very quickly rise
in complexity, reach a maximum and then descend, although not quite
reaching the 2015/2016 target year metrics. For Accessibility random,
which randomizes only Euclidean distance to nearest main road and
travel time to CBD, the trend is similar to that of Parameterized model
and of Random parameters.

Two additional comments on the randomization of spatial factors are
necessary. In general, they predict much narrower 95% credible intervals,
suggesting a strong equifinality in the land cover data that are used in the
simulation (although further analysis of this issue could be warranted).
The exception is the Accessibility random of Kigali, which leads to a
very similar result to Parameterized model and to Random parameters.
Secondly, and very clearly, randomizing the accessibility factors has a
more limited effect on the predictions: this is because the neighborhood
factor is not randomized and it is combined into a single factor with the
Euclidean distance to nearest main road and travel time to CBD factors.
Apparently, therefore, the neighborhood effect is capable of correcting
for very large problems with the input datasets.

Yet a model based purely on the neighborhood factor, such as Con-
strained CA, fares the worst of all. What is shown in figures 5.6 and 5.7
is a model that has not converged. This can be seen in how the credible
interval of the Zonal average expands towards lower fractions in the later
periods of both simulations (of Kampala and of Kigali). The variation of
complexity is also erratic: it decreases substantially, since agglomeration
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is the only driver, and then begins to increase.
The cause of this unsatisfactory performance of Constrained CA is the

lack of sufficient variation in the spatial determinant of most simulated
instances. The resulting posterior for the neighborhood size parameter
tends to concentrate window sizes around three cells. Hence, most
suitability maps for this simulation are very similar to each other and do
not provide sufficient locations (cells) to fully assign land demand. The
conclusion, then, is that however important the neighborhood factor is
(and evidence suggests it is very important), it is not enough by itself
for a good prediction. It requires ancillary information, even if limited.
A line of future inquiry could be if this ancillary information must be
meaningful (and the parameters with significance, as has been assumed)
or if a mere random disturbance suffices and, if so, how does the model
perform.

5.5 Conclusion

A method to calibrate and validate a cellular automata model of urban
growth for Sub-Saharan Africa was developed. Has the method produced
realistic results? It has, as the prediction of the calibrated model out-
performs alternative models which randomize parameters or spatial
factors. The prediction failure of models randomizing spatial factors
is interpreted as evidence of a good choice of model structure, since
these factors are required inputs to obtain realistic results. Additionally,
the superior predictions of the calibrated model, relative to a random
choice of parameters, are considered evidence of the role of calibration
in improving the realism of the model outputs. One must note that
the errors introduced into the model predictions by randomizing the
parameters are much smaller than those introduced by randomizing
spatial factors, particularly physical (i.e. not accessibility) factors.

What has been learned from interpreting the results of the parameter
calibration process? The posterior distributions of model parameters –
the weights of spatial factors – resulted, generally, in clear signals: it was
possible to fit the derived histograms with normal distributions, most of
them with reasonably sharp peaks. From the mean value of these fitted
posterior distributions allowed one may establish the relative importance
of spatial factors. The results support the notion that accessibility and
slope have greater importance than wetlands and informal settlements
location in determining urban growth.

The results of this chapter advance the use of Bayesian approaches
for the calibration of cellular automata models of land, by using a Markov
chain approach to determine the weights of spatial factors (ancillary in-
formation). The only preceding application of such methods to a similar
modeling problem (Verstegen et al., 2014) made use of a sequential
approach. While further work is required to compare both methodolo-
gies, one would expect Markov chain-based calibration to require less
computational power (a distinct advantage, given the large number of
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iterations involved in both calibration and validation), although posterior
distributions from sequential methods should present sharper signals.
Regardless, the results of this chapter confirm the conclusions of Ver-
stegen et al. (2014), that a Bayesian approach can be used to identify a
cellular automata model of land dynamics; further, this chapter extends
this result to a more detailed scale, a more limited spatial extent, and an
urban growth context which is particularly important to current policy
issues reflected in the Sustainable Development Goals.

Contrary to expectation, the calibrated model predictions (reported in
the validation analysis) show a more complex landscape than that of the
independently derived land cover map. This is a consequence of changes
in the trend of urban growth, it is also consistent with previous evidence
derived by Verstegen et al. (2016). More frequent data on land cover may
be necessary to accurately characterize the evolution of land dynamics
and the lack of such data, particularly when undertaking prospective
simulations, represents a challenge for urban growth modeling.

The methodology here reported shows great promise for the calibra-
tion of cellular automata models. A comparison with the Particle Filter
approach is important to identify when each method performs better. Fi-
nally, our cellular automata model should be tested in more case studies
of Sub-Saharan Africa and the developing world more generally, partic-
ularly with different physical contexts (e.g. coastal cities), population
levels, and urban extents. An important issue in these extensions is the
adequacy of the selected spatial factors to explain urban growth.
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5.6 Appendix

Diagnostics for Bayesian models

Figure 5A.1 Kampala: trace plots and density estimates
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Figure 5A.2 Kampala: autocorrelation plots

Figure 5A.3 Kampala: correlation between parameters plots
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Figure 5A.4 Kigali: trace plots and density estimates
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Figure 5A.5 Kigali: autocorrelation plots

Figure 5A.6 Kigali: correlation between parameters plots
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6A causal statistical model of the
impact of land regulation on
urban growth

Abstract

Kigali, Rwanda is a rare case in Sub-Saharan Africa of a city that strin-
gently applies land use controls. To what extent has this land use system
contributed to shape the urban patterns of Kigali? This chapter argues it
has caused a constraint on protected zones, relative to the urban zones.
A difference-in-differences model was designed to assess the impact of
zoning constraints on urban growth. The model was estimated using
fixed effects and a spatial lag. One may conclude that, as hypothesized
and despite a limited time span during which zoning constraints have
been in place, the city of Kigali has managed to organize a system that
significantly constraints urban development in environmentally sensitive
areas. The difference-in-differences estimates of the causal effect are
negative, statistically significant, and relatively large (between −0.023
and −0.030 in an area with levels of urban development between 2.7%
and 4.7%). Controlling for spatial heterogeneity with fixed effects and for
spatial autocorrelation – that represents the urban/non urban context
in which development took place – proved necessary to obtain unbiased
effects, even after including a local neighborhood effect as determinant.

Keywords: land use plan, urban growth controls, spatial causal stat-
istical model, difference-in-differences estimator, Kigali (Rwanda)

6.1 Introduction

Despite increasing recognition of the importance of cities for the future
of Sub-Saharan Africa, land use planning across the region continues
to perform as poorly as in the past (Silva, 2012). In this regard, Kigali,
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Rwanda has been promoted as a recent positive exception of cleanli-
ness and order (Goodfellow, 2013a). Indeed, strong evidence of strict
planning implementation exists (Goodfellow, 2013b), although critical
perspectives have argued these plans were developed without taking
into account Kigali’s context and, thus, they do not respond to the city’s
needs (Watson, 2014). Regardless of judgment on how appropriate the
regulation may be, it is clear it should have caused a measurable effect
on urban patterns (due to its strict implementation); in this sense, Kigali
is a rare opportunity to explore the actual impact of regulation on the
physical characteristics of a city in Sub-Saharan Africa, and generally in
the developing world.

This chapter is concerned with the impact of Kigali’s land use regula-
tions on urban growth patterns. A series of policy and law instruments
were implemented in Kigali after 2000 (Goodfellow, 2012), which con-
strain urban development from environmentally sensitive areas and
purportedly promote densification of more suitable for land. Develop-
ment decisions are measured (as originally proposed by Dempsey and
Plantinga, 2013) with mid-scale land cover maps that identify built-up
and non built locations, using the Global Human Settlement Layer (GHSL)
of the European Union’s Joint Research Center (Pesaresi et al., 2016);
this detailed spatial scale enables greater precision in quantifying effects
relative to aggregate data. Data organized into a panel structure allowed
for the estimation of a difference-in-differences model to determine the
causal effect of the regulation; the model was constructed using a spa-
tially explicit causal framework proposed by Kolak (2017) to control for
and understand any spatial autocorrelation present.

6.2 Land use regulation effects on urban patterns

6.2.1 Land use planning in Kigali

When looking at the evolution of Kigali’s urban morphology, by 2000
urban patterns had been configured in the relatively short time span
since the 1994 genocide, mostly through slums to house hundreds of
thousands of Rwandans: a first wave of Tutsi refugees and a second, the
returning inhabitants of Kigali who had fled in the aftermath of the gen-
ocide (Goodfellow, 2012). During the following decade, a series of urban
policy instruments was introduced in Rwanda and Kigali (Goodfellow,
2012). As part of this effort, the Kigali Conceptual Master Plan (2007),
the Building Control Regulations (2008) (Goodfellow, 2013a), and the
Kigali Master Plan (2013) were produced and implemented. Given how
strictly these regulations have been applied and how fast the city has
expanded, it is likely urban patterns by 2014 had been at least partially
determined by the land use regulations.

There is a conceptual continuity between actions and policy instru-
ments in Kigali over this period. By 2006, the city was already restricting
development in wetland areas (Goodfellow, 2013a). The Conceptual Mas-
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ter Plan (OZ Architecture et al., 2007) is a strategic plan containing a
vision of Kigali that realizes the principles of compact growth, namely
constraints to urban development in the periphery and encouragement
of densification in central locations. These ideas, which had associated
locations in the Conceptual Master Plan, were refined in the Kigali Master
Plan: zone boundaries were defined at more detailed spatial scales and
building regulations were parameterized through floor-to-area ratios
(FAR), maximum building coverage, and other design regulations.

Kigali’s land use regulations have been criticized for responding more
to the interest of real estate investors than to the city’s residents (Watson,
2014). The urban poor have been displaced, in general suffering impover-
ishment (Nikuze et al., 2019), to make way for high rise re-develpoment
projects. Additionally, serious doubts exist about the feasibility of devel-
oping such high rise buildings as the regulation envisions (Pérez-Molina
et al., 2016; Behuria and Goodfellow, 2019). However, there is also strong
evidence that natural systems have been protected and urban regulations
have been strongly enforced (Goodfellow, 2013a). What impact should
be expected of these conditions?

6.2.2 Planning in the configuration of land use patterns

When analyzing the effect of regulation, this chapter develops the view
that a constraint on urban development is the main relevant phenomenon
in Kigali. In this sense, one can interpret the dichotomy between urban
zones and the protection zones in the Kigali Master Plan as an urban
growth control. Urban growth controls (see Anthony, 2017 for a de-
scription of such strategies) are policies designed to ameliorate market
failure arising from externalities in land and housing markets, as urban
development does not internalize all the costs to society of expanding
the urban fabric of a city. New infrastructure that makes development
possible – and its use by new urban land users – is generally subsid-
ized, for example, nor are the opportunity costs of environmental and
agricultural systems fully accounted for (Brueckner, 2000).

Since urban growth management policies seek to internalize these
costs, they consequently lead to higher housing costs and to less de-
velopment. Anthony (2017) proposes five such effects (arguing funda-
mentally from the US perspective), of which two are relevant for Kigali: a
land-scarcity effect because much land is designated as protected (from
development) and an amenity effect in the protected area. The first
constrains urban development in the controlled area but the second pro-
motes it, since areas without much urban development have advantages
in terms of the quality of their environment and the absence of negative
externalities from congestion.

The effect of such urban management policies, then, is less straight-
forward than one may anticipate and may have unintended consequences
on multiple dimensions. Different policy instruments may cause con-
tradictory outcomes and, furthermore, methodological decisions may
also substantially change the estimates of these effects (e.g. see Jackson,
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2016, who analyzed critically these issues for the state of California,
US). For example, whereas Jackson (2016) identifies zoning as the most
efficient constraint on development, Glaeser and Ward (2009), analyzing
the city of Boston, identify minimum lot requirements as the main policy
vehicle to restrict supply of urban land there – leading to higher housing
prices and less construction, with most development occurring in the
denser areas. They conclude the city has adopted land use controls
that are suboptimally restrictive (Glaeser and Ward, 2009). Kahn et al.
(2010) and Severen and Plantinga (2018) use regression discontinuity
and difference-in-differences estimators (causal statistical models) to cal-
culate a 20% increase in single-housing unit prices within the California
coastal boundary zone, which are subject to constraints that improve
amenities and reduce land supply, although they also impose additional
costs on property owners. Dempsey and Plantinga (2013) analyze urban
growth boundaries in the state of Oregon’s Willamette Valley, US, with a
difference-in-differences estimator and conclude they did in fact restrict
development, although not to the point of limiting population growth.

Other regulatory constraints, when not appropriately designed, may
also have detrimental effects on urban land patterns. As in Glaeser and
Ward (2009), Brueckner and Sridhar (2012) argue Indian cities have ex-
cessively constrained urban development – in this case, by promoting
low-rise land use patterns through low FAR. The consequence has been
an excessive horizontal expansion of cities, leading to social costs in the
form of increased commuting costs (relative to a higher city counterfac-
tual). A similar point was raised by Cai et al. (2017) for Chinese cities,
although in their case, developers leveraged political power to exceed
the restrictive FAR, rendering the regulation ineffective.

