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1.1 Background 
Recording land rights provides land owners tenure security, sustainable 
livelihood and increases financial opportunities. Estimates suggest that about 
75% of the world population does not have access to a formal system to 
register and safeguard their land rights. This lack of recorded land rights 
increases insecure land tenure and fosters existence-threatening conflicts, 
particularly in developing countries. Recording land rights spatially, i.e., 
cadastral mapping, is considered the most expensive part of a land 
administration system. Recent developments in technology allow us to rethink 
contemporary cadastral mapping. The aim of the its4land project is to make 
use of technological developments to create more efficient approaches for 
cadastral mapping. 

1.1.1 its4land Project 
This Ph.D. research is embedded in the its4land project of the European Union 
(EU) [1]. The project aims to develop an innovative suite of land tenure 
recording tools inspired by geo-information technologies, that responds to end-
user needs and market opportunities in sub Saharan Africa, reinforcing existing 
strategic collaborations between EU and East Africa [2-4]. The project goals 
align with target 1.4 of the sustainable development goals (SDGs) of the United 
Nations, which aims to deliver tenure security for all [5]. 
 
The land tenure recording tools are intended to be investigated in terms of 
integration, validation, demonstration and prototyping in the context of the fit-
for-purpose concept for land administration published by the World Bank and 
the International Federation of Surveyors (FIG) [6]. Fit-for-purpose land 
administration is part of broader development theories that argue societal 
prosperity requires secure land tenures provided by a complete and up-to-date 
land administration system [7,8]. its4land investigations are based on case 
study scenarios in Kenya, Rwanda and Ethiopia. Each country has its specific 
land tenure recording situation, but all face an immense challenge to rapidly 
and cheaply map millions of unrecognized land rights. Within this context, the 
project aims to provide tools for a rapid and cheap mapping of a large amount 
of unrecognized land rights.  
 
its4land is part of the H2020-ICT-2015 program and has its start and end point 
on 01. February 2016 and 31. January 2020, respectively. During those 48 
months, eight consortium partners work on research and innovation with the 
aim of international partnership building in low and middle income counties. 
The consortium includes multi-sectorial, multi-national and multidisciplinary 
partners located in Africa and Europe. The group consists of the Technical 
University of Kenya, the Bahir Dar University, the Institut d’Enseignement 
Superieur de Ruhengeri and Esri Rwanda, while the latter group consists of the 
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University of Twente, the Westfälische Wilhelms-Universität Münster, the 
Katholieke Universiteit Leuven and Hansa Luftbild AG. The Faculty of Geo-
Information Science and Earth Observation (ITC), which is part of the 
University of Twente is the leading partner of its4land and part of its staff 
members are supervising this Ph.D. research. 
 
The motivation, objectives and research questions from its4land are used as a 
basis for this Ph.D. research. The Ph.D. research project makes out one of 
eight transdisciplinary work packages of its4land. A visual contextualization of 
all work packages is provided in Figure 1.1. The work package Automate It 
serves as a basis for this Ph.D. research. It aims at an adaptation of UAV 
mapping and remote sensing methods for cadastral mapping. Further 
information on its4land can be found on the project website [9] or via its 
project number 687828. 
 

 
Figure 1.1. Structure of its4land project. This Ph.D. research is based on one of the four 
technical work packages, namely Automate It. 

1.1.2 Key Concepts 
Unmanned aerial vehicles (UAV), also known as drones, Unmanned Aerial 
Systems (UAS), or Remotely Piloted Aircraft Systems (RPAS) are small aircraft 
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systems without an on-board pilot. They are evolving as an alternative tool to 
acquire land tenure data. UAVs can capture geospatial data at high quality and 
resolution in a cost-effective, transparent, and flexible manner, from which 
visible land parcel boundaries, i.e., cadastral boundaries are extractable. This 
extraction is not automated, even though physical objects automatically 
retrievable through image analysis methods often demarcate cadastral 
boundaries. This Ph.D. research contributes to advancements in developing a 
corresponding methodology for automated feature extraction from high-
resolution imagery for cadastral boundary mapping. Automated feature 
extraction refers to image analysis methods that automatically extract relevant 
information on visible physical objects. These objects often demarcate 
cadastral boundaries, which are spatial representations of cadastral records, 
showing the extent, value, and ownership of land. The process of delineating 
these boundaries to provide precise spatial description and identification of 
land parcels is referred to as cadastral boundary mapping. The automated 
identification and delineation of cadastral boundaries are based on high-
resolution imagery. These are data of high spatial resolution captured with an 
optical sensor from a remote sensing platform such as an aircraft or an UAV. 

1.1.3 Application of UAV-based Cadastral Mapping 
In the context of contemporary cadastral mapping, UAVs are increasingly 
argued and demonstrated as tools able to generate accurate and 
georeferenced high-resolution imagery from which cadastral boundaries can 
be visually detected and manually delineated [10-12]. To support this manual 
delineation, existing parcel boundary lines might be automatically 
superimposed, which could simplify and accelerate cadastral mapping [13]. 
Except for [14,15], cadastral mapping is not mentioned in review papers on 
application fields of UAVs [16-19]. This might be due to the small number of 
case studies within this field, the often highly prescribed legal regulations 
relating to cadastral surveys, and the novelty of UAV in mapping generally. 
Nevertheless, all existing case studies underline the high potential of UAVs for 
cadastral mapping in both urban and rural contexts for developing and 
developed countries. 
 
Cadastral mapping contributes to the creation of formal systems for registering 
and safeguarding land rights. According to the World Bank and the 
International Federation of Surveyors (FIG), 75% of the world’s population 
does not have access to such systems. Further, they state that 90 countries 
lack land registration systems, while 50 countries are in the process of 
establishing such systems [6]. In these countries, cadastral mapping is often 
based on partly outdated maps or satellite images of low-resolution, which 
might include areas covered by clouds. Numerous studies have investigated 
cadastral mapping based on orthoimages derived from satellite imagery [20-
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27] or aerial photography [28]. The definition of boundary lines is often 
conducted in a collaborative process among members of the communities, 
governments and aid organizations, which is referred to as ‘Community 
Mapping’ [29], ‘Participatory Mapping’ [24] or ‘Participatory GIS’ [20]. Such 
outdated satellite images are substitutable through up-to-date high-resolution 
orthoimages derived from UAVs, as shown in case studies in Namibia [10] and 
Rwanda [12]. The latter case shows the utility of UAVs to partially update 
existing cadastral maps. 
 
In developed countries, the case studies focus on the conformity of the UAV 
data’s accuracy with local accuracy standards and requirements [30,31]. 
Furthermore, case studies tend to investigate the possibilities of applying UAVs 
to reshape the cadastral production line efficiency and effectiveness [32-34]. 
In the latter, manual boundary detection with all stakeholders is conducted in 
an office, eliminating the need for convening all stakeholders on the parcel. In 
developed countries, UAV data are frequently used to update small portions of 
existing cadastral maps rather than creating new ones. Airspace regulations 
are the most limiting factor that hinders the thorough use of UAVs. Currently, 
regulatory bodies face the alignment of economic, information and safety 
needs or demands connected to UAVs [18,35]. Once these limitations are 
better aligned with societal needs, UAVs might be employed for further fields 
of land administration, including the monitoring of public infrastructure like oil 
and gas pipelines, power lines, dikes, highways, and railways [36]. Nowadays, 
some national mapping agencies in Europe integrate, but mainly investigate, 
the use of UAVs for cadastral mapping [35]. 
 
Overall, UAVs are employed to support land administration both in creating 
and updating cadastral maps. The entirety of case studies confirms that UAVs 
are suitable as an addition to conventional data acquisition methods to create 
detailed cadastral maps, including overview images or 3D models [30,31,37]. 
The average geometrical precision is shown to be the same, or better, 
compared to conventional terrestrial surveying methods [32]. UAVs will not 
substitute conventional approaches since they are currently not suited to map 
large areas such as entire countries [38]. The use of UAVs supports the 
economic feasibility of land administration and contributes to the accuracy and 
completeness of cadastral maps. 

1.1.4 Boundary Delineation for UAV-based Cadastral Mapping 
In all case studies, cadastral boundaries are manually detected and delineated 
from orthoimages. This is realized either in an office with a small group of 
involved stakeholders for one parcel or in a community mapping approach for 
several parcels at once. All case studies lack an automatic approach to extract 
boundary features from the UAV data. An automatic or semi-automatic feature 
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extraction process would simplify cadastral mapping: manual feature 
extraction is generally regarded as time-consuming, wherefore automation will 
bring substantial benefits [39]. The degree of automation can range from semi-
automatic, including human interaction to fully automatic. Due to the 
complexity of image understanding, fully automatic feature extraction often 
shows a certain error rate. Therefore human interaction can hardly be excluded 
completely [40]. However, even a semi-automatic or partial extraction of 
boundary features would radically alter cadastral mapping with regards to cost 
and time. Jazayeri et al. state that UAV data have the potential for automated 
object reconstruction and boundary extraction activities to be accurate and 
low-cost [41]. This is especially true for visible boundaries, manifested 
physically by objects such as hedges, stone walls, large scale monuments, 
walkways, ditches, or fences, which often coincide with cadastral boundaries 
[42,43]. Such visible boundaries offer the potential to be automatically 
extracted from UAV data. 

1.2 Research Gap 
UAVs providing high-resolution imagery and automatic feature extraction are 
novel tools in cadastral boundary mapping. Automated cadastral boundary 
delineation based on UAV data is rarely investigated, even though physical 
objects, which can be extracted using image analysis, often demarcate 
cadastral boundaries. An automated workflow that delineates cadastral 
boundaries from UAV data offers the potential to improve current cadastral 
mapping approaches in terms of time, cost, accuracy, and acceptance. At the 
beginning of this Ph.D. and to the best of our knowledge, no research has been 
done on expediting the cadastral mapping workflow through automatic 
boundary delineation from UAV data. 

1.3 Research Objectives 
The main goal of this Ph.D. research is to develop an approach that simplifies 
image-based cadastral mapping. This aims to support the automated mapping 
of land tenure. The goal is pursued by developing an automated cadastral 
boundary delineation approach applicable to high-resolution remote sensing 
data.  
 
The research addresses the following sub-objectives: 
 
(i) To review relevant information 

In the scope of this objective, relevant background information is 
reviewed. This concerns the state-of-the-art on cadastral mapping, 
boundary delineation, UAV photogrammetry, and feature extraction. 
The information is structured to serve as a basis for further 
developments on automated boundary delineation for UAV-based 
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cadastral mapping. To review case studies that deal with UAV-based 
cadastral mapping aims to demonstrate the potential of UAVs within 
this field and to outline the lack of an automated approach for boundary 
delineation. 

 
(ii) To develop a suitable approach 

This objective focusses on developing a suitable approach based on the 
information obtained in (i). While (i) provides contextual information 
and ideas on how to develop a suitable workflow in theory, this 
objective focusses on testing and adapting different methods in 
practice. The objective is pursued by designing and implementing an 
approach that is applicable to UAV-based cadastral mapping, and that 
is superior to manual delineation. 

 
(iii) To optimize and evaluate the developed approach  

This objective focusses on analyzing the developed approach from (ii) 
in the context of UAV-based cadastral mapping provided in (i). The 
developed approach is evaluated in comparison to manual delineation 
and refined when necessary. 

1.4 Outline 
Objective (i) is addressed in chapters 1 and 3, objective (ii) in chapters 4, 5 
and 6, and objective (iii) in chapters 7 and 8.  
 
The dissertation is structured as follows: 
 
Chapter 1 introduces the Ph.D. research. We describe the research gap to be 
addressed and formulate corresponding research objectives. 
 
Chapter 2 provides contextual information on the Ph.D. research. This is done 
by reviewing approaches for feature extraction from various application fields. 
These are synthesized into a hypothetical workflow applicable for automated 
boundary delineation from UAV data. The workflow consists of image 
segmentation, line extraction, and contour generation. 
 
Chapter 3 investigates which method performs best for image segmentation, 
which is the first step of the hypothetical workflow proposed in chapter 3. This 
is done by analyzing the transferability of gPb contour detection, a state-of-
the-art computer vision method, to UAV-based cadastral mapping. 
 
Chapter 4 investigates which method performs best for line extraction, which 
is the second step of the hypothetical workflow proposed in chapter 3. This is 
done by analyzing a superpixel approach, namely simple linear iterative 
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clustering (SLIC), in terms of its applicability to delineate outlines of roads and 
roofs from UAV data. 
 
Chapter 5 investigates which method performs best for contour generation, 
which is the third step of the hypothetical workflow proposed in chapter 3. This 
is done by coupling gPb contour detection and SLIC superpixels through 
machine learning with a procedure for a subsequent interactive delineation. 
 
Chapter 6 investigates how to improve the workflow developed. This is done 
by reducing its complexity: the coupling of gPb contour detection and SLIC 
superpixels are replaced by multiscale combinatorial grouping (MCG). The 
workflow now consists of image segmentation, boundary classification, and 
interactive delineation. Benefits of the approach compared to manual 
delineation are analyzed in geometrical, operational, and qualitative regards. 
 
Chapter 7 investigates how each step of the workflow can be optimized. For 
image segmentation, filtering is added to reduce over-segmentation. For 
boundary classification, Convolution Neural Networks (CNN) replace predicting 
boundary likelihoods with Random Forest (RF). For interactive delineation, 
additional functionalities are developed. The effectiveness of the approach 
compared to manual delineation is evaluated for rural and peri-urban scenes 
from UAV and aerial data.  
 
Chapter 8 synthesizes the work with conclusions per research objective and 
reflects upon lessons learned and recommendations for future work. 
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2. Review of Automatic Feature Extraction from 
High-Resolution Optical Sensor Data for 
UAV-based Cadastral Mapping* 

 

  

                                           
* This chapter is based on: 
 
44. Crommelinck, S.; Bennett, R.; Gerke, M.; Nex, F.; Yang, M.Y.; Vosselman, G. 
Review of Automatic Feature Extraction from High-Resolution Optical Sensor Data for 
UAV-Based Cadastral Mapping. Remote Sensing 2016, 8, 1-28. 
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Abstract 
Unmanned Aerial Vehicles (UAVs) have emerged as a rapid, low-cost and 
flexible acquisition system that appears feasible for application in cadastral 
mapping: high-resolution imagery, acquired using UAVs, enables a new 
approach for defining property boundaries. However, UAV-derived data are 
arguably not exploited to its full potential: based on UAV data, cadastral 
boundaries are visually detected and manually delineated. A workflow that 
automatically extracts boundary features from UAV data could radically 
increase the pace of current mapping procedures. This review introduces a 
workflow considered applicable for automated boundary delineation from UAV 
data. This is done by reviewing approaches for feature extraction from various 
application fields and synthesizing these into a hypothetical generalized 
cadastral workflow. The workflow consists of pre-processing, image 
segmentation, line extraction, contour generation and post-processing. The 
review lists example methods per workflow step including a description, trialed 
implementation, and a list of case studies applying individual methods. 
Furthermore, accuracy assessment methods are outlined. Advantages and 
drawbacks of each approach are discussed in terms of their applicability on 
UAV data. This review can serve as a basis for future work on the 
implementation of most suitable methods in an UAV-based cadastral mapping 
workflow. 
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2.1 Introduction 
Unmanned Aerial Vehicles (UAVs) have emerged as rapid, efficient, low-cost 
and flexible acquisition systems for remote sensing data [14]. The data 
acquired might be of high-resolution and accuracy, ranging from a sub-meter 
level to a few centimes [45,46]. A photogrammetric UAV workflow includes 
flight planning, image acquisition, mostly camera calibration, image orientation 
and data processing, which can result in Digital Terrain Models (DTMs), Digital 
Surface Models (DSMs), orthoimages and point clouds [39]. UAVs are 
described as a capable sourcing tool for remote sensing data since they allow 
flexible maneuverings, high-resolution image capture, flying under clouds, 
easy launch and landing and fast data acquisition at low cost. Disadvantages 
include payload limitations, uncertain or restrictive airspace regulations, 
battery induced short flight duration and time consuming processing of large 
volumes of data gathered [47,48]. In addition, multiple factors that influence 
the accuracy of derived products require extensive consideration. This includes 
the quality of the camera, the camera calibration, the number and location of 
ground control points and the choice of processing software [32]. UAVs have 
been employed in a variety of applications such as the documentation of 
archaeological sites and cultural heritage [49,50], vegetation monitoring in 
favor of precision agriculture [51,52], traffic monitoring [53], disaster 
management [54,55] and 3D reconstruction [56].  
 
Another emerging application field is UAV-based cadastral mapping. Cadastral 
maps are spatial representations of cadastre records, showing the extent, 
value, and ownership of land [57]. Cadastral maps are intended to provide a 
precise description and identification of land parcels, which are crucial for a 
continuous and sustainable recording of land rights [7]. Furthermore, cadastral 
maps support land and property taxation, allow the development and 
monitoring of a land markets, support urban planning and infrastructure 
development and allow production of statistical data. An extensive review of 
concepts and purposes of cadasters in relation to land administration is given 
in [58,59]. UAVs are proposed as a new tool for fast and cheap spatial data 
production that enable the production of cadastral maps. Within this field, UAVs 
simplify land administration processes and contribute to securing land tenure 
[60]. UAVs enable a new approach to the establishment and updating of 
cadastral maps that contribute to new concepts in land administrations such 
as fit-for-purpose [6], pro-poor land administration [61] and responsible land 
administration [24].  

2.1.1 Objective and Organization of the Study 
The review is based on the hypothesis that image processing algorithms 
applied to high-resolution UAV data are employable to determine cadastral 
boundaries. Therefore, methods are reviewed that are deemed feasible for 



Review of Automatic Feature Extraction from High-Resolution Optical Sensor Data 

12 

detecting and extracting cadastral boundaries. The review is intended to serve 
as a basis for future work on the implementation of the most suitable methods 
in an UAV-based cadastral mapping workflow. The degree of automation of the 
final workflow is left undetermined at this point. Due to an absence of work in 
this context, the scope of this review is extended to methods that could be 
used for UAV-based cadastral mapping, but that are currently applied (i) on 
different data sources or (ii) for different purposes. 
 
(i) UAV data includes dense point clouds from which DTMs and DSM are derived 
as well as high-resolution imagery. Such products can be similarly derived from 
other high-resolution optical sensors. Therefore, methods based on other high-
resolution optical sensor data such as High-Resolution Satellite Imagery (HRSI) 
and aerial imagery are equally considered in this review. Methods applied solely 
on 3D point clouds are excluded: UAV-derived point clouds do not contain full 
3D information since visual information is often lost or generalized. Methods 
that are based on the derived DSM are considered in this review. Methods that 
combine 3D point clouds and aerial or satellite imagery are considered in terms 
of methods based on the aerial or satellite imagery. 
 
(ii) The review includes methods that aim to extract features other than 
cadastral boundaries having similar characteristics, which are outlined in the 
next section. Suitable methods are not intended to extract the entirety of 
boundary features since some boundaries are not visible to optical sensors. 
 
This paper is structured as follows: Firstly, the objects to be automatically 
extracted are defined and described. Therefore, cadastral boundary concepts 
and common cadastral boundary characteristics are outlined. Secondly, 
methods that are feasible to automatically detect and extract previously 
outlined boundary features are listed. The methods are structured according 
to subsequently applicable workflow steps. Thereafter, representative methods 
are applied to an example UAV dataset to visualize their performance and 
applicability on UAV data. Thirdly, accuracy assessment methods are outlined. 
Finally, the methods are discussed in terms of the advantages and drawbacks 
faced in case studies and during the implementation of representative 
methods. The term ‘case studies’ is extended to studies on method 
development followed by examples in this review. The conclusion covers 
recommendations on suitable approaches for boundary delineation and issues 
to address in future work. 
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2.2 Review of Feature Extraction and Evaluation 
Methods 

2.2.1 Cadastral Boundary Characteristics 
In this paper, a cadastral boundary is defined as a dividing entity with a spatial 
reference that separates adjacent land plots. An overview on concepts and 
understandings of boundaries in different disciplines is given in [43]. Cadastral 
boundaries can be represented in two different ways: (i) in many cases they 
are represented as line features that clearly demarcate the boundary’s spatial 
position. (ii) Some approaches employ laminar features that represent a 
cadastral area without clear boundaries. The cadastral boundary is then 
defined implicitly based on the outline or center of the area constituting the 
boundary [62]. This is beneficial for ecotones that represent transitional zones 
between adjacent ecosystems or for pastoralists that move along areas. In 
such cases, cadastral boundaries seek to handle overlapping access rights and 
to grant spatiotemporal mobility [63-65]. As shown, a cadastral boundary does 
not merely include spatial aspects, but those of time and scale as well [66,67]. 
 
Different approaches exist to categorize concepts of cadastral boundaries. The 
lines between the different categories presented in the following can be 
understood as fuzzy. They are drawn to give a general overview, visualized in 
Figure 2.1. From a technical point of view, cadastral boundaries are dividable 
into two categories: (i) Fixed boundaries, whose accurate spatial position has 
been recorded and agreed upon and (ii) general boundaries, whose precise 
spatial position is left undetermined [8]. Both require surveying and 
documentation in cadastral mapping. Cadastral surveying techniques can be 
distinguished between (i) direct techniques, in which the accurate spatial 
position of a boundary is measured on the ground using theodolite, total 
stations and Global Navigation Satellite System (GNSS) and (ii) indirect 
techniques, in which remotely sensed data such as aerial or satellite imagery 
are applied. The spatial position of boundaries is derived from these data in a 
second step [21]. Fixed boundaries are commonly measured with direct 
techniques, which provide the required higher accuracy. Indirect techniques, 
including UAVs, are able to determine fixed boundaries only in the case of high-
resolution data. Indirect techniques are mostly applied to extract visible 
boundaries. These are determined by physical objects and coincide with the 
concept of general boundaries [42,43]. This review concentrates on methods 
that delineate general, i.e., visible cadastral boundaries from indirect surveying 
techniques of high-resolution. The methods are intended to automatically 
extract boundary features and to be employable to UAV data. 
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Figure 2.1. Overview of cadastral surveying techniques and cadastral boundary 
concepts that contextualize the scope of this review paper. The lines between different 
categories are fuzzy and should not be understood exclusively. They are drawn to give 
a general overview. 
 
In order to understand, which visible boundaries define the extents of land, 
literature on 2D cadastral mapping based on indirect techniques was reviewed 
to identify common boundary characteristics. Man-made objects are found to 
define cadastral boundaries as well as natural objects. Studies name buildings, 
hedges, fences, walls, roads, footpaths, pavement, open areas, crop type, 
shrubs, rivers, canals and water drainages as cadastral boundary features 
[10,20,21,23,32,68-70]. Trees are named as the most limiting factor since 
they often obscure the view of the actual boundary [31,71]. No study 
summarizes characteristics of detected cadastral boundaries, even though it is 
described as crucial for feature recognition to establish a model that describes 
the general characteristics of the feature of interest [72]. Common in many 
approaches is the linearity of extracted features. This might be due to the fact 
that some countries do not accept curved cadastral boundaries [22]. Even if a 
curved river marks the cadastral boundary, the boundary line is approximated 
by a polygon [21]. When considering the named features, the following 
characteristics can be derived: most features have a continuous and regular 
geometry expressed in long straight lines of a limited curvature. Furthermore, 
features often share common spectral properties, such as similar values in 
color and texture. Moreover, boundary features are topologically connected 
and form a network of lines that surround land parcels of a certain (minimal) 
size and shape. Finally, boundaries might be indicated by a special distribution 
of other objects such as trees. In summary, features are detectable based on 
their geometry, spectral property, topology and context. 
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This review focusses on methods that extract linear boundary features since 
cadastral boundaries are commonly represented by straight lines with 
exceptions outlined in [64,73]. Cadastral representations in 3D as described in 
[74] are excluded. With UAVs, not all cadastral boundaries can be detectable. 
Only those detectable with an optical sensor, i.e., visible boundaries can be 
extracted. This approach does not consider socially perceived boundaries that 
are not marked by a physical object. Figure 2.2 provides an overview of visible 
boundary characteristics mentioned before and commonly raised issues in 
terms of their detection. 
 

 
Figure 2.2. Characteristics of cadastral boundaries extracted from high-resolution 
optical remote sensors. The cadastral boundaries are derived based on (a) roads, power 
lines and pipelines [38], (b) fences and hedges [10], (c/d) crop types [31], (e) roads, 
foot paths, water drainage, open areas and scrubs [75], and (f) adjacent vegetation 
[71]. (d) Shows the case of a nonlinear irregular boundary shape. The cadastral 
boundaries in (e) and (f) are often obscured by tree canopy. Cadastral boundaries in (a-
d) are derived from UAV data; in (e) and (f) from HRSI. All of the boundaries are 
manually extracted and delineated. 

2.2.2 Feature Extraction Methods 
This section reviews methods that are able to detect and extract the above 
mentioned boundary characteristics. The methods reviewed are either pixel-
based or object-based. (i) Pixel-based approaches analyze single pixels, 
optionally taking into account the pixels’ context, which can be considered 
through moving windows or implicitly through modeling. These data-driven 
approaches are often employed when the object of interest is smaller or similar 
in size as the spatial resolution. Example exceptions are modern convolutional 
neural networks (CNN) [76], which are explained in the latter. The lack of an 
explicit object topology is one drawback that might lead to inferior results, in 
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particular for topographic mapping applications compared to those of human 
vision [77]. (ii) Object-based approaches are employed to explicitly integrate 
knowledge on object appearance and topology into the object extraction 
process. Applying these approaches becomes possible, once the spatial 
resolution is finer than the object of interest. In such cases, pixels with similar 
characteristics such as color, tone, texture, shape, context, shadow or 
semantics are grouped to objects. Such approaches are referred to as Object 
Based Image Analysis (OBIA). They are considered model-driven since 
knowledge about scene understanding is incorporated to structure the image 
content spatially and semantically. The grouping of pixels might also results 
into groups of pixels, called superpixels. This approach with corresponding 
methods could be seen as a third in-between category, but is understood as 
object-based in this review [78-80].  
 
Pixel-based approaches are often used to extract low-level features, which do 
not consider information about spatial relationships. Low-level features are 
extracted directly from the raw, possibly noisy pixels with edge detection being 
the most prominent algorithms [81]. Object-based approaches are used to 
extract high-level features, which represent shapes in images that are detected 
invariant of illumination, translation, orientation and scale. High-level features 
are mostly extracted based on the information provided by low-level features 
[81]. High-level feature extraction aimed at automated object detection and 
extraction, is currently achieved in a stepwise manner and is still an active 
research field [82]. Algorithms for high-level feature extraction often need to 
be interlinked to a processing workflow and do not lead to appropriate results 
when applied solely [78]. The relation of the described concepts is visualized 
in Figure 2.3. Both pixel-based and object-based approaches are applicable 
to UAV data. Pixel-based approaches can be applied to UAV data, or to its down 
sampled version of lower resolution. Due to the high-resolution of UAV data, 
object-based approaches seem to be preferred. The final boundary 
representation should be object-based rather than pixel-based. Both 
approaches are included in this review as the ability to discriminate and extract 
features is highly dependent on scale [83,84]. 
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Figure 2.3. Pixel-based and object-based feature extraction approaches aim to derive 
low-level and high-level features from images. Object-based approaches may include 
information provided by low-level features that is used for high-level feature extraction. 
 
The reviewed methods are structured according to a sequence of commonly 
applied workflow steps for boundary delineation, shown in Figure 2.4. The 
structure of first identifying candidate regions, then detecting linear features, 
and finally connecting these appears to be a generic approach, as following 
literature exemplifies: A review of linear feature extraction from imagery [72], 
a review of road detection [85] and case studies that aim to extract road 
networks from aerial imagery [86,87] and to delineate tree outlines from HRSI 
[88]. The first step, image segmentation, aims to divide an image into non-
overlapping segments in order to identify candidate regions for further 
processing [89-91]. The second step, line extraction, detects edges. Edges are 
defined as a step change in the value of a low-level feature such as brightness 
or color. A collinear collection of such edges aggregated on the basis of a 
grouping criteria is commonly defined as a line [92-94]. The third step, contour 
generation, connects lines to form a closed vectorized boundary line that 
surrounds an area defined through segmentation. These main steps can 
optionally be extended with pre- and post-processing steps. 
 

 
Figure 2.4. Sequence of commonly applied workflow steps to detect and extract linear 
features used to structure the methods reviewed. 
 
This review includes 37 case studies of unknown resolution and 52 case studies 
of multiple resolutions, most often below 5 m (Figure 2.5). The investigated 
case studies intend to detect features such as coastlines, agricultural field 
boundaries, road networks and buildings from aerial or satellite imagery, which 
is mainly collected with IKONOS or QuickBird satellites. The methods are often 
equally applicable to aerial and satellite imagery, as the data sources can have 
similar characteristics such as the high-resolution of the derived orthoimages 
[95].  
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Figure 2.5. Spatial resolution of data used in the case studies. The figure shows the 52 
case studies, in which the spatial resolution was known. For case studies that use 
datasets of multiple resolutions, the median resolution is used. For 37 further case 
studies, which are not represented in the histogram, the spatial resolution was left 
undetermined. 
 
In the following, each workflow step is explained in detail, including a table of 
example methods and case studies that apply these methods. The table 
represents possible approaches, with various further methods possible. The 
most common strategies are covered, while specific adaptations derived from 
these are excluded, to limit the extent of this survey. Overall, the survey of 
methods in this review is extensive, but it does not claim to be complete. The 
description and contextualization of most methods is based upon [96-99]. Due 
to the small number of case studies on linear feature extraction that employ 
high-resolution sensors of < 0.5 m, one group of the described table includes 
case studies on resolutions of up to 5 m, whereas the other includes the 
remaining case studies. In order to demonstrate the applicability of the 
methods on UAV imagery for boundary delineation, some representative 
methods were implemented. An orthoimage acquired with a fixed-wing UAV 
during a flight campaign in Namibia served as an exemplary dataset 
(Figure 2.6). The orthoimage shows a rural residential housing area and has 
a Ground Sample Distance (GSD) of 5 cm. The acquisition and processing of 
the images is described in [10]. Cadastral boundaries are marked with fences 
and run along paths in this exemplary dataset. As for the implementation, 
image processing libraries written in Python and Matlab were considered. For 
Python, this included Scikit [100] and OpenCV modules [101]. The latter are 
equally available in C++. For Matlab, example code provided from MathWorks 
[102] and VLFeat [103] was adopted. The methods were implemented making 
use of different libraries and mostly applying standard parameters. The visually 
most representative output was chosen for this review as an illustrative 
explanation of discussed methods. 
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Figure 2.6. UAV-derived orthoimage that shows a rural residential housing area in 
Namibia, which is used as an exemplary dataset to implement representative feature 
extraction methods. 

2.2.2.1 Preprocessing 
Pre-processing steps might be applied in order to improve the output of the 
subsequent image segmentation and to simplify the extraction of linear 
features. Therefore, the image is processed to suppress noise and enhance 
image details. The pre-processing includes the adjustment of contrast and 
brightness and the application of smoothing filters to remove noise [104]. Two 
possible approaches that aim at noise removal and image enhancement are 
presented in the following. Further approaches can be found in [105]. 
 

 Anisotropic diffusion aims at reducing image noise while preserving 
significant parts of the image content (Figure 2.7), based on source 
code provided in [106]). This is done in an iterative process of 
applying an image filter until a sufficient degree of smoothing is 
obtained [106,107]. 

 Wallis filter is an image filter method for detail enhancement through 
local contrast adjustment. The algorithm subdivides an image into 
non-overlapping windows of the same size to then adjust the contrast 
and minimize radiometric changes of each window [108]. 
 

