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Summary

Height values of trees are an important indicator of the health and viability
of forests. At present, it is the main biophysical parameter observable from
remote sensing images, in particular from Polarimetric Interferometric SAR
(PolInSAR) data. It is important to have these values as accurately as
possible. The accuracy of estimated tree height obtained by PolInSAR is
affected by temporal decorrelation. Modeling this correlation is the focus of
the current thesis.

The first chapter explores modeling of the structure function. We used the
Fourier-Legendre series and combined it with the Gaussian motion function
for modeling the vertical displacement of the scatterers. This improved the
height estimation accuracy using a single-baseline PolInSAR image pair. The
improvement was higher when applied in P-band than in L-band. The reason
is the different interaction of the ground and vegetation layer and the lower
penetration of L-band. The penetration depth becomes important if we are
interested in reconstructing the vertical profile of trees at a higher resolution.
In this case, P-band should be used; this fortunately will be available in
satellite sensors in near future. For L-band, the exponential function as
assumed by the RVoG and RMoG model was equally good.

The second chapter proposes the use of the Polarimetric Coherence Tomo-
graphy (PCT) model to estimate height from multi-baseline SAR tomostack
data. In the past, temporal decorrelation was considered as a separate source
of error that is independent of the canopy. It thus causes biased height
estimates. Merging of a Fourier-Legendre series from the PCT model with
a temporal decorrelation function from the Random Motion over Ground
(RMoG) model has been explored to solve this problem. Results showed an
improvement of height estimation accuracy after applying this modification.
The optimal number of terms of the Fourier-Legendre series varied for each
pixel. This can be used as an indicator of the complexity of the vegetation
layer as for multi-layer dense forests, more terms are required. This chapter
shows that increasing the number of unknown parameters can be done via
segmenting the area into different height classes and selecting the optimum
number of unknown parameters for each class.

The third chapter focuses on obtaining the most accurate height maps
from PolInSAR. This is important by itself, whereas height also serves as the
main biophysical parameter contributing to the estimation of biomass. The
effect of mitigating temporal decorrelation was thus examined on biomass
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Summary

retrieval accuracy. This research developed new allometric equations for this
purpose and tested different strategies for regression. This was challenging due
to the lack of sufficient field data. The strategy to develop a new allometric
equation based on height only is important. A parameter usually measured
during fieldwork is H100, defined as the basal area weighted average of the
100 highest trees in each plot,. This chapter showed that the relation between
PolInSAR height and H100 is weak, because PolInSAR height estimates the
average of heights inside the plots and does not simply coincide with H100.

The fourth chapter discusses how to take temporal decorrelation into
the estimation of tree heights. It addresses the sensitivity of the proposed
modified model to the choice of complex coherence estimation method. The
basic step of estimating height in any of the explained models is the selec-
tion of homogeneous pixels. To do so, we distinguished polarimetric from
polarimetric-interferometric information. By addressing the pixel selection
we could jointly take the phase and the magnitude values of the pixels into
account. We employed two adaptive methods to define statistically homo-
geneous pixels. Height estimation accuracy increased after applying the
adaptive methods. Since the proposed adaptive methods are computationally
more intensive, a trade-off between the desired accuracy and computation is
required prior to selection of any method.

To summarize, this dissertation improved the accuracy of tree height
estimation from airborne fully polarized InSAR data by carefully addressing
temporal decorrelation. This is potentially of use for future SAR satellite
missions.
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Samenvatting

De hoogtes van bomen zijn een belangrijke indicator voor de gezondheid en
leefbaarheid van bossen. Op dit moment is het de belangrijkste biofysische
parameter die waarneembaar is op remote sensing beelden, in het bijzon-
der adoor middel van Polarimetric Interferometric SAR (PolInSAR) data.
Het is belangrijk om deze waarden zo nauwkeurig mogelijk te hebben. De
nauwkeurigheid van de geschatte boomhoogte verkregen door PolInSAR
wordt bëınvloed door temporele decorrelatie. Het modelleren van deze cor-
relatie is de focus van dit proefschrift. Het eerste hoofdstuk onderzoekt het
modellering van de structuurfunctie. Hiervoor gebruikten we de Fourier-
Legendre-reeks en we combineerden deze met de Gaussische bewegingsfunctie
voor het modelleren van de verticale verplaatsing van de verstrooiers. Dit
verbeterde de nauwkeurigheid van de nauwkeurigheid van de hoogte met
behulp van een PolInSAR-beeldpaar met één basislijn. De verbetering was
hoger wanneer deze werd toegepast in P-band dan in L-band. De reden
hiervoor is de verschillende interactie van de grond- en vegetatielaag en
de lagere penetratie van de L-band. De penetratiediepte wordt belangrijk
als we gëınteresseerd zijn in het reconstrueren van het verticale profiel van
bomen met een hogere resolutie. In dit geval moet P-band worden gebruikt;
dit zal gelukkig in de nabije toekomst beschikbaar zijn in satellietsensoren.
Voor L-band was de exponentiële functie zoals die aangenomen wordt door
het RVoG- en RMoG-model even goed. Het tweede hoofdstuk stelt het
gebruik voor van het Polarimetric Coherence Tomography (PCT)-model om
de hoogte van multi-baseline SAR tomostack gegevens te schatten. In het
verleden is temporele decorrelatie beschouwd als een afzonderlijke bron van
fouten die onafhankelijk is van het bladerdak. Het veroorzaakt dus onzuivere
hoogteschattingen. Het samenvoegen van een Fourier-Legendre-serie van het
PCT-model met een temporele decorrelatiefunctie van het Random Motion
over Ground (RMoG)-model is onderzocht om dit probleem op te lossen.
De resultaten toonden een verbetering van de nauwkeurigheid van de hoo-
gteschatting na toepassing van deze wijziging. Het optimaal aantal termen
van de Fourier-Legendre-reeks varieerde voor elke pixel. Dit kan worden
gebruikt als een indicator van de complexiteit van de vegetatielaag: voor
meerlaagse dichte bossen zijn meer termen vereist. Dit hoofdstuk laat zien
dat het het aantal onbekende parameters kan worden vergroot door het
gebied in verschillende hoogteklassen te segmenteren en het optimale aantal
onbekende parameters voor elke klasse te selecteren. Het derde hoofdstuk
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Samenvatting

richt zich op het verkrijgen van de meest nauwkeurige hoogtekaarten op
basis PolInSAR gegevens. Dit is op zichzelf al belangrijk, terwijl hoogte
ook dient als de belangrijkste biofysische parameter die bijdraagt aan de
schatting van biomassa. Het effect van het minder zwaar maken van de
temporele decorrelatie werd onderzocht op nauwkeurigheid bij het bepalen
van biomassa. Dit onderzoek ontwikkelde nieuwe allometrische vergelijkingen
voor dit doel en testte verschillende regressie strategieën. Dit was een flinke
uitdaging vanwege het ontbreken van voldoende veldgegevens. De strategie
om een nieuwe allometrische vergelijking te ontwikkelen op basis van alleen
hoogte is belangrijk. Een parameter die gewoonlijk tijdens veldwerk wordt
gemeten, is H100, d.wz. de gemiddelde basale oppervlakte gewogen gem-
iddelde van de 10 hoogste bomen binnen een gedefinieerde steekproefplot.
Dit hoofdstuk liet zien dat de relatie tussen PolInSAR-hoogte en H100 zwak
is, omdat de PolInSAR-hoogte het gemiddelde van de hoogtes binnen de
plots schat en de meting niet eenvoudig samenvalt met die van H100. Het
vierde hoofdstuk bespreekt hoe je temporele decorrelatie mee kunt nemen
in de schatting van boomhoogten. Het richt zich op de gevoeligheid van het
voorgestelde gemodificeerde model bij een keuze voor de berekeningsmethode
van de complexe coherentie. De basisstap voor het schatten van de hoogte in
een van de toegelichte modellen is de selectie van homogene pixels. Om dit te
doen, onderscheiden we polarimetrische van polarimetrisch-interferometrische
informatie. Door de selectie van pixels mee te nemen, kunnen we rekening
houden met gecombineerde fase- en de amplitude-waarden van de pixels.
Twee adaptieve methoden zijn gebruikt om statistisch homogene pixels te
definiëren. De nauwkeurigheid van van de hoogte nam toe na het toepassen
van de adaptieve methoden. Omdat de voorgestelde adaptieve methoden rek-
enkundig intensiever zijn, is een afweging tussen de gewenste nauwkeurigheid
en berekening vereist die vooraf moet gaan aan de selectie van een methode.
Samenvattend laat dit proefschrift zien dat de nauwkeurigheid verbeterde
van de schatting van de boomhoogte door middel van volledig gepolariseerde
InSAR-gegevens die vanaf een vliegtuig zijn opgenomen door de temporele
decorrelatie zorgvuldig te behandelen. Dit is wellicht nuttig voor toekomstige
SAR-satellietmissies.
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1. Introduction

1.1 Background

Synthetic Aperture Radar (SAR) is an imaging method to reconstruct the
scattering properties of the Earth’s surface in microwave wavelengths. SAR
has the ability to operate almost independent of the daylight and weather con-
ditions. Moreover, SAR imaging is sensitive to dielectric and morphological
properties of objects and therefore complementary to optical images. After
the launch of the first space borne SAR (SeaSat, L-band) by the Jet Propul-
sion Laboratory, several SAR missions have been operating and some are
planned in the near future. A feature of SAR imaging is the ability to retrieve
the third dimension of objects from a two-dimensional image. In the past
two decades, it has been recognized that multi-polarization, multi-frequency,
multi-pass and multi-angle observations have the potential to retrieve the
lost dimension and identify the structural properties of objects. Integrating
polarimetric and interferometric information makes it possible to retrieve the
vertical profile of objects and scattering mechanism are determined.

Using SAR image has been widely done for biomass estimation because of
its unique ability to penetrate underlying layers of vegetation cover as well as
being independent of weather conditions. In the past several years different
methods have been used to estimate biomass from SAR images. These
methods can be categorized in four groups: backscatter values, polarimetry,
interferometry, and Polarimetric Interferometric SAR (PolInSAR).

During the past years, methods based on backscattering have been fre-
quently used for estimating biomass. These methods, however, are severely
affected by limitations like: the problem of registering, the effect of weather
conditions and the saturation problem (Zhou et al., 2008). An assessment of
estimating biomass using backscatter value has been performed by Fransson
et al. (2008). They reported using backscatter value has an insufficient
accurate result for estimating biomass.

SAR polarimetry (PolSAR) is the technique of processing and analyzing
of multiple polarized waves that are received during SAR imaging. The
result of this process yields a matrix instead of a scalar that is typical
for the single channel SAR. The advantage of polarimetry is the ability to
identify the scattering mechanisms and decompose the complex scattering
from objects into elementary scattering processes. This is useful for detection,
segmentation, classification and solving inverse problems (Cloude and Pottier,
1996; Lee and Pottier, 2009).

A comprehensive evaluation of using SAR interferometry and phase in-
formation in forest biophysical parameter estimation has been performed by
(Balzter et al., 2007). They evaluated the accuracy of canopy height retrieval
and biomass estimation using SAR interferometry in different test sites and dif-
ferent SAR sensors. They concluded that multi-band and multi-polarimteric
information are necessary to overcome the problems of interferometry in
estimating biomass.

The application of PolInSAR in forest studies has been further considered
after the launch of Terra-SAR-X and TanDEM-X satellites. With these
sensors, the multi-pass SAR data in many parts of the world is available for
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research purposes. PolInSAR makes it possible to retrieve accurate height
estimation in forest areas. The results showed a high correlation (R2 ≥ 0.7)
with LiDAR DSM. The height estimation accuracy is reported to be equal to
about 80-90% by most of the researchers (Mette et al., 2004; Balzter et al.,
2007; Garestier et al., 2008; Neumann et al., 2010; Hajnsek et al., 2016).

The allometric equations which use height information for estimating
biomass leads to accurate biomass estimation especially in tropical and
temperate forests. Thus it is a good solution to extract height information
using PolInSAR and use it as an input for allometric equations. Since the
longer wavelengths have deeper penetration into vegetation layers, the P- and
L-bands are the most selected bands for height retrieval. Moreover, these
bands have been combined with X-band to extract Digital Surface Model
(DSM) of the forests.

To retrieve height from PolInSAR, the main observation is the scattering
matrix. We can obtain the complex coherence for each polarization from the
scattering matrix. These matrices are defined as the combination of both
real (amplitude) and imaginary (phase) components of the signal and fall
within the unit circle of the complex plane (Cloude, 2005). As a physical
interpretation, coherence shows the homogeneity of an area. Estimating
coherence is the basic step in PolInSAR and estimating vertical structure
of the objects as it can be performed by different approaches is discussed in
Chapter 6.

Various phenomena lead to the reduction of coherence. This effect is called
“decorrelation” and it is a severe limitation of using PolInSAR. The decorrela-
tion sources can be categorized as systematic noise (thermal decorrelation),
changes in the imaging scene according to the difference in image acquisition
times (temporal decorrelation), errors in image registration, un-focusing, and
decorrelation due to the baseline (geometric decorrelation). The thermal and
system related decorrelations can be taken under control. An example of
handling thermal decorrelation and other systematic errors is described in
Touzi et al. (1999) and for geometric decorrelation and un-focusing a good
explanation is provided by Neumann et al. (2010); Treuhaft and Siqueira
(2000). The first two sources however have been considered to be unsolvable
for a long time, hence making interferometry almost inapplicable in vegetated
areas. Several studies confirmed that application of PolInSAR to satellite
images is limited mainly because of the temporal decorrelation.

It is caused by temperature variation, change of direction of backscatter-
ing components and changing of moisture content during the time interval
between two images that can vary between minutes and months (Papathanas-
siou and Cloude, 2003; Zhou et al., 2008; Lee and Pottier, 2009). This is not
a constant value but depends upon the height of the trees and movements of
objects caused by wind. In longer time intervals, the variation of moisture
content and clear cutting trees may cause larger errors. In order to achieve
best possible accuracy using PolInSAR, one should find a way to handle the
main sources of errors. Moreover, the use of multi-baseline PolInSAR has
been examined for forest height estimation recently (Florian et al., 2006; Li
et al., 2014; Huang et al., 2011). Although using multi-baseline PolInSAR
can improve the accuracy of height retrieval, one must find a solution for the
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errors caused by signal side lobes and phase ambiguity as well as decorrelation
sources(Bamler and Hartl, 1998).

In the reviewed research papers (Mette et al., 2004; Balzter et al., 2007;
Garestier et al., 2008; Hajnsek et al., 2016) it is reported that while thermal
noise and geometric decorrelation can be removed when generating a height
map for vegetated areas, temporal decorrelation is difficult to be estimated.
Up to now has been the major limitation of PolInSAR especially in forests
(Cloude and Papathanassiou, 2003). A few methods have been developed to
handle the temporal decorrelation in PolInSAR.

When using airborne images, usually a few extra images with zero spatial
baseline are captured and these images are used for removing temporal
decorrelation from other images. This method is not applicable for already
acquired images, it is time and money consuming, and does not lead to
accurate results. Hence, it has been tried to develop analytical methods to
mitigate temporal decorrelation. The first method was introduced by Zebker
and Villasenor (1992). They characterized various decorrelation sources in
SAR echoes and separated the term which was related to temporal changes of
scatterers. This method was specifically developed for vegetated areas with
the assumption that movement of scatterers is larger in the vertical direction.
They tested it on repeat-pass single channel L-band SAR images from SeaSat
successfully. This method was later extended to include Brownian motion
of scatterers and was tested and validated with airborne L-band data by
Neumann et al. (2010). An assumption to model the effects of wind in forest
areas was proposed in Lavalle and Hensley (2015). They assumed that the
movement of backscattering components is different in the vertical direction
of the vegetation layer (Lavalle, 2009; Lavalle et al., 2010, 2012; Lavalle and
Hensley, 2015). Their method was called the Random-Motion-over-Ground
(RMoG) model and was tested on single-baseline UAVSAR and airborne
SAR L-band data (Lavalle et al., 2012; Lavalle and Khun, 2014).

The RMoG model is a recent and complete model for handling temporal
decorrelation in forest areas. The basis of this model is similar to the one
described in Zebker and Villasenor (1992). The proposed model in Lavalle
et al. (2012) combines “Random Volume (RV)” and “Random Volume over
Ground (RVoG)” scattering function. In RV backscattering model the forest
is considered as randomly located backscattering components (Cloude and
Papathanassiou, 2003). In the RV model no ground backscattering is included,
whereas the RVoG model includes both volumetric and ground backscattering.
The RVoG model assumes that the dominated backscattering mechanism
is from the canopy layer and the backscattering from underlying layer is
such small that can be ignored. Different studies have shown that this basic
assumption is far from the real scattering mechanism in most vegetated areas
(Treuhaft and Siqueira, 2000; Cloude, 2007a; Garestier et al., 2008).

There are alternative models to retrieve vertical structure. One of these
models is described in Treuhaft and Siqueira (2000), and Garestier et al.
(2008). The next alternative was suggested in Cloude (2006, 2007a). They
developed a model based upon Fourier-Legendre series and tested it in a
radar chamber. The test was later applied on SAR airborne images as
well, and the result showed that the vertical reconstruction obtained by the
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Fourier-Legendre series best coincides with measurement in the chamber.
The temporal coherence model developed in Lavalle et al. (2012) is the

most complete model for temporal decorrelation up to now. However, it
has been built on the RVoG model. It would be of interest to see if we can
change the temporal decorrelation model and employ more accurate structure
function for the canopy reconstruction. By applying this change, we expect
to increase the height estimation accuracy and consequently the biomass
estimation accuracy.

1.2 Problem statement

The main problem statement addressed in this research is: “Does improving
the structure function approximation along with taking into account temporal
decorrelation increase tree height and consequently biomass estimation accur-
acy?”. The main problem statement is divided into four specified problems
used to structure research questions and objectives. These specified problems
are:

1. General structure function for all vegetation types in tem-
poral decorrelation modeling
Temporal decorrelation is a main source of error that has been con-
sidered mainly after the introduction of new polarimteric interferometric
images. It has been subject of a few important recent studies. One
of the most recent models for dealing with temporal decorrelation is
the RMoG model which is developed based on one of the analytical
scattering models, namely the RVoG model. The RVoG backscattering
model is inadequate in modeling backscattering in forest areas espe-
cially in tropical and heterogeneous dense forests. Therefore exploring
the possibilities of improving tree height estimation in the presence of
temporal decorrelation is required. This can be done by using more ac-
curate backscattering scenarios. In the literature, modeling the vertical
structure by applying Fourier-Legendre series is recommended. In prac-
tice, however, this has not been used along with temporal decorrelation
models. Additionally, it is not clear how this can affect the forest height
estimation accuracy. This could be explored to potentially improve
the height estimation accuracy in forested areas using PolInSAR data.
Moreover, it is unclear how many terms of the Fourier-Legendre series
should be selected to have a trade-off between vertical reconstruction
accuracy and number of unknown parameters. Thus it should have
been investigated as well.

2. Tackling temporal decorrelation in SAR tomography
SAR tomography has been proposed and developed for reconstructing
vertical profiles with high level details. It is similar to PolInSAR with
the difference that the synthetic aperture is rebuilt in the vertical dir-
ection using multiple SAR images. A well-studied model for processing
tomographic data is the Polarimetric Coherence Tomography (PCT)
model. Results of the PCT model are more accurate than using single-
baseline PolInSAR, although temporal decorrelation is ignored. It leads

5



1. Introduction

to biased height estimation especially in tropical forests that have much
interaction between vegetation and ground, whereas the forest has mul-
tiple layers. Most literature suggests to take into account the temporal
decorrelation using a separate procedure that doubles the computational
time or acquire extra images with zero spatial baseline. Both ways,
however, are inefficient and even often impossible. Thus, modifying
the PCT model and adding the temporal decorrelation component to
the structure function can potentially improve the height estimation
accuracy without the need to add extra steps to data capturing and
analysis.

3. Effect of biased height mapping on biomass estimation accur-
acy
A major purpose for mapping forest height is to use it as an estimator
for Above Ground Biomass (AGB). It has been shown in the literature
that tree height has a strong and positive correlation with the total
AGB. Remote sensing and especially PolInSAR has been employed to
estimate biomass via obtaining height maps. The effect of ignoring
temporal decorrelation and the resulting bias, however, is unknown.
This is an important issue since some future satellite missions like
BIOMASS are aimed to provide biomass maps of forests in a global
scale. Thus, the major sources of errors in obtaining biomass and their
contribution to the final products should be studied. Therefore, the
next step after developing a modified model for estimating height for
single- and multi-baseline SAR images should be exploring the effect
on biomass estimation accuracy. After examining the impact of tak-
ing temporal decorrelation into account, we can determine how the
modified model should be applied on the current and future PolInSAR
and tomographic SAR data. The tomographic SAR data is the set of
images captured to extend the SAR aperture in vertical direction as to
reconstruct the vertical structure.

4. Sensitivity of height estimation accuracy to the choice of co-
herence estimation method
Most PolInSAR and tomoSAR applications are based upon complex
coherence. Conventionally, complex coherence is estimated by first
defining a constant neighborhood then, averaging the magnitude of the
pixels inside that neighborhood. This method assumes stationarity,
i.e. the neighboring pixels are characterized by the same scattering
mechanism. In addition, most averaging methods only use polarimetric
information content. It has been shown that in case of PolInSAR, some
pixels may have similar polarimetric signature but totally different
phase elements (Vasile et al., 2010). This means that they can not
be considered as homogeneous pixels. Recently, some studies have
concentrated on developing new methods which use both magnitude
and phase elements in defining the statistically homogeneous pixels.
These methods, however, have not been sufficiently explored to make
clear how they affect the height and consequently biomass estimation
accuracy. The computational costs and time are another issue that
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should be considered when applying these methods for obtaining co-
herence since it is a challenge to optimize more elaborated methods
for big datasets. Sensitivity of height estimation accuracy to adaptive
coherence obtaining methods should be investigated.

After addressing these problems the tree height estimation accuracy by
single- and multi-baseline SAR images should improve, resulting into more
accurate forest AGB estimation.

1.3 Research objectives and questions

This PhD dissertation focuses on tackling temporal decorrelation and its
impact on forest height and biomass estimation accuracy. The specified
objectives are:

1. First Objective To explore the possibilities of improving temporal
decorrelation modeling by using a more accurate backscattering scen-
ario.
RVoG backscattering scenario has been shown to be inadequate in
modeling backscattering in forest areas. The suggested backscattering
scenario for this purpose is the Fourier-Legendre Legendre model. It
is hypothesized that using a more accurate backscattering model will
increase the accuracy of temporal decorrelation model. To test this
hypothesis, the Gaussian function of the RVoG model has been sub-
stituted with a finite number of terms of the Fourier-Legendre series.
P-band images acquired from a boreal forest area has been selected to
apply the new modified model. The height estimation accuracy of the
new model is compared with the conventional RVoG and RMoG models
and the Lidar height map. This objective tries to answer the research
question: “Can using a more accurate structure function improve height
estimation accuracy by PolInSAR?”

2. Second Objective To modify the PCT model and combine it with
temporal decorrelation scenario for processing tomographic SAR data.
This objective modifies the PCT model to include temporal decorrela-
tion. It focuses on combining the structure function, which is a finite
number of Fourier-Legendre series, and the movement of scatterers
in vertical direction. Since it will increase the number of unknown
parameters there should be a new strategy to solve the equation system.
Additionally, the cost-benefit analysis should be done to determine
number of terms in vertical structure function which defines the re-
construction detail. This modification was exploited on a Single-Look-
Complex (SLC) tomographic data of a tropical, dense and multi-layer
forest in Africa. Moreover, the height estimation accuracy after this
modification was compared to the conventional PCT model and with
a Lidar height map. In the second objective the following research
questions will be addressed: “How can the PCT model be modified to
mitigate for temporal decorrelation caused by objects movements in
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vertical direction? How many terms are needed to make a trade-off
between vertical reconstruction detail and the number of model para-
meters to be estimated?”

3. Third Objective To exploit the effect of taking into account temporal
decorrelation in height estimation modeling on biomass mapping accur-
acy.
This objective aims to examine the impact of compensation of temporal
decorrelation described in previous objectives on biomass mapping. For
this purpose, the conventional RVoG, RMoG and the new proposed
modified model are applied on single-baseline PolInSAR from a boreal
forest located in Sweden. Resulting height maps are converted into
biomass. For obtaining biomass by other biophysical parameters i.e.
height in this case, allometric equations are required. Developing such
equations involves regression analysis. In this objective, the average
biomass available from extensive field work is the dependent variable
and height is the independent one. Different regression methods have
been examined to find the most accurate and efficient one. Accuracy of
estimated biomass by the RVoG, RMoG and the new proposed modified
models are compared to each other and the measured biomass. The
third objective attempts to answer following research questions: “Is
biomass estimation accuracy affected by mitigation of temporal decor-
relation and if the answer is yes, how much?”.

