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Summary

There is an ever-increasing need for land cover information, since
the population of the world is dependent on Earth as the source of
food production and for various economic developments. Land cover
maps are key inputs for policymakers in nurturing sustainable plan-
ning and management systems at the local, regional, and national
levels.
Owing to advances in remote sensing (RS) technology, abundant
sources of timely land cover data at various spectral and spatial res-
olutions have become available. Using big geo-data from recent Earth
observation sensors providing very high spatial resolution (VHR) satel-
lite images makes it possible to obtain land cover maps with higher
levels of detail. However, the development of efficient classification
methods for the new generations of VHR images has become one
of the most challenging problems addressed by the RS community
in recent years. The most important challenge associated with new
generations of data is the Hughes phenomenon or curse of dimen-
sionality that occurs when the number of features is much larger
than the number of training samples. Hyperspectral images, time
series of multispectral satellite images, and stacking additional fea-
tures on top of the original spectral features are usually associated
with the Hughes phenomenon. Tree-based ensemble learners such as
the random forest (RF) and extra trees (ET) and kernel-basedmethods
such as the support vector machine (SVM) are well-known classifiers
in high-dimensional classification problems. The main objective of
this dissertation is to investigate the integration of two of the most
well-known and recurrently used classifiers by the geospatial com-
munity: tree and kernel-based methods.
The performance of the proposedmethods is evaluated for crop clas-
sification over small-scale farms. The vast majority of low-income
country farming is undertaken by smallholder farmers that often
struggle to make ends meet. Currently, little is known in quantitative
terms regarding the crop growth processes in smallholder farming.
There are barely any systems in place that monitor such information,
even though such knowledge is crucial for numerous stakeholders
in the food production pyramid. Farmer communities (such as the
agribusiness sector that supplies farm inputs and those marketing

i



Summary

farm outputs), the financial sector serving farmers, and the govern-
mental agencies that work with farmers could utilize such informa-
tion. Eventually, individual farmers could also use such information,
of course, if given to them in the form of on-farm advice.
Unlike in high-income country farming (where plots are larger, only
a single crop is grown, the farm inputs are well-documented, as are
the weather conditions, and farm practices are more standardized),
monitoring smallholder farming requires the addressing of a much
higher variation in these parameters. Farm plots tend to have more
irregular geometries and are often only vaguely delineated. In addi-
tion, plots are typically not formally registered in a farm cadastre.
Moreover, smallholder plots include multiple crops and numerous
crop varieties, there is little information about the soils, and un-
known inputs are received and can be subject to variable field man-
agement. Therefore, research work in this thesis was focused on em-
ploying a number of specific VHR image sources to derive crop maps
that can be used to improve the understanding of crop conditions in
small-scale farms. Such image sourcesmust bemultispectral, of high
spatial resolution, and the image series must be sufficiently tempor-
ally dense. This results in increasing the dimensionality of the data-
set used for this study. Therefore, the research described in this
dissertation concentrated on exploring the use of tree-based kernels
in an SVM for land cover mapping of small-scale agriculture using
VHR satellite images.

First, we studied the synergic use of RF and SVM as two well-known
and recurrent classifiers for the production of land cover maps
through using an RF-based kernel (RFK) in an SVM (SVM-RFK). The
performance of this synergic classifier is evaluated by comparing
it against using a customary radial basis function (RBF) kernel in
an SVM (SVM-RBF) and standard RF classifiers. Two datasets were
used to illustrate the analyses in this study—a time series of seven
multispectral WorldView-2 images acquired over Sukumba (Mali) and
a single hyperspectral AVIRIS image acquired over Salinas Valley (CA,
USA). The features set for Sukumba was extended by obtaining veget-
ation indices (VIs) and grey-level co-occurrencematrices (GLCMs) and
stacking them to spectral features. For Sukumba, SVM-RFK, RF, and
SVM-RBF were trained and tested over 10 subsets once using only
spectral features and once using the extended dataset. As bench-
marking, the Salinas dataset with only spectral features was also
trained and tested over 10 subsets. The results revealed that the
newly proposed SVM-RFK performs at almost same level as that of
the SVM-RBF and RF in terms of overall accuracy (OA) for the spec-
tral features of both datasets. For the extended Sukumba dataset, the
results showed that SVM-RFK yields slightly higher OA than RF and it
considerably outperforms the SVM-RBF. Moreover, the SVM-RFK sub-
stantially reduced the time and computational cost associated with
parametrizing the kernel compared to the SVM-RBF. In addition, RF
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was also used to derive an RFK based on themost important features,
which improved the OA of the previous SVM-RFK by 2%. In summary,
the proposed SVM-RFK classier achieved substantial improvements
when applied to high-dimensional data and when combined with RF-
based feature selection methods; it is at least as good as the SVM-RBF
and RF when applied to fewer features.

Second, we explored the connection between random forest and ker-
nel methods by using various characteristics of RF to generate an
improved design of RFK. The classic design of RFK is obtained based
on the end-nodes of trees. Here, we investigated the possibility of de-
veloping the classic design of RFK by using tree depths, the number
of branches among the leaves of trees, and the class probabilities as-
signed to samples with RF. Accordingly, we developed a multi-scale
RFK which uses multiple depths of RF to create an RF-based ker-
nel. All the obtained RFKs are evaluated by importing them into an
SVM classifier (i.e., SVM-RFK) to classify the extended Sukumba data-
set. The results showed that investigating the depth improves the
OA of RFK, particularly for high-dimensional experiments. Other ex-
amined designs of RFKs also outperformed the RBF for the extended
Sukumba datasets. Using the spectral features for Sukumba, all sug-
gested designs of RFKs performed at almost the same level as that
of the RBF kernel when they were used in an SVM.

Third, we introduced the use of ETs to create a kernel (ETK) that can
be used in an SVM to overcome the limitations of RFK and RBF ker-
nel. The use of these kernels in an SVM is also compared with the ET
classifier. Four different sets of features were tested by dividing the
extended Sukumba dataset. For datasets with fewer features, SVM-
ETK slightly outperforms SVM-RBF and SVM-RFK. Moreover,
SVM-ETK almost entirely outperforms ET. Apart from OA, the main
advantage of ETK is the lower computational cost associated with
parametrizing the kernel compared to the RBF and RFK. Our results
showed that tree-based kernels (i.e., RFK and ETK) compete closely
and yield higher OA than RBF in high-dimensional and noisy experi-
ments. Thus, the proposed SVM-ETK classifier outperforms ET, SVM-
RFK, and SVM-RBF in a majority of the cases.

Fourth, with regard to the context of open science, we include an R-
function to implement the ideas of different designs of tree-based
kernels evaluated in this thesis.

In a nutshell, the main conclusion of this PhD thesis is that the ker-
nels obtained on the basis of supervised tree-based ensemble learn-
ing methods can be used as efficient alternatives to the conventional
kernels in kernel-based classifications methods such as the SVM, in
particular, in dealing with high-dimensional noisy problems such as
mapping small-scale agriculture.
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Samenvatting

Er is een steeds grotere behoefte aan landgebruiksinformatie aangez-
ien de wereldbevolking afhankelijk van de aarde is als de bron van
voedselproductie en voor diverse economische ontwikkelingen.
Landgebruikskaarten zijn belangrijke input voor beleidsmakers bij
het bevorderen van duurzame planning- en beheersystemen op lokale,
regionale en nationale niveaus.

Als gevolg van de vooruitgang in technologie voor aardobservatie
(AO) zijn overvloedige bronnen van tijdige landbedekkingsgegevens
in verschillende spectrale en ruimtelijke resoluties beschikbaar geko-
men. Met behulp van big geodata uit recente AO-sensoren die beelden
met zeer hoge ruimtelijke resolutie (VHR) leveren, is het mogelijk om
landgebruikskaarten te verkrijgen met meer details. De ontwikkel-
ing van efficiënte classificatiemethoden voor zulke VHR-beelden is
uitgegroeid tot een van de meest uitdagende problemen die de AO-
gemeenschap bezighoudt. De belangrijkste uitdaging in verbandmet
deze nieuwe AO gegevens is het Hughes-fenomeen of de dimension-
aliteitsvloek. Dit doet zich voor wanneer het aantal dimensies of
eigenschappen veel groter is dan het aantal trainingsobservaties. Hy-
perspectrale beelden, tijdseries van multispectrale satellietbeelden,
en het stapelen van extra dimensies bovenop de oorspronkelijke spec-
trale kenmerken worden meestal geassocieerd met het Hughes
fenomeen. Tree-gebaseerde ensembles zoals de random forest (RF)
en extra trees (ET), en kernel methoden zoals support vector ma-
chines (SVM) zijn bekende classificatiemethoden voor hoog-
dimensionele classificatieproblemen. De belangrijkste doelstelling
van dit proefschrift is de integratie van twee van demeest bekende en
veelgebruikte classificaties door de geospatiale gemeenschap: tree-
en kernel-gebaseerde methoden.

De prestaties van tree- en kernel-gebaseerde methoden worden
beoordeeld voor gewasclassificatie op kleinschalige landbouw. In
landen met lage inkomens wordt de overgrote meerderheid van bo-
erderijen beheerd door kleinschalige boeren die worstelen om rond
te komen. Er is nog weinig kwantitatief bekend over her verloop van
de groei van gewassen in kleinschalige landbouw. Er zijn nauwelijks
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systemen die dergelijke informatie monitoren, ook al is die kennis
cruciaal voor tal van stakeholders in de voedselproductiepiramide.
Uiteindelijk zouden de boeren zelf ook dergelijke informatie kunnen
gebruiken als ze die krijgen in de vorm van gewasteeltadvies.

In tegenstelling tot landbouw in hoge-inkomenslanden waar de
percelen groter zijn en er een gewas verbouwd wordt per perceel,
waar de inputs en de weersomstandigheden goed gedocumenteerd,
en waar landbouwpraktijken meer gestandaardiseerd zijn, vereist
hetmonitoren van kleinschalige landbouw veel aandacht. In kleinsch-
alige landbouw hebben percelen meestal meer onregelmatige geo-
metrieën en zijn vaak slechts vaag afgebakend. Daarnaast zijn
percelen doorgaans niet formeel geregistreerd in een agrarisch
kadaster. Bovendien bevatten kleinschalige percelen meerdere ge-
wassen en tal van gewasvariëteiten, is er weinig informatie over de
bodem, en is onbekend welke en hoeveel inputs (zoals irrigatie en be-
mesting) worden gebruikt en kunnen de velden onderhevig zijn aan
variabel beheer.
Daarom is dit proefschrift gericht op het gebruik van beelden van
zeer hoge resolutie om gewaskaarten af te leiden die kunnen worden
gebruikt om het inzicht in de gewasomstandigheden in kleinschalige
landbouw te verbeteren. Dergelijke beeldbronnenmoetenmultispec-
traal en van zeer hoge ruimtelijk resolutie zijn en de tijdserie moet
voldoende data bevatten. Dit resulteert in het vergroten van de di-
mensionaliteit van de data gebruikt in dit proefschrift. Daarom ligt
de focus in het onderzoek hier beschreven op het verkennen van het
gebruik van tree-gebaseerde kernels in SVM.

Als eerste bestudeerden we het synergetisch gebruik van RF en SVM
als twee bekende en terugkerende classificatoren voor de productie
van landgebruikskaarten door het gebruik van een op RF gebaseerde
kernel (RFK) in een SVM (SVM-RFK). De prestaties van deze synerget-
ische classificator worden geëvalueerd door te vergelijken met een
gebruikelijke radiale basisfunctie (RBF) kernel in een SVM (SVM-RBF)
en een standaard RF-classificator. Twee datasets zijn gebruikt om
de analyses in deze studie te illustreren - een tijdreeks van zeven
multispectrale WorldView-2-beelden verkregen over Sukumba (Mali)
en een hyperspectraal AVIRIS-beeld verkregen over Salinas Valley
(VS). De spectrale eigenschappen van de Sukumbabeelden zijn uit-
gebreid door het verkrijgen van vegetatie indices (VI’s) en grey-level
co-occurrence matrices (GLCM’ s). Voor Sukumba werden de SVM-
RFK, RF en SVM-RBF classificatoren getraind en getest over 10 sub-
sets van data met originele en uitgebreide eigenschappen. Als bench-
marking is de Salinas-dataset met alleen spectrale eigenschappen
ook getraind en getest over 10 subsets. Uit de resultaten bleek dat de
nieuw voorgestelde SVM-RFK op bijna hetzelfde niveau presteert als
dat van de SVM-RBF en RF in termen van overall accuracy (OA). Voor
de uitgebreide Sukumba-dataset toonden de resultaten aan dat SVM-
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RFK een iets hogere OA oplevert dan RF en het presteert aanzienlijk
beter dan de SVM-RBF classificator. Bovendien is de SVM-RFK sneller
dan SVM-RBF door de benodigde optimalisering van de parametriser-
ing van de RBF kernel. Daarnaast werd RF ook gebruikt om een RFK
af te leiden op basis van de belangrijkste eigenschappen, wat de OA
ten opzichte van de vorige SVM-RFK met 2% verbeterde. Samengevat
behaalde de voorgestelde SVM-RFK classificator substantiële verbe-
teringen wanneer toegepast op hoog-dimensionale gegevens en in
combinatie met de RF ingebouwde eigenschappenselectiefunctional-
iteit is het minstens zo goed als de SVM-RBF en RF wanneer toegepast
op problemen met lage dimensionaliteit.

Ten tweede hebben we het verband onderzocht tussen RF en ker-
nelmethoden door verschillende kenmerken van RF te gebruiken om
een verbeterd ontwerp van RFK’s te maken. Het klassieke ontwerp
van RFK is gebaseerd op de eindknopen van de bomen binnen de
RF. Hier hebben we de mogelijkheden van ontwikkeling van verbe-
terde RFK’s onderzocht door boomdiepten, het nummer van takken
tussen de bladeren van de RF bomen en de RF toegewezen classi-
ficatiewaarschijnlijkheden te gebruiken als overeenkomstmetrieken.
Daarmee hebben we verschillende “multi-scale” kernels ontwikkeld.
Alle verkregen RFK’s zijn gebruikt in een SVM-classificator (d.w.z.
SVM-RFK) om de uitgebreide Sukumba-dataset te classificeren. De
resultaten lieten zien dat RFKs die gebruikmaken van de boomdiepte
een betere OA hebben, vooral voor hoog-dimensionale experimenten.
De andere RFK’s presteerden ook beter dan de standaard RBF ker-
nel voor de uitgebreide Sukumba-datasets. Met alleen de spectrale
eigenschappen voor de Sukumba dataset presteren alle RFK ontwer-
pen op bijna hetzelfde niveau als de RBF-kernel.

Ten derde hebben we het gebruik van extra trees (ET) geïntroduceerd
om een kernel (ETK) temaken die kan worden gebruikt in een SVM om
de nadelen van de RFK- en RBF-kernels te overwinnen. Het gebruik
van deze ETK in een SVM wordt ook vergeleken met de ET classific-
ator. Vier verschillende aantallen eigenschappen van de Sukumba
dataset zijn getest om het effect van data dimensionaliteit te be-
studeren. Voor de datasets met lagere aantallen eigenschappen
presteert SVM-ETK iets beter dan SVM-RBF en SVM-RFK. Bovendien
presteert SVM-ETK bijna altijd beter dan ET. Afgezien van een betere
OA is het belangrijkste voordeel van ETK de lagere rekentijdkos-
ten die gepaard gaan met de optimalisering van de parametriser-
ing van de RBF kernel en het optimaliseren van de RFK. Onze res-
ultaten tonen aan dat RFK en ETK nauw met elkaar concurreren en
een hogere OA opleveren dan RBF in experimenten met hoge dimen-
sies en ruis. De voorgestelde SVM-ETK presteert in de meeste geval-
len beter dan ET, SVM-RFK en SVM-RBF.

Ten vierde hebben we in het kader van Open Science een R-functie
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toegevoegd om de tree-gebaseerde kernels geëvalueerd in dit proef-
schrift te implementeren en testen.
In een notendop is de belangrijkste conclusie van dit proefschrift
dat tree-gebaseerde kernels kunnen worden gebruikt als efficiënte
alternatieven voor conventionele kernels (zoals RBF) in op kernel-
gebaseerde classificatiemethoden zoals SVM. Dit geldt in het bijzon-
der bij het omgaan met hoog-dimensionele en ruizige problemen
zoals het in kaart brengen van kleinschalige landbouw.
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1. Introduction

1.1 Remote sensing image classification

1.1.1 Background

Understanding and quantifying land cover information is important
for human beings, since the increasing population of the world is
dependent on Earth as the source of food production and various
economic developments [1, 2, 3]. Land cover is used to characterize
and describe the Earth’s surface in terms of soil, vegetation layers,
and man-made structures [4, 5]. Land cover maps are of import-
ance to policymakers in planning and management at the local, re-
gional, and national levels [6]. Up-to-date and accurate land cover
information makes a significant contribution to the development of
sustainable economic and environmental plans [6]. In addition, land
cover maps are key components for studying several governmental
concerns such as flooding, soil erosion, run-off, climate change, and
agricultural monitoring [7]. Therefore, it is essential to monitor on-
going changes and processes related to land cover patterns over time
in order to ensure sustainable development [1, 2, 3].
The necessity of acquiring regular, precise, and accurate information
regarding the Earth’s surface over vast areas has resulted in the de-
velopment of remote sensing (RS) over time [8, 9, 6]. The term RS
was used for the first time in the 1950s and refers to obtaining in-
formation from objects without direct physical contact with them
[6, 8]. Sputnik 1 was the first man-made satellite developed by Rus-
sia in 1957, and the first photo from space was obtained by United
States Explorer 6 in 1959. Further, Landsat 1 is the pioneering United
States RS satellite program that has acquired a continuous supply of
synoptic, multispectral data. Landsat 1 is a key milestone for monit-
oring Earth and its natural resources in the history of the RS [10, 6].
The advances in RS have enabled the obtaining and monitoring of
land cover information at different temporal and spatial resolutions;
this opens opportunities for a wide range of operational applications
in the environmental and agricultural domains [5]. Since the first
satellite image, a series of sensors called Landsat thematic mapper,
Advanced Very High Resolution Radiometer (AVHRR), Satellite Pour
l’Observation de la Terre (SPOT1), Moderate Resolution Imaging Spec-
troradiometer (MODIS), Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), Environmental Satellite (ENVISAT),
and SPOT5 have been launched to map key landscape features and
resources [6]. During this course of advancement, the spatial resol-
ution of images has improved from 1.1 kilometers to 5 meters and
multispectral information was made available through SPOT and AS-
TER images.
DigitalGlobe optical sensors—such as Ikonos, QuickBird, and
Worldview-2—provided multispectral imagery with very high resolu-
tion (VHR) from two-to-four meters and a short revisit time. Cur-
rently, Worldview-3 provides multispectral imagery with a spatial
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resolution of 1.2 meters. However, the narrow field of view corres-
ponding to DigitalGlobe sensors limits their ability to capture the
entire Earth in a timely fashion [11]. The latest generation of RS data
is provided by Cubesat satellites—for example, the doves of Planet
Labs that provide a unique combination of VHR multispectral im-
agery (i.e., a spatial resolution of five meters) and full-Earth cover-
age repeat rate (i.e., one day) [11]. Using big geo-data from recent
Earth observation sensors enables the oversight of tasks related to
environmental and agriculture monitoring in greater detail [12, 13].
In order to achieve these tasks, the development of effective data
processing techniques for the latest generation of very high spatial
resolution optical sensors has become one of the most challenging
problems addressed by the RS community in recent years. Address-
ing these challenges enhances human beings’ understanding of land
cover information and results in the creation of sustainable man-
agement systems to mitigate issues related to land cover in various
urban, environmental, and agricultural contexts.

1.1.2 Remote sensing for land cover mapping

Land cover maps have been created from a variety of RS data sources
[14, 15, 16, 17, 18] and for a variety of applications, including so-
cioeconomic, natural resources, agricultural, environmental, urban,
and regional monitoring and planning [19, 20, 21, 22].
A few of the most important applications of RS are the obtaining of
agricultural information and crop mapping and monitoring. Further,
food security is one of the main concerns of governments and poli-
cymakers, particularly in developing countries [5]. The world pop-
ulation is expected to reach 9.3 billion in 2050 [23, 5]; to feed this
population, the Food and Agriculture Organization estimates that
the world’s agricultural production will need to increase by approx-
imately 70% by 2050 [24, 5] from the 2005 production levels. The
demands of an increasing world population leave no doubt of the
need to improve sustainable agricultural production in order to min-
imize both monetary and environmental costs [13, 5]. Geographic
information systems, satellite imagery, and field data measurements
are key in developing an information management system for agri-
culture monitoring. Cropmaps are key initial components of agricul-
tural monitoring, and satellite imagery has proven to be effective in
revealing the type and variation of spatial and temporal characterist-
ics of crop production. In large and single-type crop fields, multid-
ate hyperspectral or time series of multispectral imagery are often
used for crop mapping [25]. In small-scale agriculture, farm plots
have irregular shapes and vaguely delineated boundaries. Small-
holder farms commonly contain multiple crops and crop varieties
and involve variable field management. Using lower spatial resol-
utions for crop mapping in smallholder farms can cause a single
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pixel value to represent multiple crops. Therefore, monitoring small-
holder farms requires image sources that are of very high spatial
resolution; moreover, several studies have also revealed that the im-
age series must be temporally sufficiently dense. Further, mapping
methods applied to time series images have been proven to perform
generally better than single-datemappingmethods [26, 27, 28]. How-
ever, each type of satellite image has its own limitations, since there
is an inevitable trade-off among spatial, spectral, and temporal res-
olutions. In addition, due to persistent cloud coverage during the
growing season, the available image information is often sparse.
For rural regions where small-scale farming is predominant, it is ne-
cessary to expand our knowledge and develop RS image classification
techniques so that they can address the complexity of the crop map-
ping in such areas.

1.1.3 Common remote-sensing image classification methods

RS image classification methods group image pixels into one of sev-
eral land cover classes to reveal meaningful information [29]. Clas-
sifiers can be categorized as pixel-based and object-based. A pixel-
based classifier assigns each pixel to one class based on spectral in-
formation [30]. An object-based classifier derives objects that con-
sist of several pixels by considering the shape and texture variations
among them [31]. One common characteristic of object-based clas-
sifications is that they are based on image segmentation [32, 33].
Image segmentation aims at building homogeneous blocks of pixels
that are object candidates for further steps of processing [34].
Segments are generated using a criteria of homogeneity and have
additional spectral and spatial information compared to pixels. Both
pixel-based and object-based approaches, accompaniedwithmachine
learning methods, are widely applied for numerous land cover map-
ping applications [35]. Examples of applications using pixel-based
approaches are forest mapping [36, 37], carbon emission monitoring
[38, 39], climate dynamics [40, 41], biodiversity mapping [42, 43],
damage assessment and disaster management [44, 45, 46], agricul-
tural mapping [47, 28], and water and wetland monitoring [48, 49].
Focusing on crop mapping applications using pixel-based
approaches, patterns of vegetation dynamics identified from time
series images have been successfully used to classify crops in dif-
ferent study areas [50, 51, 28, 52]. A review of object-based clas-
sification approaches for various applications, including land cover
mapping, urban mapping, forest cover types, shrub changes, texture
analysis, structural damage, and change detection through the use of
various satellite platforms is presented in [34]; several studies util-
ize object-based classification approaches for crop mapping [53, 54,
55, 56]. However, over-segmentation and under-segmentation errors
that affect the accuracy of the classifications are known drawbacks
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of the object-based approaches [57], and disregarding spatial and
textural information is a limitation of pixel-based approaches [58].
When the resolution is coarse, pixel-based and sub-pixel approaches
are recommended, while approaches based on extracting informa-
tion regarding the neighborhood of the pixels are suitable when there
is increased spatial resolution [55].

