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Summary 
The developments of 3D acquisition systems for indoor environments has 
increased in last year. Among them, the emerge of mobile laser scanners (MLS) 
and low-cost sensors for scanning interiors of large buildings and providing 3D 
scans (point clouds and RGBD images) enable architects, engineers, and 
managers to access affordable digital twins of the buildings in a short time. 
However, such improvements come at the cost of tackling a large amount of 
data in forms of point clouds and images. Users in the architecture, 
engineering, and construction (AEC) domain prefer a compact and light version 
digital representation of buildings instead of a large number of point clouds. 
Thus, the problem of designing (semi-) automatic methods for converting 3D 
scans to semantically rich 3D models raised in recent years. In the literature, 
this problem is addressed as scan-to-bim (Building Information Models) and 
as-is vs. as-built. However, this manuscript tries to go beyond providing just a 
BIM model by also studying the best practices to keep such 3D models up-to-
date, and monitoring the changes during the building lifetime as well as 
investigating the compliance of the output with the standards and applications.  
 
This thesis has three main parts: the first part, including chapters 1 and 2, 
explains the motivation of this PhD work, provides a review of current data 
acquisition devices and 3D indoor standards and the modeling methods in the 
related work, and summarizes the open challenges. The second part is 
presented in chapters 3 and 4, where the main pipeline for indoor 3D 
reconstruction from point clouds is further developed and discussed. The last 
part, including chapter 5 and 6, investigates the considerations need to be 
taken after the creation of a 3D model from scans. This contains consistency 
control and compliance of 3D models with indoor standards (IndoorGML and 
IFC). Furthermore, monitoring the changes of buildings without the need to 
scan the whole complex after each renovation and discovering the type of 
changes (temporary or structural changes) are described in this last part. The 
last chapter provides conclusions and recommendations. 
 
The goal of this research is not only creating 3D models from point clouds but 
advancing the state-of-the-art and tackling the shortcomings of previous 
research. In this regard, addressing open challenges such as incomplete data 
because of cluttered environment, fictitious data because of reflective surfaces, 
modeling of non-Manhattan World structures and avoiding the assumptions of 
vertical walls and horizontal ceilings were main concerns of our work. Four 
objectives are proposed to engage in these open problems: semantic labeling, 
geometric modeling, watertight 3D model reconstruction, and consistency 
control of 3D models. The first objective contributes to the problem of the 
classification of indoor point clouds. The proposed solutions aim at discerning 
the permanent structures, including three classes of walls, floor and ceilings, 
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from the clutter (noise and furniture). Several heuristic methods with the 
support of creating an adjacency graph are developed which exploits the 
topology of manmade structures. The solutions prove that the trajectory of the 
mobile laser scanner is beneficial in understanding the indoor scenes. For 
example, the trajectory is used for separating floor levels of the building, 
detection of closed doors and openings, identifying fictitious caused by 
reflective surfaces and labeling points belonging to the stairs. In addition to 
the trajectory solution, 3D mathematical morphology is applied in voxel space 
for identifying navigable spaces and partitioning the space. The result of 
semantic labeling reaches an accuracy of an average 95% for permanent 
structures, tested in six different use cases with complex architectures and a 
high amount of glass surfaces and clutter.  
 
After semantic labeling, the second and third objectives develop the process of 
constructing a watertight 3D model by creating volumetric walls and extracting 
the room polyhedra from enclosed spaces. This part of our research provides 
a semi-automatic method for modifying the geometry of planar segments 
before modeling permanent structures. Moreover, for disaster management 
applications, methods are developed for modeling stairs in multistory buildings, 
modeling furniture as obstacles, and adding doors. These are supported by a 
fine-grained space subdivision based on the enclosure of space, i.e. the 
connection of walls, floors and ceilings form a closed space. Space subdivisions 
are further divided into subspaces by including the furniture in the process. 
Finally, we demonstrate the robustness of our algorithms on four complex 
multistory buildings. The contributions of this part are modeling the interiors 
with and without the furniture for advanced navigation networks and modeling 
both volumetric walls (complying with BIM models) and volumetric spaces 
(complying with IndoorGML models). By comparing our models with 
handcrafted BIM models, we showed that our pipeline reaches an accuracy of 
90% in modeling the rooms and doors and this includes detecting some of the 
closed doors. Unlike other related works that use 3D models only for BIM or 
for navigation purposes, our results demonstrate real-world examples from 
point clouds (no synthetic model) for both applications. 
 
In addition to creating a 3D model, checking the compliance of the model with 
indoor standards and the suitability of the model for the application are 
sometimes neglected in the research. Therefore, in the last objective, we 
investigate, in the lack of ground truth, how the consistency of the model can 
be verified. The consistency envelopes the accuracy and correctness of the 
model semantically, geometrically, and topologically. In addition to the 
common expert knowledge which can be useful to verify the consistency of the 
model, experts provide standards such as IFC, IndoorGML, and ISO 19107 for 
the treatment of spatial information and indoor models up to three dimensions. 
However, as the 3D models created from scans can vary in terms of the level 
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of details and geometry, we tried no to provide a step-by-step instruction but 
design a grammar-based concept that is flexible to such a variation. The 
proposed solution is a conceptual framework that provides a formal approach 
in three phases to use standards and expert knowledge for consistency control 
of the 3D models. These three steps are: controlling and verifying the individual 
instances in the model (e.g., each wall object), verifying the interaction of 
instances (e.g., a door on a wall) and verifying the consistency of the model 
for a specific application (e.g., for navigation). To this end, indicating the 
inconsistency is the goal of the framework, not fixing the problem. Therefore, 
the output of such a formal grammar are valid or invalid components in the 
model which are rejected to previous steps (e.g., geometric modeling, 
semantic) for further investigations. Apart from reconstructing 3D models from 
point clouds, scan data can be useful for change detection in indoor 
environments. The changes can be monitored after renovation or redecoration 
of the interiors. We showed that point clouds could capture the changes below 
several centimeters and afterwards our 3D modeling algorithms can discern 
the permanent changes from changes in the furniture. As a use case, the 
application of changes is demonstrated in 3D cadaster of interiors.  
 
As a conclusion, the methods developed in this research show that there is a 
great potential in the automation of scan-to-bim and creating as-is models 
even from complex architectures. The future work should be dedicated to 
adding level-of-details such as the type of furniture and function of the rooms. 
Another line of research can be applying deep learning methods for early-stage 
classification of the point clouds before the modeling step. Moreover, stitching 
indoor 3D models to the exterior model of buildings provides a seamless 
reconstruction of large-scale city 3D models.  
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Samenvatting 
De mogelijkheden om de binnenkant van gebouwen in te meten in 3D zijn de 
laatste jaren enorm toegenomen. Eén voorbeeld daarvan is de opkomst van 
mobiele laserscanners (MLS) en goedkope sensoren voor het scannen van 
interieurs van grote gebouwen. Zij leveren hoge resolutie 3D-scans (point 
clouds en RGBD-afbeeldingen). Het stelt architecten, ingenieurs en managers 
in staat snel een 3D beeld te krijgen van de binnenkant van gebouwen. Maar 
met de mogelijkheden om snel heel veel data in te winnen komen ook 
problemen qua data verwerking. Gebruikers in het AEC-domein (architectuur, 
engineering en constructie) geven de voorkeur aan een compacte en lichte 
digitale versie van gebouwen in plaats van een groot aantal puntenwolken. Het 
probleem van het ontwerpen van (semi-) automatische methoden voor het 
converteren van 3D-scans naar semantisch rijke 3D-modellen is de afgelopen 
jaren aan de orde gekomen. In de literatuur wordt dit probleem aangemerkt 
als scan-to-bim (Building Information Models) en as-is versus as-built. Dit 
proefschrift probeert echter verder te gaan dan alleen het aanbieden van een 
BIM-model door ook de best practices te bestuderen om dergelijke 3D-
modellen up-to-date te houden, de veranderingen tijdens de levensduur van 
het gebouw te volgen en te onderzoeken of de output voldoet aan de normen 
en toepassingen. 
 
Dit proefschrift bestaat uit drie hoofdonderdelen: het eerste deel, bestaande 
uit hoofdstukken 1 en 2, legt de motivatie van dit promotieonderzoek uit, biedt 
een overzicht van de huidige laserscanningssystemen om data in te winnen en 
3D- modelleringsmethoden, en benoemt de open uitdagingen. Het tweede deel 
wordt gepresenteerd in hoofdstukken 3 en 4, waar de hoofdlijn voor 3D-
reconstructie binnenshuis uit puntwolken verder wordt ontwikkeld. Het laatste 
deel, hoofdstuk 5 en 6, onderzoekt de overwegingen die moeten worden 
genomen na het maken van een 3D-model van scans. Dit omvat 
consistentiecontrole en conformiteit van 3D-modellen met binnenstandaarden 
(IndoorGML en IFC). Verder worden in dit laatste deel het detecteren van de 
veranderingen van gebouwen beschreven zonder de noodzaak om het hele 
gebouw na elke renovatie te scannen en het soort veranderingen (tijdelijke of 
structurele veranderingen) te ontdekken. Ten slotte bevat het laatste 
hoofdstuk conclusies en aanbevelingen. 
 
Het doel van dit onderzoek is niet alleen het creëren van 3D-modellen vanuit 
puntenwolken, maar ook het bevorderen van de nieuwste technieken en het 
aanpakken van de tekortkomingen van eerder onderzoek. We richten ons op 
het aanpakken van open uitdagingen zoals onvolledige datasets doordat er 
andere objecten voorstonden, of schijnwaarnemingen door reflecterende 
oppervlakken, modellering van niet-rechthoekige structuren. Er worden vier 
doelstellingen voorgesteld om deze open problemen aan te pakken: 
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semantische labeling, geometriemodellering, waterdichte 3D-
modelreconstructie en consistentiecontrole van 3D-modellen. De eerste 
doelstelling draagt bij het verbeteren van de classificatie van puntenwolken die 
in gebouwen zijn ingewonnen. De voorgestelde oplossingen zijn gericht op het 
onderscheiden van de permanente structuren, waaronder drie klassen wanden, 
vloeren en plafonds, van de overige objecten zoals meubels. Er zijn 
verschillende heuristische methoden ontwikkeld die gebruik maken van de 
relaties tussen permanente structuren. Daarnaast blijkt dat het gebruik van de 
positie van de scanners tijdens de inwinning, een traject in het geval van 
mobiele inwinning, nuttig is om de binnenscènes te begrijpen. Het traject wordt 
bijvoorbeeld gebruikt voor het scheiden van vloerniveaus van het gebouw, het 
detecteren van gesloten en open deuren, het identificeren van 
schijnwaarnemingen door reflecterende oppervlakken. Naast het gebruik van 
het traject worden ook morfologische operaties gebruikt voor het herkennen 
van open ruimtes. Het resultaat van semantische labeling bereikt een 
nauwkeurigheid van gemiddeld 95% voor permanente structuren, getest in zes 
verschillende situaties met complexe architecturen en een grote hoeveelheid 
ramen en meubels. 
 
Na de semantische labeling richten de tweede en derde doelstellingen zich op 
het construeren van een waterdicht 3D-model. Dit wordt bereikt door het 
creëren van volumetrische wanden. Dit deel van ons onderzoek biedt een semi-
automatische methode voor het wijzigen van de geometrie van vlakke 
segmenten voordat permanente structuren worden gemodelleerd. Bovendien 
zijn voor rampenbeheertoepassingen methoden ontwikkeld voor het 
modelleren van trappen in gebouwen met meerdere verdiepingen, het 
modelleren van meubels als obstakels en het toevoegen van deuren. Deze 
worden ondersteund door een gedetailleerde onderverdeling van de 
binnenruimte op basis van de omsluiting van individuele ruimtes door muren, 
vloeren en plafonds. De onderverdelingen van de ruimte worden verder 
onderverdeeld in deelruimten door het meubilair in het proces op te nemen. 
Ten slotte tonen we de robuustheid van onze algoritmen op vier complexe 
gebouwen met meerdere verdiepingen. De bijdragen van dit onderdeel zijn het 
modelleren van het interieur met en zonder het meubilair voor geavanceerde 
navigatienetwerken en het modelleren van zowel volumetrische wanden 
(conform BIM-modellen) als volumetrische ruimtes (conform IndoorGML-
modellen). Door onze modellen te vergelijken met handgemaakte BIM-
modellen, tonen we aan dat onze methode een nauwkeurigheid van 90% 
bereikt bij het modelleren van de kamers en deuren en dit omvat het 
detecteren van enkele van de gesloten deuren. In tegenstelling tot andere 
gerelateerde onderzoeken die 3D-modellen alleen gebruiken voor  ofwel voor 
BIM of voor navigatiedoeleinden, tonen onze resultaten voorbeelden uit de 
praktijk voor beide toepassingen. 
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Naast het maken van een 3D-model, blijft het controleren van het model met 
binnenstandaarden en de geschiktheid van het model voor de toepassing vaak 
onderbelicht. Daarom onderzoeken we bij het laatste doel, bij gebrek aan 
referentiemateriaal, hoe de consistentie van het model kan worden 
geverifieerd. De consistentie bevat de nauwkeurigheid en correctheid van het 
model op een semantische, geometrische en topologische manier. Naast de 
algemene kennis die nuttig kan zijn om de consistentie van het model te 
verifiëren, zijn er standaarden zoals IFC, IndoorGML en ISO 19107. Omdat de 
3D-modellen die zijn gemaakt op basis van laserscans kunnen variëren qua 
details en geometrie, hebben we een op grammatica gebaseerd concept 
ontworpen dat flexibel is voor een dergelijke variatie. Dat is een conceptueel 
raamwerk dat bestaat uit drie stappen. Deze drie stappen zijn: de selectie van 
de afzonderlijke onderdelen in het model (bijvoorbeeld elk wandobject), het 
verifiëren van de combinatie van onderdelen (bijvoorbeeld een deur op een 
muur) en het controleren van de consistentie van het model voor een 
specifieke toepassing (bijvoorbeeld, voor navigatie). Afgezien van het 
reconstrueren van 3D-modellen uit puntenwolken, kunnen scangegevens 
nuttig zijn voor het detecteren van veranderingen in binnenomgevingen. De 
veranderingen kunnen een gevolg zijn van renovatie of herinrichting van het 
interieur. We tonen aan dat puntenwolken de veranderingen op enkele 
centimeters nauwkeurig kunnen vastleggen en daarna kunnen onze 3D-
modelleringsalgoritmen de permanente veranderingen onderscheiden van 
tijdelijke veranderingen. We hebben dat laten zien aan de hand van een use-
case op het gebied van 3D Kadaster informatie.  
 
Concluderend laten de in dit onderzoek ontwikkelde methoden zien dat het 
mogelijk is om automatisch scan-to-bim en as-is modellen te maken, zelfs voor 
complexe architecturen. Toekomstig onderzoek kan zich richten op het 
toevoegen van meer detail, zoals het type meubels en het herkennen van de 
functie van een ruimte. Een andere onderzoekslijn is het toepassen van deep 
learning voor de classificatie van de puntenwolken vóór de modelleringsstap. 
Het combineren van 3D-modellen voor binnen met modellen van de buitenkant 
van gebouwen is een andere interessante onderzoekslijn die nog verder 
uitgewerkt kan worden.  
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1.1 Background and Motivation 
Urban 3D models have been developed for cities and buildings in a variety of 
domains such as urban planning, real estate, tourism and computer graphics. 
In dealing with indoor environments, there is a demand for indoor 3D models 
in the mentioned domains as well as for indoor positioning and disaster 
management. Currently, for most of the buildings, the primary available 
sources are floor plans and CAD information. Modern buildings and recently 
renovated buildings may have a 3D model in the form of a building Information 
Model (BIM), which is widely used in Architecture, Engineering and 
Construction (AEC) industries. These sources of building representation are 
“as-designed” and they do not always address the current status of the 
building. The question is what is the most efficient solution to keep the existing 
floor plans or 3D models up-to-date or “as-is” during the lifetime of a building.  
 
Manual creation of 3D indoor models from floor plans is a tedious process, 
apart from the often-outdated status of floor plans. In recent years, there has 
been impressive progress in indoor data collection technologies namely mobile 
laser scanners, Microsoft Kinect, Google Tango. Such mobile systems provide 
high-quality images, point clouds and depth information in a shorter time in 
comparison to terrestrial (static) laser scanners. However, the output of mobile 
laser scanners is a massive amount of raw geometry and images which are 
cumbersome for users to interact with and understand. Although 
manufacturers of mobile laser scanners provide software and virtual tours to 
explore the data it is not sufficient for more complex queries and operations, 
for example, to calculate the area of the glass surfaces in the building. 
Alternatively, in this research, we aim to provide computer algorithms that 
enable us to reconstruct and to update indoor 3D models through automatic 
methods with the minimum expert intervention. As an application, this 
research targets using the models for disaster management in complex 
buildings. 
 
The generated models should follow the standards of current indoor models 
(IndoorGML, CityGML, and IFC) to provide a reliable platform for the 
evacuation of and safety management in large buildings. In addition to a 3D 
indoor model, the outcome of this research will be a set of algorithms and 
open-source software that will be applied by Dutch emergency services (BHV) 
and fire brigade for emergency responses.  

1.2 Smart Indoor Models in 3D (SIMs3D) Project  
This research is part of the project Smart Indoor Models in 3D (SIMs3D). The 
SIMs3D project is part of Maps4Society (M4S) program that aims to research 
on smart geo-information infrastructure and innovations in geo-information 
domain (www.maps4society.nl). The project contributes to the goals of 



Chapter 1 

3 

Maps4Society program by addressing the research area managing big data, 
and application areas crisis management, smart cities, human environment 
and management for buildings. 
 
The Dutch Research Council (NWO) is the funding organization of the project 
who brings researchers, users and companies together. Following Dutch 
research council and partners contribute in SIMs3D project: 
 
1. NWO as the Dutch research council 
2. Academic partners:  

 University of Twente (UT), ITC Faculty 
 Delft University of Technology (TUD), OTB Department, GIS 

Technology 
3. Companies:  

 Cyclomedia Technology B.V. as a data provider 
(www.cyclomedia.com) 

 CGI Nederland B.V. as a software advisor (www.cginederland.nl) 
 Leap3D as data provider (www.leap3d.eu) 

4. End Users: 
 iNowit Brandweer Nederland (fire brigade) as an end user and advisor 

for user cases 
 Open Geospatial Consortium (OGC) as the international standards 

organization and IndoorGML developer. 
 
The academic partners cooperate closely in two phases of the project: i. The 
researchers from University of Twente (UT) are responsible for 3D 
reconstruction (geometry, topology and semantic) of indoor models from point 
clouds; ii. the research team from TU Delft focuses on deriving indoor spaces 
(considering agents, activities and resources) from indoor models generated 
by the UT team for the evacuation goals. 
 
Figure 1.1 shows an overview of the main stages in the project. Data is mainly 
acquired by mobile laser scanners, as they are faster in scanning large spaces. 
The output of MLS devices is already registered and our research does not 
focus on point cloud registration as a research problem. In the next chapter, 
an overview of mobile laser scanners is provided. The model reconstruction 
phase is the main focus of this Phd research. Two other phases including data 
management for generating GIS models and disaster management for end user 
interaction are in the work domain of the other partners (TU Delft and The Fire 
Brigade of The Netherlands). 
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Figure 1.1. The figure illustrates the overview of the main phases in the SIMs3D project. 
Data reconstruction phase is the main focus of current dissertation. 

1.3 Research Gap 
The indoor environments have a high level of variety and complexity. Due to 
this complexity, reconstructing a faithful fully 3D model with a (semi-) 
automatic method is the main research problem. Most of the proposed 
approaches are dealing with simple structures or they are not scalable to the 
large multistory buildings. In the current research, we assume that the data 
(point cloud) is a registered point cloud and has a good quality in terms of 
point accuracy, because it is captured by accurate mobile laser scanners or 
terrestrial laser scanners. Therefore, registration problems and data 
acquisitions problems are not addressed as our research problem. However, 
dealing with the noise and incomplete data is considered as part of the open 
challenges. The current state-of-the-art for indoor 3D reconstruction does not 
address the below problems or they are in early stage of the research: 
 
Reconstructing fully 3D models: Many of the current methods reconstruct 
models by assuming the same height for all ceilings, thus reconstruct a 2.5D 
model. A fully 3D method should be able to extract the correct angle and height 
of the ceilings. Besides, some of the buildings have intermediate floors or so 
called a mezzanine. The reconstruction methods should identify such floors and 
reconstruct them faithfully. 
 
Dealing with the noise, incomplete data and glass surfaces: 
Unstructured point cloud always comes with artefacts and noise. The noise can 
be from the sensor, the registration of point sets or the SLAM algorithm 
(simultaneous localization and mapping). Furthermore, when using a mobile 
mapping system, the artefacts caused by reflective surfaces should be 
distinguished from the permanent structures (e.g., walls). Although MLS 
devices are mobile and can access a larger area than TLS devices, the presence 
of clutter (e.g., furniture) causes data occlusion and remains as a challenge. 
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Many current methods, assume a clutter free environment when modeling the 
interiors. 
 
Dealing with arbitrary room layouts: Complex architectures could have 
very arbitrary wall arrangements. Therefore, assuming a grid layout (the 
Manhattan-World assumption) for the rooms means excluding many buildings 
from the modeling pipeline. Similarly, assuming a horizontal floor and ceiling 
is common in most of the current related work, while many buildings have 
ramps in the floor, slanted walls and sloped ceilings which need to be 
considered in the methodology. A state-of-the-art method should be robust to 
the variations in room layouts. 
 
Scalability of the method: Proposing methods that can handle one-floor-
building or several rooms is not a challenge anymore. Nowadays, MLS devices 
deliver a large number of images and point clouds in a short time. The proposed 
methodology should deal with large buildings which means more data. When 
it comes to the third dimension the complexity of calculation exponentially 
increases. Keeping such models up-to-date means to add the fourth dimension 
to the data (e.g., time) and it makes the scalability problem even harder. 
Therefore, any novel method for 3D reconstruction should be scalable to big 
data. 
 
Consistency control of the models: The consistency of the reconstructed 
3D models in terms of geometry, topology and semantics needs more attention 
in the research. Some of the methods can create a correct geometry but the 
topological correctness of the components is not assured. Regarding the 
applications, the generated 3D model should be tested against the demands 
for a specific application, for example if it is used for navigation, the detection 
of doors should be considered. Furthermore, the models should be tested 
against some of the current standards such as IndoorGML and IFC. 

1.4 Research Objectives 
This thesis focuses on 3D modeling of building interiors by dealing with the 
research problems discussed earlier. The main goal is to propose a pipeline for 
automatic reconstruction of 3D models using point clouds. As the human 
intervention for modeling more complex structures is inevitable, we try to 
minimize user interactions and to simplify it for non-expert users. The key 
objectives of this research are discussed in the following. More details to 
support these objectives are discussed in chapter 2 and the methods to satisfy 
these objectives will be deliberated in the methodology of following chapters. 
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1.4.1 Semantic labeling 

Given a large point clouds from the interiors, understanding the role of each 
point and separating the noise from useful information are the goals of this 
objective. The pipeline starts with the classification of points in the classes: 
walls, floors, ceilings, doors, windows, furniture, and noise. Semantic labeling 
can be done on individual points, or segments. If segments are labeled then a 
semantic segmentation is the result of this objective. Semantic labeling is 
specifically more difficult when dealing with clutter and gaps in the data. 
Therefore, our objective is to suggest methods which are able to identify the 
semantics of a scene represented by sparse point clouds. For example, when 
using a laser scanner, the point clouds are missing glass surfaces. Thus, when 
the majority of a wall is made of glass (e.g., façade walls), only part of the wall 
is recognizable. The goal is to develop methods which can detect part of the 
object. 

1.4.2 Geometric modeling  

Geometric modeling is the process of describing mathematically the group of 
related points, segments and surfaces which form a specific shape such as a 
wall, door or piece of furniture. This objective develops the algorithms and 
methods that can deal with incomplete shapes caused by sparse data. For 
example, when part of a wall is identified in the point cloud as a segment, a 
method is required to estimate the correct extension, thickness and the normal 
vector of the wall. Computational geometry algorithms will be developed to 
reach the goal of this objective. One of the research problems which was 
mentioned earlier as dealing with non-Manhattan World cases should be 
tackled within this objective. 

1.4.3 Watertight 3D model reconstruction 

By water-tightness, we are referring to a model in which all the faces are 
connected and there are no disconnected and dangling surfaces. Similarly, 
neighboring spaces should be connected and no gap or sliver is justified. The 
method for 3D reconstruction should satisfy this objective in terms of the 
geometry and topology of the model. A watertight model can be safely used 
for indoor navigation purposes, evacuation simulation and so forth. Note that 
both a surface model and a solid model can be generated within this objective. 
Moreover, this objective aims at creating models of multistory buildings 
including stair cases while keeping the topology of the model consistent. 
Introducing a method for space subdivision, adding furniture as part of the 
space, and checking the usability of the model for indoor navigation are other 
topics contained in this objective. 
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1.4.4 Consistency and accuracy control of 3D models 

The consistency of 3D models is neglected in related works. This objective is 
focusing on developing methods to control the consistency of the final models 
in terms of geometry, topology, and semantics when there is no ground truth. 
One source for consistency control is using the current standards such as 
IndoorGML, IFC, and ISO 19107. Furthermore, the common expert knowledge 
and the specific application of the model can imply more rules for checking the 
consistency of the model. Accuracy of the model is more related to the accuracy 
of the sensor and mathematical algorithms (e.g., fitting plane methods), thus 
can be controlled by comparison to the hand-crafted models. 

1.5 Research Contribution 
Recent research in the indoor 3D modeling domain has been done aiming at 
various research problems such as geometric reconstruction, opening 
detection, indoor navigation and routing. Our goal is to adapt the current state 
of the art and improve it for an automatic and scalable reconstruction of indoor 
3D models which ensures semantically and topologically consistent models. 
 
The main contributions of this research are: 
 Reconstruction of full-3D models in challenging indoor environments with 

large glass surfaces, large amount of clutter (furniture) and moving objects 
(people). 

 Modeling of interiors both for BIM and IndoorGML applications. 
 Modeling of large and multistory buildings for disaster management 

applications. Therefore, detection of openings and clearance of emergency 
doors are investigated. Moreover, modeling furniture as obstacles, 
extracting navigable spaces in 3D and flexible navigation networks are 
focus of this research. 

 Lifting assumptions such as Manhattan World, horizontal ceilings and 
floors, and vertical walls.  

 Change detection in indoor environments between different epochs of 
scanning and separation of structural changes from temporary changes.  

 Proposing a formal framework for consistency control of 3D models and 
their compliance with indoor standards (IFC and IndoorGML) and ISO. 

1.6 Dissertation Overview 
This research starts in chapter 2 with a thorough overview of the methods for 
3D modeling, related standards, and indoor mapping systems. Then the 
objectives are addressed step by step in each chapter. The whole thesis from 
chapter 3 to the end can be read as a pipeline for 3D reconstruction from point 
clouds which starts with data collection and denoising to consistency control of 
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the created models. In total the data of five buildings is collected with various 
mobile mapping systems for use cases. 
 
Chapter1: presents a background and motivation for the research, in addition 
to details about the research project which this dissertation is part of. 
 
Chapter2: an overview of the indoor modeling methods, indoor standards and 
mobile mapping systems is given in this chapter. Existing indoor modeling 
methods and their state-of-the-art are categorized and compared. This chapter 
is a useful collection for other researchers who want to get familiar with indoor 
modeling and its research problems. Note that the material of this chapter is 
from the PhD proposal and it reviews the literature before 2015. The newer 
literature is reviewed in the related work of other chapters. 
 
Chapter3: is proposing a novel method for identification of permanent 
structure (e.g., wall, floor and ceiling) in a point cloud by using the adjacency 
graph. As a major contribution, we show and exemplify the importance of 
MLS’s trajectory for scene understanding in indoor environments, including 
detection of doors, windows, stairs and fictitious errors caused by reflective 
surfaces. Moreover, a mathematical morphology in 3D is applied for space 
subdivision. All the proposed algorithms are tested on four complex buildings 
which impose different challenges for 3D modeling. 
 
Chapter4: this chapter is built on top of the findings of the previous chapter. 
As in chapter three a watertight mode is not yet generated, the pipeline is 
further developed in chapter four to generate a watertight model of multistory 
buildings. The third objective, watertight 3D model reconstruction, is covered 
in this chapter. The modeling of stairs and extraction of spaces as polyhedra 
are discussed in this chapter. Furthermore, a method for space subdivision, 
identifying and adding the furniture as a subspace and checking the 
consistency of the model against the indoor navigation graph are investigated. 
 
Chapter5: is focusing on the fourth objective, consistency control of the 3D 
models. The chapter gives a review of the recent literature and the comparison 
of types of indoor models. This chapter is not just focusing on the models 
generated with our pipeline, but generally suggests a method to use standards 
and expert knowledge for evaluation of different types of 3D models. The 
proposed methodology does not aim to fix the corrupted models but assures 
whether a given model complies with the current standards in terms of 
topology, geometry, and semantics. 
 
Chapter6: investigates the change detection from point clouds in indoor 
environments. A method is represented for separation of changes in the 
permanent structure from temporary changes (e.g., furniture). The data is 
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collected from two buildings in two epochs and changes are examined. 
Moreover, the application of change detection in indoor 3D cadaster is studied 
as the future line of research. 
 
Chapter7: summarizes the finding of each chapter and answers the research 
questions by relating them to the objectives of this research. The directions 
and suggestions for future research are discussed in this chapter.  
 
It should be noted that there is an overlap between chapter 3 and 4, as they 
are based on the journal papers. 
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2.1 Indoor Data Models and Standards 
In this section we investigate current indoor models and their definition of 
indoor space. The justification behind this review is the ultimate application of 
our research output. As discussed in the introduction we generate a 3D 
reconstructed model that will be applied for emergency cases in evacuation of 
buildings. Therefore, we need to have a clear understanding of indoor model 
standards and specifications and try to generate a product compatible with 
current models such as IndoorGML, IndoorOSM and Industry Foundation 
Classes (IFC). There are various aspects of indoor space to study. From 
navigation aspects we have functional, operational and range space, from 
topological aspect we have primal space (topographic space) and dual space 
(adjacency, connectivity, accessibility) as well as semantic and spatial 
(topology, geometry) aspects. 

2.1.1 Review of current indoor data models 

With the growth of the interest in indoor mapping and indoor services in the 
last years the demand for standards and specifications raised. The goal of these 
standards (models) is to form the data collection, the maintenance and the 
software development for indoor environments. Currently there are four main 
indoor models: 1. IndoorGML, 2. CityGML LoD4, 3. IFC, 4. IndoorOSM. 
 
IndoorGML: IndoorGML is a Geography Markup Language (GML) encoding 
standard defined by Open geospatial Consortium (OGC) for indoor navigation 
and representation. IndoorGML standard facilitates the modeling of interior 
space in terms of topology and semantic while avoids describing complex 
geometries. This avoidance is because of already existing indoor geometric 
models in other standards such as CityGML and IFC. The focus of IndoorGML 
is on two main functions of indoor environments: 1- Representing the 
properties of indoor space, and 2- Providing spatial reference of features in 
indoor space (Lee et al., 2014). Therefore, IndoorGML studies the indoor space 
from navigation aspects as well as the type of their connectivity to be applied 
for navigation and does not emphasize on building architectural components 
(roof, wall, …). 
 
Definition of Indoor Space in IndoorGML: “Indoor space is defined as 
space within one or multiple buildings consisting of architectural components 
such as entrances, corridors, rooms, doors, and stairs” (Lee et al., 2014). 
IndoorGML’s effort is to define rooms, corridors and stairs as indoor spaces, 
provide their spatial information and type of their connectivity in space, 
investigate navigation possibility regarding WiFi coverage, accessibility and 
functionality and does not provide information about walls, roof, ceiling, 
ventilation, installments and furniture. An important difference of the indoor 
space from an outdoor space is the indoor constraints such as corridors, rooms 
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and stairs. In IndoorGML, indoor constraints are considered from the following 
aspects; 
 Cellular space which is defined as the smallest organizational or structural 

unit of indoor space, each cell has an ID, cells do not have overlap with 
any other cell but have common boundary, e.g., rooms. Cell position can 
be defined by its ID or (x, y, z) coordinates for more precise location. 

 Semantic representation that means decompose indoor space to cells 
based on their semantic. The cell subdivision can represent the topography 
(e.g., room, door, window) of a building, available WiFi coverages, indicate 
security areas (e.g., check in area, crew area, boarding area), or 
public/office areas. In IndoorGML semantic has two purposes: 1. For 
classification and to define connectivity between cells. 2. For hierarchical 
structure and semantic interrelation (specialization and generalization) 

 Geometric representation of 2D or 3D features in indoor space is not a 
major focus of IndoorGML, since they are clearly defined by ISO 19107 
(ISO, 2003), CityGML, and IFC. However, there are three options to 
represent geometry in IndoorGML: 1. External reference to CityGML, 2. 
Geometry in IndoorGML as GM_Solid in 3D space and GM_Surface in 2D 
space, 3. No Geometry 

 Topological representation or Network representation, the Node-Relation 
Graph (NRG) represents topological relationships, e.g., adjacency and 
connectivity among indoor objects. The NRG allows abstracting, 
simplifying, and representing topological relationships among 3D spaces in 
indoor environments, such as rooms within a building. 

 Multi-Layered Representation is supported with IndoorGML for various 
cellular representation such as topology layer, sensor coverage space, 
topographic space in dual space or Euclidean space. This representation is 
useful to represent the interlayer relationships between two hierarchical 
levels. 

 
CityGML LoD4: CityGML is an open data model and XML-based format for the 
storage and exchange of virtual 3D city models issued by Open Geospatial 
Consortium (OGC) (Gröger et al., 2012; Kolbe et al., 2005). CityGML supports 
five different Level of Details (LoD) that reflect independent data collection 
processes with various application requirements. LoD0 to LoD2 define 
standards for city modeling and building blocks. LoD3 uses a boundary 
representation (boundary surface) with simple geometry and texture to reflect 
external view of the building such as roof, entrance doors and windows. LoD4 
is a supplementary model to complete building models from inside in presence 
of relevant data by adding interior details. For example, buildings in LoD4 are 
composed of rooms, interior doors and stairs (Gröger et al., 2012). The 3D City 
Modeling Standard CityGML and its LoD4 offers possibilities to represent 
interiors of buildings with their geometry, semantics, topology and appearance 
(OGC, 2008). Since CityGML and IndoorGML both are dealing with indoor space 
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they have many common standards. IndoorGML has a multilayered 
representation of the interior space and supports navigation networks. For 
example, the shortage of IndoorGML in visualization can be handled by 
CityGML LOD4 (Lee et al., 2014). 
 
Industry Foundation Classes (IFC), BIM and BISDM: To improve 
communication within the industry, BIM users and vendors developed a data 
interchange standard format known as Industry Foundation Classes (IFCs) 
(ISO, 2018). BuildingSMART International (formerly the International Alliance 
for Interoperability, IAI) (buildingSMART International, 2013), has established 
IFC for representing building elements and their properties which are 
generated as object-oriented models in XML formats. A BIM is a digital 
representation of all the physical and functional characteristics of a building 
through its entire life cycle (Isikdag et al., 2007; NBIMS, 2006). However, it is 
a cumbersome process to keep BIM models as update as current situation of 
the buildings. Building Interior Space Data Model (BISDM, v3.0) is an object-
oriented example of IFC models designed and supported by Esri for 
implementing GIS projects (ESRI, 2012). 
 
Based on IFC definition: “a space represents an area or volume bounded 
actually or theoretically. Spaces are areas or volumes that provide for certain 
functions within a building” (buildingSMART International, 2013). A space in 
IFC standard can be a space group which is defined as COMPLEX (e.g., site, 
building) in the model, can be a space which is defined as ELEMENT (e.g., 
building story), and can be a partial space which is defined as PARTIAL (e.g., 
parking) in IFC model. 
 
Since BIM models defined by IFC are for building maintenance and industry 
purposes, it is not trivial to adapt a BIM standard for indoor GIS targets such 
as indoor navigation. For instance IFC standards does not concern about the 
spatial relation among building interiors which is crucial for indoor navigation 
purposes, or interior spaces such as rooms and corridors defined by 
architecture components (e.g., wall, door, windows) not their functionality. 
(Isikdag et al., 2013) propose an approach to transform a standard BIM model 
to a BIM-Oriented Model (BO-IDM) for navigation and emergency cases in the 
buildings. Their method provides semantic information for indoor navigation 
goals and complex geometries interpretation. 
 
IndoorOSM: IndoorOSM is an indoor extension of OpenStreetMap with the 
focus of collecting Volunteered Geographic Information (VGI). IndoorOSM is a 
2D representation of indoor and does not support 3D modeling like previously 
described models. The information is provided by contributors and stored 
through tools developed by the OSM community (e.g., JOSM, Java tool for 
OSM). In OSM data there are three main concepts to represent map features: 
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1. Nodes that are very simple features and geo-referenced points such as trees, 
park bench. 2. Ways that are linear or polygonal geometries combined from 
nodes such as roads, building, region boundary and 3. Relations that are more 
complex features such as polygons with holes or complex relation between 
different OSM map features such as a construction site or a complex route, 4. 
Tags that are used for semantic information and it has a key-value pair, for 
instance “barrier” as a key could have many different values (curb, ditch and 
fence). In IndoorOSM nodes, relations, ways and closed ways represent the 
points of interest (POI), corridors and rooms in the indoor environments. 
IndoorOSM explicitly represents corridors as polygons, therefore obstacles and 
holes can be integrated in corridor polygons. Building floors can be presented 
and connected by relations and have attributes. In contrast to indoorGML that 
deals with indoor parts as modular cells and concerns about their functionality, 
IndoorOSM does not geometrically distinguish between the functionality of a 
building part (e.g., room, corridor, staircase etc.), therefore the mapping 
becomes much easier for the contributor (Goetz and Zipf, 2013). 
Unfortunately, in recent years there was not too much effort to complete and 
develop IndoorOSM standards and it has just studied in academic domain and 
not much practical projects have been carried out.  

