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Chapter 1: General Introduction 
The aim of this research is to develop techniques to strengthen the use of 
Earth observation for sustainable forest management, particularly in relation 
to monitoring forest disturbance and recovery across large areas. This chapter 
provides an overview of the problem, introduces the concept of satellite-
based time series and outlines the structure of the subsequent chapters in this 
thesis. 
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1.1 Forest monitoring and reporting 
Almost one third of the Earth’s land is covered by forests (Keenan et al., 
2015). Forests generate clean air and water, cycle carbon and nutrients, and 
provide resources (such as timber, food and fuel) for billions of people. In 
addition, forests contain more than three-quarters of the world’s terrestrial 
biodiversity and absorb roughly 2 billion tonnes of carbon each year (FAO, 
2018). The importance of forests to life on Earth cannot be overstated. 

Increasingly, governments are aiming to manage forest resources sustainably, 
in ways that balance economic, ecological and social factors. While the notion 
of sustainable forest management itself is not new (Macdicken et al., 2015), it 
gained considerable momentum at an international level following the Rio 
Earth Summit in 1992 (Montréal Process, 2009). Across the world, various 
levels of government have forest monitoring and reporting obligations, often 
enshrined in legislation, policies and international agreements. In Australia, 
for example, all states and territories, and the Australian Government have 
legislation supporting sustainable forest management. In addition, under a 
National Forest Policy Statement, Australia is committed to reporting on the 
state of its forests every five years. This data is also used in international 
reports, such as the global Forest Resources Assessment, as prepared by the 
Food and Agriculture Organization of the United Nations (MIG and NFISC, 
2018). 

Sustainable forest management is also integral to achieving the United 
Nations Sustainable Development Goals (SDGs); a recent report details the 
contributions that forests make to 28 targets relating to 10 of the 17 SDGs 
(FAO, 2018). Protecting biodiversity through forest conservation and 
restoration is also critical to meeting the Aichi Biodiversity Targets 
(www.cbd.int/sp/targets/). Forests also play an essential role in combating 
climate change and limiting global warming, recognised by initiatives such as 
the United Nations program for Reducing Emissions from Deforestation and 
Forest Degradation (www.un-redd.org). 

A key aspect of sustainable forest management is the use of criteria and 
indicators for forest management and reporting. Criteria are broad themes of 
forest values, while indicators are measurable aspects of these criteria. 
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International collaborations, such as the Montréal Process, have been integral 
to the development of common criteria and indicators, now used throughout 
the world (Montréal Process, 2009). Recognised under “Criterion 3: 
maintenance of ecosystem health and vitality” is a forest’s ability to adapt to 
and recover from disturbances, both biotic (e.g., disease, insects, invasive 
species) and abiotic (e.g., fire, storm, land clearance). Changes beyond 
reference conditions may threaten a forest’s health and vitality (Montréal 
Process, 2009). 

Forest disturbance and subsequent recovery (or regeneration) is, in many 
ways, a natural process essential to healthy forest systems. Dead and decaying 
trees, whether standing or fallen, stimulate biodiversity and provide habitat 
for many species (Senf et al., 2018). However, according to Thom and Seidl, 
(2016), the benefits of disturbance on biodiversity are often out-weighed by 
negative impacts to other ecosystem services (e.g., clean air, water and food). 
In the current day, it is difficult to distinguish between natural and 
anthropogenic disturbances, given the influence that humans inflict on fire 
regimes, invasive species, exotic pathogens, and climate change. Complex 
ecological feedback loops mean that forests are in a constant state of flux. 
Nonetheless, changes to disturbance regimes (i.e., type, frequency, severity, 
spatial extent and pattern), whether anthropogenic or not, may considerably 
alter forest ecosystems (Thom and Seidl, 2016). 

Increasingly, scientists and land managers are regarding the Earth as an 
interconnected system (Steffen et al., 2007), of which forests are an essential 
element. While global initiatives promoting sustainable forest management 
provide necessary policy directions, implementation of meaningful actions 
remains challenging. The 2030 Agenda towards achieving the SDGs 
recognises that “if you can’t measure it, you can’t manage it” (Paganini et al., 
2018). Earth observation satellites provide solutions for large-area and global 
monitoring. However, the potential of satellites is yet to be fully realised, 
especially in ecological applications. This is due in part to inconsistent data, 
methods and capabilities, exacerbated by a lack of communication between 
the ecology and remote sensing communities (Skidmore et al., 2015). In 
addition, while the value of satellite Earth observation has long been 
recognised in a spatial sense, the temporal capacity has been underutilised. It 
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is the ability of satellites to consistently observe ecosystems over time that 
offers an improved understanding of ecological dynamics (Kennedy et al., 
2014). 

1.2 Satellite Earth observation time series 
Satellite Earth observation allows landscapes to be assessed and monitored 
over large extents, consistently across time and space. Wall-to-wall coverage, 
along with recent improvements in computing power, has led to 
unprecedented interest in large-area applications. Although there are 
numerous Earth observation satellites in operation today, the Landsat 
program stands alone in terms of its temporal depth, radiometric calibration 
and open access (Wulder et al., 2018). The Landsat family of satellites have 
been imaging the Earth for over four decades. Since the mid to late 80s, 
Landsat has provided multispectral data at a 30 m spatial resolution and 16 
day temporal resolution; characteristics which are suitable for large-area 
forest monitoring. 

In 2008, the United States Geological Survey (USGS) made their Landsat 
archive free and accessible, a decision that revolutionised Earth sciences 
(Wulder et al., 2012). This was followed by the Landsat Global Archive 
Consolidation (LGAC) initiative in 2010, which aimed to consolidate Landsat 
data from receiving stations throughout the world into a central repository 
(Wulder et al., 2016). The USGS now holds more than 8 million unique 
Landsat scenes. 

Because of Landsat’s unrivalled position in Earth observation, considerable 
research has been undertaken to make the data suitable for time series 
analysis, including the development of standardized processes for 
radiometric, geometric, and atmospheric correction, such as the Landsat 
Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm 
(Schmidt et al., 2013). The resultant ‘surface reflectance’ products make it 
possible to track each pixel through time. While there are other surface 
reflectance algorithms (e.g., Li et al., 2012), LEDAPS is the most common, 
and is therefore used in this research. Figure 1.1 shows a typical workflow of 
pixel-based time series analysis, which is subsequently summarised. 
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Figure 1.1 Typical workflow of pixel-based time series analysis 

1.2.1 Image compositing 

Cloud-cover is a constant issue with optical remote sensing. To deal with 
clouds and other data gaps (e.g., Landsat 7’s Scan-Line-Corrector (SLC) 
failure), along with the ability to undertake studies across many Landsat 
scenes, it has become common practice to build image composites, 
constructed out of multiple images. Typically, clouds and cloud shadows are 
masked prior to compositing. Many cloud masking algorithms have been 
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proposed (for a review, see White et al., 2014). One of the most widely used, 
and provided with USGS Landsat products, is that of Zhu and Woodcock 
(2012). Referred to as Fmask, the authors state its accuracy “as high as 
96.4%”. 

Best-available-pixel composites have become integral to many time series 
studies (White et al., 2014). Several different compositing rules have been 
used. For example, selecting the greenest pixel by taking the maximum value 
of a spectral index like NDVI (Holben, 1986). An alternate method is to 
select a target date and use the first clear pixel closest to that date within a 
certain time period (Kennedy et al., 2010). Recently, more sophisticated rules 
have been proposed, where pixels are ranked based on day-of-year in addition 
to factors such as atmospheric opacity and presence/closeness to cloud or 
shadow (White et al., 2014). A method proposed by Flood (2013) uses the 
‘medoid’ across all Landsat bands, whereby the pixel with the smallest sum 
of the distances to all the other pixels is selected. Therefore, the pixel is always 
a true value, and the relationships between bands are preserved. The medoid 
is currently the preferred compositing method in the Google Earth Engine 
implementation of LandTrendr (Kennedy et al., 2018b). 

1.2.2 Change detection algorithms 

There are many different Landsat time series approaches in the literature. In 
a comprehensive review, Zhu (2017) identified upwards of 50 different 
‘change detection’ algorithms, which he grouped into 6 broad categories, 
based on the mathematical approaches employed. These include 
thresholding, differencing, segmentation, trajectory classification, statistical 
boundary, and regression. Most are based at the pixel level and tend to either 
use all available images (e.g., Eklundh and Jönsson, 2015; Verbesselt et al., 
2010a; Zhu and Woodcock, 2014) or one image per year (e.g., Hermosilla et 
al., 2015; Kennedy et al., 2010). 

Change detection algorithms typically aim to extract meaningful changes (e.g., 
a disturbance event) and/or trends (e.g., forest recovery) from each pixel’s 
temporal trajectory (Figure 1.1). Algorithms have been employed to create 
accurate maps of forest disturbance over time, due to various agents such as 
fire, logging and insects (Huang et al., 2010; Kennedy et al., 2012; Senf et al., 
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2015). Modern computing power has enabled studies across extremely large 
areas; for example: the entire forest estate of Canada (Coops et al., 2018), the 
conterminous United States (Cohen et al., 2016), and eastern Europe 
(Potapov et al., 2015). 

1.2.3 Spectral indices and ensemble approaches 

Most change detection algorithms operate at the pixel level in 2 dimensions, 
where the x-axis equals time and the y-axis is either an individual band or a 
spectral index (computed from multiple bands). Different bands and indices 
are sensitive to different aspects of vegetation cover. Indices most commonly 
used in forest-based Landsat time series include the Normalised Difference 
Vegetation Index or NDVI (Tucker, 1979), the Normalised Burn Ratio or 
NBR (Key and Benson, 2006) and the various Tasseled Cap components 
(Crist and Cicone, 1984). NBR has been used widely (Hermosilla et al., 2015a; 
Kennedy et al., 2010), due to its ability both to capture change and accurately 
represent forest recovery (White et al., 2018). Some studies used a spectral 
band (e.g., band 5) rather than an index (Schroeder et al., 2011). Huang et al. 
(2010) used all bands, converted to standardised scale (z-score) and integrated 
to form a one-dimensional output. The different components of the Tasseled 
Cap transformation have been found to be sensitive to different types of 
disturbance. For example, Senf et al. (2015) found that Greenness was useful 
in detecting Western Spruce Budworm disturbance, but Wetness and 
Brightness were better indicators of Mountain Pine Beetle disturbance. 

Cohen et al. (2017a) recently showed that different indices and time series 
methods produce results which vary considerably. Thus, instead of relying on 
one method/index, there has been a recent shift towards using ensemble 
approaches (Cohen et al., 2017b; Haywood et al., 2016; Healey et al., 2018; 
Schultz et al., 2016c), where multiple indices are used in conjunction with a 
machine learning classifier (e.g., Random Forests) and robust reference data, 
to improve disturbance classification.  

1.2.4 Reference data 

Many change detection algorithms do not necessarily require reference data 
to function. However, reference data is important for validation and 
calibration purposes.  Cohen et al. (2010) developed an automated approach 
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for collecting human interpreted reference data called TimeSync. A similar 
approach was adopted by Soto-Berelov et al. (2017) in the state of Victoria, 
Australia. In a recent study, Senf et al. (2018) did not use a change detection 
algorithm at all; instead, the authors used TimeSync to interpret 24,000 pixel 
samples to assess canopy mortality across Europe. Reference data is also 
required for machine learning ensemble approaches and supervised 
classifications. For example, in Washington, USA, Kennedy et al. (2015) used 
a change detected algorithm called LandTrendr to detect changes, which were 
subsequently classified into three classes: urbanization, forest management, 
and natural. In the Central Highlands in Victoria, Australia, Haywood et al. 
(2016) used the BFAST algorithm to detect changes, which were then 
classified into fire and logging disturbances at different severity levels. 

1.2.5 Spectral recovery 

Recently, researchers have moved beyond using Landsat time series to detect 
forest disturbances only, and are now using it to also study forest recovery 
(Kennedy et al., 2012; Pickell et al., 2016; White et al., 2018). Forest recovery 
following disturbance is a complex process, with numerous successional 
stages. It begins with an initial re-establishment of vegetation and progresses 
through to a gradual return of forest structural characteristics (White et al., 
2017). Although passive sensors such as Landsat cannot directly measure 
forest structure, spectral indices using the SWIR bands (e.g., NBR) have been 
shown to correlate highly with lidar derived structural measurements (White 
et al., 2018). 

1.3 This research 
This research attempts to bridge the gap between complex remote sensing 
practices and useful information; that is, information which is meaningful, 
accessible and relevant to land managers and policy makers. The core 
chapters in this thesis present elements of a tool chain, used to translate big 
data into scientifically robust information. The outputs of various techniques 
are used in case studies, to explore ecological elements of forest disturbance 
(particularly fire) and subsequent recovery. In particular, this research aims to 
exploit the potential of the 30+ year Landsat image archive to produce 
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evidence-based outputs that can support forest monitoring and reporting 
activities across large areas. 

1.3.1 Research objectives 

The main objectives of this research are to: 

1) Assess the potential of a number of Landsat-based spectral indices in 
their ability to detect fire disturbance and characterise subsequent forest 
recovery in southeast Australian forests 

2) Explore the benefits of using an ensemble of spectral indices, in 
conjunction with human interpreted reference data and machine learning, 
to produce forest disturbance maps 

3) Examine the relationship between spectral disturbance magnitude and 
recovery length, to determine: 
a) Whether a statistical association exists, and how well it can be 

characterised using Landsat time series 
b) How the association varies across different forest types 

4) Investigate fire disturbance and forest recovery in boreal and temperate 
forests worldwide, using the MODIS and Landsat image archives, to: 
a) Explore trends in burned area, fire severity (change in NBR) and 

forest recovery lengths (as measured spectrally) 
b) Establish similarities and differences between similar forest types in 

different countries 
c) Determine the transferability and scalability of methods developed in 

the previous objectives. 

1.3.2 Study area 

The study area for chapters 2, 3 and 4 of this thesis is the state of Victoria, 
Australia. Or, more specifically, the 8.2 million ha of forests in Victoria, which 
cover approximately one third of the state (Soto-Berelov et al., 2018b). In 
chapter 5, the study area was extended to temperate and boreal forests across 
the world; in particular, Montreal Process countries that regularly experience 
forest fires (Australia, Canada, Chile, China, Russia and the USA), along with 
southern Europe. Boreal and temperate biomes were based on the 
classification of Olson et al. (2001). In total, around 50% of the world’s 
forests were analysed (~2 billion ha). Given the different study areas used for 
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different parts of this research, further information is provided in each of the 
core chapters. 

1.3.3 Outline of thesis 

This thesis comprises six chapters: a general introduction, four core research 
chapters – each based on a peer-reviewed journal paper – and a synthesis. 

Chapter 1 introduced the concept of sustainable forest management and how 
satellite remote sensing, particularly when used in time series, can contribute. 

Chapter 2 examines eight different Landsat-based spectral vegetation indices 
and assesses their sensitivity to fire disturbance and forest recovery in 
southeast Australian forests. 

Chapter 3 explores whether an ensemble approach, using multiple indices and 
a Random Forests classifier, can produce more accurate maps of forest 
disturbance than individual time series algorithms. 

Chapter 4 delves deeper into the ecological applications of Landsat time 
series, by exploring whether a greater disturbance magnitude equates to a 
longer recovery length in different forest types in southeast Australia. 

Chapter 5 takes the lessons learned from chapters 2-4 to produce a global 
study looking at fire disturbance and subsequent forest recovery in the boreal 
and temperate forests across the world. This chapter demonstrates a robust 
and straightforward method for analysing fire disturbance and forest recovery 
trends, which can improve forest monitoring and reporting. 

Chapter 6 provides an overview of the major findings outlined in the thesis, 
places them in a broader context, and explores future opportunities to 
capitalise on the recent convergence of technologies and data availability in 
Earth observation. 
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Chapter 2: Using Landsat spectral indices in 
time series to assess wildfire disturbance and 
recovery1 
 

 

  

                                                 

1 This chapter is based on: Hislop, S., Jones, S., Soto-Berelov, M., Skidmore, A., 
Haywood, A., Nguyen, T.H., 2018. Using Landsat spectral indices in time-series to 
assess wildfire disturbance and recovery. Remote Sens. 10, 1–17. 
https://doi.org/10.3390/rs10030460 
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Abstract 
Freely available Landsat data stretching back four decades, coupled with 
advances in computer processing capabilities, has enabled new time series 
techniques for analysing forest change. Typically, these methods track 
individual pixel values over time, through the use of various spectral indices. 
This study examines the utility of eight spectral indices, in their ability to 
characterise fire disturbance and recovery in sclerophyll forests, in order to 
determine their relative merits in the context of Landsat time series. Although 
existing research into Landsat indices is comprehensive, this study presents a 
new approach for evaluating indices without the need of detailed field 
information, by comparing the distributions of pre and post-fire pixels using 
Glass’s delta. Results showed that, in the sclerophyll forests of southeast 
Australia, common indices, such as the Normalized Difference Vegetation 
Index (NDVI) and the Normalized Burn Ratio (NBR), both accurately 
captured wildfire disturbance in a pixel-based time series approach, especially 
if images from soon after the disturbance were available. However, for 
tracking forest regrowth and recovery, indices such as NDVI (which typically 
capture canopy ‘greenness’) were not considered reliable, with values 
returning to pre-fire levels in 3-5 years. In comparison, indices that are more 
sensitive to forest moisture and structure, such as NBR, indicated much 
longer (8-10 years) recovery timeframes. This finding is consistent with 
studies conducted in other forest types. This study also found that additional 
information regarding forest condition, particularly in relation to recovery, 
may be available in lesser-known indices, such as NBR2, as well as in textural 
indices incorporating spatial variance. With Landsat time series being 
increasingly used in forest monitoring applications, it is essential to 
understand the advantages and limitations of the various indices that these 
methods rely on. 
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2.1 Introduction 
The opening of the Landsat archive in 2008, along with the advances in 
computer processing, has led to a plethora of new and novel applications 
exploiting Landsat time series (Wulder et al., 2012). Commonly, in the forest 
domain, these studies look to establish disturbance and recovery histories, 
following events such as wildfire, logging, and insect damage (Kennedy et al., 
2010; Schroeder et al., 2011; Senf et al., 2015). Using a time series, rather than 
image pairs, allows for change to be differentiated from background noise, 
whilst also capturing longer-term ecological trends (Kennedy et al., 2010). 

Methods for characterizing forest dynamics (abrupt changes and longer-term 
trends) using time series differ, but a point of similarity is the use of spectral 
indices. Spectral indices convert multi-spectral satellite data into a single 
component, so individual pixels can be tracked through time. Spectral indices 
also have an advantage over single bands by amplifying desired effects (e.g., 
changes in vegetation condition) and reducing unwanted features, such as 
atmospheric and topographic noise (Matsushita et al., 2007). There are 
numerous spectral indices in the literature. However, when considering those 
commonly used in Landsat derived pixel-based time series, the field narrows 
significantly. Frequently used is the Normalized Difference Vegetation Index 
(NDVI; Tucker, 1979). NDVI is a measure of photosynthetic biomass, and 
has been shown to correlate with ecological parameters, such as the fraction 
of green vegetation cover (Verbesselt et al., 2010a) and leaf area index (Wang 
et al., 2005). NDVI is sensitive to changes in vegetation condition and has 
been shown to accurately detect forest disturbances. However, it is 
considered to be less adept in representing forest recovery, due to grasses and 
other non-woody vegetation colonizing a site after a disturbance, and 
consequently returning the NDVI signal to its pre-disturbance state (Pickell 
et al., 2016). In areas of sparse vegetation, NDVI can be adversely affected 
by soil reflectance. To correct for this, Huete developed the Soil Adjusted 
Vegetation Index (SAVI), which incorporates a soil correction factor into the 
NDVI formula (Huete, 1988).  

Indices using short-wave infrared (SWIR) bands are commonly used in 
Landsat time series, as these wavelengths are often more sensitive to forest 
structure, moisture, shadowing, and vegetation density (Schroeder et al., 
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2011). The Normalized Burn Ratio (NBR) is a ratio of the near-infrared and 
second SWIR band (2.08-2.35 μm), and was developed by Key and Benson 
(2006) to identify burned areas following fire and provide a quantitative 
measure of burn severity. Several authors have found NBR to correlate highly 
with field-based measurements in forest ecosystems (Cocke et al., 2005; 
Epting et al., 2005; Parker et al., 2015); however, Roy et al. (2006) suggest 
caution when using NBR for burn severity mapping as their investigations 
indicated sub-optimal results. In Landsat time series, NBR is used extensively, 
and has proven adept at characterizing forest dynamics in the USA (Kennedy 
et al., 2012) and Canada (White et al., 2017). Similar to NBR is the 
Normalized Difference Moisture Index (NDMI), which uses the near-
infrared with the first SWIR band (1.55-1.75 μm). NDMI is sometimes 
favoured for tracking disturbances other than fire, and was used by Goodwin 
et al. (2008) for classifying areas that were disturbed by the Mountain Pine 
Beetle in western Canada. NBR2 is another variation of a ratio/difference 
index, contrasting the two Landsat SWIR bands. It is provided as a standard 
product by the United States Geological Survey (USGS) but has been rarely 
used in the literature. Storey et al. (2016) found it useful for post-fire recovery 
assessment in chamise chaparral vegetation in southern California, while 
Stroppiana et al. (2012) used it as part of an ensemble to map burned areas. 

The Tasseled Cap (TC) transformation of Landsat Multispectral Scanner 
(MSS) data was first presented by Kauth and Thomas in 1976, and was later 
adapted by Crist and Cicone for Landsat TM data (Crist and Cicone, 1984). 
The various components of TC are created via linear transformations using 
defined coefficients. In simplified terms, Brightness (TCB) represents the 
overall brightness of all bands, Greenness (TCG) is a contrast between the 
visible and near-infrared bands, and Wetness (TCW) is a contrast of the 
visible and near-infrared with the SWIR bands, making it sensitive to soil and 
plant moisture (Crist and Cicone, 1984). TC Angle (TCA; Powell et al., 2010) 
is calculated as the arctan of TCG/TCB and describes the vegetation cover 
within the TCB-TCG spectral plane (Pflugmacher et al., 2012). Various time 
series studies have shown success with TC components. For instance, Senf 
et al. (2015) used TC components to track insect disturbance in British 
Columbia, Canada, and found that TCG was useful for detecting Western 
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Spruce Budworm disturbance, whereas TCW and TCB were better indicators 
of Mountain Pine Beetle disturbance.  

The time series method, and the index (or indices) used, can significantly alter 
the outcomes of a study, as highlighted recently by Cohen et al. (2017b). 
Often, studies evaluating spectral indices look to establish the strength of the 
relationship between the index and field data (Cocke et al., 2005). An 
alternative approach, especially when field data are not available, is to use 
human-interpreted reference data. Recently, Schultz et al. (2016b) assessed 
eight spectral indices in their ability to detect deforestation in the tropics, 
using manually interpreted reference pixels for training and validation. The 
challenge with using field data and human interpreted imagery to train or 
validate models is that the data needs to be both spatially representative of 
the study area and temporally relevant (i.e., collected at appropriate time 
intervals). Many Landsat time series studies are retrospective investigations 
covering large areas, and field data does not exist. Where ancillary data is 
available, it is more likely to indicate forest disturbance (e.g., maps of fire 
extent and severity) than forest recovery, which would require multiple data 
collections over many years. One of the strengths of satellite Earth 
observation (especially Landsat) is the consistent re-visit cycles, which 
enables the characterization of trends, such as forest recovery. 

This study adds several insights to the existing body of literature on spectral 
indices. Firstly, it presents a simple and robust method for assessing and 
comparing indices using Glass’s delta, which is suitable where limited or no 
field data are available. Secondly, it looks at how various indices respond to 
fire disturbance and recovery in sclerophyll forests, which are the dominant 
forest type in Australia, but also exist elsewhere in the world. Thirdly, it 
assesses indices in the context of Landsat time series, but independently of a 
specific change detection algorithm. 

2.2 Materials and methods 

2.2.1 Study area 

The study area contains over three million hectares of public forest in the 
eastern half of Victoria, Australia (Figure 2.1). This area was chosen because 
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it has high ecological and economic importance, and it recently experienced 
three major wildfire events in the space of six years. The area consists 
primarily of sclerophyll forests, tending to wet in some areas and dry in 
others. At the wetter end, trees can attain heights over 75 m, while at the 
dryer end, trees are typically shorter than 40 m (Viridans, 2017). The study 
area falls primarily within three bioregions – the Victorian Alps and the 
Northern and Southern Highlands (IBRA, 2017). The Alps have mild 
summers and cool winters, reach elevations up to 2000 m, and typically 
experience over 1400 mm of annual precipitation. The Highlands are located 
on both the northern and southern sides of the Alps, at elevations between 
200 m and 1300 m, and typically experience annual rainfall between 500 and 
1200 mm (Viridans, 2017). Forests in Australia are also divided by structural 
classes (Table 2.1; refer to Mellor and Haywood, (2010) for details). 

