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1. Introduction

1.1 General Introduction

Fire is one of the most important ecological drivers on the planet. Whilst its

initial impacts upon the environment are seemingly destructive, fire also plays

an important role in the functioning and regeneration of ecosystems, along

with providing a catalyst for changes to ecosystem successional processes. Ap-

proximately 348Mha of the earth’s surface is affected by fire every year [24],

with fire activity predicted to increase due to the effects of a changing climate

[10, 47, 14]. Fires can occur in almost all of the varied land cover types through-

out the world, with the exception of desert and arctic areas, with the spread

and intensity of fire driven by fuel volume, fuel moisture and weather condi-

tions. Whilst lightning is generally the cause of fires in more remote parts of

the landscape, the majority of fires are started by humans. In the United States

for instance, it is estimated that 84% of all wildfires are started by humans, with

strong correlation between fire location and human activity [1, 44]. The eco-

nomic impact of wildfire is estimated to be between USD 70 billion and USD 348

billion annually in the United States alone [81], and in Australia the impact of

individual fire events on residences, agriculture, forestry and the environment

can reach beyond AUD 1 billion alone [79]. Fire also contributes a significant

amount to global carbon emissions into the atmosphere, with [87] estimating

total wildfire emissions worldwide at 3.53Pg annually, which equates to almost

40% of of total carbon emissions [70].

With these impacts in mind, finding methods to efficiently measure and

monitor wildfire is of vital importance. Information about fire in the environ-

ment can assist in mitigation planning and asset management for fire author-

ities, assists in the minimisation of fire impacts on human lives and commu-

nities, and of course can help to address problems such as carbon accounting

and ecosystem impacts of fire.

Early detection of potential wildfires is also vital to assist with the strategic

and effective management of wildfire situations. Obtaining this information

in an accurate and timely manner in-situ can be a difficult task. Historically,

fire authorities have placed equipment and manpower in elevated areas for fire

spotting purposes, with fire reporting to this day remaining reliant upon eye-

witness accounts from people close to the fire activity. In populous areas this

type of fire detection can be effective at generating location information about

a fire, and may generally estimate the time of ignition well, but lacks the abil-

ity to generate quantitative information about fire size, intensity, growth rates

and general behaviour. However, fires may also go undetected in remote, un-

derpopulated areas, or where resources do not exist to capture all fire activity

comprehensively.
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1.1. General Introduction

Remote sensing has become a vital source of information about wildfire ac-

tivity where traditional coverage is lacking. It also has become a vital source of

information with regard to fire intensity, burned area, and for estimates of car-

bon emission. Satellite remote sensing of fire is possible due to the radiative

emission of wildfire and the transmittance of important wavelengths of electro-

magnetic radiation through the earth’s atmosphere. Depending upon the type

of fuel and weather conditions, wildfire generally burns at between 700–1000K,

which provides a peak in blackbody radiative output at around 4µm in the elec-

tromagnetic spectrum. This peak in radiative energy is several orders of magni-

tude above the radiative emission of land at a typical background temperature

of 300K. This wavelength in the electromagnetic spectrum happens to coin-

cide with a ”window” or peak in the atmospheric transmittance of the earth’s

atmosphere, which means that radiation emitted at this wavelength travels

relatively unimpeded through the atmosphere into space. These two factors

contribute to the situation where the radiation at the peak fire wavelength is

not only easy to detect, but that fire activity stands out in high contrast to the

background temperature. This means that fires do not have to be large relative

to the ground sampling size of the sensor in order to be detectable as anoma-

lous energy sources. This lucky break has led to the proliferation of methods

for fire detection from various satellite remote sensors.

The possibility of fire detection and monitoring was first explored by [11],

whose work used a bispectral method to attempt to identify hot sub-pixel tar-

gets within a uniform background. This was the first work utilising remote

sensing to attempt to identify characteristics of anomalous temperatures, in-

cluding the portion of pixel affected by the anomalous activity, and the temper-

ature of the anomaly source. This method was utilised for a number of differ-

ent fire detection algorithms for a number of different sensors [48, 63, 57, 42],

and is still the main driver of the WF-ABBA fire algorithm used upon GOES

satellites over the Americas [45]. A number of flaws were identified in the

use of this bi-spectral relationship, and these are highlighted in [22], which

included the sensitivity of the method to error when dealing with small fires.

In the mid-1990s, a new method of anomaly detection was proposed by [40],

which involved use of the contextual area surrounding the potential anoma-

lous pixel as the source of the estimate of the temperature of the target pixel.

This method quickly caught on as the preferred method of determining fire

background temperature, and became the basis for a number of fire detection

algorithms [15, 23, 43, 9, 19, 61, 76], and is the main driver of fire background

temperature for the commonly used MODIS [26] and VIIRS [75] active fire de-

tection products.

The detection of fire from satellite remote sensor systems involves trade-
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1. Introduction

offs between spatial, radiometric and spectral resolutions, and varying accu-

racy - all dependent upon the type of sensor in use for the task. Early remote

sensing sensor systems (e.g. AVHRR [16]) lack the spectral band-pass widths

found on more modern sensors (e.g. VIIRS [92]), and often have poor radiomet-

ric resolution and low saturation temperatures. This hampers their usefulness

for accurate description of fire activity. The bulk of effort from the scientific

community in this field in the 1990s and 2000s focused upon the sensors in

Low Earth Orbit (LEO), such as AVHRR, MODIS, VIIRS, BIRD, Firebird, and oth-

ers. Sensors in these polar orbits are set to pass over the observation areas

at specific times of the day (generally late morning or early afternoon) to max-

imise the effectiveness of the visible bands for image capture. With the lower

orbits of LEO sensors, generally between 450–900km, the spatial resolution

available is very high, enabling small areas of fire activity to be identified in de-

tail. Despite this, coverage of the temporal activity of fire is limited due to their

sun-synchronicity, with typically between 3 - 5 images available daily from a

constellation of LEO sensors such as MODIS. In the mid 2000s, advances in the

sensors being placed in geostationary orbits led to increased activity in the de-

tection of fire from sensors at this orbit. Whilst geostationary (GEO) satellites

orbit the earth at 35.786km, which leads to diminished spatial resolution due

to the distance to the earth, these GEO sensors are fixed in their viewpoint of

the earth, and provide continuous coverage dependent upon the temporal res-

olution of the sensor. This fixed view provides the ability to monitor change

over time, and provides the ability to approach fire detection using a different

framework.

Whilst many efforts such as the WF-ABBA [45], GOES [95] and MSG-SEVIRI

related fire detection algorithms [28] focused upon extension of the single im-

age contextual algorithms into the GEO sensor space; innovative ways of us-

ing the temporal stream of data supplied by GEO sensors started to appear

in the mid 2000s. The work of [27] first examined the modelling of the di-

urnal temperature cycle for land surface temperature estimation, by way of

a prescriptive model using data from the METEOSAT sensor. Use of the di-

urnal cycle for potential fire anomaly isolation was proposed in [84], which

used a Kalman filter for temperature modelling purposes. A number of differ-

ent multi-temporal techniques for determining fire activity have spawned from

this work [86, 83, 85, 65, 13] and research continues to focus upon refinement

of background temperature modelling in the diurnal temporal space.

This decade has seen opportunities grow in the GEO space for more accu-

rate fire detection, with new sensors providing improvements in their tempo-

ral, spatial and radiometric resolutions. The previous generation of GEO satel-

lites launched in the mid-late 2000s, which includes MSG-SEVIRI, MT-SAT2, and
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1.2. Problem Statement

GOES 13-15, provided between 15–30min temporal coverage of their respective

full disk areas, with a typical spatial resolution of 4km in the thermal bands

used for fire detection. These sensors (with the exception of SEVIRI) are now

making way for a new generation of GEO satellites launched in the mid-late

2010s. The launch of AHI-8 [60] in 2014 by JAXA over the Asia-Pacific, followed

by the launches of GOES-16 and 17 in 2016 and 2018 [72] has led to significant

improvements in sensing capability. These new sensors are capable of captur-

ing full disk images with 10min recapture time, and the spatial resolution of

all infrared bands on these sensors is 2km. These sensors are also capable of

short term mesoscale captures, with areas of up to 1000 × 1000km capable

of being captured at one minute intervals. This gives an unprecedented view

into short-term changes on the earth’s surface, at a spatial resolution far more

suited to the isolation of fire activity. This drive from new sensors and data

streams also heightens the necessity for more research in this area, to most

effectively utilise the new information about the earth’s systems coming from

these sources.

1.2 Problem Statement

Early and reliable active fire detection is of great importance to land managers,

to assist in risk assessment, mitigation strategies and minimisation of harm to

both people and assets [80]. With the timeliness of fire detection in mind, and

with shortcomings in current LEO fire detection products due to temporal cov-

erage [61], a need for strategies and systems that apply predominately to geo-

stationary sensor imagery has been identified. Whilst geostationary sensors,

especially those from the current generation of new satellites (AHI-8, GOES-R),

exhibit high temporal refresh rates, their spatial resolution is far more coarse

than the sensors that the current standard fire detection products are based

upon. The effect of systematic errors that occur in the use of brightness tem-

perature estimation from situational context is acknowledged but poorly un-

derstood, and the effect of coarser spatial resolution may exacerbate these

errors further.

Whilst the common remotely sensed fire products are generally based upon

techniques that are applicable to discretely captured events, due to being based

on information taken from sensors that move relative to the earth’s surface,

geostationary images allow for the continuous capture of information from a

fixed location in orbit over time. Leverage of the temporal domain for fire de-

tection has been successful from geostationary images using various methods

[56, 65, 84, 66], but these have focused upon deriving estimates based upon
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1. Introduction

the data from individual pixels, sacrificing the use of relevant spatial-based

correlations. An opportunity lies in the development of techniques that utilise

both spatial and temporal relationships to drive more robust and accurate es-

timation than those driven solely from either of these domains.

Given the problems intrinsic to fire detection, and more broadly anomaly

detection, techniques for estimation must be robust in the face of anomalies

in any training process attached to them. Clouds, smoke and fires have large

roles to play in the necessity for secondary false alarm processes in current fire

detection methods. The focus of any estimation technique developed should

be in mitigating the influence of these factors on the training, modelling and

subsequent estimation process, with a view to minimisation of these secondary

tests that may introduce or exacerbate error in resultant anomaly attribution.

1.3 Research Questions

In order to address the gaps identified in section 1.2, four research questions

are identified and outlined below:

Question 1. What is the effect of systematic and structural errors caused by

the use of spatial contextual estimation in common fire detection techniques?

Whilst contextual estimation is an accepted form of temperature estimation

for fire detection, there have been no studies previously that demonstrate the

expected errors in such estimates, or the specific landforms and conditions

that may propagate these errors. This question aims to provide a comprehen-

sive breakdown of the expected error in such estimations based upon applica-

tion to imagery from the AHI-8 geostationary sensor, and examine the causes

over a number of case study areas.

Question 2. How can we use the common diurnal variation of upwelling

radiation to estimate brightness temperature in a robust fashion?

Areas at similar latitudes will receive similar solar radiation budgets — use

of this assumption can allow us to create models of the expected temperature

based upon the standardised form of the diurnal cycle for a specific latitude.

This question aims to derive a method of temperature estimation that takes

advantage of the high temporal frequency of the imagery from AHI-8 to create

a time-corrected idealisedmodel of diurnal variation in brightness temperature.

This will exploit non-cloud affected areas and apply this information to more

obscured regions. This technique is called the Broad Area Training method (or

BAT).

Question 3. How effective is the new Broad Area Training method at iden-

tifying fire-related brightness temperature anomalies in comparison to other
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fire detection methods?

This question addresses the ability of the brightness temperature estima-

tion method outlined in the response to Question 2 to identify anomalous pix-

els in a near-real-time fashion. The method is tested over a range of anomaly

temperature thresholds, and comparisons are made to fire products derived

from low earth orbit imagery to compare timeliness and potential for omission

error.

Question 4. How can we use similarities in image characteristics over time

to improve temperature estimation over a single-image contextual approach?

Given the weakness of contextual estimation results as a function of avail-

able adjacent land pixels, an opportunity lies in leveraging similarities in image

values over both time and a wider area to provide an improved set of candi-

date pixels for temperature estimation. This question outlines a new method

of spatio-temporal sampling of candidate training pixels for use as brightness

temperature estimators in subsequent imagery. The work identifies criteria

for training pixel selection, and compares estimates of brightness temperature

back to those derived from contextual estimation.

1.4 Thesis Structure

Presented in this thesis are four research chapters that address the questions

asked in 1.3. Chapter 2 tests the currently acceptedmethod of background tem-

perature estimation over imagery from a geostationary sensor to determine the

errors associated with this method’s use, along with isolation of the potential

causes of such errors. Chapter 3 of the thesis introduces the Broad Area Train-

ing method of brightness temperature estimation, which provides temperature

fitting of candidate pixels based upon the idealised diurnal cycle of pixels at

similar latitudes. Chapter 4 examines an application of the method outlined in

Chapter 3 for the purpose of isolating potential temperature anomalies, plus

provides a comparison to commonly used polar earth orbiting sensor based

fire products to determine rates and times of detection. Chapter 5 introduces

the use of the spatio-temporal selection method for background temperature

estimation, and provides example images and comparisons to contextual es-

timates for a number of case study areas. Finally, the thesis concludes with

a synthesis chapter which collates the research presented in the thesis and

discusses the potential of the methods presented not only for fire detection

purposes but for other types of environmental monitoring.
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2. Estimating Fire Background Temperature at a Geostationary Scale — An
Evaluation of Contextual Methods for AHI-8

2.1 Introduction

Satellite remote sensing has become a vital tool in the arsenal of land man-

agers, not only for the initial detection of active fire, but as part of inputs

for modelling and planning purposes. Timely and accurate fire information

from remote sensing enables preparation and planning for mitigation activi-

ties, along with providing vital information about fire behaviour and character-

istics [78]. Increasing importance is being placed upon active fire products to

calculate metrics such as fire radiative power and burn severity [68], in order

to obtain an understanding of how the environment burns, and also to provide

input for environmental modelling and quantifying outputs such as carbon

emissions from fire.

Active fire detection from remote sensing relies on elevated levels of radi-

ation in the infra-red wavelengths caused by the blackbody radiation emitted

from fire [68]. The typical energy emitted by fire at medium wave infra-red

(3 – 4µm) wavelengths can be several orders of magnitude higher than reg-

ular radiation levels, which are primarily made up of thermal emission from

the surface and solar reflection [67, 29]. This disparity in energy levels allow

fires that are much smaller than the pixel area to be detected, as the extra en-

ergy from a fire will overwhelm the background level of radiation [78]. This

propensity of fire to overwhelm the background signal presents a problem for

fire detection purposes as well. The ability to determine whether a pixel is

fire-affected is dependent upon knowing what the pixel should look like in the

absence of fire [23]. Accurate knowledge of the differential between fire sig-

nal and background allows fire to be detected, and enables the calculation of

common fire-related metrics such as fire radiative power (FRP) [66].

Without the ability to directly measure the background temperature of a

pixel in the event of fire, fire algorithms have largely utilised the land area

surrounding a target pixel to facilitate estimation of the background tempera-

ture, a method known as contextual estimation [21, 19, 9, 73, 46, 66, 88]. For

pixel brightness temperatures in the medium wave infrared, spatial autocor-

relation is primarily driven by latitude, with adjacent pixels receiving similar

amounts of solar radiation, along with climatic conditions, which homogenise

land cover over localised regions. This was highlighted in [66], who stated the

assumption of neighbouring pixels having the same surface background char-

acteristics was implicit in the fire algorithm developed in that work. This work

[66] also stated that ”... the extent to which this is true depends of surface spatial

This chapter was published in a peer-reviewed journal as: Hally, B., Wallace, L., Reinke,
K., Jones, S., Engel, C., & Skidmore, A. (2018). Estimating Fire Background Temperature at a
Geostationary Scale — An Evaluation of Contextual Methods for AHI-8. Remote Sensing, 10(9).
https://doi.org/10.3390/rs10091368
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homogeneity and the sensor spatial resolution.” There has been no thorough ex-

amination of how surface homogeneity affects the accuracy of fire detection

algorithms, despite this assumption being prevalent in active fire algorithms

and products. Contextual measurements are also influenced by obscuration

due to cloud or smoke, which may lead to decreased infra-red radiation in pix-

els adjacent to a target pixel [58]. Additionally, adjacency to water bodies may

eliminate some pixels from being used in contextual calculations, with islands

and coastal regions particularly susceptible to errors caused by reduced land

surface availability. Examples of how these scenarios may influence the calcu-

lation of background temperature may be seen in Figure 2.1.

Figure 2.1: Examples of contextual temperature determination scenarios — (a) uniform

contextual surroundings, with low spatial variance; (b) land cover change (yellow/green),

with pixels of multiple land cover classes contributing to the estimate; (c) waterbodies

(dark blue), which permanently obscure part of the contextual kernel; (d) cloud obscura-

tion (hatched blue), which intermittently cause missing contextual data; and (e) smoke

(grey), which provides directional partial obscuration of downwind pixels, and is less

likely to be masked out of images than cloud.

Land surface temperature is a well covered topic in remote sensing [50,

17, 69, 93, 52, 96], but most techniques focus upon use of thermal infrared

(8 – 12µm), which lacks a solar reflection component. This has led to an in-

tegration of land surface temperature techniques encompassing a combina-

tion of medium-wave and thermal infrared bands for fire detection purposes

[26, 90, 9, 66, 62], due to the differential response between these two wave-

lengths to emitted energy from fire. Such methods rely on accurate knowledge

of the sensor response to temperature in both infrared bands and their relation

to one another, and often rely on arbitrary statistical thresholds to relate the

two bands for detection purposes, and studies such as [22] have highlighted

issues with the use of bispectral methods of fire detection. Algorithms exclu-

sively usingmedium-wave infrared for background temperature detection have

generally used this approach for calculation of metrics such as FRP, which is

less reliant on highly accurate temperature information to achieve satisfactory

results [95, 65, 91].

The successful launch of the AHI-8 sensor in 2015 has expanded the avail-

ability of geostationary satellite image data for the Asia-Pacific, both in the

spatial and temporal resolution domains [39]. The increased spatial resolution
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of the sensor, which achieves 2km × 2km resolution in the medium wave and

thermal infrared bands, and the increased temporal coverage of the sensor,

which records an as-yet unparalleled 10min refresh rate for geostationary full

disk images, provide opportunities to image and analyse the sensor’s coverage

area in far greater detail than previously [30]. The fire detection and examina-

tion capabilities of the sensor have already been demonstrated inmultiple stud-

ies [59, 94, 88, 31]. These studies use a mix of contextual and multi-temporal

techniques to detect and monitor fire activity, but as yet there has been no

definitive fire algorithm for all conditions adopted for use with this sensor.

Fire detection algorithms perform a number of tests to not only isolate ele-

vated sources of radiation, but to also eliminate false positive detections. Tests

are usually made to mask cloud, which can trigger some detections through

elevated reflectivity in the medium-wave infra-red, for masking excess solar

reflectivity in the form of sun glint, and to flag areas of water, which will bias

infra-red measurements downwards. Once these sources of error are elimi-

nated from evaluation, decisions are then made about the suitability of pixels

surrounding a potential fire for fire background temperature calculation. For

instance, the MODIS MxD14 product [26] uses values initially from a 3 × 3

(3km) pixel window surrounding the target pixel (without the leading and trail-

ing pixels in the cross-swath direction due to pixel smearing) to determine this

temperature. The algorithm then tests how many suitable contextual pixels

are available for evaluation, with a successful set of target pixels isolated for

temperature calculation when the number of valid contextual pixels reaches

at least 25% of the total, with a minimum of eight contextual pixels used for

calculation. If the algorithm cannot find sufficient pixels at the first window

(in this case, only six pixels are available and eight are required), the window

expands to 5 × 5 pixels, and the tests are repeated. If the test fails again, the

cycle repeats expanding the window to the maximum size of 21 × 21, at which

point the tests conclude with no result.

This technique of the expanding window is not exclusive to use for MODIS.

The VIIRS VNP14 product [75] has a background temperature calculation based

upon a starting window of 11 × 11 (∼ 4km in length), a success rate based on

25% of valid contextual pixels available for calculation and a 10 pixel mini-

mum, and a maximum window range of 31 × 31 (∼ 10km in length). The Fire

Identification, Mapping and Monitoring Algorithm (FIMMA) for use on AVHRR

sensors [49] started with a 5 × 5 window, ended at the 41 × 41 pixel level,

and used 35% of total contextual pixels available with a minimum number of

eight pixels used. Work involving fire detection using Landsat-8 [76] involved

evaluation of a fixed 61 × 61 pixel window for background temperature calcu-

lation, with no limits placed upon the number of pixels used. Geostationary
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satellite algorithms apply these contextual tests as well - the MSG-SEVIRI sen-

sor fire algorithm [66] starts at a 5 × 5 window (15km due to the sensor spatial

resolution), with a maximum window size of 15 × 15 (45km) evaluated before

calculation failure. The pixels inside each window are tested against cloud, sun

glint and anomalous differences between medium wave and thermal infra-red,

and only if at least 65% valid context pixels are available will an estimation

take place. This work on SEVIRI has also been extended for use on the GOES

sensors [93], with similar parameters used for contextual pixel utilisation.

These expanding window methods for evaluating temperature from pixel

context are applied to sensors with different spatial and radiometric charac-

teristics, so they should differ slightly in application based upon each sensor.

Despite this, apart from a rough relationship of spatial scaling between some

of the products, there is no general consensus as to the ideal dimensions for

contextual window evaluation, and indeed no optimal value for minimum per-

centage of valid contextual pixels to use for deriving an accurate background

temperature.

The objectives of this work are to examine common methods of deriving

land surface temperature from a target’s surroundings in the context of fire

detection. To achieve this, the enhanced temporal and spatial capabilities of

the AHI-8 sensor are exploited in a large-area study. This paper presents the

effects of variation of examined window sizes and valid contextual pixel per-

centages on background temperature. This work also highlights the challenges

faced in using contextual estimation effectively, with in depth examinations of

a number of case study areas to determine the effectiveness of contextual tem-

perature calculation.

2.2 Method

2.2.1 Data

This study utilises images from the Advanced Himawari Imager-8 (AHI-8), a

geostationary sensor located at 140.7° E longitude [60], data from which was

obtained from the JapanMeteorological Agency (JMA) via the Australian Bureau

of Meteorology (ABOM). This geostationary sensor provides coverage over the

Asia-Pacific region over 16 bands, with an image captured every 10min. Im-

ages were obtained from the 3.9µm medium-wave infrared band (AHI-8 Band

7) data, which is available in Australia from the National Computing Infrastruc-

ture (NCI). Dates were randomly selected for 36 days of the year 2016, with a

distribution of three per calendar month in order to provide a representative

sample of times in the results. The Julian dates selected were days 6, 10, 20,
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35, 36, 41, 71, 72, 82, 97, 101, 103, 133, 144, 149, 153, 164, 173, 184, 188, 200,

222, 230, 236, 253, 257, 274, 279, 286, 290, 314, 322, 323, 343, 353 and 355

of 2016. A single image was examined at each of these days for the full disk

examination, which was taken at 0500 UTC. This time was selected for full disk

processing to maximise the amount of the land surface in daylight, along with

examination of much of the disk at, or near, peak daily temperatures. This tim-

ing also coincides with the afternoon overpass of the VIIRS sensor for much

of the land areas of the disk. This study utilises a cloud mask algorithm used

in a study of AHI fire detection by [94], which was adapted from use on the

GOES–11 and GOES–12 geostationary sensors from [95]. This mask is calcu-

lated using AHI Bands 3, 7 and 13, along with solar zenith information at each

image time, from products supplied by ABOM.

To enable efficient processing of full disk images the size of those captured

by AHI, each full disk image was divided into component arrays of 500 x 500

pixels in size. The number of land pixels in each of these component arrays was

then counted, and arrays containing less than 100 land pixels were discarded

from analysis. Along with these ommitted areas, arrays comprising solely of

land constituting the continent of Antarctica were also discarded. Once these

tiles were identified, selections from each image with a 12 pixel buffer (for ex-

panding window analysis purposes) were made of each tile and processing was

performed. The areas with sufficient land for analysis are shown in Figure 2.2.

Figure 2.2: (a) land area of the full disk covered by the AHI sensor; (b) 500 × 500 image

tiles with sufficient land surface processed for the full disk analysis. The horizontal

banding of the full disk image in (b) also corresponds to the areas selected for the

cloud analysis presented in Table 2.2.

As the focus of this study is determination of brightness temperature of

land pixels, a land/sea mask supplied as part of the AHI ancillary data was

applied to imagery to mask non-land pixels. Pixels close to the edge of the
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full disk are stretched over a large area of land surface, and also suffer from

refraction due to the longer transmission period through the atmosphere. Pix-

els that have a sensor zenith angle greater than 80° were masked from further

analysis using the AHI sensor ancillary product provided by ABOM.

2.2.2 AHI Disk Characterisation

Cloud is a major source of occlusion when measuring brightness temperature

values. In order to obtain an understanding of the role cloud cover plays in

an AHI full disk image, and by extension the distribution of clear sky pixels

for analysis, the AHI image was broken into sub-images of 500 rows, for the

first 5000 rows of the 5500 × 5500 image. The number of land pixels avail-

able in each of these sub-images was tallied, and the cloud coverage from the

cloud mask was recorded for each full disk image. This breakdown of the AHI

full disk into sub-images can be seen in the horizontal banding depicted in

Figure 2.2b.

The land area covered by AHI can be quite discontinuous, especially in the

equatorial regions where many islands are present. These islands and coastal

areas will have permanent gaps in their contextual coverage area due to the

land forms surrounding them. In order to gain an understanding of the magni-

tude of these standing anomalies, an analysis of the land mask was conducted.

Pixels were selected by the number of contextual pixels available for estimation

during a cloud-free period, and categorised into percentage classes (75%, 65%,

55%, 45%, 35%, 25%, 15%). Pixels that had less than the required percentage of

pixels available on the land mask were flagged, and counts of these unusable

pixels were tabled.

To investigate the effectiveness of contextual estimation at a full disk level,

the mean of all available contextual pixels was taken for each window size

for each cloud-free pixel in the 36 images selected for study. The difference

between each of these contextual estimates and the benchmark central pixel

was calculated, and mean and standard deviations of these differences were

aggregated for analysis. These values were further broken down by the ex-

act percentage of contextual pixels available at each window level, in order to

understand how percentage of valid pixels affects the ultimate calculation of

contextual temperature.

The size of the land area covered by individual pixels in a geostationary im-

age increases as the sensor zenith angle increases. To determine whether this

expansion of pixel area has an effect on contextual temperature calculations,

all pixels from the dataset with contextual estimates were then divided into

classes based upon their sensor zenith angle (eight classes spanning 10° from
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0 - 80°), and statistics were aggregated for each of these classes.

2.2.3 Expanding the Window

As noted in the introduction, there have been many approaches taken to deter-

mine a suitable window size for contextual calculation, and no general consen-

sus has been reached for ideal parameters, apart from a rough 10km × 10km

maximum window size for the LEO sensor algorithms. For a geostationary sen-

sor like AHI, we are limited as to the spatial bounds of the minimum window

size we can select, as the sensor resolution prevents us from resolving at better

than two kilometres in the infra-red bands. A minimum sampling window of

5 × 5 has been set around each pixel, which corresponds to 10km × 10km at

sensor nadir. A number of window sizes were examined, with values selected

in two pixel increments up to a maximum window size of 25 × 25 pixels. Each

of these windows had a count of valid pixels, and the mean and standard de-

viation of differences between the contextual mean and the central pixel value

recorded for each pixel for each image.

A common feature of contextual algorithms is the use of a threshold of valid

pixels as a portion of total examination window as a limiting factor for estima-

tion validity. If the target pixel has at least the number of valid context pixels

set by this threshold, the target’s contextual pixel values are used to calculate

a temperature estimate, otherwise the target is ignored. There is no consensus

upon which to base a definitive decision about valid context percentage choice

- the most commonly used success criterion is 25% or an arbitrary number of

pixels, as used by both MODIS and VIIRS in their respective fire products. This

study has chosen to examine the use of seven percentage thresholds of contex-

tual pixel availability, ranging from 75% to 15% in 10% increments. A pixel is

deemed to have sufficient contextual data to make a calculation when the num-

ber of valid contextual pixels is equal to or greater than the selected percentage

over the window being examined. For example, at the 5 x 5 window size, nine

or more valid pixels need to be available for a temperature to be calculated at

the 35% threshold. At some thresholds, land pixels with proximity to oceans

and lakes may have insufficient land available to calculate a temperature.