2.1.2 Transition from 3D reconstructed model to GIS/BIM 
Model for evacuation 

In our research we mainly notice to transform our result to IFC or/and 
IndoorGML models because these two models are specifically designed and 
supported by respected communities for indoor applications. IFC similar to 
IndoorGML is an object-oriented data model for building components and they 
are related to each other in many aspects. It is important to understand the 
difference and relationship between them for better application. IndoorGML is 
representing the interior space by a cellular model and cells are smallest unit 
of the indoor, while IFC is modeling the interior by architectural components. 
IndoorGML can be applied for navigation purposes, while IFC is applied for 
building maintenance and contains components details. Therefore, we can 
indicate IndoorGML as our base model and enhance it by external references 
to IFC information. For example, when we need information about walls 
material and thickness IFC can easily provide such information (see Figure 2.1) 
(Lee et al., 2014).  
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Figure 2.1. The figure shows how IFC can act as an external reference to provide 
necessary information to fill IndoorGML gaps (e.g., wall parameters and material) (Lee 
et al., 2014). 

As a conclusion, indoorGML does not store geometry of features to avoid 
duplication by CityGML LOD4 and applies geometry as an external class. On 
the other hand, IFC does not concern about the spatial relationship among 
features and limits itself to the geometry and semantic information, therefore 
they can be used as supplement for each other. Currently there is no indoor 
standard that thoroughly covers all aspects of indoor environments in terms of 
topology, geography, semantics and to support various indoor data formats 
(CAD data, 2D floor plans, BIM models and point clouds). Additionally, it is not 
possible to provide all the necessary information to feed into a model. With this 
overview we enjoy an understanding of interior space and its subdivision in 
different indoor models that help us how to enrich and transfer our final 3D 
reconstructed model to an indoor model for further applications and specifically 
for evacuation goals. 
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2.2 Review of Existing Indoor Data Acquisition 
Systems 

Indoor acquisition systems had a dramatic progress in recent years. In addition 
to stationary devices such as terrestrial laser scanners (TLS) there are a wide 
range of indoor mobile mapping systems (IMMS). While TLS systems (e.g., 
Leica, FARO, RIEGL) are more accurate (mm accuracy), IMMS systems (e.g., 
CSIRO Zeb11, Trimble TIMMS2, NavVis3 M3) are more flexible and faster for 
data acquisition. Another source of the data can be acquired by less accurate 
but low-cost mobile systems such as Google Tango and Microsoft Kinect that 
deliver RGB-Depth data.  
 
In this project we intend to use IMMS systems (Zeb1, NavVis M3) because they 
are faster than TLS laser scanners and still deliver accurate data for our 
purpose (3-4 cm accuracy) and more accurate than RGBD sensors such as 
Kinect and GoogleTango. However, we test our algorithms on different data 
sources and compare the result. 
 
ZEB1 (Zebedee) and ZebRevo: Zeb1 (Bosse et al., 2012) is a handheld 3D 
mapping platform constructed from a 2D laser scanner (Hokuyo UTM-30LX with 
30 m range) and an inertial measurement unit (IMU) mounted on a spring 
platform (Figure 2.2). The system is based on simultaneous localization and 
mapping (SLAM) and delivers 3D point cloud from interior environment. The 
advantage of Zeb1 to other IMMS systems is that it has more movability and 
is faster for data acquisition. Other systems are not able of mapping on stairs 
and they need alignment of point clouds from different floors which leads to 
registration errors. However, for big buildings Zeb1 needs also (semi-
automatic) alignment of different point cloud datasets. 

   
Figure 2.2. Left: Zeb1 CAD model (Bosse et al., 2012), Right: ZebRevo RT 
(www.geoslam.com) 

                                          
1 www.geoslam.com 
2 www.trimble.com 
3 www.navvis.com 
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NavVis Trolley (M3): M3 Trolley is a mobile laser scanning platform 
constructed from 3 Hokuyo 2D laser scanners, 3 IMUs, 6 cameras, one battery 
supply and one tablet and CPU for real time processing (Figure 2.3). Out of 
three 2D laser sensors, two of them is mounted vertically for a 3D data 
acquisition on both side of laser scanner and one is mounted on head unit (on 
top of laser scanner and above operator height) for 2D localization and 
mapping. Cameras also are mounted on head unit to have panoramic coverage 
during data acquisition. Likewise, the system is capable of collecting WiFi data 
in case there is such signals in the environment. The system like Zeb1 applies 
SLAM method for localization and mapping and delivers 3D point cloud in 
addition to HD panoramic images from the environment. As mentioned before, 
the M3 Trolley is not able of mapping in stair cases and for acquiring high 
quality images operator needs to have a low speed. The height of the device is 
adjustable but during mapping it should be set above the height of the device 
operator to avoid any occlusion for the cameras. 

 
Figure 2.3. NavVis M3 Trolley (image from www.navvis.com) 

Both systems use Hokuyo UTM-30LX laser scanner which has 30 m measuring 
range, 270-degree field of view and 50 mm accuracy in 10 m to 30 m range 
(Figure 2.4). 
 
RGBD sensors and Microsoft Kinect: Microsoft Kinect2 is a range camera 
based on Time of Flight (TOF) method. Range imaging devices are low cost and 
most affordable 3D data acquisition systems. RGBD sensors constructed from 
an IR laser projector, an IR camera, an RGB camera and a 3-axis accelerometer 
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for device orientation. The depth resolution of the data at a distance of 5.5 m 
is more than 8 cm (Khosravani, 2016). In spite of their low cost, the application 
of them for 3D mapping depends on the level of accuracy and details we need 
to reach. They are vastly used for gaming and gesture tracking (e.g., Microsoft 
Xbox 360) as well as augmented reality and robotics, but they are not suitable 
for mapping in large buildings because the depth of sensors is not more than 
8-10 m. 

 
Figure 2.4. Microsoft Kinect (source: msdn.microsoft.com) 

As mentioned before in our research we mainly use Zeb1 point cloud, for 
color point cloud NavVis Trolley and terrestrial laser scanners (Leica, FARO) 
are another source of data. 

2.3 Review of Indoor 3D Reconstruction Methods 
We sort indoor reconstruction methods (from point cloud) to four categories. 
This classification is regardless the data acquisition methods and principally 
discusses the methods for indoor reconstruction. 1. planar-based 
reconstruction, 2. Volumetric-based reconstruction, 3. Mesh-based 
reconstruction and 4. Indoor scene interpretation and semantic labeling. The 
last item is mainly dealing with level of details in 3D reconstruction not the 
reconstruction itself. Needless to say, that the selected literature could have 
overlap in the concept, for instance semantic labeling could be the result of 
either planar approach or volumetric approach.  

2.3.1 Planar-based reconstruction 

Planar based reconstruction methods require plane primitive detection by 
applying methods such as least square, region growing, RANSAC and alpha 
shapes. The results are polygons that reconstruct indoor space. Most of planar-
based reconstruction methods rely on perpendicularity of walls and construct 
good results in Manhattan World cases (regular Cartesian structure also 
referred as Manhattan grid (Coughlan and Yuille, 1999)). Chen and Chen 
(2008) present an approach for planar regions detection in façade of the 
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buildings from sparse scanned range data and reconstructing polyhedron. The 
authors detect planes intersections. Boundary detection performed by 
projecting clustered points on the 2D plane and edge extraction algorithms. 
Although their sample data and proposed pipeline is performed for outdoor 
scenes, it is applicable for indoor scene and plane detection in indoor scenes. 
Sanchez and Zakhor (2012) propose an automatic system for planar 3D 
modeling of range scanner point cloud being inspired by Chen and Chen (2008) 
approach. The authors first classify the points based on their normal to floor, 
ceiling, walls and remaining. The normal vector angle threshold for ceiling and 
floor detection is less than 15 degree and for walls less than 45 degree. Walls 
are detected in X and Y direction. Assuming ceiling and floor are parallel to the 
x-y plane and walls are perpendicular to x-y plane. Therefore, this is one 
drawback of their method since they just detect walls in x, y orientation. Then 
they employ a RANSAC (Schnabel et al., 2007) method to detect planar 
primitives and their spatial extension which generates wall polygons and their 
orientation. Additionally, authors use a stair case model to determine stairs in 
indoor space. First, they fit an inclined plane to detect staircase ramp and then 
by fitting stair case model they detect steps and number of steps. The staircase 
detection method is a good approach for dealing with scalability challenge 
(detection of small-scale structure relative to the scene scale). The final model 
does not include doors and openings and is not tested against cluttered data 
(Figure 2.5). 
 

 
Figure 2.5. Input data on left and reconstructed planar 3D models in middle and right.  
As the figure illustrates planes and staircases are detected (Sanchez and Zakhor, 2012). 
 
(Budroni, 2010) apply a sweeping plane method to detect vertical and 
horizontal segments in a Manhattan world case. The sweeping algorithm is a 
discrete method characterized by steps determined according to the input point 
cloud density. After detection of walls, floor and ceiling with the assumption of 
perpendicular walls, the authors employ a cell decomposition technique using 
detected segments and decompose the interior space to inside and outside 
based on the homogeneity criteria and density of point cloud. Horizontal plane 
is divided into cells using a half space modeling (also called half-space 
primitives) and straight lines as primitives. In the next step by a split-and-
merge approach those cells that contain enough points are merged to shape 
the ground plane. This method also is not applicable to non-Manhattan world 
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and the resilience to missing data and cluttered data is not discussed. 
Moreover, the authors do not address the extraction of more interior details 
such as doors and staircases.  
 
Another planar approach proposed by Okorn et al. (2010) extracts ceiling and 
floor by projecting onto the vertical (z) axis. The remaining points are projected 
on x-y plane to determine edges by Hough transform and label them as walls. 
A slicing plane in heights intervals (50 cm and 10 cm) and counting voxels 
generate histogram of clutters and permanent structure from point clouds 
which finally leads to classify the points to ceiling, floor, walls and clutter. The 
authors do not provide the structural relation between segments or classified 
points, openings are not detected and the final result could not be interpreted 
as an indoor 3D model but a floor plan. 
 
Adan and Huber (2011) and Xiong et al. (2013) build on the previous approach 
by Okorn et al. (2010) and in the former work they focus on reconstructing 
walls under clutter and occlusion and in the latter they improve it by 
reconstructing a semantically rich 3D indoor model. Through a ray casting and 
learning approach they propose so called occupancy map that label wall surface 
as empty (e.g., windows) and occupied (e.g., wall surface) and occluded which 
is the result of clutter. Their approach fails in some cases such as arched shape 
windows and where windows and doors are surrounded by moldings or divided 
by frames and casings. Also, when doors are closed it could be labeled as 
occupied instead of empty. In section 2.3.3 we discuss detection of openings 
in details. 
 
Mura et al. (2014) developed a cell decomposition method on cluttered point 
cloud from a non-Manhattan World environment. Their approach can be 
considered as a combination of planar and volumetric based methods. The 
author focused on detecting rooms by clustering point cloud from scans per 
room (each room at least has one scan position). Therefore, rooms that are 
not scanned from inside cannot be reconstructed properly. To reconstruct walls 
that are occluded by clutter they apply ray casting methods similar to previous 
work and their result is precise for cluttered and non-Manhattan World 
environment. For detection of wall candidates they extract vertical planes and 
build a 2d map by intersecting wall candidates and build a cell complex in 2D 
(similar to Oesau et al., 2014). Finally, the individual room polyhedra with the 
topology relation will be generated as 3D model (Figure 2.6). In their approach 
they do not detect openings or focus on semantic labeling. Moreover, low-level 
ceiling or tilted walls and non-horizontal ceilings cannot be reconstructed. 
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Figure 2.6. The main phases of Mura et al. (2014) algorithm: (a) cluttered point cloud, 
(b) wall candidates (c) assignment of cells into individual rooms, (d) final individual room 
polyhedra 

In a work by Becker et al. (2015) a combined shape grammar is applied to 
reconstruct interior from point cloud. The authors define interior structure as 
two main subdivisions: 1. rooms, 2. hallways and per each structure they apply 
a specific grammar to reconstruct interior environment. The extraction of wall 
candidates for split grammar from point cloud is not described in their 
approach. The usage of a priori probability and context aware probability for 
frequency occurrence of a rule can track the neighborhood relationship 
between rooms and is useful for converting the model to a BIM model. The 
generated model is presented by planar surfaces (without openings) and for 
parts of the building that there is no data, the authors generate synthetic model 
based on regularity and shape grammar. 
 
One shortage of planar-based algorithms is that it is problematic to convert 
them into BIM models that apply volumetric concept to provide indoor services. 
For instance, the connection of interior spaces such as adjacent rooms and 
topology relationship among interiors are not defined or cumbersome to 
determine because there is no detection for interior spaces (such as corridor, 
rooms and indoor divisions) and indoor spaces are encapsulated by surfaces 
(such as walls, doors, floor, etc.). On the other hand, planar-based approach 
is powerful enough for dealing with noisy and occluded data and reconstruct 
complex indoor environments, because as discussed it is possible to 
reconstruct and connect the surfaces together to generate a watertight model. 

2.3.2 Volumetric-based reconstruction 

Jenke et al. (2009) propose an algorithm for detection of cuboids in indoor 
environments from point clouds with the assumption that interior area is made 
of intersected cuboids. To fit a cuboid model into point clouds, first they need 
to detect planar primitives. Based on the efficient RANSAC algorithm by 
Schnabel et al., (2007) they detect planes in the data. They define unknown 
parametric cuboids with 9 parameters (3 for scale, 3 for translation and 3 for 
rotation) and for detection of cuboids they need to figure out how many cuboids 
are optimal to cover the interior point clouds and which data point is 
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represented by which cuboid. To answer these questions authors, reconstruct 
a graph which introduces the adjacent planes with distance threshold. To solve 
the 9 parameters for each cuboid the authors find the plane orientation from 
normal vector and plane extension. For each subgraph with perpendicular 
planes a cuboid will be candidate and the best fit with at least 5 planes and 
highest score of points on each face will be added to cuboids list (figure 2.7). 
Their method is robust to noisy and sparse data but is not applicable for non-
Manhattan World cases. Another drawback is the assumption of presence of 5 
planes for cuboid detection which is difficult to satisfy in cluttered environment 
as well as holes in the data like doors and windows will be completely filled by 
their algorithm. 
 

 
Figure 2.7. Left side: Input data and right side: reconstructed model from cuboid 
primitives detection and shape graph (Jenke et al., 2009) 

Xiao and Furukawa (2014) propose iterative Constructive Solid Geometry 
(CSG) to generate a 2D model and with stacking 2D models on top of each 
other a 3D model will be generated. Their input data is a point cloud dataset 
acquired by a mobile laser scanner. As the 3D volumetric primitive, a cuboid is 
chosen and as 2D primitive rectangular candidates. Rectangles may be 
detected through double, triple and tuple line segments in the horizontal slice 
(see Figure 2.8). Dominant horizontal slices are chosen to split the 3D space 
into 2D slices for detection of rectangular primitives. Eventually texture from 
images and wall model (view dependent walls with front and back faces) will 
be added to the CSG model to reconstruct the texture. Since rectangles and 
cuboids are chosen as primitives their approach has a lack of efficiency for non-
Manhattan-World cases. However, in their final result they present also non-
Manhattan World interiors. The authors do not focus on detecting openings and 
doors and they just aim to reconstruct walls. Their approach is scalable and 
they compare their result with two other approaches. But the authors do not 
propose any method for quality control of their result and accuracy control is 
performed manually. 



A Literature Review of Current Indoor 3D Reconstruction Methods 

24 

 
Figure 2.8. The figure represents line segments that used to detect rectangle primitives. 
Rectangles can be composed of 2,3, or 4 line segments. (Xiao and Furukawa, 2014). 

In a recent work by Oesau et al. (2014) they apply space partitioning and 
primitive extraction from input point cloud to reconstruct indoor space. Similar 
to the previous approach they slice the space into horizontal slices and by 
Hough Transformation detect the lines to apply space partitioning. An 
empty/solid space labeling is formulated as an energy minimization and solved 
using graph cut. The final model is extracted as the union of all cells labeled 
empty (Figure 2.9). Line extraction includes three main steps: 1. Filtering to 
filter out clutter by projecting the points on a horizontal plane. 2. Line fitting 
to generate line hypothesis for each point representing the local wall direction. 
This method is useful to detect non-Manhattan World cases and arbitrary wall 
directions. 3. Clustering, the points are locally clustered to wall segments and 
wall segments are globally clustered into wall direction through Hough 
Transform. Authors apply ray casting method, to label empty or solid cells 
(Figure 2.10).  

 
Figure 2.9. Space partitioning from point clouds initializes by horizontal slicing and then 
cell decomposition. Through ray casting cells are labeled to empty and solid. Solid cells 
reconstruct permanent structure. Finally all horizontal slices stack on top of each other 
to form the 3D model (Oesau et al., 2014). 
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Figure 2.10. Ray-casting method is applied to define solid and empty cells. Orange lines 
are edges (walls), black lines are cells, odd number of intersections (pink lines) 
represents that the point is in an empty cell and even number of intersections if the point 
is in a solid space (blue lines) (Oesau et al., 2014). 

They performed their method on real and synthetic data. Their approach is 
applicable for arbitrary wall direction (non-Manhattan World) and the only 
assumption is vertical wall and the result has more wall details than previous 
approach proposed by Xiao and Furukawa (2014). The proposed approach is 
robust against noisy and cluttered data but the authors propose no solution for 
detection of windows, doors and openings or stair cases. Their solution is tested 
on multilevel buildings. Input data is Kinect data and they apply CGAL library 
for part of the implementation. The main contribution of their work is detection 
of small details and niches in the walls. Circular shaped walls can be 
reconstructed with many small line segments. They check the accuracy of their 
result with a synthetic model using a Hausdorff distance algorithm and they 
reach the accuracy of 2.3 cm from the result to the ground truth. 
 
In another different approach, Khoshelham and Diaz-Vilarino (2014) apply 
Palladian Grammar to reconstruct a Manhattan World environment. The 
grammar is defined by selecting a unit cuboid as starting shape and three rules 
including 1. place the cuboids, 2. connect cuboids and 3. merge cuboids. The 
first rule uses transformation parameters to define the size and location of the 
cuboids. The authors use a histogram to extract some of the cuboid parameters 
and define points-on-ceiling and points-on-wall indices to apply second and 
third rule. In the shape grammar section, we discuss in details their approach. 
Their approach is a good example for using the shape grammar to reconstruct 
the indoor environments as a volumetric method. However, it has two main 
drawbacks, first they just tested in Manhattan World cases and choosing cuboid 
as primitive limits the reconstruction to perpendicular structure. Second, they 
apply their method on a simple two-story dataset without any clutter which 
makes the selection and detection of cuboids less complex. In occluded and 
noisy data their approach has a shortcoming: some rooms and interior spaces 
will not be detected.  
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Ochmann et al. (2016) apply energy minimization with arbitrary wall detection 
to reconstruct volumetric walls and rooms from point clouds. Their method 
starts with clustering point clouds per room by merging the scans from the 
same room. Then vertical planes are detected and transferred in 2D plane and 
all wall candidates are intersected which is a drawback of their method because 
at the end some excess walls will be detected. A planar graph will be generated 
from intersected wall candidates whose edges are segments of possible walls 
and vertices are possible locations where walls are incident. Detection of rooms 
is based on assignment of all connected components with identical labels and 
edges between different rooms are labeled as walls. Therefore, each wall 
should have two faces and is reconstructed as a volumetric object with a 
centerline. In this manner it is possible to measure and define the thickness of 
walls and area of rooms. For opening detection authors use ray casting method 
from scanner position to the measured points. The author did not discuss how 
walls which are not sensed from both sides (because of occlusion or access 
problem during mapping) will be reconstructed. Additionally, their method is 
strongly based on assigning scans to rooms based on position of the scanner 
and is not applicable for mobile laser scanners (Figure 2.11). Also, for buildings 
with long corridors and rooms that scanned from outside (with big glass 
window and open doors) it is not straightforward to apply their method. 
However, presenting walls as volumetric objects is useful for BIM applications. 
Finally, the topological relation between spaces and rooms is reconstructed 
which is very important for a consistent model. 
 

 
Figure 2.11. (a) input point cloud, each color represents the assignment of points to 
scans; (b) segmentation result and refined points per scan for each room; (c) projection 
of vertical planes in 2D; (d) all lines are intersected and candidate walls are derived and 
represented in different colors. Space partitions are labeled as inside and outside. (e) 
edges that encapsulate rooms remain. (f) Final model with walls, doors (green) and 
windows (yellow) (Ochmann et al., 2016). 

2.3.3 Mesh-based reconstruction 

Mesh-based methods are mainly applied for surface reconstruction, object 
recognition and 3D rendering. It has the advantage to be scaled from small 
features such as objects in a room (Izadi et al., 2011); (Newcombe and 
Davison, 2010) (Rusu et al., 2009) to larger features such as buildings (Frueh 
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et al., 2005). Rusu et al. (2009) reconstruct 3D model from point clouds in a 
kitchen environment. The authors apply a hybrid map including points, triangle 
meshes, 2d polygons and geometric shapes for different processes such as 3D 
collision detection and object classification. The result of their work is three 
classes of objects: vertical planes (walls) with 0.98 accuracy, horizontal planes 
(floor, ceiling, tables) with 0.97 and furniture candidates (cupboards, drawer, 
kitchen appliances) with 0.91 of accuracy. Frueh et al. (2005) develop a 
method for façade reconstruction from mobile laser scanners and digital 
images by generating meshes and depth images. The authors generate 
foreground as occlusion objects and background as building facades. Depth 
images are generated from the point cloud as are applied for processing and 
presenting data from 3D scanner and then the holes in the background will be 
filled by interpolation. To our knowledge mesh-based methods are not applied 
for a thoroughly indoor 3D reconstruction such as volumetric and planar based 
methods. The reason could be that meshes are applied for surface 
reconstruction, quick rendering and filling holes but they are not practical for 
semantic labeling and topology relationship in interior spaces. Additionally, 
because of complex structure of indoor (e.g., presence of small objects and 
large objects in the same scene) and clutter building meshes is not straight 
forward. 

2.3.4 Grammar based reconstruction 

Grammar and shape grammar as modeling and reconstruction techniques have 
been applied in architecture, computer graphic and engineering for many 
years. The term grammar is widely applied in the human language, 
programming languages, compilers, computer interpreters and text processing 
by creating a grammar for a language. A grammar is a set of rules that 
enumerates the sentences of a language. As an example Turing machines that 
are applied in cryptography use a form of grammars (Chomsky, 1959a). The 
term phrase structure grammar for analyzing and understanding languages 
was introduced in 1956 by the linguist Noam Chomsky (Chomsky, 1956). 
Shape Grammar uses the same concept as the phrase structure grammar. 
Stiny and Gips (1971) gives a formalism for shape generation in paintings as 
2D shapes and sculptures as 3D shapes. Since painting and sculpture have 
location and scale on the painting canvas or sculpture frame, their 
specifications can be described by a grammar. The Palladian Grammar is 
introduced by Stiny et al. (1978) for Palladio’s building architecture. Stiny sets 
rules to reconstruct different composition of Palladio building in an architectural 
language. He studies the geometry aspects of Palladio’s art and proposes eight 
stages to generate the plan. The main conspicuous feature of Palladio’s villa 
plans is their bilateral symmetry design and most of them are laid on a single 
axis in a two-dimensional Cartesian coordinate system. Plans are generated 
with respect to the north-east axis of this coordinate system and conventionally 
walls parallel to the x-axis has ‘east-west’ orientation and wall parallel to the 
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y-axis has the ‘north-south’ orientation. In other work by Khoshelham and 
Diaz-Vilarino (2014) use Palladian grammar concept to reconstruct a 3D 
volumetric model from point clouds for a two-story building. They use a cube 
as initial shape and apply transformation including translation and scale 
parameters. Since their method is applied for Manhattan-World structure 
similar to Palladian they do not apply rotation in their rules. Based on Palladian 
grammar for interior space wherever there is no wall between rectangles they 
use connect and merge rules to realign walls and reconstruct interior. Let’s 
assume: S is starting cube and H is a transformation consists of a translation 
and scale. Ri represents rules and Ni denotes non-terminal shapes and T 
terminal shapes. 
 
Instant Architecture and Split Grammar: Split Grammar is an extension of 
parametric set grammar for automatic reconstruction of building solids and 
facade in urban planning and architecture (Wonka et al., 2003). In Instant 
Architecture article the authors introduce this novel grammar to automate the 
process of urban design for a variety of building styles. The authors claim that 
the power of split grammar lies in the restriction of allowed rules that allows a 
control on derivation process while it keeps it simple. These grammar rules will 
be designed by introducing three main techniques: 
1. Introducing split grammar for design and derivation of shapes.  
2. Introducing control grammar as a simple context-free grammar to avoid 

random selection of rules and put them in an order based on the designer 
or architectural principles. In other words, control grammar as an external 
factor is used to calculate and distribute attributes to the shapes generated 
by the split grammar. 

3. Introducing an attribute matching system for rule selection and control 
randomness of generated shapes based on the user specification. 

 
Basic Shape: Basic shapes are simple building blocks of the grammar, e.g., 
cuboids, cylinders (made up of polygonal segments) or prisms. Basic shape is 
an attributed, parametrized labeled shape that manipulated by grammar. To 
formulate it (Wonka et al., 2003): “A basic shape b is given by 𝑏 ൌ ൏ 𝑠, 𝑃, 𝑉 , 
where s is a simple shape centered on the origin, P is a set of three labeled 
points defined by the intersection of the positive coordinate axes with the 
(imaginary) faces of the shape, and V is a symbol from a vocabulary N’ with 
arbitrary attributes attached to it, where a subset T’ ⊆ N’ forms terminal 
symbols. A simple shape in this definition is a shape that contains all lines 
defined by the edges of a closed, convex 3D geometric object.” 
 
Split Definition: “The vocabulary of a split grammar is the set 𝐵 ൌ
 ሼ 𝑓ሺ𝑏ሻ|𝑏 is a basic shape, 𝑓 ∈  𝐹ሽ ሺnote that 𝑓ሺ𝑏ሻ  ൌ   𝑓ሺ𝑠ሻ, 𝑓ሺ𝑃ሻ, 𝑉ሻ. The set of allowable 
transformations F will be the affine transformations. A split is the 



Chapter 2 

29 

decomposition of a basic shape into shapes from the vocabulary B” (Wonka et 
al., 2003). 
Split rule: 𝑎 →  𝑏 where b is generated from splitting a shape. 
 
Conversion rule: 𝑎 →  𝑏 where b is a transformation shape of a. 
“One notable difference between the split and the conversion rule is that in a 
split rule, the elements in the sets a and b fill the same volume, whereas in a 
conversion rule, this is not necessarily the case.” 
 
Two important problems that authors deal with them are:  
Problem 1: How the texture and material can be handled by the system? How 
the appearance should look like?  
Problem 2: How the appropriate matching rule can be selected among several 
matched rules? 
 
The authors aim to select the best matched rules among the candidate rules. 
Since here the authors are using the attributed symbol selection of matched 
shape it is easier than problem in computer design approaches with shape 
grammar. Both solutions are associated with the attribute attached to the 
grammar symbols. Three ways for attribute propagation are proposed: 1 and 
2 are straightforward because they apply settings manually, while the first 
applies settings on starting symbol shape, the second one propagates 
attributes from parent shapes to the children; 3. Control grammar is the 3rd 
way of assigning attributes in a mechanism to keep harmony and consistency 
in the building. 
 
As a comparison with Palladian Grammar approach in learning the language of 
indoor architecture (Khoshelham and Diaz-Vilarino, 2014) the selection of 
geometric parameters for initial shape was done automatically with processing 
the point clouds and using histogram. But in Instant Architecture (Wonka et 
al., 2003) for a higher level design (e.g., style of the building) we have a 
symbol for which we can define attributes manually. However, this comparison 
is far away from the practice because the former approach is a bottom-up and 
data-driven method and the latter is top-down approach. 
 
Selection of a rule among several matching rules should be done cautiously 
and should meet two criteria: 1. The derivation produces coherent and 
plausible result, 2. the results meet user goals. To achieve this, the attributes 
in the rule will be compared with the attributes in the current grammar symbol 
and the rule with the best match will be selected. Keep in mind that the 
attributes will be copied from parent shapes in a split grammar and will be 
checked through a control grammar. The authors (Wonka et al., 2003) also 
use below terms and formulas to implement their approach: 
1. A deterministic matching function MDV 
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2. A stochastic selection function 
3. Maintaining a history of rule selection 
4. Exclusion of the rule by interval or value 
 
Generally, the definition of attributes for rules and symbols should consider the 
symmetry, building type, or façade style or the level of complexity in the 
façade. This helps the diversity of the design.  
 
Here we give an example of using split grammar for a simple building façade 
(Figure 2.12): given a building solid with height h>12.5 and width w>17.5 and 
depth d>12, we design the façade for the ground floor and entrance. Notice 
that uppercase letters are non-terminal objects and lowercase letters are 
terminals. Symbols assigned to each shape are written inside them. We use 
Subdiv as subdivision function and Split as a split function to implement the 
grammar. The function f(xyz, wdh) applies the split rule on one of the xyz axis 
with the intervals of wdh stand for width, depth and height and the objects in 
the bracket { } can be terminal or non-terminal shapes. 
 
R1: BUILDING → Subdiv (Z,0.3,3.5,3,3,3) {band│GROUNDFLOOR| 
FLOOR|FLOOR|FLOOR} 
R2: GROUNDFLOOR → Splithoz (X, 4.5,4,4.5,4.5) {ROOM│ENTRANCE| ROOM | 
ROOM} 
R3: ENTRANCE → Splitver (Z, 0.0, 2.4, 0.6) {∅ │extdoor| wall} 
R4: ENTRANCE → Splithoz (X, 0.5, 3, 0.5) {wall│extdoor| wall} 
R5: ROOM → Splithoz (X, 2.25, 2, 2.25) {wall│WINDOW|wall} 
R6: WINDOW → Splitver (Z, 0.2, 2, 0.2) {frame│glass|frame} 
R7: WINDOW → Splithoz (X, 0.2, 1.60, 0.2) {frame│glass|frame} 
 

 
Figure 2.12. Represents a split grammar and applying them on a building façade.  The 
blue color areas show the matched object for applying the rule in each step, and upper-
case letters such as GF, F, BD, ENT, R represent the symbols per shape. The result is a 
ground floor with an external door (gray color) and windows (dark blue). 

 
Applications of split grammar: Mueller et al. (Müller et al., 2006) in 
procedural modeling of buildings apply split grammar with CGA grammar to 
generate 3D detailed model for complex buildings and 3D city models. Authors 
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use repeat and component split. Repeat split tiles a specific element along with 
defined axis with the given intervals. Component split uses a parameter and 
type as input to split elements into their composite elements. For instance, 
Comp (“faces”) {A} creates a shape with symbol A from original three-dimensional 
shape. Split grammar also is applied for façade reconstruction from images 
(Müller et al., 2007) and LIDAR data (Becker, 2009). Becker et al. (Becker et 
al., 2013) applies split grammar combined with other grammars such as L-
System to reconstruct indoor of the buildings. The authors classify the indoor 
environments to corridor and non-corridor (or hallways and rooms) and using 
split grammar for non-corridor areas including rooms. The split grammar splits 
rooms based on 6 different kinds of rules by using the function splitspace (αi, di) 

where space means the split applies to non-terminal shapes and αi  is the 
orientation of split and di gives the distance value for the split. In Figure 2.13 
you can see some of the split procedures. 
1. SingleSplit, 2. RepeatSplit, 3. StringSplit, 4. MultiSplit, 5. Merge, 6. 
Instantiation 

 

Figure 2.13. Six split rules in (Becker et al., 2013). 

(Becker et al., 2015) define interior structure as two main subdivisions: 1. 
rooms, 2. hallways and per each structure they apply a specific grammar to 
reconstruct interior environment. For reconstructing hallways, a L-System 
grammar is applied and for room structure a split grammar. The main 
contribution of their work is extracting the grammar from the data and avoid 
setting grammar rules by an expert since this could be a complex and time-
consuming task. However, to define grammar automatically from the data they 
should build their rules on many assumptions which makes their approach 
implausible for various building types. For example, for assigning L-System 
rules and instantiation authors suppose hallways are parallel to the main axis 
of the building and are connected, while it is not easy to extract the axis of the 
building especially for round or complex shapes. Additionally, the shell of 
building should be available to control the growth of L-System rules during 
production process. For instantiating split grammar first, the building should 
be partitioned to hallways and non-hallways parts which is error prone and not 
trivial. Then by a set of single and multi-split rules non-hallways can be divided 
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to rooms. Their approach is not tested on non-Manhattan World cases and the 
studied case has mainly perpendicular structure.  

2.3.5 Indoor scene interpretation and labeling 

Other indoor 3D reconstruction approaches are devoted to scene 
understanding and semantic labeling which have widely been studied in the 
domain of robotic and computer vision. For indoor 3D reconstruction we do not 
need to reconstruct small objects (kitchen appliances, objects on a table), 
however, we need to detect specific objects such as furniture, stair cases, 
pillars, tables, shelves, closets, doors, windows, etc. Therefore, it is important 
to have an overview on related work in this domain. Izadi et al. (2011) in a 
project called KinectFusion reconstruct features in a room acquired by a Kinect 
camera while the user may interact with the scene (in front of the sensor). The 
Kinect camera continuously has 6 degree-of-freedom (DOF) pose which is 
tracked by the system for SLAM and fuses live depth data from camera into a 
single global 3D model in real-time. Real-time reconstruction is implemented 
through parallel processing on GPU. When a user is interacting into the scene 
the camera tracking locks onto the background and ignores the foreground 
user for camera pose prediction (to avoid localization errors). Foreground data 
can be reconstructed independently from 6DOF. However, this method can be 
error prone for prolonged user interactions into the scene. Their method is 
scalable for bigger scenes like a room but they do not focus on labeling doors 
and windows in a room. In next section we discuss some of other approaches 
for semantic labeling and scene understanding in details. 

2.3.6 Detection of openings 

Detection of openings is a principal step in indoor reconstruction and is also 
necessary for our evacuation goals. Identifying doors and windows and 
extracting their geometry is the aim of opening detection. Even to enrich the 
model semantically respecting the openings we are able to define windows in 
ground floor as an escape route or in idealistic level defining which side doors 
can be opened. Status of the doors (open or closed) during data collection also 
is an important element for detection of the openings (Diaz-Vilarino et al., 
2015). Adan and Huber (Adan and Huber, 2011) propose a method (we 
address in this literature as occupancy map, Figure 2.14) for detecting 
openings from point cloud under occlusion and clutter. Here briefly we explain 
the steps: 
1. Detecting the wall surface in the point cloud using a histogram analysis 

approach explained in (Okorn et al., 2010) 
2. Each detected surface is modeled by a set of voxels bounded by rectangles 

that occupy the surface. 
3. Occlusion labeling: each voxel assigned occupied (F for full), empty (E) and 

occluded (O) labeled (Figure 2.14 f). This is the main contribution of their 
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work. Labeling occupied or empty is easy based on whether or not there 
was a surface. For occlusion testing, the authors use a ray tracing method 
(cast a ray from position of the scanner to the measured point) to identify 
the empty voxel if is truly empty space or is because of occlusion.  

4. Make a range image from the surface by projecting depth values on the 
surface (Figure 2.14 b).  

5. Detecting of opening edges using a Canny’s algorithm and Hough 
transform (Figure 2.14 c). 

6. Modify occluded voxels by new empty voxels detected in previous step. 
 

 
Figure 2.14. Opening detection. (a) reflectance image of wall surface, (b) depth image, 
(c) edge detection by Hough Transform, (d) detecting of opening candidates by SVM 
detector, (e) prototype openings, (f) final labeling, openings are in white color, blue is 
occluded parts and red is solid surface (Adan and Huber, 2011). 

The accuracy of their approach is 2.5 cm for 36% of the opening’s boundaries, 
and 64% have less accuracy around 5.39 cm with a standard deviation of 5.70 
cm. Their algorithm correctly detects 93.3% of openings in their sample data 
(with 10 cm voxels). This approach delivers a good accuracy. However, it 
should be improved for non-rectangular openings. Additionally, it is applicable 
on the floor and ceiling to detect possible openings especially in the ceilings. 
More processing needs to be performed to label the openings as windows and 
doors (for instance doors bottom touches the ground). Also closed doors can 
be labeled as occupied and therefore will not be detected. The problem of 
reflection in data is not resolved in this approach. Ray casting method for 
opening detection have been used in many publications (Mura et al., 2014; 
Ochmann et al., 2016; Previtali et al., 2014; Xiong et al., 2013) in recent years. 
The input dataset in all cases had been captured by terrestrial laser scanners 
where the position of laser scanner is fixed during scanning, while in mobile 
data acquisition the position of laser scanner is changing and instead of several 
positions there is a trajectory. Therefore, we require a dataset that defines 
which points are measured from which poses of the scanner considering the 
timestamp. However, providing such data is possible but casting rays from a 
trajectory (instead of individual station) toward measured points can be subject 
to a research problem. 
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Díaz-Vilariño et al. (2015) apply imagery to detect closed doors in the images. 
Their approach to some extent solves the problem of closed doors in previous 
approach by using images. Main steps are as below: 
1. Generate an orthoimage  
2. Convert true color image to gray scale to detect edges by a Canny operator 
3. Use a rectangular model shape with Generalized Hough Transform to find 

candidates in the image (the approach is invariant to scale changes) 
4. Use point cloud to exclude false doors detection 
 
The candidate doors are also tested against other parameters such as min and 
max width and height of the door and doors are assumed to be vertical. The 
results are 95% accurate for two case studies and 85% for two other cases 
also under clutter and occlusion. Failures are because of presence of similar 
structure and texture in the image.  