  
(a) (b) 

Figure 2.7. (a) Subset of the original UAV orthoimage converted to greyscale. 
(b) Anisotropic diffusion applied to greyscale UAV image to reduce noise. After filtering, 
the image appears smoothed with sharp contours removed, which can be observed at 
the rooftops and tree contours. 



Review of Automatic Feature Extraction from High-Resolution Optical Sensor Data 

20 

2.2.2.2 Image Segmentation 
This section describes methods that divide an image into non-overlapping 
segments that represent areas. The segments are detected based on 
homogeneity parameters or on the differentiation to neighboring regions 
[109]. In a not ideal case, the image segmentation creates segments that 
cover more than one object of interest or the object of interest is subdivided 
into several objects. These outcomes are referred to as undersegmentation 
and oversegmentation, respectively [109]. Various strategies exist to classify 
image segmentation, as shown in [110,111]. In this review, the methods are 
classified into (i) unsupervised or (ii) supervised approaches. Table 2.1 shows 
an exemplary selection of case studies that apply the methods described in the 
following. 
 
(i) Unsupervised approaches include methods in which segmentation 
parameters are defined that describe color, texture, spectral homogeneity, 
size, shape, compactness and scale of image segments. The challenge lies 
within defining appropriate segmentation parameters for features varying in 
size, shape, scale and spatial location. Thereafter, the image is automatically 
segmented according to these parameters [98]. Popular approaches are 
described in the following and visualized in Figure 2.8: these were often 
applied in the case studies investigated for this review. A list of further 
approaches can be found in [110]. 
 
 Graph-based image segmentation is based on color and is able to 

preserve details in low-variability image regions while ignoring details in 
high-variability regions. The algorithm performs an agglomerative 
clustering of pixels as nodes on a graph such that each superpixel is the 
minimum spanning tree of the constituent pixels [112,113]. 

 Simple Linear Iterative Clustering (SLIC) is an algorithm that adapts 
a k-mean clustering approach to generate groups of pixels, called 
superpixels. The number of superpixels and their compactness can be 
adapted within the memory efficient algorithm [114]. 

 Watershed algorithm is an edge-based image segmentation method. It 
is also referred to as a contour filling method and applies a mathematical 
morphological approach. First, the algorithm transforms an image into a 
gradient image. The image is seen as a topographical surface, where grey 
values are deemed as elevation of the surface of each pixel’s location. 
Then, a flooding process starts in which water effuses out of the minimum 
grey values. When the flooding across two minimum values converges, a 
boundary that separates the two identified segments is defined [109,110]. 

 Wavelet transform analyses textures and patterns to detect local 
intensity variations and can be considered as a generalized combination of 
three other operations: Multi-resolution analysis, template matching and 
frequency domain analysis. The algorithm decomposes an image into a low 
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frequency approximation image and a set of high frequency, spatially 
oriented detailed images [115]. 

 Globalized Probability of Boundary (gPb) originates from computer 
vision and proposes closed boundaries by combining edge detection and 
hierarchical image segmentation, while integrating image information on 
texture, color and brightness on both a local and a global scale [116]. 

 Multiscale Combinatorial Grouping (MCG) develops gPb further by a 
combinatorial merging of the hierarchical regions detected before based on 
normalized-cut segmentation [117]. 

 
(ii) Supervised methods often consist of methods from machine learning and 
pattern recognition. These can be performed by learning a classifier to capture 
the variation in object appearances and views from a training dataset. In the 
training dataset, object shape descriptors are defined and used to label the 
training dataset. Then, the classifier is learned based on a set of regions with 
object shape descriptors resulting in their corresponding predicted labels. The 
automation of machine learning approaches is limited since the classifier needs 
to be trained with samples that often require manual labeling. The aim of 
training is to model the process of data generation such that it can predict the 
output for unforeseen data. Various possibilities exist to select training sets 
and features [118] as well as to select a classifier [98,119]. In contrast to the 
unsupervised methods, these methods go beyond image segmentation as they 
additionally add a semantic meaning to each segment. A selection of popular 
approaches that have been applied in case studies investigated for this review 
are described in the following. A list of further approaches can be found in [98]. 
 
 Convolutional Neural Networks (CNN) are inspired by biological 

processes being made up of neurons that have learnable weights and 
biases. The algorithm creates multiple layers of small neuron collections 
which process parts of an image, referred to as receptive fields. Then, local 
connections and tied weights are analyzed to aggregate information from 
each receptive field [104]. 

 Markov Random Fields (MRF) are a probabilistic approach based on 
graphical models. They are used to extract features based on spatial 
texture by classifying an image into several regions or classes. The image 
is modelled as a MRF and a maximum a posteriori probability approach is 
used for classification [120]. 

 Support Vector Machines (SVM) consist of a supervised learning model 
with associated learning algorithms that support linear image classification 
into two or more categories through data modelling. Their advantages 
include excellent generalization capability, which concerns the ability to 
classify shapes that are not within the feature space used for training 
[121]. 
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Table 2.1. Case study examples for image segmentation methods. 
Image 

Segmentation 
Method 

Resolution 
< 5 m 

Resolution 
> 5 m 

Unknown 
Resolution 

Unsupervised 

[122] [123] [124] 
[125] [126] [127] 
[128] [129] [130] 
[131] [132] [133] 
[134] [135] [136] 
[137] [87] [88] 
[138] [116] [117] 

[139] [140] [141] 
[115] [142] [143] 

[144] [145] [146] 
[147] [148] [149] 
[145] [135] [150] 
[151] [152] [153] 
[154] [155] 

Supervised 

[83] [156] [157] 
[80] [158] [159] 
[160] [161] [162] 
[163] [118] [164]  
[165] 

[166] [167] 
[148] [94] [147] 
[168] [169]    
[170] 

   

   
(a) (b) (c) 

Figure 2.8. Image segmentation applied to the original UAV orthoimage: (a) graph-
based segmentation, (b) SLIC segmentation, and (c) Watershed segmentation. The label 
matrices are converted to colors for visualization purpose. The input parameters are 
tuned to obtain a comparable number of segments from each segmentation approach. 
However, all approaches result in differently located and shaped segments. 

2.2.2.3 Line Extraction 
This section describes methods that detect and extract linear features. 
Table 2.2 shows an exemplary selection of case studies that apply the 
described methods, which are visualized in Figure 2.9. The figure shows that 
a large number of edges is detected especially in the case of vegetation and 
on the rooftops of buildings, while a small number of edges is detected on 
paths. 
 
 Edge detection can be divided into (i) first and (ii) second order derivative 

based edge detection. An edge has the one-dimensional shape of a ramp 
and calculating the derivative of the image can highlight its location. (i) 
First order derivative based methods detect edges by looking for the 
maximum and minimum in the first derivative of the image to locate the 
presence of the highest rate of change between adjacent pixels. The most 
prominent representative is the Canny edge detection that fulfils the 
criteria of a good detection and localization quality and the avoidance of 
multiple responses. These criteria are combined into one optimization 
criteria and solved using the calculus of variations. The algorithm consists 
of Gaussian smoothing, gradient filtering, non-maximum suppression and 
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hysteresis thresholding [171]. Further representatives based on first order 
derivatives are the Robert’s cross, Sobel, Kirsch and Prewitt operators. (ii) 
Second order derivative based methods detect edges by searching for zero 
crossings in the second derivative of the image to find edges. The most 
prominent representative is the Laplacian of Gaussian, which highlights 
regions of rapid intensity change. The algorithm applies a Gaussian 
smoothing filter, followed by a derivative operation [172,173]. 

 Straight line extraction is mostly done with the Hough transform. This is 
a connected component analysis for line, circle and ellipse detection in a 
parameter space, referred to as Hough space. Each candidate object point 
is transformed into Hough space, in order to detect clusters within that 
space that represent the object to be detected. The standard Hough 
transform detects analytic curves, while a generalized Hough transform 
can be used to detect arbitrary shaped templates [174]. As an alternative, 
the Line Segment Detector (LSD) algorithm could be applied. For this 
method, the gradient orientation that represents the local direction of the 
intensity value, and the global context of the intensity variations are 
utilized to group pixels into line-support regions and to determine the 
location and properties of edges [92]. The method is applied for line 
extraction in [175,176]. The visualization in Figure 2.9 is based on source 
code provided in [176]. 

 
Table 2.2. Case study examples for line extraction methods. 

Line Extraction 
Method 

Resolution 
< 5 m 

Resolution 
> 5 m 

Unknown 
Resolution 

Canny edge detection [177] [83] [131] 
[161] [139] [178] [179] [180] [148] 

[154] 

Hough transform [81] [130] [136] 
[181] [182] [179] [150] [183] 

Line segment 
detector [181] [175] [138]  [154] [155] [184] 

[185] [186] [187] 

   
(a) (b) (c) 

Figure 2.9. Edge detection applied to the greyscale UAV orthoimage based on (a) Canny 
edge detection and (b) the Laplacian of Gaussian. The output is a binary image in which 
one value represents edges (green) and the other value represents the background 
(black). (c) Shows the line segment detector applied and imposed on the original UAV 
orthoimage. 

2.2.2.4 Contour Generation 
This section describes methods that are used to generate a vectorized and 
topologically connected network through connection of line segments. 
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Table 2.3 shows an exemplary selection of case studies that apply the 
methods described in the following, which can be categorized in two groups:  
 
(i) A human operator outlines a small segment of the feature to be extracted. 
Then, a line tracking algorithm recursively predicts feature characteristics, 
measures these with profile matching and updates the feature outline 
respectively. The process continues until the profile matching fails. Perceptual 
grouping, explained in the following, can be used to group feature 
characteristics. Case studies that apply such line tracking algorithms can be 
found in [184,188,189]. 
 
(ii) Instead of outlining a small segment of the feature to be extracted, the 
human operator can also provide a rough outline of the entire feature. Then, 
an algorithm applies a deformable template and refines this initial template to 
fit the contour of the feature to be extracted. Snakes, which are explained in 
the following, are an example for this procedure. 
 
 Perceptual grouping is the ability to impose structural organization on 

spatial data based on a set of principles namely proximity, similarity, 
closure, continuation, symmetry, common regions and connectedness. If 
elements are close together, similar to one another, form a closed contour, 
or move in the same direction, then they tend to be grouped perceptually. 
This allows to group fragmented line segments to generate an optimized 
continuous contour [190]. Perceptual grouping is applied under various 
names such as line grouping, linking, merging or connection in the case 
studies listed in Table 2.3. 

 Snakes also referred to as active contours are defined as elastic curves 
that dynamically adapt a vector contour to a region of interest by applying 
energy minimization techniques that express geometric and photometric 
constraints. The active contour is a set of points that aims to continuously 
enclose the feature to be extracted [191]. They are listed here, even 
though they could also be applied in previous steps, such as image 
segmentation [122,127]. In this step, they are applied to refine the 
geometrical outline of extracted features [88,141,145]. 

 
Table 2.3. Case study examples for contour generation methods. 

Contour Generation 
Method 

Resolution 
< 5 m 

Resolution 
> 5 m 

Unknown 
Resolution 

Perceptual grouping [125] [158] [192] 
[123] [138] [178] 

[152] [193] [194] 
[195] [196] [197] 
[198] [167] [151] 
[154] [155] [170] 
[187] 

Snakes 
[122] [127] [199] 
[200] [201] [202] 
[88] 

 [188] [145] [141] 
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2.2.2.5 Postprocessing 
Postprocessing aims to improve the output of the delineated feature by 
optimizing its shape. Two prominent approaches are explained in the following. 
Table 2.4 shows an exemplary selection of case studies that apply the 
described post-processing methods, which are visualized in Figure 2.10. 
 
 Douglas-Peucker algorithm is used to simplify a line by reducing the 

number of points in a curve that is approximated by a series of points 
[203]. 

 Morphological operators are employed as a post-processing step to 
smooth the contour of detected line features [204]. 

 
Table 2.4. Case study examples for post-processing methods. 

Postprocessing 
Method 

Resolution 
< 5 m 

Resolution 
> 5 m 

Unknown 
Resolution 

Douglas-Peucker 
algorithm 

[80] [192] [87] 
[205] [181] [178] [143] [206] 

Morphological 
operators 

[81] [125] [126] 
[207] [130] [83] 
[156] [131] [208] 
[158] [136] [87] 
[205] [138] 

[142] 

[134] [135] [152] 
[209] [154] 
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(a) (b) (c) 

Figure 2.10. (a) Douglas-Peucker simplification (red) of the contour generated with 
snakes (green). The simplified contour approximates the fence that marks the cadastral 
boundary better than the snake contour does. (b) Binary image derived from Canny edge 
detection as shown in Figure 2.9a. The image serves as a basis for morphological 
closing, shown in (c). Through dilation followed by erosion, edge pixels (green) belonging 
to one class in (b) are connected to larger regions in (c). 

2.2.3 Accuracy Assessment Methods 
In the following, approaches that assess the accuracy of extracted linear 
features are described. In order to quantify the accuracy, reference data are 
required to then calculate a metric, which measures the similarity between the 
result and the reference data. These methods are known as supervised 
discrepancy methods [210]. The reference data can be acquired through 
manual delineation of visually extractable linear features [72,211,212] or 
through their extraction from existing maps [156,208,213]. Some authors 
extend the assessment to aspects such as time, cost and energy savings and 
include further accuracy measures [72]. For methods intending to classify 
linear features, the accuracy assessment is extended to thematic aspects 
[214,215]. In such cases, the confusion matrix is calculated as well as statistics 
derived from it, such as the user's, producer's and overall accuracy as well as 
the kappa coefficient [123,216-218]. The accuracy might also be evaluated 
based on thematic and geometric aspects [219]. The geometric accuracy 
incorporates positional aspects, indicating errors in terms of the object’s 
location and errors in terms of the spatial extent of an object. These 
components can be assessed with pixel-based and object-based measures. 
Pixel-based accuracy assessment has a rather quantitative character, is often 
used to assess geometric accuracy and is more standardized than object-based 
accuracy assessment. The latter has a rather qualitative character and is often 
used to assess classification quality [153]. The trend towards standardized 
pixel-based accuracy measures is manifested in efforts from the International 
Society for Photogrammetry and Remote Sensing (ISPRS), which publishes 
benchmark data to assess different methods in a uniform approach [220]. A 
comparison of both approaches shows that object-based approaches provide 
additional accuracy information compared to pixel-based approaches [216]. 
One example for this additional information are topological aspects that can be 
assessed with an object-based approach as shown in [221]. Such approaches 
can be based on a fuzzy representation of the object’s boundary [222,223]. 
Ultimately, different aspects in terms of feature extraction performance can be 
highlighted with a combination of pixel-based and object-based metrics [224]. 
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The following approaches that can be applied both pixel-based and object-
based, calculate planimetric accuracy. They are simple to implement and are 
often applied when assessing feature extraction methods [212,216,224,225]:  
 
 The completeness measures the percentage of the reference data which 

is explained by the extracted data, i.e., the percentage of the reference 
data which could be extracted. The value ranges from 0 to 1, with 1 being 
the optimum value. 

 The correctness represents the percentage of correctly extracted data, 
i.e., the percentage of the extraction, which is in accordance with the 
reference data. The value ranges from 0 to 1, with 1 being the optimum 
value. 

 The redundancy represents the percentage to which the correct 
extraction is redundant, i.e., extracted features overlap themselves. The 
value ranges from 0 to 1, with 0 being the optimum value. 

 The Root-Mean Square (RMS) difference expresses the average distance 
between the matched extracted and the matched reference data, i.e., the 
geometrical accuracy potential of the extracted data. The optimum value 
for RMS is 0. 

 
These planimetric measures calculate per pixel or per object the number of (i) 
True Positives (TP), where the extracted features match the reference data, 
(ii) False Positives (FP), where the extracted feature does not exist in the 
reference data and (iii) False Negatives (FN), where the features existent in 
the reference data are not extracted. The measures described can be used to 
derive further quality measures. These include the quality, the rank distance, 
the branching factor, the mean detour factor and connectivity measures when 
assessing linear networks [181,212,226,227]. Further, the precision-recall 
curve, the F-measure and the average precision are derived to assess object 
detection methods [98]. Since they contain the information inherent in the 
initial measures, they are used if a single quality measure is desired. 
 
In the most common and simple approach, a buffer area of a specific width is 
calculated around linear features in the extracted data and the reference data. 
Comparing these areas then leads to the described accuracy measures. A 
buffer analysis can be performed either on a pixel-based or object-based 
representation of linear features. For a pixel-based representation, the buffer 
consists of a set of pixels within a specific distance from a set of pixels that 
represents the line. For an object-based representation, i.e., a vector 
representation, the buffer consists of a corridor of a specific width around the 
line [228]. The results of this approach strongly depend on the buffer width.  
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2.3 Discussion 
In the following sections, the previously described feature extraction and 
evaluation methods are discussed and interpreted in perspective of previous 
studies and in the context of UAV-based cadastral mapping. The former is 
based on advantages and drawbacks faced in case studies, while the latter is 
based on the experiences made during the implementation of representative 
methods. The discussion is structured equivalent to the previous chapter. 

2.3.1 Cadastral Boundary Characteristics 
For all feature extraction approaches it is necessary to define characteristics of 
the feature to be extracted as stressed in [72,229]. Defining feature 
characteristics has been done in this review for boundary features in terms of 
geometry, spectral property, topology and context. This is often not exclusively 
done in the reviewed case studies, which extract linear features such as 
coastlines, agricultural field boundaries, road networks and buildings. One 
example of a feature description approach similar to this review is employed 
in a study on the extraction of road networks [189], in which the feature 
description is extended to functional characteristics. Even with a thorough 
description of linear boundary features, methods that extract visible features 
only are not capable of extracting the entirety of boundary features. This might 
include socially constructed boundaries that are not visible to an optical sensor 
[42,66]. The detection of such boundaries can be supported through model-
driven approaches that generate a contour around land plots based on a priori 
knowledge. 

2.3.2 Feature Extraction Methods 
The methods reviewed in this study are grouped according to common 
workflow steps applied for linear feature extraction from high-resolution optical 
sensor data. They consist of (i) preprocessing, (ii) image segmentation, (iii) 
line extraction, (iv) contour generation and (v) post-processing (Figure 2.4). 
An entirety of methods has been reviewed, which does not result in a 
recommendation of one specific method per workflow step since further 
experimental work would be required to do this reliably. The most common 
methods listed in this review are applied to data of different resolutions mostly 
below 5 m. Furthermore, the workflow steps are not necessarily independent 
and sometimes the same method can be applied within different steps. Finding 
a non-redundant classification structure for all methods does not seem feasible 
as stated by authors of similar review papers on road extraction [230], object 
detection [98] and linear feature extraction [72]. Many case studies combine 
strategies from a variety of approaches, of which many example combinations 
are listed in [230]. The greatest variety can be found in case studies on road 
detection [231]. This application field appears to be most prominent for linear 
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feature extraction, demonstrated in the large number of case studies, their 
comprehensive review in [230], their extensive comparison on benchmark data 
[232] and commonly applied accuracy assessment methods originating from 
this field [225].  
 
In the following sections, advantages and drawbacks named in case studies 
that apply previously described methods are outlined. Furthermore, 
recommendations on their applicability for UAV-based boundary delineation 
are drawn, when possible. 
 
(i) Preprocessing steps that include image enhancement and filtering are often 
applied in case studies that use high-resolution data below 1 m [128,131,136]. 
This might be due to the large level of detail in such images, which can be 
reduced with filtering techniques. Without such preprocessing, 
oversegmentation might result - as well as too many non-relevant edges 
obtained through edge detection. One drawback of applying such 
preprocessing steps is the need to set thresholds for image enhancement and 
filtering. Standard parameters might lead to valuable results, but might also 
erase crucial image details. Selecting parameters hinders the automation of 
the entire workflow. 
 
(ii) Image segmentation is listed as a crucial first step for linear feature 
extraction in corresponding review papers [72,85,119]. Overall, image 
segments distinct in color, texture, spectral homogeneity, size, shape, 
compactness and scale are generally better distinguishable than images that 
are inhomogeneous in terms of these aspects. The methods reviewed in this 
paper are classified into supervised and unsupervised approaches. More 
studies apply an unsupervised approach, which might be due to their higher 
degree of automation. The supervised approaches taken from machine learning 
suffer from their extensive input requirements, such as the definition of 
features with corresponding object descriptors, labeling of objects, training a 
classifier and applying the trained classifier on test data [94,157]. 
Furthermore, the ability of machine learning approaches to classify an image 
into categories of different labels is not necessarily required in the scope of this 
workflow step since the image only needs to be segmented. The proposed 
machine learning approaches, such as CNNs, can also be employed in further 
workflow steps, i.e., for edge detection as shown in [233]. A combination of 
edge detection and image segmentation based on machine learning is 
proposed in [234]. According to Dey et al. it is challenging for CNNs to decide 
on a general network structure and to properly learn the classifier with test 
data [110]. A large number of case studies are based on SVM [121]. SVMs are 
appealing due to their ability to generalize well from a limited amount and 
quality of training data, which appears to be a common limitation in remote 
sensing. Mountrakis et al. found that SVMs can be based on fewer training 
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data, compared to other approaches. However, they state that selecting 
parameters such as kernel size strongly affects the results and is frequently 
solved in a trial-and-error approach, which again limits the automation [121]. 
Furthermore, SVMs are not optimized for noise removal, which makes image 
preprocessing indispensable for high-resolution data. Approaches such as the 
Bag-of-Words framework, as applied in [235], have the advantage of 
automating the feature selection and labeling, before applying a supervised 
learning algorithm. Further state-of-the-art approaches, including AdaBoost 
and random forest are discussed in [98]. Machine learning approaches can also 
consist of segmentation and  
 
(iii) Line extraction makes up the majority of case studies on linear feature 
extraction, with Canny edge detection being the most prominent approach. The 
Canny edge detector is capable of reducing noise while a second order 
derivative such as the Laplacian of Gaussian that responds to transitions in 
intensity, is sensitive to noise. When comparing different edge detection 
approaches, it has been shown that the Canny edge detector performs better 
than the Laplacian of Gaussian and first order derivatives as the Robert’s cross, 
Sobel and Prewitt operator [172,173]. In terms of line extraction, the Hough 
transform is the most commonly used method. The LSD appears as an 
alternative that requires no parameter tuning while giving accurate results. 
 
(iv) Contour Generation is not represented in all case studies since it is not as 
essential as the two previous workflow steps for linear feature extraction. The 
exceptions are case studies on road network extraction, which name contour 
generation, especially based on snakes, as a crucial workflow step [85,230]. 
One drawback of snakes lies in finding a seed point as the snake should be 
initialized close to features to be extracted [202]. Furthermore, these methods 
require parameter tuning in terms of the energy field, which limits their 
automation [88]. Perceptual grouping is rarely applied in the case studies 
investigated, especially not in those based on high-resolution data. 
 
(v) Postprocessing is utilized more often than preprocessing. Especially 
morphological filtering is applied in the majority of case studies. Admittedly, it 
is not always employed as a form of post-processing to improve the final 
output, but equally during the workflow to smooth the result of a workflow step 
before further processing [81,130,131,136]. When applied at the end of the 
workflow in case studies on road extraction, morphological filtering is often 
combined with skeletons to extract the vectorized centerline of the road 
[87,135,152,205,207]. 
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2.3.3 Accuracy Assessment Methods 
Considering the accuracy, there is not one optimal method for its assessment 
or reporting. Many studies, especially those that aim at road extraction, use 
the described approach based on buffer analysis. Quackenbush states that 
most case studies focus on the extraction of a single feature, such as roads, 
which reduces the informative value of the resulting confusion matrix [72]. 
Furthermore, many studies report qualitative accuracy measures based on 
visual assessment. Those that provide more quantitative measures are often 
vague in describing their procedure [72]. Moreover, Foody states that 
quantitative measures are often misinterpreted and should therefore be 
interpreted with care. He argues that standardized measures and reporting 
schemes could be supportive, but are unlikely given the range of application 
fields and disciplines [217]. The ISPRS benchmark tests are a recent effort into 
this direction [220]. 
 
Furthermore, mixed pixels and registration problems might lead to a gap 
between extracted data and reference data. This results into low accuracy 
measures even for accurately extracted features [217]. A prioritization of a 
comprehensive cover of land plots over spatial accuracy is manifested in the 
fit-for-purpose land administration strategy proposed in [6]. The accuracy 
measure should therefore not only be interpreted with care, but also initially 
chosen with care taking into account the context and aim of the study as 
concluded in [217]. 

2.4 Conclusion 
This review aimed to explore options to delineate boundaries for UAV-based 
cadastral mapping. At first, an initial review of cadastral mapping based on 
high-resolution optical sensor data was done to document the recent state-of-
the-art. Then, cadastral boundary concepts and characteristics were 
summarized. Thereafter, an extensive review was completed on methods that 
extract and assess linear features with boundary characteristics. Since 
cadastral features include a variety of objects, the methods could also be 
applied to detect linear features in further application fields. The workflow steps 
proposed for boundary delineation include pre-processing, image 
segmentation, line extraction, contour generation and post-processing. Per 
workflow step, the most popular methods were described and case studies that 
have proven their suitability were listed. The applicability of some 
representative methods on high-resolution UAV data was shown through their 
implementation on an exemplary UAV-derived orthoimage. In general, the 
workflow steps were supported in the majority of case studies and have proven 
to be valid when applied to UAV data. Thereafter, the most common accuracy 
assessment approaches were described. Moreover, advantages and drawbacks 
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of each method were outlined, resulting in recommendations on their 
application for UAV-based cadastral mapping.  
 
In conclusion, this review serves as a basis for the subsequent implementation 
of most suitable methods in a cadastral mapping workflow. Depending on the 
methods chosen and their implementation, different degrees of automation can 
be obtained. It would be possible to aim for a data-driven workflow that 
extracts visible boundaries, which then need to be processed by a human 
operator. Another option would be a model-driven workflow that delineates 
boundaries based on knowledge about their characteristics. Future work should 
focus on the automation of a suitable workflow. To increase the level of 
automation while reducing the amount of required human input is also a central 
aim of ongoing research [72]. Due to a lack of robustness of automatic feature 
extraction, some authors favor semi-automatic approaches that combine the 
interpretation skills of a human operator with the measurement speed of a 
computer [188,236]. Semi-automatic approaches that include editing 
capabilities seem indispensable for cadastral mapping approaches that focus 
on the participation of local stakeholders and the integration of local knowledge 
[6]. When evaluating an entire boundary delineation workflow for cadastral 
mapping, the following points proposed in [82] can be suggested as a basis for 
evaluation: The workflow should correctly and completely extract all relevant 
boundaries, be simple in parameterization with a high degree of automation 
and a minimal need of interaction, have a low computational effort, include 
self-assessment to increase reliability and be robust against varying quality of 
input data. The varying quality of input data might result from the application 
of different UAV platforms and sensors. Their influence on the choice of optimal 
workflow steps for cadastral mapping could be investigated in future work. 
 
Overall, this review contributes to the applicability of UAVs, which according to 
Watts et al., has the potential to revolutionize remote sensing and its 
application fields to the same degree as the advent of Geographical Information 
Systems (GIS) did two decades ago [18]. For cadastral mapping, numerous 
studies have demonstrated the potential of UAVs especially in terms of fast 
data capturing and high accuracy [30]. UAV-based cadastral mapping could 
contribute to contemporary initiatives such as the United Nations’ sustainable 
development goals, as it allows a new economic, environmental and social 
approach to cadastral mapping [237]. With UAVs being able to rapidly map 
small areas, the cadastral map could be kept up-to-date at low-cost in a 
sustainable way. These aspects together with the possibility of creating a 
transparent and participatory mapping process could contribute to another 
recent initiative, namely fit-for-purpose land administration published by the 
World Bank and the International Federation of Surveyors (FIG) [6].  
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Future work might concentrate on the integration of existing maps as a source 
of geometric and semantic information that was left undetected by the 
automatic feature extraction. Existing maps are incorporated in the workflow 
of cadastral mapping to support the manual delineation, as basis for map 
updates or for accuracy assessment [11,13]. Their potential to support the 
automatic feature extraction as proposed for road extraction [208] is not yet 
exploited and hardly investigated [238]. As a further data source, smart 
sketchmaps that transfer hand drawn maps into topologically and spatially 
corrected maps could be integrated in the feature extraction workflow [239]. 
This would allow integrating local spatial knowledge and to delineate socially 
perceived boundaries. Those boundaries are not visible to optical sensors and 
were excluded from this review. Furthermore, the boundary delineation 
methods could be enhanced to support the increasingly prominent area of 3D 
cadastral mapping of boundaries and buildings [74]. This would allow a detailed 
representation of complex interrelated titles and land uses [41]. Future 
development on UAV-based cadastral mapping can be expected since the 
ISPRS lists UAVs as key topic and stresses their potential for national mapping 
in their recent paper on trends and topics for future work [95]. Moreover, the 
European Union has acknowledge the use of UAV-derived orthoimages as a 
valid source for cadastral mapping and further applications [31]. 
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3. Contour Detection for UAV-based Cadastral 
Mapping* 

 

                                           
* This chapter is based on: 
 
240. Crommelinck, S.; Bennett, R.; Gerke, M.; Yang, M.Y.; Vosselman, G. Contour 
Detection for UAV-Based Cadastral Mapping. Remote Sensing 2017, 9, 1-13. 
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Abstract 
Unmanned Aerial Vehicles (UAVs) provide a flexible and low-cost solution for 
the acquisition of high-resolution data. The potential of high-resolution UAV 
imagery to create and update cadastral maps is increasingly investigated. 
Existing procedures generally involve substantial fieldwork and many manual 
processes. Arguably, multiple parts of UAV-based cadastral mapping workflows 
could be automated. Specifically, as many cadastral boundaries coincide with 
visible boundaries they could be extracted automatically using image analysis 
methods. This study investigates the transferability of gPb contour detection, 
a state-of-the-art computer vision method, to remotely sensed UAV images 
and UAV-based cadastral mapping. Results show that the approach is 
transferable to UAV data and automated cadastral mapping: object contours 
are comprehensively detected at completeness and correctness rates of up to 
80%. The detection quality is optimal when the entire scene is covered with 
one orthoimage, due to the global optimization of gPb contour detection. 
However, a balance between high completeness and correctness is hard to 
achieve: a combination with area based segmentation and further object 
knowledge is proposed. The localization quality shows the usual dependency 
on ground resolution. The approach offers the potential to accelerate the 
process of general boundary delineation during the creation and updating of 
cadastral maps. 
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3.1 Introduction 
Unmanned Aerial Vehicles (UAVs) have gained increasing popularity in remote 
sensing as they provide a rapid, low-cost and flexible acquisition system for 
high-resolution data [14,15,39]. Recently, cadastral mapping has emerged as 
a field of application for UAVs [38,241-243]. Cadastral maps show the extent, 
value, and ownership of land [57] and are considered crucial for a continuous 
and sustainable recording of land rights [7]. In contemporary settings, UAV 
data are employed both to create and to update cadastral maps, mostly 
through manual delineation of visible cadastral boundaries. An overview of 
case studies investigating the potential of UAVs for cadastral mapping and their 
approaches for boundary delineation is provided in [44]. However, none of the 
case studies described provide an automated approach for cadastral boundary 
delineation. Especially visible boundaries, manifested through physical objects, 
could potentially be extracted automatically [41]. A large number of cadastral 
boundaries are assumed to be visible, as they coincide with natural or 
manmade object contours [42,43]. Such visible boundaries might be 
extractable with computer vision methods that detect object contours in 
images. 