4. Fourth Objective To assess sensitivity of PolInSAR height estimation
models to different methods of obtaining the complex coherence.
The fourth objective is to explore the sensitivity of height estimation
accuracy to the chosen complex coherence obtaining method. To do
this, the conventional averaging method for defining the spatial av-
eraging window is examined first. Moreover, the adaptive methods
proposed in my previous studies have been implemented. These ad-
aptive methods take into account not only polarimetric information,
but also the phase element. In this way, the window would not be the
simple rectangular shape, but it can differ in terms of pixel number
and geometrical shape. Applying adaptive methods, however, requires
heavy computation and more time. Thus, the improvement in height
estimation should be balanced with the chosen coherence derivation
method. The fourth objective aims to reply to these research questions:
“What is the dependency of height estimation accuracy on the complex
coherence estimation method? Does it pay off to invest on using ad-
aptive methods for estimating complex coherence in combination with
elaborated PolInSAR height estimation models?”

1.4 Thesis outline

This thesis is structured into seven chapters. In addition to the introduction,
theoretical background and synthesis chapters the four technical chapters
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which focus on the above objectives. They are based on ISI journal articles
and conference papers that are published or under review currently.

• Chapter 1 presents the general introduction to the thesis. It summar-
izes the importance of taking into account the temporal decorrelation
as a source of error in PolInSAR height estimation. Based on this the
research objectives and research questions are introduced.

• Chapter 2 introduces the theoretical background for the methodology
used through the thesis.

• Chapter 3 gives the modified height estimation model which com-
pensates for temporal decorrelation. It evaluates the height estimation
accuracy by applying the new developed model on PolInSAR images.

• Chapter 4 presents the extension of the modified height estimation
model to multi-baseline SAR data. It modifies the PCT for processing
tomographic data with mitigation of temporal decorrelation.

• Chapter 5 introduces the assessment of biomass estimation accuracy
using only obtained vegetation height by mean of PolInSAR. It also
presents new allometric equation for biomass estimation from tree
height.

• Chapter 6 gives the analysis results of sensitivity of tree height estima-
tion accuracy to the complex coherence obtaining method. It compares
the conventionally used methods with adaptive ones for selecting ho-
mogeneous pixels.

• Chapter 7 summarizes the results from the research and supplies
answers to the research questions described in the introduction section.
Reflection on the conclusions is explained and recommendations for
future research are provided.
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2.1 Introduction

This chapter presents the theoretical background used throughout the dis-
sertation. Section 2.2 explains the PolInSAR and how it is used to acquire
structural information on the canopy. Section 2.3 and 2.4 describe the spatial
and temporal decorrelation concepts. Additionally, derivation of temporal
decorrelation model and how to combine it with the RVoG model is provided.
Modifying this temporal decorrelation to reconstruct the vertical profile more
accurately and combine it with Brownian motion scenario is the topic of
Chapter 3. Its extension to tomographic SAR and estimating biomass are
the focus of Chapter 4 and 5 respectively. The effect of changing the input of
the temporal decorrelation model and the modified version is then discussed
in Chapter 6.

2.2 Polarimetric SAR interferometry (PolInSAR)

For a fully polarimetric coherent radar system that observes the objects from
two slightly different positions with look angles θ and θ+ ∆θ, the geometrical
scenario is displayed in Figure 2.1.

Figure 2.1: Geometrical representation of SAR interferometry

In Figure 2.1, Bs is the distance between two acquisition points and is
named spatial baseline, B⊥ is the projection of spatial baseline on the slant
range. If the observations are acquired simultaneously, it is called single-pass
interferometry and otherwise, it is named repeat-pass interferometry. In
the latter case, there is a temporal baseline between two acquisitions that
can be shown by two matrices S1 and S2. The matrices are related to the
backscattered energy from the scene and under reciprocity condition, they
are symmetric, i.e. SHVi = SV Hi , i = 1, 2. Here, H stands for horizontal and
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V stands for vertical polarizations. For separation of scattering mechanisms
, a handy way is to vectorize them. For this purpose, we need to select
a basis. A common choice is the three-dimensional Pauli basis, where the
target vector Ki, i = 1, 2 of each matrix equals

Ki =
1√
2

(Shhi + Svvi , Shhi − Svvi , 2Shvi)
t
, (2.1)

where t is the transpose, i = 1, 2 and the elements reflect canonical scattering
mechanisms (Cloude and Pottier, 1996). For selecting the scattering mechan-
ism, generally, a projection vector w is used that represents the scattering
properties related to the polarimetric interferometer. The scattering matrices
can be presented as

Si = wi
∗tKi, i = 1, 2. (2.2)

Matrices Si, i = 1, 2 are the main elements of PolInSAR as the polarimetric
properties are reflected in wi and the interferometric properties are represen-
ted by two repeating observations, S1 and S2. Si is distributed as a circular
Gaussian matrix. The degree of coherence γ, between two observations,
represents the synergy of the polarimetric and interferometric properties. An
estimator of γ value is obtained by

γ = |γ| exp(jϕ) =
〈S1S

∗
2 〉√

〈S1S∗1 〉〈S2S∗2 〉
. (2.3)

Here, 0 ≤ |γ| ≤ 1, −π ≤ ϕ ≤ π, and 〈.〉 is expectation. Assuming ergodicity
which means that spatial and temporal averaging lead to identical result,
it can be estimated by averaging over a spatial ensemble. Reliability of
estimating γ depends on the used averaging method. Several methods have
been explored for this purpose (Lee and Pottier, 2009) and Chapter 6 in this
dissertation has been dedicated to this aspect.

PolInSAR relates γ to the characteristics of the objects, in our case, the
forest. The value of the γ depends on many factors namely, decorrelation
sources (Zebker and Villasenor, 1992). In absence of these factors, γ = 1,
otherwise these decorrelation factors should be estimated to obtain γ value.
The effect of these factors reduces γ. Decorrelation sources are usually
modeled as multiplicative factors that affect both the magnitude and phase
of γ. These multiplicative factors can be identified according to their origin
and listed as:

1. Scattering decorrelation which is related to the geometry of the obser-
vation and time interval between repeating image;

2. Atmospheric decorrelation that is mostly affecting lower frequencies,
i.e. P- and L-bands;

3. Decorrelation caused by the system like thermal noise, calibration, and
co-registration errors, and sampling bias (Lee et al., 1999).

The most important sources of decorrelation for estimating height by PolIn-
SAR are spatial decorrelation γs, temporal decorrelation γt, and system
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decorrelation γsnr. The first two decorrelation sources belong to the first
category explained before whereas the system noise decorrelation belongs to
the last one. Considering these three sources are known in every polarization,
γ can be estimated as

γ = γsγtγsnr. (2.4)

Estimating these sources is the main objective in PolInSAR (Cloude, 2010).
Assuming the known signal-to-noise ratio (SNR) of the SAR system, γsnr
that is a real-value decorrelation and impacts the magnitude of γ, equals

γsnr =
1

1 + SNR−1
. (2.5)

The typical value of γsnr is small comparing to the other sources of decorrel-
ations (Zebker and Villasenor, 1992; Bamler and Hartl, 1998).
Spatial and temporal sources are related to the structure of the objects and
thus are the most important to estimate. The value of these two sources is
affected by the selected scattering mechanism and the scene characteristics.
For example, if the observed forest is semi-transparent to the SAR signal, the
spatial correlation becomes larger. Temporal decorrelation depends on the
dynamic changes of the objects caused by weather condition and seasonal
changes. Elaborating the models for spatial and temporal correlation is the
main focus of this dissertation and the following sections.

2.3 Spatial correlation model

Let us consider the objects as vertically aligned scatterers, thus the interfero-
metric coherence should be derived for such geometrical shapes. According
to Treuhaft and Siqueira (2000), total spatial correlation of such scatterers is
expressed as the sum of correlation among pairs of small units of dz in the
vertical direction and estimated as

γs =

∫
〈%1(z)%2(z)∗〉dz√∫

〈%1(z)%1(z)∗〉〈%2(z)%2(z)∗〉dz
. (2.6)

here, %(z)i, i = 1, 2 represents the complex reflection for each length unit and
has the dimension of dBm−0.5, 〈.〉 is the averaging over the spatial ensemble,
and the integral range extends from the ground to the top of the canopy
layer. For the objects that are observed from two slightly different positions,
the relation between %2(z) and %1(z) is expressed as

%2(z) = %1(z) exp(−jkzz), (2.7)

where, kz = 4π∆θ
λ sin θ is called vertical wave-number and depends on the system

properties and observation geometry. Thus the spatial correlation equals

γs =

∫
〈%1(z)%1(z)∗〉 exp(jkzz)dz∫

〈%1(z)%1(z)∗〉dz
=

∫
ρ(z) exp(jkzz)dz∫

ρ(z)dz
. (2.8)
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Figure 2.2: Simplified representation of the vegetation layer as we assume
in RV model.

Here, ρ(z) = 〈|%1(z)2|〉 is called the structure function and models the average
received backscatter from each length unit of the object. Information on
the geometry, position and backscattering properties of the object is mixed
in the structure function. Determining the structure function is discussed
throughout this dissertation and has been investigated broadly in tomographic
SAR studies (Reigber and Moreira, 2000; Cloude, 2006).

To obtain function ρ(z) in the closed form for forests, we assume the
vegetation layer consists of randomly oriented objects that are located on
top of a rough surface as shown in Figure 2.2. For modeling this layer, we
assume there is no surface below the vegetation. This model is called Random
Volume (RV) and is characterized by hv which is the thickness of the volume
layer, n(z) that is the density of the scatterers per unit length, and radar
cross section σs(z). Both σs(z) and n(z) depend on the depth of the signal
penetration. Generally, the function ρ(z) is estimated as

ρ(z) = n(z)σs(z)L(z), (2.9)

where L(z) defines how much is the power loss after attenuation through the
canopy layer. Assuming homogeneity of the canopy layer i.e. σs(z) and n(z)
are constant values within zg ≤ z ≤ zg + hv range then

n(z)σs(z) = ρdvrect

(
z − zg − hv

2

hv

)
, (2.10)

and

L(z) = exp

(
2κe
cos θ

(z − zg − hv)
)
. (2.11)

Here, ρvd defines the total backscattering for each unit length of the canopy
layer and function rect(.) represents zero backscattering outside of the
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vegetation layer. After substituting L(z) into (2.9), the structure function of
the RV model is obtained as

ρv(z) = ρdv exp

(
2κe
cos θ

(z − zg − hv)
)
, zg ≤ z ≤ zg + hv. (2.12)

Thus the numerator of (2.8) in the closed form is obtained by∫ zg+hv

zg

ρdv exp

(
2κe
cos θ

(z − zg − hv)
)

exp (jkzz)dz

= ρdv exp (jkzzg) exp

(
− 2κe

cos θ
hv

)
exp

(
2κe
cos θ

)
hv − 1

2κe
cos θ + jkz

,

(2.13)

whereas σs(z) that represents the total backscatter equals

σs(z) =

∫ zg+hv

zg

ρdv exp

(
2κe
cos θ

(z − zg − hv)
)
dz

= ρdv
cos θ

2κe

(
1− exp

(
− 2κe

cos θ
hv

))
.

(2.14)

Thus the spatial correlation of the γv that is defined for the canopy layer
with the structure function of ρv(z) can be expressed as

γv(z) =

∫
ρv(z) exp (jkzz)dz∫

ρv(z)dz

= exp (jkzzg)
2κe
cos θ

2κe
cos θ + jkz

exp
(

2κe
cos θ + jkz

)
hv − 1

exp
(

2κe
cos θ

)
hv − 1

.

(2.15)

Assuming P1 = 2κe
cos θ and P2 = 2κe

cos θ + jkz, γv can be re-formulated as

γv = exp (jϕg)
P1 (exp (P2hv)− 1)

P2 (exp (P1hv)− 1)
, (2.16)

where ϕg = kzzg is the ground phase. According to (2.16) the coherence
magnitude reaches its maximum when κe = 0 and the phase center has its
minimum when hv = 0. Additionally, when κe increases, the wave penetration
decreases and volume correlation is higher and consequently, the phase center
elevates.

In the RVoG model scenario as shown in Figure 2.3 a rough surface is
assumed to be located at z = zg where zg is the height of ground layer.
Thus the structure function needs two more parameters which are attenuated
from the surface and from the interaction between surface and canopy layer.
Assuming zg < z ≤ zg + hv then

ρvg(z) = (ρg + ρvg) exp

(
− 2κe

cos θ
hv

)
δ(z − zg)

+ ρv exp

(
2κe
cos θ

(z − zg − hv)
)
.

(2.17)
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Figure 2.3: Simplified representation of the vegetation layer as we assume
in RVoG model.

Here, ρg and ρgv are the ground and ground-to-volume scattering per
unit length and δ(.) is the Dirac delta function located at z = zg. Function
ρg represents the ground and volume layer characteristics and is obtained
similarly by (2.9) and (2.10). After substituting (2.17) into (2.8) the complex
coherence for the RVoG model γgv equals

γgv = exp (jkzzg)
σg + σvg + ρv exp (−P1hv)(exp (P2hv)− 1)/P2

σg + σvg + ρv(1− exp (−P1hv))/P1

= exp (jzzg)
µ+ γv exp (−jkzzg)

µ+ 1
.

(2.18)

Here, µ is a real-valued parameter and represents ground-to-volume scattering
ratio and obtained as

µ =
σg + σgv

σv
=

σg + σgv

ρvg
cos θ
2κe

(
1− exp

(
− 2κe

cos θhv
)) , (2.19)

where the numerator is the ground and ground-to-volume scattering and
the denominator is the volume scattering. According to (2.18), the complex
coherence for the RVoG model is defined based on four real-values parameters
i.e. zg, hv that shows the structure of vegetation layer and κe, and µ that
depend on the geometry of the sensor and dielectric constant of the canopy.
We should notice that µ is dependent on the polarization and consequently
the effect of polarization on the complex coherence reveals in µ. If µ >> 1
the volume correlation becomes negligible and it happens in case of direct
scattering from the ground layer only. Figure 2.4 displays the changing
attitude of RVoG coherence phase and magnitude versus varying µ values.

As Figure 2.4 implies, coherence magnitude does not decrease constantly
by increasing ground-to-volume ratio. It decreases up to a minimum value
that depends on the mean value of κe value. This implies that there is no
direct way for maximization of coherence magnitude by polarization selection.
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2. Theoretical background

Figure 2.4: Magnitude and phase of RVoG coherence against varying µ
values (Lavalle, 2009).

To demonstrate a geometrical interpretation of the RVoG model, we
assume m = µ

µ+1 where 0 ≤ m < 1, thus RVoG coherence equals

γvg = exp (jkzzg)
µ+ γv exp (−jkzzg)

µ+ 1

= exp (jϕg) [γv exp (−jϕg) +m (1− γv exp (−jϕg))] .
(2.20)

Equation (2.20) can be interpreted as the equation of a straight line on a
the complex plain where the axis are the real and imaginary component of
the γgv respectively. This geometrical interpretation has been validated and
tested in several studies as discussed in Chapter 1.

2.4 Temporal correlation model

The temporal decorrelation is usually accounted by multiplying the volume
correlation by a constant factor (Papathanassiou and Cloude, 2003). Another
way is based on dividing the temporal decorrelation into the ground and
volume components. Both components are assumed to have real values and
usually, the ground component is removed due to the stability of the ground
layer in short time intervals. The temporal component of the canopy layer as
γvt, it can be defined as the sum of scatterers movements in the time interval
between acquisition times. The motion can be approximated as

γvt = exp

(
− t
ν

)
, ν =

2

σb2

(
λ

4π

)
. (2.21)

Here, t is the temporal baseline, σb is the standard deviation expressed in√
m

day and ν represents the degradation of coherence over time expressed in

day unit (Rocca, 2007). Equation (2.21) implies that coherence decreases over
time and with increasing the scatterers motions and system wavelength. As an
improvement to modeling temporal decorrelation, a new temporal correlation
function was proposed by Lavalle and Hensley (2015). In this model, the
vertical movement of scatterers is considered in the vertical direction of the
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2.4. Temporal correlation model

Figure 2.5: Representation of the new structure function ξ(z, t). Parameters
of (2.18) are displayed.

vegetation layer. The complex coherence including temporal decorrelation
function is defined as

γvt = exp (jϕg)

∫ hv
0

ρ(z)ξ(z, t) exp (jkzz)dz∫ hv
0

ρ(z)dz
, (2.22)

where ξ(z, t) is the modified structure function that accounts for the scatterers
movements. To define ξ(z, t) we assume the motion is a continuous function
that increases when z increases from ground level to the top of the canopy.
Thus ξ(z, t) can be obtained by

ξ(z, t) = exp

(
− t

ν(z)

)
. (2.23)

Hypothetically, the motion has a linear trend from bottom to the top along
the vertical direction of the canopy layer and the ν(z) becomes (Lavalle and
Hensley, 2015)

1

ν(z)
=

1

2

(
4π

λ

)2 [
σ2
bg +

(
σ2
bv − σ2

bg

) z
hr

]
=

1

νg
+

(
1

νv
− 1

νg

)
z

hr
. (2.24)

Here, σbg and σbv are motion standard deviation per day for ground and
canopy layers, hr is the reference height and νg and νv are time function
with the condition that νg ≥ νv. The hypothesis of linear function in (2.24)
should be verified experimentally. Substituting (2.24) into (2.23) we obtain

ξ(z, t) = exp

(
t

νg
−
(
t

νv
− t

νg

)
z

hr

)
, νg ≥ νv. (2.25)

In case of zero temporal baseline i.e. t = 0 from (2.25) we obtain ξ(z, t) = 1.
The value of the temporal motion value is smallest at z = 0 and increases
with higher z values. Figure 2.5 shows a simplified representation of the
modified structure function.

After substituting (2.25) into (2.22), the new equation for complex coher-
ence accounting for temporal decorrelation, γvt, equals

γvt = exp (jϕg)

∫ hv
0

ρ(z) exp
(
t
νg
−
(
t
νv
− t

νg

)
z
hv

)
exp (jkzz)dz∫ hv

0
ρ(z)dz

. (2.26)
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2. Theoretical background

Here, νg and νv stand for temporal decorrelation of the scatterers. By
combining (2.25) and (2.22), the temporal decorrelation version of the RV
model is obtained by

γrvt = exp (jϕg)
2κe exp

(
− t
νg

)
cos θ

(
exp ( 2κehv

cos θ )− 1
)×∫ hv

0

exp

(
2κe
cos θ

)
exp

(
−
(
t

νv
− t

νg

))
z

hr
exp (jkzz)dz,

(2.27)

where γrvt is similar to (2.8) with the difference of accounting for temporal

decorrelation. Defining P1 = 2κe
cos θ , P2 = 2κe

cos θ +jkz, and P3 = − 1
hr

(
t
νv
− t

νg

)
the temporally decorrelated complex coherence of the RV model γrvt is
represented as

γrvt = exp (jϕg) exp

(
− t

νg

)
P1 (exp ((P2 + P3)hv)− 1)

(P2 + P3) (exp (P1hv)− 1)
. (2.28)

The difference between γs and γrvt is due to the term P3 that contains
temporal decorrelation information. If no temporal decorrelation occurs then
νv → ∞ and νg → ∞ and thus P3 → 0 and γrvt = γs. If Bs = 0, then the
complex coherence becomes

γrt = exp

(
−t
νg

)
P2 (exp ((P2 + P3)hv)− 1)

(P2 + P3) (exp (P2hv)− 1)
. (2.29)

Because of the exponential functions (2.29) implies that when the motion
increase from bottom to the top of the canopy layer, the coherence decreases
and phase center height lifts. In the case of the RVoG model, the temporally
decorrelated complex coherence equals

γrvgt = exp (jϕg)

∫ hv
0

ρvg(z)ξ(z, t) exp (jkzz)dz∫ hv
0

ρvg(z)dz

= exp (jϕg)
µ exp

(
−t
νg

)
+ γgt exp (−jϕg)

µ+ 1

= exp (−jϕg)×(
γvtγs exp (−jϕ− g) +

µ

µ+ 1
(γgt − γvtγs exp (−jϕg))

)
,

(2.30)

where the role of ground scattering mechanism is represented by the Dirac
delta function located at z = z0 (Lavalle, 2009) used for obtaining µ that

has a weight of σg. Here, γgt = exp
(
−t
νg

)
is the temporal decorrelation of

the ground layer that is real-valued and γvt is the complex-valued temporal
decorrelation of the vegetation layer. Since in the RMoG model temporal
decorrelation is assumed to be caused only by the motion of scatterers, µ
does not reflect temporal changes. We used the information provided in this
chapter about the RMoG model and modified it to explore the possibility
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2.4. Temporal correlation model

of reconstructing of the vegetation layer accurately in Chapter 3. Later on,
the idea of including temporal decorrelation component was extended to
tomographic SAR data in Chapter 4 followed by estimating biomass by the
proposed modified model in Chapter 5.
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3A Modified Model for Estimating
Tree Height from PolInSAR with
Compensation for Temporal
Decorrelation

This chapter is based on the published paper: Ghasemi, N., Tolpekin, V.
and Stein, A., (2018). A modified model for estimating tree height from
PolInSAR with compensation for temporal decorrelation. International
Journal of Applied Earth Observation and Geoinformation, 73, pp.313–322.

23



3. Modified model for estimation of tree height

Abstract

The RMoG (Random-Motion-over-Ground) model is commonly used to ob-
tain tree height values from PolInSAR images. The RMoG model borrows its
structure function from conventional RVoG (Random-Volume-over-Ground)
model which is limited for modelling structural variety in canopy layer. This
chapter extends the RMoG model to improve tree height estimation accur-
acy by using a Fourier-Legendre polynomial as the structure function. The
new model is denoted by the RMoGL model. The proposed modification
makes height estimation less prone to errors by enabling more flexibility
in representing the vertical structure of the vegetation layer. We applied
the RMoGL model on airborne P- and L-band PolInSAR images from the
Remingstorp test site in southern Sweden. We compared it with the RMoG
and the conventional RVoG models using Lidar height map and field data
for validation. For P-band, the relative error was equal to 37.5% for the
RVoG model, to 23.7% for the RMoG model, and to 18.5% for the RMoGL

model. For L-band it was equal to 30.54% for the RVoG model, to 20.02%
for the RMoG model, and to 21.63% for the RMoGL. We concluded that
the RMoGL model estimates tree height more accurately in P-band, while
in L-band the RMoG model was equally good. The RMoGL model is of a
great value for future SAR sensors that are more focused than before on tree
height and biomass estimation.