2.3.7 Detection of obstacles 

In indoor environments obstacles are interpreted as objects that are elevated 
from the floor plane such as chairs, desks, steps, columns, etc. Therefore, by 
identifying the floor plane, the detection of obstacles is not complicated. 
Detecting and labeling obstacles is important for evacuation purposes and is a 
subject of robotic domain (Espinace et al., 2013; Manduchi et al., 2005; Zhang 
et al., 1994). Simply by making a height histogram (projection of 3D data on 
vertical axis) we are able to identify objects which are above the floor plane 
and not touching the ceiling. But this is not always the case becasue a huge 
chandelier also can be assumed as an obstacle. Okorn et al. (2010) and Xiong 
et al. (2013) describe more details how to extract clutters which we interpret 
as obstacles in our research. In Figure 2.15, you can see ceiling and floor are 
separated from intermediate objects in the histogram by their height. 

 
Figure 2.15. The histogram presents z values and the count of voxels. The picks in the 
histogram are showing ceiling and floor and other bars show the clutter at different 
elevations (Okorn et al., 2010). 
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In case of presence of imagery or Kinect-RGBD it is possible to extract objects 
from images and label them as obstacle. Additionally, we can get benefit from 
imagery for texturing objects. Koppula et al. (2011) and Anand et al. (2012) 
use Microsoft Kinect for two different indoor environments: 1. office, 2. home. 
In total 52 scenes from offices and homes are experimented and they reach 
an overall performance of 84% in the office including labeling wall, table (top, 
leg, drawer), chair, monitor, keyboard and CPU and 73 % at home including 
labeling bed, wall, floor, pillow. In their approach they consider three main 
properties to capture: 1. visual appearance. 2. local shape and geometry 3. 
geometrical context. In our research we may not require too detailed labeling 
of the features but as a subdivision of space (e.g., navigable and non-navigable 
area). Furthermore, identifying which features are dynamic obstacles (e.g., 
desk, chair, furniture) and which static (e.g., pillars, steps, stairs) is another 
critical point. 

2.3.8 Using imagery and 2D data to enrich 3D model 

Imagery besides point clouds can make great improvements in detection of 
objects and enhancing the indoor reconstructed model. For instance, in section 
2.3.2 we explained the extraction of closed doors from images. Also, in section 
2.3.3 we remarked that extracting features from images may improve 
significantly the obstacle detection approach. A profound complete example of 
using imagery and point cloud for indoor 3D reconstruction in huge 
environment is presented in reconstructing the world’s museum (Xiao and 
Furukawa, 2014). They use a hand trolley to collect data including point cloud 
and imagery and deliver the data from different floors separately. Then they 
use a Constructive Solid Geometry (CSG) approach with a cuboid as volumetric 
primitive to reconstruct 2D and 3D model (we will explain this in details in 
section for indoor 3D reconstruction). Then the imagery is applied to texture 
the walls. The major contribution of their work is that their approach is 
applicable for huge number of images with a big dataset of point cloud. 
However, the registration between different datasets remains as a problem and 
is a source of inaccuracy in the texturing because of the presence of double 
walls at some segments. Hedau et al. (2009) and Wang et al. (2013) recover 
indoor scene spatial layout in cluttered rooms from single images. Authors first 
make a training dataset from many single images (308 images) and manually 
label clutters. Then they apply this prior knowledge to find walls (left, right, 
front side of the perspective image), floor and ceiling that are occluded by the 
furniture. Their process finds long lines in the image and finds three vanishing 
points (the point where sets of 3D parallel lines meet in 2D) to nominate 
several boxes in the image (Figure 2.16). Each candidate box can represent 
the edges of walls and floor and ceiling. The important task is identifying the 
most correct box based on its rank. To generate a candidate box, pair rays will 
be extended from vanishing point 1 and vanishing point 2 and the four 
intersection will be connected to the third vanishing point. The main difference 
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between the two approaches in Hedau et al. (2009) and Want et al. (2013) is 
that in the latter the user does not need to label clutters manually because this 
is a cumbersome task. Instead they introduce latent variables which present 
the clutter characteristic and are called latent because they are never observed 
in the image. Then Wang et al. (2013) apply energy minimization method 
consists of appearance energy function (e.g., color and texture) and clutter 
energy function whose parameters are learned from training data. They reach 
an error-rate of 20.1% without the need of user to label the clutters in the 
image. Their approach can be applied for visual concept reconstruction in the 
image such as occlusion and object detection. 

 
Figure 2.16. Lower-left: three groups of lines (shown in R, G, B) corresponding to the 
three vanishing points. There are also “outlier” lines (shown in yellow). Upper-left: A 
candidate box layout is generated. Right: Different candidate box layouts (in yellow 
frames) are generated in the same way, and the hand-labeled true box layout (in green 
frame) (Wang et al., 2013). 

2.3.9 Semantic labeling 

Semantic labeling of point clouds in indoor environments aims to specify that 
each segment containing points has what kind of identity such as kitchen 
appliances, furniture, objects on a table, wall, door, window, pillars, stairs and 
so forth. In the previous sections we explained some challenges in indoor 
environments namely opening and obstacle detection. When we are able to 
detect these features, we label them for further applications. However, the 
level of details that we semantically label depends on the data quality, type of 
the data (point cloud, RGBD and image) and application. For instance, for 
indoor modeling for evacuation we opt for more general feature detection (e.g., 
furniture, door, stair) not high level of details. Mattausch et al. (2014) perform 
an object detection and classification method on large cluttered point clouds 
from indoor spaces. First, they implement a patch growing algorithm where 
nearly-planar patches will be detected. Then a rectangle is fitted to each patch 
to define geometry characters of patches (area, width, length, height of 
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centroid). Fitting the rectangle primitive is too crucial in their algorithm 
because in the following step they apply these characteristics to cluster similar 
patches. Also, for similarity measure the authors take into account spatial 
consistency for adjacent patches to filter out dissimilar patches. A 
segmentation is also performed on the clusters to define each class of object 
in the entire point clouds. Their method does not use any training data and is 
an unsupervised segmentation approach. Their algorithm also generates a 
library of detected objects which can be used to replace similar objects that 
are occluded and incomplete with the object from the library. One drawback of 
their algorithm is the presence of 9 parameters that they fix from the data by 
trial and error. Additionally, because they apply planar primitive for patch 
detection their algorithm is not responsive to uneven features (keyboards, 
plants, lamps). Anand et al. (2012) based on the scene context (e.g., co-
planarity, convexity, visual similarity, object co-occurrence, proximity) train a 
model for labeling features in indoor environments. The input data is captured 
by RGB-D and from that authors infer contextual relation (e.g., keyboards and 
monitors should be on the table), geometric relation (e.g., on-top-of, in-front-
of) and local visual shape and appearance of the features. To reach this goal 
authors generate an undirected graph which represents segments adjacency 
and one dependency graph which will be exploited for object associative 
features. For instance, table leg, table top and table drawer are dependent 
features. Through a maximum-margin approach authors learn parameters 
from training examples to label segmented objects. As result authors detect 
features such as keyboard, table drawer, chair, monitor, wall, tabletop and 
printer. The accuracy of their result is between 93% to 96%. 

2.3.10 Consistency Control 

Since evacuation of buildings and emergency services in indoor environments 
are main objectives of this research, consistency of the reconstructed model is 
crucial. For instance, if the accessibility of rooms and interiors to an 
(emergency) exit is defected because of topology errors in the model then the 
indoor navigation for evacuation fails. Gröger and Plümer (2009a, 2009b) 
propose a thorough study for preserving geometric and topology consistency 
in 3D city models and specifically for indoor navigation purposes. The authors 
introduce a “Constraints Store” that prevents errors to contradict with 
consistency-reachability rules. For instance, a new split face should not 
traverse a door inserted with previous rule. These constraints are generated 
by rule applications and explicitly formalize the concepts of adjacency, 
reachability and semantics. The constraint store maintains three main rules: 
1. Equality Constraints Equals (F1, F2) that means two boxes share the same 
face or wall. 2. Aggregation Constraints Aggr(F, F1, F2) means face F is the 
aggregation of face F1 and F2 where F is split with a face or wall. 3. Inside (F1, 
F2) that means face F1 is inside face F2, for instance a door inside a wall. These 
topology rules follow (Egenhofer and Franzosa, 1991). However, the proposed 
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approach by Gröger and Plümer has no example of real case study or a data-
driven approach and applying their methods on point can be challenging. 

2.4 Open Issues and Conclusion 
We can summarize the current research problems regarding 3D indoor 
reconstruction as follow: 
 
1. Extracting geometry and regularity: as mentioned in the literature (Oesau 

et al., 2014; Sanchez and Zakhor, 2012; Xiao and Furukawa, 2014) many 
approaches are based on primitive detection (plane, lines, cuboids, 
rectangles), therefore extracting geometry and topology of more complex 
features is limited to these primitives. Another reason that makes 
extraction of geometry characteristics difficult is the level of scale in indoor 
environments. Parameters that could be learned from the data for small-
scale structure (e.g., stair, window, door, jagged walls) hardly can be 
applied for large scale structure (e.g., ceiling, big walls, floor). Regularities 
in the structure are mainly based on the assumption that floor and ceiling 
are horizontal and walls are vertical. To our knowledge no literature until 
now investigated reconstruction in architectures with inclined and curved 
structure while in airports, museums and concert halls there are diversity 
of such a constitution. 

 
2. Improving 3D reconstruction methods in non-Manhattan World cases: the 

current researches produce promising result for Manhattan-world indoor 
structures because of the rectangular shape of the indoor space. Either 
using shape grammar (Stiny et al., 1978); (Khoshelham and Diaz-Vilarino, 
2014) or other methods (Adan and Huber, 2011; Budroni, 2010; Tang et 
al., 2010) the authors rely on the perpendicular shape of the indoor 
structure. Some of the researchers tackled this problem by detecting 
direction of walls by means of cell decomposition and primitive line 
extraction (Ochmann et al., 2016; Oesau et al., 2014) but the data is 
simple structure or not cluttered environment. To our knowledge until now 
there is no entire work done on complex interior buildings. Most of the 
researches performed reconstruction on simple interior structure including 
regular rectangular shapes. Applying current methods such as CGA 
grammar, split grammar, L-system may solve the problem to some extent 
but currently the available software such as CityEngine accepts 2D floor 
plans or shapefiles as input not volumetric data such as point cloud.  

 
3. Dealing with clutter and occlusion in the data: the footprint of clutter and 

occluded data can be noticed in all problems. Because always part of the 
data can be occluded in indoor environments extraction of spatial 
characteristics are strongly dependent on the consistency and 
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completeness of the input. Most of the current literature for indoor 
environments tackle this problem through occupancy map solution (Adan 
and Huber, 2011) but few of them deal with reconstruction of occluded 
data. Moreover, none of the literature have tested their approach on mobile 
laser scanner data using the benefits of the trajectory. 

 
4. Adapting rules from the data structure in the grammar: this is one of our 

fundamental tasks in applying shape grammar for indoor reconstruction. 
Based on the fact that most of the current literature define rules by an 
expert through a manual process (Wonka et al., 2003); (Müller et al., 
2006); (Schwarz and Müller, 2015), therefore learning these rules from 
the input data is a challenging task. Until now there is few literature that 
investigates this problem (Müller et al., 2007) (Becker et al., 2013); 
(Khoshelham and Diaz-Vilarino, 2014); (Adao et al., 2014). While 
detecting canonical geometry relations such as parallel, coplanar, collinear, 
orthogonal and co-angular is crucial for rule grammars and reinforcing 
semantic labeling, it is intensely dependent on the quality of the data and 
absence of clutter. 

 
5. Selection of appropriate rule and attributes for the selected shape: by 

solving the problem of shape extraction from the data, we run into a new 
problem which is assigning correct parameters and attributes to detected 
shapes in the data. That means set of rules can be applied to the same 
shape and lead to different derivations. Different products for the same 
data are not something that we expect in a real environment. Maybe it is 
not a problem in virtual modeling but for evacuation goals we rely on an 
accurate model derived from the data. Additionally, rules that are inferred 
from the data cannot be applied freely on any shape but require 
sophisticated process to avoid generation of defective structure. Wonka et 
al., (2003) and Becker et al., (2013) suggest probability and constraint 
solutions for this problem. Therefore, the output result can be improved by 
refining current solutions. 

 
6. Extracting semantic information from indoor laser scanner point cloud: 

semantic information could have a wide range in our project from 
extracting and labeling features in indoor space (e.g., furniture, door, 
window, wall, stair, …) to identifying subdivisions of space (navigable 
space, functional space, agent-based space). Regarding the input data, 
extracting these semantics has limitations, for instance the functionality of 
rooms from point cloud. Furthermore, because of the presence of clutter 
and complex indoor structure identifying features could be challenging. 
Since most of the buildings which are subject to this research have complex 
structure (airports, university, museum, hospital, concert halls) it raises 
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the need of smart and flexible algorithms that are compatible for different 
type of buildings. 

 
7. Consistency control of the model concerning topology and semantics 
 
8. Consistency control of the generated result has not been addressed in 

many literature. Gröger and Plümer (2009a, 2010) investigate this issue 
with shape grammar. The logical assumption for using shape grammar or 
other planar or volumetric approach for 3D reconstruction is that the 
generated model topologically and geometrically should be correct because 
of the rule-based approaches. There seems to be no compelling reason to 
argue the consistency of the result especially because of the lack of ground 
truth models in the most cases. For example, since we are using the rule-
based approach, we can claim that two rooms are adjacent by means of a 
wall and there is no gap/sliver in their geometry but we do not prove or 
control if all rooms have connectivity to the main exit. This issue is possible 
to be checked by designing more rules but it has not been investigated 
closely in recent literature. 

 
9. Automatic accuracy control of the model against the ground truth: in the 

current literature for indoor 3D reconstruction automatic accuracy control 
of the result always has been an issue, either because of the incomplete 
ground truth data or the inefficiency of approaches. Even with the 
assumption of presence of a complete and up-to-date 3D model in other 
standards (indoor GML, IFC) until now no automatic thorough approaches 
have been proposed to control a 3D indoor model generated from point 
clouds against current status of the building. In this project we are focusing 
on automatic methods for accuracy control, however, manual checks 
should be considered for cases that automatic control is not possible. More 
accuracy control will be performed by TU Delft team during designing 
evacuation models.  

 
It should be mentioned that all problems should be tackled in an automatic 
process and should be scalable to fulfil research objectives. In next chapters, 
we discuss these problems with respect to the project objectives. 
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Chapter 3 - Semantic Interpretation of Mobile 
Laser Scanner Point Clouds in Indoor Scenes 
Using Trajectories * 
 

 

                                          
* This chapter is based on: 
 

Nikoohemat, S., Peter, M. S., Oude Elberink, S. J., & Vosselman, 
G. (2018). Semantic Interpretation of Mobile Laser Scanner Point Clouds in Indoor 
Scenes Using Trajectories. Remote sensing, 10(11), 1-23. [1754]. 
https://doi.org/10.3390/rs10111754 
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Abstract 
The data acquisition with indoor Mobile Laser Scanners (MLS) is quick, low-
cost and accurate for indoor 3D modeling. Besides a point cloud, an IMLS also 
provides the trajectory of the mobile scanner. We analyze this trajectory jointly 
with the point cloud to support the labeling of noisy, highly reflected and 
cluttered points in indoor scenes. An adjacency-graph-based method is 
presented for detecting and labeling of permanent structures, such as walls, 
floors, ceilings, and stairs. Through occlusion reasoning and the use of the 
trajectory as a set of scanner positions, gaps are discriminated from real 
openings in the data. Furthermore, a voxel-based method is applied for labeling 
of navigable space and separating them from obstacles. The results show that 
80% of the doors and 85% of the rooms are correctly detected, and most of 
the walls and openings are reconstructed. The experimental outcomes indicate 
that the trajectory of MLS systems plays an essential role in the understanding 
of indoor scenes. 
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3.1 Introduction 
Due to recent improvements, mobile laser scanners (MLS) became an effective 
means of data collection in urban and indoor scenes. Indoor mobile laser 
scanners (IMLS) are capable of quick data collection at a lower cost than 
terrestrial laser scanners (TLS). Three types of common IMLS devices can be 
distinguished: Handheld devices (e.g., Zeb-Revo), push-cart systems (e.g., 
NavVis Trolley) and backpack sytems (e.g., Leica Pegasus). Thanks to the MLS 
mobility, these devices can achieve a more complete coverage of cluttered 
scenes in a shorter time. 
 
In addition to generating point clouds, IMLS systems generate a trajectory of 
the sensor positions, which is a valuable source for the scene understanding. 
The trajectory can be linked to the point clouds through the time stamp. In 
robotics, some researchers have exploited the robot’s trajectory to classify 
indoor places from both the trajectory and point clouds (Mozos, 2010; Mozos 
et al., 2005). However, the trajectory can be more useful in understanding 
indoor scenes. In our research, the trajectory is used for the detection of 
openings, separating building floors and the detection of stairs. For example, 
the trajectory as a set of scanner positions is used for occlusion reasoning to 
discriminate between openings and occlusions. Furthermore, wall planes that 
are intersected by the trajectory can be used to detect doors. Points that 
belong to stairs can be extracted by using the trajectory of the stairs. 
Obviously, detecting stairs by trajectory analysis is only applicable for laser 
scanners that are operable on stairs, i.e. for backpack and handheld systems. 
 
In addition to using the trajectories, our research introduces a method for 
detecting the permanent structure, such as walls, floors, ceilings, and stairs 
from point clouds. Most current indoor reconstruction methods are limited by 
assuming vertical walls and a Manhattan World (Becker et al., 2015; Budroni 
and Boehm, 2010; Ikehata et al., 2015) to reduce the complexity of 3D space. 
Few works deal with arbitrary wall layouts (Mura et al., 2014; Ochmann et al., 
2016; Turner and Zakhor, 2014), but they are restricted to vertical walls and 
horizontal ceilings. Our method detects slanted walls and sloped ceilings 
exploiting the adjacency of permanent structures, based on the assumption 
that there is less clutter near the ceiling in indoor environments. Additionally, 
the arbitrary arrangements of walls (non-Manhattan-World) will be handled in 
this work. Our pipeline for semantic labeling of permanent structure uses 
detection of planar primitives labeled as wall, floor and ceiling, and their 
topological relations. 
 
Room segmentation is another research problem in large-scale indoor 
modeling. In the literature, different approaches, such as Voronoi graphs, cell 
decomposition, binary space partitioning and morphology operators (Bormann 
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et al., 2016) are suggested for 2D and 3D room segmentation. Some of these 
methods have limitations, such as Manhattan-World constraints and vertical 
walls. Most of the room segmentation methods rely on the viewpoint (Mura et 
al., 2014, 2016) and require scanning with a TLS in each room (Ochmann et 
al., 2016). However, as opposed to one scanning location per room, mobile 
laser scanning systems produce a continuous trajectory and assigning points 
per room based on the scan location is not possible. Similar to our method for 
trajectory analysis, (Elseicy, 2018; Zheng et al., 2018) exploit the trajectory 
for space subdivision. Although their focus is only on space subdivision and 
simple structure, their results support our motivation of using the trajectory 
for interpretation of point clouds.  
 
In our pipeline, a novel method is suggested for partitioning interior spaces 
based on voxels and exploiting unoccupied space. Besides knowing the room 
layout, information about the doors, walkable space and stairs supports 
navigation planning. Therefore, voxels are used to identify the walkable space 
and the trajectory to identify the stairs and doors. 
 
Reflective surfaces, such as glass, complicate the analysis of indoor point 
clouds. Such surfaces cause the appearance of “ghost walls” in the data that 
do not exist in the real building. Ghost walls may incorrectly be detected as 
part of the room layout and sometimes result in an incorrect room 
segmentation. The problem of transparent and specular surfaces is addressed 
in robotics applications (Foster et al., 2013; Koch et al., 2017). We tackle this 
problem by comparing the time stamps of points with the time stamp of the 
nearest trajectory parts before starting the wall detection process. Using our 
method, some of the noise caused by the reflective surfaces can be corrected. 
 
The contribution of this work is introducing methods for using the sensor 
trajectory as a valuable source for semantic labeling of IMLS points clouds. The 
result is not a watertight model, although it extracts a coarse 3D model from 
heavily cluttered data with the presence of noise. Some of the methods 
presented in this work (e.g., door detection) are limited to mobile laser scanner 
data because of use of the trajectory. Most of our methods are applicable to 
TLS point clouds as well. For example, methods for the wall, floor, and ceiling 
detection can be implemented on both RGBD data and TLS point clouds. The 
proposed methods are tested on three types of mobile laser scanner data: 
Backpack systems, trolley systems (push-cart), and handheld devices. The rest 
of the chapter explains the related work, and data collection, followed by the 
methodology for permanent structure detection, space partitioning and door 
detection in sections 3.4, 3.5, and 3.6, respectively. The results, evaluation 
and conclusion are described in sections 3.7 and 3.8. 
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3.2 Related Work 
In this work, several known problems are addressed in the domain of indoor 
modeling, such as detection of permanent structures, room segmentation, 
opening detection and dealing with noise and reflective surfaces. For each of 
the cases, the state of the art is reviewed in the following subsections.  
 
Data acquisition: The first step in any indoor modeling pipeline from real data 
is collecting data and pre-processing to clean up the data. The main sources of 
the data for indoor modeling in large scale are point clouds from LiDAR Systems 
or RGBD Systems. LiDAR systems could be TLS devices, such as RIEGEL VZ, 
FARO FOCUS, or MLS devices, such as the Google Cartographer backpack, 
Leica Pegasus backpack, NavVis M3 Trolley, VIAMETRIS iMS3D and Zeb-Revo 
and Zeb-1. RGBD cameras, such as Matterport and Google Tango, are another 
source of data for indoor modeling. However, RGBD cameras have less 
accuracy in comparison with TLS or MLS. (Lehtola et al., 2017) present a 
thorough review of various indoor mobile laser scanners based on 
Simultaneous Localization and Mapping (SLAM). According to their study, TLS 
systems have the highest accuracy, but less flexibility, than MLS for indoor 
data acquisition. Backpack and handheld systems have the most mobility, but 
at the cost of a lower accuracy than trolley and TLS devices. The trolley devices 
are constrained to near-flat surfaces; they cannot be used on staircases and 
steep slopes. RGBD cameras are accurate enough for indoor 3D modeling 
purposes and scene understanding, but not surveying goals. In our research, 
we only use the point clouds from laser scanner systems, such as the data 
from NavVis M3 Trolley, handheld Zeb-1, Zeb-Revo and a prototype backpack 
system (ITC Backpack) based on the proof of concept of 6DOF SLAM 
(Vosselman, 2014). 
 
Reflective Surfaces: The first step after data acquisition is dealing with noise 
and artefacts. Often these artefacts come from transparent and specular 
surfaces. Koch et al. (Koch et al., 2017) investigate this problem to identify 
specular and transparent surfaces during scanning with a SLAM robot. Their 
goal is to identify and purge the corrupted points from the data on the fly or 
by post-processing. The intensity of the reflected laser pulse and the material 
of the surface (e.g., aluminum surfaces, glass, and mirror) often have unique 
distribution for discrimination of the transparent and reflective surfaces. 
However, the detection of transparent surfaces is more challenging because of 
the characteristic of the material. In another study by Foster et al. (Foster et 
al., 2013) the authors employ both the geometry and the angle of incidence 
between the laser and the surface during scanning. They suggest that in a 
particular angle of incidence, specular and glass surfaces are visible to LiDAR 
and glass can be detected. 
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Approaches to indoor reconstruction either from LiDAR point clouds or RGBD 
images can be categorized to three following categories: 
 
Indoor Volumetric Reconstruction: These approaches involve volumetric 
primitive detection (e.g., cuboid) and are often computationally more 
expensive than grammar-based and Binary Space Partitioning (BSP) methods. 
However, volumetric methods have a better representation of non-Manhattan-
World structures, slanted and rounded walls and sloped ceilings. Xiao et al. 
(2014) employ inverse constructive solid geometry (Inverse CSG) to build the 
3D model. A 3D CSG is generated by iteratively stacking 2D CSG models. Each 
2D CSG model is produced with many line segments that form various 
rectangle primitives. Their approach cannot model rounded walls because their 
hypothesis is based on extracting rectangles. Mura et al. (2016) apply the 
piecewise-planar detection and encode the adjacency of planar segments into 
a graph that represents the scene. 
 
Indoor grammar-based Reconstruction: One popular modeling approach, 
especially in regular environments, is adopting a (shape) grammar (Gips and 
Stiny, 1980; Stiny, 1982; Tran et al., 2017), Lindenmayer Systems (L-
systems) (Peter, 2017) or (inverse) procedural modeling (Bokeloh et al., 2010; 
Martinovic and Van Gool, 2013; Müller et al., 2006; Wonka et al., 2003) 
approaches for interiors. Becker et al. (Becker et al., 2015) use a combination 
of split grammar and L-system to reconstruct a 3D model for as-built BIM 
(Building Information Model). Their approach has a different view of the indoor 
space, since it divides the building into two main partitions as corridors and 
rooms. In another innovative approach, Ikehata et al. (2015) introduce an 
indoor structure grammar consisting of eight rules. Their approach is limited 
to Manhattan-World structures and 2.5D space. In (Gröger and Plümer, 2010; 
Khoshelham and Diaz-Vilarino, 2014; Tran et al., 2017) authors apply simple 
examples of shape grammar to reconstruct indoor models that are clutter free. 
 
Binary Space Partitioning (BSP) or cell decomposition: In the domain of 
indoor reconstruction, many researchers use BSP to tackle the problem of room 
segmentation. In indoor space partitioning, BSP is a piecewise-planar approach 
that subdivides the space in 2D cells and as an output generates a 2.5D model 
(Budroni and Boehm, 2010; Ochmann et al., 2016; Oesau et al., 2014; Previtali 
et al., 2014). In using BSP, 2D approaches have the assumption of both vertical 
walls and horizontal ceilings, which is a shortcoming of the 2D-BSP. If BSP is 
implemented in 3D, it results in a 3D reconstructed model (Boulch et al., 2014; 
Chauve et al., 2010; Mura et al., 2016), where the limitations of vertical walls 
and horizontal ceilings can be lifted. Additionally, BSP methods are able to 
assign the 2D or 3D cells of space partitions to the rooms based on the 
viewpoint and ray-casting. However, it requires scan positions per room with 
enough overlap to make the room labeling process possible. The main 
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problems of BSP approaches are the restriction of viewpoints, the emergence 
of ghost primitives and the computation cost for labeling the cells as inside and 
outside. 
 
Opening Detection: Among the work for the indoor reconstruction of points 
clouds, some of them (Adan and Huber, 2011; Diaz-Vilarino et al., 2015; Díaz-
Vilariño et al., 2017; Ikehata et al., 2015; Ochmann et al., 2016; Quintana et 
al., 2018; Rusu, 2013a; Xiong et al., 2013) consider the problem of opening 
detection (doors and windows) and in their final model reconstruct the 
openings. Doors are essential elements for route planning and space 
subdivision. In our definition openings are not just limited to doors, but any 
opening in the wall that could be passed by individuals and connect two spaces. 
However, in cluttered environments and because of the presence of the 
furniture and obstacles, many walls could have data gaps that can be falsely 
considered as openings. Adan and Huber (2011) propose an occlusion test to 
detect windows in the walls. Ikehata et al. (2015) use a grammar rule to add 
a door in the wall between two separate rooms such that the walls are 
connected through a doorway. Therefore, in their pipeline, the addition of the 
doors is after reconstruction of the room. In a recent work Diaz-Vilarino et al. 
(2017) use the trajectory for door detection followed by an energy 
minimization to separate rooms with the known location of the doors. However, 
their example is a simple and clutter-free dataset. Another approach for door 
detection especially in the robotic domain is using images besides point clouds 
for detection of semi-open doors and closed doors. Quintana et al. ( 2018) and 
Diaz-Vilarino et al. (2015) present such techniques for detecting closed doors 
from images and point clouds.  
 
Similar to our approach, Elseicy et al. (2018, 2018a) use the trajectory for 
semantic enrichment of indoor spaces. The authors exploit the fact that doors 
are the connecting elements of two spaces. By detecting the doors using the 
trajectory, it is possible to partition the trajectory and the space. This approach 
is only suitable for interiors with low level of transparent surfaces. Similarly, 
Zheng et al. (2018) analyze the scanlines to find local geometric regularities 
and to detect openings. By using extracted information, such as doors from 
scan lines, it is possible to segment the trajectory to associated spaces and 
subdivide the space. Both approaches may have poor results in environment 
with a large number of transparent surfaces or when the operator of the laser 
scanner has inconsistent behavior. 
 
There is a large body of literature regarding scene understanding in small-scale 
indoor spaces, such as the detection of objects in a kitchen (Rusu, 2013b; Rusu 
et al., 2009) for robot operation or in a bedroom (Silberman and Fergus, 2011; 
Wolf et al., 2015). In large-scale there are works by Armeni et al. (2016) for 
scene parsing, Mattausch et al. (2014) using a similarity matrix in cluttered 
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environment and Qi et al. (2016) using deep learning for object classification. 
Some other works in the domain of indoor 3D reconstruction from point clouds 
use semi-automatic approaches to generate BIM models (Barazzetti, 2016; 
Jung et al., 2014; Macher et al., 2017) or stochastic methods to make a 
hypothesis on generating floor plans (Loch-Dehbi et al., 2017). 
 
Our work is innovative in terms of dealing with glass reflection problems using 
mobile laser scanners and exploiting the potential of trajectories as a 
supplementary data produced by MLS systems. This work can be further 
improved to reconstruct a complete 3D indoor model from complex structures. 
Furthermore, the generated navigable space can be used for route planning in 
2D (e.g., pedestrians, wheelchair and robots) and 3D space (drones).  

3.3 Data Collection and Pre-processing 
The data for this research is captured with three different mobile laser scanner 
systems. Each system has advantages and disadvantages in terms of mobility 
and accuracy. The data is collected by means of NavVis Trolley, Zeb-1 (Bosse 
et al., 2012), ZebRevo, and ITC Backpack, a backpack system that is 
developed in our department and is in the stage of proof of concepts 
(Vosselman, 2014), see Figure 3.1. All three systems use Hokuyo UTM-30LX 
as the laser rangefinder sensor. 
 
According to the Hokuyo UTM 30LX specification1, the accuracy of the sensor 
in indoor environments for the range between 0.1 to 10m is ±30mm, and in 
the range of 10 to 30m is ±50mm. Backpack and handheld systems have more 
mobility than push-cart systems (trolley) and are able to scan stairs, while 
push-cart systems deliver a better quality of point clouds in comparison to 
handheld systems (Lehtola et al., 2017). 
 
In Section 3.1, the data and the trajectory from various MLS devices used in 
this research are presented. In Sections 3.2 and 3.3, the process of identifying 
corrupted points caused by reflective surfaces and then the segmentation 
process are explained. 
 

                                          
1 www.hokuyo-aut.jp 
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Figure 3.1. From left to right: Our prototype backpack system (ITC backpack), NavVis 
Trolley, Zeb-1 and Zeb-Revo. 

3.3.1 Point Clouds and the Trajectory 

One advantage of MLS systems over TLS devices is that in addition to the point 
clouds, they provide the laser scanner trajectory. The trajectory is a dataset 
containing a discrete suite of the device’s location during data acquisition and 
is synchronized with the point cloud. Therefore, by means of time stamps 
stored in the trajectory and point clouds, it is possible to know which points 
are collected from which location in the trajectory. In our experiment, a 0.01 
second time resolution is used to group points from each scanner position. 
Figure 3.2 shows the trajectories of various MLS devices. The z-value of the 
points in the trajectory varies depending on both the scanning system and the 
height of the operator for a backpack or a handled device. Because mobile 
devices are moving in the environment, there would be less occlusion, but 
more artefacts caused by glass surfaces. The next section explains how to deal 
with such corrupted points in the data. 
 

 
Figure 3.2. The trajectory of various mobile laser scanners that are colored by the time. 
From left to right: ITC Backpack, NavVis Trolley, Zeb-1 and Zeb-Revo. 

3.3.2 Identifying the Artefacts from Reflective Surfaces 

In addition to the noise introduced by SLAM, another source of the noise is 
reflective and transparent surfaces, such as glass and specular metals. The 
MLS devices that are used in our experiments do not use a multi-echo sensor 
similar to the one is used in Koch et al (Koch et al., 2017). In our process, the 
trajectory and ray casting are exploited to detect and remove these artefacts. 
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According to (Foster et al., 2013), when a laser beam strikes a glass surface 
three cases will happen: (i) Most of the light (almost 92%) is transmitted 
through the glass , (ii) some light is reflected back under a specular angle, and 
(iii) a small percentage of the light is scattered. If part of the glass surface 
appears in the point cloud it is because the incidence angle of the beam is near 
the perpendicular angle to the surface. Therefore, in the presence of a lot of 
glass surfaces in environments, three types of objects would be present in the 
data:  
 
1. Objects behind the glass if the laser beam is transmitted. Since almost 92% 
of the light is transmitted through the glass, a lot of objects behind a glass 
surface are measured through the glass. However, these points are less reliable 
than a directly measured object. 
 
2. Objects in the front of a glass surface which are reflected in the glass. In 
this case, the glass is acting like a mirror or a specular surface. Therefore, in 
the point clouds a mirrored object will appear exactly at the same distance 
from the glass and with the same size as the real object. We call these virtual 
objects “ghost walls”. They are problematic because it could happen that the 
whole room is mirrored to the other side of the specular surface. This artefact 
occurs when the laser scanner is moving in a specific angle toward the glass 
surface, naturally the same angle that objects could be seen in the glass. 
 
3. Objects that represent the glass surface itself. If the laser beam is almost 
perpendicular or there is dust and other features on the glass, then part of the 
glass surface will be present in the point cloud. 
 
Knowing above facts, it is possible to analyze the behavior of LiDAR systems 
in interaction with glass surfaces. Ghost walls could happen outside the building 
layout, where the façades are made of glass and the laser scanner is moving 
alongside a corridor. In this case, some of the indoor spaces are mirrored 
outside the building. Highly problematic ghost walls are those that occur inside 
the main structure. In such cases, detecting and removing them is challenging, 
but also important. 
 
In our pipeline, ghost walls are detected and purged based on segments. Our 
method for semantic interpretation is a planar segmentation approach. 
Therefore, the point clouds are segmented with a surface growing algorithm 
(Vosselman et al., 2004). To detect ghost walls, the time stamps of the points 
are compared with the time of the closest trajectory point. Logically, because 
ghost walls are mirrored, they often have a time stamp, which differs from the 
time stamps of their neighboring points (which were not mirrored), as well as 
from the time stamp of the nearest trajectory point. Each point in the data is 
labeled as reflected point for which the time T point is more than Δt before or 
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after the time T traj of the nearest trajectory location. Δt is the time lag 
between the points in a ghost wall surface and the closest trajectory time. Δt 
is obtained empirically, and is obtained by checking such artefacts in the data. 
After labeling the points, the segments of which the majority of the points are 
labeled as reflected, are selected as ghost walls (Figure 3.3). In the next step, 
these ghost segments are projected back to their correct location. This is a 
relatively simple process, because they are in the same distance of the glass 
surface that the real object is located. But first, the glass surface should be 
detected. The glass surface is located between the real wall and the ghost wall. 
To detect the glass surface, a ray is reconstructed from a point on the ghost 
wall to the corresponding trajectory (see the purple line in the Figure 3.3c). 
This ray intersects a segment which almost has an equal distance to the real 
wall and ghost wall. The intersected segment is the glass surface. After 
detecting the glass surface, the points on the ghost wall are mirrored back 
relative to the glass surface to the other side (white points in the Figure 3.3d). 
Finally, after correcting the data from the ghost walls, it is ready to be applied 
for further processing. 

 
Figure 3.3. (a) The perspective view and (b) the top view of the reflection situation. (c) 
The purple line is the incident line from the sensor to the glass and then to the reflected 
point on the other side of the glass surface. The brown line shows the secularly reflected 
line from the glass surface to the exact position of the object. (d) Shows the correct 
situation after the back projection of the ghost wall. The white points are corrected wall. 

3.3.3 Segmentation and Generalization 

Since most indoor environments are composed of planar structures, extracting 
and labeling of planar faces is faster and more reliable than processing 
individual points. Because of the clutter and noise in the data the result of a 
segmentation cannot directly be used for semantic labeling and reconstruction. 
To generate planar patches that represent permanent structures, such as 
walls, floors and ceilings, a generalization method will be applied to the 
segments. For this purpose, we build on a method described by Kada, (2007) 
for generalization of 3D building models. Our adopted generalization method 
aims at merging segments based on their co-planarity, angle between normal 
vectors and their distance. First, all the segments are sorted by their size in 
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terms of the number of points. Starting with the largest segment three criteria 
are considered to merge a candidate segment into the current segment: (i) A 
generalization distance (= D) should be satisfied to accept or reject the 
candidate segment for merging, (ii) the parallelism of two segments by 
comparing their plane normal vectors, (iii) bounding boxes of two segments 
should be within a certain distance (= d). The proximity is checked alongside 
two segments planes. For example, two coplanar segments alongside a 
corridor should be within a threshold d. We refer to the result of generalization 
as “surface patches (S)” and for each surface patch a plane is fitted to its point 
cloud using a least squares method. The generalization method decreases the 
number of segments to be analyzed significantly. Additionally, small segments 
will not disturb the process of semantic interpretation. For detecting permanent 
structures, described in the next section, surface patches will be used instead 
of segments. 

3.4 Permanent Structure Detection 

For the detection of walls, floors and ceilings, the surface patches that are 
generated in the previous step are further processed. An adjacency graph is 
constructed from the patches and is further analyzed to induce the correct class 
of each patch (Section 3.4.2). For the detection of openings, an occlusion 
reasoning method is applied to discriminate between real openings and gaps 
that are caused by occlusion (Section 3.4.3). The occlusion test is also used to 
remove points that are outside the building layout and could be disturbing the 
reconstruction process. To start with detecting the permanent structure, the 
building levels are separated and then each level is processed separately 
(Section 3.4.1). 