Another commonly utilised feature of contextual algorithms is the expand-

ing window. When insufficient data is available at an inner window size, the

window of examination grows outwards until it obtains sufficient data to make

a temperature determination. For a true evaluation of the effects of the ex-

panding window on contextual estimation, it is important to know not only

how often this window expansion occurs, but the effect the expanding window

has upon calculated contextual estimations. For the expanding window sec-
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tion of this study, the portion of data with full contextual coverage at the 5× 5

window was analysed separately from pixels with at least one contextual pixel

obscured. From the remaining pixels for each of the valid context percentages,

pixels with sufficient context available at the 5 × 5 were identified, and statis-

tics calculated over these pixels. For the remaining pixels with no solution at

the 5× 5 window at each valid context percentage, the window of examination

was expanded to 7 × 7. At this point, the counts of valid context pixels were

totalled for the current window and all previous windows. If the new number

of contextual pixels was sufficient for the valid context percentage to be met,

a contextual estimate was calculated over all contextual pixels available, and

these statistics were recorded for reporting at the specified window size. Af-

ter this, the examination window was expanded, and the process was repeated.

Once the window of examination reached 25 × 25, some pixels were unable to

find a solution based upon the selected percentage of valid contextual pixels.

Counts of these failed pixels were also recorded.

Also, some expanding window methods will in addition use an absolute

threshold for the number of valid contextual pixels required for temperature

estimation. Once the number of contextual pixels available satisfies this thresh-

old of valid pixels, a contextual estimate will be made based upon the available

pixels regardless of the valid context percentage set. The work presented in

this paper also examined the effects of using an absolute threshold of valid

pixels of 10, similar to the VIIRS VNP14 product. For this, the 5×5 window was

firstly analysed, and as 10 pixels was the cutoff for validity for the 45% valid

pixel class at 5 × 5, no higher valid contextual pixel percentages were exam-

ined. If a target pixel had either the required percentage of contextual pixels

available, or sufficient contextual pixels to reach the absolute cutoff, the tar-

get pixel had a context temperature estimate calculated and recorded. Where

this requirement was not met, the window was expanded to the next window

size. If a target pixel did not reach either the valid contextual percentage or

the absolute threshold of contextual pixels by the 25 × 25 window, the target

pixel was recorded as a failure and tallied.

2.2.4 Case Study Evaluation

A series of case study areas have also been evaluated in a more in-depth fash-

ion, due to their land surface variation or their fire-prone nature. These areas

include part of south-eastern Australia, part of north-western Australia, a sec-

tion of Kalimantan’s east coast, part of central Thailand, part of eastern China,

the central part of Honshu in Japan, and part of Siberia east of Lake Baikal.

Each of these areas consists of a section of the AHI image measuring 200 x 200

17



2. Estimating Fire Background Temperature at a Geostationary Scale — An
Evaluation of Contextual Methods for AHI-8

Figure 2.3: Case study areas selected for examination.

pixels in size, with a small buffer to provide data for pixels at the edge of the

selected window. These study areas are highlighted in Figure 2.3.

Table 2.1: Specifications for the timeframes, area of the AHI disk and UTC times for

analysis of each of the case study areas.

Case study area Start Date End Date AHI image area Time (UTC) Local time @ centroid

sea 2016-03-30 2016-04-29 [4400, 4600, 3050, 3250] 3:50 13:49
nwa 2016-10-23 2016-11-22 [3600, 3800, 2000, 2200] 5:00 13:32
bor 2016-02-14 2016-03-15 [2600, 2800, 1400, 1600] 5:40 13:22
thl 2016-02-28 2016-03-29 [1800, 2000, 800, 1000] 6:30 13:15
chn 2016-08-27 2016-09-26 [1000, 1200, 1600, 1800] 5:10 12:56
jpn 2016-05-03 2016-06-02 [900, 1100, 2500, 2700] 3:50 12:59
sib 2016-05-10 2016-06-09 [200, 400, 2000, 2200] 5:00 12:43

In order to provide a more representative understanding of how each of

these landscapes behaves during fire-prone periods, a selection of images for

each case study area was made based upon the prevalence of fire over 2016.

The monthly VIIRS fire product (VNP14IMGML) [74] was subsampled for each

of the study areas, and a rolling window of 30 days was applied to the sum
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total of fires from each area over the course of the year. The point of time

exhibiting maximum fire activity from this was then used as the central day in

a 31 day window for in-depth analysis. The image time selected for each case

study area was also derived from the time of fires detected during the day time

period in each case study area. The selection criteria for each case study area

is detailed in Table 2.1.

The counts of valid context pixels, and the difference of the context pixel

mean from the central pixel were obtained for each window size, for each im-

age, for each of the case study areas used for analysis. A visual examination

of the causes of contextual estimate variation was also conducted based upon

the spatial distribution of the mean temperature differences calculated, over

window sizes from 5× 5 pixels to 11× 11 pixels, for each site.

2.3 Results

2.3.1 AHI Full Disk Characterisation

Cloud is a major impediment to any surface temperature estimation, and the

area covered by the AHI disk is no exception. At the 0500 UTC time point,

on average 55.6% of assessable land surfaces on the AHI disk are covered by

cloud, with cloud coverage over land surfaces ranging from 45% to 73% over

the images analysed. Cloud cover is most common over the northerly quarter

of the disk, with areas north of AHI image row 1500 experiencing 68 – 74%

cloud cover over the period examined. A full breakdown of cloud cover statis-

tics can be found in Table 2.2. These areas of cloud cover, as determined by

the cloud mask product, were removed from the context analysis, and form

the bulk of the missing data in the window examinations.

Table 2.3 supplies a breakdown of pixels that are in permanent deficit of

sufficient contextual pixels for temperature estimation at each valid context

percentage at each window size. A requirement of at least 75% of contextual

pixel availability is quite restrictive given the landforms present, and at least

2.2% of all land pixels cannot obtain this number of adjacent contextual pixels

in the 5 × 5 window. The numbers in this table are adjusted for all window

levels preceding — an assessment of a 7 × 7 window for instance takes into

account pixels at the 5 × 5 window at the same time to determine whether

an estimation is possible over all of the context pixels available to the target.

These target pixels suffer permanent obscuration, and these locations can be

flagged as problematic for contextual calculation for all periods.

Table 2.4 shows the global mean and standard deviation for all target pixels

available for assessment at each window level individually. This assessment is
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Table 2.2: Average and standard deviation of cloud coverage for the AHI land areas

covered in the study. The figures are an aggregate of 36 images recorded at 0500 UTC

as mentioned in Section 2.2.1, broken into horizontal slices of the AHI disk as shown

in Fig 2.2.

AHI Image rows # of land pixels Mean % cloud SD % cloud

0 - 500 526506 74.1 15.7
500 - 1000 714119 69.1 15.0
1000 - 1500 663172 68.1 13.7
1500 - 2000 420460 49.2 23.0
2000 - 2500 184404 54.2 19.3
2500 - 3000 366370 62.7 10.4
3000 - 3500 248687 55.3 12.4
3500 - 4000 643030 28.6 14.0
4000 - 4500 793030 37.3 16.7
4500 - 5000 103387 58.1 19.4

Table 2.3: Number and percentage of pixels that are lacking sufficient adjacent pixels

to provide contextual estimation at various window sizes and percentages across the

AHI disk. A total of 4,663,165 AHI land pixels were evaluated.

Window size
Percentage of context pixels required for assessment

>75% >65% >55% >45% >35% >25% >15%

5× 5 103801 74712 46141 18523 10918 4840 2389
2.23% 1.60% 0.99% 0.40% 0.23% 0.10% 0.05%

7× 7 136747 97771 54351 25771 13842 7322 3873
2.93% 2.10% 1.17% 0.55% 0.30% 0.16% 0.08%

9× 9 165592 110470 61786 31008 17290 9436 4544
3.55% 2.37% 1.32% 0.66% 0.37% 0.20% 0.10%

11× 11 192298 129744 73595 37000 21033 11510 5563
4.12% 2.78% 1.58% 0.79% 0.45% 0.25% 0.12%

13× 13 217235 150574 86662 43558 24681 13651 6794
4.66% 3.23% 1.86% 0.93% 0.53% 0.29% 0.15%

15× 15 240738 165472 97107 49446 28451 15689 7549
5.16% 3.55% 2.08% 1.06% 0.61% 0.34% 0.16%

17× 17 263862 182197 106023 55620 31895 17482 8466
5.66% 3.91% 2.27% 1.19% 0.68% 0.37% 0.18%

19× 19 286131 195443 114230 60973 35605 19496 9159
6.14% 4.19% 2.45% 1.31% 0.76% 0.42% 0.20%

21× 21 307516 210405 122986 66290 38851 21809 10196
6.59% 4.51% 2.64% 1.42% 0.83% 0.47% 0.22%

23× 23 328452 226933 132790 71657 42888 24078 11199
7.04% 4.87% 2.85% 1.54% 0.92% 0.52% 0.24%

25× 25 348645 240456 142150 75910 46572 25839 12100
7.48% 5.16% 3.05% 1.63% 1.00% 0.55% 0.26%

conducted where there is at least one contextual pixel available at the denoted

window size for comparison. As can be seen there is a global tendency to
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overestimate temperature from the available contextual pixels, and there is

little change in central tendency once the window of examination grows beyond

11 × 11. The variation of the temperature estimation rises with the increased

distance of assessed pixels from the centre, although the distance from the

central pixel becomes less of an influence on variation once the window of

examination grows beyond 11×11. Global statistics such as these hide some of

the more interesting trends in the data, and Figure 2.4 shows the breakdown of

mean and standard deviation by contextual pixel availability at each window.

Table 2.4: Mean and standard deviation of the contextual estimate differences from

central brightness temperature (AHI Band 7) for all available pixels in the 36 day set of

full disk images at 0500 UTC. A total of 76,023,810 pixels were examined over the 36

images used in the study.

window size 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

mean (K) 0.037 0.031 0.029 0.027 0.025 0.024
std (K) 1.522 2.039 2.200 2.320 2.415 2.494
count 76023810 75858159 75871580 75880469 75888096 75893762

window size 17 × 17 19 × 19 21 × 21 23 × 23 25 × 25

mean (K) 0.023 0.023 0.023 0.024 0.024
std (K) 2.562 2.622 2.677 2.726 2.771
count 75895983 75899037 75899238 75898553 75898041

Figure 2.4a shows the mean value of the temperature difference as a func-

tion of the valid context percentage available at the outer edge of each window,

apart from at the 5 × 5 window, where analysis includes all pixels inside this

window. When all pixels are available for analysis at a particular window edge,

the distance of the examined pixels from the central pixel has no influence

upon the resulting temperature estimate, and the difference between estimates

calculated using pixels from each window edge stays similar down to 75% of

available pixels. At this point, having fewer pixels available in the 5 × 5 win-

dow of pixels causes a growth in temperature overestimation, which reaches a

maximum when half of adjacent pixels are unavailable.

Figure 2.4b shows the standard deviation of the temperature difference as a

function of the percentage of contextual pixels available, similar to Figure 2.4a.

For all window sizes the standard deviation suffers a large increase once only

one value is obscured in a window, with this effect most marked at the larger

window sizes. Variation peaks in a similar fashion to the mean at around half

of all contextual pixels available, with most window sizes seeing a levelling out

of variation until only a handful of contextual pixels remain for estimation. The

relative indifference to distance from the central pixel for the larger window

sizes is due to the way pixels here are selected for analysis. The outer edge of

the specified window is assessed, which is square in shape, and the pixels at
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Figure 2.4: (a) Mean brightness temperature difference between contextual estimates

and the central pixel for the ring of pixels at the edge of each window across the full

disk for 0500 UTC B07 AHI-8 images. (b) Standard deviation of contextual estimates

derived from each window edge by percentage of available pixels in the window edge.

each outer edge exhibit a far greater range of distances from the central pixel

as one moves further out, which would smooth out any purely distance-based

variation.

The investigation into the effect of sensor zenith angle on temperature es-

timation found no marked influence. Mean values in the 5 × 5 window for

temperature differences ranged from 0.07K in the 0° - 10° view angle region,

down to 0.025K near the edge of the disk between 70° - 80° zenith angle over

the images analysed. The largest errors were present in the two regions clos-

est to nadir (0° - 10° and 10° - 20°), but the land surface area in these regions

is much smaller than further out from the sensor nadir. There are no trends

present due to sensor zenith angle in the standard deviation of contextual es-

timation either, apart from a slight drop in values close to nadir and at the 70°

- 80° zenith angle.

2.3.2 Expanding Window Analysis

Table 2.5 demonstrates the breakdown of estimated pixel values when utilising

an expanded window algorithm. Firstly, the rate reported in the 1.00 column

represents the characteristics of pixels that have all contextual pixels available

at the 5 × 5 window. These pixels, which make up 53.88% of all cloud-free pix-

els analysed, are generally underestimated by contextual methods, albeit only

by 0.03K, and display low variance. The other columns in the 5 × 5 row report

statistics on the pixels that are added at each of the contextual percentage avail-

abilities specified. For example, if a process accepted estimates with 45% or
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more available contextual pixels, an extra 40.28% of all target pixels would be

available for evaluation, in addition to the 53.88% from the full context (1.00)

pixels. The additional pixels accepted at each valid context percentage have

the means and standard deviations shown. For the remaining pixels without

a solution, the examined contextual window is expanded through the window

values shown, with statistics reported for pixels that achieve the valid context

percentage at each window size. After the process is exhausted at the 25 × 25

window, the remaining pixels without a solution for each percentage are tallied

in the total failures row at the bottom of the table.

The tendency of a target pixel’s contextual surrounds to slightly underesti-

mate temperature in optimal conditions, as seen in Figure 2.4, is also seen here

in the 5 × 5 section of Table 2.5. As the threshold for valid contextual pixels is

lowered, the mean temperature of all estimates rises and the variation in these

estimates increase. Of course these trade-offs in temperature accuracy come

with an increased level of coverage — accepting 65% contextual pixel availabil-

ity allows 85.5% of all target pixels to be estimated with a neutral mean and

relatively low variance. Conversely, accepting pixels at 15% contextual avail-

ability would allow for the calculation of temperature estimates over 99.2% of

all target pixels, but with both higher mean and higher variance overall. Once

the window of contextual pixels is expanded though, the accuracies coming

from the contextual estimate deteriorates. In general the pixel’s context tends

to overestimate temperatures by an increasing amount, with mean tempera-

ture differences ranging between 0.47–2.11K, and the standard deviation of

results increases by around 50% by just moving from a 5 × 5 window to a 7 ×
7 window of examination.

A further examination of calculation rates using the expanded window sizes

is shown in Figure 2.5. For the portion of pixels that have no solution at the 5

× 5 window for each percentage, this figure shows the rate that target pixels

subsequently obtain sufficient valid contextual pixels for calculation at each

window size. The portion of target pixels that does not achieve sufficient con-

textual pixel counts for evaluation after expansion to the 25 × 25 window is

shown in grey. As seen in Table 2.5, the higher contextual limitations have

larger portions of the total data set suffer from insufficient data for estimation.

Changing the acceptance percentage does not however affect the proportion

of pixels that subsequently obtain sufficient contextual pixels for estimation

at larger window sizes. This figure shows that no expanding window thresh-

old will return values for more than 60.3% of the remaining pixels that fail to

be calculated at the 5 × 5 window size, with the 75% threshold yielding less

than 20% of extra pixels at larger windows. Of the pixels that do manage to

obtain solutions, on average at least 69.5% of those occur at the 11 × 11 or
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Table 2.5: Mean and standard deviation of brightness temperature differences between

the central pixels and the contextual surrounds at each window level per percentage

level. Numbers shown in the 5 × 5 window row report statistics for pixels that would

be added to the 1.00 pixels if the valid context percentage shown was used to accept

contextual estimates. The percentage of total pixels with estimates available at the

5 × 5 window for each valid context percentage is also shown. The rows for each

subsequent window size describe the number of temperature estimations that would

be added from failures at the previous window size by expanding the examined window,

and the subsequent means and variances of pixels included from these window sizes.

A total of 76,023,810 pixels were examined over the 36 images used in the study.

Valid portion of total context pixels

window 1.00 0.99 - 0.75 0.99 - 0.65 0.99 - 0.55 0.99 - 0.45 0.99 - 0.35 0.99 - 0.25 0.99 - 0.15

5 × 5 mean (K) -0.029 -0.083 -0.036 0.006 0.063 0.086 0.100 0.111
std (K) 1.090 1.603 1.699 1.759 1.839 1.867 1.885 1.898
count 40958274 18106490 24041100 27144999 30622724 32199899 33351687 34480202
% avail 53.88% 23.82% 31.62% 35.71% 40.28% 42.36% 43.87% 45.35%

Total 5x5 success 77.69% 85.50% 89.58% 94.16% 96.23% 97.75% 99.23%

7 × 7 mean (K) - 0.474 0.772 0.925 1.059 1.029 0.995 0.940
std (K) - 2.314 2.538 2.667 2.734 2.711 2.705 2.768
count N/A 1651297 948803 1096828 557910 562891 407382 160575
% avail N/A 2.17% 1.25% 1.44% 0.73% 0.74% 0.54% 0.21%

9 × 9 mean (K) - 0.704 1.007 1.143 1.293 1.270 1.193 1.143
std (K) - 2.592 2.778 2.874 2.932 2.908 2.914 2.999
count N/A 502591 369619 289271 182700 127933 134785 53782
% avail N/A 0.66% 0.49% 0.38% 0.24% 0.17% 0.18% 0.07%

11 × 11 mean (K) - 0.889 1.193 1.341 1.498 1.476 1.381 1.310
std (K) - 2.757 2.940 3.050 3.075 3.086 3.054 3.197
count N/A 320616 262912 221789 155173 118434 87380 36791
% avail N/A 0.42% 0.35% 0.29% 0.20% 0.16% 0.11% 0.05%

13 × 13 mean (K) - 1.024 1.321 1.491 1.615 1.611 1.521 1.471
std (K) - 2.860 3.055 3.161 3.200 3.228 3.221 3.348
count N/A 228249 199477 177211 130197 102158 63145 27398
% avail N/A 0.30% 0.26% 0.23% 0.17% 0.13% 0.08% 0.04%

15 × 15 mean (K) - 1.137 1.445 1.597 1.739 1.726 1.600 1.551
std (K) - 2.982 3.165 3.252 3.273 3.286 3.325 3.410
count N/A 174901 158520 121066 93067 63103 48553 21233
% avail N/A 0.23% 0.21% 0.16% 0.12% 0.08% 0.06% 0.03%

17 × 17 mean (K) - 1.224 1.585 1.702 1.830 1.804 1.765 1.626
std (K) - 3.032 3.283 3.333 3.371 3.436 3.437 3.449
count N/A 139247 108539 105588 70645 58638 38539 14115
% avail N/A 0.18% 0.14% 0.14% 0.09% 0.08% 0.05% 0.02%

19 × 19 mean (K) - 1.328 1.694 1.818 1.953 1.875 1.834 1.702
std (K) - 3.177 3.358 3.414 3.445 3.450 3.507 3.610
count N/A 113322 93057 79027 54876 46985 31733 12024
% avail N/A 0.15% 0.12% 0.10% 0.07% 0.06% 0.04% 0.02%

21 × 21 mean (K) - 1.416 1.747 1.867 2.046 2.020 1.885 1.805
std (K) - 3.265 3.380 3.471 3.556 3.573 3.595 3.866
count N/A 94179 81879 71265 51677 33939 27491 10239
% avail N/A 0.12% 0.11% 0.09% 0.07% 0.04% 0.04% 0.01%

23 × 23 mean (K) - 1.422 1.817 1.951 2.043 2.040 1.948 1.911
std (K) - 3.288 3.502 3.572 3.591 3.657 3.646 3.883
count N/A 80631 73046 63430 48480 36557 23016 9168
% avail N/A 0.11% 0.10% 0.08% 0.06% 0.05% 0.03% 0.01%

25 × 25 mean (K) - 1.547 1.877 2.025 2.079 2.110 1.988 2.024
std (K) - 3.342 3.548 3.549 3.575 3.661 3.556 3.886
count N/A 70008 64301 51988 40127 27803 20150 8127
% avail N/A 0.09% 0.08% 0.07% 0.05% 0.04% 0.03% 0.01%

Total failures 13584005 8664283 5643074 3057960 1687196 831675 231882
17.87% 11.40% 7.42% 4.02% 2.22% 1.09% 0.31%

window or lower, and 83.4% occur at window sizes at or smaller than 15 × 15.

This rate of return for the expanding window method, coupled with the vari-
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Figure 2.5: Breakdown of temperature estimation pass rate on pixels that have no solu-

tion in their 5 × 5 window. The percentage of pixels covered by each bar this figure as

a portion of all pixels examined is shown at the top of the figure. Each bar in the figure

represents a minimum percentage level of valid contextual pixels for temperature cal-

culation, and each coloured section represents the portion of pixels that are successful

in deriving an estimate at each window size. The balance of exhausted pixels with no

solution at each assessed percentage is also shown.

ability of results coming from estimations made at the larger window sizes,

calls into question the overall effectiveness of using such a method, especially

considering the computationally intensive nature of using pixels from a wider

area.

Often in the case of some of the LEO fire products, an absolute cutoff thresh-

old is used in order to calculate temperatures where a certain number of pixels

are available for the calculation, regardless of their distance from the central

pixel. A table demonstrating the effect of using a valid pixel threshold of 10 or

more pixels is shown in Table 2.6. This table does not show valid percentages

above 45%, as pixels that are only valid at these higher percentages trigger

the absolute pixel threshold at the 5 × 5 window. The 10 pixel threshold ho-

mogenises the 45%, 35% and 25% classes to an extent, with very similar means

and standard deviations emerging from each window size. Setting an absolute

threshold of valid pixels does increase the total number of pixels that obtain

temperature estimates, but even so there is still a number of pixels that a so-
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lution is not possible for even at the lowest percentages. In comparison to

the figures presented in Table 2.5, the estimated means at the higher window

percentages using the absolute threshold are reduced, and the variation of tem-

perature estimates smooths out once the window expands beyond 9×9. This is

due to more pixels in the original analysis expanding the window further than

what was required to provide reasonably accurate temperature estimation. The

major improvement from using an absolute pixel threshold is in the total per-

centage of pixels that are assessable, with the first two window sizes able to

provide estimates in ≥ 98% of cases in all percentage classes.

2.3.3 Case Study Areas

Figures 2.6 and 2.7 show the spatial distribution in the mean of the tempera-

ture differences at the 5 × 5 window for each of the case study areas, along

with a histogram of the counts of these temperature differences per area. Each

of the case study areas display a unique distribution. South-east Australia (Fig-

ure 2.6a), Thailand (Figure 2.6d) and Japan (Figure 2.7b) show marked linear

features which line up with boundaries of land use areas. South-eastern Aus-

tralia area has the most variation in the west where forested areas open to

grazing and croplands, whilst Thailand and Japan have greatest variation in

line with changes in relief. The Japan case study area has the most variation at

the tree line high on Honshu’s central range. The effect of coastline pixels is

most evident in the Borneo area (Figure 2.6c), with the influence of swamp and

mangrove along the coastline leading to an underestimation of temperatures in

adjacent pixels. Urban areas are also a source of underestimation, most preva-

lent in the central China study area (Figure 2.7a) where cities in the north west

of the area display a heat island effect. This effect is also seen to a lesser extent

in the south-east Australia and Japan study areas. The Siberian (Figure 2.7c)

area displayed relative uniformity outside of the central latitudes, where un-

melted snow from mountain ranges caused commission errors in the cloud

mask used, which led to large estimation errors on these interfaces. North-

western Australia (Figure 2.6b) is characterised by high local variability, and

high contrast between vegetated and bare earth areas coupled with the lack

of surface moisture increases this local variability (shown in greater detail in

Figure 2.9). All distributions of temperature differences are relatively uniform

in nature, with the Japan, Siberia and Thai areas displaying longer tails than

other areas.

Table 2.7 depicts the global mean and standard deviations of the case study

areas compared to the outer edge of pixels at various window sizes. The gen-

eral trend of overestimation of pixel temperatures when looking at the global
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Figure 2.6: Mean difference between contextual estimates and the central pixel for the

selected period for each area. (a) south-eastern Australia (sea); (b) north-western Aus-

tralia (nwa); (c) Borneo (bor); and (d) central Thailand (thl).
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Figure 2.7: Mean difference between contextual estimates and the central pixel for the

selected period for each area. (a) eastern China (chn); (b) central Honshu (jpn); and (c)

Siberia (sib).

statistics is shown here, but the change in mean values is different from area

to area. Stability in the mean temperatures here is a function of the amount

of clear sky present during the times examined — Thailand for instance has a

comparatively small number of pixels affected by cloud during the examined

period, whereas Japan and Siberia are heavily cloud affected during their ex-

amined time periods. North-western Australia shows marked improvement in

temperature recovery when looking at the more distant window edges, which is

seemingly due to poor performance at the 5 × 5 window size. All areas have a

notable gain in the temperature variance as the pixels examined become more
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distant from the central pixel.

Table 2.8 reports statistics for each of the case study areas broken down

by valid contextual pixel percentage. As can be seen in all areas, pixels with

all contextual pixels available for calculation tend to underestimate the tar-

get temperature. An increasing tendency to overestimate temperature as the

amount of contextual pixels available reduces is present at all sites. The sta-

bility of temperature estimation from a pixel with no contextual obscuration

is also much better than from areas that are partially obscured. Some of the

case study areas display a much larger variance once contextual pixels become

partially obscured - the north-western Australia area is the median for variance

during full availability, but is the worst performer once the contextual area is

even slightly obscured. The trend of greater overestimation as obscuration of

contextual pixels increases is caused by the target pixel temperature dropping

due to cloud shadows causing lower solar reflectivity, in comparison to clearer

and brighter valid pixels in the surroundings. The expected deterioration of

accuracy for each of the percentage windows is seen clearly, with standard de-

viations increasing as more obscured estimations are accepted. The south-east

Australia, Thailand and China areas display less variation than other areas as

the percentage of valid contextual availability decreases. With regard to num-

bers of target pixel estimates available at each contextual percentage, these

examples display a slight inflection in their trend around 45%, with numbers

of estimates available increasing in greater quantities below this percentage

and at lesser quantities above. Total recovery rates by percentage can be calcu-

lated by adding the percentage availability to the obscuration-free contextual

(1.00) values.

Moving further away from the central pixel has the most marked effect

on temperature variation, and this effect can be seen in Figure 2.8. This fig-

ure depicts the changes in the spatial and statistical distribution of contextual

temperatures over the south-eastern Australian study area, for window sizes

between 5 × 5 pixels and 11 × 11 pixels. Expanding the window of exami-

nation for pixel estimation exacerbates the edge effects seen in the east and

south-eastern portions of this area, with much larger areas of high variation

on the boundaries seen previously. The greater window size also highlights

the larger variations at the urban interfaces of Sydney and the Illawarra region,

and shows a general overestimation of temperatures along the coastline. The

distributions of temperatures remain normal, but are flattened considerably

compared to values from the most adjacent pixels.
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Figure 2.8: Changes in spatial and statistical distribution of temperature estimates for

the south-eastern Australia (sea) study area by window size. Window levels shown are

(a) 5 × 5 window; (b) 7 × 7 window; (c) 9 × 9 window; and (d) 11 × 11 window.
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Figure 2.9: Changes in spatial and statistical distribution of temperature estimates for

the north-western Australia (nwa) study area by window size. Window levels shown are

(a) 5 × 5 window; (b) 7 × 7 window; (c) 9 × 9 window; and (d) 11 × 11 window.
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2.4 Discussion

Whilst the numbers presented in Section 2.3.1 are specific to the AHI disk cover-

age area, the same factors that restrict calculation of background temperature

should be common to any part of the globe where fire detection and attribution

occurs. Cloud coverage is a major inhibiting factor in any satellite fire detec-

tion setup, and areas that display even moderate occlusion of the contextual

surroundings tend to present less than ideal estimations of temperature. From

the range of values of contextual availability shown in Figure 2.4a, there seems

to be a break between results derived from pixels with at least 65% contextual

availability and results from pixels with less contextual values available. Usage

of estimates from target pixels with at least 65% available contextual informa-

tion minimises the bias in the mean calculation of background temperature,

especially at the larger window sizes, whilst also limiting the variation of the

resultant estimations. The results presented in both Table 2.4 and Figure 2.4

also demonstrate the relative stability of temperatures derived from window

sizes larger than 13×13, or in AHI scale once pixels are at least 12km from the

pixel being estimated. If an increase in variance of calculated estimates of 60%

over values derived at the 5× 5 is acceptable for a specific purpose, then there

is seemingly no reason not to set the initial area of examination for contextual

temperature as large as practicable, but if this temperature variance is more

of a concern, then using pixels from outside even the 11× 11 window of pixels

becomes problematic.