Within pixel and object-based approaches, different classification
methods have been successfully used for land cover mapping. These
classification methods are mainly categorized into two groups: su-
pervised and unsupervised. In unsupervised classification, a clus-
tering algorithm such as ISODATA or K-means divides the spectral
data into groups based on statistical information derived from the
image [59]. In supervised classification, sufficient additional refer-
ence data is used to train related classifiers, such as maximum like-
lihood, minimum distance, artificial neural networks, and decision
trees [59]. According to the literature, supervised classifiers often
outperform unsupervised classifiers [60]. The reason for this is that
unsupervised classifiers require clear spectral separability between
the classes of interest, whichmay not always be the case [60]. [61] ex-
amine the C4.5 decision tree, logistic regression, support vector ma-
chine (SVM), and neural network methods for crop classification in
California; they conclude that the SVM outperforms other methods.
Further, the use of vegetation indices (VIs) improves the accuracy of
vegetation mapping for various classifiers, as VIs provide specific in-
formation to distinguish various types of vegetation. A few examples
of VIs are normalized difference vegetation index, enhanced vegeta-
tion index, difference vegetation index, and ratio vegetation index.

The advent of recent RS technologies has led to the improvement of
spatial, spectral, and temporal resolutions of satellite images; this of-
fers new possibilities for very accurate mapping of the environment
apart from the new challenges that an efficient supervised classifier
must address. The most important challenge associated with new
generations of data is the Hughes phenomenon or curse of dimen-
sionality that occurs when the number of features is much larger
than the number of training samples [62]. The Hughes phenomenon
often occurs when combining abundant sources of data—including
multi-source satellite images, hyperspectral images, time series of
multispectral satellite images—and where spatial, spectral, and tem-
poral features are stacked on top of the original spectral channels
for modeling additional information sources [63].
Pixel reflectance is not only a function of the land cover captured in
a particular pixel but also of the land cover in surrounding pixels.
Therefore, the information regarding the neighborhood of the pixels
must be extracted in order to improve our understanding of land
cover. To this end, features can be defined as attributes that are cal-
culated using functions of the original measurement variables, which
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are useful for classification problems [64]. In the present research
thesis, various types of features are extracted to include information
of pixel neighborhoods in a pixel-based classification approach.

Feature extraction is the process of defining a set of features, or im-
age characteristics, which will meaningfully represent the informa-
tion that is important for analysis and classification [64]. Textural
features (texture) are the most common features used to describe
the neighborhood of a pixel. As scholars have noted, “texture is gen-
erally taken to mean whatever structure exists within a semantic re-
gion” [65], and structure represents properties and relationships of
image components. Texture analysis includes texture recognition
(feature extraction), segmentation, and classification in RS applica-
tions. There are several texture descriptors. The methods of texture
extraction can be categorized into four groups[66, 67]: structural
methods, statistical methods, model-based methods, and transform
methods.
Statistical methods represent the spatial distribution of gray val-
ues in an image by deriving a set of statistical measures of the ar-
rangement of intensities in a region. First-order statistics assess
characteristics (e.g., average and variance) of individual pixel val-
ues, while higher-order statistics estimate properties of two or more
pixel values relative to each other. The most important second-order
statistical features for texture analyzing are gray-level co-occurrence
matrices (GLCM). The GLCM functions characterize the texture of an
image by computing how often pairs of pixels with specific values
and in a specified spatial relationship (i.e., pixel relationships of vary-
ing direction and distance) occur in an image, creating a GLCM, and
then extracting statistical measures (e.g., contrast, correlation, ho-
mogeneity, and energy) from this matrix [68, 69]. In this study, we
focus on GLCM textures, which have been reported to enhance crop
classification results and are successfully applied to tackle different
RS image classification problems [68, 69, 70, 71, 72].
Stacking all spectral and spatial features further increases the dimen-
sionality of the datasets.
The performance of kernel-based methods are widely well-reported
among supervised classifiers in handling high-dimensional data
[73, 74]. Kernel-based methods are successfully applied in the
context of hyperspectral and multi-temporal image classification
[59, 75]. The SVM is the most well-known kernel-based method
that has been shown to outperform classical supervised classifiers
for high-dimensional problems in several studies [76, 77]. Another
group of supervised classifiers proven to perform well in hand-
ling high-dimensional data is the tree-based ensemble learning
schemes—in particular, random forest (RF) [78, 79, 80] and ex-
tremely randomized trees [81]. The following sections provide a
detailed background on tree-based ensemble classifiers and the SVM
as the most well-known classification methods for their perform-
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ance in dealing with high-dimensional land cover mapping problems
[82, 73, 83, 84].

1.2 Tree-based ensemble classifiers

Ensemble methods generate multiple base learners and combine
them to obtain better performance than that from any single con-
stituent learning algorithms. Ensemble methods assign labels to new
data samples by taking a weighted or unweighted vote of predictions
[85]. Two common ensemble techniques are boosting and bagging
[86]. Boosting sequentially builds different base learners trained
on the basis of whole training samples [86]. In boosting, samples
are weighted on the basis of the previous classifier’s success [86].
After each training step, the weights of misclassified samples are
increased to emphasize the most difficult cases [86]. Boosting uses
the weighted average votes of base learners for a new prediction. On
the other hand, bagging techniques in parallel generate multiple base
learners and train them based on bootstrap samples of training data
[87]. Bootstrap sampling is random sampling with replacements.
Bagging uses voting to aggregate the output of base learners, thereby
reducing the variance of the prediction [87]. Benchmarking results
show that boosting approaches generally provide higher accuracies
compared to bagging approaches [88]. However, the optimization of
boosting approaches is more time-consuming and difficult because
of the sequential process of training and higher number of training
parameters. Moreover, boosting is more sensitive to overfitting,
particularly if the training samples are noisy [86].

Classification trees (CTs) are the most popular base learners for gen-
erating ensembles introduced by Leo Breiman [89]. CTs are super-
vised tree-based (i.e., do not assume a particular data distribution)
non-parametric classification (and regression) learners that are ap-
plied in several land cover classification problems [89, 90, 91, 92].
CTs utilize a hierarchical tree-based approach that divide the fea-
ture space of training data recursively into child nodes, until each
of them contains very similar samples or until one stopping condi-
tion is met [89]. CTs divide each node by extensively searching for
a best cut-point. Although CTs are simple to interpret and oper-
ate, a few major drawbacks are that they tend to overfit, are sens-
itive to noise and size of training data, and require pruning [93].
In order to improve the classification accuracies of CTs, [94] intro-
duced RF, which is a group of CTs. RF is a well-known tree-based
ensemble learner that works based on the bagging scheme. RF works
on the concept of utilizing multiple unpruned CTs that are trained
on the basis of bootstrap samples of training data and variables, with
the remaining samples called out-of-bag samples that contribute to
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evaluating classification accuracy. RF uses a maximum voting rule
from the prediction of all CTs to assign class labels to new samples
[93, 94]. RF is a non-parametric approach like its components, the
CTs. Moreover, RF can be easily trained and implemented, as set-
ting its parameters to their default values stabilize the error of the
classification in most classification problems[95]. In addition, RF is
not sensitive to overfitting and requires a small sample size with
high-dimensional input compared to CTs and several other classifi-
ers [95, 96, 93]. Several studies have shown that RF outperforms tra-
ditional machine learning classifiers and provides comparable clas-
sification accuracies, while requiring fewer user-defined parameters
compared to SVM [97]. In addition, RF is fast and computationally
much lighter compared to SVM in both the training and predicting
phases [98]. Another tree-based bagging scheme is extremely ran-
domized trees, known as Extra-Trees (ET), which has been reported
to outperform the SVM and RF in several studies [99, 100]. ET also
generates an ensemble of unpruned decision trees like RF, but the
level of randomization in ET is higher and the computational load
of ET is smaller compared to that of RF [99, 100]. In addition, ET
employs all training samples rather than bootstrap subsets to grow
the trees [99, 100].

1.2.1 Tree-based ensemble learners: Pros and cons

Several strong features of tree-based ensemble learners make them a
good choice for RS image classification. First, the default parameter
configurations turned out to be optimal in terms of accuracy, which
highlights the fact that these methods are almost parameter-free
but still able to learn non-linear data [101, 102]. Second, their
computing times are also rather competitive on rather large and
high-dimensional datasets, both for training and making predictions
[101, 102]. Third, tree-based ensemble learners can be used to
obtain feature importance measures based on total decrease in
node impurity from removing each feature, averaged over all trees.
Obtaining the feature importance measure can provide some insight
regarding the problem at hand [103, 101, 102]. Fourth, the structure
of the tree-based ensemble learners creates data partitions, and
similarity among samples can be quantified on the basis of whether
or not the samples end up in the same partition and the similarity
values among samples can be used to define tree-based kernels. The
connection of tree-based ensemble learners and kernel methods is
emphasized in several studies [103, 104, 105, 106]. Last, tree-based
ensemble learners can be used to detect outliers in data on the basis
of the similarity values among the samples [107, 108, 109]. On the
downside, tree-based ensemble learners are difficult to visualize
and interpret in detail and they have been observed to overfit for
certain noisy datasets [101].
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1.3 Support vector machine

For linearly separable data samples, an SVM aims to find an optimal
location for a hyperplane in an N-dimensional space (N being the
number of features) that partitions training samples into a finite
number of classes [29, 110]. Generally, all training samples are not
used in defining the hyperplane; this is mainly done by a subset
of points that is located closest to the hyperplane (called support
vectors). The optimal location for a hyperplane is where it generates
the greatest margin (i.e., the sum of the distances to the hyperplane
from support vectors) between classes. The problem of maximizing
the margin is solved using standard quadratic programming optim-
ization techniques. SVM tolerates a few misclassified samples in the
trade-off with identifying a hyperplane that maximizes the margin.
This trade-off is controlled with a regularization parameter called
the C parameter [29, 110]. If the classes are nonlinearly separable
in the original high-dimensional space, the original data is mapped
into a higher-dimensional feature space using a kernel function,
thereby formulating a linear classification problem in that feature
space [111, 112]. There are different types of nonlinear kernels,
such as sigmoid, polynomial, and radial basis function (RBF) kernels.
Among all types of kernel functions, the most well-known is the
RBF kernel (k(xi, xj) = exp(−(xi − xj)

2
/2σ2), where σ is the bandwidth

and controls the dependency of the hyperplane on the training
samples that are far from and close to the hyperplane). SVM using
the RBF kernel requires the fixing of two parameters, σ and C. These
parameters are typically optimized by cross-validation of a grid
space of (C, σ) [111, 112, 29].
The characterization of an SVM as a non-parametric kernel-based
learning technique is an appealing classification technique in RS land
cover classification [113, 29]. The successful use of SVM is reported
for land cover classification of monotemporal [114], multitemporal
[115], multisensor [116], and hyperspectral [117] datasets.

1.3.1 SVM using an RBF kernel: Pros and cons

An SVM using an RBF kernel that represents a Gaussian func-
tion is well-known because of its capability of handling nonlinear
high-dimensional data [73]. However, the main challenge of this
classifier is the selection of the hyperparameters, since hyperpara-
meters strongly influence classification results. The hyperparamet-
ers are typically selected by defining appropriate ranges for each of
them to find the best configuration through a computationally ex-
tensive cross-validation process. This approach is not efficient for
large datasets; therefore, Bayesian hyperparameter optimization is
employed in these cases [118]. Bayesian hyperparameter optimiza-
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tion builds a probability model of the objective function and optim-
izes the probability model to select the most promising hyperpara-
meters of the true objective function. Further, Bayesian hyperpara-
meter optimization reduces the computational time by utilizing an
iterative approach that maintains a record of previous iterations for
searching the next part of the feature space. However, Bayesian hy-
perparameter optimization remains a complex non-convex optimiza-
tion problem. Moreover, the performance of RBF in an SVM decreases
significantly when the number of features is much higher than the
number of training samples—particularly if there are correlated and
non-informative (i.e., noise) features in the dataset. Several studies
use various feature selection approaches to overcome this downside
of using the RBF kernel in SVM (i.e., SVM-RBF). The main feature se-
lection methods used with SVM can be divided into filters, wrappers,
and embedded methods [119], but each group has its own draw-
backs. Filters select the features that are independent of the classi-
fier, wrappers tend to be computationally expensive, and embedded
methods require building multiple models [119]. Recently, several
studies have shown that the use of tree-based ensemble learners as
feature selection methods for an SVM is efficient and competitive
[119, 120].

1.4 Integrating tree-based ensemble learners
and the SVM classifier

The SVM and ensemble classifiers are the most prominent super-
vised classifiers used by the RS community in high-dimensional
classification problems. In order to combine the power of an SVM
and ensemble classifiers and to overcome the downsides of each
classifier, several studies present an integrated approach employing
both classifiers. For example, using an RF-based feature selection
method for dimensionality reduction of hyperspectral data [16, 121]
leads to higher overall accuracy (OA) for SVM-RBF. In [122], a hybrid
SVM-based approach that is inspired by RF and boosting classifiers
is used for RS data classification. The idea in this hybrid approach
is to subdivide the input dataset into smaller subsets and classify
individual subsets using the SVM classifier. In an iterative approach,
boosting is used in each subset to update a weight factor for every
data item in the dataset. The weight factors are increased if misclas-
sification has occurred and vice versa. Inspired by RF, the outcome
for the complete dataset is obtained by implementing a majority
voting mechanism to the individual subset classification outcomes
[122].

Another approach that has been used to integrate SVM-RBF and RF
is dynamic classifier selection in which a pool of base classifiers
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with different parameters and initializations are generated and the
base classifiers are selected on the fly, in accordance with each new
sample to be classified [123, 124]. The outputs obtained by the
selected classifiers are fused in accordance with a combination rule,
such as that employed in the majority voting scheme [125, 124]. In
[124], an ensemble of five base classifiers—including an SVM-RBF
and an RF—is used that improves the OAs of the classifications
compared to the base classifiers in mapping crops from a time
series of VHR images. However, ensemble methods demand high
computational capability [124].

Although the integration of an SVM and ensemble classifiers for RS
image classification is addressed in several works with their own
pros and cons, there is a knowledge gap in integrating these classi-
fiers through the kernel connection. The potential of RF and other
ensemble learners to be reformulated as kernel methods is emphas-
ized in several studies [103, 104, 105, 106]. Therefore, prevalent
ensemble learning methods like RF and most recent approaches like
ET can be related to kernel-based methods, like an SVM, through
the kernel connection. The strong features of tree-based ensemble
learners, like feature importance, can also be exploited to enhance
the design of tree-based kernels. In this thesis, SVM and prevalent
ensemble classifiers (i.e., RF and ET) as supervised classification
frameworks and the most prominent classifiers used by the RS
community are applied for crop classification. We evaluate whether
the combination of these classifiers through kernel connections can
help overcome the limitations of each classifier while maintaining
their strong points.

1.5 Research objectives and questions

The main research objective of this PhD thesis is to integrate two
of the most prevalent classifiers used by the geospatial community:
tree-based methods like RF and kernel methods like an SVM. In par-
ticular, this thesis concentrates on exploring the use of tree-based
kernels in SVMs by addressing the following specific objectives and
research questions:

1. Evaluating the potential of using an RF-based kernel (RFK) to
classify remotely sensed images

a) How do the classification results of SVM-RFK compare to
those obtained by standard RF and SVM-RBF classifiers?

b) How do RF’s most important parameters affect the per-
formance of SVM-RFK classifier?

11



1. Introduction

c) How does RF’s feature selection impact the classification
results of SVM-RFK classifier?

2. Investigating the pros and cons of alternative RFK formula-
tions

a) How does the use of a branch-based distance compare
to the standard similarity metric used to calculate the RFK?

b) How does designing a multiscale RFK based on using
multiple depths of RF compare to the standard similarity
metric used to calculate the RFK?

c) How does designing a multiscale RFK based on using
multiple depths and class probabilities compare to the
standard similarity metric used to calculate the RFK?

3. Exploring the use of an alternative tree-based classifier,
namely ET, to derive tree-based kernels

a) What is the influence of ET’s most important parameters
on the classification accuracy of the corresponding SVM-
ETK classifier?

b) How does the level of randomization influence the per-
formance of the ET and SVM-ETK classifiers?

c) How do the classification results of SVM-ETK compare
with those obtained by the standard ET, SVM-RBF, and
SVM-RFK classifiers?

4. Present an R function that implements the various designs
of tree-based kernels evaluated in this thesis to support the
shift toward open science

1.6 Thesis outline

This thesis has a total of six chapters, including the Introduction
and Synthesis. Apart from the Introduction and Synthesis, three core
chapters are based on papers that have been published in peer-review
journals and are independently structured as Abstract, Introduction,
Data and Study Area, Methods, Experiments, Discussion, and Conclu-
sions. The five chapters, after the introduction, can be summarized
in the following manner:
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• Chapter 2 presents a classificationmethod based on integrating
RF and SVM for the production of land cover maps through the
use of an RFK in an SVM. The performance of the synergic clas-
sifier is evaluated for crop classification over agricultural lands
by comparing it against using a radial basis function (RBF) ker-
nel in an SVM (SVM-RBF) and standard RF classifiers. Two VHR
datasets, including a time series of multispectral Worldview-2
images over Sukumba, West Africa, and a single hyperspectral
AVIRIS image over Salinas, California are used for illustration
in this chapter.

• Chapter 3 explores the relationship between RF and kernel
methods by investigating the various characteristics of RF in
order to generate an improved RFK design. Accordingly, this
chapter presents a multi-scale RFK that uses multiple depths
of RF to create an improved design for RFK. Further, in this
chapter, the performance of the newly designed RFKs is evalu-
ated by comparing them with the performance of RBF and clas-
sic design of RFK in an SVM classifier to classify crops over the
study area of Sukumba.

• Chapter 4 presents the use of ET to create an ETK that is intro-
duced in an SVM for land cover classification. In this chapter,
the performance of ETK is benchmarked against that of RBF and
RFK in an SVM and against the standard ET classifier. These
methods are evaluated for crop classification in small-scale ag-
riculture over the study area of Sukumba.

• Chapter 5 presents an R-function implementing the different
designs of tree-based kernels evaluated in this thesis, accom-
panied with a documentation of the function.

• Chapter 6 summarizes the results obtained from Chapters 2–
5, answers the research questions, presents research reflec-
tions, discusses the main contribution of this PhD thesis, and
provides recommendations for future research.
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2Evaluating the performance of
a random forest kernel for
land cover classification

This chapter is based on the published papers:
A. Zafari, R. Zurita-Milla, and E. Izquierdo-Verdiguier, “Integrating
support vectormachines and random forests to classify crops in time
series of worldview-2 images,” in Image and Signal Processing for
Remote Sensing XXIII, vol. 10427, p. 104270W, International Society
for Optics and Photonics, 2017.
A. Zafari, R. Zurita-Milla, and E. Izquierdo-Verdiguier, “Evaluating the
performance of a random forest kernel for land cover classification,”
Remote Sensing, vol. 11, no. 5, 2019.
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Abstract

The production of land cover maps through satellite image classi-
fication is a frequent task in remote sensing. Random Forest (RF)
and Support Vector Machine (SVM) are the two most well-known
and recurrently used methods for this task. In this paper, we
evaluate the pros and cons of using an RF-based kernel (RFK) in
an SVM compared to using the conventional Radial Basis Function
(RBF) kernel and standard RF classifier. A time series of seven
multispectral WorldView-2 images acquired over Sukumba (Mali)
and a single hyperspectral AVIRIS image acquired over Salinas Valley
(CA, USA) are used to illustrate the analyses. For each study area,
SVM-RFK, RF, and SVM-RBF were trained and tested under different
conditions over ten subsets. The spectral features for Sukumba
were extended by obtaining vegetation indices (VIs) and grey-level
co-occurrence matrices (GLCMs), the Salinas dataset is used as
benchmarking with its original number of features. In Sukumba, the
overall accuracies (OAs) based on the spectral features only are of
81.34%, 81.08% and 82.08% for SVM-RFK, RF, and SVM-RBF. Adding
VI and GLCM features results in OAs of 82.%, 80.82% and 77.96%. In
Salinas, OAs are of 94.42%, 95.83% and 94.16%. These results show
that SVM-RFK yields slightly higher OAs than RF in high dimensional
and noisy experiments, and it provides competitive results in the
rest of the experiments. They also show that SVM-RFK generates
highly competitive results when compared to SVM-RBF while sub-
stantially reducing the time and computational cost associated with
parametrizing the kernel. Moreover, SVM-RFK outperforms SVM-RBF
in high dimensional and noisy problems. RF was also used to select
the most important features for the extended dataset of Sukumba;
the SVM-RFK derived from these features improved the OA of the
previous SVM-RFK by 2%. Thus, the proposed SVM-RFK classifier is
at least as good as RF and SVM-RBF and can achieve considerable
improvements when applied to high dimensional data and when
combined with RF-based feature selection methods.

Keywords: Image classification, Random forest, Support vector ma-
chine, Random forest kernel, Very high spatial resolution satellite
images
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2.1 Introduction

Remote sensing (RS) researchers have created land cover maps from
a variety of data sources, including panchromatic [14], multispec-
tral [15], hyperspectral [16], and synthetic aperture radar [17], as
well as from the fusion of two or more of these data sources [18].
Using these different data sources, a variety of approaches have also
been developed to produce land cover maps. According to the lit-
erature, approaches that rely on supervised classifiers often out-
perform approaches based on unsupervised classifiers [60]. This
is because the classes of interest may not present the clear spec-
tral separability required by unsupervised classifiers [60]. Maximum
Likelihood (ML), Neural Networks (NN) and fuzzy classifiers are clas-
sical supervised classifiers. However, there are unsolved issues with
these classifiers. ML assumes a Gaussian distribution, which may
not always occur in complex remote sensed data [126, 127]. NN
classifiers have a large number of parameters (weights) which re-
quire a high number of training samples to optimize particularly
when the dimensionality of input increases [128]. Moreover, NN
is a black-box approach that hides the underlying prediction pro-
cess [128]. Fuzzy classifiers require dealing with the issue of how
to best present the output to the end user [129]. Moreover, classical
classifiers have difficulties with the complexity and size of the new
datasets [130]. Several works have compared classification methods
over satellite images, and report Random Forest (RF) and Support
Vector Machine (SVM) as top classifiers, in particular, when dealing
with high-dimensional data [131, 132]. Convolutional neural net-
works and other deep learning approaches require huge computa-
tional power and large amounts of ground truth data [133].