3.4.1 Separation of Building Levels and Stairs 

The typical solution in the literature (Mura et al., 2016; Oesau et al., 2014; 
Turner et al., 2015) for separating building levels in indoor point clouds is using 
a height histogram of points. A level in a building is a horizontal section that 
extends over the floor space. Using the histogram is straightforward and gives 
an initial separation of the building levels. However, it is not applicable to 
buildings where a building level is extended vertically in the space to other 
levels (see Figure 3.4a) or a building with sub-levels. To overcome this problem 
in complex architectures, first the trajectory is separated to several levels and 
staircases. If the trajectory belongs to a handheld or a backpack system, the 
separation should be done where the operator enters the stairs. Therefore, the 
flat trajectory can be split from a sloped trajectory on the staircase. If the 
trajectory belongs to a push-cart scanner, then the trajectory of the levels is 
already separated, because the device does not move up or down the stairs.  
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To separate the levels, the process starts with the segmentation of the 
trajectory to the horizontal and sloped segments. A surface growing 
segmentation is used and points on the same horizontal or sloped plane are 
segmented together. Figure 3.4b shows that the trajectory points in the upper 
level (blue segment) belong to the same level and points on the staircases are 
segmented together. However, this segmentation needs a modification to 
make sure staircases are separated correctly. For example, if in the same level 
of the trajectory, there are several segments with a height difference of fewer 
than two meters (see Figure 3.4c, the orange and purple segments in the first 
floor) they will be merged. This is done because trajectories belonging to 
different levels typically have a height difference more than the ceiling height 
(at least two meters). After separating the trajectory to meaningful building 
levels, for each segment in the trajectory, the associated points from the point 
clouds will be selected using the timestamp. 

 
Figure 3.4. (a) In complex buildings, part of one building level can be extended vertically 
to other levels. To separate levels, a height histogram approach is not working on this 
type of buildings. (b) Segmentation of the trajectory to horizontal and sloped segments. 
(c) After correction of segmented trajectory, for example, the purple and orange 
segments in the first floor are merged into one segment. (d) The separation of first (blue) 
and third levels (red) using the trajectory. The intermediate floor is removed for better 
visualization. (e) The stairs are extracted using the trajectory on stairs. Each color 
belongs to a segment of stair’s trajectory. 
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Near the staircases, the laser scanner measures points from other levels; to 
modify the level of these points to their correct level, the two dominant 
horizontal planes are detected as floor and ceiling of the current level and the 
label of the points is changed to the corresponding levels. Figure 3.4d shows 
the first and third level of the building. After separation of levels, each level 
will be processed individually for detection of walls, floors, and ceilings. 
 
The point clouds of the stairs are extracted using the trajectory segments of 
stairs and the associated timestamp. Figure 3.4e shows four different stairs 
datasets colored based on four segments of the trajectory. Because a large 
portion of other levels may be seen from stairs, it is sometimes inevitable to 
have an overlap between point clouds of the stairs and the floors. For example, 
in Figure 3.4e part of the floors are also scanned from the stairs. 

3.4.2 Wall Detection 

The wall detection process includes detecting the permanent structures, such 
as walls, floors and ceilings. This process starts by making an adjacency graph 
(G) from surface patches (S). An adjacency graph is presented by G = (V, E) 
where nodes (V) are surface patches and edges (E) are connecting two 
adjacent nodes. Each node is associated with the point clouds of a surface 
patch S. When a label (l) is assigned to a surface patch, all the associated 
points obtain that label. The label shows the class of the surface, such as wall, 
floor, ceiling, door, and window. 
 
Two nodes (V) are adjacent if their corresponding surface patches are within a 
specific distance from each other. This distance is set to dadj = 0.1 meter in all 
of our experiments. Note that the coplanar or parallel segments are already 
merged. Therefore, two adjacent surface patches could meet under any 
arbitrary angle, which means our method is not limited to Manhattan-World. 
To deal with slanted walls and non-horizontal ceilings an angle threshold (α) 
should be specified to separate the candidate walls and ceilings before 
proceeding with the analysis of the graph. Each node in the graph is labeled as 
almost-vertical or almost-horizontal based on a threshold α. By default, this 
threshold is set to α = 45 degrees to make a primary separation between 
candidate ceilings and walls. Considering this threshold, the node V in the 
graph G will be categorized to Vh and Vv for almost- horizontal and almost-
vertical. By comparing a pair of surface patches out of nodes V(v1, v2), three 
principal labels will be assigned to each edge e ϵ E of adjacent nodes v1, v2: 

E obtains the label wall-wall iff v1 and v2 are both almost-vertical and 
adjacent.  
E obtains the label wall-ceiling iff v1 and v2 are almost-vertical and 
almost-horizontal respectively and the center of v2 is higher than the 
center of v1.  
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E obtains the label wall-floor iff v1 and v2 are almost-vertical and 
almost-horizontal respectively and the center of v2 is lower than the 
center of v1. 

After labeling the edges, each node in the graph will be analyzed based on the 
connected edges and the respective labels. Three main rules are applied to 
each node v ϵ V to decide for the label: 
 
Rule 1. V obtains the label wall iff the count of wall-ceiling edges is equal or 
more than one and V is almost-vertical. This means every wall should be at 
least once connected to the ceiling. 
 
Rule 2. V obtains the label ceiling iff the count of wall-ceiling edges is more 
than two and the count of wall-wall is equal to zero. This means an almost-
horizontal surface with wall-ceiling edges should be connected more than two 
times to the walls to get the ceiling label. 
 
Rule 3. V obtains the label floor iff the count of wall-floor edges is more than 
two and the count of wall-wall is equal to zero. This means an almost-horizontal 
surface with wall-floor edges should be connected more than two times to the 
walls to get the floor label. 
 
Note that in Rule1, the connection of the wall candidates to the floor is not 
checked because of possibly heavy occlusions near the floor. 
 
During the processing of the rules, further considerations as soft rules need to 
be applied. For example, during applying second and third rule on the ceilings 
and floors, each almost-horizontal surface cannot be a floor or a ceiling 
candidate. This happens especially in the case of horizontal surfaces of shelves 
and tables. Therefore, the average z-value of a horizontal patch is compared 
with an estimation of the floor and ceiling height to decide if it is near the floor 
or ceiling. In this way, horizontal surfaces of objects, such as tables and boxes, 
could be discarded. However, some of the horizontal surfaces that are near the 
floor and ceiling disturb the correct semantic labeling. For example, the top of 
shelves and cabinets that are near the ceiling could be labeled as the ceiling 
(see Figure 3.5b). As a drawback, the attached vertical surfaces that are 
connected to them may be also mislabeled as walls. To avoid this problem, the 
overlap of projection of almost-horizontal surfaces in the xy-plane is checked 
before starting with the rules. If the 2D projection of two horizontal surfaces 
has overlap (considering a small buffer), the upper surface is preserved as a 
ceiling candidate and then the process with the rules will follow. Since, the 
topological relations of the surfaces are exploited in our method, it is not 
limited to regular manmade structures or Manhattan-World. 
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Figure 3.5. (a) The segments of surfaces patches, (b) permanent structures, the wall 
in green, the ceiling in red and the floor is in orange color. The solid black circle shows 
the top part of the book shelf that is mislabeled as the ceiling. Hence, the bookshelf 
(yellow rectangle) is mislabeled as wall. Likewise, near the floor some horizontal 
segments are mislabeled (circles with dashed line). (c) After checking the intersection of 
vertical projection for each pair of surfaces and correction, the result is shown as the 
wall (green), the ceiling (red) and the floor (orange). The blue object is a clutter. Angle 
threshold is α= 50 degrees. Notice that the dormer and attached walls are labeled 
correctly in our method. The data is obtained from Reference (Mura et al., 2016). 

In the permanent structure detection method, a ceiling or floor will be 
distinguished from a wall by the angle threshold which is by default α= 45 
degrees. By applying rules 1, 2, and 3, a slanted surface could be labeled to a 
wall or ceiling (floor) depending on its normal angle. In our method, a slanted 
surface is distinguished by this angle threshold defined by the user. Figure 3.6 
shows two different cases when α is set to 40 and 50 degrees. However, there 
is a special case where the slanted surface is distinguished as a wall and is 
supported by another vertical wall that is connected to the floor (see Figure 
3.6b). Such a case happens when a slanted wall and a vertical wall are not 
segmented in the same surface patch since they have different normal angles 
during the generalization. Therefore, an extra check is required to see if the 
almost-vertical surface that is not connected to the ceiling is a wall or not. This 
check could be done by means of support and adjacency relation between a 
slanted surface and a vertical surface. 

 
Figure 3.6. (a) shows the permanent structure, ceiling (red), wall (cyan), blue (slanted 
walls) and green (floor). The angle threshold is 50 degrees. (b) Shows the permanent 
structure, with the same angle threshold (α =50), but the slanted walls algorithm is off. 
Consequently, supporting walls are not detected (dashed circle). Only walls (cyan color) 
that are connected to the ceiling are correctly detected. (c) The angle threshold is set to 
40 degrees, and slanted walls are labeled as the ceiling. 

Let v1 and v2 represent the two almost-vertical surfaces and one of them is 
not connected to the ceiling, then the lower one (with a lower center) is called 
supporter (v1) and the upper one is called the supported (v2). Furthermore, 
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the condition max-z(v1) < min-z(v2) including a buffer should be satisfied. 
Notice that checking the support relation is necessary, otherwise objects 
attached to the wall could be labeled as a slanted wall. Respecting this 
explanation, the corresponding edge (E) of two adjacent wall candidates (v1, 
v2) could obtain the following label:E obtains the label wall-slantedwall iff v1 
and v2 are both almost-vertical and the intersection line is almost-horizontal 
and one surface is supporting the other one. The following rule is applied to 
define the label of a node V: 
 
Rule 4. V obtains the label slantedwall iff the count of wall-slantedwall edges 
is more than zero and the count of wall-wall edges is more than zero and V is 
almost-vertical. 
 
Since a real dataset with slanted walls from a MLS system was not available, 
our algorithm is tested on a part of the penthouse dataset from Mura et al., 
(2016). We assumed the slanted surfaces once as the non-horizontal ceiling (α 
= 40) and once as slanted walls (α = 50). Figure 3.6 demonstrates the results 
on a part of the penthouse building. This experiment shows the robustness of 
the algorithm in case of non-horizontal ceiling or slanted walls. In the next 
section, a method is presented for detecting the openings by using the 
trajectory and applying occlusion-test. 

3.4.3 Opening Detection Using the MLS Trajectory 

After detecting the walls, floor and ceilings, the point clouds are enriched with 
more semantics, such as openings (doors and windows). Reasonably, it is 
expected that doors and windows are located on the walls. Furthermore, 
openings are represented as holes or gaps in the data because where there is 
an open door or a window the laser rays go through the wall surface. The same 
gaps happen in the data, if part of the scene is not captured by the laser 
scanner, e.g., because of occlusion. Therefore, one problem of opening 
detection is to discriminate between data gaps and real openings in the data. 
We exploit the fact that a laser beam, crossing a wall surface with the opening, 
hits the objects behind the surface. Hence, from each location on the trajectory 
a ray is reconstructed to the measured laser point. Note that here the time 
attribute of the points plays an important role. Because from every point on 
the trajectory only the measured points at that specific time are evaluated for 
the ray casting. This process is named occlusion-test and is implemented as 
the following (see Figure 3.7): First, each surface patch Si with the wall label 
would be enveloped by a 3D voxel grid (grid size of 10 cm). Second, a ray is 
constructed from t1 on the trajectory to the corresponding point p1 in the point 
cloud. If the ray intersects a surface s1 ϵ Si, the intersection point of the ray 
and the surface corresponds to one of the voxels of the s1. The incident voxel 
obtains one of the four labels: Occupied, occluded, open or unknown. The 
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incident voxel is occupied if the measured point p1 belongs to the s1, occluded 
if p1 is in front of the s1, opened if p1 is behind the s1 and is unknown 
otherwise. If the ray does not intersect the surface the labels remain 
unchanged. 

 
Figure 3.7. An incident voxel on the wall surface will be assigned the label occupied, 
occluded or open if the measured point p1 is in the front, on the surface or behind the 
wall surface respectively. 

After the occlusion-test process, the results need to be further inspected to 
identify false openings. False openings happen where a clutter is connected to 
the ceiling and is extended to the neighboring walls. Therefore, during the 
occlusion test it is considered as a surface with opening (Figure 3.8b). Such 
false openings are identified and removed if more than a percentage (e.g., 
80%) of voxels in the wall surface are labeled as openings (Figure 3.8c). With 
this simple check most of the false openings and erroneous walls are removed. 
 
Furthermore, it is possible to separate the openings into openings that intersect 
the floor (doors), and those that are above the floor (windows). However, the 
clear frame of the opening could not be inferred because of the noise and 
occlusion.  
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Figure 3.8. (a) The classification of walls (orange), opening (light blue) and clutter 
(blue) in the fire truck hall of Fire Brigade building. The misclassified walls (red dotted 
area) cause the occlusion test algorithm to add the excess glass walls (light blue in (b)) 
in the middle of space that unnecessarily divides the space to several partitions. Figure 
(c) shows the correct classification of walls after identifying and removing false openings. 

The occlusion-test provides additional information about the points behind the 
wall surface. During the occlusion-test, points that are behind each surface are 
flagged for further inspection. Each point p1 that is behind the surface s1 and 
is measured from t1 on the trajectory, can be a reflected point or a point that 
is sensed through a transparent surface. In Section 3.2, it was explained how 
to identify points that are caused by the reflection. Otherwise, the point is 
labeled as a point-behind-surface artefact and will be removed from the 
collection. Here, the assumption is that the objects behind an opening are 
scanned properly from the belonging space. A point behind a surface is less 
reliable because it is possibly measured through a glass surface. For example, 
in one of the datasets (Fire Brigade building, level 2) some of the rooms are 
partially mirrored to the outside of the building, because of a lot of glass 
surfaces in the façade. Consequently, in detecting the permanent structures 
they are mislabeled as walls, floors and ceilings. By removing points behind a 
surface, artefacts that are outside the building layout and could not be 
identified as reflection will be removed. 

3.5 Space partitioning 
Space partitioning is the process of separating space into more meaningful 
partitions that could be differentiated by permanent structures. Every space 
represents a room or a corridor. Unlike other methods that use a 2D projection 
of walls into xy-plane and applies cell decomposition, our method relies on 
volumetric space partitioning (Section 5.1). Therefore, slanted walls and non-
horizontal ceilings do not constrain our method. For this purpose, a voxel space 
with the voxel-size of 0.10 m is exploited. In Section 5.2, the navigable and 
non-navigable spaces are extracted from the voxels. 
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3.5.1 Volumetric Space Partitioning 

A voxel space is generated from the point clouds for space partitioning. Voxels 
are labeled with the permanent structure semantics. The occupied, opening 
and occlusion labels (Section 4.3) are transferred to the voxels as occupied 
label. Rest of the voxels are labeled as empty (unoccupied). Including the label 
of openings and gaps is important for space partitioning, because spaces can 
be connected through openings (e.g., a window) or gaps (e.g., an occlusion). 
Therefore, the dataset that is used to label voxels contains openings, occluded 
areas, walls, floors and ceilings. 
 
After labeling the voxel space to occupied and empty, three main steps 
generate the spaces: (i) A morphological erosion method is applied on the 
empty voxels. Therefore, the area covered by occupied voxels will grow and 
empty voxels with weak connections will be separated. (ii) A connected 
component analysis is applied on selected empty voxels from the previous step 
to make separate clusters of empty connected voxels. Each cluster at this stage 
represents a space partition. (iii) Then a morphological dilation is applied on 
empty voxels, while this time empty voxels have a cluster number. 
Consequently, the area covered by empty voxels grow while occupied voxels 
area is shrinking. Finally, each cluster of empty voxels represents a space 
partition. This approach has two advantages, it is volumetric and it is 
independent of Manhattan-World constraints. However, the empty voxels that 
are present outside the building layout will generate some invalid spaces that 
need further attention. In the following, we explain how to modify these invalid 
spaces. 
 
Validating Space Partitions Using the Trajectory: In case the building 
layout is known, for example from a ground plan, it is possible to detect and 
remove invalid spaces generated outside the building structure. However, our 
pipeline is just relying on the geometry of the point clouds. Therefore, by using 
the trajectory, spaces that are not traversed during the data collection will be 
discarded. In other words, space partitions (e.g., rooms, corridors) are 
representing empty spaces in the environment that have intersection with the 
trajectory. A kd-tree search algorithm is used to check a partition’s intersection 
with the trajectory. Furthermore, the space partitioning process is retained as 
a volumetric solution and projecting spaces to xy-plane is avoided (because of 
possible slanted walls). For each partition, the nearby trajectory is found and 
if the distance is less than the voxel size  
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Figure 3.9. (a, b) show the top view of the partitions in various colors and the trajectory 
in black. The white places between the spaces are occupied places (e.g., furniture and 
walls). The dotted circles show the invalid partitions that are removed, because there is 
no intersection with the trajectory. The orange large partition is also an invalid space but 
is not removed, because it has connection with the interior space and with the trajectory. 
(d) The perspective view of the spaces and the trajectory. (c, e) Show the bottom view 
of the spaces. The carvings of furniture and occupied places are visible inside the 
partitions. 

 
it indicates the intersection, hence, a valid partition. This can be done in 3D 
and it enables us to discard outside partitions that are not navigated by the 
trajectory. This approach is favored over methods of calculating the alpha 
shape of a partition in 3D or the minimum enveloping polygon in 2D to check 
the intersection with the trajectory, because an alpha shape or a minimum 
enveloping polygon cannot precisely represent the complex shape of a space 
partition. Figure 3.9 shows the spaces and the trajectory from different views. 
 
During the space partitioning process, each space partition represents only the 
empty space if the furniture is included in the process. This fact is exploited to 
generate the 3D navigable space. However, including furniture can cause over-
segmentation of the space because some of the furniture can divide the space 
in the same room. Next section elaborates on the details of navigable space. 

3.5.2 Extracting the Navigable Space 

Having discussed how to generate space partitions, in the following, it is 
explained how to extract the navigable and walkable area out of the empty 
space. Each space partition represents the empty space (after including the 
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furniture space). The navigable space can be generated in different heights 
above the floor and below the ceiling, which is suitable for flying objects to 
navigate in the space. Again, it is important that the gaps on the walls caused 
by the occlusion or opening are labeled as occupied in the voxels to avoid 
misinterpretation as walkable space. Doorways that are considered as 
openings are labeled as navigable in the final navigable space. Empty voxels 
just above the floor are extracted as walkable space. In Figure 3.9c and 3.9e, 
the spaces are illustrated from the bottom to show the carvings of the occupied 
spaces in the empty spaces. If some of the openings connect the spaces and 
they are not recognized during the opening detection, as a drawback few 
partitions cannot be split and remain as one space (e.g., the orange space in 
Figure 3.9). The void between the space partitions is caused by furniture and 
permanent structure. 

3.6 Door Detection Using the Trajectory 
In this stage, doors that are intersected by the trajectory during the data 
acquisition can be detected. Note that in Section 3.4.3, some doors were 
already detected as openings by occlusion tests, while here it is possible to 
detect closed doors as well. For detecting the doors using the trajectory, the 
voxels and the trajectory are the input data of the process. Voxels are used for 
this step, because the algorithm tries to find the center of each door that is 
crossed by the trajectory (see Figure 3.10).  

 

Figure 3.10. A Zeb-Revo trajectory (blue) crosses an open door in the left and a semi-
open door in the right. The middle door, that is closed, is not traversed by the trajectory 
thus cannot be detected by our algorithm. The yellow boxes show the door center 
candidates and top of the door voxels. The circles show the search radius from the door 
center candidate to the trajectory. 
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The door center is represented by an empty voxel in case of an open door and 
an occupied voxel in case of a closed door. Each voxel in the voxel space is 
checked whether it can be a center of a door candidate (a door center). A voxel 
is a door center candidate if: (i) Nearby the voxel there is a trajectory. (ii) 
Above the voxel occupied voxels exist that represent top part of a door frame. 
(iii) The neighborhood of the voxel should be empty for an open door. These 
three criteria enforce three main search radius parameters: (1) A search range 
to look for a nearby trajectory (rtraj < √3 * voxel-size); (2) a search radius to 
look for voxels on top of the door frame relative to the floor (1.80 m < rtop < 
2.10 m); and (3) a neighborhood search radius (rvoid < n * voxel-size) to make 
sure around the candidate voxel is empty, where the search radius is a factor 
of voxel size. The rvoid threshold should always be smaller than the door width 
to exclude the door frame in the search for empty neighborhood. Empirically, 
if the percentage of empty voxels around a door center within the search radius 
(rvoid) exceeds 70% of the total neighbor voxels, then the third criteria for an 
open door is fulfilled. Furthermore, to speed up the calculation process, only 
voxels are explored to be a door center that are located in the height between 
0.8 to 1.10 m relative to the floor, as the door center is expected to be in this 
height.  
 
Closed Doors: Closed doors appear in the point cloud as part of the wall 
(Figure 3.10, the middle door). When the trajectory crosses the door and the 
door is closed before or after the scanning, it appears in the data as if the 
trajectory went through the wall. To detect closed doors crossed by the 
trajectory, the same three criteria as open doors are applied, but with the 
difference that for the third rule the neighborhood of the voxel candidate as 
the door center should be occupied instead of empty. Notice that simply 
intersection of wall planes with the trajectory is not sufficient to detect closed 
doors. Because in cluttered rooms the trajectory goes between the congested 
furniture or false detected walls that can be identified as false doors. Therefore, 
checking the three criteria is also required for closed doors. The door detection 
algorithm, using the trajectory, can only be used for spotting the location of 
the door (also double doors), For identifying the door frame or the door leaf, 
further inspection is required. 

3.7 Results and Evaluation 
Our approach is tested on four datasets collected with four different mobile 
laser scanners. The details of the datasets and the scanners are given in Table 
3.1. The results of all datasets and the ground truth are shown in Figure 3.11. 
The results show that 80% of the doors and more than 85% of the rooms are 
correctly detected. Our methods are tested on buildings that violate the 2.5D 
and Manhattan World assumptions. The space partitioning results (Figure 3.11, 
3rd column) show our constraint-free approach in arbitrary room layouts with 
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different ceiling heights. Both datasets from Fire Brigade building level 1 and 
the TU Delft Architecture building have large halls with a high ceiling and 
different ceiling heights in other rooms. Figure 3.11 (3rd column, first and last 
row) illustrates the extracted spaces for these two datasets. The permanent 
structures in Figure 3.11 (2nd column) indicates that our pipeline is capable of 
detecting most of the walls and openings in the heavy cluttered environments 
with many reflective surfaces. 
 
Each dataset is subsampled to ease the visualization and to decrease the 
processing time. For subsampling, every k’th point of a kNN is used, where a 
reduction factor between 4 and 6 is applied to decrease the size of the original 
dataset while keeping the structure of the point clouds. The subsampling keeps 
the average point distance less than 0.05 m. 
 
The other important influential factors are noise, the level of clutter and the 
number of glass surfaces in the data. The level of noise depends on the sensor 
precision and the SLAM algorithm. For details of each MLS device accuracy and 
noise, the readers are referred to the specification of each product and the 
review by Lehtola et al. (2017). In terms of high clutter and high number of 
glass surfaces, Fire Brigade dataset poses a lot of challenge because of the 
very large glass walls. Such glass walls, as well as heavy clutter are present 
on the first floor (Figure 3.12), where the fire trucks are located. 
 
Table 3.1. Details of the datasets and capturing device. The number of correctly 
detected rooms and doors is mentioned in the fourth and fifth columns. 

Dataset # Points 
MLS 

Device 
#Rooms/ 
#detected 

#Doors/ 
#detected 

Clutter and 
Glass 

Fire Brigade level 
1 

2.9 M 

Zeb1 9/8 8/7 High 

Fire Brigade level 
2 

3.6 M 

Zeb1 16/14 17/12 High 

Cadaster Building 4.1 M 

NavVis Trolley 10/9 7/5 High 

TUBraunschweig 1.7 M 

ITC backpack 30/27 30/29 Low 

TUDelft 
Architecture 

3.2 M 
ZebRevo 18/13 25/18 High 



Chapter 3 

65 

 

Figure 3.11. Results of datasets of Table 3.1. From top to bottom: Fire Brigade building 
level 2, level 1, TU Braunschweig, Cadaster building and TU Delft Architecture building. 
In the second column, detected walls (orange), floor (yellow), doors (red) and openings 
(blue) are shown. 
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Figure 3.12. First level of Fire Brigade building. The amount of clutter and very large 
glass walls makes the process of wall detection challenging. The ceiling has two different 
heights and there is a lot of clutter below the ceiling. The colors represent the segments. 

Implementation: All algorithms are written in C++ and tested on a Lenovo 
ThinkPad workstation with an Intel core i7 (2.5 GHz), 16 GB RAM. The main 
computational cost is devoted to occlusion test process, because of the ray 
casting algorithm where the peak of RAM usage is 16 GB and for large datasets 
it takes up to an hour. Another expensive process is space partitioning, because 
of the 3D morphological process on a large number of voxels. For an area with 
almost 15 million voxels, it takes 10 minutes with a voxel size of 10 cm, and 3 
minutes with a voxel size of 20 cm. Other algorithms including permanent 
structure detection, door detection, reflection removal, level partitioning and 
surface growing take seconds up to 5 minutes depending on the size of the 
dataset. The computation time for space partitioning is more dependent on the 
volume of the building and height of the ceiling than the size of the point 
clouds. For example, for the TU Delft dataset the number of voxels exceeds 
100 million, since the orange hall has high ceilings (almost 13 meters). 
Therefore, the space partitioning method is implemented with 20 cm voxel size 
for this dataset to speed up the process.  
 
Parameter Selection: Our pipeline starts with the surface growing 
segmentation followed by a surface patch generalization algorithm. For the 
surface growing segmentation, the most important parameter is the 
smoothness threshold. The optimal value depends on the amount of sensor 
noise and the noise caused by the SLAM algorithm. The sensor noise is less 
than 5 cm for the MLS devices in this work. However, there is more noise in 
the data created by SLAM algorithm and artefacts of the glass reflections. 
Therefore, we experienced a value between 10 to 15 cm for datasets from 
Zeb1 as a good threshold for planar segmentation and between 5 to 10 cm for 
other datasets (ZebRevo, ITC Backpack and NavVis Trolley). For the surface 
patch generalization, nearby surfaces are considered parallel if their normal 
vector angle tolerance is less than θ < 10, and their proximity (d) alongside 
the plane is less than 60 cm. The time lag Δt is the important parameter for 
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detecting and pruning of ghost walls. Empirically, we choose 150 seconds time 
lag for a point to be considered as a reflected point, and if more than 70% of 
the points in a segment have this time difference with their neighbor trajectory 
that segments are defined as a ghost wall. 
 
For reconstructing the adjacency graph, the distance for adjacency of two 
surface patches is less than dadj < 10 cm and the minimum length of an 
intersection line is 20 cm. We experienced that a minimum length of 20 cm in 
most datasets is reasonable. There is just one special case that the threshold 
is increased to 25 cm, when the frames of doors are extended to the ceiling 
(e.g., glass rooms in Figure 3.13). To avoid door leaves to be misclassified as 
wall, a minimum length of 25 cm for intersection line is considered. 
 
The default threshold of 45 is considered for separating the surfaces to almost-
vertical and almost-horizontal. In case of different sloped ceilings, the angle 
threshold could be changed to recognize the ceilings from slanted walls. The 
minimum number of supporting points for each surface to be included in the 
adjacency graph is 500 points. A voxel size of 10 cm is preferred for algorithms 
operating on voxels, such as the occlusion test, space partitioning and door 
detection. For a point spacing of 2 to 5 cm, the voxel size of 10 cm offers a 
good balance between the computational time and the number of preserved 
details of permanent structures. The window size of the morphological operator 
for the space partitioning should be larger than a doorway to ensure the 
separation of spaces at the locations of open doors. Therefore, a window size 
between 1.0 to 1.3 m is suggested. Other soft parameters, such as kNN search, 
proximity search and connected components do not have significant influence 
on the whole pipeline. 

 

Figure 3.13. Result of wall detection, using the adjacency of segments. The effect of 
minimum length parameter for intersection lines between adjacent segments (door 
leaves and the ceiling) on the result of wall detection is shown. In (b) the minimum 
length is 25 cm, so small intersections are discarded and consequently door leaves are 
not misclassified as wall. 
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Robustness: The robustness of our algorithms is evaluated by testing on 
various datasets collected by four different mobile laser scanning devices. 
Additionally, our pipeline is tested on a multistory building (Fire Brigade 
dataset), a building with slanted walls (Figure 3.6) and different ceiling heights 
(Fire Brigade building, level 1 and the TU Delft Architecture building), and a 
building with high amount of clutter and glass surfaces (Cadaster building and 
Fire Brigade building, level 2). Among those, buildings with large glass walls 
pose the largest challenge to our pipeline (for wall detection and space 
partitioning), because the connection of glass surfaces near the ceiling is not 
guaranteed in the segmented data and in some cases these glass surfaces are 
missing entirely in the data (the TU Delft Architecture building the hall with 
orange stairs, Figure 3.14). However, the wall detection is capable of detecting 
glass walls even with loose connections to the ceiling.  

 
Figure 3.14. The robustness of our algorithms for the buildings with many glass 
surfaces. (a) The orange hall in the TU Delft Architecture Building, (b) the point clouds 
and (c) the classified walls and glass surfaces. 

All datasets are processed with dadj 10 cm for reconstructing the adjacency 
graph. We experienced, in most cases that increasing this threshold to 20 cm 
or higher results in losing some of the walls; and decreasing the threshold to 
less than 10 cm results in misclassification of some clutter surfaces to wall 
surface. The dadj parameter depends on the noise in the data. For datasets with 
a higher level of noise the threshold could be increased to 20 cm. 
 
Limitations: The permanent structure detection using the adjacency graph is 
susceptible to errors when there is a clutter at the ceiling close to the walls 
(Figure 3.15). This kind of clutter could be misclassified as wall if the size of 
the clutter is large. Hence, during the occlusion test it may be misclassified as 
a glass surface. Consequently, the space would be partitioned incorrectly. The 
reason behind this limitation is that the rules in the adjacency graph 
deliberately do not check if a wall candidate is connected to the floor, because 
in most cases walls are occluded near the floor. Hence, a structure in the ceiling 
connected to the neighboring walls could cause this error. 
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Figure 3.15. (a) Color point clouds and (b) segmented point clouds. Our adjacency 
graph algorithm is limited when a clutter in the ceiling is connected to the walls and 
constructs a vertical surface attached to the ceiling and neighboring walls (red area in 
the images). In (c) walls are yellow, and the red area is misclassified as wall. The dataset 
belongs to Reference (Mura et al., 2016). 

During the door detection algorithm, the algorithm fails in case of low ceilings 
spaces, such as basements or tall doors reaching until the ceiling. This is 
because the algorithm searches for the points on top of the door center, and 
when the ceiling is low it could be considered as the top of the door that results 
in detecting false positive doors (see Figure 3.16). Detection of doors may be 
difficult if they are semi-open, because the condition that checks if a door 
center is in a void neighborhood for an open door cannot be true if a door-leaf 
is occupying part of the doorway. Double doors, could be spotted with our 
algorithm, but the exact door frame could not be extracted. 
 

 

Figure 3.16. Door detection method in an area with a low ceiling. (a) Shows the 
detected walls (grey), false walls (red), missed walls (green) and detected doors (blue). 
Most of the doors crossed by the trajectory are detected. (b) The side view shows the 
trajectory and low ceiling (light blue). The purple dots are points above the trajectory 
that are wrongly detected as a door. (c) is the top view of b. 

Using the trajectory to separate the levels can be error-prone in buildings with 
a lot of glass surfaces, because objects could be seen from other levels, 
especially in the stair cases. However, using the trajectory for the Fire Brigade 
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building with a huge space in the first level that spans to the other level is the 
reasonable option.  
 
In the cadaster building dataset (Figure 3.11, 3rd row), the surface growing 
segmentation results in flawed segments because of slanted glass surfaces and 
artefacts outside the façade (Figure 3.17). Consequently, the supporting walls 
that are connected to the slanted glasses could not be extracted. The opening 
detection for cadaster dataset is not performed, since the time stamp of the 
point clouds were not available. All the point clouds including the furniture are 
used for the space partitioning of the cadaster dataset. Otherwise the interior 
space will be connected to the outside through the missing walls.  
 

 

Figure 3.17. The cadaster building. (a) The top and (b) side view of the point cloud of 
one of the floors. The glass façade has slanted surface and artefacts that pose a problem 
for detecting them by surface growing. The supporting walls connected to the floor are 
not detected by our algorithm. (c) The front view of the cadaster building. Slanted glass 
surfaces are visible in the façade. 

3.8 Conclusions and Future Work 
Several algorithms are presented for the interpretation of complex indoor 
scenes captured by a mobile laser scanner. Our work proposes a complete 
pipeline for classification of MLS indoor point clouds captured by four different 
systems. The methods show robustness in dealing with cluttered scenes and 
glass surfaces. Arbitrary wall layouts, slanted walls, and non-horizontal ceilings 
can be correctly identified in most cases. We presented how to deal with 
artefacts caused by reflective surfaces. The usefulness of the scanner 
trajectory is proved in several algorithms, such as detecting closed and open 
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doors, removing invalid spaces outside the building layout, separating complex 
building levels and detecting ghost walls. Although our approach is not limited 
to Manhattan-World and 2.5D assumptions. Still there is a need for 
improvements to reconstruct water-tight models. 
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Chapter 4 - Indoor 3D reconstruction from 
point clouds for optimal routing in complex 
buildings to support disaster management *  
 
 

 
  

                                          
* This chapter is based on: 
 

1. Nikoohemat, S., Diakité, A., Zlatanova, S., and Vosselman, G.: Indoor 3D 
Modeling and Flexible Space Subdivision from Point Clouds, ISPRS Ann. 
Photogrammetry Remote Sensing Spatial Inf. Sci., IV-2/W5, 285-292, 
https://doi.org/10.5194/isprs-annals-IV-2-W5-285-2019, 2019. 

 
2. Nikoohemat, S., Diakité, A.A., Zlatanova, S., Vosselman, G., 2020. Indoor 3D 

reconstruction from point clouds for optimal routing in complex buildings to 
support disaster management. Automation in Construction 113, 103109. 
doi.org/10.1016/j.autcon.2020.103109 

 
Notes: Section 4.5 on Flexible Space Subdivision is written and implemented by 
Diakité, A. 
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Abstract 
During an emergency inside large buildings such as hospitals and shopping 
malls, the availability of up-to-date information is critical. One common source 
of information is the 2D layout of buildings and emergency exits. For most 
buildings, this information is represented as tangled floor plans, which in most 
cases are outdated. One solution to update the data of buildings after each 
reconstruction is to recreate 3D models of buildings in a quick and automatic 
approach and to make these models available for first responders to be used 
in emergency cases. Thanks to advances in remote sensing, laser scanners can 
be used to generate an accurate spatial representation of buildings quickly. 
However, such devices provide point clouds, which are unstructured data. In 
this chapter, we introduce a complete workflow that allows to generate 3D 
models from point clouds of buildings and extract fine-grained indoor 
navigation networks from those models, to support advanced path planning for 
disaster management and navigation of different types of agents. The process 
extracts structural elements of buildings such as walls, slabs, ceiling and 
openings, and reconstruct their volumetric shapes. Additionally, the furnishing 
elements in the input point clouds are identified and reconstructed as the 
obstacles. Stairs are also reconstructed to allow multistory navigation path 
planning. Our algorithm is fully 3D and can handle vertical and slanted 
structures. We test it on several real datasets, compared it to state-of-the-art 
approaches and provide a process to check the consistency of the 
reconstruction, which allows in return to further improve its result.  
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4.1 Introduction 
Monitoring the changes of buildings after each renovation and auditing the 
compliance of the changes according to the safety standards is a known 
problem. For most new buildings, Building Information Models (BIM) are 
available at the start of the construction, but these models are no longer 
current after building renovation. Keeping the data of the building up-to-date 
and checking it against the safety regulations is problematic, although it is 
critical to support rapid intervention in situation of emergency. Indeed, 
information about building layouts and indoor objects occupancy is a game-
changing support to efficient and safer emergency response in disaster 
management. Mobile Laser Scanning (MLS) systems provide such a possibility 
when their data is post-processed using a smart and fast workflow. 
 
During the last years, significant improvements have been made in Indoor 
Mobile Laser Scanning systems (IMLS) (Lehtola et al., 2017). Using a mobile 
mapping system, it is possible to scan a large multi-story building up to 100 
rooms in one day. However, processing the large data produced by an MLS 
system to reconstruct a 3D model is not a trivial task and needs sophisticated 
software and expert knowledge. In this chapter, we present an automatic 
approach which enables us to produce a coarse 3D model of buildings in a short 
time. Such models can be further improved and enriched by user interactions 
to keep the data of large buildings up to date. Safety authorities can use these 
models to see if the renovated buildings comply with the safety regulations. 
Moreover, the produced models can be used to support advanced processes 
such as fine-grained indoor path planning to facilitate efficient emergency 
response. 
 
The problem of creating a 3D model from cluttered point clouds attracted many 
researchers in different domains such as robotics, architecture, engineering 
and construction. The fact that buildings have varying and complex structures 
makes the problem challenging. Training computers to learn all types of 
building structures looks like an unfeasible task. During the last years, 
researchers developed algorithms that work for less complex buildings or 
buildings with a regular layout or that only create a 2.5D model (Becker et al., 
2015; Ikehata et al., 2015; Khoshelham and Diaz-Vilarino, 2014; Mura et al., 
2014). Most of the 3D reconstructed models in the literature reflect simple 
room segmentation (space subdivision) and a clutter-free environment (Becker 
et al., 2015; Khoshelham and Diaz-Vilarino, 2014) or they rely on having the 
scanner positions per room (Mura et al., 2016; Ochmann et al., 2016). In 
contrast, when a mobile laser scanner is used for data acquisition, the 
perception of the space is continuous and there is no separate scanning per 
room. Moreover, the presence of furniture causes occlusion problems, which 
makes the process of model reconstruction and room separation more 
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challenging. Additionally, slanted walls, ramps and non-horizontal ceiling are 
other challenges that in most reconstructed indoor models are not addressed. 
 