3.1.1 Contour Detection 
Contour detection refers to finding boundaries between objects or segments. 
Early approaches, such as Canny edge detection [171], extract edges by 
calculating gradients of local brightness, which are thereafter combined to 
contours. The approach typically detects irrelevant edges in textured regions. 
Later approaches include additional cues such as texture [244] and color [94] 
to identify contours. Maire et al., extended these approaches to consider 
multiple cues on both the local and global image scales through spectral 
partitioning [245]. Image information on a global scale allows for identification 
of contours not initially recognized by generating closed object outlines and 
eliminating irrelevant contours in textured regions. In [116,246], the closing 
of object outlines is provided by a hierarchical segmentation that partitions an 
image into meaningful objects. Detecting contours and assigning probabilities 
as presented in [116,245,246] is referred to as gPb (globalized probability of 
boundary). The concept is summarized in Figure 3.1. The justification for 
using the method is based on [44], in which a workflow and feature extraction 
methods suitable for cadastral mapping are provided. gPb contour detection 
combines the workflow steps of image segmentation, line extraction and 
contour generation. 
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Figure 3.1. Combined gPb contour detection and hierarchical image segmentation for 
the delineation of closed object contours from RGB images described in [116]. The 
example image is taken from the ‘Berkeley Segmentation Dataset and Benchmark’ [247] 
and is processed with the publicly available source code for gPb contour detection [248]. 
 
In a first step of gPb contour detection, oriented gradient operators for 
brightness, color and texture cues are calculated by measuring their 
differences on two halves of a differently scaled disc. Results are stored in an 
affinity matrix that represents similarities between pixels. Small similarities, 
i.e., a strong oriented gradient, indicates a boundary between two distinct 
regions. Subsequently, all cues are merged based on a logistic regression 
classifier to predict the orientation and the posterior probability of a boundary, 
i.e., edge strength, at each image pixel. The image information on a global 
scale is obtained through spectral clustering. The local and global image scales 
convey different information: the former extracts all edges, while the latter 
extracts only the most salient edges. Both are combined through learning 
techniques as a weighted sum of local and spectral signals. This allows the 
assignment of a probability to each contour, resulting in the gPb contour 
detector.  
 
The following step, i.e., image segmentation, consists of (i) an Oriented 
Watershed Transform (OWT) that forms initial regions from contours; and (ii) 
the construction of an Ultrametric Contour Map (UCM) that defines a 
hierarchical segmentation [249]. OWT is a variant of the watershed algorithm 
and constructs a set of initial regions from the oriented contour signal provided 
by a contour detector. UCM represents a hierarchy of these regions obtained 
by weighting each boundary and their agglomerative clustering. The image 
segmentation, consisting of the two steps OWT and UCM, can be applied to the 
output of any contour detector. However, it has been proven to work optimally 
on the output of the gPb contour detector [246].  
 
The overall results are (i) a contour map, in which each pixel is assigned a 
probability for being a boundary pixel; and (ii) a binary boundary map, in which 
each pixel is labelled as either ‘boundary’ or ‘no boundary’ and from which 
closed segments can be derived. The number of contours transferred from the 
contour map to closed segments in the boundary map is defined by a threshold, 
which is referred to as scale k in [116,246] and in the following. The processing 
of gPb-owt-ucm is referred to as gPb contour detection in this study. 
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gPb contour detection provides accurate results compared to other approaches 
[116] and is often referred to as a state-of-the-art method for contour 
detection [250-252]. As the cue combination is learned, based on a large 
number of natural images from the ‘Berkeley Segmentation Dataset and 
Benchmark’ [247], the approach seeks to be transferable to images of different 
contexts. Nevertheless, gPb contour detection has hardly been applied to 
remotely sensed data [253,254] and, to the best of the authors’ knowledge, 
never to UAV data. The transferability of methods from computer vision to 
remote sensing is challenging, as both are often developed for image data with 
different characteristics: a benchmark dataset used in computer vision, such 
as the ‘Berkeley Segmentation Dataset and Benchmark’, contains natural 
images of maximal 1000 pixels in width and height, whereas a benchmark 
dataset used in remote sensing, such as the ‘ISPRS Benchmark’ [220], contains 
images from multiple sensors with higher numbers of pixels and larger Ground 
Sample Distances (GSD). This study addresses the transferability of gPb 
contour detection, originally designed to work on natural images, to remotely 
sensed UAV orthoimages. 

3.1.2 Objective and Organization of the Study 
This study investigates which processing is required for a state-of-the-art 
contour detection method from computer vision, namely gPb contour 
detection, to be applied to remotely sensed data of high-resolution, namely 
UAV data. Once the technical transferability is defined, the applicability of the 
method within the application field of cadastral mapping is investigated. This 
study aims to outline the potential of gPb contour detection for an automated 
delineation of cadastral boundaries demarcated by visible objects. 
 
Overall, the study addresses the research gaps of transferring a method 
developed within computer vision to an application in remote sensing, where 
images have different characteristics. Further, it encounters the lack of 
automation within cadastral boundary delineation by investigating the 
applicability of gPb contour detection. 
The paper is structured as follows: after having described the context of this 
research, the UAV datasets as well as the methodological approach are 
described. Then, the results are described and discussed. Concluding remarks 
include generic statements about the transferability and applicability of gPb 
contour detection for UAV-based delineation of visible cadastral boundaries. 

3.2 Materials and Methods 

3.2.1 UAV Data 
Three UAV orthoimages of different extents showing rural areas in Germany, 
France and Indonesia were selected for this study. Rural areas were chosen 
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because the number of visible boundaries is usually higher in rural areas 
compared to high-density urban areas. Table 3.1 shows specifications of the 
data capture, while Figure 3.2 shows orthoimages of the study areas. 
 

Table 3.1. Specifications of UAV datasets per study area. 

Location Acquisition UAV Model GSD 
[cm] Extent [m] Pixels 

Amtsvenn 
Germany Sept. 2016 GerMAP 

G180 4.86 1000 x 1000 20,538 x 20,538 

Toulouse 
France Oct. 2016 DelairTech 

DT18 3.61 500 x 500 13,816 x 13,816 

Lunyuk 
Indonesia Oct. 2015 DJI Phantom 

3 Advanced 3.00 250 x 250 8,344 x 8,344 

3.2.2 Reference Data 
The study is based on the assumption that large portions of cadastral 
boundaries are visible [42]. Therefore, the method is intended to extract 
contours of physical objects that demarcate cadastral boundaries. A general 
list of such objects is rarely available in literature and strongly depends on the 
area of investigation [44]. From a list of objects provided in [44], the following 
objects were assumed to indicate cadastral boundaries for the investigated 
study areas: roads, fences, hedges, stone walls, roof outlines, agricultural field 
outlines as well as outlines of tree groups. The contours of these objects were 
manually delineated for all three orthoimages (Figure 3.3). The reference data 
is not identical with cadastral boundaries since a subset of these, i.e., visible 
boundaries, are considered in this study. Cadastral boundaries are assumed to 
be more regular than the outlines of visible objects delineated as reference 
data. A workflow for cadastral boundary delineation would need to contain a 
step in which extracted contours are generalized to be more likely to be 
cadastral boundaries. This study is not designed to provide such a complete 
workflow; it seeks to delineate object contours as a first workflow step. 
 

   
(a) (b) (c) 

Figure 3.2. Manually delineated object contours used as reference data to determine 
the detection quality overlaid on UAV orthoimages of (a) Amtsvenn, Germany, 
(b) Toulouse, France, and (c) Lunyuk, Indonesia. 
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3.2.3 Image Processing Workflow 
The method investigated, gPb contour detection, is open source and available 
as a precompiled Matlab package [248]. This implementation was found to be 
inapplicable because of long computing time and insufficient memory when 
processing images of more than 1000 pixels in width and height. Therefore, an 
image processing workflow that reduces the original image size to 1000 x 1000 
pixels was designed (Figure 3.3). The workflow consists of four steps, which 
are explained in the following. Apart from the Matlab implementation for gPb 
contour detection, all workflow steps were implemented in Python as QGIS 
processing scripts. 
 
1) Image Pre-processing: The UAV orthoimage was first resampled to 

lower resolutions ranging from 5 to 100 cm GSD. The resampling was 
based on nearest neighbor resampling, as it is computationally least 
expensive. Furthermore, the resampling to different GSDs enabled 
investigation of the influence of GSD in detecting object contours. The 
resampled images of 1000 to 5000 pixels in width and height were then 
tiled to tiles of 1000 x 1000 pixels. The smaller the GSD, the more tiles 
were created (Table 3.2). 

2) Boundary Delineation: Then, gPb contour detection was applied to each 
tile of different GSDs. This resulted in contour maps containing probabilities 
for contours per pixel. By applying hierarchical image segmentation at 
scale k within the range [0; 1], contours of a certain probability were 
closed and transferred to a binary raster map containing pixels for the 
classes ‘boundary’ and ‘no boundary’. The resulting boundary map was 
created for all levels of k. 

3) Image Postprocessing: All tiles belonging to the same set were merged 
to one contour map and one binary boundary map, which was then 
vectorized.  

4) Accuracy Assessment: The assessment was pixel-based and 
investigated the confusion matrix in terms of pixels labelled as True 
Positives (TP), True Negatives (TN), False Positives (FP) and False 
Negatives (FN) [228,255]. The accuracy assessment is designed to 
determine the accuracy in terms of (i) the detection quality, i.e., 
completeness and correctness as well as (ii) the localization quality, i.e., 
the accuracy of boundaries in a geometric sense: 
(i) Each line was buffered with a radius distance of 2 m and converted to 

a raster format. The same buffering and rasterization was applied to 
the reference data. From the confusion matrix, the following errors 
were calculated: the error of commission within the range of [0; 100], 
showing the percentage of pixels erroneously labelled as ‘boundary’ 
and the error of omission within the range of [0; 100], showing the 
percentage of pixels erroneously labelled as ‘no boundary’. The 
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generous buffer of 2 m was chosen in order to account for uncertainties 
in conjunction with manual delineation and resampling effects. 

(ii) Since multiple objects, such as trees and bushes, do not provide 
exactly localizable contours, the localization accuracy requires a 
different set of reference data. Therefore, a subset of the reference 
data was evaluated containing exactly locatable object contours only, 
i.e., road and roof outlines. This subset was rasterized to a raster of 
5 cm GSD and each reference line was buffered with distances from 0-
2 m at increments of 20 cm. The binary boundary map was resampled 
to a GSD of 5 cm to be comparable to the reference raster. During the 
resampling, only one center pixel of 5 x 5 cm was kept per pixel of a 
larger GSD to avoid having a higher number of pixels after resampling 
a boundary map of a larger GSD. The resampled binary boundary map 
was then compared to the reference raster. Based on the confusion 
matrix, the number of TPs per buffer zone was calculated to investigate 
the distance between TPs and the reference data and thus the influence 
of GSD on the localization quality. 

 

 
Figure 3.3. Image processing workflow for delineation of visual object contours from 
UAV orthoimages and its assessment based on the comparison to reference data. 

3.3 Results 
Resampling and tiling the UAV orthoimages to tiles of 1000 x 1000 pixels 
results in a higher number of tiles for images of a smaller GSD (Table 3.2). 
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Applying gPb contour detection on each tile of 1000 x 1000 pixels belonging to 
the same set of tiles with an identical GSD results in a contour map and a 
binary boundary map (Figure 3.4). The lower the level of k, the fewer contours 
are transferred from the contour map to the binary boundary map 
(Figure 3.5). The processing time for each tile ranged from 10 to 13 minutes 
and was 11 minutes on average, with gPb contour detection running single-
threaded. The accuracy assessment is shown in terms of detection quality 
(Figure 3.6) and localization quality (Figure 3.7). To separate the influence 
of GSD and tiling on the detection quality, each untiled image of the largest 
GSD per study area was tiled to 25 tiles and assessed (Table 3.3). 
 
Table 3.2. Number of Pixels and Ground Sample Distance (GSD) per tile after image 
preprocessing. 

Pixels Tiles GSD [cm] 
Amtsvenn 

GSD [cm] 
Toulouse 

GSD [cm] 
Lunyuk 

5000 x 5000 25 20 10 5 
4000 x 4000 16 25 12.5 6.25 
3000 x 3000 9 33 16.5 8.3 
2000 x 2000 4 50 25 12.5 
1000 x 1000 1 100 50 25 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 3.4. Examples of contour maps (a, d, g) and binary boundary maps (k = 0.1) of 
Amtsvenn (a, b, c), Toulouse (d, e, f) and Lunyuk (g, h, i). The boundary maps are 
buffered with 2 m to increase their visibility. (a, b, d, e, g, h) result from an untiled 
input image of 1000 x 1000 pixels, (c, f, i) from an input image of 5000 x 5000 pixels 
merged from 25 tiles. 
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(a) (b) (c) 

Figure 3.5. Binary boundary maps derived from untiled UAV orthoimage of Amtsvenn 
with a size of 1000 x 1000 pixels and 100 cm GSD at level (a) k = 0.1, (b) k = 0.3, and 
(c) k = 0.5.  

 

   
(a) (b) (c) 

Figure 3.6. Detection quality: the errors of commission and omission is shown for binary 
boundary maps of different Ground Sample Distances (GSD) derived for (a) Amtsvenn, 
(b) Toulouse, and (c) Lunyuk at level k = 0.1. 

 

   
(a) (b) (c) 

Figure 3.7. Localization quality: the distance between pixels being True Positives (TP) 
and the reference data relative to the total number of TPs per Ground Sample Distance 
(GSD) is shown for (a) Amtsvenn, (b) Toulouse, and (c) Lunyuk at level k = 0.1.  
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Table 3.3. Comparison of detection quality for images of largest Ground Sample 
Distance (GSD) per study area for the untiled image and the same image merged from 
25 tiles. Lower errors are marked in bold. 

 Amtsvenn Toulouse Lunyuk 
Pixels; GSD[cm] 1000 x 1000; 100 1000 x 1000; 50 1000 x 1000; 25 

Tiles 1 25 1 25 1 25 
Error of 

commission [%] 55.15 70.01 23.43 53.88 17.21 31.10 

Error of  
omission [%] 13.44 68.75 27.44 90.12 52.30 96.24 

3.4 Discussion 

3.4.1 Detection Quality 
The error of commission, i.e., excessive detection, increases with parallel 
decreasing of GSD and increasing of tiles and is mostly lowest for the untiled 
input image regardless of scale k (Figure 3.6). Both the errors of commission 
and omission are higher when applying gPb contour detection on the tiled 
image compared to the untiled image of the same GSD (Table 3.3). Therefore, 
the detection quality depends on the number of tiles, i.e., the area of the 
captured scene, rather than the GSD for the three study areas: gPb contour 
detection considers the global extent of one image or one single tile, 
respectively. When taking a small tile of the UAV orthoimage into account, the 
global optimization is not efficient. This results in a higher number of contours 
detected in textured regions (oversegmentation). Therefore, more boundaries 
are detected in Figure 3.4c/f/i, which consist of 25 tiles compared to 
Figure 3.4b/e/h, which consist of one single tile. Overall, the global 
optimization works optimally if the entire scene is covered in one orthoimage. 
 
The error of omission, i.e., missed boundaries, varies less than the error of 
commission per binary boundary map. It can be concluded that a higher 
number of tiles that cover smaller parts of the entire scene, does not lead to 
an increase in the error of omission (Figure 3.6). The lowest number of errors 
of omission are obtained for k = 0.1 since fewer boundaries are missed in the 
over-segmented binary boundary map (Figure 3.5). 
 
The overall detection accuracy is close to 100% since many pixels are classified 
correctly as ‘no boundary’. It is therefore not visualized in Figure 3.6. A low 
level of k leads to an oversegmentation of the image, while a higher level of k 
leads to an undersegmentation or even the case that no boundaries are 
contained in the binary boundary map (Figure 3.5), which influences the 
errors of commission and omission accordingly. However, even for the lowest 
level of k, contours indicated in the contour map (Figure 3.4g), might not be 
transferred to the binary boundary map (Figure 3.4h). This indicates that 
when aiming for a high completeness of detected contours, which is considered 
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optimal in [256] before integrating user interaction, the contour map should 
be considered for further processing.  
 
The results for Amtsvenn show the highest number of errors of commission, 
due to many textured regions in which boundaries are erroneously detected. 
The error of commission is lowest for Lunyuk since the image contains rarely 
any textured regions or small objects. The high errors of omission for the 
Toulouse and Lunyuk data reveal that boundaries are less definite and visible 
in these images. 

3.4.2 Localization Quality 
The number of TPs within 20 cm distance to the reference data relative to the 
total number of TPs per GSD decreases for larger GSDs, for all study areas 
(Figure 3.7). For GSDs of 20-33 cm (Amtsvenn) and 10-25 cm (Toulouse and 
Lunyuk), the number of TP localized within 20 cm distance from the reference 
data ranges between 50-60%. This percentage decreases for all study areas 
when the GSD is increased to 100 cm. The results indicate that contours are 
more accurately localized for UAV images of a higher resolution. 

3.4.3 Discussion of the Evaluation Approach 
The study results strongly depend on the applied buffer distance. For detection 
quality, the buffer distance of 2 m was chosen. This does not represent the 
following two visually observed cases: (i) some boundaries run along the 
shadow of an object and are therefore shifted compared to the reference data 
that runs along the actual object contour. (ii) Some boundaries are covered by 
other objects, e.g., trees covering streets. Merging contours of smaller objects 
with the applied buffer distance does not represent such cases. Such issues 
could be resolved with an object detection that includes semantics, i.e., 
knowledge about the objects to be extracted. UAV-based approaches offer the 
potential to extract such object knowledge through incorporation of high-
resolution imagery, pointclouds and Digital Surface Models (DSM). According 
to Mayer, the use of such additional information makes object extraction more 
robust and reliable [256]. The approach to detection quality is employed 
similarly in other studies [228,255,257,258]. The authors argue that despite 
its strong dependency on the buffer size and its focus on positional accuracy 
while neglecting factors such as topological accuracy, the buffer approach 
provides a simple and comprehensive accuracy measure. Further, it can be 
used on both a vector and a raster representation and is easy to implement 
[258]. 
 
Apart from the accuracy assessment method, the manually drawn reference 
data strongly influences the results. Manually drawn reference data are argued 
to be valid for measuring the degree to which an automated system, as 
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proposed in this study, outperforms a human operator [256]. However, each 
human might draw different reference data. Averaging a large number of 
manually drawn reference data, as proposed in [94], might reduce errors 
produced by an individual. 

3.4.4 Transferability and Applicability of gPb for Boundary 
Delineation 

gPb contour detection appears to be transferable to UAV orthoimages. The 
approach can support the automation of cadastral boundary delineation in 
cases where cadastral maps are scarcely available and concepts such as fit-
for-purpose and responsible land administration are in place [6,259]. Such 
concepts accept general boundaries, for which the positional correctness is of 
lower importance [42]. In cases where a map needs to be created or updated, 
and positional inaccuracy is tolerated to a certain degree, editing automatically 
generated visible boundaries from gPb contour detection on an UAV 
orthoimage might be less cost- and time-intensive than manually delineation 
all boundaries. This would need to be verified by comparing both cadastral 
mapping workflows as a whole. Hence, future work is required to determine to 
which degree the object contours coincide with cadastral boundaries and which 
level of accuracy is required to outperform a manual cadastral mapping 
workflow. For road extraction, which is closely related to the object detection 
of this study, Mayer et al. propose a correctness of around 85% and a 
completeness of around 70% for an approach to be of real practical importance 
[232]. Such values can hardly be achieved when applying solely gPb contour 
detection for cadastral boundary delineation. 
 
Furthermore, there might be cases in which only a small portion of cadastral 
boundaries is visible or object contours do not coincide with cadastral 
boundaries. Then, the proposed data-driven approach will need to be combined 
with a knowledge-driven approach. To reliably delineate a closed and 
geometrically and topologically correct network of boundaries, further object 
knowledge should be incorporated, e.g., through semi-supervised machine 
learning approaches and thus derived complementary data. The contour map 
containing the probability for each contour detected and for which the level of 
k does not need to be defined, could be employed as a first workflow step. The 
salient contours detected in this step could be balanced by incorporating an 
area-based segmentation, resulting in more homogeneous areas. Adding 
further steps to the workflow could generate an output directly comparable to 
cadastral boundaries. In future, the authors aim to develop a workflow that 
remains as automatic, generic and adaptive to different scenarios as possible, 
similarly formulated in [260] as a need for contemporary boundary detection 
schemes.  
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3.5 Conclusion 
This study contributes to the recent endeavor of making the process of 
cadastral mapping more reproducible, transparent, automated, scalable and 
cost-effective. This is achieved by proposing the application of UAV 
orthoimages combined with automated image analysis, i.e., a state-of-the-art 
computer vision method that has never been applied to UAV data. The 
approach does not require prior knowledge (learning) and automatically 
detects object contours from UAV orthoimages that indicate visible cadastral 
boundaries. More specifically, this study investigates the transferability of gPb 
contour detection to UAV images and its applicability for automated cadastral 
mapping. This is investigated in terms of detection and localization quality for 
three different study areas.  
 
The approach is most suitable for areas in which object contours are clearly 
visible and coincide with cadastral boundaries. The approach proposed offers 
potential to simplify and accelerate the cadastral mapping process. This applies 
to the automated outlining of general boundaries during the creation and 
updating of cadastral maps. To establish the comparability of the detected 
object contours with cadastral boundaries, future work will focus on 
incorporating the approach proposed here with machine learning methods to 
integrate further object knowledge. The goal is to generate a tool for cadastral 
boundary delineation that is highly automatic, generic and adaptive to different 
scenarios. 
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4. SLIC Superpixels for Object Delineation 
from UAV Data* 

 
  

                                           
* This chapter is based on: 
 
261. Crommelinck, S.; Bennett, R.; Gerke, M.; Koeva, M.; Yang, M.Y.; Vosselman, 
G. In SLIC Superpixels for Object Delineation from UAV Data, International Conference 
on Unmanned Aerial Vehicles in Geomatics, Bonn, Germany, 04-07 September, 2017; 
IV-2/W3, pp 9-16. 
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Abstract 
Unmanned aerial vehicles (UAV) are increasingly investigated with regard to 
their potential to create and update (cadastral) maps. UAVs provide a flexible 
and low-cost platform for high-resolution data, from which object outlines can 
be accurately delineated. This delineation could be automated with image 
analysis methods to improve existing mapping procedures that are cost, time 
and labor intensive and of little reproducibility. This study investigates a 
superpixel approach, namely simple linear iterative clustering (SLIC), in terms 
of its applicability to UAV data. The approach is investigated in terms of its 
applicability to high-resolution UAV orthoimages and in terms of its ability to 
delineate object outlines of roads and roofs. Results show that the approach is 
applicable to UAV orthoimages of 0.05 m GSD and extents of 100 million and 
400 million pixels. Further, the approach delineates the objects with the high 
accuracy provided by the UAV orthoimages at completeness rates of up to 
64%. The approach is not suitable as a standalone approach for object 
delineation. However, it shows high potential for a combination with further 
methods that delineate objects at higher correctness rates in exchange of a 
lower localization quality. This study provides a basis for future work that will 
focus on the incorporation of multiple methods for an interactive, 
comprehensive and accurate object delineation from UAV data. This aims to 
support numerous application fields such as topographic and cadastral 
mapping. 
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4.1 Introduction 
Superpixel approaches, introduced in [262], group pixels into perceptually 
meaningful atomic regions. Superpixels are located between pixel- and object-
level: they carry more information than pixels by representing perceptually 
meaningful pixel groups, while not comprehensively representing image 
objects. Superpixels can be understood as a form of image segmentation that 
oversegment the image in a short computing time. Comparisons to similar 
approaches that can be found in [114,263-267] have demonstrated their 
advantages: The outlines of superpixels have shown to adhere well to natural 
image boundaries, as most structures in the image are conserved [262,264]. 
Furthermore, they allow reducing the susceptibility to noise and outliers as well 
as to capture redundancy in images. With image features being computed for 
each superpixel rather than each pixel, subsequent processing tasks are 
reduced in complexity and computing time. Thus, superpixels are considered 
useful as a preprocessing step for analyses at object level such as image 
segmentation [114,268]. 
 
In general, the success of image segmentation activities is highly variable as 
it depends on the image, the algorithm and its parameters: an algorithm that 
performs as desired on one image might result in a lower segmentation quality 
when applied with the same parameters to another image. This study 
investigates the applicability of a superpixel approach, namely simple linear 
iterative clustering (SLIC), in terms of its ability to delineate object outlines of 
roads and roofs from UAV data. The approach has proven to accurately 
delineate object outlines [114]. In this study, SLIC is applied to two UAV 
orthoimages of 0.05 m GSD and extents of 100 million and 400 million pixels. 
 
Object delineation is potentially useful in numerous application fields, such as 
topographic and cadastral mapping [44]. Cadastral mapping refers to mapping 
the extent, value, and ownership of land, being crucial for a continuous and 
sustainable recording of land rights [7]. Cadastral mapping is used in this study 
as an example application field to investigate the applicability of SLIC 
superpixels for an automatic delineation of object outlines. Such visible outlines 
can correspond to cadastral boundaries, as a large portion of cadastral 
boundaries are assumed to be visible [42]. Automatically delineating visible 
boundaries, would thus improve cadastral mapping approaches in terms of 
cost, time, accuracy and reproducibility. This study investigates SLIC 
superpixels as part of a boundary delineation workflow. The study does not 
provide a full workflow for automatic delineation of visible cadastral 
boundaries. However, when used alongside other more conventional mapping 
techniques, the approach may improve the time and costs associated with 
wide-area cadastral mapping projects. 
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4.2 Related Work 

4.2.1 Superpixel Approaches 
Superpixels oversegment an image by forming compact and uniform groups of 
pixels that have similar characteristics in, e.g., color or geometry. In the past, 
multiple superpixel approaches have been developed. They can be classified 
into i) graph-based and ii) gradient-ascent-based approaches: 
 
 In i), each pixel is considered a node in a graph. An edge weight is defined 

between all pairs of nodes that is proportional to their similarity. Then, a 
cost function defined on the graph is formulated and minimized, in order 
to extract superpixel segments. Examples of graph-based approaches are 
[112,269,270].  

 
 In ii), pixels are iteratively mapped to a feature space to delineate denser 

regions that represent clusters. Each iteration refines each cluster to obtain 
a better segmentation until convergence. Examples of gradient-ascent-
based approaches are [271-273]. 

 
State-of-the-art superpixel approaches have been compared in [114,263-267] 
considering speed, memory efficiency, compactness of outlines, their ability to 
adhere to image boundaries and their impact on segmentation performance. 
Boundary adherence is often measured via boundary recall, indicating how 
many true edges are missed, and via undersegmentation, indicating to what 
extent superpixels exceed outlines of the reference data [114,264]. The SLIC 
superpixel approach, belonging to the group of gradient-ascent-based 
approaches, appears as the best overall performer: the algorithm is low in 
processing time and produces compact and nearly uniform superpixels that are 
positively evaluated in terms of boundary recall and undersegmentation error 
[114,263-267].  

4.2.2 SLIC Approach 
SLIC was introduced in [268] and later extended to a zero parameter version 
of SLIC called SLICO and compared to state-of-the-art superpixel approaches 
in [114]. SLIC considers image pixels in a 5D space, defined by the L*a*b 
values of the CIELAB color space as well as their x and y coordinates. Pixels in 
the 5D space are clustered based on an adapted k-means clustering integrating 
color similarity and proximity in the image plane. The clustering is based on a 
distance measure D that measures color similarity in L*a*b space (𝑑𝑑𝑐𝑐) and 
pixel proximity in x, y space (𝑑𝑑𝑠𝑠). The latter is normalized by a grid interval (S) 
that defines the square root of the total number of image pixels divided by the 
number of superpixels (k). The compactness and regularity of the superpixels 
is controlled with the constant m. This parameter functions as a weighting 
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criteria between the spatial distance (𝑑𝑑𝑐𝑐) and the spectral distance (𝑑𝑑𝑠𝑠). A 
larger m, increases the weight of spatial proximity, which leads to more 
compact superpixels with boundaries adhering less to spectral outlines in the 
image. 
 

D = ��𝑑𝑑𝑐𝑐
𝑚𝑚
�
2

+ �𝑑𝑑𝑠𝑠
𝑆𝑆
�
2
 (1) 

 
SLICO replaces the constant values for m and S used in (1) to normalize 
spectral and spatial proximity, by iteratively normalizing their proximity. The 
proximities are dynamically normalized for each cluster considering the 
maximum observed spectral distance (𝑚𝑚𝑐𝑐) and spatial distance (𝑚𝑚𝑠𝑠) from the 
previous iteration. This leads to a more consistent superpixel compactness and 
a reduced need to define parameters. 
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�
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�
2
 (2) 

 
In general, only pixels within D are considered during clustering, which makes 
SLIC fast and computational efficient compared to conventional k-means 
clustering. Another advantage of SLIC is its ability to be applied to images 
greater than 0.5 million pixels, processing time scales linearly with the number 
of pixels. Further, it is simple to implement and demands low computational 
and memory cost. The boundary recall is lowest compared to other approaches. 
However, the risk of losing meaningful image edges remains, when an edge is 
placed inside a superpixel [114]. 
 
SLIC implementations are available in OpenCV [274], VLFeat [275], GDAL 
[276], Scikit [277], Matlab [278] and GRASS [279]. They are mostly based on 
the two SLIC versions proposed in [114]. For the first version (SLIC), the 
parameter k specifies the number of approximately equally sized superpixels. 
Optionally, the compactness parameter m can be set to control the trade-off 
between superpixels’ homogeneity and boundary adherence. This version 
generates regular-shaped superpixels in untextured regions and highly 
irregular superpixels in textured regions (Figure 4.1a). For the second version 
(SLICO), only the parameter k can be defined, while m is adaptively refined 
for each superpixel. SLICO generates regular-shaped superpixels across the 
scene, regardless of texture (Figure 4.1b) [114].  
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(a) (b) 

Figure 4.1. (a) SLIC (m = 20) and (b) SLICO applied to an UAV orthoimage of Toulouse 
with 0.05 m ground sample distance (GSD) and k = 625. SLIC generates regular-shaped 
superpixels in untextured regions and highly irregular superpixels in textured regions. 
SLICO generates regular-shaped superpixels across the scene, regardless of texture. 
SLICO superpixels are spatially more compact, but spectrally more heterogeneous. 

4.2.3 Superpixels in Remote Sensing 
The benefits of analyzing groups of pixels instead of single pixels, has been 
verified from a computer vision perspective for multiple applications such as 
object recognition [280,281]. This has similarly been done from a remote 
sensing perspective for object-based image analysis (OBIA) [78]. The use of 
superpixels in computer vision is increasingly popular, whereas only few 
studies in remote sensing consider superpixels [263,282-288].  
 
However, the need and acceptance of superpixels in remote sensing is 
presumed: the local spatial autocorrelation between pixels with a high-
resolution in remotely sensed imagery is high. Thus one object is often 
composed of many pixels with similar characteristics [289]. This has led to the 
formulation of the OBIA paradigm [78]. Superpixels that group pixels of similar 
characteristics into an oversegmented image are considered a preprocessing 
step in conventional OBIA approaches [282]. 
 