In view of this discussion, what may one expect for Kigali? Fun-
damentally, a constraining effect: FAR in Kigali allows for excessively
high buildings, any constraints on high-rise development are likely tech-
nological and related to lack of demand. On the other hand, a strict
implementation of urban development controls should reduce urban
growth in protected zones and, overall, cause greater compaction of the
city’s urban footprint.

6.3 Methodology: spatial difference-in-differences
estimator

6.3.1 Statistical modeling of causality: difference-in-differences
technique

A difference-in-differences estimator is proposed to quantify the ef-
fect of zoning constraints on urban growth in Kigali. The difference-
in-differences estimator is part of a long tradition in the econometric
evaluation of policy (Imbens and Wooldridge, 2009), going back to the
seminal work of Ashenfelter and Card (1985).
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Baum-Snow and Ferreira (2015) conducted a recent review of applica-
tions of causal statistical models in urban and regional planning; they
found a wide variety of applications (to labor, housing, infrastructure
variables, among others) that allowed them to conclude any application
requires many specific methodological decisions, subject to the research
question and available data. However, they do argue two questions are
central to causal analysis: to understand the sources of variation in
the treatment variable and to recognize which treatment effect is being
estimated, given several possible methodological approaches to explore
the same question.

In this vein, the main methodological antecedent of this chapter is
the work of Dempsey and Plantinga (2013), who use a spatial statistical
model (a model for which the records in the data set are locations,
in the case of Dempsey and Plantinga, 2013, plots) for an outcome
variable of development/no development and an urban growth boundary
(a zoning constraint) as the treatment variable. Dempsey and Plantinga
(2013) use econometric techniques robust to heteroskedasticity but avoid
explicit spatial correlation because they do not know the true form spatial
interdependence in the data. Consequently, they argue spatial correlation
poses too great a risk of mis-specification.

The difference-in-differences estimator was implemented following
the framework of Kolak (2017), who proposed the design of the model
should consider explicitly what spatial effects are present and how they
must be formalized (see table 6.1 in section 6.4 for the application of the
framework). Difference-in-differences is an estimator that implements
the counterfactual framework of causal analysis, which relies on the
Stable-Unit-Treatment-Value-Assumption: that outcomes are independ-
ent of actual treatment assignment; this assumption is very likely to
be violated by spatial data – because spatial data represent phenomena
located in time and space that are subject to spatial interdependence
– and, because of this, difference-in-differences estimators applied to
spatial data can be very easily biased. Kolak (2017) proposed a line of
argument to understand the research problem as a way to incorporate
spatial effects where and when needed to control for this type of bias.

With this in view, a database of 2125 locations was compiled for two
years (2000 and 2014): urban development was taken as present or not
and defined as the dependent variable; from the Kigali Master Plan, in
turn, areas constrained from development (protection zones) and areas
acceptable for urban development (residential, commercial, industrial
zones) were derived. The data, thus, was structured as a two-period
balanced panel.

This database, which is fully described in subsection 6.3.2, was em-
ployed to estimate a fixed effects model – the fixed effects capturing
the spatial heterogeneity in the outcome variable – with instrumental
variables, because the treatment (zoning constraints) is thought to be
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endogenous:

Yi =B ·Di + βi · Xi + εi (6.1)

Di =γ1 · Z 1
i + γ2 · Xi +ωi (6.2)

with Yi the outcome variable (urban development), Di the treatment
variable (equal to 1 in constrained zones and period 2014, and to 0
for all other records), Xi a control (the neighborhood effect, average
urban development within a moving window of 7 cells; this variable
was transformed to its natural logarithm, adding 0.01 to each value to
avoid null data from 0.00 values), and Z 1

i a dummy variable equal to
1 for wetland areas and to 0 otherwise. The causal treatment effect is
represented by B.

The sensitivity of the model to different estimation methods (fixed
effects vs. random effects, the presence or absence of a spatial lag) were
explored and are reported in the results.

Equation 6.1 was estimated using the the Generalized Moments tool
spgm of the splm package (Millo and Piras, 2012) of R (R Core Team, 2017).
When testing sensitivity to methodology, the gmm package (Chaussé,
2010) was used to estimate the pooled model with no spatial effects and
the spml tool from the splm package was used for the pooled version
with spatial lag (with the treatment variable was predicted using a OLS
linear model).

6.3.2 Study area and data models of spatial patterns

The modeled extent of Kigali corresponds to the area simulated in
chapter 5. When overlaying the regulated area, the administrative limit
of the Kigali province, the southeast and northeast corners of this extent
were found to lie outside of the province and were, in consequence,
excluded.

To build the final sample, first a uniform sample for each year was
constructed by taking one location out of every five columns or rows; this
should reduce spatial autocorrelation in the data (although it is unlikely
to eliminate spatial autocorrelation completely). The uniform grid of
sampled locations consisted of 24426 records for each year. Second, all
locations corresponding to roads or infrastructure (planned and existing)
were excluded, since they do not represent social dynamics of urban
actors. The zoning maps of both 2025 and 2040 include these areas.
After filtering out these locations, the database included 21531 records
per year. A random sample of approximately 10% of these was selected
and the data for both periods was pooled, resulting in a sample of 4250
records structured as two repeated cross sections, one for 2014 and the
other for 2000.

For each one of these locations, the following variables were sampled:
Land cover : land development decisions for 2000 and 2014 were

obtained from the GHSL (Pesaresi et al., 2016), a Joint Research Center
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contribution that produces world-wide maps of built-up areas at a res-
olution of 38m to monitor the location and size of human settlements
with applications to quality of life (accessibility), exposure to hazards
and pollution, and environmental impact. Human settlements data was
resampled to 30m, since it corresponds to the inputs of the land cover
models described in chapter 2. Urban development, the outcome variable
of the difference-in-differences model, is equal to 1.00 for locations where
the GHSL identifies buildings and 0.00 for other locations.

Zone: a dichotomic variable equal to 1.00 for the protected zones
(agricultural land, parks and recreation, environmentally sensitive areas)
and to 0.00 for the urban land uses (commercial, residential, and indus-
trial zones) of the Kigali Master Plan (SURBANA International Consultants
PTE Ltd., 2013), which coincides, as noted, with the Kigali Conceptual
Master Plan of 2007 (OZ Architecture et al., 2007). The Zone variable is
the treatment Di in the difference-in-differences model. The 2040 zoning
map of the Kigali Master Plan was used to build this variable. Note that
while development is not completely forbidden in the protected zones, it
is highly discouraged: only support buildings (e.g. barns, recreational
facilities) are allowed with total building areas strictly limited.

Neighborhood factor : the average built-up land cover in a moving
window of seven cells (210m), estimated using the land cover data as
input. The variable controls for the differences in urban growth between
urbanized areas and non-urbanized areas, which are important in Kigali
because infrastructure constraints and a relatively sparse urban fabric
make infill development attractive. Furthermore, this neighborhood
factor controls for scaling relations (Batty, 2009) embedded in variables
such as accessibility. The natural logarithm of the neighborhood factor
was used as control in the regression models.

Wetland: a dichotomic variable equal to 1.00 for wetland and river
areas, identified in the zoning map, and to 0.00 for all other locations;
while these areas should in principle be unsuitable for urban develop-
ment, what is termed wetland often corresponds to the generally dry
floodplains of very small rivers. The physical characteristics of the land-
scape result in buildings being feasible, if undesirable for flood risk and
other environmental reasons. Additionally, this variable is meant as an
instrument for the Zone treatment variable – and since it was one of the
criteria used to determine protected areas, it is thought to be an good
instrument.

Other variables had been identified in chapter 5 as relevant to explain
urban growth: the slope factor, travel time to CBD, and distance to main
roads. However, these variables have hardly any variation in time – and
the data models which represent them in previous models are also static
in time. Because this chapter reports on the application of fixed effects
models, such variables would be generally dropped from the analysis.
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Figure 6.1 Change in average development over time. Dotted line corresponds
to Zone (constrained area)

6.4 Results and discussion: difference-in-differences
model

A preliminary aggregate characterization of urban development in Kigali
suggests positive impacts of land use planning on urban patterns. Figure
6.1 shows the average development for the constrained area (dotted line)
and the non-constrained area.

Two important trends are shown in figure 6.1: (1) development in
Kigali increased between 2000 and 2014 in both the constrained and the
non-constrained area, but it increased more in the non-constrained area;
(2) the amount of development is much greater in the non-constrained
area than in the constrained area. On aggregate, this description sug-
gests land use regulations have been effective in shaping urban patterns
towards a more compact, sustainable arrangement. However, this de-
scriptive analysis does not account for space, in particular spatial het-
erogeneity. The non-constrained area includes urban centralities and the
area most accessible to them; thus, the results of figure 6.1 confound
spatial dependence patterns with the potential effect of the policy.

The difference-in-differences estimates are presented in tables 6.2
(which explores sensitivity to choice of methodology) and 6.3 (which
tests the sensitivity of models to the spatial lag). Table 6.1 presents the
application of Kolak’s (2017) spatial framework.

Three key methodological choices follow from table 6.1. First, because
the zoning scheme was defined using the same criteria that determine
urban agents’ location choice, the treatment is not exogenous to the
outcome. This condition implied the need to use instrumental variables
and, therefore, a General Moments estimation method. Second, fixed ef-
fects were chosen to control for spatial heterogeneity. The most relevant
spatial differentials embody the scaling relations that describe urban
morphology: a neighborhood effect and accessibility to urban centralities.
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Since estimates of accessibility are all approximately constant in time
(and therefore would be dropped by fixed effects estimators), only the
neighborhood effect was controlled for. Third, spatial lags were not
expected to play a substantive role within the model, since the zoning
treatment was externally imposed and it does not change in time nor
with location. All records within 8000m of a location were defined as its
neighbors; this limit was chosen by fitting the urban growth data of the
sample to a semivariogram and establishing its range.

The treatment variable Zone of the models reported in tables 6.2 and
6.3 was instrumented using the Neighborhood factor and the Wetland
variables. As noted previously (Pérez-Molina et al., 2019b), six spatial
determinants explain urban growth in Kigali: neighborhood effects (from
these results, occurring within a moving window with sides of 220m),
travel time to CBD, Euclidean distance to main roads, slope, and wetlands.
Of these, only the neighborhood factor changes in time. Furthermore,
for theoretical (Glaeser, 2008) and empirical reasons (Pérez-Molina et al.,
2019b), one should argue accessibility factors are the most important;
they are also highly correlated with neighborhood effects.

The difference-in-differences estimators are shown in table 6.2, they
correspond to the regression coefficients of the variable Zone: all models
result in a significant and negative causal effect, which means the con-
strained areas present less urban development than non-constrained in
Kigali. However, the pooled regressions – those that do not control for
spatial heterogeneity – result in a much larger causal effect than the fixed
and random effects models. This result is understandable, since (despite

Table 6.1 Application of spatial framework

How is treatment
chosen or assigned?

Treatment is exogenously imposed, top-
down, on locations; the criteria to define
the treatment area make this variable en-
dogenous to the response (urban plan-
ner judges the most suitable locations
for urban development by ‘replicating’
the choices of rational urban agents).

What are potential
sources of variation in
the treatment variables?

Sources of variation are systematic
and suitability-informed; in this sense,
policy is the consequence of spatial het-
erogeneity. No spatial lag expected,
though, since the policy is imposed top-
down.

What effects are being
estimated (if any)?

Causal effect of treament (Zone)

Fixed effects (group and temporal)
Instrumental variables (adds wetland
location to accessibility controls of
model)
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Table 6.2 Regression estimates for panel data analysis to explain urban growth.
Sensitivity to estimation methods

Variable Fixed Random Pooled
No Lag Sp. Lag No Lag Sp. Lag No Lag Sp. Lag

Intercept – – 0.712 0.691 0.736 0.736
(< 0.01) (< 0.01) (< 0.01) (< 0.01)

Zone −0.014 −0.041 −0.017 −0.020 −0.129 −0.129
(0.029) (< 0.01) (0.004) (< 0.01) (0.052) (< 0.01)

Neighb. 0.140 0.124 0.158 0.155 0.155 0.155
Effect (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)
Spatial Lag – 0.478 – 0.074 – −0.0001

(< 0.01) (0.044) (0.362)
Hausmann test
No spatial effects χ2 = 1436.3, 1 d.f. (< 0.01) Reject RE.

All estimates using GM estimator except for Pooled Spatial Lag model, which uses a

maximum likelihood estimator.

the use of instrumental variables to address the endogeneity problem of
the variable Zone) the fixed and random effects are the principal method
to control for spatial heterogeneity. When such controls are not included,
the Zone variable does not represent only the causal effect of the land
use plan; it also serves as a proxy variable for accessibility, because the
areas constrained from development are farther from urban centralities
than the non-constrained areas.