The effects at play when calculating contextual estimates as shown in Fig-

ure 2.4 bear further examination. The relative differences between the mean

and variation seen at the higher window sizes reduces as the pixels examined

increase in distance from the target, an effect noted in Section 2.3.1 being due

to variations in the window edge radius. Examination of the effect of using

pixels with similar distances to the target, in a circular ring, would most likely

bear this out, though implementation of such a distance-based window of ex-

amination would become less trivial as sensor zenith angle increases. The

pattern of mean difference as a function of valid pixels is worth mentioning as

well, especially with regard to overestimation of the target temperature when

valid contextual pixels approach 50%. This effect is likely due to shadowing

of the target pixel and consequent reduction in solar reflectivity, with the tar-

get pixel most likely being immediately adjacent to the obscuration affecting

the surrounding pixels. This effect is lessened in the rings of pixels situated

further from the target pixel, as the source of obscuration at the outer edge of

the window is less likely to be present closer in to the target pixel. This overes-

timation is not particularly large in magnitude, and is less likely to affect fire
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detection for instance, but such information may assist in the adjustment of

temperature-controlled metrics calculated from these estimates.

The results also cast the use of expanding windows for contextual temper-

ature examination in a poor light, particularly for those sensors with larger

spatial resolutions. The vast majority of all pixel calculations are achieved at

the 5 × 5 window, with the recovery of data from using an expanding window

ranging from 20% to 54% of all remaining target pixels. If we are to use the

65% window as an example, 85% of data is contributed from the 5× 5 window,

extra estimates from using the expanding window are just over 4%, and the ma-

jority of those extra estimates occur at or below the 11× 11 window. There are

also compromises involved in using the estimates, with a general positive bias

and much higher variation in values at even the 7 × 7 level. Depending on the

purpose of using these estimates, using the data coming from the combined

windows could be detrimental to overall reporting accuracy. When evaluating

how a background temperature method should be implemented, care needs

to be taken to ensure that any need for comprehensive coverage, whether it

be achieved by either using a smaller percentage of valid contextual pixels, by

using larger window sizes, or both, does not inhibit the accuracy of the overall

product.

With regard to the case study areas selected for analysis, the reasons for ma-

jor variances in contextually determined temperature are as diverse as the case

study sites selected. Phenomena affecting contextual estimation range from

highly ephemeral conditions, such as fire and flooding, to seasonally changing

influences such as snow and vegetation cover, to semi-permanent influences

like urban-rural interfaces and land cover change, and on to permanent condi-

tions such as relief, tree lines and coastlines. Each of these influencing factors

need to be treated in a different way dependent upon the expected temporal

duration of phenomena. Whilst setting global thresholds is satisfactory for

more holistic measures such as carbon emissions and global FRP [73], in order

to obtain more accurate estimates of pixel contrast, for metrics which require

more accurate estimates of pixel temperature, use of a contextual method may

require application of a-priori information. Conversely, a method that takes lo-

cal variation into account by using such information needs to take into account

the changes caused by more short-term influences mentioned here. This adds

complexity to any system that uses fire background temperature in a rapid

fashion, such as in active fire response.

Whilst this study demonstrates the effectiveness of contextual estimation

when conditions are amenable, the deterioration of temperature estimation fi-

delity, and in some cases total loss of recovery, leads to investigation of other

methods that may be able to bridge the gap in temperature retrieval. Investiga-
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tion should be encouraged into the leveraging information from the temporal

domain when looking at this problem. Methods such as those used in [65, 83] &

[31] look at the diurnal temporal domain for temperature estimation, which is

more suited to geostationary sensors such as AHI and GOES. This does not pre-

clude the use of temporal information for LEO products though. An approach

to integration of temporal modelling of background temperature could look

at adjustment of measurements by images from previous time periods, with

adjustments made for factors such as time of image capture. Looking at many

different time points would provide redundancy against ephemeral conditions

such as cloud, but looking too far back in time can lead to information not

being representative of the current state of the landscape. A mix of ephemeral,

seasonal and annual adjustments should be examined for their effectiveness

in correcting estimated values for LEO-based products.

With regard to the direct applicability of these results to products and val-

ues from other sensors, caution should be exercised. The pixel sizes examined

here from the AHI-8 sensor are much larger than their equivalents from im-

ages taken by low earth orbiting sensors. The rapid changes in landforms and

land cover types seen in the case study areas may be smoothed or exacerbated

by using smaller pixels, and the overall granularity of spatial homogeneity at

varying scales should be taken into account when making comparisons across

products and sensor scales. Sensor dependent effects such as sensor point

spread function have also not been examined here, although these effects are

mostly seen when dealing with high temperature anomalies in the MWIR band,

which the vast majority of target pixels in this study do not encounter. The

orbit of the sensor used in this study also grants the opportunity to examine

targets at the same local time over many images, and application of methods

used for analysis of LEO sensor information in a similar fashion would need

to take into account variations in the time of image capture for longitudinal

analysis purposes.

This study has assessed the overall ability to estimate background tempera-

ture from spatial context using AHI. In this study, temperature estimates from

pixels with all context pixels available show a standard deviation of 1.09Kwhen

examined across the full disk. In comparison, the global standard deviations

for the case study areas were higher, ranging from 1.12K in Siberia to 2.06K

in Japan. Whilst accuracy of background temperature is less emphasised for

metrics such as FRP, information obtained from this study could be used in an

adjustment of these metrics as calculated from AHI. Knowledge about the ex-

pected variation of medium-wave infrared radiation estimation may also play

a role in development of new fire detection techniques, which use the expected

variation of MWIR radiation in an area to identify anomalous values as a first-
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pass filter. Providing simpler and more concise algorithms for fire detection

reduces the data volumes and processing overhead required, leading to more

rapid production and application of results.

2.5 Conclusions

An analysis of the effectiveness of contextual calculation of pixel background

temperature has been conducted for a 36 image set from Band 7 from the AHI-8

sensor. Results show that estimates made from unobscured context pixels are

very accurate, with a slight negative bias and low variation of temperature dif-

ferences. Accuracy of the contextual method deteriorates with decreasing con-

textual pixel availability, with 65% a good balancing point between increased

bias and variation of calculated values, and the overall availability of contextual

data for estimation. Using a growing window for increasing the pixel availabil-

ity by leveraging a larger window size decreases the accuracy of estimation

results, with much larger values of bias and variation in resultant tempera-

tures. Care needs to be taken with expanding window methods in order to

balance comprehensive coverage of image data against the accuracy required

from use of the results. A wide range of influences cause variation in temper-

ature estimation, with each of the case study areas examined providing both

unique problems for contextual estimation, and placing emphasis on the need

for knowing the conditions specific to an area in order to provide highly ac-

curate temperature estimation. Comprehensive coverage of all land areas is

not achievable using contextual estimation, and in most cases is not desirable

due to the deterioration of results as estimates use less optimal data. Alter-

native methods for temperature estimation need to be explored in order to

overcome the limitations of contextual-based algorithms presented here, par-

ticularly when used with large resolution sensors such as AHI-8.

2.6 Thesis Context

This chapter outlines the error analysis of the commonly used contextual bright-

ness temperature estimation method used by most of the common satellite-

based fire detection products. The work highlights the need to explore other

methods for brightness temperature estimation, especially in areas with high

land cover variability. The next chapter provides the first exploratory exam-

ination of a method that discards examining the pixel context in favour of

providing a robust diurnal fitting technique for temperature estimation.
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Table 2.6: Mean and standard deviation of brightness temperature differences between

the central pixels and the contextual surrounds at each window level per percentage

level, or where number of context pixels reaches 10. The 5 × 5 window statistics show

the global rates for pixels which have equal or greater contextual pixels than the mini-

mum for estimation. The rows for each window size describe the number of calculated

values that would be added by expanding to each window size, and the subsequent

means and variances of pixels included from these window sizes.

Valid portion of total context pixels

window 1.00 0.99 - 0.45 0.99 - 0.35 0.99 - 0.25 0.99 - 0.15

5 × 5 mean (K) -0.029 0.076 0.086 0.100 0.111
std (K) 1.090 1.856 1.867 1.885 1.898
count 40958274 31473186 32199899 33351687 34480202
% avail 53.88% 41.40% 42.36% 43.87% 45.35%

Total 5x5 success 95.27% 96.23% 97.75% 99.23%

7 × 7 mean (K) - 0.709 0.746 0.874 0.940
std (K) - 2.550 2.568 2.642 2.768
count N/A 2456495 1734495 664734 160575
% avail N/A 3.23% 2.28% 0.87% 0.21%

9 × 9 mean (K) - 0.623 0.628 0.703 0.996
std (K) - 2.639 2.640 2.673 2.928
count N/A 591757 589044 531807 97775
% avail N/A 0.78% 0.77% 0.70% 0.13%

11 × 11 mean (K) - 0.544 0.548 0.588 0.854
std (K) - 2.723 2.723 2.745 2.963
count N/A 225018 224240 212723 119473
% avail N/A 0.30% 0.29% 0.28% 0.16%

13 × 13 mean (K) - 0.485 0.487 0.518 0.701
std (K) - 2.789 2.792 2.816 2.971
count N/A 108023 107653 103138 66691
% avail N/A 0.14% 0.14% 0.14% 0.09%

15 × 15 mean (K) - 0.448 0.451 0.481 0.637
std (K) - 2.828 2.831 2.852 3.018
count N/A 60176 59952 57566 39017
% avail N/A 0.08% 0.08% 0.08% 0.05%

17 × 17 mean (K) - 0.413 0.414 0.435 0.584
std (K) - 2.844 2.845 2.869 3.019
count N/A 37688 37596 36118 24821
% avail N/A 0.05% 0.05% 0.05% 0.03%

19 × 19 mean (K) - 0.401 0.403 0.434 0.562
std (K) - 2.864 2.867 2.897 3.057
count N/A 25000 24899 23883 16827
% avail N/A 0.03% 0.03% 0.03% 0.02%

21 × 21 mean (K) - 0.439 0.441 0.464 0.607
std (K) - 2.996 3.000 3.031 3.226
count N/A 17483 17419 16712 12002
% avail N/A 0.02% 0.02% 0.02% 0.02%

23 × 23 mean (K) - 0.316 0.318 0.341 0.428
std (K) - 2.913 2.919 2.943 3.092
count N/A 12125 12068 11667 8478
% avail N/A 0.02% 0.02% 0.02% 0.01%

25 × 25 mean (K) - 0.304 0.306 0.324 0.415
std (K) - 2.869 2.874 2.897 2.998
count N/A 8910 8867 8596 6289
% avail N/A 0.01% 0.01% 0.01% 0.01%

Total failures 49675 49404 46905 33386
0.07% 0.06% 0.06% 0.04%
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Table 2.7: Mean and standard deviation of mean brightness temperature differences of

each case study area for each 31 day period. Pixel values were averaged over the 31 day

period for each site, and global means and standard deviations of these averages are

reported.

Window edge 5 × 5 7 × 7 9 × 9 11 × 11

Case study area x̄ Mean x̄ SD x̄ Mean x̄ SD x̄ Mean x̄ SD x̄ Mean x̄ SD

sea 0.031 1.312 0.051 1.891 0.063 2.090 0.079 2.229
nwa 0.059 1.031 0.024 1.440 0.022 1.570 0.021 1.658
bor 0.089 0.856 0.089 1.231 0.097 1.360 0.101 1.454
thl 0.022 1.481 0.021 2.202 0.023 2.469 0.024 2.673
chn 0.023 0.942 0.024 1.348 0.020 1.494 0.014 1.605
jpn 0.092 1.928 0.140 2.862 0.162 3.259 0.178 3.553
sib 0.112 1.370 0.134 1.810 0.144 1.939 0.152 2.026

Table 2.8: Mean and standard deviation of brightness temperature differences between

the central pixels and the contextual surrounds at the specified percentage levels for

the 5 × 5 window in each case study area. Each column reports the statistics of accept-

ing the available pixels above the denoted percentage level. Pixels with full contextual

coverage are reported in the 1.00 column.

Valid portion of total context pixels

1.00 0.99 - 0.75 0.99 - 0.65 0.99 - 0.55 0.99 - 0.45 0.99 - 0.35 0.99 - 0.25 0.99 - 0.15 all

sea mean (K) -0.021 -0.042 -0.013 0.010 0.043 0.056 0.063 0.068 0.022
std (K) 1.670 1.832 1.862 1.880 1.921 1.931 1.935 1.941 1.804
count 279250 152220 210297 243132 284703 308590 330486 363534 688739
% avail 40.5% 22.1% 30.5% 35.3% 41.3% 44.8% 48.0% 52.8%

nwa mean (K) -0.051 -0.134 -0.035 0.034 0.127 0.171 0.198 0.218 0.061
std (K) 1.377 2.576 2.769 2.856 2.953 2.992 3.014 3.029 2.216
count 548125 258015 339147 382837 438487 470677 499270 538353 1129978
% avail 48.5% 22.8% 30.0% 33.9% 38.8% 41.7% 44.2% 47.6%

bor mean (K) -0.106 -0.096 -0.038 0.003 0.051 0.071 0.086 0.096 0.061
std (K) 1.121 1.472 1.585 1.651 1.719 1.746 1.764 1.777 1.681
count 90734 250567 343181 392122 451781 485259 515552 559085 702114
% avail 12.9% 35.7% 48.9% 55.8% 64.3% 69.1% 73.4% 79.6%

thl mean (K) -0.033 0.000 0.047 0.079 0.109 0.118 0.122 0.125 0.016
std (K) 1.679 1.874 1.920 1.941 1.961 1.965 1.967 1.970 1.776
count 683361 224582 281720 310807 346989 367880 386865 415359 1134791
% avail 60.2% 19.8% 24.8% 27.4% 30.6% 32.4% 34.1% 36.6%

chn mean (K) -0.032 -0.041 0.006 0.039 0.079 0.092 0.100 0.104 0.021
std (K) 1.159 1.310 1.345 1.370 1.407 1.418 1.424 1.428 1.272
count 428453 176040 232020 262412 301287 324324 346985 384005 868807
% avail 49.3% 20.3% 26.7% 30.2% 34.7% 37.3% 39.9% 44.2%

jpn mean (K) -0.019 -0.151 -0.134 -0.056 0.079 0.102 0.116 0.125 0.046
std (K) 2.061 2.246 2.269 2.332 2.460 2.479 2.486 2.490 2.265
count 120759 54546 74758 86968 103879 114110 124201 141136 288787
% avail 41.8% 18.9% 25.9% 30.1% 36.0% 39.5% 43.0% 48.9%

sib mean (K) -0.057 -0.073 -0.017 0.020 0.066 0.080 0.088 0.092 0.037
std (K) 1.120 1.746 1.814 1.859 1.947 1.969 1.980 1.996 1.745
count 86220 66918 97011 117111 149287 173672 202360 260949 478458
% avail 18.0% 14.0% 20.3% 24.5% 31.2% 36.3% 42.3% 54.5%
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3.1 Introduction

Active fire in the landscape is a major catalyst for environmental change, po-

tentially resulting in large socio-economic impacts, including the high costs

and risks associated with mitigation efforts and the disruptive evacuation of

communities[4]. Fire authorities and land managers are constantly seeking

new techniques for the early detection of fire to assist in the timely informing

and evacuation of the public from at-risk areas, the planning and prioritisation

of asset management strategies, and feasibility assessment of possible sup-

pression efforts. This requirement for active fire detection in near real-time

has seen the adoption of remote sensing from satellite sensors as an objec-

tive means to quantify and characterise the location, spread and intensity of

fire events to support these important decisions [68]. The information derived

from this imagery can also be used in conjunction with other data to provide

models of an event, leading to more accurate understanding of the potential

impacts of an event before they occur.

Remote sensing for fire detection and attribution has predominantly fo-

cused on imagery from low earth orbiting (LEO) sensors, which have significant

advantages with regard to spatial resolution, and therefore to the minimum

size of fire that can be detected. The trade-off with sensors of this type is

that their orbital parameters preclude rapidly repeated observations of a sin-

gle location, and without a significant investment in capital to provide for more

missions, the ability to provide real-time observations of fire from these sen-

sors will be hampered by extensive revisit times. The necessity for rapid fire

detection sees the focus of fire detection shift to imagery obtained from geo-

stationary sensors, which provide an increased revisit rate at the cost of a loss

of fidelity in the spatial and radiometric realms [7]. Despite this, the launch of

new sensors such as the Japanese Meteorological Agency’s Advanced Himawai

Imager (AHI) and the NOAA’s Advanced Baseline Imager (ABI) provide an en-

hanced opportunity to examine fire ignitions and evolution due to improved

spatial, radiometric and temporal resolutions compared to their geostationary

predecessors.

One of the physical limitations of some techniques used for the remote sens-

ing of fire is determination of the background temperature of a pixel. Having

an accurate measure of this temperature is vital in order to be able to classify

a target pixel as containing a fire in the first place, along with being able to

accurately estimate the area of the pixel containing fire and the intensity or ra-

This chapter was published in a peer-reviewed journal as: Hally, B., Wallace, L., Reinke, K., &
Jones, S. (2017). A Broad-Area Method for the Diurnal Characterisation of Upwelling Medium Wave
Infrared Radiation. Remote Sensing, 9(2), 167. https://doi.org/10.3390/rs9020167
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diative output of the fire [68]. Background temperature tends to be a difficult

value to determine accurately because of the obscuring effects of the fire’s out-

put, which outweighs the background signal from a pixel in the medium wave

infrared. Early efforts to correct for this behaviour used a bi-spectral approach

[11], which used the response of thermal infrared bands in the same area to de-

velop an estimate of fire characteristics. Thermal infrared bands also display

sensitivity to fire outputs but to a much lesser extent and are generally used

for false alarm detection, especially for marginal detections from the medium

wave infrared caused by solar reflection [34]. The difference between signal re-

sponse in these two bands is the basis for most current geostationary fire detec-

tion algorithms and similarly with the analysis of LEO sensor data [68]. Issues

with these algorithms start when looking at fires of smaller extents. A study

by [22] highlighted issues with fire retrievals using the bi-spectral method, es-

pecially with regard to smaller fires and background temperature characteri-

sation. The study found that misattribution of the background temperature

by as little as 1K for fires that covered a portion of a pixel (p ≤ 0.0001) could

produce errors in fire area attribution by a factor of 100 or more, with a less

significant error in temperature retrieval of > ±200K. This is of major concern

for the use of geostationary sensors for detection, as fires in their early stages

make up far less a proportion of a pixel from a geostationary sensor than is

the case with a LEO sensor.

The most common method of deriving background temperature for a fire

pixel is through the use of brightness temperatures of pixels adjacent to the

target pixel [68]. By identifying a number of pixels in the immediate area that

are not affected by fire or other occlusion such as smoke and cloud, an es-

timate can be found by aggregation of the brightness temperature of these

pixels. The assumption is made that the adjacent pixels used are of a similar

nature in terms of reflectance and emissivity to the target pixel. This back-

ground characterisation is then used in comparison to the target pixel in order

to identify whether the fire signal is different enough from the background

to constitute a fire return. Problems occur with this method when the back-

ground temperature is misrepresented. In a study by [25] estimation of the

background temperature from adjacent pixels in approximately 22% of cases

produced a background temperature that was higher than the brightness tem-

perature of the detected fire, based upon the surface variability of the area

surrounding the detection. This study also analysed the general performance

of the MODIS bi-spectral fire detection algorithm [20], and found that only 7%

of the fire identified by the product could be accurately characterised for fire

temperature and area. With the coarser spatial resolution of geostationary sen-

sors, the authors noted that larger potential errors will affect the retrieval of
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fires in comparison to LEO sensors when using these methods.

A promising method for background temperature determination is through

the use of time series data from geostationary sensors. This time series data

can be utilised based upon the premise that upwelling radiation can be pre-

dicted based upon incident solar radiation, which varies chiefly by time of day,

with some variation due to weather effects and occlusion. Modelling of this

Diurnal Temperature Cycle (DTC) has been approached using many different

techniques. Earlier work on the modelling of the DTC looked to provide a

parameter-based description based upon fitting to discrete mathematical func-

tions, such as the model proposed by [27]. This work applied the modelled

DTC estimate directly to measured brightness temperatures using empirically

derived parameters. This approach tended to be insensitive to functional vari-

ation due to synoptic effects, and performed inadequately during the period of

rapid temperature change in the early morning. The work of [84] was the first

to utilise a set of prior observations as training data for a signal fitting process,

using the mean of previous observations as a state vector for a Kalman filter,

which due to the sensitivity of a mean-based estimate to outlying observations,

application was limited to cloud-free data only.

The influence of outliers on the training data used for signal fitting was ad-

dressed in part by the study of [65], who looked at a selective process whereby

previous days DTCs were included in the training data of a pixel based upon

the amount of disturbance in the day’s observations, with a limit of six cloud or

fire affected observations out of a 96 image DTC permitted. These limits elim-

inated much of the effects of outliers on the subsequent single value decom-

position (SVD) used for the initial fitting of background temperature. Issues

occurred in areas where there were insufficient anomaly-free days for a fitting

to be performed, even with a sampling size of the previous thirty days, in which

case DTCs were selected from a library of known anomaly-free DTCs from a

similar area. The process was reliant on an accurate cloud mask to determine

which days were anomaly-free, and the training data derivation was data inten-

sive, with DTC vectors having to be extracted and calculated for each individual

pixel prior to fitting using the SVD process. These issues lead to training data

fragility, and introduced some of the issues that are common error sources in

contextual algorithms for fire detection.

In order to address the issues caused by sampling training data from a pixel-

based approach, this paper presents a new method for deriving training data

based upon a broad-area method. This method exploits similarities in incident

solar radiation found at similar latitudes to derive training data for a pixel.

Geostationary sensor data is aggregated by latitude and an area’s local solar

time, and formed into a time series based upon a sensor’s temporal resolution.
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This paper will compare the results obtained using this method to training data

derived from individual pixels, such as in the study by [65], and with contextual

methods of background temperature determination, to compare the accuracy,

efficiency and availability of each method.

3.2 Materials and Methods

3.2.1 Himawari AHI-8 Data

The Japanese Meteorological Agency (JMA) launched the Himawari-8 geosta-

tionary satellite in October 2014, which replaced the MTSAT-2 sensor as the

main source of meteorological data for Australia. The sensor onboard the

Himawari-8 satellite is the Advanced Himawari Imager (AHI), a sensor capa-

ble of measuring 16 bands of imagery, ranging from visible light through to

thermal infrared. The radiometric resolution of the sensor is significantly im-

proved compared to previous iterations of MT-SAT, with quantization of 11 bit

in the visible and near infra-red and up to 14 bits for the MWIR Band 7, which is

the band most heavily utilised for fire detection purposes. The sensor boasts

a spatial resolution of 2 × 2 km at nadir for infra-red channels, with visible

imagery available at resolutions as high as 0.5 × 0.5 km. Scanning of the full

disk generally takes place every ten minutes, with the area of Japan and sur-

roundings scanned every 150 seconds. The coverage area of images provided

by the sensor ranges from western India to Hawaii longitudinally, encompass-

ing much of China, Siberia, Japan, South East Asia, Indonesia and Australia.

Characteristics of AHI and MTSAT-2 for fire detection can be found in Table

3.1.

Table 3.1: Comparison of MTSAT-2 and AHI-8 sensors for fire detection using a MWIR

(∼ 4µm) channel.

Sensor MTSAT-2 AHI-8

Temporal Resolution 30 min 10 min

Spatial Resolution (nadir) 4 × 4 km 2 × 2 km

Medium wave infra-red channel saturation temperature 330 K 400 K

Quantisation (MWIR) 10 bit 14 bit

Noise equivalent delta temperature (NE∆T ) 0.09 @ 300 K ≤0.16 @ 300 K

The increase in image frequency from the AHI sensor in particular allows

for greater utilisation of time series data for temperature estimation, with gaps

in the data caused by station keeping, or sensor recording and processing is-

sues having less of an effect on derived values. Improvements in radiometric

resolution allow a greater range of measurements to be recorded, improving
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the fidelity of anomaly detection, and a greater saturation temperature allows

for the characteristics of larger fires to be determined. Preliminary work with

this sensor in the fire detection space [30, 88] has demonstrated the ability

to detect and track fires using multiple bands of imagery from this satellite

sensor.

Inclusive of the housekeeping periods of the satellite, which occur twice

daily, 142 full disk images are available from AHI per day. This study utilises

image products published by the Australian Bureau of Meteorology (ABOM),

derived from raw AHI images by the process outlined in [37] for Band 7 bright-

ness temperature corrections from raw satellite imagery. The study alsomakes

use of the clear sky probability product, adapted by ABOM from the CLAVR-x

cloud mask algorithm outlined in [35] with some minor alterations [54] for ver-

ification of cloudy periods in the temporal data stream. Cloud product data

for AHI is generally available at ten minute intervals, which is similar to raw

satellite images.

3.2.2 Training Data Derivation

Upwelling radiation in the medium wave infra-red consists of two main com-

ponents: reflection of solar radiation from the earth’s surface, and emission

of blackbody radiation from the surface due to temperature. The skin surface

temperature of the earth is influenced by a number of factors. Rain reduces

upwelling radiation by both lowering surface albedo, and reducing surface tem-

peratures and consequently emission. Convective cooling and heating due to

air masses can influence surface temperatures, and land cover composition

can affect the magnitude of temperature change. However, the most notable

influence is heating by solar radiation. For any area of land on a given day

at a given latitude, the amount of incident solar radiation should be similar

barring obscuration. This should lead to a similar relative diurnal response of

upwelling radiation from the land surface at a given solar time ts. By break-

ing the land surface into 0.25◦ × 0.25◦ blocks, we can use the rotation of the

earth to construct an amalgamated time series, with each block translating to

a separate minute of local solar time.

Images from the sensor have an ocean mask and a rudimentary cloud mask

(all pixels below 270K discarded) applied, and the remaining pixels in each

block are aggregated as a median brightness temperature. This swath of blocks

from a latitude is assigned a time according to the UTC time of the image

capture and the longitude of the block as a function of its offset from the
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Greenwich meridian:

ts = UTCimage + longitude× 240(secs) (3.1)

Each line of the original image also has a scan line time associated with

it, which is the offset of the line capture relative to the nominal image time.

This is important, especially when comparing areas of relative spatial proximity

that may be scanned at different times in the image capture cycle. Blocks

are assigned their own scan line time according to the median scan time of

the captured pixels from the original image. Once this is added, each block’s

apparent time is rounded to the nearest minute and training data processing

can commence.

Figure 3.1: Time series diagram for a swath of latitude 25.75◦S–26◦S from 135◦E–150◦E

longitude on 2015 day 319 (15 November 2015). Each square represents the median

temperature of the 0.25◦ block at the image time on the y-axis. These blocks represent

one minute of training data that can be fed into the brightness temperature aggregation

process.

An example of the variability in training data can be found in Figure 3.1,

which is a swath of land running half the width of the Australian continent at

26◦S latitude. This swath demonstrates the diurnal variation of the daytime

period of each block as the image time advances. The timing of the peak tem-

perature of the day advances from right to left as the images progress, which

should be the expected behaviour as the Earth rotates. Most noticeable in this
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Figure 3.2: Figure 3.1 visualised relative to local solar time. Each of the swaths of

block values extracted from each image are shown as a grey line. The four coloured

lines depict the trajectory of individual block temperatures at 135◦E, 140◦E, 145◦E and

150◦E as the day passes.

figure is the differing magnitude of temperature changes in the most easterly

three degrees of longitude. In this region the land cover changes from the

sparsely vegetated desert found in central Australia to more vegetated crop-

ping land interspersed with forest. This composition of land cover displays

far less upwelling radiation during the middle of the day than much of the rest

of the swath, necessitating the step of temperature standardisation for each

block to account for this reduced range of radiation values.

Figure 3.2 shows the relationship of the swath to local solar time as time

passes. Each of the grey lines on this graph represents median brightness

temperatures relative to local solar time for each block. The coloured lines

represent the temperature trajectories of a selection of blocks from the swath.