A comparison of four state-of-the-art superpixel approaches, with SLIC being 
the best choice considering speed and accuracy, has been conducted on 
satellite imagery of 0.5-0.6 m GSD and an extent of 4 million pixels [263]. In 
further studies that apply superpixels on remote sensing data, SLIC is equally 
considered as the most suitable superpixel approach [283,285,287,290]. SLIC 
has rarely been applied to UAV data, or for object delineation in topographic 
or cadastral mapping. This study aims to bridge both of these research gaps. 
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4.2.4 SLIC Superpixels for Object Delineation 
In general, SLIC cannot be considered as a standalone approach for object 
delineation. Each superpixel needs to be closed even if no object outline is 
available within the image. The larger k, the more outlines are generated that 
do not align with object outlines. In order to eliminate those unwanted outlines, 
SLIC could be combined with further segmentation methods. Another option, 
proposed in [287] would be to fuse neighboring SLIC regions of similar color 
to eliminate non-relevant outlines.  
 
Combining the information from multiple segmentations has been investigated 
in other studies aiming to develop a transferable approach with a constant 
object recognition robustness and a reduced need for parameter optimization. 
Object outlines delineated through multiple segmentations are shown to be 
more reliable and robust compared to those detected by fewer segmentations 
[280,281,291,292]. This idea can equally be transferred to superpixels: 
combining superpixels with the output of a contour detector has shown to 
better delineate object contours, compared to using a standalone superpixel 
approach [272,293-295].  
 
SLIC superpixels are often combined with the Pb [94] or the gPb [245] contour 
detector. These approaches combine texture, color and brightness to calculate 
probabilities of boundaries (Pb) and globalized probabilities of boundaries 
(gPb), respectively. The former considers these cues on a local scale, while the 
latter considers them on both a local and a global scale. Detected contours and 
superpixel outlines are mostly combined with cost functions that minimize the 
inter-class similarity while maximizing the intra-class similarity. The functions 
are optimized through learning based on computer vision benchmark datasets 
[293-295]. These functions are not directly transferable to remote sensing 
imagery, which have more complex characteristics. However, the approach of 
gPb contour detection has been investigated as a standalone approach for UAV-
based cadastral mapping in [240]. The study shows that the approach provides 
a comprehensive initial detection of candidate objects that could be verified 
and located exactly by integrating SLIC outlines.  
 
When combining SLIC and a further segmentation approach, such as gPb 
contour detection, moderate errors of omission are acceptable: outlines missed 
by SLIC might be detected by the second approach. In general, a low error of 
omission, i.e., a high level of completeness, is of utmost importance for an 
automated object detection system before integrating user interaction and thus 
reducing the system’s automation [256]. The user interaction required to 
manually delineate a missed boundary (error of omission) is more time-
consuming than to delete an erroneously included boundary (error of 
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commission). The goal is to minimize the summated time for editing both the 
error of omission and commission. 

4.3 Materials and Methods 

4.3.1 UAV Data 
Two UAV orthoimages of different extents showing rural areas in Germany and 
France were selected for this study. Table 4.1 shows specifications of the data 
capture. Figure 4.2 shows the orthoimages of both study areas. 
 

Table 4.1. Specifications of UAV datasets. 
Location Amtsvenn Toulouse 

Country Germany France 
UAV model GerMAP G180 DT18 PPK 

camera/focal length Ricoh GR/18.3 DT-3Bands RGB/5.5 
forward/sideward overlap [%] 80/65 80/70 

GSD [m] 0.05 0.05 
extent [m] 1000 x 1000 500 x 500 

4.3.2 Reference Data 
Automatically delineating objects is considered useful for cadastral mapping, 
as object outlines often align with visible cadastral boundaries [42]. Examples 
for such objects are roads, fences, hedges and stone walls, as well as outlines 
of roofs, agricultural fields and tree groups [44]. From this list, road and roof 
outlines were selected for this study, as these are the objects with the highest 
visibility and the most accurately delineable outlines for both study areas. 
These outlines were manually delineated for parts, where the outlines could be 
localized exactly. Parts of road and roofs without a precisely distinguishable 
outline were not delineated as reference data (Figure 4.2). 
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(a) (b) 

Figure 4.2. Manually delineated outlines of exactly localizable roads and roofs used for 
the accuracy assessment overlaid on UAV orthoimages of (a) Amtsvenn in Germany and 
(b) Toulouse in France. Outlines in close spatial proximity, such as two parallel outlines 
of roads, might appear as a thicker line, as they consist of two parallel lines in the 
reference data. 

4.3.3 Image Processing Workflow 
The image processing workflow consists of the application of SLIC on the UAV 
datasets and its accuracy assessment. For the SLIC application, a Matlab 
implementation was used [278], which is based on [114]. All further workflow 
steps were implemented in Python as QGIS processing scripts making use of 
functionalities from QGIS [296], GRASS [297] and GDAL [298]. 

4.3.3.1 SLIC Application 
The Matlab implementation, used in this study, provides a SLIC and a SLICO 
version [278]. SLICO requires a predefined number of superpixels k, while SLIC 
requires k, as well as a compactness parameter m that regularized the SLIC 
outlines. k was chosen in accordance to possible sizes of objects of interest in 
the range [1; 400] m2. m was chosen in accordance to recommendations from 
MathWorks in the range [1; 20]. Due to the different extents of the two UAV 
orthoimages (Table 4.1), this resulted in different numbers for k ranging from 
625 to 1,000,000: the smaller the size of one superpixels, the larger the total 
number of superpixels k (Table 4.2). SLIC was applied to the entire 
orthoimage. 
  



SLIC Superpixels for Object Delineation from UAV data 

60 

Table 4.2. Varying numbers of superpixels k resulting for the two study areas with a 
coverage of 1,000,000 m2 (Amtsvenn) and 250,000 m2 (Toulouse). 

GSD per superpixel [m] Coverage per 
superpixel [m2] 

k 
Amtsvenn 

k 
Toulouse 

1 1 1,000,000 250,000 
2 4 250,000 62,500 
3 9 111,111 27,778 
4 16 62,500 15,625 
5 25 40,000 10,000 
10 100 10,000 2,500 
15 225 4,444 1,111 
20 400 2,500 625 

4.3.3.2 Accuracy Assessment 
In order to decrease the processing time of the accuracy assessment, the SLIC 
outlines were clipped to a buffer of 0.3 m radius around the reference data. 
Then, all lines in the reference data and the clipped SLIC outlines were buffered 
with a radius of 0.1 m. These datasets were converted to a raster format of 
0.05 m pixel size. Then, each SLIC dataset was overlaid with the reference 
data, in order to label each pixel as true positive (TP), true negative (TN), false 
positive (FP) or false negative (FN). The sum of pixels with an identical label 
was summarized in a confusion matrix. From the confusion matrix, the error 
of omission (3) and the error of commission (4) was calculated in the range 
[0; 100]: 
 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜 𝑒𝑒𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑜𝑜 [%] =  
FN

FN + TP  ∗  100 (3) 

  

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜 𝑐𝑐𝑒𝑒𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑜𝑜 [%] =  
FP

FP + TP  ∗  100 (4) 

 
The error of omission captures the percentage of pixels erroneously labelled as 
‘no outline’, i.e., the percentage of object outlines that are missed by the SLIC 
outlines. The error of commission captures the percentage of pixels 
erroneously labeled as ‘outline’, i.e., the percentage of object outlies that are 
incorrectly included in the SLIC outlines. These measures are based on [258] 
and evaluate to which extent SLIC outlines coincide with actual object outlines. 
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4.4 Results 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4.3. SLIC outlines derived for compactness parameters (a, b) m = 1, 
(c, d) m = 20, and (e, f) SLICO, where m is adaptively refined for each superpixel. The 
first row of images shows superpixels overlaid on the orthoimage of Amtsvenn, while the 
second row shows superpixels overlaid on the orthoimage of Toulouse, both for 
k = 10,000.  

Figure 4.3 shows that the regularity of the superpixel outlines can be enlarged 
by increasing m: the outlines of SLIC are more irregular for m = 1 
(Figure 4.3a/b) than for m = 20 (Figure 4.3c/d). They run strictly along 
boundaries of spectral differences for m = 1, while m = 20 allows SLIC 
superpixels that are more homogeneous in shape, but less homogeneous in 
spectral content. This regularity in shape is increased even more, when using 
SLICO, for which m is automatically defined (Figure 4.3e/f). The superpixels’ 
outlines require further merging steps to delineate objects in the image as 
closed polygons. One approach might be to group SLIC superpixels of similar 
color. Another approach would be to merge SLIC outlines at locations, where 
another method with a higher detection quality, such as gPb contour detection, 
locates a boundary. 
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(a) (b) 

Figure 4.4. Errors of omission obtained for (a) Amtsvenn and (b) Toulouse. The number 
of superpixels k varies according to the extent covered per study area (Table 4.2). 

Figure 4.4 shows the errors of omission for both study areas that range from 
36% to 76%. The error of omission is mostly lowest for m = 1, regardless of 
the number of superpixels k. This observation holds true for data of Amtsvenn 
(Figure 4.4a) and Toulouse (Figure 4.4b). The allowed range for parameter 
m is [0; ∞]. The error of omission is mostly higher for SLICO compared to 
m = 1 and m = 20 across all investigated cases: due to the high shape 
regularity that SLICO enforces (Figure 4.4e/f), the superpixels become 
spectrally more heterogeneous and their outlines delineate the objects less 
accurately. The lowest errors of omission for both study areas are obtained for 
GSDs in the range [2; 5] m and amount to 36-37% for Amtsvenn and to 41-
44% for Toulouse. For GSDs of 1 m, the results of both study areas contain 
small areas for which the superpixel outlines appear regular-shaped, oriented 
in one direction and unaligned with object outlines. This effect might be caused 
by a memory problem due to the large number of generated superpixels. The 
predefined number of k and the obtained number of superpixels varies in 
median mean by 0.3%. 
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(a) (b) 

Figure 4.5. Errors of commission obtained for (a) Amtsvenn and (b) Toulouse. The 
number of superpixels k varies according to the extent covered per study area 
(Table 4.2). 

Figure 4.5. shows the errors of commission for both study areas that range 
from 42% to 63%. These numbers strongly depend on the chosen buffer size 
of 0.3 m around the reference data, in which FP pixels are counted. For a 
smaller buffer size, the errors of commission would be lower. This buffer size 
does not influence the error of omission, as this error considers boundary pixels 
in the reference map only. The errors of commission vary less per GSD and in 
terms of the SLIC parameters compared to the errors of omission. SLIC 
outlines need to be closed even when no object outline is available in the 
image. This hinders the effacement of the error of commission. The results 
indicate that this effect, i.e., the relative number of erroneously labeled 
‘outline’ pixels, occurs equally across all investigated cases. 

4.5 Discussion 
The results indicate that SLIC superpixels delineate object outlines most 
accurately and completely using SLIC with a compactness parameter m = 1 
for superpixels’ GSDs in the range [2; 5] m. Depending on the extent covered 
in one orthoimage, this results in a different number of superpixels defined as 
k (Table 4.2). The regularity of object outlines to be delineated can be 
considered when deciding on m or SLICO: SLICO results in more regular-
shaped outlines and can provide more suitable results, when the object outlines 
are regular as well. When applying SLIC, the regularity of shape outlines can 
be slightly increased by increasing m.  
 
The results from [263], in which SLIC is applied to satellite imagery of 0.5-
0.6 m GSD are closest to those obtained in this study. Csillik suggests using 
an initial superpixel size of 10 x 10 pixels and 10 iterations for the clustering 
and refinement of the superpixels. The same number of iterations was used in 
this study. It is proposed as default by MathWorks. The superpixel size 
proposed by Csillik would correspond to superpixels of 0.5 m GSD for the data 
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of this study (k = 4,000,000 for Amtsvenn; k = 1,000,000 for Toulouse). As 
the error of omission increased for GSDs below 2 m and corresponding values 
of k, these superpixel sizes were not analyzed in this study. Furthermore, UAV 
data can be analyzed by considering 3D information in addition to the 
orthoimage. Future work will investigate the usability of SLIC on digital surface 
models (DSM) as proposed by Csillik. This could be done by applying gPb 
contour detection and SLIC superpixels on a DSM. This would allow identifying 
high gradients in high, which indicate objects such as fences or walls. 
Incorporating such information could help to localize missed outlines and to 
erase shadow outlines that are erroneously captured as object outlines 
(Figure 4.3a/c/e). 
 
The accuracy assessment applied in this study is based on [258] and is similarly 
employed in numerous further studies [228,255,257,299]. It provides a 
comprehensive and widely used measure for positional accuracy. 
Disadvantages include its dependency on the applied buffer size and its sole 
focus on positional accuracy. For this study, it adequately measures to which 
extent SLIC outlines coincide with actual object outlines. More extensive 
accuracy assessment approaches suitable for the described application are 
listed in [44]. 
 
Furthermore, the manually delineated object outlines can contain errors. 
However, the applied buffer of 0.1 m partly smoothes inaccurately delineated 
outlines. Inaccuracies might be further reduced by averaging the manually 
delineated outlines of multiple human operators [94]. In general, manually 
drawn reference data are accepted to measure the degree to which an 
automated system outperforms a human operator [256]. 
 
Even for a workflow that accurately and completely delineates objects from 
UAV orthoimages, future work is required to determine the number of cadastral 
boundaries that are visible and can thus be extracted automatically. However, 
even a partial extraction of cadastral boundaries could improve the mapping 
procedure in terms of cost and time. Furthermore, an accurate and complete 
delineation of objects can be useful in further application fields such as 
topographical mapping, road tracking, or building extraction. 

4.6 Conclusion 
This study investigates automatic object delineation from optical UAV data. 
This supports multiple application fields such as recent endeavors in cadastral 
mapping, which aim to automatically delineate objects that demarcate 
cadastral boundaries from high-resolution optical sensor data. In this 
application field, a suitable workflow is assumed to consists of multiple feature 
extraction methods [44]. This study has investigated the potential of SLIC 
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superpixels to delineate objects as part of such a workflow: SLIC was found to 
be applicable to UAV orthoimages and feasible to accurately delineate object 
outlines taking into account the high-resolution of 0.05 m provided by the UAV 
orthoimages.  
 
However, the method generates a large number of outlines that do not 
demarcate object outlines. Future work will investigate the combination of SLIC 
with the contour detection method proposed in [240]. This contour detection 
method has shown to provide a comprehensive initial detection of candidate 
objects that could be verified and located exactly by integrating SLIC outlines. 
In addition, information from DSMs is intended to be incorporated along with 
the information from RGB orthoimages. 
 
The goal is a tool for cadastral boundary delineation that is highly automatic, 
generic and adaptive to different scenarios. The tool will be most suitable for 
areas in which objects are clearly visible and coincide with cadastral 
boundaries. Once the design and implementation of such a tool is tested, its 
transferability to real-world scenarios will be investigated. This will be done in 
countries like Kenya, Rwanda and Ethiopia, where concepts like fit-for-purpose 
[6] and responsible land administration [259] are accepted or in place. 
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5. Interactive Boundary Delineation from UAV 
Data* 

  

                                           
* This chapter is based on: 
 
300. Crommelinck, S.; Höfle, B.; Koeva, M.; Yang, M.Y.; Vosselman, G. In Interactive 
Boundary Delineation from UAV Data, ISPRS Annals of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences, Riva del Garda, Italy, 04-07 June, 2018; IV-
2, pp 81-88. 
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Abstract 
Unmanned aerial vehicles (UAV) are evolving as an alternative tool to acquire 
land tenure data. UAVs can capture geospatial data at high quality and 
resolution in a cost-effective, transparent, and flexible manner, from which 
visible land parcel boundaries, i.e., cadastral boundaries are delineable. This 
delineation is to no extent automated, even though physical objects 
automatically retrievable through image analysis methods mark a large portion 
of cadastral boundaries. This study proposes (i) a methodology that 
automatically extracts and processes candidate cadastral boundary features 
from UAV data, and (ii) a procedure for a subsequent interactive delineation. 
Part (i) consists of two state-of-the-art computer vision methods, namely gPb 
contour detection and SLIC superpixels, as well as a classification part 
assigning costs to each outline according to local boundary knowledge. Part (ii) 
allows a user-guided delineation by calculating least-cost paths along 
previously extracted and weighted lines. The approach is tested on visible road 
outlines in two UAV datasets from Germany. Results show that all roads can 
be delineated comprehensively. Compared to manual delineation, the number 
of clicks per 100 m is reduced by up to 86%, while obtaining a similar 
localization quality. The approach shows promising results to reduce the effort 
of manual delineation that is currently employed for indirect (cadastral) 
surveying. 
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5.1 Introduction 
Unmanned aerial vehicles (UAVs) are rapidly developing and increasingly 
applied in remote sensing, as they fill the gap between ground based sampling 
and airborne observations. Numerous application fields make use of the cost-
effective, flexible and rapid acquisition system delivering orthoimages, point 
clouds and digital surface models (DSMs) of high-resolution [14,39]. 
 
Recently, the use of UAVs in land administration is expanding 
[12,41,241,301,302]: the high-resolution imagery is often used to visually 
detect and manually delineate cadastral boundaries. Such boundaries outline 
land parcels, for which additional information such as ownership and value are 
saved in a corresponding register [303]. The resulting cadastral map is 
considered crucial for a continuous and sustainable recording of land rights, as 
it allows the establishment of bureaucratic systems of fiscal and juridical nature 
and simplifies economic decision-making [7]. 
 
Worldwide, land rights of over 75% of the population are unrecognized, 
wherefore innovative, affordable, reliable, transparent, scalable and 
participatory tools for fit-for-purpose and responsible land administration are 
sought [6]. Automatically extracting visible cadastral boundaries from UAV 
data by providing a publicly available approach to edit and finalize those 
boundaries would meet this demand and improve current mapping procedures 
in terms of cost, time and accuracy [304]. 
 
This study describes advancements in developing a corresponding approach 
for UAV-based mapping of visible cadastral boundaries. Our study is based on 
the assumption that a large portion of cadastral boundaries is manifested 
through physical objects such as hedges, fences, stone walls, tree lines, roads, 
walkways or waterways. Those boundaries, visible in the RGB as well as the 
DSM data, offer the potential to be extracted in part automatically [42]. The 
extracted outlines require (legal) adjudication and incorporation of local 
knowledge from human operators in order to derive final cadastral boundaries. 
 
In past work, a hypothetical generalized workflow for the automatic extraction 
of visible cadastral boundaries has been proposed [44]. The workflow was 
derived from 89 studies that extract physical objects related to those 
manifesting cadastral boundaries from high-resolution optical sensor data. The 
synthesized methodology consists of image segmentation, line extraction and 
contour generation (Figure 5.1). For image segmentation, globalized 
probability of boundary (gPb) contour detection was found to be applicable for 
an initial detection of visible boundaries. However, the method does not enable 
the processing of large images. Therefore, the UAV data were reduced in 
resolution, which led to a reduced localization quality [240]. The localization 
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quality at the locations of initially detected candidate boundaries is improved 
through the proceeding workflow component. For line extraction, simple linear 
iterative clustering (SLIC) superpixels applied to the full-resolution data were 
found to coincide largely with object boundaries in terms of completeness and 
correctness [261].  
 
The aim of this study is to describe the final workflow component of contour 
generation: gPb contour detection and SLIC superpixels are combined with a 
random forest (RF) classifier and processed in a semi-automatic procedure that 
allows a subsequent delineation of visible boundaries. Overall, the study 
contributes to advancements in developing a methodology for UAV-based 
delineation of visible cadastral boundaries. The workflow uses RGB and DSM 
information and is designed for rural areas, in which physical objects such as 
roads are clearly visible and are anticipated to coincide with fixed cadastral 
boundaries. 
 

 
Figure 5.1. Sequence of a commonly applied workflow proposed in [44].The workflow 
aims to extract physical objects related to those manifesting cadastral boundaries from 
high-resolution optical sensor data. For the first and second component, state-of-the-art 
computer vision approaches have been evaluated separately and determined as efficient 
for UAV-based cadastral mapping [240,261]. The third component as well as the overall 
approach is described in this paper. 

5.2 Materials and Methods 

5.2.1 UAV Data 
Two rural areas in Amtsvenn and Gerleve in Germany were selected for this 
study (Table 5.1, Figure 5.2). The data were captured with indirect 
georeferencing, i.e., Ground Control Points (GCPs) were distributed within the 
field and measured with a Global Navigation Satellite System (GNSS). RGB 
orthoimages as well as DSMs were generated with Pix4DMapper.  
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Table 5.1. Specifications of UAV data. 
 Amtsvenn Gerleve 

UAV model GerMAP G180 DT18 PPK 
camera/focal length Ricoh GR/18.3 DT-3Bands RGB/12 

forward/sideward overlap [%] 80/65 80/70 
GSD [m] 0.05 0.03 

extent [m] 1000 x 1000 1000 x 1000 
 

  
(a) (b) 

Figure 5.2. UAV data from (a) Amtsvenn and (b) Gerleve overlaid with SLIC lines used 
for training (30%) and validation (70%). 

5.2.2 Image Processing Workflow 
The image processing workflow is based on the one shown in Figure 5.1. Its 
three components are described in chapters 5.3.2.1-5.3.2.3. Corresponding 
source code, with test data and a step-by-step guide is publically available 
[305]. The interactive component is implemented in an open source GIS [306]. 

5.2.2.1 Image Segmentation – gPb Contour Detection 
Contour detection refers to finding closed boundaries between objects or 
segments. Globalized probability of boundary (gPb) contour detection refers to 
the approach visualized in Figure 5.3, explained in this section and based on 
[116]. This approach originates from computer vision and aims to find closed 
boundaries between objects or segments in an image. This is achieved through 
combining edge detection and hierarchical image segmentation, while 
integrating image information on texture, color and brightness on both a local 
and a global scale. 
 
In a first step, oriented gradient operators for brightness, color and texture are 
calculated on two halves of differently scaled discs to obtain local image 
information. The cues are merged based on a logistic regression classifier 
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resulting in a posterior probability of a boundary, i.e., an edge strength per 
pixel. The global image information is obtained through spectral clustering 
detecting the most salient edges only. This is done by examining a radius of 
pixels around a target pixel in terms of oriented gradient operators as for the 
local image information. The local and global information are combined through 
learning techniques and trained on natural images from the ‘Berkeley 
Segmentation Dataset and Benchmark’ [247]. By considering image 
information on different scales, relevant boundaries are verified, while 
irrelevant ones, e.g., in textured regions, are eliminated. This is referred to as 
global optimization in the following. In the second step, initial regions are 
formed from the oriented contour signal provided by a contour detector 
through oriented watershed transformation. Subsequently, a hierarchical 
segmentation is performed through weighting each boundary and their 
agglomerative clustering to create an ultrametric contour map (ucm) that 
defines the hierarchical segmentation. 
 
The overall result consists of (i) a contour map, in which each pixel is assigned 
a probability of being a boundary pixel, and (ii) a binary boundary map 
containing closed contours, in which each pixel is labeled as ‘boundary’ or ‘no 
boundary’. The approach has been shown to be applicable to UAV orthoimages 
for an initial localization of candidate object boundaries [240]. UAV 
orthoimages of extents larger than 1000 x 1000 pixels need to be reduced in 
resolution, due to the global optimization of the original implementation. The 
localization quality of initially detected candidate boundaries is improved 
through the following workflow components that use the full-resolution RGB 
and DSM data. 
 

 
Figure 5.3. Workflow of globalized probability of boundary (gPb) contour detection and 
hierarchical image segmentation resulting in a binary boundary map containing closed 
boundaries.  

5.2.2.2 Line Extraction – SLIC Superpixels 
Simple linear iterative clustering (SLIC) superpixels originate from computer 
vision and are introduced in [262]. Superpixels aim to group pixels into 
perceptually meaningful atomic regions and can therefore be located between 
pixel- and object-based approaches. The approach allows to compute image 
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features for each superpixel rather than each pixel, which reduces subsequent 
processing tasks in complexity and computing time. Further, the boundaries of 
superpixels adhere well to object outlines in the image and can therefore be 
used to delineate objects [264]. 
 
When comparing state-of-the-art superpixel approaches, SLIC superpixels 
have outperformed comparable approaches in terms of speed, memory 
efficiency, compactness and correctness of outlines [263,266,267]. The 
approach, visualized in Figure 5.3, was introduced and extended by Achanta el 
al. (2010, 2012). SLIC considers image pixels in a 5D space, in terms of their 
L*a*b values of the CIELAB color space and their x and y coordinates. 
Subsequently, the pixels are clustered based on an adapted k-means 
clustering. The clustering considers color similarity and spatial proximity. SLIC 
implementations are widely available. This study applies the GRASS 
implementation [279]. 
 
The approach has been shown to be applicable to UAV orthoimages of 0.05 m 
ground sample distance (GSD) [261]. Further, cadastral boundaries 
demarcated through physical objects often coincide with the outlines of SLIC 
superpixels. 
 

 
Figure 5.4. Workflow of simple linear iterative clustering (SLIC) resulting in 
agglomerated groups of pixels, i.e., superpixels, whose boundaries outline physical 
objects in the image. 

5.2.2.3 Contour Generation – Interactive Delineation 
Contour generation refers to generating a vectorized and topologically 
connected network of SLIC outlines from chapter 2.2.2 that surround candidate 
regions from chapter 2.2.1. This component combines the detection quality of 
gPb contour detection with the localization quality of SLIC superpixels. This is 
realized by seeking a subset of superpixels whose collective boundaries 
correspond to contours of physical objects in the image.  
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Levinshtein et al. (2012) first reformulated the problem of finding contour 
closure to identifying subsets of superpixels that align with physical object 
contours. The authors combine features such as distance, strength, curvature 
and alignment to identify edges for image segmentation. These features are 
combined by learning the best generic weights for their combination on a 
computer vision benchmark dataset. This approach can be related to 
perceptual grouping in which local attributes in relation to each other are 
grouped to form a more informative attribute containing context information 
[307]. By iteratively grouping low-level image descriptions, a higher-level 
structure of higher informative value is obtained [308]. Perceptual grouping 
for contour closure is widely applied in computer vision [309,310], pattern 
recognition [308] as well as in remote sensing [178,194]. The criteria for 
perceptual grouping are mostly based on the classical Gestalt cues of 
proximity, continuity, similarity, closure, symmetry, common regions and 
connectedness that originate from Lowe’s early work on perceptual grouping, 
in which a computational model for parallelism, collinearity, and proximity is 
introduced [311]. The attributes are mostly combined into a cost function that 
models the perceptual saliency of the resulting structure. 
 
These ideas are transferable to this study: Wegner et al. (2015) extract road 
networks from aerial imagery and elevation data by applying superpixel-based 
image segmentation, classifying the segments with a RF classifier and 
searching for the Dijkstra least-cost path between segments with high 
likelihoods of being roads. Warnke and Bulatov (2017) extend this approach 
by optimizing the methodology in terms of feature selection. They investigate 
the training step by evaluating two classifiers and show that choosing features 
largely influences classification quality and that feature importance depends on 
the selected classifier. Similarly, García-Pedrero et al. (2017) use superpixels 
as minimum processing units, which is followed by a classification-based 
agglomerating of superpixels to obtain a final segmentation of agricultural 
fields from satellite imagery. All these approaches consider superpixels as 
segments, i.e., superpixels are agglomerated by comparing features per 
segment in relation to its adjacent neighbors [293,313,314], sometimes in 
combination with boundary information [315,316].  
 
In this paper, the problem of finding adjacent superpixels belonging to one 
object is reformulated to finding parts of superpixel outlines that delineate one 
object: attributes are not calculated per superpixel, but per outline segment 
(Figure 5.4). They are created by splitting each superpixel outline, wherever 
outlines of three or more adjacent superpixels have a point in common. 
19 attributes taking into account the full-resolution RGB and DSM, as well as 
the low-resolution gPb information are calculated per line (Table 5.2). Similar 
to the classical Gestalt cues, the attributes consider the SLIC lines themselves 
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(i.e., their geometry) and their spatial context (i.e., their relation to gPb lines 
or to underlying RGB and DSM rasters).  
 

Table 5.2. Features calculated per SLIC line segment. 
Feature Description 

length [m] length per SLIC segment along the line 
ucm_rgb median of all ucm_rgb pixels within a 0.4m buffer around each 

SLIC segment 
lap_dsm median of all DSM laplacian filter values within a 0.4m buffer 

around each SLIC segment 
dist_to_gPb [m] distance between SLIC segment and gPb lines (overall shortest 

distance) 
azimuth [°] horizontal angle measured clockwise from north per SLIC 

segment 
sinuosity ratio of distance between start and end point along SLIC 

segment (line length) and their direct Euclidean distance 
azi_gPb [°] horizontal angle measured clockwise from north per gPb 

segment closest to a SLIC segment (aims 
to indicate line parallelism/collinearity) 

r_dsm_medi median of all DSM values lying within a 0.2m buffer right of 
each SLIC segment. 

l_dsm_medi median of all DSM values lying within a 0.2m buffer left of each 
SLIC segment 

r_red_medi median of all red values lying within a 0.2m buffer right of each 
SLIC segment 

l_red_medi median of all red values lying within a 0.2m buffer left of each 
SLIC segment 

r_gre_medi median of all green values lying within a 0.2m buffer right of 
each SLIC segment 

l_gre_medi median of all green values lying within a 0.2m buffer left of 
each SLIC segment 

r_blu_medi median of all blue values lying within a 0.2m buffer right of 
each SLIC segment 

l_blu_medi median of all blue values lying within a 0.2m buffer left of each 
SLIC segment 

red_grad absolute value of difference between r_red_medi and 
l_red_medi 

green_grad absolute value of difference between r_green_medi and 
l_green_medi 

blue_grad absolute value of difference between r_blue_medi and 
l_blue_medi 

dsm_grad absolute value of difference between r_dsm_medi and 
l_dsm_medi 

 
For training and validation, one attribute is added manually by labeling SLIC 
lines corresponding to reference object outlines as ‘boundary’ or ‘no boundary’, 
respectively. The data are divided into 30% for training and 70% for validation. 
The features shown in Table 5.2 together with the label ‘boundary’ or ‘no 
boundary’ are provided to the RF classifier to learn the combination of features 
leading to the class ‘boundary’ for the training data. The trained classifier then 
uses the features to predict for each line in the validation data a likelihood for 
each line for belonging to the class ‘boundary’. This boundary likelihood b is 
transformed to a cost value c as shown in the following: 
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𝑐𝑐 [0; 1] = 1 − 𝑏𝑏 (1) 
 

where  c = cost value per SLIC line 
b = boundary likelihood per SLIC line 

 
This cost value c in the range [0; 1] is used to find the least-cost path between 
points indicated by a user. The Steiner least-cost path searches for the path 
along the SLIC lines having the lowest c, i.e., the highest likelihood for 
belonging to the class ‘boundary’. The points represent start-, end, and 
optionally middle-points of a boundary to be delineated. Finally, the result is 
displayed to the user providing the options to accept, smooth, edit and/or save 
the line. Smoothing is done using the Douglas-Peucker line simplification. This 
interactive component is implemented as an open source QGIS plugin [306]. 
 

 
Figure 5.5. Workflow of interactive delineation: each superpixel outline is split, 
wherever outlines of three or more adjacent superpixels have a point in common 
(visualized by line color). Attributes are calculated per line. They are used by a RF 
classifier to predict boundary likelihoods (visualized by line thickness). User-selected 
nodes (red points) are connected along the lines of highest likelihoods.  

5.2.3 Accuracy Assessment 
The methodology is designed and implemented for rural areas, in which the 
number of visible cadastral boundaries is expected to be higher than in urban 
ones. As stated above, numerous physical objects can manifest cadastral 
boundaries. For accuracy assessment in a metric sense, an object was sought, 
whose outline is clearly delineable. Further, automating the delineation process 
saves most time for large parcels with long and curved outlines. Luo et al. 
[304] have shown that up to 49% of cadastral boundaries are demarcated by 
roads and conclude that deriving road outlines would therefore contribute 
significantly to generating cadastral boundaries. Consequently, roads are 
selected for accuracy assessment.  
 