With recent developments in technology, high and very high spa-
tial resolution data are becoming more and more available with en-
hanced spectral and temporal resolutions. Therefore, the abundance
of information in such images brings new technological challenges
to the domain of data analysis and pushes the scientific community
to develop more efficient classifiers. The main challenges that an
efficient supervised classifier should address are [95]: handling the
Hughes phenomenon or curse of dimensionality that occurs when
the number of features is much larger than the number of train-
ing samples [62], dealing with noise in labeled and unlabeled data,
and reducing the computational load of the classification [98]. The
Hughes phenomenon is a common problem for several remote sens-
ing data such as hyperspectral images [134] and time series ofmultis-
pectral satellite images where [60] spatial, spectral and temporal fea-
tures are stacked on top of the original spectral channels for model-
ing additional information sources [63]. Over the last two decades,
the Hughes phenomenon has been tackled in different ways by the
remote sensing community [135, 136]. Among them, kernel-based
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methods have drawn increasing attention because of their capability
to handle nonlinear high-dimensional data in a simple way [73]. By
using a nonlinear mapping function, kernel-based methods map the
input data into a Reproducing Kernel Hilbert Space (RKHS) where the
data is linearly separable. There is no need to work explicitly with the
mapping function because one can compute the nonlinear relations
between data via a kernel function. The function kernel reproduces
the similarity of the data in pairs in RKHS. In other words, kernel-
based methods require computing a pairwise matrix of similarities
between the samples. Thus, a matrix is obtained using the kernel
function in the classification procedure [137]. The kernel methods
generally show good performance for high-dimensional problems.
SVM as a kernel-based non-parametric method [138] has been
successfully applied for land cover classification of mono-
temporal [114], multi-temporal [115], multi-sensor [116] and
hyperspectral [117] datasets. However, the main challenge of
the SVM classifier is the selection of the kernel parameters. This
selection is usually implemented through computationally intensive
cross-validation processes. The most commonly nonlinear ker-
nel function used for SVM is Radial Basis Function (RBF), which
represents a Gaussian function. In SVM-RBF classifier, selecting
the best values for kernel parameters is a challenging task since
classification results are strongly influenced by them. The selection
of RBF kernel parameters typically requires to define appropriate
ranges for each of them and to find the best combination through
a cross-validation process. Moreover, the performance of SVM-RBF
decreases significantly when the number of features is much higher
than the number of training samples. To address this issue, here we
introduce and evaluate the use of a Random Forest Kernel (RFK) in
an SVM classifier. The RFK can easily be derived from the results of
an RF classification [105]. RF is another well-known non-parametric
classifier that can compete with the SVM in high-dimensional data
classification. RF is an ensemble classifier that uses a set of weak
learners (classification trees) to predict class labels [94]. A number
of studies review the use of RF classifier for mono-temporal [139],
multi-temporal [140], multi-sensor [141] and hyperspectral [142]
data classification. Compared to other machine learning algorithms,
RF is known for being fast and less sensitive to a high number of
features, a few numbers of training samples, overfitting, noise in
training samples, and choice of parameters. These characteristics
make RF an appropriate method to classify high-dimensional data.
Moreover, the tree-based structure of the RF can be used to create
partitions in the data and to generate an RFK that encodes simil-
arities between samples based on the partitions [104]. However,
RF is difficult to visualize and interpret in detail, and it has been
observed to overfit for some noisy datasets. Hence, the motivation
of this work is to introduce the use of SVM-RFK as a way to combine
the two most prominent classifiers used by the RS community and

18



2.2. Methods

evaluating whether this combination can overcome the limitations of
each single classifier while maintaining their strong points. Finally,
it is worth mentioning that our evaluation is illustrated with a time
series of very high spatial resolution data and with a hyperspectral
image. Both datasets were acquired over agricultural lands. Hence,
our study cases aim at mapping crop types.

2.2 Methods

This section introduces the classifiers background. As SVM and RF
are well-known classifiers, a summary of them is presented in this
section. After that, we define the RFK and explain how it is generated
from the RF classifier.

2.2.1 Random forest

The basics of RF have been comprehensively discussed in several
sources during last decades [95], [94], and [143]. Briefly, RF classifi-
ers are composed of a set of classification trees trained using boot-
strapped samples from the training data [94]. In each bootstrapped
sample, about two-thirds of the training data (in-bag samples) are
used to grow an unpruned classification (or regression) tree, and the
rest of the samples (the out-of-the-bag samples) are used to estimate
the out of bag (OOB) error. Each tree is grown by recursive parti-
tioning the data into nodes until each of them contains very similar
samples, or until meeting one stopping condition [94]. Examples of
the latter are reaching the maximum depth, or when the number of
samples at the nodes is below a predefined threshold [94]. RF uses
the Gini Index [87] to find the best feature and plot point to separ-
ate the training samples into homogeneous groups (classes). A key
characteristic of RF is that only a random subset of all the available
features is evaluated when looking for the best split point. The num-
ber of features in the subset is controlled by the user and is typically
called mtry. Hence, for large trees which is what RFs use, it is at
least conceivable that all features might be used at some point when
searching for split points whilst growing the tree. The final classifica-
tion results are obtained by considering themajority votes calculated
from all trees, and that is why RF is called a bagging approach [94].
A general design of RF is shown in Figure 2.1.
The operational use of RF classifiers requires setting two import-
ant parameters. First, the number of the decision trees to be gen-
erated Nt. Second, the number of the features to be randomly se-
lected for defining the best split in each node mtry. Studies show
the default value of 500 trees and the square root of the number
of features in the most applications stabilize the error of the clas-
sification [95, 144]. Studies also show that classification results are
most sensitive to the latter parameter. However, it is important to re-
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mark that several studies consistently observe that the differences in
Overall Accuracies (OAs) between the best configurations and other
configurations for RF are small [130, 145, 146]. Moreover, RF is
known for being fast, stable against overfitting and requiring small
sample size with high dimensional input compared to many classi-
fiers [95, 96]. Furthermore, RF is commonly used for feature selec-
tion by defining feature importance values based on total decrease
in node impurity from splitting on the features, averaged over all
trees (Mean decrease Gini index). These characteristics, besides the
tree-based structure, make RF a good choice to be used as a partition-
ing algorithm that allows for the extraction of the similarity between
samples. This similarity can then be used to create an RFK. In Sec-
tion 2.2.3, we discuss how to obtain the similarity values between
samples based on partitions created on data by trees in an RF.

2.2.2 Support Vector Machine

The base strategy of an SVM is to find a hyperplane in a high-
dimensional space that separates the training data into classes so
that the class members are maximally apart [135]. In other words,
SVM finds the hyperplane that maximizes themargin, where themar-
gin is the sum of the distances to the hyperplane from the closest
point of each class [111]. The points on the margin are called sup-
port vectors. Figure 2.2a illustrates a two-class separable classi-
fication problem in a two-dimensional input space. Remote sens-
ing data is often nonlinearly separable in the original high dimen-
sional space [111]. In that case, the original data is mapped into
a RKHS, where the data is linearly separable [112]. Figure 2.2b il-
lustrates a two-class nonlinear separable classification problem in a
two-dimensional input space.
Given training column vectors, xi ∈ RNf , where Nf is the number of
dimensions. In addition, a binary class vector that denotes the labels,
yi ∈ {−1, 1}, where i represents the i − th sample, the maximization
of the margin can be formulated as a convex quadratic programming
problem. One way to solve the optimization problem is using the
Lagrange multipliers (dual problem) as follows:

max
α

(

N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjxixj),

subject to 0 ≤ α ≤ C and
N∑
i=1

αiyi = 0. (2.1)

In Equation (2.1), αi is a Lagrange multiplier, C is a penalty (regulariz-
ation) parameter and xixj is the dot product between xi and xj . When
the data is nonlinear separable in the original space (characteristic of
remote sensing data), the data is mapped into RKHS through a map-
ping function Φ : x → φ(x). The dot product in the RKHS space is
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Figure 2.1 Example of general design of RF classifier with n number of
trees.

Figure 2.2 Example of a linear (a) and a nonlinear SVM (b) for a two-class
classification problem. The nonlinear SVM maps the data into high dimen-
sional space to separate linearly the classes of the data.
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defined by a nonlinear kernel function k(xi, xj) = φ(xi)
Tφ(xj). When

the kernel function is calculated for all samples (N ), the kernel func-
tion generates a square matrix (K ∈ RN×N ) that containing pairwise
similarities between the samples. Note that K is a positive definite
and symmetric matrix.
Within all type of kernel functions, the most well-known is the Radial
Basis Function (RBF) kernel (k(xi, xj) = exp(−(xi − xj)

2
/2σ2), where σ

is the bandwidth). Thus, the SVM using the RBF kernel requires to fix
two parameters, the σ and C. These parameters are tuned by cross-
validation of a grid space of (C, σ). For a comprehensive review of
kernel methods, see [147].

2.2.3 Random Forest Kernel

This section presents the RFK kernel. The main idea of the RFK is
to calculate the similarities of pairwise data directly from the data
by means of a discriminative model (i.e., learning the classification
boundaries between classes) [148]. A discriminative approach di-
vides the data into partitions through algorithms such as clustering
or random forest [104]. In these cases, the fundamental idea is that
the data that fall in the same partition are similar, and the data that
fall in the different partitions are dissimilar (e.g., the Random Parti-
tion kernel [105]).
Let be ρ a random partition of the dataset, the Random Partition ker-
nel is the average of occurrences that two samples (xi and xj) fall in
the same partition, that is:

K(xi, xj) =
1

m

m∑
g=1

I[ρg(xi) = ρg(xj)] i, j = 1, . . . , N, (2.2)

where I is the indicator function. I is equal to one when ρg(xi) =
ρg(xj), which means for this case that the samples xi and xj fall in
the same partition; otherwise, it is zero [131]. In addition, g is the
number of the partition in the data created by the eligible algorithms.
Following the idea of the Random Partition kernel, the RFK is gener-
ated through creating random partitions by the RF classifier. As we
have said before, RF is composed of trees. Each tree splits the data
into homogeneous terminal nodes [149, 105]. Thus, the RFK uses the
partitions obtained by the terminal nodes to calculate the similarity
among data. In this instance, if two samples are landed in the same
terminal node of a tree, the similarity is equal to one; otherwise, it is
zero. The similarity of each tree (Ktn(xi, xj)) is obtained by [105]:

Ktn(xi, xj) = I [ t(xi) = t(xj)], (2.3)

where t is a terminal node and tn is the n − th tree of the RF. Then,
the RFK matrix is calculated by the average of tree kernel matrices.

KRFK =
1

Nt

Nt∑
n=1

Ktn , (2.4)
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Nt being the number of trees used in the RF.
Moreover, RF can also be used to identify the most important fea-
tures (MIF) for high dimensional datasets, and an additional RFK can
be derived from a subsequent RF model trained with those features
only (RFK-MIF), which can be used in an SVM (SVM-RFK-MIF).
To assess the dependence of the applied kernels with an ideal kernel,
we adopt the Hilbert–Schmidt Independence Criterion (HSIC) [150].
Given a kernel matrix for training dataset X (Kx) and the ideal ker-
nel matrix for the class vector Y (Ky), the HSIC is obtained as fol-
lows [150]:

HSIC(KX ,KY ) =
1

m2
Tr(KXHKY H), (2.5)

where Tr is the trace operator, H is the centering matrix, and m is
the number of samples. It has been proven that lower values of HSIC
show the poorer alignment of the kernels with the target (ideal) ker-
nel, and lower class separability subsequently.

2.3 Data and ground truth

Two high-dimensional data-sets including a time series of multispec-
tral WorldView-2 (WV2) images and one hyperspectral AVIRIS image
are used to evaluate the performance of the RFK. The first dataset
was used to illustrate our work on a complex problem, namely that
of classifying time series of VHR images to map crops. The second
dataset was selected because it has been used as a benchmark data-
set in several papers [151, 152].

2.3.1 WorldView-2

A time series of WV2 images acquired over Sukumba area in Mali,
West Africa in 2014 is used to illustrate this study. The WV2 sensor
provides data for eight spectral features at a spatial resolution of 2
m. This dataset includes seven multispectral images that span the
cropping season [153]. The acquisition dates include May, June, July,
October, and November. Ground truth labels for five common crops
in the test area including cotton, maize, millet, peanut, and sorghum,
were collected through fieldwork. These images and the correspond-
ing ground data are part of the STARS project. This project, sup-
ported by the Bill and Melinda Gates foundation, aims to improve
the livelihood of smallholder farmers. The Sukumba images are at-
mospherically corrected, co-registered and the trees and clouds are
masked [153]. Figure 2.3a,b show the study area and the 45 fields
contained within the database.
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2.3.2 AVIRIS

A Hyperspectral image acquired by the AVIRIS sensor over Salinas
Valley (CA, USA) on 9 October 1998 [132] is used to illustrate this
study. The Salinas dataset is atmospherically corrected, and al-
though the image contains 224 bands, they were reduced to 204 by
removing water absorption bands (i.e., bands [104 − 108], [150 − 163],
and 224). AVIRIS provides 3.7 meter spatial resolution. Ground truth
labels are available for all fields and these labels contain 16 classes
including vegetables, bare soils, and vineyard fields. Figure 2.3c,d
show the area of interest and the RGB composite of the image.

2.4 Preprocessing and experimental set-Up

In this section, we describe the preprocessing and main steps of our
work, which are also outlined in Figure 2.4.

2.4.1 Preprocessing

As shown in Figure 2.4, the accuracy of the classifiers was analyzed
regarding the number of features. Table 2.1 shows the number of
samples, features, and classes for each dataset. Additional features
were generated (Table 2.2) for Sukumba dataset by obtaining Veget-
ation Indices (VIs) and Gray-Level Co-Occurrence Matrix (GLCM) fea-
tures from spectral bands. These additional features were concaten-
ated with the original spectral features to form an extended dataset
for Sukumba.
The Sukumba dataset, which originally contains 56 bands, was ex-
tended by Normalized Difference Vegetation Index (NDVI), Differ-
ence Vegetation Index (DVI), Ratio Vegetation Index (RVI), Soil Adjus-
ted Vegetation Index (SAVI), Modified Soil-Adjusted Vegetation Index
(MSAVI), Water Band Index (WBI), Transformed Chlorophyll Absorp-
tion Reflectance Index (TCARI), and Enhanced vegetation index (EVI)
increasing the number of the features until 105. Next, the number
of features for Sukumba dataset was extended by adding the GLCM
textures to the spectral features and VIs. Texture analysis using the
Gray-Level Co-Occurrence Matrix is a statistical method of examining
texture that considers the spatial relationship of pixels [160]. The
GLCM textures derived for Sukumba dataset are presented and ex-
plained comprehensively in [124]. For each spectral feature, stat-
istical textures including angular second moment, correlation, in-
verse difference moment, sum variance, entropy, difference entropy,
information measures of correlation, dissimilarity, inertia, cluster
shade, and cluster prominence are obtained [124]. Concatenating
spectral, VI and GLCM features increase the number of features to
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Figure 2.3 (a) study area of Sukumba site, southeast of Koutiala, Mali; (b)
crop polygons for Mali and (c) study area of Salinas Valley, CA, USA and (d)
RGB composite of Salinas.

Table 2.1 Dataset description (Nf : Number of features, Ntr total number
training samples, Nts total number test samples and Ncl number of classes).

Dataset Features Nf Ntr Nts Ncl

Sukumba
Spectral features 56

2043 1858 5
Spectral &additional features 1057

Salinas Spectral features 204 24612 20782 16

25



2. Random forest kernel

Table 2.2 List of VIs used in this study together with a sort explanation of
the them.

Formula Description

NDV I = NIR−Red
NIR+Red NDVI is a proxy for the amount of ve-

getation, and helps to distinguish the ve-
getation from the soil while minimizing
the topographic effects, though does not
eliminate the atmospheric effects [154].

DV I = NIR−Red DVI also helps to distinguish between soil
and vegetation, yet does not deal with
the difference between the reflectance
and radiance from atmosphere or shad-
ows [155]

RV I = NIR
Red

RVI is the simplest ratio-based index
showing high values for the vegetation
and low values for soil, ice, water, etc.
This index can reduce the atmospheric
and topographic effects [155].

SAV I = (NIR−Red)∗(1+L)
NIR+Red+L

SAVI is similar to the NDVI, yet it sup-
presses the soil effects by using an ad-
justment factor, L, which is a vegetation
canopy background adjustment factor. L
varies from 0 to 1 and often requires prior
knowledge of vegetation densities to be
set [156].

MSAV I2 =
2NIR+1−

√
(2NIR+1)2−8(NIR−RED)

2

MSAVI is a developed version of SAVI
where the L-factor dynamically is adjus-
ted using the image data and MSAVI2 is
an iterated version of MSAVI [157].

TCARI =
3[(R700 −R670)− 0.2(R700 −R550)(

R700

R670
)]

TCARI indicates the relative abundance
of chlorophyll using the reflectance at the
wavelengths of 700 (i.e., R700), 670 and
550 and reduces the background (soil and
non-photosynthetic components) effects
compared to the initial versions of this in-
dex [158].

EV I = 2.5(NIR−Red)
NIR+6Red−7.5Blue+1

EVI is developed to improve the NDVI
by optimizing the vegetation signal with
using blue reflectance to correct the
soil background and atmospheric influ-
ences [159].
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2.4. Preprocessing and experimental set-Up

Figure 2.4 Overview of the steps followed to compare SVM-RFK with RF and
SVM-RBF. Notation: The boxes with Sukumba dataset indicate steps that
were only applied to this dataset, and the rest of the boxes indicate steps
applied to both datasets

.

1057. Salinas dataset with 204 features used as a benchmarking data-
set with its original number of features.

2.4.2 Experimental Set-Up

First, the polygons of the Sukumba dataset were split into four sub-
polygons of approximately the same size to extract the training and
test samples. Unlike a random selection of train and test samples,
this step avoids selecting close samples in the training and test sets,
which would inflate the performance of the classifiers. Two sub-
polygons were selected to choose the training samples and the other
two, the test samples. Both the train and test sets were split into
ten random subsets, with a balanced number of samples per class
(130 and 100 samples per class for training and test, respectively). A
random sampling was used in the Salinas dataset (like in previous
studies using this dataset). The samples were randomly split into
train and test sets and 10 subsets are selected randomly from train
and test sets separately, with the number of samples per class bal-
anced (again, 130 and 100 samples per class for training and test).
In all the experiments, the optimization of the classifier parameters
was required. The number of trees in RF was set to 500, according
to the literature. The mtry parameter influence partially on the clas-
sification results of RF [130, 145]. Hence, we explored the influence
of mtry on the SVM-RFK classification results. First, the RFK is ob-
tained by training RF with the default value of this parameter. Next,
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an RFK was obtained by optimizingmtry parameter for RF in a range
of [Nf

(−1/2) − 10, Nf
(−1/2) + 10] in steps of two. Then, the RFKs were

obtained from the corresponding RF classifiers.
Taking the advantage of RF to select the most important features in
high dimensional datasets, this method was used to select the top
features in the extended dataset of Sukumba. The feature import-
ance values provided by RF were used to select the 100 MIF, and an
RFK was obtained using a subsequent RF model trained with the 100
features. Using RFKs in an SVM, a 5-fold cross-validation approach
was used to find the optimal C value in the range [5, 500]. For the
RBF kernel, we use the same range for the C parameter and the op-
timum bandwidth was found using the range [0.1, 0.9] of the quantiles

of the pairwise Euclidean distances (D = ∥x− x
′∥

2
) between the train-

ing samples. In all the cases, the one-versus-one multiclass strategy
implemented in LibSVM [161] was used. An equal number of 11 can-
didates is considered when optimizing mtry for RF, as well as the
bandwidth parameter of SVM-RBF. Classification results are com-
pared in terms of their Overall Accuracy (OA), their Cohen’s kappa
index (κ), the F-scores of each class, and the timing of the methods.
The computational times for each classifier were estimated using the
ksvm function in the kernlab package of R [162]. The built-in and
custom kernel of this package were respectively used to obtain RBF
and RFKs classifications in an SVM. To obtain RF models and RFKs,
randomForest package of R is used [108]. In addition, the generated
RF-based and RBF kernels are compared through both visualization
and HSIC measures. Finally, crop classifications maps are provided
for the best classifiers.

2.5 Results and discussion

This section presents the classification results obtained with the
proposed RF-based kernels and with the standard RF and SVM
classifiers. All results were obtained by averaging the results of
the 10 subsets used in each experiment. Results obtained with
the default value of mtry are shown with RFd and RFKd, and those
obtained with optimized mtry are shown by RF and RFK.

The OA and κ index averages of ten subsets are shown in Table 2.3
and Figure 2.5. In both cases, Sukumba and Salinas, results show
high accuracies for all the classifiers for spectral features. The
computational times for each classifier are depicted in Figure 2.6.

Table 2.3 and Figure 2.5 show that the three classifiers compete
closely in the experiments using only spectral features. Comparing
SVM-RFK and RF, SVM-RFK improves the results compared to RF in
terms of OA and κ for all Sukumba and Salinas datasets. Focusing
on only the spectral features, the RFK improvement is marginal. Op-
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timizing the mtry parameter also helps the RF and SVM-RFK to out-
perform marginally compared to the models with the default values
of the mtry. Although RF and RFK get better results by optimizing
mtry parameter, the higher optimization cost required allows us to
avoid it (Figure 2.6). This fact also make evident that optimizing the
RF parameters is not crucial for obtaining an RFK.
Focusing on spectral features, the SVM-RBF yields slightly better
results than SVM-RFK in terms OA and κ, reaching a difference of
1.41% and 0.74% in OA for Salinas dataset and Sukumba datasets,
respectively. However, considering the Standard Deviation (SD) of
these OAs, the performances of the classifiers are virtually identical
(Table 2.3). Moreover, Figure 2.6 shows that the computational time
for RFK is considerably lower than the RBF kernel for Salinas spe-
cifically without the mtry optimization. For spectral features of
Sukumba, RFK and RBF computational times are at about the same
level.
A notable fact is that SVM-RFK results improve considerably by ex-
tending the Sukumba dataset from 56 to 1057 dimensions, whereas
RF and SVM-RBF classifiers get less accuracy with the extended data-
set. For the extended Sukumba dataset, SVM-RFK outperforms SVM-
RBF and RF with a difference of 4.34% and 1.48% in OA, respectively.
Furthermore, RFK gets similar results for bothmtry default andmtry
optimized, whereas the computational time is three times higher us-
ing optimized parameter (Figure 2.6). Moreover, the time required to
perform SVM-RFKd is also about seven times less than that of SVM-
RBF (Figure 2.6). This fact could be seen as the first evidence of the
potential of RFKs to deal with data coming from the latest generation
of Earth observation sensors, which are able to acquire and deliver
high dimensional data at global scales.
More evidence for the advantages of the RFKs is presented in
Table 2.4 by exploiting the RF characteristics. This table shows
that employing the RF to define the top 100 features (out of 1057
features) for Sukumba dataset, and obtaining the RFK based on a
new RF model trained only with top 100 features improved the OA
of the SVM-RFK by 2.66%.

Moreover, the HSIC measures presented in Table 2.5 reveal the align-
ment of the kernels with an ideal kernel for the training datasets. The
lower separability of the classes results in poorer alignment between
input and the ideal kernel matrices, and that leads in a lower value
of HSIC [150]. Focusing on the spectral features, RFKs slightly out-
perform RBF for both Salinas and Sukumba datasets while both show
almost equal alignment with an ideal kernel. The higher value of the
HSIC measure for the RFKs compared to RBF is noticeable when the
number of features is increased for the Sukumba dataset.
The analysis of the classifications results for each class is carried out
by mean of the F-scores. Tables 2.6 and 2.7 show the results of F for
each classifier, spectral case and dataset. In Sukumba (Table 2.6),
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2. Random forest kernel

Table 2.3 Classification results of Sukumba with 56 features (Spectral fea-
tures), and with 1057 features (Spectral features, VIs and GLCM textures), and
Salinas with 204 features (Spectral features). Notation: OA (in %) is the overall
accuracy averaged over 10 test samples, SD (in %) is the standard deviation
for OA values, κ̄ is the Cohen’s kappa index averaged over 10 test samples,
SDκ is the standard deviation for κ values.

Tests Methods OA SD κ̄ SDκ

Sukumba

RF 81.08 1.34 0.76 0.02
RFd 80.64 0.98 0.75 0.01

Spectral features SVM-RBF 82.08 2.21 0.77 0.03
SVM-RFK 81.34 1.27 0.76 0.02
SVM-RFKd 80.68 1.12 0.75 0.01

RF 80.82 1.31 0.76 0.02
Spectral features RFd 80.46 1.20 0.75 0.01

and additional features SVM-RBF 77.96 1.26 0.72 0.02
SVM-RFK 82.30 1.02 0.77 0.01
SVM-RFKd 82.14 0.84 0.77 0.01

Salinas

RF 94.16 0.5 0.93 0.004
RFd 94.10 0.48 0.93 0.005

Spectral features SVM-RBF 95.83 0.52 0.95 0.01
SVM-RFK 94.42 0.56 0.94 0.005
SVM-RFKd 94.38 0.47 0.94 0.005

Table 2.4 Classification results for Sukumba with the top 100 features.
Notation: OA (in %) is the overall accuracy averaged over 10 test samples, SD
(in %) is the standard deviation for OA values, κ̄ is the Cohen’s kappa index
averaged over 10 test samples, SDκ is the standard deviation for κ values,
and MIF is the most important features.