Apart from the causal effect, the other major difference between
models is in the spatial lags: it is not significant for the pooled model,
and positive and significant for both the fixed effects and random ef-
fects models but the spatial lag of the fixed effects model is over six
times larger than the random effects. Other regression coefficients are
all significant, positive, and of similar magnitude for all models (the
neighborhood effect for all six versions of the model and the intercept
for the random effects and pooled models). Furthermore, the causal
effect is similar for the fixed effects and random effects models, less
than −0.10 in all cases.

Finally, the Hausmann test to contrast the fixed effects and the ran-
dom effects model rejects the consistency of the random effects model.
Thus, one should favor the fixed effects.

While the model design assumes spatial lags should not be part of
the model, it is important to test the robustness of the model to this
assumption (recall the caution of Dempsey and Plantinga, 2013 regarding
spatial autocorrelation). Table 6.3 shows how these spatial lags affect
the difference-in-differences estimator: as the radius that determines the
spatial lag decreases, so does the magnitude of the causal effect, although
all causal effects are negative and statistically significant. The spatial lag
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Table 6.3 Regression estimates for panel data analysis to explain urban growth.
Standardized coefficients reported. Sensitivity to estimation methods

Variable Spatial Lag
No Lag 8000m 4000m 2000m 1000m

Zone −0.014 −0.041 −0.030 −0.025 −0.023
(0.029) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

Neighb. 0.140 0.124 0.121 0.119 0.113
Effect (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)
Spatial Lag – 0.478 0.421 0.378 0.373

(< 0.01) (< 0.01) (< 0.01) (< 0.01)

Fixed effects models with Spatial Lag. Spatial Lag defined as all records within a radius of

1000 to 8000m of each location. All estimates using GM estimator.

itself, also statistically significant and positive for all models, decreases
with the radius as well, and the neighborhood effect is approximately the
same for all models.

Methodologically, there are two important issues that must be raised
from the results of this chapter: the choice of linear regression methods,
despite the dependent variable being dichotomic, and the relevance of
spatial autocorrelation.

The choice of linear over non-linear econometrics, also adopted by
Kline et al. (2014), was explained by Dempsey and Plantinga (2013):
non-linear econometrics (probit or logit models) have the advantage of
constraining the dependent variable to the range [0, 1]; however, the
causal effect estimated is a function of all variables and parameters
and it becomes biased in the presence of heteroskedasticity. Ultimately,
since the center of this chapter’s results is analytic rather than predictive
(interest focuses on the causal effect rather than the predictions of the
model), the linear estimator was chosen.

Regarding the spatial lag, there is a potential contradiction between
the results reported in table 6.3 and the assumptions made when design-
ing the difference-in-differences model. Should a spatial lag be included
in the model? What radius should determine it? As was noted, the
spatial lag of 8000m is the result of an empirical analysis (of a variogram);
does this radius have a substantive interpretation? A spatial lag can be
generally interpreted as evidence of a diffusive process. One should note
the neighborhood factor already controls for such a process at a very
local scale (seven cells, 210m).

To address this question, figure 6.2 shows the urban development
patterns and the radius that determine the spatial lag for three locations:
one in the main urban patch, one town in the eastern edge of the study
area, and one in undeveloped regions. What one can see in these four
circles is that the three smallest (for which the radius varies from 1000m
to 4000m) show a similar pattern within them: for the urban patch, an
urban context, and for the locations in the eastern town and northern
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Figure 6.2 Urban development patterns and radius determining spatial lags
for four locations, 2000 and 2014

undeveloped location, the essentially undeveloped hinterland of the city.
Therefore, it would seem that these spatial lags control for the mid-scale
context of each location (whether they are in the city proper or in the
surrounding periphery). The band of area between the third and fourth
circles (radius of 4000m and 8000m) is different. In all three cases, the
overall proportion of area in this band differs from the inner area: for
the urban location, the largest area is undeveloped (contrary to the inner
circle), and for the peripheral locations, while the undeveloped area is
still dominant, relatively large patches of urban development can be
seen.

Therefore, the positive spatial lag – contrary to the initial assumption
of the methodological design – is required to control for the general
context. In addition, the spatial lag is defined by all locations within a
radius of 1000m to 4000m. When looking at table 6.3, the causal effect of
the zoning is a net reduction of urban development between 2.3% and
3.0%, relative to non constrained locations. This is, contrary to initial
appearance, an important reduction, given the average build-up area in
the constrained area was a mere 2.7% in 2000 and 4.7% in 2014.

When compared to previous cases reported in the literature with
similar methods (i.e. a difference-in-differences estimator drawn from a
spatial statistical model), as in Dempsey and Plantinga (2013) or Kline
et al. (2014), the causal effect of regulation in Kigali seems small (Demp-
sey and Plantinga, 2013 estimated net increases of urban development
within the urban growth boundary of 12.7%; Kline et al., 2014, of 18.7%).
However, this conclusion should be qualified: first, as noted, because
the percentage of development in the area constrained by zoning is also
small and second, neither Dempsey and Plantinga (2013) nor Kline et al.
(2014) use fixed effects; their results are closer to the pooled model
reported in table 6.2 – for which the (biased) causal effect is a reduction
of development of 12.9%; interestingly, they do control for spatial hetero-
geneity but by introducing exogenous spatial determinants rather than

112



6.5. Conclusions

spatial econometrics.
A second difference between these two case studies and the eval-

uation of Kigali lies in the time extent involved. Both Dempsey and
Plantinga (2013) and Kline et al. (2014) evaluate a long-standing planning
instrument (urban growth boundaries enacted in Oregon and Washing-
ton, US, in the 1970s) over a much longer period (1970s to 2000s) and
in a more mature institutional setting. By comparison, the analysis of
Kigali reported in this chapter covers a period of 15 years and the regu-
lation was in place for half of the period. It is also true, however, that
in Kigali, the total population and urban footprint doubled during this
period; a very large change occurred compressed in time, even after the
upheaval associated with the 1994 genocide had subsided. In this sense,
several cities for which Dempsey and Plantinga (2013) reported causal
effects also presented similar population growth rates but for longer
time periods.

A third element to consider is the very wide heterogeneity of results
obtained in previous studies (Dempsey and Plantinga, 2013; Kline et al.,
2014). Of 17 Oregon cities analyzed in Dempsey and Plantinga (2013), 5
resulted in non-significant causal effects of their urban growth boundary,
6 presented a small constraint (less than 10%), and 6 a large constraint
(over 10%). Even in Kline et al. (2014), who analyzed a single metropol-
itan area, one of four counties showed a non-significant effect. These
results, as well as those reported in this chapter (specifically the differ-
ence between the pooled model and the models controlling for fixed or
random effects in table 6.2) strongly suggest the presence of important
spatial effects that, even after controlling for main determinants such as
accessibility, may introduce idyosincratic elements with the potential to
bias results.

6.5 Conclusions

This chapter has examined the extent to which zoning constraints embod-
ied in the Kigali Conceptual Master Plan and the Kigali Master Plan have,
over the period 2000 to 2014, restricted urban development in the city of
Kigali. While most urban development over this period occurred within
areas designated for urban use in the planning instruments, this can be
partially attributed to spatial heterogeneity (specifically, to the fact that
urban zones in the plans are more accessible than environmentally sens-
itive areas in the periphery). However, using a difference-in-differences
model that explicitly accounts for spatial effects, the net effect of zoning
was estimated to be statistically significant and to range between −2.3
and −3.0 (with average built-up fraction increase in the constrained area
from 0.027 to 0.047).

Methodologically, a fixed effects model with instrumental variables
and spatial lag was designed, following the framework proposed by
Kolak (2017). Instrumental variables were deemed necessary because
accessibility, the main theoretical determinant of urban development, is
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clearly correlated with and conceptually contributes to determine the
zoning scheme proposed in the land use regulation. Spatial lags were
initially thought to be unnecessary, as local diffusion processes had
already been controlled for using a neighborhood factor. However, upon
further critical examination, an effect of mid-scale level context (whether
urban or rural) was found to be captured by spatial lags with neighbors
determined by ranges between 1000m and 4000m. Explicit consideration
of spatial effects, both methodological and substantive, was found to be
necessary to avoid biased estimated in the case of Kigali.

Kigali is a rare case of a city in a developing country with a strong in-
stitutional setting. It is an open question whether the social and political
context that has made such strict application of regulations will persist in
time (Goodfellow, 2013b). Furthermore, if urban development continues
apace and it is not matched by economic prosperity, the envisioned sup-
ply of urban space will not materialize, causing a potential breakdown of
the system – and this is a clear danger in the short run. Paradoxically,
looking at the next decade, policy makers may want to incorporate flex-
ibility into their planning instruments to cope with such contingencies.
Their challenge may very well be to incorporate such flexibility without
renouncing the environmental and infrastructure provision advantages
that follow from compact development.

6.6 Appendix

Figure 6A.1 Variogram of urban development of final sample used to determ-
ine spatial lag. Exponential fit with range of 8000m and psill of 0.15 and nugget
of 0.05
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7Flooding, land cover, and spatial
planning scenarios for Kampala
and Kigali

Abstract

Prospective scenarios of urban growth and flooding were designed and
developed to explore the relations between land use regulation, urban
growth, and flood impacts. Critical uncertainties determined the design
of scenarios: land demand (how much population growth may occur in
each city and can it be physically accommodated), potential supply (will
growth follow planned or unplanned conditions, and if unplanned, un-
der what densification preferences of urban agents), and rainfall (which
rainfall events will influence urban patterns). The calibrated cellular
automata urban growth model of Kampala and Kigali was used to project
urban growth to 2030. Scenarios assuming no feedback effects between
flooding and urban growth were estimated to understand the poten-
tial role of land use regulation of Kampala and Kigali, in terms of the
resulting urban pattern and of its potential flood impacts. A further
set of scenarios incorporating a feedback effect between flooding and
urban growth, under planned and unplanned conditions, were developed
for Kampala. Results of these scenarios were: for Kampala, land use
regulation promotes compact growth but the land use plan of Kigali may
have the unintended consequence of promoting sprawling patterns, land
use planning in Kampala may significantly reduce exposure to flooding
but not runoff, incorporating the feedback effect visibilizes the benefits
of land use regulation for large cities (but this reduction in flooding is
unlikely to be present in smaller cities, such as Kigali).

Keywords: land scenarios, flooding, urban growth, land use planning,
flood risk mitigation, Kampala (Uganda), Kigali (Rwanda)
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7.1 Introduction

The scenarios developed in this chapter for Kampala and Kigali revolve
around the research questions which organize this dissertation: (1) the
interaction between urban growth and flood processes and (2) how can
these be influenced through land use planning.

Loosely following the method proposed by Shearer et al. (2009,
chapter 6), around this focal question, land use planning was deemed
to be the main local force that could best contribute to urban flood
risk mitigation and land demand, urban land supply, and rainfall were
identified as the main contextual uncertainties. Therefore, the logic of
the scenarios concentrates on exploring the impact of these elements:
in a first stage, different population projections and urban development
characteristics are simulated from 2016 to 2030 using planned and non-
planned conditions (for Kampala and Kigali, see section 7.3); in a second,
the feedback between flooding and urban growth was introduced into
the land use modeling, with flooding a consequence of rainfall trends
(only for Kampala, see section 7.4).

Variations of the urban growth model reported in chapter 5 were used
to construct the projections, which were then evaluated and discussed
in terms of the resulting urban development patterns, flood outcomes,
and specifically how these differ between the planned and unplanned
scenarios. Overall, prospective scenarios not only organized data to
explore the relations, they also visibilized assumptions affecting these
relations, setting explicit conditions against which to test the plausibility
and possibility of each simulation.

7.2 Critical uncertainties

7.2.1 Land demand

The determination of land demand for prospective scenarios follows the
same procedure as was outlined in the prototype model of chapter 4,
namely by projecting an exogenous population growth and dividing it
by gross population density. Under the most basic assumption, gross
population density for any target year was taken as equal to the baseline
year (2015 for Kigali, 2016 for Kampala): 128.7 residents per ha for
Kampala and 251.6 residents per ha for Kigali. Note this estimates use
the land cover models developed in chapter 2, which are of built-up
fraction and thus result in estimates of urban area that are lower than
other studies of Kampala or Kigali.

The amount of future population in Kampala and Kigali is an uncer-
tain parameter. Eastern Sub-Saharan Africa is generally considered a
region undergoing very rapid urbanization (Dodman et al., 2017), often
characterized as catching up to other parts of the world as the fraction of
urban population increases; however, evidence of slowing urbanization
rates in Sub-Saharan Africa had already been advanced ten years ago,
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7.2. Critical uncertainties

Figure 7.1 UN population estimates and projections of Eastern Sub-Saharan
Africa cities (United Nations, 2018). In red: period of growth between circa
500 thousand and 1.0 million residents; in green, period of growth between
circa 1.0 million and 2.5 million residents; crosses: population 15 years after
reaching circa 1.0 million residents; circles: population 15 years after reaching
2.5 million residents

heralding changes in the determinants of regional urban growth (Potts,
2009). The underlying argument, for the future, is that urban population
– and consequently the population of major cities – will continue to rap-
idly increase at similar rates to the immediate past. This can be seen in
figure 7.1, which plots population estimates and projections for five year
intervals, compiled by the United Nations (United Nations, 2018), of five
major cities of Eastern Sub-Saharan Africa: Addis Ababa (Ethiopia), Dar
es Salaam (Tanzania), Kampala (Uganda), Kigali (Rwanda), and Nairobi
(Kenya).