Keywords : Vegetation height, Temporal decorrelation, Fourier-Legendre
series, P-band, L-band, PolInSAR
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3.1. Introduction

3.1 Introduction

Polarimetric SAR interferometry is an advanced method for measuring ve-
getation height from remote sensing images (Cloude and Papathanassiou,
1998a; Bamler and Hartl, 1998). In this chapter, we use a full polarimetric
interferometric SAR system. Such an image enables us to consider two
2× 2 complex scattering matrices representing complex scattering coefficient.
These matrices are used to obtain complex coherence (Cloude and Papath-
anassiou, 1998a) from two slightly different orbital positions. The complex
coherence represents consistency of objects when illuminated from two dif-
ferent orbital positions at two different times (Papathanassiou and Cloude,
2001). A change in the objects is reflected in the form of signal decorrelation
when generating interferograms. Therefore, by reversing the process of in-
terferogram generation, the sources of these decorrelations can be identified.
Main decorrelations occuring in vegetated areas are volumetric, temporal,
geometric and systematic decorrelation (Zebker and Villasenor, 1992). In the
past, the only source of decorrelation used for modeling vegetation height
was volumetric decorrelation. This was based upon the assumption that the
other decorrelations were negligible. The same assumption was made for the
RVoG (Random-Volume-over-Ground) model (Cloude and Papathanassiou,
2003). This assumption, however, leads to biased estimation (Cloude and
Papathanassiou, 2003; Neumann et al., 2010; Lavalle et al., 2012).
Several studies focused on understanding and quantifying the temporal decor-
relation on repeat-pass InSAR and PolInSAR data. One of the first models
was suggested by Papathanassiou and Cloude (2003) called RVoG+VTD
(Volumetric Temporal Decorrelation) Other researchers used external ancil-
lary data e.g. Lidar and field data to quantify temporal decorrelation (Simard
et al., 2012).
Recently, the RMoG (Random-Motion-over-Ground) model has been intro-
duced to obtain the vegetation height using PolInSAR images in the presence
of temporal decorrelation (Lavalle et al., 2012). It uses the Gaussian-statistic
motion model explained in Zebker and Villasenor (1992) that increases from
the bottom to the top of the canopy layer. This function is responsible for
modelling temporal decorrelation e.g. caused by wind (Lavalle and Khun,
2014; Lavalle and Hensley, 2015). A recent study has analyzed different
algorithms for compensating temporal decorrelation and compared those
with ancillary field and Lidar data (Simard and Denbina, 2018). The RMoG
model showed promising results in estimating canopy height in the presence
of temporal and performed better than the VTD model.
The RMoG model considers the vegetation layer as randomly distributed
vertical objects over the ground and can be characterized by two selected
polarization channels. The selected channels are assumed to represent one
type of a scattering mechanism, with the highest backscattering occuring
at the top of the canopy layer. Such an assumption, however, falls short
especially for complex vegetation layers like in dense forests (Cloude, 2010).
The main objective of the current chapter is to modify the RMoG model
suggested in Lavalle et al. (2012) and generalize it in modeling the vertical
structure of the vegetation layer.
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3. Modified model for estimation of tree height

To achieve this objective, we replaced the exponential function applied in the
RVoG and RMoG models with a function that is able to reconstruct various
types of underlying vertical structures. An expansion of the Fourier-Legendre
series used in Polarization Coherence Tomography (PCT) (Cloude, 2006) is
a substitute able to accurately reconstruct the vertical structure (Cloude,
2010). It allows the maximum of the structure function to occur at any place
between the surface and the top of the canopy layer. This may lead to height
estimation of a higher accuracy. We will denote the modified model as the
RMoGL model, indicating that it uses the motion scenario of the RMoG
model and a Legendre polynomial as the structure function. We selected
data from the BioSAR2010 campaign obtained at the Remingstorp test site
in southern Sweden to demonstrate how the modified temporal decorrelation
model can be used on a future BIOMASS mission by ESA (Ulander et al.,
2011b). The RMoGL model was tested on P- and L-band images and Lidar
as well as field data were used as the reference for accuracy assessment.
Resulting vegetation height values of the RMoGL model were compared to
those from the RMoG and RVoG models to reveal how the height estimation
accuracy changed after modifying the structure function.
The chapter is structured as follows. First we give a short introduction
to height estimation models, in particular the RVoG, RMoG and RMoGL

models. The second part presents the data and the study area. Next, we
explain the implementation of the models and accuracy assessment. This is
followed by presenting and discussing the results. The chapter ends with the
conclusions.

3.2 Materials and Methods

We employed BioSAR2010 data for this study as it covers a large forested
area. A complete report about the BioSAR2010 campaign and Remningstorp
area has been published previously (Ulander et al., 2011a). Here, a summary
is provided that is relevant for this study.

3.2.1 Data description

The Remningstorp estate in southern Sweden is located at 58◦30′ N and
13◦40′ E and has an area of over 1500 ha. Approximately 1200 ha is covered
by productive forest and the rest with lakes. The area is generally flat with
height variations between 120 m and 145 m above mean sea level. During the
BioSAR 2010 campaign, P and L-band PolInSAR data were collected with
the SETHI airborne sensor, developed by the Office National d’Etudes et
de Recherches Aérospatiales (ONERA). Moreover, the Lidar CHM (Canopy-
Height-Model) with a cell size of 0.5×0.5 m2 was available for this area. It
was derived from the differences between the first and the last returns of the
Lidar pulses.
The field data used in this study include 214 circular plots with the radius of
10 m. Measurements inside each plot include: H100 height, defined as the
basal area weighted average of the 100 highest trees in each plot, Diameter
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3.2. Materials and Methods

(a) (b)

Figure 3.1: The Pauli RGB (blue: Shh + Svv, green: Shv + Svh, red:
Shh − Svv) of: (a) L-band and (b) P-band images. The color of each
pixels represents the density of the vegetation cover and different scattering
mechanisms. The agricultural fields, bare lands and water are shown as black
or dark pixels.

at Breast Height (DBH), e.g. diameter at 1.3 m above the ground, and the
dominant tree species (Ulander et al., 2011b). H100 is used generally as the
reference height in estimating canopy height from PolInSAR (Mette et al.,
2004). In this chapter, we used H100 and Lidar height averaged inside each
field plot as the reference height.
We used one pair of P-band image and one pair of L-band image for the
analyses. For both pairs, the spatial baseline equals 30 m, the temporal
baseline is around 45′, and the heading angle is equal to 199◦. The sensor
height is approximately 4000 m2, the ground-range resolution for the P-band
pair is 0.5×0.5 m2 while for L-band is 0.75×0.75 m2(Ulander et al., 2011b).
They were re-sampled to 1 m2 for further analysis.

The top left coordinate for the L-band image is: 58.49398◦ E, 13.54952◦ N
and covers an area of approximately 24.67 km2. The top left coordinate for
P-band is: 58.49398 ◦ E, 13.54952◦ N and covers an area of approximately
85.75 km2 (Figure3.1). Due to deeper penetration into the canopy layer, the
P-band image shows a variety of scattering mechanisms which is different
from L-band. Within this campaign fieldwork, 117 plots fall within in the
overlapping area between P and L band images (Figure 3.2). The images
have been delivered in Single Look Complex (SLC) format and have four
polarization channels: HH, HV , V H and V V with HV = V H as the system
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3. Modified model for estimation of tree height

L band P band

Figure 3.2: Dark circles show the location of field plots on the overlapping
area of P and L-band magnitude component. The top left coordinate for
L-band is: 58.49398◦ E, 13.54952◦ N, number of pixels:2600×9490. The top
left coordinate for the P-band is: 58.49398 ◦ E, 13.54952◦ N, number of
pixels:12250×7000.

is mono-static.

We determined the scale factor or vertical wavenumber following Boerner
et al. (1992). The complex coherence was obtained for all polarization chan-
nels including linear polarizations (HH, HV and V V ), circular polarization
(LL, LR and RR) and the Pauli decompositions (HH + V V and HH − V V )
(Lee and Pottier, 2009). The outcome served as input for the RVoG, RMoG
and RMoGL models.

3.2.2 Height estimation using PolInSAR

3.2.2.1 The RVoG model

The conventional RVoG model has been used over the past decade for extract-
ing forest parameters (Dobson et al., 1995; Cloude and Papathanassiou, 2003;
Cloude, 2010). The RVoG model relates the observed complex volumetric
coherence to the height of the vegetation layer and expresses the volumetric
coherence γv as

γv =
P1

P2

eP2hv − 1

eP1hv − 1
, (3.1)
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3.2. Materials and Methods

Figure 3.3: The geometrical representation of coherence line inside the unit
circle of the complex plane. Point A and B are equal to the volume coherence
and ground phase respectively and AB is the visible part of coherence. Only
a segment of this line is observable from data.

where P1 = 2σ
cos θ , hv is vegetation height, P2 = P1 + jkz, and kz = 4πB

λH tan θ .
Here σ is the mean wave extinction coefficient, θ, (0 < θ < 90◦) is the
incidence angle, B is the spatial baseline, λ is the wavelength, and H is the
sensor height (Cloude and Papathanassiou, 2003).
For the RVoG model, both ground and volume coherence are taken into
account. For this purpose the ground phase ϕg and γv are combined with a
parameter (µ) to compensate for the surface scattering mechanism effects
on the observed coherence. Parameter µ can have any value between 0
and ∞ (Cloude and Papathanassiou, 2003) but it is small (< 1) in the
cross-polarized channels in P and L-bands. According to Cloude (2005), the
complex coherence γR equals

γR = ejϕg
γv + µ

1 + µ
= ejϕg

[
γv +

µ

µ+ 1
(1− γv)

]
. (3.2)

To solve (3.2) for ϕg, we need a polarization channel as the volume scattering
and another channel as the ground scattering representation. Solving (3.2) is
done in a multi-step procedure (Cloude and Papathanassiou, 2003).
Equation (3.2) implies that the complex coherence can be interpreted as a
straight line inside the complex plane by varying µ values. If µ = 0, then
γR = γv, whereas if µ→∞, γR equals the surface coherence. The geometrical
representation of (3.2) is shown in Figure 3.3, where the straight line cuts
the unit circle in the complex coherence plane at two points, denoted by ϕ1

and ϕ2. One of these points is equal to ϕg whereas the other point is an
invalid solution, i.e. outside the meaningful physical range.

Point A equals the volume coherence and is determined from the data.
The length of AB which is the observable coherence, depends upon the
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3. Modified model for estimation of tree height

Figure 3.4: A simple representation of RVoG model structure function and
motion variance of the RMoG model. The surface layer is located at z = zg
and volume layer is distributed between zg and zg + hv. Where hv is the
vegetation layer thickness, adopted from Lavalle et al. (2012).

baseline, the wavelenght of the SAR system and the vegetation structure
(Papathanassiou and Cloude, 2001).
To identify A, total least square line fitting (Cloude and Papathanassiou,
1998a), maximum likelihood estimation using the complex Wishart distribu-
tion and the ESPIRIT algorithm (Lee and Pottier, 2009) have been suggested.
We used the first method as it provides stable results (Cloude and Papath-
anassiou, 1998a). In this way, we determined the distance between ϕ1 and
ϕ2 and the phase value of the HV channel as the representative of volume
scattering. The ϕ value with the largest distance to the HV channel is
recognized as ϕg (Cloude and Papathanassiou, 2003).
As the next step, a hybrid method estimates the height based on the obtained
ϕg (Cloude and Papathanassiou, 2003). This method is fast, easy to imple-
ment and robust. Its basic assumption is that the selected channels contain
pure volumetric and ground scattering. This is a valid assumption in case
of L-band. However, for P-band this is not generally true because of deeper
penetration (Garestier et al., 2008). Previous studies have shown that if we
have a dense forest with at least one channel with ground-to-volume-ratio
less than 10 dB as we have in our study area (Askne and Santoro, 2012), it
is still reasonable to use the RVoG model for P-band (Wang et al., 2016).
As the RVoG model is a model of volume coherence and ignores temporal
decorrelation, it provides biased results if the temporal decorrelation is high,
e.g. due to wind (Simard et al., 2012). To tackle this limitation, the RMoG
model has been proposed (Lavalle et al., 2012).

3.2.2.2 The RMoG model

The RMoG model assumes that the vegetation layer consists of vertical
objects randomly located on a rough dielectric layer. Both layers have a
random movement along the vertical axis (Figure 3.4).

Based upon this assumption, the complex coherence obtained by the
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RMoG model γM is formulated as (Lavalle et al., 2012)

γM =

∫ zg+hv
zg

ρ (z) exp(jkzz) exp
(
− 1

2

(
4π
λ

)2
σ2(z)

)
dz∫ zg+hv

zg
ρ (z) dz

. (3.3)

Here, σ2
r(z) is the first order approximation of the motion variance along the

vertical axis (Lavalle and Khun, 2014) and is defined as

σ2
r(z) = σ2

g + (σ2
v − σ2

g)
z − zg
hr

, (3.4)

where hr is the reference height, λ is the SAR system wavelength and σg and
σv are the surface and canopy layer motion standard deviations, respectively.
The function ρ(z) is the structure function, which defines the scattering
properties of the vegetation and ground layers. Similar to the RVoG model,
the structure function can be written as the sum of two components:

ρ(z) = ρv(z) + αge
− 2Ke

cos θ δ (z − zg) , (3.5)

where ρv(z) represents the canopy layer, defined as

ρv(z) = αg exp

[
− 2Ke

cos θ
(z − zg − hv)

]
. (3.6)

Here, αg is the average backscatter per unit length of the vegetation layer. The
second component includes δ(.), the Dirac delta function which is associated
with the ground layer. This component characterizes the effect of surface
scattering in the two-layer vegetation model (Cloude and Papathanassiou,
2003). The final form of the complex coherence obtained by the RMoG model
γ̃M is obtained by replacing (3.5) and (3.6) into (3.3) and solve the integral.
In the solved form of (3.3) the two-component structure function is expanded
as a Gaussian function (Lavalle et al., 2012).

γ̃M = ejϕg
µγMg

+ γMe
−jϕg

µ+ 1
, (3.7)

where γMg is the complex coherence for the ground layer (Lavalle and Khun,
2014). As can be deduced from (3.3) to (3.7), the complex coherence is a func-
tion of hv, Ke, ϕg, σg, σv, kz and λ. Following Cloude and Papathanassiou
(2003), and Lavalle and Hensley (2015), at least five different polarization
states are needed to find the unknown parameters. As µ is different for each
polarization channel, two more unknown parameter are added to the equation
system for each channel. Since then the number of unknown parameters
exceeds the observations, the solution should be a multi-step procedure
(Lavalle and Hensley, 2015). According to (3.3) to (3.5), it is assumed that
the backscattering and consequently the structure function increases expo-
nentially from the bottom to the top of the canopy layer. It implies that the
maximum of the backscattering occurs always at the top or close to the top
of the vegetation layer. This assumption leads to a non-flexible model when
it comes to multi-layer and complex vegetated areas. Inspired by the PCT
model and its structure function explained in Cloude (2010), we modified
the RMoG model to overcome this limitation.
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3.2.2.3 The RMoGL Model

The modified RMoG model, denoted as the RMoGL model, uses Fourier-
Legendre polynomials as its structure function. Fourier-Legendre polynomials
are commonly used in the PCT model to estimate the underlying vertical
structure of the objects (Cloude, 2006). For using Fourier-Legendre series as
the structure function, we need to first re-scale the vertical axis as

z′ =
2(z − zg)
zg + hv

− 1, (3.8)

where z′ ∈ [−1, 1]. Based on Cloude (2010) the new structure function
f(z′) ' ρ(z)− 1, equals

f(z′) =

∞∑
n=0

anPn(z′), (3.9)

where

an =
2n+ 1

2

∫ 1

−1

f(z′)Pn(z′)dz′. (3.10)

Here, the an, n = 0, 1, 2, ... are the Legendre coefficients and the Pn are
the Legendre polynomials. The structure function of the RMoGL model is
compared with the exponential function used in the RVoG and RMoG models
in Figure 3.5. The functions are normalized to the interval 0 ≤ z′ ≤ 1. The
differences between the structure functions show the flexibility of Fourier-
Legendre expansion in modeling the vertical structures. If f0 is larger than
the higher orders, it represents strong surface backscattering, whereas larger
higher terms signify a strong volume scattering and complex vertical structure.
The first three terms of Pns equal (Cloude, 2006)

P0(z′) = 1,

P1(z′) = z′,

P2(z′) =
1

2
(3z′2 − 1).

(3.11)

By substituting (3.9) as ρ(z) in (3.3) and re-scaling the integral limits,
the complex coherence obtained by the RMoGL model γML

, equal

γML
= exp(jkv)×∫ 1

−1
exp(1 + f(z′)) exp (jkvz

′) exp
(
− 1

2

(
4π
λ

)2
σ′2(z′)

)
dz′∫ 1

−1
(1 + f(z′))dz′

,
(3.12)

where kv = kzhv
2 , σ′2(z′) is obtained from (3.4) by using (3.8). To solve (3.12),

we need to use an expansion of (3.9) with a limited number of Legendre
coefficients. In general, the number of terms of the structure function
depends upon the number of available PolInSAR images and complexity of

32



3.2. Materials and Methods

Figure 3.5: Fourier-Legendre expansion up to the second order vs. the
exponential function used in the RVoG and RMoG models in [0 1] interval.
The solid black line shows the structure function of the RMoGL model.

the vegetation layer. Since we are using single-baseline PolInSAR images
we can only estimate the first and second terms of the series (Cloude, 2010).
Thus (3.12) can be expanded as

γML
= exp(jkv)×∫ 1

−1
(1 +

∑∞
n=0 anPn(z′)) exp(jkvz

′) exp(−1
2 ( 4π

λ )2σ2′(z′))dz′∫ 1

−1
(1 +

∑∞
n=0 anPn(z′))dz′

,
(3.13)

here we assume C = exp(−1
2 ( 4π

λ )
2
σ2′(z′)). Appendix A.2 includes the ex-

pansion up to n = 3. The total complex coherence γ̃ML
is then obtained by

replacing (3.13) in (3.12). For simplification and according to the short time
interval between the image acquisitions, we may assume that σg = 0 in (3.4).
Then C is only related to the motion of the vegetation layer and γML

equals

γ̃ML
=

γML

µ+ 1
. (3.14)

After normalizing the Legendre coefficients as an = an
1+a0

the unknown
parameters to be estimated include ϕg, hv, C, a1 and a2. We considered
C as a scalar when solving the equation system. The last two parameters
are different for each polarization channel. This means that when adding a
new polarization channel, two more unknown parameters are included. The
matrix form of (3.13) equals[
f1C 0

0 f2C

]
×
[
a1

a2

]
=

[
Im(γ̃MLK

)
Re(γ̃MLK

)− f0

]
, (3.15)
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where γ̃MLK
= γ̃ML

e−jkv and the fi, i = 0, 1, 2 are

f0 =
sin kv
kv

,

f1 = j

(
sin kv
kv

− cos kv
kv

)
,

f2 =
3 cos kv

kv
2 −

(
6− 3kv

2

2kv
3 +

1

2kv

)
sin kv.

(3.16)

Since there are more parameters than observations, we can not estimate all
parameters within a single step. To solve this issue, we summarize (3.16)
as Fa = g and assign a random value between 0 and 1 to C and then solve
the equation system as â = F−1g (Press, 2007; Cloude, 2010). Then the
estimated â is used to re-calculate C. This process is repeated until the
following condition is satisfied (Cloude, 2006)

‖∂a‖
‖a‖

≤ sin2 kv − k2
v√

2L(3 cos kv − (3− k2
v) sin kv

kv
)
. (3.17)

Here, ∂a is the matrix of partial derivatives of a, L is the number of effective
looks obtained by Cramér-Rao bound (Touzi et al., 1999). The results of
the RVoG model is used to estimate the initial value of kv. A major part of
pre-processing step (besides co-registering) and implementation of the models
were performed using PolSARPro and MATLAB respectively.

3.2.3 Accuracy assessment

For evaluating the accuracy of three different height estimation models, the
average height inside each plot was compared with the corresponding values
on Lidar CHM and with the H100 values. The H100 parameter was acquired
from the package provided by ESA and was not obtained during the study.
The RMSE and R2 were used as metrics to compare the height estimation
models. Since the physical nature, resolution, and processing approach of the
Lidar CHM and PolInSAR height maps are different and additionally, field
plots are only available for a part of the images, we compared the histograms
and density functions of the overlapping part of the images instead of point
by point comparison.
For finding the best describing function, different probability functions were
tested and compared using various criteria (Martinez and Martinez, 2007).
The generalized extreme function was selected as the best describing function.
According to Rolland et al. (2000), Pass and Zabih (1999), and Jia et al.
(2006) a good measure to compare two histograms is the χ2 distance. The χ2

distance between reference data and other height estimation methods equals

χ2 =

n∑
i=1

(hRFi − hCAi)2

(hRFi + hCAi)
, (3.18)

where hRF and hCA are the reference and calculated height values respectively
and n is the number of samples.
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Table 3.1: The RMSE and relative error of three different height estimation
models in comparison to Lidar height.

P-band L-band
RMSE (m) Relative error (%) RMSE (m) Relative error (%)

RVoG model 7.50 37.50 5.30 30.54
RMoG model 4.17 23.70 4.00 20.02
RMoGL model 2.50 18.50 3.89 21.63

Table 3.2: R2 values between PolInSAR height resulting from three different
models and H100 for L and P-bands (within 95% confidence interval.)

RVoG RMoG RMoGL

L-band 0.40 0.53 0.45
P-band 0.43 0.47 0.48

3.3 Results

3.3.1 Experimental results

The results of applying the RMoG and RMoGL models on P band are shown
in Figure 3.6. The differences between produced height maps shows better
performance of the RMoGL model especially in shorter trees and clear-cut
areas. This is due to the fact that RMoGL model takes into account the
structural parameters. The motion standard deviations of both models have
similar ranges, but in Figure 3.6(e) more variation is visible. The ground
phase reflects the relatively flat topography in the study area (For full size
images and Lidar height map see Appendix B). The difference between ϕg
obtained by two models shows the effect of using different structure function
in the RMoGL model. A similar trend was observed when applying RMoG
and RMoGL models on L-band.

For validating the results, we compared the average height values inside
the field plots, first to the corresponding H100 values and second, to the
Lidar CHM data. The results for the RVoG, RMoG and RMoGL models are
presented in Figure 3.7.

As it can be observed, the RVoG and RMoG models performs slightly
better in L-band while the RMoGL models shows better results in P-band.
Finding two polarization channels with only volume and surface scattering
mechanisms is a basic assumption of the RVoG model and consequently the
RMoG models. This assumption is closer to reality in L-band and this is
the reason of the better performance of the RMoG model. In contrary, the
RMoGL model reconstructs the vertical structure and therefore works better
with deep penetration of P-band. The RMSE and relative error values for
both L and P-bands are listed in Table 3.1.

The RMSE and relative errors confirm a better performance of the RMoGL

model when using P-band. The RMoG model, however, performs better than
the other models when using L-band. A similar comparison was performed
with H100 values extracted from ESA data package (Table 3.2).
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Results of applying the RMoG model: (a) height map, (b)
σ′(z′), and RMoGL model: (c) ϕg. (d) height map, (e) σ′(z′), and (f) ϕg on
P-band. The top left coordinate is: 58.49398 ◦E, 13.54952◦ N, number of
pixels in original image was: 12250×7000 and pixel size is 1 m. Displayed
images are multi-looked using a 25× 25 window.
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(a) (b)

Figure 3.7: Averaged Lidar CHM vs. estimated canopy height from PolIn-
SAR by the RVoG, RMoG and RMoGL models for: (a) P-band, and (b)
L-band.

Table 3.3: The χ2 distance between Lidar CHM and the height maps
resulting of the RMoGL and RMoG models.

RMoG RMoGL

χ2 for P-band 4.3 3.2
χ2 for L-band 3.5 5.7

The low correlations between PolInSAR height and H100 occur because
H100 is measured based upon the tallest trees inside each field plot, while the
PolInSAR height represents the average canopy height. Therefore, we need
the average tree heights inside plots for having a good comparison. Those
were not available from the campaign field data.

As a new accuracy assessment approach, based upon the physical nature
of the PolInSAR and Lidar data, the histograms of the PolInSAR height maps
were plotted against the Lidar CHM (Figure 3.8). The P-band histograms
show that the heights of short trees are overestimated by both the RMoG
and RMoGL models. For taller trees, however, the height is underestimated
by PolInSAR. The RMoG model performs slightly better for L-band. For
taller trees, both RMoG and RMoGL models showed promising results. To
compare the histograms, the χ2 values are listed in Table 3.3.

It shows that the best model performance belongs to the RMoGL model
when using P-band and to the RMoG model when using L-band. Moreover,
the parameters of the generalized extreme value distribution (Hosking et al.,
1985) i.e. the shape (P), scale (E), and location of the maximum (L) and are
listed in Table 3.4. The RMoGL model has the distribution closest to the
Lidar CHM when using P-band, whereas in case of using L-band the RMoG
model has the best result.
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(a) (b)

Figure 3.8: Histograms of RMoGL and RMoG models vs. Lidar CHM of:
(a) P-band, and (b) L-band.

Table 3.4: The parameters of generalized extreme value distribution selected
as the best matching distribution for the height maps.

P-band L-band
P E L P E L

Lidar -0.14 5.50 24.81 -0.14 5.50 24.81
RMoGL -0.14 5.68 24.81 -0.15 6.10 25.66
RMoG -0.15 6.14 26.50 -0.14 5.30 24.30
RVoG -0.19 4.99 26.79 -0.16 4.02 25.07

3.4 Discussion

Our findings suggest that using a Fourier-Legendre series as the structure
function in the RMoGL model improves the height estimation accuracy. The
Fourier-Legendre expansion has been employed in Polarization Coherence
Tomography (PCT) (Cloude, 2006, 2010) to estimate underlying structure of
the vertical layers. Here, by replacing the exponential function used in the
RVoG and RMoG models with the second order Legendre polynomial the
accuracy of height estimation by 16% for P-band improved.

According to (3.3), the observed complex coherence depends upon the
underlying vertical structure, topographic phase and motion standard devi-
ation. The structure function ρ(z) is defined between zg and zg + hv and it
should be selected such that it matches the structure of vegetation layer.