Methods OA SD κ̄ SDκ

RF-MIF 79.68 1.31 0.74 0.01
SVM-RFK-MIF 84.96 1.66 0.81 0.02

Table 2.5 HSIC measures for RF and RBF kernels. Notation: Sp is spectral
features, Sp&Ad is spectral features and additional features.

Kernels Sukumba: Sp Sukumba: Sp&Ad Salinas

RFK 0.016 0.021 0.041
RFK_d 0.018 0.021 0.042
RBF 0.010 0.004 0.029
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2.5. Results and discussion

Figure 2.5 Comparison of OA and κ̄ obtained for RF, SVM-RBF, and SVM-
RFK classifiers. Notation: OA (in %) is the overall accuracy averaged over 10
test samples, κ̄ is the Cohen’s kappa index averaged over 10 test samples,
and the standard deviations for OA and κ values are shown with error bars.
RF and SVM-RFK denote classifiers created with an optimizedmtry value, and
RFd and SVM-RFKd denote classifiers created with the default mtry value.

the F has little variability, with standard deviations smaller or equal
to 0.04. Furthermore, all classes have an F value larger than 0.75
(i.e., good balance between precision and recall). The classes Millet,
Sorghum have the best F values, whereas the classes Maize and Pea-
nut are harder to classify, irrespective of the chosen classifier. Fo-
cusing on the SVM-RBF and SVM-RFK classifiers, we see that the relat-
ive outperformance of SVM-RBF in terms of OA for spectral features
(Table 2.3 and Figure 2.5) is mainly caused by the Maize and Millet
classes, and this is while SVM-RFK and SVM-RBF show equal F values
for classes Peanut and Sorghum, and SVM-RFK improves slightly the
F value for the class Cotton compared to SVM-RBF. Moreover, SVM-
RFKd competes closely with SVM-RFK and SVM-RBF while presenting
slightly poorer F values.

Regarding Salinas, the F show results above 0.91 for all the classes
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Figure 2.6 Classification time required by SVM classifiers.

except for Grapes untrained, and Vineyard untrained. For the lat-
ter two classes, the F are respectively around 0.69 and 0.71 for the
RF-based classifiers. However, SVM-RFK improves the F values to
0.76 for both these classes. In this dataset, the SD values have also
little variability (same as the ones found in Sukumba), with standard
deviations smaller or equal to 0.05. For Salinas dataset, SVM-RFKd

also competes closely with SVM-RFK and SVM-RBF while it presents
slightly poorer F values.

Table 2.6 F-score average (F ) and standard deviation (SD) of the different
classifiers using 56 features (Spectral features) and 1057 features (Spectral,
VIs, and GLCM features) for the Sukumba dataset. Notation: RF and SVM-
RFK denote classifiers created with an optimized mtry value, and RFd and
SVM-RFKd denote classifiers created with the default mtry value.

Test Classes
RF RFd SVM-RBF SVM-RFK SVM-RFKd

F SD F SD F SD F SD F SD

Maize 0.78 0.03 0.77 0.025 0.80 0.02 0.78 0.02 0.76 0.02
Millet 0.86 0.02 0.85 0.02 0.87 0.03 0.85 0.02 0.84 0.02

Spectral Peanut 0.78 0.02 0.78 0.02 0.79 0.04 0.79 0.02 0.77 0.01
features Sorghum 0.84 0.02 0.84 0.009 0.86 0.02 0.86 0.02 0.84 0.01

Cotton 0.79 0.02 0.79 0.02 0.79 0.03 0.80 0.02 0.79 0.02

Maize 0.77 0.04 0.76 0.03 0.75 0.03 0.77 0.03 0.76 0.02
Millet 0.85 0.02 0.84 0.01 0.83 0.02 0.87 0.02 0.86 0.01

Spectral Peanut 0.80 0.02 0.79 0.02 0.77 0.02 0.82 0.02 0.81 0.01
and additional Sorghum 0.82 0.02 0.82 0.02 0.81 0.03 0.84 0.02 0.84 0.02
features Cotton 0.80 0.02 0.80 0.02 0.73 0.02 0.82 0.02 0.83 0.01
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A deeper analysis of the SVM-based classifiers can be achieved by
visualizing their kernels. Figure 2.7 shows the pairwise similarity of
training and test samples sorted by class. Here, we only visualize the
RFK (with optimized mtry) because of the similarity of the results to
RFKd.
Focusing on the spectral features, this figure shows that the ker-
nels obtained for Salinas are more “blocky” than those obtained for
Sukumba. This makes it evident that a higher number of relevant
features can improve the representation of the kernel. It also shows
that the RFKs generated for Sukumba are less noisy than the RBF
kernels. However, the similarity values of the RFKs are lower than
those obtained for the RBF kernels. The visualization of the kernels
confirms the higher F values found in the Salinas dataset. A de-
tailed inspection of the RFKs obtained from this dataset shows low
similarity values for classes 8 and 15, which correspond to Grapes
untrained and Vineyard untrained. As stated before, these classes
have the largest imbalance between precision and recall. Increasing
the number of features to 1057 by extending the spectral features for
Sukumba dataset represents a blockier kernel, by improving only the
intraclass similarity values. However, the RBF kernel loses the class
separability by increasing both intraclass and interclass similarity
values by increasing the number of features for Sukumba dataset;
this can be observed by RFK visualizations in Figure 2.7 and f-score
values in Table 2.6. Focusing on the RFK, there are samples that
their similarity values to other samples in their class are low for the
RFK (Gaps inside the blocks), these samples could be outliers since
RFK is based on the classes and the features while the RBF kernel
is based on the Euclidean distances between the samples. Thus, re-
moving outliers using RF can improve the representation of the RFK.
Figure 2.8 shows the kernel visualization of RFK based on the 100
most important features selected by RF. As it can be observed in
this figure, the similarity between the samples in the same classes is
increased in particular for the classes one and five compared to the
kernel using all 1057 features.
Finally, we present the classificationmaps obtained using the trained
classifiers with spectral features. For Sukumba dataset, we also ob-
tain the classification maps using SVM-RFK based on the top 100
features. For visibility reasons, we only present classified fields
for Sukumba and classification maps for Salinas. In particular, Fig-
ure 2.10 shows two fields for each of the classes considered in
Sukumba. These fields were classified using the best training subset
of the ten subsets, and the percentage of pixels correctly classified
are included on the top of each field. In general, the SVM classifiers
perform better than the RF classifiers. Focusing on the various ker-
nels, the RFKs outperform the results of RBF for the majority of the
polygons.
Moreover, we observe a great improvement in the OA for all polygons
by using the SVM-RFK-MIF. Thismeans that RF can be used intuitively
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to define an RFK based on only the top 100 features, and this kernel
can improve the results significantly compared to RF, SVM-RBF, and
SVM-RFK.
Classification maps for Salinas and their corresponding OAs are de-
picted in Figure 2.9. In this dataset, all classifiers have difficulties
with fields where Brocoli_2 (class 2) and Soil_Vineyard (class 9) are
grown. Moreover, it is worth mentioning that the performance of
three classifiers is at about the same level. However, the SVM-RFK
classifier has a marginally higher OA than the RF classifier, and SVM-
RBF slightly outperforms SVM-RFK. This can be explained by the rel-
atively high number of training samples used to train the classifiers
compared with the dimensionality of the Salinas image. However, the
computational time of classification for SVM-RBF is higher compared
to RF and SVM-RFK (Figure 2.6).
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Table 2.7 F-score average (F ) and standard deviation (SD) of the different
classifiers using 204 features (Spectral features). Notation: RF and SVM-RFK
are respectively RF and SVM-RFK with optimizedmtry, and RFd and SVM-RFKd

are respectively RF and SVM-RFK with default mtry.

Test Classes
RF RFd SVM-RBF SVM-RFK SVM-RFKd

F SD F SD F SD F SD F SD

1:Brocoli_1 1.00 0.008 1.00 0.007 1.00 0.005 1.00 0.005 1.00 0.007
2:Brocoli_2 0.99 0.009 0.99 0.009 1.00 0.005 1.00 0.006 0.99 0.007
3:Fallow 0.97 0.018 0.97 0.017 0.98 0.012 0.97 0.014 0.97 0.015
4:Fallow_rough 0.99 0.008 0.99 0.008 0.99 0.007 0.99 0.007 0.99 0.007
5:Fallow_smooth 0.98 0.010 0.98 0.009 0.99 0.012 0.98 0.010 0.98 0.011
6:Stubble 1.00 0.003 1.00 0.003 1.00 0.002 1.00 0.004 1.00 0.005
7:Celery 0.99 0.006 0.99 0.005 1.00 0.004 0.99 0.007 0.99 0.007

Spectral features

8:Grapes_untr. 0.69 0.032 0.69 0.039 0.76 0.026 0.70 0.042 0.69 0.041
9:Soil_Vineyard 0.99 0.009 0.98 0.009 0.99 0.006 0.99 0.007 0.99 0.007
10:Corn 0.91 0.011 0.91 0.014 0.94 0.019 0.91 0.009 0.91 0.009
11:Lettuce_4wk 0.96 0.011 0.96 0.008 0.98 0.010 0.97 0.011 0.97 0.011
12:Lettuce_5wk 0.98 0.010 0.98 0.011 0.98 0.008 0.98 0.011 0.98 0.010
13:Lettuce_6wk 0.97 0.012 0.97 0.011 0.99 0.010 0.98 0.012 0.98 0.012
14:Lettuce_7wk 0.95 0.018 0.95 0.018 0.98 0.014 0.96 0.016 0.96 0.017
15:Vineyard_untr. 0.71 0.036 0.72 0.045 0.76 0.033 0.71 0.051 0.71 0.044
16:Vineyard_vertical 0.98 0.013 0.98 0.014 0.99 0.006 0.98 0.013 0.98 0.012

Figure 2.7 RBF Kernels (top) and RFKs (bottom) for the datasets from left to
right: Salinas (Spectral features), Sukumba (Spectral features), and Sukumba
(Spectral features and additional features). Class labels are shown on the
bottom of the kernels. The class labels go from 1 to 5 for Sukumba, and
from 1 to 16 for Salinas.
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Figure 2.8 RF Kernel for top 100 features selected by RF (out of 1057).
Class labels are shown on the bottom of the kernel. The clafss labels go
from 1 to 5 for Sukumba.
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Figure 2.9 Ground truth and three classification maps (and the OA (%) cal-
culated using all the pixels in the dataset on the top) for the RF, SVM-RBF,
and SVM-RFK classifiers using the AVIRIS spectral features.
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Figure 2.10 Two crop classified fields per ground truth class along with the
overall accuracy for the different classifiers using spectral features, and the
top 100 features for SVM-RFK-MIF. The trees within the crops were excluded
from the classification (masked, unclassified).
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2.6 Conclusions

In this chapter, we evaluate the added value of using an RF-based
kernel (i.e., RFK) in an SVM classifier (i.e., RFK) by comparing its
performance against that of standard RF and SVM-RBF classifiers.
This comparison is done using two datasets: a time series of WV2
images acquired over Sukumba (Mali), and a hyperspectral AVIRIS
image over Salinas (CA, USA). The obtained OAs and their SD
values indicate that three classifiers perform at about the same
level in most of the experiments. Our findings show that there are
alternatives to the expensive tuning process of SVM-RBF classifi-
ers. The proposed RFK led to competitive results for the datasets
with a lower number of features while reducing the cost of the
classification. Our findings prove that optimizing the mtry for
RF leads to minor changes in the SVM-RFK. Thus, with a small
trade-off in OA for the datasets with a low number of features, the
cost of the classification can be reduced through skipping the mtry
optimization. More importantly, our results show that RFKs created
using high dimensional and noisy features considerably improve
the classification accuracies obtained by the standard SVM-RBF
while reducing the cost of classification. For the higher number
of features, SVM-RFK results are also slightly better than the ones
obtained by the standard RF classifier. Moreover, by exploiting the
RF characteristics through defining the most important features,
the results of the classification for SVM-RFK considerably improve,
with OA around 7% better than those obtained with an SVM-RBF
classifier. In short, our results indicate that RFK can outperform
standard RF and SVM-RBF classifiers in problems with high data
dimensionality. Further work is required to evaluate this kernel
in additional classification problems and against other land cover
classification approaches (e.g., based on deep learning). Other
characteristics of RF (outlier detection) can be exploited to estimate
the RFK more accurately. Furthermore, the proposed RFK is based
on a rough estimation of the similarity between samples according
to their terminal node. Future work is required to design and test
more advanced and alternative estimations of similarity using RF
classification results.
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Abstract

Random forest (RF) is a popular ensemble learning method that is
widely used for the analysis of remote sensing images. RF also has
connections with kernel-based method. Its tree-based structure can
generate a Random Forest Kernel (RFK) that provides an alternative
to common kernels such as Radial Basis Function (RBF) in kernel-
based methods such as Support Vector Machine (SVM). Using RFK in
an SVM has been shown to outperform both RF and SVM-RBF (i.e., us-
ing an RBF kernel in an SVM) in classification tasks with a high num-
ber of features. Here, we explore new designs of RFKs for remote
sensing image classification. Different RF structural parameters and
characteristics are used to generate various RFKs. In particular, we
explore the use of RF’s depth, the number of branches between ter-
minal nodes of trees, and the predicted class probabilities for design-
ing and evaluating new RFK. Two depth-based kernel are proposed:
an RFK at the optimal depth, and a multi-scale one created by com-
bining RFKs at multiple depths. We evaluate the proposed kernels
within an SVM by classifying a time series of Worldview-2 images,
and by designing experiments having a various number of features.
Benchmarking the new RFKs against RBF shows that the newly pro-
posed kernels outperform RBF kernel for the experiments with a
higher number of features. For the experiments with a lower number
of features, RFKs and RBF kernel perform at about the same level.
Benchmarking against standard RF also shows the general outper-
formance of the proposed RFKs in SVM. In all experiments, the best
results are obtained with a depth-optimized RFK.
Keywords: Image classification, random forest kernel designs, sup-
port vector machine

3.1 Introduction

Remotely sensed images are one of the most important sources of
data for land cover mapping. However, producing high-quality land
cover maps using remotely sensed data is still challenging because
the necessary use of time series of images leads to high-dimensional
problems and because land cover classes typically are non-linearly
separable [132]. The curse of dimensionality or Hughes phenomenon
occurs when the number of features is much larger than the number
of training samples [163]. The Hughes phenomenon is a common
problem for several remote sensing data such as hyperspectral im-
ages and time series of multispectral satellite images [63]. Moreover,
Hughes phenomenon occurs when spatial, textural or other types of
extracted features are stacked on top of the original spectral features
formodeling additional information sources [63]. Several works have
reviewed land cover classification methods, and findings show that
kernel-based methods outperform traditional classification meth-
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ods particularly in dealing with Hughes phenomenon [163, 73, 164].
Kernel-based methods map the non-linear data into a Reproducing
Kernel Hilbert Space (RKHS) where the data is linearly separable. In-
stead of explicitly using amapping function, a kernel function is used
to reproduce the pairwise similarities matrix by computing the inner
products among the samples in RKHS [147]. The most well-known
kernel-based classifier and kernel function are Support Vector Ma-
chine (SVM) and Radial Basis Function (RBF), respectively. Using SVM-
RBF (i.e., using an RBF kernel in an SVM), one needs to optimize two
parameters (i.e., RBF bandwidth and SVM regularization parameters)
through a high computational cross-validation process [163], this is
a known limitation of using the RBF kernel in an SVM.
Another well-known classifier able to handle high-dimensional and
non-linear problems is Random Forest (RF) [140, 141, 142]. RF is fast
and comparatively robust to a high number of features, a few num-
bers of training samples, overfitting, noise in training samples, and
the choice of parameters [94, 132]. RF can be used for feature se-
lection and outlier detection [107, 165]. The operational use of RF
classifiers requires setting two parameters: the number of the de-
cision trees to be generated (Nt) and the number of the features to
be randomly selected for defining the best split in each node (mtry).
Using the default value of 500 trees and the square root of the num-
ber of features stabilize the error of the classification in most ap-
plications [95]. However, RF is difficult to visualize and it can get
overfitted [95]. Despite this, integrated approaches of RF and SVM-
RBF can be used to exploit strong points of both classifiers and avoid
their limitations. For instance, using RF to find the most import-
ant features and importing these features into an SVM-RBF classifier
is shown to improve the Overall Accuracy (OA) of the classification
compared to single use of RF or SVM-RBF [165].
In addition, the tree-based structure of RF allows the extraction of
kernels that can be integrated with kernel-based methods such as
SVM [94, 104]. The tree-based structure of RF draws partitions in
the data that can be used to generate a Random Forest Kernel (RFK),
which encodes similarities between data samples based on the par-
titions [104]. The classic RFK uses the average of a Kronecker delta
function of pairwise leaf node samples as similarity values [94, 104].
Using an SVM classifier to compare kernels, we found that the clas-
sic RFK performs competitively in terms of Overall Accuracy (OA)
while reducing the computational time with respect to RBF, as shown
in classification tasks involving time series of multispectral satellite
images and an airborne hyperspectral image [166]. Moreover, integ-
ration of RFK and SVM is shown to yield slightly higher OAs than
traditional RF in high dimensional and noisy experiments, and it
provides competitive results in low dimensional experiments [166].
However, the problem associated with classic RFK is that similarity
values are binary metrics, and this rough binary estimation may not
be always compatible with real-world data classes with similar spec-
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tral signatures (i.e, crops) [167]. In other words, it is more realistic
to think that pairs of samples can be similar to a certain degree in-
stead of assuming that they are either similar or dissimilar [167]. A
large number of trees is necessary to get accurate estimations for the
classic RFK. When a relatively low number of trees are used, a more
elaborate estimate of similarity values is required [167]. To over-
come this problem, the similarity values can be obtained based on
the number of tree branches between the terminal nodes containing
the samples. This design was evaluated over two-class classification
problems, and it was found to improve the data similarity estimation,
especially when RF is made of a small number of trees [167]. Accord-
ingly, the first goal of this paper is to compare the performance of
branch-based RFK for a multi-classification problem against that of
classic RFK and RBF kernel when used within an SVM. We also com-
pare their performance against that provided by a standard RF clas-
sifier. Another problem with classic RFK is that the samples from the
same class can land in different nodes in fully grown trees, and their
similarity value gets assigned zero consequently. The second goal of
this paper is to address this issue by exploring the influence of RF
depth on the RFK performance. Following on this, the third goal is to
design a multi-scale RFK based on multiple depths, inspired by [168].
The idea in [168] is to encode similarity values among samples us-
ing the probability that they are grouped together at different scales
through Gaussian mixture models clustering. Different scales are
defined by varying the number of clusters and initialization. Here, a
multi-scale RFK is designed based on multiple depths of RF.
In a nutshell, the contribution of this paper lies on the investiga-
tion of alternative designs of RF-based kernels for remote sensing
image classification. Four alternative designs of RFK are evaluated:
a branch-based RFK based on the distance among terminal nodes, a
depth-optimized RFK, a multi-scale RFK based on obtaining classic
RFK at multiple depths, and a probabilistic multi-scale RFK based on
obtaining RF-based class probabilities at multiple depths. We bench-
marked the performances of these kernels against those provided
by the RBF kernel in an SVM and the standard RF model. Our work
is illustrated with a time series of very high spatial resolution data
acquired over agricultural lands.

3.2 Background

The main idea of the so-called kernel trick is to allow mapping non-
linear separable data in the original space into RKHS without the
explicit knowing of the mapping function Φ : x → φ(x) [147]. The
dot product of two training samples vectors (xi and xj) in the RKHS
space is defined by a kernel function k(xi, xj) = φ(xi)

Tφ(xj). When
the kernel function is calculated for all samples (N ), the kernel func-
tion generates a square matrix (K ∈ RN×N ) of pairwise similarities
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between the samples.
Kernel-based methods belong to the generative or discriminative cat-
egories [169]. Generative models aim at learning probability density
functions and discriminative learning methods are based on learn-
ing class boundaries [170]. Generative approaches assume a data
model which is often improper for the remote sensing data [169].
Discriminative learning methods obtain the class boundaries dir-
ectly from the data [169]. Discriminative approaches can partition
the data through several algorithms such as clustering and RF [168].
The key idea of discriminative kernels is that samples located in the
same partition are similar and those ending up in different partitions
are dissimilar [104]. In the present article, RF is used to create ran-
dom partitions. The reason is that RF is known for being fast, stable
against overfitting and requiring a small sample size with high di-
mensional input compared to several classifiers [95, 94]. Moreover,
RF is robust to the choice of parameters [95, 94]. The strong points
of RF along with its tree-based scheme can be used to partition data
into homogeneous groups, and these partitions can be used to create
an RF-based kernel that can subsequently be used in a kernel-based
method such as SVM [166]. In the following, we present the back-
ground on different possible RFKs designs selected for the experi-
mental tests of this study.

3.3 Methods

3.3.1 Classic Node Based RFK

The classic RFK uses the terminal nodes as partitions created on
data by trees to calculate the pairwise similarity values among the
samples. If two samples fall into the same terminal node of a tree,
the similarity is equal to one; otherwise, it is zero. The classic RFK
suggested by [94] is extensively described in our previous work [166].
For each tree, one pairwise similarity matrix is generated and RFK is
the average of the matrices obtained for all trees. Here, we indicate
this node-based RFK by RFKNd.

3.3.2 Branch Based RFK

To get accurate similarity values in RFKNd, a large number of trees is
required [167]. In the experiments of using few trees, more elaborate
estimate of data proximity is needed. A novel approach to estimate
data proximity in RF is proposed in [167]. This approach is based on
measuring distance between two terminal nodes containing samples
i (si) and j (sj). In this study, we indicate this kernel by RFKBr, and
it can be assessed with following equation:

43



3. Multi-scale random forest kernel

RFKBr(si, sj) =
1

Nt

Nt∑
n=1

1

ew.gijtn
(3.1)

Where Nt is number of trees in RF and n runs over the number of
trees, the parameter w controls the influence of the distance between
two terminal nodes occupied by the samples si and sj , and gijtn is the
number of branches between two terminal nodes containing si and
sj in the n − th tree of the RF (i.e.,tn). For example, g131 = 3 between
the terminal nodes 1 and 3 of tree1 in Figure 3.1. If si and sj land on
the same terminal node, then gijtn = 0 and RFKBr will be increased
by one as in the original way (i.e., RFKNd) to assess the similarity of
two samples.