A more careful analysis of the data on figure 7.1, however, reveals
at least two trends in the data: while Dar es Salaam, Nairobi, and Addis
Ababa since 2000 exhibit the exponential growth characteristic of Kam-
pala, Kigali and Addis Ababa before 2010 expanded at a slower pace. A
deep analysis of the causes of these demographic differences is beyond
the scope of this chapter (refer to United Nations, 2018 and Dodman et
al., 2017 for general context as well as the arguments of Potts, 2009).
However, it does suggest at least two hypothesis of population growth
are necessary: a high population growth and a low population growth:

• For Kampala, trend urban growth corresponds to a rapid increase
with interannual rates over 5.0%. The high population growth was
defined as the trend condition, which predicts a population of 5.5
million residents by 2030.
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• For Kigali, trend urban growth corresponds to a “slow” (around
3.0% yearly) increase. The trend condition was taken as the low
population growth – by 2030, a predicted population of 1.6 million
residents.

What should be the low population projection for Kampala, the high
population for Kigali? In 2000, Kampala’s population was estimated at
1.2 million residents and Kigali’s, at 500 thousand residents. Over the
next 15 years, these increased to 2.6 million and 951 thousand residents
respectively. Figure 7.1 shows in green the increase from circa 1.0 million
to circa 2.5 million residents of Addis Ababa, Dar es Salaam, and Nairobi;
the circle marks the period 15 years after these expansions took (Dar es
Salaam, Addis Ababa) or are projected to take place (Nairobi, Kampala).
As is shown, Dar es Salaam and Nairobi result in estimates or projections
that are approximately equal to Kampala’s projected 5.5 million. How-
ever, Addis Ababa’s population was substantially lower, at 3.8 million
residents. Therefore, a low population growth condition for Kampala
was assumed as a projected population equal to that of Addis Ababa in
2015. Similarly, the red lines of figure 7.1 mark the increase from circa
500 thousand to circa 1.0 million residents for the five cities that have
been discussed and the cross, the estimate or projection 15 years after
the 1.0 million residents mark has been reached. As in the previous case,
Addis Ababa and Kigali show a lower and similar estimated or projec-
ted population (around 1.5 million) while the faster growing cities (Dar
es Salaam, Kampala, Nairobi) also show similar and larger population
estimates of over 2.0 million residents. Thus, the population of Nairobi
15 years after passing 1.0 million residents (2.2 million residents) was
adopted as a high population growth estimate for Kigali. Exact figures
are reported in the appendix, with other scenario parameters.

An assumption in the discussion on projected population is the
capacity of the environment of accommodating the land demand under
trend conditions, which in turn is grounded implicitly on the closed
city assumption, namely migration cannot occur (by which one should
understand that an urban agent cannot leave the city if it becomes too
crowded; see Brueckner, 1987 for a formal neoclassical analysis of urban
structures under closed and open city assumptions). What could happen
if such development is not physically possible? At least two possible
system responses are predicted by the theory (Brueckner, 1987): under
closed city conditions, the city would densify (its capital-to-land ratio
would increase) and this densification would generally be greater in more
accessible locations. Alternatively, under an open city assumption, the
increased costs of congestion (the negative externalities of densification)
would reduce utility, in turn prompting emigration; thus, the effect
would be a lower population. This, then, is the theoretical mechanism
behind the population projection: one should expect faster population
growth rates leading to larger population and city size under closed city
conditions (i.e. high population scenarios) whereas open city conditions
should result in a slower, and therefore smaller, population growth.
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It is worth noting that in the most recent United Nations city popula-
tion predictions (United Nations, 2018), both Uganda and Rwanda only
report one city with over 300 thousand residents (Kampala and Kigali),
contrary to many of its larger neighbours such as Ethiopia, Kenya, or
Tanzania, lending credence to the closed city assumption. However, the
urban national policy of Rwanda, currently under development, envisions
the reinforcement of secondary cities, which if successful could create
the possibility of an open city within an urban hierarchy (to be sure,
Kigali would continue, even then, as the main population and economic
center of the country).

7.2.2 Land supply

As noted in chapters 4 and 5, how much land demand is realized (actually
built) and where is a function of the spatial determinants of urban growth,
which reflect the desired locations of urban agents, and of the urban
system’s capacity to supply the buildings. Estimates of this potential to
supply built-up area are required by the urban growth model to allocate
development. Under calibration conditions (as in chapter 5), this model
of potential supply is known because the urban growth of the calibration
period is known. When projecting urban development, the supply map
may reflect the unplanned past (as in Upper Lubigi, Kampala, see chapter
4) or the planned trend (see for example the case of Rwampara, Kigali,
Pérez et al., 2016).

A second element to consider, however, is the difference in total
amount and per cell amount of urban growth in greenfield vs. re-
development (intensification of existing urban areas). Table 7.1 sum-
marizes total urban development for Kigali and Kampala, distinguishing
between greenfield development and intensification of the existing urban
fabric. One can see a tendency towards greater dispersed greenfield
development (increasing quantity and percentage of greenfield develop-
ment), which is likely the result of greater prosperity (greater stability
from the perspective of security, possibly rising incomes). Furthermore,
when estimating the average increase of built-up fraction for greenfield
and intensification areas (excluding cells with 0.00 built-up fraction), one
finds another striking difference: for the 2001-2016 period, greenfield
development cells of Kampala increased on average 0.182 vs. an increase
of 0.364 for the intensification areas; in Kigali, 2000-2015, these average
increases were of 0.112 and 0.224 respectively. This is in line with theor-
etical expectations, since capital-to-land ratio is a decreasing function
of accessibility, hence one should expect the more accessible existing
urban areas to develop at greater pace than the periphery.

To generate models of potential supply of prospective scenarios, one
first must consider the unplanned condition. The potential supply map
was created by applying map algebra following equation 7.1:

SimDemi = 2 · AvgBUfr · UnifRandomi (7.1)
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Table 7.1 Urban growth per type in Kampala and Kigali (ha)

Urban growth
Period Total Intensification Greenfield
Kampala
2001-2010 6830 2781 4049

100% 41% 59%
2010-2016 8267 2737 5530

100% 33% 67%
Kigali
2000-2009 1125 609 516

100% 54% 46%
2009-2015 1471 708 763

100% 48% 52%

Intensification: urban growth occurring in areas that already presented urban develop-

ment in initial year. Greenfield: urban growth occurring in areas that had 0.00 built-up

fraction in initial year.

with SimDemi the potential supply of cell i , UnifRandomi a random value
in the range [0.00, 1.00]; the overall distribution of UnifRandom is spa-
tially random, and AvgBUfr the average built-up increase per cell. The
2 in equation 7.1 must be introduced because the expected value of
UnifRandom is 0.50 so, in its absence, the average built-up increase would
be halved relative to the reference data. This procedure is equivalent to
what was implemented in chapter 4.

The discussion on greenfield vs. intensification urban growth and
the need for an average per cell built-up fraction introduces a new
requirement into the prospective simulation, relative to the models
used in chapters 4 and 5: when considering unplanned scenarios, two
potential supply maps must be used, one for greenfield development
and another for intensification (because of the difference in the AvgBUfri
parameter); the increase of built-up fraction is a function of type (whether
in the urban fabric or not) but not its location, which follows from
the suitability score that combines the spatial determinants (derived in
chapter 5). However, because location is determined in no small part
by accessibility, if all land demand were allocated jointly, one should
expect an unrealistic densification of central locations and hardly any
greenfield development (contrary to the trends present in the data for
previous periods). Therefore, for prospective simulation, land demand
was also divided into two fractions, according to a percentage of expected
greenfield development. One should note that, when densification is
prevalent in a scenario, this greenfield fraction should be reduced and
the average per cell increase of built-up fraction should be enlarged,
relative to trend conditions of both cities.

Compared to unplanned conditions, the potential supply for planned
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Figure 7.2 Floor-to-area ratio of Kigali Master Plan and interpretation of Kam-
pala Physical Development Plan

scenarios is straightforward. For Kigali, the Master Plan (SURBANA
International Consultants PTE Ltd., 2013) explicitly defines floor-to-area
(FAR) ratios for residential and commercial land use zones – for industrial
zones, this parameter was assumed equal to 1.00, since only maximum
percentage of covered area is regulated; for protected areas, for which
constructions are assumed minimal, the FAR was set to 0.15. Because the
Kampala Physical Development Plan is strategic rather than normative
in nature (ROM Transportation Engineering Ltd. et al., 2012), no such
parameterization was available. However, land use zones between both
plans were compared and the parameters of the closest equivalent from
Kigali were used to generate an estimated FAR map for Kampala. These
maps of FAR were adopted as potential supply; in effect, they call for
intensification of central locations via multi-storey buildings, since FAR
values of Kigali are large (generally greater than 1.00 for commercial and
residential areas), as is shown in figure 7.2.

Because FAR values are relatively large and due to technological and
social constraints, especially in terms of income of urban agents, the
land use plan of Kigali has been considered unrealistic (Watson, 2014)
and by extension, similar criticism is possible of the potential supply
model for Kampala. Indeed, previous experiments (Pérez-Molina et al.,
2016) already supported the conclusion that the available development
potential far exceeded the needs of Kigali, i.e. that the FAR had been set
to excessively large values. Following this previous work and to increase
the realism of the planned scenarios, an assumption was made that
potential supply of the land use plans would only be partially realized
– between 50% and 100% of the regulated FAR would actually be built,
following a spatially random pattern.
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7.2.3 Rainfall and flooding

The relations between rainfall and flooding can be extraordinarily com-
plex, as flooding depends not only on the magnitude of rainfall events
but also on antecedent precipitation, characteristics of the landscape,
and spatial variation of all of these variables (Turkington, 2016). Com-
pounding the problem, climate change will likely introduce variations in
expected triggers of natural hazards, of unknown effect. Even in cases
with good data available, exploring these multiple dimensions is a chal-
lenging task (Turkington, 2016). In Sub-Saharan Africa, to the inherent
problems of the phenomenon one must add the lack of comprehensive
measurements of both rainfall and river flows, which preclude much of
the traditional calibration exercises of flood modeling.

How, then, can one deal with flooding and its effect on prospective
urban growth? Much of the evidence and methods applied for scenario
construction were already described in chapter 3: (1) Areas exposed to
flooding impose additional costs to urban agents and, because of this,
they will be undeveloped relative to areas with similar accessibility. How-
ever, as population increases, urban agents will be increasingly willing
to accept exposure to flood when compensated by greater accessibility
(Frame, 1998). (2) Peak discharge, as a proxy of flooding, does have
a measurable deterrent effect on urban growth; but this effect is very
small when compared to the growth triggered by population increase
and should fade as population continues to grow. A corollary of this
conclusion, the main finding of chapter 3, is that little to no impact of
flooding on urban patterns should be expected for smaller populations
because most of the exposed area will not have been yet developed. In
consequence, the feedback effect between flooding and urban growth
has only been explored for Kampala, the larger metropolitan region, as
widespread effects are still not expected for Kigali. (3) While information
is scant, there is sufficient evidence to derive maximum yearly rainfall
events for selected return periods (this chapter adopts the estimates
of Chogyal, 2012) and to synthesize events using intensity-duration-
frequency curves (Fiddes and Forsgate, 1974) for Kampala. (4) The
constraint on urban development caused by flooding was detected by
assuming the maximum rainfall of the past five years causes the con-
straint; in effect, this is equal to assuming urban agents remember the
maximum flood that has occurred over that period.

To simulate the 2016-2030 period incorporating a feedback effect
between flooding and urban growth, a first assumption is made relative
to the results of chapter 5: recall a wetlands factor was calibrated and
interpreted as reducing suitability for urban development in locations
occupied by wetlands; the reasons for this included increased exposure
to flooding, soils subject to subsidence, protections – even if inefficient –
of the land use regulation system, among others. The first assumption is,
then, to accept exposure to flooding as the main cause of the constraint
posed by wetlands. In consequence, the map of wetland areas can be
substituted by the map of flooded areas, in turn affecting urban growth
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Figure 7.3 Simulation of rainfall events for prospective scenarios of urban
growth

allocation each year.
The need for a flood map every year simulated further complic-

ates matters, as flooding is estimated using the event-based OpenLISEM
model. Events, as noted, can be simulated for any given daily rainfall
and the daily rainfall of a given return period can also be determined.
Yet what event should be assigned to each year of the prospective simu-
lation? The following assumptions were made for the 14 year simulation
period: events of return period equal to 1 were exceeded every year
of the simulation period, events with return period equal to 2 were ex-
ceeded half of the time (seven years), events with return period equal
to 5 were exceeded three times, events with return periods equal to 10
and 20 were exceeded one time only. If one were to select one event with
return periods of 5, 10, and 20 years, four events with return periods
of 2 years, and seven events with return periods of 1 year, all of the
assumed constraints would be met save the 10 year return period event
being exceeded twice. This set of events was randomly arranged; the
result of this sorting is shown as a gray area in figure 7.3. Because the
corresponding event to every year in the simulation period, as well as
for preceding years (see chapter 3), is known, it is a simple matter to
determine the maximum event of the past five years (shown as a black
line in figure 7.3).