In an ideal situation these lines would sit on top of one another, but varia-

tions in land cover and partial obscuration of blocks by cloud, especially on

the most easterly vector depicted in green, have prevented it in this instance.

Nonetheless, the daily maximums of the other trajectories occur almost at the

same point, between 12:30 and 13:00 local time. One characteristic this dia-

gram demonstrates is the overlapping redundant information available in the

ten minute time series provided by the AHI sensor. Swaths of sufficient width

produce large amounts of redundant measurements at each local solar time
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Figure 3.3: An example of the training data fitting process on a swath for a 24-h period.

Grey lines represent the raw median values for each swath from the time of each image,

the blue data points are representative of the median brightness temperature of the

training data at each local solar time, and the red trend line represents the filtered

medians of the training data. (Due to the nature of the filtering process, the lack of data

at each end of the data results in anomalous fitting and as such the swath sampling has

been extended one hour either side of the 24-h period to minimise these errors.)

depending on the imaging frequency of the satellite sensor in question.

Both Figures 3.1 and 3.2 demonstrate a basic issue with this block aggrega-

tion method, which is the variation of responses from the land surface in each

block due to factors such as differences in surface emissivity and reflection,

and the influence of cloud shadowing. In order to minimise the effects of this

over the time series, each of the blocks is standardised (mean µ = 0, standard

deviation σ = 1) over a 24 hour period and these standardised values are used

in the signal generation process. The data is then merged into one large time

series and medians of the deviation from the daily mean of each block are

taken at each minute. This information is then fed through a Butterworth low

pass filter (fifth order, cutoff frequency three hours) to smooth some of the

minute-to-minute variation and provide an ideal temperature curve for the day

in question. The result of an example of this process is shown as the red line

in Figure 3.3. This filtered data subsequently forms the Broad Area Training

(BAT) data set for the fitting of a diurnal temperature curve to the target pixel.
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3.2.3 Fitting to Pixel Brightness Temperatures

This studymakes use of the robustmatching algorithm described in [65], which

adapted the SVD method described by [3] for its fitting method. In a similar

fashion to the training data set, each pixel brightness temperature value in

the 24 hour period to be modelled is categorised by local solar time. These

times are rounded to the nearest minute to more easily correspond with the

training dataset. The time offset between the first brightness temperature mea-

surement of the pixel and the training data is calculated, and the values are ex-

tracted from the training dataset corresponding to the image times of the pixel

dataset. This leaves the training dataset consisting of a number of daily vec-

tors that correspond directly to the times that brightness temperatures were

measured for the pixel’s DTC.

A SVD decomposes the training data matrix A into a number of principal

component vectors U which describe the training data as a series of orthogonal

vectors, along with the diagonal matrix Σ which contains sorted decreasing

eigenvalues for each component and the matrix V which contains coefficients

for the reconstruction of the basis DTCs, as shown in Equation (3.2):

A = UΣV T (3.2)

Given the datasets involved with the brightness temperature fitting process

used in this paper, a significant number of the component vectors in U con-

tribute little to the DTC fitting process. An examination of the relationship

between the maximum variance in the training data and the DTC is given by

the eigenvalues σi found in Σ. To minimise the effect of overfitting caused

by these extra degrees of freedom in the component vectors, values of σi are

tallied until the examined eigenvectors account for at least 90% of the total

variance of the SVD (per [64]), with subsequent vectors discarded. This gener-

ally leads to a U matrix consisting of between two and seven vectors for fitting

in this study.

For a vector of observations from a pixel e, an approximation of the DTC e∗

can be created from a reconstruction of the principal components:

e∗ =

K∑
i=1

ciUit (3.3)

where K is the number of basis vectors used and ci is a series of scalar

values derived by taking the inner product of the observations from the pixel

and the principal components (eTU ). ci essentially describes the contribution

of each of the component vectors in U to the fitted estimate of the DTC e∗.
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At this point, the root mean square difference of the estimate of the DTC is

compared to the raw temperature measurements. If there is a sufficient fit be-

tween the two at this point, the model answer is accepted without adjustment.

If not, to minimise the effects of outliers on the robust determination of the

DTC, a least squares minimisation of Equation (3.3) occurs, utilising a robust

error norm which identifies outliers that contribute excessively to error:

σ(x, s) =
x2

s+ x2
(3.4)

x is the value of e − e∗ at time t, and s is a scale factor which can be re-

duced iteratively to improve the solution given by the error minimisation. Care

should be taken when selecting suitable s values to ensure appropriate outlier

elimination and that the model does not become unstable. This leads to the

application of an outlier mask m, such that:

mt =

1, |et − e∗t | ≥ σ/
√
3

0, otherwise
(3.5)

which leads to the minimisation of the error function E(c) as shown below:

E(c) =

N∑
t=1

mtρ((et − (

K∑
i=1

ciUit)), σ) (3.6)

In a set of randomly selected DTCs, the number of anomalies produced by

cloud far outweighs that of fire. In order to minimise the influence of spo-

radic clouds to the temperature fitting process and keep the modelled curve

closer to higher temperatures that are more reflective of ground conditions,

the weights of all negative residuals are halved during the least squares min-

imisation process.

This process refines the values of ci applied to the principal components

Ui in order to reconstruct an approximate value for et. At this point, out-

liers from the ideal DTC can be identified and attributed according to their

characteristics—whether they are positive or negative anomalies, and whether

the change occurs suddenly or gradually over time.

3.2.4 Algorithm Evaluation

3.2.4.1 Method Accuracy

In order to test the accuracy of brightness temperature modelling using BAT

data, a number of comparisons aremadewith currently usedmethods for deriv-
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ing brightness temperature. Focus will be placed upon the method described

by [65], which gathers training data vectors from the pixel’s recent history,

ranging up to thirty days prior to the time period being fitted. This method

uses a rejection criteria based upon the number of pixel returns in a 24-h set

affected by cloud, with rejection of a daily vector based upon more than 6.25%

of pixel returns in the period being cloud-affected (six of the 96 images avail-

able). A pixel can be classed as able to be modelled using this training data if

at least ten days out of the previous thirty are classified as successful and only

successful vectors are utilised in the SVD fitting process. A similar process is

used to apply this method to pixel history in this study, with a small alteration

in the number of bad pixels causing a rejection. As the AHI sensor takes a

maximum of 142 images in a 24 hr period, a rejection of a daily vector occurs

when there are more than nine instances of clear sky probability equal to zero

in the corresponding AHI cloud mask data.

For comparison, a temperature fitting has been applied to each sampled

pixel utilising BAT data derived from the previous thirty days and the previ-

ous ten days prior to the fitting. These sampling points simulate the minimum

and maximum amount of training data available to the pixel-based fitting ap-

proach. Comparison is also made to contextual based temperature derivation

based upon a similar method used for the MODIS fire products [41], with an ex-

panding kernel based upon 25% cloud and fire-free returns in the target vicinity,

with a minimum of six successful returns. In the case of the MODIS products,

the kernel is allowed to grow to 21 × 21 pixels in size before reaching a failed

state. Due to the larger areas covered by AHI pixels, the divergence of land

cover and geology over these distances could be extreme, so a limit of 5 × 5

pixels was proposed instead. For this evaluation, a set of 19,916 pixels were

randomly selected over the Australian continent for the month of November

2015, with fitting of the raw brightness temperature performed using the four

different methods noted above.

3.2.4.2 Method Efficiency

The nature of the BAT method lends itself to pre-processing—once a swath

has processed from a particular image time, the data is utilised in any fitting

process on any pixel in the swath for the encompassing period (either ten or

thirty days in the case of this study). For each image, an ocean mask and basic

cloud mask (such as described in Section 3.2.2) is applied before blocks are

aggregated by median temperature. This data is stored in files for later access

in the block-based fitting method.

For evaluation of the efficiency of both algorithms, the Python code for both
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methods was written to take advantage of an initial common data gathering

process (location, start time, daily brightness temperature, available cloud). A

random location and time in Australia during the month of November 2015

was selected, with the pixel-based training data calculated first. An extraction

routine for training data was run once the suitability of an individual day of

data was assessed. This routine would then check whether sufficient training

periods for a pixel existed, and ran the fitting routine in the event of success.

The time taken for both successful and unsuccessful routines using pixel-based

training data was recorded.

Next, the BAT fitting was undertaken using thirty training days and ten

training days, utilising the pre-processed block data, with the processing time

for each recorded. Processing took place utilising code written for Python 2.7,

using the Numpy (v1.12) mathematical processing module and the built-in mul-

tiprocessing module, along with the python-netCDF4 (v1.2.1) module for data

reading and writing. The computer used for processing utilises an Intel(R)

Core(TM) i7-5820K CPU, allowing 12 threads of processing to take place at

once on the six available cores. Images and pre-processed training data were

stored on and accessed from an external hard disk drive using USB-3 for data

transfer.

3.2.4.3 Training Data Availability

In order to calculate the availability of pixel-based training data as per the [65]

method, we used the AHI cloudmask data to evaluate cloud cover at the time of

each image, with all values of clear sky probability greater than zero counting

as clear sky. The data was aggregated for each pixel for a 24 hour period corre-

sponding with a UTC day, and pixels with greater than 132 cloud-free returns

judged to be suitable for training purposes. Ten or more such successes within

the thirty day period evaluated made the pixel suitable for pixel based training

data collection. As the BAT datasets rely on redundant measurements from ad-

jacent blocks on the swath—with a consequent reduction on reliance upon an

individual block for training data—it was difficult to provide a direct compar-

ison case back to the pixel-derived data for evaluating availability. Absences

in measurements from a specific block lead to reductions in the accuracy of

the training data model for the at-large swath, but complete loss of model

performance only occurs where a significant length of an individual swath is

completely obscured by cloud for an extended period, which is unlikely outside

of situations where the swath is very narrow. For a comparison in this case, we

used the availability of pixel training data on a per-pixel basis and the availabil-

ity of BAT data on a per-block basis for the months of October and November
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2015 for the Australian continent. The BAT availability figures in this case may

be construed as a minimum, and effective training data availability is generally

much higher.

3.3 Results

3.3.1 Algorithm Accuracy

For comparison purposes between the pixel-based and BAT methods, we pro-

cessed solutions for a selection of 19,916 pixels with random locations on the

Australian continent with fitting times during themonth of November 2015. Of

this larger selection, 5747 pixels (approximately 28.9%) had sufficient training

data available for use of pixel-based fitting.

Table 3.2: Comparison of fitting techniques to brightness temperatures recorded by

the AHI sensor using root mean square error after eliminating incidences of Clear Sky

Probability (CSP) of less than one from the evaluation.

Fitting technique RMS Error (K)

Incidences of CSP < 1 ≤ 10 11− 30 31− 50 51− 70 > 70

Pixel-based training 0.78 1.01 2.28 3.25 10.40

BAT (30 days) 0.94 0.94 1.11 1.48 4.19

BAT (10 days) 1.15 1.21 1.40 2.10 6.31

Contextual temperature 0.33 0.42 0.41 0.40 0.42

Number of samples 903 741 768 851 2345

Table 3.2 shows the relative accuracy of each of the temperature fitting

processes in comparison to the raw brightness temperatures recorded by the

AHI sensor after measurements flagged as cloud are eliminated. In clear sky

conditions (≤ 10 cloud instances) the pixel-based training method performed

more accurately than the BAT method for either ten or thirty days of training

data, with differences of 0.30 and 0.15K respectively. This was expected, as

the data derived from an individual pixel will perform far better with regard to

localised effects on pixels such as land cover composition. As the number of

cloud instances increased, the pixel-based training accuracy degraded, but the

30 day BAT method showed a steady relationship with the cloud free bright-

ness temperatures up to 30 cloud affected returns, with a more gradual loss

of accuracy on heavily cloud affected days. The 10 day BAT method showed

a similar performance dynamic, with an approximate 20% loss in accuracy up

to the point where accurate temperature determination became difficult (> 50

clouds).
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Figure 3.4: Examples of model fitting using the four training data derivations. Figure

(a) shows a typical day with less than ten cloud instances, (b) shows a day with between

20–30 instances of cloud, and (c) is typical of a day with more than 70 identified cloud

periods.

The context-based temperature derivation appears to perform especially

well regardless of the number of outliers encountered in the temperature dataset.

This is mainly due to the spatial autocorrelation of cloud and weather effects,

which see contextual based temperatures closely track anomalous temperature

as measured in each pixel, rather than tracking the base model of upwelling

radiation without anomaly. Comparison is also inhibited by the instance of a

contextual temperature not being available, which is more likely at times where

anomalies would be detected.

Figure 3.4 demonstrates some examples of the fitting process over a few of

the random pixels selected. Figure 3.4a shows the typical performance of each

temperature estimation technique on a clear sky day, with the fitted curves

from the BAT showing greatest variance from the raw temperatures during the

night-time period and at the peak of the day. The pixel based training data is

better able to handle tracking of brightness temperature during the daytime,

but also shows some variance during the night to a lesser extent. Figure 3.4b

shows an example of a day with between 20 and 30 cloud instances. This fig-

ure shows the fitting curves from both of the BAT datasets effectively ignoring

the cloud induced anomalies in the early evening (0900 UTC) and during the

peak of the following day (0200 UTC). This is in contrast to the pixel-based

trained fitting, which follows the anomalies in the early evening more closely

and underestimates the rising temperatures in the morning period (2000–0000

UTC). This figure also demonstrates the spatial autocorrelation issue with the

contextually derived background temperatures. The contextual fitting follows

the cloud affected temperatures in the afternoon and early evening period, ig-

noring the significance of the temperature peaks during this period which are

more indicative of the true background temperature.
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Figure 3.4c shows an example with around 95 instances of non-clear sky

conditions. This example shows some of the fragility inherent in all of these

methods when a significant portion of the DTC is cloud obscured. Due to the

standardisation process that all pixels undertake before fitting of the training

data is undertaken, the large temperature drops caused by the evening clouds

(0700–1100) skew the normalisation by lowering the mean and increasing the

standard deviation. This issue sees both the pixel-based fitting and the BAT

fittings underestimate the background temperature throughout the course of

the day, with the largest variations in the peak of the day and towards the end

of the fitting in the early morning. This also demonstrates one of the limita-

tions with using a model with greater degrees of freedom. Extra degrees of

freedom are necessary in the case of sudden drops in the background temper-

ature caused by weather effects, but on days where brightness temperatures

do not follow the indicative shape of the DTC, the SVD fitting process tends to

produce curves that wander about with little relation to the true background

temperature.

3.3.2 Algorithm Efficiency

Table 3.3 shows the average time taken to perform the computations by each

of the temperature fitting methods from a processed pool of 19,916 target

pixels. The time taken to provide a temperature fitting based on BAT data

for a thirty day period is approximately one-tenth of the time taken to derive a

similar fitting from the pixel data. Part of the increase in speed comes from pre-

processing of the pixel training data, which takes approximately 15 minutes

per day of images. The difference between the pixel-based and block-based

methods coincide at around 170 pixels evaluated, with the block-basedmethod

performing significantly faster beyond this. The pre-processed blocks can also

be used in calculations for training data in adjacent time periods ±10 or 30

days from the start time of the original assessment, speeding up subsequent

processing further. The largest improvement in time of processing between

the two methods is with regard to acquiring data about the state of cloud in

the training data period, where evaluating the suitability of 24-h periods using

the cloud mask data makes up over 75% of the time taken to process a solution

using this method.

The time taken to calculate a fitting from the 10 day BAT data is even

shorter, taking around 40% as long as the thirty day BAT method. A signifi-

cant improvement in processing time can be achieved for a small decrease in

accuracy compared to the fitting provided by the 30 day BAT data. This is

of importance in situations where processing time may be more critical than
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Table 3.3: Comparison of time taken to provide a temperature fitting using the pixel-

based training technique and the BAT fitting process.

Fitting Technique Time Taken (secs)

BAT Pre-processing 15 mins/day

BAT (30 days) 18.4

BAT (10 days) 7.3

Pixel-based Sampling cloud statistics 141.8

Training & fitting 35.5

Total time 177.2

accuracy.

3.3.3 Training Data Availability

Training data blocks were derived for the entirety of the Australian continent

for the months of October and November 2015, from 4379 and 4245 AHI Band

7 images respectively. Block method training data was deemed available when

at least one pixel brightness temperature in a 0.25◦ block was observed above

270 K. Using the BAT method training data availability for the continent aver-

aged 96.9% of all images for October and 95.4% of all images for November.

This compared to the pixel-based method, which yielded 70.2% of data in Octo-

ber and 67.8% of data in November. Given the assumption that a minimum of

ten days of training data is sufficient to derive a DTC, 91.4% of blocks demon-

strate a sufficient number of clear days to derive training data in October, and

81.8% in November. In comparison the pixel based training method supplies

sufficient days of training data to a pixel in 43.8% of cases in October and 37%

of cases in November. From an availability standpoint, the block based method

of training data derivation is a marked improvement over pixel-based methods,

and a significant amount of redundant data on each line of blocks extends this

availability further.

Figure 3.5 shows the spatial distribution of training data availability over

the study area for October and November. The figure demonstrates the over-

all increase in training data availability when using the BAT method. Areas of

limited availability demonstrated similarity in spatial distribution between the

two methods, with south eastern Australia and Tasmania in particular suffer-

ing from a lack (indeed in some areas a total absence) of pixel-based training

data for the evaluation period. In comparison, the majority of blocks retained

availability for the required time during the period, with some deterioration

in coastal areas. The BAT method demonstrates a significant improvement in

temperature fitting ability, especially in the highly populated coastal areas in
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Figure 3.5: Availability of training data from the block and pixel based methods. (a,b)

show the mean instances of training data available using the BAT method for October

and November respectively; (c,d) show the training data available using the pixel method

for the samemonths.(e,f) demonstrate the number of 24-h periods that could be utilised

as training data for each block in October and November, and (g,h) show this same

criteria using the pixel based method.

the south and east of Australia.
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3.4 Discussion

The advantages of using the BAT method for deriving training data for tem-

perature fitting include robustness against localised cloud, especially in areas

with persistent standing cloud such as coasts and mountainous areas; the abil-

ity to minimise the number of training days required for deriving a brightness

temperature fitting due to the increased availability of training data; and a

reduction in the storage of data and processing time of training data for tem-

perature fitting. Whilst in this study the training data is used to feed an SVD

fitting of the DTC, the data could easily be applied to other fitting techniques,

such as a random forest classifier or as a state vector for Kalman filtering. The

nature of the fitting process removes the need for tracking locations that have

standing hotspots, as the fitting process is completely context independent,

and eliminates errors that may be caused by large variations in response to so-

lar radiation and emission between adjacent pixels. As the broad area method

relies on as few as one cloud-free pixel per block from which to derive a me-

dian temperature, the method is far more robust in response to occlusion than

the pixel-based method. When banks of cloud associated with large weather

systems are present, a single block may be totally covered by cloud in one or

several images. However, the redundancy associated with evaluation on a con-

tinental scale means that this lack of data has a minimal effect on the training

data for the same time period.

The quality of the training data used in the process relies on a couple of fac-

tors. For example, the width of the longitudinal swath at any given latitude is

affected by the amount of ground available to sample that swath. In Australia,

latitudes between 25◦S–30◦S have the full width of the continent to sample

temperatures from, with anywhere up to 160 blocks of data per image. This

provides a large amount of redundancy in the training data, reducing the af-

fect of outliers in the training set. In contrast, a smaller swath width results in

fewer blocks to formulate the training data, with a greater risk of anomalous

returns affecting the resultant fitting processes. A smaller swath width also

increases the influence of edge cases such as coastlines, which tend to moder-

ate land surface temperature variance if they are not handled by an adequate

ocean mask. A buffer of two pixels (between 3 and 6 km) was used to elim-

inate these edge cases for ocean boundaries, but water bodies such as lakes

and reservoirs may also contribute to erroneous training data if the number

of blocks used for training data is low. Discontinuous and inadequate areas

to derive training data from may prove a challenge, and evaluating the perfor-

mance of the BAT method in a region like Indonesia where cloud cover is high

and land areas are discontinuous would properly test the limits of the method.
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Deriving training data using the BAT method is not without its issues. The

method involves the use of a median value for the entirety of a 0.25◦ × 0.25◦

block without taking into account factors such as land cover, land use type,

slope and aspect, and surface emissivity, all variables that can vary signifi-

cantly between pixels in a block. The application of the training data back to

the pixel brightness temperature using the SVD process also omits considera-

tion of differing albedo between adjacent pixels in a block. These issues may

both be resolved by using a weight from each pixel at different times of the day

to take into account the differing emissivity and reflection and how they affect

the DTC of each location. The training dataset also has a minimum cutoff tem-

perature of 270 K to minimise the influence of cloud affecting the training data

in lieu of an operational cloud mask which may produce large areas of missing

data in places where surface temperature and reflection components sit under

this value for long periods of time. If a method such as this is used to track sur-

face upwelling radiation in areas that have sustained brightness temperatures

below 270 K, a cloud mask could be substituted in this case to eliminate major

outlying temperatures instead. The effect of snow on brightness temperature

tracking using this method has not been explored, mainly due to the study site

and time of year chosen.

Considering the evaluation of the various methods for accuracy of fitting,

the block-based training data based upon thirty previous days performed rea-

sonably well for fitting accuracy in comparison to the pixel-based training data

for all anomaly classifications, and the results derived from the 10 day block

training data were of similar accuracy. If a threshold for suitability of fitting is

placed on the results, such as would be for a fire detection model, the 30 day

block-based method is far more robust with respect to anomalies and would

continue tracking the expected upwelling radiation with up to one quarter of

the time series obscured. A full sensitivity analysis using in-situ upwelling ra-

diation data along with a verified cloud mask would be of value to confirm

the shape of the diurnal model in order to provide an independent confirma-

tion of the method’s accuracy. Of note here is the apparently extremely good

performance of the contextual method for providing background temperature,

which is an unfortunate side effect of methods for evaluating the accuracy

of the model fitting process. The high spatial autocorrelation demonstrated

by upwelling radiation results in a contextual based temperature tracking ex-

tremely closely to the raw temperature measurements regardless of whether

the surrounds themselves are affected by anomalies such as cloud, smoke or

fire.

Whilst the accuracy of the fitting method used in this study for days of

limited thermal anomalies is quite good, the accuracy of fitting provided by the
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SVD process breaks down once a large number of anomalies are encountered

in the fitted data. This behaviour, which manifests in the type of “wandering”

curves displayed in Figure 3.4c, is caused in part by the standardisation process

applied to pixel brightness temperatures, where significant numbers of cloud

incidences, especially from thick cold clouds, can act to drop the mean and

increase the standard deviation of temperatures across the fitted period. This

affects the initial estimation given from the SVD process to the point where the

outlier elimination process disregards correct temperature measurements by

mistake. One of the limitations of using the SVD fitting method is that outlying

measurements in the raw brightness temperatures cannot be easily eliminated

from the function evaluation. Whilst applying a more rigorous cloud mask

or deriving a standard model for brightness temperatures at a given location

and date could be ways of eliminating this mainly low temperature biasing;

investigation of other methods for applying the training data for temperature

fitting should be a priority.

Overall, the BATmethod described in this paper performed adequately from

an accuracy standpoint, but the real benefits of the method lie in the improve-

ments in processing time and availability. The BAT method processed an in-

dividual fitting at about ten times the speed of the pixel-based training data

method, mostly due to the lack of need for cloud mask evaluation of the train-

ing data vectors prior to fitting. This issue with the pixel-based trainingmethod

could be alleviated somewhat by smaller file sizes, as the major issue with pro-

cessing of the pixel training seems to be the bulkiness of cloud data produced

for this sensor (typical file sizes for the AHI cloud product are approximately

90–100 MB). Given the ten day BAT method performed similarly to the pixel-

based training method for temperature accuracy, using this data set instead of

the thirty day block training set could be justified in situations where process-

ing time of large image sets is of greater importance than extreme accuracy,

especially when used for initial anomaly detection purposes.

From a fitting availability standpoint, the BATmethod significantly increases

the distribution of areas that are able to have a temperature fitting applied to

them. In comparison to pixel-based methods, the increase of fitting availability

is especially marked in areas such as the east and south east coasts and the

island of Tasmania. These areas are heavily populated in comparison to much

of the Australian continent, and are at significant risk from rapidly changing

events, such as fire and flood. The extended utility and application of the BAT

method will be of great interest to land management authorities in these areas.

The BAT method formulated in this paper is designed specifically for the

process of providing data to inform fitting processes for positive thermal anomaly

detection, such as for fire detection. An enhanced understanding of back-
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ground temperature behaviour in the MWIR space could lead to improvements

in the determination of fire detection thresholds, potentially leading to delin-

eation of fire thresholds using time of day, latitude and solar aspect, along

with a greater understanding of how the mix of solar reflection and thermal

emission in a pixel contributes to the minimum detectable characteristics of a

fire from a particular sensor. Applications of this technique could also look to

provide ongoing monitoring of fires using metrics such as area, temperature

and fire radiative power utilising the improved estimation of this background

temperature.

In addition to improvements in the fire detection space, this method could

have applications in a number of other fields that require change detection

over a short period of time. Likely applications could see aggregation of data

based upon land cover classification along with local solar time and latitude

to provide a baseline for mapping soil dryness changes, or for tracking the

spread and severity of phenomena such as flooding and volcanic activity from

geostationary imagery.

3.5 Conclusions

This study demonstrates the formulation of a broad-area training data deriva-

tion method for temperature fitting, for estimation of the background tem-

perature of a pixel measured by a geostationary sensor whilst obscured by

cloud, smoke or fire. In comparison to pixel-based methods of deriving train-

ing data for temperature fitting, the BAT improves fitting resilience during pe-

riods of light to medium obscuration, with fitting errors reduced by more than

50% on days with between 31 and 70 obscured instances using thirty days of

training data. The BAT method also demonstrates significant improvement in

processing times compared to pixel-based training methods, especially when

dealing with a large number of fittings over similar timeframes. The use of the

BAT method also increases the availability of training data for fitting purposes,

with fitting availability increasing to between 80% and 90% for the time period

covered by this study, compared to approximately 40% availability from pixel-

based methods. This improved availability of training data will assist in tasks

related to the accurate understanding of background upwelling radiation, such

as in fire detection and monitoring.
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3.6 Thesis Context

This chapter introduced the Broad Area Training method of diurnal fitting for

brightness temperature estimation. The work, which was a variant of a method

implemented by [65], demonstrated comparisons in coverage and availability

of estimations in comparison to that method of diurnal fitting. The next chap-

ter takes these model fitting estimates of brightness temperature and applies

them to a theoretical fire detection implementation, with comparisons to other

commonly used fire products.
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4.1 Introduction

Wildfires are a major catalyst for change in the environment, creating essential

environmental disturbance to assist natural vegetation cycles, and disruptive

change with intense fires causing damage to both property and the environ-

ment [80]. With the increased propensity towards more intense fires due to

the increased drying of fuels and more extreme weather conditions [51], it is

of vital importance to be able to detect wildfires as early as possible, in order to

drive potential mitigation strategies, minimise the impact of fires on strategic

assets in the built environment and maximise the time available to inform the

public of impending fire activity. Using satellite sensors for the detection of

fire has proven an effective way of producing information about the likelihood

of active fire, along with providing metrics such as the size and intensity of

fire activity [68].

In order to obtain timely information about fire ignition, the use of geo-

stationary satellites to provide imagery takes primacy over low earth orbiting

(LEO) active fire (AF) products, such as those obtained from the Moderate Res-

olution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging

Radiometer Suite (VIIRS) sensor systems [18]. Whilst the LEO sensors have

advantages over geostationary satellites, such as the reduced sensor instan-

taneous field-of-view (IFOV) from their far lower orbits which makes smaller

fires easier to detect, the LEO sensors are restricted in their ability to provide

rapid temporal updates of active fire information due to the limited number

of sensor views of a target area in a 24 hour period [45]. This limit to revisit

time makes LEO fire products particularly vulnerable to errors of omission

when cloud covers an active fire during the sensor overpass, and when the

ephemeral nature of fire causes a drop in fire activity coincident with the image

time. These vulnerabilities in fire detection are offset by the use of geostation-

ary sensors, which can use their superior revisit time to sample fire activity

during gaps in cloud cover and smoke, and to capture the changing state of an

active fire more effectively [66]. Geostationary satellites to this point in time

have been effective in the detection of larger area fires, but have suffered from

major omission errors when fire sizes are small, due to the lower spatial and

radiometric resolution of the geostationary sensors involved [45]. In order to

capture fire ignition time more accurately, a focus on improving the capability

of detecting these smaller fires is required.