Table 2.1 Native forest structural classes in Australia 

Tree Height (m) Canopy Cover (%) 

Low (<10) Woodland (<50) 

Medium (10-30) Open (50-80) 

Tall (>30) Closed (>80) 

 
In 2003, wildfires in the northeast of Victoria burned over 1.3 million ha of 
forest. Three years later, over the summer of 2006-2007, major wildfires again 
burned a further 1 million ha of forest, mostly southwest of the 2003 fires. In 
February 2009, the devastating ‘Black Saturday’ fires burned a further 400,000 
ha across the state of Victoria (Attiwill and Adams, 2013), much of it in the 
Central Highlands region. Figure 2.1 indicates the extent of the burned area, 
which forms the study area for this research. 
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Figure 2.1 Study area (as indicated by the cross-hatched fire area), showing the 
location of the Victorian Forest Monitoring Program (VFMP) plots and example 
reference pixels 

2.2.2 Landsat data and image compositing 

All available Landsat TM and ETM+ surface reflectance products with less 
than 70% cloud-cover from 1 January to 31 March (representing southern 
hemisphere summer) for years 1992-2016 (paths 91/92 and rows 85/86) were 
obtained from the USGS archive. Surface reflectance products were 
processed with the Landsat Ecosystem Disturbance Adaptive Processing 
System (LEDAPS) algorithm (Masek et al., 2013), and a cloud masking was 
undertaken with the FMask algorithm (Zhu and Woodcock, 2012). Annual 
summer composites were created, using a best-available-pixel method of 
image compositing, which has been used by other studies for preparing 
Landsat data for use in long time series (Haywood et al., 2016; Kennedy et 
al., 2010; White et al., 2014). Commonly, it involves choosing the first clear 
pixel from an image stack that is closest to a preferred day of the year, to 
minimize the effects of phenology and variations in sun angle. An anniversary 
date of February 15 and seasonal window of plus/minus 45 days was used. A 
late summer date was used to capture fires in the year they occurred. A slight 
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penalty (five days) was applied to ETM+ images with Scan Line Corrector 
errors (SLC-off), so that preference was given to TM data if available. This 
resulted in a time series stack of 25 years with over 98% coverage. 

2.2.3 Candidate reference pixels 

Fire maps maintained by the state of Victoria’s land management agency 
(Department of Environment Land Water and Planning, 2017) were used to 
indicate the general extent of the three large fires. Candidate reference pixels 
were chosen via a systematic sampling process based on the Victorian Forest 
Monitoring Program (VFMP) plot network (Haywood and Stone, 2017). The 
VFMP plot network consists of 786 plots (2 km × 2 km) that are distributed 
throughout public land in Victoria, stratified by bioregion and land tenure. In 
each plot, 10 random pixels were selected (resulting in 7860 pixels), and a 
team of six worked to manually interpret each pixel to establish its 
disturbance history (Figure 2.1 shows an example of the reference pixel 
sampling method). This was achieved by interrogating multiple lines of 
evidence, such as state fire records and high-resolution imagery from Google 
Earth. Quality assurance was performed by an independent operator, who 
assessed 10% of all the pixels to evaluate the accuracy of the dataset (see Soto-
Berelov et al. (2017) for details). A total of 1391 pixels fell within the broad 
fire boundaries. Of these, 1056 were classified as being disturbed by one or 
more of the three wildfires, and were subsequently used for the bulk of the 
analysis presented in this paper. In the section investigating different forest 
classes, an additional 5000 random pixels (with a minimum distance of 100 
m) were selected inside the VFMP plots that fell within the fire history 
polygons; this ensured an adequate number of samples in each class. Visual 
inspection of the imagery indicated that, on balance, the majority of these 
pixels were fire affected. 
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Table 2.2 Landsat spectral indices used in this paper, and a selection of pixel-
based time series studies using these indices (band numbers refer to Landsat TM 
and ETM+ bands). 

Greenness Indices Formula 
Pixel-Based Time-

Series Studies 

Normalized Difference 
Vegetation Index (NDVI) 𝑵𝑫𝑽𝑰 ൌ

𝑵𝑰𝑹 െ 𝑹𝑬𝑫
𝑵𝑰𝑹 ൅ 𝑹𝑬𝑫

 

(Dutrieux et al., 2015; 
Kennedy et al., 2010; 
Schmidt et al., 2015; 

Vogelmann et al., 2012) 

Soil Adjusted Vegetation 
Index (SAVI) 𝑺𝑨𝑽𝑰 ൌ

𝑵𝑰𝑹 െ 𝑹𝑬𝑫
𝑵𝑰𝑹 ൅ 𝑹𝑬𝑫 ൅ 𝟎. 𝟓

ሺ𝟏 ൅ 𝟎. 𝟓ሻ (Sonnenschein et al., 2011) 

Tasseled Cap Greenness 
(TCG) 

−0.1603(band 1) − 0.2819(band 2) − 
0.4934(band 3) + 0.7940(band 4) − 
0.0002(band 5) − 0.1446(band 7) 

(Frazier et al., 2015; 
Hudak et al., 2013; Senf et 

al., 2015) 

Tasseled Cap Angle (TCA) 𝑻𝑪𝑨 ൌ 𝒂𝒓𝒄𝒕𝒂𝒏
𝑻𝑪𝑮
𝑻𝑪𝑩

 
(Haywood et al., 2016; 

Kennedy et al., 2012; 
Schroeder et al., 2011) 

Wetness Indices   

Normalized Burn Ratio (NBR) 𝑵𝑩𝑹 ൌ
𝑵𝑰𝑹 െ 𝑺𝑾𝑰𝑹𝒃𝒂𝒏𝒅𝟕

𝑵𝑰𝑹 ൅ 𝑺𝑾𝑰𝑹𝒃𝒂𝒏𝒅𝟕
 

(Huang et al., 2010; 
Kennedy et al., 2010; Senf 

et al., 2015) 

Normalized Difference 
Moisture Index (NDMI) 𝑵𝑫𝑴𝑰 ൌ

𝑵𝑰𝑹 െ 𝑺𝑾𝑰𝑹𝒃𝒂𝒏𝒅𝟓

𝑵𝑰𝑹 ൅ 𝑺𝑾𝑰𝑹𝒃𝒂𝒏𝒅𝟓
 

(DeVries et al., 2015; 
Dutrieux et al., 2016; 

Goodwin et al., 2008) 

Tasseled Cap Wetness (TCW) 
0.0315(band 1) + 0.2021(band 2) + 
0.3102(band 3) + 0.1594(band 4) − 
0.6806(band 5) − 0.6109(band 7) 

(Frazier et al., 2015; 
Hudak et al., 2013; 

Kennedy et al., 2010; Senf 
et al., 2015) 

Normalized Burn Ratio 2 
(NBR2) 

𝑵𝑩𝑹𝟐 ൌ
𝑺𝑾𝑰𝑹𝒃𝒂𝒏𝒅𝟓 െ 𝑺𝑾𝑰𝑹𝒃𝒂𝒏𝒅𝟕

𝑺𝑾𝑰𝑹𝒃𝒂𝒏𝒅𝟓 ൅ 𝑺𝑾𝑰𝑹𝒃𝒂𝒏𝒅𝟕
 (Storey et al., 2016) 

Tasseled Cap Brightness 
(TCB) (used to calculate TCA) 

0.2043(Band 1) + 0.4158(band 2) + 
0.5524(band 3) + 0.5741(band 4) + 
0.3124(band 5) + 0.2303(band 7) 

(Frazier et al., 2015; 
Haywood et al., 2016; 

Hudak et al., 2013; Senf et 
al., 2015) 

2.2.4 Landsat spectral indices 

From the composite Landsat images, the spectral indices shown in Table 2.2 
were computed. These included NDVI, SAVI, NBR, NDMI, NBR2, and the 
Tasseled Cap indices (TCG, TCW and TCA). TCB was not included due to 
its unpredictable nature (sometimes increasing, sometimes decreasing, 
following fire); however, it was used to calculate TCA. Landsat TM and 
ETM+ surface reflectance products are calibrated for direct use in time series 
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applications, therefore the same Tasseled Cap coefficients (Crist, 1985) were 
used, regardless of sensor. This is the approach adopted in other Landsat time 
series studies (e.g., Kennedy et al., 2010).  

In this study, indices were grouped into either ‘greenness’ or ‘wetness’ indices. 
These are not official terms but were adopted for ease of reporting. The 
greenness indices typically use the red and near-infrared bands, and are 
generally more sensitive to photosynthetic activity, canopy greenness, and leaf 
cellular structure; these include NDVI, SAVI, TCG, and TCA. The wetness 
indices tend to use the SWIR bands and are more sensitive to vegetation 
moisture and forest structure; these include NBR, NDMI, TCW, and NBR2. 

2.2.5 Data distributions of pixels pre and post-fire 

To assess the sensitivity of each index in its response to fire, a number of 
tests were undertaken using the 1056 disturbed reference pixels. For each 
index, image stacks covering 25 years were created and the underlying values 
for each pixel of interest were extracted using the ‘raster’ package (Hijmans, 
2016) in R (R Core Team, 2017). The data were then grouped by relative years 
(e.g., year before fire, year of fire, year after fire, etc.). The aim was to compare 
the distributions of the pre-fire values and the post-fire values, and how they 
differed across indices (see Figure 2.2 for a conceptual diagram). To quantify 
the magnitude of the change between pre and post-fire values, the ‘effect size’ 
was used. Effect size refers to a family of statistical measures that measure 
the difference between two distributions in a standardized way, independent 
of sample size. For this study, Glass’s delta was used, which is simply the 
difference in means between two groups, divided by the standard deviation 
of the control group (Becker, 2000). 

∆ ൌ
𝜇ଵ െ 𝜇ଶ

𝜎ଵ
  

where μ1 is the mean of group 1 and μ2 is the mean of group 2, and σ1 is the 
standard deviation of group 1. In this exercise, the mean of group 1 (the 
control group) was the average value in a given index for all of the reference 
pixels in the 10 years prior to the fire (e.g., NDVI of 0.7). The mean of group 
2 was the average value of all the pixels post-fire (e.g., NDVI of 0.3). The 
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difference of -0.4 was then divided by the standard deviation of the control 
group (e.g., 0.1), which gives an effect size of -4. The standard deviation of 
only the pre-fire values, rather than that of all values (as with Cohen’s d) was 
used, because it reflects the natural range of values for undisturbed forest in 
the study area. The effect size that is significant (practically speaking) will 
differ study to study. Cohen loosely defined effect sizes equalling 0.2 as small, 
0.5 as medium, and 0.8 (or greater) as large (Becker, 2000). In this study, the 
variation in the means from the 10 pre-fire years was used to indicate the 
effect size that has practical significance, as this captures the natural 
fluctuations inherent in each index. 

 
Figure 2.2 Conceptual diagram showing distributions of pre-fire and post-fire 
values. 

As well as the mean, the change in standard deviation (SD) pre-fire to post-
fire was also investigated; the hypothesis being that a larger dispersion of 
post-fire values could be an indicator of which index may more accurately 
capture fire severity levels (i.e., more classes or a greater range of values). The 
change in SD was calculated by dividing the SD post-fire by the SD pre-fire. 
Also calculated, was the percentage of the post-fire values that overlapped 
with the pre-fire values, with a lower percentage indicating better separation. 
Although this is somewhat captured in the effect size already, it is 
nevertheless interesting to consider the percentage of overlapping pixels, 
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especially in terms of the change immediately after the fire when compared 
with that of one year later. 

2.2.6 Spectral response in different forest classes 

To determine how indices performed across different forest classes, the data 
were divided based on tree height and canopy cover (Table 2.1). The original 
classification was performed as part of the VFMP (Haywood et al., 2017) and 
is used in State of the Forest reporting (Department of Environment and 
Primary Industries, 2013). As outlined in Section 2.2.3, to ensure an adequate 
number of samples in each forest class, in addition to the 1056 reference 
pixels, a further 5000 random pixels were generated in the VFMP plots, with 
the fire year being determined by the fire history polygons (Department of 
Environment Land Water and Planning, 2017). After removing those that did 
not fall within a class, 5759 pixels remained (Table 2.3; note that low tree 
height was uncommon in this study area and therefore not used). The 
standardized means for each index in each forest class were calculated, to 
establish the sensitivity of each index across the different forest types. In 
addition, Analysis of Variance (ANOVA) tests between all pairs of forest 
classes (e.g., Medium Wood versus High Open, etc.) were conducted on a 
subsample of 250 pixels per class (to maintain class balance), to test for 
statistical significance between forest class distributions. 

Table 2.3 Number of reference pixels in each forest class used in this study 

Forest Class No. Pixels 

High Closed 534

High Open 2236

High Woodland 291

Medium Closed 251

Medium Open 1639

Medium Woodland 808

Total 5759
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2.2.7 Spectral recovery post-fire 

Free and open access to the long archive of Landsat data has created new 
opportunities for assessing the post-disturbance recovery of vegetation in 
terms of spectral response (White et al., 2017). Researchers have approached 
spectral recovery in different ways. Kennedy et al. (2012) use a measure of 
recovery based on the difference between the each pixel’s disturbance value 
and that of five years after disturbance, while Pickell et al. (2016) look at 
recovery in terms of the number of years for the spectral index value to reach 
80% of its pre-disturbance value. Although Landsat cannot capture the full 
complexity of forest recovery, it enables large area assessments that are 
beyond the practicality of field-based methods. In this context, each index 
was evaluated in relation to how it tracks post-fire spectral recovery. Indices 
were compared by grouping reference pixels by year and by considering how 
each year’s distribution post-fire related to the overall pre-fire (undisturbed) 
distribution. The length of recovery, according to each index, was determined 
by calculating when the distribution mean of a post-fire year first reaches the 
lowest mean from the 10 years pre-fire.  

2.2.8 Changes in texture pre and post-fire 

Texture is not widely used in time series studies (Kuenzer et al., 2015), 
however, it has been a recognized image processing technique for many years 
(Haralick, 1979; Skidmore, 1989). With advances in computer power, there 
has recently been interest in considering spatio-temporal variables in time 
series studies (Hamunyela et al., 2017). A change in texture pre-fire to post-
fire is interesting in that it may assist in image classification; and, it may 
indicate ecological changes in the underlying forest. For example, following 
fire the forest may become more diverse (hence have greater textural 
variation), or it may become more homogenous (less variation). To capture 
some of the spatial variations (‘texture’) and how this manifests in different 
indices, each reference pixel was examined in relation to its neighbours. This 
was achieved by creating a 60 m buffer around each pixel and calculating the 
standard deviation of all the pixels in the buffer area pre and post-fire. A 90 
m buffer was also trialled, and produced similar results; therefore, 60 m was 
considered adequate. Again, these values were standardized to delta using the 
distribution means and standard deviations, as outlined in Section 2.2.5. 
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2.3 Results 

2.3.1 Data distributions of pixels pre and post-fire 

Density histograms indicate the relative distribution of values pre-fire, 
directly after fire, and one year post-fire (Figure 2.3). Three different methods 
were used to quantify the information that is shown in the histograms. These 
included the change in mean (standardized to delta Δ), the percentage 
overlap, and the change in SD (Table 2.4). The lowest mean value from the 
10 years prior to the fire is also presented as an indication of the natural 
undisturbed variation. For example, the standardized mean for NDVI for the 
fire year was -4.3, which is significantly lower than the lowest mean from the 
10 years prior to the fire, which was -0.4. Results indicated that the mean of 
the NDVI values changed the most directly after a fire, by -4.30, followed by 
TCA with -3.90, and NBR with -3.58. One year after fire, NBR had the 
greatest mean change, with -2.04, followed by NBR2 with -1.86, and NDMI 
with -1.63. NDVI had the smallest percentage of overlapping pixels directly 
following fire (14%), while one year later NBR2 showed the greatest 
separation (39%). NBR had the greatest change in SD both directly following 
fire and one year later, changing by a factor of 1.96 and 1.46, respectively. 
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Figure 2.3 Density histograms showing the distributions of pre-fire values (blue), 
directly after fire (red), and one year post-fire (green). 
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Table 2.4 Post-fire response of each index, shown as a standardized change in 
mean, percentage overlap, and relative change in standard deviation, with best 
results indicated in bold. 

  Lowest Mean – 
10 Years 

Preceding Fire 

Change in 
Mean (Δ) 

% Overlap SD Change 

 Year of Fire  

NDVI −0.40 −4.30 14% 1.91 

SAVI −0.22 −2.56 20% 1.05 

TCG −0.22 −2.38 20% 1.02 

TCA −0.33 −3.90 16% 1.68 

NBR −0.30 −3.58 23% 1.96 

NDMI −0.35 −2.61 28% 1.36 

TCW −0.28 −1.80 48% 1.76 

NBR2 −0.18 −3.17 18% 1.62 

Year after Fire 

NDVI −1.26 57% 1.39 

SAVI −0.88 63% 1.11 

TCG −0.89 62% 1.06 

TCA −1.54 50% 1.35 

NBR 
 

−2.04 41% 1.46 

NDMI 
 

−1.63 44% 1.12 

TCW −1.47 51% 1.39 

NBR2   −1.86 39% 1.2 

2.3.2 Spectral response in different forest classes 

For each of the eight indices, the change in mean directly following a fire was 
calculated for each forest class, again being standardized using the mean and 
standard deviation of the pre-fire values (Figure 2.4). In general, these results 
indicated that all indices were most responsive in woodland systems (low 
canopy cover). The wetness indices, particularly TCW, showed much less 
distinction in closed forests. As before, NDVI and TCA displayed the 
greatest changes, with NDVI shifting by as much as -4.8 in high woodland 
systems. In contrast, TCW only shifted by -0.5 in medium closed forests. 
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NBR and NBR2 consistently occupied positions 3 and 4 in all forest classes. 
ANOVA tests on a subsample of 250 pixels per class showed that all the 
indices displayed significant differences between most forest classes, with p 
< 0.001 for all combinations, except for the following: Medium Closed and 
High Closed, and Medium Open and High Woodland, which none of the 
indices were able to clearly distinguish between; and, Medium Woodland and 
High Woodland, which SAVI was unable to distinguish between, with all of 
the other indices having p-values < 0.02. 

 
Figure 2.4 Change in mean directly following a fire, according to forest class (note 
values converted to positive) 

2.3.3 Spectral recovery post-fire 

Figures 2.5 and 2.6 show the mean values five years prior to fire (for context) 
and nine years after (indicating recovery), for greenness and wetness indices, 
respectively (note that pixels burned in 2009 did not contribute to the 
distributions of years 8 and 9). Figure 2.5 shows the greenness indices 
(particularly SAVI and TCG) almost returning to pre-fire levels three years 
after fire, although they do not technically pass the lowest pre-fire mean until 
year five. For wetness indices (Figure 2.6), the time to recover was longer, 
with NDMI reaching the lowest pre-fire mean at year seven, and NBR and 
TCW at year eight. NBR2 did not reach pre-fire levels even after nine years, 
and interestingly, this index had a more consistent (smooth) recovery. Table 
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2.5 outlines the average number of years that each index takes to recover, 
defined as the year when the mean reaches the lowest mean from the ten 
years prior to fire disturbance. 

 
Figure 2.5 Mean values for greenness indices from five years prior to fire to nine 
years post-fire. 

 
Figure 2.6 Mean values for wetness indices from five years prior to fire to nine 
years post-fire 
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Table 2.5 Average number of years to recover.  
NDVI SAVI TCG TCA NBR NDMI TCW NBR2 

No. years to 
reach lowest 
pre-fire mean 

5 5 5 5 8 7 8 9+ 

2.3.4 Changes in texture pre and post-fire 

Results of the texture analysis are shown in Figures 2.7 and 2.8 for greenness 
and wetness indices, respectively. Of the greenness indices, NDVI and TCA 
follow a similar trend, showing an increase in textural variation following a 
fire. In contrast, SAVI and TCG showed less textural variation directly after 
a fire, but increased one year later. NDVI and TCA showed greater variation 
in the years following a fire, gradually returning to pre-fire levels around eight 
or nine years after the fire. In the wetness indices, NBR, NDMI, and TCW 
all showed an increase in textural variation directly after a fire and returned 
to pre-fire levels at around year four. These results are different to the 
recovery metrics that were presented earlier (based on individual pixels), 
where greenness indices returned to pre-fire levels before the wetness indices. 
NBR2 appears insensitive to textural variation, maintaining a similar level for 
the entire time series. 

 
Figure 2.7 Mean values of textural variation for greenness indices from five years 
prior to fire to nine years post-fire 
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Figure 2.8 Mean values of textural variation for wetness indices from five years 
prior to fire to nine years post-fire 

2.4 Discussion 
For all indices, values that were measured directly following a fire were 
substantially different from the pre-fire (undisturbed) averages. Except for 
TCW, indices showed a high degree of separation between pre and post-fire 
distributions. Greenness indices showed high sensitivity directly after a fire; 
however, one year later, they displayed much less distinction. In contrast, 
wetness indices experienced smaller differences directly following a fire event, 
but one year later maintained relatively high separation. These results were 
somewhat expected, and they align with findings in other studies (Pickell et 
al., 2016; Schroeder et al., 2011). Furthermore, they suggest that in sclerophyll 
forests, vegetation quickly regains photosynthetic activity at the canopy level 
following a fire, with a large proportion of pixels returning to pre-fire levels 
within one year. This is most likely attributable to a combination of epicormic 
growth, as well as understory vegetation, such as grasses and non-woody 
plant matter. It is worth noting that TCA, which was classed as a greenness 
index, appears to be more capable than the other greenness indices in 
capturing fire disturbances one year after the event. 

Results indicated a greater dispersion of values in most indices following fire, 
except for SAVI and TCG, where post-fire distributions were of similar shape 
to pre-fire. The standard deviations for both NBR and NDVI, for example, 
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almost double following fire, and still maintain relatively high levels of 
dispersion one year later. Given that fires impact forests across a range of 
severity levels, a greater dispersion of values post-fire may indicate that the 
index is more suitable for mapping burn severity. Indeed, NBR (as noted 
earlier), has been used extensively for this purpose (Cocke et al., 2005; Epting 
et al., 2005; Parker et al., 2015), although these authors concur that best 
results are usually found only in forested ecosystems.  

Relatively speaking, the indices performed similarly across different forest 
systems. That is, post-fire changes immediately after a fire were greatest in 
NDVI and TCA in all forest classes, followed by NBR and NBR2. 
Differences between some forest classes (High Closed – Medium Closed and 
Medium Open – High Wood) were not observed in any index. However, 
there is clearly a distinction with regards to pre- and post-fire values between 
closed canopy forests versus woodland or open systems. This may indicate 
that Victoria’s closed sclerophyll forests are more resilient to fire than their 
open counterparts; however, it could equally be a function of Landsat only 
capturing spectral changes of the canopy, patches of which may remain 
unburned in lower severity fires. More research into forest types (in terms of 
tree species) could provide further information in this domain. 

In agreement with other studies (e.g., Pickell et al., 2016), wetness indices 
took longer than greenness indices to return to pre-disturbance levels (eight 
years vs. five years). Depending on the ecological variable of interest, there 
may be a preference to adopt the longer timeframes as a more accurate 
representation of forest recovery. While an index such as NDVI captures the 
initial return of vegetation, and correlates with biophysical parameters, such 
as the fraction of green vegetation cover and green leaf biomass (Verbesselt 
et al., 2010a), it is limited in its ability to represent structural attributes, which 
are often more important indicators of other recovery factors, such as 
biodiversity and carbon (Pickell et al., 2016). In contrast, NBR and the other 
wetness indices are more closely aligned with forest moisture and structure 
through the utilization of SWIR bands. Other studies suggest that TCW is 
well suited to observe forest recovery, because of its ability to track overall 
moisture content (Frazier et al., 2015). However, in this study it was found to 
be less reliable, due to its low level of separation directly following a fire. In 
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agreement with Storey et al. (2016), the rarely used NBR2 showed extended 
recovery timeframes, and may be worth considering for future post-fire 
recovery studies. In southeast Australia, many eucalypts have the ability to 
survive low and moderate fire through epicormic resprouting (Figure 2.9), 
whereas after high intensity stand replacement fires, forest regrowth is 
dependent on new seedlings (Figure 2.10), which naturally thin out as the 
forest matures (Bennett et al., 2016). However, these recovery patterns are 
also species and location dependent. In this study, relatively few pixels were 
analysed, across a very large area (3 million hectares), so fine-scale recovery 
dynamics were not captured. 