The total yearly rainfall events reported in figure 7.3 were used to syn-
thesize hyetographs with 15 min intervals using the intensity-duration-
frequency analysis already described in chapter 3. A simplifying as-
sumption, that this five year maximum event occurred in each simulated
period, was adopted (strictly speaking, one should calculate a flood map
for each year using that year’s corresponding rainfall and choose the
maximum flood of the five year period as the one triggering behavioral
changes of urban agents, but this is a cumbersome process that adds
little in the way of meaningful variance, given the limited sensitivity
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of flood estimates to patterns with relatively large built-up fractions
vis-à-vis the rainfall events).

7.3 Urban growth: planned and unplanned
scenarios of Kampala and Kigali

In this section, the possibilities identified as critical uncertainties were
combined into scenarios, with the aim of generating alternative develop-
ment paths uniquely associated to a specific variations that contribute
to explore the focus question how could urban growth and flooding be
influenced through land use planning? Two series (A for Kampala, B
for Kigali) of seven scenarios (1-3 for unplanned potential supply, 4-7
for planned potential supply of urban land) were constructed and com-
pared to each other, eliciting knowledge on a set of future possibilities
of Kampala and Kigali, and how land use planning, flooding, and urban
growth may factor into this set. Table 7.2 summarizes the combination
of critical uncertainties that defines each scenario.

Meta-narratives for scenarios 1-3 and 4-7 are presented as a means of
discussing the salient characteristics of each scenario; a discussion then
compares both groups in the context of the focus question.

7.3.1 Unplanned prospective scenarios narratives

Circa 2015, the institutional environment underpinning the land use
planning system, and more broadly public institutionality, looses legitim-
acy. Regulatory constraints break down; urban growth patterns become
controlled by land market dynamics reflecting urban agents’ preferences
and the urban system’s capacity to materialize them.

As part of this generalized collapse, the city becomes a relatively safe
haven in terms of livelihood, driving up immigration but without any ma-
terial prosperity arising. Population growth follows the high population
growth assumption and the urban system is capable of accommodating
it without changes to urban agents’ preferences as expressed in the circa
2010-circa 2015 period (scenario 1); alternatively, in the short run, the
urban system proves incapable of supplying the required urban land:
the city densifies under closed city assumptions (high population growth
remains, scenario 2; densification is achieved by reducing the percentage
of land demand allocated as greenfield and by doubling the average per
cell increase of built-up fraction) or the city looses excess population
(density preferences remain, low population growth, scenario 3).

7.3.2 Planned prospective scenarios narratives

Circa 2015, the institutional environment crosses a critical threshold
that provides the social legitimacy and political incentives to strongly
enforce land use regulation. Land use planning regulations envisioning
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Table 7.2 Scenario definitions

Kampala Kigali
High
pop.
growth

Low pop.
growth

High
pop.
growth

Low pop.
growth

U
n

p
la

n
n

ed Baseline densi-
fication

1A 3A, 2C* 1B 3B

Increased
densification

2A, 1C* 2B

P
la

n
n

ed

Partial imple-
mentation

4A, 3C* 5A 4B 5B

Full imple-
mentation

6A 7A 6B 7B

* indicates scenarios for which a feedback between urban growth and flooding was

implemented. Baseline densification: based on 2010-2016 for Kampala and 2009-2015

for Kigali; increased densification: built-up fraction increase was doubled relative to

the baseline period and % of land demand allocated as greenfield was reduced. Full

implementation (of land use plan): the envisioned FAR is totally implemented; partial

implementation: only between 50% and 100% (following a spatially random pattern) of

the total FAR potential is actually realized (in practice, this equates to a reduction of

development density).

a multi-storey building-based densification of central locations coupled
with a strong constraint on the amount of permitted development in
peripheral areas are available for implementation.

Urban agents’ preferences are thus constrained by regulation. The
urban system is fully capable of building the envisioned structures and
urban agents have the financial capability to occupy them (scenarios 4
and 5) or the system and urban agents can only partially take advantage
of the opportunities presented by the regulation while being forced into
following its constraints (scenarios 6 and 7).

The city continues to attract immigrants at a rapid pace (high growth
population, scenarios 4 and 6) or at a slower pace (low growth population,
scenarios 5 and 7).

7.3.3 Prospective scenario results: a discussion

The simulated prospective scenario results for the target year 2030 are
shown in figure 7.4 for Kampala and figure 7.5 for Kigali. The bottom
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Figure 7.4 Prospective urban growth scenarios of Kampala, 2030. Scenarios
1A, 2A, 4A, and 6A correspond to high population growth, scenarios 3A, 5A, and
7A correspond to low population growth. Scenarios 2A, 6A, and 7A correspond
to increased density, relative to baseline conditions.

row of each figure (scenarios 1-3) correspond to unplanned land supply
and the top (scenarios 4-7), to planned land supply.

A first question regarding all scenarios is, can the environment ac-
commodate the land demand associated to high population growth?
The answer is unequivocally yes, land demand was fully allocated in
all scenarios but two: scenario 6A and scenario 2B. These two become
important as bounding conditions:

Scenario 6A represents a partial implementation of the Kampala
land use plan under the high population growth condition. Because
the simulation cannot totally accommodate demand, the scenario result
strongly suggests the urban system will need to take full advantage of
the densification opportunities opened up by land use regulation; this
in turn is problematic because there are at least two constraints in the

Figure 7.5 Prospective urban growth scenarios of Kigali, 2030. Scenarios 1B,
2B, 4B, and 6B correspond to high population growth, scenarios 3B, 5B, and 7B
correspond to low population growth. Scenarios 2B, 6B, and 7B correspond to
increased density, relative to baseline conditions.
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short-run to such a development: there are technical limitations (building
multi-storey buildings requires the use of technology in lieu of manpower
in a context of very low labour costs, which means this technology is at
present very likely underdeveloped) and societal limitations, specifically
Kampala’s population is generally poor; most residents cannot afford
apartments in multi-storey buildings. Furthermore, such generalized
poverty causes systemic problems to the real estate market, in part
manifested through widespread informality. In sum, it is very unlikely
scenario 4A will come to pass and even scenario 6A may be optimistic in
assuming a 50% or more development according to the plan.

Scenario 2B represents an unplanned development of Kigali if the
city were to densify. One should note that, in the face of increasing
population, densification is a theoretically expected result of a closed
city growth (Brueckner, 1987); thus, scenario 2B is more likely than
scenario 1B. Why would scenario 1B be more feasible, computationally,
than scenario 2B? First, one must stress that Kigali cannot continue to
develop with only 52% of total demand as greenfield development unless
the land use plan is implemented at least partially (scenarios 4B-7B) –
for scenarios 1B-3B, the 67% of land demand, the percentage of Kampala
2010-2016, was allocated as greenfield development. By doubling the per
cell average increase of built-up fraction (as in scenario 2B, relative to
scenario 1B), the model reduces the amount of greenfield development
at each iteration. This eventually mounts up to the point that there is
not sufficient built-up area for land demand under intensification to be
fully allocated. Ultimately, then, comparing scenarios 1B and 2B one
may conclude the historically compact building patterns of Kigali can
only continue into the future if single storey buildings are substituted by
multi-storey buildings, as envisioned by the land use plan, and subject
to the same constraints discussed for Kampala in the preceding point:
thus, Kigali is very likely to sprawl more in the near future.

What can be learned from an examination of the resulting urban
patterns for 2030?

For Kampala, as one should expect, (1) scenarios of unplanned trend
conditions (scenarios 1A-3A) sprawl (cause greenfield development in
the periphery) much more than planned scenarios (scenarios 4A-7A)
and (2) high population growth scenarios (1A, 2A, 4A, and 6A) result in
more development than low population growth scenarios (3A, 5A, 7A);
this takes the evident (in figure 7.4) form of much greater greenfield
development in the unplanned scenarios and much more densification
of the urban core for the planned scenarios. In this sense, the most bal-
anced patterns, and likely the best from a broad sustainability viewpoint,
correspond to low population growth conditions; thus, paradoxically,
the likely best approach for Kampala passes through a national policy to
reinforce secondary cities in Uganda.

Unexpectedly, for Kigali, the unplanned scenarios (1B-3B) produce
patterns that seem to be clearly more compact than the planned scenarios
(4B-7B). Unplanned conditions are a reflection of trend characteristics,
which in Kigali already incorporate the constraints posed by the land
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use plan to sprawl; since the city is still relatively small, land demand
has not yet (by 2015) pressured the land market towards widespread
densification of central locations (which may or may not be feasible).
Since scenarios 1B-3B embody these constraints, they are compact as
should be expected. What is more surprising is that the land use plan
promotes dispersion of urban growth, particularly the emergence of
new urban cores in the east and south of the Kigali metropolitan region.
Ultimately, the explanation lies in the land use zoning scheme (figure 7.2)
which plans for a much larger Kigali than what the projections suggest
will be materialized. The advantages the regulation gives to certain
peripheral locations, however, may result in these relatively inaccessible
areas being occupied despite more central locations being still available.

How do the land use planning instruments affect flooding? In chapter
5, the wetlands factor was identified as a meaningful determinant of
urban growth. It was also much more important for Kigali than for
Kampala, in part reflecting regulatory constraints imposed in Kigali at
least since circa 2008. This area of wetlands corresponds to either
ecosystems of permanently flooded vegetation or to floodplains and, in
both cases, to the area most exposed to recurrent flooding. Therefore, to
indirectly evaluate the impact of regulation on potential flood risk, the
amount of built-up area within the wetlands was quantified in table 7.3.

Table 7.3 Built-up areas (ha) potentially exposed to flooding in Kampala and
Kigali for projected scenarios, 2030

Kampala Kigali
Scenario Area (ha) % Area (ha) %

Unplanned scenarios
Scenario 1 3520 8.3% 832 18.5%
Scenario 2 3288 7.7% 493 11.0%
Scenario 3 4367 10.2% 596 13.3%
Planned scenarios
Scenario 4 3100 7.3% 811 18.1%
Scenario 5 3100 7.3% 811 18.1%
Scenario 6 5243 12.3% 530 11.8%
Scenario 7 3100 7.3% 518 11.5%
Wetlands total 42661 100.0% 4488 100.0%

The built-up areas potentially exposed to flood do not show any sys-
tematic relation to land use plan enforcement. For Kampala, scenarios
3A and 6A correspond to the largest proportion of wetland areas de-
veloped (3A an unplanned scenario, 6A a planned scenario, all others
approximately the same at around 7.5% of wetland area developed). The
explanation for scenario 6A is likely related to the fact that it could
not accommodate the entire land demand and, thus, expanded to the
greatest extent possible. The feasibility of developing at high density (i.e.
multi-storey buildings) may be, thus, linked to flood mitigation. Scenario
3A, in turn, can be explained because scenarios 1A and 2A sprawl in part
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following the road system, spreading development away from wetland
valleys in Kampala’s hinterland; paradoxically, by being more compact,
scenario 3A presents a pattern that develops a greater proportion of
the environmentally sensitive wetland areas near and within the city
of Kampala proper. What is less clear is why scenario 3A would result
in more potentially exposed areas than scenarios 4A, 5A, and 7A. A
possibility is that land use plans protect some wetland areas in central
locations (lower values of FAR are assigned to them and others are dir-
ectly blocked), although one would not expect too large an effect from
this characteristic, since the constrained area is limited.

For Kigali, scenarios 1B, 4B, and 5B result in higher percentage of
wetland areas developed: scenarios 4B and 5B correspond to the full
implementation of the plan; scenario 1B is the unplanned development
under trend conditions. Since scenario 1A should sprawl more than
scenarios 2B and 3B, it is consistent with the scenario design that scenario
1A should cause more development in the wetland areas. Explaining
why full implementation of the plan results in more wetland areas being
developed is less straightforward: the wetland area being occupied is
probably around central locations with large FAR values – and in the
partial implementation scenarios (6B and 7B) these areas have smaller
neighborhood factor values (as they accommodate less development
compared to the full implementation).

Summing up, Watson (2014) has argued correctly that the land use
plan of Kigali (and the interpretation here adopted for Kampala, based
on it) is not appropriate for the social and environmental context of
the city. Even on its own terms (of promoting compact development),
the Kampala Physical Development Plan is positive but the Kigali Master
Plan may have counterproductive effects, by creating an actually sprawl-
ing pattern. The implementation of the land use plans in these two
cities is very unlikely to reduce flood risk, since they promote very high
built-up fractions in central locations (a reduction of infiltration and, in
consequence, the generation of more runoff) and these do not neces-
sarily preclude sprawl (resulting in more exposed development at other
locations). The key to mitigate flooding is to stringently protect wetlands
from development; runoff reduction is unlikely to be achieved without
infrastructure interventions. Current land use plans do not incorporate
these environmentally proactive strategies with enough strength.