For estimating vegetation height, the special cases of this function are
often used, i.e the uniform and the exponential functions (Cloude and Papath-
anassiou, 2003). If we assume that ρ(z) = 1, i.e. a uniform function, the
complex coherence can be defined as a function of vertical wave-number,
vegetation height, and the surface phase (Cloude, 2010). In this case, the
only parameter taken into account from the vegetation structure is hv that
is not changing with polarization. A structure function that equals the expo-
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nential function is widely used in the RVoG and RMoG models for estimating
vegetation height. This exponential function uses hv and Ke, where Ke

defines the shape of the vegetation layer and changes with polarization and
spatial baseline Bn. The spatial baseline is involved in calculating vertical
wave number kz. Since there is no linear relation between changing spatial
baseline and PolInSAR height, it is needed to be evaluated separately. A
previous study has shown the effects of changing vertical wavenumber on
PolInSAR height (Kugler et al., 2015). A fully extincted signal represents
strong volume decorrelation at the top of the canopy layer. Hence, the max-
imum backscattering gets closer to the top of the canopy layer with increasing
extinction. Thus, the main assumption is that the maximum backscattering
is concentrated on the top of the canopy layer.
To change the structure function of the RMoG model and increase its flex-
ibility, we used the Fourier-Legendre series. Commonly, the lower terms
of the series show the general characteristics of the canopy, whereas the
higher terms represent the details of the vegetation structure (Cloude and
Papathanassiou, 2003). The number of terms that we can use depends upon
the number of available images and complexity of the vertical layer. Here,
we truncated the expansion up to the second order since we have a single
baseline. Additionally, we are working within a hemi-boreal forest where the
vertical structure is relatively simple and thus a second order function should
be adequate (Cloude, 2006). Moreover, we need no assumption about the
location of the maximum backscattering along the vertical direction. This is
advantageous if we have multi-layer vegetation as for instance in dense forests.
The RMoGL model showed good results for P-band, whereas its performance
was similar to that of the the RMoGL model on L-band. This shows that the
exponential structure function represents the scattering scenario in L-band
with good accuracy.
Due to the short time interval between image acquisitions, we assumed that
σg = 0. This can be true in general cases of airborne PolInSAR data. In
the case of space borne SAR data, however, this assumption can be true
if there is no seasonal change and natural phenomena like landslides and
earthquakes are absent. If the time interval is too long (several months), we
might lose the coherence in vegetated areas and neither of the RVoG, RMoG
and RMoGL models would be applicable.
An important drawback of the RMoGL model is the number of unknown
parameters to be estimated. Polarization channels used in this study are the
HH, HV , V V , HH + V V , HH − V V , LL, LR and RR channels (Lee and
Pottier, 2009). These are not independent, although representing different
physical characteristics of the vegetation. Also, these channels are more noisy
than the original polarization channels acquired by the sensor. It will need
further investigation and research on how the noise on these channels affects
the overall accuracy and whether adaptive noise filtering on these channels
can improve the accuracy. This becomes important if we use additional terms
of the Fourier-Legendre series.

For solving the non-linear equation system resulting from applying the
RMoGL model, we took a step-by-step approach. It is important to have
good starting values. Here, we used the outcomes of the RVoG model being
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the best ones available. Alternatively, we could use arbitrary initial values
based upon the physical meaning of these parameters and then get the best
result using trial-and-error.
For validating the results, both field data and Lidar CHM were used. The
results showed a weak correlation between average height value and H100.
Therefore we suggest to use the average tree heights instead of H100. Addi-
tionally, since the PolInSAR and Lidar height maps differ in physical nature
and they have different resolution, the point to point comparison as we do by
field plots may not be comprehensive enough. Thus besides using field plots,
histograms and PDF functions were used to compare the resulting height
maps with Lidar.
The RMoGL model has the best matching histogram with the reference data
when using P-band, whereas, the RMoG model had slightly better result in
L-band. The difference between histograms and scatter plots has two main
reasons. First, the scatter plots represent the average of Lidar CHM and
PolInSAR height inside the field plots. The plots have been located very care-
fully during the BioSAR 2010 campaign to be homogeneous in terms of tree
types, heights and density. Additionally, the areas with short trees (<10 m)
are excluded from field work. Therefore, we see good statistical correlation
between Lidar CHM and PolInSAR height maps. The second reason is that
in short vegetation cover. The assumption of random-volume-over-ground
model is not fully valid. Instead, the Oriented-Volume-over-Ground model
should be replaced. This phenomena is explained in (Lopez-Sanchez et al.,
2007; Cloude, 2010).

Other estimated parameters like the topographic phase were slightly
different for P and L-band images but they had a meaningful physical range.
Since we do not have any reference data for validating other parameters,
accuracy assessment is restricted to vegetation height. Besides having more
unknown parameters, estimating forest parameters using the RMoGL model
takes approximately twice as long as using the RMoG or the RVoG models.

Due to the short time interval between the two images, other phenomena
like the dielectric constant and seasonal changes are negligible but should be
considered when using PolSAR images collected at larger time intervals. At
present, P-band, on which we tested our suggested model, is only available
from airborne sensors. In the near future it will also be available from space
borne sensors and thus, it would be of value to examine the available PolInSAR
coherence models to provide a better understanding of the similarities and
differences of applying these models on different wavelengths.

3.5 Conclusions

In this chapter, we proposed to change the structure function of the RMoG
model to improve the accuracy of tree height estimation with taking into
account the temporal decorrelation. We tested it on P and L-band full
polarimetric images acquired from the Remingstorp test site in Sweden. The
model improved the height estimation accuracy as compared to the RMoG
and RVoG models for P-band, but the RMoG model had a slightly better
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performance for L-band. Moreover, the RMoGL model was more flexible
in modeling different structure types of the vegetation layer. A challenge
we faced when using the RMoGL model, was the long computation time.
Another challenge was the number of unknown parameters. We solved this by
taking a multi-step estimation procedure. As a support to the future satellite
missions operating in P-band, findings of this study are potentially useful.
Further research is needed to reveal the degree of improvement as related to
longer computation time and the number of parameters. The RMoGL model
should be further tested on different forest types with multiple baselines and
other sensors.
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4Estimating tree heights using
multi-baseline PolInSAR data with
compensation for temporal
decorrelation

This chapter is based on the published paper: Ghasemi, N., Tolpekin, V.
A., and Stein, A. (2018). Estimating Tree Heights Using Multi–baseline
PolInSAR Data With Compensation for Temporal Decorrelation, Case Study:
AfriSAR Campaign Data. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, Volume: 11, Issue: 10, PP:3464–3477.

43



4. Processing multi–baseline SAR data with compensation for temporal decorrelation

Abstract

This chapter presents a multi-baseline method to increase the accuracy of
height estimation when using SAR tomographic data. It is based upon mit-
igating the temporal decorrelation induced by wind. The Fourier-Legendre
function of different orders was fitted to each pixel as the structure function
in the PCT model. It was combined with the motion standard deviation
function from the Random-Motion-over Ground (RMoG) model. L-band
multi-baseline data are used that were acquired during the AfriSAR campaign
over La Lope national park in Gabon with a height range between 0 and 60 m
that has an average of 30 m and standard deviation of 15 m. The results
were compared with those from the regular PCT model using the root mean
square error (RMSE). Histograms were compared to the one obtained from
Lidar height map. The average RMSE was equal to 7.5 m for the regular
PCT model and to 5.6 m for the modified PCT model. We concluded that
the accuracy of tree height estimation increased after modelling of temporal
decorrelation. This is of value for future satellite missions which would collect
tomographic data over forest areas.

Keywords: Multi-baseline SAR data, PCT, temporal decorrelation,
Fourier-Legendre series.
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4.1 Introduction

Monitoring and mapping biophysical parameters of forests play an important
role in environmental studies. Carbon stock assessment and the analysis of
the global carbon cycle are directly affected by the accuracy and frequency
of forest biomass estimation. Many studies in SAR remote sensing have
been dedicated to monitor and measure forest parameters especially tree
height. Future satellite missions like BIOMASS are designed to map forest
from space at a high frequeny of repeat cycles (Le Toan et al., 2011). These
missions have been designed to operate in L or P-band and in full-polarimetric
mode. They will enable scientists to use polarimetric SAR interferometry
(PolInSAR) (Cloude and Papathanassiou, 1998a; Papathanassiou and Cloude,
2001; Mette et al., 2004) and SAR tomography (Tebaldini and Rocca, 2012;
Huang et al., 2011; Guillaso and Reigber, 2005) at a large scale with accuracy
that meets user requirements. The accuracy, however is affected by factors
like wavelength, vegetation structure and decorrelation sources. Despite these
limitation factors, the unique ability of PolInSAR data in reconstructing ver-
tical vegetation layer under all weather conditions, makes PolInSAR data the
first choice in many forest studies. By using PolInSAR, different scattering
mechanisms are identified using various polarization channels. Location of
these mechanisms is determined by interferometry.
SAR tomography is comparable to PolInSAR with a major difference that a
synthetic aperture is reconstructed in the vertical direction. Several parallel
flight tracks are acquired with a relatively small baseline in the vertical
direction. Processing tomographic data, however, is difficult because of
sampling density and irregularity issues (Cloude, 2006). Polarization Coher-
ence Tomography (PCT) is a hybrid approach (Cloude, 2006, 2007a, 2008)
that reconstructs the vertical structure of the vegetation cover by employing
PolInSAR height estimation techniques and using a function for the unknown
vertical structure (Papathanassiou and Cloude, 2001; Cloude and Papath-
anassiou, 1998a; ?). Parameters of that function are estimated using different
polarization channels with different spatial baselines. Since PCT can be
implemented efficiently, even using a single baseline, it has an advantage over
conventional SAR tomography (Cloude, 2006).
Sepveral physical models have been developed for this purose (Cloude and
Papathanassiou, 1998a; Papathanassiou and Cloude, 2001; Treuhaft and
Siqueira, 2000). The random-motion-over-ground (RMoG) model is developed
to estimate tree heights from PolInSAR data with mitigation of temporal
decorrelation. It merges the random-volume-over-ground (RVoG) model with
a model of temporal decorrelation (Lavalle et al., 2012; Lavalle, 2009). In
doing so, obtains more accurate results when applied on airborne L-band data
(Lavalle and Hensley, 2012) and multi-baseline PolInSAR data (Lavalle and
Khun, 2014). We recently proposed the RMoGL model, a modified temporal
decorrelation model that uses the Fourier-Legendre series to reconstruct
the vertical structure in short time intervals (Ghasemi et al., 2018b). The
RMoGL model showed promising results when applied on airborne P-band
data (Ghasemi et al., 2018b). In this chapter, we combined PCT with the
temporal decorrelation component of the RMoG model, resulting in the
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modified PCT model. The important difference with the regular PCT model
and other multi-baseline height estimating techniques is that it mitigates
the temporal decorrelation as a major source of error (Papathanassiou and
Cloude, 2003; Neumann et al., 2010; Rocca, 2007; Lee et al., 2012; Li et al.,
2014; Zhou et al., 2008). The objective of this chapter is to improve the PCT
model by including the temporal decorrelation. The modified PCT model
was applied on the L-band UAVSAR data acquired by NASA JPL during the
AfriSAR campaign over the La Lope national park in Gabon. For providing
a further comparison, the result of single-baseline modified PCT model was
compared to both the conventional RVoG and RMoG models.

4.2 Materials and Methods

4.2.1 Study area and data set

The data used in this study are obtained from the AfriSAR campaign on
the tropical forests in Gabon (Figure 4.1) (Dubois-Fernandez et al., 2016).
The La Lope national park is located in the western semi-evergreen forests of
central Africa. Forest boundaries have been advancing into savanna grasslands
creating a complex system of forest types. The forest cover in this area can be
divided into four types: savanna grasslands, young forest, Okoumé dominated
forest, and mature old growth forest (Silva et al., 2018). Annual rainfall
averages 1500 mm with two rainy seasons and two dry seasons. The longer
dry season lasts from the beginning of June to the middle of September,
which is followed by a longer rainy season until mid-December. The terrain
elevation changes from terrain 230 to 470 m above-see-level with slopes up
to approximately 30◦ in the western part of the area.
For measuring Above-Ground-Biomass (AGB) several studies have been
carried out in this area (Silva et al., 2018). The method for measuring
biomass is measuring height, diameter, and wood density and using the
allometric equation for moist tropical forests (Silva et al., 2018; Chave et al.,
2009).
The AfriSAR campaign was designed and conducted to support future satellite
missions that are focused on forest monitoring and vegetation parameters
estimation (Hajnsek et al., 2016; Dubois-Fernandez et al., 2016). L-band
full polarimetric SAR data were collected with a UAVSAR sensor over the
La Lope National Park in Gabon. We used a SLC (Single-Look-Complex)
stack of seven full polarimetric SAR data with different spatial baselines.
Temporal and spatial baselines and ambiguity heights are listed in Table 4.1.
This multi-baseline, multi-frequency data set will allow us to estimate the
key parameters for tropical African forests, like vertical height profiles and
forest biomass (Hajnsek et al., 2016). In addition to the L-band SLC stack,
Lidar data were available for the study area. They were acquired by the LVIS
instrument that belongs to Jet Propulsion Laboratory (JPL) of California
Institute of Technology (Caltech).
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Table 4.1: The spatial and temporal baseline of L-band SLC stack of the
Lope national park. These images were collected on March the 8th, 2016
(Lavalle, 2017).

baseline length (m) Time of Acquisition (GMT) Temporal baseline (minutes) Altitude of ambiguity (m)

0 14:06 175 -
20 11:33 22 61
40 11:56 45 30
60 12:18 67 20
80 12:41 90 15
100 13:20 129 12
120 13:43 149 10

Figure 4.1: The patches of acquired data in AfriSAR campaign using
UAVSAR over map of Gabon. The red patches are PolInSAR and TomoSAR
data collecting locations and yellow patches show locations of PolSAR data
acquisition. The central coordinates of La Lope national park are 0.5 W and
11.5 N and it has an area of 4910 km2.

4.2.2 Data pre-processing and preparation

The first step for proper data use is calibration and co-registration of fully
polarimetric SAR images. All slave images should be registered to the master
one to form the SLC stack. This step was completed with the help of an
ancillary data set including SRTM DEM and SAR orbital data (Lavalle et al.,
2016b). The flowchart of data pre-processing and preparation is pictured in
Figure 4.2. We applied coherence optimization for two purposes. First, the
optimized channels were used for determining surface and volume scattering
channels following Cloude (2006). Second, these polarization channels added
the number of observations for estimating unknown parameters during steps.
After this step, the SLC stack is ready for applying height inversion models.
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Figure 4.2: The flowchart of data pre-processing and preparation step. The
coherence optimization and spectral shift filtering was performed according
to the method described in Cloude and Papathanassiou (2002).

4.2.3 Multi-baseline polarization coherence tomography

To model the observed PolInSAR coherence by SAR tomographic data we
proceeded as follows. The sensor parameters including wavelength and
height are considered to be equal for all images, whereas other geometrical
parameters including average look angle θ and vertical wave numbers kz are
different for each pair. The vegetation layer was taken as a vertical layer
randomly distributed on the surface. For estimating vegetation height using
PCT, we write the complex coherence γ̃ as

γ̃ = ejϕg
∫ hv

0
f(z)ejkzzdz∫ hv

0
f(z)dz

, (4.1)

where ϕg is the ground phase and f(z) is the vertical structure function
defined in the range of [0, hv]. Re-scaling the vertical axis as z′ = 2z

hv
− 1,

we obtain z = z′+1
2 hv. The numerator and denominator of 4.1 can then be
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re-written in the range of [−1, 1] as∫ hv

0

f(z)ejkzzdz =
hv
2
ej

kzhv
2

∫ 1

−1

f(z(z′))ej
kzhv

2 z′dz′

and∫ hv

0

f(z)dz =
hv
2

∫ 1

−1

f(z(z′))dz′.

(4.2)

Here f(z(z′)) = 1 +F (z′) and the new structure function will be called F (z′)
hereafter. The function F (z′) can be developed as a Fourier-Legendre series
as

F (z′) =

n∑
i=1

aiPi(z
′), (4.3)

where, ai equals

ai =
2i+ 1

i

∫ 1

−1

F (z′)Pi(z
′)dz′, (4.4)

according to Cloude (2006). Here, Pi, i = 1, 2, ..., n are the Legendre poly-
nomials (Cloude, 2007a) and ai are the corresponding Legendre coefficients.
This leads to the following expression for γ̃

γ̃ = ej
kzhv

2

∫ 1

−1
(1 + F (z′))ej

kzhv
2 z′dz′∫ 1

−1
(1 + F (z′))dz′

, (4.5)

To obtain the numerator and denominator of 4.5, function F (z′) should be
defined according to Cloude (2010). If we can estimate the parameters ai,
we can reconstruct the vertical structure of vegetation layer (Cloude, 2006).
This approach is extendable to multi-baseline PolInSAR data, leading to the
vertical structure reconstruction with a higher resolution. Equation 4.5 does
not take temporal decorrelation into account and it thus results into to over
or under estimation of vegetation height (Cloude, 2006, 2008). To overcome
this limitation, the RMoG model was proposed (Lavalle et al., 2012; Lavalle
and Hensley, 2012, 2015). The equation of the complex coherence by the
RMoG model equals

γ̃ =

∫ hv
0

f(z)e(jkzz)e(− 1
2 ( 4π

λ )2σ2
r(z))dz∫ hv

0
f(z)dz

, (4.6)

where f(z) equals the exponential function in case of the RMoG model
(Lavalle and Hensley, 2015). The term σ2

r(z) models temporal decorrelation
induced by scatterers movements in the vertical direction, defined as

σ2
r(z) = σ2

g + (σ2
v − σ2

g)
z − zg
hr

. (4.7)

Here, σg is the motion standard deviation of surface layer (m) and σv is
the motion standard deviation of the vegetation layer (m) located at hr, e.g.
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an arbitrary reference height (m) (Lavalle and Hensley, 2012). Solving 4.6
using 4.7 by the method in Lavalle and Hensley (2012, 2015) gives us the
final equation of complex coherence by the RMoG model as

γ̃ = ejϕg
µγg + γ̃e−jϕg

µ+ 1
, (4.8)

where µ is ground-to-volume-ratio and γg is the surface coherence defined
in Lavalle and Hensley (2015). Recently, we proposed a new model for
estimating tree heights using a combination of the PCT structure function
and the temporal decorrelation function of the RMoG model. This model
was tested on single-baseline P-band data from the Remingstorp test site in
Sweden. The results showed that relative error of height estimation decreases
from 37.5% by using the RVoG model to 23.7% by using the modified RMoG
model, called the RMoGL model (Ghasemi et al., 2018b). The equation of
complex coherence by the RMoGL model equals

γ̃ = exp(jkv)

∫ 1

−1
exp(1 + F (z′)) exp(jkvz

′) exp(−1
2 ( 4π

λ )
2
σ′2(z′))dz′∫ 1

−1
(1 + F (z′))dz′

, (4.9)

where kv = kzhv
2 . Here we assumed that σg = 0 and consequently, γg = 0.

This assumption is valid if the time interval between images is short, e.g. less
than a few hours, and study area is within a dense tropical forests and where
the surface is not changing (Lavalle, 2017). Under these assumptions, σ′(z′)
is a function of motion standard deviation of the volumetric layer only and

can be obtained as σ′(z′) = σ(hv(1+z′)
2 ). The final form of complex coherence

obtained by the RMoGL model equals

γ̃ =
ejϕg γ̃e−jϕg

µ+ 1
. (4.10)

Following Cloude (2006); Ghasemi et al. (2018b), 4.9 can be expanded as

γ̃ = exp(jkv)×

(1 + a0)
∫ 1

−1
A exp(jkvz

′) + a1

∫ 1

−1
P1(z′)A exp(jkvz

′)dz′ + ...

(1 + a0)
∫ 1

−1
dz′ + a1

∫ 1

−1
P1(z′)dz′ + a2

∫ 1

−1
P2(z′)dz′ + ...

,
(4.11)
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with A = exp(−1
2 ( 4π

λ

2
)σ′

2
(z′)). The matrix form of 4.9 for multi-baseline

PolInSAR data equals


F 1

1A 0 F 1
3A · · · F 1

2n−1A 0
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. . .
...

...
. . .

...
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a2n0


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1)

Re(γ̃v
1)− F 1

0

Im(γ̃v
2)

Re(γ̃v
2)− F 2

0
...

Im(γ̃v
2n)

Re(γ̃v
2n)− F 2n

0


,

(4.12)

where n is the number of baselines and Fn, n = 1, 2, ... are normalized
Legendre functions described in (Cloude, 2006). The term σ′2(z′) is a scalar
unknown parameter to be estimated when solving the equation system. If we
summarize 4.12 as [Fr] a = g, then the unknown parameters are estimated
by

â = [Fr]
−1
g. (4.13)

To solve 4.13, we need to determine the number of required Legendre coeffi-
cients. This includes choosing the best spatial and temporal set of baselines.
Estimation of the unknown parameters is then divided into several steps as
described and continues iteratively until convergence is reached.

4.2.4 Single-baseline tomography

To assess the contribution of PCT in increasing the estimation accuracy, the
single-baseline tomography with compensation of temporal decorrelation was
compared with the conventional RVoG (Cloude and Papathanassiou, 2003)
and RMoG models (Lavalle and Hensley, 2015). Equation 4.12 for a single
baseline is written as[
F1A 0

0 F2A

]
×
[
a10

a20

]
=

[
Im(γ̃v

1)
Re(γ̃v

1)− F 1
0

]
. (4.14)

Here, we can only estimate two Legendre coefficients and therefore the vertical
reconstruction accuracy is limited. After finding the best spatial and temporal
baselines, the best baseline is selected and used to solve 4.14.
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Figure 4.3: The flow of selecting best pair. kz is the vertical wave number.

4.2.5 Parameter estimation

To find the best spatial and temporal baselines set. We the algorithm shown
in Figure 4.3 and explained in Lavalle et al. (2016a).

As the next step, we estimated the unknown parameters. We assigned
a random value between 0 and 1 to A. The remaining parameters, are
estimated by solving 4.12. We start by adding the maximum possible number
of Legendre coefficients that can be estimated using all images. Starting with
seven full polarimetric images we added two more coefficients for each different
channel resulting into 2np coefficients, where n is the number of baselines and
p is the number of polarization channels. The Legendre normalized functions
from f1 to f2np are calculated and used for obtaining the condition number
of matrix F (Cloude, 2006). The condition number specifies if a matrix
problem is ill-posed and therefore if the inversion procedure is prone to error.
We reduced the number of Legendre function one by one and computed the
condition number at each step. We stopped when the condition number is
below a pre-defined threshold, given by the Cramér −Rao bound (Seymour
and Cumming, 1994; Touzi et al., 1999).

After obtaining the optimum number of parameters and their estimates,
we estimated tree height, ground phase and, at a later step, the motion
standard deviation. For validating the final results, the Lidar height map
was used as the reference data. We plotted histograms of the obtained and
reference height maps. For 36 Regions of Interest (RoIs) covering the full
image and dispersed uniformly over the image, height values were compared
point to point with the reference height map and the average RMSE for each
region was obtained.

4.3 Results

The spatial resolution of each image used in this study is approximately
1.66 m in the range and 1 m in the azimuth direction. The Pauli RGB
image of the study area, the obtained vertical wave number and the synthetic
interferograms are presented in Figure 4.4. The synthetic interferograms
are generated based on orbital information of the sensor and topographic
component of the scene extracted from a DEM. The phase component of the
interferograms is calculated.

We created interferograms for every possible baselines. The generated
interferograms of a randomly selected pair are shown in Figure 4.5.

Next, we optimized the coherence based upon flattened interferograms
and we calculated kz.

Following Figure 4.2, the next step is to optimize coherence for all possible
image pairs displayed in Figure 4.6. The optimized coherence of images
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(a)

(b)

(c)

(d)

Figure 4.4: (a) The Pauli RGB image, (b) SRTM DEM, (c) vertical
wavenumber, and (d) synthetic interferograms from the selected area of
La Lope national park in Gabon calculated based on the ancillary data
(Lavalle, 2017). The latitude and longitude of the top left corner coordinates
are: 0.154197 W and 11.536575 N. The number of pixels are 600×1000 and
each pixel has a size of 1.66×1.66 m2. The black arrow shows the azimuth
direction.
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(a)

(b)

(c)

Figure 4.5: The flattened interferograms of images 1 and 2 after correcting
for flat earth phase and spectral-shift filtering: (a) HH −−HH, (b) HV −
−HV , and (c) V V −−V V . The latitude and longitude of the top left corner
coordinates are: 0.154197 W and 11.536575 N. The number of pixels are
600×1000 and each pixel has a size of 1.66×1.66 m2.
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Figure 4.6: The plot of the 21 possible baselines. The green squares are
acquired SAR images and blue lines are possible baselines. The best baselines
are selected based on both spatial and temporal intervals.

marked with numbers 1 and 2, are displayed in Figure 4.7. Then the volume
and the surface dominated channels are determined according to the method
explained in ?. After determining the volume dominated γv and surface
dominated γs channels, the initial values of hv and ϕg were estimated using
the equations described in Cloude (2006). This is followed by obtaining kv
for each pixel. The complex coherence of each arbitrary polarization channel
(γ̃(w)) was normalized by

γ̃ = γ̃(w) exp(−jkv) exp(−jϕg). (4.15)

Starting with 2× 3× 7 = 42 coefficients by solving 4.12, we estimated the
normalized Legendre functions f1

1 to f21
42 , as described by Cloude (2006, 2010).