 
Figure 2.9 Open forest two years after moderate severity fire 
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Figure 2.10 Closed forest nine years after high severity (stand replacement) fire 

The texture analysis produced unexpected results. Whereas, in the pixel-
based analysis it was the greenness indices that quickly returned to pre-fire 
levels, in the texture analysis, it was the wetness indices that returned sooner. 
NBR2’s lack of textural variation makes it unsuitable for this type of analysis, 
perhaps due to the high correlation between the SWIR bands. NDVI and 
TCA both indicated a relatively long recovery time in terms of the textural 
variation, returning to pre-fire levels in eight to nine years. This time-period 
corresponds with the wetness indices in the individual pixel analysis. This 
finding has some potentially useful ramifications. One is that there may be 
some additional information in terms of forest recovery that can be unlocked 
through the consideration of spatial variation, and two, given that variation 
appears in the red and near-infrared bands, this facilitates the use of a greater 
range of available data (e.g., Landsat MSS data going back to 1972, before the 
SWIR bands were introduced, or other satellites such as SPOT). Studies 
demonstrating improved classification accuracies with texture typically 
include a range of variables (Dube and Mutanga, 2015). In this study, the only 
texture variable investigated was that of standard deviation, which is one of 
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many variables that are found in the literature; additional information may be 
available in other metrics. Including texture in pixel-based time series is an 
unexplored area and there are further research opportunities in this domain. 

2.5 Conclusions 
This chapter presented a straight-forward method for comparing the merits 
of various spectral indices by considering all pixels as a single distribution. 
However, by considering all of the pixels as equal participants to a single 
distribution, information contained in individual pixels is lost. Nonetheless, 
the purpose of the exercise was not to derive detailed information about 
forest dynamics, but to determine which indices may be best suited for this 
task. Of the indices that were tested, NBR was considered the most reliable 
index for tracking fire disturbance and recovery in sclerophyll forests, due to 
its consistently high performance across the range of tests performed. 
Although NDVI and TCA showed greater discrimination between pre and 
post-fire pixels directly after a fire, NBR was better one year after a fire event. 
In addition, it presented longer recovery time-frames (an average of eight 
years), which may better reflect the return of forest structure and biomass. 
As computing power increases, it conceivably becomes less important to 
choose only one or a few indices and an ensemble of indices may offer 
improved results. This idea is explored in the following chapter. However, 
the selection of appropriate indices will remain important, particularly in light 
of new sensors with more spectral bands, such as Sentinel 2. 
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Chapter 3: A fusion approach to forest 
disturbance mapping using time series 
ensemble techniques2 
 

  

                                                 

2 This chapter is based on: Hislop, S., Jones, S., Soto-Berelov, M., Skidmore, A., 
Haywood, A., Nguyen, T.H., 2019. A fusion approach to forest disturbance mapping 
using time series ensemble techniques. Remote Sens. Environ. 221, 188–197. 
https://doi.org/10.1016/j.rse.2018.11.025 
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Abstract 
Time series analysis of Landsat data is widely used for assessing forest change 
at the large-area scale. Various change detection algorithms have been 
proposed, each employing different techniques to characterise abrupt 
disturbance events and longer-term trends. However, results can vary 
significantly, depending on the algorithm, parameters and the spectral index 
(or indices) chosen. This mismatch in results has led to researchers 
hypothesizing that an ensemble approach may increase accuracy. In this 
chapter, two change detection algorithms (LandTrendr and the R package 
strucchange), are assessed, each using three indices (NDVI, NBR and TCW). 
Their ability to detect abrupt disturbances in sclerophyll forests over a 29-
year time-period is assessed. Subsequently, a number of ensembles, using 
both simple fusion rules and Random Forests, are evaluated. A total of 4087 
manually interpreted reference pixels, sampled from 9 million ha of forest, 
were used for training and validation. In addition, the effects of priming the 
Random Forests classifier with confusing cases (commission errors from the 
change detection algorithms) is explored. Results showed that ensembles 
combining multiple change detection techniques out-perform any one 
method. The most accurate Random Forests model, using an ensemble of all 
6 algorithm outputs, along with 3 bi-temporal change rasters (change in NBR, 
NDVI and TCW), had an overall error rate of 7%, compared with the most 
accurate single algorithm/index approach (LandTrendr with NBR), which 
had an overall error of 21%. Acceptable results (14% error) were also 
achieved without the use of traditional change detection algorithms, by using 
only the reference data and Random Forests. However, by priming the 
classifier with confusing cases, informed by the change detection algorithms, 
overall error decreased to 8%. This suggests that change detection algorithms 
could be applied to a sample of pixels only, for the sole purpose of training a 
machine learning classifier. The feasibility of this previously unexplored 
concept is put to the test, by creating annual disturbance maps across a large 
area of forest (9 million ha) over 29 years. 
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3.1 Introduction 
A greater understanding of forest history and the complex dynamics of 
natural and anthropogenic factors can lead to better land management 
strategies. This is particularly important in the present day, in which forests 
face ongoing stress due to climate change and human-induced pressure 
(Schroeder et al., 2017). The open archive of Landsat satellite imagery enables 
large area forest assessment at time scales (30+ years) not available via other 
means (Wulder et al., 2012). However, extracting reliable and meaningful 
information from Landsat time series is not without its challenges, including 
overcoming data gaps due to cloud and shadow (Zhu and Woodcock, 2012), 
maintaining radiometric consistency (Healey et al., 2018), and relating spectral 
changes to biophysical attributes (Section 2.1). Most Landsat time series 
approaches operate at the pixel level, where each pixel’s temporal trajectory 
is analysed to determine breaks (e.g., a disturbance) and trends (e.g., recovery 
after a disturbance). Various change detection algorithms exist (Huang et al., 
2010; Kennedy et al., 2010; Verbesselt et al., 2010a; Zhu and Woodcock, 
2014). In fact, Zhu (2017) recently reviewed over 50 different techniques. 
However, as demonstrated by Cohen et al. (2017a), there can be major 
differences in the map outputs, depending on the algorithm and spectral 
indices employed. To resolve some of these differences, recent research 
recommends using an ensemble approach, rather than relying on only a single 
algorithm or index (Cohen et al., 2017b; Haywood et al., 2016; Healey et al., 
2018; Schultz et al., 2016a). 

At the forefront of this transition to ensemble based forest assessment is the 
aptly named machine learning algorithm Random Forests (Breiman, 2001). 
Random Forests (RF) establishes a number of decision ‘trees’ based on 
random subsets of variables, which together form a ‘forest’ to determine final 
class assignment. RF has proven accurate in dynamic forest environments, 
due to its ability to ‘learn’ complex non-linear relationships in large, noisy and 
skewed datasets (Mellor et al., 2013). RF has been used for large-area forest 
classification (Mellor et al., 2013), lidar based tree species discrimination (Shi 
et al., 2018), attributing insect disturbances (Senf et al., 2015), distinguishing 
between wildfire and logging disturbances (Haywood et al., 2016; Nguyen et 
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al., 2018b), and more recently in ensemble-based disturbance mapping 
(Cohen et al., 2017b; Healey et al., 2018; Schultz et al., 2016). 

In this study, the hypothesis that an ensemble approach to mapping forest 
disturbance will outperform any one algorithm/index is tested. The specific 
focus is on correctly detecting the year of disturbance, in the sclerophyll 
forests of southeast Australia. The results of two change detection algorithms 
are assessed: LandTrendr (Kennedy et al., 2010) and the R package 
strucchange (Zeileis et al., 2002). With each algorithm, three common spectral 
indices are used: the Normalized Difference Vegetation Index or NDVI 
(Tucker, 1979), the Normalized Burn Ratio or NBR (Key and Benson, 2006) 
and Tasseled Cap Wetness or TCW (Crist and Cicone, 1984). Following an 
assessment of individual change detection algorithms and indices, the 
benefits of ensemble-based approaches are explored, using both simple 
aggregation rules and RF models. Subsequently, a new and novel approach 
to disturbance mapping is presented, one which forgoes the use of change 
detection algorithms in favour of RF classification. This method is tested with 
different training datasets and predictor variables. In addition, the impact of 
priming the models with confusing cases (commission errors from the change 
detection algorithms) is examined. Also demonstrated is a method for 
creating disturbance maps by using change detection algorithms on a subset 
of pixels only. This method is tested in an operational setting, by using it to 
detect disturbances over 29 years (1989-2017) across the state of Victoria, 
Australia (approximately 9 million ha of forest). 

3.2 Materials and methods 

3.2.1 Study area and reference data 

The state of Victoria, Australia contains approximately 9 million ha of forests, 
of which 7.2 million ha is on public land, the basis for this study (Figure 3.1). 
Approximately 4 million ha is managed as parks and reserves – for 
conservation, biodiversity and tourism. The remaining 3.2 million ha are 
managed as state forests, including for the provision of timber (Department 
of Environment and Primary Industries, 2013). Victorian forests are primarily 
sclerophyll, but have considerable diversity, depending on elevation, 
topography and location. Annual rainfall can be less than 250 mm in the semi-
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arid northwest region, while in the Victorian Alps (elevations up to 2000 m) 
precipitation can be above 1400 mm per year. Forests range from dry, low, 
mallee woodland in the northwest, to dense, wet forests in the east, where 
trees can attain heights of 75 m (Mellor et al., 2013). 

 
Figure 3.1 Study area and example of reference pixels 

The Victorian Forest Monitoring Program (VFMP) network of plots 
informed the selection of reference pixels used for this study. This network 
consists of 786 permanent 2 km × 2 km plots within public land, which were 
established via systematic sampling, stratified by bioregion and land tenure 
(Haywood and Stone, 2017). In this study, a subset of plots that were at least 
90% covered by forest were used. To determine forest extent, forest masks 
for the years 1989, 1999 and 2009 were created, following the method of 
Mellor et al. (2013), and merged to create an ‘anytime’ forest mask. This 
resulted in a subset of 416 plots. In each of these, 10 reference pixels were 
randomly selected and manually interpreted to determine disturbance history 
(outlined in detail by Soto-Berelov et al., 2017). Briefly, this manual 
interpretation involved using multiple lines of evidence – Landsat time series, 
Google Earth imagery and fire and logging histories – to record the years, 
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type and magnitude of disturbances. In this study, the reference dataset was 
re-interpreted to focus only on abrupt disturbances (1 to 2 year duration), and 
the years that these occurred. In all, 4087 reference pixels were used for this 
study, 57% of which experienced at least one disturbance in last three 
decades, and almost 10% experienced two or three disturbances (Table 1). 

Table 3.1 Results of manually interpreted reference pixels 

Number of 
Disturbances 

Pixels 
Percentage 

(%) 

0 1737 42.5

1 1946 47.6

2 386 9.4

3 18 0.4

3.2.2 Landsat imagery and spectral indices 

All Landsat scenes with less than 70% cloud cover were acquired  from the 
USGS archive for the years 1988 to 2017 and months January-March 
(representing southern hemisphere summer), processed to surface reflectance 
(Masek et al., 2013). Images were masked using the included cloud-mask (Zhu 
and Woodcock, 2012) and merged into annual composites using a best-
available-pixel approach (White et al., 2014), with the first clear pixel closest 
to February 15 chosen. As mentioned in section 3.1, 3 spectral indices, which 
capture different elements of spectral change, were generated from the 
surface reflectance data: NDVI, NBR and TCW. NDVI is perhaps the most 
well-known vegetation index and has been used in many time series studies 
(Dutrieux et al., 2015; Verbesselt et al., 2010b; Vogelmann et al., 2012). NDVI 
contrasts the red and near infrared wavelengths. However, indices using the 
short wave infrared (SWIR) bands are usually favoured for forest related 
studies (Cohen and Goward, 2004); NBR is popular in this regard (Huang et 
al., 2010; Kennedy et al., 2010; Senf et al., 2015). TCW, which also exploits 
the SWIR bands, has also been used extensively in time series applications 
(Frazier et al., 2015; Senf et al., 2015). In chapter 2, NDVI and NBR were 
both found capable of accurately discriminating between burned and un-
burned pixels. TCW, on the other hand, was not considered an optimal index. 
However, it was included it in this study due to its ability to capture different 
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elements from NDVI and NBR, and thereby giving the classifier (Random 
Forests) extra information to learn from. In contrast, an index such as 
Tasseled Cap Angle (TCA), which was found in chapter 2 to correlate highly 
with NDVI, would not necessarily contribute extra information to the 
ensemble. 

3.2.3 Change detection algorithms 

Zhu (2017) uses 6 broad categories to describe different change detection 
approaches: thresholding, differencing, segmentation, trajectory, statistical 
boundary and regression. In this study, two change detection algorithms were 
assessed – one, a segmentation approach: LandTrendr (Kennedy et al., 2010); 
and the other, a statistical boundary approach: strucchange (Zeileis et al., 
2002). A differencing approach is also used in the Random Forests (RF) 
ensembles (Section 3.2.4); RF was used to determine appropriate thresholds. 
LandTrendr was developed specifically for forest assessment based on annual 
Landsat time series, and has been used widely, especially in the USA (Hudak 
et al., 2013; Kennedy et al., 2012; Pflugmacher et al., 2012). LandTrendr uses 
an iterative approach to segment each pixel’s temporal trajectory into a series 
of straight lines (point-to-point and regression), enabling key metrics, such as 
year and magnitude of disturbance, to be extracted. In this study, standard 
LandTrendr parameters were used (except for number of segments, which 
was set to 7, and the de-spike parameter, which was turned off). The 
LandTrendr labelling routines were then run, to extract the greatest and 
second greatest disturbances for each pixel. The second change detection 
algorithm, strucchange, is a package within the statistical software R (R Core 
Team, 2017). Although strucchange is not specifically designed for Landsat 
time series, it forms a part of the BFAST algorithm (Verbesselt et al., 2010a), 
which has been used widely in this domain (Devries et al., 2015; Haywood et 
al., 2016; Verbesselt et al., 2012). The ‘breakpoints’ function in the 
strucchange package identifies structural changes in a time series, by fitting 
piecewise linear regression lines that minimize the residual sum of squares. In 
this study, the maximum number of breaks was set to 3. For the indices used 
in this study (NDVI, NBR and TCW), a forest disturbance (e.g. fire) causes 
the index value to decrease (i.e., a negative change). Because the strucchange 
algorithm does not distinguish between positive and negative changes, 
additional filtering was applied, to extract only breaks representing negative 
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changes. This processing step is analogous to the LandTrendr labelling 
technique discussed above. 

3.2.4 Random Forests modelling 

Several RF models were created, using the R package randomForest (Liaw 
and Wiener, 2002), to assess the strengths and limitations of this approach. 
With 4087 reference pixels and 29 years (1988 was excluded as the first year 
in the series) there are 118,523 data points where a disturbance can potentially 
occur. That is, 4087 reference pixels, multiplied by 29 years. Of this total, 
2772 true disturbances were flagged, as discussed earlier (section 2.1). 
Although RF has proved somewhat robust to class imbalance (Mellor et al., 
2015), an imbalance of such magnitude may exceed acceptable limits. 
Therefore, a subset of pixels was used for the non-disturbed class. To 
determine this subset, two methods were used, which are referred to as 
primed and un-primed. For the primed dataset, pixel-year values that had 
been incorrectly assigned as disturbed from one or more of the six change 
detection algorithms (i.e., commission errors) were used. In this way, the 
model was primed with potentially confusing cases, a technique also used by 
Cohen et al. (2017b) and Healey et al. (2018), but not formally assessed in 
their studies. This figure equalled 6692 values, which resulted in a class ratio 
of approximately 30:70. To test the effect of this priming, an un-primed 
dataset was also created, where the undisturbed pixel values were chosen via 
random sampling of the entire dataset. Predictor variables consisted of the 
binary outputs of the six change detection algorithms, along with other 
metrics derived from each index’s time series. These metrics included – for 
each of the three spectral indices – yearly difference rasters (e.g., change in 
NBR between 1988 and 1989), two-year difference rasters (e.g., change in 
NBR between 1988 and 1990), and the mean and standard deviations of the 
entire time series. Differencing two images is a common change detection 
method (Zhu, 2017). The two-year difference rasters were included since 
many disturbances are evident in the spectral signal for more than one year. 
This was an attempt to train the classifier to recognise true disturbances from 
noise. The mean and standard deviation were included to represent a baseline 
‘undisturbed’ state for each pixel, and as a measure of the signal to noise, a 
metric explored by Cohen et al. (2017b). All RF models presented in this 
paper used the default randomForest parameters for number of decision trees 
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(500) and number of variables randomly sampled at each split (√p where p 
equals number of predictor variables). 

3.2.5 Ensembles 

Given the differences between disturbance maps derived from different time 
series algorithms (Cohen et al., 2017a), recent research suggests ensemble 
methods will yield better results (e.g., Healey et al., 2018). In this study, 
ensembles were created using two approaches. The first method used simple 
aggregation rules to form ensembles out of the 6 change detection algorithm 
outputs. In the first ensemble (2 out of 6), a disturbance needed to be 
detected by at least 2 of the change detection algorithms. In the second 
ensemble (3 out of 6), a disturbance needed to be detected by at least 3 
algorithms, and in the third (4 out of 6), by at least 4 algorithms. The second 
type of ensemble method trialled in this research used RF models (Section 
3.2.4) to predict the presence/absence of disturbances. Ten RF models are 
presented in this paper, based on five different selections of predictor 
variables and two distinct datasets for the un-disturbed pixel values (primed 
and un-primed, as discussed in section 2.4). The different selections of RF 
predictors included: (1) only the 6 change detection algorithm outputs, (2) the 
6 change detection algorithms and the one-year change rasters, (3) the one-
year change rasters only, (4) all of the derived time series metrics, and (5) the 
derived time series metrics and the 6 algorithm outputs.  

3.2.6 Assessment of results 

To assess the six change detection algorithm outputs, as well as the various 
ensembles, the dataset created for the RF primed model was randomly split 
into two equal training and validation datasets, each containing 4732 
observations. A random sample of 4732 was also drawn from the un-primed 
data, to use for training the un-primed models. Note that although there were 
two RF training datasets – primed and un-primed – the same validation data 
were used for both. Omission, commission and overall errors were calculated 
for each change detection algorithm and ensemble technique, by comparing 
the results from each method with the validation data. 
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3.2.7 Reference data sample size 

Collecting manually interpreted training data is a labour-intensive exercise. In 
this study, a comprehensive reference dataset was available from previous 
work, of which 4087 pixels were used (Section 3.2.1). From these pixels RF 
training and testing datasets were developed, each consisting of 4732 
observations. To explore the effect that the training data sample size has on 
error rates, one RF model (the model with all derived time series metrics – 
12 predictor variables) was assessed using random subsets of the primed data 
at various sizes, by successively halving the dataset (e.g. 1/2, 1/4 … 1/64). 

3.2.8 Random Forests in an operational setting 

To demonstrate the assertion that the change detection algorithms can be 
used only on a subset of training pixels (to inform a classifier of confusing 
cases) one RF model was applied to the entire forested area of the state of 
Victoria, Australia (approximately 9 million ha of forest). The RF model used 
here was the model with all 12 time series derived metrics (one-year change, 
two-year change, mean and standard deviation of each index), primed with 
the commission errors from the LandTrendr and strucchange algorithms. 
Classifications were undertaken on each year in the time series (1989 to 2017) 
in both a binary form (disturbed/non-disturbed) and as probabilities. The 
binary maps were then spatially filtered to remove pixel clumps less than 6 
pixels (0.5 hectares). As shown in Table 3.1, three disturbances within the 29 
years is a rare occurrence (less than 0.5% of pixels). Thus, if there were cases 
where more than two disturbance years had been flagged by the binary RF 
classifications, the probability outputs were used to select only the two 
highest probability disturbances. This is akin to the LandTrendr labelling 
functionality, where the greatest and second-greatest disturbances are 
extracted. Along with the spatial filtering, this processing was undertaken to 
further reduce commission errors and improve the visual map outputs. 
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Figure 3.2 Errors of Omission and Commission for each method evaluated. RF 
stands for Random Forests, Algorithms refers to the change detection algorithms, 
Difference refers to the bi-temporal change rasters, Extended is the model with all 
12 predictor variables and Prime refers to the primed dataset. 

3.3 Results 

3.3.1 Model assessments 

Results indicate improved accuracies can be attained via the use of ensemble 
methods (Figure 3.2 and Table 3.2). The most accurate single 
algorithm/index combination was LandTrendr with NBR, which had an 
omission error of 37%, commission error of 15%, and an overall error of 
21%. The least accurate single algorithm/index was strucchange with TCW, 
with an overall error of 38%. Using the simple aggregation ensemble 
approach saw results improve, with the ensemble based on 4 out of 6 giving 
the best overall results, with an error of 16%. However, errors of omission in 
this ensemble were 48%, compared with only 3% commission, so there may 
be a preference to favour the more balanced 3 out of 6 ensemble, which had 
omission errors of 38% and commission errors of 10%, or the 2 out of 6 
ensemble, with omission errors of 27% and commission errors of 34%. These 
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simple ensembles show that as the fusion rules are tightened or relaxed, errors 
of omission and commission change to reflect this. 

Table 3.2 Errors of omission and commission for each breakpoint detection 
algorithm, the simple aggregation ensembles, and the Random Forests ensembles 

  Error rates 

  
Omission 
(%) 

Commission 
(%) 

Overall 
(%) 

LandTrendr  
NBR 37.2 14.6 21.2 

NDVI 49.9 21.5 29.8 

TCW 54.8 15.3 26.9 

Strucchange 
 

NBR 35.1 31.9 32.8 

NDVI 48.3 30.9 36.0 

TCW 46.5 33.9 37.6 

Simple Ensembles  
2 out of 6 27.0 34.0 31.9 

3 out of 6 38.2 10.0 18.3 

4 out of 6 48.3 2.8 16.1 

Random Forests (un-primed data)  
Change detection algorithms 22.2 51.0 42.5 

3 difference rasters 11.0 19.6 17.1 

3 difference rasters with algorithms 11.8 24.3 20.6 

Enhanced model (12 predictors) 9.2 16.3 14.2 

Enhanced model with algorithms 8.9 22.1 18.2 

Random Forests (primed data) 
 

Change detection algorithms 45.1 4.0 16.0 

3 difference rasters 26.6 5.1 11.4 

3 difference rasters with algorithms 14.2 4.1 7.1 

Enhanced model (12 predictors) 20.2 3.6 8.5 

Enhanced model with algorithms 18.4 3.1 7.6 



Chapter	3	

47 

The most accurate ensemble was the RF model containing the 6 change 
detection algorithm results and the 3 simple difference rasters, with omission 
errors of 14%, commission errors of 4% and an overall error of 7%. Using 
RF with only the 6 change detection algorithm outputs (i.e., 6 binary datasets) 
with un-primed data had an overall error of 43%, while the same model with 
the primed data had an error of 16%, which was similar to the 4 out of 6 
simple aggregation ensemble (also 16%). The model with only the 3 
difference rasters and the un-primed dataset (that is, no contribution at all 
from the change detection algorithms) had an overall error of 17%, while the 
same model with primed data had an overall error of 11%. The decreased 
error here was due to commission errors only, which changed from 20% to 
5%; in contrast, omission errors increased from 11% to 25%. To demonstrate 
the feasibility of this simple modelling approach, a map using this technique 
(i.e., the 3 difference rasters with primed training data) was created and 
compared with the output of LandTrendr with NBR (Figure 4.3). The results 
of the two techniques are similar. 

 
Figure 3.3. Comparison of LandTrendr NBR results (left) and the Random 
Forests model with 3 difference rasters only (right), for the years 2003-2011. Note 
that spatial filtering has been applied to remove areas less than 0.5 ha. 
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The extended model with the 12 predictors, as described in section 2.4, using 
the un-primed data, had omission and commission errors of 9% and 16% 
respectively, resulting in an overall error of 14%. The same model with 
primed data had omission and commission errors of 20% and 4% 
respectively, with an overall error of 9%. The addition of the 6 algorithm 
outputs to the extended model, using the un-primed data, produced less 
accurate results (overall error of 18% versus 14%). In contrast, using the 
primed data, the addition of the algorithms slightly improved results (8% 
versus 9%). However, this extended model did not perform as well as the 
most accurate model (the 6 change detection algorithms and 3 difference 
rasters, which had an overall error of 7%, as reported earlier). 