With the launch of new geostationary satellites, with sensors such as the

This chapter was published in a peer-reviewed journal as: Hally, B., Wallace, L., Reinke,
K., Jones, S., & Skidmore, A. (2018). Advances in active fire detection using a multi-temporal
method for next-generation geostationary satellite data. International Journal of Digital Earth,
1–16. https://doi.org/10.1080/17538947.2018.1497099
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Advanced Himawari Imager (AHI), the gap in active fire attribution capability

between geostationary sensors and the LEO sensors is decreasing [45]. The AHI

sensor, launched onboard the Himawari-8 satellite in 2014 by the Japan Mete-

orological Agency (JMA), provides enhanced capabilities for fire detection in

comparison with previous geostationary sensors, with 2km spatial resolution

at nadir and an increased 14-bit quantization in the sensor’s 3.9µm band 7 in

comparison to previous sensors in the area. These enhancementsmake the AHI

sensor theoretically capable of detecting far smaller fires, both in absolute size

and in fire radiative power, and these improvements have been demonstrated

in initial studies based upon AHI data, such as those undertaken in [94], [88]

and [31]. The real advantage of using geostationary sensors for fire detection

is the increased temporal resolution in comparison to LEO sensors. Whilst a

satellite constellation such as MODIS may record up to four images of a loca-

tion per day, sensors such as the AHI are able to record at least 144 images a

day over the full disk visible from the sensor location, with much higher tem-

poral resolution in AHI’s case over areas such as Japan. This higher revisit rate

of imagery enables opportunities not just to provide quasi real-time detection

capabilities, but also allows for us to gain a better understanding of the char-

acteristic nature of the earth’s reflectance and emittance in the all-important

4µm region of the electromagnetic spectrum.

Of vital interest to any attempt to detect and quantify fire activity in a loca-

tion is an accurate estimation of the location’s background temperature in the

absence of fire. The difference in the background and elevated pixel tempera-

ture is the basis of most hotspot algorithms, starting with the initial work on

satellite fire detection by [11], which lead to commonly used active fire prod-

ucts such as the MODIS fire product [26] and the VIIRS active fire product [75]

used at LEO scale, and the WF-ABBA fire product [45] and the LSA SAF Meteosat

products [89] which utilise geostationary data. These methods had their gen-

esis in the evaluation of individual images for fire activity – a necessary evil

given the temporal gap between revisits using LEO sensors – and looked to

provide the background temperature of suspected fire pixels from the context

of the surrounding non-flaming area. This method of background temperature

determination relies on accurate differentiation of cloud and smoke-affected

pixels from valid occlusion-free pixels, along with elimination of adjacent fire-

affected pixels and adjustments for a sensor’s point spread function. In diffi-

cult detection conditions with large amounts of occlusion, the area required for

obtaining sufficient clear pixels to facilitate this estimation process expands

significantly. The sampled areas surrounding a target pixel may bear little re-

semblence to the emissive and reflective properties of the central pixel, due

to factors such as landscape cover, relief and weather effects [20, 77]. Contex-
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tually derived temperature can also suffer from spatial autocorrelation issues,

where the omission of thin cloud or smoke reduces brightness temperatures

across wider areas and reduces the temperature contrast required to detect

thermal anomalies in the first instance. These issues with contextual deter-

mination are exacerbated by the sensitivity of fire algorithms to accurately

determined background temperature. [25] highlighted some of the difficulties

with contextual temperature determination methods, including the estimate of

background temperature from the surrounding context being higher than the

target pixel’s flaming temperature, which occurred in 22% of cases with the

MODIS fire product between 2003-2012. Issues also arise when the detected

fire temperature is marginally above the estimated background temperature,

with attribution errors in background temperature of 1K causing errors in the

estimated fire area of a factor of 100 [25], though these types of errors are less

likely to affect initial fire detection.

These issues with applying contextual temperature derivations in dificult

conditions have led to investigation of the estimation of background tempera-

ture using temporal-based methods, which focus upon the estimation of back-

ground temperature over a time period leading up to pixel ignition. This esti-

mation, based upon the diurnal variation of a pixel’s temperature, attempts to

leverage the higher temporal resolution of sensors to provide an accurate back-

ground temperature, based upon the expected behaviour of the pixel when no

anomaly occurs. Initial work evaluated the use of absolute descriptive mod-

els [27, 38] and Reproducing Kernel Hilbert Space models [83], which both suf-

fered from the inability of the model to allow for adjustments due to emissivity

change, for instance after rainfall. Kalman filtering methods for temperature

estimation were first utilised by [85] and were refined by [65], and these gen-

erally provided good results for fitting the diurnal temperature cycle whilst

accounting for gaps and anomalous data in the pixel record. The work by [65]

in particular showed promise for obtaining more accurate background temper-

ature data, and this method utilises training data from the target pixel for a

30-day period prior to the day being modelled. Training data derived in this

way for temperature fitting is vulnerable to gaps in the data – in areas of persis-

tent standing cloud or periodic obscuration, sufficient training data for a pixel

fitting may not be obtainable, and in this case estimates are provided by pix-

els from an anomaly-free library of pixels. [31] investigated this method and

found that at in Australia only approximately 40% of pixels had sufficient train-

ing data available to utilise the pixel-based training data method. This study

also found significant impediments in the form of processing time required to

produce fittings, which was also mentioned in the original study by [65].

Recent work in the field of background temperature estimation has investi-
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gated the use of a broad-area time-series approach for deriving training data for

temperature fitting, as described in [31]. Raw image data from the AHI-8 sen-

sor was aggregated based upon median temperature values of the land surface

at 0.25° by 0.25° intervals for a period of 30 days prior to the fitting start time.

This dataset was then aggregated by local solar time and medians were again

taken in order to create an idealised diurnal temperature cycle for a strip of

latitude at one minute intervals. This model was then sub–sampled for the cor-

responding values at the times where brightness temperature was available for

the location in question. A fitting process was then applied in order to provide

an optimised background temperature, based upon the training data and the

brightness temperature data available from the location for the correspond-

ing 24 hour period. This method produced similar or improved accuracy of

background temperature determination when compared to pixel-based meth-

ods such as those in [65], with a significant increase in training data availability

over all areas examined.

The increased availability and accuracy of the background temperature de-

termination method described by [31] provides a starting point for a fire de-

tection algorithm. The robustness of the model suggests that the periods of

negative temperature anomalies such as cloud and smoke, and positive temper-

ature anomalies such as fire activity, have a reduced effect on the subsequent

fitted temperatures in comparison to the ideal diurnal temperature cycle that

should be demonstrated by the pixels being examined. This paper proposes the

use of this fitting technique with a series of temperature thresholds for ther-

mal anomaly attribution, with a view to examine the abilities and limitations

of the temperature fitting method with regard to fire detection. The paper will

examine the performance of this threshold algorithm against commonly used

LEO products such as the VIIRS and MODIS active fire products, in order to de-

termine the completeness of anomaly capture of the various methods, and also

to examine the capability of the AHI sensor to detect fire in its early stages and

give an estimate of the expected improvements in fire detection times using

this method.

4.2 Data

4.2.1 Sensor data

Geostationary satellite sensor information for this study was obtained from

Japan Meteorological Agency via the Australian Bureau of Meteorology (ABOM).

The study makes use of Band 7 (3.9µm wavelength) images from the AHI-8

sensor for the month of August 2016, which were corrected both radiometri-
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cally and geographically according to the procedures outlined in [60]. Data for

the month was preprocessed according to the method described in [30] in or-

der to provide training data for the temperature fitting process. To determine

the availability of cloud-free pixels for false attribution evaluation, a clear sky

probability product based upon the CLAVR-x cloud mask algorithm [35] with

some minor alterations [54] was used.

The study considers two commonly used active fire products from low earth

orbiting sensors; the MODIS Collection 6 (MOD/MYD14) 1km active fire prod-

uct as outlined in [26], and the VIIRS 375m (VNP14IMG) active fire product as

described in [75], making use in both cases of the geographic position of the de-

tected hotspots and the time of satellite overpass. Both of these products show

low commission rates for fire activity in areas with similar geographic and land

cover characteristics, especially with the larger fires this study area tends to

produce. In addition, to determine the extent of the study area affected by fire

and to provide a method against which to explore fire disturbance, a MODIS

burned area 0.0025◦ product [53], produced by the TERN Auscover project, was

used. This dataset describes the area affected by fire and attributes areas with

the date and time of the first recorded disturbance in the month in question.

This product is used for this study primarily because of its effectiveness at ac-

curately describing fire-induced change in geographic regions similar to those

used in this study [53].

4.2.2 Study Area

The area selected for the study is a section of north western Australia bounded

between 15°S and 20°S in latitude, and 125°E and 130°E longitude as shown in

Figure 4.1, during the month of August 2016. The area is predominantly com-

prised of savanna woodland, tending to drier hummock grass conditions in

the southern portion [71]. The time of year selected corresponds to Mid Dry

Season type fire behaviour [12], with a high number of fires and larger fires

able to take hold due to reduced fuel moisture and humidity. The low preva-

lence of cloud cover in the area compared to other periods of the year provides

ideal conditions for any fire detection methods used. This lack of obscuration,

coupled with the remoteness of examined fire activity from population centres,

whichmean that fires continue to spread naturally after initial detection, allows

for an ideal test-bed for comparison between various fire products. The study

area itself comprises of 64,374 unique AHI-8 pixels covering approximately

295,000km2.
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Figure 4.1: Diagram showing the location of the selected study area in north Western

Australia, along with the areas affected by fire between 1st - 28th of August 2016 as

determined by the MODIS burned area product [53].

4.3 Method

4.3.1 Broad Area Training method

This study utilises previous work conducted upon the AHI sensor in the ap-

plication of a multi-temporal method of background temperature estimation,

known as the Broad Area Training (BAT) method [31]. This method involves a

two-step process for geostationary data - a preprocessing step, where AHI Band

7 images are aggregated based upon the cloud-free median of data at the 0.25°

by 0.25° spatial scale; and then a fitting step, where this spatially aggregated

data is stacked temporally using local solar time, and a standardised diurnal

model is produced at 0.25° by 0.25° scale for use in individual pixel fitting using

a single value decomposition (SVD) process. These fittings at pixel level can

then be compared to the raw brightness temperature data as measured by the

satellite sensor, to identify thermal anomalies such as those caused by active

fire.
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4.3.2 Fire Detection and Threshold Selection

In order to isolate positive thermal anomalies, basic thresholds above the tem-

perature estimate of a location are used. Taking into account the relatively

young age of the AHI sensor and the minimal existing published work on its

fire detection capabilities [59, 94], the nature of the sensor’s response to fire is

largely unassessed. The findings of [31] describing the error involved in fitting

temperatures to clear-sky scenarios, and results from [66] using the SEVIRI sen-

sor, provide a potential starting point. These studies suggest a lower bound

of 2K as a starting point for threshold examination, with a higher bound of

5K based upon an assessment of the response of known fires in comparison

to low earth orbiting active fire products, with supplementary values selected

in between at integer level. Whilst by no means being a comprehensive set of

values for evaluation, the range of thresholds evaluated seeks to gain an un-

derstanding of the relationship between the commission and omission error

associated with using a thresholding method of this type.

4.3.3 Anomaly Detection Rate Evaluation

To evaluate the validity of using assorted thresholds for thermal anomaly de-

tection, an analysis of the difference between recorded and modelled temper-

atures was conducted for a 28 day period (2016, Julian days 214 – 241) during

August 2016 over the study area (see Figure 4.1). The study area was broken

into 400 blocks, each 0.25° x 0.25° in size, which typically comprise of between

150 – 170 AHI pixels in this part of the full disk. Blocks were then selected

at random and coupled with a date and time selected from the study period.

Dates of analysis for each block were randomised, whilst the hour at which fit-

ting commenced was divided evenly between samples, to minimise the effect

of time of day on fitting accuracy evaluation. From the 400 blocks and 672

unique starting times (24 hours x 28 days) available, a total of 960 block sam-

ples were selected for evaluation. Training data for the pixels in each block

was derived using the BAT method, and temperature fitting was performed on

the brightness temperature data for all pixels in the block using a single value

decomposition method.

In order to ensure that the effect of cloud on the temperature fitting was

minimised for the set of results used for threshold determination, the clear

sky product described in Section 4.2.1 was evaluated for pixels to be fitted.

Pixel diurnal vectors were discarded when less than 133 instances of clear sky

occurred in the day examined from the 142 daily images. As the experimental

AHI clear sky product used had significant issues with false attribution of cloud

cover during the night, a temporal mask was applied to its use. The clear sky
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product was used for cloud cover determination during daylight hours (approx.

2300 – 1000 UTC in this case), whilst at night cloud cover was flagged by use of

a rudimentary mask of brightness temperature less than 280K. Once a specific

pixel diurnal vector has passed the cloud requirement, the differences between

the modelled and the measured brightness temperatures were recorded for

analysis.

As a further analysis to determine the rate of detections associated with

actual fire activity, the AHI fitting dataset was also compared to burned area

detections from the MODIS burned area product [53] for location and time. If

an AHI detection was observed, the burned area product was checked for a

recording for a period of 48h either side of the AHI detection, and active fire

was attributed as the cause of the detection if this criteria was met. This large

evaluation window was selected to ensure that fire-induced detections were

not missed due to cloud cover blocking one or more of the daytime imaging

passes of the MODIS satellite.

4.3.4 Active Fire Product Intercomparison

The MODIS burned area product described by [53] was used to determine in-

stances of fire-induced change in the study area. The positional information in

this dataset was converted to AHI image coordinates, and any duplicate returns

in both location and timewere eliminated. Once these locations were identified,

a similar analysis of the MODIS and VIIRS active fire products was undertaken.

Hotspots identified by each of the products had their image time and equiva-

lent AHI locations recorded. Incidences where active fire products recorded a

hotspot detection in the AHI pixel area in the 23 hours preceding the burned

area disturbance were noted. This led to the evaluation of four intercompari-

son types – (1) fires which were recorded by the burned area product, but not

by either of the active fire products; (2) fires which were detected by the VIIRS

active fire product and the burned area product, but not by the MODIS active

fire product; (3) fires that were identified by the MODIS active fire product and

the burned area product, but not by VIIRS; and (4) fires discovered by all three

of the LEO products used.

From these intercomparison classes, a random sample of 150 incidents were

selected for further analysis. For each of the selected instances, a temperature

fitting window was selected based upon the time of the MODIS burned area

product. The temporal window for the diurnal fitting of pixel background tem-

perature was fixed beginning 23h prior to the detection of change from the

burned area product (Figure 4.2), in order to maximise the temporal coverage

of fitting prior to the burned area detection. Training data for each of the
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pixel fittings was derived using the BAT method [31], and temperature fittings

applied to each of the raw brightness temperature sets using a single value

decomposition method. The thresholds described in Section 4.3.2 were then

applied to the difference between the fitted background temperature and the

recorded brightness temperature, and instances where these thresholds are

exceeded are recorded with the time of AHI detection noted. Success of the

threshold detection algorithm was considered as at least one anomaly being

detected during the 24 hour period of fitting, with synchronous detections be-

ing classified as instances where an AHI anomaly occurs within 20 minutes of

any active fire product detection in the pixel in question.

Figure 4.2: An example illustrating the shifted temporal window described in Section

4.3.5 in operation. In this instance, a significant portion of the original fitting window,

which is the time period to the right of the grey vertical line, is affected by active fire

in the pixel, and this results in a higher fitted background temperature than expected

during the period between 2016-218 09:00 and 2016-218 18:00, as shown by the line

in dark green. By moving the start of the fitting earlier, based upon detection by the

VIIRS active fire product in this case, the fitting process is less affected by the elevated

temperatures associated with the ongoing fire. This produces a fitting such as that

shown by the light green line, leading to fire-related anomalies being identified earlier,

dependent upon the threshold set.

4.3.5 Determination of Fire Ignition Time

The time required for fire activity to grow from ignition to being visible via re-

mote sensing in the study area is minimal, given the general lack of tree cover

in the landscape, fuel moisture and weather conditions [80], and the theoretical

minimum sampling size of the sensors [75]. With fires growing to dimensions
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visible from geostationary sensors in minutes, the sporadic temporal nature

of LEO image capture means a significant portion of fires manifest on geosta-

tionary imagery prior to detection via LEO algorithms. As highlighted by [31],

the accuracy of the SVD temperature fitting method decreases as the number

of temperature anomalies increases. This poses a problem with regard to the

use of a low earth orbiting detection product such as the MODIS fire product

as a reference data set - if the point in time at which the target anomaly can

be detected by the geostationary sensor precedes the LEO sensor overpass by

a significant amount of time, the subsequent temperature fitting of the geosta-

tionary pixel data will be skewed by this period of artificially elevated tempera-

tures, resulting in an over-estimation of the background temperature over the

24 hour fitting period. Depending on the size of the initially detectable fire,

this could lead to errors in the estimation of the initial ignition time, and could

also lead to a pixel being misattributed as non-fire during flaming periods if

the diurnal signal is sufficiently disturbed.

In order to mitigate the effects of ongoing fire activity on the background

temperature estimation process, an adjusted temporal window for the temper-

ature fitting is applied. Initially, the time of the first detection by a low earth

orbiting detection algorithmwithin the original period (23h prior to the burned

area detection) is noted, and compared to the recorded instances of fire detec-

tion from the threshold algorithm. If the first active fire detection from the

threshold algorithm is within two hours of this first LEO active fire detection,

the time of the detection by the LEO product is fixed as the seed for the new

temporal window, which starts the temperature fitting process for the target

pixel 22 hours prior to this resolved first detection. In instances where the

threshold algorithm detects fire more than 2 hours prior to a LEO fire product

detection, the time of the first detection of the AHI product seeds the tempo-

ral window time instead. Despite the change in fitting start times, the same 24

hour window is evaluated for fire detection as in Section 4.3.4, with any change

in the initial time of AHI detection recorded.

4.4 Results

4.4.1 Threshold Selection and Anomaly Detection Rates

Using the selection method for clear sky pixels as described in Section 4.3.4, a

total of 93,906 unique locations and starting times were identified as suitable

for analysis, which corresponded to approximately 63% of the pixels selected

initially. Table 4.1 displays the rates of detection of individual thermal anoma-

lies each of the thresholds selected, where an anomaly detection is defined
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as at least one brightness temperature being more than the threshold above

the temperature fitting for the 24h period fitted. The thresholding algorithm

displays a very high number of anomaly detections at 2K, with a low number

of these being related to detected fire activity. As the threshold is increased,

detection rates drop but the number of detections associated with burned area

instances increases, to a point where at 5K non-burned-area thresholding de-

tections occur in less than 0.1% of all sampled pixels. The commission rate

of the anomaly detection relative to burned area product detections remains

relatively high at all thresholds, with the lowest rate of 23.4% at 5K.

Table 4.1: Raw anomaly rates for the threshold algorithm for the selected temperature

thresholds, and the proportion of these anomalies which have an associated distur-

bance detected by the MODIS burned area product, from a total selection of 93,906

cloud-free diurnal fittings.

Threshold (K)
AHI fittings with Anomalous fittings with

positive anomalies identified associated MODIS burned area

2K 12.17% 7.9%
3K 2.22% 22.0%
4K 0.64% 53.7%
5K 0.37% 76.6%

4.4.2 Active Fire Product Intercomparison

The selection process outlined in Section 4.3.3 identified 7625 separate in-

stances of possible fire-induced disturbance across 2765 unique AHI pixels

during the period of the study. The larger number of total fire incidences com-

pared to AHI pixels affected is explained by the spatial disparity of the datasets

used – the burned area product is of a far higher spatial resolution than the

AHI imagery, so a number of separate incidents may occur in one AHI pixel

area over the period of the study. Table 4.2 shows the rates of detection for

the four fire incident groups as described in Section 4.3.4. Of note is the effect

of the spatial resolution of the various sensors on the rate of complementary

detection. Notwithstanding fires that have not been detected by the LEO ac-

tive fire products, the type of classification roughly correlates with fire size –

events that are detected by the VIIRS 375m product only are identified by AHI

at a lesser rate than those found by the MODIS active fire product only, and

both of these have lower detection rates than when both active fire products

are triggered. Despite the spatial resolution disparity between the VIIRS active

fire product and the AHI Band 7 images, the threshold algorithm is capable of

detecting fire in these areas in over 75% of cases when using the largest of the
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four thresholds evaluated.

Table 4.2: Detection results of the thresholding algorithm on 150 fire incidents in each

detection grouping per temperature threshold. Detections occur where at least one

brightness temperature measurement exceeds the fitted brightness temperature by the

selected threshold. Synchronous fire detections are classified as where an anomaly de-

tected by one or both of the active fire products has at least one corresponding detection

from the threshold algorithm within twenty minutes of the LEO detection.

Group\Threshold 2K 3K 4K 5K
n=150 for all Detected Synchronous Detected Synchronous Detected Synchronous Detected Synchronous

Burned area only 75.3% N/A 63.3% N/A 56.0% N/A 50.0% N/A
VIIRS AF only 95.3% 38.7% 88.0% 27.3% 84.7% 22.0% 77.3% 17.3%
MODIS AF only 97.3% 60.7% 97.0% 58.0% 91.3% 52.7% 86.0% 48.0%
Both AF products 99.3% 68.0% 98.3% 58.7% 92.0% 51.3% 89.3% 46.0%

Importantly, the threshold algorithm is detecting positive anomalies in pix-

els that have identified as being burned, but no LEO active fire product de-

tection. In 50% of cases the 5K threshold is able to identify a fire in a pixel

where both of the LEO active fire products used here have failed, with higher

attribution rates for the smaller thresholds.

4.4.3 Time of Initial Detection

Table 4.3 shows statistics concerning the detection rates of each threshold for

the incident classes examined for the forward-shifted temporal window (Figure

4.3), along with the average times of the AHI fire detection before a low earth

orbit detection. These mean time differences are shown both for detections

from fittings with the temporal window affixed to the burned area product,

and for detections from fitting windows affixed to the leading fire detection

determined in the burned-area-fixed fitting. The three groups of incidents ex-

amined all show improved detection times with use of the threshold algorithm

as opposed to the LEO active fire products. Of particular note is the improve-

ment in detection times when dealing with fires that have been detected by

both active fire products – these fires are generally greater in duration and

radiative output than fires detected by a single active fire product. Even with

multiple LEO detections available, the threshold algorithm is on average de-

tecting a fire 210 minutes prior to the subsequent LEO detection using the 5K

threshold.

The addition of the temporal window shift increases the differences in de-

tection time between AHI-based detections and the LEO products even further.

The improved results using this shifted window demonstrate the effect of long-

lived fire on the fitting method, with the larger set of background temperatures

available earlier contributing to a better fit of background temperature and ear-

lier detection. This is also more reflective of results that may be achieved using
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Table 4.3: Time of detection of fires using the threshold algorithm in comparison to

times of first detection using the two LEO active fire products at each temperature

threshold. Times shown are the average time of detection prior to LEO active fire de-

tection, with numbers shown for both the diurnal temporal window commencing 23h

prior to burned area detection, and for the shifted temporal window commencing 22h

before initial active fire detection. Times shown are in hours and minutes.

VIIRS Detection only (n=150) 2K 3K 4K 5K

Original detection rate 95.3% 88.0% 84.7% 77.3%
Shifted detection rate 95.3% 88.0% 85.3% 76.0%
Mean detection time before first

4h 48m 2h 41m 2h 07m 1h 55m
LEO AF with original window
Mean detection time before first

6h 47m 6h 08m 6h 06m 5h 43m
LEO AF with shifted window

MODIS Detection only (n=150) 2K 3K 4K 5K

Original detection rate 97.3% 94.0% 91.3% 86.0%
Shifted detection rate 91.3% 84.0% 82.0% 82.7%
Mean detection time before first

8h 06m 6h 28m 5h 42m 4h 49m
LEO AF with original window
Mean detection time before first

9h 36m 7h 34m 6h 34m 5h 39m
LEO AF with shifted window

Both AF Detected (n=150) 2K 3K 4K 5K

Original detection rate 99.3% 95.3% 92.0% 89.3%
Shifted detection rate 95.3% 89.3% 88.0% 84.7%
Mean detection time before first

5h 25m 4h 27m 3h 54m 3h 31m
LEO AF with original window
Mean detection time before first

7h 26m 6h 09m 5h 35m 5h 24m
LEO AF with shifted window

this method in a psuedo-realtime application, as the fitting window ends closer

to the actual fire ignition time. The shift of the temporal window forward in

time removes at most 10% of the fire detections, as these detections may occur

on developing fire that becomes visible more than two hours after the original

LEO active fire product detection. This drop in detections from the threshold-

ing algorithm seems to be exclusively associated with the group of detections

solely from the MODIS active fire product, with only two fires lost in the 5K

threshold from fire detections associated with VIIRS. This may suggest an in-

creased rate of false positives in the area of study from the MODIS product is

being isolated by this selection criteria.
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Figure 4.3: Associated fittings applied to a pixel at 15.5409°S, 129.2377°E, with a MODIS
burned area product detection at 2016-219 05:20 UTC (shown by the red vertical line).

The algorithm detection threshold set is 4K. This figure shows ongoing fire activity in

the AHI Band 7 brightness temperatures, shown here in blue, surrounding a single VI-

IRS active fire detection at 2016-218 16:40 UTC (in orange). With the temporal window

based upon the time of the burned area product minus 23 hours, the first AHI detection

at the 4K threshold occurs 90 minutes after the VIIRS active fire detection (initial win-

dow detections are black circles). However, the shifted temporal frame based upon the

time of this VIIRS detection produces a lower fit for background temperature during

this night-time period, and the initial fire detection from AHI moves to 190 minutes

before the VIIRS overpass.

4.5 Discussion

Whilst the AHI sensor has shown impressive utility for fire detection in this

study, the lack of validated products from the sensor data remains an issue

for adoption of this thresholding method. As noted in [31], the ability to accu-

rately evaluate rates of false detection is impeded by the lack of an accurate,

verified cloud mask product for the AHI sensor. Commission errors for cloud

cover are particularly prevalent in coastal areas and during night-time periods.

The adjustment made to the clear sky product for night-time use in this study

is by no means a comprehensive fix, but considering the average of overnight

temperatures in the area at the time of the year of the study, coupled with the

tropical climate and lack of high elevation areas, brightness temperatures at

the low level specified are rarely not associated with cloud cover. There are

ongoing issues with cloud omission from the cloud product, especially with

thinner clouds that may not be detected by a cloud product but still influence

the brightness temperatures recorded by the sensor and decrease daily average
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temperatures. If sufficient cloud is present for a period, the sudden absence

of cloud will cause temperature spikes and lead to false positives. Cloud mask

accuracy improvement will allow for a rigorous assessment of the method’s

commission rate in less than ideal conditions. The AHI sensor also suffers

from some image registration issues which cause periodic shifting in bright-

ness temperature values, which is especially notable in areas of high tempera-

ture contrast, such as coastal areas.

In order to investigate the distribution of likely causes for anomaly detec-

tion, a further visual analysis of the algorithm detections from the 4K dataset

from Section 4.4.1 was conducted. Incidents were broken into three categories

– detections caused by sudden elevation of brightness temperatures, which re-

flect fire activity; detections caused by excessive cloud not captured by the

clear sky product, which lead to poor temperature fitting; and anomalies with

no immediately apparent cause. Examples of these assessed classes can be

seen in Figure 4.4. In instances where an AHI pixel had a recorded MODIS

burned area detection within the 48 hour period after fitting commenced, the

cause of attribution in 96% of cases was due to fire activity detectable from AHI.

Where no burned area detection occurred, 67% of detections from the thresh-

olding method were anomalies caused by cloud, and these detection instances

would have been eliminated from selection with better cloud masking. In the

remaining threshold-based detections not associated with a burned area detec-

tion, a high proportion of detections occurred due to poor model fitting in the

early morning period, which was also noted in [89], and these types of detec-

tion errors may also be reduced by better cloud detection during these times

of the day.

Detection rates for thermal anomalies using the different threshold values

are shown in Section 4.4.1, with raw detection rates decreasing as the thresh-

olds are increased. Evaluation of the appropriate threshold that accurately

describes fire activity in the area is difficult. The burned area product used in

this study only gives an indication of the initial time of fire disturbance, and

does not account for areas revisited by fire or with lingering fire activity over

many days. There is also limited in-situ fire extent data available with which

to verify the areas covered by fire activity during the study. The high commis-

sion rates shown in this table are of concern, but as discussed in the previous

paragraph, much of the commission error can be explained by the inadequate

performance of the clear sky product used.