The approach is investigated in terms of the components shown in Figure 5.5. 
Since the first one, i.e., ‘data pre-processing’, has been evaluated in previous 
studies [240,261], the accuracy assessment focuses on ‘classification’ and the 
‘interactive outlining’. The accepted accuracy for cadastral boundary surveying 
depends on local requirements, regulations and the accuracy of the boundaries 
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themselves. Recommendations from the IAAO [303] range from 0.3 m for 
urban areas to 2.4 m in rural areas for horizontal accuracy. They advise to use 
these measures judiciously and remain unclear whether this is a maximum for 
the accepted error or a standard deviation. According to Stock [317] 
landowners require a higher accuracy (0.2 m) than authorities (0.5 m) for rural 
boundaries. Details on how this accuracy is measured are not provided. 
 
In this study, which is implemented in rural areas, the accepted accuracy is set 
to 0.2 m as maximum distance between delineation and reference data. 
Reference data are created through manually delineating visible outlines of 
roads. Only those visible outlines whose fuzziness did not exceed the accepted 
accuracy are delineated as reference data. 

5.2.3.1 Classification Performance 
How well the RF classifier assigns optimal costs to each SLIC line is crucial for 
the subsequent least-cost path generation. The performance is investigated by 
considering the feature importance obtained after applying the trained 
classifier on the validation dataset, as well as the confusion matrix and the 
derived correctness (Eq. 2) for different cost values c. Due to the analysis 
according to c, completeness is not considered: for larger c, more lines are 
detected, which makes the number of false negatives (FN) and thereby 
completeness not directly comparable across groups of different c. 
 

correctness [0; 100] =
TP

TP + FP (2) 

  
where  TP = true positives 
 FP = false positives 

 
The detection quality (Figure 5.6a) determines, how comprehensively SLIC 
lines are detected by the RF classifier. This is done by calculating a buffer of 
radius 0.2 m around the reference lines. The buffer size is chosen in accordance 
to the pre-defined accepted accuracy. SLIC lines are buffered with the smallest 
radius possible of 0.05 m in accordance to the GSD of the UAV data. SLIC lines 
are grouped according to boundary likelihoods b, transformed to a cost value 
c (2) in the range [0; 1] at increments of 0.2. Each group is overlaid with the 
buffered reference data to calculate a confusion matrix and a correctness. 
 
The localization quality (Figure 5.6b) determines, if low c are assigned to 
segments located closer to the reference data. This is done by buffering the 
reference data with radii of 0.05, 0.1, 0.15, and 0.2 m. The previously buffered 
and grouped SLIC lines are reused. Each group is overlaid with the buffered 
reference data to generate a confusion matrix and to calculate the sum of TP 
pixels per buffer distance. 



Interactive Boundary Delineation from UAV Data 

78 

  
(a) (b) 

Figure 5.6. (a) Detection quality, for which delineation data are buffered with 0.05 m 
and reference data with 0.2 m. Both are overlaid to calculate the number of pixels being 
TP, FN, TN or FP. (b) Localization quality, for which the reference data are buffered with 
0.05-0.2 m and overlaid with the buffered delineation data to calculate the sum of TPs 
per buffer distance. 

5.2.3.2 Interactive Outlining Performance: 
If and to what extent the interactive delineation is superior to manual 
delineation is the focus of this section. This is done by defining a user scenario 
and delineating all visible road outlines once manually, once interactively. 
Metric accuracy measures are calculated for both datasets. The user scenario 
encompasses the guideline of using as few clicks as necessary to delineate all 
visible roads within the accepted accuracy of 0.2 m. The metric accuracy 
measures consist of the calculation of the localization quality as described 
above and the average number of required clicks per 100 m. 

5.3 Results 
The results reveal that the assignment of c works as desired: road outlines are 
comprehensively covered by SLIC lines of low c values and the correctness 
decreases for higher c (Table 5.3). Similarly, the localization quality mostly 
decreases for higher c, i.e., the classifier assigs low c values for a high 
percentage of lines close to the reference data (Figure 5.7). These values 
would vary when changing the buffer size or taking into account different lines 
for training. 
 
The calculated feature importance for features shown in Table 5.2 reveals that 
higher-order features are often more valuable, i.e., a feature containing the 
gradient between green values right and left of the SLIC line (green_grad) is 
more important than a feature containing averaged green values underlying a 
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SLIC line (l_gre_medi, r_gre_medi). DSM-related features have low 
importance (dsm_grad, lap_dsm, r_dsm_medi, l_dsm_medi), which can be 
increased by considering another physical object, whose outlines are stronger 
demarcated through height difference and by using relative height as a feature. 
gPb-related features (ucm_rgb, dist_to_gPb, azi_gPb) have a low importance, 
which might be caused by the low resolution of the gPb data. Tiling does not 
solve this problem since the global optimization requires image information on 
a global scale. However, gPb contours are still relevant as they are used to 
narrow down the area of investigation and thus reduce processing time. The 
results give an initial estimation of feature importance, but would require more 
data to analyzable in depth. 
 
Table 5.3. Classification performance: detection quality for SLIC lines of different cost 
value c compared to reference data. 
  Amtsvenn Gerleve 
 SLIC line segments (N) 22,183 57,500 
 SLIC line segments [m] 37,063 72,333 

D
et

ec
ti

on
 

q
u

al
it

y correctness (c = 0.0-0.19) [%] 86 93 
correctness (c = 0.2-0.39) [%] 90 96 
correctness (c = 0.4-0.59) [%] 78 88 
correctness (c = 0.6-0.79) [%] 61 70 

 

 

  
(a) (b) 

Figure 5.7. Classification performance: localization quality for SLIC lines of different 
cost values c assigned through the RF classification for (a) Amtsvenn and (b) Gerleve. 

The interactive outlining performance visualized in Figure 5.9 reveals that 
road outlines are successfully demarcated by low c values generated through 
RF classification (a). The interactive delineation visualized in (b) allows to 
select nodes (yellow) from a set of nodes (red), that are automatically 
connected (green) along the SLIC lines of least cost. The interactive delineation 
saves most clicks, when delineating long and curved roads as shown in (c), 
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where the interactive delineation of a line of 274 m length requires two clicks 
only. For road parts covered by vegetation or those having narrow or fuzzy 
boundaries manual delineation is superior (d). High gradients inside a road can 
cause the least-cost path to run along the middle of the road, which can be 
avoided by placing an additional node (yellow) along the road outline (e, f). 
The least-cost path favors less segments of high costs over more segments of 
lower costs since the summated costs of the entire path are considered (g). 
Created outlines can be smoothed out through the build-in line simplification 
that transforms the initial least-cost path (blue) to a simpler path (green) (h). 
 
In general, all visible road outlines were delineated. For Amtsvenn 0% and for 
Gerleve 5% of lines required minor editing, in cases, where SLIC outlines do 
not run along the desired road outline (Figure 5.8d). The localization quality 
(Figure 5.9) visualizes the portion of delineated lines located at different 
distances to the reference data. Results show that for Amtsvenn almost 60% 
and for Gerleve almost 80% of boundaries delineated with the interactive 
approach are within 10 cm of the reference data. These results together with 
the decrease of required clicks, i.e., a reduction by 86% for Amtsvenn and 
76% for Gerleve (Table 5.4), and the lower zoom level required for 
delineation, shows that the interactive delineation is superior in terms of effort 
to delineate visible roads from UAV data.  
 
Table 5.4. Interactive outlining performance: general statistics for the manual and the 
interactive delineation. 

 Amtsvenn Gerleve 
 manual interactive manual interactive 

line segments [m] 1,900 1,915 3,911 3,922 
avg. clicks per 

100m (N) 14.2 (100%) 2.3 (86%) 21.2 (100%) 4.5 (76%) 
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(a) (b) (c) 

   
(d) (e) (f) 

  

 

(g) (h)  

Figure 5.8. Examples of the interactive delineation (green) along SLIC lines (red). The 
thicker a SLIC line, the lower c. 
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(a) (b) 

Figure 5.9. Interactive outlining performance: localization quality for delineation for (a) 
Amtsvenn and (b) Gerleve. Both the reference and the interactively delineated data 
consists of lines that are rasterized to quantify the localization quality. 

5.4 Discussion 
In general, the methodology could improve current indirect mapping 
procedures by making them more reproducible and efficient. However, a 
certain skill level of the surveyors in geodata processing is required as well as 
the presence of visible cadastral boundaries. With cadastral boundaries being 
a human construct, certain boundaries are not automatically detectable, 
wherefore semi-automatic approaches are required [304]. 
 
Limitations of the accuracy assessment are as follows: labelled training data 
doesn’t always coincide exactly with the reference data, as SLIC outlines do 
not perfectly match the manually delineated road outlines. Furthermore, some 
roads have fuzzy outlines, wherefore a certain outline is selected within the 
accepted accuracy for both the manual and the interactive delineation. 
Furthermore, manual image interpretation is prone to produce ambiguous 
results due to interpreters generalizing differently. These uncertainties 
propagate through the accuracy measures and would increase when 
considering physical objects of fuzzier outlines [313,318]. Further, the 
percentage of roads demarcating cadastral boundaries, which according to Luo 
et al. (2017) amounts up to 49% might be lower in certain cases. Further work 
should be conducted considering various objects in relation to real cadastral 
reference data. 
 
Future work could focus on identifying optimal features for classification 
[312,319]. The optimal selection of training data could be supported by active 
learning strategies. Another focus would be to extent the approach to different 
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physical objects, datasets and scenarios by developing a classifier transferable 
across scenes. However, even manually labeling 30% of the data before being 
able to apply the interactive delineation as done in this study, would still be 
superior in terms of effort than delineating 100% manually. Existing cadastral 
data might be used to automatically generate training data. The transferability 
to data from aerial or satellite platforms could be considered to determine the 
degree to which high-resolution UAV data containing detailed 3D information 
is beneficial or required for indirect cadastral surveying. Further, the least-cost 
paths generation can be improved by scaling the line costs with their length to 
avoid the path favoring few segments of high cost over many segments of low 
costs (Figure 5.8g). In addition, sharp edges in the generated least-cost path 
can be penalized to reduce outlier occurrence, as done in snake approaches.  

5.5 Conclusion 
This study contributes to developing a methodology for UAV-based delineation 
of visible cadastral boundaries. This is done by proposing a methodology that 
partially automates and simplifies the delineation of outlines of physical objects 
such as roads demarcating cadastral boundaries. Previous work has focused 
on automatically extracting RGB image information for that methodology. In 
this paper, the methodology is extended by a classification and an interactive 
outlining part applied to RGB and DSM data. Furthermore, this study proposes 
a methodology to automate cadastral mapping covering all required steps after 
obtaining UAV data to generating candidate cadastral boundary lines.  
 
The reformulated problem of delineating physical objects from image data to 
combining line feature information with RF classification presented in this 
study, could be beneficial for different delineation applications. The aim of this 
study is to apply the suggested approach for cadastral mapping. In this field, 
the approach has shown promising results to reduce the effort of current 
indirect surveying approach based on manual delineation. Highest savings are 
obtained for long and curved outlines. Future work will focus on the 
methodology’s transferability to real-world cadastral mapping scenarios. 
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6. Validating and Improving Automated Feature 
Extraction for UAV-based Cadastral 
Mapping* 

  

                                           
* This chapter is based on: 
 
320. Crommelinck, S.; Koeva, M.; Yang, M.Y.; Vosselman, G. Robust Object 
Extraction from Remote Sensing Data. arXiv:1904.12586 2019. 
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Abstract 
The extraction of object outlines has been a research topic during the last 
decades. Despite advances in photogrammetry, remote sensing, and computer 
vision, this task remains challenging due to object and data complexity. This 
challenge amplifies for cadastral boundaries demarcated by various objects 
with different characteristics. Meanwhile, with land rights being sensitive, 
knowledge-, and context-dependent, the scope of automation in cadastral 
mapping seems limited. We addressed these circumstances by proposing an 
approach that couples a machine-based automatic feature extraction with a 
delineator-based interactive delineation. In this chapter, we validate and 
improve this indirect surveying approach by comparing it to manual 
delineation: (i) the accuracy analysis questions how correct and complete 
visible objects can be delineated with the approach compared to manual 
delineation, (ii) the operational analysis questions when and why the approach 
works better or worse compared to manual delineation, and (iii) the feedback 
analysis investigates the approach based on feedback from surveying 
stakeholders. As a result, we gain an understanding and an overview of current 
bottlenecks, which enables us to identify and prioritize areas for further 
development. 
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6.1 Introduction 
This chapter introduces improvements in automated feature extraction for 
UAV-based cadastral mapping compared to [300], describes the approach’s 
current functioning, demonstrates results obtained in different scenarios, and 
synthesizes user feedback. The areas of investigation are a peri-urban site in 
Rwanda, as well as, a rural and a peri-urban site in Kenya. The aim is to gain 
an understanding and an overview of current bottlenecks, in order to identify 
and prioritize areas for further development. This is done by analyzing the 
boundary mapping approach compared to manual delineation as follows: 
 
(i) The accuracy analysis questions how correct and complete visible objects 

can be delineated with the approach when considering manual delineation 
as ground truth. This is done by conducting a line-based accuracy 
assessment of quantitative completeness and spatial correctness for 
precisely extractable object outlines of buildings and cadastral boundaries 
delineated once with the approach, once manually by local experts.  
 

(ii) The operational analysis questions when and why the approach is more 
efficient compared to manual delineation. This is done taking into account 
observations from the delineation for the accuracy analysis and an 
additional delineation to provide an overview of successful and challenging 
delineation cases. 

 
(iii) The feedback analysis investigates the approach based on feedback from 

stakeholders having a background or an affiliation with surveying. This is 
done by analyzing the approach in terms of strengths, weaknesses, 
opportunities, and threats (SWOT). Feedback is derived from three one-
day workshops for land administration stakeholders from local government 
institutions, NGOs, private companies, and national government 
institutions. 

6.2 Materials and Methods 

6.2.1 UAV data  
UAV data from four different sites in Rwanda and Kenya are used for this 
chapter. The data were captured with indirect georeferencing, i.e., Ground 
Control Points (GCPs) were distributed within the field and measured with a 
Global Navigation Satellite System (GNSS). RGB orthomosaics and DSMs were 
generated with Pix4DMapper. Specifications of the data capture are shown in 
Table 6.1. The UAV data are visualized in Figure 6.1-3. 
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Table 6.1. Specifications of UAV data. 

Location UAV Model, 
Brand 

UAV 
Type 

UAV 
Sensor 

Capture 
Date 

Area  
[ha] 

GSD 
[cm] 

Muhoza, 
Rwanda 

FireFLY6, 
BirdsEyeView Hybrid SONY 

A6000 
Jan. 
2018 94 5 

Mukingo, 
Rwanda 

Inspire 2,  
DJI 

Rotary-
wing 

Zenmuse 
X5S 

Jan. 
2018 50 5 

Kajiado, 
Kenya 

Phantom 4, 
DJI 

Rotary-
wing FC330 Sep. 

2018 830 5.8 

Mailua, 
Kenya 

DT18, 
DelairTech 

Fixed-
wing 

DT18 3 
bands 

March 
2018 330 5.7 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 6.1. UAV data tiles of 250 x 250 m and a 5 cm GSD of Muhoza (a-c) and Mukingo 
(d-f), Rwanda. 
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Figure 6.2. UAV data tiles of 250 x 250 m and a 6cm GSD of Kajiado, Kenya. 

 

 
Figure 6.3. UAV data tiles of 250 x 250 m and 150 x 150 m and a 6cm GSD of Mailua, 
Kenya. 
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6.2.2 Boundary Delineation Approach 
The delineation approach is based on [300]. It supports the delineation of 
boundaries by automatically retrieving information from RGB and DSM data 
that is then used to guide an interactive delineation. The approach consists of 
three parts: (i) image segmentation, (ii) boundary classification, and (iii) 
interactive delineation (Figure 6.4). Each part is addressed in the following 
describing its current functioning and changes compared to what has been 
proposed in the previous chapter and in [300]. The source code is publically 
available [305].  
 
The source code has been optimized in terms of performance, effectivity, 
consistency, and clearness as explained in the following. This aimed to make 
the code accessible in a server environment or a Docker container. Changes 
include the replacement of former QGIS or GRASS functions by OGR or GDAL 
functions, which are accessible without a QGIS installation; the storing of the 
code configurations in JSON structure; the adding of logging and error handing, 
the replacement of temporarily stored shapefiles as GeoJSON structures; and 
the conversion from Python 2.7 to Python 3, from QGIS 2 to QGIS 3, and from 
PyQt 4 to PyQt 5. 
 
(i) Image segmentation delivers closed contours capturing the outlines of 

visible objects in the image. Multiresolution Combinatorial Grouping (MCG) 
[117] has shown to be applicable to high-resolution UAV data and to deliver 
accurate closed contours of visible objects [320]. 
Changes: The workflow described in the previous chapter proposes to use 
Globalized Probability of Boundary (gPb) [116] and Simple Linear Iterative 
Clustering (SLIC) superpixels [114]. We now propose to use an extended 
version of gPb developed by the same authors: Multiresolution 
Combinatorial Grouping (MCG) [117]. This allows combining the previous 
steps of image segmentation and line extraction into one method while 
increasing spatial accuracy compared to using gPb and decreasing over-
segmentation compared to using SLIC. 
 

(ii) Boundary classification requires labeling the contours from (i) into 
‘boundary’ and ‘not boundary’ to generate training data. A set of features 
is calculated per line capturing its geometry (i.e., length, number of 
vertices, azimuth, sinuosity) and its spatial context (i.e., gradients of RGB 
and DSM underlying the line). 

(iii) Table 6.2 shows all features being calculated, of which the first two are 
not used for the classification. These features together with the labels are 
used to train a Random Forest (RF) classifier [321]. The trained classifier 
predicts boundary likelihoods for unseen testing data for which the same 
features have been calculated, as indicated with training and testing in 
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Figure 6.4. An open-source RF implementation [322] is used for the 
classification. 
Changes: The boundary classification proposed in the previous chapter 
aimed to generate a boundary likelihood combining information from gPb 
and SLIC. Since this combination is omitted, the features ucm_rgb and 
azi_gPb previously calculated per SLIC line to describe its geometrical 
relation to the closest gPb line are omitted as well. From an analysis of 
feature importance and a comparison with the state-of-the-art on feature 
selection, it appeared redundant to calculate similar features such as 
r_gre_medi, l_gre_medi, and green_grad. Therefore, we omitted 
calculating the redundant features r_dsm_medi, l_dsm_medi, r_red_medi, 
l_red_medi, r_gre_medi, l_gre_medi, r_blu_medi, l_blu_medi, and kept 
the higher-order features dsm_grad, lap_dsm, r_dsm_medi, l_dsm_medi. 
For the same reason, we omitted calculating lap_dsm. We added vertices 
to account for geometrical line characteristics that were previously not 
captured. Optimizing features decreased the complexity and thus 
processing time of the boundary classification step. Table 6.3 shows all 
omitted features. 
 

(iv) Interactive delineation allows a user to start the actual delineation: the 
RGB orthomosaic is displayed to the user, who is asked to select nodes to 
be connected to a boundary. A least-cost-path algorithm searches for the 
lines from (i) that connect the user-selected nodes taking into account the 
boundary likelihood from (ii). The line is suggested to the user with the 
options to edit, save or delete. We implemented (iii) as publically available 
plugin [306] for the open-source geographic information system QGIS 
[296].  
Changes: The changes relate to interface design, coding quality, and added 
functionalities. A survey study [323] was conducted to identify and 
prioritize points for improvement of the interactive delineation. This was 
done by asking 13 volunteers with a geospatial background to delineate 
visible boundaries with the developed QGIS plugin. As main reasons for 
the plugin’s partial inability to delineate cadastral boundaries, the following 
were identified: (i) land parcel boundaries are not visible, fuzzy, or 
irregular, (ii) plugin implementation errors, e.g., not-working of automatic 
renaming of layers or inability to connect large number of nodes, and (iii) 
QGIS software instability. (ii) and (iii) have been addressed by refactoring 
and restructuring the source code to be compliant with the recently 
released QGIS3 version. Before, the interactive delineation was 
implemented in QGIS2. The participants listed the following 
recommendations to improve the plugin: (i) separating the tasks of 
interactive delineation and manual editing more comprehensively in the 
GUI, (ii) docking the plugin to the QGIS toolbar to improve usability, 
(iii) decreasing the computing time for the creation of node and network 
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files, which took up to 10 minutes, (iv) decreasing the number of proposed 
nodes to select from, (v) allowing to simplify created lines more 
comprehensively, (vi) allowing to connect a higher number of nodes, 
(vii) automatically enabling snapping in QGIS when plugin is opened, (viii) 
automatically keeping the last node of the previously created line selected, 
and (ix) including further topological checks of a created line besides its 
sinuosity. (i) Has been addressed by making a visual distinction between 
the interactive and the manual delineation in the GUI (Figure 6.4c). 
(ii) Has been implemented. (iii) Has been addressed by refactoring and 
restructuring of the source code; the calculation now takes a few seconds. 
(iv) Has been addressed by using MCG instead of SLIC lines for node 
creation. MCG over-segments less than SLIC, wherefore fewer nodes are 
created. (v) Has been addressed by implementing a stronger Douglas-
Peucker line simplification. (vi) Has been addressed by refactoring and 
restructuring the source code for QGIS 3, allowing the connection of 
multiple nodes. (vii) Has been implemented. (viii) Has not been 
implemented, as this functionality would add complexity to the interactive 
delineation process and represents a use case that is not present in most 
delineation cases. (ix) The previous version displayed the line sinuosity as 
probable line usability in a traffic-light-fashion. The current implementation 
does not make use of line sinuosity any more, but uses the boundary 
likelihood instead: the line thickness indicates its boundary likelihood and 
thus gives a more comprehensive impression on its usefulness compared 
to the previously used sinuosity. 
 

   
(a) (b) (c) 

Figure 6.4. Boundary mapping approach: (a) MCG image segmentation. (b) Boundary 
classification that requires line labeling into ‘boundary’ and ‘not boundary’ for training. 
The labeled lines are used together with line-based features to train a Random Forest 
classifier that generates boundary likelihoods for testing. (c) Interactive delineation 
guided by a QGIS plugin that creates a least-cost-path between user-selected nodes 
along simplified lines from (a) with highest boundary likelihoods generated in (b). 
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Table 6.2. Features calculated per line to be used by the Random Forest (RF) classifier 
for boundary classification.  

 Feature Description 

ca
lc

ul
at

ed
 

ID Unique number per line 
boundary Boundary label or likelihood in range [0; 1] 

vertices Number of vertices per line 
length [m] Length per line 

azimuth [°] Bearing in degrees between start and end of each line 

sinuosity Total line length divided by the shortest distance between 
start and end of each line 

red_grad Abs. difference between median of all red values lying within 
a 0.4 m buffer right and left of each line 

green_grad Same as red_grad for green of RGB 
blue_grad Same as red_grad for blue of RGB 
dsm_grad Same as red_grad for DSM 

Table 6.3. Omitted features calculated in previous version of approach [300]. 
 Feature Description 

O
m

itt
ed

 c
om

pa
re

d 
to

 [
30

0]
 

ucm_rgb median of all ucm_rgb pixels within a 0.4m buffer around 
each SLIC segment 

lap_dsm median of all DSM Laplacian filter values within a 0.4m buffer 
around each SLIC segment 

dist_to_gPb [m] distance between SLIC segment and gPb lines (overall 
shortest distance) 

azi_gPb [°] horizontal angle measured clockwise from north per gPb 
segment closest to a SLIC segment (aims to indicate line 
parallelism/collinearity) 

r_dsm_medi median of all DSM values lying within a 0.2m buffer right of 
each SLIC segment. 

l_dsm_medi Same as r_dsm_medi for left buffer of DSM 
r_red_medi Same as r_dsm_medi for right buffer of red of RGB 
l_red_medi Same as r_dsm_medi for left buffer of red of RGB 
r_gre_medi Same as r_dsm_medi for right buffer of green of RGB 
l_gre_medi Same as r_dsm_medi for left buffer of green of RGB 
r_blu_medi Same as r_dsm_medi for right buffer of blue of RGB 
l_blu_medi Same as r_dsm_medi for left buffer of blue of RGB 

6.2.3 Accuracy Analysis 
The accuracy analysis questions how correct and complete visible objects can 
be delineated with the approach when considering manual delineation as 
ground truth. This is done by conducting a line-based accuracy assessment of 
(i) quantitative completeness, and (ii) spatial correctness for the delineation of 
buildings and cadastral boundaries. They are delineated based on UAV imagery 
once with the approach, once manually based on local knowledge, and 
compared thereafter. For buildings, manually delineated outlines of 
undamaged buildings having an area of >25 m2 are considered. For cadastral 
boundaries, manually delineated parcel outlines are used.  
 
(i) Quantitative Completeness investigates the percentage of objects that 

can be entirely delineated by the approach. After the interactive 
delineation, the number of objects, i.e., buildings or parcels, that are either 
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directly acceptable without further editing, require editing, or require 
manual delineation are summated. 

 
(ii) Spatial Correctness investigates to what extent successfully delineated 

objects coincide with the reference data in a spatial sense. This is done by 
first buffering the reference data. The buffer size should be chosen in 
accordance with the required accuracy of the object delineation. For 
cadastral mapping, the statutorily requested accuracy depends on the 
needs and nature of the area being surveyed. The measuring approach and 
the accepted result can vary [303,324]. Subsequently, the percentage of 
the delineation line lying inside and outside of the reference buffer is 
calculated. This can be done either vector- or raster-based. Inaccuracies 
in the reference data are expected to be much lower than the accuracy 
needed for cadastral boundary mapping. 
 
For a raster-based approach, as done in this chapter, the delineation lines 
are rasterized to the 5 cm GSD of the input data. Only those delineation 
lines from (i) that were directly acceptable without further editing are used. 
The reference lines are buffered, rasterized and overlaid with the reference 
data (Figure 6.5). The overlay allows labeling pixels as TP, where the 
delineation line falls inside the reference buffer and as FP, where the 
delineation line falls outside the reference buffer. The sum of pixels with 
the same label is summarized in a confusion matrix. From the confusion 
matrix, the error of commission (Figure 6.5a) and the correctness 
(Figure 6.5b) are calculated in the range [0; 100]. The error of 
commission captures the percentage of pixels falling outside of the 
reference buffer, the correctness those that fall inside of it. The buffer size 
should be chosen in accordance with locally accepted accuracies for 
cadastral boundary mapping. For this chapter the buffer size is set to a 
radius of 30 cm as justified in the following. 
 
The accuracy measures are based on [325], described as commonly 
reported measures in more recent publications [72,224], and similarly 
used to evaluate the results of an ISPRS benchmark dataset [220]. We 
implemented the described procedure for line-based accuracy assessment 
consisting of buffering, rasterizing, overlaying, calculating and plotting the 
confusion matrix, in a publically available plugin (Figure 6.5c) [326] for 
QGIS [296]. 
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error of commission [%] = FP
FP+TP

∗ 100  (a) 

correctness [%] = TP
FP+TP

∗ 100 = 1 − error of commission  (b) 

 

(c) 

Figure 6.5. Spatial correctness based on overlaying the buffered delineation and 
reference data to compute pixels being True Positive (TP) or False Positive (FP). These 
pixels are then summated to calculate (a) the error commission and (b) the correctness. 
(c) We implemented the described procedure for line-based accuracy assessment as a 
new ‘LineComparison’ QGIS plugin. 

In Rwanda, no legal planimetric accuracy standard has been defined. Cadastral 
records originate mostly from a cadastral mapping effort initiated in the 2000s. 
This mapping was based on general boundaries as stated in the Land Law. This 
mapping effort resulted from land reforms demanding a nationwide 
adjudication, surveying, and recording program, during which 12 million 
parcels were mapped over a period of four years in a participatory mapping 
approach. Locals were trained for a few days as para-surveyors to draw 
boundaries on printed satellite or aerial images that were afterwards digitized 
in the office. Speed and costs were prioritized over accuracy. After completion 
of the project, attendance has now shifted to maintenance and updating: the 
cadastral records are supposed to be continuously updated and replaced by 
fixed boundaries using Differential Global Positioning Systems (DGPS). This is 
currently realized with a focus on urban areas, for which coarse network 
systems are increasingly being established. During this updating process in 
land registration, measuring points are allowed to lie within a maximum of 
25 cm radius.  
 
For the Rwandan study areas of this chapter, the official cadastral reference 
data have been delineated in the described participatory mapping approach on 
aerial imagery of 25 cm GSD. This cadastral data are thus outdated and of low 
spatial accuracy. Two Rwandan surveyors with delineation expertise in 
surveying generated new cadastral reference data for the accuracy analysis of 
this chapter. They applied indirect surveying: parcel boundaries were 
delineated on the UAV orthomosaics based on local knowledge of boundary 
locations and characteristics, and in comparison with the original cadastral 
data.  
 
In Kenya, for many years after independence in 1963, no clearly defined 
national land policy had been defined. This has resulted in complex and 
fragmented land management and administration systems that co-exist 
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without being compatible. Different laws, regulations, and requirements have 
resulted in cadastral maps using different coordinate systems, scales and 
surveying methods. Fixed and general boundaries are applied both for parcel 
identification. Partly overlapping boundaries often cause land conflicts. Despite 
the recommendation in the national land policy from 2009 to establish a digital 
land information infrastructure as part of the National Spatial Data 
Infrastructure (NSDI), the fragmentation hinders the integration and 
establishment of a homogeneous digital cadastre. In general, the current 
Kenyan cadastre can be described as a largely incomplete, fragmented, and 
paper-based patchwork of maps with different accuracies.  
 
For Kajiado, the study area of this chapter, boundaries were derived from aerial 
imagery and topographic maps of scale 1:50,000, from which, base maps at 
scale 1:5,000 were prepared, which were enlarged to scale 1:2,500 to produce 
graphical Registry Index Maps (RIMs). RIMs show the outline of land parcels 
within a given jurisdiction using general boundaries along visible features. The 
boundaries’ position is only indicative and not legally binding. RIMs and survey 
plans for urban areas have the highest accuracy specifications of 30 cm 
nominal positional accuracy [327]. Different types of RIMs exist that partly 
allow positional errors of up to 200 cm [328,329]. In Kajiado, RIMs are 
available in paper-based form (Figure 6.6a). All amendments are made on 
the original sheet, which leads to consecutive illegibility of the map 
(Figure 6.6b). During fieldwork, we obtained an understanding of local 
demarcation practices and captured example boundaries, in order to create a 
reference dataset for the accuracy analysis of this chapter. Cadastral 
boundaries are thus, similar to those for the Rwandan data, manually 
delineated from the UAV orthomosaics based on local knowledge. 
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(a) (b) 

Figure 6.6. (a) Paper-based cadastral data storage in Kajiado (Kenya), and (b) a paper-
based map used in land administration. 

6.2.4 Operational Analysis 
The operational analysis questions when and why the approach is more 
efficient compared to manual delineation. This is done taking into account 
observations from the delineation for the accuracy analysis and an additional 
delineation to provide an overview of successful and challenging delineation 
cases. 
 