3.3.2 Reference data sample size 

Using the extended RF model (12 predictors), the impact of the training data 
sample size on error rates was tested (Figure 3.4). The results showed that 
error rates remained relatively stable until the sample size reached 
approximately 1000. At which point omission errors escalated, but the 
commission errors remained fairly low, even with only 73 observations (the 
smallest sample size tested). 

 
Figure 3.4 The impact of training data sample sizes on error rates 

3.3.3 Random Forests in an operational setting 

Binary disturbance maps were created for each year (1989-2017) over 
forested regions of Victoria (approximately 9 million ha). Figure 3.5 shows 
the mapped output for a selection of years, while Figure 3.6 shows the area 
of forest disturbed in each year. This equates to an average of 2.8% of forest 
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experiencing disturbance per year. However, this result was heavily 
influenced by the years 2003 and 2007, where disturbed area amounted to 
16% and 22% of the overall area burned, respectively. Overall, 5.6 million ha 
of forest (59%) was disturbed at least once in the 29 years, while 2 million ha 
(21%) was disturbed twice. 

 
Figure 3.5 Map of Victoria, Australia, showing the Random Forests classified 
disturbance for the years 2003-2009 
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Figure 3.6 Area of forest disturbed each year between 1989 and 2017 in Victoria, 
Australia 

3.4 Discussion 
This study found that ensemble methods, using the Random Forests (RF) 
classifier and robust training data, produced disturbance maps with a higher 
accuracy than individual change detection algorithms. In agreement with 
Cohen et al. (2017a), results from different algorithms and spectral indices 
varied substantially. Findings also echo those of other recent studies, 
particularly Healey et al. (2018), who presented a method using ‘stacked 
generalization’ with different fusion rules, and Cohen et al. (2017b), who used 
a single algorithm (LandTrendr), with multiple indices, to improve map 
accuracies. In both of those studies, the authors relied on the change 
detection algorithms to provide a basis for secondary classification. However, 
here it was shown that by using robust reference data and carefully 
constructed models, primary classification can provide results which surpass 
those of traditional change detection algorithms. In particular, the results 
achieved by priming the training data with confusing cases led to some 
alternative conclusions. While Cohen et al. (2017b) argue for a single 
algorithm exploiting the full spectral domain of Landsat via multiple indices, 
and Healey et al., (2018) suggest using cloud computing services such as 
Google Earth Engine to overcome computational limitations, the findings 
here suggest that the algorithms can play a secondary role to robust reference 
data, and used only insofar as to inform a classifier of potentially confusing 
cases.  
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The use of primed data saw errors decrease across all RF ensembles. The best 
performing model with un-primed data had an overall error of 14%, while 
the best performing model with primed data had an overall error of 7%. 
However, it is worth noting that the improved accuracy from using the 
primed data over the un-primed data was universally due to a decrease in 
errors of commission. Errors of omission increased with the use of the 
primed data, which may not be desirable, depending on the needs of the 
study. Nonetheless, these results suggest that change detection algorithms can 
be run on a selection of pixels only, reducing processing requirements 
significantly. The feasibility of this approach was explored by applying it in 
an operational setting across 9 million ha of forest in the state of Victoria, 
creating 29 years of disturbance maps. Another potential benefit of this 
approach is that, once the training dataset has been developed, new images 
can be processed as they become available (as opposed to re-running the 
entire time series analysis). 

Acceptable results were achieved in this study using RF ensembles with only 
3 predictor variables (bi-temporal change rasters for 3 indices), with an overall 
error of 11%. By extending the model to 12 predictors, using a number of 
other Landsat time series derived metrics (1 year change, 2 year change, mean 
and standard deviation) overall errors reduced from 11% to 8%. The 
justification for the selection of these variables was discussed in section 2.4. 
However, the contribution of some of these variables to the overall accuracy 
of the model was limited, particularly the standard deviations (Figure 7). The 
use of Random Forests affords the opportunity to form models of greater 
complexity than those presented here, by including ancillary variables (e.g., 
elevation, vegetation type), something that traditional change detection 
algorithms are ill-suited to. In this study, the extended model with the change 
detection algorithms (18 predictor variables in total) had lower commission 
errors (3%) than the model with only the 3 change rasters and algorithms 
(4%). However, omission errors for the extended model were higher: 18% 
versus 14%. This meant that the overall error was slightly better for the model 
with fewer variables: 7.1% versus 7.6%. This highlights the importance of 
carefully selecting model variables, rather than simply assuming more is 
better. 
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Figure 3.7 Mean decrease in accuracy plot from the Random Forests model with 
12 predictors 

A source of error identified when creating the reference dataset was due to 
cloud contamination, which was not identified by the Fmask algorithm (Zhu 
and Woodcock, 2012), along with smoke haze from active fires. Ideally these 
errors would be removed prior to the time series analysis, but to entirely 
eliminate them without substantial human intervention is unlikely. The use 
of an ensemble classifier appears to reduce these errors somewhat, as each 
index responds differently to contamination. Cloud haze, for example, may 
be evident in the shorter wavelengths (i.e., the visible bands), but not in the 
longer SWIR wavelengths. Indeed, this was one of the reasons for including 
TCW, despite it proving somewhat unreliable in Chapter 2, as it often 
responded differently to cloud contamination than NBR and NDVI. This 
provides a classifier such as RF with extra information to determine class 
assignment. Further improvements to the disturbance maps can also be seen 
by undertaking spatial filtering (e.g., using a minimum patch size of 0.5 ha), 
as used in Figures 3 and 5. This removes the ‘salt and pepper’ effect of 
classified images, and can reduce errors due to pixel misalignment, however, 
it could also eliminate subtle and less homogenous sources of disturbance 
(e.g., selective logging, insect attacks). 

It is possible the error rates presented in this chapter are slightly over-
estimated, because no temporal leeway was allowed. For example, if a 
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disturbance occurred in 2007, but a particular algorithm detected it in either 
2006 or 2008, this error is counted twice (both as omission and commission). 
Although other authors have allowed for a temporal buffer of ±1 year (e.g., 
Cohen et al., 2017a), a strict definition was used in this study, because each 
method employed the same base data (Landsat surface reflectance yearly 
composites), and the manual interpretation of reference pixels was guided by 
this same data. While the results of the best RF model show a low overall 
error (7%), these results may not directly translate elsewhere. Although the 
reference pixels were chosen via a robust stratified sampling process, based 
on the VFMP (Haywood and Stone, 2017), over one third of all disturbances 
recorded were due to major wildfires that occurred in 2003 and 2007. Thus, 
the data were biased towards major disturbances, which are comparatively 
easier to detect than those at finer scales such as selective logging, prescribed 
burning and insect attack. Inherent in all reference data is an element of 
human error. Efforts were made to minimize these in the data collection 
protocol, by having multiple operators assess 10 percent of pixels and holding 
regular meetings to discuss differences (Soto-Berelov et al., 2017). 

The magnitude of change that equals a disturbance, or change threshold, can 
be informed by the study area (e.g., forest type), and the desired outcomes of 
the study (e.g., subtle disturbances versus major disturbances). Using RF is a 
flexible technique for determining arbitrary thresholds, because the ultimate 
decision lies with the classifier, as guided by the training data. The sclerophyll 
forests of southeast Australia, dominated by various eucalypt species, provide 
an ideal testing environment for RF ensemble techniques, due to considerable 
diversity and high rates of disturbance. Differences in climate, elevation, 
topography and soil type leads to forests which have extremely different 
spectral signatures and disturbance profiles. For example, a typical pixel in 
the mallee forests of northwest Victoria has a NDVI value of around 0.4 pre-
fire and 0.2 post-fire. In contrast, a pixel in a wet sclerophyll forest in 
southeast Victoria may have a NDVI value of 0.8 pre-fire, but also drop to 
0.2 post-fire. Furthermore, although overall forest area in Victoria (9 million 
ha) is small compared to, for example, Canada (650 million ha), the annual 
disturbance rate is far greater: 2.8% versus 0.43% (White et al., 2017). 
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The ensemble approach provides an opportunity to treat the segmentation of 
the temporal trajectory (i.e., change detection) as a separate function to the 
fitting of trends. The trajectories of each pixel, either in the form of an 
individual index or the original Landsat bands, can be coerced to fit the more 
accurately established breaks. Thus, other key aims of Landsat time series 
studies can also be satisfied: extracting magnitudes and trends. This will be 
the focus of further work in the area (Chapters 4 and 5).  

3.5 Conclusions 
This chapter showed that ensemble techniques, fusing raster classification 
with pixel-based time series, produced more accurate maps of forest 
disturbance than individual change detection approaches. Using a Random 
Forests ensemble instead of a single change detection algorithm resulted in 
improved error rates, from 21% to 7%. Key to this increased accuracy is 
having high quality reference data to train the model. Here, a new approach 
to disturbance mapping was presented, which used change detection 
algorithms on a sample of pixels only, as a means of priming a machine 
learning classifier with confusing cases. The improved accuracies achieved 
using this approach, and ensemble methods more generally, open up new 
opportunities in forest disturbance mapping and monitoring. 
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Chapter 4: The relationship between spectral 
disturbance magnitude and recovery length3 
  

                                                 

3 This chapter is based on: Hislop, S., Jones, S., Soto-Berelov, M., Skidmore, A., 
Haywood, A., Nguyen, T.H., 2019. High fire disturbance in forests leads to longer 
recovery, but varies by forest type. Remote Sensing in Ecology and Conservation, 
1-13, https://doi.org/10.1002/rse2.113 
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Abstract 
Across the world, millions of hectares of forest are burned by wildfires each 
year. Satellite remote sensing, particularly when used in time series, can 
describe complex disturbance-recovery processes, but is underutilised by 
ecologists. This study examines whether a greater disturbance magnitude 
equates to a longer recovery length, in the fire-adapted forests of southeast 
Australia. Using Landsat time series, spectral disturbance and recovery maps 
were first created, for 2.3 million ha of forest, burned between 2002 and 2009. 
To construct these maps, a piecewise linear model was fitted to each pixel’s 
Normalized Burn Ratio (NBR) temporal trajectory, and used to extract the 
disturbance magnitude (change in NBR) and the spectral recovery length 
(number of years for the NBR trajectory to return to its pre-fire state). 
Pearson’s correlations between disturbance magnitude and spectral recovery 
length were then calculated at a state level, bioregion level and patch level 
(600 m × 600 m, or 36 hectares). Results showed overall correlation at the 
state level to be inconclusive, due to confounding factors. At the bioregion 
level, correlations were predominantly positive (i.e., a greater disturbance 
equals a longer recovery). At the patch level, both positive and negative 
correlations occurred, with clear evidence of spatial patterns. This suggests 
that the association between disturbance magnitude and recovery length is 
dependent on forest type. This was further explored by undertaking a case 
study into the major vegetation divisions within one bioregion, which 
provided further evidence that relationships varied by vegetation type. In 
Heathy Dry Forests, for example, a greater disturbance magnitude usually led 
to a longer recovery length, while in Tall Mist Forests, the opposite behaviour 
was evident. Results of the patch level analysis were particularly promising, 
demonstrating the utility of satellite remote sensing in producing landscape-
scale ecological information to inform policy and management. 
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4.1 Introduction 
Forests are in a state of continuous change, in response to various processes 
and feedback mechanisms (Kennedy et al., 2014). For millions of years, fire 
has been responsible for much of that change, influencing vegetation 
structure and distribution, climate, and the carbon cycle (Bowman et al., 
2010). The concept of a fire regime is used to describe fire behaviour and 
vegetation response in a particular ecosystem, broadly encompassing 
variables such as fuel type, fire frequency, spatial distribution and impacts 
(Bond and Keeley, 2005). Ecologists have long recognised that different plant 
species have distinct reproductive strategies under different fire regimes 
(Bowman et al., 2010). In the fire adapted forests of southeast Australia, for 
example, it is argued that much of the unique biota depends on fire for its 
continued existence (Cheal, 2010). Thus, fire can be considered a necessary, 
or at least inevitable, ecosystem function. There are concerns, however, that 
climate change and other anthropogenic factors are altering existing fire 
regimes, and in doing so, placing forests under increased stress (Enright et 
al., 2015). 

Increasingly, there is a recognition that global environmental problems 
require global solutions. Satellite remote sensing can provide the necessary 
coverage to address these problems. However, communication between the 
ecology and remote sensing communities, on what can and should be 
measured from space, is lacking (Skidmore et al., 2015). Many studies 
exploring the ecological impacts of fire are conducted at a local scale, typically 
focussing on specific ecosystems; for example, the mountain ash 
(Lindenmayer and Sato, 2018) and alpine ash (Bassett et al., 2015) forests of 
southeast Australia. These studies contain highly detailed information over 
limited spatial extents. In contrast, satellite remote sensing provides spatially 
extensive wall-to-wall coverage, enabling broad assessments across large 
areas. 

Landsat data, in particular, has spatial and temporal resolutions well suited to 
large-area forest assessment, and, with an historical archive spanning 4 
decades, longer term changes can be explored (Cohen and Goward, 2004). 
Following 2008, when Landsat data was made freely available, techniques to 
analyse images in time series have become widespread (Wulder et al., 2012; 
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Wulder and Coops, 2014). Many studies have used Landsat time series to map 
forest disturbances, due to various agents such as fire, logging and insects 
(Huang et al., 2010; Kennedy et al., 2012; Senf et al., 2015). Indeed studies 
have been conducted over extremely large areas; for example: the entire forest 
estate of Canada (Coops et al., 2018), the conterminous United States (Cohen 
et al., 2016), and eastern Europe (Potapov et al., 2015).  

The process of vegetation recovery following disturbance is an essential 
component of landscape dynamics (Pickell et al., 2016). The regular and 
consistent measurements offered by satellites enables vegetation regrowth to 
be monitored over time and across large areas. Recent studies have 
demonstrated promising results (Frazier et al., 2015; White et al., 2018; Zhao 
et al., 2016). But extracting accurate and meaningful recovery information 
from multi-spectral sensors, due to their limited ability to capture the 
complexities of forest structure, remains challenging (Gomez et al., 2011). 
Some authors (e.g., Bolton et al., 2015) recommend a fusion approach with 
lidar data. In a recent study, however, White et al. (2018) concluded that 
Landsat time series alone could provide accurate results. Nonetheless, the 
role of Landsat in tracking forest recovery, and in ecology more generally, 
remains a nascent area (Pasquarella et al., 2016). 

In this study, the statistical association between disturbance magnitude and 
recovery length was examined, across large areas of forests burned between 
2002 and 2009 in Victoria, Australia. The hypothesis that a greater 
disturbance magnitude leads to a longer recovery, as measured by spectral 
reflectance, was tested. Disturbance-recovery relationships are explored 
across multiple scales – local, regional and state-wide (over 2 million ha of 
burned forest). This chapter demonstrates that satellite remote sensing can 
help identify and characterise complex ecological processes across large areas.  

4.2 Materials and methods 
This research was undertaken in two distinct stages. First, disturbance and 
recovery maps were created for the study area. And second, these maps were 
used to examine the relationship between disturbance magnitude and 
recovery length. The methods for each of these stages are outlined below. 
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4.2.1 Creating the spectral disturbance and recovery maps 

A conceptual diagram describing the process used to create the forest 
disturbance and recovery maps, through changes in spectral reflectance, is 
shown in Figure 4.1. 

 
Figure 4.1 Overview of the spectral disturbance and recovery mapping workflow 

4.2.1.1 Study areas 
Between 2002 and 2009, forests within the state of Victoria experienced 
several large wildfires (Figure 4.2), which together burned over 2 million ha 
of forest. The vast areas burned in these fires, at different severities and in 
varied bioregions and vegetation types, provides an opportunity to study 
forest disturbance and recovery across large areas. In addition, this time-
period enabled longer-term trends to be studied, as several years of Landsat 
data exist either side of the fires. The thirteen fires used in this research were 
each greater than 20,000 ha, according to the state government’s fire history 
database (Department of Environment Land Water and Planning, 2017), 
which provided sufficient data for study at a large-area scale. Other than two 
fires in the northwest of the state that were in spring and autumn, fires 
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occurred during summer, with all three summer months represented. Two of 
the fire events located in eastern Victoria burned across periods of almost 
two months (Attiwill and Adams, 2013). Burned areas were further refined 
to include only forests. For the forest mask, a mask developed by Mellor et 
al. (2013) was first used to define training data, which was then used to create 
masks for 1989, 1999, and 2009, via a binary Random Forests classification. 
The three masks (1989, 1999 and 2009) were then merged to include all pixels 
classified as forest in at least one of these years. Forested areas were thus 
extensively represented, whereas in a single date classification, pixels recently 
disturbed, for example, may be classified as non-forest. 

 
Figure 4.2 Study area, showing large wildfires that occurred between 2002 and 
2009, overlaid on bioregions, within the state of Victoria, Australia. 

The majority of the burned areas occurred in public land forests, which are 
managed both as parks and reserves – for conservation, biodiversity and 
tourism; and state forests – for timber resources, water catchments, and other 
conservation purposes (Department of Environment and Primary Industries, 
2013). The Interim Biogeographic Regionalisation for Australia (IBRA) 
framework (Australian Government, 2017) classifies Victoria into 11 distinct 
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bioregions based on common climate, geology and native vegetation (Figure 
4.2). Eight of these bioregions were impacted by one or more of the 13 
wildfires. Victorian forests are dominated by various eucalypt species, but 
they are far from homogenous. They range from low, multi-stemmed mallee 
woodland in the arid northwest, to dense, wet forests in the southeast, where 
trees can attain heights of 75 m (Mellor 2013). 

4.2.1.2 Landsat data 
For the 19 Landsat tiles covering the study area (WRS paths 96 to 90, rows 
84 to 87), Tier 1 Surface Reflectance products (TM and ETM+) with less 
than 70% cloud-cover were acquired from the United States Geological 
Survey (USGS) archive, along with the corresponding cloud masks for 
January to March 1988-2017. Using the statistical software R (R Core Team, 
2017) and the ‘raster’ package (Hijmans, 2016), annual composites were 
created by choosing the first clear pixel nearest to February 15, in a method 
similar to other studies (Haywood et al., 2016; Kennedy et al., 2010; White et 
al., 2014). A late summer date was chosen to increase the likelihood that fire 
related disturbances were captured in the season that they occurred in. 
Generally, in forests, spectral indices making use of the shortwave infrared 
(SWIR) bands are preferred over other indices (Cohen and Goward, 2004), 
due to their ability to more accurately represent forest moisture and structure 
(Schroeder et al., 2011). The Normalized Burn Ratio or NBR (Key and 
Benson, 2006) is one such index, and was selected in this study to represent 
fire disturbance magnitude and recovery. For Landsat TM and ETM+ data, 
it is calculated as follows: 

𝑁𝐵𝑅 ൌ
𝑁𝐼𝑅 െ 𝑆𝑊𝐼𝑅ଶ

𝑁𝐼𝑅 ൅ 𝑆𝑊𝐼𝑅ଶ
 

Where NIR is the near infrared band (0.76-0.90 μm) and SWIR2 is the second 
shortwave infrared band (2.08-2.35 μm). NBR is commonly employed to 
estimate burn severity (Eidenshink et al., 2007) and has been used extensively 
in Landsat time series (Huang et al., 2010; Kennedy et al., 2010; Senf et al., 
2015). Furthermore, an earlier study in the region (Chapter 2) found that 
NBR accurately captured fire disturbance and subsequent spectral recovery. 
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4.2.1.3 Determining burned areas 
The fire history data (Department of Environment Land Water and Planning, 
2017) indicate the general extent of the fires, but may not faithfully represent 
the patch-like nature of burned areas, given that various collection methods 
and sources are used. To determine burned and un-burned pixels, annual 
disturbance maps that were produced in an earlier study (Chapter 3) were 
used. In brief, a Random Forests model, based on human interpreted 
reference data (Soto-Berelov et al., 2017) and Landsat annual composites, was 
used to classify each year between 1988 and 2017 into a binary 
disturbed/non-disturbed map. Overall model accuracy, using the Random 
Forests out-of-bag estimate was 91.2%. These methods are comprehensively 
explained in chapter 3. For this study, the relevant binary disturbance maps 
(i.e., those matching the year of each fire event) were intersected with the fire 
history data to determine the burned areas for each fire. 

4.2.1.4 Disturbance magnitude 
A piecewise linear model, using a combination of regression and point-to-
point lines was applied to each pixel’s NBR trajectory, using the breakpoints 
flagged by the annual disturbance maps (Figure 4.1). With the fitted NBR 
models the magnitude of change for each fire disturbance event (the 
difference in NBR between pre and post-fire) was extracted. Although most 
fire affected pixels were detected in the same year as the fire itself, there were 
instances where the event was not detected until the following year (e.g., if 
the fire occurred late in the season, the image compositing procedure may 
have selected a pixel prior to the event), so a two-year window was allowed.  

4.2.1.5 Spectral recovery 
To characterise post-fire spectral recovery, a process was undertaken to 
calculate when the fitted NBR line would hypothetically cross the pre-fire 
value if the recovery gradient continued in a linear fashion (Figure 4.1). This 
approach allowed for longer timeframes to be extrapolated beyond the length 
of the time series, by projecting the recovery gradient forward. Before 
calculating the recovery gradient, any pixels that had experienced a second 
disturbance within 5 years were removed, to prevent them from adversely 
impacting results. An exception to this rule was made for large areas in the 
northeast of Victoria, which were burned in 2003, and then experienced 
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further disturbance in 2007. The second disturbance was due to major fires 
in some areas and drought in others. Thus, this scenario was treated 
separately, to investigate the effects of multiple disturbances on the 
subsequent spectral recovery (see Appendix 1 and 2). Essentially this involved 
determining the recovery length from the 2007 disturbance but using the pre-
disturbance value from the 2003 fire. It should be noted that this method 
does not necessarily reflect true spectral recovery beyond 5 years, as 
secondary disturbances after 5 years were not considered. However, the 
majority of pixels did not experience a second disturbance, so spectral 
recovery is typically based on a regression line fit through 8 to 14 years of 
data. Nonetheless, the derived recovery estimates could be more accurately 
described as the forest’s potential to recover, rather than true recovery; an 
approach that resembles other studies (e.g., Kennedy et al., 2012). Although 
the recovery outputs were not evaluated with an independent dataset like lidar  
(White et al., 2018), 100 random pixels were checked to see how closely the 
derived recovery aligned with the un-fitted NBR time series; 96% were 
deemed to be an accurate representation.  

4.2.2 Disturbance magnitude and recovery length correlations 

To explore the association between disturbance magnitude and recovery 
length, as measured spectrally, analysis was undertaken at state, regional and 
local levels. The objective was to test the hypothesis that a greater disturbance 
magnitude leads to a longer recovery. In the remainder of this chapter, when 
‘positive’ correlations are mentioned, the meaning is that a higher disturbance 
magnitude equals a longer recovery length, while ‘negative’ correlations 
indicate that a higher disturbance equals a shorter recovery length. Although 
NBR change magnitudes are not directly linked to burn severity through field 
based protocols like the Composite Burn Index (Key and Benson, 2006), the 
assumption is that a higher change magnitude generally reflects a higher burn 
severity, particularly when comparing pixels from the same local area. 

4.2.2.1 State and regional level analysis 
State-wide composite disturbance and recovery maps were constructed by 
merging the data from the individual fires. Where overlapping data existed 
(e.g., 2003 and 2007 fire areas burned twice), the most recent fire was used. 
The composite disturbance and recovery maps were then analysed at state 
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and regional levels. For the regional level analysis, the IBRA bioregions 
(Australian Government, 2017) were utilized. As indicated in Section 4.2.1.1, 
eight of the 11 bioregions were impacted by one or more of the 13 wildfires. 
At state and bioregion levels, the average disturbance magnitude and spectral 
recovery length, along with the correlations between them, were calculated. 

4.2.2.2 Patch level analysis 
The motivation behind the patch level analysis was to provide a mechanism 
to study the relationship between disturbance magnitude and recovery length, 
in a way that removed confounding influences, such as climate, vegetation 
and soil type, along with fire conditions (e.g., the weather on the day or the 
timing of the fire within the fire season). The goal in choosing a patch size 
was to maximise within-patch homogeneity (in terms of vegetation, climate, 
elevation, fire date, etc.), while retaining enough pixels to give statistically 
robust results. A patch size of 600 m × 600 m (400 pixels) satisfied these 
criteria. Larger patch sizes were initially trialled, which produced similar 
results, however the relationships between disturbance and recovery tended 
to be weaker. As the patch size was reduced, slightly stronger correlations 
emerged, but at the expense of statistical significance (i.e., p-values increased). 