In our approach, we first detect the permanent structures such as walls, floors 
and ceilings adapting the method presented in (Nikoohemat et al., 2018a). 
With further automatic processing such as undershoot correction, the 
connection of walls to each other and the ceiling and floor is guaranteed. 
Volumetric walls are reconstructed by detecting the parallel faces of a wall and 
merging them into one wall object which is represented by a parametric 
minimum rectangle. The room segmentation method is based on the correct 
reconstruction of walls and enclosure of the space in an early stage. We 
proceed to regularized Boolean operations (Tilove and Requicha, 1980) on the 
reconstructed permanent structures to reconstruct the room volumes. 
 
Openings are crucial items during a disaster as well as for safety regulations. 
Doors which are crossed by the trajectory of the mobile laser scanner are 
detected and added to the model. The combination of all the reconstructed 
features in addition to their semantic information allows us to apply the Flexible 
Space Subdivision (FSS) (Diakité and Zlatanova, 2018), which is a 3D 
navigation framework that subdivides the indoor space into occupied, 
functional and navigable spaces. However, in this work, we do not try to enrich 
the spaces with more semantics, such as room functions, automatically. 
Furthermore, the automatic detection of furniture type is out of the scope of 
our work. Some of the large pieces of furniture are selected using a connected 
component algorithm and an oriented bounding box is generated to present a 
clearance around the furniture as obstacles. To extract free space in 3D, some 
floating objects such as lamps are also included. Staircases are another 
essential element in our 3D models to test the room's connectivity on separate 
floors. Detecting and modeling stairs or staircases is a complex task because 
stairs can have versatile structure (e.g., with walls, metal bars or glasses). In 
our workflow, we explain how first to identify stair ramps and then detect 
individual steps. Finally, with several constraints, the consistency of the 3D 
model is evaluated. The navigation graph is generated between a pair of spaces 
to control the connectivity of all spaces, including doors and stairs. The final 
navigation graph demonstrates a connectivity network and does not show a 
turn by turn graph as generating a detailed graph is not the focus of our work. 
 
Our pipeline is a combination of algorithms from generating a 3D model from 
point clouds of multistory buildings to presenting a flexible space subdivision 
for dynamic navigation. This work goes beyond the simple assumption of a 
Manhattan-World, vertical walls and a clutter-free environment. Modeling 
stairs, ramps and slanted ceilings are all integrated into our reconstruction 
workflow. In contrast to most of the indoor navigation work, which is based on 
synthetic models, our methods are tested on real complex use cases. 
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Moreover, a consistency control method is applied to check the model 
correctness against several constraints. The results show that scanning a 
building with a mobile laser scanner and using our pipeline enables the rapid 
generation of a coarse 3D model, including spaces for first responders. The 
contribution of our work is as follows: 
 
A pipeline for 3D reconstruction from point clouds of complex multistory 
buildings including stairs, ramps and furniture is presented. Reconstruction of 
non-horizontal floors, ceilings and slanted walls is explained and tested. The 
pipeline reconstructs both volumetric walls and rooms polyhedra and provides 
a semi-automatic method to improve the reconstruction process. Furniture are 
included in the subdivision pipeline to demonstrate realistic navigation 
scenarios in multistory buildings. Several heuristic rules are implemented to 
check the consistency of generated models. 
 
The remainder of this chapter is organized as follows: Section 4.2 describes 
related work, section 4.3 gives an overview of the pipeline. Section 4.4 explains 
the methodology for 3D reconstruction from point clouds, and section 4.5 
discusses the flexible space subdivision. In Section 4.6, a consistency control 
of the 3D model is discussed. In section 4.7, our methods are tested on real 
data and the results are discussed. Section 4.8 is the future work and the 
conclusion.  

4.2 Related Work  
The topic of indoor 3D reconstruction from point clouds, RGB-Depth and 
images have been studied from different aspects and applications. For 
example, in the robotic domain, the navigation and interaction of robots with 
the indoor environment is the goal (Pinheiro et al., 2015). Problems such as 
scene understanding, object detection and localization of robots are 
investigated by the researchers (Bormann et al., 2015; Bowman et al., 2017; 
Koppula et al., 2011; Pinheiro et al., 2015; Rusu, 2013b; Rusu et al., 2009). 
Using images for indoor scene interpretation, façade reconstruction and 
modeling floor plans are investigated by many researchers (Dehbi et al., 2017, 
2016; Liu et al., 2018; Wang et al., 2013). Another upcoming research is 
change detection in the permanent structures during different epochs of the 
renovation for example for indoor 3D cadaster applications (Koeva et al., 2019; 
Nikoohemat et al., 2018b). Besides, the significant progress in Wearable Mobile 
Laser Scanners (WMLS) and Indoor Mobile Mapping Systems (IMMS) provides 
a fast-growing source of data for researches in the domain of indoor modeling 
(Chen et al., 2010; Karam et al., 2019; Wen et al., 2016). 
 
Reconstruction of walls is an important step to create a correct 3D model. A 
wall representation in the model depends on the application of the model and 
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3D modeling standards such as IFC (ISO 16739, 2018) and IndoorGML (Lee et 
al., 2014) and those which are not following a specific standard (Ikehata et al., 
2015). Volumetric representation and cellular representation of walls are close 
to IFC and IndoorGML standards, respectively; and suitable for scan-to-BIM 
applications. Studies which deal with building retrofitting (Ochmann et al., 
2019, 2016), indoor navigation (Diakité and Zlatanova, 2016; Jung and Lee, 
2015) and automation in construction (Bassier et al., 2018; Macher et al., 
2017; Thomson and Boehm, 2015) are cases based on IFC standards. In 
contrast, in some of the literature, a piecewise-planar representation of the 
model generates walls as planar objects (Boulch et al., 2014; Mura et al., 2016; 
Oesau et al., 2014) and rooms as the polyhedra. Accordingly, the method for 
room segmentation (also known as space subdivision or space partitioning) 
would be different. If the application of space is more important than 
surrounding elements, then a cell decomposition approach or voxel-based 
method should be suitable for applications such as indoor navigation (Ambruş 
et al., 2017; Diakité and Zlatanova, 2018) and perception of semantic space 
for robots (Bormann et al., 2015). However, if the enclosing elements such as 
the correct geometry of walls, doors and windows is the goal of a 3D model to 
be used in BIM software, then the process of reconstruction should pay more 
attention in generating correct walls and details such as windows (Bassier et 
al., 2018; Becker et al., 2015; Ochmann et al., 2016). 
 
In most of the literature, there are several main assumptions when detecting 
and reconstructing the permanent structures. One general assumption is based 
on vertical walls (Macher et al., 2017; Murali et al., 2017; Ochmann et al., 
2019; Oesau et al., 2014; Wang et al., 2017) and regular room layout 
(Manhattan assumption) (Ikehata et al., 2015; Khoshelham and Diaz-Vilarino, 
2014; Tran H. et al., 2019). For the detection and the reconstruction of the 
floor or ceiling, it is presumed that the height is not changing (Mura et al., 
2014; Ochmann et al., 2016). There are few works which explore beyond the 
Manhattan World assumptions (Mura et al., 2016) and deal with the 3D 
environment with a high number of reflective surfaces (Nikoohemat et al., 
2017; Nikoohemat et al., 2018a).  
 
Doors are essential for disaster management, indoor navigation and checking 
the regulations for safety in a building. Detection of doors is studied by (Adan 
and Huber, 2011; Diaz-Vilarino et al., 2015; Nikoohemat et al., 2017; Quintana 
et al., 2018) for 3D reconstruction and navigation. Experimentally, identifying 
open doors in the data is less complex than closed doors. Ray casting (also 
known as the occlusion reasoning) is one of the solutions which is used by 
researchers (Adan and Huber, 2011; Ochmann et al., 2016; Xiong et al., 2013) 
to detect openings (windows and doors). By this method, a ray is cast from 
the position of the laser scanner to the surface where a door or opening can 
be identified. If the ray intersects the surface and hits an object behind the 
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surface, then the intersection point on the surface is labeled as an opening 
pixel. However, the exact border of the opening remains unclear in ray casting 
method depending on the resolution of data. To detect closed doors, Diaz-
Vilarino et al. (2015) use images in combination with point clouds. In the 
absence of images and color for the data, an altered method is required to 
identify closed doors. In a different approach, applicable for mobile laser 
scanners, Nikoohemat et al. (2017) and Elseicy et al. (2018a) use the 
trajectory of the mobile laser scanner to find the points above the trajectory 
which represent the top of the door and to locate the door frame. Using their 
method is possible to identify closed and open doors which are crossed by the 
MLS trajectory.  
 
Stair modeling is another challenge in the reconstruction of a multistory 
building. Although less attention is devoted to the detection and the modeling 
of stairs and their surroundings, they are considered a complex but yet 
important structure of a building. Stairs can be modeled using shape grammars 
since they have a regular structure (Boulch et al., 2013; Schmittwilken et al., 
2007). Another approach is by fitting a slanted plane to the stair ramp and 
finding the orientation and extension of the stairs (Sanchez and Zakhor, 2012). 
A plane segmentation method is used by Oßwald et al. (2011) to model stairs 
for humanoid climbing stairs. When using a wearable mobile laser scanner such 
as a backpack, it is possible to use the trajectory to detect the stairs 
(Nikoohemat et al., 2018a; Staats et al., 2017). Other methods are developed 
for stair modeling, pathfinding and robotics based on voxels, octree and 
histograms (Bansal et al., 2011; Fichtner et al., 2018).  
 
From navigation aspects, many works have been carried out on presenting the 
conceptual models and standardization of navigation (Brown et al., 2013; Jung 
and Lee, 2015). Unfortunately, less attention is devoted to using cluttered data 
in complex environment for indoor modeling. Most of the 3D models for indoor 
navigation are simple and based on synthetic models (Khan and Kolbe, 2013) 
or represent simple cases such as shortest path (Broersen et al., 2015; Girard 
et al., 2011; Yang and Worboys, 2015). In a different approach by Alattas et 
al. (2017), the access right is used for indoor navigation. This is a new 
approach to design more flexible navigation routs. Similarly but with a different 
approach, Diakité and Zlatanova (2018) introduce the Flexible Space 
Subdivision (FSS) concept for dynamic use of the space and context-aware 
pathfinding. Based on their method, space can have different functions and 
based on each function, a navigation graph can be generated. 
 
Consistency control of the 3D model after reconstruction is not investigated 
sufficiently in the literature. Just few researchers (Gröger and Plümer, 2010, 
2009; Liu et al., 2014) suggest methods such as using grammar to control the 
topology and correctness of the generated model. The consistency of 3D city 



Indoor 3D Reconstruction from Point Clouds in Complex Buildings 

80 

modeling (Gröger and Plümer, 2009) can be applied for indoor modeling in 
some cases. In (Liu et al., 2014), a probabilistic grammar is used to generate 
consistent semantic information of an indoor scene. A constrained grammar is 
suggested by Gröger and Plümer (2010) for controlling the correctness of a 
model-driven model. However, the authors do not use real data to demonstrate 
the robustness of their method. Validating the 3D model from semantic and 
geometry aspects is an important line of research that needs more attention 
in the future.  

4.3 Overview 
In this section, we give a general overview of the 3D reconstruction pipeline 
and its application for emergency cases. Figure 4.1 shows the overview of steps 
(stairs modeling is not reflected and is explained in detail in the Section 4.5). 
To keep the overview short, important parameters are discussed in the 
methodology and at the end of the chapter in section 4.7.  
 
The input data of our pipeline is a point cloud collected by mobile laser scanning 
(MLS) or terrestrial laser scanning systems (TLS). When the data is from an 
MLS the trajectory of the system is required for some of the algorithms (e.g., 
building levels separation and door detection). A trajectory is a separate point 
cloud representing the continuous location of the scanner’s location during the 
acquisition. The trajectory is synchronized with the point cloud and the time 
attribute in both point cloud and trajectory is used to associate the point in the 
point cloud with their corresponding device location at a certain time. Each 
dataset is subsampled to reduce the number of points to accelerate the 
processing time and for a smoother visualization. For subsampling the average 
point spacing of less than 0.05 m is preserved. 
  
Our pipeline starts with separating the building levels and stairs. Similar to 
(Nikoohemat et al., 2018a), the trajectory is segmented to horizontal and 
sloped segments, where each horizontal and sloped segment represents the 
levels and stairs, respectively. Each segment in the trajectory is used to cluster 
the associated point in the point cloud belonging to the same level or to the 
staircase in case of sloped segments, see section 4.1 for more details. We call 
each cluster a building segment (Figure 4.1b) which is processed separately 
for reconstruction of permanent structures or stairs. Each building segment is 
processed to planar segments using a surface growing method (Vosselman et 
al., 2004) and a smoothness threshold of 8 to 10 cm is set depending on the 
noise of the data for MLS datasets and 4 cm for the TLS dataset (Figure 4.1c). 
All segments are divided into almost-horizontal and almost-vertical using a 
threshold of 45 degrees. An adjacency graph is created based on the adjacency 
of segments using a threshold of 10 cm (dadj) and minimum supporting points 
of 500 per segment where nodes represent the segments (Figure 4.1c). 
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Analyzing the topology relation of nodes in the graph using suggested heuristic 
rules result in labeled segments to permanent structures (including wall, floor 
and ceiling) and clutter containing unknown points and furniture (Figure 4.1d). 
Then a semi-automatic approach is applied including two main steps: 1. a 
visual correction of labels for misclassified walls and 2. the automatic extension 
of permanent structure segments to their plane’s intersection for disjoint 
segments (sections 4.2.2 and 4.2.3). In section 4.4.3, parallel wall surfaces 
are recognized and merged into one segment as a volumetric wall which is 
represented by a parametric rectangle. The rectangle is located in the center 
of the wall and the width is thickness of the wall. Figure 4.1e shows volumetric 
walls represented by boxes as solids. To this end, the permanent structure of 
the building is reconstructed in a 3D model showing the walls, floor and ceiling. 
However, for emergency responses, the notion of rooms is required in addition 
to knowledge about doors, obstacles and access to the stairs.  
 
We exploit the trajectory of the MLS device to detect the doors. A method from 
(Nikoohemat et al., 2017) is adopted where the doors crossed by the trajectory 
can be identified (Figure 4.1f) and a parametric door model with fixed 
dimensions is added to the model.  After recognizing the permanent structure 
and separating the clutter, furniture is selected using a connected component 
analysis on points which are labeled as clutter. The details are explained in 
section 4.4.4. A new method is suggested in section 4.4.5 for reconstruction 
of the stairs where the input data is the coarse location of the stairs separated 
as a building segment from the rest of the point clouds. Stair detection and 
modeling have two steps: 1. detection of the stair ramp using a surface 
growing segmentation and selecting ramps with a slope of 25 to 50 degrees, 
2. applying another segmentation with finer parameters on detected ramps 
and creating a constrained adjacency graph. The nodes in the graph represent 
segments in the ramp which are perpendicular with a tolerance of 10 degrees 
and having a supporting point more than 500 points.  
 
Section 4.5 is dealing with reconstructing the rooms’ polyhedra from 
permanent structures and when adding the furniture, extracting the remaining 
spaces as navigable space. In previous steps, we reconstructed walls, floor and 
ceiling and assured the enclosure of the spaces by extending disjoint 
structures. Rooms modeling is based on a 3D Boolean Operations on solids to 
extract the enclosed spaces encapsulated by permanent structures. Each 
permanent structure (wall, floor and ceiling) is a solid which was reconstructed 
in section 4.4. In Figure 4.1, room extraction is applied in Figure 4.1e and the 
result is shown in Figure 4.1g, skipping Figure 4.1f as an intermediate step for 
door detection. Obviously, during the room reconstruction, doors are 
reconstructed as a closed-door or part of the wall to guarantee an enclosed 
space. Following reconstruction of the rooms, by including the bounding box of 
furniture in the model, it is possible to apply the Flexible Space Subdivision 
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(Diakité and Zlatanova, 2018) framework (FSS) and identify the Object Spaces 
(O-Spaces), Functional Spaces (F-Spaces) and Remaining Spaces (R-Space), 
see Figure 4.1(h, i). Unlike Diakité and Zlatanova (2018) which uses simulated 
data to demonstrate the FSS for 3D indoor navigation, we use real data created 
from point clouds reflecting the as-built situation of the buildings. Finally, three 
heuristic rules are suggested to control the consistency of the model for 
emergency applications. Based on those rules, every room should have at least 
one door and every two spaces in the model at different levels should be 
connected by a network in the connectivity graph (Figure 4.1i). The results are 
evaluated on four datasets where the buildings have complex structures 
including arbitrary room layout, non-horizontal ceilings, ramps, and glass 
surfaces. The following sections discuss the methods in detail. 
 

 
Figure 4.1. Pipeline overview.  
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4.4 3D Reconstruction of Permanent Structures, 
Openings and Stairs from Point Clouds 

Our pipeline starts with preparing the data for the detection of permanent 
structures. Walls, floors and ceilings are the main focus of the permanent 
structure detection algorithm. Later other important objects such as doors, 
stairs and furniture will be automatically identified and included in the model. 
The data is mainly collected by MLS devices, including pushing-cart and 
handheld systems. The trajectory of the mobile laser scanner is a useful source 
to interpret the scene, for example, for separating the levels of buildings in 
case of a multistory building. The data preparation is mainly purging the noise 
caused by the reflective surfaces, as explained in (Nikoohemat et al., 2017). 
The process of classification of point clouds to walls, floors and ceilings starts 
by a piecewise planar segmentation and then creating an adjacency graph. A 
heuristic method (Nikoohemat et al., 2018a) is applied to analyze the 
adjacency graph to separate the permanent structure from the clutter. 
Furniture is classified as the clutter in our pipeline. In the following, the 
methods are explained in the details. 

4.4.1 Separating the levels and stairs 

Every level of a building is a horizontal space which is connected via stairs to 
the other levels.  In complex buildings, sometimes space is extended vertically 
to the other levels and in the architecture is referred to as a Mezzanine. 
Therefore merely using a histogram generated from z-axis (Oesau et al., 2014; 
Turner and Zakhor, 2014) is not sufficient to separate the floors. Moreover, 
distributed points over the z-value in a sloped ceiling does not create a pick in 
the z-histogram. Nikoohemat et al. (2018a) suggest using the MLS trajectory 
to separate the point clouds associated to each level of the trajectory because 
separating the trajectory of the MLS into the levels is simpler than separating 
the point clouds. Their method is based on using the trajectory and the 
timestamp attribute which is synchronized with the timestamp in the point 
clouds. Obviously, this method can be only used for mobile laser scanners 
because they have a trajectory and the time attribute is available in both point 
clouds and the trajectory. The trajectory is a separate point set representing 
the discrete positions of the laser scanner during the data acquisition. By 
segmenting the trajectory to separated levels and slopes (representing the 
stair’s ramps) the associated point cloud can be segmented as well using the 
timestamp for each segment of the trajectory. Segments in the trajectory with 
slopes are selected to collect associated points with the stairs. After separation 
of levels and stairs, each set is processed separately for detection of permanent 
structures. 
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4.4.2 Detection of Permanent Structures 

Permanent structures are walls, floor and ceilings. Intuitively, walls are below 
the adjacent ceiling and above the adjacent floors. In contrast to the other 
works that assume walls are vertical and ceilings and floors are horizontal, we 
lift these constraints in our pipeline. Moreover, any arbitrary wall structure can 
be used as input to the algorithm and there is no need to align the data to the 
axis (non-Manhattan-World). The only assumption is the z-axis as the 
gravitational axis.  
 
4.4.2.1 Adjacency Graph 
To create an adjacency graph, the point clouds are segmented using a planar 
surface growing algorithm (Vosselman et al., 2004). Each node in the graph is 
associated with a segment, and each edge represents two adjacent segments 
(Figure 4.2). Two segments are adjacent if their points are within a specific 
distance defined as the adjacency distance (dadj). Then all the nodes in the 
graph are attributed to almost-vertical and almost-horizontal based on the 
normal vector angle of their segments using a threshold of 45 degrees. For 
example, the nodes which the difference between the normal vector angle of 
their segment and the positive direction of z-axis is less than 45 degrees are 
attributed as almost-horizontal. Ramps and floors are almost-horizontal. Edges 
of the graph also are attributed based on the type of adjacency which they 
represent. We identified three types of adjacency: wall-wall, wall-floor and 
wall-ceiling. An edge is wall-wall if both nodes are almost-vertical. An edge is 
wall-floor if one node is almost-vertical and the other almost-horizontal; and 
the center of the almost-vertical segment is higher than the center of the 
almost-vertical segment. This implies that a wall-candidate should be above 
the floor-candidate. The same applies to a wall-ceiling edge with the difference 
that the segment of the almost-vertical (wall-candidate) should be below the 
almost-horizontal (ceiling-candidate).  
 
After creating the adjacency graph, we use several heuristic rules according to 
Nikoohemat et al. (2018a) to label the nodes and their associated segments. 
Four labels are considered for the nodes: walls, floors, ceilings and clutter. In 
the adjacency graph, each node is examined one time and based on the 
number of edges and their attributes; the node obtains a label. Rule 1 suggests 
that if a node has one or more than one wall-ceiling edge, then it is a wall. 
Rule 2 and rule 3 suggest if a node has more than two wall-ceiling or more 
than two wall-floor edges, then it is a ceiling or floor, respectively. Clearly, a 
node with a floor or ceiling label should not have any wall-wall edge. Some 
extra soft rules control the labeling process to avoid false-positive detections. 
For example, almost-horizontal segments which are labeled as a ceiling should 
not have more than 90% overlap with each other. This soft rule excludes some 
horizontal segments such as ventilation canals and shelves near the ceiling or 
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tables which are attached to walls to be classified as a permanent structure. 
Moreover, the floor and ceiling nodes should have a distance of more than 1.5 
meters. The label of each node is assigned to the associated points in the 
segment. Consequently, the output of the adjacency graph is labeled point 
clouds with four different classes as walls, floors, ceiling and clutter. Note that 
creating the adjacency graph and exploiting it to identify the permanent 
structures are not restricted to the assumption of vertical walls or horizontal 
floor and ceiling. Slanted walls, ceilings and ramps can be identified as well by 
analyzing the adjacency graph. For example, in the TU Delft building (Figure 
4.3) part of the floor is lowered, and it is connected with two ramps to other 
floors. Since the ramp is classified as an almost-horizontal surface and is 
connected to other floors, it can be classified and modeled as part of the floor. 
The next step is generating the volumetric walls for a watertight 3D model. 
 

 

Figure 4.2. The process of identifying a permanent structure. (a) point clouds, (b) points 
segmented using the surface growing algorithm, (c) intersection between adjacent 
segments, (d) and (e) the adjacency graph where edges are colored by three classes 
(wall, floor and ceiling), (f) detected walls (blue) and floor (yellow). For simplicity of the 
figure, an area with minimal clutter is selected. The dataset is acquired by NavVis Trolley 
system (Huitl et al., 2012). 

 
4.4.2.2 Visual Correction of Segments 
The labeled segments from the previous section need to be visually inspected 
to avoid unexpected errors. For example, some of the clutter attached to the 
ceiling could be misclassified as a wall. The visual inspection contains two main 

(a) (b) (c) 

(d) (e) (f) 
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operations: 1. changing the label of a misclassified segment, 2. extension of 
two segments to the intersection of their planes in case of large data missing. 
The first correction is a semantic refinement and the second correction is a 
geometry refinement. Since the segments are color-coded based on their 
semantic label (Figure 4.3b, green and blue), changing the class label is quick 
and it takes several minutes for a dataset of 20 rooms. The extension 
correction is performed after the automatic undershoot correction (section 
4.2.3), where the gap between two segments is larger than the extension 
threshold. This correction happens in rare cases where part of the data is 
missing because of large occlusions or unreachable regions in the room (Figure 
4.3b, dashed circles).   
 
4.4.2.3 Automatic Undershoot Correction 
An undershoot error happens when two permanent structures are not 
connected either because of the occlusion or missing data during the scanning. 
These disjoint structures (segments) should be connected to reconstruct a 
topologically correct 3D model (Figure 4.3b, red circles).  Finding undershoots 
in the data is not simple and fixing them needs a user interface and an expert 
user. Therefore, we find and fix undershoots automatically. First, for each 
segment, an oriented minimum rectangle is generated and the best fitting 
plane of the segment is calculated from the supporting points. For the 
automatic correction of undershoots, all the rectangles are sorted by their area. 
Every two nearby rectangles are intersected using their planes if the 
intersection line is within a distance of the edges of each rectangle, then two 
rectangles are extended to the intersection line (Figure 4.3c). The extension 
threshold (dext) should not be larger than a narrow hallway. Otherwise, the 
walls on two sides of the hallway will be incorrectly extended. For example, the 
corridor in Figure 4.3 has a width of almost three meters and the extension 
threshold is set to less than three meters. Consequently, an extension 
operation is required in the location of dashed black circles in Figure 4.3b. 
Experimentally, running the undershoot correction process for each semantic 
class separately results in a better outcome. We perform the algorithm first 
individually per class wall, floor and ceiling, then between wall and ceiling, and 
wall and floor.  
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Figure 4.3. The process of visual and automatic improvements. (a) The top view of 
segmented point clouds, (b) detected walls (orange), false-positive walls (green) and 
missed walls (blue). During the visual inspection, the labels are changed and large data 
gaps are repaired by an extension operation (dashed black circles). Red circles show the 
walls which are not connected. (c) Automatic extension of walls to the intersection of 
their planes repairs the disjoint walls. The points for the floor are colored by height. 

4.4.3 Reconstruction of volumetric walls 

The goal of this section is to reconstruct volumetric walls from wall 
segments. A volumetric wall is composed of smaller segments on both sides of 
a wall and in this part of the pipeline the algorithm identifies which segments 
belong to the same wall. In the previous step, wall segments are corrected by 
automatic undershoot correction. A correct 3D model should have consistent 
room layout and topology, which means there should not be a gap between 
rooms. In this step, we reconstruct the walls by detecting two parallel faces of 
a wall and merging them into one volumetric wall. A volumetric wall is a 
parametric object containing width, height, length, normal vector and center. 
The width represents the thickness of the wall and the height and length define 
the spatial extension of the wall. The normal vector and the center identify the 
orientation and location of the wall. To reconstruct a volumetric wall, every two 
rectangles are checked together. A new rectangle is created from nearby 
parallel (d, θ) rectangles, where the d is the distance between two planes, 
calculated from the center of the smaller segment to the plane of the larger 
segment, and the θ is the angle between normals (Figures 4.4a and b). The 
parameters of the new rectangle should be recalculated in a way that spatial 
extensions are extracted from the larger face and the width is the distance 
between two parallel faces (d). The normal vector and the center of the new 
rectangle are obtained by computing the weighted average of the normal 
vectors and of the centers of the two faces based on their area. Note that in 
practice because of the clutter and the occlusion in the data, on each face of 
the wall there could be more than one segment which should be merged into 
one rectangle based on their proximity and co-planarity. Therefore, one face 
of the wall can grow larger and other smaller co-planar faces are merged into 
it and each time parameters are updated. 
  

(a) (b) (c)
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Façade walls and walls which are not accessible from both sides (e.g., because 
of the occlusion) only have one face in the data. In such cases the measured 
face is offset to the opposite direction of the normal, assuming the normal 
vectors are flipped towards the position of the laser scanner. The offset 
distance can be user-defined or can be extracted from the neighboring walls. 
The floor and ceiling are reconstructed with a user-defined thickness. For 
multistory buildings, the thickness of the ceiling of the lower level can be 
calculated from the floor of the upper level. Volumetric reconstruction of walls, 
floors and ceiling assures that no empty space is generated between the levels 
of a building or the rooms of the same level.  

 

Figure 4.4. Shows the process of generating volumetric walls; (a) detected walls before 
the merging process. (b) Two faces of walls are identified and merged into one wall and 
the distance of the planes is stored as the thickness of the wall. The small insets show 
the top view of walls before and after the merging process, (c) the generated volumetric 
walls. Notice the curved wall is modeled as smaller rectangular faces. 

4.4.4 Detection and addition of doors and furniture 

Doors in our model are the openings which connect two spaces. Since we use 
an MLS device to collect the data, at least one of the doors of each visited room 
is crossed by the trajectory of the mobile laser scanner. Crossing the door with 
the trajectory is exploited by Nikoohemat et al. (2017) to detect doors. This 
method can be specifically useful even if the door appears as a closed-door in 
the data because a door can be closed before or after scanning. However, their 
method is for the cases that walls are unknown in the data and for detecting 
doors in the whole unlabeled point clouds. Since the walls are known for us, 
we adapt their method and intersect the detected walls with the trajectory to 
identify the approximate center of a door candidate. Before that, the trajectory 
should be sorted by using the time attribute and be converted to line segments 
by connecting the successive points (Figure 4.5b). Note that the intersection 
point necessarily is not in the center of the door, but it gives an estimation of 
the door location. Obviously, doors which are not traversed by the trajectory 
during the scanning, remain unidentified in our method. Some researchers 
(Adan and Huber, 2011; Nikoohemat et al., 2017) use ray casting to detect 
openings, but we limit the scope of our work to the doors crossed by the 

(a) (b) (c)
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trajectory, which is sufficient for navigation purposes. After detecting the 
location of the door, an oriented bounding box aligned with the direction of the 
wall is inserted in the model. The extension of the door (height and width) is 
user defined and the thickness is inherited from the wall thickness. Therefore, 
a double door and a single door are modeled the same in our 3D model. 

 

Figure 4.5. (a) Top view of wall segments and part of the trajectory. (b) The doors are 
detected with the intersection of the line segments of the trajectory and walls.  

Including furniture in the model is useful for creating an insightful space 
subdivision that considers potential obstacles. In case of emergency, the 
auditing experts can evaluate if there is enough navigable area in one space 
or whether the emergency exits are not occluded by furniture. In our work, the 
furniture is classified as clutter in section 4.2. We include the larger pieces of 
furniture by using a connected component algorithm. First, the cluttered points 
in a neighborhood of the permanent structure are removed to make a clearance 
between furniture and adjacent the permanent structures. Then a connected 
component analysis is applied to the remaining points. A maximum distance 
threshold of 10 cm between points is set for this analysis, noticing that this 
threshold should be larger than the average point distance and smaller than 
the clearance between furniture and the permanent structures. The 
components with a larger number of points are chosen as the obstacles to be 
included in the model. The reason that we make a selection is that there is a 
lot of clutter near the ceiling or on the walls, such as pipes, small lamps, 
shelves, curtains or noise from reflection, which make the space subdivision 
cluttered. An oriented bounding box (OBB) is generated from each object and 
included in the model representing the occupied space with the furniture 
(Figure 4.6). 

(a) (b)
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Figure 4.6. (left) Including large pieces of furniture in the model and (right) creating an 
oriented bounding box (green boxes) for a flexible space subdivision. 

4.4.5 Stairs Modeling 

Although the coarse location of staircases can be separated from the rest of 
the point clouds, the number of steps and the exact model of the stairs need 
to be reconstructed. Therefore, we develop a method using the adjacency 
graph G (V, E) to detect the exact size and location of stairs. Our method for 
stair modeling has two steps: 1. similar to (Sanchez and Zakhor, 2012) a 
planar segmentation is employed to search the ramp of the stairs (Figure 
4.7b).; 2. a fine planar segmentation is applied on the detected ramp to 
identify planar segments representing each rise and tread in the stairs (Figure 
4.7c). A planar segment is a valid staircase ramp if it inclines between 25 and 
50 degrees are respecting the xy-plane. For the planar segmentation of the 
ramp a surface growing algorithm is applied with a point-to-plane distance set 
to 20 cm. We choose a larger value for planar segmentation for ramp detection 
to make sure points belonging to the steps fall into the ramp segment. A 
minimum enclosing rectangle is created for each valid ramp and the inliers 
(considering a buffer) would be the points which will be processed in the second 
step (see Figure 4.7b). The risers and treads should be identified in this ramp. 
In the second step, a surface growing segmentation with finer parameters 
(point-to-plane distance= 5cm) generates the segments which represent the 
nodes (V) in the adjacency graph (see Figure 4.7c). If two segments are 
adjacent and create a perpendicular angle with a threshold of 10 degrees, then 
an edge (e ϵ E) connects two nodes. Smaller segments with fewer than n 
supporting points (e.g., n = 500 points) are excluded from the graph. On the 
stairs, there is clutter (e.g., people during the scanning), and walls and bars 
are attached to the steps. Therefore, to extract the exact steps which form the 
stairs, the longest path is extracted from the undirected graph (Karger et al., 
1997). We start from a random node (v ϵ V) and find a node (x ϵ V) with the 
longest distance from v using a breadth-first search (BFS). The discovered 
node x is an end node in the graph. By applying another breadth-first search 
from node x, the longest path in the graph is identified (see Figure 4.7d). Note 

(a) (b)
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that the edges are unweighted and the graph should not have cycles. Nodes 
belonging to the longest path represent the steps of the stairs. For each node, 
the corresponding segment is selected, and a minimum enclosing rectangle is 
derived. Since the shape and size of the segments are varied, the width and 
length of a step are approximated from the majority of the rectangles. Then 
all the rectangles are adjusted with the new width and length. To extract the 
number of steps, as every step of stairs has two nodes in the graph, one for 
the riser and one for the tread, the number of steps is the round of n/2 where 
n is the number of nodes in the longest path. Eventually, vertical space is 
generated from the minimum rectangle of the stairs, which represents the 
staircase space. This vertical space is a virtual space that connects the levels 
in a building with an extension from the floor of the lower level to the floor of 
the upper level. Note that in most buildings, the surrounding walls of stairs are 
not connected to the ceiling and sometimes they are made of metal bars or 
glass. Therefore, we create this virtual space to subdivide the space of stairs 
from other spaces for navigation purposes. 
 

 

Figure 4.7. The process of detecting and modeling stairs. (a) Segmented point clouds, 
(b) detected stair ramp, and selection of inlier points in the oriented minimum rectangle 
of the ramp (the small inset), (c) and (d) a constrained longest path graph showing the 
correct steps, (e) the reconstructed model with correct inclination and number of steps. 

4.5 Room Reconstruction and Flexible Space 
Subdivision (FSS) 

Having the permanent structures created in the previous step, now a method 
is explained to generate enclosed spaces as polyhedra. Remaining spaces in 
the presence of obstacles are generated as well, to create more detailed spaces 
for disaster management cases. In the context of disaster management, 
several aspects of indoor navigation become critical. One of them is a good 
knowledge of the occupied/unoccupied spaces and openings’ configuration. The 
Flexible Space Subdivision (FSS) (Diakité and Zlatanova, 2018) is a framework 
aiming to provide a space partitioning that reflects the complexity of the indoor 
environment. The approach produces three main subspaces: the occupied (O-
Spaces), the functional (F-Spaces) and the remaining free spaces (R-Spaces). 
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These latter allow describing the space complexity in terms of spatial 
occupancy induced by the physical and functional characteristics of the indoor 
objects. The FSS thereby provides a spatial model that supports fine-grained 
indoor navigation and makes it possible to account for advanced constraints 
during the navigation, while ensuring enough granularity for describing precise 
localization. 
 
In order to implement the FSS, one of the most critical features needed is the 
explicit representation of the indoor spaces. Such features can be generally 
obtained natively from BIM models such as IFC (e.g., the IfcSpace class) 
However, since we start from a point cloud, the indoor spaces are not readily 
available in our workflow. Therefore, we present a way to recover them. 
Similarly, other critical features to the FSS, already identified in the previous 
steps, will also be considered, such as the openings and obstacles.  

4.5.1 Reconstructing the indoor spaces 

The indoor space can be conceptually thought as the space that is encapsulated 
by the permanent structures of a building (walls, floors, ceilings, etc.). The 
features that we are explicitly representing correspond to that description. 
Starting from the wall, floor and ceiling volumes, we reconstruct the volumes 
that could be described as the rooms of the building. Our approach is to extract 
the closure of the model’s interior using regularized Boolean operations (Tilove 
and Requicha, 1980). Such operations produce uniquely closed volume and 
discard Boolean results of lower dimension (faces, edges or points). In other 
words, the closed volumes encapsulated by the inner parts of the structural 
elements are sought. The process consists in successively uniting the volumes 
of the scene (boxes of the walls, slabs, ceilings, etc.) so as to end up with 
either several connected components corresponding to the enclosed volumes 
and the shell of the whole input set, or simply one unique connected 
component if there is no enclosed volume. Thus, only indoor spaces with full 
closure can be reconstructed.  
            

 
Figure 4.8. (Left) Walls and the slab is forming the rooms of a building floor (the ceilings 
are hidden for the sake of clarity). (Right) Reconstructed rooms are resulting from the 
space closure of the structural elements. 
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Figure 4.8 shows an example of the resulting spaces from the room 
reconstruction process. After extracting the walls, slabs and ceilings in the form 
of closed volumes from the point cloud, we have to ensure that any of those 
elements have physical contact with its neighboring elements (Figure 4.8, left). 
Because Boolean operations are generally very sensitive to precision issues, 
the intersections between the structures are exaggerated to ensure the 
contact. This does not disrupt the generation of the indoor spaces as it 
guarantees the formation of the space closure where they should happen in 
the model (Figure 4.8, right). A limitation to this approach is that spaces which 
are not entirely bounded by structural elements will not be reconstructed. 
Furthermore, because our 3D models are reconstructed from the point cloud, 
areas that are not scanned may cause gaps that make it difficult to determine 
with certainty if there should be a closure or not, without prior knowledge of 
the actual building. 
 
The geometry of the volumes resulting from the process is similar to those of 
the space features that can be found in BIM models, such as the IfcSpace class 
in IFC. Such features do not purposely consider the indoor obstacles but 
maintains a spatial link of containment with them. In our case, as we rely on 
the FSS framework, we proceed to a further subdivision of the space in order 
to explicitly distinguish between the free and the occupied space. 