7.4 The feedback between flooding and urban
development in Kampala

This section reports scenarios designed to explore the focus question
how do urban growth and flood processes interact? Three scenarios
(1C-3C), all for the metropolitan region of Kampala, were implemented
to operationalize a dynamic feedback effect between urban growth and
flooding. As noted in section 7.2, in the urban growth model, the flood
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map resulting from a rainfall event substitutes the wetlands factor. Three
events, the hyetographs of which are reported in the appendix, were
used – because, as in chapter 3, the largest event of the past five years is
thought to influence the locational behavior of urban agents.

Computationally, each scenario executes in succession the follow-
ing programs, for every year between 2017 and 2030: (1) the cellular
automata urban growth model as in section 7.3, substituting the flood
map for the wetlands map, to produce the built-up fraction projected
map, (2) instructions to allocate bare soil and vegetation fractions, as
in chapter 4 (in brief, the land fraction not built-up is divided into bare
soil and vegetation, proportionally to the fraction of these land covers in
the baseline year), (3) instructions to mask the land cover fraction maps
(built-up, vegetation, bare soil) to the extent of the flood model, as repor-
ted in chapter 3, (4) a PCRaster script to update the flood model inputs
determined by the land cover maps – the built-up fraction and vegetation
fraction maps but also Manning’s n coefficient map, the leaf area index
map, etc., (5) the OpenLISEM flood model with the updated inputs and
the rainfall event corresponding to each year, as shown in figure 7.3, (6)
instructions to reclassify the flood depth map, taking any cell with depth
over 15 cm as flooded and all others as non-flooded and to change the
extent of the flood map from the catchments of the flood model to the
full extent of the urban growth model (see chapter 5). Since PCRaster is
not very flexible when dealing with changes of extent, these instructions
(from the urban growth model extent to the catchment extent and vice
versa) were implemented using ArcGIS 10.5. All other spatial analysis
was run with the PCRaster Python Extension, except for the OpenLISEM
flood model and the programs used to convert .map files to .asc files (for
use in ArcGIS) and .asc files to .map files (results from ArcGIS processes),
all of which were run as programs called within the Python code.

Using this approach, three scenarios were developed. Scenario 1C
adopts unplanned conditions and allocates the high growth population
land demand under densification conditions (its parameters are equal to
those of scenario 2A). Scenario 2C also adopts unplanned conditions but
it allocates land demand under low population growth (with parameters
equal to those of scenario 3A). Finally, scenario 3C adopts the planned
conditions of potential supply with high growth population and partial
implementation; its parameters are equal to scenario 6A.

The results of the simulation are shown in figure 7.6. Already examin-
ing the overall patterns, one may see the first differences introduced by
substituting the wetland maps by the flood map: for unplanned scenarios,
the amount of desirable (suitable) area is greater when implementing
the feedback because the extent of flooding is much smaller than the
total wetland area. The consequence is the emergence of a much more
dispersed pattern for both scenarios 1C (relative to 2A, its non-feedback
equivalent) and 2C (relative to 3A, its non-feedback equivalent). In both
cases, new and relatively dense centralities emerge in the periphery and
remote areas (i.e. far from Kampala’s center) are developed to a large
extent, such as Entebbe (south). Comparing scenarios 1C and 2C, as
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expected, scenario 1C shows much more development in the periphery
– because it allocates a much greater land demand. It is also notable
that wetland areas in both scenarios are nearly fully developed in central
locations.

In contrast to scenarios 1C and 2C, scenario 3C is much more com-
pact and wetlands are much better preserved (the Lower Lubigi and the
Nalukolongo wetlands, centrally located, are clearly visible). Develop-
ment follows a more ordered pattern along main roads and at likely
greater densities than the unplanned scenarios. Looking at the overall
pattern, the land use regulation seems successful in containing urban
sprawl. When considering the Upper Lubigi subcatchment, as an example
of division-level (sub-city) scale, some benefits are also shown: while
practically the entire sub-catchment is developed, the planned scenario
(3C) results in lower intensity of development around the main and
secondary drainage channels, relative to scenarios 1C and 2C.

The main flood model outputs are shown in figure 7.7 and table 7.4.
The results show that, overall, there are many flood outcomes that are
not affected by the critical uncertainties which determine the scenarios:
the flood patterns derived for all three scenarios are nearly identical
(see figure 7.7); they also highlight one of the problems introduced by
substituting wetlands with flood, that the area actually flooded even by
relatively large rainfall events (with a recurrence period of 20 years) is a
small portion of the metropolitan region. In table 7.4, one may see that
in addition to total flooded area, infiltration is also identical for all three
scenarios. However, and crucially, the amount of built-up area flooded is
substantially smaller for scenario 3C (high population growth, planned)
than for scenario 1C (high population growth, unplanned); the exposed
built up area of scenario 3C is even smaller than for scenario 2C, despite
allocated land demand being 30% smaller.

The judgement of land use regulation as essentially ineffective, which
follows from the analysis of section 7.3, may have been unwarrantedly
pessimistic. However, it is important to stress that the potential effects of
regulation should be more visible in larger systems (as the constraints to
development of areas exposed to flooding, inherent to urban agents’ loca-
tional preferences, should fade as population increases; this sharpens the
difference between regulated and unregulated urban patterns). Kampala
in 2016 was already a larger city than what Kigali is expected to become
by 2030, even under high population growth. Furthermore, as noted
in section 7.3, the effects of the land use plans in terms of promoting
compaction or dispersion of urban growth are different for Kampala
(essentially, regulation incentivizes compact growth) than for Kigali (for
which the land use plan seems to produce development and even new
core areas in peripheral locations). Both of these conditions affect the
potential of regulation to limit exposure to flooding.

Synthesizing, the implementation of a feedback effect between urban
growth and flooding visibilizes the positive effects of regulation on flood
risk mitigation. Consistent with the results previously detected in chapter
3, the impacts of flooding on land patterns detected through prospective
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Table 7.4 Flood impacts on built-up land cover for prospective scenarios of
Kampala with feedback between flooding and urban growth, 2030

Scen. 1C Scen. 2C Scen. 3C
Trend Trend Plan

Intensif. Low Growth
Flooded area over 15cm (ha) 1598.5 1599.3 1599.0
Infiltration (mm) 81.4 81.4 81.4
Built-up area total (ha) 16682.9 14874.9 15830.5
Built-up flooded over 15cm (ha) 553.4 423.1 407.7

scenarios are noticeable but modest. The impacts on runoff generation of
land use regulation are essentially non-existent because the population
growth simulated results in large built-up fractions regardless of the
patterns of urban growth (with the caveat, noted in subsection 7.2.3,
that the relations between different physical processes which ultimately
explain floods are complex and dependent on initial conditions often
unknown). Flood patterns are also nearly identical regardless of potential
supply (whether planned or unplanned) and population (high or low
population growth). However, the urban agents’ (modest) desire to avoid
areas exposed to flooding reinforces the constraints proposed by the
regulation, which cumulatively result in less built-up area flooded.
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Figure 7.6 Prospective urban growth scenarios of Kampala incorporating feed-
back effects of flooding and urban growth, 2030. Scenarios 1C and 3C corres-
pond to high population growth, scenario 2C corresponds to low population
growth. Scenario 1C corresponds to increased density, relative to baseline
conditions.
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Figure 7.7 Prospective flooding scenarios of Kampala incorporating feedback
effects of flooding and urban growth, 2030.
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7.5 Appendix

Table 7A.1 Zoning and interpretation of the Kampala Physical Development
Plan

Zone Interpretation Parameterization
City Center Equivalent to C4 (Re-

gional Level Commer-
cial District)

FAR = 6, Cov = 0.7

Business, Community
Service, Commerce
(secondary center)

Equivalent to C3 (City
Level Commercial Dis-
trict)

FAR = 3, Cov = 0.7

Tourism and recre-
ation

Equivalent to C3A
(Historic, Cultural,
Tourism and Recre-
ational)

FAR = 2.4, Cov = 0.8

Central Residential
Zone

Equivalent to Medium
Rise Residential Dis-
trict (R3)

FAR = 1.8, Cov = 0.5

Inner Area Residen-
tial Zone

Equivalent to Low
Rise Residential
District (R2)

FAR = 1.4, Cov = 0.6

Peripheral Residential
Zone

Equivalent to Single
Family Residential
District (R1)

Lakefront Equivalent to Single
Family Residential
District (R1)

FAR = 0.8, Cov = 0.4

Urban park, natural
forest reserve, sports
facilities

Protected (assump-
tion)

FAR = 1.0, Cov 0.15

Public facility Protected FAR and Cov = 0
Existing industrial
areas

Equivalent to General
Industrial District (I2)
(FAR assumed)

FAR = 1, Cov = 0.6
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Table 7A.2 Scenario parameterization

Population Average growth per pixel
Scenario Year Path Density Projection Land demand Greenfield % Greenfield Intensif.
Kampala
Base 2016 128.7 2706790 67% 0.182 0.398
Scen. 1A 2030 High growth 5505707 42778 67% 0.182 0.398
Scen. 2A 2030 High growth 5505707 42778 60% 0.364 0.796
Scen. 3A 2030 Low growth 3870785 30075 67% 0.182 0.398
Scen. 4A 2030 High growth 5505707 42778 60% FAR (full)
Scen. 5A 2030 Low growth 3870785 30075 60% FAR (full)
Scen. 6A 2030 High growth 5505707 42778 60% FAR (partial)
Scen. 7A 2030 Low growth 3870785 30075 60% FAR (partial)
Kigali
Base 2015 251.6 951359 52% 0.112 0.352
Scen. 1B 2030 High growth 2213868 5018 67% 0.112 0.352
Scen. 2B 2030 High growth 2213868 5018 67% 0.224 0.704
Scen. 3B 2030 Low growth 1568247 2452 67% 0.112 0.352
Scen. 4B 2030 High growth 2213868 5018 52% FAR (full)
Scen. 5B 2030 Low growth 1568247 2452 52% FAR (full)
Scen. 6B 2030 High growth 2213868 5018 52% FAR (partial)
Scen. 7B 2030 Low growth 1568247 2452 52% FAR (partial)

Density: residents per ha, land demand: ha
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Table 7A.3 Rainfall hyetographs of simulated events

Intensity (mm/h)
T = 20 T = 10 Year 2016

0 30 7.72 7.32 2.81
45 60 5.59 5.31 4.07
60 75 7.75 7.35 5.64
75 90 11.76 11.16 8.56
90 105 20.87 19.80 15.20
105 120 51.59 48.95 37.58
120 135 155.87 147.90 113.53
135 150 51.59 48.95 37.58
150 165 20.87 19.80 15.20
165 180 11.76 11.16 8.56
180 195 7.75 7.35 5.64
195 210 5.59 5.31 4.07
210 240 7.72 7.32 5.64
Daily total 107.5 102.0 78.3
Event total 91.6 86.9 66.7
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8Recapitulation: urban growth,
flooding, and spatial planning

The starting point of this dissertation was a problem – the cities of
Kampala and Kigali suffer, to different degrees, recurrent flooding that
negatively affects the quality of life of their inhabitants – in a context
(Sub-Saharan Africa) and belief in a solution: effective land use plan-
ning can contribute to mitigate flood risk and, thus, improve people’s
lives. Developing this proposition necessarily led to qualifications of
all three elements: by acknowledging that the context is diverse (there
are important differences between Kampala and Kigali in particular and
among the cities of Sub-Saharan Africa in general), that the problem takes
different forms in space and time – e.g., Kigali’s present flood problems
are localized whereas Kampala’s are more widespread, a consequence of
institutional differences but also of varied characteristics such as: overall
population, slope and soil infiltration patterns, ecosystems, etc. –, and
that these qualifications, all taken together, contribute to create multiple
plausible paths for the future of these cities. These paths diverge in
terms of how effective land use planning can be in shaping flood risk
and, for paths along which land use planning is effective, in terms of
whether the role of such regulation is positive or negative. The results
of this dissertation, then, should be thought of as a description of the
conditions under which disparate urban patterns develop.

How do urban growth and flood processes interact? Theoretical mod-
els of urban location (Frame, 1998) propose that, all else held equal,
areas exposed to flooding will present lower capital-to-land ratios (less
buildings) than unexposed areas. Within this tradition, locations exposed
to flood are determined by critical risk levels associated to a hazard with
a defined probability of occurrence (i.e. to the magnitude of the hazard,
since less probable events are larger). This critical level is a negative
function of commuting costs: urban agents will be more willing to accept
exposure to flooding if compensated by greater accessibility. Crucially,
as the overall population of the city increases, the critical level is reduced
(areas previously undeveloped because they were exposed to flooding
are occupied by urban agents).