To create the patches a grid of 600 m × 600 m was defined over the entire 
burned area. This naturally created many patches that were not entirely 
burned (i.e., along the edge of burned areas). To ensure enough pixels were 
available to interrogate in each patch, patches containing fewer than 320 
burned pixels (80% coverage) were removed from further analysis, leaving a 
total of 48,850 patches across the study area. In each patch a Pearson’s 
correlation coefficient was computed between disturbance magnitude and 
recovery length, to determine the strength of the disturbance-recovery 
association (Figure 4.3). A positive correlation coefficient indicated that, 
within the patch, pixels with a larger disturbance magnitude (i.e., greater 
severity) took longer to recover, while a negative correlation indicated the 
opposite. Patches were subsequently grouped into bioregions for further 
analysis of their respective patch-level distributions. Pairs of bioregions (e.g., 
Victorian Alps versus South East Corner) were compared using Mann-
Whitney U tests (nonparametric equivalent to a t-test) on random samples of 
1000 patches in each bioregion. Mann-Whitney U tests were used because 



Chapter	4	

65 

the data were not normally distributed. The random sampling ensured even 
class sizes while reducing the adverse effects of spatial autocorrelation. 

 
Figure 4.3 Example of 600 m × 600 m patches, showing disturbance, recovery 
and the corresponding correlations. The top row shows a patch with strong 
positive correlation (i.e., higher disturbance magnitude equals longer recovery), 
while the bottom row shows a patch with strong negative correlation (i.e., higher 
disturbance magnitude equals shorter recovery). 

4.2.3 South Eastern Highlands case study 

The South Eastern Highlands bioregion was selected for a more detailed 
investigation into disturbance-recovery relationships across different forest 
types. This region, located mostly in the east of Victoria (Figure 4.2), is 
densely vegetated and consists primarily of wet and dry sclerophyll forest and 
woodlands, with pockets of rainforest and grassland (Department of 
Environment and Primary Industries, 2013). Average rainfall is typically 
between 900 mm and 1500 mm per year and elevations range from 
approximately 200 m to 1300 m. Within the South Eastern Highlands 
bioregion there are a number of distinct vegetation types, which respond 
differently to fire. In a comprehensive report on the fire tolerance of different 
vegetation types, Cheal (2010) grouped Ecological Vegetation Classes (EVCs) 
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into 32 Ecological Vegetation Divisions (EVDs). Cheal’s groupings were 
adopted for the purpose of this case study. Within the South Eastern 
Highlands bioregion burned area, the five most dominant EVDs were 
selected for further study (Table 4.1). In each of the relevant patches the 
division with greatest coverage (by area) was selected to represent the entire 
patch. Again, the distribution of patches in each EVD were compared, and 
Mann-Whitney U tests between each pair (1000 patches per class) were 
calculated. 

Table 4.1 Main Ecological Vegetation Divisions (EVDs) in the South Eastern 
Highlands bioregion relevant to this study, along with corresponding major 
Ecological Vegetation Classes (EVCs), average rainfall and elevation. 

Ecological Vegetation 
Division (EVD) 

Dominant EVCs in EVD 
(this study)* 

Average annual 
rainfall (mm)** 

Elevation 
(m)*** 

Forby Forest Herb-rich Foothill Forest 

Grassy Woodland 

1190 280-1050 

Heathy Dry Forest Shrubby Dry Forest 

Heathy Dry Forest 

Grassy Dry Forest 

1138 230-1100 

High Altitude Woodland Montane Dry Woodland  

Montane Grassy 
Woodland 

Montane Herb-rich 
Woodland 

1136 750-1290 

Moist Forest Moist Forest 

Shrubby Moist Forest 

Shrubby Foothill Forest 

Lowland Forest 

Montane Moist Forest 

1184 160-1090 

Tall Mist Forest Tall Mist Forest 1387 270-1150 

* nv2005_evcbcs (data.vic.gov.au); **bioclim (worldclim.org/bioclim); ***shuttle radar topography mission (srtm) 

4.3 Results 

4.3.1 Spectral disturbance and recovery maps 

The total forest area burned by the 13 wildfires was almost 2.3 million ha 
(over a quarter of the state’s forested land). The average disturbance 
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magnitude (change in NBR) across all pixels was 0.46 (standard deviation 
0.21) and the average spectral recovery length 9.3 years (standard deviation 
5.2). At the bioregion level (Table 4.2), disturbance magnitude was lowest for 
the Murray Darling Depression (0.28) and highest for the Victorian Midlands 
(0.66). Spectral recovery lengths ranged from 14.7 years for the Murray 
Darling Depression to 4.6 years for the NSW South Western Slopes (Table 
4.3). For a breakdown by individual fire event, refer to Appendices 1 and 2. 
An example map output for the 2003 ‘Bogong’ Fire is shown in Figure 4.4. 

Table 4.2 Average disturbance magnitude (change in NBR) and standard deviation 
by bioregion 

Bioregion 
Area burned 
(ha) 

Average 
disturbance 
magnitude 

Standard 
deviation 

Australian Alps 505,034 0.47 0.21 

Furneaux 10,615 0.54 0.24 

Murray Darling Depression 226,008 0.28 0.86 

NSW South Western Slopes 11,071 0.47 0.19 

South East Coastal Plain 5,410 0.60 0.25 

South East Corner 134,720 0.42 0.19 

South Eastern Highlands 1,271,102 0.48 0.20 

Victorian Midlands 97,305 0.66 0.25 

State of Victoria 2,261,265 0.46 0.21 
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Figure 4.4 Example of the derived spectral disturbance (panel A) and recovery 
(panel B) maps for the 2003 Bogong fire 
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4.3.2 Disturbance – recovery relationships 

4.3.2.1 State and regional levels 
At the state level, the correlation between disturbance magnitude and 
recovery length using all pixels was practically non-existent (-0.01), suggesting 
that other drivers are exhibiting greater influence on forest recovery. At the 
bioregion level, predominantly weak positive relationships were found (i.e., a 
greater disturbance magnitude equals a longer recovery time), with the 
Murray Darling Depression showing the highest correlation, with 0.34, and 
Furneaux the lowest, with -0.01 (Table 4.3). 

Table 4.3 Average spectral recovery length and standard deviation, plus 
correlations between disturbance magnitude and recovery, by bioregion 

Bioregion 

Average 
recovery 
(years) 

Standard 
deviation 

Correlation: 
magnitude/ 
recovery* 

Australian Alps 11.4 4.9 0.13 

Furneaux 5.8 3.8 -0.01 

Murray Darling Depression 14.7 5.2 0.34 

NSW South Western Slopes 4.6 3.6 0.11 

South East Coastal Plain 6.4 4.0 0.18 

South East Corner 9.0 4.2 0.09 

South Eastern Highlands 7.7 4.5 0.10 

Victorian Midlands 8.3 3.6 0.07 

State of Victoria 9.3 5.2 -0.01 

*all correlations significant to 0.005 

 

4.3.2.2 Patch level 
At the 600 m × 600 m patch level, the average correlation across all patches 
was 0.13 (standard deviation 0.29). A map of the output (Figure 4.5) shows 
how patches are distributed across the state, indicating clear spatial patterns. 
The average correlations for each of the bioregions are shown in Table 4.4. 
These range from 0.29 for the South East Coastal Plain to -0.02 for the 
Victorian Midlands. Note that Table 4.3 shows the average correlations of 
pixels, while Table 4.4 shows the average correlations of patches. Table 4.4 also 
shows the percentage of patches that have positive, negative, and no 
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correlation in each bioregion. Percentages are based on α = 0.005, which 
means that positive correlations are typically greater than 0.15, while negative 
are less than -0.15. Across all patches, 49% had positive correlations, 18% 
had negative correlations and 33% showed no correlation. 

Table 4.4 Average patch level correlations for each bioregion and the entire state 
of Victoria. Note that the percentage of correlations is based on α = 0.005, which 
means that positive correlations are typically > 0.15, while negative are < -0.15.  

Bioregion (no. patches) 
Average 
correlation 

Standard 
deviation

Positive 
cor. (%) 

Negative 
cor. (%) 

No cor. 
(%) 

Australian Alps (10,608) 0.04 0.29 37.4 26.3 36.3 

Furneaux (75) 0.16 0.26 52.0 12.0 36.0 

Murray Darling 
Depression (4,804) 0.27 0.33 65.6 13.1 21.3 

NSW South Western 
Slopes (161) 0.09 0.24 39.8 14.3 46.0 

South East Coastal Plain 
(68) 0.29 0.33 70.6 10.3 19.1 

South East Corner 
(2,726) 0.16 0.25 55.4 11.0 33.7 

South Eastern Highlands 
(28,226) 0.14 0.27 50.9 15.7 33.5 

Victorian Midlands 
(2,182) -0.02 0.29 29.1 35.6 35.3 

State of Victoria (48,850) 0.13 0.29 48.6 18.3 33.0 
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Figure 4.5 Map showing patch-level disturbance-recovery correlations. Smoothing 
has been applied to the state map. 

Density plots for five of the bioregions are shown in Figure 4.6 (the remaining 
three bioregions did not contain nearly as many patches, so were excluded). 
These indicate that in most bioregions, the distribution of patch correlations 
is more-or-less normally distributed; the exception being the Murray Darling 
Depression, which has a negative skew. Within each of these bioregions, 1000 
patches were randomly selected, and Mann-Whitney U tests were undertaken 
on all pairs of distributions (see Appendix 3 Table A3). These tests showed 
clear differences in all bioregion pairs, except between the South East Corner 
and South Eastern Highlands. 
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Figure 4.6 Density histograms of patch level correlations for each bioregion 

4.3.2.3 South Eastern Highlands case study 
Results from the Ecological Vegetation Division (EVD) analysis within the 
South Eastern Highlands bioregion are shown in Table 4.5 and Figure 4.7.  

Table 4.5 Average correlations for each Ecological Vegetation Division. Note that 
the percentage of correlations is based on α = 0.005, which means that positive 
correlations are typically > 0.15, while negative are < -0.15. 

Ecological Vegetation 
Division 

Average 
correlation 

Standard 
deviation 

Positive 
cor. (%) 

Negative 
cor. (%) 

No cor. 
(%) 

Forby Forest (7,851) 0.11 0.26 47.1 17.9 35.0 

Heathy Dry Forest 
(12,571) 0.17 0.26 55.4 12.3 32.2 

High Altitude 
Woodland (3,282) 0.08 0.26 41.5 20.0 38.5 

Moist Forest (5,762) 0.11 0.27 47.2 17.8 35.0 

Tall Mist Forest 
(1,094) -0.03 0.32 29.5 40.3 30.2 

 
Most EVDs had twice as many patches (between 41% and 55%) showing 
positive correlations to those showing negative (between 12% and 20%). The 
exception was the Tall Mist Forest, where only 30% of patches were positive 
and 40% were negative. Figure 4.7 shows that most patches had disturbance-
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recovery correlations between negative 0.25 and 0.5; however, differences are 
evident between the EVDs. Forby Forest, Heathy Dry Forest and Moist 
Forest had positive average correlations, with values of 0.11, 0.11 and 0.17 
respectively, while High Altitude Woodland had a mean closer to zero (0.08). 
Tall Mist Forest was markedly different from the other EVDs, with a slight 
positive skew and a negative average correlation (-0.03). In Tall Mist Forest, 
a significant number of patches (40%) appeared to recover more quickly with 
an increased disturbance magnitude. These differences are enhanced in 
Figure 4.8, which displays the data as proportional representations (with 
binned correlations). As per the bioregion analysis, 1000 patches in each of 
the five EVDs were randomly selected and Mann-Whitney U tests 
undertaken on all pairs of distributions (see Appendix 3, Table A4). These 
tests showed differences in all EVD pairs, except between Forby Forest and 
Moist Forest. 

 
Figure 4.7 Patch level correlations of the 5 most prominent Ecological Vegetation 
Divisions within the South Eastern Highlands bioregion 
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Figure 4.8 Patch level correlations in each EVD, displayed as a proportional 
representation 

4.4 Discussion 
The long archive and broad coverage of Landsat enables disturbance and 
recovery dynamics to be explored over large areas, by analysing changes in 
the spectral signal over time (Cohen et al., 2016; Coops et al., 2018; White et 
al., 2017). In this chapter, the relationships between wildfire disturbance and 
subsequent recovery, as measured spectrally, were explored at a range of 
spatial scales, across different forest types. 

The state of Victoria, Australia contains 11 distinct bioregions, which vary 
according to climate, soil type and topography. The diverse forests respond 
to fire in different ways. This is well illustrated by comparing the Murray 
Darling Depression bioregion with the South East Coastal Plain. In the 
Murray Darling Depression the average disturbance magnitude (change in 
NBR) was 0.28, while the average recovery length was 14.7 years. In the South 
East Coastal Plain, on the other hand, the average disturbance magnitude was 
0.60 and the average recovery was 6.4 years. This suggests that, in the Murray 
Darling Depression, a small change in NBR may have a much greater 
ecological impact than the same change elsewhere. The Australian Alps also 
had a long recovery period (11.4 years). However, this ecosystem is in no way 
similar to the Murray Darling Depression. The Alps contain species such as 
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the snow gum (Eucalyptus pauciflora), which only grow at high altitudes, while 
the Murray Darling Depression consists predominately of multi-stemmed 
mallee woodland, which have adapted to survive in arid climates. The overall 
bioregion correlations (all pixels) suggest that forest recovery is heavily 
influenced by factors such as climate, elevation and soil type. However, it is 
difficult to establish, from these results alone, the influence of fire disturbance 
magnitude on subsequent forest recovery length. The use of localised patches 
enabled the disturbance-recovery relationships to be explored independently 
of other factors driving forest recovery, such as vegetation and soil type. The 
method produced promising results. 

The patch level correlations indicated that the influence of disturbance 
magnitude on subsequent recovery length differs across and within 
bioregions. In the Murray Darling Depression, for example, most patches 
(66%) had positive correlations, while in the Victorian Midlands many 
patches (36%) had negative correlations. These results are highlighted in the 
state-wide map (Figure 4.5), which clearly identifies areas where relationships 
are positive, negative, and non-existent. That spatial patterns are evident 
suggests that the patch method has merit, as it indicates that forests are 
responding differently to fire, based on location. According to Cheal (2012), 
some forest types in southeast Australia show little variation in fire severity – 
either the vegetation burns or it does not. Results here support this assertion, 
as one third of patches showed little to no correlation between disturbance 
magnitude and recovery length. Perhaps more interestingly, 18% of patches 
across the state showed negative correlations. It would be incorrect to 
conclude, from these results alone, that these areas respond favourably to 
being burned at high intensity. However, it is well known that some forests, 
like the iconic mountain ash, have adapted to high intensity (albeit low 
frequency) fire (Adams, 2013). The results here highlight that forest recovery 
following fire is complex and cannot be easily monitored with a one-size-fits-
all approach. 

While the patch-based technique enabled factors such as climate, vegetation 
and soil type to be somewhat removed, the influence of other drivers, such 
as topography, remains. An exploratory analysis into the effects of 
topography on both disturbance magnitude and recovery length was 
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undertaken, using elevation data from the Shuttle Radar Topography Mission 
(SRTM). These results indicated approximately 40% of patches had a positive 
relationship (correlation >0.15) between disturbance magnitude and 
elevation, while 31% had a negative relationship. Approximately 38% of 
patches showed a positive correlation between elevation and recovery length, 
while 24% exhibited negative behaviour. Taking all three variables into 
account (disturbance magnitude, recovery and elevation) revealed that the 
most common scenario was when correlations between all three were 
positive, which occurred in 13% of patches. However, the next most 
common scenario had correlations which were positive for disturbance-
recovery and negative for disturbance-elevation and recovery-elevation 
(Table A5 Appendix 4). This is further evidence that the factors influencing 
forest recovery are complex, and there are opportunities for more research in 
this domain. 

Increasingly, ecological considerations form part of fire management 
planning and policy, however substantial gaps remain in our knowledge of 
the impacts of fire on vegetation communities (Cheal, 2012). To explore the 
capabilities of Landsat at a more localised scale a case study in a densely 
forested region (the South Eastern Highlands) was undertaken, to examine 
the disturbance-recovery relationships in different Ecological Vegetation 
Divisions (EVDs). The results showed differences between the five dominant 
EVDs in this bioregion. In the Tall Mist Forest division, there was a slight 
positive skew and a negative mean, while in the other divisions the 
distributions were more normally distributed, with positive means. The 
proportional representations (Figure 4.8) highlight differences, showing for 
example, that the Heathy Dry Forest contains more patches with strong 
positive correlations. Results here did not detect significant differences 
between the Forby Forest and Moist Forest divisions, which share similar 
attributes in their tolerable fire intervals and recovery processes (Cheal, 2010). 
Broadly speaking, these results demonstrate that Landsat is able to capture 
subtleties between forest types, within a distinct bioregion. However, at the 
spatial and spectral resolutions of Landsat, there are limits to what can be 
achieved with these data alone. 
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In this paper, spectral recovery is defined with a linear trajectory, which is not 
necessarily how a forest recovers ecologically. However, inspection of 
individual pixels suggested that a linear model provides a reasonable 
approximation, and is the approach adopted in many pixel-based time series 
studies (e.g., Hermosilla et al., 2015; Kennedy et al., 2010). Likewise, the use 
of Pearson’s correlation in this study assumes that the disturbance-recovery 
relationship is linear. However, this may not be the case. Visual inspection of 
disturbance-recovery scatterplots (Figure 4.3) showed that in some patches 
the majority of pixels were clumped around either similar disturbance 
magnitudes, or similar recovery lengths, or both. Further opportunities may 
lie in non-linear regression/correlation approaches, or by employing patch 
specific thresholds. Nonetheless, the use of Pearson’s correlations produced 
satisfactory results and served to demonstrate the merits of the patch 
approach. 

4.5 Conclusions 
This chapter aimed to answer a reasonably straightforward question: 
following a wildfire, is there an association between the magnitude of 
disturbance and the time it takes for a forest to recover, as measured 
spectrally with Landsat? The findings suggest that, in many cases, there is, but 
it varies substantially across different bioregions and forest types. An 
approach was presented, which allowed relationships to be examined across 
various spatial scales, using only optical remote sensing. The use of patches 
enabled confounding factors such as climate, elevation, and soil type to be 
minimized, bringing to focus the two components of interest: disturbance 
magnitude and recovery length. This was, in effect, an attempt to derive more 
detailed information from broad-scale measurements, in complex 
ecosystems. These results highlight some of the contributions that Landsat 
time series, and perhaps satellite remote sensing more generally, can make to 
ecological assessments across multiple spatial scales.  
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Chapter 5: Wildfire disturbance and recovery 
in temperate and boreal forests worldwide4 
 

  

                                                 

4 This chapter is based on: Hislop, S., Haywood, A., Jones, S., Soto-Berelov, M., 
Skidmore, A., Nguyen, T.H., 2019. A satellite data driven approach to monitoring 
and reporting fire disturbance and recovery across boreal and temperate forests 
(under review) 
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Abstract 
The regular and consistent measurements provided by Earth observation 
satellites can support the monitoring of fire disturbances. In this chapter, 
MODIS and Landsat satellite data are used to explore trends in fire 
disturbance and forest recovery in boreal and temperate forests worldwide. 
Results found that 154 million ha of the study area (1.98 billion ha of forests) 
were burned by fires greater than 200 ha between 2001 and 2018. World 
Wildlife Fund biomes were used for a detailed analysis across several 
countries. Significant increasing trends in area burned were observed in 
coniferous forests in Canada (5.1% yr-1) and Mediterranean forests in Chile 
(7.5% yr-1), while a significant decreasing trend was found in temperate mixed 
forests in China (-2.5% yr-1). An assessment of fire severity, based on a sample 
of Landsat pixels, highlighted possible trends in a few cases; most notably, 
the Russian taiga, where increasing severity was observed. An analysis of 
forest recovery, based on Landsat time series, indicated recovery times were 
accelerating in many regions; however, these results should be interpreted 
with caution, given the relatively short time-period. This study demonstrates 
how satellite data and cloud-computing can be harnessed to reveal trends and 
improve monitoring and reporting of critical forest indicators. 
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5.1 Introduction 
The importance of forests in providing clean air and water, managing carbon 
and nutrient cycles, and providing habitat cannot be overstated. Since the Rio 
Earth Summit in 1992, many countries have progressively adopted the 
principles of sustainable forest management, attempting to manage forest 
resources in ways that balance ecological, economic and socio-cultural 
factors. In 1994, twelve countries – Argentina, Australia, Canada, Chile, 
China, Japan, Republic of Korea, Mexico, New Zealand, Russian Federation, 
United States of America and Uruguay – formed the Montréal Process 
Working Group, to advance the conservation and sustainable management 
of temperate and boreal forests. Together, these countries contain 
approximately 90% of the world’s temperate and boreal forests and 50% of 
the world’s total forests. Recognised in ‘Criterion 3: Maintenance of forest 
ecosystem health and vitality’ of the Montréal Process framework, is the 
ability of forests to adapt to and recover from disturbances (Montréal 
Process, 2009). 

Of the various disturbance agents impacting forests, fire is one of the most 
contentious. Terrestrial ecosystems have developed with fire for over 350 
million years (Doerr and Santı, 2016). Yet, over the last two centuries, humans 
have increasingly attempted to manage or ‘fight’ fire, a view that many think 
neglects the crucial role that fire has in sustaining biodiversity and key 
ecosystem services (Moritz et al., 2014). There is recognition that, in certain 
systems, fire is necessary to preserve ecosystem health (Doerr and Santı, 
2016). This has translated into modified prescribed burning practices in some 
regions (Cheal, 2012), but not altered fire suppression policies, which remain 
aggressive in many parts of the world, such as western USA, southern 
Australia and Mediterranean Europe (North et al., 2015). In contrast, in 
remote regions, such as the boreal forests in Canada, wildfires are often left 
to burn naturally (Coops et al., 2018). Increases in human populations often 
correlate positively with increased ignitions (Mann et al., 2016; Pickell et al., 
2017), and a large body of literature asserts that climate change will drive 
increased fire activity (Bowman et al., 2010; Gauthier et al., 2015; Jolly et al., 
2015; Millar and Stephenson, 2015).  
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Regardless of whether fires are influenced by human factors or not, there is 
a growing concern that changes to fire regimes (frequency, severity, spatial 
extent and pattern) will threaten the resilience of forests (Enright et al., 2015). 
Therefore, accurate monitoring and reporting of fire impacts is important, so 
that management strategies can be designed to minimise the adverse effects 
to forest ecosystems (Millar and Stephenson, 2015). While the Montréal 
Process and other initiatives such as the Food and Agriculture Organization’s 
five-yearly Forest Resource Assessment provide a common framework for 
reporting, the onus is on individual countries to undertake the necessary steps 
to provide accurate information. This can lead to major differences between 
jurisdictions, as countries vary greatly in their technical and financial 
resources (Macdicken, 2015), along with their approaches to collecting and 
collating data. Individual Montréal country reports indicate that area-based 
estimates of fire disturbances are well reported; however, accuracy and 
consistency, even within countries, is not assured. In Australia, for example, 
national data is compiled by aggregating fire data from individual states and 
territories (MIG and NFISC, 2018). And within states and territories, fire 
boundary datasets are compiled from multiple sources and methods, 
integrating on-ground, aerial and satellite measurements (Haywood et al., 
2016). Furthermore, estimates of burned area alone do not fully capture the 
impacts of fire disturbance, such as fire severity and subsequent forest 
recovery, and particularly whether these elements are changing over time. Fire 
severity broadly relates to the initial ecosystem impacts (Keeley, 2009), while 
forest recovery is a complex and extended process, beginning with an initial 
re-establishment of vegetation and progressing through to a gradual return of 
forest structural characteristics (White et al., 2017). 