4.5.2 Identification of the occupied spaces (O-Spaces) and 
the remaining free space (R-Spaces) 

The indoor objects populating the space occupy a central role in the FSS 
framework as they are critical to indoor navigation applications, even more for 
emergency response. The point cloud which were classified as clutter during 
the modeling process are further classified to furniture (e.g., tables, sofa, 
chairs) and clutter (e.g., objects on the wall and ceiling, curtains, shelves), see 
section 4.4, from which larger pieces of furniture are selected and each is 
replaced by an oriented bounding box. In fact, as explained in (Diakité and 
Zlatanova, 2018), accounting for the detailed geometry of the furnishing 
elements would lead to error-prone Boolean operations and a too complex 
subspace geometry to work with, for a negligible added value. Thus, the 
simplification of furniture into OBB fits the purpose (see Section 4.4). 
Furthermore, the resulting simplified volumes correspond directly to the O-
Spaces as defined in the FSS, and spatially intersecting ones are aggregated 
into a single O-Space accordingly. Figure 4.9 (left) shows the O-Spaces 
contained in their respective spaces.  
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Figure 4.9. Obstacles identified as O-Spaces (Left). Non-occupied spaces identified as 
R-Spaces (Right). 

Subtracting the O-Spaces from the initial indoor spaces leads to the generation 
of the remaining non-occupied spaces (R-Spaces), which represent the space 
where all types of navigation can potentially be performed. Figure 4.9 (right) 
gives an illustration of the R-Spaces generated from the spaces of Figure 4.8, 
with a transparent view to make visible the parts of the spaces that have been 
carved accordingly to the detected O-Spaces. The carving operation is a 
Boolean difference between each room and the O-Spaces that it contains. For 
this reason, similarly to the walls and slabs, it is necessary to guarantee the 
spatial contact between the O-Spaces and their containing rooms to avoid 
having them as flying objects, because this would lead to empty set results 
from the Boolean operations. 

4.5.3 Identification of the functional spaces (F-Spaces) 

F-Spaces correspond to the spaces that are induced by the function of an 
object. Considering such parameters during the navigation allows taking into 
account the occupancy caused by the usage of indoor objects. From a more 
technical point of view, F-Spaces allows producing proper position nodes for 
agents concerning the function of indoor objects. For example, in a context of 
emergency response, F-Spaces of objects such as extinguishers would allow 
navigating the agent up to where the object would be accessible. Similarly, an 
F-Space of a highly flammable object would stand as a space to avoid during 
the navigation. However, the semantic level of our model does not allow to get 
enough information about the function of the furnishing elements. For this 
reason, F-Spaces are limited to the doors in this work.  
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Figure 4.10. Generation of the opening space and the F-Spaces of doors. (a) Original 
doors (blue) from the point cloud reconstruction intersecting with the wall (light yellow). 
(b) F-Spaces (wireframe) obtained by extruding the door volumes of the size of door 
width from both sides and intersecting them with the surrounding rooms and carving of 
the door spaces in walls. (c) Top view of the resulting F-Spaces (gold-yellow). (d) 
Opening spaces (orange) obtained as the intersection between the extruded doors and 
the wall which can be used as more accurate door volumes.  

From a navigation point of view, openings are transition spaces that connect 
two spaces. For openings such as doors, their F-Spaces can be seen as the 
space that is traversed when the door performs an opening movement or 
simply the space required to access and interact with it (open, close, hold, 
etc.). Therefore, a door has an F-Space in each part of the free spaces that 
surround it (in other words, from both of its sides). Figure 4.10 shows how we 
extract the F-Spaces for door features. The original doors obtained from the 
point cloud reconstruction, although not very precise, provide a good indication 
of the doors’ location and size. Thus, on that basis, we extrude them in both 
of their main sides to make sure that we reach the indoor spaces surrounding 
them (see Figure 4.10c). Hence, we perform Boolean operations again to 
extract their intersection with the walls which correspond to the opening spaces 
(it can also be seen as a better estimation of the actual doors, see Figure 4.10b 
and d, and their intersections with the R-Spaces which correspond to their F-
Spaces (see Figure 4.10b and c). 

4.5.4 Using the model to support indoor navigation 

An indoor navigation system requires several components, among which the 
most critical ones are a map combined with a spatial model and a localization 
technology. The former provides a spatial description of the environment that 
will be explored, and the latter allows to locate and track the guided agent 
along the suggested paths.  From the spatial model, a navigation network 
(graph) is extracted that reflects the connectivity of the spaces of the 
environment. Navigation and path planning algorithms will, therefore, rely on 
that graph to compute the paths that lead to a chosen destination from a 
chosen starting point, based on specific constraints (shortest path, fastest 
path, etc.). Most existing navigation systems rely on simplified networks to 
provide navigation services, which means a graph in which the nodes are the 
centroid of rooms in the building and the edges symbolize their connectivity. 
Simple topographic information of buildings (e.g., floor plan) is used to 
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determine, for example, which room is connected to which corridor, etc. This 
then leads to a connectivity graph that provides minimal insight into the reality 
of the indoor environment. A typical path resulting from such system would 
result in similar navigation instructions: “To go to room D from room A, go to 
room B, then corridor C and then get to room D.” Such guidance heavily 
assumes that the agents are aware of what room A, B, C and D are, which is 
not a reasonable assumption in the context of emergency response, where the 
first responders may interact with the environment for the first time.  

 

Figure 4.11. (Left) Simple connectivity graph that simply connects the spaces through 
their shared doors. (Right) FSS navigation network that uses F-Spaces and R-Spaces for 
a finer description of the indoor space. 

In contrast, fine-grained navigation networks provide more useful insight into 
the indoor environment and better support for advanced navigation systems 
(Afyouni et al., 2012). The 3D models resulting from our reconstruction 
process, enriched with the FSS framework, are suitable for supporting fine-
grained indoor navigation and can be used as spatial support. In fact, the nodes 
in our network correspond to the centroid of the navigable subspaces (F-Space 
and R-Spaces). Thanks to their semantic information and topological links with 
the occupied spaces (O-Spaces), the network offers finer and smarter 
navigation capabilities. Figure 4.11 shows an example of a simple network in 
comparison with the FSS network. The advanced network illustrated in Figure 
4.11 (right) is resulting from the convex subdivision of the R-Space to allow 
the generation of more nodes at navigable locations.  In comparison with 
(Gröger and Plümer, 2010) where a regular grid is proposed instead, our 
approach allows optimizing the subdivision with more nodes only where 
obstacles or objects of interest are located, keeping the size of the minimum 
necessary size of the graph. Indeed, our navigation networks, while providing 
all the possibilities of a basic connectivity graph, also offer the accessible areas 
in 3D through the R-Spaces. Furthermore, thanks to the available semantic 
information and with the identification of the F-Spaces, it is possible to derive 
paths with much more intelligence, considering the navigation context. For 
example, one could extract a path that maximizes the free space (to account 
for the equipment of first responders) while crossing as many extinguishers as 
possible on the way. Another advantage of the FSS as a fine-grained spatial 
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model, in comparison with other models, is the possibility to fully exploit the 
3D space and thereby enable the extraction of navigation graph for agents with 
a different kind of mobility (Diakité and Zlatanova, 2018). For example, a robot 
or a drone could be considered as agents and all the spaces close to the ground 
or the ceiling are then used to compute their dedicated paths. The subspaces 
in Figure 4.11 (right) result from the F-Spaces of openings and the R-Spaces 
(which are the free spaces that exclude the indoor objects and the F-Spaces). 
These latter are further subdivided into convex space cells to ensure that their 
nodes in the network lay exclusively inside their boundaries.  
 

 

Figure 4.12. Some advantages of the FSS in the navigation context. (a) A simple 
connectivity network that does not consider the space occupancy may provide position 
nodes that are not reachable to an agent (O-Spaces are wire-framed). (b) By relying on 
the R-Spaces, the FSS network provides exclusively position nodes where space is free 
of obstacle (O-Spaces are wire-framed). (c) The intersection between the O-Spaces (red) 
and the F-Spaces of openings (wireframe) indicates potential occlusion. 

Having nodes exclusively on free spaces makes a critical difference in terms of 
navigation, as illustrated in Figure 4.12. Indeed, as the navigation network is 
the support for path computation, if it does not reflect the indoor occupancy, 
the provided path may not be accessible to the agent. The network in Figure 
4.12a provides positions that are unreachable for an agent, as it is the place 
of O-Space. By relying on the FSS (mainly the F-Spaces and the R-Spaces), 
the positions provided by the network would guarantee unoccupied spaces (see 
Figure 4.12b). In terms of path planning, this means more reliable paths. 
Furthermore, when combined with other spatial properties of the subspaces 
such as their size or volume, it becomes possible also to estimate the suitability 
of the path regarding its accessibility and the navigation comfort it can provide 
to a given agent. The usefulness of the F-Spaces of the openings appears more 
when obstacles lie in front of openings (see Figure 4.12c). Indeed, in such 
case, the F-Space is truncated to reflect the occupancy. Such information can 
play a critical role in emergency response navigation, as it may indicate that a 
room is blocked or hardly accessible, mainly with equipment of important size.  
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Figure 4.13. Multi-story navigation network. (Left) The top view shows the slab of the 
upper floor and the simple network that links a room at the ground floor to a room on 
the upper floor. (Right) Front view of the generated multi-story network with the 
highlighted origin and destination spaces. 

Finally, because we could reconstruct the stairs and the space occupied by the 
staircases, we can generate a multistory navigation network, which is a 
challenging task from point clouds. Figure 4.13 illustrates a navigation path 
generated between two spaces at different levels of the building through the 
opening created in the slab of the upper floor. The latter was made similarly 
as the doors, by carving a hole using the staircase’s space. The FSS can be 
similarly applied to the model for a fine-grained multi-story navigation 
network.  

4.6 Consistency Check of the Model 
As the last step of our pipeline, we verify the consistency of our generated 
model against three defined heuristic constraints (C). The accuracy of the 
model regarding the detected doors, stairs and reconstructed spaces can be 
improved by this consistency check. The focus of this check is the validation of 
generated spaces in terms of navigation. The three constraints, which are 
checked on the data sequentially, are described as follows:  
 

C1. Each room should have an area larger than A m2 and a volume 
greater than V m3. 
C2. Each room should be connected to at least one door. 
C3. There should be a route connecting every pair of rooms in the 
graph. 

 
To verify C1, a 2D boundary projection on the xy-plane is generated for each 
reconstructed space. The area of the room is calculated and it should be larger 
than a threshold, its volume is also checked against another given threshold. 
This is necessary because, with the Boolean regularization approach, quasi-flat 
spaces can occur in thin gaps left by structural elements. Thus, only relying on 
the surface area would not allow invalidating such spaces. Once a room is 
validated, it passes for the next check. Otherwise, it should be flagged for 
further control. Later on, flagged items are returned for visual inspection 
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(4.2.2) to see whether a wall is mislabeled in the process. After correction, the 
pipeline is repeated to create a consistent model.  
 

 

Figure 4.14. Illustration of the constraint C2. A room (emphasized in bold blue lines) 
for which the node is connected to no other node of the graph characterize a missing 
door. 

The constraint C2 checks if each room is connected to at least one door. 
Otherwise, a missing door is flagged for the room. Although the door detection 
algorithm could have missed more than one door per room, a room without 
any door reflects necessarily a problem in the reconstruction. This is also an 
obvious limitation for navigation purposes. As illustrated in Figure 4.14, by 
relying on the navigation graph, it is straightforward to identify the problem, 
as it only requires detecting rooms associated with isolated nodes. Similar to 
C1, spaces detected in this checking are tagged for further improvement of the 
model reconstruction.  
 
The third constraint C3 verifies the connectivity of two spaces. It also relies on 
the navigation network and covers the cases that cannot be detected with C2. 
We assume that every two spaces in a correct 3D model should be reachable 
and connected through the navigation graph. Therefore, the process checks 
the existence of a path between every two rooms in the model. For example, 
if the connection of level n through the reconstructed stairs to the level n+1 is 
broken in part of the 3D model, it is possible to identify the broken path and 
fix it by generating a connectivity graph between two rooms in two different 
levels. This typically happens when the number of steps in the stairs is not 
reconstructed correctly and the stairs are not connected properly to the floor 
of each level. Similarly, if two rooms on the same floor are not connected, it 
can be because of a missing door or an invalid room.  

4.7 Results and Discussion 
We conducted our experiments on different types of buildings that go beyond 
the simple grid and regular structure. To demonstrate a full 3D reconstruction, 
the selected datasets cover a range of different cases such as the non-
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Manhattan World structures, slanted walls and non-horizontal ceilings, ramps, 
large glass walls, multiple floors and ceilings with different heights. To compare 
the robustness of our algorithm regarding different laser scanning systems, the 
data sets are acquired by various laser scanners and represent different ranges 
of noise (e) from 0.01 to 0.06 meter (Table 4.1). All the datasets contain 
furniture and a high level of clutter to evaluate the algorithms in terms of 
occlusion and missing data problems. We tested our workflow on four datasets 
(Table 4.1) and the results are represented in Figure 4.15. The data of three 
datasets is collected by mobile laser scanners and belongs to the project Smart 
Indoor Models in 3D (Nikoohemat, 2019). The Penthouse dataset is acquired 
by a terrestrial laser scanner which belongs to the related work (Mura et al., 
2016) and is selected to test our algorithm on slanted walls and ceilings. For 
one of the datasets (Fire-brigade 2), we use the professionally made BIM model 
for the comparison. The noise in the datasets collected by a mobile laser 
scanner varies between 4 and 6 cm. For pushing-cart systems, the data is less 
noisy than handheld devices.  
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Figure 4.15. 3D models of datasets in the table1. The left column shows the point 
clouds, masked by the spaces from the model on the right for a better interpretation. 
The right column shows the 3D models reconstructed with our pipeline (the colors are 
random). The datasets of Fire brigade #1 and #2 (3rd and 4th rows) are representing two 
floors. The first dataset belongs to the related work (Mura et al., 2016) and demonstrates 
how our algorithm is capable of handling slanted walls and reconstruction of dormers. 
For a clear visualization, volumetric walls and slabs are removed in the left images. The 
empty space between rooms on each floor is filled with volumetric walls. For 3D models 
with walls refer to other images.  

Comparison with IFC and related work. We compare our result with a 
professionally made IFC model for Fire brigade building #2. The results show 
that 95% of the rooms are reconstructed correctly. The precision and recall of 
the permanent structure are 91% and 95%, respectively. The calculation of 
precision and recall in Table 4.2 is based on comparing the labels per point 
which are manually labeled with the labels which are predicted by the 
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algorithm. F1-score is a harmony of the correctness (precision) and 
completeness (recall) of values for each class.  The room on the second floor 
has a curved structure wherein our planar reconstruction algorithm is 
reconstructed with smaller planar surfaces. The firetruck hall is extended from 
the first floor to the second floor and it shows that our algorithm can 
reconstruct a fully 3D model of spaces which are extended vertically. The ramp 
of the stairs is correctly detected and a staircase is reconstructed as a virtual 
space which connects the first floor to the second floor and the ramp is used 
for navigation purposes. Individual stairs are not reconstructed for this model 
because the stairs are scanned with a pushing-cart system only from the lower 
and upper floor which is not capable of scanning stairs consequently and 
adequately the data for all steps is not available. 90% of the doors are correctly 
detected and represented in Figure 4.15 and Table 4.1. The trajectory crosses 
most of the doors, just a few doors which are not intersected by the trajectory 
during the scanning are not recognized by our algorithm. One door is 
recognized as a false positive. The reason is a false positive wall which is 
crossed by the trajectory. The corridor on the second floor is separated into 
two spaces because of a false positive wall (Figure 4.15, upper row). The 
reason is that clutter in the ceiling was identified as part of the wall and was 
extended to the neighbor walls during the automatic extension process. 
Consequently, the corridor is subdivided with this wall. The rest of the spaces 
is correctly reconstructed. To see the spaces, refer to Figure 4.15, fire brigade 
building #2. 
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Figure 4.16. Comparison of a professionally made BIM model (left) with our model 
(right). The lower row is the 1st floor and the top row is the 2nd floor. Doors are shown in 
red. Most of the rooms are successfully constructed. The insets show the top view of the 
corridor, which is divided because of a false positive wall. 

  

BIM Model Our Model



Chapter 4 

105 

Table 4.2. The accuracy results for Fire brigade building #2. The results are calculated 
based on point to point comparison of manually labeled points with automatic 
classification. 

Class of the permanent structure Precision Recall F1-score 

Wall 0.90 0.96 0.93 

Floor 0.98 1.0 0.99 

Ceiling 0.88 1.0 0.94 

 
The second dataset for comparison is selected from the related work (Mura et 
al., 2016), which has a challenging structure with slanted walls, dormers, 
chimney and built-in bookshelves. Because the data is collected with a 
terrestrial laser scanner, the noise is less than one centimeter and the planar 
segments are finer than segments in other datasets. This is important when 
the algorithm generates the adjacency graph and later the minimum 
rectangles. The results show that our algorithm successfully reconstructs the 
dormers and slanted walls (Figure 4.17). The walls belong to the chimney are 
detected in our algorithm, but the chimney space is not reconstructed as space 
because the walls are not connected to the floor and it does not make an 
enclosure in the space (Figure 4.18, left). Our method reconstructs the green 
space in the left corner more accurately. Also, the empty space between the 
green room and the purple room is modeled more accurately in our model. The 
wall in the purple room is completely occluded by the built-in bookshelves 
(Figure 4.17 and Figure 4.18 right). A wall is added to enclose the space during 
the visual inspection. Note that detection of the doors in datasets which are 
acquired by TLS (Penthouse) is not part of this work. Therefore, the doors in 
Penthouse dataset are not reconstructed. 

 

Figure 4.17. The comparison of our method with the related work (Mura et al., 2016). 
The point cloud on the right is masked by the spaces from our model for a better 
reference. The red and yellow circles show the chimney and the built-in bookshelves in 
Figure 4.18. The chimney is not reconstructed in our model, and the wall behind the 
bookshelves is inserted manually.  

Penthouse (TLS) Mura et al [6] Our model 
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Figure 4.18. Special cases for modeling the penthouse dataset: Left is illustrating the 
chimney descended from the ceiling. The walls of the chimney can be detected in our 
permanent structure algorithm, but its space is not reconstructed because of 
disconnection to the floor. The right image shows the built-in bookshelves occluding the 
wall and the dormer, which are reconstructed correctly in our model (purple room in 
Figure 4.17). 

Visual correction. A visual inspection is performed after the labeling of the 
permanent structures. This mainly includes checking if some of the clutter near 
the ceiling are classified as wall and change the label to clutter. Additionally, if 
a space is not enclosed with walls because of large data missing or the 
occlusion similar to the built-in shelves in penthouse dataset (Figure 4.18, 
right), then a wall is added manually. In such cases, the thickness and the 
orientation of the wall are inherited from the adjacent walls. Additionally, our 
pipeline can export the volumetric walls and spaces to the standard BIM 
software formats such as Wavefront format (.obj) to import it into CAD 
software for further improvements, for instance, for adding windows. We 
calculate the time and percentage of operations for visual inspection for Fire 
brigade building #2 dataset. It takes 5 minutes per floor (for a floor with almost 
15 rooms) and less than 6% of the total number of segments are modified. 
 
Navigation graph. The navigation graph in this work is a connectivity graph 
to show the relation between 3D spaces, which are categorized into navigable 
and non-navigable using the FSS framework. Showing a turn to turn detailed 
graph is not our goal and it is addressed in many previous works. Our focus is 
showing the thorough process of subdividing the space into more semantic 
divisions using a model reconstructed from point clouds and considering 
obstacles and the full 3D space for optimal routing of different kind of agents. 
Additionally, we showed how the FSS-based navigation graph could improve 
the navigation by revealing doors occluded by obstacles (see Section 4.4) and 
also how it could help to improve the 3D model regarding the presence of the 
doors per space (see Section 4.5). If the connection between levels or rooms 
is broken in the navigation graph, further inspection will be performed. 
 
Important parameters. Parameters are reported in Table 4.3 and Table 4.4. 
The crucial parameters for permanent structure detection belong to the surface 

Chimney, Penthouse, (TLS) Dormer and built-in bookshelves 
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growing and adjacency graph, which are the smoothness and proximity, 
respectively. The smoothness parameter or point-to-plane distance in surface 
growing segmentation is chosen considering the noise of the sensor, MLS data 
acquisition noise and point density. For example, for handled scanners the 
noise is higher than pushing-cart systems and similarly for pushing-cart 
systems is higher than terrestrial scanners. For surface growing segmentation 
a threshold of 8 to 10 cm is chosen for MLS devices and a threshold of 4 cm 
for TLS devices (Penthouse dataset). The exact values are reported in Table 
4.4. The adjacency graph generates the best result with a threshold of 0.10 m 
for the proximity of adjacent segments. To classify the segments into almost-
vertical and almost-horizontal, the angle of their normals with the positive 
direction of z-axis is set to 45 degrees for most datasets. For automatic 
undershoot correction of walls, the extension threshold is set based on the 
data. Experimentally, this threshold should be less than the width of a narrow 
corridor. For most datasets, a value of 1.0 meter is optimal. During the 
reconstruction of volumetric walls, a value of 0.80 m is selected for the 
maximum distance of two parallel planes to be considered as one wall, and 
their normal vector should not deviate more than 5 degrees.  
 
Table 4.3. Parameters and their value for permanent structure reconstruction. 

Parameter Value 

Adjacency graph 0.10 m 

Maximum distance of wall faces 0.80 m 

Maximum angle deviation of wall faces 5 degrees 

Undershoot extension threshold 1.0 m 

Minimum # of points in a segment 500 points 

Max point distance for Conn. Comp. 
Analysis 

0.10 m 
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Table 4.4. Parameters for surface growing segmentation (Vosselman et al., 2004) and 
running time per dataset. 

Datasets # points 
(million) 

Segmentation 
time 

Point-to-
plane 

distance 
(meter) 

Surface growing 
radius 

and # of neighbors in 
kd-tree 

Fire 
brigade 

#1 

7.4 648 s 0.10 1.0, 20 

Fire 
brigade 

#2 

5.6 426 s 0.08 0.8, 20 

TU Delft 3.2 264 s 0.08 1.0, 20 

Penthouse 2.5 204 s 0.04 0.5, 20 

 
Runtime. All the algorithms are written in C++ and tested on a Lenovo 
ThinkPad workstation with an Intel core i7 (2.5 GHz, 16 GB RAM). Surface 
growing segmentation runtime is calculated per dataset and is reported in 
Table 4.4. The whole pipeline runtime, excluding segmentation, for a dataset 
with 7 million points and an average of 800 surfaces with 25 rooms takes 10 
minutes. Most of the time is devoted to processing pairs of adjacent segments 
to build the adjacency graph, extending segments to their intersection, and 
eventually merging both faces. Other algorithms operated on minimum 
rectangles such as reconstructing the volumetric walls, generating the spaces 
from enclosed walls, and the algorithm for the detection of doors and stairs 
take less than a minute. 
 
Limitations. Our volumetric reconstruction method for walls does not 
reconstruct columns in walls and walls with many intrusions and extrusions. 
Similarly, a wall with engraved windows such as façade walls are approximated 
by a planar surface and the details of windows frames are not reconstructed in 
the model. For the reconstruction of the permanent structures and to model 
the non-Manhattan World structures, our algorithm does not enforce any 
vertical, horizontal, or perpendicularity constraints. As a consequence, some 
walls can be slightly skewed when the surface is segmented with little clutter 
on the wall. However, this limitation does not jeopardize the space subdivision 
result and subsequent analyses. Some of the noise outside the building layout 
caused by the strong reflection of glass surfaces can disturb the detection of a 
permanent structure and lead to, for example, misclassified walls. However, 
the final 3D model is correct because these misclassified walls do not enclose 
a space during the reconstruction. Authors in (Nikoohemat et al., 2018a) 
propose a method to identify and to prune the noise of reflective surfaces as a 
solution, however, in this work, we did not apply their solution because the 
noise was not disrupting the final 3D model. The algorithm for stair modeling 
can fail if several steps are missing during the data acquisition. This can happen 
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because the BFS-search detects the longest path which is not representing the 
correct number of steps. Although, this problem can be disregarded if the data 
is scanned properly with a mobile laser scanner and the least amount of 
occlusion. Separating levels of the building using the trajectory is limited to 
mobile laser scanners which can go to the stair cases (backpacks and 
handheld). Therefore, for TLS and pushing-cart scanners the z-histogram can 
be used to separate the levels. Another limitation of using the trajectory is that 
in the presence of a lot of transparent surfaces can be problematic because 
laser rays penetrate to other levels, but yet it provides a coarse separation of 
complex buildings to the levels and stairs. Regarding the extraction of the room 
spaces, it is important to keep in mind that a lack of closure in the bounding 
elements of such spaces would not allow their reconstruction. While this can 
be seen as a limitation in highly occluded scenes, it remains a good indicator 
of the structural elements to reconsider for model correction or improvement. 

4.8 Conclusion and Future Work 
In this chapter, we introduced a complete workflow that allows extracting fine-
grained navigation networks from 3D models obtained through an advanced 
reconstruction process. The resulting model is meant to support disaster 
management and navigation in the context of emergency response. Since we 
generate volumetric walls and spaces, our results are also suitable to be used 
in BIM software for further improvements. Facility maps can be co-registered 
and included in our model for facility management. A safety audit can be 
performed without the need of sending inspectors to the building and this can 
be updated regularly for buildings, simply by scanning and generating new 
models. We use MLS devices for most of our datasets, which enable us to scan 
and generate the model on the same day. The generated model can be 
imported in CAD software and can be further improved by adding windows, 
missing doors, beams and columns. Firefighters can use the spaces to have an 
overview of the layout of different floors. When the spaces are enriched with 
the Object, Functional and Remaining (O, F, R) Spaces, a subspace-based 
navigation graph which reflects the indoor occupancy and functional spaces of 
indoor objects can be designed for supporting navigation of different types of 
agent. Our results show that 90% of the rooms are reconstructed correctly and 
this can be improved with a simple user intervention to 95%. We demonstrate 
a fully 3D reconstruction pipeline for multistory buildings with slanted walls, 
ceilings and ramps. The reconstruction of volumetric walls enables us to have 
a better geometry model close to IFC standards rather than thin-wall 3D 
models. Therefore, our pipeline can be an initiative for scan-to-BIM problems. 
Applying the closure-based method to extract spaces does not require the 
position of a scanner or a 3D cell complex partitioning. Moreover, the FSS 
approach provides a higher level of details for space subdivision comparing to 
previous 3D models. The consistency control constraints make sure that the 
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generated spaces are validated for navigation, and rooms are accessible from 
different locations in the building.  
 
Future work could include the automatic semantic identification and 
enrichment of the furniture. This would help in the creation of more advanced 
FSS models with more detailed functional spaces and would also allow 
automatic identification of the room function. The evaluation of the whole 
pipeline with a flexible navigation network for emergencies in a real case 
scenario is not a trivial task and needs cooperation of several stakeholders and 
is part of our future plan. Moreover, automatic reconstruction of other items 
such as windows, beams and columns are another important improvement that 
needs to be considered in our 3D models. Although we have introduced a basic 
process to check the consistency, more in-depth investigations for further 
constraints checking could improve the pipeline by additionally considering, for 
example, topological constraints on the 3D models reconstructed from the 
point clouds. 
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Chapter 5 - Consistency Control of Indoor 3D 
Models Using a Control Grammar 
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Abstract 
Indoor 3D models are a digital presentation of building interiors. Such 3D 
models are mainly reconstructed from 3D scans acquired by laser scanners and 
RGBD cameras. Because of the variety of algorithms in automating the 
reconstruction of 3D models, it is difficult to validate the correctness of final 
model and its suitability with the application. On the other hand, there are 
standards such as BIM, IFC and ISO 19107 which can guide the engineers 
when modeling the buildings. However, there is not any consistent approach 
which in the lack of ground truth to apply automatically on a certain model and 
to verify its consistency. We propose a conceptual framework based on formal 
grammars to control the consistency of a 3D model (generated from scans) in 
terms of semantic, geometry and topology. The proposed solution starts with 
the decomposition of the model to its composing components and takes three 
steps to validate the model: 1. Checking the correctness of individual instances 
in the model (e.g., a wall object), 2. verifying the consistency of the instances 
in interaction with each other (e.g., a door on a wall) and 3. the consistency of 
the model for the application (e.g., navigation). Our method does not fix the 
problem but by using a control grammar (in)validates the components in the 
model given the rules form the current standards and expert knowledge. A 3D 
model is consistent if it passes all three steps. Otherwise, in each step it is 
rejected with the flagged components. This proposed framework acts as a 
compiler for validation of 3D models regardless the level of details and 
reconstruction method. 
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5.1 Introduction 
In recent years there has been an impressive progress in indoor data collection 
technologies such as mobile laser scanners and RGBD scanners. Such sensor 
systems that provide high quality images, point cloud and depth information 
enable us to reconstruct and update indoor 3D models through semi-automatic 
and automatic methods. These models are digital representation of the 
buildings interiors and are useful for architectures and engineers in planning 
and construction. Indoor 3D models are reconstructed from different sources 
such as floor plans, images, LIDAR and RGB-Depth data using automatic 
approaches. Exploiting multiple sources and automatic approaches make such 
models inconsistent in terms of current standards. Although, existing 
standards and data models such as industrial Foundation Classes (IFC), ISO 
16739 and ISO 19107, CityGML and IndoorGML (Gröger et al., 2012; ISO, 
2019, 2018; Lee et al., 2014) provide a suitable guideline to generate 3D 
models, the complex structure of indoor environment and noisy data obstruct 
the creation of a consistent 3D model in an automatic workflow. The question 
is how we can have a systemic way to check the consistency of our model 
without the presence of ground truth and with the minimal interaction of 
humans. 
 
The generated model should comply with standards of current indoor models 
(IndoorGML, CityGML, IFC) considering the geometry, topology and data 
models of entities to provide a reliable platform for applications such as 
evacuation and safety management in large buildings. Obviously, some of the 
consistency checks could be inherited from standards but sometimes the 
generated 3D models do not follow any specific standard but yet they are giving 
a thorough overview of the building and interiors (Ikehata et al., 2015; Xiao 
and Furukawa, 2014). However, a correct and consistent indoor 3D model can 
be used for many applications. Indoor 3D models can differ regarding the 
applications or the standards which they comply with. For example, for 
navigation applications and considering IndoorGML standards, reconstructing 
indoor spaces and doors should be suffice and reconstruction of walls is not 
necessary. On the other hand, according to the BIM models, walls are 
important components of a 3D model and should therefore be reconstructed in 
volumetric shapes. Similarly, when considering the energy consumption of 
buildings for heating purposes a model with the presence of windows and air 
outlets is necessary. 
 
A 3D model can have different level of complexity regarding the application, 
the reconstruction method and the input data. Using a 3D model for 3D GIS or 
BIM applications can lead to different representation of the geometry 
primitives. Integration of models between CAD and GIS has been studied in 
the literature (de Laat and van Berlo, 2011; Pu and Zlatanova, 2006).  
Similarly, standards (e.g., IFC, CityGML and IndoorGML) provide a guideline 
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that how a 3D model should be in terms of geometry and semantic for more 
specific applications such as construction or navigation. However, it is not 
trivial to check the consistency of a complex 3D model against a specific 
standard because all the components should be present in the model otherwise 
the comparison is rejected at the first place. For example, a 3D model which 
represents walls as surfaces and does not provide spaces is not compatible 
with both IFC and IndoorGML, yet could be a consistent model for specific 
applications. Therefore, we need a system which checks 3D models against 
some common knowledge present in the building language as well as existing 
standards. Such a system should not be sensitive to the type of geometry and 
should be scalable and adaptable to different applications. The tool that we 
choose for this purpose is a type of formal grammar where the components of 
a 3D model compose the symbols in the grammar, we name it the control 
grammar, and the constraint rules are controlling the consistency of the model.  
 
Previous works verify a model by comparing them against ground truth either 
with a point-to-point comparison (Lehtola et al., 2017) or plane-to-plane 
comparison (Tran et al., 2019). The consistency of an indoor 3D model consists 
of completeness and correctness and should be checked in terms of topology, 
geometry and semantics even there is no ground truth. While completeness of 
the model is more dependent on external resources for example knowing the 
correct number of rooms, the correctness of components can be controlled 
individually and in relation with each other. From mathematical point of view 
geometries and their topology can be validated. Staircases and floors, for 
instance, are disjoint or connected. Each floor is coveredBy rooms and each 
room has at least one door. For example, if the accessibility of rooms and 
interiors to an (emergency) exit is defected because of topological errors in the 
model then the indoor navigation for evacuation fails. The control grammar 
does not correct or change the components but identifies, formalize and (in-) 
validate the inconsistency of components in relation with each other and their 
semantic. A control grammar acts as a compiler for 3D models and after 
parsing the 3D model to components analyses the correctness of them in three 
phases: individually(instances), in interaction with each other, and in 
application. Incorrect components are flagged and rejected to previous steps 
(e.g., semantic labeling or geometric modeling) for further check. The 
correction of inconsistent items is based on the judgment of the modeler and 
can be corrected manually or automatically. However, our system allows some 
of the constraints be passed if they are not crucial for the integrity of the 3D 
model. For example, if a model allows gap between the rooms because the 
walls are not modeled, then this can be passed to the system and system 
continues with further checks. 
 
In this chapter, we introduce a control grammar which allows one to use 
different geometric representation and source of data for 3D model 
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reconstruction and yet be able to identify, formalize and verify the consistency 
of the model. Our formalization is independent on standard specifications and 
can be extended into a variety of applications.  
 
The following of this chapter is as follows: section 5.2 gives an overview of the 
current methods for indoor 3D modeling from the literature and compare some 
of the methods. Section 5.3 explains the methodology of our work and section 
5.4 gives some examples to illustrate the problem and solution. Section 5.5 is 
conclusion and future work. 

5.2 Scientific background 
Indoor models have been investigated from two main perspectives: indoor 
model reconstruction and indoor model applications. While the former studies 
the methods for building 3D models (façade and indoor) from the data such as 
RGBD, LiDAR and imagery, the latter tries to improve indoor model standards 
such as Industry Foundation Classes (IFC), CityGML (LoD4, LoD3) and 
IndoorGML. However, one important aspect of indoor 3D models is their 
consistency which is not addressed sufficiently in the literature. Gröger and 
Plümer, (2009) study how to preserve the geometric-topological consistency 
of 3D city models. Some of their solutions on primitive shapes geometry and 
topology can be applied for indoor objects but it is not suitable for complex 
indoor scenes. Horna et al., (2009) use Generalized Maps (G-map) as a 
topological basis to define a set of constraints for keeping the consistency of 
3D models generated from 2D floor plans. Their solution is interesting in terms 
of applying the constraints to keep the production process generic to various 
type of buildings but it is only usable for models generated from floor plans. 
Gröger and Plümer, (2010) introduce a Constraints Store for derivation of 3D 
indoor models by grammars. The constraint store prevents errors to contradict 
with consistency-reachability rules. For instance, by using the grammar, a new 
split face should not traverse a door inserted with previous rule. These 
constraints are generated by rule applications and explicitly formalize the 
concepts of adjacency, reachability and semantics. Their proposed constraint 
store maintains three main rules: 1. Equality Constraints that means two boxes 
share the same face or wall. 2. Aggregation Constraints means face F is the 
aggregation of face F1 and F2 where F is split with a face or wall. 3. Inside 
Constraint that means face F1 is inside face F2, for instance a door inside a 
wall. Their solution is a good example of using grammar to keep the 
consistency of a model during the production process. However, the proposed 
approach has no example of a real case study or a data-driven model and 
applying their methods on non-Manhattan World buildings can be challenging 
because of the box representation for rooms. 
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In using grammar approaches for 3D modeling, Becker et al. (2015) use an L-
System combined with a shape grammar to reconstruct interiors from point 
clouds. The authors define interior structure as two main subdivisions: rooms 
and hallways. Per each structure, they apply a specific grammar to reconstruct 
the interior environment. Another example of using grammar is given by 
Ikehata et al. (2015). They encode indoor space first into a structure graph 
and then transform it to a structure grammar. Their work is a practical 
representation of inverse procedural modeling for indoor environments but 
limited to Manhattan-World structures. Split grammar is the famous method 
proposed in instant architecture by Wonka et al., (2003) to automate the 
process of urban design for a variety of building styles. The authors claim that 
the power of split grammar lies in the restriction of allowed rules that allows a 
control on the derivation process while keeping it simple. Similarly, procedural 
modeling is used by several researchers for façade modeling and indoor 
modeling but in most cases they produce synthetic models for virtual cities and 
gaming applications (Aliaga et al., 2016; Mathias et al., 2011; Müller et al., 
2006). There are some recent examples for indoor modeling and using 
grammar which result in more complex models from point clouds (Dehbi et al., 
2016; Tran H. et al., 2019) or inferring the semantics of rooms (Hu et al., 
2019), but none of these methods offer a complementary solution to check the 
correctness of the final model. Figure 5.1 illustrates the evolution of grammar 
applications from the early stage to this time. The figure shows that shape 
grammar has increasingly been used in building architecture and modeling. 
Therefore, we decided to apply grammar for consistency control of the 3D 
models. Note that our suggested grammar, unlike the mentioned grammars, 
does not apply production rules to create a 3D model, but it uses rules to verify 
the components of a model. 
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Figure 5.1. The figure illustrates the application domain of grammar since the 1950’s. 
The evolution of grammar births with language grammar and continues in design and 
building architecture as well as computer graphic. The application in indoor modeling 
domain has started since 2006 which expresses the novelty of research. 
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Apart from grammar approaches for indoor 3D modeling, there are other 
methods such as piecewise planar reconstruction (Mura et al., 2016), mesh 
based methods (Xiao and Furukawa, 2014) and binary space partitioning 
methods (Ochmann et al., 2016). Each of the methods result in different types 
of models and levels of details. We classify these models into three main 
categories based on the type of and the existence of the walls: 1. Models with 
volumetric walls, 2. Models with paper-thin walls or surface walls, and 3. 
Models with no wall and just room representation. Table 5.1 shows the present 
layers in each model from the literature and Figure 5.2 categorizes them based 
on the type of the wall. Also, we included IndoorGML and IFC in Table 5.1, to 
compare their differences.  
 