The method presented in this paper for fire detection using the AHI sen-

sor shows impressive rates of agreement with fire activity detected by the LEO

active fire products used for comparison. Given the similarity of absolute de-

tection rates between the MODIS active fire set and the instances where both

78



4.5. Discussion

Figure 4.4: Examples of temperature fitting and sources of perturbation. a) shows an

example of anomalies in pixel brightness temperature caused by fire activity, b) is an

example of negative temperature anomalies causing false detections, in this case cloud

cover, and c) shows an example of false detection caused by improper fitting of the

diurnal model.

active fire products are triggered, these two groups could be considered as

one set of results for comparison to MODIS. These larger fires (detectable at

a 1km2 resolution) are almost completely detected by the thresholding algo-

rithm at the 2K threshold, with a detection rate closer to 88% at the larger 5K

threshold. For fires that are smaller than the detection capability of MODIS, but

can be detected by the 375mVIIRS product, detection rates drop to around 95%

at 2K and around 77% at 5K. These numbers suggest that despite the smaller

sizes of the fires detected solely by the VIIRS active fire product, fire activity

in these pixels will increase at some time before or after the LEO detection to a

magnitude that can be detected from the larger area pixel recorded by the geo-

stationary satellite. This leads to the sensor’s increased revisit rate being more

than capable of making up for the spatial resolution shortfall of this geosta-

tionary sensor in a fire detection role, and reinforces geostationary detection

behaviour noted by [89] in their study on SEVIRI active fire data.

Of most interest from the detection results is the increase in detection capa-

bility for fires which are not detected by either of the LEO active fire products.

Given fire-driven disturbance detected by the burned area product used here,

the threshold algorithm detects active fire in 75% of instances at 2K, down

to 50% of instances at 5K. Fires detected in this set generally take the form

of short-lived, intense flaming periods, with typical rises in recorded bright-

ness temperature of between 10-20 K from the typical background fitting and

active durations of four hours or less. A further inspection of this dataset re-

vealed that of the 75 detections from the no active fire set of pixels at 5K, 41 of
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these instances had a detection from the threshold algorithm at a point in time

synchronous (± 20 minutes) with a MODIS sensor overpass. Despite potential

issues such as viewing angle, obscuration due to smoke and cloud, and the po-

tential differences in the attribution of background temperature considering

the contextual nature of the MODIS active fire algorithm, this is a seemingly

high number of omissions by this active fire product in this area, although

these numbers agree with those from [33] concerning the MODIS product. Ap-

plication of the thresholding fire detection technique is required over a wider

range of areas and weather conditions with similar comparisons to LEO over-

pass times in order to determine whether this heightened LEO omission rate

occurs due to the physical geography of the selected area or whether it is more

systematic in nature. Once again, the detection instances where no LEO ac-

tive fire detection exists demonstrate the effectiveness of an increased rate of

imaging for detection of active fire.

A number of potential sources of error may affect the results obtained in

the detection analysis. The accuracy of the burned area product used [53] is

affected by rainfall events in sparsely vegetated areas, which reduce surface

reflectance, albeit to a much lesser extent than fire. If there is a significant

amount of cloud cover causing burned area product commission errors, this

may cause instability in the fitting model and lead to thresholding detection

errors. Lack of accuracy in determining the time of first disturbance in a pixel

can also lead to active fire activity being missed, especially in the case of cloud

obscuration of the MODIS images used. There is also a small chance due to

scaling issues that fire disturbance is detected in the MODIS pixel prior to the

active fire being able to be detected at geostationary scales. The temporal fit-

ting window settings used in this study are by no means definitive, and the

nature of the results suggests that flexibility in the time period of fire detec-

tion selected leads to earlier detection of thermal anomalies. Issues may also

manifest with the classifications used to analyse the threshold algorithm with

the various LEO fire products. Locations of all three LEO-based products have

been converted to AHI coordinate space before comparison has occurred, and

this may lead to collocation errors between products due to satellite tracking,

view angle and the re-sampling of LEO products.

With regard to the ability of AHI to detect fires at the same time as LEO sen-

sor products, the number of successful synchronous detections compares well

to synchronous detections from [94], although there are some differences. In

this study the relevant comparison classes are those which have MODIS active

fire detections, which includes the class that contains detections from both LEO

active fire products. When evaluating the detections for synchronicity where

both LEO active fire products are used, no distinction has been made with re-
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gard to which LEO detection is synchronous to the AHI detection, and many

of these synchronous returns will relate to VIIRS active fire detections instead.

The [94] study used a spatial window of 5 x 5 pixels to evaluate concurrent

detections, whereas this study registered all LEO data in the AHI coordinate

system, and examined the indicated AHI pixel only. Of note also is the time

window used for judging synchronicity in the [94] paper, which restricts exam-

ination to ± 6 minutes from the LEO detection, or at most one AHI image either

side of that point in time. Whilst this is a rigorous method to assess simulta-

neous observations, this undersells the ability of the geostationary sensor to

detect fire at a similar time due to the ephemeral nature of fire activity. An

example of this can be found in Figure 4.3, where fire activity is quite easily de-

tected before and after the LEO active fire product detection, but the relative

lack of elevated temperatures in the AHI record around the time of the LEO

overpass leads to the pixel instance being classified as non-synchronous even

when fire activity is present. This behaviour is especially evident with fires

in the VIIRS-AF-only dataset, which tend to comprise of fires with lower activ-

ity during LEO capture than other groups, and this may explain the reduced

rate of synchronous capture for this group. Given the changing fire activity

observed in many examples of this type and with refinement of this method,

the ability of the AHI sensor to detect fires in instances such as these may be

under-represented in the results reported here.

As has been discussed previously by [31], the accuracy of background tem-

perature fitting reduces with an increased number of thermal anomalies. By

nature of the fitting method used for determining background temperature in

this instance, a large number of positive anomalies in the data to be fitted will

cause the mean temperature of the day to rise, which will raise the curve fitted

accordingly. Given the evaluation methods used in this paper this is unlikely

to manifest as a source of omission – unless the brightness temperatures of

an entire 24 hour period are uniformly raised by fire activity, generally peak

periods of fire activity will occur during a diurnal cycle and be subsequently

identified. The model fitting errors caused by increased fire activity preclude

use of this method as a fire monitoring tool at this point. Given the intro-

duction of a more resilient fitting technique which follows the ideal diurnal

cycle and the theoretical background temperature curve more effectively, this

method may be able to be extended into providing a measure of fire radiative

power for the initial period of active fire incursion, but would most likely be

limited to examination of the first 24 hours of fire activity. Whilst ongoing

monitoring of a fire’s size and intensity is of interest to both ecologists and

land managers, this capability is beyond the scope of this particular method

of fire detection.
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Understandably, with the far higher number of images of active fire recorded

by the geostationary sensor, the most marked improvement in detection abil-

ity is in determining fire ignition time as previously demonstrated using both

contextual [88, 45] and temporal [65] based detection algorithms with geosta-

tionary data. In this study, mean values for detection time for the window

fixed by the burned area product range from just under two hours in the case

of VIIRS and the conservative 5K threshold, up to beyond 8 hours earlier with

MODIS active fire at 2K, with detection times improving across the board with

threshold temperature reduction. Improvements in the accuracy of fitting will

likely increase the time differences between the LEO products and the thresh-

old algorithm further.

The extreme detection time improvements associated with the threshold al-

gorithm in the MODIS active fire detection dataset most likely has more to do

with the dataset selection criteria than anything else. Fires that are detected

using the MODIS active fire product exclusively are more likely to occur on

days of sporadic cloud activity, where the 3 – 5 measurements of MODIS give a

greater chance of detection than the two images available through VIIRS. The fit-

ting process used for the threshold algorithm is vulnerable to increased model

instability on days of increased cloud cover, which may lead to increased com-

mission error in conditions of this type. Given the very small total of MODIS-

only fires with respect to the total burned area related dataset, it is possible

that this subset of pixels also contains an inflated number of MODIS active fire

commissions, although this tends not to be borne out in the detection rates

presented.

Of note here also is the significant improvement of the threshold algorithm

in detection time of fire activity for fires solely detected by the VIIRS active

fire product once the shifted temporal window is applied. Notwithstanding

the random element of cloud obscuration, from visual examination of the AHI

temperature data the majority of fires found exclusively by the VIIRS active fire

product in this case are areas where the peak fire activity occurs well before

the VIIRS overpass, and the VIIRS product detects lingering burning and smoul-

dering activity in the post-burn pixel. Shifting the temporal window helps the

initial detection of fire by significantly increasing the amount of fire-free diur-

nal signal the fitting process can use, which leads to amore accurate estimation

of the background temperature at the fire’s ignition time.

By nature of the timing of the active fire and burned area products used,

there will be issues with the exact comparison of the AHI active fire product

and the various active fire and burned area products produced by the LEO

sensors in the time periods specified. For instance, a burned area product gen-

erally requires the use of visible band imagery to detect changes in surface
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reflection, which is not possible to detect at night. This restricts the trigger-

ing of the temporal window for temperature fitting either to the morning or

afternoon MODIS overpass, with morning burned area detections correspond-

ing roughly to fire activity during the previous day and afternoon detections

corresponding to fire activity in the immediate hours prior to the sensor over-

pass. This invariably leads to the ends of the fitting process occurring during

the more rapidly changing daytime period, and may manifest in larger temper-

ature attribution errors than if the fitting times were more evenly distributed

across the diurnal cycle.

This study has shown the results of anomaly detection using the BAT-based

temperature fitting technique at a number of temperature thresholds. Assess-

ing the ideal temperature threshold to use for this particular area at the time

of the study is an exercise in balancing potentially heightened false detection

rates associated with lower temperature thresholds with their superior detec-

tion capabilities compared to higher thresholds. Improvements in the accuracy

of the fitting method used will reduce the detection errors associated with this

technique, and may allow for further reductions in detection threshold temper-

atures. Application of this method of fire detection over differing landforms,

land cover types, viewing angles, and times of the year will further assist in the

appropriate selection of detection thresholds over wider areas of the AHI full

disk.

4.6 Conclusions

This paper outlines a method of fire detection utilising the training data acqui-

sition method outlined in [31] to provide fitting information for 4µm bright-

ness temperatures derived from the AHI-8 sensor over part of northern Aus-

tralia. This fitting of the idealised background temperature is then used to

provide a baseline for thresholding of the sensor brightness temperature in-

formation to provide a method of determining the time and propensity of ther-

mal anomalies. The method is capable of detection of between 75 – 99% of

thermal anomalies reported by associated LEO products during the period of

study, depending upon the threshold selected, with similar frequency of syn-

chronous detections in comparison to other studies of this type. The method

also detects between 50 – 75% of fires which have a detection from burned

area records, but which have no detection using either of the LEO active fire

products examined. Significant improvements in the initial time of detection

of fire activity have also been achieved, with detection time differences of 5 –

7h in favour of this method over detections from the examined LEO fire prod-
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ucts. This study supports the conclusions of previous work on the AHI sensor

that highlight its ability to accurately detect and attribute smaller fires than

previous geostationary sensors, but also demonstrates the effectiveness of the

new generation of geostationary sensors in detecting thermal anomalies that

may not be detected by LEO active fire products. With the similarities between

the AHI sensor and the newly launched GOES-ABI sensor, this work with some

adjustments should be directly applicable to fire detection studies using this

new sensor in the western hemisphere.

4.7 Thesis Context

This chapter examined the use of the Broad Area Training technique for anomaly

detection purposes in comparison to commonly used fire detection products

from low earth orbiting sensors. Considering the complexity of the BAT pro-

cess, and the difficulties involved with applying such a technique to images

captured from low earth orbiting sensors, potential uses of the BATmethod are

currently more limited than desirable. The next chapter introduces a change

of direction with regard to brightness temperature estimation, which is less

based upon stochastic modelling of upwelling radiation trends and more upon

leverage of real measurements from prediction images.
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5.1 Introduction

Remote sensing is a powerful tool often used to investigate changes in the

landscape over time, and has been employed in this way across applications

including vegetation change [36], urban growth [2], and disaster response [6].

The mapping of change in the physical environment requires some knowledge

of the state of the landscape pre-change, in order to determine the nature and

magnitude of such changes [55]. In an ideal case, change tracking would make

use of data that spans the temporal domain, as well as the spatial domain.

Given knowledge about how the earth’s surface reacts to nominal physical phe-

nomena over time, predictions can be made about a landscape’s expected be-

haviour at a subsequent point in time. This information can then be leveraged

to provide a method of isolating and identifying anomalous landscape-level be-

haviour, along with identifying obscuring influences such as cloud, smoke and

fire, by comparing a predicted image to data recorded ”in reality”.

Fire detection is a well established application of remote sensing, with many

commonly used products produced from both low-earth orbit and geostation-

ary sensors [61, 26, 89, 45]. Themost important element of the electromagnetic

spectrum for these purposes is the Medium-Wave InfraRed (MWIR) (3–4µm),

where peak emission from the fire energy source occurs. Excess radiation at

this wavelength allows fire to be detected when it constitutes only a small por-

tion of an image segment (down to ≈ 10−5 of a pixel) [8]. Estimating up-welling

radiation at this wavelength is complicated by the dual source nature of elec-

tromagnetic energy, with components made up of thermal emission and solar

reflection [5].

Detection algorithms such as those in [26] rely upon the difference of the

candidate fire pixel from a reference background value. Generally this refer-

ence value is derived from a convolution-style filtering approach, where values

from surrounding pixels are averaged to provide the temperature estimate. A

comprehensive examination of this practice was undertaken in [32], which high-

lighted shortcomings in the use of such a method, especially in areas of high

spatial frequency (i.e. heterogeneous landscapes). The study showed the con-

textual derivation of temperature acted in a manner similar to an edge detector

in areas exhibiting rapid spatial changes, increasing errors in temperature esti-

mation variability. These areas are often of vital importance for fire detection

purposes, as they are often found on the edges of areas of anthropomorphic

change, boundaries between forests and urban areas especially.

This chapter has been submitted for publication as: Hally. B., Wallace, L., Reinke, K., & Jones,
S. (2019) A New Spatio-Temporal Selection Algorithm for Estimating Up-welling Medium-Wave Ra-
diation. to IEEE Transactions in Geoscience and Remote Sensing
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The practice of using convolution filtering for estimation of MWIR back-

ground radiation is based upon the spatial autocorrelation effect, where areas

near to a specific location are assumed to exhibit characteristics more similar

to that location than those further away [82]. The top of atmosphere solar

radiation component of an up-ward welling signal will strongly adhere to be-

haviour similar to this, due to its strong relationship with solar azimuth and

zenith angles [55]. Surface characteristics such as the slope and aspect of a

surface, land cover type, and water bodies can all affect the resultant signal

emanating from a pixel. However, in areas where human activity has created

frequent discrete and abrupt changes in a landscape, the strong similarities

found in untouched landscapes are less likely to hold true. In many cases,

the likelihood is high that areas exist outside of the immediate proximity of

a target pixel that more comprehensively characterise the signal of a location

than those closer by. Given that typical phenomena that may obscure up-ward

welling signal from a candidate pixel (fires for instance) will display a high

level of spatial-autocorrelation themselves and are more likely to influence ar-

eas proximal to a potential target, having a method of estimation of radiation

that is less reliant on the local area may also provide greater robustness in a

solution.

This study seeks to introduce a new method of brightness temperature esti-

mation in the MWIR, based upon determination of locations that more closely

resemble the behaviour of MWIR radiation of the target pixel with a defined

local region. This Spatio-Temporal Selection (STS) method (Section 5.2) tracks

the history of brightness temperatures for a given period, selects training pix-

els based upon their statistical fit to the target pixel, and makes predictions

for brightness temperature based upon values from a prediction image. Sec-

tion 5.3 will cover the assessment of the method’s validity against the common

estimation method and Section 5.4 examines both the results and the potential

of the method for improving image reproduction for other purposes.

5.2 Spatio-Temporal Selection

This section describes the proposed method implementation over the selected

dataset (Section 5.2.1), followed by a formal description (Section 5.2.2) clarify-

ing the main framework of the method, and outlining the parameters that can

be modified for refinement of solutions.
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Figure 5.1: Locations of the case study areas selected for analysis in this paper, depicted
on the AHI full disk.

5.2.1 Test Data Example

For this study, we have used data from the JapanMeteorological Agency’s AHI-8

sensor upon the Himawari-8 geostationary satellite. This satellite, positioned

in geostationary orbit at 140.7°E longitude, provides coverage over eastern Asia,

the western Pacific and Australia with a 16 band multispectral imager (three

VIS, 3 NIR, 1 MWIR, 9 TIR bands) [60]. Whilst the main purpose of the sensor is

for meteorological forecasting, the high temporal resolution (full disk recorded

every 10min) has encouraged use of the imagery for detection and monitoring

of rapid change in the environment. Images captured from AHI’s MWIR Band

7 (3.7µm were masked for removal of water pixels using the ancillary land-

sea masks supplied by the Australian Bureau of Meteorology. A cloud mask

was also applied to the images from this band, based upon the mask applied

to AHI-8 outlined in [94], which was adopted from a similar mask applied to

GOES imagery [95].

To facilitate the study, a number of 200 x 200 pixel case study areas were

identified across the AHI full disk, which are detailed in Table 5.1 and shown

in Figure 5.1. These areas underwent an analysis of fire activity for the year of
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2016 using the VNP14IMGML VIIRS active fire product [75], with the peak of fire

activity in a 30-day rolling window over the year adopted as the central day of

a 31 day period of examination. These case study areas were then divided into

50 × 50 pixel regions, areas that mainly consisted of sea pixels were dismissed,

and from the remaining areas seven 50 × 50 regions were randomly selected

for the analysis. Times selected for the pixel predictions were at the local

times corresponding to 09:00, 12:00, 15:00, andmidnight, with a random offset

of (0:50:10) minutes to provide some statistical independence for overlapping

training sets. The study areas selected cover about 18.5Mha of land in total.

The procedure for providing training data for the image reconstruction was

to select a circular area of 50 pixels in radius surrounding each of the target

pixels in the region, stack the previous 48 images at 2 hourly intervals together,

and calculate the difference between all pixels in the surrounding radius and

the target. A root mean square error could then be calculated from all of these

temperature differences in the training set of images, similar to that shown in

the left images in Figure 5.3. Any training pixels that had less than four coin-

cident observations with the target over the 48 images were deemed to have

insufficient data to determine correlation, and were eliminated from further

analysis. From the remaining potential training pixels, the RMSEs were sorted,

and the 24 pixels with the lowest error compared to the target were selected

for the prediction phase (shown in the right images in Figure 5.3).

At the prediction step, a minimum of six training pixels had to be available

in order to provide a STS estimate of brightness temperature - targets with

less than six were discarded from analysis. The unmasked values of the train-

ing pixels from the prediction image were then filtered for outliers (removal

of ≥ ±2σ), and the remaining values were averaged for the target estimation.

Comparisons of brightness temperatures for analysis purposes were under-

taken where solutions for STS estimation and the contextual estimate were

coincident with a raw brightness temperature from the prediction image. Con-

textual estimates were calculated based upon the guidelines for computational

accuracy set out in [32], which determined that 5× 5 contextual estimates with

at least 65% of adjacent pixel availability were the minimum to ensure contex-

tual estimation accuracy.

5.2.2 Formal Description

Figure 5.2 demonstrates the STS method from first principles. Important vari-

ables for altering the method’s implementation depending upon the conditions

of use are as follows:

• nimage - number of images in the pixel training stack.
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Table 5.1: Specifications for the timeframes, area of the AHI disk and UTC time offsets

for each of the case study areas examined.

CS area Start Date End Date UTC Hours Sectors used

sea 2016-03-30 2016-04-29 02:00–02:50 sea_b: [4400, 4550, 3000, 3150]
05:00–05:50 sea_c: [4450, 4600, 3000, 3150]
14:00–14:50 sea_e: [4350, 4500, 3050, 3200]
23:00–23:50 sea_f: [4400, 4550, 3050, 3200]

sea_h: [4500, 4650, 3050, 3200]
sea_j: [4350, 4500, 3100, 3250]
sea_k: [4400, 4550, 3100, 3250]

nwa 2016-10-23 2016-11-22 00:00–00:50 nwa_b: [3600, 3750, 1950, 2100]
03:00–03:50 nwa_c: [3650, 3800, 1950, 2100]
06:00–06:50 nwa_e: [3550, 3700, 2000, 2150]
15:00–15:50 nwa_f: [3600, 3750, 2000, 2150]

nwa_g: [3650, 3800, 2000, 2150]
nwa_p: [3600, 3750, 2100, 2250]
nwa_q: [3650, 3800, 2100, 2250]

bor 2016-02-14 2016-03-15 01:00–01:50 bor_a: [2550, 2700, 1350, 1500]
04:00–04:50 bor_f: [2600, 2750, 1400, 1550]
07:00–07:50 bor_g: [2650, 2800, 1400, 1550]
16:00–16:50 bor_h: [2700, 2850, 1400, 1550]

bor_j: [2550, 2700, 1450, 1600]
bor_l: [2650, 2800, 1450, 1600]
bor_p: [2600, 2750, 1500, 1650]

thl 2016-02-28 2016-03-29 02:00–02:50 thl_a: [1750, 1900, 750, 900]
05:00–05:50 thl_c: [1850, 2000, 750, 900]
08:00–08:50 thl_j: [1750, 1900, 850, 1000]
17:00–17:50 thl_k: [1800, 1950, 850, 1000]

thl_m: [1900, 2050, 850, 1000]
thl_p: [1800, 1950, 900, 1050]
thl_q: [1850, 2000, 900, 1050]

chn 2016-08-27 2016-09-26 01:00–01:50 chn_a: [950, 1100, 1550, 1700]
04:00–04:50 chn_b: [1000, 1150, 1550, 1700]
07:00–07:50 chn_e: [950, 1100, 1600, 1750]
16:00–16:50 chn_g: [1050, 1200, 1600, 1750]

chn_k: [1000, 1150, 1650, 1800]
chn_m: [1100, 1250, 1650, 1800]
chn_q: [1050, 1200, 1700, 1850]

jpn 2016-05-03 2016-06-02 00:00–00:50 jpn_b: [900, 1050, 2450, 2600]
03:00–03:50 jpn_e: [850, 1000, 2500, 2650]
06:00–06:50 jpn_f: [900, 1050, 2500, 2650]
15:00–15:50 jpn_j: [850, 1000, 2550, 2700]

jpn_k: [900, 1050, 2550, 2700]
jpn_n: [850, 1000, 2600, 2750]
jpn_p: [900, 1050, 2600, 2750]

sib 2016-05-10 2016-06-09 01:00–01:50 sib_b: [200, 350, 1950, 2100]
04:00–04:50 sib_d: [300, 450, 1950, 2100]
07:00–07:50 sib_j: [150, 300, 2050, 2200]
16:00–16:50 sib_l: [250, 400, 2050, 2200]

sib_m: [300, 450, 2050, 2200]
sib_n: [150, 300, 2100, 2250]
sib_r: [300, 450, 2100, 2250]
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Figure 5.2: Flowchart of the STS selection and estimation process.

• ν - time gap between images in the pixel training stack.

• rtrain - the radius of restraint for searching for training pixels around a

target pixel.

• c - the total number of coincident measurements between potential train-

ing pixels and the target in the training stack.

• ntrain - the number of training pixels selected for use in the target estima-

tion.

• λ - the time period from the prediction stack creation whereby training

selections remain valid.

By altering these parameters from those set in this study, a number of the-

oretical affects may improve the solution derived. For instance, nimage sets the

number of images over which to assess the validity of training pixels. Gener-

ally the larger the number of assessed images to judge training suitability the
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better, but this value could be traded off for a larger search radius to maintain

processing efficiency. nimage is also closely related to the altering of the value

of ν - in this study we have selected values of these two parameters at 48 im-

ages and two hours respectively in order to find a balance of measurements

over the diurnal cycle of the training area. The alteration of these values to af-

fect training accuracy is related to cloud conditions in the training area during

a predictive assessment. Lengthening the time over which pixels are assessed

for their suitability should mitigate for weather systems and their associated

cloud, but may not account for major alterations that occur in a landscape due

to fires and rainfall events. Training should also occur over a range of diurnal

conditions to mitigate the effects of developing convective clouds, which are

a constant feature in some of the assessed landscapes during the afternoon

daytime period.

rtrain and ntrain speak to the suitability of the surrounding area around the

target for providing sufficient training data. The search radius rtrain should be

increased or decreased dependent upon the likelihood of correct characterisa-

tion, noting that in certain cases (like in fig. 5.3c) suitable pixelsmay not display

the typical spatial autocorrelation pattern usually associated with temperature

estimation. Increasing the number of training pixels selected may improve the

likelihood of obtaining a valid estimation, especially in cloudy prediction im-

ages, but will likely result in less accurate estimation when the prediction image

is clear, as the extra values for the target estimation will be coming from less

correlated pixel values. The c value set in the process relates to the expected

accuracy of predictor pixels - setting this too low may result in the selection of

training pixels that are highly correlated for a very short portion of the training

stack, but otherwise have little in common, whereas setting this too high may

reduce the effectiveness of the training pixel search, especially if the number

of values approaches the number of valid measurements on the target pixel

over the training period.

5.2.3 Overall Accuracy Assessment

The typical method of assessment of estimation accuracy is based upon the

variation of the respective estimationmethods from the recorded values. Whilst

this is a sensible approach to a perfect landscape with no occluding features,

the inclusion of comparisons to anomalous temperature values from the im-

agery, whether from fire activity or misattributed cloud, can lead to this type of

assessment being flawed. A situation where obvious image contamination has

occurred would penalise the accuracy of an estimation method that is correctly

identifying an error, with the level of penalty increasing with the effectiveness
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of the error identification. As such, results for this study have been produced

both with these obvious errors, for the purposes of comparison with previous

studies, and without these anomalous values. Upon visual examination of the

images, an anomaly rate of 2% was adopted as the standard level of error in

the brightness temperature images, in order to not penalise the accurate iden-

tification of these errors.

Two sets of accuracy assessment figures will be presented in the results

- a comparison of the STS and context estimates to the image temperatures,

both including and without the largest 2% of anomalous differences from the

image temperatures, measured in absolute terms. The mean and standard de-

viation of differences from the image temperature will be reported along with

the percentage difference in standard deviation between the two methods.

5.3 Results

5.3.1 Training Pixel Selection

Figure 5.3 displays a typical set of training data selections and subsequent esti-

mations for a number of adjacent target pixels on the east coast of Kalimantan.

The maps to the left of this figure depict of the RMSEs of each of the potential

training pixels relative to the target, with lighter colours in areas that appear

more like the target pixel. In the depicted cases, there is an obvious trend

whereby noise values increase with the distance from the target pixel, which

is not unexpected behaviour. Of interest though is the propensity of selection

of training pixels to occur in areas of similar makeup. In fig. 5.3a lower RMSEs

occur in the strip of land immediately inland from the coast – this area is heav-

ily cleared and contains some urban areas in comparison to other parts of this

region. The second pixel selected more heavily favours those areas, and the

selected training pixels stretch out along the coastal fringe. The pixel depicted

in fig. 5.3c is coastal in nature, and the lowest RMSEs of training pixels reflect

that - the pixels selected for training purposes by STS are strung out in a line

along the coast reflecting this characterisation.

The right half of Figure 5.3 shows the various pixel trajectories over the STS

training period. The red target value is compared to the temperature values

of all pixels in the training set, but only pixels selected for fitting, along with

the pixels describing the 5 × 5 area surrounding the target, are shown here.

Figure 5.3a has the least noisy contextual temperature estimation shown here,

with most disagreement between the target and the context values occurring in

the middle of the day. The blue training values tend to stick closer to the target,

with some mild deviations mostly in the night-time period where at times no
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a

2724, 1515

b

2724, 1517

c

2724, 1518

Figure 5.3: Pixel training comparisons for selected pixels in the bor_l group. (Left)

shows the spatial distribution of points selected during the training process relative

to the 50-pixel radius selection area; and (Right) depicts the pixel trajectories over the

image set examined for training, with the prediction target pixel value shown in red,

the STS training pixel values shown in blue, and the surrounding context pixel values

in green. Shown at time t is the distribution of values in the prediction image from

both prediction methods, with their respective means shown as coloured crosses in

comparison to the recorded brightness temperature shown as a red dot. Pixels are

shown as labelled with prediction time t at 2016-067 04:20 UTC.

comparison takes place. At time t the contextual values adjacent are shown in

green, whereas temperatures from the STS training group are shown in blue.
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Table 5.2: Accuracy of estimation techniques against brightness temperature values

from the assessed images by case study area. ∆σ is the percentage change between the

standard deviations of the context and STS estimation methods.