We summarize 4.12 as â = [Fr]
−1
g. If a satisfies

||∂a
a
|| ≤ k2

v(γ2
v − 1)√

2L(3 cos kv − (3− k2
v) sin kv

kv
)
, (4.16)

where L is the number of looks (Cloude, 2006), the computations stop,
otherwise, one PolInSAR pair is removed and the process is repeated (Cloude,
2006). In order to select the baseline that should be removed first, all
possible pairs are ranked based upon the temporal and spatial intervals.
The best image pairs are those that have the shortest temporal and longest
spatial baseline. Therefore, removing baselines starts from pairs that have
the longest temporal and shortest spatial baselines. Removing a pair and
re-calculating 4.12 was repeated until the coefficients matrix satisfies 4.15.
Then the structure function was defined according to the optimum number
of selected baselines. Figure 4.8 shows the height map obtained by solving
(13) and the structure functions for different pixels.

The order of the structure function for the whole area changes between
zero for pixels with vegetation cover shorter than 10 m and seven for pixels
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(a)

(b)

(c)

Figure 4.7: The magnitude of first three components of optimized coherence
between images 1 and 2. The latitude and longitude of the top left corner
coordinates are: 0.154197 W and 11.536575 N. The number of pixels are
600×1000 and each pixel has a size of 1.66×1.66 m2.
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(a)

(b) (c) (d) (e)

(f)

Figure 4.8: (a) Obtained height map from applying modified PCT model.
The latitude and longitude of the top left corner coordinates are: 0.154197
W and 11.536575 N. The number of pixels are 600×1000 and each pixel has
a size of 1.66×1.66 m2. The area selected by black rectangle is magnified in
Figures 4.8(b)– 4.8(e). The cross-hair points out pixels with: (b) hv = 10m,
(c) hv = 15m, (d) hv = 27m, (e) hv = 35m inside the black rectangle, and
(f) structure functions for the selected pixels shown by cross-hair vs. the
exponential function of the RMoG model. 57
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(a)

(b)

Figure 4.9: (a) Topographic phase and (b) kv resulting of applying multi-
baseline height estimation with compensation of temporal decorrelation. The
latitude and longitude of the top left corner coordinates are: 0.154197 W
and 11.536575 N. The number of pixels are 600×1000 and each pixel has a
size of 1.66×1.66 m2.

with tree heights taller than 30 m. The estimated structure function is
plotted in Figure 4.8 where the exponential function shows the extremes of
the structure function not necessarily occurring at the top of the canopy layer.
It shows in particular multi-layer complex vertical structures in the vegetation
layer. The resulting topographic phase and kv are shown in Figure 4.9.
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Table 4.2: The average RMSE values and correlation coefficients for two
different height estimation models.

Regular PCT Modified PCT

Average RMSE (m) 7.5 5.6
R2 0.65 0.70

Figure 4.10: The scatter plot of the heights derived by regular PCT (blue
points) and modified PCT (red points) vs. Lidar heights. The R2 = 0.65 for
regular PCT and R2 = 0.75 for modified PCT.

As a comparison, the regular PCT method in Cloude (2006) was applied.
For a point-to-point comparison between the heights obtained from the
modified PCT and the regular PCT models, the RoIs are used. Average
values inside each region were compared to corresponding values on reference
height map. The average RMSE for all regions and R2 values are listed in
Table 4.2.

The scatter plot of the average height values inside the RoIs resulting
from regular and modified PCT models versus Lidar height values are plotted
in Figure 4.10. We observe that results from both height estimation models
have a positive correlation with Lidar data. Also, the correlation between
PolInSAR and Lidar height increased after modeling temporal decorrelation.
We finally observe that the height values of the modified PCT model better
coincide with the Lidar heights.

For providing a visual comparison between Lidar height map and height
resulting from the modified PCT model, the Lidar height map is shown in
Figure 4.11.

We see that the modified PCT model overestimates the height if the
vegetation cover is short, especially in the middle part of image. Meanwhile
the height of taller trees in the right part of image are underestimated by
the modified PCT model. This is confirmed by the histograms (Figure 4.12).
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Figure 4.11: Lidar height map. Selected area is the one shown on Figure
8(a) as well. The latitude and longitude of the top left corner coordinates
are: 0.154197 W and 11.536575 N. The number of pixels are 600×1000 and
Lidar data is re-sampled to have similar pixel size as the PolInSAR images

Figure 4.12: Histogram of obtained height maps and Lidar reference heights.
blue: PCT, red: modified PCT, yellow: Lidar height.

Table 4.3: The average RMSE values and correlation coefficient for single-
baseline tomography, Vs. the RVoG and RMoG models.

RVoG RMoG Single-baseline modified PCT
Average RMSE (m) 9.8 8.5 7.8

R2 0.57 0.68 0.60

The results of single baseline tomography are compared to the RVoG and
RMoG models in Figure 4.13. The RMSE and R2 values are listed in Table 4.3.
Relatively large differences occur between single-baseline tomography and
RVoG model, whereas differences with the RMoG model are small. This is
because the RVoG model ignores any temporal decorrelation. The RMSE
and correlation coefficient clearly show the contribution of multi-baseline
PCT modeling in improving height estimation accuracy.
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(a)

(b)

(c)

(d)

Figure 4.13: The height map resulting of (a) RVoG, (b) RMoG, and (c)
single-baseline tomography with compensation of temporal decorrelation.
The latitude and longitude of the top left corner coordinates are: 0.154197
W and 11.536575 N. The number of pixels are 600×1000 and Lidar data
is re-sampled to have similar pixel size as the PolInSAR images. (d) The
scatter plot of RVoG (blue), RMoG (red) and single-baseline tomography
with compensation of temporal decorrelation (green).
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4.4 Discussion

Tree height estimation using full polarimetric SAR images is challenging
due to temporal decorrelation. This chapter shows that neglecting temporal
decorrelation leads to error in height estimation when using the PCT model.
Mitigating the decorrelation source becomes important if the estimated
heights are used for obtaining other biophysical parameters i.e. biomass.
This can be severe, as according to the past studies (Askne et al., 2013),
biomass is exponentially related to height.
The obtained RMSE values are still relatively large. Previous studies have
shown that an accuracy of 2 m was obtained by using PolInSAR data in
deciduous, boreal and hemi-boreal forests (Praks et al., 2007). Other studies
(Huang et al., 2011; Kugler, 2015; Florian et al., 2006; Hajnsek et al., 2009)
suggest that the final accuracy is related to the wavelength, structure of
trees and density of the vegetation cover in tropical forests (Tebaldini et al.,
2011; Minh et al., 2014). The relatively large RMSE value obtained in our
study could be due to several reasons. First, the L-band is not penetrating
enough to the bottom of the vegetation layer. There are some studies invest-
igating the ability of L- and P-bands to penetrate and represent the vertical
structure for example Pardini et al. (2018). This study compares P- and
L-band PolInSAR data to Lidar by ground-to-volume ratio and performance
of the systems. Second, the number of Legendre coefficients is insufficient
to estimate the height with a high accuracy. Third the hilly terrain of
the study area may affect theresults although we corrected for topographic
phase and masked out the steep slopes at the test site following Minh et al.
(2014); Mercer et al. (2009); Woodhouse et al. (2003). Using multi-baseline
tomographic data and accounting for local incidence angle reduces the to-
pographic effect on estimating height. The topography error, however, is
larger in P-band (Minh et al., 2014). If we could test the suggested model
on P-band images from the same area, the effect of topography and other
sources of errors might become more clear. According to the height maps,
the result of the regular PCT model are affected by temporal decorrelation,
especially for taller trees. This is similar to the results of previous studies
(Cloude, 2006). Another interesting observation from Figure 4.13 is that
both the regular and the modified PCT model overestimate the height for
small trees and underestimate it for tall trees. Overestimation of short trees
has been observed in previous studies (Cloude, 2008). It can be explained by
using a constant temporal decorrelation function for all the image pairs and
using a first order estimation for objects movements while the decorrelation
may change from one pair to another. the This error is also visible when
comparing single-baseline modified PCT with the RVoG and RMoG models
in Figure 4.13(d).
A challenge we faced was the large computation time and the complexity of
the equation system. We have more parameters than observations and often
inversion becomes ill-posed (Lavalle and Hensley, 2015). One suggestion for
overcoming the instability is repeating the solution process several times
and comparing the results after each iteration. The process will stop if the
difference values of the objective function between two iteration becomes
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smaller than a pre-specified threshold. Using a threshold of 10−4 as suggested
in (Lavalle and Hensley, 2015), the average number of iterations in this
chapter was 45. Application of an iterative estimation process is necessary
but not sufficient to guarantee robust parameter estimation. Initial values
for unknown parameters should be selected from a meaningful physical range
to ensure that the outcome is acceptable. Moreover, it is important to
define a suitable threshold for the condition number of the matrix since the
accuracy of height estimation depends on the inversion of an approximately
diagonal matrix. Another problem with using multi-baseline SAR data with
or without compensation of temporal decorrelation is the sensitivity to noise
(Cloude, 2006; Lavalle and Hensley, 2015). Further, we changed the struc-
ture function independently from the motion standard deviation function
according to Lavalle and Hensley (2012). The first order estimation of the
object movements has shown good results in boreal forests. In tropical forests,
however, we may need more accurate estimation of the movements of the
objects. Using higher order functions for modeling vertical movements needs
additional observations and requires more complex calculation.
Another important point is the role of coherence optimization in solving
the equation system. The main role of the optimized channels is to isolate
the volume and surface representations. Note that the linear combination
obtained from the Pauli basis polarization are dependent, although each rep-
resents different physical properties of the scatterers. For example HH−VV,
the double-bounce scattering, amplifies di-hedral scattering contributions
and represents interaction between tree volume and the ground layer, while
HH+VV amplifies surface scattering contributions and represents single
bounce scattering coming from the surface layer. Thus they have been
treated as independent observations in literature like in Lavalle and Hensley
(2015). However, as the estimates of the interferometric coherences at the
different polarizations are affected by uncertainty, multiple polarizations
combinations can be used for a more accurate estimation using Least Squares
technique. Ideally, we should have the linear and circular basis polarization
channels measured by the sensor or have another type of observation. Altern-
atively we could add adding constraints to the equation system to estimate
the unknown parameters. This, however, is not straightforward and requires
more research.
Two main assumptions in this study are limiting when generalizing our find-
ings. First the time intervals between images should be short enough to have
similar weather condition in all PolInSAR pairs. Moreover, the difference
between the look angles of different baselines should be small. Second, the
surface layer should not change during image acquisition time thus σg = 0.
We balanced the generality of temporal decorrelation with the definition of
a vertical layer structure function that is more accurate by making these
assumptions. These assumptions automatically make data acquisition limited
to interferometric pairs that belong to similar weather condition and are
preferably captured during a single day. A more general case of the multi-
baseline PolInSAR data processing along with similar temporal decorrelation
model can be found in Lavalle and Khun (2014), where the vertical structure
function is the general Gaussian function. This specifies a dilemma between
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generality and accuracy when choosing a height estimation method.
For examining the performance of the RMoG and modified PCT models in
estimating temporal decorrelation one pair of zero spatial baseline PolInSAR
images has to be acquired from the same area. In this case the complex
coherence includes mainly temporal decorrelation. This was not possible in
our study since we used the data from a previous campaign. Fortunately,
it has been tested in Lavalle and Hensley (2012) and results showed good
agreement with the RMoG model outcome. Finally, the temporal decorrela-
tion is affected by the movement of the vegetation layer induced by the wind.
This is a limitation of the RMoG and the modified PCT models because
other decorrelation sources i.e. changes in seasonal and moisture content are
not taken into account. Additional studies have concentrated on modelling
other sources of temporal decorrelation (Lee et al., 2013). This can serve
as an interesting point of departure for future studies in a PolInSAR data
processing.

4.5 Conclusions

In this chapter, we combined the PCT model with the temporal decorrelation
component from the RMoG model to estimate tree height. The modified PCT
model was tested on a SAR tomographic stack available from the La Lope
national park in Gabon. The modified PCT model improved the accuracy of
height estimation compared to regular PCT. Moreover, the structure function
was different for different regions on the image. Therefore using the same
exponential function for the whole image is a sub-optimal choice. This means
that for a complex structure e.g. tropical forests, we need to use a specialized
structure function according to the vertical structure of the area. Main
challenges are a heavy computation task and a larger number of unknown
parameters than observations. The importance of temporal decorrelation and
the use of an optimized structure function based upon the vegetation layer
structure, are useful for future satellite missions that estimate tree heights
and monitor forests.
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5Assessment of Forest
Above-Ground Biomass Estimation
from PolInSAR in the Presence of
Temporal Decorrelation

This chapter is based on the published paper: Ghasemi, N., Tolpekin, V. and
Stein, A., (2018). Assessment of Forest Above-Ground Biomass Estimation
from PolInSAR in the Presence of Temporal Decorrelation. Remote Sensing,
Volume:10, Issue: 6, PP.815.

65



5. Above-Ground biomass estimation in the presence of temporal decorrelation

Abstract

In forestry studies, remote sensing has been widely used to monitor deforest-
ation and estimate biomass, and it has contributed to forest carbon stock
management. A major problem when estimating biomass from optical and
SAR remote sensing images is the saturation effect. As a solution, PolInSAR
offers a high coverage height map that can be transformed into a biomass
map. Temporal decorrelation may affect the accuracy of PolInSAR and
may also have an effect on the accuracy of the biomass estimates. In this
study, we compared three different height estimation models: the Random-
Volume-over-Ground (RVoG), Random-Motion-over-Ground (RMoG), and
Random-Motion-over-Ground-Legendre (RMoGL) models. The RVoG model
does not take into account the temporal decorrelation, while the other two
compensate for temporal decorrelation but differ in structure function. The
comparison was done on 214 field plots of the 10 m radius of the BioSAR2010
campaign. Different models relating PolInSAR height and biomass were de-
veloped by using polynomial, exponential, power series, and piece-wise linear
regression. Different strategies for training and test subset selection were
followed to obtain the best possible regression models. The study showed
that the RMoGL model provided the most accurate biomass predictions.
The relation between RMoGL height and biomass is well expressed by the
exponential model with an average RMSE equal to 48 ton ha−1 and R2 value
equal to 0.62. The relative errors for estimated biomass were equal to 46% for
the RVoG model, to 37% for the RMoG, and to 30% for the RMoGL model.
We concluded that taking the temporal decorrelation into account for estimat-
ing tree height has a significant effect on providing accurate biomass estimates.

Keywords : biomass; temporal decorrelation; PolInSAR height; accuracy;
RVoG model; RMoG model; RMoGL model.
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5.1 Introduction

Forest biomass monitoring is important for several reasons: the critical role of
forests on carbon stock and flux, quantification of the effect of deforestation
on greenhouse gas emissions, and its use as an indicator of land cover change
in UN-FAO’s national statistics (Le Quéré et al., 2015; Houghton et al., 2012;
Stocker et al., 2013). Remote sensing has been widely used in past decades
to estimate biomass, monitor deforestation, and carbon stock management
(Lu et al., 2016; Roy and Ravan, 1996; Drake et al., 2003).

Remote sensing for estimating biomass can be divided into two-dimensional
and three-dimensional methods. Two-dimensional methods use optical reflect-
ance or SAR backscatter and relate it to biomass using regression (Le Toan
et al., 1992; Yu and Saatchi, 2016; Gizachew et al., 2016). Satellites such
as LANDSAT and MODIS have been used for this purpose (Lu, 2005;
Muukkonen and Heiskanen, 2007). The main problem with these meth-
ods is that the signal is insensitive to the increase of biomass above a certain
level, i.e. the saturation effect. Therefore, they can only be used for areas
with low biomass such as savannas (Gizachew et al., 2016). In the case of
using SAR data, they can be extended to medium-level biomass if L and P
band or multi-temporal SAR data is used (Rauste, 2005; Montesano et al.,
2013; Santoro et al., 2015; Garestier et al., 2005). In contrast, biomass estim-
ation using three-dimensional methods is more accurate since forest biomass
is strongly related to the vertical structure of the trees (Dubayah et al.,
2010; Yao et al., 2011; Mette et al., 2004; Sexton et al., 2009). Airborne and
space-borne Lidar can provide an accurate height map of the forested areas
that later can be converted into a biomass map (Næsset, 2002; Dubayah et al.,
2010; Ni-Meister et al., 2010). In some studies, ground-based Lidar has been
used to obtain biomass map as well (Yao et al., 2011; Nelson et al., 2017).
Other means of acquiring a height map are photogrammetry, Interferometric
SAR (InSAR) and Polarimetric Interferometric SAR (PolInSAR) (Lavalle
et al., 2008; Neumann et al., 2011). PolInSAR records the reflected SAR
signal from the same objects from two different points in two different times
(Cloude and Papathanassiou, 1998b). InSAR and PolInSAR give a height
map of a lower accuracy than Lidar, but they cover large areas and can be
used under all weather conditions (Hyde et al., 2007; Rahlf et al., 2014).
InSAR can produce a tree height map in two ways, e.g., by subtracting a
DEM from InSAR height or by using dual-wavelength InSAR i.e., TanDEM-X
and E-SAR (Sexton et al., 2009; Neeff et al., 2005; Rombach and Moreira,
2003).

More advanced techniques such as TomoSAR and fusion of LiDAR and
InSAR have also been used to estimate biomass (Minh et al., 2014, 2016; Sun
et al., 2011). These techniques provide more accurate results as compared to
InSAR. The height estimation accuracy of PolInSAR and TomoSAR is directly
affected by the presence of temporal decorrelation (Lavalle and Hensley, 2015;
Le Toan et al., 2011; Ahmed et al., 2011). Temporal decorrelation is the
change in SAR signal reflected from the objects changes in the position or
attributes during the image acquisition time (Zebker and Villasenor, 1992).
We may thus expect that the accuracy of biomass estimation improves
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after mitigating the temporal decorrelation. Recently, the Random-Motion-
over-Ground (RMoG) model has been proposed to compensate the effect of
temporal decorrelation on height estimation using PolInSAR. This model
is based upon the RVoG model combined with modeling motion of trees in
the vertical direction. It has shown promising results in improving height
estimation accuracy up to 20% (Lavalle et al., 2012; Lavalle and Hensley, 2015).
We have proposed the Random-Motion-over-Ground-Legendre (RMoGL)
model based on the RMoG model, but with the Fourier–Legendre series as
the structure function instead of the simple exponential function used in the
RMoG model (Ghasemi et al., 2018a).

The main objective of this chapter is to analyze the accuracy of biomass
estimation after correcting for temporal decorrelation. To do so, the first step
is to develop a model to estimate biomass from PolInSAR height maps res-
ulting from the Random-Volume-over-Ground (RVoG), RMoG, and RMoGL

models. We have selected the Remningstorp forest as a study area as it has
been studied during BioSAR2010 campaign (Ulander et al., 2011b) as the
test site. Both linear and non-linear models were developed to clarify the
relation between PolInSAR height and biomass. The second step is to apply
different strategies for train and test dataset selection to make sure that the
chosen model is general and accurate enough (Reitermanova, 2010). At the
final step, for evaluating the results both field data and Lidar data were used.

This chapter has been organized in the following sections: first, a short
introduction of biomass estimation using remote sensing in general and SAR
data specifically is given. Second, the dataset and study area is characterized.
In the third section, explanation of the methodology is given. In the fourth
section, the results are presented followed by the discussion and the conclusion
sections.

5.2 Materials and Methods

A summary of the methodology used in this study is presented in Figure 5.1.
Hereafter, the methodology is described in details.

5.2.1 Study Area

A complete report about the BioSAR2010 campaign and Remningstorp area
has been published previously (Ulander et al., 2011b). Here, a summary is
provided that is relevant for this study. The Remningstorp forest (58◦30′N,
13◦40′E) is located in the southwestern part of Sweden and has an area of
approximately 1200 ha. The forest type is hemi-boreal, which intermediates
between boreal and temperate forest types (Askne and Santoro, 2012). Dom-
inant forest species are Norway Spruce and Scots pine, and it is completed
by a mixture of oak, birch, and aspen. The elevation range of this area is
between 120 and 145 m above sea level.

68



5.2. Materials and Methods

5.2.2 Field and Lidar Data

Field observations used in this study have been collected resulting in 214
circular plots with a radius of 10 m (Ulander et al., 2011a). The location of
these field plots is shown in Figure 5.2. The area has been divided into several

Figure 5.1: Flowchart of the biomass estimation methodology.

stands based upon the homogeneity of forest cover type. Field plots have
been defined in such a way that they fall into one of these stands completely
to minimize the effect of heterogeneity within the plots. Measurements
inside each plot according to the Heureka forestry system (Wikström et al.,
2011) include an H100 height, defined as the basal area weighted average of
the 10 highest trees in each plot (Mette et al., 2004), Diameter at Breast
Height (DBH), that is defined as the diameter at 1.3 m above ground, and the
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Figure 5.2: Location of field plots on Remningstorp area image. Google
earth V 6.0. Remningstorp, Sweden. The center coordinates are: 58◦30′ N
and 13◦40′ E, and the area is 1200 ha. Eye alt 3.58 km.

dominant tree species. According to the recorded information, 60% of the field
plots is covered by spruce, 30% covered by pine, and 10% dominated by oak,
birch, and aspen (mixed deciduous) trees. Additionally, dry aboveground
biomass, including stems, branches, bark, and needles, has been measured
(Ulander et al., 2011a). For all 10 m radius field plots, biomass was between 6
and 250 ton ha−1 with an average of 105 ton ha−1. The allometric equation
used for measuring biomass is based upon height and DBH (Muukkonen
and Heiskanen, 2007). Allometric equations are the equations that relate
biophysical parameters to biomass. At the plot level, the general form of this
equation equals

B = Nπ

(
1

2
DBH

)2

Hρf (5.1)

where B is the above-ground biomass, N is the number of trees per area
unit, H is the tree height, ρ is the species-related wood density, and f is
a form factor. These equations have been developed for different forests
according to the FAO standard procedure (Picard et al., 2012). Developing
these equations requires excessive field work and the data are only valid
for a 5-year period. After this period, the density and the factor f change,
so the measurements are repeated every five years. In this chapter, we
used the previously developed allometric equations for the test site (Ulander
et al., 2011b). Lidar data of the study area were acquired with an average
density of 69 returns m−2. The airborne Lidar data has been used for two
main purposes. First for evaluating height estimation models i.e., the RVoG,
RMoG, and RMoGL models. Second, the biomass map produced from Lidar
data (Næsset, 2002; Ulander et al., 2011b; Askne et al., 2013) was used for
the assessment of generated biomass maps from PolInSAR heights beside
the field data. The predicted biomass map from Lidar height is presented in
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Figure 5.3: Predicted biomass map by Lidar data provided within campaign
field data (Ulander et al., 2011b).

Figure 5.3. Besides predicting the biomass map, we used the Lidar Digital
Surface Model (DSM) with a cell size of 0.5×0.5 m, as the reference height
map. Since we have the canopy height map, the Lidar DSM is called the
Canopy-Height-Model (CHM) hereafter. This map was derived from the
differences between the first and the last returns of the Lidar pulses and is
displayed in Figure 5.4. Both the predicted biomass map and the CHM have
been used as the reference data sets. The areas with zero height values on
the Lidar CHM are masked on the predicted biomass map. The areas with
taller trees on the Lidar CHM correspond to areas with the highest biomass
values. The two maps show a clear positive correspondence between tree
height and biomass.

5.2.3 PolInSAR Data

During the BioSAR 2010 campaign, 10 PolInSAR images were obtained.
These images were collected with the ONERA SETHI airborne sensor, de-
veloped by the Office National d’Etudes et de Recherches Aérospatiales
(ONERA) (Ulander et al., 2011b). This device can acquire full Polarimetric
Interferometric SAR images in both L and P bands.