Earth observation satellites offer solutions to the above-mentioned 
shortcomings and can support monitoring and reporting of key forest 
indicators. Satellites can provide wall-to-wall data that is consistent through 
time and space, irrespective of jurisdictional boundaries. Although satellite-
based estimates vary greatly, depending on the sensor used and research 
designs (Keenan et al., 2015), the consistent data can be harnessed to reveal 
trends over time and offer a better understanding of ecological dynamics 
(Kennedy et al., 2014). Current free and open access to satellite data (Wulder 
et al., 2012), coupled with cloud-computing platforms like Google Earth 
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Engine (Gorelick et al., 2017), has led to a paradigm shift in remote sensing, 
enabling huge amounts of data to be processed efficiently, and affording the 
same opportunities to all. Two of most prominent data collections available 
in Google Earth Engine are from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) and Landsat satellites. One of many datasets in 
the MODIS collection is the burned area monthly product (MCD64A1 
Collection 6; Giglio et al., 2018), a record of burned areas across the globe at 
500 m pixel resolution from November 2000 onwards. The course spatial 
resolution of MODIS is a necessary trade-off for its high temporal resolution 
(daily). In contrast, Landsat satellites visit the same spot on earth less 
frequently (every 16 days) but provide higher spatial resolution data (30 m 
since 1982). Derived from Landsat data, the Normalised Burn Ratio (NBR; 
Key and Benson, 2006), a ratio of the near-infrared and short-wave infrared 
bands, has been used widely in forest related studies (Kennedy et al., 2012; 
White et al., 2017). The change in NBR (dNBR) pre-fire to post-fire is 
commonly employed to assess fire severity (Cocke et al., 2005; Eidenshink et 
al., 2007; Escuin et al., 2008). Although some authors have suggested dNBR 
is not an optimal measure of fire severity (Roy et al., 2006), the assumption 
here is that it acts as a reasonable proxy at the biome level. Recently, Landsat 
data, used in time series, have also been used to characterise forest recovery 
following disturbance, especially in broad-scale applications (Kennedy et al., 
2012; White et al., 2017). Although Landsat cannot directly capture all the 
complexities of forest recovery, the data have been shown to correlate highly 
with lidar-derived structural attributes (White et al., 2018). 

In this study, data from both the MODIS and Landsat satellites were used 
within Google Earth Engine, to examine fire disturbance and recovery trends 
in global boreal and temperate forests, as defined by the World Wildlife Fund 
(WWF) biomes (Olson et al., 2001). Specifically, six of the Montréal Process 
countries that regularly experience forest fires were investigated: Australia, 
Canada, Chile, China, Russia and the USA, along with southern Europe, to 
evaluate: (1) whether burned areas have increased or decreased over the last 
two decades, (2) whether the average size of fires have changed over this time, 
(3) whether changes in fire severity and/or forest recovery are evident in the 
Landsat record, and (4) whether similarities and differences exist between 
countries with similar forest types. 
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5.2 Materials and methods 

5.2.1 Study areas 

The study areas (Figure 5.1) were selected based on the member countries of 
the Montréal Process that occupy the temperate regions of the world and 
routinely experience forest fires. Montréal Process countries studied were 
Australia, Canada, Chile, China, Russian Federation (Russia) and the United 
States of America (USA). The forest regions were intersected with the World 
Wildlife Fund (WWF) biomes related to boreal and temperate forests (Olson 
et al., 2001). In addition, Mediterranean Europe was included, as it is also a 
region which experiences many forest fires. Argentina and Mexico were 
initially considered, however the forest fires in these two countries primarily 
occur in biomes classified as subtropical forests, so they were not used in this 
analysis. 

 
Figure 5.1 Temperate and boreal related biomes, according to the World Wildlife 
Fund (WWF) classification, intersected with the countries and regions used in this 
study 
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5.2.2 Burned areas and number of fires 

The Moderate Resolution Imaging Spectroradiometer (MODIS) burned area 
monthly product (MCD64A1 Collection 6; Giglio et al., 2018) was used to 
identify the number of fires and area burned in each country and biome. 
MCD64A1 is available worldwide from November 2000 onwards. Monthly 
data were combined into 12-month periods, by calendar year in the northern 
hemisphere and centred at January 1 in the southern hemisphere (with each 
year being labelled with the later year). Data were then masked using the 
‘Hansen’ forest mask (Hansen et al., 2013) with a 10% threshold, to select 
only burned forest. This initial processing was performed in Google Earth 
Engine (GEE). The results (i.e., areas of burned forest, grouped by year) were 
then exported at a pixel resolution of 250 m (in an Albers Equal Area 
projection) for each country/region. Although the MCD64A1 has a pixel size 
of 500 m, a 250 m resolution was used to account for location shifts (due to 
the reprojection) and the forest mask (which is available at 30 m resolution). 
Downloaded data were processed in R (R Core Team, 2017) to remove 
patches less than 200 ha in size, so that only larger fires (which are more likely 
to be wildfires) were represented. The first year in the series (2001) only had 
data from November 2000 onwards (for the southern hemisphere), while the 
last year in the series (2018) only included data up until October (northern 
hemisphere). 

5.2.3 Sampling strategy used for Landsat pixels 

Due to the extent of the study area (covering 1.98 billion ha), Landsat-based 
fire severity and forest recovery were explored using a sampling approach, 
instead of using all pixels. The processed MODIS burned area data were used 
to select pixels for a sample-based Landsat analysis. First, a mask was used to 
exclude any areas burned more than once between 2001 and 2018, so that 
only single fire disturbance events were captured. Following this a filter was 
applied to reduce burned patches by approximately 1 pixel (250 m) around 
the edges. This was done to increase the likelihood that the extracted Landsat 
pixel would fall well within the fire boundary. The burned patches were then 
stratified by country, biome and year and 300 pixels in each unit were 
randomly sampled. If there were less than 300 pixels available in any one unit, 
all pixels were used. The centre of each MODIS pixel was converted to a 
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point-based dataset, thus the minimum distance between samples was 250 m. 
Points were then imported back into GEE. 

5.2.4 Landsat composites and time series extraction 

GEE was used to construct annual Landsat surface reflectance composites 
for the years 1990-2018 for each region of interest. Landsat 5 and 7 surface 
reflectance products (Masek et al., 2013) were used directly, while Landsat 8 
surface reflectance scenes (Vermote et al., 2016) were harmonized to Landsat 
5/7 using the parameters of Roy et al. (2016). Each scene was masked with 
the included FMask (Zhu and Woodcock, 2012). The compositing method 
used was that of the medoid (a multi-dimensional median; Flood, 2013) 
within a late summer/early spring period (southern hemisphere: 1 January – 
1 April, northern hemisphere: 1 July – 1 October). In China, there were fewer 
clear images available, so the temporal window was expanded (1 June – 1 
November). The code for these processing steps was adapted from the GEE 
implementation of LandTrendr (Kennedy et al., 2018b). A Normalised Burn 
Ratio (NBR; Key and Benson, 2006) was then calculated from each yearly 
composite. The NBR time series was subsequently extracted at a 30 m 
resolution for each of the sample pixels. The forest mask was also extracted 
at 30 m resolution (in the previous step it was used at 250 m). 

5.2.5 Filtering the pixel samples 

For each pixel, the extracted Landsat NBR time series underwent further 
processing, to remove those that did not meet the criteria of burned forest at 
the 30 m pixel level. This step was undertaken because not all burned areas 
identified by the course resolution MODIS product appear burned in the 
medium resolution Landsat data. First, any Landsat pixels that were not 
forest, according to the 30 m forest mask, were excluded. Following this, the 
mean and standard deviation of the pre-fire years were calculated. The 
minimum NBR value was then selected, from between the fire year and one 
year later (in an annual time series, a late season fire may not appear in the 
data until the following year). If the minimum value was greater than 2 
standard deviations below the pre-fire mean, the pixel was considered 
burned, otherwise it was marked as non-burned and removed from further 
analysis. This step was a simple way to filter out non-burned pixels. 



Chapter	5	

87 

5.2.6 Calculating fire severity 

Landsat derived change in NBR (dNBR), between pre and post-fire, is 
commonly used to estimate fire severity in forested ecosystems (Eidenshink 
et al., 2007; Key and Benson, 2006). For the pixels where the fire was detected 
in the same year in both the MODIS and Landsat data (as opposed to one 
year apart), dNBR between the pre-fire mean and the fire year was calculated. 
Pixels where the fire was not detected in the Landsat record until the 
following year were excluded from the fire severity analysis, since comparing 
recently burned pixels with those of one year after would not be a valid 
comparison (however, those pixels were included in the forest recovery 
dataset). In total, 35,871 pixels were used in the fire severity analysis. 

5.2.7 Calculating forest recovery 

To determine spectral recovery, the post-fire years for pixels burned prior to 
2010 were analysed in two ways. First, a least-squares regression line was 
applied and the date this line crossed the pre-fire mean (assuming a positive 
gradient) was computed. In some cases, this point occurred before the end 
of the time series (prior to 2018) and sometimes it occurred afterwards (by 
projecting the gradient forward in time). A 50-year cap was applied, as longer 
time-frames test the limitations of both the method and the available data. 
Any pixels found taking longer than 50 years to recover were excluded. The 
second method checked the post-fire pixel trajectory to see whether there 
were years where it was greater than the pre-fire mean. If this happened two 
or more times, the second year in which it occurred was compared to the 
recovery time computed with the regression technique. If this second method 
indicated a shorter recovery time than the first, it was instead adopted. This 
secondary method was employed to capture pixels that recovered quickly, 
because the regression method often failed to accurately represent pixels that 
returned to their pre-fire NBR value within 2 or 3 years of the fire. In total, 
27,129 pixels were used in the recovery analysis. 

5.2.8 Validation of sampling technique 

A sample of 100 pixels at six different sites (two in Canada, two in the USA, 
one in Australia and one in Europe, making 600 pixels in total) were manually 
assessed by three experienced interpreters. This process involved inspecting 
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the NBR trajectory of each pixel, along with the corresponding Landsat 
composites (in a method similar to that of Cohen et al. (2010), to assess 
whether the calculated severity (dNBR) and spectral recovery length were an 
accurate reflection of the base data. Overall, 92% of pixels were assessed as 
being accurate. 

5.2.9 Assessment of results 

MODIS-derived estimates of burned area were calculated for each of the six 
countries, plus southern Europe, for the period 2001-2018, and further sub-
divided by WWF biomes. Burned area trends were estimated using the Theil-
Sen non-parametric slope method and significance tests were undertaken 
using the Mann-Kendall test for monotonic trends, computed with the R 
package rkt (Marchetto, 2017). The total number of fires (> 200 ha) in each 
country/biome were calculated and the results are presented in terms of the 
average size of fires over the study period. These were grouped into 3-year 
periods in the assessment of average fire size, to ensure enough samples for 
comparisons over time. 

Fire severity and fire recovery results are presented as violin plots 
representing the distributions of pixels in each country/biome. In each 
country/biome the median values in each 3-year period were calculated to 
assess trends over time. Although the aim was to sample 300 pixels in each 
country-biome-year category, it was not always possible due to an absence of 
burned areas. Additional filtering of the data was also undertaken, to remove 
non-burned pixels, so in some categories the final sample was quite low. 
Samples were grouped into 3-year periods, therefore there is a theoretical 
upper limit of 900 per unit. In reality, most units contained between 200 and 
500 samples. Each unit taken forward contained at least 30 samples. Mann-
Whitney U-tests (non-parametric equivalent of a t-test) were undertaken, as 
a measure of significance, comparing the samples in each 3-year period to 
those in the country/biome as a whole. This was done to add some 
confidence in the results, so that the trends presented were a true reflection 
of the underlying data and not just a result of different samples being drawn 
from the same population. However, the sample-based Landsat data were not 
considered comprehensive enough to statistically test for monotonic trends 
(as per the area-based estimates). 
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5.3 Results 

5.3.1 Burned area and number of fires 

The MODIS burned area dataset (MCD64A1), intersected with the ‘Hansen’ 
global forest cover product (Hansen et al., 2013), was used to identify forest 
fires greater than 200 ha from 2001 to 2018. Results found 84,902 fires across 
the study area (1.98 billion ha), burning a total of 154 million ha. Russia had 
by far the most fires (53,745), followed by the USA (12,284), Canada (6,729) 
and Australia (4,526). By biome, Boreal Forests/Taiga accounted for 40% of 
forest fires, followed by Temperate Broadleaf and Mixed Forests (28%) and 
Temperate Coniferous Forests (14%). Table 5.1 shows the area of forest 
burned in each country and biome, as totals, annual averages and percentages 
of forest area. Russia had the largest area burned (88 Mha), followed by 
Canada (30 Mha), the USA (18 Mha) and Australia (12 Mha). By area, Boreal 
Forests/Taiga contained 55% of forest fires, followed by Temperate 
Broadleaf and Mixed Forests (21%) and Temperate Coniferous Forests 
(13%). As a percentage of forest burned each year, Australia had the greatest 
amount (1.6% yr-1), over three times the next greatest (Russia with 0.5% yr-1). 
Table 5.1 also shows the results of Theil-Sen slope calculations, shown as 
percentages in relation to annual averages. Mann-Kendall tests of significance 
revealed significant trends (α = 0.05) in three cases: Temperate Coniferous 
Forests in Canada (slope: 5.1% yr-1, p = 0.04), Mediterranean Forests, 
Woodlands, and Scrub in Chile (7.5% yr-1, p = 0.03) and Temperate Broadleaf 
and Mixed Forests in China (-2.5% yr-1, p = 0.03). Over the entire study area, 
the slope was 2.1% yr-1 (p = 0.17). 
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Table 5.1 Area burned by fires greater than 200 ha per country and biome in the 
period 2001-2018, as detected by the MODIS burned area product (MCD64A1). 
Also, Thiel-Sen slope results (yearly percentage in relation to average annual area 
burned), with significant trends (Mann-Kendall, α = 0.05) marked with *. 

Country / Biome 

Forest 
Area ('000 
ha) 

Area 
Burned 
('000 
ha) 

Area 
Burned 
(%) 

Area 
Burned 
per yr 
('000 
ha) 

Area 
Burned 
(% per 
year) 

Theil-
Sen 
Slope 
(%/yr) 

Australia  
Mediterranean Forests, 
Woodlands, and Scrub 12316 4529 36.8 252 2.0 -0.28 

Montane Grasslands and 
Shrublands 1112 884 79.5 49 4.4 0.00 

Temperate Broadleaf and 
Mixed Forests 27580 6519 23.6 362 1.3 -2.09 

Temperate Grasslands, 
Savannas, and Shrublands 2291 387 16.9 21 0.9 0.02 

Total 43300 12318 28.4 684 1.6 -1.24 

Canada  
Boreal Forests/Taiga 355322 25906 7.3 1439 0.4 1.30 

Temperate Broadleaf and 
Mixed Forests 55715 339 0.6 19 0.0 0.75 

Temperate Coniferous 
Forests 64390 3079 4.8 171 0.3 5.07* 

Temperate Grasslands, 
Savannas, and Shrublands 15502 278 1.8 15 0.1 0.24 

Total 490928 29601 6.0 1645 0.3 2.28 

Chile  
Mediterranean Forests, 
Woodlands, and Scrub 2617 235 9.0 13 0.5 7.49* 

Temperate Broadleaf and 
Mixed Forests 15710 605 3.9 34 0.2 3.92 

Total 18327 840 4.6 47 0.3 5.61 

China  
Montane Grasslands and 
Shrublands 5817 11 0.2 1 0.0 0.00 

Temperate Broadleaf and 
Mixed Forests 73351 1991 2.7 111 0.2 -2.50* 

Temperate Coniferous 
Forests 29356 838 2.9 47 0.2 2.42 

Temperate Grasslands, 
Savannas, and Shrublands 3074 87 2.8 5 0.2 -3.35 

Total 111598 2927 2.6 163 0.1 -1.84 



Chapter	5	

91 

Europe  
Mediterranean Forests, 
Woodlands, and Scrub 39629 2287 5.8 127 0.3 -1.34 

Temperate Broadleaf and 
Mixed Forests 51495 1087 2.1 60 0.1 0.18 

Total 91124 3374 3.7 187 0.2 -1.48 

Russia  
Boreal Forests/Taiga 718747 54213 7.5 3012 0.4 3.02 

Montane Grasslands and 
Shrublands 3769 41 1.1 2 0.1 -1.91 

Temperate Broadleaf and 
Mixed Forests 100816 20306 20.1 1128 1.1 -1.37 

Temperate Coniferous 
Forests 35126 5729 16.3 318 0.9 3.19 

Temperate Grasslands, 
Savannas, and Shrublands 34623 7218 20.8 401 1.2 -2.35 

Total 893080 87508 9.8 4862 0.5 1.35 

USA  
Boreal Forests/Taiga 38848 4209 10.8 234 0.6 -0.50 

Mediterranean Forests, 
Woodlands, and Scrub 4007 1273 31.8 71 1.8 5.47 

Temperate Broadleaf and 
Mixed Forests 159627 1521 1.0 84 0.1 -0.95 

Temperate Coniferous 
Forests 105720 9794 9.3 544 0.5 4.13 

Temperate Grasslands, 
Savannas, and Shrublands 24687 773 3.1 43 0.2 2.39 

Total 332889 17569 5.3 976 0.3 0.35 

All Biomes  
Boreal Forests/Taiga 1112916 84328 7.6 4685 0.4 1.68 

Mediterranean Forests, 
Woodlands, and Scrub 58570 8323 14.2 462 0.8 -0.01 

Montane Grasslands and 
Shrublands 10699 936 8.8 52 0.5 -0.19 

Temperate Broadleaf and 
Mixed Forests 484293 32367 6.7 1798 0.4 -1.62 

Temperate Coniferous 
Forests 234592 19442 8.3 1080 0.5 4.75 

Temperate Grasslands, 
Savannas, and Shrublands 80178 8742 10.9 486 0.6 -1.31 

Overall Total 1981247 154138 7.8 8563 0.4 2.11 
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Figure 5.2 shows the area burned per year in each country and biome, along 
with the country averages (dashed grey lines) and Thiel-Sen slopes (black 
lines). The charts indicate substantial year-on-year variations across all 
countries and biomes. For example, Russia had 7 Mha more forest burned in 
its maximum year (2003), compared with its minimum year (2007); this 
change was a factor of 4. In contrast, in Chile, the maximum year (2017) was 
over 700 times greater than the minimum year (2013). In Australia and China, 
the results indicate slight negative trends across the 18 years. However, the 
area burned was substantially greater in some years than others (particularly 
2003). In the USA, the year with the greatest area burned (2015) was 6 times 
that of year with the least amount (2001), but only twice that of the annual 
average. In Europe, the area burned was much higher in five of the years 
(particularly 2017), compared with the other 13. In Canada the most recent 
nine years (2010-2018) experienced a far greater area burned than the 
previous nine (2001-2009) – 18 Mha versus 11 Mha; however, the overall 
trend was not considered significant (2.3% yr-1, p = 0.26). 

 
Figure 5.2 Area burned by fires greater than 200 ha, between 2001 and 2018, as 
detected by the MODIS burned area product (MCD64A1). Also shown are 
country averages (dashed grey line) and Theil-Sen slopes (solid black line). Note 
that the scales on the y-axis are different. 
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The average fire size (Figure 5.3) highlights some additional trends in the data. 
In Chile, for example, the average fire size in Mediterranean Forests, 
Woodlands and Scrub has remained constant over time, however the average 
size of fires in Temperate Broadleaf and Mixed Forests has increased 
markedly. In Canada there were slight increases in most biomes, but most 
pronounced is that seen in Temperate Coniferous Forests, where the average 
fire size has steadily increased by a factor of 3 since 2007. In the 
Mediterranean forests of Europe, average fire size decreased over time until 
the last 3 years, which saw a marked increase. Note that in Figure 3 each 
country-biome category displayed contains at least 5 periods which each 
contain at least 30 fires. 

 
Figure 5.3 Average fire size (ha), between 2001 and 2018, as detected by the 
MODIS burned area product (MCD64A1), sub-divided by country, biome and 
into three-year periods. Note that data is only displayed for cases with at least 5 
time-periods which each contain at least 30 fires. 

5.3.2 Fire severity 

The MODIS burned areas were used as a basis to sample an annual 
Normalised Burn Ratio (NBR) time series of Landsat data (300 pixels per 
year, biome and country). To represent fire severity, the change in NBR 
(dNBR) pre-fire to post-fire was calculated for each Landsat pixel. The pixel 
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samples were then grouped by countries and biomes; similarities and 
differences are indicated by the violin plots in Figure 5.4. In Temperate 
Broadleaf and Mixed Forests, the fire severity distributions in most countries 
displayed a high amount of dispersion. Russia and the USA were exceptions, 
with most values grouped towards the lower end of the severity scale. In 
Temperate Coniferous Forests, there were also a broad range of values, 
especially in Canada. The severity of fires in Boreal Forests/Taiga had similar 
distributions in Canada and the USA (Alaska), as expected; Russia, too, was 
quite similar. In Temperate Grasslands, Savannas and Shrublands, the 
severity distributions were quite different in Australia and China, but similar 
in Canada and Russia. In Montane Grasslands and Shrublands, distributions 
were variable. In Mediterranean Forests, Woodlands and Scrub, distributions 
from Chile, the USA and Europe were similar, while in Australia, the 
distribution was clustered towards the lower end of the severity scale. 

 
Figure 5.4 Violin plots of Landsat-based samples, showing the change in NBR 
(multiplied by 1000), separated by country and biome. 

Median dNBR values over time are shown in Figure 4.5. These results 
indicate slight negative trends in fire severity in Mediterranean Forests, 
Woodlands and Scrub in most countries (except Chile). There are also slight 
negative trends in Temperate Broadleaf and Mixed Forests. In Russia there 
appears to be a positive trend in the Boreal Forests/Taiga biome, suggesting 
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that severity may be increasing. Because some of the sample sizes were low, 
each 3-year sample was checked to see whether it was distinct from the 
country-biome as a whole, by undertaking Mann-Whitney U-tests (a non-
parametric equivalent of a t-test). Significantly different (α = 0.05) periods are 
marked in Figure 4.5 with symbols. 

 
Figure 5.5 Median change in NBR (multiplied by 1000), divided by country, 
biome and into three-year periods for 2001-2018. Note that lines are shown only 
where samples were sufficient (> 30) and symbols mark periods where the sample 
was significantly different than the population (Mann-Whitney, α = 0.05). 

5.3.3 Forest recovery 

For each of the valid Landsat pixel samples from 2001 to 2009, the post-fire 
NBR time series was used to estimate the number of years for the spectral 
signal to return to its pre-fire level. Differences and similarities between 
spectral recovery times after fire are shown in the violin plots in Figure 5.6. 
These charts suggest many biomes respond similarly to fire across the 
different countries. In Temperate Broadleaf and Mixed Forests, all countries 
showed reasonably quick recovery times, while in Temperate Coniferous 
Forests and Boreal Forests/Taiga recovery tended to be longer. In Temperate 
Grasslands, Savannas and Shrublands, the USA and Russia showed similar 
distributions, while Australia, Canada and China were different. In Montane 
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Grasslands and Shrublands, recovery distributions in China and Russia were 
similar, while the data for Australia indicated shorter post-fire recovery times. 
In Mediterranean Forests, Woodlands and Scrub, Australia and Europe had 
similar recovery distributions, while in the USA it was more dispersed; in 
contrast, the distribution in Chile was more tightly clustered (around 9 years). 

 
Figure 5.6 Violin plots of Landsat-based samples, showing spectral recovery, 
separated by country and biome. 

The median recovery times in each country-biome, divided into 3-year 
periods, are shown in Figure 5.7. The data suggests that, in most countries, 
recovery times are getting shorter. This is particularly evident in some 
categories: Mediterranean Forests, Woodlands and Scrub in Australia and the 
USA, Temperate Coniferous Forests in Canada, China, Russia and the USA, 
and Boreal Forests/Taiga in Canada, Russia and the USA. Again, as with the 
fire severity assessments, Mann-Whitney U-tests were undertaken to 
determine whether each 3-year period in each country-biome was 
significantly different (α = 0.05) than the country-biome as a whole; 
significant periods are marked with symbols in Figure 5.7. 
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Figure 5.7 Average Landsat spectral recovery, divided by country, biome and into 
three-year periods for 2001-2009. Note that lines are shown only where samples 
were sufficient (> 30) and symbols represent periods where the sample was 
significantly different than the population (Mann-Whitney, α = 0.05). 

5.4 Discussion 
There is a widely held perception that, across the world, the frequency, size 
and severity of wildfires is increasing (Doerr and Santı, 2016). Using a 
combination of MODIS and Landsat satellite data, coupled with the 
computing power of Google Earth Engine, the above-mentioned perception 
was explored, by analysing fire disturbance and forest recovery trends in 
temperate and boreal forests across much of the world (six of the Montréal 
Process countries and southern Europe). The overall burned area assessment 
of fires greater than 200 ha, which represented approximately 90% of global 
temperate and boreal forests, showed an increase in burned area of 2.1% yr-1 
over the 18-year period. However, the trend was not considered significant 
(α = 0.05) using the Mann-Kendall test for monotonic trends. Giglio et al. 
(2013) recently found that overall global burned areas (forest and non-forest) 
had slightly decreased over the past two decades. However, other studies have 
found increases in fire activity in some parts of the world. For example, 
Dennison et al. (2014) found that the occurrence of large fires (> 405 ha) in 
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the western USA had increased significantly from 1984-2011. In Canada, 
Coops et al. (2018) found increasing trends in some ecozones and decreasing 
trends in others. In this assessment, significant (α = 0.05) increasing trends 
were found in only two cases: Temperate Coniferous Forests in Canada; and 
Mediterranean Forests, Woodlands and Scrub in Chile. A significant 
decreasing trend was also observed in Temperate Broadleaf and Mixed 
Forests in China. By biome, the greatest trend was found in Temperate 
Coniferous Forests (4.8% yr-1, p = 0.07). A slight increase (1.7% yr-1, p = 
0.23) was seen in Boreal Forests/Taiga, while the other four biomes all 
showed slight decreasing trends. 