For the peri-urban site, we selected Kajiado, an area close to Nairobi, in which 
current land administration challenges of urbanization, subdivision, and 
digitization are present and in which a large portion of cadastral boundaries is 
visible. Delineating boundaries with indirect surveying from the remote sensing 
imagery requires knowledge about the boundaries. To recognize boundaries in 
an image, it helps to be familiar with their appearance on the ground. 
Therefore, we went to the area for which UAV data were captured and took 
images of example boundaries. A team of village elders and a local researcher 
joined us to communicate with land owners when passing and capturing their 
boundaries. The team explained which objects were typically used to 
demarcate boundaries and provided insights on local boundary demarcation 
issues. The fieldwork helped to develop an understanding of the current land 
administration system available in paper-based form only. 
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For the rural site, we selected a Mailua group ranch in Kajiado County. The 
area is governed by a local pastoralist Masaii community with collectively 
registered land rights. The local pastoralists live jointly in homesteads around 
which they undertake pastoralist activities. Neither the homesteads nor the 
pastoralist activities are currently spatially documented in a formal land 
administration system. Challenges arise due to increasing subdivision 
processes without adequate survey control. Visually extractable homesteads’ 
outlines are delineated and attributed with land tenure information derived 
during fieldwork in the research project. 

6.2.5 Feedback Analysis 
The feedback analysis investigates the approach based on feedback from 
stakeholders having a background or an affiliation with surveying.  
While the former analyses focus on technical aspects, the feedback analysis 
reveals additional legal, organizational and financial aspects. Considering not 
only technical feasibility and limitations, but equally the required legal, 
institutional and financial capacity developments, is essential to implement 
improvements in land registration [330]. 
 
In order to collect feedback on the boundary mapping approach from local land 
administration stakeholders, three workshops were organized. The design of 
the workshops was built on insights gained from [323]. Stakeholders were 
considered relevant when having a background or an affiliation in surveying or 
related decision making. Three one-day workshops were organized for 
stakeholders from (i) local government institutions, (ii) NGOs and private 
companies, as well as (iii) national government institutions (Table 6.4). Each 
workshop followed the same structure: at the beginning, the research project 
its4land [3], of which the boundary mapping approach is part of, was 
introduced (Figure 6.7a). Then, the participants were invited to provide 
feedback. We demonstrated the interactive delineation and requested 
participants to delineate example boundaries themselves (Figure 6.7b). We 
asked the participants which strengths, weaknesses, opportunities, and threats 
(SWOT) came to their minds when comparing the approach proposed to 
manual delineation. For the approach proposed, they were asked to consider 
the entire workflow of image segmentation, boundary classification, and 
interactive delineation. For manual delineation, they should consider current 
indirect surveying techniques, i.e., manual delineation on remote sensing 
imagery. The points on strengths, weaknesses, opportunities and threats were 
noted individually and afterwards discussed and prioritized in the group 
(Figure 6.7c).  
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Table 6.4. Specifications of workshops organized for feedback collection. 
Location Date Participants Affiliation 

Kajiado, Kenya 28th September 2018 22 local government Kajiado 
Nairobi, Kenya 1st October 2018 32 NGOs, private companies 
Nairobi, Kenya 2nd October 2018 3 national government Kenya 

 

   
(a) (b) (c) 

Figure 6.7. (a) Explaining concepts of the boundary mapping approach during the 
workshop introduction. (b) Demonstrating the boundary mapping approach during the 
interactive feedback session. (c) Discussing strengths, weaknesses, opportunities, and 
threats (SWOT) of the approach proposed. 

6.3 Results 

6.3.1 Accuracy Analysis 
The accuracy analysis contains results for the Rwandan and Kenyan study 
areas, both presented in the following. An insight in the partly overlapping 
results is provided for the Rwandan data. 
 
For the building outlines in the Rwandan study areas, the training tile contained 
1870 lines of which 30% were labeled as ‘boundary’ and 70% as ‘not boundary’ 
in Muhoza. In this area, the testing tiles contained 4164 lines that covered 225 
buildings in the reference data. In Mukingo, the training tile contained 967 lines 
of which 23% were labeled as ‘boundary’ and 77% as ‘not boundary’. In this 
area, the testing tiles contained 1344 lines that covered 222 buildings in the 
reference data.  
 
317 (71%) out of the 447 building objects could be directly extracted 
(Figure 6.8a/b), of which 84% were extracted with a correctness of 30 cm 
(Table 6.5, Table 6.6). For the 86 (19%) buildings that needed editing, 82% 
required minor editing on <20% of the outline length, e.g., when the image 
segmentation did not provide a closed contour encompassing the entire 
building (Figure 6.8c). The 41 (9%) buildings that could not be delineated by 
the approach were mostly missed entirely during image segmentation. An 
over-segmentation would have allowed delineating more buildings with the 
approach, making the labeling and later selection of nodes more time-
consuming, due to more useless lines and nodes requiring consideration. The 
selection of the segmentation parameters was chosen after visual inspection 
of different settings for the tile as a whole. The inspection aimed to define 
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parameters that obtained a delineation for the majority of outlines, while 
limiting the extraction and fragmentation of useless lines. 
 
For the cadastral boundaries in the Rwandan study areas, the initial step of 
image segmentation required stronger over-segmentation, as the walls and 
fences to be extracted had less contrast compared to building outlines. The 
training tile contained 5831 lines of which 19% were labeled as ‘boundary’ and 
81% as ‘not boundary’ in Muhoza. In Mukingo, the training tile contained 3558 
lines of which 15% were labeled as ‘boundary’ and 85% as ‘not boundary’. In 
Mukingo, only a few objects demarcating cadastral boundaries were visible.  
 
The approach could be applied for the delineation of visible cadastral 
boundaries demarcated through walls and fences (Figure 6.8d/e). The 
approach is most suited for areas in which a large portion of cadastral 
boundaries is visible. For the visible parcels, the approach could be used to 
delineate 37 of 90 (41%) parcels without further editing and 31 of 90 (34%) 
parcels that required editing (Table 6.5, Table 6.7). Editing was considered 
only, when the interactive and the editing part together were more efficient 
than manual delineation. The higher percentage of editing for parcels 
compared to buildings can be explained by the outlines’ complexity: parcel 
outlines run along different objects with varying characteristics, while building 
outlines are more consistent. Not all complexities are correctly captured during 
image segmentation and thus require editing. 
 
When comparing buildings and cadastral boundaries, buildings allow more 
unambiguous reference data. The data can be captured with precise labeling 
rules resulting in objects of a specific quantity with an accurate outline. For 
cadastral boundaries, defining precise labeling rules is more challenging: the 
reference data should capture visible object outlines that demarcate parcel 
boundaries. Which objects are considered as visible cadastral boundaries 
depends on the local context. The cadastral reference may contain parts that 
are not demarcated through visible objects but can nevertheless be delineated 
based on the context: if there is a gap between two walls delineating a parcel, 
the boundary is drawn as the shortest closing of this gap (Figure 6.8g). 
Similarly, the delineator might delineate the centerline of a wall as a cadastral 
boundary, while the boundary mapping approach captures the wall’s in- or 
outline (Figure 6.8h). 
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Table 6.5. Accuracy assessment of building outlines and cadastral boundaries in 
Rwandan study areas delineated once manually, once with the approach proposed. 
  Building Delineation Boundary Delineation 

A
ss

es
sm

en
t 

M
ea

su
re

s 

Quantitative 
Completeness 

(object-level) 
 

 
  

Spatial 

Correctness 

(pixel-level) 

 

 
  

 
Table 6.6. Detailed results for building delineation in Rwanda. 

ex
te

nt
 error of 

commission [%] 
buildings 

no edit (N) 
buildings 
edit (N) 

buildings 
manual (N) 

Mukingo Muhoza Mukingo Muhoza Mukingo Muhoza Mukingo Muhoza 

1 16 17 103 72 17 39 11 11 
2 16 17 68 74 7 26 16 3 
 x� = 16.5 ∑ = 317 ∑ = 89 ∑ = 41 

Table 6.7. Detailed results for cadastral boundary delineation in Rwanda. 

ex
te

nt
 error of 

commission [%] 
boundaries 
no edit (N) 

boundaries 
edit (N) 

boundaries 
manual (N) 

Mukingo Muhoza Mukingo Muhoza Mukingo Muhoza Mukingo Muhoza 

1 22 35 9 14 4 15 4 13 
2 37 36 3 11 0 12 0 5 
 x� = 32.5 ∑ = 37 ∑ = 31 ∑ = 22 

Table 6.8. Detailed results for cadastral boundary delineation in Kenya. 

ex
te

nt
 error of 

commission [%] 
boundaries 
no edit (N) 

boundaries 
edit (N) 

boundaries 
manual (N) 

Kajiado Kajiado Kajiado Kajiado 

1 13 15 12 83 
2 24 6 12 83 
 x� = 18.5 ∑ = 21 ∑ = 24 ∑ = 166 
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(a) (b) (c) 

   
(d) (e) (f) 

  

 

 
(g) (h) (i) 

Figure 6.8. Examples of delineation results for Rwandan study areas: (a/b) 
Building delineation. (d/e) Parcel delineation. (c) Building segmentation 
requiring editing. (f) Building segmentation from different resolutions. (g) 
Visible parcels not demarcated by objects but by context. (h) Wall outline and 
centerline used for parcel delineation. (i) Boundary classification trained to 
detect buildings (top) and parcels (bottom). 
 
The approach has now been investigated for numerous objects demarcating 
cadastral boundaries, such as roads [300], buildings, walls, and fences. Which 
objects demarcate visible cadastral boundaries is location-dependent. 
Compared to manual delineation, which is the current procedure for indirect 
surveying [44], the approach obtains the highest time savings for areas in 
which boundaries are visible, long and curved. This has been shown for roads 
[300] and is assumed to hold true for agricultural field boundaries as well. The 
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walls and fences investigated in this chapter are often covered by vegetation 
and not built consistently (Figure 6.8g). Such boundaries are challenging to 
extract during image segmentation so that the time efficiency for short and 
straight parts remains comparable to that for manual delineation. The 
approach could be improved by adding further functionalities: (i) allowing the 
user to add or move nodes and lines during delineation, (ii) automatically 
adjusting incorrect corners in the result (Figure 6.8c), and (iii) providing the 
option to apply the method without the boundary classification step as it adds 
little value for cases of clear and few boundaries detected through the image 
segmentation step (Figure 6.8a/b). 

6.3.2 Operational Analysis 
The application of each of the approach’s workflow steps for Mailua is visualized 
in Figure 6.9. Two of the five study areas, i.e., those shown in the first two 
rows of Figure 6.9, were used to train the RF classifier that then predicts 
boundary likelihoods for lines used during the interactive delineation. Since the 
UAV data of Mailua did not contain DSM information, corresponding features 
were not calculated during boundary classification. 
 
Applying the approach in Mailua to delineate homesteads’ outlines showed once 
more the benefits of the approach when delineating curved outlines: To 
manually delineate the curved outline of the pastoralists’ homesteads, each 
node needs to be clicked. Selecting a location to click, requires detailed 
zooming in the orthoimage of 5 cm GSD. Delineating the outline with the 
approach, requires only two nodes at diagonal locations to be clicked. Selecting 
these locations can be done, by clicking on two of the automatically extracted 
nodes on a zoomed out level. The outlines of pastoralists’ homesteads were 
demarcated by piling a specific type of vegetation. The demarcating was of 
high contrast to its surrounding, seldom covered by other vegetation and 
established continuously with rare gaps. This allowed effectively applying the 
approach with little over-segmentation, which resulted in a low number of 
nodes and lines to be used during the interactive delineation. The extracted 
outlines are attributed with land tenure information on, e.g., ownership, usage 
derived in related Sketchmap work in the research project. The approach can 
thus contribute to the demarcation of pastoralists’ homesteads currently not 
spatially documented in a formal land administration system. 
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Figure 6.9. Boundary mapping in Mailua: image segmentation, boundary classification, 
and interactive delineation applied to delineate visible boundaries of pastoralists’ 
homesteads from UAV data. 

During fieldwork in Kajiado, we obtained an understanding of local boundary 
characteristics and demarcation challenges. The letters used in the following 
refer to Figure 6.10. A majority of boundaries is demarcated by visible objects 
such as (a) stone walls, (b) corrugated metal fences, (c) vegetation, or (d) 
ditches. The following examples are extractable from remote sensing imagery, 
but require local knowledge or context for a correct identification: (h) ditches 
can be confused with soil erosion, when extracted from imagery alone. 
(d) Some fences demarcating boundaries are challenging to differentiate from 
its surrounding. High-resolution DSMs can support the identification of such 
fences. (f) Beacons demarcate boundary corner points and (g) can be used in 
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parallel with linear boundary demarcations, or as control points for hosting 
measurements. The legal boundary has often remained on the connection of 
the beacons, instead of on the visible boundary. 
 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 6.10. (a-d) Examples of visible boundaries in Kajiado. (e-h) Boundary 
demarcations challenging to identify correctly from remote sensing imagery. 

Based on the local knowledge obtained during fieldwork and the large portion 
of cadastral boundaries in Kajiado being visible, the boundary mapping 
approach could be applied to the captured UAV data (Figure 6.11). It took 
about 30 min to interactively delineate each example tile of 300 x 300 m. 
During application, we observed the following challenges: 
 
(i) Image segmentation: It appeared difficult to define which level of 

contrast should be recognized by the image segmentation. An under-
segmentation delineates roofs only, while low-contrast outlines of fences 
and hedges were not extracted (Figure 6.12a). An over-segmentation 
resulted in outlines of fences and hedges, as well as many superfluous 
lines, which made the subsequent labeling in (ii) tedious and limited the 
operability in (iii) due to numerous nodes and lines (Figure 6.12b). In 
addition, many fences were not continuous or wide enough to be extracted 
by image segmentation (Figure 6.12e). Applying the approach to 
accurately extract objects with a precise outline such as roofs is more 
useful compared to extracting objects with fuzzy outlines such as hedges, 
for which the delineation requires manual adjustment and local knowledge. 
Fuzzy boundary demarcations tend to be the ones that are established with 
less effort, and that stay less permanently. However, accurate outlines of, 
e.g., roofs also have their flaws: While the roof can be precisely delineated, 
the actual boundary on the ground can be different or invisible when 
covered by an overhanging roof or running in between beacons 
(Figure 6.10f). For the case shown in Figure 6.10g, boundary mapping 
should focus on extracting and connecting beacons, i.e., the metal poles, 
rather than delineating the visible boundary, i.e., the massive stone wall. 
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(ii) Boundary classification: The lines from (i) were often fragmented 
(Figure 6.12c), which made manual line labeling into ‘boundary’ and ‘not 
boundary’ during training time-consuming. Joining such fragmented lines 
to larger ones without losing the corner information would be useful. The 
benefit of the boundary likelihood to calculate the least-cost-path was 
limited when no alternative line between two nodes was available 
(Figure 6.12d). In such cases, in which the user-selected nodes cannot 
be connected along alternative lines, the least-cost-path does not find the 
optimal connection, but the only one. Calculating the boundary likelihood 
is most beneficial to delineate long and curved boundaries [300], and 
might be omitted when the majority of boundaries is short and along 
clearly visible object outlines. 

 
(iii) Interactive delineation: Numerous boundaries could be delineated 

although they were not demarcated by an object: the context made clear 
that a boundary could be closed without the existence of an object outline, 
e.g., by closing the gap between two walls delineating a parcel 
(Figure 6.12e). The same holds true for visible boundaries covered by 
shadow or vegetation, under which the continuation of, e.g., a fence can 
be assumed. The nodes, originally created to be user-selected points to be 
connected along the lines from (i), were useful for the partially required 
manual delineation and editing of lines: they marked accurate outlines or 
corner points of objects that the delineation could be snapped to. The line 
thickness, originally intended to visualize the boundary likelihood from (ii), 
was useful to quickly identify areas for further delineation without detailed 
zooming (Figure 6.12f). The line simplification in (iii), originally intended 
to reduce the number of nodes and to straighten pixel-derived lines, was 
sometimes too strong, resulting in lines and nodes not fully representing 
the high-resolution of the input data. Most parcels required partial manual 
delineation or editing since few were completely demarcated by visible 
object outlines. Even though not originally designed for manual delineation 
and editing, the approach simplified these steps due to the described 
benefits of the suggested nodes and lines. 
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(a) (b) 

Figure 6.11. (a/b) Cadastral boundaries delineated from UAV data with the proposed 
boundary mapping approach. 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 6.12. Challenges observed during delineation: (a) under-segmentation, 
(b) over-segmentation, (c) fragmented segmentation, (d) redundancy of least-cost-
path calculation, (e) visible boundary not demarcated by objects, but by context, and 
(f) identification of delineation areas through boundary mapping approach. 
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6.3.3 Feedback Analysis 
The SWOT feedback from the three workshops was grouped according to 
technology readiness levels (TRL) proposed by the European Commission 
[331]. TRLs are used to simplify the transition from a scientific idea to a real-
world application and enable a consistent and precise discussion on different 
scales of technical maturity (Figure 6.13). The obtained points on strengths, 
weaknesses, opportunities and threats are grouped into feedback on the 
conceptual development (TRL 1-3, Figure 6.14a), the technological 
development (TRL 4-6, Figure 6.14b), and the operational development (TRL 
7-9, Figure 6.14c). The conceptual development relates to the idea and 
design of the boundary mapping approach. The technological development 
relates to its current implementation and functioning. The operational 
development relates to its future applicability in land administration systems. 
 

 
Figure 6.13. Transferring an innovative idea to a successful application along 
technology readiness levels (TRL) proposed by the European Commission [331]. 



Chapter 6 

109 

 
(a) 

 
(b) 

 
(c) 

Figure 6.14. SWOT results considering technology readiness levels (TRL) (a) 1-3, (b) 
4-6, and (c) 7-9. 
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6.4 Discussion 
The results from the analyses presented before are synthesized in Table 6.9 
and discussed in the following. 

Table 6.9. Cases for which the approach proposed fails ordered by frequency, and ideas 
for improvement. 

Boundary Type Issue Explanation Improvement Ideas 

Fragmented 

Figure 6.12c 

 Over-segmentation 
 Tedious line labeling during 
classification 
 Little overview during 
interactive delineation 

 Join fragmented 
segmentation results 

Low-contrast or 
fuzzy 

Figure 6.12a 

 Under-segmentation 
 Little usability of image 
segmentation 
 Increase of manual delineation 

 Add creation of closed 
polygons and geometric 
checks 
 Simplify moving and 
omitting of vertices 

Short and 
straight 

Figure 6.12d 

 Redundancy of boundary 
likelihood and least-cost-path 
calculation 

 Make usage of boundary 
likelihood optional 

Multi-type 

Figure 6.12b 

 Manual delineation more 
efficient than combination of 
interactive and manual 
delineation  
 Nodes and lines are useful to 
snap delineation to 

 Couple interactive and 
manual delineation more 
efficiently 

Context-
dependent 

Figure 6.8g 
Figure 6.12e 

 Increase of manual delineation 
 Nodes and lines are useful to 
snap delineation to 

 Add creation of closed 
polygons and geometric 
checks 
 Simplify moving and 
omitting of vertices 
 Incorporate local 
demarcation practices 
from existing maps 

Knowledge-
dependent 

Figure 6.8h 

 Increase of manual delineation 
 Increased need for ground-
level images 

 Incorporate local 
demarcation knowledge in 
classifier 
 Incorporate recursive 
learning 

Covered by 
vegetation 

 Little usability of image 
segmentation 
 Increase of manual delineation 

 Incorporate LiDAR data or 
high-resolution DTMs 
 Exclude vegetation 
through semantic 
recognition 

Invisible 

Figure 6.12a 

 Little usability of image 
segmentation 
 Increase of manual delineation 

 Incorporate local 
demarcation practices 
from existing maps 

Beacons as 
boundaries 

Figure 6.10f/g 

 No recognition of beacons 
through image segmentation 

 Include beacon recognition 
and linkage 
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The results obtained show once more that advantages of automated cadastral 
mapping depend mainly on the quality of automatically extracted features and 
their match with cadastral boundaries. As for the automatically extracted 
features, the visibility of features to be extracted is crucial for the usefulness 
of lines generated through image segmentation. As for their match with 
cadastral boundaries, the concept of visible boundaries can be questioned: 
most indirect surveying studies are based on the assumption that physical 
objects, e.g., fences, walls, hedges or roads, demarcate visible cadastral 
boundaries [42-44,304]. This assumption neglects the following: the correct 
identification of physical objects often requires additional local knowledge 
(Figure 6.10e-h). Even after correct identification, the outlines of physical 
objects require further consideration to be transferred into cadastral 
boundaries: the context often provides more insights than the object outlines 
themselves. While a delineator closes a gap between two walls demarcating a 
parcel, selects the in- or outside of a wall as a boundary, or assumes a 
rectangular shape of similar size in a row of plots, current automated boundary 
mapping approaches do not incorporate such knowledge. A delineator has 
more skills than delineating the outlines of visible linear features. 
 
The development of automated approaches in cadastral mapping should thus 
not only rely on extracting objects but also on closing boundaries based on 
local knowledge and context. This information is not inherent in the concept of 
the visible boundary, but it is extractable from remote sensing imagery. To 
further develop automated cadastral mapping in indirect surveying, we suggest 
considering the extractable boundary rather than the visible boundary alone 
(Figure 6.15).  
 

 
Figure 6.15. From physical object to cadastral boundary: reformulated boundary 
concepts for indirect surveying. 

In general, cadastral boundary mapping from remote sensing data, known as 
indirect surveying, depends on the percentage of cadastral boundaries being 
extractable and not necessarily being visible. We observed that a majority of 
boundaries is extractable, but not necessarily visible, i.e., demarcated by a 
physical object. While we suggested before to consider the percentage of 
boundaries being visible before choosing a surveying approach, we now 
recommend to consider the percentage of boundaries being extractable. Our 
approach that couples a machine-based automatic feature extraction with a 
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delineator-based interactive delineation can be used to map extractable 
boundaries. Current limitations are present on a conceptual, technological and 
operational level in each workflow step of image segmentation, boundary 
classification, and interactive delineation. The presented ideas on improving 
upon these limitations can serve as a basis for future work. Furthermore, local 
knowledge could be incorporated by considering ground-level images 
(Figure 6.10) in addition to the UAV data. Context knowledge could be 
incorporated by adding learning phases to the workflow.  
 
Given the complexity of cadastral boundaries, automating their delineation 
remains challenging: the variability of objects and extraction methods reflects 
the problem’s complexity, consisting of extracting different objects with 
varying characteristics. These circumstances impede the compilation of a 
generic model for a cadastral boundary and thus the development of a generic 
method. These remarks come back to the limitations of general boundaries: 
no standardized specifications exist for boundary features, boundaries are 
often not marked continuously and maintained poorly [328].  
 
Despite considerable progress in object extraction and classification from 
remote sensing data, Höhle points out that a gap often remains between the 
result of an automatic approach and the desired map product [332]. Similarly, 
Chen et al. constitute a considerable amount of manual intervention required 
in most existing methods [333]. An alternative to our current approach may 
be a deep learning based approach. Significant progress has been achieved in 
object extraction through deep learning [334-336]. For building extraction, 
deep learning has shown substantial improvements with high accuracies 
achieved mostly for buildings of consistent and regular roof sizes and 
shapes [333]. Applying similar approaches for boundary extraction is however 
not trivial: deep learning approaches require large amounts of training data, 
thus cadastral data and remote sensing data. Current governmental open data 
initiatives to publically share such data [337,338] and open-service data 
portals for aerial imagery [339] could contribute to generating sufficient 
training data and thus in developing deep learning approaches for automated 
cadastral mapping.  
 
In any case, the delineation cannot be fully automated at the current state 
since the extracted outlines require (legal) adjudication and incorporation of 
local knowledge from human operators to create final cadastral boundaries. 
Image-based approaches offer the potential to automatically extract use rights, 
which do not necessarily represent legal rights. These circumstances limit the 
scope of automated approaches. Therefore, future studies should focus on the 
interactive part that bridges the gap between automatically generated results 
and the desired product, i.e., cadastral boundaries. This would promote the 
paradigm shift towards cadastral intelligence that integrates human-based 
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expert knowledge with automatically generated machine-based knowledge. 
Additionally, future studies should provide approaches to capture requirements 
from existing technical, legal, financial, and institutional frameworks to be 
considered when aiming to implement innovative cadastral mapping 
procedures successfully. 

6.5 Conclusion 
This chapter focusses on a previously developed boundary mapping approach 
[300]. The approach supports the delineation of objects by automatically 
retrieving information from UAV-based RGB and DSM data that is used to guide 
an interactive boundary delineation. In this chapter, we introduce an improved 
version, in which the steps of image segmentation and line extraction have 
been combined, the features used during classification have been optimized, 
the interactive delineation has been redesigned to be more intuitive, and the 
entire workflow has undergone refactoring and restructuring for a more stable 
and efficient applicability. Subsequently, we describe the approach’s current 
functioning, demonstrate results obtained in different scenarios, and 
synthesize user feedback.  

 
Specific bottlenecks on a conceptual, technological and operational level are 
listed and can serve as a basis for future work. The insights from this chapter 
allow reformulating current boundary concepts in indirect surveying, in order 
to develop automated feature extraction for UAV-based cadastral mapping 
further: instead of focusing on the visible boundary comprising outlines of 
physical objects, automated cadastral mapping should focus on the extractable 
boundary that incorporates local knowledge and context. On the one hand this 
calls to incorporate deep or recursive learning. On the other hand, we observed 
that automating cadastral mapping dealing with sensitive land rights can only 
be successful, when the interactive part that bridges the gap between 
automatically generated results and the final cadastral boundary is designed 
and implemented in correspondence to surveyors’ needs. Our work revealed 
limitations of the current approach and ideas for improvements to be 
addressed in future work to advance the current approach in terms of efficiency 
and acceptance. 
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7. Deep Learning for Boundary Line 
Classification in Cadastral Mapping* 

  

                                           
* This chapter is based on: 
 
340. Crommelinck, S.; Koeva, M.; Yang, M.Y.; Vosselman, G. Application of Deep 
Learning for Delineation of Visible Cadastral Boundaries from Remote Sensing Imagery. 
Remote Sensing 2019, 11, 1-22. 
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Abstract 
Cadastral boundaries are often demarcated by objects that are visible in 
remote sensing imagery. Indirect surveying relies on the delineation of visible 
parcel boundaries from such images. Despite advances in automated detection 
and localization of objects from images, indirect surveying is rarely automated 
and relies on manual on-screen delineation. We have previously introduced a 
boundary delineation workflow comprising image segmentation, boundary 
classification, and interactive delineation. In this study, we improve each of 
these steps. For image segmentation, we limit over-segmentation by reducing 
the number of segment lines by 80% through filtering. For boundary 
classification, we show how Convolutional Neural Networks (CNN) can be used 
for boundary line classification and achieve 71% accuracy. For interactive 
delineation, we develop additional delineation functionalities. We apply our 
approach to UAV and aerial imagery of 0.02 - 0.25 m resolution from Kenya, 
Rwanda and Ethiopia. We show that it is more effective in terms of clicks and 
time compared to manual delineation for parcels surrounded by visible 
boundaries. Strongest advantages are obtained for rural scenes delineated 
from aerial imagery, where the delineation effort per parcel requires 38% less 
time and 80% fewer clicks compared to manual delineation. 
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7.1 Introduction 
Cadastral mapping is considered as the most expensive part of the land 
administration system [7]. There is a clear need for innovation for fast, 
accurate and cost-effective land rights mapping in order to provide tenure 
security and sustainable governance. We previously proposed automating 
indirect surveying for cadastral mapping by the following workflow [300]: (i) 
image segmentation to extract visible object outlines, (ii) boundary 
classification to predict boundary likelihoods for extracted segment lines, and 
(iii) interactive delineation to connect these lines based on the predicted 
boundary likelihood. 
 
In this study, we investigate improvements in all three steps (Figure 7.1). 
First, for step (i), we filter out small segments to reduce over-segmentation. 
Second, for step (ii), we replace hand-crafted features and line classification 
based on Random Forest (RF) by Convolutional Neural Networks (CNNs). 
Finally, for step (iii), we introduce more intuitive and comprehensive 
delineation functionalities. 
 

 
Figure 7.1. Boundary Delineation workflow proposed to improve indirect surveying. This 
study optimizes image segmentation, questions whether Random Forest (RF) or 
Convolutional Neural Networks (CNN) are better suited to derive boundary likelihoods 
for visible object outlines, and introduces additional functionalities for the interactive 
delineation. 

CNNs are one of the most popular and successful deep networks for image 
interpretation tasks. They are proven to work efficiently to identify various 
objects in remote sensing imagery [336,341-344]. Comprehensive overviews 
contextualizing the evolution of deep learning and CNNs in geoscience and 
remote sensing are provided in [335,345]. In essence, CNNs are neural 
networks that incorporate the convolution and pooling operation as a layer. 
CNNs have been characterized by five concepts [346]:  
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(i) Convolution operation increases the network’s simplicity, which makes 
training more efficient.  

(ii) Representation learning through filters requires the user to engineer the 
architecture rather than the features. 

(iii) Location invariance through pooling layers allows filters to detect 
features dissociated from their location. 

(iv) Hierarchy of layers allows learning of abstract concepts based on simpler 
concepts. 

(v) Feature extraction and classification are included in training, which 
eliminates the traditional machine learning need for hand-crafted features, 
and distinguishes CNN as a deep learning approach. 

 
In deep learning, there are two approaches to train a CNN: from scratch or via 
transfer learning [347]. When trained from scratch, all features are learned 
from data to be provided, which demands large amounts of data and comes 
with a higher risk of overfitting. An overfitted network can make accurate 
predictions for a certain dataset, but fails to generalize its learning capacity for 
another dataset. With transfer learning, part of the features are learned from 
a different, typically large dataset. These low-level features are more general 
and abstract. The network has proven excellence for a specific application. Its 
core architecture is kept and applied to a new application. Only the last 
convolution block is trained on specific data of the new application resulting in 
specialized high-level features. Transfer learning requires learning fewer 
features and thus fewer data. In our study, we investigate transfer learning an 
existing CNN for cadastral mapping. 
 
Our new functionalities for the interactive delineation address cases for which 
the boundary classification fails or is not necessary. Boundary classification 
comes into play in cases of over-segmentation, when many object outlines 
exist. Then, the delineator has to choose from a collection of lines which ones 
demarcate the cadastral boundary. Support comes from the lines’ boundary 
likelihood predicted by RF or CNN. Sometimes, the prediction is not correct or 
only one outline surrounds a parcel. Then functionalities other than the least-
cost-path searching optimal boundary likelihoods are required. In this study, 
we introduce functionalities that allow connecting image segmentation lines to 
cadastral boundaries regardless of their boundary likelihood. 

7.2 Materials and Methods 

7.2.1 Image Data 
In this study, an aerial image of 0.25 m Ground Sample Distance (GSD) of a 
rural scene in Ethiopia is used. The cadastral reference data cover 33 km2 
containing 9,454 plots with a median size of 2,500m2. For a later assessment, 
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in which we compare our approach to on-screen manual delineation, additional 
UAV data from Kenya and Rwanda is used. Capture and processing are 
described in [348]. 
 

  
(a) (b) 

  
(c) (d) 

Figure 7.2. (a) Aerial image of 0.25 m GSD for a rural scene in Ethiopia, divided into 
areas for training and testing our approach before comparing results to (b) cadastral 
reference. UAV images for peri-urban scenes in (c) Rwanda (0.02 m GSD), and (d) Kenya 
(0.06 m GSD) to compare automated to manual delineation. 