The conclusions of this theoretical model were tested for Kampala
(2001-2016) by means of a structural equations model (these results
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are reported in chapter 3): a causal chain was postulated, triggered by
population growth which resulted in greater urban growth and larger
urban areas; larger urban areas, in turn, produced greater flooding that
reduced urban growth. The marginal effect of the flooding proxy variable
on urban growth was found to be statistically significant but small,
especially in relation to the direct effect of population on urban growth
(which is three to ten times larger). One must conclude the constraining
effect of recurrent flooding is not large enough to mitigate flood risk
by itself, but it could (at certain stages of a city’s development) open a
window of opportunity for policy actions by delaying urban development
in areas exposed to flood.

This conclusion was bolstered by the cellular automata urban growth
model’s calibration outcome, reported in chapter 5. For both Kampala
and Kigali, wetland areas were found to be inversely associated to urban
growth. The factor was 3.5 times larger in Kigali than in Kampala (in the
smaller city than in the larger, consistent with the idea that the constraint
posed by flooding fades as a city becomes larger); indeed, this may
contribute to explain why flooding in Kigali is less widespread than in
Kampala. The result is important because, unlike the structural equations
models reported in chapter 3 (which analyze data aggregated to the
sub-catchment level), the cellular automata model describes variation
between locations. A number of reasons contribute to explain why
wetland areas are less likely to have been developed in Kampala and
Kigali between 2000 and 2015: both cities (Kigali more efficiently) made
efforts to protect natural wetlands from development and these areas
are also geotechnically unsuitable for urban development. Yet recurrent
flooding occurs mostly within or bordering these natural wetland areas
(and where it doesn’t, it happens in areas that would be wetlands had
they not been drained for development). It is very likely that exposure to
flooding is one of the reasons why urban agents avoid the wetland areas
of Kampala and Kigali.

These findings were used to design prospective scenarios of urban
growth for Kampala, 2016-2030 (reported in chapter 7). One set of
scenarios made use of an integrated version of the model calibrated in
chapter 5 (this integrated model had already been outlined in chapter
4) to implement a feedback between urban growth and flood patterns.
Briefly, the wetlands constraint was interpreted as the consequence of
recurrent flooding and for this reason the wetlands factor of the urban
growth model was substituted with the flood map. This flood map, in
turn, was updated for every time period simulated to reflect changes
from the larger urban area and the simulated rainfall. The ensuing built-
up land cover patterns clearly showed the most accessible wetland areas,
including the recurrently flooded area adjacent to the main drainage
channels, were fully developed. This expected result can be explained
because flooding is already, at present, less important than accessibility
in determining the urban patterns of Kampala.

Regarding Kigali, similar dynamics are unlikely to play out in the short
run (in the long run, the non-linear nature of climate change and possible
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drastic population displacements make such speculation pointless unless
purposefully tested through simulation). Kigali already is using land use
regulation to constrain urban development in protected areas, among
them wetlands (see chapter 6). In addition, Kigali is still expected to
present a smaller population by 2030 than Kampala in 2015, even under
rapid population growth. There should be sufficient available urban
land for Kigali to develop without large increases of current flood risk –
barring institutional collapse or other long run changes –, a judgement
supported by the prospective scenarios developed for Kigali in chapter 7

To what extent can land use planning contribute to mitigate urban
flood risk? Land use planning systems are regarded as generally ineffect-
ive and inefficient in Sub-Saharan Africa, a legacy of colonial rule even
though decades have passed since independence (African Planning As-
sociation, 2014). Bucking the regional trend, Kigali has recently become
known as an exception of order and strict implementation of the urban
regulation (Goodfellow, 2013a). Can and should the example of Kigali be
followed by other cities of Sub-Saharan Africa? What effects could one
anticipate from the extension of such systems to other cities?

The causal effect of regulation on urban growth patterns for Kigali
(2000-2014) was determined in chapter 6. A difference-in-differences
model was applied to data structured as a two period panel of repeated
measurements for a large set of locations; the variables measured were
land cover (a binary variable of built-up/non-built) and the neighborhood
effect identified in chapter 5; the model also controlled for spatial auto-
correlation and panel fixed effects. It follows the general structure of
spatial statistical difference-in-differences models applied to land cover
patterns (Dempsey and Plantinga, 2013; Kline et al., 2014) extended to
incorporate the interpretation of spatial effects within the causal frame-
work, as proposed by Kolak (2017). The derived difference-in-differences
estimators quantified a constraint, caused by the land use regulation, of
between 0.023 and 0.030 – an apparently small effect until one considers
the average built-up fraction of the protected area was 0.047 in 2014.
In sum, the stringent application of land use regulations over the past
decade (at least since circa 2008, according to Goodfellow, 2013a) did
result in a measurable and important reduction of urban development.

When compared to other cities in Sub-Saharan Africa, Kigali stands
out as an exception, in particular when compared to Kampala. Both
cases, as was argued in subsection 1.4.2 from the work of Goodfellow
(2013a), share a pysical and social context, including in particular very
closely linked political elites. Why, then, does the land use system of
Kigali function so much better than that of Kampala? Goodfellows’s
(2013a) answer relies on the idea of political bargaining environments
of the elites exercising power: in Kampala, national politicians derive
legitimacy from a populist approach, “often employing a rhetoric of
intervening to ‘protect’ the poor from corrupt local government actors”
(Goodfellow, 2013b, p. 46); Ugandan politicians often find value in foster-
ing hostility, among certain socio-economic groups, against other parts
of the state (the success of such tactics also is related to the greater

141



8. Recapitulation: urban growth, flooding, and spatial planning

ethnic diversity of Uganda, relative to Rwanda; Goodfellow, 2013b). This
leads to a situation in which circumventing the regulation is possible
because disorganization provides opportunities for Uganda’s political
elites. In contrast, the legitimacy of the national government in Kigali
derives from its credibility as a law-enforcer, originally from stabilizing
the country in the aftermath of the 1994 genocide; furthermore, and
contrary to Uganda, the current political elites of Rwanda formed in exile:
they have less developed relations with local actors, and thus depend
less on them to maintain power. However, a very relevant exception
has been detected in the literature: the coincidence of interests between
developers of multi-storey buildings and political elites (Goodfellow,
2018) as well as politicians, e.g. lawmakers, often being property owners,
which has contributed to weak land taxation (Goodfellow, 2017); often
such conflicts of interest allow Rwandan political elites to use formal
rules to favor powerful business interests, as well as themselves, at the
expense of the poor. Even after accounting for these contradictions,
support for political elites in Rwanda hinges on credibility for efficiency
in achieving goals, first of security and by extension of economic devel-
opment; because credibility is at stake, formal adherence to rules is of
great importance, particularly urban rules because Kigali has become a
showcase for national development (Goodfellow, 2018). Political elites in
Rwanda ensure, through strong top-down accountability, that the rules
are followed as a strategy to maintain the legitimacy which supports
their exercise of power (Goodfellow, 2013b).

In addition to Goodfellow’s ideas, it is also important to note that
Kigali is a much smaller city than Kampala (one can view Kigali as
an earlier stage of a Sub-Saharan Africa ‘meta-city’ and Kampala as a
later stage; see subsection 7.2.1 for a use of this idea in understanding
uncertainty associated to population projections); when considering
environmental problems in similar physical contexts, city size matters:
in particular, as was discussed for the relation between urban growth
and flooding, the constraints posed by recurrent flooding tend to fade as
cities grow in terms of population. What is true of flooding constraints
is also true for regulatory constraints (in practice, both imply additional
costs to urban agents), meaning pressure to evade the regulation is less
for smaller cities.

Efficiency in the implementation of rules is necessary, yet not suffi-
cient, for land use planning to contribute to flood risk mitigation. Land
use regulation must also be effective, in the sense of nudging urban
patterns into becoming broadly more sustainable. Watson (2014) has
rightly criticized planning instruments of several cities in Sub-Saharan
Africa, among them Kigali, as more responsive to the interest of real
estate developers than those of the mostly poor urban residents.

Beyond ethical considerations, there is also a problem of the function-
ing of an urban system designed under such premises: the Kigali Master
Plan (SURBANA International Consultants PTE Ltd., 2013) and, to a lesser
degree (because it is less specific), the Kampala Physical Development
Plan (ROM Transportation Engineering Ltd. et al., 2012) envision execut-
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ing the strategy of compact development typical of planning practice in
mature land markets (allow for a relatively high level of density in the
center and constrain substantially development in the periphery, with
denser inner suburbs and less dense outer suburbs and with certain
mixed use subcenters to reduce congestion). This strategy relies for its
execution on very high floor-to-area ratios in the city and very stringent
constraints on building in the periphery. The latter has proven feasible
in Sub-Saharan Africa (specifically in Kigali) but the former is very un-
likely for at least two reasons. Firstly, developers have little incentive to
substitute cheap labour with more expensive and productive capital (e.g.
equipment such as cranes); this creates a technological barrier to the ma-
terialization of the supply of urban space foreseen in the regulation (and
the demand for urban land still exists, which would then cause pressure
for development in peripheral areas at lower density). Secondly, most
urban agents are poor residents requiring housing; they do not have
enough income to acquire and maintain living space in expensive struc-
tures such as multi-storey housing complexes. Since the planned supply
is unlikely to materialize, this creates a problem of imbalance between
supply and demand for an urban area. To date, efforts by Rwandan au-
thorities to promote urban development have caused displacement of the
urban poor (to formally built houses in peripheral locations, which enrich
real estate developers through government subsidies while undermining
local artisanal contractors from the informal sector; Nikuze et al., 2019)
and the provision of financing for the high end segment of the real estate
market to incentivize construction (including by a party-owned company,
illustrating the political elite’s stake on real estate development; Behuria
and Goodfellow, 2019). Development potential in this high end segment
of the market already shows signs of having reached its limit (Behuria
and Goodfellow, 2019).

The consequences of this mismatch were explored using prospective
scenarios of urban growth in chapter 7. The scenarios were designed
to understand the differences on urban patterns introduced by the land
use regulation instruments (the Kampala Physical Development Plan and
the Kigali Master Plan). Since such prospective development depends
critically on the level of densification, in turn a function of the city’s
overall population, two sets of scenarios for each city were created: for
unplanned and for planned conditions; within each set, different scen-
arios consider high or low population growth and densification equal
to or greater than the baseline. The resulting 2030 built-up land cover
projections show the land use regulations of Kampala clearly promote
a much more compact urban footprint. However, and unexpectedly,
the land use plan of Kigali results in the dispersion of development
to envisioned subcenters in the periphery of the current city. This is
likely the result of an existing trend towards compaction, reflected in
the unplanned scenarios, combined with a land use regulation instru-
ment planned for a city with far greater population than what is to be
expected for Kigali. In this sense, the projections also underscore the
importance of population projections as a critical uncertainty but also
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the importance of context (Kigali by 2030 is still projected to present a
smaller population than Kampala at present).

The impact of regulation on potential flooding was found to be limited
for scenarios that did not incorporate a feedback between urban growth
and flood. Urban development was found to be, ultimately, a function
of land demand (population) with central locations generally developed
at high density (built-up fractions generally over 0.50); at these levels of
development, the runoff fraction of rainfall will be generally constant
and high. Since no such feedback was expected to operate for Kigali (a
relatively small city), under short run conditions land use regulation will
not mitigate flooding because major flood problems will not have become
apparent (i.e. such mitigation is unnecessary). As for Kampala, when
incorporating the feedback between flooding and urban growth, two
consequences follow: unplanned scenarios result in the development of
most wetland areas (flat areas no longer constrained from development
unless they recurrently flood) and the planned scenario, in addition to
promoting compact development, also reflects the regulation’s role in
defending the wetland areas from development. When taken together,
these projections result in a substantial reduction of built-up area ex-
posed to flooding (of up to 25% under the hypothesis of high population
growth).

Methodological and scientific contributions developed in the course
of this dissertation can be divided into two main groups: firstly, several
interesting results describing the case studies through the application of
statistical techniques contributed to extend the state of the art in each of
these fields and to increase knowledge about the specific cases (Kampala
or Kigali). Secondly, the computational modeling and simulation tools –
the main methodological development of this dissertation – represented
an advance in several directions.