The unpredictable nature of fire naturally leads to large year-on-year 
variations in area burned. Results here showed that in Australia, for example, 
the average area burned was approximately 1.6%, three times more than the 
next highest country (Russia, with 0.5%). However, in Australia, 26% of the 
total area burned was from one year alone (2003). Large variations were 
found to a greater or lesser degree in all regions (Figure 5.2). In many parts 
of the world it is difficult to determine to the main drivers influencing fire 
regimes (frequency, severity, spatial extent and pattern). Aggressive fire 
suppression capabilities and policies (North et al., 2015), along with strategies 
such as prescribed burning (Cheal, 2012) and advanced fire detection systems 
(Wickramasinghe et al., 2016), may be preventing large fires from eventuating, 
even though more humans living in the rural-urban interface often leads to 
more ignitions (Mann et al., 2016). 

Interestingly, in Canada, the average annual burned area found here was 1.645 
Mha yr-1, which is close to that of Coops et al. (2018), who arrived at a figure 
of 1.652 Mha yr-1, using Landsat data from 1985-2015 and including all fires 
in forested ecozones. That the figures are similar appears to support the 
assertion of Stocks et al. (2003), who found that 97% of burned area in 
Canada was due to fires greater than 200 ha. A similar assessment was made 
by North et al. (2015) in the USA, who reported that 97% of burned area was 
from fires greater than 120 ha. However, in the study by Coops et al. (2018) 
the authors calculated that only 63% of the area burned was from patches 
greater than 200 ha. The discrepancy could be due to the differences between 
the Landsat and MODIS sensors. For example, a single patch in the MODIS 
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data may present as several smaller patches in the Landsat data, because of 
the different temporal and spatial resolutions. The most recent iteration of 
the MODIS burned area product is substantially more accurate than previous 
versions (Giglio et al., 2018). Nonetheless, it still likely underestimates fires 
in some areas (e.g., closed canopy forests) and overestimates in others (e.g., 
patchy forests) (Soto-Berelov et al., 2018a). However, by consistently 
measuring individual points over time, overall trends will have increased 
accuracy, even if individual time-points suffer from systematic or random 
inaccuracies. 

The focus in this study was on large wildfires in the temperate and boreal 
regions, so only MODIS burned patches greater than 200 ha were selected. 
While this threshold is somewhat arbitrary, it served two main purposes: (1) 
to filter out small burned areas, which may be due to noise or prescribed fire 
and (2) to create a reasonable basis for the sampling of Landsat pixels for the 
severity and recovery assessments. To fire ecologists, the severity (ecosystem 
impacts) of fires may be more important than area burned (Doerr and Santı, 
2016). The results here comparing biomes across the different countries 
showed similar patterns in most biomes (Figure 5.4). It should be noted that 
dNBR is not an ideal measure of fire severity (Roy et al., 2006) and is typically 
used in conjunction with field data to determine severity classifications (e.g., 
high, medium, low) (Key and Benson, 2006). The wide range of values 
observed in many countries and biomes could equally be due to the pre-fire 
vegetation conditions as the post-fire conditions. Nonetheless, by measuring 
the dNBR metric over time, in the same location and forest type, trends may 
emerge, which could indicate that forest resilience is being threatened. To 
date, few studies have examined this. In a recent review of global wildfire 
trends, Doerr and Santı (2016) list a couple of studies in the USA, which did 
not find any broad trends. Likewise, the fire severity results here did not find 
any widespread patterns. Admittedly, 18 years is not a long time-period for 
global change in fire severity. However, a positive trend in dNBR was 
observed in the Russian taiga and there were some slight negative trends in 
Mediterranean type forests elsewhere. The perception that fire intensity is 
increasing may therefore be more attributable to increased human 
populations and media coverage, rather than systemic ecological changes. 
Historical accounts of the 1939 bushfires in Australia, for example, indicate 
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that those fires were as severe as today’s fires (Stretton, 1939). Nonetheless, 
the method presented here may reveal significant patterns in future and it is 
suggested that the dNBR metric deserves continual monitoring. 

It is largely accepted that climate change will alter fire regimes, and the 
capacity of forests to recover, worldwide (Enright et al., 2015). However, the 
effects are likely to be complex. For example, warmer weather may extend 
growing seasons in some areas, while restricting growth in others. Increased 
droughts may reduce fuel loads, while simultaneously making existing fuels 
more flammable (MIG and NFISC, 2013). Some have suggested that higher 
carbon dioxide levels can increase growth (CO2 fertilization); however, other 
factors, such as water availability, are thought to exert far more influence 
(Appenzeller, 2015). Forest recovery results in this study showed similarities 
between the same biomes in different countries. Temperate Broadleaf and 
Mixed forests, which occur in all six countries and in Europe, tended to return 
quickly to their pre-fire spectral values, ranging from an average of 8 years 
(Australia and China) to 12 years (Canada). In contrast, Temperate 
Coniferous Forests took between 14 years (China) to 20 years (Canada and 
USA) to recover, but with more variation, as shown by the dispersed violin 
plots (Figure 5.6). In the boreal forests of Canada and Alaska, and the taiga 
in Russia, the average recovery times were quite similar (16, 15 and 17 years 
respectively). That the same biomes in different countries are responding 
similarly is perhaps unsurprising, but it is also reassuring in that the method 
appears transferable across a wide range of environments. 

Several regions showed signs of accelerating recovery. Although 18 years is a 
short time-period, especially because data is needed for several years after 
each fire (to measure recovery trajectories), results indicated decreasing 
recovery times, particularly in boreal and temperate coniferous forests. This 
may be partly explained by the reliance on a linear model to estimate recovery, 
as a regression line fitted through the years directly following a fire may fail 
to adequately estimate a slower rate of recovery beyond the time series. 
Nonetheless, a linear model of spectral recovery is a pragmatic approach that 
has proved capable in other studies (Kennedy et al., 2012; White et al., 2018). 
In addition, the manual evaluation of 600 pixels indicated that the method 
produced acceptable approximations in 92% of cases. It is worth noting that, 
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globally, the five warmest years on record have all occurred since 2010 
(www.climatecentral.org), which may have lengthened the growing season in 
certain regions, accelerating forest recovery. However, the results here may 
also reflect changes in vegetation type. In the boreal forests of Canada, studies 
have found that, recently, following wildfires, black spruce has been replaced 
by aspen and birch; to a satellite these deciduous trees appear brighter 
(Appenzeller, 2015). Continuing to monitor forest recovery over the coming 
years will help affirm or discredit the findings of this study. 

5.5 Conclusions 
Forest disturbance and subsequent regeneration is a natural and essential 
ecological process, but recent anthropogenic drivers may be exerting undue 
influences, and thereby threatening the resilience of forests. Consequently, 
monitoring and reporting on these measures is recognised through 
international frameworks such as the Montréal Process. In this chapter, a 
straightforward and methodical approach was used to estimate large-area 
trends in fire disturbance and forest recovery with freely available satellite 
data in a cloud computing environment. The 18-year analysis of boreal and 
temperate forests illuminated possible trends in area burned in certain biomes 
and indicated that forest recovery was accelerating in some cases. The 
approach outlined here can be used to improve reporting on key forest 
indicators, which in turn can lead to more informed management strategies 
and a greater understanding of the essential and inevitable role that fire plays 
in many ecosystems. 
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Chapter 6: Synthesis 
 
This chapter provides an overview of the key results from each of the core 
chapters, linking them to the research objectives as stated in the introduction. 
The research is then discussed in a broader context, including future 
directions and opportunities for the science and technologies. 
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6.1 Summary of results 
This research had four primary objectives, each of which was addressed in a 
core chapter. A summary of the main results is provided below. The 
objectives are re-stated as they are addressed. 

Chapter 2 addressed research objective 1, which was to: 

Assess the potential of a number of Landsat-based spectral indices in 
their ability to detect fire disturbance and characterise subsequent forest 
recovery in southeast Australian forests 

In this section of research, a number of tests were undertaken to evaluate the 
merits of 8 Landsat-derived spectral indices in their ability to detect wildfire 
disturbance and characterise forest recovery in southeast Australian forests. 
Although there is substantial literature assessing and comparing various 
Landsat indices, studies in the unique forests of southeast Australia are 
limited. In addition, the methods presented in this chapter introduced several 
novelties.  

The primary method employed to determine an index’s suitability was to 
consider disturbed pixels as a group and calculate the average change pre-fire 
to post-fire, along with the standard deviation, as a measure of dispersion. To 
compare indices, values were converted to a standardised scale, using Glass’s 
delta. The results showed that greenness indices like NDVI and TCA on 
average, changed by a large amount directly following a fire, however, 
returned to pre-fire conditions within a short period of time. In contrast 
wetness indices, using the SWIR bands, tended to take longer to recover their 
pre-fire values, which agrees with studies conducted elsewhere (Pickell et al., 
2016; Schroeder et al., 2011). 

There were other findings from chapter 2 that warrant mentioning. In 
contrast to studies elsewhere (e.g., Frazier et al., 2015), TCW was not found 
to be optimal for detecting forest disturbances in the study area. The rarely 
used NBR2 index (which contrasts the two SWIR bands) indicated longer 
spectral recovery times; therefore, it may be more sensitive to subtleties of 
forest recovery missed by the other indices. And the analysis of texture-based 
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indices indicated that, in this regard, it was the greenness indices, rather than 
the wetness indices that took longer to return to their pre-fire levels. 
Ultimately NBR2 and texture indices were not used further in this body of 
work; however, future opportunities remain to include these outputs in 
broader modelling applications. Texture, for example, could contribute to 
models based on objects or patches, rather than individual pixels. 

The conclusion from chapter 2 was that NBR was the most reliable index to 
use within an annual time series for southeast Australian sclerophyll forests, 
if only one index was to be adopted, as it was adept at both capturing fire 
disturbance and characterising subsequent forest recovery. However, the 
results from chapter 2 re-enforced the fact that different indices capture 
different elements of forest disturbance. Consequently, it was conjectured 
that an ensemble of indices would lead to more accurate forest disturbance 
maps. 

In chapter 3, this hypothesis was tested by undertaking a study comparing 
two change detection algorithms (LandTrendr and strucchange), each with 
three indices (NDVI, NBR and TCW), in their ability to detect disturbances 
in southeast Australian forests. Several ensembles were then created, using a 
range of variables, in conjunction with human interpreted reference data, to 
‘predict’ disturbance, using both simple aggregation rules and the Random 
Forests algorithm, to determine class assignment. Chapter 3 addressed 
research objective 2, which was to: 

Explore the benefits of using an ensemble of spectral indices, in 
conjunction with human interpreted reference data and machine learning, 
to produce forest disturbance maps 

Results showed that the most accurate individual algorithm/index 
combination was LandTrendr and NBR, with omission and commission 
errors of 37% and 15% respectively, and an overall error of 21%. The least 
accurate algorithm/index was strucchange with TCW, which had omission, 
commission and overall errors of 47%, 34% and 38% respectively. It is worth 
noting that LandTrendr outperformed strucchange with all indices. 
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The simple ensembles were formed by aggregating individual change 
detection algorithm outputs. The results here showed that as rules were 
tightened (i.e., a greater number of change detection outputs were needed) 
the commission errors decreased substantially, but at the expense of increases 
in omission errors. The 4 out of 6 ensemble, for example, only had a 
commission error of 3%, but had an omission error of 48%. These results 
highlight that outputs can vary substantially, depending on the algorithm and 
index used; a finding which aligns with those from other studies (Cohen et 
al., 2017a). 

The simple aggregation technique may be effective if the specific aims of the 
study call for a preference towards low errors of commission. Technically, 
this approach, and change detection algorithms more generally, do not need 
reference data. However, without reference data for validation, the accuracy 
is unknown. In contrast, machine learning approaches using algorithms like 
Random Forests, need reference data for training purposes. The most 
accurate ensemble, a Random Forests model that included the six change 
detection algorithm outputs, along with three change rasters (dNBR, dNDVI 
and dTCW), had omission and commission errors of 14% and 4% 
respectively, with an overall error of 7%. 

One of the findings from chapter 3 was that ‘priming’ the training data with 
confusing cases resulted in far fewer commission errors, at the expense of 
omission errors, which slightly increased. The confusing cases were generated 
by using the commission errors (i.e., incorrectly detected disturbances) from 
the change detection algorithms. Healey et al. (2018) also used the technique 
of priming (or ‘skewing’) the dataset towards confusing cases, but did not 
formally evaluate the effects. This finding led to the conclusion that 
traditional change detection algorithms (such as LandTrendr) could 
potentially be used on a subset of pixels only, as a means of priming a 
classifier (e.g., Random Forests) with confusing cases. 

Acceptable results were found using a Random Forests ensemble with only 
three predictor variables (dNBR, dNDVI, and dTCW) and the primed 
training data (overall error 11.4%). By including a range of other Landsat time 
series derived metrics, such as overall means and standard deviations, along 
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with 2-year changes (referred to as the ‘extended model’ in chapter 3), the 
overall error decreased to 8.5%. This model was then used to predict the 
presence or absence of forest disturbance for each year in the time series 
(1989-2017) for the state of Victoria, Australia (Figure 6.3). 

The disturbance maps generated in chapter 3 were used in a number of other 
applications (see inset box on the following page), including the basis for the 
segmented NBR time series used in chapter 4. 

The aim of chapter 4 was to test the hypothesis that a higher fire disturbance 
results in a longer recovery time, as measured spectrally with Landsat time 
series. The relationship (or statistical association) between the magnitude of 
fire disturbance and forest recovery length was examined at a range of spatial 
scales. Chapter 4 addressed research objective 3, which was to: 

Examine the relationship between spectral disturbance magnitude and 
recovery length, to determine: 
a) Whether a statistical association exists, and how well it can be 

characterised using Landsat time series 
b) How the association varies across different forest types 

In chapter 4, forest disturbance and recovery maps were first created across 
the state of Victoria, Australia, using 13 major fire events to inform the study 
areas. A total of 2.3 million ha of burned forest was analysed in this section 
of research. Spectral disturbance was based on the post-fire change in NBR 
(dNBR), while the spectral recovery length was calculated by taking the post-
fire segment of each pixel’s temporal trajectory and determining the number 
of years for this line to reach the pre-fire condition. To explore the 
relationship between disturbance magnitude and recovery length, as 
measured spectrally, Pearson correlations were computed across different 
spatial scales. First, an overall correlation, using all pixels in the study area 
(~25 million) was calculated, which gave a result of -0.01. Following this the 
data were subdivided according to biogeographic regions. Correlations within 
bioregions were predominately positive (i.e., a larger disturbance magnitude 
equalled a longer recovery length), however most correlations were weak. The 
strongest was 0.34, in the state’s most arid region (Murray Darling Depression 
in northwest Victoria). 
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Other uses for yearly disturbance maps 

Classification by disturbance type 
The results of chapter 3 were used in a secondary classification of disturbances by type – fire, 
logging and drought. The classified maps were then used to construct a video of disturbance 
over time in Victorian forests, to easily disseminate the information to non-experts. (To view 
the video, see https://youtu.be/Frplhhl8P_k). 

Seamless gap-free mosaics 
The results were also used to create seamless, gap free synthetic Landsat mosaics for each 
year from 1988 to 2017, by fitting a piece-wise linear model through each of the six Landsat 
optical bands (Hislop et al., 2018). In this process, data gaps and other radiometric anomalies 
were removed. The resultant mosaics have several potential applications, particularly in 
spatial modelling. As an example, Nguyen et al. (2019) used the mosaics to estimate above 
ground biomass for each year in the time series. Figure 6.1 shows derived biomass dynamics 
(loss and gain) resulting from forest disturbance events between 1988 and 2017.  

 
Figure 6.1 Biomass dynamics (loss and gain) following disturbance in Victoria, Australia. 
Reprinted with permission from Nguyen et al. (2019) 
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It was conjectured that there were confounding factors influencing both the 
disturbance magnitude (dNBR) and the recovery length. To isolate the 
disturbance-recovery association from other influences, such as soil type, 
elevation, climate, etc., a novel patch-based solution was used. First, a 600 m 
× 600 m grid was defined over the entire burned area. Then within each grid 
square, or ‘patch’, the correlation between disturbance magnitude and 
recovery length was calculated. These results clearly revealed spatial patterns, 
indicating that in some areas there was a strong positive relationship, while in 
others the opposite behaviour was apparent (Figure 4.5). 

The patch-level results were also subdivided by bioregion, which showed 
statistically significant differences between bioregions (Figure 4.6). To test 
the method at a finer spatial scale, a case study into one bioregion, the South 
Eastern Highlands, was undertaken. The five most dominant vegetation 
divisions (Cheal, 2010) were used to further subdivide the patches. These 
results also showed statistically significant differences between most 
vegetation divisions (Figure 4.7). 

Chapter 4 demonstrated a novel approach to exploring Landsat time series in 
greater detail. That different vegetation types respond differently to fire 
disturbance is perhaps not surprising, but by using Landsat data, landscape-
wide assessments are possible, which can support better land management 
strategies. 

While chapter 4 narrowed the focus and perhaps tested the limits of Landsat 
in its ability to detect fine scale ecological processes, chapter 5 ventured in 
the opposite direction, taking the lessons learned from chapters 2, 3 and 4 
and applying them to an extremely large-area study, investigating temperate 
and boreal forests across the world. 

Chapter 5 addressed research objective 4, which was to: 

Investigate fire disturbance and forest recovery in boreal and temperate 
forests worldwide, using the MODIS and Landsat image archives, to: 
a) Explore trends in burned area, fire severity (change in NBR) and 

forest recovery lengths (as measured spectrally) 
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b) Establish similarities and differences between similar forest types in 
different countries 

c) Determine the transferability and scalability of methods developed in 
the previous objectives. 

Although forests have evolved in parallel with fire, there is a concern that 
changes to fire regimes (frequency, severity, spatial extent and pattern) may 
threaten the resilience of forests (Enright et al., 2015; Jolly et al., 2015; Millar 
and Stephenson, 2015). In chapter 5, large area trends in fire disturbance, 
using both MODIS and Landsat satellite data within Google Earth Engine, 
were explored, for the period of 2001 to 2018. Results were divided in a 
jurisdictional sense (by country) and an ecological sense (by WWF biome). 

The area estimates were based on the MODIS burned area monthly product 
(MCD64A1), filtered to fires greater than 200 ha in size (based on burned 
area patches). A total of 154 million ha of forest was burned across the study 
area (1.98 billion ha) between 2001 and 2018 (an average of 8.5 million ha per 
year). Three significant trends (α = 0.05) in area burned were identified: 
Temperate Coniferous Forests in Canada (slope: 5.1% yr-1, p = 0.04), 
Mediterranean Forests, Woodlands, and Scrub in Chile (7.5% yr-1, p = 0.03) 
and Temperate Broadleaf and Mixed Forests in China (-2.5% yr-1, p = 0.03). 
Over the entire study area, the slope was 2.1% yr-1 (p = 0.17). 

The MODIS burned areas were used as a basis for a stratified sampling of 
Landsat pixels. In a process similar to that used in chapter 4, NBR pixel 
trajectories were analysed to extract ‘fire severity’ – defined as the post-fire 
change in NBR (dNBR) – and ‘forest recovery’ – defined as the number of 
years for the NBR pixel trajectory to return to its pre-fire level. Figure 6.2 
shows the calculated spectral recovery length for a sample of Landsat pixels 
across North America and Australia. This figure highlights visually that 
spectral recovery is dependent on location. Pixels were grouped by country 
and biome to explore similarities and differences, and trends over time. 
Results showed that corresponding biomes in different countries responded 
to fire similarly, as indicated by violin plots (Figures 5.4 and 5.6). 
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Figure 6.2 Years to recover spectrally, based on a sample of Landsat pixels across 
North America and Australia 

Widespread changes in dNBR over the 18 years were not observed. However, 
there were a few trends which may in time prove significant. Most notably, 
in the Russian taiga, where results suggested that dNBR was increasing over 
time. The investigation into recovery length suggested that spectral recovery 
was accelerating in many regions, across the 9 years analysed. Although it is 
a short period of time, these results may reflect changes to underlying 
ecological processes. In the boreal forests of Canada, for example, it has 
recently been reported that, following fire, the endemic black spruce is often 
being replaced by aspen and birch, which may appear brighter (particularly in 
the near infrared) to satellites (Appenzeller, 2015). 

The 18-year time-scale used in chapter 5 is perhaps not long enough to form 
robust conclusions; however, it was restricted by the availability of the 
MODIS satellite data, which does not exist prior to 2000. There are potential 
opportunities to extend the research back to at least the late 80s in many 
regions, using only Landsat data. In addition, a repeat of the study in 5 or 10 
years’ time may reveal a greater number of significant trends. 

6.2 Broader implications of research 
Forests have evolved in the presence of disturbances such as fire, drought, 
storms, diseases and pests. Over time, disturbance regimes and evolutionary 
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processes have led to a certain level of resilience being built into the system. 
However, recent unprecedented population growth and associated 
anthropogenic pressures have altered forests outside of the ranges that they 
are accustomed to, thus threatening overall ecosystem health (Trumbore et 
al., 2015). The maintenance of forest ‘health and vitality’ is therefore a key 
element of international forest reporting frameworks, such as the Montréal 
Process (Montréal Process, 2009), and seen as vital to achieving the United 
Nations Sustainable Development Goals (FAO, 2018). Accurate monitoring 
of forest disturbance across all spatial scales is fundamental to the 
maintenance of forests and can support better land management strategies 
and policies. 

Funded under a broader forest monitoring project, this research, along with 
that led by colleagues (Nguyen et al., 2018b, 2018a; Soto-Berelov et al., 2017), 
investigated forest disturbance and recovery in southeast Australian 
sclerophyll forests. Until recently, landscape-wide studies in southeast 
Australia were lacking, so the research provides a significant contribution to 
forest monitoring and reporting in the region. 

More broadly, the research presented a range of new and novel approaches 
to characterise forest disturbance and recovery using satellite time series, 
particularly Landsat. Chapter 2 presented exploratory analysis techniques for 
testing the sensitivity of spectral indices to forest disturbance and recovery. 
Chapter 3 demonstrated that ensemble approaches produce more accurate 
maps of forest disturbance and argued that traditional change detection 
algorithms could be applied to a subset of pixels only. Chapter 4 used the 
results of Chapter 3 to segment the Landsat time series data, to produce maps 
of disturbance magnitude and spectral recovery across large fire events in 
Victoria, Australia. The research then shifted into an ecological realm to 
investigate whether there was a statistical association between the magnitude 
of disturbance (as a proxy for fire severity) and the time that a forest takes to 
recover spectrally. A novel patch-based technique was presented, which 
helped to isolate the disturbance-recovery relationship from confounding 
factors such as climate, elevation, soils and vegetation type. In chapter 5, the 
applications developed in the previous chapters were employed over a much 
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larger area, to investigate trends in fire disturbance and forest recovery in 
temperate and boreal forests worldwide. 

Trends in fire area, fire severity and forest recovery length highlight areas 
where fire regimes may be changing. Significant, or substantial, trends may 
indicate underlying ecological changes, and thus warrant further attention 
from land managers and policy makers. On the other hand, in areas where no 
trends are evident, but a perception exists that fire activity is increasing, 
evidence-based studies, like those presented here, can help to dispel myths. 
The methods and results presented in this thesis demonstrate that Earth 
observation satellites, offering wall-to-wall coverage at regular time steps, add 
enormous value to the monitoring and reporting of key forest indicators. 