7.2.2 Boundary Mapping Approach 
The boundary mapping approach refers to the one described in chapter 7. In 
the following, modifications and the data-dependent implementation of the 
three workflow steps are described. The source code is publically available 
under [305]. 
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(i) Image segmentation is based on Multiresolution Combinatorial Grouping 
(MCG) [117], which delivers closed contours capturing the outlines of 
visible objects. To run the original MCG implementation, the Ethiopian 
aerial image is tiled to 20 tiles of 8000 x 8000 pixels. The parameter k 
regulating over- and under-segmentation is set to produce over-
segmentation (k = 0.1). This setting creates outlines around the majority 
of visible objects. Tests with parameters (k = 0.3 and k = 0.5) resulting in 
less over-segmentation show that visible object outlines are partly missed, 
while irrelevant lines around small objects are still produced. To reduce the 
number of irrelevant lines produced through over-segmentation, the lines 
are simplified through filtering (Figure 7.3): lines around areas smaller 
than 30 m2 are merged to the neighboring segments, which reduces the 
line count by 80% to 600,000 lines. According to our visual inspections, 
this post-processing removes artefacts in the segmentation results and 
keeps outlines of large objects being more relevant for cadastral mapping. 
For the high-resolution data from Rwanda and Kenya, we proceed similarly 
by tiling the data and setting k = 0.4 and k = 0.3, respectively. 
 

  
Figure 7.3. MCG image segmentation lines around visible objects before and after 
simplification reducing the line count by 80%. 

(ii) Boundary classification is applied to the post-processed 600,000 MCG 
lines. We investigate two machine learning approaches to derive the 
boundary likelihood per MCG line: Random Forest (RF) and Convolutional 
Neural Networks (CNN). Both require labelling of training data as 
‘boundary’ and ‘not boundary’. The training data for RF consist of lines, 
that for CNN of image tiles. For both approaches, the cadastral reference 
is buffered by a radius of 0.4 m. This size accounts for inaccuracies in the 
cadastral reference and the orthoimage, enlarges the number of ‘boundary’ 
samples, and is identical to the one applied to derive hand-crafted RF 
features. For both approaches, the ratio between training and testing data 
is set to 50%. The number of ‘boundary’ and ‘not boundary’ training 
samples is balanced to 1:1 by randomly under-sampling ‘not boundary’ 
tiles (Table 7.1). The areas for training and testing are randomly selected 
and large to minimize the number of lines at the borders of each area that 
are clipped and of limited use for further analysis (Figure 7.2). The 
boundary likelihood predicted by both approaches represents the 
probability (𝑦𝑦�) of a line being ‘boundary’: 
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𝑏𝑏𝑒𝑒𝑏𝑏𝑜𝑜𝑑𝑑𝑏𝑏𝑒𝑒𝑦𝑦 𝑙𝑙𝑜𝑜𝑙𝑙𝑒𝑒𝑙𝑙𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑑𝑑 [0; 1] = 𝑦𝑦�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏 

Table 7.1. Distribution of training and testing data for boundary classification based on 
Random Forest (RF) and Convolutional Neural Networks (CNN). 

 RF classification CNN classification 
number of lines number of tiles 

Label training testing training testing 
‘boundary’ 12,280 (50%) 9,742 (3%) 35,643 (50%) 34,721 (4%) 

‘not boundary’ 12,280 (50%) 280,108 (97%) 34,665 (50%) 746,349 (96%) 
∑ 24,560  289,850  70,308 781,070  

 
RF classification is applied as described in chapter 7 and shown in 
Figure 7.4. Instead of manually labelling lines for training, a line is now 
automatically labelled as ‘boundary’ when it overlaps with the cadastral 
reference buffer of 0.4 m by more than 50%. This value aligns with the 
threshold at which a CNN-derived result is labelled as ‘boundary’ or ‘not 
boundary’. Since no DSM information is available for the study area, the feature 
dsm_grad is not calculated. 
 

 
Figure 7.4: Boundary line classification based on Random Forest (RF) to derive 
boundary likelihoods for MCG lines. 

CNN classification is investigated by training state-of-the-art tile-based 
CNNs (Figure 7.5). We reformulate our problem of generating boundary 
likelihoods for MCG lines to be solvable by a tile-based CNN as follows: at first, 
image tiles of 224 x 224 pixels centered on an MCG line are cropped from the 
orthoimage. 224 x 224 x 3 is the standard size of images required by the used 
CNN. A tile is labelled as ‘boundary’ if the center pixel covering an MCG line 
overlaps with the cadastral reference buffer. A tile is created every 5 m along 
an MCG line. Decreasing this distance would increase overlap and thus 
redundancy of image content per tile. Increasing this distance would reduce 
the number of tiles and thus the number of training data. With these settings, 
we generate 1.5 million tiles surrounding MCG pixels of which 5% are labelled 
as ‘boundary’ and 95% as ‘not boundary’. After training, the CNN predicts 
boundary likelihoods for unseen testing areas (Figure 7.2a). The likelihoods 
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of all tiles per MCG line are averaged based on the 97th percentile. This value 
aligns with the distribution of ‘boundary’ and ‘not boundary’ lines in the training 
data (Table 7.1). We use a pre-trained CNN architecture. We apply transfer 
learning by adding additional trainable layers: a global spatial average pooling 
layer, a fully connected layer with rectified linear unit (ReLU) activation, a 
dropout layer, and a logistic layer with softmax activation. Only these last 
layers are trainable. We investigate using different pre-trained CNN 
architectures, including VGG [349], ResNet [350], Inception [351] , Xception 
[352], MobileNet [353] and DenseNet [354], as well as different hyper-
parameter settings on the learning optimizer, the depth of the fully connected 
layer, and the dropout rate. 
 

 
Figure 7.5. Boundary line classification based on Convolutional Neural 
Networks (CNN) to derive boundary likelihoods for MCG lines. 

 
Interactive delineation supports the creation of final cadastral boundaries. 
In comparison to chapter 7, we now include more functionalities to delineate 
parcels (Table 7.2) and redesigned the Graphical User Interface (GUI). The 
interactive delineation is implemented in the open source geographic 
information system QGIS [296] as BoundaryDelineation plugin [306]: 

Table 7.2. Delineation functionalities of BoundaryDelineation QGIS plugin. 
Functionality Description 

Connect around selection Connect lines surrounding a click or 
selection of lines (Figure 7.6a/b) 

Connect lines’ endpoints 
Connect endpoints of selected lines to a 
polygon regardless of MCG lines 
(Figure 7.6c) 

Connect along optimal path 
Connect vertices along least-cost-path 
based on a selected attribute, e.g., 
boundary likelihood (Figure 7.6d) 

Connect manual clicks Manual delineation with the option to snap 
to input lines and vertices 

Update edits Update input lines based on manual edits 

Polygonize results  Convert created boundary lines to 
polygons 
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(a) (b) 

  
(c) (d) 

Figure 7.6: Interactive delineation functionalities: (a) connect lines surrounding a click, 
or (b) a selection of lines. (c) Close endpoints of selected lines to a polygon. (d) Connect 
lines along least-cost-path. 

 
Figure 7.7. Interface of open source QGIS BoundaryDelineation plugin [306] developed 
to guide interactive delineation functionalities. 

7.2.3 Accuracy Assessment 
The accuracy assessment investigates multiple aspects of our workflow each 
requiring a different analysis: 
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CNN Architecture: this analysis aims to optimize the CNN architecture by 
considering loss and accuracy for training and validation data per epoch. The 
curves for training loss and validation loss, as well as for training accuracy and 
validation accuracy, are expected to converge with incremental epochs. Loss 
is the summation of errors made for each example in training and should be 
minimized. We use cross-entropy loss that increases as the predicted 
probability (𝑦𝑦�𝑖𝑖) diverges from the actual label (𝑦𝑦𝑖𝑖): 
 

𝑐𝑐𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜 − 𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑦𝑦 𝑙𝑙𝑒𝑒𝑜𝑜𝑜𝑜 = −(𝑦𝑦𝑖𝑖 log(𝑦𝑦�𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖) log(1 − 𝑦𝑦�𝑖𝑖)) 

All predictions <0.5 are considered as ‘not boundary’, those >=0.5 as 
‘boundary’. This results in a confusion matrix showing the number of tiles being 
False Positive (FP), True Positive (TP), False Negative (FN), and True Negative 
(TN). From this matrix, the accuracy is derived as the sum of correctly 
classified tiles divided by all tiles: 

𝑏𝑏𝑐𝑐𝑐𝑐𝑏𝑏𝑒𝑒𝑏𝑏𝑐𝑐𝑦𝑦 [0; 1] =
TP + TN

TP + FP + FN + TN 

RF vs. CNN Classification: this analysis compares the boundary likelihood 
obtained through RF and CNN to the percentage to which an MCG line overlaps 
with the cadastral reference. Both are buffered with a radius of 0.4 m. The area 
of their overlap in relation to the entire MCG buffer area represents the 
percentage of overlap: 

𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑙𝑙𝑏𝑏𝑟𝑟 [0; 1]  =
𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑀𝑀𝑀𝑀𝑀𝑀−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  ∩  𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑐𝑐𝑏𝑏𝑑𝑑𝑏𝑏𝑠𝑠𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑀𝑀𝑀𝑀𝑀𝑀−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
 

We investigate whether lines that should get a boundary likelihood >0, i.e., 
those that fall within the cadastral reference buffer, are assigned a boundary 
likelihood >0:  

𝑒𝑒𝑒𝑒𝑐𝑐𝑏𝑏𝑙𝑙𝑙𝑙 [0; 1] =
TP

TP + FN 

Then, we check whether the assigned boundary likelihood is valid, i.e., whether 
it is equal to the line’s overlap with the cadastral reference buffer. This is 
indicated by the precision that captures the ratio of lines having a boundary 
likelihood that aligns with overlap to the sum of lines having a correct or too 
positive boundary likelihood: 

𝑟𝑟𝑒𝑒𝑒𝑒𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑜𝑜 [0; 1] =
TP

TP + FP 
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Since the boundary likelihood captures the probability of a line being a 
‘boundary’ line, a high boundary likelihood should go along with a high overlap 
between MCG and cadastral reference buffer: 

𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑙𝑙𝑏𝑏𝑟𝑟 [0; 1] ≙ 𝑏𝑏𝑒𝑒𝑏𝑏𝑜𝑜𝑑𝑑𝑏𝑏𝑒𝑒𝑦𝑦 𝑙𝑙𝑜𝑜𝑙𝑙𝑒𝑒𝑙𝑙𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑑𝑑 [0; 1] 

Both values are not expected to be identical, which can be influenced by 
altering the buffer size. Our focus is on comparing RF to CNN and secondarily 
on the boundary likelihood itself. Results are considered only in areas for 
testing, in which we have cadastral reference data (Figure 7.2).  
 
Manual vs. Automated Delineation: this analysis compares the time and 
number of clicks required to delineate visible boundaries once manually and 
once with the automated approach. Manual delineation refers to delineating 
parcels based on the orthoimage without further guidance. Automated 
delineation refers to our approach, including RF or CNN classification depending 
on which approach shows superior results in chapter 7.3.2. All delineations 
should fall within the cadastral reference buffer of 0.4 m radius. The buffer size 
represents the local accepted accuracy for cadastral delineation and falls within 
the 2.4 m proposed for rural areas by the International Association of 
Assessing Officers (IAAO) [303]. 
 
The comparison is conducted for a rural area in Ethiopia and two peri-urban 
areas in Rwanda and Kenya (Figure 7.2). No urban area is selected, as indirect 
surveying relies on the existence of visible boundaries, which are rare in 
densely populated areas [355]. Furthermore, indirect surveying in urban areas 
saves less logistics for field surveys, due to smaller parcel sizes. Only parcels 
for which all boundaries are visible and thus detectable from the orthoimage 
are kept for this analysis. Since no digital up-to-date cadastral reference exists 
for our areas in Kenya and Rwanda, cadastral reference data are created based 
on local knowledge in alignment with visible boundaries. 

7.3 Results 

7.3.1 CNN Architecture 
We first tested different pre-trained base CNNs (VGG, ResNet, Inception, 
Xception, MobileNet, and DenseNet) to which we added trainable layers. The 
combined CNN model was trained with a batch size of 32 for 100 epochs. In 
the case of no learning, the training stopped earlier. We used 10% of the 
balanced training data for validation. These data were not seen by the network, 
but used only to calculate loss and accuracy per epoch. These metrics and their 
curves looked most promising for VGG19 [349]. VGG19 is a 19 layer deep CNN 
developed by the Visual Geometry Group (VGG) from University of Oxford. 
VGG19 is trained to classify images into 1000 object categories, such as 
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keyboard, mouse pencil, and many animals. The network has learned high-
level features for a wide range of images from ImageNet [356]. ImageNet, is 
a dataset of over 15 million labelled high-resolution images with around 22,000 
categories. Compared to other CNNs, VGG has shown to generalize well 
compared to more complex and less deep CNN architectures [349].  
 
We used VGG19 layers pre-trained for 20,024,384 parameters as a base 
model. Next, we modified hyper-parameters for VGG19 on the learning 
optimizer, the depth of the fully connected layer, and the dropout rate to 
optimize accuracy and loss. We used softmax as an activation function to 
retrieve predictions for tiles being ‘not boundary’ in the range [0; 1]. These 
values represent the weights for the later least-cost-path calculation. Sigmoid 
activation, which is a type of softmax for a binary classification problem, 
provided similar results in terms of accuracy and loss. However, it required 
more post-processing, as the resulting value in the range [0; 1] cannot be 
understood as described for softmax activation. 
 
The aim was to maximize the accuracy for training and validation data, while 
minimizing loss. To avoid over-fitting, the curves for training and validation 
accuracy should not diverge, which was achieved by increasing the dropout 
rate from 0.5 to 0.8. To avoid under-fitting, the curve for training accuracy 
should not be below that of validation accuracy, which was avoided by 
increasing the depth of the fully connected layer from 16 to 1024. To avoid 
oscillations in loss, the learning rate was lowered from 0.01 to 0.001. Learning 
was stopped once the validation accuracy did not further improve. Results and 
observations derived from different hyper-parameter settings and different 
pre-trained base CNNs are provided in the appendix.  
 
We achieved the best results after training 8,242 parameters on four trainable 
layers added to 22 pre-trained VGG19 layers (Table 7.3). This led to a 
validation accuracy of 71% and a validation loss of 0.598 after 200 epochs 
(Figure 7.8). The accuracy could be increased by 1% after 300 epochs, with 
validation loss restarting to increase to 0.623. We conclude that optimal results 
are achieved after 200 epochs. 100 epochs halve the training time to 11 hours, 
while obtaining 1% less accuracy and a loss of 0.588. The implementation 
relies on the open source library Keras [357] and is publically available [305]. 
All experiments are conducted on a machine having a NVIDIA GM200 (GeForce 
GTX TITAN X) GPU with 128 GB RAM. 
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Table 7.3. Settings for our fine-tuned CNN based on VGG19. 
 Settings Parameters 

untrainable 
layers VGG19 pre-trained on ImageNet exclusion of final pooling and fully 

connected layer 

trainable 
layers 

pooling layer global average pooling 2D 
fully connected layer depth=1024, activation=ReLu 
dropout layer dropout rate=0.8 
logistic layer activation=softmax 

learning 
optimizer 

stochastic gradient 
descent (SGD) optimizer 

learning rate=0.001 
momentum=0.9 
decay=learning rate/epochs 

training shuffled training tiles and 
un-shuffled validation tiles 

epochs=max. 200 
batch size=32 

 

 
Figure 7.8. Accuracy and loss for our fine-tuned VGG19. 

7.3.2 RF vs. CNN Classification 
Of those lines that should get a boundary likelihood >0, i.e., those that fall 
within the cadastral reference buffer, 100% for RF and 98% for CNN are 
assigned a boundary likelihood >0 (Table 7.4). This means that both 
classifiers predict a boundary likelihood in the range ]0; 1] when there is some 
overlap with the cadastral reference buffer. 
 
Next, we looked at how valid the boundary likelihood is, i.e., whether its value 
is equal to the line’s overlap with the cadastral reference buffer. For this, we 
excluded lines having no overlap with the cadastral reference buffer, i.e., those 
having an overlap = 0. We grouped the remaining lines to compare boundary 
likelihood and overlap values (Table 7.5). For RF-derived boundary 
likelihoods, we obtained an accuracy of 41% and a precision of 49%. For CNN-
derived boundary likelihoods, we obtained an accuracy of 52% and a precision 
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of 76%. The percentage of lines per value interval of 0.25 for the same 
boundary likelihood and overlap value deviated on average by 15% for RF and 
by 7% for CNN (Table 7.5).  
 
Overall, CNN-derived boundary likelihoods obtained a similar recall, a higher 
accuracy, and a higher precision (Table 7.4). The percentage of lines for 
different ranges of boundary likelihoods represented the distribution of overlap 
values more accurately (Table 7.5). Even though the values of overlap and 
boundary likelihood do not express the same, they provide a valid comparison 
between RF- and CNN-derived boundary likelihoods. We consider CNN-derived 
boundary likelihoods a better input for the interactive delineation and continue 
the accuracy assessment for a boundary classification based on CNN.  

Table 7.4. Is the boundary likelihood predicted for the correct lines? 
   overlap   

bo
un

da
ry

 li
ke

lih
oo

d   0 ]0; 1] ∑ ∑ % 

RF 

0 535 265 800 0 
]0; 1] 150,583 59,123 209,706 100 

∑ 151,118 59,388 210,506  
∑ % 72 28  100 

CNN 

0 7,560 1,794 9,354 4 
]0; 1] 145,558 57,594 201,152 96 

∑ 151,118 59,388 210,506  
∑ % 72 28  100 

Table 7.5. How correct is the predicted boundary likelihood? 
   overlap   
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lih
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RF 

]0; 0.25] 

15
1,

11
8 15,176 3,633 481 95 19,385 32 

]0.25; 0.5] 11,553 5,633 2,178 730 20,094 34 
]0.5; 0.75] 6,827 4,849 3,120 1,617 16,413 28 
]0.75; 1] 973 1,002 813 708 3,496 6 

∑ 34,529 15,117 6,592 3,150 59,388  
∑ % / 58 26 11 5  100 

CNN 

]0; 0.25] 

15
1,

11
8 

26,546 10,472 4,305 1,981 43,304 73 
]0.25; 0.5] 5,974 3,307 1,534 765 11,580 19 
]0.5; 0.75] 1,751 1,177 655 328 3,911 7 
]0.75; 1] 258 161 97 77 593 1 

∑ 34,529 15,117 6,591 3,151 59,388  
∑ % / 58 26 11 5  100 

7.3.3 Manual vs. Automated Delineation 
Before comparing manual to automated delineation, we filtered the cadastral 
reference data for Ethiopia (Figure 7.2b) to contain visible parcels only. We 
kept only those parcels for which all boundary parts were visually demarcated. 
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As in [358], we consider only fully closed polygons that are entirely visible in 
the image. Parcels, for which all boundaries were visible amount to 38% with 
strong variations across the scene. In [358], this number has been reported to 
average around 71% for rural Ethiopian areas. We can confirm 71% for parts 
of our study area that cover smallholder farms. Cadastral data for Rwanda and 
Kenya were delineated based on local knowledge in alignment with visible 
boundaries. As for Ethiopia, only fully closed and visible parcels were 
considered. The mean size of our visible parcels amounts to 2,725m2 for 
Ethiopia, 656m2 for Rwanda, and 730m2 for Kenya. 
 
When manually delineating visible boundaries, we observed how tiring a task 
as manual delineation is: the delineator has to continuously scan the image for 
visible boundaries to then click precisely and repeatedly along the boundary to 
be delineated. Apart from the visual observation of the orthoimage, the 
delineator has no further guidance on where to click. Each parcel is delineated 
the same way, which makes it a highly repetitive task that exhausts eyes and 
fingers in no time. 
 
When comparing manual to automated delineation, this impression changes: 
the delineator now has lines and vertices to choose from, which can be 
connected automatically using multiple functionalities (Table 7.2, 
Figure 7.6). Complex, as well as simple parcels, require fewer clicking when 
delineating with the automated approach: to follow a curved outline, manual 
delineation requires frequent and accurate clicking while zooming in and out. 
Automated delineation requires clicking on vertices covering the start and 
endpoint once before they are automatically connected precisely following 
object outlines (Figure 7.6d). Similarly, the automated delineation is superior 
for simple rectangular parcels: while manual delineation requires accurate 
clicking on each of the at least four corners of a rectangle, automated 
delineation allows clicking once somewhere inside the rectangle to retrieve its 
outline (Figure 7.9a).  
 
However, choosing the optimal functionality can be time-consuming, especially 
in cases of fragmented MCG lines obtained from high-resolution UAV data. We 
assume that the time for automated delineation can be reduced through 
increased familiarity with all functionalities and by further developing their 
usability, e.g., by keyboard shortcuts.  
 
Automated delineation required fewer clicks for our rural and peri-urban study 
areas (Table 7.6). Only those parcels for which one of our functionalities was 
more effective than manual delineation are considered for the automated 
delineation, amounting to 40-58% of all visible parcels. The effectiveness of 
manual delineation is considered for all 100% of the visible parcels. By 
maximizing the number of delineated parcels, we aimed to minimize the effect 
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of unusual parcels that required much effort to delineate manually. We expect 
the measures that we obtained for the manual delineation to be similar for the 
40-58% of parcels considered for the automated delineation. For the remaining 
parcels, MCG lines were either not available, or not aligning enough with the 
reference data. Manually delineating these parcels with the plugin requires the 
same number of clicks and time as conventional manual delineation, but is 
partly less tiring, as the delineation can be snapped to the MCG lines and 
vertices. 
 
Nevertheless, the lines and vertices can also impede the visibility: for our data 
from Rwanda and Kenya, the boundaries are not continuously visible. The 
partly vegetation-covered boundaries result in zigzagged and fragmented MCG 
lines (Figure 7.9b). Additionally, visible boundaries with low contrast were 
partly missed by MCG image segmentation. In both cases, the advantages of 
automated delineation are limited. 
 
In chapter 6 and 7, we claimed that the least-cost-path based on the boundary 
likelihood is beneficial to delineate long and curved outlines [300]. For the 
Ethiopian data, we now rarely made use of the boundary likelihood: for the 
often small and rectangular parcels, connecting all lines surrounding a click or 
a selection of lines was more efficient. For areas with few fragmented, long or 
curved outlines, the workflow is assumed to be of similar effectiveness when 
leaving out the boundary classification. To include the boundary classification 
is beneficial when boundaries are demarcated, e.g., by long and curved roads, 
visibly confined waterbodies, or circular vegetation as demonstrated for 
Kajiado in chapter 7. 
 
For our data from Kenya and Rwanda, we omitted the boundary classification, 
since we hardly used it for the Ethiopian data. The least-cost-path, for which a 
weight attribute can be selected in the plugin interface, used line length instead 
of boundary likelihood. Since the boundaries differ from the boundaries in the 
Ethiopian scene, the CNN would need to be retrained or fine-tuned for the new 
boundary types. Retrieving CNN-derived boundary likelihoods for these UAV 
data, would require further experiments on whether and how to rescale tiles 
to 224 x 224 pixels while providing context comparable to our aerial tiles 
(Figure 7.5).  
 
Overall, the automated delineation provided diverse functionalities for different 
boundary types (Table 7.7), which made delineation less tiring and more 
effective (Table 7.6). Improvements to manual delineation were strongest for 
parcels fully surrounded by MCG lines. Such parcels were mostly found in the 
Ethiopian rural scene, where boundaries aligned with agricultural fields. In the 
Rwandan scene, automated delineation was time-consuming, since the 
boundaries were not demarcated consistently. Selecting and joining 
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fragmented MCG lines required more careful visual inspection compared to the 
rural Ethiopian scene. In the Kenyan scene, the boundaries were less often 
covered by vegetation and in general better visible. Compared to the rural 
Ethiopian scene, the automated delineation still required more zooming, as 
boundaries were demarcated by more diverse objects. 

Table 7.6. Does automated delineation cost less effort? 

 

manual delineation automated delineation 
parcel 
count 

time
parcel  

[s] 

clicks
parcel 

parcel 
count 

time
parcel 

[s] 

clicks
parcel 

Ethiopia (rural) 350 13 10 181 (52%) 8 2 
Rwanda (peri-urban) 100 12 7 40 (40%) 25 5 
Kenya (peri-urban) 272 11 5 157 (58%) 10 4 

 

  
(a) (b) 

Figure 7.9. (a) Automated delineation requires clicking once somewhere in the parcel, 
while manual delineation requires precise clicking at least four times on each corner. (b) 
Boundaries partly covered or delineated by vegetation impede indirect surveying and 
limit the effectiveness of our automated delineation compared to manual delineation. 

Table 7.7. Which plugin functionality to use for which boundary type? 

Functionality Boundary type Boundary ≙ 
Segmentation 

Example 
boundary 

Connect around 
selection 

complex or 
rectangular yes agricultural field  

Connect lines’ 
endpoints 

small or 
rectangular partly vegetation-covered  

Connect along 
optimal path long or curved yes curved river  

Connect manual 
clicks 

fragmented or 
partly invisible no or partly low-contrast  

7.4 Discussion 
How we reformulated our problem to be solvable by a tile-based CNN has been 
similarly proposed in biomedical optics [359]. Fang et al. crop tiles centered 
on retinal boundary pixels and train a CNN to predict nine different boundary 
labels. Correspondingly labelled pixels are connected with a graph-based 
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approach. To transfer the latter to our case, we may investigate whether 
connecting tiles of similar boundary likelihood can omit the need for an initial 
MCG image segmentation: by using Fully Convolutional Networks (FCN) [360] 
each pixel of the input image would be assigned a boundary likelihood, which 
can be connected using Ultrametric Contour Maps (UCM) [249] included in MCG 
as investigated in [334]. Connecting pixels of corresponding boundary 
likelihoods could also be realized by using MCG-based contour closure [361], 
line integral convolution [362], or template matching [363]. 
 
Alternatively, the topology of MCG lines can be used to sort out false boundary 
likelihoods before aggregating them per line: this could be realized by not 
shuffling training data and thus maintaining more context information per 
batch, or by using graph-based approaches such as active contour models 
[191] suggested for road detection [364,365], or region-growing models 
suggested for RF-based identification of linear vegetation [366]. 
 
Predicting the optimal MCG parameter k per image may also be achieved with 
CNNs. Depending on whether an area is, e.g., rural or urban, cadastral parcels 
vary in size and shape. Larger parcels demand less over-segmentation and a 
higher k. Similarly, our high-resolution UAV data required a higher k, i.e., 0.3 
and 0.4 as compared to 0.1 for the aerial data. Challenges to be addressed are 
training with data from multiple sensors, varying parcel sizes in training, and 
automatically labelling data with the optimal segmentation parameter k. 
 
When training a network to predict boundary likelihoods for visible object 
outlines, our training data based on cadastral reference are beneficial as it is 
available without further processing. The data have little bias, as no human 
annotator with domain knowledge is required [367]. However, the data could 
be improved: cadastral data contain invisible boundaries not detectable by 
MCG. To limit training data to visible boundaries would match better with what 
the network is expected to learn and increase achievable accuracy metrics.  
  
When deciding whether to use RF or CNN for boundary classification, one needs 
to balance feature extraction for RF [368] against training data preparation 
and computational requirements for CNN [335]. In cases of limited training 
data for CNN, our CNN-based boundary classification may be adopted by data 
augmentation and re-balancing class weights. One advantage of our RF-based 
boundary classification is that it contains a feature capturing 3D information 
from a Digital Surface Model (DSM), which we used in [300]. 3D information 
still needs to be included in the CNN-based boundary classification.  
 
Compared to computer vision, the amount and size of benchmark image data 
are marginal: existing benchmarks cover aerial data for urban object 
classification [369] and building extraction [333], satellite imagery for road 
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extraction, building extraction and land cover classification [370], as well as 
satellite and aerial imagery for road extraction [371]. Such benchmarks in 
combination with open data initiatives for governmental cadastral data [337], 
aerial imagery [339], and crowdsourced labelling [372-374] may propel deep 
learning frameworks for cadastral boundary delineation, i.e., cadastral 
intelligence. Instead of using a VGG pre-trained on ImageNet, our approach 
could then be trained on diverse remote sensing and cadastral data, resulting 
in a possibly more effective and scalable network. 

7.5 Conclusion 
By reformulating our problem to be solvable by a CNN, we have investigated 
integrating a more state-of-the-art approach in our previously proposed 
boundary delineation workflow [300]. Our workflow consists of image 
segmentation, boundary classification, and interactive delineation: for 
boundary classification, a deep learning CNN was assumed to be superior to 
machine learning RF, as CNNs require no hand-crafted features and can be 
trained incrementally.  
 
This starting hypothesis held true: even though pre-trained on images from 
computer vision, transfer-learning a CNN on remote sensing data provided 
more accurate predictions for boundary likelihoods compared to RF. Our 
successful integration reduces the effect of possibly meaningless or biased 
hand-crafted features and increases the degree of automation of our approach. 
However, when conducting the final workflow step, i.e., interactive delineation, 
we found that we seldom made use of the boundary likelihood. We reduced 
over-segmentation, due to post-processing the image segmentation. This, in 
combination with new interactive delineation functionalities, is more effective 
than manual delineation for regular-shaped parcels surrounded by visible 
boundaries. The delineation functionality that uses boundary likelihood is 
beneficial for long or curved boundaries, which was rare in our study areas.  
 
Our approach is now more automated due to the integration of deep learning 
and has proven to be less tiring and more effective compared to manual 
delineation due to the decreased over-segmentation and our new delineation 
functionalities. The approach works on data from different sensors (aerial and 
UAV) of different resolutions (0.02-0.25 m). Advantages are strongest when 
delineating in rural areas due to the continuous visibility of monotonic 
boundaries.  
 
Despite these advances, automating cadastral boundary delineation is not at 
its end. Identifying areas in which a large portion of cadastral boundaries is 
visible and for which high-resolution remote sensing and up-to-date cadastral 
data are available in digital form still impedes methodological development. 
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Future work could investigate the approach’s applicability for invisible 
boundaries, that are marked before UAV data capture, e.g., with paint or other 
temporary boundary markers. In this context, the degree to which the 
approach can support participatory mapping could also be investigated. 
Furthermore, research needs to be done on how to align innovative approaches 
with existing technical, social, legal, and institutional frameworks in land 
administration as addressed in [348,375,376]. We are pursuing this by  
providing documentation and testing material [377] that enables surveyors 
and policy makers in land administration to easily understand, test, and adapt 
our approach. 
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7.6 Appendix 
Table 7.8. Results obtained on validation data for different fine-tuned CNNs.  