Three pairs of P-band images, acquired specifically for PolInSAR analysis,
were chosen for this study. Their spatial baseline is equal to 30 m, the
heading angles equal 199◦, 178◦, and 270◦, respectively, and the sensor height
is approximately equal to 4000 m. The images have been delivered in SLC
(Single Look Complex) format and have four polarization channels: HH,
HV , V H, and V V with HV = V H as the system is mono-static. The
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Figure 5.4: Available CHM from Lidar of the Remningstorp area. Dark
circles show the location of field plots.

ground-range resolution of the InSAR data is 0.5×0.5 m.

Next, after correcting for the flat earth phase (Goldstein et al., 1988), the
complex coherence was obtained according to Cloude and Papathanassiou
(1998b). The optimized coherence channels plus linear polarizations (HH,
HV , and V V ), circular polarization (LL, LR, and RR), and the Pauli basis
polarization (HH + V V and HH − V V ) channels (Lee and Pottier, 2009)
served as input for the RVoG, RMoG, and RMoGL models. These models
are applied on each pair of P-band images separately and the final height
maps are generated by mosaicing the resulting images.

5.2.4 Tree Height Estimation Using PolInSAR Data

Since the Polarimetric Interferometric SAR systems illuminates an area from
two different positions at two different times, any change in the objects is
represented in the form of signal decorrelation. Thus, the height of the
trees, like other properties, can be retrieved by reversing the process of
interferograms generation, e.g., quantifying the decorrelation sources. In
the past decade, the models used for obtaining tree properties were only
taking volumetric decorrelation into account. Volumetric decorrelation is the
inconsistency of the signal caused by the vertical structure of the trees. In the
presence of natural phenomena in particular wind, changes in the position
of the scatterers cause temporal decorrelation. This should be taken into
account when estimating tree height. The following models have been applied
to estimate height without and with accounting for temporal decorrelation.
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5.2.4.1 The RVoG Model

The RVoG model has been popular over the past decade for estimating forest
height (Dobson et al., 1995; ?; Cloude, 2010). It relates the observed complex
coherence to the height of the vegetation layer with the assumption that only
volumetric decorrelation is present. It expresses the volumetric coherence γv,
as

γv =
ejϕg

µ+ 1

[
µ+

p1

(
ehvp2 − 1

)
p2 (ehvp1 − 1)

]
(5.2)

where ϕg is the ground phase, hv is the vegetation height, and µ is the
ground-to-volume-ratio (Cloude and Papathanassiou, 2003). The parameter
µ is added to compensate for the surface scattering mechanism effects on the
observed coherence. It can have any value between 0 and ∞ (Cloude and
Papathanassiou, 2003). The parameters p1 and p2 are defined as

p1 =
2Ke

cos (θ − θs)
(5.3)

p2 = p1 + jkz (5.4)

where Ke is the mean wave extinction coefficient (0 < Ke < 1), θ is the
average look angle (0 < θ < 90◦), θs is the terrain slope angle (0 ≤ θs ≤ 90◦),
and kz is the vertical wave number (0 < kz < 1). The final form of complex
coherence by the RVoG model γR is

γR = ejφg
γv + µ

1 + µ
. (5.5)

To solve (5.5), we need to estimate µ, so we need a polarization channel
as the volume and another channel as the ground scattering representation.
Solving (5.2)– (5.5) is done with a multi-stepwise procedure following Cloude
and Papathanassiou (2003). As the RVoG model ignores temporal decorrela-
tion, it provides biased results if the temporal decorrelation is high. This can
happen due to wind or precipitation. To tackle this limitation, the RMoG
model has been proposed (Lavalle et al., 2012), which models the induced
motion caused by wind in the vertical direction.

5.2.4.2 The RMoG Model

The RMoG model assumes that the vegetation layer consists of randomly
distributed vertical scattering objects located on a rough dielectric layer. The
main difference with the RVoG model here is to assume that both layers have
random movements along the vertical axis (Lavalle and Hensley, 2015). The
complex coherence using the RMoG model γM is obtained as

γM =

∫ hv
0

ρ (z) exp(jkzz) exp
(
− 1

2 ( 4π
λ )2

)
σ2
r(z)dz∫ hv

0
ρ (z) dz

(5.6)
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where σ2
r(z) is defined as

σ2
r(z) = σ2

g + (σ2
v − σ2

g)
z − zg
hr

. (5.7)

Here, hr is the reference height, which is an arbitrary constant value (Lavalle
and Hensley, 2015), λ is the SAR system wavelength, and σg and σv are
the surface and canopy layer motion standard deviations, respectively. The
function ρ(z) is the structure function, which defines the vertical structure of
the vegetation layer. Similar to the RVoG model, the RMoG model assumes
a Gaussian function to represent the structure of the trees. The procedure of
solving (5.6) is explained in details in Lavalle and Hensley (2015).

Here, the primary assumption is that the maximum of the structure
function occurs at the top of the canopy layer and the volume backscatter
and from ground components are distinguishable. This assumption leads to
biased height estimation especially in complex and multi-layer forests (Lavalle
et al., 2012). To improve the accuracy of the RMoG model, and inspired by
Cloude (2010), we have proposed the RMoGL model (Ghasemi et al., 2018b).

5.2.4.3 The RMoGL Model

The RMoGL model is similar to the RMoG model, but instead of an ex-
ponential function, it uses a finite Fourier–Legendre series as the structure
function when considering the motion of scatterers along the vertical axis
(Ghasemi et al., 2018b). Thus, the complex coherence of the RMoGL model
γML

equals

γML
= ejkv

∫ 1

−1
f(z′) exp(1 + f(z′)) exp(jkvz

′) exp(−1
2 ( 4π

λ )
2
σ′2(z′))dz′∫ 1

−1
(1 + f(z′))dz′

.

(5.8)

Here, z′ = 2z
hv
− 1, kv = kzhv

2 , and σ′(z′) = σ
(
hv(1+z′)

2

)
(Ghasemi et al.,

2018b). The ai are normalized Legendre coefficients, and the fi, i = 1, 2, ..., n
are Fourier functions of different orders (Cloude, 2010) defined as

fi(z
′) =

n∑
i=0

aiPi(z
′), (5.9)

where the Pi(z
′), i = 1, 2, ... are Legendre polynomials (Cloude, 2006). If

we assume that σg = 0 according to the short time interval between image
acquisition times, the final form of complex coherence obtained by the RMoGL

model equals

γ =
γML

µ+ 1
. (5.10)

The number of terms in fi(z
′) depends upon the vegetation layer; for more

complex vegetation layers, several terms are needed, whereas a single layer can
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be modeled by fewer terms. Note that, for estimating more than two Legendre
coefficients, we need multi-baseline SAR data. It is argued in Cloude (2010)
that using the first and second terms of the series should be sufficient in most
cases; the accuracy, however, depends upon the complexity of the vegetation
layer. According to the relatively simple structure of the hemi-boreal forest
and the availability of PolInSAR data, we fixed the number of terms to two.
Therefore, parameters to be estimated are ϕg, hv, a1, a2, and σ′(z′). The
way of solving (5.10) is described in Ghasemi et al. (2018b). The solving
method is similar to the RMoG model, but some extra steps should be taken
in order to deal with more number of unknown parameters.

5.2.5 Biomass Estimation Using PolInSAR Data

The most important outcome of the RVoG, RMoG, and RMoGL models is a
height map of the area. Averaged, plot-wise height values are then extracted
from these height maps. In this study, we applied a buffer zone of 10 m to
reduce the border effect.

We used a robust regression model to retrieve biomass from PolInSAR
height. The used algorithm is non-linear least square fitting with LAR
(Least Absolute Resiuals) algorithm for providing the prediction bounds
within a 95% of confidence interval (Chen et al., 2012). According to past
studies, there are different assumptions about the relation between biomass
and PolInSAR height. The first and most common assumption is that the
biomass can be obtained from PolInSAR height by a linear (Gizachew et al.,
2016). In other studies, this relation has been shown to be non-linear (Askne
and Santoro, 2012). Therefore, to find the best model for estimating biomass,
we started by a polynomial model to relate biomass to PolInSAR height.
The general form of this model is

ln(B) =

n+1∑
i=1

αiH
n+1−i (5.11)

where n is the polynomial degree, B is biomass, H is the PolInSAR height
obtained from the RVoG, RMoG, and RMoGL models, and the αi are
coefficients to be estimated. The parameters B and H are standardized and
thus are dimensionless. We determined the number of coefficients by trial
and error, and the final form arrived at a value of n = 3. The polynomial
model is

ln(B) = α1H
3 + α2H

2 + α3H + α4. (5.12)

We stopped to increase n if αi ≤ 0.005 and consequently αiH
n+1−i ≤ 0.15

according to Solberg et al. (2017). As is evident from (5.12), the relation
between biomass and PolInSAR is non-linear.

Another common assumption is that biomass increases proportionally to
the increase of height. Therefore, as a further examination, the one-term and
two-term exponential equations were tested. Furthermore, we tested whether
the power series can describe the relation between two variables. The general
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form of the selected exponential model equals

ln(B) = β1

(
1− e−β2H

)
, (5.13)

and for the power series it equals

ln(B) = ζ1H
ζ2 (5.14)

where the βi and ζi, i = 1, 2 are the coefficients to be estimated.
The reliability of (5.12)- (5.14) is based upon the assumption that the

observed height values have a normal distribution of errors. In our case,
according to Askne and Santoro (2012); Ulander et al. (2011a), outliers occur
in measured biomass values. Robust regression (Rousseeuw and Leroy, 2005)
was therefore applied to avoid the effect of outliers on estimated parameters.
It assigns a weight value to each data point with weights being adjusted
iteratively. In the first iteration, one value, in our case 0.5, is assigned
to all data points, and by using normal least squares the coefficients are
estimated. In the next iterations, the weights are re-estimated to place less
emphasis on the points at a larger distance from model predictions. Next,
the model coefficients are recalculated using weighted least squares. This
procedure proceeds until the difference between each estimated coefficient in
two different iterations is below a thereshold, selected as 0.005 in this study
(Askne and Santoro, 2012).

5.2.5.1 Data Splitting

The selection of a training and a test data set directly affects the reliability
of estimated parameters. Different strategies exist for solving the so-called
“data splitting” problem (Picard and Berk, 1990; Reitermanova, 2010). It
is important to choose a good subset of data for training that preserves
the generality of the model while having high accuracy. These two aspects,
however, are conflicting. For determining the best training subset, we applied
two procedures. First, we selected 75%, 50%, and 25% of the data points
randomly as the training set and carried out the regression. Second, the
field plots were divided into three groups based upon measured biomass
value as low (< 120 ton ha−1), medium (120–240 ton ha−1), and high (>
240 ton ha−1). Half of the data points from each category was then used as
training data and the other half as test data. These two approaches, called
the random and stratified methods, respectively, were compared and the
best method was selected. The modeling procedure was repeated for mean
diameter and basal area to understand how structural properties of trees are
related to the height obtained from PolInSAR images.

5.2.6 Accuracy Assessment

To compare PolInSAR height with ground truth data, the first step is to
convert the height maps from slant-range to ground-range. This was done
using a precise DEM available in the campaign data and using the suggested
method in Ulander et al. (2011b). We used both field and Lidar data as the
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Table 5.1: Summary statistics of the biophysical parameters measured
within plots with 10 m radius.

Parameters Mean Range

Biomass (ton ha−1) 120.04 1.2–315.96
Basal area (m2 ha−1) 26.34 1.35–77.81
Mean diameter (m) 2.39 0.52–5.05

H100 (m) 28.24 13.77–34.77

reference height map. For evaluating the accuracy of three different height
estimation models, the average height inside each plot was compared with
the corresponding values on Lidar CHM and with the H100 value of each plot.
Different metrics were used for evaluating the RVoG, RMoG, and RMoGL

models. To test the distribution of measured and obtained biomass maps
and for comparing them, the Kolmogorov–Smirnov (KS) test was applied. A
one-sample KS test examined the null hypothesis that the data distribution
is a hypothesized distribution against the alternative that it does not follow
such distribution. The test statistic is the maximum absolute difference
between the empirical Cumulative Distribution Function (CDF) calculated
from the dataset F̂ (x) and the hypothesized CDF of G(x), in our case the
normal distribution:

D = max
(∣∣∣F̂ (x)−G(x)

∣∣∣) . (5.15)

A two-sample KS test checks if the two datasets have similar distributions.
The alternative is that the two tested datasets have different distributions.

5.3 Results

A summary of the most important biophysical parameters measured within
field plots is provided in Table 5.1 and a histogram in Figure 5.5. These
values are reported for the whole dataset, whereas the regression analyses
results are based on the selected training data as described in Section 5.2.5.1.

According to Table 5.1, the measured biomass varies from 1.2 to 315.96
ton ha−1. The mean value is 120 ton ha−1 and the median value is 105
ton ha−1, showing that the distribution of the field data deviates from the
normal distribution. Other measured biophysical parameters i.e., basal area
and mean diameter also have a wide range of variation.

The histogram is skewed and shows several peaks. This makes it difficult
to fit a specific distribution function to biomass values. Most plots have a
biomass around 100–130 ton ha−1, whereas the second peak occurs between
200 and 230 ton ha−1. This multi-modal histogram validates our choice to
divide the data into different categories and to select a training data set for
each category. The relation between measured biomass and biomass predicted
by Lidar is presented in Figure 5.6. The relative error is approximately equal
to 12.7%. The plot shows a positive correlation between measured biomass
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Figure 5.5: Distribution of forest plot biomass for the 214 plots at the test
site.

Figure 5.6: Relation between measured and predicted biomass using Lidar
data with R2 = 0.60 and RMSE=0.68 ton ha−1. The points marked with
dark circles are possibly the measurement errors.

and predicted biomass by Lidar height. Two points marked with circles are
most likely measurement errors.

After processing SLC PolInSAR images and obtaining complex coherence
(Cloude and Papathanassiou, 1998a), height maps using the RVoG, RMoG,
and RMoGL models were obtained. The height map generated by the RMoGL

model is shown in Figure 5.7. Figure 5.7 shows a good agreement with the
Lidar CHM of Figure 5.4. For shorter trees, we see that the RMoGL model
overestimates tree heights, while for taller trees the height is underestimated.
Plot-wise averaged height values from three different models were compared
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Figure 5.7: Resulting height map from the RMoGL model.

Table 5.2: Coefficients of the fitted polynomial model (within a 95% confid-
ence interval).

α1 α2 α3 α4(Constant Term) RMSE (ton ha−1) Adjusted R2

RVoG −0.028 −0.063 0.498 4.630 30.87 0.50
RMoG −0.014 −0.083 0.498 3.660 30.80 0.62
RMoGL 0.005 −0.102 0.467 2.694 30.75 0.73

to the corresponding H100 values. The results showed that R2 = 0.43 for
the RVoG model, R2 = 0.47 for the RMoG model, and R2 = 0.48 for the
RMoGL mode. The weak correlation between PolInSAR height and H100
is because H100 is measured based on the tallest trees inside each field plot
while the PolInSAR height represents the average of canopy height. Similarly,
height maps obtained from the RVoG, RMoG, and RMoGL models were
compared with Lidar CHM, and results are shown in Figure 5.8. The Lidar
and PolInSAR heights show a positive correlation. In the case of the RMoG
model, the noise has decreased and the data points are closer to the least
square line. We also observe that the PolInSAR height estimation error
increases with increasing tree heights. Next, we selected training and test
sets for performing regression analyses. The stratified sampling leads to more
accurate biomass estimation. All results hereafter have been obtained using
stratified sampling. The relation between PolInSAR height and biomass was
examined using different models. First, we fitted a polynomial model to
relate the PolInSAR height and biomass. The results are listed in Table 5.2.

The highest R2 and lowest RMSE values were obtained by the RMoGL

model. Another important observation is that, if we set H = 0, then B 6= 0.
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(a) (b)

(c)

Figure 5.8: Relation (in red) between PolInSAR height resulting from:
(a) the RVoG model (R2 = 0.50, RMSE = 0.67 m), (b) the RMoG model
(R2 = 0.69, RMSE = 0.60 m), and (c) the RMoGL model (R2 = 0.78, RMSE
= 0.55 m) with the corresponding averaged height values from Lidar. The
black line presents 1:1 line.

Table 5.3: Coefficients of the fitted exponential model (within 95% confid-
ence interval).

β1 β2 RMSE (ton ha−1) Adjusted R2

RVoG 5.15 0.13 30.87 0.54
RMoG 5.10 0.17 30.75 0.56
RMoGL 5.10 0.18 30.61 0.61

The B value shows the error of the fitted polynomial model for estimating
biomass from PolInSAR height. We can force a no-intercept regression
to estimate biomass, but the RMSE value then becomes high (0.75 ton
ha−1). Next, we correlated height obtained by PolInSAR and biomass via an
exponential model and a power series. The results of fitting the exponential
model are listed in Table 5.3.

Similar to polynomial regression, the RMoGL model is the best model,
with the lowest RMSE and highest R2 value. Previous studies (Solberg et al.,
2017) suggest using an exponential model to estimate biomass from height.
We observed that the RMSE is higher than when using the polynomial
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Table 5.4: Coefficients of the fitted power series (within 95% confidence
interval).

ζ1 ζ2 RMSE (ton ha−1) Adjusted R2

RVoG 2.068 0.277 40.01 0.56
RMoG 2.194 0.274 30.93 0.60
RMoGL 2.224 0.276 30.87 0.65

Table 5.5: The slope and intercept of piece-wise linear regression for the
RMoGL model.

Piece-Wise Regression Slope Intercept Average RMSE (ton ha−1) Adjusted R2

H <8 m 1.73 0 30.91 0.90
8 m ≤ H 0.04 3.20 30.64 0.62

model, and R2 is lower. In contrast with the third-degree polynomial, the
exponential model passes through the origin, hence a zero biomass value for
H = 0. In addition, the power series was tested to estimate biomass, and the
results are presented in Table 5.4.

We obtain higher RMSE values by using power series in comparison with
the polynomial and exponential models. According to the variation of the
data set and to provide further comparison, the piece-wise regression was
also tested. In finding the break points of the dataset, the target is to find y
given the number of break points x, which minimizes the following function

p = |B− interp(Hb, Bb, H)|2 . (5.16)

Here, interp is the interpolation function, Hb is the break point, and Bb is the
interpolation point for the Hb (Strikholm, 2006). The results of piece-wise
linear regression relating biomass to the RMoGL height are listed in Table
5.5.

The piece-wise regression showed good results as compared to the power-
series and polynomial models listed in Tables 5.2 and 5.3. For H > 8 m,
the slope of the line decreases significantly, showing the saturation effect.
For both exponential and piece-wise regression models, the saturation effect
happens when biomass reaches approximately 300 ton ha−1.

The polynomial, exponential, power series, and piece-wise linear regression
curves for the RMoGL model are shown in Figure 5.9. We notice a saturation
effect for H > 8 m in Figures 5.8b,d. Figure 5.8a does not show the saturation
point clearly, which is in line with other studies(Solberg et al., 2017).

According to Tables 5.2–5.5 and Figure 5.8, the most accurate model is the
exponential model, while the piece-wise regression also showed good results.
Since it is more straightforward to fit a single curve to the whole dataset,
we selected the exponential to produce the biomass map. For accuracy
assessment, the remaining 52 plots out of 214 field plots were used as the
test data set. Different metrics were employed for this purpose (Soja et al.,
2013; Lu et al., 2016). These metrics included bias (µ), co-variance (σ),
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(a) (b)

(c) (d)

Figure 5.9: Relation between logarithm of measured biomass and RMoGL

height resulting of: (a) polynomial (R2 = 0.42), (b) exponential (R2 = 0.67)
with prediction bounds within a 95% confidence interval calculated by the
LAR method (c) power series models (R2 = 0.54), and (d) piece-wise linear
model (R2 = 0.60). The biomass values on vertical axis represent ln(B).

Table 5.6: Result of evaluating fitted exponential model using test datasets.

µ(ton ha−1) σ(ton ha−1) RMSE (ton ha−1) Adjusted R2 Relative Error (%)

RVoG 36.81 0.72 62.06 0.45 46
RMoG 27.12 1.97 55.44 0.74 37
RMoGL 15.97 2.09 46.65 0.82 30

root-mean-square-error (RMSE), and the coefficient of determination (R2).
The results are listed in Table 5.6.

Biomass values of the test dataset were compared to corresponding pre-
dicted biomass by the Lidar data, and the results are plotted in Figure
5.10.

Furthermore, the relation between PolInSAR height and mean diameter
on the one hand and basal area on the other have been examined to gain
insight into how these biophysical parameters affect height measurements.
The results are shown in Figure 5.11. The results showed a significantly
better performance of the RMoGL model on test data.

The results of applying two-dimensional KS-test between predicted bio-
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(a) (b)

(c)

Figure 5.10: Relation between measured biomass by PolInSAR data and
predicted biomass by Lidar data for the test dataset: (a) the RVoG model
with R2 = 0.60 and RMSE = 30.85 (ton ha−1), (b) the RMoG model with
R2 = 0.73 and RMSE = 30.73 (ton ha−1), and (c) the RMoGL model with
R2 = 0.92 and RMSE = 30.64 (ton ha−1).

Table 5.7: Parameters of the two-dimensional KS test between biomass
predicted by Lidar and PolInSAR.

h p D

RVoG 0 0.001 0.41
RMoG 0 0.000 0.31

RMoGL 0 0.000 0.21

mass by PolInSAR and Lidar data are listed in Table 5.7, whereas the biomass
map resulting from the RMoGL model is shown in Figure 5.12. The results
showed a positive linear relation between mean diameter, basal area, and
PolInSAR height and the relation between mean diameter and basal area
are stronger. This shows that inclusion of the mean diameter in obtaining
biomass estimation models increases the accuracy of the biomass estimation.

The parameter h equals 0 if the null hypothesis of having similar CDFs is
not rejected and equals 1 if the CDFs are not similar at the 0.05 significance
level. The parameter D is the distance between two dataset distribution

83



5. Above-Ground biomass estimation in the presence of temporal decorrelation

(a) (b)

Figure 5.11: The relationship: (a) between the PolInSAR height from the
RMoGL model and the basal area with R2 = 0.61, and (b) between this
height and the mean diameter with R2 = 0.81 in red.

Figure 5.12: Resulting biomass map from the RMoGL model.

functions and shows the goodness of fit. From Table 5.7, we can see the D
decreased by 50% by applying the RMoGL model.

To provide a better comparison, the predicted biomass by PolInSAR
height was also compared to the measured biomass of the field plots. The
results are shown in Figure 5.13.

The results shows a positive linear relation between PolInSAR predicted
biomass and field biomass for all three height estimation models. Figure
5.13c shows better performance of the RMoGL model, while the other models
show good correlation as well.
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(a) (b)

(c)

Figure 5.13: Relation between predicted biomass by PolInSAR data and
measured biomass in field data: (a) the RVoG model with R2 = 0.55 and
RMSE = 30.97 (ton ha−1), (b) the RMoG model with R2 = 0.69 and RMSE
= 30.76 (ton ha−1), and (c) the RMoGL model with R2 = 0.74 and RMSE
= 30.69 (ton ha−1). Red line is 1:1 line.

5.4 Discussion

In this chapter, we investigated whether correcting for temporal decorrelation
improves biomass estimation accuracy. From the BioSAR2010 campaign,
we selected plots with a 10 m radius, in line with other studies (Askne
et al., 2013). Recorded values for these plots showed that biomass and other
structural parameters had a broad range of varieties. This feature enabled us
to examine how the PolInSAR height is related to different levels of biomass.
Moreover, the effect of saturation was observed.

For evaluating three different height estimation models, the H100 and
Lidar CHM were used as reference data. Neither Lidar nor PolInSAR height
showed a significant correlation with the H100 parameter. The reason is that
H100 represents the tallest trees, while the PolInSAR and Lidar height in
each pixel represents the average of tree heights. In contrast, the Lidar and
PolInSAR height values showed a strong relation. As we expected and as
was shown previously, the relative error of height estimation decreased from
35% for the RVoG model to 18.6% for the RMoGL models.