Another important aspect when studying the indoor 3D models is the data 
stream from which the model is created. Most of the models presented in this 
related work and those which are the focus of this research are created from 
point clouds and RGBD images (Furukawa et al., 2009; Mura et al., 2016; 
Nikoohemat et al., 2019; Ochmann and Klein, 2019). However, our suggested 
solution can be useful as well for models generated from inverse procedural 
modeling methods and from floor plans (Horna et al., 2007; Okorn et al., 
2010). As long as the 3D model can be decomposed to its reconstructing 
components and can be parsed into our grammar, it can be used in our 
framework. 
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Table 5.1. Comparison of existing layers in 3D models in the literature and the difference 
in modeling of walls. Note that this comparison is based on the authors’ interpretation of 
the models. The algorithms in the original literature may produce more details. 

 

 
Wall  Floor/Ceiling  Door  Window  Stairs  Rooms 

IndoorGML  no wall  yes  yes no yes yes 

IFC  volumetric  yes  yes yes yes yes 

Budroni And Boehm 
(2010) 

paper‐thin  yes  no  no  no  no 

Xiong et al (2013)  paper‐thin  yes  yes  yes  no  no 

Mura et al (2014)  paper‐thin  yes  no  no  no  yes 

Oesau et al (2014)  paper‐thin  yes  no  no  no  no 

Xiao and Furukawa 
(2014) 

volumetric  yes  no  no  no  no 

Turner et al (2015)  no wall  yes  no  no  no  yes 

Ikehata et al (2015)  paper‐thin  yes  yes  no  no  yes 

Becker et al (2015)  paper‐thin  yes  no  no  no  no 

Mura et al (2016)  no wall  yes  no  no   no  yes 

Ochmann et al (2016)  volumetric  yes  yes  yes  no  yes 

Ambrus et al (2017)  no wall  yes  yes  no  no  yes 

Macher et al (2017)  volumetric  yes  no  no  no  no 

Murali et al (2017)  paper‐thin  yes  yes  no  no  yes 

Wang et al (2017)  paper‐thin  yes  no  no  no  yes 

Wang et al (2018)  paper‐thin  yes  yes  yes  no  no 

Nikoohemat et al (2018)  no wall  yes  yes  no  no  yes 

Ochmann et al (2019)  volumetric  yes  no  no  no  no 

Tran et al (2019)  paper‐thin  yes  no  no  no  yes 

Nikoohemat et al (2019)  volumetric  yes  yes  no  yes  Yes  
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Figure 5.2. Comparison of different 3D models in the literature. Indoor 3D models are 
categorized in no-wall, paper-thin wall and volumetric wall. This category is based on 
the author’s interpretation of the final models and is just an example for comparison of 
the models. The algorithms in the original literature may produce more details. 

5.3 Methodology 
Given a 3D model, the goal is to check the consistency of the model. A 3D 
model is a digital representation of the building interiors created from point 
clouds, RGBD images or floor plans. The consistency aims at checking the 
correctness and completeness of the model in the lack of ground truth by 
relying on the expert knowledge and existing standards. 
 
First the model should be stored in a (context free) grammar structure. Here 
we explain several keywords. For clarification purpose a class is referred to as 
any component in the 3D model either abstract or real such as a permanent 
structure (a real component), or a space (an abstract component). An instance 
refers to an object of a given class. For example, each room is an instance of 

Volumetric Walls

No-Wall Category (space representation) 

Paper-thin Walls (surface representation)
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the space class or each piece of furniture is an instance of furniture class. 
Symbols are terminals, non-terminals and the axiom in the grammar. 
Constraints are rules in the grammar. A 3D model can be represented as a 
vector model (mesh, polyhedron, etc.) or a raster (e.g., voxel). It can be 
acquired from digitizing floor plans and converting them to a 3D model, or from 
depth images or from Lidar scans. A 3D model should at least show the layout 
of spaces and interiors. According to Table 1, each model may have one or 
some of the below classes. In total, eight classes are considered in our 
grammar for the consistency control.  
 
1. Permanent structure classes including walls, floor and ceiling are three 

classes. 
2. Openings including doors and windows are considered as two classes. 
3. Furniture, obstacles and objects are considered as one class. 
4. Spaces or rooms are considered as one class. 
5. Stairs or staircase are one class. 
 
Note that rooms or spaces are the only class which can be abstract components 
and can be represented by the surrounding structure elements such as walls. 
Real components can be represented by geometric objects such as solids, 
surfaces and boundary representation. In the following, first we explain the 
components of control grammar and then the method for applying the 
grammar on a 3D model. 

5.3.1 Control Grammar 

Our grammar is a four-tuple G= (N, T, R, S) including set of non-terminals (N), 
set of terminals (T), set of constraint rules (C ϵ R) and a start symbol (S). Each 
rule is the form of a → b where (a, b) ϵ (N, T). Terminals and non-terminals 
are geometric primitives or geometric complex. For example, a wall can be 
represented by a solid (GM_Solid, ISO 19107 Standard for Geographic 
Information) or a surface. Rules are extracted from standards such as ISO 
19107, IFC and IndoorGML and applied as constraints meaning they are not 
production rules. Each rule only (in)validates the objects in the model against 
a given constraint. Some of the rules have preconditions meaning a rule cannot 
be applied if the precondition is not satisfied. The constraints control the 
consistency of the 3D model in terms of topology and the integrity of the model 
in terms of interaction between instances. 
 
A Manhattan Free Grammar: since most of the models in the recent 
literature are non-Manhattan and could have arbitrary wall layout, hence, our 
grammar does not enforce orthogonality and parallelism constraints to any of 
the geometries. A wall can be slanted and have arbitrary intersection angle 
with adjacent structures. However, one can include these constraints for the 
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aesthetic aspect of the model. For example, it can be included in the grammar 
that walls should be perpendicular to the building façade and to the floor. 

5.3.2 Applying the grammar on a 3D model 

3D models can be acquired from different sources and by using different 
methods. First, we explain a common approach for creating 3D models from 
point clouds. Having a dataset of point clouds from interiors, most of the 
algorithms extract permanent structures (walls, floors and ceilings) using 
methods such as cell complex, adjacency graph, piece-wise planar 
reconstruction followed by a room segmentation approach to create a 3D 
model. Some related works take it further and add more details such as 
openings, windows and stairs. Figure 5.3 shows a general workflow of 
extracting geometric primitives from point clouds and then adding semantics 
to provide a coarse 3D model. Our control grammar comes to the play at this 
stage and checks the components of the model concerning their geometry, 
topology and semantics. The assumption of our work is that we do not have 
external sources or ground truth for the consistency check and it is based on 
the common knowledge, existing standards and self-control. Any component 
which is rejected should be returned to an early stage of reconstruction (e.g., 
geometric derivation) and can be checked manually or if it is possible 
automatically for corrections. The process of correction is not part of the control 
grammar and it is related to the reconstruction algorithm. The objective of a 
control grammar is identifying inconsistency in the model. 
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Figure 5.3. Flowchart for proposed methodology. Colorful shapes represent main steps 
in the creation of a consistent 3D model. 

The rules check the validity of the component individually and in relation with 
other components in terms of geometry, topology and semantics. Before 
applying the rules, a 3D model parser decomposes the model into composing 
components where they are stored in the grammar (Non)Terminals. Then rules 
are applied on non-Terminals as instances or a pair of interacting instances. 
When an instance is not valid it is flagged as invalid and will not be checked 
further until the issue is resolved and it is returned to the geometric derivation 
step in the flowchart (Figure 5.3). However, some of the checks can be flagged 
as valid if the user (operator of the system) decides to pass the instance. We 
consider such rules as softer rules that can be relaxed to allow a certain amount 
of satisfaction, e.g., a door can be disjoint of the floor up to a threshold. This 
serves the flexibility of the system in terms of applications and the purpose of 
the modeling. 
 
The control grammar is applied in three main steps (Figure 5.4):  
1. Instances: meaning single components in the 3D model are controlled 

independently. 
2. Interactions: proximate components which interact with each other are 

controlled. 
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3. Application: components are controlled based on the application of the 
model. 

 
Each of above steps enforce some geometric, topological and semantic 
constraints inferred from the standards or which are defined by the experts. In 
the next subsection we explain how starting from a 3D model each of the steps 
can be applied. 
 

 
Figure 5.4. Three stages of consistency control. In first two stages, three characters of 
instances is checked individually and in interaction with each other. In the third stage, 
instances are checked considering the application.  

5.3.3 A 3D-model parser 

The control grammar takes the 3D model as input and decomposes it to the 
constituting classes. Each class has instances and each instance has attributes 
such as bounding box, local coordinate, color and so forth. This is the task of 
parser to recognize each instance in a class and store it as a non-Terminal 
symbol with the class name as the attribute. Note that the parser does not 
need to infer the type of class for each instance and this information should be 
provided in the model. For example, walls and doors have different labels in 
the original model. Some of the attributes such as volume can be calculated 
from the solids and stored with the instance in the non-terminal set. Other 
attributes should be provided with the geometry or if necessary, filled manually 
in the related fields, for example, the correct number of rooms in the model, if 
is known, or the number of steps in stairs. Attributes include but not limited to 
volume, area, width, height, length, color, location, function (kitchen, corridor, 
…), type (abstract, real), scope (permanent, temporary), number of levels, 
number of steps, number of rooms and materials. During parsing, the user can 
add more semantic to the component which would be useful for control 
grammar, for example separating façade walls from internal walls which can 
define the external shell of the building. Each instance per class is a geometric 
primitive or a geometric complex and is stored in a set of non-Terminals (N), 
where it is selected and checked with the constrained rules in the grammar. 
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5.3.4 Consistency Control of Instances  

Since non-terminal instances correspond to 3D geometric entities, their validity 
should be ensured independently of each other. This can be done from a 
geometric, topological or semantic perspective. Geometric and topological 
validation of 3D objects is a well explored issue in the literature. This 
knowledge served as support to standards commonly used in GIS such as the 
ISO 19107. The latter specifies conceptual schemas for spatial description and 
consistent operations for (up to 3D) vector geometry and topology of 
geographic features. In this work, we will rely on the specifications of the ISO 
19107 to define valid spatial entities (similarly to IFC and CityGML). A 
comprehensive study on the validation of solids is also presented in (Ledoux, 
2013). 
 
Based on our definition of 3D models, three types of geometries can be 
expected: (i) surface, (ii) volume (solid) and (iii) complex. At the beginning of 
the instance check process, every instance is initially assumed to be invalid. 
Hence, independently of its semantic nature, checking the geometric and the 
topological consistency of a non-terminal instance consists in applying several 
geometrical predicates (such as orientation or closure tests, etc.) that should 
result into Boolean results (true or false). In the case of surface elements like 
polygons, examples of predicates include simplicity check (the boundary of the 
polygon should not self-intersect or contain duplicated vertices), or degeneracy 
check (surface area should not be null), etc. In the case of volume elements 
like polyhedron, they should match the definition of a solid (Gröger and Plümer, 
2009; Ledoux, 2013).This includes conditions such as their boundaries should 
be composed of valid polygons and they should form a full closure of the space. 
Checks that applies to polygons may also apply to polyhedron, with one more 
dimension to be considered (e.g., degeneracy test of a volume is to test 
whether it is a flat volume, with a magnitude null). Criteria that define valid 
3D polygons and polyhedra can be found in the standards (ISO 19107, OGC, 
Ledoux 2013, etc.). Every check that results into a positive result would change 
the validity state of a non-terminal to true. Otherwise, the invalid instance is 
flagged and may be considered for a correction process. Complex objects 
consisting of several primitives, such as an L-shaped wall or stairs, need to be 
decomposed to simpler geometries in order to validate them. 
 
Finally, the semantic control of an instance includes validating the instance 
knowing its semantic, class or function. This is rather more difficult than the 
two other checks on geometry and topology because there are less semantic 
standards for objects. By referring to IFC standards (e.g., IFCWall or 
IFCWindow), it is possible to infer some of the rules for the instances. Similarly, 
by using IndoorGML standards, we can check the sanity of indoor spaces and 
rooms (Cellular space in IndoorGML). Examples such as a wall is a vertical 
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element which bounds rooms and subdivides the space can be interpreted from 
the IFC standards. Likewise, a room should not be smaller than a certain 
volume or height are types of rules which can be inferred for semantic control 
of the instance. 
 
The instance control grammar is summarized in Algorithm 1. Note that, Non-
Terminals (N) are primitives containing the class type and extra attributes, 
such as bounding box, color, and height, which can be obtained with getters 
functions (lines 7 and 8 in the algorithm).  The case of a rule can be defined 
as r Ꞓ R, X → valid | invalid <C> {E} where the C Ꞓ R applies the constraints 
and E returns the type of error in case of invalid results. Rules (R) are a 
collection of Rs as semantic rules and Rg.t as geometric and topological rules. 
Note that the selection of a rule from the set of rules is decided based on the 
geometry and the class of the instances. The result of this step is a set of 
invalid instances with the type of error which needs to be resolved by the 
expert decision before proceeding to the next step (interaction control). 
 

 

5.3.5 Consistency Control of Interactions  

The non-terminals from the previous step are validated individually considering 
their geometric, topological, and semantic information. Here, the grammar 
controls two instances either from the same class or from different classes in 
interaction with each other. Although, from a general perspective, all instance 
interactions correspond to spatial relationships, thus topological relations, the 
difference of geometry, topology, and semantics of the instances lead to more 



Chapter 5 

127 

specific types of interactions. For example, when checking the intersection 
between two volumes, the geometric and topological information prevail in the 
interaction. On the other hand, a semantic check is related to the interaction 
of instances considering their class type. For example, a furniture cannot be 
dangled in the model without attachment to a room or a permanent structure. 
Several topological models allow to extensively describe the spatial 
relationships linking the instances. Here we rely on the 9-intersection model 
(Egenhofer and Herring, 1990; Zlatanova et al. 2004) (see Figure 5.5) in our 
grammar to describe the valid and invalid interactions. Valid interactions 
include:  
 

{disjoint, meet, coveredBy} Ꞓ R <C> 
 
Where R are rules defined by constraints C. The remaining relationships will be 
considered as invalid for interaction of two objects. For example, a room is 
coveredBy a furniture but a wall is met by a door. The meet relation happens 
when the boundaries of two 3D objects meet but not their interiors (Zlatanova 
et al., 2004).   
 

 
Figure 5.5. 9-intersection model for controlling the interaction of classes and possible 
relationship between 3D objects (Egenhofer and Herring, 1990; Zlatanova et al., 2004). 

A handy way to map the instance interactions is to use an interaction matrix. 
Table 5.2 illustrates one that lists few selected classes and shows their 
interactions, considering the information of their individual instances. Each row 
i and column j of the matrix refers to an instance in a specific class and each 
cell Cij correspond to the interaction rule of an instance Ii with respect to an 
instance Ij. While an instance cannot be compared with itself, the instances of 
the same class can interact with each other. Therefore, the diagonal cells on 
the matrix are not empty. 
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The colors used in Table 5.2 allow to determine the level of interaction that can 
be expected between two instances. A green cell Cij means that Ii must interact 
with Ij. This is the highest level of interaction constraint that makes the 
instance Ii invalid if it is not fulfilled. As an example, a wall instance is 
necessarily expected to touch other wall and floor instances. This corresponds 
to the meet relationship in the 9-intersection model. Similarly, the red cells 
represent interactions that should not happen, or said differently, disjoint 
relations. Otherwise the instances are flagged, as invalid. Yellow cells describe 
the most flexible constraint as the interaction of the two instances can 
eventually happen if some conditions are satisfied or may simply not happen. 
In both cases, that does not mean there is a problem, unless the identified 
relationship is an invalid one (e.g., overlap). For example, in some architectural 
designs a door and a window can meet. Therefore, yellow cells in the matrix 
can change to either green or red based on the expert decision and the building 
architecture. 
  
The interaction matrix is translated to a graph where instances are the nodes 
and their interactions are edges. Nodes are connected by solid lines 
representing the green cells and by dashed lines representing the yellow cells. 
Clearly, for red cells no edges exist. Figure 5.6 shows how the colors are 
translated to the edge type in the graph. Green and yellow cells represent that 
two instances are adjacent and the line is a dashed line if the connection is 
conditional. We included three higher level of interactions in the grammar rules 
as a subset of meet in the 9-intersection model: 

{support, supported, attachment} Ꞓ <meet>  
 
A support relation happens when one object is not only adjacent and meet 
another object but also supports the object. A supported object always needs 
the adjacency of its supporter. For example, a lamp is always supported by a 
wall or ceiling or another furniture. An attachment happens when a room is an 
abstract component in the model and is represented with surrounding 
instances such as walls. For example, furniture always should be attached to a 
room. Similarly, for adding material and texture, there is no spatial relation 
and the connection is of the type attachment.  
 
Figure 5.7 shows the translation of interaction matrix (Table 5.2) to the graph. 
This graph is an abstraction of a 3D model. Such a representation of classes 
and their instances in the form of a graph is scalable because the experts can 
add more nodes and can define the connections, such as adding furniture types 
or beams. A real graph which exactly reflects all the components in a 3D model 
looks much more complex, as each node represents an instance. Thus, for 
example, for each wall or door object there should be a separate node in the 
model. In the experiments section, an example of such a graph is shown.  
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Table 5.2. The interaction relation between instances of each class. Interactions can 
occur for adjacent objects.  

Interaction matrix wall floor ceiling door win. stairs room furnit. 
wall 

             
floor 

             
ceiling 

           
Door/opening 

                
window 

              
stairs 

                
room 

                
furniture/ clutter*            

* At least one of the yellow interactions should be met. This means a piece of furniture 
at least should have a connection (support or supported by) to one of the permanent 
structures or to another furniture. 

 

 

Figure 5.6. the description of cells in Table 5.2. 

graph edge type of adjacency color  description 

solid line Must be connected. 
adjacent = share a common face 
or an edge

dashed line Conditional connection
conditional = for example 
through an opening 

no line ‐ No connection not‐adjacent
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Figure 5.7. The adjacency graph of classes. Some of the relations in the Table 5.2 are 
not shown for the simplicity of the graph. According to Table 5.2, almost all instances 
can be connected to the room. Edges with solid lines imply that two instances must be 
connected and dashed edges show the optional connection between two instances. 

The interaction control grammar is summarized in Algorithm 2. The algorithm 
traverses all the edges, and for each edge (e) the nodes (u, v) are selected. 
Similar to instance grammar, the class type and geometric type of the nodes 
(instances) are derived from the attributes and the corresponding cell in the 
interaction matrix can be identified. When the interaction type is recognized 
(green, yellow and condition), the corresponding rule(s) can be applied. Note 
that the applyRule function (line 7) in the algorithm is not limited to one rule 
but can sequentially check several constraints for the connection of the nodes. 
For example, a door and wall connection is verified in terms of geometric, 
topological, and semantic constraints. The output of the interaction control 
grammar is a set of errors reflecting the edge (and corresponding nodes) and 
type of errors. This step is passed if the error set is empty, meaning all the 
edges and their corresponding nodes are valid. 
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5.3.6 Consistency Control of Applications 

The last step of our pipeline consists of controlling the consistency of the model 
with respect to criteria specific to given applications. While the two previous 
steps can be considered as generic constraints commonly accepted for 3D 
models, the rules in this part of the grammar are more specialized to 
application domains. Consequently, a 3D model invalidated by this step for one 
application does not necessarily imply its invalidity for another application, and, 
vice-versa, the same applies to validated models.  As an application example, 
we choose indoor navigation and define corresponding rules. We control the 
consistency of our generated model against a set of defined heuristic 
constraints (Ci), targeted to specific instances or combinations of instances 
critical to indoor navigation (e.g., detected doors, stairs and reconstructed 
spaces). The correctness of the model regarding those instances can be 
improved by this consistency check. The constraints, which are checked on the 
data sequentially, are described as follows:  

 
C1. Each room should have spatial extents L, W and H greater than a 
given threshold. 
C2. Each room should be connected to at least one door. 
C3. There should be a route connecting every pair of rooms in the 
graph. 
C4. Two floors are connected via at least one staircase 
C5. Each space should have access to the exit door 
C6. Emergency doors should not be blocked. 
Optional constraints: 
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C7. Angular arrangements (e.g., all the corridors have the same 
turning angle) 
C8. Wall thickness operations (e.g., all interior walls have the same 
thickness) 
C9. Aesthetic operations (e.g., all doors in corridors have the same 
type) 

 
The verification of C1 is necessary to make sure that rooms are spacious 
enough for navigating agents to fit them in. In fact, due to different methods 
possible for indoor space reconstruction, it can happen that reconstructed 
volumes are too narrow to be even considered as a space. Thus, this constraint 
helps detecting such features and guaranteeing that only reasonable paths will 
be delivered in the navigation process. While their threshold values can be 
determined based on input information of the navigation or generic 
assumptions (e.g., average human size), the estimation of the spatial extents, 
namely the length (L), width (W) and height (H) is not always trivial, in 
particular in non-Manhattan configurations, but extent checking on bounding 
boxes of rooms may often be enough. Once a room is validated, it passes for 
the next check. Otherwise, it should be flagged for further control. After 
correction, the pipeline is repeated to create a consistent model (see Figure 
5.3).  
 

 
Figure 5.8. Illustration of the constraint C2. A room (emphasized in bold blue lines) for 
which the node is connected to no other node of the graph characterize a missing door. 

The constraint C2 checks if each room is connected to at least one door. 
Otherwise, a missing door is flagged for the room. Door detection is a 
challenging process in 3D indoor reconstruction from a point cloud. However, 
although available algorithms could miss several of them in a scene, a room 
without any door reflects necessarily a problem in the reconstruction. This is 
also an obvious limitation for navigation purposes. As illustrated in Figure 5.8, 
by relying on the navigation graph, it is straightforward to identify the problem, 
as it only requires detecting rooms associated with isolated nodes. Similarly, 
to C1, spaces detected in this checking are tagged for further improvement of 
the model reconstruction.  
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The third constraint C3 controls the connectivity of two spaces. It also relies 
on the navigation network and covers the cases that cannot be detected with 
C2 (e.g., two rooms connected by a common door but disconnected from all 
the other spaces). We assume that every two spaces in a correct 3D model 
should be reachable and connected through the navigation graph. Therefore, 
the process checks the existence of a path between every two rooms in the 
model.  
 
Constraint C4 completes C3 with the necessity of a staircase instance 
connecting two floor levels. In fact, rooms may be vertically connected due to 
holes or unreconstructed slabs. In such cases, while it may be assumed that 
the holes are elevator compartments, there is always a staircase built for use 
in case of emergency or elevator failure. On the other hand, despite the 
existence of staircase instances in the 3D model, they may not properly 
connect two levels. This typically happens when the number of steps in the 
stairs is not reconstructed correctly, breaking the C3 (for rooms in different 
floors) and C4.  
 

Finally, C5 and C6 provide constraints important for navigation and related 
cases (e.g., emergency evacuation). By ensuring a connection to an exit from 
every room in the model, the consistency check guarantees that at least one 
of the critical doors of the building (emergency doors) is reconstructed and 
reachable and it is not blocked. This may not imply that the door is usable, 
however. Performing C5 comes down to verifying if, after all previous checks, 
there is at least one exit door that is connected to every space in the same 
division of the building. Note that using constraints such as C6 implies that the 
type of the door (emergency door, exit door, …) for the application should be 
added to the model. 
 
In addition to C1 to C6 constraints, experts can define other constraints based 
on the application. Constraints C7 to C9 are examples for enforcing some 
geometric controls in the model. In many architecture styles walls have 90 
degrees intersection angles. This can be checked with constraint C7. Similarly, 
constraint C8 controls whether the interior walls have the same thickness. 
Likewise, it is possible to control if the same type of door or window is 
reconstructed for some divisions of the building with constraint C9. For 
example, in some buildings, doors in the corridor are double doors or sliding 
doors. Note that although the rules for the application phase of the control 
grammar can be customized for different 3D models, they should not violate 
any of the previous rules or current geometric and topological standards.  
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5.4 Experiments 
To test our pipeline, we use one of the models generated by the method 
described in (Nikoohemat et al., 2019). The selected model has walls, floors, 
ceilings, doors, stairs, furniture and rooms. One of the advantages of that work 
is that they produce two types of models, one with volumetric walls and one 
with spaces. Each reconstructed component is a volumetric feature, including 
walls, doors and rooms represented as solid geometry (polyhedron). Following 
our framework, the three steps of verification in the pipeline (see Figure 5.4) 
should be applied to the 3D model. It is therefore decomposed to its 
constructing components (Figure 5.9), and as a first step, the geometric and 
topological consistency of the solids (e.g., walls) are controlled. The 
decomposition of the model is done by 3D-model parser (section 5.3.3). 

 
Figure 5.9. Example of decomposing a 3D model to the components. (a) The 3D model. 
(b) The floor levels are separated. (c) Each level has components such as walls, floors, 
doors and windows which should be verified individually and in interaction with other 
components. 

5.4.1 Instances check 

We used the model in Figure 5.10 to illustrate an example for the instance 
check. Based on what should be expected from 3D solids (Gröger and Plümer, 
2009; Ledoux, 2013), the following rules are applied for each single component 
of the model: 
1. Every polygon should be simple (no self-intersection).  
2. The solid should be closed and there should be no dangling face or edge. 
3. The normal vector of all faces of a volume should point towards the exterior 

of that volume.   
 
Our 3D model is geometrically described as a Boundary Representation (B-
Rep), along with information of its different classes of entities such that each 
single instance can be distinguished and is provided with its own list of 3D 
faces and semantic information. That information is used to implement the 
rules on the faces (polygons). The first rule means that no inconsistency on 
the boundary of the polygon should be accepted (e.g., self-intersecting 

(a) (b) (c) 
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boundaries, duplicated vertices, etc.).  No such issue could be found in the 
model because the whole model is triangulated, resulting in uniquely simple 
faces (triangles). The second rule concerns the topological closure of the solids, 
such that every edge of a given polygon is paired with the same edge of 
another polygon in the same polyhedron. Figure 5.10 illustrates a case where 
a volume is open because one of its sides has not been reconstructed properly 
and therefore has missing faces and consequently open boundaries. Such an 
instance should be corrected until a full closure is obtained. Finally, the last 
rule checks the consistency of the orientation of the volumes. The whole model 
should follow one convention, which is either all the face normals point inward 
or outward of the solid they belong to. We chose the second case, in 
accordance with the ISO 19107. 
 
Once the consistency of the geometric entities is confirmed and the invalid 
instances are corrected, we go to the second step that check the interactions 
between the valid instances. 
 

 
Figure 5.10. Shows an example of geometry inconsistency for a wall object. (a) The 3D 
model. (b) A wall is checked and one of the faces is missing. (c) Shows the correct 
example of the same wall.  

5.4.2 Interactions check 

As explained in consistency control of interactions (Section 5.3.5), we use an 
interaction matrix (Table 5.2) to determine the correct interactions in the 
model. First, an adjacency graph is generated from all the components in the 
model which have adjacency with each other. Figure 5.11 shows how a graph 
represents a 3D model. Nodes are components (e.g., rooms, walls, doors, and 

(a)

(b)

(c)
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windows) and edges are the interactions. To exemplify an interaction problem, 
Figure 5.12 shows one issue in the reconstruction of our test model. While in 
Table 5.2, it is specified that a door (opening) is expected to be adjacent to a 
wall, we found a door that does not share a face with its nearest wall instance. 
This is due to imprecision in the reconstruction, for example the wall thickness 
is changed without fixing its topology with a door. Other interaction 
inconsistencies that can be checked include walls not connected to the ceiling 
or stairs not attached to floors. Such issues are avoided in our model by 
exaggerating the extents of walls and slabs. However, this leads to other issues 
such as intersecting walls. Such interaction would correspond to the overlap 
relationship from the 9-intersection model, which is not considered as valid in 
our grammar, as it cannot happen in the reality of building elements. 
Therefore, this should be considered as an inconsistency. However, because 
the main purpose of the reconstruction of our test model was to obtain the 
indoor spaces, and this needed a proper space closure to be extracted 
(Nikoohemat et al., 2019), we can afford to ignore these interaction 
inconsistencies in the validation process. This shows the flexibility in the 
validation framework and makes a link to the next step of the process, as 
targeted applications may make some consistency rules more relevant or 
critical than others, that can just be ignored. 
 

 
Figure 5.11. A graph representation of a 3D model showing the connected instances. 
Selecting a room in the graph, the connections are stablished with walls, doors, furniture 
and other rooms. Here for simplicity we do not show windows and the ceiling. 
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Figure 5.12. Shows an example of checking the interaction of two instances 
from two different classes (wall and door). (a) The 3D model. (b) The wall and 
door object as adjacent objects. The door should be met or contained by the 
wall face. But the top view (c) shows that there is not any connection, and this 
is a topology error. 

5.4.3 Application consistency checks 

Our test model was made for indoor navigation purposes. Thus, the rules 
defined in Section 5.3.6 can be used for our experiment as well. While the 
check of rule C1 was successful, we have faced inconsistency issues related to 
C2. In fact, as shown in Figure 5.8, some spaces happen to be connected to 
no door from the whole model, which means that they are isolated spaces. This 
reveals missing doors that were not reconstructed or spaces that are wrongly 
reconstructed. In both cases, the issue needs to be addressed for an indoor 
navigation usage of the model and for the rest of the checks to be properly 
performed.  
 
Indeed, the rule C3 for example depends on C2, because missing doors would 
logically lead to unconnected pairs of rooms. This case did not happen in our 
experiment model. Figure 5.13 illustrates the C4 check, where two floors are 
connected by at least one staircase. A navigation route from a space downstairs 
to a space upstairs goes through staircases (which is here represented by 
another space connecting both levels).  The check C5 is performed, by defining 
one door as the main exit door of the building and computing the exit path 
from each room. Finally, C6 is checking if every emergency door has a 
clearance. However, this control can be applied for any door. To perform a door 
clearance, a buffer for the doors is considered and then the bounding box of 
the furniture is intersected with the buffer of the door. If an intersection occurs 
the door path is blocked (Figure 5.14). Adding external sources, such as the 

(a) (b) (c) 
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footprint of the building or the number of rooms can help in invalidating some 
of the errors and checking the completeness of the model. 
 

 
Figure 5.13. In case of navigation as an application of 3D model, the pipeline checks 
whether every two spaces in two different levels are connected through a staircase. (a) 
The wireframe of the spaces and the navigation network. (b) Another representation of 
the spaces and the network. 
 

 
Figure 5.14. Occlusion of an opening with the furniture can be detected by intersecting 
the bounding box of the furniture and the buffer of the door object. 

(a)

(b)
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We proposed a framework to control the consistency of indoor 3D models in 
three steps. The consistency control applies the indoor standard data models 
and ISO Geometry standards to apply constraints in a formal grammar setting. 
Our control grammar does not fix the errors but helps detecting and 
invalidating them. The integration of correction routines can be included in a 
later version of the control grammar. One limitation of the current control 
grammar is the difficulty to detect and fix misclassified objects without user 
intervention. For example, if a large screen is misclassified as a wall, it is not 
trivial to identify it as an error. Similarly, if a room has two doors, and one 
door is detected but the other door is missed, because it was closed and 
coplanar with the wall, our control grammar cannot identify it. Although, our 
framework is scalable and flexible, similar to most of the grammar approaches, 
it needs expert knowledge for assembling suitable rules in each step and this 
can be time consuming. However, when it is done once, it can be applied for 
the same type of the model repeatedly.  

5.5 Conclusion and Future work 
In this chapter, we have introduced a conceptual framework for consistency 
control of the indoor 3D models which can be deployed using a control 
grammar. A 3D model in our research is a digital representation of building 
interiors and consistency means correctness and completeness of the model. 
Although, the correctness and completeness cannot be checked completely in 
the lack of ground truth, the focus of this work is to promotes this by using the 
expert input and indoor standards. Our framework has a generic solution and 
therefore it is suitable for different types of 3D models reconstructed from point 
clouds, RGBD images, or floor plans. To this end, the available sources for 
controlling the model are the expert knowledge and indoor standards such as 
IFC, IndoorGML, and ISO 19107. 
 
The final output of our grammar, after several iterations on the model, is a 
satisfactory 3D model which has passed several consistency tests. Our 
proposed solution does not correct primitives and 3D objects but it (in)validates 
them in three steps: first the individual instances are controlled for a 
geometric, topological and semantic consistency. Then every two adjacent 
objects are controlled using an interaction matrix and 9-intersection model 
schema and finally the model is verified for specific applications such as 
evacuation simulation. After each rejection, the flagged object should be fixed 
and the grammar needs the corrected component to continue the process. The 
correction of the errors, which may have several reasons, is the responsibility 
of the user. Therefore, we do not offer a correction process. However, it is 
possible to fix minor geometry errors such as a missing closure of a solid or 
intrusion of volumes. Because of the scalability and flexibility of our system, it 
is possible to add more nodes and define new rules. Similar to any grammar, 
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defining new rules needs expert knowledge. The suggested adjacency matrix 
and its corresponding graph help the users of the system to keep the integrity 
of the grammar when adding new rules. The control grammar is scalable to 
more complex architectures by adding more classes (pillars, furniture types) 
to the interaction matrix and the corresponding adjacency graph.  
 
As the future work, our control grammar should be implemented with some 
handpicked rules from the ISO 19107 and/or IndoorGML or IFC for a real 
application. Then it is feasible to study the weaknesses of the framework for 
further improvements. As an extension to our control grammar it is logical to 
add automatic corrections instead of rejecting objects, for example, face-on-
face or closeness of a polygon can be fixed automatically instead of rejection. 
One question is whether we could use the repetitiveness and symmetrical 
characteristics of building interiors to validate or correct some other parts of 
the model which suffer from missing data. This is something that can be 
integrated in the control grammar by a learning mechanism. Another future 
work could be the incorporation of texture and material, room functions, and 
agents (building occupants, wheelchair, drones) to demonstrate challenging 
scenarios.  
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Abstract 
Recently in The Netherlands, there are many examples of changes of the 
functionalities of buildings in time. Tracking these changes could be challenging 
when the building geometry will change as well; for example, a change from 
administrative to residential use of the space, or merging two spaces in the 
building without updating the functionality. To record the changes, a common 
practice is to use 2D plans for subdivisions and to assign new rights, restrictions 
and responsibilities for the changes in a building. In the meantime, with the 
advances of 3D data collection techniques, the benefits of 3D models in various 
forms are increasingly being researched. The current work explores the 
opportunities of using the 3D point clouds to establish a platform for 3D 
Cadaster studies in indoor environments. We investigate the changes in time 
in the geometry of the building that can be automatically detected from point 
clouds to update the 3D indoor cadaster. The permanent changes (e.g., walls, 
rooms) are automatically distinguished from dynamic changes (e.g., human, 
furniture) and will be linked to the space subdivisions. Finally, the results will 
be linked to the spatial units in an LADM. In addition to the cadaster 
application, the change detection methods which proposed in this work can be 
applied for monitoring the changes of buildings after any renovation. 
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6.1 Introduction 
Change detection from point clouds is the common method for detecting the 
geometric and semantic changes over time in the urban canyons and forests. 
On the other hand, 3D Cadaster data models are trying to represent the 
physical objects in connection with the legal objects.  
 
In the recent years there are many examples of changes of the functionalities 
of buildings in time. According to the statistics shared by Environmental Data 
Compendium (CLO, 2016)1 in Netherlands 17% of the office, social and real 
estate buildings are empty in 2015.  The Ministry of Interior and Kingdom 
Relations (BZK) and the Association of Dutch Municipalities (VNG) set up an 
expert team to support Municipalities in transformation from office to 
residential buildings. One of the examples is a nursing home, which were 
owned 40% by housing associations and 60% by health care organizations, 
changed into students’ hotels or private owned apartments with private 
ownership. For example, the building on Figure 6.1, located in the City of Hoorn 
in 2015 was changed into a residential building. 
 
It is challenging to monitor the changes in the physical objects during the 
lifetime of a building and accordingly update the 3D Cadaster. In this chapter, 
we study the changes inside buildings and try to make a bridge between the 
change detection and the indoor 3D Cadaster. The reason that point clouds are 
used for change detection and representation of the 3D Cadaster is the as-is 
status of the point clouds to the current situation of the cadaster (3D) spatial 
units. In other words, the point clouds reflect more details of the environment 
and they are close to the data acquisition. Furthermore, it is easy to convert 
the point clouds to other data representation forms such as voxel for usage in 
3D Cadaster models (Oosterom, 2018). 
 
There is a great potential in using point clouds during the life time of a building. 
By collecting point clouds before and after each renovation of buildings and 
refurbishments in the structure, for example using terrestrial laser scanner 
(TLS), it is fast and accurate to find the changes and update the corresponding 
documents and databases. 
 

                                          
1 Clo.nl, vacancy of office spaces, last access: Nov. 2019  
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Figure 6.1. Changing from a nursing house to an apartment (Ministerie van BZK, 2015). 

This fact motivates us to use point clouds and monitor changes in support to 
updating the 3D Cadaster. Change detection from point clouds can be done 
merely on a low level of detail and just based on the geometry, or can be done 
on a higher level of detail by interpretation of the geometry to semantics. For 
example, the changes in two epochs could be because of differences in the 
furniture and not the permanent structure. This needs a higher level of 
interpretation from point clouds. On the other hand, if the differences are 
because of the coverage during the data acquisition, then it can be detected 
by a geometry comparison of two datasets. Therefore, only comparing the 
geometry of two-point clouds is not sufficient to interpret 3D Cadaster related 
changes. For understanding the changes, first, we classify the point clouds of 
each epoch to permanent structures (e.g., walls, floors, ceilings) and non-
permanent (e.g., furniture, outliers) using the methods in (Nikoohemat et al., 
2017). Additionally, we need to have an understanding of spaces inside the 
buildings to relate them to the 3D spatial units. Therefore, space subdivisions 
such as rooms, corridors, stair cases will be extracted from the point clouds of 
each epoch. Second, two epochs are co-registered and the geometry 
differences will be extracted. Third, the changes are classified to important 
changes such as permanent structure and non-important ones such as changes 
in the furniture or those caused by the acquisition coverage. Finally, the related 
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3D Cadaster records in the location of changes will be queried from the 
database and a cadaster expert can make a decision about the updating of the 
cadaster records. 
 