Figure 3.1 The general design of RFK for a RF classifier with n number of
trees

3.3.3 Multi-Scale Probabilistic RFK

The pairwise similarity matrix is computed based on a kernel func-
tion (k(xi, xj) = φ(xi)

Tφ(xj)) which can be also designed through
probabilistic approaches [168]. A probabilistic kernel function can
be designed by considering a probability density function as themap-
ping function [170]. If we show the probabilistic mapping function
as ϕ(si) = πi, the probabilistic kernel can be defined as:

K(si, sj) =< πi(si), πj(sj) >H (3.2)
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Recently, [168] introduced a probabilistic cluster kernel by comput-
ing the composition of dot products between the posterior probab-
ilities obtained via Gaussian mixture models. In this approach, the
posterior probability of two samples belonging to the same cluster is
considered as the similarity between such samples. Thus, the prob-
abilistic cluster kernel is obtained through a generative and unsu-
pervised approach. Here, we introduce a Probabilistic RFK that is
obtained through a discriminative and supervised approach. In the
present work, we indicate this kernel by RFKProb.
RF assigns a probability ofmembership to each one of the class labels
of interest for all samples, namely the predicted probability vector.
This vector contains the proportion of votes of the trees for each
class. For each sample, the class label with the highest probability is
selected as the class label for that sample by RF. Accordingly, the pre-
dicted probability vectors for samples i and j can be defined respect-
ively as πi(si) = (pi1, pi2, pi3, ..., piC) and πj(sj) = (pj1, pj2, pj3, ..., pjC)
where piC is the probability that sample i belongs to class C. The sim-
ilarity value for samples i and j using the RFKProb can be defined as
the inner product of the vectors πi(si) and πj(sj) [170] and [105]:

RFKProb(si, sj) =< πi(si), πj(sj) >H

= pi1.pj1 + pi2.pj2 + ...+ piCpjC
(3.3)

As a matrix notation, all the predicted probability vectors are placed
in matrix P as following:

P =


p11 p12 p13 . . . p1C
p21 p22 p23 . . . p2C

. . . . . . .
pn1 pn2 pn3 . . . pnC

 (3.4)

P is the matrix of predicted probabilities by RF, one column per class
and one row per observation. Once P is calculated, the RFKProb is
defined as RFKProb = P .P T . The kernel also can be obtained at
different depths. Therefore, the average of probabilistic RF kernels
obtained at different depths is defined as below:

RFKProb =
1

Nd

Nd∑
n=1

(P.PT)dn
(3.5)

Where Nd is the number of the depths considered to obtain RFKProb,
n runs over the number of depths, and dn is the n − th depth in RF.
Moreover, the RFKProb obtained at each depth is separately impor-
ted in an SVM and the RFKProb that generates the best OA is con-
sidered as a depth-optimized probabilistic kernel. Here, we indicate
this depth-optimized probabilistic kernel with RFKProb∗ .
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3.3.4 Multi-Scale Node Based RFK

Similar to RFKProb, RFKNd can be obtained at different depths as
well and average of these kernels can be obtained as a multi-scale
RFK based on the terminal nodes. The average of classic RF kernels
obtained at different depths is defined as below:

RFKNd =
1

Nd

Nd∑
n=1

(RFKNd)dn
(3.6)

WhereNd is the number of the depths considered to obtain RFKNd, n
runs over the number of depths, and dn is the n−th depth in RF. Here,
we indicate this kernel by RFKNd and the depth-optimized classic
RFK with RFKNd∗ .

3.4 Experimental set-up

In this section, we first describe the data and study area used to illus-
trate this study. Next, we explain the experimental set up followed
to evaluate the newly proposed RFKs (Figures 3.3 and 3.4).

3.4.1 Data and study area

A time series of WorldView-2 (WV2) images acquired over Sukumba
area in Mali, West Africa in 2014 is used to illustrate this study. WV2
sensor provides data for eight spectral features at a spatial resolu-
tion of 2 m. There are seven multispectral images in this dataset
that defines the cropping season in 2014 [153]. Ground truth la-
bels for 5 common crops including cotton, maize, millet, peanut, and
sorghum, were collected through fieldwork. The images were atmo-
spherically corrected using the 6S radiative transfer model [171], and
co-registered using the centroid of the trees located in the study area
[153]. Tree masks were automatically created by applying a series of
Gaussian filters [153], and cloudy pixels were removed by elimin-
ating the pixels with the highest reflectance value in the blue band
which fall within the percentage of cloud coverage reported in the
metadata of the image delivery [153].
This dataset and the ground data are part of the STARS project which
aims to improve the livelihood of smallholder farmers. The Sukumba
dataset contains a total of 45 labeled polygons. Each polygon cor-
responds to a single farm management unit, and the average size of
these units is about 1.35 ha. This means that the average farm con-
tains about 3500 pixels. Figure 3.2a,b show the study area and the
45 fields contained within the database.
This dataset originally contains 7 multi-temporal images with 8
bands each image (56 bands). The acquisition dates include May,
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(a)

(b)

Figure 3.2 (a) study area of Sukumba site, southeast of Koutiala, Mali; (b)
crop polygons for Mali.

June, July, October, and November [153]. The Vegetation Indices
(VIs) including Normalized Difference Vegetation Index (NDVI), Dif-
ference Vegetation Index (DVI), Ratio Vegetation Index (RVI), Soil Ad-
justed Vegetation Index (SAVI), Modified Soil-Adjusted Vegetation In-
dex (MSAVI), Transformed Chlorophyll Absorption Reflectance Index
(TCARI), and Enhanced vegetation index (EVI) were obtained and ad-
ded to spectral features to increase class separability of the crops.
The definitions of these VIs are given in [166]. Besides the above-
mentioned classic VIs, the combinations of bands 2 to 8 through dif-
ference, ratio, and normalization of these bands were obtained and
added to spectral and classic VIs, and this increases the number of
feature to 525. Next, the number of features was extended by ob-
taining the Gray-Level Co-Occurrence Matrix (GLCM) textures to the
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spectral features and VIs. Texture analysis based on the GLCM is a
statistical method to define the spatial relationship of pixels [160].
The GLCM textures derived for Sukumba dataset are comprehens-
ively described in [166] and [124]. For each spectral and VI feature,
17 GLCM textures were computed using a window of 3 by 3 pixels
and by averaging the values obtained along four directions (0, 45,
90 and 135). For all spectral and VI features separately, statistical
textures including angular second moment, correlation, inverse dif-
ference moment, sum variance, entropy, difference entropy, inform-
ation measures of correlation, dissimilarity, inertia, cluster shade,
and cluster prominence were obtained [124].
Stacking all the spectral, VIs and GLCM features, the total number
of features reached 8498. This number further was increased by in-
cluding extra features, namely Green Leaf Index (GLI) [172] and Local
Binary Pattern (LBP) [173]. With this addition, the final number of
features available for the experiment ALL equals 10584. Table 3.1
shows the sequence of adding the features which are used in four
tests to examine the proposed methods in this study.

Table 3.1 Experiments description (Nf : Number of features used in each
case.)

Case Features Nf

B Spectral features 56
BVI Spectral &VIs features 525

BVITVI BVI and GLCM textures of VIs 8498
ALL BVI and textures of Spectral and VIs 10584

3.4.2 Comparing RFKBr and RFKNd

In the pre-processing and sampling step of Figure 3.3, we divided
the polygons representing the labeled farms in the study area into
four almost equal sized sub-polygons. Two of these sub-polygons
were used to select the training samples and the other two to select
test samples, so that samples from the same neighborhood do not
end up in both training and test sets, and this prevents inflating
the performance of the classifiers. Next, each of the train and test
sets were randomly sampled to get ten random subsets, with a
balanced number of samples per class (130 and 100 samples per class
for training and test, respectively). We used these ten randomly
selected subsets with a different number of features (for each of four
experiments shown in Table 3.1) to obtain representative results
(i.e. all presented results correspond to the average of the results
obtained for the 10 subsets). In the high-dimensional experiments
(i.e., BVITVI and ALL), there are many correlated features and some
of them might be not helpful for the classification task at hand (i.e.,

48



3.4. Experimental set-up

they might be considered noise).

After obtaining training and test samples for four experiments, as
it is shown in Figure 3.3, RF models with 500 fully grown trees are
obtained in the first step. RF models are trained using 5, 10, 20, 50,
100 and 500 trees, and for each model the mtry parameter is optim-
ized in a range of [Nf

(−1/2) − 10, Nf
(−1/2) + 10] in steps of two, where

Nf is the number of features.
Based on these RF models, we obtained RFKNd and RFKBr. First,
we investigated the performance of RFKNd and RFKBr in an SVM
against the different number of trees. Next, we benchmarked their
performance against RBF kernel in an SVM and a standard RF. The
SVM using the RBF kernel requires to fix two parameters, the σ (i.e.,
bandwidth of the ) and C (i.e., a penalty or regularization parameter)
[135]. A 5-fold cross-validation approach is used to find the optimum
bandwidth in the range [0.1, 0.9] of the quantiles of the pairwise Eu-

clidean distances (D = ∥x− x
′∥

2
) between the training samples, and

the optimal C value in the range of [5, 500]. Using the RFKs in an SVM
requires to fix the C parameter as well. A 5-fold cross-validation ap-
proach is also used to optimize the C parameters for all the models.
Besides the C parameter, RFKBr requires optimizing w parameter
which is optimized in a range of w = [0.1, 2] in steps of 0.1 [167].
Obtaining RFKBr requires to compute the pairwise distances among
the end-nodes in terms of number of the branches between the end-
nodes. To find number of number of branches between the end-
nodes containing samples si and sj in the k − th tree (gijk), we ob-
tained the paths of the end-nodes containing these samples to the
root node, and we found the first ancestor of these end-nodes by
comparing their corresponding paths to the root node. Then, the
number of branches is counted between each end-node and the first
ancestor. Finally, two number of branches are summed up to obtain
the number of branches between the end-nodes containing si and sj .
For each tree, a g-matrixTRTR and a g-matrixTSTR is obtained. The g-
matrixTRTR contains the pairwise distance among training samples
and the g-matrixTSTR contains the pairwise distance among test and
training samples. Next, the g-matricesTRTR together with the ranges
of w and C parameters are used in an SVM to optimize w and C para-
meters in the cross-validation process. Next, optimal values of w and
C parameters are used to train the SVM-RFKBr model. After training
the model, the g-matricesTSTR are used to evaluate the model.

3.4.3 Multi-scale RFKs

In Figure 3.4, we start by following the same pre-processing and
sampling used in the previous workflow. Here, however, we use 10
different depths to grow 500 trees in the RF ensemble. Then, we
obtain a RFKNd and RFKProb at each depth. The depth of RF is
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Figure 3.3 Overview of the steps followed to compare RFKBr (i.e., RFK
obtained based on the distance of nodes) with RFKNd (i.e., classic design of
RFK) through importing them an SVM.

controlled by setting a maximum number of nodes as the threshold
for splitting the nodes in the training phase of the model. Different
depths are defined by changing the number of terminal nodes in the
trees.
The range considered for the number of terminal nodes is [3, Nn − 3],
where Nn is the number of terminal nodes of trees in the fully grown
RF and 10 different depths are selected with almost equal intervals.
First, we compare the performance of RFKNd over the 10 differ-
ent depths for all the 10 subsets. After that, we obtain two multi-
scale kernels by averaging RFKProb and RFKNd over the 10 depths.
The multi-scale RFKs are noted as RFKProb and RFKNd. The results
for the depths with the best Overall Accuracy (OA) are shown with
RFKNd∗ and RFKProb∗ .
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Moreover, we evaluate the performance of the multi-scale RFKNd

by varying the number of depths used to generate this kernel. This
means that rather than using 10 depths, we use 2 to 9 depths (with
almost equal intervals) to obtain the multi-scale RFKNd and we eval-
uate the performance of these kernels in an SVM. We compare these
kernels in terms of averaged OA, κ index, and computational time.
The computational times for each classifier were estimated using the
ksvm function in the kernlab package of R [108]. The custom kernel
of this package were used to obtain RBF and RFKs classifications in
an SVM.

Figure 3.4 Overview of the steps followed to compare depth-based RFKs.
Notation: RFKNd and RFKProb denote multi-scale RFKs obtained re-
spectively with RFKNd and RFKProb at different depths. RFKNd∗ and
RFKProb∗ denote the kernels at the depth with the best Overall Accuracy
(OA).
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3.5 Results and discussion

In this section, we discuss and compare the classification results
for the experiments described in sections 3.2 and 3.3. The results
are compared in terms of averaged OA, κ index, and computational
time for 10 test subsets.

3.5.1 Comparing RFKBr and RFKNd

The performance of the SVM-RFKNd and SVM-RFKBr classifiers are
compared in Table 3.2 which displays the OAs versus the different
number of trees. Table 3.2 shows that these two classifiers perform
at about same level for different number of trees and different tests
shown in Table 3.1. However, the computational load of RFKBr is
higher compared to RFKNd. The reason is that w parameter should
be optimized for RFKBr, and finding the number of branches
between two nodes requires more computational load than checking
if two samples land in the same terminal node.
The performance of the SVM-RFKNd and SVM-RFKBr classifiers
was also compared against that of the SVM-RBF classifier (Table 3.3).
Focusing on experiments with B and BV I features, all three kernels
perform at about the same level. The experiments with BV ITV I and
All features show that RFKs considerably outperform RBF kernel
for high-dimensional and possibly noisy problems, increasing the
difference in OA up to around 7%. The performance of RFKBr and
RFKNd are about at the same level for all experiments while RFKBr

shows marginal improvements in experiments with B, BV I, and All
features. However, considering the trade-off between the compu-
tational load and OA, the use of RFKNd is generally preferred. It
is worth mentioning that using RFKs in SVM improves the OAs of
the classifications in comparison to standard RF. The higher the
dimensionality of the experiments, the higher the improvement in
OAs, reaching to 2.5% for RFKNd.

3.5.2 Multi-scale RFKs

The performance of RFKNd versus different depths of RF is com-
pared in Table 3.5 and Figure 3.5. Table 3.5 shows that for almost
all subsets and experiments (except for s6 in experiment with BV I
features) optimizing the depth results in an improved OA of the
classification for RFKNd. In Figure 3.5, we illustrate the perform-
ance of RFKNd against different depths for the subset 9 (i.e., sub9).
The reason of selecting sub9 is that optimizing depth yielded to the
largest improvement in OA of SVM-RFKNd in the experiment with
ALL feature. Figure 3.5 shows that for the low dimensional tests
(i.e., B and BV I), the optimized depth is closer to the depth of fully
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Table 3.2 Classification results obtained in terms overall accuracies (OA)
over 10 test subsets for SVM-RFKNd and SVM-RFKBr classifiers versus the
number of trees for four candidate feature subsets (Nf ) defined in Table
3.1.

Number of Trees

Tests Methods
5 10 20 50 100 500

OA SD OA SD OA SD OA SD OA SD OA SD

1:B
SVM-RFKBr 68.96 1.78 73.38 1.25 76.72 1.81 79.10 2.03 80.16 1.33 81.36 1.29
SVM-RFKNd 70.00 1.90 73.40 1.28 76.68 1.75 79.10 2.00 80.12 1.35 81.34 1.27

2:BVI
SVM-RFKBr 67.64 1.25 73.66 2.15 77.20 2.08 80.08 1.27 80.98 1.38 81.66 1.23
SVM-RFKNd 68.40 1.61 73.50 2.36 77.12 1.97 80.08 1.27 81.00 1.37 82.14 1.05

3:BVITVI
SVM-RFKBr 66.44 1.83 73.12 1.74 78.48 2.28 82.38 1.42 83.16 1.55 84.60 1.24
SVM-RFKNd 66.80 1.94 72.94 1.85 78.32 2.47 81.78 1.41 82.80 1.49 84.66 1.17

4:ALL
SVM-RFKBr 66.82 3.38 75.22 1.50 79.10 1.72 83.00 2.11 83.66 2.48 84.80 1.59
SVM-RFKNd 67.46 3.48 75.36 1.35 79.08 1.60 83.00 2.11 83.60 2.52 85.16 1.32

Table 3.3 Classification results obtained for the experiments in Table 3.1.
RF models trained with 500 fully grown trees are used to obtain RFKBr and
RFKNd. OA (in %) is the averaged overall accuracy, SD (in %) is its standard
deviation, κ̄ is the averaged Cohen’s kappa index, and SDκ is its standard
deviation.

Tests Methods OA SD κ̄ SDκ

SVM-RFKBr 81.36 1.29 0.76 0.02
1:B SVM-RFKNd 81.34 1.27 0.76 0.02

SVM-RBF 82.08 2.16 0.77 0.03
RF 81.08 1.34 0.76 0.02

SVM-RFKBr 81.66 1.23 0.77 0.02
2:BVI SVM-RFKNd 82.14 1.05 0.78 0.01

SVM-RBF 83.44 1.46 0.79 0.02
RF 80.40 1.34 0.76 0.02

SVM-RFKBr 84.60 1.24 0.81 0.02
3:BVITVI SVM-RFKNd 84.66 1.17 0.81 0.01

SVM-RBF 77.38 1.03 0.72 0.01
RF 82.12 1.71 0.78 0.02

SVM-RFKBr 84.80 1.59 0.81 0.02
4:ALL SVM-RFKNd 85.16 1.32 0.81 0.02

SVM-RBF 78.72 1.04 0.73 0.01
RF 82.68 1.32 0.78 0.02

grown trees while for the high dimensional tests (i.e., BV ITV I and
ALL), shallower depths are found to be optimal.
The performance of the two multi-scale RFKs over 10 depths based
on the terminal nodes and class probabilities are compared in
Table 3.6. This table also presents the results for the best depth
(RFKNd∗ and RFKProb∗ ). In the following paragraph, we compare
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the multi-scale and best depth results with the ones obtained with
the RBF and RFKNd kernels (depicted in Table 3.3).
Focusing on the experiment with B features, multi-scale RFKs (i.e.,
RFKProb and RFKNd) and RFKNd perform at about same level con-
sidering their OAs and SD values. However, RFKNd∗ and RFKProb∗

with 1.5% gain in OA slightly outperform RFKNd. For the experiment
with B features, RFKNd∗ and RFKProb∗ slightly outperform RBF
kernel considering κ̄ and SD of OA. Focusing on the experiment with
BV I features, RFKNd∗ with OA of 83.62% outperforms all other
RFKs. RFKNd∗ also outperforms RBF kernel considering κ̄ and SD
of OA. The lowest OA and κ̄ obtained for the experiment with BV I
features are obtained by RFKProb∗ and RFKProb.
Focusing on the experiment with BV ITV I features, the highest OAs
of 88.62% and 86.04% are respectively obtained for RFKNd∗ and
RFKNd. All RF-based kernels outperform RBF in this experiment
while RFKProb∗ and RFKProb obtain the worst results among the
RF-based kernels. Focusing on the experiment with All features,
the highest OAs of 89.48% and 86.18% are respectively obtained
for RFKNd∗ and RFKNd. Again for this experiment, RFKProb∗ and
RFKProb obtain the worst results among the RF-based kernels while
all RF-based kernels outperform RBF results. Using the depth-
based RFKs in an SVM also improves the OAs of the classifications
compared to standard RF. This improvement is more noticeable in
case of higher dimensional experiments by about 3.5 to 6.8% for
RFKNd and RFKNd∗. Overall, RFKNd∗ outperforms other kernels
including RFKNd in all experiments. In other words, we found that
SVM-RFKNd∗ is the best classifier in terms of OA and Kappa.

The outperformance of RFKNd∗ is small compared to RFKNd in ex-
periments with B and BV I features, but it makes a considerable im-
provement up to around 4% in OA when the number of features is
highly increased in experiments with BV ITV I and All features. This
evidences that optimizing the depth of RF can improve the results
for the classic RFK.We have also benchmarked our approach against
the proposed method in [165]. To do so, we have obtained 100 most
important features using RF for the subset with ALL features. These
features are imported into an SVM-RBF. The obtained ŌA and SD for
this approach are 89.02 % and 1.83 %. These results are slightly lower
than best results of our work which is obtained for SVM-RFKNd∗ with
ŌA and SD of 89.48 % and 1.32 %.
For the higher number of features, obtaining a multi-scale RFK by
averaging RFKNd over multiple depths also led to an improvement
of around 1% in OA compared to classic RFK. Obtaining a multi-
scale RFK based on the class probabilities gives competitive results
only in case of the experiment with B features. The reason is the
higher dependency of obtained similarity values among samples for
this kernel on the class labels. For high dimensional and possibly
noisy datasets, the probability that a sample is correctly classified
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Table 3.4 Computational time

Experiments Methods Time (Minutes)

SVM-RFKNd 7.30
SVM-RFKNd 8.87

1:B SVM-RFKNd∗ 71.42
SVM-RFKProb 8.72
SVM-RFKProb∗ 71.27
SVM-RBF 7.77
g-matrices 1322.70

SVM-RFKNd 8.61
SVM-RFKNd 21.23

2:BVI SVM-RFKNd∗ 83.78
SVM-RFKProb 21.39
SVM-RFKProb∗ 83.94
SVM-RBF 75.55

SVM-RFKNd 33.31
SVM-RFKNd 228.95

3:BVITVI SVM-RFKNd∗ 291.50
SVM-RFKProb 218.75
SVM-RFKProb∗ 281.30
SVM-RBF 288.00

decreases and this affects directly the similarity values in the kernel.
This explains the relatively poor performance of this kernel in our
experiments.

Table 3.5 Improvement of the classification results of SVM-RFKNd∗ com-
pared to SVM-RFKNd in terms of OA. The results are shown for 10 pairs of
training and test subsets in the experiments with different dimensionality
(Table 3.1). Notation: subi denotes subset i.

Tests sub1 sub2 sub3 sub4 sub5 sub6 sub7 sub8 sub9 sub10

1:B 2,00 2,00 3,40 3,20 1,40 0,40 0,80 1,40 0,20 3,20
2:BVI 0,80 0,20 0,40 1,60 1,20 0,00 0,40 1,40 0,20 2,00

3:BVITVI 3,00 2,20 2,60 3,80 2,40 3,60 3,20 3,80 3,40 2,00
4:ALL 3,20 2,40 3,20 2,00 4,20 1,60 3,20 2,80 4,80 1,40

The analysis of the classifications results for each class is carried
out by mean of the average of F-scores (F ) obtained over 10 sub-
sets. Table 3.7 shows the results of F for the top performing classi-
fiers. Table 3.7 depicts that the highest class separabilities also are
achieved for RFKNd∗ and RFKNd. Moreover, the RF-based kernels
frequently obtain higher scores than the RBF.
The computational times for each classifier and for the subsets are
shown in Table 3.4. The time required for obtaining g-matrices is
considerably higher than the one required for the other methods.
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Figure 3.5 The OA obtained for SVM-RFKNd classifier at 10 different depths
of RF for four tests. Different depths are defined by changing the number of
terminal nodes (Nn) in the trees. The panels in this figure show the classifica-
tion results corresponding to the sub9 which yields the greatest improvement
in OA of RFKNd∗ compared to RFKNd.

Therefore, we skipped obtaining the time required for importing g-
matrices in an SVM and we did not calculate the time required to
get these matrices for the experiment with other subsets of features.
As it is shown, the time required for obtaining SVM-RBF cannot beat
SVM −RFKNd when the number of features grows.

At the end, the performance of the RFKNd against the number of
the depths used to generate this kernel is evaluated in terms of OA
in Figure 3.6. Figure 3.6 shows how the RFKNd performs in an SVM
against using different number of depths from 2 to 10 depths. Figure
3.6 shows that optimizing the number of depthsmarginally improves
theOA compared to the use of 10 depths for the experiments withB,
BV I and ALL features. Thus, considering the trade-off between the
gained OA and the added computational load, the use of a default
number of depths which generally stabilizes the OA for RFKNd is
preferred.
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Figure 3.6 The performance of multi-scale SVM-RFKNd in terms of OA (i.e.,
averaged OA over 10 subsets) against varying the number of the depths used
to generate this kernel. Nd shows the number of depths.

3.6 Conclusion

In this chapter, we investigate the connection between RF and ker-
nel methods by exploring different RF characteristics. To overcome
the limitations of classic RFK, we designed novel RFKs by using the
distance among terminal nodes, obtaining classic RFK and RF-based
class probabilities at multiple depths. We evaluated these novel ker-
nels by comparing their performances in an SVM against classic RBF
and classic RFK for a crop classification problem over small-scale
farms. We also compared the performances of the RFKs in an SVM
against that provided by a standard RF classifier. A time series of
WV2 images was used to illustrate the study. In general, using the
proposed kernels in an SVM outperformed standard RF. In all exper-
iments, the RFKs obtained based on the number of branches per-
formed at about the same level of classic RFK while the computa-
tional cost for classic RFK is considerably lower. For low dimensional
experiments, RBF kernel and the classic RFK at an optimized depth
slightly outperform other kernels while all kernels perform at about
the same level considering the OAs and their SDs. It is worth men-

57



3. Multi-scale random forest kernel

Table 3.6 The influence of using 10 depths on the classification results ob-
tained for the cases in Table 3.1. OA (in %) is the averaged overall accuracy,
SD (in %) is the standard deviation, κ̄ is the averaged Cohen’s kappa index ,
SDκ is the standard deviation for κ values.