Since there is no agreement in previous studies whether the correlation
between biomass and tree height is linear or not, we examined different
regression models. The outcome of the training sets should be a model that
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can predict the values for the test data set accurately and meanwhile is
able to predict new data. If the model is over-trained, the accuracy will be
good but the model would not be able to produce good results with new
data. These two aspects, accuracy and generality, is known as the bias and
variance dilemma (Picard and Berk, 1990). It becomes important when
dealing with a high volume of data and when the developed model is being
used in estimating biomass at the global scale. In this study, we tried two
different strategies for data splitting to evaluate the effect of training set data
selection on estimating biomass. The results showed a better performance of
stratified sampling, but the computational time increased threefold. The best
result is achieved by fitting an exponential model. The exponential curve and
the piece-wise regression show a saturation effect for a biomass level above
300 ton ha−1. The saturation level increases from 100 ton ha−1 when using
SAR backscatter (Hansen et al., 2015) to 300 ton ha−1 by using PolInSAR
height as the main predictor. In tropical forests, it is important to consider
the saturation effect since biomass is mostly higher than 300 ton ha−1.

The RMSE of biomass estimation decreased from 46% when using height
resulting from the RVoG model to 30% for the RMoGL model. As expected,
there is a considerable improvement in estimating biomass after modeling tem-
poral decorrelation. The results validated the hypothesis of the improvement
of biomass estimation after correcting for temporal decorrelation.

Our results were compatible with previous studies for the same test site.
For example, InSAR images at C-band were employed to estimate stem
volume and achieved an RMSE value of 27% (Askne and Santoro, 2012).
Similar studies using L and P-bands estimated biomass with RMSE values
between 30–40% for L-band and between 20–30% for P-band (Soja et al.,
2013; Sandberg et al., 2011). Interestingly, recent research in Remningstorp
area using TanDEM-X interferometric heights showed an RMSE value around
16.5% (Askne et al., 2013). This improvement can be due to a larger
number of baselines and a high number of field plots. Other studies in
tropical, temperate, boreal, and hemi-boreal forests (Woodhouse et al., 2003;
Papathanassiou and Cloude, 2003) showed an average error between 2 and
5 m with and average of 3.5 m in estimating tree heights using PolInSAR.
This shows a PolInSAR height can be used to estimate biomass in different
forest types.

The RMSE only, however, cannot be enough to show the model perform-
ance. Based on Table 5.6, the RVoG model has a significant bias, which,
after correcting for temporal decorrelation, has decreased by about 50%.
Moreover, the correlation increased from 0.45 for the RVoG model to 0.82
for the RMoGL model. For the RMoG model, the results were close to the
RMoGL model. The difference is because of the more accurate structure
function in the RMoGL model.

The relation between the RMoGL height and two other structural para-
meters, namely basal area and mean diameter, was also high. This is due to
the capability of P-band in penetrating into the vegetation layer as well as
the Fourier–Legendre series employed in the RMoGL model to represent the
structure of trees. This is an interesting finding since it shows the importance
of taking different vegetation structures into account for estimating biomass.
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Involving other biophysical parameters for example the DBH in estimating
biomass can have a huge effect on improving accuracy.

The result of the one-dimensional KS test showed a different distribution
of measured biomass and predicted biomass by all height estimation models
and Lidar data. The two-dimensional KS test showed similar distribution
functions for predicted values by Lidar and PolInSAR data. The main reason
is that, at the plot level, biomass is measured for individual trees, while
remotely sensed data measure the canopy of trees that are spread around
the tree trunk.

There is a requirement for methods that can estimate biomass at broader
scales. The method and dataset we used here are limited because we used one
pair of PolInSAR images. By using multi-baseline tomographic PolInSAR
images, we can add more terms to the structure function of the RMoGL

model. Therefore, reconstruction of the tree structure has a higher resolution.
We expect that this leads to more accurate biomass maps, but with an
increased computation time.

There are other biophysical parameters of trees i.e., diameter and basal
area that affect the SAR signal. The ideal case would be to develop a model
based on height, diameter, and the basal area of the trees. In the case of
using PolInSAR data, the only observable parameter is tree height. One
possibility is to use the field data together with PolInSAR height, but in
doing so the developed model would only be applicable to this area and
we lose any generality. Thus, we chose to develop a model based on only
PolInSAR height to maintain the general applicability of the model (Askne
et al., 2013; Solberg et al., 2017).

Our findings showed a strong relation between PolInSAR height and
above-ground biomass. The accuracy of biomass estimation improved con-
siderably after correcting for temporal decorrelation. This means that the
accuracy of height estimation is directly related to the biomass estimation
accuracy. This shows the importance of mitigating temporal decorrelation in
estimating height using PolInSAR since such mitigation affects the further
products of height maps such as biomass. At present, the P-band images, on
which we tested our proposed model, are only available in airborne sensors.
Although they will also be available on spaceborne sensors in the near future,
it would be of great value to examine the effect of the correction of temporal
decorrelation on biomass estimation accuracy using other wavelengths, espe-
cially the L-band. As a sequel to this study, we suggest developing a unique
structure function for each tree type according to the availability of the forest
classification map. This will lead to more accurate biomass maps (Noble
et al., 2000).

5.5 Conclusions

This study showed that, after mitigation of temporal decorrelation , the
accuracy of biomass estimation improved by approximately 10%. Therefore,
for producing biomass maps of a desirable accuracy, the temporal decorrel-
ation factor should be considered. The best model selected for estimating
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biomass from PolInSAR was the exponential curve. Furthermore, we showed,
in forests with diverse levels of biomass, that it is a good approach to divide
the area according to the different height classes and use different regression
lines for each class. By using PolInSAR height, the saturation level increases
from 150 to 300 ton ha−1. This is important in tropical forests where biomass
is high and saturation becomes an issue.

A weak relation was observed between remotely sensed height maps and
H100 values. This is due to the sensitivity of remote sensing sensors to the
average height of the tree canopy versus the H100, which represents the
tallest trees inside each plot. Basal area and mean diameter also affect the
SAR signals, and consequently PolInSAR height estimates

The presented results demonstrate the capability of PolInSAR to obtain
biomass maps. This is important since, in the near future, the satellite
BIOMASS mission aims to produce biomass maps with wall-to-wall coverage
of important forested areas.
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6Exploring the Sensitivity of Height
Estimation Models to Adaptive
Coherence Estimation

This chapter is based on the paper: Ghasemi, N., Tolpekin, V. and Stein, A.
Exploring the effect of adaptive coherence estimation on tree height extraction
from PolInSAR data. Submitted to 2019 Living Planet Symposium. 13-17
May 2019, Milan, Italy. Accepted as oral presentation.
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Abstract

Complex coherence plays an important role in most application of PolInSAR.
Most application estimate complex coherence using averaging in a neighbor-
hood window, thus assuming stationarity. Recently, adaptive methods have
been introduced to select the neighborhood that recognizes pixels with similar
polarimetric or polarimetric interferometric properties. This study presents
two methods to explore the effect of adaptive statistically homogeneous pixels
(SHP) selection on PolInSAR height estimation. They obtain the complex
coherence used by the RVoG and RMoGL models to obtain tree height maps.
Data are from L-band tomostack of the La Lope national park in Gabon
with an average tree height of 30 m. The Double-Similarity (DS) method,
which takes into account both polarimetric and interferometric information,
in combination with the RMoGL model had the most accurate height map
with an RMSE of 2.50 m. The Fixed-Point (FP) method with the RMoGL

model had an RMSE value of 3.70 m, the Double-Similarity (DS) method
with the RVoG model had an RMSE of 6.70 m and the FP method with
the RVoG model had an RMSE equal to 8.40 m. The two methods were
compared with the Boxcar and Refined Lee methods as well. This comparison
showed that the adaptive SHP selection methods improved height estimation
accuracy by approximately 17%. The study concludes that adaptive methods
for obtaining coherence improve the height estimation accuracy, irrespective
of the choice for a height estimation model. They, however, require longer
computations.

Keywords: Complex coherence estimation, Double-Similarity, Fixed-
Point, PolInSAR, Tree height estimation, AfriSAR campaign.
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6.1 Introduction

Mapping and monitoring forests have extensively studied in the past (Garestier
et al., 2008; Hajnsek et al., 2016; Le Toan et al., 2011; Schlund et al., 2017).
These two tasks play an important role in the understanding of the climate
and our natural resources. Estimating tree height is important to obtain
biomass as a measure for carbon estimation. To do so the upcoming space
mission BIOMASS aims to map forests using Synthetic Aperture Radar
(SAR) data using full polarimetric sensors at short time intervals (Le Toan
et al., 2011). Thus Polarimetric Interferometric SAR (PolInSAR) data will
be available worldwide to monitor and map forests. PolInSAR (Cloude and
Papathanassiou, 1998a; Papathanassiou and Cloude, 2001; Treuhaft and
Siqueira, 2000) deals with different scattering mechanisms in relation to
their vertical locations. More precisely, the PolInSAR coherence is related
to tree height and is often used together in physical models. Among the
most successful physical models are the RVoG (Cloude and Papathanassiou,
2003), RMoG (Lavalle and Khun, 2014; Lavalle and Hensley, 2015), and the
RMoGL models (Ghasemi et al., 2018b,a). All these models use complex
coherence as the input and deliver tree heights as the output. Accurate
and reliable estimation of complex coherence, thus, is crucial to generate
height maps. Several studies have been dedicated to optimizing complex
coherence estimation. Optimizing coherence based on identifying dominant
scattering mechanisms for single and multi-baseline data first proposed in
?Neumann et al. (2008). Another suggestion made by Colin et al. (2005,
2006); Lopez-Sanchez et al. (2007) assumes equal scattering mechanisms
at both ends of the PolInSAR image pair baseline. Recent studies isolate
the scattering mechanisms in both single and multi-baseline data (Garestier
et al., 2008; Garestier and Le Toan, 2010; Tebaldini, 2009). Examining new
methods for estimating complex coherence was extended to SAR tomography
data as well (Ballester-Berman and Lopez-Sanchez, 2010; Cloude, 2007b;
Tebaldini, 2010). Estimated complex coherence has also been employed to
classify SAR data in addition to mapping tree heights (Lee et al., 2005; Jager
et al., 2007). The common core of these studies is to select homogeneous
pixels following an appropriate similarity criterion. Such a criterion makes
use of either polarimetric (Vasile et al., 2010), interferometric (Jager et al.,
2007), or both polarimetric and interferometric information (Conradsen et al.,
2003; Chen et al., 2012). A PolInSAR pair s1 and s2 consists of two random
matrices following the Complex Wishart distribution. The complex coherence
γ of this pair equals

γ =
E{s1s

∗
2}√

E{|s1
2|}E{|s2

2|}
, (6.1)

where E{.} is the expectation and ∗ is the complex conjugate transpose.
Assuming stationarity and ergodicity (6.1) can be estimated as

γ̂ =
〈s1s2

∗〉Q√
〈|s1|〉〈|s2|2〉Q

. (6.2)
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Here, 〈.〉 is the averaging over a spatial ensemble denoted by Q and Q is
the set of statistically homogeneous pixels (SHPs). be sufficiently large to
ensure accurate estimation of gamma. Q can be estimated in various ways.
A conventional way is the Boxcar method inside a pre-defined rectangular
window. Recently, there is an increasing attention towards using the adaptive
selection of SHPs. For example, Refined Lee (Lee et al., 2003a), wavelets
(Lopez-Martinez et al., 2005), weighted averaging (Cho and Kim, 2007),
adaptive Lee method (Lee et al., 1999), and extended version of it (Lee
et al., 2003b) are among the most popular methods. To separate pixels with
different scattering mechanisms polarimetric decomposition methods have
been suggested as well (Lee et al., 2003a; Mullissa et al., 2017). A recent
study proposed Fixed-point (FP) method that uses polarimetric scattering
mechanism of pixels to select SHPs. Most of these methods like the FP,
use only polarimetric information and ignore the interferometric phase. To
address this issue, a new method based on the complex covariance matrix
including both polarimetric and interferometric information, has been pro-
posed by Chen et al. (2012). This method is called Double-Similarity (DS)
and has been tested on the BioSAR2008 data from Northern Sweden and
on simulated PolInSAR data. The effect of its use, however, has not been
examined on producing PolInSAR forest height map.
The objective of this study is to assess the accuracy of height estimation
when using adaptive SHP selection methods for obtaining complex coherence.
Double-Similarity (Chen et al., 2012) and Fixed-Point (Vasile et al., 2010)
have been applied in addition to Refined Lee and Boxcar methods. All meth-
ods were applied with varying window size. Estimated complex coherence
serves as input for the RVoG (Cloude and Papathanassiou, 2003) and RMoGL

(Ghasemi et al., 2018a) models. The accuracy of the obtained height maps
acquired from the RVoG and RMoGL models is used as a criterion to evaluate
the efficiency and reliability of the different complex coherence methods. The
selected dataset for this study is L-band PolInSAR images acquired during
the AfriSAR campaign at the La Lope national park in Gabon (Schlund
et al., 2017).
Rest of the chapter is organized as follows. First, the used dataset and study
area in addition to two complex coherence estimation methods are described.
Second, the results are presented and then the discussion and conclusion
sections are provided.

6.2 Materials and Methods

6.2.1 Study area and data set

AfriSAR campaign data that was sleceted for this study, was designed and
conducted to support the future satellite missions BIOMASS, that focuses on
forest monitoring and vegetation parameters estimation (Dubois-Fernandez
et al., 2016). A subset of this campaign study area that was selected for this
study is a tropical forest in Gabon. The central coordinates of the region are
0.5◦W and 11.5◦N and it has an area of 4910 km2 (Dubois-Fernandez et al.,
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Figure 6.1: La Lope National park in Gabon studied during the AfriSAR
campaign. The Pauli RGB is made of: red for HH, green for HV , and blue
for V V channels.

2016). The Pauli RGB image of the full polarimetric L-band images acquired
by UAVSAR sensor is shown in Figure 6.1. Selected L-band Single-Look-
Complex (SLC) images have spatial baselines ranging from 20 m to 120 m
with a 20 m interval. Temporal baselines vary from 22 minutes to 175 minutes.
For the generation of the L-band tomostack, calibration and co-registration of
the acquired images were performed using SRTM DEM and SAR orbital data
following the process explained in Lavalle et al. (2016b); Dubois-Fernandez
et al. (2016). Resulting tomostack has a spatial resolution of approximately
1.66 m in the range and 1 m in the azimuth directions, respectively. Pauli
RGB and phase component of the HV channel interferogram of the master
image are shown in Figure 6.2.

As Figure 6.2 shows, the area is covered by a mixture of forest and agricul-
ture lands. The presence of speckle is noticeable and variation of topography
is severe. These conditions provide us with the opportunity to examine the
effect of adaptive complex coherence estimation over a heterogeneous and
complicated forest. In addition to SLC images, Lidar data is available for the
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(a) (b)

Figure 6.2: L-band SLC stack of the La Lope national park (1000×600
pixels). (a) Pauli RGB of the master track (HH −V V : red, HV : green, and
HH + V V : blue). (b) Phase component of the HV interferogram [◦].

study area acquired by LVIS instrument from the Jet Propulsion Laboratory
(JPL) of the National Aeronautics and Space Administration (NASA). The
Lidar Canopy-Height-Map (CHM) is used as the ground truth for validation.

6.2.2 Adaptive estimation of complex coherence

As Figure 6.2 suggests, the area is covered mainly by forest and agriculture
lands. The condition of the study area give us the opportunity to examine
the effect of adaptive coherence estimation methods over a heterogeneous
and complicated forest.

6.2.2.1 Boxcar and refined Lee

The boxcar method is based on incoherent averaging of the pixels within
a pre-defined rectangular Q. This is the most simple method for defining
Q (Lee et al., 2003b). Refined Lee method uses the minimum mean square
error (MMSE) to perform the averaging. To do so, a linear model is used for
de-spckling and the coefficients are defined based on the SHPs within the Q
(Lee, 1986). Boxcar and Refined Lee methods have been compared with the
FP and DS methods that are explained hereafter.
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6.2.2.2 Fixed-point estimator of the complex coherence

For a mono-static SAR system, the target vector in the Pauli basis equals
(Cloude, 2007a)

K = [k1, k2, k3]. (6.3)

For vector K, the Probability Density Function (PDF) function is obtained
by

P(K) =
exp(−K∗T−1K)

πd det T
, (6.4)

where, T = E{KK∗} is the PolInSAR coherency matrix, and d = 3 for a
full polarimetric image. The Maximum Likelihood (ML) estimator of the
coherency matrix equals (Chen et al., 2012)

T̂ =
1

n

n∑
q∈Q

KqKq
∗, (6.5)

where n is the number of samples. Following Yao et al. (2011), Kq can be
estimated as

Kq =
√
τzq, (6.6)

where z is the speckle vector with zero mean, and τ is called ”texture
descriptor”, which is a positive unknown variable defining the randomness
of spatial variation in neighboring pixels. Covariance matrix of τ is defined
as M = E{zz∗} and represents the polarimetric information change (Ran-
gaswamy et al., 1995).
The ML estimator of M under the assumption of identical independently
distributed pixels within a neighborhood and d = 3 equals

M̂ =

∏n
q=1

1
τq3

exp
(

Kq
∗M−1Kq

τq

)
π3qdet (M)

3 . (6.7)

Given M , the ML estimation of the τ equals

τ̂q =
Kq
∗M−1Kq

3
. (6.8)

For estimating M 6.9 is used (Vasile et al., 2010)

M̂FP = ˆf(MFP ) =
3

n

n∑
q=1

zqzq
∗

zq∗M
−1
FP zq

. (6.9)

M is estimated itratively and the initial value is the identity matrix. The
condition to stop the iteration is (Pascal et al., 2008a)

D =
||Mq+1 −Mq||F
||Mq||F

≤ ε. (6.10)
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Here, ||.||F is Frobenius norm and ε is a predefined threshold (Pascal et al.,
2008a). In Pascal et al. (2008b,a) it has been shown that 6.9 is independent
from textural variability of the local window i.e. it is independent from τ
and contains polarimetric information only.
For estimating the normalized coherency matrix over the selected SHPs, the
following equation is applied

M̂q =
3T̂

Tr(T̂)
, (6.11)

with

T̂ =

∑
q∈Q KqK

∗
q

card(Q)
. (6.12)

Here, card(Q) is the cardinality of Q. Combining 6.7 to 6.10, normalized
estimator of the coherency matrix over Q equals

M̂l =
3

card(Q)
×
∑
q∈Q

KqK
∗
q

K∗qM̂l−1Kq

, (6.13)

where l = 1, 2, ... and M̂0 = I3. The final step is to obtain span image of the
neighborhood and multiply it by the M̂ estimated from 6.13 (Vasile et al.,
2010).

6.2.2.3 Double-similarity method

Since the complex coherence obtained by 6.13 contains only polarimetric
information, DS method has been proposed to include the interferometric
phase as well as the magnitude. Following Chen et al. (2012), for two fully
polarimetric images s1 and s2 with target vectors K1 and K2, the 6 × 6
complex covariance matrix equals

C6 =

〈[
K1

K2

] [
K∗1 K∗2

]〉
=

[
C11 Ω12

Ω∗12 C22

]
. (6.14)

Here, C11 and C22 are 3×3 Hermitian covariance matrices for image s1 and s2

respectively. The Ω12 matrix contains the polarimetric interferometric phase
correlation between two different channels and is not Hermitian. Following
Chen et al. (2012), the PolInSAR covariance matrix can be presented as

C6 =

[
C11 0
0 C22

]
+

[
0 Ω12

Ω∗12 0

]
= Cpol + Cint. (6.15)

Here, Cpol has only polarimetric information and thus is sensitive to speckle
and scattering mechanisms variation whereas Cint contains both polarimetric
and phase information.
To apply DS method for each candidate neighbor pixel (xp, yq), two indicators
are proposed. The first is RPolIn, defined as

lnRPolIn = L(2d ln 2 + ln(det (X)) + ln(det (Y))− 2 ln(det (X)) + det (Y)),
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(6.16)

where X is the initial Q and Y is the initial Q when a potential candidate
pixel for the SHP is added. The null hypothesis and alternative hypothesis
are H0 : Cx = Cy H1 : Cx 6= Cy respectively. It has been shown in Chen et al.
(2012) that if lnRPolIn = 0 then X = Y and for lnRPolIn < 0 for X 6= Y.
The second indicator is Rpol that only includes polarimetric information and
defined as

lnRPol = L(2d ln 2 + ln(det (Xpol)) + ln(det(Ypol))− 2 ln(det(Xpol + Ypol))).

(6.17)

Here, Xpol =

[
X1 0
0 X2

]
and Ypol =

[
Y1 0
0 Y2

]
, and both follow a Wishart

complex distribution. If RpolIn > ε and Rpol > ε, then the pixel (xp, yp) is
accepted as similar pixel where ε equals

ε =

√
dD

L
. (6.18)

For PolInSAR where d = 6 and for PolSAR d = 2
√

3, D is the minimum
number of required SHPs, and L is the number of looks (Pascal et al., 2008a).
Ultimately, the ML estimator of the covariance matrix of pixel (xp, yp), is

Ĉ(xp,yp) =
1

D

D∑
l=1

C6l. (6.19)

Here, C6l is the original 6 × 6 covariance matrix. After repeating this
procedure for all pixels the PolInSAR complex coherence is obtained (Cloude
and Papathanassiou, 1998b).

6.2.3 Height estimation using adaptive complex coherence estimators

Complex coherence obtained with the four selected methods is used as the
input for height estimation models i.e. the RVoG and RMoGL models. The
output of the two models is compared with the Lidar CHM. The best method
is then selected based on the accuracy of the estimated height. A summary
of the procedure is presented in Figure 6.3.

6.3 Results

6.3.1 Complex coherence estimation

For performing the analyses a subset of the image was selected. The top
left corner of Figure 6.2 was chosen to include both topographic variation
and different types of vegetation cover i.e. forest and agriculture land. The
complex coherence estimation methods were applied by varying the window
size from 9× 9, 11× 11, and 15× 15 pixels. Results of choosing an 11× 11
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Figure 6.3: Flowchart of the methodology for selecting the best adaptive
coherence estimation method.

window are shown in Figure 6.4. For the visual comparison of different
adaptive methods, the area marked by a red square in Figure 5 is enlarged in
Figure 6.5. According to Figure 6.5, the best method is DS (Figure 6.5(b))
as it achieves the most speckle reduction and detail preserving i.e. lines
shown on Figure 6.5. The worst quality can be observed by applying Boxcar
method (Figure 6.5(c)). The FP method (Figure 6.5(d)) has performed
well on preserving the lines but has not reduced the speckle as compared to
other methods. Refined Lee (Figure 6.5(a)) had an average performance on
reducing speckle and improving visual quality. For providing a quantitative
comparison signal-to-clutter (SCR)(Kim and Lee, 2012) ratio values for the
displayed subset in Figure 6.5 is listed in Table 6.1. Table 6.1 shows the
highest SCR belongs to the DS method applied on VV channel as also
confirmed by Figure 6.5. The FP method produced high SCR values as
well. Refined Lee and Boxcar methods had the lowest SCR values. For the
subset displayed in Figure 6.4, mean and standard deviation values were
obtained and are reported in Table 6.2. Values provided in Table 6.2 show
how much speckle has been reduced after applying different methods. The
best performance i.e. lowest std comes from DS and FP methods. For
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(a) (b)

(c) (d)

Figure 6.4: Results of adaptive methods on a 400×400 subset located at
the top left corner of Figure 6.2. (a) Refined Lee, (b) DS method, (c) Boxcar,
and (d) FP method. The window size for all methods is 11× 11. The red
rectangle is a 85× 85 subset shown in Figure 6.5.
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(a) (b)

(c) (d)

Figure 6.5: Enlarged magnitude image of the red rectangle shown in
Figure 6.4 (85× 85 pixels) by applying (a) Refined Lee, (b) DS, (c) Boxcar,
and (d) FP methods.
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Table 6.1: Signal-to-Clutter-Ratio for the selected area on Figure 6.5 for
different polarimetric channels. Values are in Decibel (dB).

HH HV V V

Boxcar 8.3 5.2 12.7
Refined Lee 15.7 6.3 18.3
FP 17.08 8.5 21.01
DS 20.55 10.7 23.05

Table 6.2: Mean and standard deviation (std) of coherence magnitude of
the selected subset on Figure 6.4 for HH, HV, and VV channels using 11×11
window.

Mean Std

HH HV V V HH HV V V

Boxcar 0.95 0.83 0.85 0.04 0.04 0.05
Refined Lee 0.90 0.83 0.86 0.04 0.05 0.05

FP 0.88 0.82 0.84 0.38 0.03 0.04
DS 0.86 0.79 0.80 0.05 0.03 0.03

Table 6.3: Mean and standard deviation (std) of the coherence magnitude
using 9×9 and 11×11 windows on HH, HV and VV.