The one used for further analysis in our study is outlined in green. The legend 
text corresponds to that of Figure 7.8. 
 

parameter value acc. loss plot 

base model VGG19 

0.607 0.654 

 

dense layer depth / 

dense layer depth 16 

dropout rate 0.5 

learning rate 0.01 

base model VGG19 

0.705 0.66 

 

dense layer depth / 

dense layer depth 1024 

dropout rate 0.5 

learning rate 0.01 

base model VGG19 

0.693 1.632 

 

dense layer depth 512 

dense layer depth 16 

dropout rate 0.5 

learning rate 0.01 

base model VGG19 

0.613 0.643 

 

dense layer depth / 

dense layer depth 16 

dropout rate 0.5 

learning rate 0.001 
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base model VGG19 

0.615 0.646 

 

dense layer depth / 

dense layer depth 16 

dropout rate 0.2 

learning rate 0.01 

base model VGG19 

0.6 0.656 

 

dense layer depth 16 

dense layer depth 16 

dropout rate 0.8 

learning rate 0.001 

base model VGG16 

0.667 0.608 

 

dense layer depth / 

dense layer depth 1024 

dropout rate 0.8 

learning rate 0.001 

base model VGG19 

0.692 0.586 

 

dense layer depth / 

dense layer depth 1024 

dropout rate 0.8 

learning rate 0.001 

base model VGG19 

0.733 1.205 

 

dense layer depth / 

dense layer depth 1024 

dropout rate 0.8 

learning rate 0.001 
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base model ResNet50 

0.571 0.742 

 

dense layer depth / 

dense layer depth 16 

dropout rate 0.5 

learning rate 0.01 

base model ResNet50 

0.561 2.367 

 

dense layer depth / 

dense layer depth 1024 

dropout rate 0.5 

learning rate 0.01 

base model ResNet50 

0.546 3.86 

 

dense layer depth 512 

dense layer depth 16 

dropout rate 0.5 

learning rate 0.01 

base model ResNet50 

0.577 0.787 

 

dense layer depth / 

dense layer depth 16 

dropout rate 0.5 

learning rate 0.001 

base model ResNet50 

0.578 0.838 

 

dense layer depth / 

dense layer depth 16 

dropout rate 0.2 

learning rate 0.01 

base model Inception
V3 0.543 0.792 
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dense layer depth / 

 

dense layer depth 1024 

dropout rate 0.8 

learning rate 0.001 

base model Xception 

0.559 0.777 

 

dense layer depth / 

dense layer depth 1024 

dropout rate 0.8 

learning rate 0.001 

base model MobileNet 

0.612 0.775 

 

dense layer depth / 

dense layer depth 1024 

dropout rate 0.8 

learning rate 0.001 

base model DenseNet
201 

0.569 0.895 

 

dense layer depth / 

dense layer depth 1024 

dropout rate 0.8 

learning rate 0.001 
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8. Synthesis*  

                                           
* This chapter is based on the previous chapters, including lessons learned in 
(co-)authoring the following publications: 
 
3. Koeva, M.; Crommelinck, S.; Stöcker, C.; Crompvoets, J.; Ho, S.; 
Buntix, I.; Schwering, A.; Chipofya, M.; Sahib, J.; Zein, T., et al. In Its4land - 
Challenges and Opportunities in Developing Innovative Geospatial Tools for Fit-
for-Purpose Land Rights Mapping, FIG Congress, Istanbul, Turkey, 6-11 May, 
2018; pp 1-17. 
 
4. Bennett, R.; Gerke, M.; Crompvoets, J.; Ho, S.; Schwering, A.; 
Chipofya, M.; Schultz, C.; Zein, T.; Biraro, M.; Alemie, B., et al. In Building 
Third Generation Land Tools: Its4land, Smart Sketchmaps, UAVs, Automatic 
Feature Extraction, and the Geocloud, World Bank Conference on Land and 
Poverty, Washington, DC, USA, 20-24 March, 2017; pp 1-23. 
 
378. Koeva, M.; Bennett, R.; Gerke, M.; Crommelinck, S.; Stöcker, C.; 
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ISPRS Geospatial Week, Wuhan, China, 18–22 September, 2017; XLII-2/W, 
pp 37-43. 
 
379. Gerke, M.; Stöcker, C.; Crommelinck, S.; Koeva, M. UAV Für Das 
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2018; Vol. 89, pp 105-116. 
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International 2019, 27-29. 
 
382. Marshall, M.; Crommelinck, S.; Kohli, D.; Perger, C.; Yang, M.Y.; 
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11, 2082. 



Synthesis 

140 

The main goal of this Ph.D. research was to develop an approach that simplifies 
image-based cadastral mapping to support the automated mapping of land 
tenure. The goal has been pursued by developing an automated cadastral 
boundary delineation approach applicable to UAV imagery and further sources 
of remote sensing data. 
 
Overall, this manuscript illustrates how state-of-the-art knowledge from 
remote sensing, geo-informatics, photogrammetry, computer vision, and 
machine learning can be combined into an innovative cadastral mapping 
approach. By making use of synergies, we developed an approach that is 
superior to manual delineation when object outlines are continuously visible 
and coincide with cadastral boundaries. In future work, it can be adapted and 
transferred to real-world cadastral mapping use cases. The automated 
approach simplifies and speeds-up the delineation of objects from imagery. 
While the approach has been developed for cadastral mapping, it can also be 
used to delineate objects in other application fields, such as land use mapping, 
topographical mapping, road tracking, or building extraction. This Ph.D. 
research can be considered an innovative impulse for improving manual 
delineation in land administration and beyond. 

8.1 Conclusions per Objective 
(i) To review relevant information 
This objective is addressed in chapters 1 and 3. The extensive literature review 
provided in chapter 3 deals with concepts and case studies related to this Ph.D. 
research. We review the state-of-the-art on cadastral mapping, boundary 
delineation, UAV photogrammetry, feature extraction, as well as their 
interactions. The review reveals that automating indirect surveying from UAV 
data is a recently emerging research field. In practice, indirect surveying from 
UAV or any other remotely sensed imagery appears to be rarely automated 
and relies mostly on manual delineation through on-screen delineation. 
 
Reviewing background information helped to contextualize later results of this 
Ph.D. research, to raise awareness for bottlenecks and lessons learned in 
related studies, and to depict the potential of automated UAV-based cadastral 
mapping. Most important for subsequent work was the knowledge gained on 
feature extraction methods synthesized in a workflow for automated UAV-
based cadastral mapping. This knowledge served as a basis for the 
development of a corresponding workflow. Similarly, the knowledge gained on 
accuracy assessment helped in the later design of appropriate evaluation 
measures. 
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(ii) To develop a suitable approach 
This objective is addressed in chapters 4, 5 and 6. This includes developing 
and testing the workflow synthesized from the review in chapter 3. The 
workflow consists of image segmentation, line extraction and contour 
generation. These steps are addressed one after another in chapters 4, 5 and 
6, respectively.  
 
We observe that some of the workflow steps, such as image segmentation and 
line extraction, are solved more efficiently in the computer vision community 
compared to the remote sensing one. Transferring suitable approaches to 
remote sensing and testing their applicability for UAV-based cadastral mapping 
proved beneficial.  
 
In contrast to our initial assumption that the entire workflow could be 
implemented in an open-source GIS, we realized that state-of-the-art 
approaches are often available only as a standalone solution for a specific 
software, on a specific operating system, and in a specific programming 
language. It became necessary to develop the workflow in a modular fashion 
that integrates different source code implementations.  
 
From presenting at conferences and discussing on-going work, it became 
evident that an automatic extraction of boundaries is only part of the solution: 
even after successful development of an approach that extracts 99% of all 
visible boundaries, the approach might not reach acceptance and applicability. 
A surveyor would have to check all results to find the missing 1%. Defining 
land property rights is too sensitive a task to be left completely to an algorithm.  
 
We stepped back from the idea of automatically generating boundaries that 
require some post-editing before obtaining final cadastral boundaries. Instead, 
we shifted to the idea of automatically extracting boundary features that 
support an interactive delineation before obtaining final cadastral boundaries. 
It became evident that providing a solution for what we considered first as 
‘some post-editing’ and what we then implemented as an interactive 
delineation is of major importance for the acceptance and applicability of 
automated cadastral mapping. Bridging the gap between an automatically 
extracted result and the desired end product should not be neglected and 
should receive more attention in research. 
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(iii) To optimize and evaluate the developed approach 
This objective is addressed in chapters 7 and 8. We investigate how the 
approach can be transferred further from ideation to application. In chapter 7, 
the automated part is altered once more, by combining the steps of image 
segmentation and line extraction and thus reducing the workflow’s complexity. 
The cycle of designing, developing, testing and evaluating the workflow or 
parts of it has been repeated several times in the course of this Ph.D. research. 
Chapter 7 takes a step back and addresses a more global picture, in which 
potential end users are involved and asked for feedback. This contributed in 
evaluating the interactive delineation, before being optimized in the following 
chapter. In chapter 8, the machine learning part of the workflow is improved 
by replacing hand-crafted features and RF by deep learning CNNs. In the end, 
the newly added functionalities for the interactive delineation make our 
approach more effective compared to manual delineation even without CNN-
derived boundary likelihoods. 
 
While our previous evaluations use objects such as roads and buildings 
potentially demarcating cadastral boundaries, evaluations in chapter 7 and 8 
compare results to the intended end product: cadastral boundaries. Overall, 
the analysis reveals that successful application of the approach requires more 
cycles of designing, developing, testing and evaluating. The questions and 
schemas developed within this Ph.D. research can contribute to creating and 
implementing corresponding cycles to mature the approach’s technological 
readiness level. As part of its4land, we are developing documentation and 
testing material that enables developers, surveyors and policy makers in land 
administration to easily understand, test and adapt our approach. 

8.2 Reflections and Outlook 
This work was motivated by the large number of people without access to 
formal land administration. The lack of recorded land rights creates insecure 
land tenure and existence-threatening conflicts. This research aims to support 
the recording of land rights by simplifying cadastral mapping, which is 
considered the most expensive part of the land administration system [7]. The 
developed approach is inspired by geo-technology taking into account state-
of-the-art knowledge from remote sensing, geo-informatics, photogrammetry, 
computer vision, and machine learning.  
 
Discussing the work at conferences of these different communities, as well as 
in the frame of the inter-disciplinary its4land project, raised the awareness of 
different problem perceptions and thus different approaches to solution 
development. Integrating these different perspectives was beneficial and 
necessary. On the one hand, cadastral boundary extraction can be considered 
a problem of image segmentation since a boundary is not necessarily an object, 
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but the separation line between multiple objects. On the other hand, it can be 
considered a classification problem since a boundary can be demarcated by an 
object. Similarly, high-resolution data obtained through a remote sensing 
platform, such as an UAV, might be better analyzed through a computer vision 
approach typically designed for high-resolution data. However, computer vision 
approaches might not account for different characteristics of remote sensing 
data. Another example is machine learning. Research on machine learning 
focusses on how to solve complex problems in an efficient and accurate way. 
However, it remains crucial for a latter acceptance and applicability to adapt 
understanding and functioning of an approach to a specific application domain. 
This is seldom addressed in machine learning research. Similarly, the high-
resolution of UAV-based imagery might allow the extraction of visible 
boundaries with high spatial accuracy. However, current regulatory 
frameworks on UAV data capture can turn the use of other data sources such 
as aircraft or satellite imagery into a faster, cheaper, and more applicable 
choice.  
 
Throughout this Ph.D. research, we had to find the balance between demands 
and expectations from different perspectives. Developing an approach that is 
of contribution to different scientific communities and to potential end-users 
demanded multiple cycles of designing, developing, testing and evaluating the 
approach with altering foci. At the beginning, we focused on an accurate object 
extraction. Later, our focus shifted to an effective and applicable mapping 
solution. 
 
At the beginning of this Ph.D. research, we found that automating indirect 
surveying from UAV data was a recently emerging research field. During the 
past 3.5 years, a growing interest has been manifested, e.g., in a symposium 
on feature extraction for cadastral boundaries and several master students at 
the Faculty of Geo-information Science and Earth Observation of the University 
of Twente worked on related method development and applicability. In the 
African context, we observed more projects funded by the World Bank on 
automatically mapping, e.g., smallholder rights, and conferences aiming at 
digitizing land administration by strengthening ICT-related research. 
Nevertheless, automating indirect surveying from UAV data remains rarely 
investigated in depth outside of this Ph.D. research. 
 
The initial goal proposed in its4land was to fully automate the extraction of 
cadastral boundaries: we aimed to translate the intelligence of a human 
delineator into a machine learning approach. So far, our workflow based on 
deep learning has not been shown ‘intelligent’ enough to replace a human 
delineator. Even with an optimally predicted boundary likelihood, a human is 
still required to select which lines to convert to boundaries. Ideally, deep 
learning methods would learn and apply this by themselves. Cadastral 



Synthesis 

144 

intelligence, which we define as deep learning frameworks for cadastral 
boundary delineation, requires further improvements before replacing 
delineation by a human. Deep learning frameworks trained on different objects 
demarcating cadastral boundaries in varying scenes, as well as incremental 
learning from a delineation may propel cadastral intelligence. An increase in 
the availability of training data can be expected from the increasing number of 
open data initiatives. The rise of crowd-mapping platforms and participatory 
mapping projects might contribute valuable data to train a cadastral 
intelligence system. Future work should also include the protection of data 
privacy connected to such new forms of recording land tenure. 
 
One major limitation throughout the Ph.D. research was the unavailability of 
UAV and cadastral reference data covering areas with many visible boundaries. 
UAV data capture in our target countries was impeded by unclear and 
restrictive regulations. Cadastral data were often not available in digital, large-
scale, and up-to-date form, which was the starting problem for this research. 
The lack of large datasets restricted the use of deep learning. Existing digital 
records did not align with visible boundaries, as they were delineated on 
outdated or low-resolution imagery. Boundaries were often not as visible as 
expected with sections being covered by vegetation or shadow. Other 
boundaries were not demarcated continuously. These conditions impeded 
method development and made us wonder whether a different approach to 
improving land tenure mapping might have been more fruitful. 
 
The limited availability of UAV imagery and cadastral reference data 
throughout the Ph.D. research, as well as the variability in objects demarcating 
cadastral boundaries, made us develop a generic modular workflow. In the 
end, this workflow is not restricted to delineate cadastral boundaries from UAV 
data only. The workflow can be applied to delineate visible objects images from 
different sensors. Since this research relies mostly on open source libraries and 
frameworks, the approach is publically available and can easily be implemented 
and adapted.  
 
Taking a step back, we can consider this work an innovative impulse for 
improving land administration. However, land administration includes more 
than the mapping of cadastral boundaries. A system that allows large-scale 
registration of unrecorded land tenure does not only have to solve spatial data 
acquisition and processing. A widely applicable and scalable solution that meets 
fit-for-purpose criteria would need to be compliant with local requirements. 
This demands analyses beyond accuracy and efficiency that incorporate 
existing social, legal, and institutional frameworks. 
 
Taking another step back, one can evaluate how this Ph.D. research 
approached the nexus of methodological and applied research. This research 
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demanded the development of methodological skills in image analysis, 
technical skills in software development, and applied skills in conducting and 
evaluating practical tests. For future work, we recommend to join scientists, 
developers, practitioners, and policy makers in a diverse team. Such a team 
would incorporate views, knowledge, and approaches from diverse scientific 
communities, practitioners, and policy makers to further develop image-based 
cadastral boundary mapping. 
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Summary 
Recording land rights provides land owners tenure security, sustainable 
livelihood and increases financial opportunities. Estimates suggest that about 
75% of the world population does not have access to a formal system to 
register and safeguard their land rights. This lack of recorded land rights 
increases insecure land tenure and fosters existence-threatening conflicts, 
particularly in developing countries. Recording land rights spatially is defined 
as cadastral mapping or cadastral boundary delineation. Cadastral boundaries 
can either be recorded on the ground with accurate measurement equipment 
(direct surveying) or be delineated along visible boundaries from remote 
sensing imagery (indirect surveying). Cadastral mapping is considered the 
most expensive part of a land administration system. 
 
Recent developments in technology allow us to rethink contemporary cadastral 
mapping. Unmanned aerial vehicles (UAVs) known as drones are evolving as 
an alternative tool to acquire land tenure data. UAVs can capture geospatial 
data at high-resolution in a low-cost, transparent, and flexible manner. 
Imagery captured with UAVs is increasingly used in indirect surveying to 
accurately delineate visible cadastral boundaries. Many cadastral boundaries 
are visible, as they are demarcated by physical objects such as fences, walls, 
roads, buildings, or rivers. Furthermore, recent advances in automated 
detection and localization of objects from images offer new opportunities for 
indirect surveying: instead of delineating visible boundaries manually from low-
resolution imagery, boundaries can be extracted automatically by applying 
image analysis to high-resolution UAV imagery. Such solutions offer the 
potential to improve current cadastral mapping procedures in terms of time, 
cost, and accuracy for the sake of worldwide land tenure security and 
sustainable land administration. 
 
This Ph.D. research introduces an approach that simplifies image-based 
cadastral mapping. We develop an automated cadastral boundary delineation 
approach that is applicable to remote sensing data of high-resolution. The 
approach is designed for areas, in which boundaries are demarcated by 
physical objects and are thus visible. Areas of investigation are East African 
developing countries including Kenya, Rwanda, and Ethiopia. 
 
In chapters 1 and 3, we review the state-of-the-art on cadastral mapping, 
boundary delineation, UAV photogrammetry, feature extraction, as well as 
their interactions. The review reveals that automating indirect surveying from 
UAV data is a recently emerging research field. In practice, indirect surveying 
from UAV or any other remotely sensed image appears to be rarely automated 
and relies mostly on manual delineation through on-screen delineation. We 
show the potential of automated UAV-based cadastral mapping. The review 
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covers feature extraction methods that are synthesized into a hypothetical 
workflow consisting of image segmentation, line extraction, and contour 
generation.  
 
In chapters 4, 5 and 6, the hypothetical workflow is implemented step by step 
by testing and adapting previously reviewed methods. Our results show that 
methods from computer vision are suitable to precisely extract object outlines 
demarcating cadastral boundaries. However, the methods are developed to 
work well on small images and not necessarily on UAV images of many more 
pixels. We adapt these computer vision methods and apply them to remote 
sensing data that cover large-scale imagery and 3D information. For image 
segmentation, we find that Globalized Probability of Boundary (gPb) contour 
detection extracts objects at completeness and correctness rates of up to 80% 
(chapter 4). For line extraction, we find that Simple Linear Iterative Clustering 
(SLIC) delineates the objects with the high accuracy provided by the UAV 
imagery at completeness rates of up to 64% (chapter 5). For contour 
generation, we implement machine learning through Random Forest (RF) 
classification to combine the results of gPb and SLIC. Further, we develop a 
procedure for a subsequent interactive delineation. Compared to manual 
delineation, the number of clicks per 100 m is reduced by up to 86%, while 
obtaining a similar localization quality (chapter 6). 
 
In chapters 7 and 8, the approach is optimized and evaluated for cadastral 
mapping. While our previous evaluations use objects such as roads and 
buildings that potentially demarcate cadastral boundaries, the evaluations in 
chapter 7 and 8 compare results to the intended end product: cadastral 
boundaries. Furthermore, potential end users are involved and asked for 
feedback. The workflow’s complexity is reduced by replacing gPb and SLIC with 
another computer vision method, namely Multiscale Combinatorial Grouping 
(MCG) (chapter 7). The accuracy of boundary likelihoods predicted by machine 
learning is improved by 11%. The degree of automation is increased by 
replacing RF classification with deep learning Convolutional Neural Networks 
(CNN) (chapter 8). The final workflow consists of image segmentation, 
boundary classification, and interactive delineation. The workflow is tested on 
UAV and aerial imagery. We show that our approach is less tiring and more 
effective in terms of clicks and time compared to manual delineation for parcels 
surrounded by visible boundaries. Strongest advantages are obtained for rural 
scenes delineated from aerial imagery, where the delineation effort per parcel 
is requires 38% less time and 80% fewer clicks compared to manual 
delineation.  
 
We aimed to automate the extraction of cadastral boundaries by translating 
the intelligence of a human delineator into a machine learning approach. So 
far, our workflow based on deep learning has not been shown to be ‘intelligent’ 
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enough to replace a human delineator. Cadastral intelligence, which we define 
as deep learning frameworks for cadastral boundary delineation, requires 
further improvements before fully replacing manual delineation. However, we 
show cases where our approach is already superior to current manual 
delineation practices. 
 
A successful application of our approach in a real-world use case requires more 
cycles of designing, developing, testing, and evaluating. This demands 
analyses beyond accuracy and efficiency that incorporate existing social, legal, 
and institutional frameworks, as well as further method development. One 
major limitation impeding method development throughout the Ph.D. research 
was the unavailability of UAV and cadastral data covering areas with many 
visible boundaries.  
 
Overall, this manuscript illustrates how state-of-the-art knowledge from 
remote sensing, geo-informatics, photogrammetry, computer vision, and 
machine learning can be combined into an innovative cadastral mapping 
approach. By making use of synergies, we developed an approach that is 
superior to manual delineation when object outlines are continuously visible 
and coincide with cadastral boundaries. In future work, it can be adapted and 
transferred to real-world cadastral mapping use cases. The automated 
approach simplifies and speeds-up the delineation of objects from imagery. 
While the approach has been developed for cadastral mapping, it can also be 
used to delineate objects in other application fields, such as land use mapping, 
topographical mapping, road tracking, or building extraction. This Ph.D. 
research can be considered an innovative impulse for improving manual 
delineation in land administration and beyond. 
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Samenvatting 
Het optekenen van eigendomsrechten geeft aan grondbezitters naast de 
zekerheid van recht op eigendom, tevens een uitzicht op financiële kansen. Uit 
schattingen blijkt dat bijna 75% van de wereldbevolking nog steeds geen 
toegang heeft tot formeel aanvaarde landregistratiesystemen. Het ontbreken 
van kadastraal geregistreerde landrechten geeft aanleiding tot onzekerheid 
omtrent landeigendom en hierdoor soms tot levensbedreigende conflicten. Het 
optekenen of registreren van lokale landrechten wordt kadastrale kartering of 
kadastrale grensafbakening genoemd. Kadastrale grenzen kunnen op het 
terrein worden vastgelegd met behulp van nauwkeurige meetapparatuur (de 
zogenaamde directe meting). Zichtbare grenzen kunnen ook worden 
gedigitaliseerd vanuit luchtbeelden via telemetrie (indirecte metingen). Veel 
kadastrale grenzen zijn zichtbaar, omdat ze worden afgebakend door objecten 
zoals hekkens, muren, wegen, gebouwen of rivieren. Omdat de opmaak van 
kadastrale kaarten vaak het duurste deel van een landadministratiesysteem is, 
zijn nieuwe benaderingen nodig die een snelle, nauwkeurige en 
kostenefficiënte afbakening van de eigendomsgrenzen mogelijk maken. Dit zal 
leiden tot meer eigendoms-rechtszekerheid en tot een meer duurzaam beleid. 
  
Recente technologische ontwikkelingen maken het mogelijk om de opmaak van 
de hedendaagse kadastrale kaarten opnieuw te bezien. Onbemande 
luchtvoertuigen (UAV) evolueren tot een alternatief instrument om gegevens 
over grondbezit te verwerven. UAV's kunnen ruimtelijke gegevens van hoge 
kwaliteit en resolutie op een kostenefficiënte, transparante en flexibele manier 
vastleggen, van waaruit dan zichtbare perceelsgrenzen kunnen onderscheiden 
worden. Bovendien maken verbeteringen in geautomatiseerde detectie- en 
lokalisatie-methoden van objecten uit afbeeldingen, een heroverweging van 
het gebruik van indirecte metingen mogelijk: in plaats van het handmatig 
afbakenen van zichtbare grenzen van afbeeldingen met lage resolutie, kunnen 
nu grenzen automatisch worden geëxtraheerd door beeldanalysetechnieken te 
koppelen aan beschikbare UAV-gegevens met hoge resolutie. Een dergelijke 
oplossing biedt de mogelijkheid om de huidige kadastrale karteringsaanpak te 
verbeteren zowel in betrekking tot tijd, kosten en nauwkeurigheid van de 
resultaten. 
  
Dit doctoraatsproefschrift licht de aanpak toe, die het maken van beeld-
gebaseerde kadastrale kaarten vergemakkelijkt voor het automatisch in kaart 
brengen van eigendomsgrenzen. We ontwikkelen een open-source systeem 
van geautomatiseerde belijning van kadastrale grenzen dat toepasbaar is op 
UAV-beelden. Het systeem is ontworpen voor gebieden, waar grenzen worden 
afgebakend door fysieke objecten en dus zichtbaar zijn. Toepassingsgebieden 
zijn Oost-Afrikaanse landen, waaronder Kenia, Rwanda en Ethiopië. In de loop 
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van dit doctoraal onderzoek hebben we onze innovatieve aanpak van 
kadastrale kartering verder ontwikkeld, geëvalueerd en verfijnd. 
  
In de hoofdstukken 1 en 3 bespreken we de aan dit onderwerp gerelateerde 
informatie. We beoordelen het nieuwste-van-het-nieuwste in verband met 
onder meer kadastrale kartering, afbakening van grenzen, UAV-
fotogrammetrie en functie-extractie, evenals combinaties van de diverse 
systemen. Uit dit onderzoek blijkt dat het automatiseren van indirecte 
terreinverkenning vanuit UAV-gegevens nog een nauwelijks bestaand 
onderzoeksgebied is. In de praktijk lijken indirecte metingen via UAV of andere 
beelden die via telemetrie worden verkregen, zelden te worden 
geautomatiseerd. De opmaak van de kadastrale begrenzingen berust 
grotendeels op een handmatige afbakening via digitalisering van het beeld op 
het scherm. We belichten het potentieel van geautomatiseerde op UAV 
gebaseerde kadastrale kaarten. Dit proefschrift behandelt diverse 
mogelijkheden, de zogenaamde “feature-extractiemethoden” die samen 
komen tot een hypothetische workflow die bestaat uit zowel beeldsegmentatie, 
lijnextractie, als het genereren van objectomtrekken. Deze workflow wordt 
stap voor stap geïmplementeerd in de volgende hoofdstukken. 
  
In de hoofdstukken 4, 5 en 6 wordt een geschikte aanpak ontwikkeld door 
eerder beoordeelde methoden in de praktijk te testen en aan te passen. Onze 
resultaten laten zien dat methoden gebaseerd op computertechnieken geschikt 
zijn om nauwkeurig objectomtrekken af te leiden die de kadastrale grenzen op 
het terrein afbakenen. De methoden zijn echter ontwikkeld om goed te werken 
op basis van kleine afbeeldingen en niet noodzakelijk op UAV-afbeeldingen die 
veel meer pixels bevatten. We zetten via gecomputeriseerde visualisatie-
methoden de gegevens om, teneinde resultaten te verkrijgen uit telemetrie die 
zowel beelden als 3D informatie bevatten. Bij het opdelen van beelden in 
diverse segmenten, kunnen we door het gebruik van veralgemeende 
programmatuur gebaseerd op waarschijnlijkheid van grensbepaling van 
omtrekken of contouren (gPb = globalised probability boundery), in 
uitbreiding, de omtrekken van de objecten met een nauwkeurigheid en 
volledigheid van maximaal 80% verkrijgen (hoofdstuk 4). Voor het ontrafelen 
van lijnvormige afbakeningen hebben we gevonden dat Simple Linear Iterative 
Clustering (SLIC) de objecten afbeeldt, met de hoge nauwkeurigheid van de 
UAV-ortho-afbeeldingen, met een ratio naar volledigheid van maximaal 64% 
(hoofdstuk 5). Voor het genereren van object-contouren passen we artificiële 
intelligentie toe door gebruik te maken van de Random Forest (RF) -
classificatie, die de resultaten van gPb en SLIC combineert. Verder ontwikkelen 
we een procedure voor een volgende interactieve afbakening. In vergelijking 
met handmatige afbakening wordt het aantal klikken per 100 strekkende meter 
lijn-lengte met maximaal 86% verminderd, terwijl een vergelijkbare 
plaatsbepalingskwaliteit wordt verkregen (hoofdstuk 6). 
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In de hoofdstukken 7 en 8 wordt de aanpak voor de opmaak van kadastrale 
kaarten geoptimaliseerd en geëvalueerd. Terwijl onze vorige evaluaties 
objecten gebruikten die mogelijk kadastrale grenzen afbakenden, zoals wegen 
en gebouwen, vergelijken de evaluaties beschreven in hoofdstukken 7 en 8, 
nu de verkregen resultaten met het beoogde eindproduct: kadastrale grenzen 
van de eigendommen vastleggen. Verder zijn potentiële eindgebruikers 
betrokken en gevraagd om feedback te geven. De complexiteit van de 
workflow wordt verminderd door gPb en SLIC te vervangen door een andere 
gecomputeriseerde benadering, namelijk de methode van de zogenaamde 
Multiscale Combinatorial Grouping (MCG) (hoofdstuk 7). De juistheid van de 
voorspelde objectgrenzen wordt hierdoor met 11% verbeterd en de mate van 
automatisering wordt verhoogd door de RF-classificatie te vervangen door de 
zogenaamde deep learning Convolutional Neural Networks (CNN) (hoofdstuk 
8). De uiteindelijke workflow bestaat uit achtereenvolgens beeldontrafeling, 
classificatie van de soorten grenzen en een interactieve belijning van de 
contouren van het object. Deze aanpak is getest op gegevens afkomstig van 
UAV en van luchtfoto's. We laten zien dat onze aanpak minder arbeidsintensief 
en efficiënter is wat betreft het aantal benodigde klikken en de vereiste 
tijdsspanne in vergelijking met de handmatige afbakening voor percelen die 
omgeven zijn door zichtbare grenzen. De belangrijkste voordelen van deze 
werkwijze worden verkregen voor landelijke omgevingen die zijn afgeleid van 
luchtfoto's, waarbij de benodigde afbakenings-inspanning ca. 38% minder tijd 
vergt en 80% minder klikken per perceel.  
 
We wilden de extractie van kadastrale grenzen automatiseren door de 
intelligentie van een menselijke cartograaf van kadastrale grenzen te vertalen 
in een opmaak van een algoritme voor een zelflerende aanpak. Onze workflow, 
op basis van machine learning is tot dusver niet ‘intelligent’ genoeg gebleken 
om een menselijke landmeter te vervangen. Kadastrale intelligentie, die we 
definiëren als de opmaak van een verdiepend lerend werk-kader voor de 
afbakening van kadastrale grenzen, vereist verdere verbeteringen voordat de 
handmatige afbakening door een menselijke cartograaf wordt vervangen. 
Nochtans lichten we in dit proefschrift toch gevallen toe waarvoor onze aanpak 
voornamelijk naar precisie, snelheid en accuraatheid, al superieur is aan de 
huidige handmatige afbakeningspraktijken. 
 
Een succesvolle toepassing van de aanpak aan één specifiek scenario vraagt 
verdere inspanningen en vereist meer cycli van ontwerp, ontwikkeling, testen 
en evaluatie. Dit vereist analyses die de beoogde graad van nauwkeurigheid 
en efficiëntie overstijgen en die bestaande sociale, wettelijke en institutionele 
kaders en verdere methodeontwikkeling omvatten. Een belangrijke beperking 
die de ontwikkeling van methoden tijdens het doctoraatsonderzoek 
belemmerde was de ontbrekende beschikbaarheid van UAV en kadastrale 
gegevens over gebieden met veel zichtbare grenzen.  
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Tenslotte kunnen we stellen dat dit proefschrift illustreert hoe de “state-of-the-
art” kennis van telemetrie, geo-informatica, fotogrammetrie, computer vision, 
en artificiële intelligentie kan worden gekoppeld aan een innovatieve aanpak 
van kadastrale kartering. Door gebruik te maken van synergiën hebben we de 
mogelijkheid om een benadering van de kartering en afbakening te 
ontwikkelen die superieur is ten opzichte van de huidige handmatige 
afbakeningspraktijken, en dit in gebieden waarin objectcontouren continu 
zichtbaar zijn en samenvallen met kadastrale grenzen.  
 
In de toekomst, kan de werkwijze nog worden aangepast en omgezet tot real-
world toepassingen van kadastrale kartering. De geautomatiseerde benadering 
vereenvoudigt en versnelt de bepaling van de belijning van objecten afkomstig 
van beeldmateriaal. Terwijl deze innovatieve benadering in de eerste plaats is 
ontwikkeld voor kadastrale kartering, kan deze aanpak ook haar toepassing 
vinden in het digitaliseren van objecten ten behoeve van andere domeinen 
zoals bijvoorbeeld het karteren van percelen voor divers gebruik, topografische 
kartering, wegtracering of herkenning van bouwwerken. 
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