6.3 Future directions and opportunities 
There is a growing realisation that humanity needs to act quickly to limit the 
worst impacts of global warming and other environmental concerns, such as 
biodiversity loss. Global action not only requires international collaboration; 
it also needs mechanisms in place to monitor changes. While policy 
frameworks provide the necessary direction, they do not in themselves offer 
the means for effective monitoring. Earth observation satellites, from their 
unique perspective, are ideally suited to monitor the Earth’s land, oceans and 
atmosphere at the large-area scale. It is perhaps serendipitous that the 
capabilities of Earth observation satellites have developed in unison with 
advancements in communications, computer processing and data storage. In 
addition, a shift towards free and open access to data, and knowledge sharing, 
is enabling global monitoring via satellites to be undertaken in unprecedented 
ways (Figure 6.3). 

This convergence of multiple technologies, coupled with a culture of 
openness, means that opportunities are vast indeed. The free and open access 
policies, perhaps kick-started in 2008 with the opening of the Landsat archive 
(Wulder et al., 2012), have broken down barriers to accessibility, while 
platforms such as Google Earth Engine (Gorelick et al., 2017) are enabling 
users to rapidly process vast quantities of data and perform planetary-scale 
geospatial analysis. 
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Figure 6.3 Convergence of technologies, leading to advanced environmental 
monitoring opportunities 

A few of the more recent and planned Earth observation satellites, which are 
relevant to large-area forest monitoring, will be discussed below, along with 
some of the nascent methods that will help improve outputs and inform 
sustainable management strategies. Avenues of future research opportunities 
are also mentioned.  

The Sentinel satellites, developed and operated by the European Space 
Agency (ESA) and the European Commission (EC) through the Copernicus 
initiative, are a series of satellites designed to provide timely and accurate 
information to improve environmental management and civil security 
(Drusch et al., 2012). The Sentinel 2A and 2B satellites are a natural 
companion to Landsat. Together, the two satellites offer a 5 day re-visit time, 
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13 bands in the visible, near infrared and shortwave infrared wavelengths, 
spatial resolutions from 10 m to 60 m (depending on the spectral band) and 
a 295 m field of view (Gascon et al., 2017). 

Due to the similarities between Landsat 8 and Sentinel 2, opportunities exist 
to use the data in tandem, allowing for more frequent cloud-free 
observations. In a recent paper Li and Roy (2017) calculated that the 
combined ‘virtual constellation’ offered a global median revisit time of 2.9 
days. However, the use of these data in time series analysis requires cross-
sensor calibration. While some research has addressed this (Ganguly et al., 
2017; Zhang et al., 2018), further work is required. 

One of the advantages of the Sentinel 2 sensor over Landsat 8, is the inclusion 
of red-edge bands (the portion of the electromagnetic spectrum between the 
red and near-infrared wavelengths). Previous studies using RapidEye imagery 
have highlighted the usefulness of the red-edge in detecting plant stress (Ager 
et al., 2011). In a recent study, Abdullah et al. (2018) reported that Sentinel 2, 
using red-edge spectral indices, was more accurate than Landsat 8 in mapping 
bark beetle disturbance in European spruce at the early stage of attack. The 
potential of Sentinel 2 for forest monitoring (given it has higher spatial, 
spectral and temporal resolutions than Landsat) is yet to be fully explored. It 
is envisaged that Sentinel 2 will prove useful in capturing subtle and low 
severity forest disturbances, such as insect defoliation and selective logging, 
along with providing higher spatial resolution maps of forest cover. 

Although Sentinel 2 has more bands than Landsat, it is still a multispectral 
instrument. Hyperspectral satellite technology, on the other hand, is still in 
its infancy. NASA’s Hyperion imaging spectrometer, launched in 2000, 
demonstrated that spaceborne spectroscopy was possible. Hyperion collected 
data across 242 narrow bands in the visible, near infrared and shortwave 
infrared regions (Pearlman et al., 2003). The results of the Hyperion mission, 
along with the recently deployed DLR Earth Sensing Imaging Spectrometer 
(DESIS) onboard the International Space Station (ISS), serve to inform 
future missions, such as Germany’s Environmental Mapping and Analysis 
Program (EnMAP). EnMAP will enable geochemical, biochemical and 



Synthesis	

116 

biophysical parameters to be measured in fine detail, broadening our 
understanding of the Earth’s ecosystems (www.enmap.org). 

Wulder et al. (2015) extended the concept of a virtual constellation to include 
sensors which are principally incompatible (e.g., passive sensors and active 
sensors) but can be integrated to achieve a specific monitoring goal. Virtual 
constellations may help overcome the limitations of single sensors (e.g., by 
providing more cloud-free images), however, cross-sensor integration and 
harmonization remains challenging. Machine learning via non-parametric 
classifiers such as Random Forests offers a means for integrating otherwise 
incompatible datasets; ideally, each dataset provides complimentary 
information. 

The recent drive to curtail CO2 emissions to limit global warming has 
focussed attention on the role of forests as carbon sources and sinks. 
Consequently, modelling biomass dynamics across large areas has been the 
focus of a number of recent studies (Kennedy et al., 2018a; Matasci et al., 
2018; Nguyen et al., 2018a). Above ground biomass is more closely aligned 
with forest structure, which can be estimated with field measurements or 
lidar, but is less easily determined via passive remote sensing. However, field 
data and lidar are not generally available over large areas or consistently 
through time. Combining field data and/or lidar with satellite data, through 
machine learning imputation approaches, can provide wall-to-wall estimates 
of forest biomass across large areas (Nguyen et al., 2018a). This may be 
particularly useful in countries where established forest monitoring programs 
are lacking. 

Spaceborne lidar has the potential to provide more accurate measurements 
of forest structure. The recent deployment of the Global Ecosystem 
Dynamics Investigation (GEDI) instrument onboard the ISS will provide 
lidar samples with a 25 m footprint every 60 m in the along-track direction 
and 600 m across-track. GEDI will provide ‘globally representative 
measurements of vertical structure in the world’s temperate and tropical 
forests’ (https://gedi.umd.edu). However, GEDI does not offer wall-to-wall 
coverage and is limited by the orbit of the ISS, which does not extend into 
the northern boreal forests (Wulder et al., 2015). Thus, the use of GEDI data 
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will inevitably require upscaling using wall-to-wall Earth observation and 
machine learning approaches. 

While spaceborne lidar is in its infancy, spaceborne radar is arguably further 
advanced. The Sentinel 1 satellite carries a C-band synthetic aperture radar 
(SAR), which can penetrate clouds, making it particularly useful in cloudy 
regions. An advantage of the C-band SAR is the continuity it offers; a number 
of satellites (Envisat ASAR, ERS, and Radarsat) have acquired compatible C-
band data for over 20 years (Wulder et al., 2015). However, C-band radar is 
less sensitive to forest structure than that at longer wavelengths. Nonetheless, 
Haywood et al. (2018) recently found that integrating Sentinel 1 data into a 
model estimating forest biomass improved results. In 2020, ESA is planning 
to launch a satellite dedicated to measuring forest biomass, which will have a 
P-band SAR, a wavelength more capable of penetrating the forest canopy 
(Wulder et al., 2015). 

6.4 Final remarks 
The future of Earth observation looks bright across much of the 
electromagnetic spectrum. However, to capitalise on these new technologies, 
skills and knowledge beyond traditional fields of geospatial and remote 
sensing are required. The enormous amounts of data, much of which is freely 
available, is both advantageous and cumbersome. To make use of such data, 
computer science and machine learning skills are increasingly required. In 
addition, a strong grasp of statistics ensures that models are correctly 
constructed and evaluated, and assumptions and accuracies are transparent. 
Perhaps most importantly, a shared understanding between the remote 
sensing and ecological communities, on what can and should be measured 
from space, will lead to outcomes that translate into achievable management 
strategies and inform policy directions. 
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Appendices 

1. Disturbance magnitude by fire event  

Table A1: Total burned area and average change in NBR (×1000) for each fire 
event (Chapter 4) 

Season Fire Name 

Forested 
area 

within 
fire 

footprint 
(ha) 

Burned 
Area 
(ha) 

Percent 
Burned 

(%) 

Average 
Change 
in NBR

Standard 
deviation 

2002 Wagon Flat 27176 26698 98 190 86 

2003 Big Desert 178516 176396 99 293 80 

2003 Bogong 1037036 805481 78 466 189 

2006 Mt Lubra 89857 80792 90 686 249 

2007 Mallee 22870 22091 97 263 54 

2007 Tawonga 32094 27397 85 522 197 

 
- burned once 

 
13560 42 460 174 

 
- burned twice 

 
13837 43 583 200 

2007 Great Divide 1050229 945286 90 447 185 

 
- burned once 

 
892523 85 444 186 

 
- burned twice 

 
52763 5 495 140 

2007 Tatong 30203 29274 97 512 166 

2009 Kilmore East 233242 153560 66 608 262 

2009 Bunyip 20521 13987 68 578 219 

2009 Churchill 18923 17075 90 695 255 

2009 Beechworth 24620 19341 79 452 182 

2009 Wilsons Prom 23210 11093 48 531 236 
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2. Spectral recovery by fire event 

Table A2: Average recovery length for each fire event (Chapter 4) 

Season Fire Name 

Average 
Recovery 

(years) 
Standard 
deviation 

Percent 
Recovered 
1-5 years 

Percent 
Recovered 
6-10 years 

Percent 
Recovered 
>10 years 

2002 Wagon Flat 16.0 6.3 7.7 7.1 85.2 

2003 Big Desert 14.6 5.0 4.0 12.5 83.4 

2003 Bogong 11.9 4.3 2.4 30.1 67.5 

 
- uninterrupted 11.8 4.1 3.5 26.8 69.6 

 

- interrupted by 
fire 13.1 4.8 0.0 24.0 76.0 

 

- interrupted by 
drought 11.5 4.8 0.0 41.0 59.0 

2006 Mt Lubra 8.4 3.3 10.6 67.2 22.2 

2007 Mallee 15.3 5.8 0.4 17.5 82.1 

2007 Tawonga 9.4 4.7 13.7 51.3 35.0 

 
- burned once 7.8 4.0 21.3 59.4 19.3 

 
- burned twice 11.0 4.6 4.9 44.4 50.7 

2007 Great Divide 6.6 4.1 38.9 46.9 14.1 

 
- burned once 6.5 4.1 39.9 46.8 13.3 

 
- burned twice 8.6 4.8 20.5 50.5 29.0 

2007 Tatong 10.0 4.5 9.7 49.3 41.0 

2009 Kilmore East 7.5 4.1 23.2 59.0 17.8 

2009 Bunyip 6.7 2.6 18.4 75.6 5.9 

2009 Churchill 7.5 4.0 23.6 59.5 16.9 

2009 Beechworth 5.0 3.3 56.6 38.3 5.1 

2009 Wilsons Prom 5.9 3.9 43.8 46.2 10.0 
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3. Mann-Whitney U tests results 

Table A3: Mann-Whitney U tests between pairs of bioregions (Chapter 4) 

Bioregion Comparison 
Difference 
in Location 

95% 
Confidence 

Interval 
Lower 

95% 
Confident 
Interval 
Upper P-value 

Australian Alps - Murray 
Darling Depression -0.253 -0.281 -0.225 0.000 

Australian Alps - South 
East Corner -0.120 -0.145 -0.096 0.000 

Australian Alps - South 
Eastern Highlands -0.109 -0.134 -0.084 0.000 

Australian Alps - 
Victorian Midlands 0.063 0.037 0.090 0.000 

Murray Darling 
Depression - South East 
Corner 0.138 0.111 0.164 0.000 

Murray Darling 
Depression - South 
Eastern Highlands 0.148 0.121 0.175 0.000 

Murray Darling 
Depression - Victorian 
Midlands 0.314 0.284 0.343 0.000 

South East Corner - 
South Eastern Highlands 0.011 -0.012 0.033 0.343 

South East Corner - 
Victorian Midlands 0.185 0.160 0.210 0.000 

South Eastern Highlands 
- Victorian Midlands 0.173 0.148 0.198 0.000 
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Table A4: Mann-Whitney U tests between pairs of Ecological Vegetation 
Divisions (Chapter 4) 

EVD Comparison 

Difference 
in 

Location 

95% 
Confidence 

Interval 
Lower 

95% 
Confident 
Interval 
Upper P-value 

Forby Forest - Heathy Dry 
Forest -0.070 -0.094 -0.046 0.000 

Forby Forest - High Altitude 
Woodland 0.037 0.013 0.062 0.002 

Forby Forest - Moist Forest -0.004 -0.029 0.020 0.725 

Forby Forest - Tall Mist Forest 0.159 0.131 0.186 0.000 

Heathy Dry Forest - High 
Altitude Woodland 0.108 0.084 0.131 0.000 

Heathy Dry Forest - Moist 
Forest 0.066 0.042 0.090 0.000 

Heathy Dry Forest - Tall Mist 
Forest 0.229 0.203 0.256 0.000 

High Altitude Woodland - 
Moist Forest -0.041 -0.066 -0.017 0.001 

High Altitude Woodland - Tall 
Mist Forest 0.122 0.095 0.149 0.000 

Moist Forest - Tall Mist Forest 0.161 0.134 0.189 0.000 
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4. Exploratory analysis into topographic influences 

Table A5: Patch-level correlations between disturbance magnitude, recovery and 
elevation. Positive correlations are > 0.15, while negative are < -0.15. 

Disturbance - 
Recovery 

Disturbance - 
Elevation 

Recovery - 
Elevation 

Number of 
patches 

Percentage 
(%) 

Positive Positive Positive 6136 12.6 

Positive Negative Negative 3328 6.8 

Positive None None 2933 6.0 

Positive Positive None 2927 6.0 

None Positive None 2822 5.8 

Positive Negative None 2639 5.4 

None Negative None 2270 4.6 

Positive None Positive 2256 4.6 

None Positive Positive 2061 4.2 

None None None 2052 4.2 

Negative Negative Positive 1952 4.0 

None None Positive 1947 4.0 

None Negative Positive 1789 3.7 

Negative Positive Negative 1612 3.3 

Positive None Negative 1603 3.3 

None Positive Negative 1559 3.2 

None None Negative 1283 2.6 

Negative Positive None 1190 2.4 

None Negative Negative 1057 2.2 

Negative None None 968 2.0 

Negative None Positive 943 1.9 

Negative Negative None 889 1.8 

Positive Negative Positive 783 1.6 

Positive Positive Negative 740 1.5 

Negative None Negative 483 1.0 

Negative Positive Positive 451 0.9 

Negative Negative Negative 174 0.4 
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Summary 
A third of the land on earth is covered by forests. Forests provide valuable 
resources and essential ecosystem services, including filtering air and water, 
harbouring biodiversity and managing the carbon cycle. Regular monitoring 
and reporting across various indicators is necessary to manage forests 
sustainably. Due to the vastness of forests, satellite Earth observation is one 
of the most practical and cost-effective ways to monitor forests. The regular 
and consistent measurements provided from space enable time series 
analysis, which can reveal trends over time. The temporal, spatial and 
radiometric depth of the Landsat archive, which extends back to 1972 in 
some cases, is one of the most useful resources for monitoring forest 
dynamics across large areas.  

Analysing forest disturbance and recovery trends using Landsat has recently 
become widespread, particularly since the opening of the image archive in 
2008. However, deriving useful information from the data is challenging on 
many fronts, including overcoming cloud-cover, differentiating true changes 
from noise and relating spectral measurements to meaningful outputs. In 
addition, large data volumes create hurdles for processing and storage. This 
study presents new techniques for exploiting the Landsat archive in relation 
to monitoring and measuring forest disturbance and recovery across large 
areas. Landsat data were processed through a series of steps, analysed in time 
series, and combined with other data sources to produce mapped outputs and 
statistical summaries, which can be interpreted by non-experts. The spatial 
extent of the analysis expands across multiple scales – from local and regional 
to global (temperate and boreal forests). 

Firstly, eight Landsat spectral indices were assessed to determine their 
sensitivity to forest disturbance (caused by wildfire) and recovery in southeast 
Australian forests. Results indicated that indices making use of the shortwave 
infrared wavelengths were more reliable indicators of forest disturbance and 
recovery than indices using only the red and near-infrared wavelengths. 
Following this exploratory analysis, three indices and two change detection 
algorithms were evaluated in terms of their ability to detect forest disturbance. 
Results showed that the LandTrendr algorithm with the Normalised Burn 
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Ratio (NBR) was the most accurate single algorithm/index combination 
(overall error 21%). However, results were greatly improved by using an 
ensemble approach. A Random Forests model combining several Landsat-
derived metrics with multiple indices, trained with human interpreted 
reference data, had an overall error of 7%. A notable finding was that priming 
the training data with confusing cases (commission errors from the change 
detection algorithms) led to increased accuracy. 

One Random Forests model was used to create annual forest disturbance 
maps (1989-2017) across the state of Victoria, Australia. These maps, in 
conjunction with each pixel’s temporal trajectory, were used to extract 
metrics for spectral disturbance magnitude and recovery length across 2 
million ha of burned forest in southeast Australia. The association between 
disturbance magnitude and forest recovery length, as measured spectrally, 
was then explored. A novel patch-based technique was used to isolate the 
disturbance-recovery relationship from confounding factors such as climate, 
elevation and soil type. The results showed statistically significant differences 
across bioregions and forest types. The patch-based method demonstrated 
how Landsat time series can be harnessed to explore ecological changes.  

The methods developed above were then employed over a much larger area, 
to investigate trends in fire disturbance and forest recovery in temperate and 
boreal forests worldwide. This work used both MODIS and Landsat data, 
through the Google Earth Engine platform, to look at trends in burned area, 
fire severity and forest recovery across almost 2 billion ha of forests, over the 
last 18 years. Burned area results showed significant increasing trends in two 
cases: coniferous forests in Canada and Mediterranean forests in Chile. A 
significant decreasing trend was found in temperate mixed forests in China. 
An assessment of fire severity, as measured by Landsat spectral change, 
highlighted possible trends in a few cases; most notably, the Russian taiga, 
where increasing severity was observed. An analysis of forest recovery, based 
on Landsat time series, indicated recovery times were accelerating in many 
regions. However, given the relatively short time-period analysed, these 
results should be interpreted with caution. 
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The results presented in this thesis demonstrate the power of Earth 
observation satellites in monitoring forests at the landscape scale. Although 
forests are complex systems that are influenced by a myriad of factors, the 
regular and consistent measurements provided by satellites can be analysed 
in time series to provide inter-comparable results across large areas. This can 
broaden our understanding of the dynamic nature of forests, and in doing so, 
help progress towards their sustainable management. 

  



Summary	

144 

 

 



 

145 

Samenvatting 
Een derde van het land op aarde is bedekt met bossen. Bossen leveren 
waardevolle hulpbronnen en essentiële ecosysteemdiensten, waaronder het 
filteren van lucht en water, herbergen van biodiversiteit en het beheer van de 
koolstofcyclus. Het regelmatig monitoren van bossen en rapportage over 
verschillende indicatoren zijn nodig om bossen duurzaam te beheren. 
Vanwege de uitgestrektheid van bossen is satellietobservatie één van de meest 
praktische en kosteneffectieve manieren om bossen te monitoren. De 
regelmatige en consistente metingen vanuit de ruimte maken 
tijdreeksanalyses mogelijk, waaruit trends kunnen worden gedestilleerd.   De 
temporele, ruimtelijke en radiometrische diepte van het Landsat-archief , dat 
in sommige gevallen teruggaat tot 1972, is een van de meest bruikbare 
bronnen voor het volgen van bosdynamiek in grote gebieden. 

Het analyseren van bosverstoringen en hersteltrends met Landsat is 
recentelijk een wijdverspreide praktijk geworden, vooral sinds het 
beeldarchief openbaar toegankelijk werd in 2008. Het is echter op veel 
fronten een uitdaging om bruikbare informatie uit de gegevens te halen, 
waaronder het overwinnen van data ruis door bewolking, het onderscheiden 
van echte veranderingen van ruis en spectrale metingen aan betekenisvolle 
outputs. Bovendien creëren de grote datavolumes hindernissen voor 
verwerking en opslag van geanalyseerde data. Deze studie presenteert nieuwe 
technieken voor het exploiteren van het Landsat-archief met betrekking tot 
het monitoren en meten van bosverstoring en herstel in grote gebieden. 
Landsat-gegevens werden verwerkt via een reeks stappen, geanalyseerd in 
tijdreeksen en gecombineerd met andere gegevensbronnen om in kaart 
gebrachte resultaten en statistische samenvattingen te produceren, die ook 
door niet-experts kunnen worden geïnterpreteerd. De ruimtelijke omvang 
van de analyse breidt zich uit over meerdere schalen - van lokaal en regionaal 
tot mondiaal (gematigde en boreale bossen). 

Eerst werden acht Landsat spectrale indices beoordeeld opm hun 
gevoeligheid voor om bosverstoring (veroorzaakt door bosbranden) en 
herstel in zuidoost-Australische bossen te bepalen. De resultaten wezen erop 
dat indices die gebruikmaken van de kortegolf-infrarood-golflengten 
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betrouwbaardere indicatoren waren voor bosverstoring- en herstel, dan 
indices die alleen de rode en nabij-infrarode golflengten gebruikten. Na deze 
verkennende analyse werden drie indices en twee veranderings-
detectiealgoritmen beoordeeld op hun vermogen om bosverstoringen te 
detecteren. De resultaten toonden aan dat het LandTrendr-algoritme met de 
genormaliseerde verbrandingsratio (NBR) de meest nauwkeurige combinatie 
van algoritmen en indexen was (totale foutmarge 21%). De resultaten werden 
echter sterk verbeterd door gebruik te maken van een ensemble benadering. 
Een model in willekeurige bossen gecombineerd met verschillende Landsat-
afgeleide metrieken met meerdere indices, getraind met de door mensen 
geïnterpreteerde referentiegegevens, had een totale foutmarge van 7%. Een 
opmerkelijke bevinding was dat het bewerken van de trainingsgegevens met 
verwarrende zaken (provisiefouten van de algoritmen voor 
wijzigingsdetectie) tot een grotere nauwkeurigheid leidde. 

Het One Random Forests-model werd gebruikt om jaarlijkse 
bosverstoringskaarten (1989-2017) te maken in de staat Victoria, Australië. 
Deze kaarten, in combinatie met het temporele traject van elke pixel, werden 
gebruikt om metrieken te extraheren voor de spectrale verstoringsgrootte en 
de herstellengte over 2 miljoen hectare verbrand bos in Zuidoost-Australië. 
De associatie tussen de verstoringsgrootte en bosherstellengte, zoals spectraal 
is gemeten, werd vervolgens onderzocht. Een nieuwe patch-gebaseerde 
techniek werd gebruikt om de relatie tussen verstoring en herstel te isoleren 
van verstorende factoren zoals klimaat, hoogte en bodemtype. De resultaten 
toonden statistisch significante verschillen tussen bio-regio's en bostypen. De 
patch-gebaseerde methode laat zien hoe Landsat-tijdreeksen kunnen worden 
gebruikt om ecologische veranderingen te onderzoeken. 

De hierboven ontwikkelde methoden werden vervolgens voor een veel groter 
gebied gebruikt om trends in bosverstoring door brand en bosherstel in 
gematigde en boreale bossen over de hele wereld te onderzoeken. In dit 
onderzoek werden zowel MODIS- als Landsat-gegevens gebruikt, via het 
Google Earth Engine-platform, om de afgelopen 18 jaar te kijken naar trends 
in verbrand gebied, ernst van de brand en bosherstel in bijna 2 miljard hectare 
bos. De gebiedsresultaten toonden aanzienlijke stijgende trends in twee 
gevallen: naaldbossen in Canada en mediterrane bossen in Chili. Een 
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significante afnemende trend werd gevonden in gematigde gemengde bossen 
in China. Een beoordeling van de ernst van de brand, op basis van Landsat’s 
spectrale veranderingsmetingen, benadrukte mogelijke trends in een paar 
gevallen; met name in de Russische taiga, waar toenemende ernst van 
bosbranden werd waargenomen. Uit een analyse van bosherstel, gebaseerd 
op Landsat-tijdreeksen, bleek dat in veel regio's de hersteltijden aan het 
versnellen waren. Gezien de relatief korte geanalyseerde periode, moeten 
deze resultaten echter met de nodige voorzichtigheid worden geïnterpreteerd. 

De resultaten die in dit proefschrift worden gepresenteerd, tonen de kracht 
van aardobservatiesatellieten bij het volgen van bossen op landschapsschaal. 
Hoewel bossen complexe systemen zijn die worden beïnvloed door een groot 
aantal factoren, kunnen de regelmatige en consistente metingen van 
satellieten worden geanalyseerd in tijdreeksen om vergelijkbare resultaten 
voor grote gebieden te bieden. Dit kan ons begrip van de dynamische aard 
van bossen verruimen en daarmee bijdragen aan hun duurzaam beheer. 
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