Anomalies retained Anomalies removed
Context STS Context STS

Site µ (K) σ (K) µ (K) σ (K) ∆σ% µ (K) σ (K) µ (K) σ (K) ∆σ%

sea 0.004 1.328 0.006 1.066 -19.7 0.014 1.144 0.011 0.849 -25.8
nwa 0.020 1.348 0.052 1.292 -4.1 0.039 1.147 0.078 1.025 -10.6
bor 0.034 1.239 0.142 1.429 15.3 0.032 1.045 0.149 1.203 15.1
thl 0.010 1.274 0.045 0.849 -33.4 0.032 1.105 0.048 0.665 -39.8
chn 0.011 0.937 0.047 0.757 -19.2 -0.006 0.814 0.065 0.635 -22.0
jpn 0.024 1.576 0.027 1.213 -23.0 -0.013 1.413 0.018 1.040 -26.4
sib 0.008 1.541 -0.021 2.139 38.8 0.017 1.327 -0.005 1.779 34.0

In this case the range of values seen in contextual pixels is around 7K larger,

with the contextual mean approximately 5K below the target figure. The blue

STS pixels are more closely grouped, with the mean value of the STS solution

far closer to the recorded value. In this case, the STS training set shares nine

pixels with the contextual surrounds of the target, with the values obtained

from pixels outside of this region strengthening the resulting solution.

The two figures fig. 5.3b and fig. 5.3c show more extreme examples of po-

tential pixel trajectories from a highly variable landscape. The contextual pixel

values shown in fig. 5.3b once again show the most variation during the day,

but also demonstrate variation during the night. This type of lagging temper-

ature variation is a hallmark of coastal locations, where the pixels are often a

mixture of land and water. The water portion of these pixels tends to retain

heat during the night in comparison to the adjacent land areas, and during

the day the reduced reflection coupled with delay in heating of the water com-

pared to land areas results in the peak temperatures being later in the day.

Using the STS pixels reduces the effects of these pixels on the estimation, once

again with a tighter grouping of values and less low-value outliers. Figure 5.3c

shows the fitting of a coastal pixel, with the lagging of the STS pixel values

compared to the higher contextual temperatures. The resultant set of pixel

values to base estimates on is much more tightly grouped in the case of STS,

with the resultant mean estimates providing a decrease of estimation error of

15K when compared to the contextual estimate. Given the appearance of the

pixel trajectories in this case, it is likely that the attributed error in the contex-

tual method in this region is permanent in nature, with seasonality and tidal

effects being the major contributing factors to potential variation in this error.
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5.3.2 Overall Accuracy Assessment

Table 5.2 describes the errors and standard deviations of the two assessed

estimation methods against the measured brightness temperature values for

each case study area. Biases of both methods tend to be fairly low, with all

but one study area having mean differences of less than 0.1K. Increases in the

means of the STS estimation tend to be due to the ommission error of the

cloud mask used, which drives estimates from STS lower due to the prevalence

of misattributed cloud. The four study areas showing the most improvement

in variation were thl, chn, jpn, and sea, with decreases in estimate variation

of between 19–34% in the dataset including anomalies. Of particular note is

the improvement in estimate error in the chn study error, where contextual

estimation performs significantly better than in the other areas covered.

Temperature estimation using the STS method remains a challenge in the

bor and sib case study areas, with increases in the variation of estimates of 15%

and 39% respectively. Errors in these areas with STS estimation are generally

caused by the large amount of cloud occlusion present in these image sets,

both with regard to the training period, which causes mis-selection of training

pixels, and in the prediction image, where cloud values reduce the number of

training pixels that can contribute to a solution for a target.

The error rates for the estimates reported with anomalous temperatures

removed shows a decrease in variance for both estimation methods, with a

10–17% drop in contextual estimation error, and a 16–28% drop in STS estima-

tion error. On the whole the elimination of outliers treats the remaining STS

variations favourably, with an decrease in comparison to the context estimates

across all sites. The selection of the 2% anomaly rate seems to be supported by

these numbers, although decreases in reported variance were much lower in

the jpn area than others, due to a much higher rate of anomalous temperature

differences resultant from the extreme landscape and land use variability in the

area. If this ”outliers removed” dataset is assumed to be a better account of

temperature estimation for the bulk of temperature values, temperature char-

acterisation is improving using the STS method by up to 40% in favourable

conditions.

5.3.3 Image Assessment

Figure 5.4 shows a series of images that demonstrate both the STS and con-

textual methods over a subset of the thl region. The area shown is centred

over the Loei province of northern Thailand, with the northern half of the im-

age over western Laos. From left to right, images shown are the brightness

temperature image from AHI Band 7, the STS estimation of the region, and
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the contextual estimation of the region. The two rightmost images show the

differences between the first image and the second and third images respec-

tively, giving an overall assessment of temperature differences. At first glance,

in fig. 5.4a there appears a marked similarity in the landscape depiction pro-

duced by STS in comparison to the sensor image. Fine details in the image

are retained – the silhouette of the Mekong River shown in the upper centre of

the brightness temperature image is also evident in the STS estimation, along

with the stratification of temperature zones in the north and west of the re-

gion. In contrast, the contextual image performs the role of a smoothing filter,

reducing the contrast of the image overall and dulling the finer details of tem-

perature change. These effects can be seen most markedly in the differencing

images with an overall decrease in both the high and low temperature magni-

tudes seen on the STS difference image compared to the equivalent for context.

Despite the overall lowering of temperature variation, the STS method is still

identifying some anomalous pixels in the original image, in the west and south

of the STS difference image.

The increased error experienced at themidday period can be seen in fig. 5.4b,

which shows the result of an estimation at noon local time. A marked feature

of this particular image time is a number of anomalies shown in the STS differ-

ence image in the area. The large amount of red pixels that may signify agricul-

tural burning in the area are easy to identify on the STS difference image, but

tend to get mixed with the landscape edge effects in the contextual difference

image. One notable effect of these high temperature anomalies in the context

difference is the subsequent effect these higher temperatures have on estima-

tion at the edge of the anomalies. The high temperatures tend to result in a

ring of low temperature results surrounding this activity – generally fire detec-

tion algorithms remove this problem by flagging the fire pixels as anomalous

before estimating surrounding temperatures, but a treatment such as this has

not been attempted on the data presented here. Figure 5.4c and fig. 5.4d show

the subsequent progression of the temperatures in the area through the after-

noon and into the next night. Landscape patterns seen during the day tend to

change at night due to differences in surface emissivity and subsequent heat

retention/loss, but the STS estimation has no issue with maintaining image re-

production quality even with changes in the distribution of temperature gradi-

ents. Some anomalous temperature activity in this area continues throughout

the night – the contextual estimation highlights the anomalies more strongly at

night, but also provides a far noisier solution for pixels not undergoing anoma-

lous activity.
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a 2016-082 02:10 UTC

b 2016-082 05:20 UTC

c 2016-082 08:10 UTC

d 2016-082 17:10 UTC

Figure 5.4: A series of brightness temperature images and related estimations for the

thl_j region. From left to right, the AHI B07 brightness temperature at the prediction

time, the STS prediction image of the area, the contextual estimation of the area, and the

differences between the AHI image and STS estimates, and the AHI image and context,

are shown. The differences shown highlight positions where the recorded image value

is higher than the estimation (red) and vice versa (blue). Prediction times are shown

next to each figure.
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Table 5.3: Breakdown of the availability of temperature values using the two estimation

methods against total image pixels present. n BT Obs gives the number of cloud free

image pixels out of the total possible shown in Total Pixel Obs.

Site Total Pixel Obs n BT Obs % context-image % sts-image % sts-context

sea 2142472 1253867 93.96 120.17 127.90
nwa 2170000 1634662 96.65 116.40 120.44
bor 1694460 1028491 90.68 131.03 144.49
thl 2162560 1715681 97.23 112.96 116.18
chn 2149044 1153593 95.10 118.34 124.45
jpn 1754724 725493 90.68 119.36 131.63
sib 2168264 801329 90.19 117.36 130.12

5.3.4 Estimation Availability

Table 5.3 shows a breakdown of the availability of estimations using the STS

and context methods against the recorded brightness temperatures from im-

ages. The first two columns of this table report the total amount of land pixels

assessed from the 7 50 × 50 regions from each case study for the 124 images

of the assessment period, and the number of pixels that recorded a brightness

temperature value once the cloud mask was applied. Cloud as assessed by the

cloud mask was least prevalent in the thl and nwa areas, and most prevalent

in the jpn and sib areas with more than half of all pixels affected by cloud.

Contextual estimation can occur in 90–97% of cases where brightness temper-

ature values exist, which is a higher rate of estimates available than reported

in [32], but this rate is highly dependent upon the cloud identified by the cloud

mask used. With the STS training selection process, the diversity of the sam-

pling area means that estimation can take place in more fragmented images

where contextual estimation may not be possible. Of course, due to the 50

pixel buffer applied to each temperature estimation process, the area that can

be potentially sampled is far higher than for contextual temperature estima-

tion, but if the assumption is made that average cloud conditions are similar

over the buffered area to those over the assessed area, the STS method pro-

vides estimates of temperature in around 20% more cases than the brightness

temperature images themselves. It is beyond the scope of this study to assess

the accuracy of those extra pixels provided by the STS method, but there is po-

tential to provide a source of validation for missing values in an image using

STS in cases such as these.
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5.4 Discussion

With regard to parameter selection for STS in this study, it is important to note

that only one set of parameters have been examined, and this affects the results

coming from the STS estimation in a number of ways. The training of pixels

in this instance occurs over the preceding 48 images at a two hour spacing

- a total training period of 96 hours. Training accuracy is reliant on pixels

gathering variation through the time series in order to filter out less accurate

prediction pixels - significant periods of cloud during this training process will

lead to a reduction of coincident measurements between the target and ideal

prediction pixels within the search radius. This weakness to cloud cover during

the training period could be mitigated by variation of the time between training

images - lengthening the time between images would result in the lessening

influence of weather effects in the short term. Care must be taken though to

ensure that training happens within a reasonable period before the prediction

step, as changes to the landscape will increase the error of those pixels when

attempting to find matches. The opportunity also exists to shorten the time

step if a known period of clear sky exists before the prediction step. A fuller

reckoning of the method’s accuracy when altering the time step is required to

make recommendations on these effects. Another opportunity the STS method

affords to estimation of temperatures is the ability to select persistent training

pixels, which could also assist in periods where training data is less accurate.

Training pixel locations can be held fixed over subsequent prediction steps if

the noise in the nearer-term time series of predictors is too great, and this is

also another potential topic for investigation.

It is less certain whether other parameters set in this implementation of STS

require further iteration. The number of training pixels set for prediction is

fixed in this instance at 24, and this was done to provide a direct comparison

to the number of pixels usually available for contextual estimation. The pixels

selected in the training step are the pixels most like the target available - adding

extra training pixels will add some extra robustness to estimation in the face of

cloud in the prediction image, whilst adding extra noise to the solution in more

favourable conditions. The likelihood is high that users will prefer most robust

solutions on cloudy days, and the exact number of training pixels required to

supply this requires further examination. The radius of prediction set in this

study has generally resulted in an accurate set of training pixels for estimation

in most cases, with notable exceptions being in some coastal and urban areas,

and where major landscape change has occurred during the training period.

Locations such as these may benefit from a wider range of pixels to provide

training data, but increasing the search radius does involve a quadratic leap in
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a bor_g region at 2016-052 07:50 UTC

b nwa_f region at 2016-315 00:50 UTC

c bor_f region at 2016-068 16:10 UTC

d chn_e region at 2016-241 04:50 UTC

Figure 5.5: Examples of common error in contextual brightness temperature estimation

and the results using STS in similar conditions.

processing time. Areas displaying these temperature behaviours may be better

served by a concerted classification scheme, in order to identify ideal training

pixels outside of the search bounds, without unduly increasing a search radius

that is adequate for most solutions.

In general, use of the STS method for estimation results in a 20–30% im-

provement in global variation of brightness temperatures, with most notable

improvements of up to 40% in the Thailand sites examined. Given the na-

ture of the STS implementation here, there may be still room for significant

improvement in temperature estimation beyond those figures. Susceptibility
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to cloud cover remains a major concern, as it does with any method of back-

ground estimation. The cloud mask used in this study seems to have trouble

with ommission errors in these case study areas, which causes erroneous pixel

values to slip through and contribute to the training evaluation. These errors

can affect both the training data, which will eliminate more accurate training

pixels from the selection, and the target pixel itself, with temperature errors

caused by cloud hampering the comparison of all pixels to the target. These

target errors can lead to mis-selection of training pixels that share the same er-

rors at the same times over more accurate selection candidates. The periods of

high cloud cover experienced in the Borneo and Siberian study areas may not

explain all of the errors that occurred in these locations, but this extra cloud

cover coupled with the poor performance of the cloud mask used in this study

suggests that significant improvement in performance in areas such as these

may be as simple as the adoption of a more appropriate cloud product.

With regard to the range of contextual variation shown here in comparison

to the results reported in [32], selection of the time of day of images analysed

is an important consideration – the previous study selected only one time point

during the day, whereas predictions in this study are made at four time points

over one diurnal cycle. Notwithstanding this, values calculated by context es-

timators agree well with the previous study apart from decreases in variation

in the jpn area and increases in variation in the bor and sib areas.

Comparison sets used in this study have only focused upon areas where

brightness temperature from the original AHI image and estimations from both

the contextual and STS methods have been available. This omits the portion

of pixels that achieve a STS estimate with sufficient robustness that lack a co-

incident contextual estimation. The threshold set for this study on contextual

availability stem from the study by [32], which concluded that 65% of available

adjacent pixels was the minimum for achieving sufficient accuracy in estima-

tion. As the error in STS estimation similarly relates to the number of predic-

tors available and is not adjacency-based, it is possible that some or all of the

STS pixel estimations outside the valid contextual area are healthy estimates

of temperature.

Notwithstanding the issues with cloud demonstrated in this study, one po-

tential adaptation to the STS that maymake cloud less of a factor could be inter-

nal implementation of a cloud masking procedure. The STS process in a clear

sky state has been shown to give highly accurate background predictions, and

has demonstrated the ability to pick out misattributed cloud (see Figure 5.5c).

Given enough confidence in estimations from a clear period, anomalous predic-

tor pixels in a prediction set could be flagged as such, with estimations within

the same image steering clear of using these marked training pixels. This could
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also feed into an updated training image for use in subsequent prediction ac-

tivity further in time. There are limits to the effectiveness of such a process

- a persistent period of bad weather may break the continuity of cloud prop-

agation through the training series, and demonstrated issues with landscape

change during the training period may still not be adequately addressed by

such an approach. Nevertheless, such an extension if made to work could en-

hance results coming from this estimation method further.

Further examination of the STS method in action can provide insights into

common artifacts see in contextual temperature estimates, and can highlight

problems that need additional attention. Examples such as areas of low temper-

ature anomalies around high temperature anomalies (fig. 5.5a), high tempera-

ture anomalies engulfed by neighbouring anomalous values (fig. 5.5b), low tem-

perature anomalies suffering similar treatment (fig. 5.5c), along with standing

anomalies such as urban heat islands (fig. 5.5d) demonstrate the instability of

using contextual temperature estimation in proximity to anomalous behaviour.

Results coming from these types of estimations fail in the situations that they

are most heavily relied upon, and fire algorithms have been changed to ac-

cept the follies in the contextual estimation process rather than the other way

around.

Whilst the simplicity of contextual temperature estimation will ensure its

use will continue throughmany applications, the contextmethod suffers demon-

strable flaws in areas of high spatial heterogeneity, with standing anomalies of

up to 5K seen in areas of this study. More sophisticated image reconstruction

methods, such as the STS, display much better performance in these areas, and

as computational costs and hurdles reduce in size, there should be a willing-

ness to explore use of methods such as these to augment existing temperature

estimation practice. Short of embracing other methods, there are simple things

that can be done during the implementation of contextual estimation, such as

outlier elimination, that can reduce errors and lead to more accurate products.

The time of simply applying a smoothing filter to a satellite image and calling

it a day should be long gone – we can do better.

5.5 Conclusion

A new MWIR background temperature estimation method has been developed

which uses similarities between a target pixels and pixels within a search radius

to provide training data for pixel prediction. The Spatio-Temporal Selection

(STS) demonstrates an improvement of between 10–40% in brightness temper-

ature estimation over the typically utilised contextual estimation method, with

103



5. A New Spatio-Temporal Selection Algorithm for Estimating Up-welling
Medium-Wave Radiation

an overall improvement in the fidelity of image reproduction. The STS method

also allows for temperature prediction in areas that are not suitable for contex-

tual estimation, with an increase of between 16–45% of available estimations,

and can act as a pixel estimator in cases where the target pixel is obscured by

cloud (12–31% increase in pixels with valid temperatures over the base images).

Whilst the initial implementation of this method focuses upon geostationary

sensor imagery, the study demonstrates scope for further investigation into

adaption for LEO imagery, and proposes extensions of the method into cloud

masking.

5.6 Thesis Context

This chapter introduced the spatio-temporal selection method of brightness

temperature estimation, which is based upon selection of training pixels that

most resemble the target pixel in the immediate area of the target. The method

is an amalgamation of both temporal fitting for the comparison of candidate

pixels, and contextual methods, considering that often STS will select candi-

dates from the target pixel context. This chapter highlighted the potential of

this method for high fidelity reconstruction of brightness temperature images.

The concluding chapter will not only summarise the content of the preceding

chapters, but it will also examine theoretical improvements available to STS

users and the potential for use in other applications.
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6.1 Summary of Results

Satellite remote sensing has a long and successful history of use for fire de-

tection purposes, and with changing climatic conditions and the increase of

human-induced landscape change, more accurate and timely fire detection is

increasingly important. An intrinsic property of many of the fire detection

algorithms in common use today is the reliance on knowledge of the unper-

turbed state of the candidate pixel for detection. As this cannot be measured

directly, due to the outsized contribution of fire to the overall radiation budget,

methods of estimation of this unperturbed state must be employed in order

to accurately identify anomalous behaviour from image pixels. The favoured

method by far for achieving this estimation, in most operational products, is

use of an estimation based on the brightness temperatures of the pixels imme-

diately surrounding the candidate pixel, in a convolution filtering style process.

The accuracy of contextual-based brightness temperature estimates are re-

stricted by how similar the surrounding landscape is to the candidate pixel.

Factors such as the slope and aspect of the landform, land cover and land use

heterogeneity, and the presence of water in the surrounding pixels, all con-

tribute to resultant errors in temperature estimation using context. Further

perturbing influences such as cloud cover, and in the case of fire the pres-

ence of smoke, also influence the potential energy budget attributed to the

surrounding pixels and therefore the target estimate. Despite the widespread

use of this type of estimation, no previous study has quantified the extent of

errors that result from the use of such a method. The central drivers of this

thesis study are twofold - first, to quantify the inherent errors pertaining to use

of contextual estimation of background brightness temperature; and second,

to derive new methods of obtaining background temperature that base their

estimates not only upon similarities in location, but upon short-term temporal

relationships that each pixel has with potential candidate estimators.

Recent developments in satellite-sensing technologiesmake this study timely.

New geostationary platforms, such as the AHI-8 sensor from which much of

this study’s data has been supplied (and GOES-16 ABI), have been launched

in the last four years carrying sensors that have increased our coverage of

the globe and, critically for fire detection, increased our temporal resolution.

Coupled with this, the enhanced spatial and radiometric resolutions of these

sensors, now provide us with comparable image quality of moderate resolution

low earth orbit images from only 10-15 years ago. Never before have we been

presented with the earth’s diurnal ’heartbeat’ in as much detail as is being sup-

plied by these sensors. The current paradigm for brightness temperature esti-

mation is based upon methods that treat images as discrete and independent,
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whereas these sensors allow us to do more than that, being able to leverage

information not only from the spatial surrounds of the single image, but from

the images immediately preceding it in time.

Chapter 1 of this thesis outlines the current fire detection paradigm, and the

role brightness temperature estimation plays in describing the existence of fire

in the landscape. Chapters 2-5 of this thesis focus on addressing the research

objectives outlined in section 1.3, of which the key findings are discussed in

this section. This final chapter provides a summary and synthesis of the major

research outcomes, along with a roadmap for future extension of the methods

described in this work for fire detection and other fields.

Question 1. What is the effect of systematic and structural errors caused

by the use of contextual estimation in common fire detection techniques?

Contextually generated background temperature estimation was shown to

be a sufficiently accurate method in situations where little to no occlusion of

the target context occurs, but this relationship degenerated once more than

one third of the target context is occluded. From a full disk analysis of images

from the AHI-8 sensor, it was shown that pixels with less than 65% contextual

availability showed a 61% increase in estimation variability compared to those

pixels that suffered no adjacent cloud coverage, with this rate of variation in-

creasing with less available context pixels. Given the accuracies as determined

in table 2.5, it was deemed that at least 65% of context pixels should be avail-

able in order to accurately estimate the background temperature of a target

pixel from context. This availability percentage trades off accuracy of estima-

tion versus availability of pixel temperature estimates, but even at this rate of

acceptancemore than one in seven pixels (14.5%) will not receive a temperature

estimate.

This study further showed that the use of expanding contextual windows

for background temperature determination, as commonly found in many fire

products, is fundamentally flawed. The error of temperature estimation in-

creases by nearly 50% when increasing the search radius to just 7 × 7 in sit-

uations where no solution was present at 5 × 5 (table 2.5), and the recovery

rate of temperature estimations at higher window sizes following these rules

was poor. For instance, when using the aforementioned 65% context thresh-

old, expanding the window only increased the total count of estimates by 3.1%,

with most of these estimates displaying standard deviations above 3K. These

estimates are too noisy to be of any real use - any smaller fires would be com-

pletely eliminated given the tolerances that would need to be applied to have

surety in detection of anomalies.

Analysis of contextual estimation also focused upon a number of case study
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areas selected to draw upon a wide range of latitude, climate and landform sce-

narios in order to identify perturbing influences. The sources of variation high-

lighted in these case study areas were almost as diverse as the areas themselves.

Sources of high contextual estimate variation included fire, smoke, snow, sea-

sonal and spatial variations in land cover, urban-rural interfaces, slope and

aspect, snow lines, and land-water interfaces. Variability showed significant

clustering around landscape features, with the effects heightened when de-

picted at larger window sizes. Areas with high land cover heterogeneity were

particularly susceptible to high estimate variation, and these are generally crit-

ical areas for fire detection and monitoring as they are heavily associated with

human activity.

Question 2. How can we use the common diurnal variation of upwelling

radiation to estimate brightness temperature in a robust fashion?

Harnessing the full disk to fill gaps in a model fitting technique proved an

effective tool for generating brightness temperature estimates. The developed

method, referred to as the Broad Area Training method, aggregated the median

temperature of 0.25° × 0.25° blocks by local solar time into an idealised diur-

nal model of the latitudinal swath. This diurnal model, which was standardised

based upon the mean and standard deviation of each block, was then filtered

to remove outliers. Fittings to individual pixels then occurred using this diur-

nal model as a basis for a single value decomposition over the preceding 24h

before the prediction time.

In comparison to a single pixel fitting method used in [65], the BAT method

utilised sufficient data for pixel training in around 86% of cases compared

to around 40% for the single pixel method. The BAT method also showed

resilience to distortion of the fitting in pixels with increased cloud cover in the

preceding diurnal period, with major improvements in estimate error when

between 20–50% of the diurnal period experienced cloud cover. The method

demonstrated increased fitting viability in coastal areas and areas of south-

eastern Australia that were poorly covered by the single pixel fitting technique.

Question 3. How effective is the broad area fitting method at identifying

fire-related brightness temperature anomalies in comparison to other fire de-

tection methods?

In comparison to commonly used polar orbit based fire products, BAT de-

rived estimations provided a solid baseline to identify anomalies in geosta-

tionary imagery. For situations with fire detections from both the VIIRS and

MODIS active fire products, anomalous activity was recorded in 89.3% of cases

at a cutoff temperature threshold of 5K using BAT, with synchronous detec-
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tion in almost half of those cases. Considering the much larger pixel size of the

geostationary sensor and the ephemeral nature of fire, the omission rate was

considerably lower than expected. The commission rate of detection using the

BAT method at the 5K threshold was around 23% in comparison to a burned

area product adapted for the study area, which was also lower than expected.

The largest benefit of the BAT method was for first detection. Improve-

ments in detection time when using the BAT fittings on AHI temperature mea-

surements were between 2h and 6h, dependent upon the proximity of the time

of fitting to the first anomaly detected in the diurnal cycle for the 5K thresh-

old. This was expected behaviour given the much higher temporal coverage of

the geostationary sensor, but was still a promising result in the context of the

fitting method and given the coarse spatial resolution. The study showed the

viability of using such a method in a near-real-time capacity, as the accuracy of

temperature fittings improved when the estimation ended closer to the time

of first detection.

Question 4. How can we use similarities in image characteristics over time

to improve temperature estimation over a single-image contextual approach?

Using a defined search radius and discrete set of training images, we iden-

tified candidate training pixels based upon the magnitude of differences from

the target, and then used these training pixels to provide values for pixel es-

timation in a later image, a technique known as the spatio-temporal selection

(STS) method. The STSmethod demonstrates a significant improvement in tem-

perature estimation accuracy, with impressive reproduction of images in com-

parison to the raw sensor images. The STS method demonstrates an improve-

ment in estimate variation of between 10–40% in areas with sufficient clear

sky for pixel training purposes compared to 5 × 5 contextual estimation. The

STS method also allows for temperature estimates in more locations, including

under cloud, with an increase in estimate availability of between 16–45% when

compared to contextual estimates.

Results from this study also further highlighted deficiencies in contextual

estimates when faced with anomalous temperature behaviour, with STS esti-

mates more readily identifying these anomalies with lower noise and highlight-

ing larger areas of anomalous temperature behaviour compared to the contex-

tual estimates. The STS method also has scope for improvement with regard

to candidate pixel selection, with a number of criteria that may be modified to

improve the resultant temperature estimation further.
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6.2 The Background Behind Background

In hindsight, a study with a focus upon background temperature estimation

seems a long way from the grand design of fixing satellite fire detection from

geostationary sensors. The study itself has very little to do with the abso-

lute determination of active fire in the environment, partially due to the diffi-

culties presented by validating the ephemeral perturbing influence caused by

fire. While conducting this research, with the focus on ever-increasingly com-

plicated algorithms and false alarm detectors, the lack of complexity involved

in the background temperature estimate used by almost all of these fire de-

tection techniques was striking. Why of all things was this measure, which

seemingly held the key to both finding the fire in the first place, and then in

some methods providing estimates of fire size and severity, based upon some-

thing as crude as an adjusted smoothing filter? Whilst the practicality of using

such a method for estimation, based upon the spatial-autocorrelation principle

[82], is unquestionable, especially in the earlier days of remote sensing when

simplicity ruled all, the general acceptance in the present of this estimation

method despite its obvious flaws drew me in to look deeper.