Tests Methods OA SD κ̄ SDκ

SVM-RFKNd 80.50 0.73 0.76 0.01
1:B SVM-RFKNd∗ 82.84 1.18 0.79 0.01

SVM-RFKProb 81.12 1.48 0.76 0.02
SVM-RFKProb∗ 82.84 1.27 0.79 0.02

SVM-RFKNd 82.20 0.95 0.78 0.01
2:BVI SVM-RFKNd∗ 83.62 0.57 0.80 0.01

SVM-RFKProb 80.88 1.28 0.76 0.02
SVM-RFKProb∗ 81.13 1.94 0.76 0.02

SVM-RFKNd 86.04 0.70 0.83 0.01
3:BVITVI SVM-RFKNd∗ 88.62 0.33 0.86 0.00

SVM-RFKProb 82.42 1.32 0.78 0.02
SVM-RFKProb∗ 83.91 0.65 0.80 0.01

SVM-RFKNd 86.18 1.71 0.83 0.02
4:ALL SVM-RFKNd∗ 89.48 1.32 0.87 0.02

SVM-RFKProb 82.74 1.78 0.78 0.02
SVM-RFKProb∗ 84.84 1.34 0.81 0.02

Table 3.7 F-score average (F ) and the corresponding standard deviation
(SD) for the different classifiers.

Test Classes
SVM-RFKNd∗ SVM-RFKNd SVM-RFKNd SVM-RBF SVM-RFKBr

F SD F SD F SD F SD F SD
Cotton 0.81 0.02 0.80 0.02 0.8 0.02 0.79 0.03 0.8 0.02
Maize 0.78 0.02 0.77 0.02 0.78 0.02 0.8 0.02 0.78 0.02

1:B Millet 0.86 0.02 0.83 0.02 0.85 0.02 0.87 0.03 0.85 0.02
Peanut 0.79 0.02 0.77 0.02 0.79 0.02 0.79 0.04 0.79 0.02
Sorghum 0.86 0.02 0.85 0.02 0.86 0.02 0.86 0.02 0.86 0.02

Cotton 0.84 0.03 0.84 0.03 0.83 0.03 0.81 0.02 0.83 0.03
Maize 0.79 0.02 0.78 0.02 0.78 0.02 0.82 0.02 0.78 0.02

2:BVI Millet 0.86 0.02 0.86 0.03 0.85 0.03 0.89 0.01 0.85 0.03
Peanut 0.8 0.02 0.79 0.01 0.79 0.02 0.8 0.03 0.79 0.02
Sorghum 0.85 0.02 0.85 0.02 0.84 0.03 0.86 0.02 0.84 0.03

Cotton 0.88 0.02 0.87 0.01 0.85 0.03 0.76 0.02 0.85 0.03
Maize 0.86 0.02 0.84 0.03 0.81 0.03 0.73 0.02 0.81 0.03

3:BVITVI Millet 0.88 0.02 0.87 0.02 0.86 0.02 0.8 0.02 0.86 0.02
Peanut 0.86 0.02 0.85 0.02 0.83 0.02 0.76 0.02 0.83 0.02
Sorghum 0.88 0.02 0.87 0.02 0.86 0.01 0.82 0.02 0.86 0.01

Cotton 0.89 0.02 0.85 0.03 0.86 0.03 0.76 0.03 0.86 0.03
Maize 0.88 0.02 0.81 0.03 0.83 0.02 0.77 0.02 0.83 0.02

4:ALL Millet 0.89 0.02 0.82 0.04 0.85 0.03 0.81 0.02 0.85 0.03
Peanut 0.87 0.02 0.81 0.03 0.85 0.01 0.77 0.02 0.85 0.01
Sorghum 0.87 0.02 0.84 0.03 0.85 0.02 0.83 0.01 0.85 0.02

tioning that all RF-based kernels obtained for high dimensional and
possibly noisy features considerably improve the classification res-
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ults obtained by the standard SVM-RBF classifier and this improve-
ment is 4 to 11 % in terms of OA. Overall, SVM-RFKNd∗ which cor-
responds to a classic RFK at an optimized depth, leads to the best
results. In particular and compared to classic RFK, it results in an
improvement of 4 to 5.46 % in terms of OA for higher dimensional
experiments. Although the proposed kernels show high overall ac-
curacies in a complex classification problem, future work is required
to evaluate their performance with other datasets, land cover types,
and kernel-based methods. Future work is also required to improve
the rough binary estimation of similarity values through a better no-
tion of probability.

59





4Land cover classification using
extremely randomized trees: a
kernel perspective

This chapter is based on the published paper:
A. Zafari, R. Zurita-Milla, and E. Izquierdo-Verdiguier, “Land cover
classification using extremely randomized trees: A kernel perspect-
ive,” IEEE Geoscience and Remote Sensing Letters, pp. 1–5, 2019.
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Abstract

The classification of the ever-increasing collections of remotely
sensed images is a key but challenging task. In this chapter, we intro-
duce the use of Extremely Randomized Trees known as Extra-Trees
(ET) to create a similarity kernel (ETK) which is subsequently used in
a support vector machine (SVM) to create a novel classifier. The per-
formance of this classifier is benchmarked against that of a standard
ET, an SVM with both conventional Radial Basis Function (RBF) ker-
nel, and a recently introduced Random Forest-based Kernel (RFK). A
time series of Worldview-2 images over small-holder farms is used to
illustrate our study. Four sets of features were obtained from these
images by extending their original spectral bands with vegetation
indices and textures derived from grey-level co-occurrence matrices.
This allows testing the performance of the classifiers in low and high
dimensional problems. Our results for the high dimensional experi-
ments show that the SVMwith tree-based kernels provide better over-
all accuracies than with the RBF kernel. For problems with lower di-
mensionality, SVM-ETK slightly outperforms SVM-RFK and SVM-RBF.
Moreover, SVM-ETK outperforms ET in most of the experiments. Be-
sides an improved overall accuracy, the main advantage of ETK is
its relatively low computational cost compared to the parameteriz-
ation of the RBF and RFK. Thus, the proposed SVM-ETK classifier is
an efficient alternative to common classifiers, especially in problems
involving high-dimensional datasets.
Keywords: Image classification, random forest, support vector ma-
chine, smallholder agriculture, very high spatial resolution satellite
images

4.1 Introduction

With the advent of new sensors and open data policies, large
datasets are becoming available. This includes large collections of
remotely sensed (RS) images, which often need to be classified to
support their use in various domains and applications [22]. Yet,
traditional classification methods cannot properly deal with the
challenge of handling large and complex datasets [174]. Moreover,
access to images with higher spatial, spectral resolutions facilitates
the extraction of extra features from RS images. These features are
required because elements in the scene may appear at various scales
and orientations because of variable weather and lighting conditions
[175]. Extra features often lead to high-dimensionality which is the
most important challenge in recent RS image classification tasks
[174].

Kernel methods can efficiently deal with non-linear and high dimen-
sional problems. Support Vector Machine (SVM) is one of the most
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representative kernel-based classification methods, and Radial Basis
Function (RBF) is the most common kernel used with this classi-
fier [29]. Using an SVM-RBF classifier requires optimization of two
parameters (i.e., RBF bandwidth and SVM regularization parameters)
through a computationally demanding cross-validation process [29].
This is a limitation of SVM-RBF [166]. Another limitation to accur-
acy and efficiency of SVM-RBF is experienced when the number of
features increases for a certain amount of training data [62]. The
reason for this is the curse of dimensionality, also called Hughes
phenomenon. Moreover, the RBF kernel is typically computed with
all of the available features assuming that they are all informative.
High dimensional problems often require to select the most import-
ant features, and SVM-RBF cannot directly select the most import-
ant features. This is another known limitation of SVM-RBF [62, 176].
Another well-known classifier for high dimensional problems is Ran-
dom Forest (RF) [177]. RF grows trees based on recursive partitioning
of nodes, and it generally uses the Gini index to select the best split
in a node. RF is fast, not sensitive to the choice of parameters, pro-
duces good results with relatively low amounts of training samples,
and are resistant to noise in training samples and to overfitting [98].
These characteristics alongside with its tree-based structure make it
a suitable classifier to draw partitions in the data and to obtain an RF
Kernel (RFK) that quantifies similarities between samples [104, 166].
The pairwise similarities between the samples reflect whether they
fall in the same end-node or not [178]. By using default values for the
RF parameters, the classification results of SVM-RFK are comparable
to those obtained by SVM-RBF as shown for an AVIRIS dataset often
used in benchmarking studies (i.e. Salinas) and for a time series of
Worldview-2 images over Sukumba, Mali [166]. Hence, RFK is an ef-
fective alternative to RBF, particularly when combined with RF-based
feature selection methods [166]. Nevertheless, the structure of this
kernel is highly dependent on the training labels since it is built based
on classification results of RF. This means that the RFK can overfit
to the training data especially when the number of features is low
since the structure of trees would be correlated [94]. Moreover, RFK
is negatively impacted by possible mislabeled samples in the training
data. To overcome these downsides, the randomization level of the
RF ensemble should be increased to have trees that are less correl-
ated. This can be achieved by using Extremely Randomized Trees a
method commonly known as Extra-Trees (ET) [106]. The ET also gen-
erates an ensemble of unpruned decision trees, but it splits nodes by
choosing cut-points fully at random and it uses all training sample
rather than bootstrap subsets to grow the trees [106]. In extreme
cases, ET builds totally randomized trees (ToRT). The structure of
these trees is independent of the training labels [106]. The random-
ization level can be adjusted to the problem at hand by selecting
suitable parameters [106]. Several papers have applied ET classifier
for land cover classification, and have shown that ET can outperform
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RF and SVM-RBF in terms of Overall Accuracy (OA) [99, 100]. Besides
OA, the main strong point of ET is its computational efficiency [106].
Like RF, the tree-based structure of the ET can be used to create par-
titions in the data and to generate an ET kernel (ETK) that encodes
similarities between samples based on these partitions [106]. Using
ETK as an alternative to RBF and RFK, one can avoid computational
cost associated with parametrizing the RBF kernel and reduce the
probability of getting an overfitted kernel.
The main goal of this chapter is to present and evaluate a novel clas-
sifier created by combining an ET-based kernel and SVM (SVM-ETK).
We evaluate our approach by comparing it against ET, SVM-RFK, and
SVM-RBF. Our evaluation is illustrated with a time series of very high
spatial resolution data acquired over agricultural lands.

4.2 Extra-trees kernel

ET grows an ensemble of unpruned decision trees using the clas-
sical top-down procedure through randomly recursively splitting the
data into child nodes until reaching the terminal nodes defined by
a stopping criterion [106]. ET differs from other decision-tree based
ensembles such as RF in two cases [99]. First, ET does not search
extensively for an optimized cut-point in the nodes, this causes the
tree structures to be independent of the target variable values of
the learning samples [99]. Second, it uses the same training sample
for growing all trees rather than a bootstrap replica. The explicit
randomization of cut-point and feature combined with ensemble av-
eraging reduces the variance among the trees. Using full training
samples rather than bootstrapped samples reduces the bias [106].
Furthermore, the computational load of training for ET is less than
that of required to train RF since it does not search intensively for
an optimal cut-point [106]. ET has three parameters in common with
RF. Like RF, a random subset of all the available features is evalu-
ated when looking for the best split point. The number of features
in the subset is controlled by the user and is typically called mtry.
Second common parameter is Nt which is the number of the decision
trees to be generated. It has been shown that for ET and RF, the
prediction error is a monotonically deceasing function of number of
trees [94, 106]. Third common parameter is nmin which is minimum
sample size for splitting a node with the default value of one (or
two) [94, 106]. The optimal value for nmin increases depending on
the level of mislabeled samples in training data [106]. The higher
values for this parameter result in smaller trees, smaller variance,
and higher bias [94, 106]. In addition to mtry, Nt and nmin, the spe-
cific parameter to ET is the number of random cut-points (Ncp) to
consider for each selected feature in splitting a node. In the most
extreme case, ET randomly picks a single feature (i.e., mtry is one)
and a single cut-point at each node [106]. This is typically called

64



4.3. Data and experiments

totally randomized trees, and its structure is independent of the la-
bels of training samples. However, the level of randomization can be
optimized to the problem with mtry and Ncp parameters [99, 106].
When ET uses more than one feature or/and random cut-point in
splitting the nodes, like RF, it uses the Gini index or a normalization
of information gain to select the best cut-point out of the randomly
selected splits [106].
Tree-based models such as RF and ET can be used to generate ker-
nels using a feature space defined by the terminal nodes of the trees;
this is comprehensively proven and explained in [106]. The charac-
teristics of ET, and consequently of the ETK, make it less dependent
on the training labels than RF and its kernel version. This reduces
the probability of getting an overfitted kernel. The dependency of
the ETK on the training labels can be controlled with the randomiza-
tion level, which can be adjusted to the problem at hand by selecting
suitable ET parameters. Mathematically, ETK is a square matrix with
the size of the training set, where the element (i, j) contains number
of times that samples i and j fall in the same terminal node normal-
ized by the number of trees in the ensemble. In other words, if two
samples are fallen in the same terminal node of a tree, the similar-
ity is equal to one; otherwise, it is zero. The similarity of each tree
(Ktn(xi, xj)) is obtained by [99, 106]:

Ktn(xi, xj) = I [ q(xi) = q(xj)], (4.1)

where q is a terminal node and tn is the n − th tree of the ET. Then,
the ETK matrix is calculated by the average of tree kernel matrices

ETK =
1

Nt

Nt∑
tn=1

Ktn , (4.2)

Nt being the number of trees used in the ET. ETK is the average of
kernel matrices obtained with all trees and can be used in kernel-
based methods such as SVM (i.e., SVM-ETK).

4.3 Data and experiments

4.3.1 Data and study area

The study area is located near Sukumba in Mali, West Africa. A time
series of WorldView-2 images is used to illustrate this study. This
dataset includes seven multispectral images that cover the cropping
season of 2014 [153]. Ground truth labels for 5 common crops in-
cluding cotton, maize, millet, peanut, and sorghum were collected
for 9 fields per crop (45 fields) through fieldwork. The Sukumba
images are atmospherically corrected, co-registered, and trees and
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clouds are masked [153]. These images and the corresponding
ground data are part of the STARS project.
The Sukumba dataset originally contains 56 bands (i.e. 7 images
with 8 bands each). The number of features was extended by ob-
taining Normalized Difference Vegetation Index (NDVI), Ratio Vegeta-
tion Index (RVI), Soil Adjusted Vegetation Index (SAVI), Modified Soil-
Adjusted Vegetation Index (MSAVI), Transformed Chlorophyll Ab-
sorption Reflectance Index (TCARI), and Enhanced Vegetation Index
(EVI). The dataset, the study area, a list and short explanation of VIs
used in this study can be found in [166]. Furthermore, the pairwise
band combinations by means of the difference, ratio and normaliz-
ation between bands 2 to 8 were generated increasing the number
of the features until 525. Next, the number of features for Sukumba
dataset was extended by adding the Gray-Level Co-Occurrence Matrix
(GLCM) textures to the spectral features and VIs. These GLCM based
features capture spatial relationships across the pixels [160]. The
GLCM textures derived for Sukumba dataset are also presented and
explained comprehensively in [124, 166]. For each spectral and VI
feature, statistical textures including angular secondmoment, correl-
ation, inverse difference moment, sum variance, entropy, difference
entropy, information measures of correlation, dissimilarity, inertia,
cluster shade, and cluster prominence are obtained [124]. Concat-
enating spectral, VIs and GLCM features obtained for both spectral
and VIs features increases the number of features to 10536. Table
4.1 shows the subsets and quantity of the features which are used
in four tests to examine the proposed method in this study. In such
large datasets in last two experiments (i.e., BV ITV I and ALL) there
are many correlated features and some of them might be not helpful
for the classification task at hand (i.e., noise).

Table 4.1 Experiments description (Nf : Number of features.)

Acronim Features Nf

1:B Spectral features 56
2:BVI Spectral and VIs features 525
3:BVITVI BVI and GLCM textures of VIs 8498
4:ALL BVITVI, textures of spectral features, and additional features 10584

4.3.2 Experimental set-up

First, the polygons representing farms were split into four sub-
polygons. Two sub-polygons were used to choose the training
samples and the other two, the test samples. Then, the train and test
sets were split into 10 random subsets, with a balanced number of
samples per class (130 and 100 samples per class for training and test,
respectively). Final results were obtained by averaging the results ob-
tained with 10 subsets available for each spectral case (Table 4.1). To
investigate the influence of ET parameters on ET kernel performance,
the ranges {100, 300, 500}, and {1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50}
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are used for Nt and Ncp respectively. Themtry parameter is set to its
default value of the square root of the number of features. The nmin

parameter is also set to its default (i.e., nmin = 1) because a moderate
level of mislabeled samples is expected [106]. Moreover, ToRT res-
ults are obtained by settingmtry and Ncp to 1. To obtain RFK, Nt and
mtry parameters in RF were set to their default values of 500 trees and
the square root of the number of features because this stabilizes the
error of the classification in the most applications [166]. The optim-
ization of RF parameters for obtaining the RFK is skipped because of
marginal gain in OA of SVM-RFK compared to added computational
cost [166]. Thus, the performances of the kernels derived from RF
and ET are compared using models trained with default parameters
for both methods. For the RBF kernel, the optimum bandwidth was
found using the range [0.1, 0.9] of the quantiles of the pairwise Euc-

lidean distances (D = ∥x− x
′∥

2
) between the training samples, and

the optimal C value was found in the range of [5, 500]. For the RBF ker-
nel, a 5-fold cross-validation was used to find the optimal bandwidth
and C values. A 5-fold cross-validation was also used to optimize C
for the RFK and ETKs. In all the cases, the one-versus-one multiclass
strategy implemented in LibSVM was used [161]. Classification res-
ults are compared in terms of their average Overall Accuracy (OA)
and Cohen’s kappa index (κ̄). Next, crop classifications maps are
obtained through the classifiers pertinent to the set of train and test
samples which provides the highest test OA between other 10 sets of
train and test samples. For visibility reasons, 2 classified fields per
crop are shown for each classifier. At the end, OA and κ of the top
performing classifiers are obtained for all available labeled samples
in the 45 fields.

4.4 Results and discussion

Fig. 4.1 displays the OAs of 10 test subsets versus different para-
meters configurations for ET and SVM-ETK classifiers. Fig. 4.1 shows
that SVM-ETK always outperforms ET for all the cases with VIs (Table
4.1) and irrespective of the value of Nt and Ncp. For the experiment
with B features, the OA of SVM-ETK and ET overlaps in some ranges
of Ncp. Yet, SVM-ETK outperforms ET in most ranges particularly for
small values of Ncp. We can also observe in Fig. 4.1 that the peaks of
OA for SVM-ETK correspond to higher levels of randomization (i.e.,
Ncp equal or less than 10). Nonetheless, the difference between the
OAs obtained with the default (i.e., 1) and the best value of Ncp is
less than 1 % for the SVM-ETK classifier. For ET, lower levels of ran-
domization lead to the best OAs, and optimizing the Ncp results in
1 % improvement in OA for the experiments with BV ITV I and ALL
features. Fig. 4.1 also shows that the higher number of trees (i.e.,
300 and 500) generate higher OAs for both ET and SVM-ETK.
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Figure 4.1 The OA for SVM-ETK and ET classifiers versus the number of
random cut-points for each candidate feature (Ncp) for the four experiments.

Table 4.2 compares OA and κ̄ of the best and default configurations
of SVM-ETK with SVM-RBF, SVM-RFK, and ET classifiers. In Table 4.2,
the classifiers with the best parameters are shown with ∗, and with
the default parameters are shown with d (i.e., ET ∗ and ETd). Focus-
ing on the experiment with B features, the SVM-ETKs with an OA of
83.38 % slightly outperforms both SVM-RFK and SVM-RBF with OAs
of 80.68 % and 82.08% respectively. The default values of 500 and 1
for Nt and Ncp parameters of SVM-ETK gives the best OA obtained in
the tested ranges. Thus, the results for SVM-ETKd and SVM-ETK∗ are
the same for this experiment.
Focusing on the experiment with BV I features, SVM-ETKs and SVM-
RBF perform almost equally considering the OA and SD of test sub-
sets, and these two classifiers outperform ET and SVM-RFK.
Increasing the number of features to 8450 in the experiment with
BV ITV I features results in a decrease of 6.62 % in OA for SVM-RBF
while it slightly improves the results of ET∗, SVM-ETKs, and SVM-RFK.
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Using the tree-based kernels in an SVM for this experiment gives al-
most equal results considering their OA and SD.
In the fourth experiment with 10536 features, the SVM-ETKs and
SVM-RFK perform almost equally and they considerably outperform
ET and SVM-RBF. Our results show that SVM-RBF for the possibly
noisy high-dimensional experiments (i.e.,BV ITV I andALL) does not
generate competitive results compared to tree-based classifiers. The
highest OA is 85.70 % and obtained for SVM-ETK∗ with all features.
The McNemar test at 5% significance level shows that the difference
between the classification results of SVM-ETK∗, SVM-ETKd, and SVM-
RFK are not statistically significant for higher-dimensional cases in-
cluding the experiment with BV I features. For the experiment with
B features, the McNemar test shows that results of both SVM-ETK∗

and SVM-ETKd are statistically significant compared to the results of
SVM-RFK. This confirms that RFK and ETKs perform equally well for
higher-dimensional experiments, but ETKs outperforms RFK for the
lowest dimensional case.

Table 4.2 Classification results for different cases and classifiers. Nt and
Ncp are respectively number of trees and number of random cut-points per
candidate feature. ∗ and d are respectively best and default configurations.

Case Classifier Nt Ncp OA SD κ̄ SDκ
ET∗ 500 20 83.10 0.83 0.79 0.01

B

ET d 500 1 82.92 0.85 0.79 0.01
SVM-ETK∗ 500 1 83.38 1.26 0.79 0.01
SVM-ETKd 500 1 83.38 1.26 0.79 0.01
SVM-RFK 500 – 80.68 1.13 0.76 0.01
SVM-RBF – – 82.08 2.21 0.77 0.03
ET∗ 300 30 81.96 1.56 0.77 0.02

BVI

ET d 500 1 81.28 1.21 0.77 0.02
SVM-ETK∗ 300 10 83.58 1.49 0.77 0.01
SVM-ETKd 500 1 82.94 1.30 0.77 0.01
SVM-RFK 500 – 81.86 0.98 0.77 0.01
SVM-RBF – – 83.44 1.46 0.79 0.02
ET∗ 500 40 82.04 0.99 0.78 0.01

BVITVI

ET d 500 1 81.08 1.52 0.76 0.02
SVM-ETK∗ 500 10 84.80 1.02 0.77 0.02
SVM-ETKd 500 1 84.16 1.22 0.77 0.02
SVM-RFK 500 – 84.36 1.01 0.80 0.01
SVM-RBF – – 77.38 1.03 0.72 0.01
ET∗ 500 30 82.60 1.73 0.78 0.02

ALL

ET d 500 1 81.66 1.90 0.77 0.02
SVM-ETK∗ 300 5 85.70 1.00 0.77 0.02
SVM-ETKd 500 1 85.24 1.72 0.77 0.02
SVM-RFK 500 – 85.08 1.83 0.78 0.02
SVM-RBF – – 78.72 1.04 0.73 0.01
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The OA and κ̄ results for ToRT and totally randomized trees kernel
in an SVM (SVM-ToRTK) are shown in Table 4.3. These results were
only obtained for 300 and 500 trees considering the results of the
experiments shown in Fig. 4.1. Table 4.3 shows that using 300
and 500 trees generates similar results. These results show that
SVM-ToRTK outperforms ToRTK. Comparing Tables 4.2 and 4.3,
SVM-ToRTK, SVM-ETKs, and SVM-RBF yield similar OA and κ̄ for the
experiment with B features. For the experiment with BV I features,
SVM-ToRTK also gives competitive results compared to the other
classifiers, but for the higher number of features, the performance
of SVM-ToRTK decreases significantly. Totally randomized trees act
like an unsupervised classifier and results in a label independent
kernel that cannot deal with high-dimensional noisy problems,
but it can be used as an alternative to RBF, RFK, and ET when the
number of features is low. This will also reduce the computational
load for obtaining the kernel compared to ETK. Thus, increasing the
level of randomization in ET to its most extreme case (i.e., ToRT) is
only preferred for the smaller number of features since it slightly
improves the results (improving OA and reducing its pertinent SD
in comparison with ETK) and reduces the computational cost.