Structural equations modeling and the specifc ideas behind the model
developed in chapter 3 (in particular, Shipley’s contention that causal
graphs should be acyclic and, in his view, feedbacks are in fact a causal
chain incorrectly compressed in time) are not novel. However, their
application to the analysis of landscape has been infrequent. The only
precedent of such analysis in Sub-Saharan Africa found in the course of
this dissertation was Odongo et al. (2014), who applied a similar analysis
to water balances in Lake Naivasha. Many studies exist applying struc-
tural equations models to spatial data in the field of transportation (with
records being locations or road segments); but hardly any were found
using catchments as records in the field of hydrology (most applications
analyze surveys used to determine vulnerability characteristics rather
than the physical relations between units of the landscape). Furthermore,
and most importantly, the main conclusion of this analysis (the detection
of a weak but statistically significant constraint of flooding on urban
growth in Kampala) provides important evidence to verify theoretical
expectations and to understand the context in which they play out (par-
ticularly the interaction with population growth which proved to be so
important).
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The difference-in-differences model represents the first application of
Kolak’s (2007) causal framework to a spatial statistical model of urban
growth. Previous models at “plot” (location) level had been developed
for Oregon and Washington State in the United States (Dempsey and
Plantinga, 2013; Kline et al., 2014) but none had, as yet, implemented
fixed effects to control for spatial heterogeneity; the use of spatial lags,
as a control, has been more common (although not in spatial statistical
models of land cover change) but its interpretation has generally been
lacking. It is important to stress that fully implementing the spatial
causal framework (Kolak, 2017) changes the results relative to pooled
models (the methodological equivalent of previous studies); specifically,
the causal effects detected in models with fixed or random effects to
control for spatial heterogeneity result in difference-in-differences estim-
ators much smaller (1/5 to 1/10) than in pooled models, regardless of
the inclusion of a spatial lag term.

The cellular automata model designed and implemented to model
urban growth in Kampala and Kigali introduced a number of innovations,
necessary to reflect the urban patterns and to integrate the results with
the flood model.

Firstly, the cellular automata model conceives space as an array
of cells each with an associated fraction of land cover (for built-up,
vegetation, and soil). Continuous variables had been proposed for cellular
automata modeling of urban systems by van Vliet et al. (2012), Yeh and
Li (2001), and Li and Yeh (2000) to model the amount of activity in a
location (e.g. the number of residents or of jobs in each cell) and the
density; Li and Yeh (2000) in particular used so-called “grey cells” to
incorporate the fraction of urban land into their model. Other than
these three cases, however, the use of continuous variables in cellular
automata modeling of land has been rare – and no precedent was found
of models encoding land covers of the natural environment as well as of
human activity. In the model developed (and reported in chapters 4, 5,
and 7), such encoding of the dependent variable was required because it
became directly the input of the flood model.

Secondly, the designed model, as most cellular automata models of
urban growth, follows White (1998) in using ancillary information and
a relatively standard set of spatial determinants including accessibility
(Geographical Sciences Committee and others, 2014); however, and unlike
most other applications, it explicitly reduces problems of correlation
between the spatial determinants that embody the scaling relations
which control urban expansion, namely accessibility and neighborhood
effects; to do so, the first principal component of the neighborhood
and accessibility factors was used as a determinant instead of all three
maps simultaneously (this innovation was implemented when calibrating
the model because the correlation caused problems with the Bayesian
methods used to calibrate the model).

Thirdly, the model’s intent of replicating the aggregate behavior of
urban agents in a land market was implemented by using the traditional
approach (a suitability map synthesizing the information used by urban
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agents to choose a location within the city) but it also explicitly accounted
for the potential supply of urban land (i.e. the developer’s possibilities
to offer urban land in the desired locations). Thus, the model does not
assume spatial equilibrium, in the sense that the market is capable of
supplying demand wherever it is desired. Unlike the suitability map,
which is linked to urban theory (Brueckner, 1987) by the information
chosen to define the suitability index, the potential supply maps were
either generated to replicate the observed randomness of Kampala and
Kigali (in turn a consequence of urban agents mostly building their
own houses) or to simulate the possibilities of regulation in supplying
urban land – and it was this second capability which justified the explicit
separation between supply and demand.

To calibrate the proposed cellular automata model (to determine the
importance of each spatial factor and the size of the moding window that
determines the neighborhood effect), Bayesian methods were applied.
Specifically, a Markov Chain Monte Carlo approach was chosen. Only
one other partial implementation of this method (Mustafa et al., 2017)
was found and it used Markov Chain Monte Carlo only to calibrate the
neighborhood effect (the weights of ancillary data were established by
means of statistical analysis); more broadly, Bayesian sequential methods
have also been used by Verstegen et al. (2014) to calibrate land models
(the development of the Markov Chain Monte Carlo methodology drew
heavily from this study, especially when defining how to compare the
land patterns to externally derived data). No other precedents of applica-
tions to case studies were found in the literature in the development of
this dissertation.

The use of land cover fractions as inputs for the urban growth model
(and for the flood model) required a conceptual reflection on the appro-
priate methodology to produce the land cover maps. A first decision
was taken to adopt mid-resolution Landsat satellite imagery as data to
develop the land cover data models: because they are available for any
extent potentially desired and because they have a long record, stretch-
ing back to the late 1970s. Spectral linear unmixing was chosen because
of the possibility to produce land cover fractions at sub-pixel level (i.e.
at an increased spatial resolution, as required by the flood model) by
making use of the multi-spectral imagery; however, it must be noted
that these methods were developed for hyper-spectral data: because the
amount of possible fractions is limited by the available reflectance bands
and because at least four fractions were required and only six bands
were available (the thermal band was discarded), the implementation
of the spectral mixing analysis relied on careful choice of endmember
samples (the locations where the fractions existed in pure form). It was
possible to derive land cover maps for both cities consistently in time for
each city and the entire study period, even if the general methodological
approach had to be adapted to each case. In particular, the Sub-Saharan
African context implied greater presence of bare soil (relative to urban
areas of the industrialized north, for which the methods were originally
developed); this is a problem because of the high albedo of some soils,
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which can be easily confused with buildings. In Kigali, the use of the
Global Human Settlements Layer of the Joint Research Center (Pesaresi
et al., 2016) to interpret the fraction maps that were created contributed
to mitigate this problem.

The integrated modeling tool used to simulate the feedback between
urban growth and flooding represents a rare spatially explicit implement-
ation of two way causality. Studies analyzing the effect of flooding on
land patterns are relatively uncommon, as was discussed in chapter 3.
No precedent was found of a spatially explicit recursive formulation (i.e.
one updating land patterns and flooding at each period simulated). The
scenarios developed with this tool were few and purposefully chosen to
distinguish the consequences of implementing the land use plan. How-
ever, the modeling tool can be used as a methodological framework to
explore uncertainties associated to a number of (physical) factors, in
particular:

• A single succession of rainfall events, randomly ordered, was used
for the three scenarios. The order of these events, i.e. how rainfall
was simulated to occur in time, potentially has large effects on land
cover trends. In particular, it is important whether large rainfall
events are simulated to occur in a short time span or spread out
over the entire simulation period (the latter was the case for the
results of chapter 7) and also whether the larger events occur early
in the simulation or later. Rainfall uncertainty in time (at the scale
of the event occurrence) can and should be explored using the
integrated model as a framework.

• In Kampala (and in Kigali) rainfall does not fall uniformly over the
entire city at the same time. Large differences may occur between
diverse locations. OpenLISEM is capable of handling events inputed
as rainfall maps with each pixel the rainfall intensity at that location
differing from other locations (the implementation in chapter 7
assumes, as most hydrological applications, a uniform rate falling
over the entire city). Rainfall uncertainty in space is a second area
in need of work within the capability of the integrated model.

• The rainfall events simulated correspond to design storms gener-
ated by application of the intensity-duration-frequency methodo-
logy, which are symmetric in time. Rainfall events measured for
Kampala (Sliuzas et al., 2013) do not follow this simple shape (see
also the analysis by Turkington, 2016 on an area with richer data).
Rainfall uncertainty in time (at the scale of the event intensity) may
become a critical factor and should be explored.

• While no measurement of yearly maximum rainfall events at de-
tailed (10-15 min) intervals exist for Kampala, it is possible to re-
construct a series of events under the intensity-duration-frequency
assumption for the past (2001-2016) that approximate the max-
imum rainfall event for each year. With this information, it should
be possible to apply the Monte Carlo calibration methodology, de-
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scribed in chapter 5, to derived a flooding factor and a net wetland
factor (excluding the flood’s effect).

• The main obstacle to the implementation of a calibration process
with a flood factor is the duration of the simulation (a full 14 year
simulation for Kampala was achieved in a high performance laptop
in approximately 15 hours of computational time; in contrast, each
simulation of the calibration analysis was completed in less than
5 minutes). In addition to improving the calibrated model by elu-
cidating the net contribution of flooding and non-flooding wetland
effects, work is also required to increase the computational speed
of the integrated tool.

• More generally, Umer et al. (2019) performed a sensitivity analysis;
some of the factors they identified may also need to be explored as
sources of potential spatial or temporal uncertainty (soil character-
istics proved to have limited impact; rainfall patterns and events,
however, may be key from an uncertainty perspective).

Conclusions for land use planning design and implementation in Kam-
pala and Kigali were developed in the course of this dissertation. A
first important gap filled by the outcomes of this study is the model-
ing tools: an integrated urban growth and flood model for Kampala, a
cellular automata-based urban growth model for Kigali, and the inform-
ation compiled to develop them (particularly the maps of land cover
fractions for three periods of Kigali and four periods of Kampala). This
information and the tools can be used to test land use regulation, as was
demonstrated in chapter 7 and in Pérez-Molina et al. (2016).

The second important conclusion relates to the design of land use
planning instruments in Kampala and Kigali. The Kigali Master Plan
clearly envisions a city based on multi-storey buildings for most of its
dense areas. This strategy is very likely not feasible, given the income
levels of most urban residents. Moreover, as was demonstrated through
simulation, there is a danger in designing a city with so much devel-
opment potential: that areas planned to be subcenters of a large city
become isolated high density enclaves and that this urban form produces
a sprawling pattern highly reliant on motorized transportation. A similar
strategy was sketched for Kampala in its physical development plan
– and although Kampala is a larger city with some multi-storey build-
ings already in existence, to excessively rely on this type of buildings is
unlikely to achieve positive results in terms of urban form.

The third finding of this dissertation relates to the role of land use
planning to mitigate flood risk. The simulations of prospective land cover
patterns suggest relatively high fractions of built-up land cover as both
cities expand, under planned and unplanned conditions. This means it
will be very difficult to reduce runoff. Infrastructure could contribute to
increase infiltration or to slow the flow of water over the landscape, but
should be expected to cause limited impacts. Therefore, the best strategy
to reduce flood risk is to protect natural wetlands and floodplains from
urban development, a strategy already being implemented successfully
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in Kigali (although this city’s authorities should also be forewarned of the
expected increase in pressure to occupy such areas as the city becomes
larger).

Finally, infrastructure (particularly drainage infrastructure) is a crit-
ical factor in mitigating flood risk. In addition to relatively large projects
to improve the primary and secondary drainage systems, it is also import-
ant for both Kampala and Kigali to gradually create a network of local
storm drainage (for every street in each of the cities). While this task is
daunting, it will likely require more patience and systematic investment
(in construction and in maintenance) rather than quick and effective one
time decisions. It is also not a highly visible investment. It is thus a test
to the institutional robustness of both municipalities (of Kampala and of
Kigali) to sustain such an effort. However, it is also unavoidable if the
problems caused by recurrent flooding are to be successfully tackled:
because the overwhelming majority of floods that affect the functioning
of these cities (and this is especially true of Kamapala) are not the mid-
to-large events with return periods of 1:10 years. Rather, they are the
much smaller and frequent torrential rainfalls that occur often during
the wet season. The infrastructure solutions have, to date, concentrated
on the larger systems but these smaller, recurrent impacts are likely a
worse problem in terms of urban functionality (the scale of the solution
has been metropolitan when the problem is actually at neighborhood, or
perhaps better, at block level). Land use regulation can contribute to this
program of investment through requirements for developers to build the
storm drainage at their own cost when creating urban land through the
lot subdivision process.

A coda: In addition to synthesizing what this dissertation became, in
the process of exploring urban growth, flooding, and spatial planning in
Kampala and Kigali, it is also of value to record how this dissertation was
originally planned and why and how this plan was changed. Originally,
this project was organized to compare two sub-catchments, each within
one metropolitan region: Upper Lubigi in Kampala and Rwampara in
Kigal. These areas were chosen because of the presence of informal
settlements in the lower part of the sub-catchment and the potential this
arrangement had of representing the prototypical recurrent flooding in
the metropolitan region, as well as because sufficient area existed for
urban expansion to take place.

However, when analyzing urban growth patterns, it became clear that
urban expansion is a phenomenon occurring at metropolitan scale: the
range of spatial variation that needs to be accounted for can only be
quantitatively explored if the entire metropolitan region is analyzed,
else there is not enough variance in the data. Additionally, as has been
repeatedly argued in the course of this dissertation, the overall popu-
lation of the city is a critical characteristic; but this is only apparent at
metropolitan level. To deploy prospective simulation with urban growth
models, then, a limitation identified is the spatial extent: these methods
are appropriate for the full extent of a relatively large urban region; if
applied to a part of the region, they should be carefully examined for
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pertinence and efficiency.
The challenges of Kampala and Kigali in their uncertain road to

development are enormous. Land use planning is one of many possible
collective actions towards the goal. Whether the citizens of Kampala
and of Kigali opt to include it, or not, in their development strategy,
one can but wish them well in their endeavour and hope the knowledge
developed in this dissertation becomes an aid to build a better future for
themselves and their cities.
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