Mean Std Mean Std

HH HV V V HH HV V V HH HV V V HH HV V V

9 ×9 window 15 ×15 window

Boxcar 0.90 0.89 0.82 0.06 0.04 0.06 0.95 0.87 0.88 0.05 0.04 0.06
Refined Lee 0.87 0.87 0.81 0.05 0.05 0.05 0.90 0.85 0.85 0.05 0.04 0.05

FP 0.85 0.85 0.80 0.05 0.05 0.05 0.90 0.85 0.85 0.04 0.03 0.05
DS 0.83 0.80 0.80 0.04 0.03 0.04 0.85 0.82 0.80 0.04 0.03 0.04

assessing the effect of local window size we applied all the four methods
using 9 × 9, and 15 × 15 pixel windows as well as 11×11. The result is
summarized in Table 6.3. A similar trend to Table 6.2 can be observed from
Table 6.3. Better results were obtained with 15×15 window size, however,
due to losing details using big window size is not advised. Thus all the results
hereafter are produced with an 11×11 pixel window. For visualizing the
difference between Boxcar, Refined Lee, and DS, the phase component of the
original HV channel complex coherence, is shown in Figure 6.6. As Figure 6.6
suggests, DS method has the smoothest interferogram while preserving the
fringes. Refined Lee method reduced speckle to a good extent but linear
details have been lost. Boxcar reduces speckle, however, blurring effect also
occurred.
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(a) (b) (c)

(d) (e) (f)

Figure 6.6: A subset (400×400 pixels) of the HV coherence phase component
by applying :(a) Refined Lee, (b) DS, and (c) Boxcar methods. Images (d)–(e)
are 85×85-pixel enlarged images of the shown area on part (a).

6.3.2 Height estimation and validation

Complex coherence was obtained with the four methods described in Section
2 and used as input for the RVoG and RMoGL models. Resulting tree height
maps and Lidar CHM are presented in Figure 6.7. The better performance of
DS method for the RVoG and RMoGL models is clearly visible in Figure 6.7.
Overall, RMoGL model had more accurate results, however, the RVoG
model accuracy also improved by employing DS method. For evaluating
how adaptive complex coherence estimation methods contribute to the final
produced height maps, the RMSE and R2 values between acquired results
and Lidar CHM were obtained. Additionally, the histograms and density
functions of the height maps and Lidar CHM are provided. Histograms of the
height maps vs. Lidar data presented in Figure 6.8. We can see the heights of
trees are underestimated by using FP method whereas by using DS method,
the height estimation improved considerably. The RMoGL model performs
better independent from the choice of the coherence estimation method.
Using DS method improved results for shorter trees specifically in both RVoG
and RMoGL results. For taller trees, however, a bias can be observed with a
slightly better performance of the DS method. In Table 6.4, the RMSE and
Relative error values of the tested methods have been presented. They confirm
a better performance of the both RVoG and RMoGL models by using DS.
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(a) (b)

(c) (d)

(e)

Figure 6.7: Height map of La Lope national park by: (a) RVoG model by
applying FP, and (b) RVoG model by applying DS, (c) RMoGL model by
applying FP, (d) RMoGL model by applying DS, and (e) Lidar CHM.
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(a) (b)

Figure 6.8: Histograms of: (a) RVoG model by applying FP and by applying
DS, (b) RMoGL model by applying FP and DS vs. Lidar CHM.

Table 6.4: The RMSE and relative error of different adaptive complex
coherence estimation methods in comparison to Lidar height.

FP method DS method

RMSE (m) Relative error (%) RMSE (m) Relative error (%)

RVoG model 8.40 36.40 6.70 31.00
RMoGL model 3.70 17.30 2.50 14.40

Table 6.5: R2 values between PolInSAR height resulting from different
adaptive methods and Lidar height.

FP method DS method

R2 R2

RVoG model 0.55 0.58
RMoGL model 0.65 0.70

The best result is obtained with the RMoGL model when using DS method.
Figure 6.9 shows the scatter plots of the displayed subset on Figure 6.5 used
as another tool for comparison. Correlation coefficients obtained from these
plots are listed in Table 6.5. These values show the improvement of height
estimation accuracy by using DS method because of taking into account phase
as well as polarimetric information. Table 6.6 compares the computational
times of each method. As it shows, the computational time of the RMoGL

model using DS method is three times longer than using similar set up with
RVoG model. Refined Lee and Boxcar methods are close in computation time
whereas FP has a moderate time. We should notice that using the RMoGL

model is computationally heavy (Ghasemi et al., 2018b) and combining it
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(a) (b)

Figure 6.9: Scatter plots of: (a) RVoG model using FP method (�) and
DS (∗), (b) RMoGL model using FP method (�) and DS (∗) vs. Lidar CHM.
Displayed lines are least square ones.

Table 6.6: Computation time (minutes) of different methods in combination
with the RVoG and RMoGL models for 400×400 pixels.

DS FP Refined Lee Boxcar
RVoG model 60 45 20 15

RMoGL model 180 120 60 45

with an adaptive coherence estimation increase computational task.

6.4 Discussion

Estimation of complex coherence by PolInSAR dependens upon selecting
SHPs. Several studies have been dedicated to different methods for SHP
selection (Vasile et al., 2010, 2006; Touzi et al., 1999). These methods
commonly use polarimetric and texture information of the image. PolInSAR,
though, consists of both interferometric and polarimetric data. As shown in
the results, using only polarimetric features does not assure they have the
same phase information and vice versa. Thus employing only one source of
information may cause non-homogeneous pixels to be selected as SHPs.

To solve this problem, the DS method has been chosen and the results
are compared to Refined Lee and Boxcar, and the FP method. A clear
improvement was observed using FP and DS methods as compared to Refined
Lee and Boxcar methods. Moreover, DS method increased the results of SCR
value (Table 6.1) as well as the quality of images. This proves importance of
using phase information in selecting homogeneous neighborhood.

For examining the effect of window size on estimating coherence, 9×9,
11×11, and 15×15 windows have been tested. In general, a larger window
size allows to reduce speckle but leads to the loss of details. Boxcar treats
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all pixels inside the window equally and thus the blurring effect is visible
in Figure 6.4(c) and Figure 6.5(c). The Refined Lee method obtains pixels
weights and has better results compared to Boxcar method. The homogeneous
pixels may not exactly fall into a pre-defined rectangular neighborhood. Since
FP and DS examine homogeneous pixels based on different strategies, using
larger window size i.e. 15×15 and 17×17 is also possible. Table 6.3 showed
larger window size leads to better results i.e. lower standard deviation
values. Using 15×15 windows, however, blurred out linear details. Thus,
we had to choose between good performance and preserving details. When
selecting 7×7 or 9×9 windows, most of the details are preserved but the
probability of finding homogeneous pixels inside a small neighborhood is low.
Therefore, we decided to apply a medium size i.e. 11×11 being a trade-off
between performance and preserving details. For the selected subset shown in
Figure 6.6, the number of similar pixels varied between 10 and 65. Differences
between methods are then visible on interferograms.

Using DS method improved tree height estimation accuracy in both RVoG
and RMoGL models. The effect on the RVoG model result is considerable
while it does not affect the RMoGL model accuracy as much. The reason
is using different structure function in the RMoGL model which has the
flexibility to match with multi-layer vertical structure. This also shows
the RMoGL model is more resistant to speckle. In addition, according to
Figure 6.9, the scatter plot for the RVoG model shows better performance
of the DS method on both RVoG and RMoGL results. These observations
showed stability and higher SCR values in addition to lower standard deviation
for the DS method.

The computation time of the DS and FP methods are approximately three
times longer than those of the Boxcar and Refined Lee methods. Moreover,
selecting a suitable method for coherence estimation is dependent on the
application. Thus in the case of a big dataset and fast data browsing
selecting Refined Lee and Boxcar may still be a suitable choice. For detailed
analysis and in the case of sensitive data, more precise methods for coherence
estimation leads to more accurate height estimation at the cost of longer
computations. Thus one specific method is preferable to others in some cases
whereas other methods are preferred otherwise. A selection is best based on
the dataset, application and available computational resources.

6.5 Conclusions

Different methods for PolInSAR complex coherence estimations have been
applied and the results were compared using several criteria. The results
showed better performance of the adaptive methods for choosing homogeneous
pixels inside a sliding window. Among all applied methods, FP and DS
have been selected and applied for tree height estimation using the RVoG
and RMoGL models. DS method improved the result of the RVoG model
considerably while it had only a slight effect on the RMoGL model. This
shows the stability of the RMoGL model to the method used for SHP
selection. Using DS also reduces blurring and patchiness. Since the adaptive
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methods require longer computations, a trade-off should be made between
the sensitivity of the data and speed of the computation. In case of the
RMoGL model, according to the complexity of the model itself and light
improvement of the height estimation accuracy, using heavy-task methods
is not recommended. In the case of the RVoG model, it has been observed
in this chapter that using adaptive estimation of the complex coherence can
improve the accuracy, especially in tropical dense forests with high variation
of topography.
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7. Synthesis

7.1 Research findings and conclusions

This chapter addresses the main research findings and conclusions of the
dissertation. It summarizes how the objectives were achieved and the research
questions have been answered. It also presents the direction for future research
and recommendations.

I Objective 1: To explore the possibilities of improving tem-
poral decorrelation modeling by using a more accurate backs-
cattering scenario.

In this objective, I explored how height estimation accuracy can be
improved in the presence of temporal decorrelation is present. For
this purpose, I combined a Fourier-Legendre series with the temporal
decorrelation scenario of the RMoG model. According to this model,
the main cause of the temporal decorrelation is the scatterers movement
in the vertical direction, e.g. the movement of leaves and small branches
induced by the wind. This motion can be represented by a Gaussian
function. To avoid having an ill-posed equation system, I employed
the first order approximation. In addition a finite number of Fourier-
Legendre series was used as the structure function. Fourier-Legendre
series have previously been used in Polarimetric Coherence Tomography
(PCT) to reconstruct the vertical profile of the trees in details. I
investigated the possibility of using Fourier-Legendre series and the
motion component of the RMoG model and called the new modified
model the RMoGL model. I tested the RMoGL model on P- and L-band
PolInSAR images acquired during BioSAR2010 campaign designed and
conducted by ESA.

I further applied the RVoG and RMoG models on the same dataset.
The RVoG model neglects the presence of temporal decorrelation. It
assumes that the structure function is an exponential function. For
the RMoG model, a similar structure function is used. The main
difference is the movement of objects that increases from the bottom
to the top of the vegetation layer. To compare the RVoG, RMoG and
RMoGL models I used a Lidar height map. Field data were available
for regions defined according to the campaign design. These datasets
were compared with the resulting height maps from the three models.

The RMoGL model delivers a tree height map which is more accurate
than those obtained from the other models. For L-band, however, the
RMoG model had a similar performance. The RVoG model showed the
least accurate results in both P- and L-bands. The RMOGL model
showed to be of importance for future SAR sensors which are aimed at
tree height and biomass estimation.

The following research question has been answered:

I Can using a more accurate structure function improve height es-
timation accuracy by PolInSAR?
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Changing the structure function of the RMoG model and replacing
it with the Fourier-Legendre series improved height estimation
accuracy on P- and L-bands from a boreal forest. The RMoGL

model increased the height estimation accuracy as compared to
the RVoG and RMoG models for P-band. For L-band the RMoG
model was equally good due to the different penetration depth of
the SAR signal and strong double-bounce scattering. Moreover,
the RMoGL model showed more flexibility in modeling different
structure types of the vegetation layer (Chapter 3). This conclusion
can be useful as a support for future satellite missions operating
on P-band. The multi-step procedure proposed in Chapter 3
for solving an equation system with more unknown parameters
than the observations must be considered when dealing with more
complicated vegetated areas.

I Objective 2: To modify PCT and combine it with temporal
decorrelation scenario for processing tomographic SAR data.

In this objective, I explored if tomographic SAR data processing can
be merged with the temporal decorrelation function of the RMoG
model. To do so, I investigated how to expand the RMoGL model for
multi-baseline SAR images. The previously introduced PCT model
was combined with the motion of objects in the vertical direction. The
dataset was a tomostack of L-band images acquired during the AfriSAR
campaign performed by ESA in Gabon. A tropical forest located at La
Lope national park in Gabon was selected as the study region. It has a
heterogeneous multi-layer complicated forest cover.

The optimum number of Fourier-Legendre terms was selected for each
pixel separately. This could be done since the available multi-baseline
SAR images provided sufficient observations for solving the equation
system. The number of terms started from two and incrementally
increased. Motion components were added as unknown parameters to
these non-linear systems. The optimum number was determined after
solving the equations with different numbers of terms. According to
Chapter 4, more terms were needed for pixels with taller trees and
multi-layer tree coverage to acquire accurate height estimation. To
evaluate the accuracy a Lidar height map was used as ground truth.
A novelty in this chapter was the use of histograms in addition to the
RMSE values. They provide a better understanding of how height
maps obtained by tomoSAR differ from those obtained by Lidar data.

The combination of the PCT model with the temporal decorrelation
scenario of the RMoG model increases the accuracy of forest height
estimation. This is of value for tropical forests inventories where it has
been a challenge to estimate tree height and biomass. Future satellite
sensors will be able to collect multi-baseline SAR data and thus rely
on the findings of this objective. The following research questions have
been answered:
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I How can the PCT model be modified to mitigate for temporal de-
correlation caused by objects movements in vertical direction?

Results showed that the modified PCT model improves tree height
estimation considerably.

I How many terms are needed to make a trade-off between vertical
reconstruction detail and the number of model parameters to be
estimated?

Using the Modified PCT model requires to select an optimum
number of terms for each region of the area. This was done
using trial and error. Starting from two terms of the series in
addition to the motion components, terms were added one by one.
For pixels and regions with trees taller than 20 m, more terms
were required, whereas shorter trees, especially lower than 10 m,
were adequately modeled by two basic terms of Fourier-Legendre
series. Properly dealing with temporal decorrelation and use of
an optimized structure function based upon the vegetation layer
is essential for accurately observing tropical forests.

I Objective 3: To exploit the effect of taking into account tem-
poral decorrelation in height estimation modeling on biomass
mapping accuracy.

In this objective, I investigated the effect of using the modified RMoGL

model that takes into account the temporal decorrelation on biomass
estimation accuracy. As PolInSAR can provide us with high coverage
height maps, we can use such height maps to obtain biomass. To do so,
allometric equations are needed that relate height or other biophysical
parameters to the above ground biomass. As described in Chapters
3 and 4, height estimation improved by modifying the conventional
RVoG and RMoG models. In this objective, the proposed RMoGL

model is employed to derive the height map of the Remingstorp test
site, Sweden. Moreover, the RVoG and RMoG models were applied.
To transform height into biomass, I further developed a new allometric
equation with the help of measured biomass values during the fieldwork
performed for BioSAR2010 campaign. In total, more than 200 field
plots were available. Modeled data were related to height values by a
regression model. For this purpose, I examined several data splitting
methods to choose training and test datasets. Additionally, several
regression methods have been applied.

This study concluded that taking the temporal decorrelation into ac-
count for estimating tree height has a significant effect on providing
accurate biomass maps. The following research question has been
answered:
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I Is biomass estimation accuracy affected by mitigation of temporal
decorrelation and if the answer is yes, how much?

After compensation of temporal decorrelation, the accuracy of biomass
estimation improved on average by 10%. Thus, for producing biomass
maps of a required accuracy, the temporal decorrelation component
should be taken into account. The best method for relating biomass
to PolInSAR height was shown to be the exponential curve. Moreover,
as discussed in Chapter 5, in forests with various levels of biomass, it
is useful to separate the area according to the different height clusters
and use different regression lines for each cluster. This is particularly of
value in tropical forests where biomass is high and biomass estimation
is challenging.

I Objective 4: To assess the sensitivity of PolInSAR height
estimation models to different methods of obtaining the com-
plex coherence.

In this objective, I investigated the sensitivity of the newly proposed
RMoGL model to the complex coherence estimation method. As the
complex coherence estimation acts as the base for estimation height,
the method is important. To do so, I started with the first step of
complex coherence estimation which is finding homogeneous pixels.
There are several methods to do so. Conventionally, a rectangular
area is defined and surrounding pixels are assumed to be homogeneous.
Newly proposed methods, modify the similar pixels selection procedure.
Within this expanded area, any pixel that satisfies the homogeneity
condition is chosen irrespective of the final shape of the area. These
adaptive methods for estimation complex coherence act based on only
polarimetric or polarimetric interferometric information. I selected
Fixed-point and Double similarity methods and applied them to the
multi-baseline tomostack of La Lope national park. These methods were
compared with the Boxcar and Refined Lee methods. The outcome
of the two methods then served as inputs for estimating unknown
parameters of the RVoG and RMoGL models. In addition, the influence
of window size was examined. The height maps obtained using different
settings were compared to the Lidar map to assess the accuracy.

It was concluded that adaptive methods for obtaining coherence in-
crease the height estimation accuracy, no matter which height estim-
ation model is selected. This, however, comes at the cost of longer
computations. The following research questions have been answered:

I What is the dependency of height estimation accuracy on the com-
plex coherence estimation method?

The better performance of the adaptive methods for choosing
homogeneous pixels inside a sliding window was shown in Chapter
6. The Fixed-point and Double similarity have been examined
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for tree height estimation using the RVoG and RMoGL models.
Double similarity improved the result of the RVoG model consider-
ably while it did not have an equally strong effect on the results of
the RMoGL model. Using Double similarity also reduced blurring
and patchiness.

I Does it pay off to invest on using adaptive methods for estimating
complex coherence in combination with elaborated PolInSAR height
estimation models?

Since the computational task of the double similarity is twice large
as that for other methods, a trade-off should be considered between
the sensitivity of the data and the speed of the computation. Be-
cause of the complicated nature of the RMoGL model, combining
adaptive methods for coherence estimation is not recommended.

7.2 Reflections

This research focused on improving tree height estimation accuracy in different
forested areas by using a modified physical model applied on P- and L-band.
This was accomplished in four steps:

I Fourier-Legendre series were selected to reconstruct the vertical struc-
ture of trees. This function was combined with a first-order approx-
imation of Gaussian movement of scattering objects in the vertical
direction. Combination of a detailed vertical reconstruction and tem-
poral decorrelation compensation was introduced to improve the height
estimation accuracy of a single-baseline PolInSAR data.

I Providing a solution for handling temporal decorrelation in processing
tomostack SAR data, the PCT model was merged with the temporal
decorrelation related to the leaves and branches motion and the number
of optimum structure function terms was decided according to the
biophysical and geometrical parameters of trees.

I Assessing the accuracy of biomass maps obtained by PolInSAR height,
a modification was proposed along with the conventional RVoG model.
For developing new allometric equations, the best data splitting and
regression methods were selected among different available options.

I Assessing the effect of adaptive complex coherence estimation methods
on the final resulting height maps by employing different ways of
choosing homogeneous pixels and examine the impact in combination
with the RVoG and RMoGL models.

These steps contributed to the improvement of forest height estimation
by means of PolInSAR applied to single and multi-baseline data.

According to the goal No.15 of the sustainable development goals an-
nounced by United Nations (UN), the protection, and revitalization of forests
and the combating of deforestation plays an important role toward sustain-
able development. The forests used to cover 4.1 billion hectares on the
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whole planet in 2000, whereas in 2015 the coverage decreased to 4.0 billion
hectares. The rate of deforestation is alarming but it has slowed down after
2005. This shows that global efforts have been effective. The UN–REDD
(Reducing Emissions from Deforestation and Forest Degradation) program
was launched in 2008 calling the experts to develop new models and share
their expertise toward estimating biomass and forest biophysical parameters.
This dissertation contributes to the global expert communities trying to save
the forests worldwide. The finding of this thesis showed that handling a
systematic error in the PolInSAR height estimation models will impact the
quality of mapping forests.

Another aspect that the findings from this research are going to have an
impact is sharing the developed allometric equations in Chapter 5 with the
remote sensing portal for foresters built by the FAO (Food and Agriculture
Organization). This portal will give national organizations and responsible
people an opportunity to inspect the results we achieved and how to use them
at local scale. The lack of accuracy was the main shortcoming of the RVoG
model that was overcome in the past by combining the physical motion and
RVoG backscatter scenarios. I had the pleasure to discover how the RMoGL

model for reconstructing the motion of scatterers in the vertical direction
improved the accuracy of estimated tree heights. This contribution is going
to be at the disposal of national and global experts via UN-REDD portals
and thus may contribute toward sustainable forest management. According
to the characteristics of this dissertation and initial objectives, several aspects
of modifying the height estimation model were considered. For instance,
defining the non-linear equation system, identifying ways of solving it and
assigning the initial values are important achievements. If the local and
national organizations have access to remote sensing portal of UN to upload
their knowledge about different forest areas, then it can be transferred to
the developing new technology and data processing techniques generally and
to stabilize the equation systems specifically. Moreover, local expert system
knowledge can be employed to define the level of complexity of the required
for height estimation modeling, e.g. defining the optimum number of terms in
Fourier-Legendre series as discussed in Chapter 3 and 4. It would be good to
be involved in development of the future sensors, i.e. BIOMASS and NISAR
(NASA-ISRO Synthetic Aperture Radar) to provide the opportunity to test
the newly developed models.

Apart from the large effects the forest loss has on biodiversity and hu-
manity, a major consequence of deforestation is the emission of heat-trapping
carbon dioxide (CO2) into the atmosphere. Forests have the role of carbon
sinks on our planet. Thus when destroyed or burnt they release carbon into
the atmosphere. CO2 emission is the main component of human factors
affecting the climate change. According to REDD, forest clear-cutting and
conversion to other land use is responsible for approximately 10% of net
global carbon emissions. Therefore, solving the problem of deforestation is a
prerequisite for any effective response to climate change. After witnessing
the many warning signs of climate change and global warming earlier than
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expected, mapping and monitoring of forest areas should be taken more
seriously. There, remote sensing plays an important role. We can stabilize
a simple global monitoring system with the help of future sensors and then
elaborate it targeting the needs of individual countries based on the gathered
knowledge in expert systems.

An important aspect covered in this thesis was transforming height maps
into biomass maps that later should contribute to carbon stock estimates.
Surprisingly, I discovered only a few sources that was addressed in the
contribution of height maps to the final biomass estimation accuracy. Here I
had to answer the question: “How much do we need to improve the height
estimation models for biomass mapping purpose?”. Unfortunately, there is
no unique response to that question since there is no common agreement
between foresters and other responsible organizations. For some areas, like
European forests that are already well studied and technology is sufficiently
developed, I strongly recommend to apply the more accurate models since
they can be a pilot place to test how PolInSAR affects the carbon stock
management. I propose to perform broad campaigns by airborne sensors
and later by the spaceborne sensors in these areas to develop models with
sufficient accuracy. The results demonstrate the capability of PolInSAR to
obtain biomass maps especially for the satellite BIOMASS mission that aims
to produce biomass maps with wall-to-wall coverage of forests.

7.3 Recommendations for future research

This thesis explored how to tackle temporal decorrelation in PolInSAR caused
by objects movements induced by wind. The proposed models improved
height estimation accuracy by PolInSAR but had several limitations on the
other hand. The following recommendations are made to further investigate
and improve in the proposed methods:

1. The temporal decorrelation model discussed in this thesis focuses only
on objects movements in the vertical direction e.g. induced by wind.
Changes in the moisture content and seasonal changes, as well as natural
phenomena like landslides, are not taken into account. We recommend
modifying the model further to include moisture content and seasonal
changes as well as natural disasters like landslides.

2. The computational task of the proposed methodologies is still an im-
portant issue especially in processing large datasets (big data). An
efficient model should be adopted as a trade–off of having both temporal
decorrelation and an accurate vertical structure function. Additionally,
using adaptive methods for selection of homogeneous pixels improves
the accuracy of height estimation of simpler models like the RVoG
model. Therefore, replacing complex coherence estimation methods
with more efficient ones should be further explored.

3. All proposed methodologies, especially adaptive complex coherence
estimation, are based on the estimation of the coherency and covariance
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7.3. Recommendations for future research

matrices. Regretfully, there is a lack of knowledge about the uncertainty
that comes with estimation of these matrices. This should be addressed
in future studies.

4. Unfortunately, in-situ measurement of the tree height and biomass were
not available from the tropical forest located in Gabon. This happened
due to the timing for releasing the complete dataset by European Space
Agency. It is recommended to compare the results of the modified PCT
model with average tree height inside each sampling plot and moreover,
check the final accuracy after using adaptive methods for coherence
estimation using the field data as well as the Lidar data similar to the
process explained in Chapter 3 and 5.

5. The development of an index for structural complexity and various
wind conditions within forested areas, followed by selecting height
estimation model should be further investigated. This would save time
and resources in case of processing frequently renewed datasets in the
near future.
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