Table 4.3 Classification results of totally randomized trees (ToRT) and
totally randomized trees kernels in an SVM (i.e., SVM-ToRTK).

Case Classifier Nt OA SD κ̄ SDκ

1:B
ToRT

300 80.62 0.006 0.75 0.008
500 81.32 0.01 0.76 0.01

SVM-ToRTK
300 83.16 0.72 78.95 0.01
500 83.70 0.77 79.29 0.01

2:BVI
ToRT

300 78.98 0.01 0.73 0.01
500 79.36 0.009 0.74 0.01

SVM-ToRTK
300 82.44 1.06 78.05 0.01
500 82.44 1.03 78.05 0.01

3:BVITVI
ToRT

300 59.72 0.02 0.49 0.03
500 60.96 0.02 0.51 0.03

SVM-ToRTK
300 63.50 2.38 54.37 0.03
500 65.50 2.35 56.88 0.03

4:ALL
ToRT

300 56.88 0.03 0.53 0.04
500 58.14 0.02 0.54 0.03

SVM-ToRTK
300 63.06 2.35 53.76 0.03
500 64.38 2.49 54.58 0.03

Finally, we present maps, OA, and κ̄ (Table 4.4) corresponding to the
whole available ground truth labels in all 45 fields in the study area.
The classification maps are obtained with B features, and through
the trained classifier corresponding to the set of train and test with
the highest OA. Looking into Table 4.4, all classifiers perform good
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Table 4.4 OA and κ̄ over the 45 fields in the study area.

Classifier ET SVM-RBF SVM-RFK SVM-ETK

OA (in %) 78.63 79.59 79.57 79.67

κ̄ 0.72 0.73 0.73 0.74

OA 84.70% 82.45% 83.82% 85.75%
GT ET SVM-RBF SVM-RFK SVM-ETK

M
ai
z
e

93.21 91.11 92.66 91.90

M
il
le
t

91.24 92.07 90.01 91.30

P
ea
n
u
t 76.45 65.51 71.07 71.07

So
rg
h
u
m 68.41 70.40 75.92 82.86

C
o
tt
o
n 94.19 93.16 89.48 91.65

No class Maize Millet Peanut CottonSorghum

Figure 4.2 A crop field per ground truth class along with their OA obtained
for the different classifiers using B, and the OAs for 5 fields on top.

and at about same level when obtained based onB features and when
applied to whole study area while SVM-ETK slightly outperforms by
improvingOA and κ̄. For visibility reasons, we only present classified
fields. In particular, Fig. 4.2 shows one field for each of the classes
considered. Looking into polygons individually, SVM-ETK signific-
antly improves OA for the fields with the class Sorghum compared to
ET, SVM-RBF, and SVM-RFK. In general, the SVM-ETK classifier slightly
outperforms other classifiers in terms ofOAs for these polygons, and
SVM-RBF gives the lowest OA.
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4.5 Conclusion

In this chapter, we present and evaluate a novel classifier: SVM-ETK.
The evaluation is done by comparing its performance against that of
standard ET, SVM-RBF, and SVM-RFK. For this, we use a high spatial
resolution time series over smallholder African farms expanded to
create various dimensionality levels (from 56 to 10536 features). In
the experiments with low dimensionality, the average classification
metrics show that the classifiers perform at about the same level
although SVM-ETK slightly outperforms the results of the other
classifiers. In the high dimensional experiments, the tree-based
kernels led to considerably higher overall accuracies compared
to RBF while reducing the cost of the classification. Using totally
randomized trees (i.e., ET with the most extreme level of randomiz-
ation) to create a kernel gives competitive results when the number
of features is relatively low. This kernel reduces the computational
costs, but being totally independent of the labels, it fails in our high
dimensional experiments. Overall, our results show that ET-based
kernels are efficient and effective alternatives to the top-performing
kernels used by the RS community. Further studies are required
to evaluate the performance of the proposed methods on various
benchmarking datasets.
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5TreeBasedKernels: an
R-function for obtaining
kernels based on tree-based
ensemble learners

This chapter presents an R-function to obtain the tree-based kernels
introduced and evaluated in the previous chapters. The R-function is
freely distributed in the DANS repository. The instructions and the
source code are available at DOI: 10.17026/dans-247-y9x3
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This chapter presents an R-function that implements the various
designs of tree-based kernels introduced and evaluated in this thesis.
This function provides support for the shift toward open science, fa-
cilitates the reproducibility of the results presented in this thesis,
and enables researchers who are interested in further testing or ex-
panding tree-based kernels.
This chapter is organized into two main sections. The first one
briefly summarizes the mathematical formulation of the kernels.
The second section documents the function and its parameters.

5.1 A brief review of tree-based kernels

The structure of tree-based ensemble learners such as Random
Forest (RF) and Extra-Trees (ET) can be used to create partitions in
the data and to generate tree-based kernels that encode similarit-
ies among samples based on these partitions. The basic idea is that
samples falling in the same partition are similar and those falling
in different partitions are dissimilar. The similarity values among
samples can be obtained based on various partitions and with differ-
ent configurations of RF or ET. Thus, different structural parameters
of RF and ET are used to generate various designs of tree-based ker-
nels in the following manner:
1. RFKNd: This is the classic design of an RF kernel. It uses the

terminal nodes as partitions of a trained RF to calculate the sim-
ilarity among data. In this design, if two samples land in the
same terminal node of a tree, the similarity is equal to one; oth-
erwise, it is zero. For each tree, one pairwise similarity matrix
(Ktn ) is generated and RFKNd is the average of the matrices
obtained for all trees [166, 105].

RFKNd =
1

Nt

Nt∑
n=1

Ktn , (5.1)

where tn is the n− th tree of RF and Nt is the number of trees.

2. RFKBr and g-matrices: This RF kernel is based on measur-
ing distance (i.e., the number of branches) between the terminal
nodes containing samples i (si) and j (sj). Here, we indicate this
kernel by RFKBr and define it as [167]:

RFKBr(si, sj) =
1

Nt

Nt∑
n=1

1

ew.gijtn,
(5.2)

where n runs over the number of trees in RF, the parameter
w controls the influence of the distance between two terminal
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nodes occupied by the samples si and sj , and gijtn is the number
of branches between two terminal nodes containing si and sj in
the tn (n− th tree of RF). If si and sj land on the same terminal
node, then g = 0 and RFKBr will be increased by one as in the
classical approach (i.e., RFKNd) to assess the similarity of two
samples.
In the TreeBasedKernels function, for each tree, a g-matrixTRTR

and a g-matrixTSTR is obtained. The g-matrixTRTR contains the
pairwise distance among training samples and the g-matrixTSTR

contains the pairwise distance among test and training samples.
For obtaining RFKBr, the g-matricesTRTR—together with a
range of w—must be imported in a kernel-based model to op-
timize w and the parameters of the model. After training the
kernel-based model with the optimal value of the parameters,
the g-matricesTSTR obtained with the TreeBasedKernels func-
tion can be used to evaluate the kernel-based model.

3. MultRFKprb: A trained RF assigns a probability of member-
ship to each of the classes of interest in each sample—namely,
the predicted probability vector. Using a matrix notation, all
the predicted probability vectors can be placed in matrix P in
the following manner:

P =


p11 p12 p13 . . . p1C
p21 p22 p23 . . . p2C

. . . . . . .
pn1 pn2 pn3 . . . pnC

 (5.3)

P is the matrix of predicted probabilities by RF—one column
per class and one row per sample, where C is the total num-
ber of classes. Once P is calculated, the RFKProb is defined
as RFKProb = P.PT . The kernel is obtained at different depths.
Therefore, the averaged probabilistic RF kernels obtained at dif-
ferent depths are defined in the following manner:

RFKProb =
1

Nd

Nd∑
n=1

(P.PT)dn,
(5.4)

where Nd is the number of the depths considered to obtain
RFKProb, n runs over the number of depths, and dn is the n− th
depth in RF. Different depths can be defined by changing the
number of terminal nodes in the trees.

4. MultRFKNd: RFKNd can be obtained at different depths as
well. The average of these kernels can be considered a multi-
scale RFKNd.

5. ETK: Like RF, the tree-based structure of ET can be used to
generate a kernel that encodes similarities between samples
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based on the terminal nodes [106, 179]. The level of randomiz-
ation increases in the structure of ET compared to that of RF.
Thus, ET kernels are less dependent on the labels of training
samples compared to RFK.

5.2 R-function-TreeBasedKernels

5.2.1 Description

This function returns similarity kernels (or proximities) obtained
from tree-based ensemble classifiers, namely, RF and ET. For imple-
menting RF and ETs, randomForest (implementing Breiman’s random
forest algorithm) and ranger packages are used, respectively. These
kernels can be used as alternatives to common kernels like the ra-
dial basis function (RBF) in kernel-based classifiers like the support
vector machine (SVM). To use this function, it is required that the
following packages are installed and loaded: caret, e1071, random-
Forest, ranger, edarf, PEIP, and doSNOW.

Usage

TreeBasedKernels (kernelType, xtrain, xtest, ltr, lts, MtryOp=FALSE,
Nt=500, numsplits=1, Vis=TRUE)

Arguments

kernelType the kernel design used in training and predict-
ing. kernelType provides the above mentioned tree-
based kernel designs by setting the kernelType para-
meter to one of the following strings:
RFKNd: The classic design of RFK that encodes sim-
ilarities among samples based on the terminal nodes
of a fully grown RF classifier are returned by the
function.
gmatrices: The number of branches between the
terminal nodes containing the samples are re-
turned by the function. The g-matrixTRTR and g-
matrixTSTR are stored in the working directory. To
obtainRFKBr, the g-matrices with a range ofwmust
be imported in a kernel-basedmodel to optimize the
w parameter of RFKBr and the parameters of the
model.
MultRFKprb: The average of probabilistic RFKs ob-
tained at 10 different depths are returned by the
function.
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MultRFKNd: The average of RFKNd obtained at
10 different depths are returned by the function.
RFKNd obtained at different depths is stored in the
working directory. An optimized depth for RFKNd

can be defined by evaluating RFKs obtained at dif-
ferent depths in kernel-based classifiers like SVM.
ETK: A kernel that encodes similarities between
samples based on the terminal nodes of ET is re-
turned.

xtrain a data frame or matrix containing training data. In
xtrain, rows contain the samples and columns con-
tain the variables (or features).

xtest a data frame or matrix containing test data. In xtest,
rows contain the samples and columns contain the
variables (or predictors).

ltr A response vector, dataframe, or matrix containing
the labels of training data.

lts A response vector, dataframe, or matrix containing
the labels of test data.

MtryOp If FALSE (default), mtry is not optimized. If TRUE,
mtry optimization is implemented in case of RF-
based kernels (i.e., the ETK is always calculated with
the default value of mtry). Notation: mtry is the
number of variables randomly sampled as candid-
ates at each split. The default value of mtry is
sqrt(p), where p is the number of variables in xtrain.

Nt Number of trees to grow in the tree-based ensemble
learners. The default is set to 500 trees, which sta-
bilizes the error in most of the applications.

numsplits If kernelType is set to “ETK”; numsplits is used as
a parameter in ET. Numsplits is the number of ran-
dom cut-points to consider for each selected feature
in splitting a node as defined in the documentation
of the ranger package.

Vis If TRUE, a visualization of the selected tree-based
kernel by the user is returned.

Value

A (ntrain + ntest) by (ntrain + ntest) matrix containing the pairwise
similarity values among the samples, where ntrain is the number of
training samples and ntest is the number of test samples (except if
gmatrices is set as kernelType).
Subsetting the output matrix as [1 : ntrain, 1 : ntrain] gives the train
kernel containing the similarity values among training sample. Sub-
setting the output matrix as [(ntrain + 1) : (ntrain + ntest), 1 : ntrain]
yields the test kernel containing the similarity values of test samples
to train samples.
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Availability

This function is freely distributed in the DANS repository. The in-
structions, the source code, and 10 pairs of training and test subsets
obtained in [179] are available at DOI: 10.17026/dans-247-y9x3.
Contact: zafari.azar@gmail.com

Examples

TrKr=TreeBasedKernels (kernelType=’RFKNd’, xtrain=xtr2,
xtest=xts2, ltr=ytr2, lts=yts2, MtryOp=FALSE, Nt=100, numsplits=1,
Vis=TRUE)

Figure 5.1 The visualization of RFKNd as train-train kernel in the left and
test-train kernel in the right.
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TrKr=TreeBasedKernels (kernelType=’MultRFKprb’, xtrain=xtr2,
xtest=xts2, ltr=ytr2, lts=yts2, MtryOp=FALSE, Nt=100, numsplits=1,
Vis=TRUE)

Figure 5.2 The visualization of RFKProb as train-train kernel in the left and
test-train kernel in the right.

TrKr=TreeBasedKernels (kernelType=’MultRFKprb’, xtrain=xtr2,
xtest=xts2, ltr=ytr2, lts=yts2, MtryOp=FALSE, Nt=100, numsplits=1,
Vis=TRUE)

Figure 5.3 The visualization of RFKNd as train-train kernel in the left and
test-train kernel in the right.
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TrKr=TreeBasedKernels (kernelType=’ETK’, xtrain=xtr2, xtest=xts2,
ltr=ytr2, lts=yts2, MtryOp=FALSE, Nt=100, numsplits=1, Vis=TRUE)

Figure 5.4 The visualization of ETK as train-train kernel in the left and
test-train kernel in the right.
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6.1 Research findings and conclusions

The aim of this dissertation was to integrate two of the most well-
known and recurrently used classifiers by the geospatial community:
tree-based methods like RF and kernel methods like SVM. In partic-
ular, this research concentrated on exploring the use of tree-based
kernels in SVMs. Developing classification methods to generate high
accuracy land cover maps is highly significant. Obtaining land cover
maps is the first step in environmental and agricultural monitoring
that leads to sustainable development and agricultural systems. In
this chapter, we summarize the research findings and conclusions
with respect to each research objective, as described in section 1.5.
This chapter also presents a reflection on the link among Chapters 2
to 4, the main contribution of the dissertation, and the direction and
recommendations for future research.

▶ Evaluating the potential of using an RF-based kernel (RFK) to
classify remotely sensed images
In this dissertation, we explored the possibility of crop clas-
sification over smallholder farms through the synergic use of
prevalent classification methods. The SVM and RF are two well-
known classifiers used for image classification, but each one
has its own strong and weak aspects. We employed a synergic
approach for these two methods in order to integrate the ad-
vantages of both and minimize their disadvantages. This was
achieved by obtaining an RF-based kernel and importing it into
an SVM rather than using a conventional RBF kernel. Using RFK,
one can avoid the the high computational load of parameteriz-
ing the RBF kernel. The performance of the synergic method
was benchmarked against conventional methods. We tested the
proposed synergic method once for a time series of WV2 images
over the Sukumba study area in Africa and once for an exten-
ded feature set of this dataset by obtaining vegetation indices
and GLCM textures and stacking them on to spectral features.
We discovered that our proposed synergic method yields
slightly higher OAs than RF and it considerably outperforms
SVM-RBF for the extended Sukumba dataset. We also exploited
RF’s characteristic to derive an RFK based on the most import-
ant features of the extended Sukumba dataset and this exper-
iment achieves further improvements in the OA of the kernel
when used in an SVM compared to RFK obtained with all fea-
tures. Thus, RFK can inherit the strong points of RF. Using only
the spectral features, our proposed synergic method performs
at almost the same level as that of the classic SVM and RF in
terms of OA. However, the computational cost required for the
synergic method is much less than that for SVM-RBF for both
spectral cases of Sukumba. We showed this through an exper-
iment using the KSVM function in the kernlab package of R.
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We used both the built-in and custom kernels of this package
to import the RBF and RFK kernels, respectively, in an SVM. In
addition, RF models and RFKs are obtained through the ran-
domForest package of R. Using these packages in R, we found
that importing RFK in an SVM reduces the computational time
associated with parametrizing the kernel compared to RBF in
an SVM. Using the default parameter of mtry, SVM-RFK is eight
times faster for the higher-dimensional Sukumba dataset.
As benchmarking, we tested the proposed synergic method for
the Salinas dataset with its original number of features. We
found that the synergic method performs at almost the same
level as that of RF and classic SVM for the Salinas dataset. How-
ever, using RFK in an SVMperforms eight times faster compared
to RBF andmarginally improves the OA compared to the RF. Fur-
ther, we investigated the effect of mtry as the most influential
parameter of the RF on the performance of RFK in an SVM for
both the Sukumba and Salinas datasets. mtry is the number of
random subsets of all available features that is used in splitting
nodes. We found that optimizingmtry marginally improves the
performance of RFK in an SVM compared to using the default
value of this parameter. This indicates that RFK can perform at
least as well compared to the RBF kernel without optimizing any
parameter for RF and subsequently for RFK. Thus, considering
the trade-off between the added computational load and gain
in OA, optimizing the mtry parameter for obtaining RFK can be
skipped. Further, the newly tested RFK was revealed to be of
importance, particularly for future RS classification tasks that
are aimed at high-dimensional problems. Thus, the following
research questions have been answered:

a) How do the classification results of SVM-RFK compare to
those obtained by the standard RF and SVM-RBF classifi-
ers?
The results reveal that the selected supervised methods
perform well for the selected classification problem, com-
pete closely, and achieve high OAs for spectral features
of the Sukumba and Salinas datasets. For the Sukumba
dataset, the OAs are 81.08%, 82.08%, 81.34% for RF, SVM-
RBF, and SVM-RFK, respectively. For the Salinas dataset,
the OAs are 95.83%, 94.16%, and 94.42,% respectively. The
proposed RFK led to competitive results for the datasets
with a lower number of features, while reducing the cost
of the classification compared to using RBF in an SVM.
In the Sukumba dataset, adding VI and GLCM features to
spectral features resulted in OAs of 80.82%, 77.96%, and
82.30% for RF, SVM-RBF, and SVM-RFK, respectively. The
results of the extended Sukumba dataset indicate that
RFKs created using high-dimensional and noisy features
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considerably improve the results of the classification
for SVM-RFK, with OA approximately 4% better than that
obtained with an SVM-RBF classifier while reducing the
cost of classification. For a higher number of features, the
SVM-RFK results in approximately 1.5% improvement in
OA, which is also slightly better than that obtained by the
standard RF classifier.

b) How does RF’s most important parameters affect the
performance of SVM-RFK classifier?
The mtry parameter partially influences the classification
results of RF, while the default values of other parameters
generally stabilize the classification error [130, 145].
Hence, we explored the influence of mtry on the results
of SVM-RFK classification. Our findings prove that op-
timizing the mtry for RF leads to minor changes in the
classification results of SVM-RFK. Thus, with a small trade-
off in OA, the cost of the classification can be reduced for
SVM-RFK by skipping the mtry optimization.

c) How does RF’s feature selection impact the classification
results of SVM-RFK classifier?
RF can identify the most important features using feature
importance scores. For the extended Sukumba dataset, we
derived an additional RFK based on themost important fea-
tures from a subsequent RF model trained only with the
most important features. SVM-RFK-MIF improved the res-
ults of the classification by approximately 2.5 % and 7%
compared to those obtained with an SVM-RFK classifier and
SVM-RBF, respectively.

▶ Investigating the pros and cons of alternative RFK formula-
tions
In order to meet this objective, we explored various alternat-
ive formulations of RFK by conducting a deeper examination
into the structure and different characteristics of RF. In partic-
ular, we explored the distance between the end-nodes of trees,
the role of trees’ depths, and class probabilities assigned to
samples by RF in improving the RFK notion. We evaluated
the performance of the alternative formulation by importing
them into an SVM. The evaluation was done using four levels
of dimensionality derived for the Sukumba dataset. These four
levels were obtained by extending the original spectral bands
with vegetation indices and grey-level co-occurrence textures
(i.e., B, BVI, BVITVI, and ALL).
The classic design of RFK originates from rough binary estim-
ations, which is not always compatible with real-world data
classes with similar spectral signatures (i.e, crops) [16]. We in-
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vestigated the possibility of using the distance between end-
nodes by computing the number of branches among the end-
nodes to improve the performance of RFK for crop mapping in
small-scale farms. We compared the performance of this ker-
nel with the classic design of RFK by importing them in an SVM.
We obtained the results for both designs, for different num-
bers of trees, and for four levels of dimensionality. We found
that the performance of both kernels are approximately at the
same level, while RFK obtained based on the distance between
the end-nodes marginally improves the OA in certain cases.
Obtaining RFK on the basis of branches requires significantly
higher computational load, which makes the use of the classic
design preferable, considering the similar results obtained for
crop mapping in small-scale farms.
Another issue of the classic RFK is that the samples with the
same class labels may end up in different end-nodes in a fully
grown RF and be assigned a similarity value of zero. We ad-
dressed this issue by exploring the influence of tree depth on
RFK performance. Accordingly, we obtained two multi-scale
RFK based on multiple depths. The first one is the average of
the classic RFKs obtained over multiple depths. The second one
is the average of probabilistic RFKs over multiple depths. The
idea of a probabilistic RFK is to assign the probability that two
samples belong to the same class as a similarity value between
the samples; we used the probabilistic notion of an RFK as an
alternative to the binary notion of classic RFK.
We found that multi-scale RFKs and the classic RFK perform at
almost the same level for experiments with B features, consid-
ering the OAs and standard deviation (SD) values obtained for
these methods. The findings of this research indicate that for
experiments with BVI, BVITVI, and ALL features, averaging the
classic RFKs over multiple depths improves the OA and κ index
of the classification compared to classic RFK.
Averaging the probabilistic RFK over multiple depths yielded
competitive results only in the case of the experiment with B
features. The relatively poorer performance of probabilistic
RFK can be explained with higher dependency of this kernel on
class labels. The direct dependency of the probabilistic RFK on
the class labels can result in an overfitted training kernel that
cannot predict for the new samples. In case of the presence
of mislabeled samples, kernel values in probabilistic RFK are
more strongly affected compared to the classic RFK. Despite the
poorer performance of multi-scale probabilistic RFK compared
to the multi-scale classic RFK and classic RFK, all RF-based ker-
nels outperformed the RBF results for experiments with BVITVI
and ALL features.
Ultimately, we also explored the performance of classic and
probabilistic RFKs individually at each single depth. We dis-
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covered that finding an optimal depth considerably improves
the performance of both classic and probabilistic RFKs com-
pared to the average of the kernels obtained at multiple depths.
Moreover, the classic RFK obtained in an optimal depth outper-
formed the one obtained with fully grown RF in terms of OA and
κ index in all cases. The findings of this research show that the
classic RFK obtained at an optimal depth outperforms all other
designs of RFKs and the RBF kernel. In our experiments, the
highest OA is 89.48 %, which is obtained for the experiment with
ALL features using the classic RFK at an optimum depth—this is
an improvement of 11% with regard to SVM-RBF. We concluded
that among all the explored characteristics of RF, the depth of
trees plays an important role and the has highest contribution
in improving the design of an RFK. In this regard, the following
research questions have been answered:

a) How does the use of a branch-based distance compare to
the standard similarity metric used to calculate RFK?
In all experiments, RFKs obtained based on the distance
between the nodes performed at almost the same level
as that of classic RFK. It is worth mentioning that RFKs
obtained based on the distance between the end-nodes
marginally improve the OA of the classifications in certain
cases, although at a high computational cost. Therefore,
the use of the classic design of RFK is preferable for our
application of crop mapping in small-scale farms.

b) How does designing a multi-scale RFK based on using
multiple depths of RF compare to the standard similarity
metric used to calculate RFK?
Obtaining a multi-scale RFK led to an improvement of
approximately 1% in OA compared to classic RFK for
higher-dimensional experiments and competitive OAs in
case of lower-dimensional experiments. However, finding
RFKs at an optimum depth results in an improvement of up
to 4% with regard to standard RFK for higher-dimensional
experiments. Further, finding an optimum depth for
trees prevents over-partitioning of the nodes; this avoids
samples with same-class labels ending up in different
end-nodes and being assigned a similarity value of zero,
as tends to happen in a fully grown RF. This implies that
there is a reduced likelihood of obtaining an overfitted
training kernel.

c) How does designing a multi-scale RFK based on using mul-
tiple depths and class probabilities compare to the stand-
ard similarity metric used to calculate RFK?
Including the class probabilities in RFK design did not
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improve the performance of the kernel compared to the
classic RFK in any of the experiments. Yet, for high-
dimensional noisy problems, the probabilistic RFK outper-
formed the RBF kernel. We explained the poorer perform-
ance of probabilistic RFKs by the higher dependency of
this kernel on the class labels of training samples. In our
notion of probabilistic RFK, the similarity values are the
probabilities that two samples fall in the same class. This
can increase the likelihood of obtaining an overfitted train-
ing kernel to the class labels of the training samples. A
model trained with an overfitted training kernel cannot
generalize for the test kernel and this causes a poorer per-
formance. Moreover, the possible presence of mislabeled
samples misleads the similarity values to a greater extent
in the probabilistic RFK as compared to the classic RFK.