The first piece of work presented in this thesis attempts to quantify the

magnitude of the error associated with the use of such a method. Significantly,

the results are critical of the expansion method used to provide data when

insufficient adjacent contextual information is available for calculation. This

widely accepted method to augment data derived from spatial context doesn’t

provide satisfactory levels of accuracy for calculation of fire characteristics,

and barely adds to the number of pixel estimations anyway, for the price of

being heavily computationaly intensive. If only one thing emerges from this

thesis as a significant contribution to the active fire community, it’s that the

current paradigm for anomaly detection is flawed in conditions most likely be

associated with fire detection - that is, areas that may be cloud covered and un-

dergoing lightning strikes, and areas of potential fire spread that are occluded

by smoke. Estimates taken from spatial contextual measurements during these

times are a muddled mess. Commonly fire detection techniques (for example

the MODIS AF product [26]) have taken a two-pass approach to anomaly identi-

fication, identifying potential anomalies using a series of thresholds, and then

ruling false detections out using a series of tests. The findings of the work in

Chapter 2 strongly suggest that a universal set of thresholds for anomaly iden-

tification is the wrong approach - the dynamic range of recorded temperatures

in some landscapes is such that just scooping the brightest portion of pixels as

a first pass will miss a significant portion of fire activity, and this is reaffirmed

in some of the results of the STS study in Chapter 5.
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The flaws seen in estimates derived from spatial context drove the investiga-

tion into the use of other methods for background temperature estimation, but

they were not the sole driver for investigation of the multi-temporal techniques

covered in the subsequent chapters. Recent launches of new generation geo-

stationary satellites, such as the Himawari AHI-8 sensor (used predominately

in this study) and GOES-16 ABI, have seen a general improvement in the level of

spatial, temporal and radiometric resolution available from geostationary im-

agery. A real opportunity presented to use the data from such sensors in new

and exciting ways, and to potentially break away from the flawed paradigm of

contextual estimation by using time as a dimension in anomaly detection. This

being said, adopting a new sensor and new workflows also poses a series of

challenges to efficient and effective research outcomes. Our greatest challenge

with using AHI-8 was the lack of validated cloud mask information, which is

of vital importance to successful isolation of negative anomalies in any group

of estimation values. We found mixed results with a number of unpublished

masking products, and had trouble understanding the decisions made in the

development of some others that had been applied to this sensor. For instance,

the AHI-8 work published by [94] applies a cloud mask based upon a series of

absolute thresholds developed for other sensors, with a high omission rate

reported for use on the GOES sensor [95]. This omission rate, when recon-

ciled with the percentage of total cloud cover reported in Chapter 2, suggests

that large numbers of cloud pixels are making it past this masking process,

with potentially 15% of all unflagged pixels potentially being cloud affected in

some way. In spite of this, a lack of other options drove us to the use of such

a mask, with the acceptance that the errors associated with it could heavily

influence the subsequent accuracy of derived estimates. Our concerns about

cloud masking drove the adoption of the BAT process, which looked to pro-

vide a multi-temporal solution to temperature estimation without the reliance

on cloud masking.

The BAT method creates a new way of determining training data for a signal

fitting process - in no other work have I found reference to the use of aggre-

gated broad area measurements to provide a time-corrected signal. Maybe no

one else was crazy enough to look at it - figuring out how to reconcile local

solar time with image recording intervals and sensor scan offsets to provide

the standardised signal was the result of many months work. Whilst in this

case the BAT was used to isolate a relatively high frequency signal (diurnal

variation), there is potential for its use to map seasonal and annual trends in

data sets and subsequently isolate changes. Application in wavelengths other

than the MWIR has great potential for a method such as this, to map changes

in sea surface temperature and plant phenology for instance. Of course, there
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are obvious improvements that should be made if these applications are to

come to pass. The fitting method, which used a principal component analy-

sis to derive the fitting trajectory over the prediction vector, didn’t take into

account our knowledge of what the resultant signal should look like enough.

The very strong diurnal signal found in the standard model was often unable to

be reconciled in cloud-affected prediction vectors, even though we knew what

the resultant fitting should look like. Reconfiguring the BAT method of sig-

nal derivation to encompass both external cloud mask data, and to weight the

strong diurnal signal more heavily, would vastly improve what is already an

impressive use of the volumes of geostationary sensor data available for such

a task.

The application of BAT fittings to the task of anomaly identification was the

topic of Chapter 4 of the thesis, and whilst the results derived from this study

showed improvements in detection times especially, the strength of these re-

sults vindicates the choices made in the design of the sensor used, rather than

the BAT method. Given that the relevant information with regard to isolation

of potential thermal anomalies identified in Chapter 2 was not available at

that time (due to issues with cloud masking products), a series of thresholds

was examined for identifying thermal anomalies, instead of tailored thresh-

olds based upon a given study area. The case study area used in Chapter 4

very closely overlapped that of the north western Australia region covered in

the contextual analysis study (Chapter 2), and the standard deviations reported

in section 2.3.3 probably suggest that the thresholds used in this study were

too aggressive to definitively categorise fire activity. Nevertheless, the study

showed the practical effectiveness of using such a fitting technique to isolate

anomalies, nothwithstanding the potential improvements that could be made

as mentioned earlier in this section. The work also highlighted the importance

of proper analysis of data sources such as the AHI-8 sensor - the vast improve-

ments in detection time seen in this study would have been just as apparent in

a spatial contextual study of the same fire activity, and the study provided an

opportunity to be measured favourably against active fire products in common

usage.

6.3 A New Direction for Real-Time Anomaly Detection

A particularly exciting development in the process of completing this thesis

has been the implementation of the spatio-temporal selection method (Chap-

ter 5) and the results derived from it. This method, which uses selections

of candidate pixels based upon a set of training images in the recent history
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before the prediction image, provides images of estimated pixel values with

a striking resemblance to the sensor recorded prediction images, certainly in

comparison to the contextual images presented alongside. The global estimate

of error for most sites is an improvement of around 15–20% based upon the

standard deviation of differences from the target value. The true potential in

this method comes from its flexibility in the choice of training criteria, which

is only briefly touched upon in the thesis chapter it was introduced in.

One of the common themes of this study is the challenge imposed by cloud-

based occlusion and its effect upon accurate temperature reproduction. The

STS method demonstrates a reasonably accurate method of temperature esti-

mation, which would be expected to further improve with the addition of a

quality cloud mask. The potential lies in the STS method to circumvent the

need for an externally provided cloud mask. If enough clear sky ground tem-

peratures are available at a particular time point, the accuracy of the training

estimators relative to the target pixel can reveal information about potential

anomalous temperature readings in the training pixels. Given enough variety

in training pixels in comparison to target pixels (and with an increase in the

value of ntrain), outliers in the training stacks can be isolated, and with an

ensemble aggregation process based upon the suspected confidence in each

training pixel, a map of potential anomalies could be created based upon this.

Dependent upon how the model is initialised, anomalies on the fringe of clear

sky areas could be flagged as such to assist in both eliminating erroneous train-

ing values for subsequent estimates, and to identify other anomalous values.

In this way, this the cloud (and fire) isolation process could act in lieu of an

explicit external cloud mask, which may well result in further improvements

to method accuracy.

Another unexplored facet of STS is the ability to preserve predictor pixels

over time. To a certain extent, the training phase of STS is independent of the

prediction phase. The exact amount of time that selected training pixels are

valid as estimators is unknown, but the likelihood is that major changes in the

location of training pixels would only occur where there is a major change in

the composition of land cover in either the target pixel or the training pixel.

The magnitude of this change is also of importance of course, but based upon

the the relatively coarse spatial scale that has been examined with imagery in

this study (∼2km), disturbances such as fire, land clearing and flooding are the

only factors likely to change the temporal signature of pixels over time. In an

area of relative temperature stability, this means we may be able to preserve a

set of training pixel locations from a good solution to fill in gaps in estimations

when the training data set is severely affected by cloud occlusion.

A more complex task, but not out of the realms of possibility, is the appli-
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cation of the STS method to non-continuous time series imagery, such as that

from polar orbiting sensors. Considering the STS provides only the location

of suitable estimator pixels, and carries forward no information about pixel

properties for fitting purposes, these locations should be able to be applied to

individual captures for prediction purposes, even with image sets that lack a

complete diurnal definition. A major stumbling point with this adaptation may

be discrete pixel locations, which are readily available and regularly repeated

in geostationary imagery, but vary wildly based upon orbital geometries in the

case of polar orbiters. This could be counteracted by the use of confidence

measures for the given training locations, which could then be applied in a

nearest neighbour estimation or something more complex, keeping in mind

that in most cases the available statistical strength of temperature estimates

is high.

This study has focused upon the estimation of surface temperatures in the

context of fire detection, but at their heart these estimates provide a baseline

for testing all sorts of anomalous behaviour in satellite imagery, and mapping

short and long-term change based upon this type of anomaly identification.

Results from chapter 5 showed the potential to highlight change due to burnt

area in the training set of certain pixels. Such techniques could be used to high-

light land cover change due to clearing, rainfall events and localised flooding,

and in longer term work, urban encroachment and heat island effects. Due to

this study focusing on fire, use of techniques such as STS has only been applied

using the MWIR, and these other types of change may be more easily identified

when these techniques are applied to other wavelengths. Whilst the methods

described in this thesis are not by any means the panacea for all change de-

tection related issues in remote sensing, there is potential for some parts of

this work to be extended to provide potential solutions to a range of different

problems.

The technological side of remote sensing continues to push forward, with

more advanced sensors and greater volumes of data available from platforms

both in polar and geostationary orbits. With this proliferation of satellite infor-

mation, especially in the temporal space for geostationary imagery, we possess

the capability to monitor and measure change with a greater capacity that ever

before. Polar orbiting sensors remain the gold standard for research in remote

sensing due to their superior spatial characteristics, but their placement in

sun-synchronous positions to aid visible light measurements has kept research

from properly tackling the role of time in prediction techniques. With satellite

launching becoming cheaper than ever, there will soon be a demand for the spa-

tial resolution of products we see from polar orbiters beyond the one or two

daily images we currently enjoy. As the current constellation of polar-orbiters
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increases the temporal density of observations from these sources will increase

concurrently. The applicability of multi-temporal techniques outlined in this

thesis that are effective with geostationary sensors will soon be applicable to

data obtained from an increased number of polar orbiting sensors.

Ultimately the best outcome of this research would be the integration of

these techniques in a data assimilation framework utilising imagery from both

polar and geostationary orbiters, as long as the challenges of scaling between

data sources and coverage variability can be overcome. The need for more

research in this fire detection space remains, and contributions made by this

body of work will hopefully inspire future solutions.
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Summary

Fire is an integral catalyst for change and regeneration in the environment,

along with being a major impact on social and economic activity. In evolving

climatic conditions, wildfires are increasing both in intensity and in area im-

pacted in recent years. Remote sensing has been used for many decades to

provide insight into fire activity and impact through the use of infrared im-

agery for active fire detection. Electromagnetic wavelengths at around 4µm

are particularly sensitive to fire activity, in comparison to nominal conditions

which incorporate both solar reflection and thermal emission of the earth’s

surface. Brightness temperature measurements in these wavelengths isolating

such radiative anomalies enable fire detection and attribution from satellite

sensors. The processes involved in providing these active fire products re-

quire an accurate estimation of the background brightness temperature of the

area in question without the influence of fire. These commonly used active

fire products generally use a contextual-based estimate to provide this back-

ground temperature information. Whilst this estimation technique is widely

accepted for use, especially in single time-point polar orbiting products, the

introduction of new generation geostationary sensors provides substantial im-

provements to knowledge about the earth’s surface, especially with regard to

diurnal variation. These sensors provide an opportunity to not only evaluate

the accuracy of context-based estimation of brightness temperature, but to

integrate the rich spatio-temporal information provided by such sensors to

improve the accuracy and availability of background estimates.

In order to determine an adequate level of accuracy required for the deriva-

tion of new temperature estimators, it was important to know the accuracy of

the current paradigm of contextual temperature estimation. To date, whilst

contextual temperature estimation is widely used, no definitive study of the

expected error in temperature estimates had been completed. An analysis

of the error involved in contextual estimation was conducted upon medium

wave infrared radiation (MWIR) images taken by the AHI-8 sensor onboard the

Himawari-8 geostationary satellite. Comparisons were made between contex-

tual estimates and the raw brightness temperature observations over the AHI-8

full disk for 36 images at 0500 UTC across 2016, and across a number of case

study areas for 31 days of images surrounding the peak fire period as deter-

mined by the VIIRS active fire product. The study found that variation in tem-

perature estimations from context had negligible bias and standard deviations

around 1.1K when the surrounding 5×5 area was clear of cloud, which occurred

in 53.9% of cases. Accuracy diminished as the contextual estimation surface

was obscured, such that pixels with 65% or more context available experienced
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a 56% increase in estimate variation. The common practice of window expan-

sion saw the variation of estimates increase substantially, with 7×7windows re-

sulting in a 44% increase in variation over the 5×5 results. The study concluded

that 5×5 contextual estimation should be limited to using values where at least

65% of the contextual surface is available, with no expansion of the contextual

window due to the detrimental effect on estimation accuracy. This resulted in

1 in 7 non-obscured pixels (14.5%) in the examined images not having accurate

contextual estimates available. Common causes of increased contextual inac-

curacy included coastlines, land cover changes, slope and aspect of the surface,

urban heat signatures and land inundation, with these effects highlighted in

the examined case studies.

With the identification of inadequacies in the contextual estimation method,

investigation of methods to leverage the temporal domain of the geostationary

sensor to fill these gaps was undertaken. Particular focus was placed upon the

modelling of the diurnal temperature variation of locations, and in particu-

lar how gaps in the training data for such models could be filled. Previous

studies that had used diurnal modelling in typically cloud obscured areas had

identified deficiencies in the use of single pixel data for creating temperature

models. A new technique was developed using a standardised model of diur-

nal temperature variation based upon the latitude of the examined area, and

corrected for local solar time. Results from models created by this method,

known the Broad Area Training (BAT) method, were compared to a single-pixel

derived model and the raw temperature recordings from AHI-8. The compari-

son found that the RMS error of the BAT-derived models maintained sufficient

accuracy for temperature estimation with up to half the estimation days’ val-

ues obscured by cloud, with errors reduced by more than 50% compared to

the single pixel method with between 30 – 70 cloud affected images present in

the day of estimation. The method also increased the availability of training

data for modelling using this type of multi-temporal method, with up to 90%

of pixels across the Australian continent possessing sufficient training data for

estimation, in comparison to 40% for the single-pixel model.

The success of brightness temperature estimation using the BATmethod led

to an investigation of the potential isolation of brightness temperature anoma-

lies using these models. A comparison study was undertaken using active fire

information taken from the MODIS and VIIRS active fire products, and burned

area information from the TERN Auscover MODIS Burned Area product, and in-

formation from these three sources was compared to anomalies isolated from

the BAT modelling of the affected locations using a number of rudimentary

temperature thresholds. Anomalies were detected the BAT modelling of tem-

perature against raw image temperatures in between 75–99% of cases where
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a LEO fire detection took place, with variation based upon the threshold set.

Synchronous fire activity was detected between LEO fire products and the BAT

anomalies in between 46–68% of case where fires were identified by both ac-

tive fire products. Using BAT to find anomalies also resulted in an increase of

anomalies detected above the LEO products, with between 50–75% of burned

area pixels without LEO active fire hotspots resulting in anomalous tempera-

ture detections. The comparison of anomaly time of detection versus the LEO

fire products was not unexpectedly favourable to the BAT anomalies, with im-

provements in initial isolation of 5–7h over the two LEO products used.

Whilst the BAT method of temperature modelling was relatively successful

in isolation of anomalies in geostationary imagery, investigations led to the

identification of methods of estimation that could theoretically be applied to

both geostationary and LEO sensor imagery. A newmethod of background tem-

perature estimation was developed, this time using the similarities of temper-

atures measured in a search radius around the target to be estimated, in order

to derive suitable candidate pixels for estimation from a single image. This

method, known as the Spatio-Temporal Selection (STS) method, was applied

to images from a number of case study areas across the AHI-8 full disk, and

comparisons weremade with values from the prediction image and the 5×5 con-

textual estimation. The STS method demonstrates a 10–40% improvement in

variation over contextually derived temperatures, with marked improvements

in visually assessed accuracy. The method also provides more estimates of

temperature than the contextual estimator, with between 16–45% more pixels

able to have their brightness temperature estimated. The study demonstrated

the potential extension of the method into use of LEO imagery and highlighted

other deficiencies with the contextual estimation method that the first study

of the thesis did not identify.
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Samenvatting

Satelliet-teledetectie heeft een lange en succesvolle geschiedenis van gebruik

voor branddetectiedoeleinden, enmet veranderende klimatologische omstandighe-

den en de toename van door de mens veroorzaakte landschapsveranderingen,

wordt nauw-keuriger en tijdigere branddetectie steeds belangrijker. Een intrin-

sieke eigenschap van veel van de branddetectiealgoritmen die tegenwoordig

algemeen worden gebruikt, is de afhankelijkheid van kennis van de onversto-

orde staat van de kandidaatpixel voor detectie. Omdat dit niet direct kan wor-

den gemeten, vanwege de buitenmaatse bijdrage van vuur aan het totale stral-

ingsbudget, moeten schattingsmethoden voor deze onverstoorde staat worden

gebruikt om afwijkend gedrag van beeldpixels accuraat te identificeren. De ver-

reweg de voorkeur genietende methode voor het bereiken van deze schatting

in de meeste operationele producten is het gebruik van een schatting op basis

van de helderheidstemperaturen van de pixels die direct rondom de kandidaat-

pixel liggen, in een convolutiefilterstijlproces.

De nauwkeurigheid van op de context gebaseerde helderheidstemperatu-

urschattingen wordt beperkt door hoe het omringende landschap is voor de

kandidaat-pixel. Factoren zoals de helling en het aspect van de landvorm,

landbedekking en landgebruik en de aanwezigheid van water in een deel van of

in de omringende pixels, dragen allemaal bij aan de resulterende fouten in tem-

peratuurschatting met behulp van de context. Verdere verstorende invloeden

zoals bewolking, en in geval van brand de aanwezigheid van rook, hebben ook

invloed op het potentiële energiebudget dat wordt toegeschreven aan de om-

ringende pixels en dus op de centrale schatting. Ondanks het wijdverbreide

gebruik van dit soort schattingen, heeft geen eerdere studie onderzocht ho-

eveel de fout in de contextuele schatting kan bijdragen aan foutieve resultaten

van het gebruik van een dergelijke schatter. De centrale driver van dit proef-

schriftonderzoek is tweevoudig - ten eerste om de inherente fouten te kwan-

tificeren die betrekking hebben op het gebruik van contextuele schatting van

de achtergrondhelderheidstemperatuur; en ten tweede om nieuwe methoden

af te leiden voor het verkrijgen van een achtergrondtemperatuur die hun schat-

tingen niet alleen baseert op overeenkomsten in locatie, maar op kortetermijn-

temporele relaties die elke pixel heeft met potentiële kandidaatschatters.

De reeks geschikte sensoren van de huidige dag voor de taak heeft ook

geleid tot een studie van dit type. In de afgelopen vier jaar zijn nieuwe geosta-

tionaire platforms gelanceerd met sensoren die onze dekking van de wereld

hebben vergroot en, kritisch voor branddetectie, onze tijdelijke resolutie van

beeldverspreiding vergroot. Gekoppeld aan de verbeterde ruimtelijke en ra-

diometrische resoluties van deze sensoren, worden we nu steeds meer over-
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spoeldmet geostationaire beelden die de beeldkwaliteit van sommige lage aard-

baanbeelden van slechts 10-15 jaar geleden benaderen, zo niet gelijk zijn. Nooit

eerder hebben we de dagelijkse ’heartbeat’ van de aarde in zoveel detail gepre-

senteerd als deze wordt geleverd door deze recorders. Het huidige paradigma

voor schatting van de helderheidstemperatuur is gebaseerd op methoden die

beelden als discreet en onafhankelijk behandelen, terwijl deze sensoren ons

in staat stellen meer te doen dan dat, waarbij we niet alleen informatie uit de

ruimtelijke omgevingen van het enkele beeld, maar ook uit de beelden kunnen

gebruiken. onmiddellijk voorafgaan aan de tijd.

Hoofdstuk 1 van dit proefschrift schetst het huidige branddetectieparadigma,

en de rolschattintemperatuurschatting speelt bij het beschrijven van het bestaan

van vuur in het landschap. De hoofdstukken 2-5 van dit proefschrift richten

zich op het aanpakken van de onderzoeksdoelstellingen die worden geschetst

in paragraaf 1.3, waarvan de belangrijkste bevindingen in deze paragraaf wor-

den besproken. Dit laatste hoofdstuk biedt een samenvatting en synthese

van de belangrijkste onderzoeksresultaten, samen met een routekaart voor

toekomstige uitbreiding van de methoden die worden beschreven in dit werk

voor branddetectie en andere velden.

Vraag 1. Wat is het effect van systematische en structurele fouten veroorza-

akt door het gebruik van contextuele schatting in gewone branddetectietech-

nieken?

Contextueel gegenereerde achtergrondtemperatuurschatting bleek een vol-

doende nauwkeurige methode te zijn in situaties waar weinig tot geen occlusie

van de doelcontext optreedt, maar dat deze relatie degenereerde zodra meer

dan een derde van de doelcontext is afgesloten. Uit een volledige schijfanal-

yse van afbeeldingen van de AHI-8-sensor bleek dat pixels met een contextuele

beschikbaarheid van minder dan 65% een toename van 61% in schattingsvari-

abiliteit vertoonden in vergelijking met die pixels die geen aangrenzende be-

wolking hadden, met deze mate van variatie stijgen met minder beschikbare

contextpixels. Gegeven de nauwkeurigheid zoals bepaald in tabel 2.5, werd

aangenomen dat ten minste 65% van de contextpixels beschikbaar zou moeten

zijn omde achtergrondtemperatuur van een doelpixel uit de context nauwkeurig

in te schatten. Deze waarde wisselt de nauwkeurigheid van de schatting versus

de beschikbaarheid van schattingen van de pixeltemperatuur uit, maar zelfs

met deze acceptatiegraad ontvangt meer dan één op zeven pixels (14.5%) geen

temperatuurschatting.

Deze studie toonde verder aan dat het gebruik van uitbreidende contextuele

vensters voor achtergrondtemperatuurbepaling, zoals vaak wordt aangetrof-

fen in veel brandproducten, fundamenteel onjuist is. De fout van temper-

atuurschatting stijgt met bijna 50% wanneer de zoekstraal wordt verhoogd
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tot slechts 7 × 7 in situaties waarin een dergelijke behandeling noodzakelijk

werd geacht (tabel 2.5), en de herstelfrequentie van temperatuurschattingen

bij hogere venstergrootten volgens deze regels was hopeloos. Bijvoorbeeld, bij

gebruik van de bovengenoemde contextdrempel van 65% verhoogde het uitbrei-

den van het venster het totale aantal schattingen met 3.1%, waarbij de meeste

van deze schattingen standaarddeviaties boven 3K vertoonden. Deze schat-

tingen zijn te lawaaierig om echt te kunnen worden gebruikt, kleinere branden

zouden volledig worden geëlimineerd, gezien de toleranties die zoudenmoeten

worden toegepast om zekerheid te hebben bij het opsporen van anomalieën.

Analyse van de contextuele schatting concentreerde zich ook op een aantal

casestudiegebieden die werden geselecteerd om te putten uit een breed scala

van breed-tegraad-, klimaat- en landvormen om storende invloeden te identifi-

ceren. De bronnen van variatie in deze casestudiegebieden waren bijna net zo

divers als de gebieden zelf. Bronnen van hoge contextuele schattingsvariaties

omvatten brand-, rook-, sneeuw-, seizoen- en ruimtelijke variaties in bodem-

bedekking, rurale en landelijke interfaces, helling en aspect, sneeuwlijnen en

land-water-interfaces. Variabiliteit toonde significante clustering rond land-

schapseigenschappen, met de effecten verhoogd wanneer afgebeeld bij grotere

venstergroottes. Gebieden met een hoge heterogeniteit van de landbedekking

waren bijzonder gevoelig voor hoge schattingsvariaties, en dit zijn over het al-

gemeen kritieke gebieden voor branddetectie en -monitoring, omdat deze sterk

geassocieerd zijn met menselijke activiteit.

Vraag 2. Hoe kunnenwe de gemeenschappelijke dagvariatie van opwindende

straling gebruiken om de helderheidstemperatuur op een robuuste manier in

te schatten?

Het gebruiken van de baan van de volledige schijf om lacunes in een model-

passingstechniek op te vullen, werd bewezen als een effectief hulpmiddel voor

het genereren van schattingen van de helderheidstemperatuur. De ontwikkelde

methode, aangeduid als de Broad Area Training-methode, aggregeerde demedi-

ane temperatuur van 0.25°×0.25° blokken door lokale zonnetijd in een geïdealiseerd
dagmodel van het breedtegewijs zwad. Dit dagmodel, dat gestandaardiseerd

was op basis van het gemiddelde en de standaardafwijking van elk blok, werd

vervolgens gefilterd om uitschieters te verwijderen. Koppelingen naar indi-

viduele pixels gebeurden vervolgens met het standaardmodel als basis voor

een ontleding van een enkele waarde gedurende de voorgaande 24 uur vóór de

voorspellingstijd.

In vergelijking met een enkele aanpassingsmethode voor pixels die werd

gebruikt in [65], ondervond de BAT-methode voldoende gegevens voor pix-

eltraining in onge-veer 86% van de gevallen, vergeleken met ongeveer 40%

voor de methode met één pixel. De BAT-methode toonde ook een sterkere
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veerkracht in pixels met een verhoogde bewolking in de voorgaande dagperi-

ode, met grote verbeteringen in schattingsfouten wanneer tussen 20 en 50%

van de dagperiode een bewolking doorwiste. De methode toonde verhoogde

levensvatbaarheid in kustgebieden en gebieden in het zuidoosten van Aus-

tralië die slecht werden bestreken door de techniek voor het toepassen van

één pixel, die gebieden zijn die zijn aangemerkt als kritisch voor branddetec-

tie en -monitoring.

Vraag 3. Hoe effectief is de methode om breed gebied aan te passen bij het

identificeren van brandgerelateerde afwijkingen in helderheidstemperatuur in

vergelijking met andere branddetectiemethoden?

In vergelijking met veelgebruikte op polaire omloop gebaseerde brandpro-

ducten, leverden BBT-afgeleide schattingen een solide basislijn op om anoma-

lieën in geostationaire beelden te identificeren. Voor situaties met branddetec-

ties van zowel de VIIRS- als de MODIS-actieve brandproducten werd in 89.3%

van de gevallen abnormale activiteit geregistreerd bij een drempelwaarde voor

cutoff-temperatuur van 5K using BAT, met synchrone detecties in bijna de

helft van die gevallen. Rekening houdend met de veel grotere pixelgrootte

van de geostationaire sensor en het kortstondige karakter van vuur, was de

omissiesnelheid aanzienlijk lager dan verwacht. De commissie van detecties

met behulp van de BBT-methode bij de 5K-drempel was ongeveer 23% in vergeli-

jking met een verbrand product dat was aangepast voor het studiegebied, dat

ook lager was dan verwacht.

Vergelijkingen voor de tijd van eerste detectie was waar de BAT methode

van anomalie isolatie straalde. Verbeteringen in de detectietijd bij het gebruik

van de BAT-fittingen bij AHI-temperatuurmetingenwaren tussen 2 uur en 6 uur,

afhankelijk van de nabijheid van de tijd van aanpassing aan de eerste afwijk-

ing gedetecteerd in de dagcyclus voor de 5K-drempel. Dit was het verwachte

gedrag gezien de veel hogere temporele dekking van de geostationaire sen-

sor, maar was nog steeds een veelbelovend resultaat in de context van de aan-

pasmethode en gezien de grove ruimtelijke resolutie. De studie toonde de

levensvatbaarheid van het gebruik van een dergelijke methode in een bijna-

real-time capaciteit, omdat de nauwkeurigheid van temperatuurfittingen verbe-

terde toen de schatting dichter bij het tijdstip van de eerste detectie eindigde.

Vraag 4. Hoe kunnen we na verloop van tijd overeenkomsten in beeldlo-

caties gebruiken om op een later tijdstip een helderheidstemperatuurbeeld te

recon-strueren?

Analyse van de fout in gelijktijdige metingen gedurende een discrete ti-

jdsperiode kan leiden tot de identificatie van geschikte trainingspixels voor

daaropvolgende temperatuurschatting, die wordt onderzocht met behulp van

de spatio-temporele selectiemethode voor schatting. De STS-methode toont
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een significante verbetering in nauwkeurigheid van temperatuurschatting, met

indrukwekkende weergave van afbeeldingen in vergelijking met de onbewerkte

sensorbeelden. De STS-methode toont een verbetering in schattingsvariatie

tussen 10–40% in gebieden met voldoende hel-dere lucht voor pixeltraining-

doeleinden vergeleken met 5×5 contextuele schatting. De STS-methode maakt

ook temperatuurschattingen mogelijk op meer locaties, ook onder cloud, met

een toename van de beschikbaarheid van schattingen tussen 16–45% in vergeli-

jking met contextuele schattingen.

De resultaten van deze studie wezen ook op tekortkomingen in contextuele

schattingen wanneer ze werden geconfronteerd met afwijkend temperatuurge-

drag, met STS-schattingen die deze anomalieën gemakkelijker konden iden-

tificeren met minder ruis en die grotere gebieden met afwijkend temperatu-

urgedrag benadrukten in ver-gelijking met de contextuele schattingen. De STS-

werkwijze heeft ook ruimte voor verbetering met betrekking tot kandidaatpix-

elselectie, met een aantal criteria die kunnen worden gemodificeerd om de re-

sulterende temperatuurschatting verder te verbeteren.
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