▶ Exploring the use of an alternative tree-based classifier,
namely ET, to derive tree-based kernels
In order to achieve this objective, we investigated the perform-
ance of the synergic use of ET and SVMs through a kernel con-
nection for crop classification of small-scale farms. To do so,
we defined a kernel based on the tree-based structure of ET
and imported the ET-based kernel (ETK) into an SVM. We eval-
uated the use of ETK in an SVM by comparing its performance
against that of standard ET, use of the RBF kernel in an SVM,
and use of RFK in an SVM. We tested the performance of the
classifiers in low- and high-dimensional problems by obtaining
four levels of dimensionality from these images by extending
their original spectral bands with vegetation indices and grey-
level co-occurrence textures (i.e., B, BVI, BVITVI, and ALL). This
enabled testing the performance of the classifiers in low- and
high-dimensional problems.
The computational cost and dependency of the trees structure
on the class labels for ET and ETK are smaller than those for RF
and RFK. Using ETK as an alternative to RFK and RBF, we were
able to reduce the probability of obtaining an overfitted kernel
and avoid the computational cost associated with parametriz-
ing the RBF kernel.
First, we compared the added value of using an ETK in an SVM
compared to the classic ET under different configurations of ET.
We explored the influence of various numbers of random cut-
points per candidate feature and different number of trees on
the performance of ET and SVM-ETK; we set mtry to its default
value. We found that SVM-ETK always outperforms ET for all
the cases with VIs (BVI, BVITVI, ALL), irrespective of the value
for the number of trees and number of random cut-points per
candidate feature. For the experiment with B features, the OA of
SVM-ETK outperforms ET in most ranges, particularly for high
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levels of randomization.
Second, we compared the performances of the ETK, RFK, and
RBF kernels within an SVM. The performance of ETK was ob-
tained once with default values of parameters and then with
best performance over the tested ranges of parameters in the
first step. For the experiment with the B features, we found
that both SVM-ETKs classifiers slightly outperform SVM-RFK
and SVM-RBF. For experiments with BVI features, we found that
ETKs and RBF kernels perform at approximately the same level
and outperform SVM-RFK. More interestingly, we discovered a
gradual improvement in the OAs of tree-based kernels by in-
creasing the number of features from BVI to BVITVI and then to
ALL, while we found a sudden decrease of 6.62 % for SVM-RBF.
Our results for the experiments with BVITVI and ALL features
reveal that tree-based kernels perform at almost the same level
and considerably outperform the RBF kernel. The highest OA
is 85.70 % and was obtained for SVM-ETK trained with all fea-
tures.
Third, we used totally randomized trees (ToRT) (i.e., ET with
the most extreme level of randomization) to obtain a kernel
(ToRTK) and evaluated the performance of ToRTK through the
four experiments. These analyses revealed that SVM-ToRTK
outperforms ToRT in all experiments. We found that for the
experiment with B features, SVM-ToRTK yields similar and
marginally higher OAs compared to SVM-ETKs and improves
the results compared to classic ET, SVM-RFK, and SVM-RBF.
Moreover, for the experiment with BVI features, SVM-ToRTK
yields competitive results compared to the other classifiers. It
is important to note that for higher-dimensional experiments,
the performance of ToRTK decreases substantially. Therefore,
using the most extreme level of randomization is only prefer-
able in experiments with low dimensionality, since it reduces
the cost of classification compared to ETK, RFK, and RBF ker-
nels and yields marginally higher OAs.

Ultimately, we applied the trained classifiers to all the available
ground truth labels (with B features) in the study area and ob-
tained OA and κ index for each method. The results for the
entire study area indicate that all classifiers perform well and
at approximately the same level, while SVM-ETK slightly outper-
forms in terms of the OA and κ index. Moreover, we found that
SVM-ETK significantly improves the OA of the fields with class
Sorghum.

In a nutshell, this study concludes that ETKs are efficient and
effective alternatives to most well-known kernels used by the
RS community. In this regard, the following research questions
have been answered:

a) What is the influence of ET’s most important parameters
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on the classification accuracy of the corresponding SVM-
ETK classifier?
We explored the influence of number of trees and num-
ber of random cut-points per candidate feature on the per-
formance of ETs and SVM-ETK. Irrespective of these para-
meters, SVM-ETK outperformed ETs in a majority of the
cases. A higher number of trees (up to 500 trees were
tested) led to higher OAs for both methods. The number of
random cut-points also influenced the performance of the
classifiers in terms of OA. This parameter controls the level
of randomization and optimizing it to the problem at hand
helps to improve the OAs of the classification. However, we
found that the default value of this parameter yields com-
petitive results for both ET and SVM-ETK classifiers com-
pared to the optimized cases.

b) How does the level of randomization influence the per-
formance of the ET and SVM-ETK classifiers?
We found that the level of randomization must be ad-
justed to the problem at hand. Increasing the level of
randomization from RF to ET results in an improved OA
for SVM-ETK compared to SVM-RFK in most of the cases
and competitive results in other cases. The outperform-
ance of ETK was found at both optimized and default
levels of randomization in ET. Further increasing the level
of randomization to its most extreme case resulted in
competitive and in certain cases, higher classification OAs
for experiments with lower dimensionality. Yet, for high-
dimensional experiments, kernels obtained with the most
extreme level of randomization performed significantly
poorly.

c) How do the classification results of SVM-ETK compare with
those obtained by the standard ET, SVM-RBF, and SVM-RFK
classifiers? The results of this study indicate that SVM-ETK
outperforms other tested methods in terms of OA for land
cover mapping over small-scale agricultural lands. Using
ETK in an SVM also reduces the computational cost of the
classification compared to use of RFK and RBF kernels in
an SVM.

6.2 Reflections

The research work in this dissertation revolves around investigat-
ing the integration of tree- and kernel-based classifiers by obtaining
and importing tree-based kernels into an SVM and testing its use for
land cover classification in an agricultural context. This was accom-
plished in the following three steps:
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▶ Obtaining an RFK based on the classification results of RF and
importing it into an SVM. The complexity of land cover classific-
ation using the recent generation of very high resolution satel-
lite images with enhanced spectral and temporal resolutions
has directed the need to develop more efficient classifiers that
can address the curse of dimensionality associated with these
types of data. To this end, SVM [29] and RF [95], as well-known
kernel-based and ensemble classifiers, have been applied in
several high-dimensional classification problems. Inspired by
these works and concerned with the connection between RF
and kernel-based methods introduced in [94, 104], Chapter 2
developed an integrated approach of RF and SVM classifiers
through kernel connection. Our approach is based on obtaining
an RFK and importing it into an SVM. Using the Sukumba and
Salinas datasets, Chapter 2 explored the performance of RFKs
obtained from fully grown RF and examined the influence of
mtry. Chapter 3 explored the influence of the depth of trees
as the most important parameters of RF on the performance
of RFK in an SVM. Our approach enabled avoidance of the cost
associated with parametrizing the RBF kernel and led to com-
petitive or better results in terms of OA. The HSIC values in-
dicated that RFK is closer to an ideal kernel compared to RBF.
However, RFK does not yield the best results in terms of OA
in all cases. This is evidence that RFK might be overfitted to
training class labels and cannot generalize well for test data.
Another reason is that the samples from the same class can
land in different end-nodes of a fully grown RF and be assigned
a similarity value of zero. This motivated us to use depth of
trees in Chapter 3, which prevents oversplitting the nodes, and
ET in Chapter 4, which decreases the dependence of the kernels
on the class labels of training samples by increasing the level of
randomization of trees. Chapter 2 also combined RFK with RF-
based feature selection; this resulted in further improvements
in the OAs of the classification. The promising results in this
step proved that RFK is a good alternative to the RBF kernel and
this led us to study the different characteristics of RF in order
to define improved and advanced notions of RFK in the next
steps.
In the classic notion of RFK, for each pair of samples, binary
similarity values are obtained based on whether or not two
samples fall into the same terminal nodes of a tree. This rough
binary estimation of similarities is not always compatible with
real world problems [167]. This problem was addressed in
Chapter 2 by investigating the use of probability and the dis-
tance between the nodes in the notion of RFKs. The same
Sukumba dataset was used in Chapters 2 to 4, while the di-
mensionality of experiments in Chapter 2 is different. The first
experiment with B features is the same in all chapters, and ex-

90



6.2. Reflections

periments with BV I, BV ITV I , and ALL features are the same
in Chapters 3 and 4.

▶ Providing solutions for handling the binary design of classic
RFK and the problem of RFKs obtained with fully grown RF
Chapter 3 addressed the overcoming of the shortcomings of the
classic notion of RFK in Chapter 2 through the full exploration
of RF’s characteristics. Improving the binary estimations of
RFK is determined by obtaining an RFK based on the number of
tree branches between the end-nodes. This kernel marginally
improves the OAs of the classifications in several cases. We
investigated the overcoming of the problem of oversplitted
nodes in trees by proposing two designs of multi-scale RFK
based on multiple depths of RF. The first design of multi-scale
RFK is the average of the classic RFKs obtained at multiple
depths. The second design of multi-scale RFK is the average of
probabilities that samples fall into the same class at multiple
depths. The idea of the probabilistic multi-scale RFK is over-
coming both drawbacks of binary estimations and oversplitting
the nodes that were mentioned earlier for the classic notion of
RFK. The first design of multi-scale RFK improves the OAs of
the classifications almost in all cases compared to the classic
design. The probabilistic multi-scale RFK yields competitive
results compared to classic RFK and multi-scale RFK only
in case of experiments with the lowest dimensionality. As
we described earlier in the notion of a probabilistic RFK, the
similarity values are the probabilities that two samples fall in
the same class. This can also result in a training kernel that
is overfitted to the class labels of the training samples and
cannot generalize well for the test kernel. We verified this
inference by obtaining HSIC values among training samples
(i.e., HSICTrTr) and among test samples (i.e., HSICTsTs). Table
6.1 shows that by increasing the number of features, the HSIC
values of multi-scale probabilistic RFK (RFKProb) increase for
training samples and the training kernel comes closer to an
ideal kernel, while this does not happen for the test kernel.

However, RFKProb outperforms the RBF kernel for high-
dimensional problems. Another aspect that was covered in
Chapter 3 is identifying an optimal depth that considerably
improves the performance of the kernel compared to aver-
aging over multiple depths. Using this approach, RFK avoids
oversplitting of the nodes that the classic RFK in Chapter 2
was unable to overcome. As expected, the classic RFK obtained
in an optimal depth improves OA and κ the index of the
classifications compared to the classic RFK obtained with fully
grown RF for all the cases. Among all proposed design of RFK
in Chapters 2 and 3, the highest level of improvement in OAs
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Table 6.1 HSIC values obtained for training samples and test samples

Tests Methods HSICTrTr HSICTsTs

B RFKNd 0.016 0.008
RFKProb 0.074 0.083

BVI RFKNd 0.025 0.014
RFKProb 0.069 0.014

BVITVI RFKNd 0.028 0.015
RFKProb 0.067 0.015

All RFKNd 0.028 0.014
RFKProb 0.066 0.014

of the classifications was achieved with a classic RFK obtained
at an optimal depth.

It is worth noting from the outcome of Chapters 2 and 3 that
higher dependency of kernel values can increase the likelihood
of obtaining a training kernel that is overfitted to the class
labels of the training samples. This was observed for multi-
scale probabilistic RFK compared to classic RFK and for classic
RFK compared to RBF in certain cases. Moreover, the possible
presence of mislabeled samples disturbs the kernel values with
higher dependency on class labels to a greater extent. Chapter
3 addressed this issue by optimizing the depth. However, op-
timizing the depth led to higher computational load for RFK.
The results of these analyses indicated that there are two as-
pects that can be further improved: The first aspect is the use
of a tree-based kernel with a reduced level of dependency on
the class labels. The second aspect concerns reducing the com-
putational load of the kernel. These two aspects were achieved
in Chapter 4 by increasing the level of randomization in trees.

▶ Assessing the influence of reducing the dependency of tree-
based kernel values on the class labels of training samples.
Chapter 4 improved the notion of tree-based kernels by using
ET, which enables increasing the level of randomization com-
pared to RF. Futher, ETs result in less correlated trees and this
reduces the likelihood of obtaining an overfitted forest. Ob-
taining ETK improved the OAs of the classifications compared
to classic RFK and RBF kernels (Chapter 2) in the problems with
lower dimensionality. For high-dimensional problems, classic
RFK (Chapter 2) and ETK performed at almost the same level;
moreover, they significantly improved the classificationmetrics
compared to the RBF kernel. In comparison with ETK, the clas-
sic RFK at an optimized depth in Chapter 3 performed equally
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well for lower-dimensional experiments and outperformed for
higher-dimensional experiments. However, considerable higher
computational load is required to obtain RFK at an optimized
depth compared to ETK. ETK also reduces the computational
cost of the classification compared to classic RFK and RBF for
all the cases. It is worth noting that among all the tree-based
kernels introduced and tested in Chapters 2 to 4, the highest OA
is obtained for the classic RFK at an optimized depth in case of
higher-dimensional experiments at an expense of higher com-
putational load.

These three steps contributed to improving the accuracy of crop
classification and reducing the computational cost of the classific-
ation in comparison with well-known classifiers used in the RS com-
munity. The proposed methods are of value, in particular, for high-
dimensional problems that are possibly noisy, which is the case in
the present research work. Land cover mapping over small-scale
farms using VHR satellite images is associated with multiple chal-
lenges. The high accuracy crop maps produced with the proposed
methods are of value in handling the problem of food security, which
is the main concern of governments and policymakers in the coun-
tries with vast areas under small-scale farming. Agriculture in low-
income countries is performed by smallholder farmers to a large
extent—this is often over 50% of a country’s population—who are
at the bottom of the economic pyramid and often struggle to make
ends meet. Thus, high-quality maps are valuable in improving sus-
tainable agricultural production by minimizing the economic and en-
vironmental costs in these areas. One of the important applications
of crop maps is in phenological studies. Phenology is the study of
timing of plant’ growth stages and how these are influenced by sea-
sonal and interannual variations in climate and habitat factors [180].
Phenological observations provide basic information for numerous
purposes in practical agriculture for farmers [181]. The data can
be used to define the duration of the growing season in a region.
“The growing season is the time of the year in which plants germ,
grow, flower, fructify, and ripen” [181]. Phenological information
helps decision-making for farmers to practice timely appropriate op-
erations including planting, fertilizing, irrigating, crop protection, to
predict phenophases, and to select favorable and unfavorable areas
for agricultural production [181]. Phenological information can be
acquired both through ground-based in situ observations and im-
ages from satellite sensors [182]. Satellite-based phenology is often
called land surface phenology (LSP), as the satellite sensor signals are
an integration of the reflectance from the plants and land surface
[183]. LSP has been widely used to assess large-scale phenological
patterns [184]. However, LSP observations often do not provide a
precise match for ground-observed phenology. Therefore, it is ne-
cessary to produce validated phenology maps by linking the timing
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of key phenophases obtained from VHR satellite images and ground
truth data. The highly accurate crop maps obtained as an output of
this study are of value as inputs to produce higher accuracy pheno-
logy maps.

6.3 Recommendations

This dissertation investigated the integration of tree-based kernels
with SVM classifiers for land cover extraction in small-scale agricul-
ture. In line with the research performed as part of this dissertation,
there are several future avenues and interesting experiments that
are recommended in the remainder of this section.

6.3.1 Outlier-free RFKs

In order to define an improved RFK design, other advantages of RF
can be exploited. RF is a proximity-based outlier detection method.
The idea in proximity-based methods is to model outliers as points
that are isolated from the remaining data on the basis of similarity
among samples [185, 107]. The similarity values obtained with
RF can be used to identify outliers [107]. A new RF model can be
trained with outlier-free samples and RFK can be obtained using the
outlier-free samples. In order to identify the outliers, RF assigns
an outlier index to all samples based on proximity. By defining a
threshold, a sample with different outlier indices can be found and
eliminated. For a class label, each sample is given a value for its
”outlyingness,” which is computed in the following manner [107]:

OutlierIndex = [
n∑

proximity2
−median]/MAD (6.1)

where MAD is the median absolute deviation within each class.
For each class label, Equation computes the sum of the squares of
the similarity values with all the other observations in the same
class; thereafter, it takes the inverse. It does the same for all
other observations in that class. One can think of these values as
unstandardized. Next, by subtracting the median and dividing by
the mean absolute deviation, standardized values for outlier indices
are obtained [185]. Samples with an outlier index of larger than
10 can be considered as outliers. However, it can be instructive
to identify an optimal threshold value in an iterative approach. A
primary result of combining RF’s outlier detection method and RFK
is presented in Table 6.2. The default threshold of 10 is considered
to isolate the outliers in these results.
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Table 6.2 Classification results obtained through the synergic use of RFK
and RF’s outlier detection method for different subsets of features intro-
duced in Chapter 2. RFKNd shows classic RFK obtained based on the end
nodes. Moreover, the depth that results in the best OA for RFKNd is shown
with RFKNd∗ .

Tests Methods OA SD κ̄ SDκ

B SVM-RFKNd 83.92 1 .59 0.80 0.02
SVM-RFKNd∗ 84.76 1.39 0.81 0.02

BVI SVM-RFKNd 84.54 1.38 0.81 0.02
SVM-RFKNd∗ 85.54 1.32 0.82 0.02

BVITVI SVM-RFKNd 86.44 1.8 0.83 0.02
SVM-RFKNd∗ 89.6 1.58 0.87 0.02

All SVM-RFKNd 88.08 1.58 0.85 0.02
SVM-RFKNd∗ 90.84 1.31 0.89 0.02

Comparing Table 6.2 with the results obtained in Chapter 2 reveals
that the OAs of RFKs (both obtained with a fully grown RF and at an
optimal depth) considerably improve when applied to oultlier-free
samples for all the experiments. Outlier-free RFK also outperforms
RFK at an optimized depth and ETK for all the experiments. These
results show that further research can be conducted to create outlier-
free RFKs by finding an optimal threshold for eliminating outliers.

6.3.2 Improving the performance of the newly tested tree-based
kernels

The newly tested tree-based kernels presented in this research
can be improved with respect to several aspects. In order to deal
with the curse of dimensionality, which is the case in several RS
problems, feature selection methods are inevitable. In Chapter 2,
the feature selection method of RF is used to rank features. We used
an arbitrary number of 100 to select top-ranked features by RF.
RFKs from new RF models trained with 100 most important features
are obtained for the high-dimensional experiment. However, 100
features may not be an optimal number and further research could
be conducted to identify an optimal number of features to be
selected in high-dimensional datasets. This can be achieved with a
guided regularized RF [186].
In Chapter 3, HSIC values revealed that the multi-scale probabilistic
RFK resulted in a training kernel that is overfitted to the class
labels of the training samples and cannot be generalized for the test
kernel. Further research could be conducted to improve the design
of the probabilistic tree-based kernel by reducing the dependence
level of kernel values on the class labels and by making sense of
RF’s probabilities [187].
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In Chapter 4, the influence of optimizing the depth of forest on the
performance of ETK in an SVM is not investigated. Moreover, the
forest characteristics including outlier detection, feature selection,
and use of probabilities can be investigated and integrated with the
notion of ETK. Using the synergies of these characteristics can also
be a direction for future research.

In the present research, we used labeled samples for learning
purposes; however, unlabeled data can also unveil valuable patterns
for classification tasks. Semi-supervised approaches aim at learning
from both labeled and unlabeled samples and have been shown to
outperform supervised approaches in certain cases, particularly in
problems with labeled data scarcity [188, 189]. The newly tested
tree-based kernels can be further exploited in the framework of
semi-supervised approaches, like the Laplacian Support Vector
Machine, to exploit both labeled and unlabeled data [190]. Moreover,
there is a rather limited selection of a single kernel that can fit
complex data structures [191]. Several studies have showed that
selecting inappropriate kernels leads to suboptimal or poor per-
formances [192]. The performance of kernel-based classification
methods depends on the choice of the kernel function and its
parameters. In order to address this problem, the multiple kernel
learning (MKL) approach, which combines a set of base kernels into
a composite kernel, is employed in several studies [192, 191]. The
basis of kernels can be defined by using different kernel functions
or different values for the hyperparameters of a single kernel
function [192, 191]. MKL algorithms can effectively be applied
in the context of feature fusion by obtaining basis kernels for
different subsets of features, such as spectral, textural, and multi-
source features [192, 191]. The performance of tree-based kernels
in an MKL framework can also be further explored in future research.

6.3.3 Applications of the newly tested tree-based kernels

There are several applications that can benefit from the new clas-
sifiers. We efficiently applied the tree-based kernels for a complex
crop classification problem using a time series of a single data
source. Considering their efficient performance in high-dimensional
noisy problems, tree-based kernels are recommended in the clas-
sification tasks of multisource data and for various land cover
types. Combining feature selection and outlier detection properties
of RF with tree-based kernels can also play an important role in
further improving the performance of the kernel-based methods for
multisource datasets. This is likely to result in high-quality land
cover maps that are input to several agricultural, environmental,
and urban management systems.
One good example is applying the high-quality crop maps obtained
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in the present research work as an input in producing phenological
maps that reveal a plant’s growth stages [180]. As an example, phen-
ological information helps farmers to practice timely appropriate
planting, fertilizing, irrigating, and crop protection [182].
In a two-sided connection, such phenology maps can also be further
exploited to improve the quality of crop maps. However, phenolo-
gical information obtained trough satellite images often does not
precisely match ground-based in situ observations [182]. Therefore,
the performance of newly tested and newly developed tree-based
kernels can also be examined in a kernel-based regression model,
like support vector regression, to relate the timing of key pheno-
phases obtained from satellite images and ground truth data.
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