While it is possible to automatically subdivide the indoor environments to space 
subdivisions from point clouds, it is not a trivial task to automatically link them 
to the 3D Cadaster model. Each space subdivision can represent a spatial unit 
or a group of spatial units in a building. These spatial units to some extent are 
supported in the Land Administration Domain Model (LADM) through four main 
classes: LA_Party, LA_RRR, LA_BAUnit and LA_SpatialUnit (LADM, ISO 
19152:2012). Out of them LA_SpatialUnit which represents legal objects and 
LA_RRR which represents rights, restrictions and responsibilities are part of 
our interest. The reason that we use the LADM for our experiments is that it is 
more complete and recent than other cadastral data models such as FGDC 
(Cadastral Data Content Standard — Federal Geographic Data Committee, 
2008), DM01 (Steudler, 2006) and The Legal Property Object Model (Kalantari, 
2008). Additionally, unlike other cadastral data models that are based on 2D 
land parcels, LADM suggests modeling classes for 3D objects (Aien et al., 
2013). However, there is a lack of support for 3D Cadaster in terms of data 
representation and spatial operations in the current 3D Cadaster models such 
as LADM. For example, cadaster parcels are mainly represented as a 2D parcel, 
while in a multi-story building there is a need to show the property as a 
volumetric object. The only class for supporting 3D spatial units in the LADM is 
the Class LA_BoundaryFace which uses GM_MultiSurface to model 3D objects. 
The problem of GM_MultiSurface is that it is not sufficient for 3D spatial 
analysis and representation (Aien et al., 2013). 
 
Currently, there is no framework for connecting point clouds and the LADM, 
and there is no workflow or standard to connect a 3D model of a building to 
the LADM. Therefore, we set an external model between the attributed point 
clouds and LADM to execute 3D operations (e.g., check the topology, calculate 
the area) on the point clouds and feed the required data for LADM classes into 
the LADM. Two examples of non-residential buildings for which point clouds 
were acquired by means of two different MLS systems before and after 
renovation will be demonstrated. 
 
In brief, our contributions are: 
1. A method for comparison of two epochs of point clouds is represented 

which identifies and separates the permanent changes (rooms and walls) 
from the temporary changes (furniture and human). 

2. The space subdivisions in two epochs are modeled and the changes are 
identified.  
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3. The use of change detection in indoor environments is demonstrated in 
3D Cadaster applications. The space subdivision is connected to LADM 
and LA_SpatialUnit. 

 
This research invites enthusiastic readers to use point clouds as a primary data 
representation to enrich the 3D Cadaster. The remainder of this chapter 
explains the related work in section 6.2 and the methodology of our work in 
section 6.3 followed by results and discussions on two use cases in section 6.4. 
The conclusion and future work are in section 6.5. 

6.2 Related Work 
Point clouds are a valuable source for decision makers in the domain of urban 
planning and land administration. Laser Scanner data including Aerial Laser 
Scanner (ALS), Mobile Laser Scanner (MLS) and Terrestrial Laser Scanner 
(TLS) have been used for reconstruction of 3D cities, building facades and roof 
reconstruction (Maas and Vosselman, 1999; Oude Elberink, S.J., 2009; Pu and 
Vosselman, 2009a). Another application of point clouds is damage assessment 
of the buildings before and after a disaster (Vetrivel et al., 2015). In the domain 
of forestry, point clouds are used for monitoring growth of trees and changes 
in the forest canopy. Xiao et al., (2012) use point clouds to monitor the 
changes of trees in urban canopies. Regarding building facades, some methods 
are combining images with laser scanner data to reconstruct the facades of 
buildings (Müller et al., 2007; Pu and 
Vosselman, 2009b; Teboul et al., 2010). 
 
In the domain of cadaster, there is a need to subdivide the spatial units 
vertically and to have a 3D representation in 3D spatial databases. Oosterom, 
(2018) in “Best Practices 3D Cadasters” discusses different types of data 
representation for 3D models storage including voxels, vectors and point 
clouds. The flexibility of point clouds in conversion to voxel or vector formats 
makes it easier to use point clouds in cadaster. Additionally, point clouds can 
represent the 3D details of buildings from inside and outside.  
 
Researchers have developed models to provide a common framework for 3D 
Cadaster. The main international framework for 3D Cadaster is the Land 
Administration Domain Model (LADM, ISO 19152, 2012). However, in LADM 
there is a lack of connection between spatial models such as Building 
Information Models (BIM) and IndoorGML. Oldfield et al., (2017) tries to fill 
this gap by facilitating the registration of the spatial units extracted from BIM 
into a Land Administration database. Aien et al., (2013) studies the 3D 
Cadaster in the relation with legal issues and their physical counterparts. The 
authors introduce a 3D Cadastral Data Model (3DCDM) to support the 
integration of physical objects linked with the legal objects into a 3D Cadaster.  
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Another application of LADM is for using the access rights for indoor navigation 
purposes. The access rights of spatial units are defined in the LADM and could 
be connected to IndoorGML for customized navigation in spatial units (Alattas 
et al., 2017). 
  
In the literature, the use of point clouds for indoor cadaster is underestimated. 
With the recent improvements in automation of 3D modeling from point clouds 
(Mura et al., 2016; Nikoohemat et al., 2017; Ochmann et al., 2016) using the 
point clouds for indoor 3D Cadaster is promising. Additionally, there is 
incredible progress in subdividing the space from point clouds to semantic 
subdivisions such as offices, corridors, staircases and so forth (Bobkov et al., 
2017; Jung et al., 2017). This progress makes it possible to connect the rights, 
restrictions and responsibilities (LA_RRR) to the spatial units (LA_SpatialUnits) 
from point clouds or after conversion to a vector model. 
 
Another model built on LADM for supporting the 3D spatial databases in terms 
of land administration was developed by Rajabifard et al., (2018). The authors 
propose strategies for the implementation of the (3D) National Digital 
Cadastral Data Base (3D-NDCDB) in Malaysia. The proposed database, gives 
instructions for cadastral data collection, updating the data and storage. Their 
database is an open-source 3D database which is compliant to the LADM. Other 
researchers discuss the need for new spatial representations and spatial 
profiles (e.g., point cloud profile, for non-topological 3D parcels)  (Kalogianni 
and Dimopoulou, 2018; Thompson, 2018).  
 
Atazadeh et al., (2018) investigate the integration of legal information and 
physical information based on international standards. The LADM is used as 
the data model for modeling legal information while the Industry Foundation 
Classes (IFC) standard provides physical data elements for managing the 
lifecycle of buildings. 

6.3 Methodology 
In this section, the methods for detecting changes from point clouds will be 
explained. Furthermore, the relevant changes for 3D Cadaster will be 
distinguished from other changes and will be connected to the space 
subdivisions. Each space subdivision represents a semantic space that is 
associated with the 3D Cadaster attributes. Two exemplary buildings show the 
link of spatial units extracted from the point clouds to the land administration 
database in two epochs. 

6.3.1 Case Studies 

For the current research, two case study examples are used. The first case 
study is a building of the Technical University in Braunschweig (TUB) and the 



Change Detection from Point Clouds in Indoor Environments 

148 

second is the University of Twente Faculty of Geo-Information Science and 
Earth Observation (ITC) building. The floor plans of these buildings are shown 
in Figure 6.2. In Figure 6.2a, the highlighted area shows that a wall was 
removed and rooms were merged into one, and Figure 6.2b shows the two 
rooms before removing the walls. Point cloud data for the two case studies 
were collected with different scanners (Figure 6.3). The data for the 
Braunschweig building were collected with an ITC Indoor Mobile Mapping 
System (ITC-IMMS) (epoch1) (Karam et al., 2019) and a Zeb-Revo2 (epoch2) 
For the ITC building, we used the Riegl terrestrial laser scanning system (VZ-
400)3 and a Viametris device (iMS3D)4. The accuracy of the point clouds varied 
from 0.01 to 0.06 meters depending on the laser scanner system. While the 
noise in the data of mobile mapping systems was larger than the terrestrial 
laser scanner (TLS), the scene coverage of a mobile mapping system was more 
than a TLS. The noise in the data could have been caused by sensors, data 
acquisition algorithms, and the reflective surfaces. For more information on the 
comparison of scanning systems, refer to the study by Lehtola et al. (2017). 
In the following subsections, the detailed methodology is explained based on 
the first case study. 
 

                                          
2 www.geoslam.com/solutions/zeb-revo-rt 
3 www.riegl.com 
4 www.viametris.com 
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Figure 6.2. The floor plans for our two case studies. (a) TU Braunschweig after the 
change (floor2). Note: the room numbers in the map are upside-down, because we want 
to keep the orientation of the floor plan consistent with other images.  (b) University of 
Twente ITC building (floor 1) before the change. The highlighted areas show the rooms 
where the changes happened.  
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Figure 6.3. The datasets for two different epochs. The first row is the dataset which 
belongs to the Braunschweig building and the second row is from the ITC building and is 
a more complex dataset, with furniture and large glass windows. 

6.3.2 Indoor change detection from point clouds 

Differences in two epochs of point clouds inside the buildings can be 
categorized as: 
1. Changes in the dynamic objects (e.g., furniture). 
2. Changes in the permanent structure (walls, floors, rooms). 
There are some other differences between two epochs of point clouds that are 
interpreted as: 
3. Differences because of the acquisition coverage.  
4. Differences because of the sensors and registration error. 
 
In our approach, categories number 1 and 2 are dealt with as important 
changes for 3D Cadaster and categories 3 and 4 are just inevitable differences 
in two epochs that occurred because of data acquisition systems and are not 
relevant to the changes in the permanent structure of the building.  
 
The process of change detection starts with the co-registration of two point 
clouds which are acquired with different laser scanners, one a Zeb-Revo 
handheld MLS and the other with a backpack system.  The co-registration of 
two point clouds datasets is done with a straightforward approach such as ICP 
(Besl and McKay, 1992) and there is a lot of research in this domain (Makadia 
et al., 2006; Rabbani et al., 2007).  
 
After the registration, two point clouds datasets are compared based on a 
distance threshold d to detect the differences caused by the registration error 
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and sensor differences (the fourth category mentioned earlier). The distance 
threshold can be chosen by summing up the registration error and sensor 
noise. The registration error and sensor noise already introduce some 
differences between the two datasets. The registration errors are defined after 
each co-registration process. The sensor noise is obtained from the 
specification of the systems. This threshold describes that points from two 
datasets with a distance of less than the threshold d are not considered as 
changes and they are in the 4th category because of the differences in the 
sensors. Points that have distances more than the threshold are in one of the 
other three categories. In our experiment, we define the distance threshold 10 
cm. Let the point clouds from epoch one (acquired by a backpack) be PC1 
(Figure 6.4a) and the point clouds from the second epoch (acquired by Zeb-
Revo) be PC2 (Figure 6.4b).  

Figure 6.4. (a) Point clouds from a backpack system from the first epoch. (b) Point 
clouds from a Zeb-Revo system, from the second epoch. (c) Co-registered point clouds. 
Blue shows the Zeb-Revo. The red areas indicate the differences in the coverage where 
PC1 is not covered by PC2. (d) Point clouds of epoch1 after the comparison with the 
epoch2. The blue points show the points with distance differences below the threshold 
and not changed. The green points show the differences because of coverage or furniture 
or a permanent change. The ceiling is removed for better visualization. 

The point to point comparison is based on the reconstruction of a Kd-tree 
(Friedman et al., 1977; Greenspan and Yurick, 2003) and comparing the 
distance of the points in PC1 from the PC2. This distance is stored in points in 
PC1. Using this method, the differences caused by an acquisition system and 
registration error are excluded from the real changes (Figure 6.4d). In the next 
step, the differences are further analyzed to detect and to exclude the 
acquisition coverage (3rd category). Our change detection method is based on 
analysing two geometric differences between two point clouds. This is done in 
a two-step approach:  
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1. The distinction is made between object changes and coverage differences. 
2. The object changes are separated into changes on permanent structures 

and dynamic objects such as persons and furniture. 
 
The geometric differences are calculated by determining the nearest 2D point, 
and the nearest 3D point in the other epoch. The first nearest point is based 
on the X, Y coordinates and the second on X, Y, Z coordinates. Figure 6.5 shows 
both geometric distances in 2D and 3D, as a point attribute categorized in three 
colors: green < 20 cm, yellow >20 cm and <50 cm, red > 50cm to the nearest. 

 
 

Figure 6.5. The distance (green < 20 cm, yellow<50 cm, red > 50cm) to the nearest 
point in a) 2D and b) 3D. 

For both object changes and coverage differences, it is expected that the 
nearest 3D point is further than a certain threshold. However, the nearest 2D 
point is close for a changed object but not in case of coverage differences. 
Points are temporarily labeled as part of changed objects if the distance to the 
nearest point in 3D is larger than 50cm, but the nearest point in 2D is less than 
50 cm. Next, the whole point cloud is segmented into planar segments, and 
only the vertical segments with a majority of points labeled as potentially 
changed are considered to be changed. The planar segmentation is performed 
by the region growing algorithm presented by Vosselman et al., (2004). Note 
that in this way also the points on a newly built wall near the ground or ceiling 
are included in the changed objects. The vertical segments labeled as changed 
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objects include permanent structures, such as walls, but also dynamic objects 
such as persons. In the second step, the aim is to separate permanent from 
temporary changes, by looking at a method described in (Nikoohemat et al., 
2017). 

6.3.3 Classify changes to permanent and temporary 

The next step is to separate the changes that are part of the permanent 
structure from dynamic objects. This includes classifying the point clouds in 
each epoch to a permanent structure (e.g., walls, floors, ceilings) and 
temporary objects (e.g., furniture, clutter and outliers). We apply a method 
from (Nikoohemat et al., 2017) to semantically label the point clouds in each 
epoch (see Figure 6.7). This classification starts with a surface growing 
segmentation and generating an adjacency graph from the connected 
segments. By analysing the adjacency graph, it is possible to separate 
permanent structures such as walls because of their connection to the floor 
and ceiling. Figure 6.7c shows the permanent structure (walls and floor) is 
separated from the temporary objects (clutter, furniture and outliers).  
 
After the classification of points in each epoch, by comparing the changes with 
the semantic labels (walls, floors, and ceilings), it is possible to distinguish 
relevant changes for 3D Cadaster. Each point in the set of changes is a possible 
change for 3D Cadaster if it is labeled as a wall, floor, or ceiling. Otherwise it 
is a change only because of furniture or dynamic objects or outliers. Table 6.1 
shows how we identified changes with labels per point, respecting the 
permanent structure. According to the table, we have four types of labels which 
categorizes the points to permanent structures with a change (label 1) or no-
change (label 3), and to non-permanent structures with a change (label 0) and 
no-change (label 2). Points with label 1 are important for change detection in 
3D Cadaster because they represent a permanent change in the building. 
Figure 6.7c represents the changes with different colors according to their 
label. 
 

Table 6.1. The table shows how the point clouds are labeled regarding the changes and 
their role in the building structure. The points with label 1 are interesting for change 
detection of the 3D Cadaster. 
Labels of Points in the 
Data 

Non-permanent 
Structure 

Permanent 
Structure 

Change 0 1 
No change 2 3 

6.3.4 Changes in the relation with Indoor Space subdivisions 

The process of detection of permanent changes is continued by linking these 
changes to the volumetric space or space subdivisions. Space subdivisions 
represent the semantic space in the indoor environment such as offices, 
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corridors, parking space, staircases and so forth. Each space subdivision is 
connected to space in a spatial unit in the 3D Cadaster model and all laser 
points in the space subdivisions carry the attributes of the corresponding 
cadaster administration. In this step, we explain how these space subdivisions 
could be extracted from the point clouds and linked to the previously detected 
changes. Note that an apartment may consist out of one or more spatial units. 
A spatial unit may consist out of one or more spaces. A spatial unit may have 
invisible boundaries and needs to be checked by a cadaster expert. 
 
To detect the spatial units from the point clouds, following the method in 
(Nikoohemat et al., 2017), after the extraction of the permanent structures in 
each epoch, a voxel grid is reconstructed from the point clouds including walls, 
floors and ceilings. Then using 3D morphology operation on the voxel grid, the 
space is subdivided into rooms and corridors. Each space subdivision is 
represented with the center of voxels as a point cloud segment. To find out in 
which space subdivisions the changes occurred, we intersect the space 
subdivisions of each epoch with the permanent changes detected in the 
previous step (see Figure 6.6). For example, in Figure 6.7, we can see that in 
the second epoch (Figure 6.7b) a wall is removed and two spaces are merged. 
Since this wall was detected as a change during the previous step (Figure 6.7c), 
by the intersection of changed objects with subdivisions, the conflicts in the 
two epochs are extracted (Figure 6.6). This conflict is linked to a space 
subdivision and each space subdivision or a group of them (e.g., a building 
level) may represent a spatial unit in the 3D Cadaster model. 
 

 
Figure 6.6. The space subdivisions of PC2 (second epoch), after the change. The purple 
wall in the right image shows the intersection of a detected change with a space 
subdivision. 
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Figure 6.7. (a) PC1 acquired by a backpack and (b) PC2 is acquired by a Zeb-Revo, 
walls (orange), floor (yellow), clutter (blue). (c) The changes are detected in PC1 and 
classified as permanent structure changes (yellow) and temporary changes (red). The 
red rectangle shows the wall that is showing the permanent change. 

6.3.5 Changes in the relation with 3D cadaster model 

To link the cadaster to the detected changes, we assume every space 
subdivision in a point cloud is represented in the object description of the 
spatial unit in the LADM. We choose LADM (Figure 6.8) as our 3D Cadaster 
model because it is the most recent and the most complete 3D Cadaster data 
model and it has a class for supporting the 3D objects. Note that an interactive 
refinement on the space subdivision from the previous step is necessary to 
group some of the subdivisions according to the 3D Cadaster legal spatial units. 
For example, a group of offices that belong to the same owner has an invisible 
boundary that should be interactively corrected.  

 
Figure 6.8. Basic classes of the LADM (ISO 19152:2012) 



Change Detection from Point Clouds in Indoor Environments 

156 

It is possible to setup the LADM in such a way that each space is represented 
as a spatial unit and then using the LADM class LA_BAUnit to associate those 
spatial units with a legal unit. Type of building units can be individual or shared. 
An individual building unit can be an apartment and can represent a legal 
space. In our example (Figure 6.7), the wall is removed and two spaces are 
merged, and their ownership is updated in the LA_BAUnit class.  
 
Every spatial unit in LADM is modeled with GM_MultiSurface. 2D parcels are 
modeled by boundary face string (LA_BoundaryFace). The representation of 
3D spatial units is done by boundary face (LA_BoundaryFace) and for the 
storage, a GM_Surface is used (see Figure 6.9). However, in our approach, we 
are aiming at keeping the point clouds until the last step for spatial analysis. 
Therefore, we use the calculated features such as volume, area and neighbor 
units for feeding the classes in the LADM.  
 
All spatial attributes and legal issues such as rights and restrictions could be 
associated with the point clouds and the LADM. The measured spaces are 
important because apart from the floor space also the volumes are known. This 
is relevant for evaluation purposes of the individual spaces in apartments. 
Figure 6.10 illustrates the LADM representation of an apartment – in this case, 
owned by a party (right holder) named Frank. This party has an individual 
space and a share (1/100) in the common or shared space. Individual and 
shared space (including the ground parcel) compose the building as a whole. 
 

 
Figure 6.9. Mixed use of boundary face strings and boundary faces defining both 
bounded and unbounded 3D volumes (LADM, ISO 19152:2012, Annex B).  
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Figure 6.10. An apartment building in LADM and its legal space (LADM, ISO 
19152:2012). 

6.4 Results and Discussion 
 
The proposed method is tested on two datasets. One dataset has a smaller 
amount of clutter and the shape of the building has a regular structure. 
Therefore, the separation of walls is easier. To challenge the robustness of our 
method with a complex structure and more furniture, a dataset with arbitrary 
wall layout and glass surfaces is selected (ITC restaurant, Figure 6.11). The 
details of the datasets for each epoch are in Table 6.2.  
 
Table 6.2. The details of the datasets and two case studies. The first and second rows 
belong to the first case study. The table shows the number of points and scanning device 
per dataset. The fourth column shows the number of changed rooms before and after 
the renovation of the building. The fifth column shows the items which are identified as 
changes. 

Dataset # of 
Points Scanner 

# of 
changed 
rooms 

Changed 
items Figures 

TU 
Braunschweig  

(epoch 1) 
1.7 M ITC-IMMS 2 Clutter, 

walls 
2, 3, 4, 5, 

7, 12 

TU 
Braunschweig  

(epoch 2) 
1.8 M Zeb-Revo 1 Wall is 

removed. 
2, 3, 4, 6, 
7, 12, 14 

ITC 
Restaurant 
(epoch 1) 

2.8 M Viametris, 
Riegl 3 

Clutter, 
walls, 

curtains 
2, 3, 11, 13 

ITC 
Restaurant 
(epoch 2) 

1.0 M Viametris 1 
Two walls 

are 
removed. 

2, 3, 11 



Change Detection from Point Clouds in Indoor Environments 

158 

First, the datasets from two different epochs were co-registered using the 
iterative closest point ICP algorithm (Figure 6.11). Then the changes between 
two epochs were identified in 2D and 3D, as explained in the methodology. The 
classification algorithm separated the permanent changes from non-
permanent changes and then we intersected the permanent changes with the 
reconstructed spaces from two epochs (Figure 6.12 and 6.13). In this way, the 
changes in the rooms in the second epoch of both datasets can automatically 
be identified. To identify the relation of physical changes with the 3D Cadaster, 
a user adds the ownership of the spaces as an attribute to each space. For 
example, the spaces which have the same rights and ownership obtain the 
same label and form a new physical space (Figure 6.14). Then it is possible to 
connect them to the basic class of the LA_Spatial Unit in the LADM and update 
the spatial unit class in the LADM. In dataset 2 (ITC restaurant), part of the 
curtain was identified as the permanent change because the curtains were 
covering the walls and they were detected as a permanent structure. However, 
this can be the inaccuracy of the classification method, for identifying the 
changes in the space is not problematic because it has a slight change in the 
space partitioning. 

 
Figure 6.11. The figure shows the top view of two epochs of our use case. The floor and 
ceiling are removed for a clear visualization. (a) The data is collected by a Riegl terrestrial 
laser scanners (TLS, VZ-400)5 (rooms A and B in yellow) and is co-registered with the 
data collected by the Viametris system (iMS3D)6. (b) The second epoch is also collected 
by the Viametris system and the walls in the red rectangles are removed. 

                                          
5 www.riegl.com 
6 www.viametris.com 
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Figure 6.12. The figure represents the changes in the detected permanent structure 
and then the spaces. (a) and (b) show the changes in the walls (black rectangles). The 
red transparent rectangle is for the orientation between two images. (c) and (d) show 
the detected walls in orange and space partitions in random colors. The black rectangles 
show how the room changed after removing a wall. 

The important parameter for the detection of changes is the distance threshold 
(d) to identify the changes from the differences caused by noise and 
registration errors. We set this parameter slightly larger than the sum of the 
sensor noise coming from the scanning device and the residuals coming from 
the ICP algorithm (less than 10 cm). In our experiments, we set this threshold 
on 10 cm, which implies that we cannot detect changes which are smaller than 
10 cm. For planar segmentation of the point clouds, the smoothness parameter 
for a surface growing algorithm is important, which depends on the noise and 
point spacing in the data. We set the smoothness threshold to 8 cm because 
the noise from MLS systems (Viametris and Zeb-Revo) is around 5 cm. The 
smoothness parameter was set slightly larger than the sensor noise and point 
spacing. The point spacing was 5 cm, which meant we could subsample point 
clouds to reach 5 cm point spacing. The parameters for detecting the 
permanent structure were chosen according to (Nikoohemat et al., 2017). 
Segments with more than 500 supporting points were selected for creating the 
adjacency graph and smaller segments were discarded. The voxel size for 
space partitioning was 10 cm, which is an appropriate voxel size to have 
enough precision to identify changes and avoid expensive computations. 

(a) (b) 

(c) (d) 
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Figure 6.13. The top view of the spaces and permanent changes. (a) Epoch one, walls 
are in green and four spaces in random colors. (b) After removing walls, two rooms in 
epoch one are merged with the large space in brown color, and, in total, it forms two 
spaces with the rest of the interiors. (c) Detected permanent changes are shown in red. 
(d) The spaces from the second epoch are intersected with the permeant changes to 
identify the changes in the space. 

 

Figure 6.14. New spaces with the same rights and ownership obtain the same label and 
color and form a new physical space that can be linked to the LA_SpatialUnit. 

The running time for surface growing segmentation, identifying the permanent 
structure, and detecting the changes for the first dataset with 1.7 million points 
took 2.4 min, 5.6 min, and 7 min, respectively. The space partitioning was 
computationally more expensive than other processes and it took 10 min for 
dataset 1 with the voxel size of 10 cm, and it depended on the volume of the 
building. 
 
In our workflow, the challenge was detecting the permanent changes from the 
dynamic changes, which were not important for the Cadaster. According to 

(a) (b) 

(c) (d) 
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(Nikoohemat et al., 2017), this process can have an average accuracy of 93% 
for permanent structures and 90% for spaces (Nikoohemat et al., 2019). 
Furthermore, the extraction of spaces is really crucial in the process, because 
the volume and area are calculated from the space subdivision result. 
Therefore, an expert should check the results of space subdivision and merge 
or split some of the spaces that are extracted from the point clouds. The 
interactive corrections are less than 10% of the whole process and, for a 
building of three floors as large as our case study, it does not take more than 
10 min.  
 
The process of linking the spatial units to the 3D Cadaster model was not 
automated in our approach. This was because of the lack of possibilities for 
representation and visualization of 3D objects in the 3D Cadaster models. 
Therefore, our method was limited when it comes to the storage of 3D spatial 
objects in the Cadaster databases. As future work, linking the 3D objects and 
3D Cadaster models, one solution we intend to investigate is using the point 
clouds as external classes and trying to keep the 3D objects as point clouds for 
all steps. The extraction of vector boundaries for the Cadaster models can be 
done with functions from the point clouds. 

6.4 Conclusion and future work 
We have presented a pipeline to detect geometrical changes in buildings from 
two epochs of point clouds captured by mobile laser scanners. In our approach, 
changes are recognized as dynamic changes (e.g., human, furniture) and 
permanent changes (e.g., walls, rooms). The permanent changes are then 
linked to the space subdivisions that are extracted from the point clouds of 
each epoch. A cadaster expert will interactively group some of the space 
subdivision according to their legal attributes. Then the spaces that are 
changed and identified during the process will be further analysed to extract 
spatial attributes such as boundary, area and volume. This process can be done 
on point clouds where changes occurred. Extracted spatial attributes can be 
exchanged between a cadaster model such as LADM and the point clouds. A 
cadaster expert should make decisions on updating the cadaster model 
according to the spatial changes. It should be noted that although the changes 
in the permanent structures for our use cases are few (two or three walls), 
identifying such changes is not trivial for an operator in large datasets with 
many rooms and more changes. Therefore, an automatic process can be a 
great assistant for experts. 
 
Future work should determine the link between designed space by the architect 
and the real constructed space as measured with point clouds. This 
measurement is relevant for the composition of legal space in LADM – but also 
for building permits and other permits (e.g., for shops and companies). The 
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process of representing and linking 3D objects to the 3D Cadaster especially 
for indoor is an ongoing research.  
 
The authors of this research hope that this work would introduce a new 
research avenue regarding the connection between point clouds and indoor 
cadastral models. 
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Chapter 7 – Synthesis 
 
 



Synthesis 

164 

7.1 Scope of application of the proposed pipeline 
This dissertation in addition to a thorough overview of the state-of-the-art in 
chapter 2, contributes in the reconstruction of 3D models from point clouds by 
suggesting a pipeline which becomes deeper in details and more sophisticated 
per chapter. Although this pipeline is mainly targeting disaster management 
applications, it generates a consistent 3D model from interiors which can be 
applied for other indoor use cases such as scan-to-bim.  
 
The selected use cases are chosen with precaution to cover a wide range of 
problems in 3D reconstruction. Therefore, our proposed pipeline tackles 
problems such as: the noise from reflective surfaces, incomplete data caused 
by clutter, complexity of multistory buildings, various architecture layouts 
which are non-Manhattan-World, detection of closed doors and finally 
consistency control of the models.  
 
The methodology in chapter 3 is at early stage and even though it can be 
applied for indoor navigation purposes and it provides the layout of the 
building, it does not reconstruct a fully 3D model. Instead, a space partitioning 
based on voxels is suggested where the navigable space is discerned from 
occupied space (e.g., furniture) and the partitions represent the layout of the 
building in 2D and 3D. However, since the space partitioning represented in 
chapter 3 is a voxel representation it may not be useful for some applications 
such as evacuation simulations which need a 3D geometry model (e.g., OBJ 
format). Similarly, the semantic labeling of the openings, door and windows, 
does not result in a geometry model of openings as it only provides the 
classification of the point clouds. 
 
In chapter 4, the methods from previous chapter are improved to provide a 
watertight 3D model which complies with standard data-formats of 3D 
geometry. The output of chapter 4 is a complete pipeline for creating fully 3D 
models from multistory buildings including stairs and ramps. Additionally, the 
algorithms are improved in terms of performance to provide a 3D model in a 
shorter time in comparison with space partitioning using voxels. The output of 
this chapter can be used both for BIM applications because of volumetric 
representation of walls and for IndoorGML applications because of space 
representation. Furthermore, the modeling of furniture as obstacles provides a 
higher level of space subdivision for indoor navigation purposes. As an 
extension to the pipeline providing the function of each subspace and furniture 
brings more insight for an optimal routing in complex indoor environments.  
 
In chapter 5, the methodology applies a grammar method to investigate the 
consistency of 3D models which are not only suggested by our method but also 
3D models created from the state-of-the-art. This chapter does not dive into 
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details of the implementation and tries to conceptualize a workflow for checking 
the models in the absence of ground truth against three main available 
standards including IndoorGML, IFC, and ISO 19107, as well as the common 
knowledge of the modeler. The pipeline comes to its fulfilment by exemplifying 
the consistency control grammar on some cases from previous datasets. We 
believe consistency control of the pipeline can be more elaborated in the future 
on 3D model benchmarks to form comprehensive grammar rules for testing 
the integrity of the 3D models regardless of the method. 
 
Chapter 6 goes beyond the proposed reconstruction pipeline and investigates 
an approach for change detection in indoor environments and applies it to 
indoor 3D cadaster cases. The findings of this chapter can be applied for 
maintenance and updating the 3D models by discerning the changes of the 
permanent structure than temporary changes. Change detection enables us to 
save time by updating the model in renovated places and avoiding a complete 
scan of unchanged areas. Change detection is a broadly researched topic in 
outdoor for monitoring the urban developments, while in indoor it is a new line 
of research and needs more attention in the future. 

7.2 Conclusions per objective 
This dissertation provides the state-of-the-art methods for indoor 3D modeling. 
This research focuses on using MLS data for indoor modeling because of the 
recent advances in mobile laser scanners and accordingly tackles the problems 
raised by such systems. The main objective of this research is proposing a 
pipeline for indoor 3D reconstruction from point clouds and showing 
applications of such models for disaster management.  
 
In addition to the detailed discussions at the end of each chapter, here we 
summarize the findings and limitations of our approach per objective given in 
the first chapter.  

7.2.1 Semantic labeling 

This objective mainly addresses the research gaps including dealing with the 
noise, incomplete data and glass surfaces. In the presence of clutter, 
identifying the class of a point or a segment is more challenging. Likewise, 
understanding indoor scenes needs smart algorithms because indoor 
environments have a variety of architectures and man-made furniture. Our 
proposed solution for semantic labeling is presented in chapter 3. We prove 
that our heuristic method based on an adjacency graph and exploiting the 
trajectory of mobile laser scanners can reach high accuracy (average of 90%) 
in semantic labeling of six main classes: walls, ceilings, floors, stairs, doors 
and windows. This result is achieved in complex architecture styles, in cluttered 
environments, and for buildings with large reflective surfaces. Our method 
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outperforms other methods which use machine learning (Armeni et al., 2016) 
and deep learning (e.g., SegCloud, SnapNet, PointNet) for semantic learning 
(Boulch, 2018; Qi et al., 2016; Tchapmi et al., 2017), particularly in detecting 
doors and windows, without the need of training data. However, the number 
of classes in our method is fewer than other works because we are not focusing 
on labeling furniture. 
 
We provide evidence that the trajectory of mobile laser scanner is a valuable 
source to understand the scene and should not be neglected. We used the 
trajectory for three cases: 1. separating the floors and stairs, 2. occlusion 
reasoning to detect openings, and 3. detection of closed and opened doors 
which are traversed by the trajectory. The main challenge of semantic labeling 
is when there is large glass surface in the environment or when the ceiling and 
walls are largely cluttered, such as built-in bookshelves, cabinets in the 
kitchen, pipes and ventilations in the ceiling and occlusion by curtains. Our 
permanent structure algorithm is robust as long as a good connection between 
the ceilings and walls can be identified in the data. The parameters for each 
algorithm are discussed in the discussion section of each chapter but generally 
defining robust parameters for an adjacency graph, or space partitioning is 
experimental and after several trials the robust algorithms can be extracted. 
Finally, this objective did not investigate the labeling of furniture types or the 
function of places. The future work can focus on adding the level of details to 
the model by including furniture types and room functions.  

7.2.2 Geometric modeling 

This objective deals with the research questions of modeling complex 
structures, non-Manhattan World buildings, slanted walls, ramps and sloped 
ceilings. Considering the fact that the proposed algorithms dealing with these 
problems should be scalable to large datasets. Several off-the-shelf 
computational geometry algorithms are adapted and further developed. In 
chapter 3, we explain a method for generalization of segments which share 
similar geometries to model wall segments. As the limitation of generalization, 
the small details of walls (less than generalization threshold) are not 
reconstructed in the model, for example a board or a picture frame can be 
generalized to the wall structure. In chapter 4, a method for modeling stair 
cases is proposed and doors are modeled with standard dimensions. The only 
objects that are not modeled in our pipeline are the windows frames and that 
is firstly because of the complexity of their shapes and secondly because 
modeling the layout of the buildings and curved walls have a higher priority in 
our pipeline. Furniture is modeled by oriented bounding boxes for space 
subdivision in chapter 4. An oriented bounding box is a satisfactory estimation 
for indoor navigation applications. However, for some applications such as 
interior design, the exact shape of the furniture is more useful. Modeling the 
specific shape of furniture can be considered in the future work. 
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7.2.3 Watertight 3D model reconstruction 

This objective is further handling the results from previous objective and is a 
complementary goal after geometry modeling. Geometry modeling of walls 
does not necessary provide a topological correct model. For example, 
extracting the rooms from the walls required the topology of the walls. In most 
related work this is achieved by making a cell complex by extending all walls 
to the bounding box of the data (Mura et al., 2016; Ochmann et al., 2019) 
which makes unnecessary rooms to be merged or invalidated. Our method 
suggests a new approach based on the enclosure of spaces and exploiting other 
knowledge such as existence of a door per space. To reach this objective, we 
present two types of model: 1. a model with volumetric representation of walls 
suitable for BIM applications, and 2. a space representation of the model 
suitable for IndoorGML. The water-tightness is obtained by an automatic 
method which searches for disjoint structures (undershoots) and fixes them by 
extending to the intersection of their planes. This method guarantees the 
connection between walls, floor and ceilings to extract the room polyhedra 
using the enclosure of the space. One challenge in our method is large missing 
data (larger than a corridor width) which should be checked by the user. Other 
methods have a kind of user intervention to fix similar problems (Ochmann et 
al., 2019). Another challenge is to set user-defined parameters for undershoot 
correction, wall maximum thickness and surface growing segmentation, and 
voxel size for methods which use voxels. In each chapter we discuss how to 
achieve the best parameter settings based on the empirical knowledge. 
 
We prove that our algorithms are robust to arbitrary room layout and walls 
with curves. This is exemplified with four use cases where a watertight 3D 
model is reconstructed from multistory buildings. Additionally, the 
methodology reconstructs stairs to establish the connection between floors as 
a crucial factor for seamless indoor navigation. Modeling stairs is neglected in 
most of the indoor 3D modeling related works and needs more research in 
indoor 3D modeling. Moreover, the modeling of volumetric walls vs. surface 
walls provides a standard model for BIM applications.  The model can be 
exported to the standard geometry data-formats such as OBJ and it can be 
modified by the user, for example a large piece of data missing which is not 
identified by the algorithm can be fixed by the user. The future work in this 
domain should focus on reconstruction of small jagged walls instead of 
generalizing them as well as modeling columns and beams. One thing that can 
be investigated in regular and repetitive architectures is using (shape) 
grammar to reconstruct the model in parts with sparse data.  

7.2.4 Consistency and accuracy control of 3D models 

The goal of this objective is to conceptualize how the consistency of a model 
can be controlled in the lack of ground truth. The consistency refers to the 
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correctness of the model in terms of geometry, topology and semantics. The 
consistency control of the model is shortly investigated at the end of chapter 
4 by testing three constraints on an indoor navigation graph. This objective is 
further studied in chapter 5 by proposing a control grammar. The grammar is 
a checkpoint in the pipeline where it validates the components of the model 
against three available standards: IndoorGML, IFC, and ISO 19107. If the 
component does not comply with the standards in terms of geometry, 
semantics or topology it will be flagged and the user (or modeler) should 
investigate the reason. This check is carried out in three steps: 1. instances 
(e.g., a wall), 2. interactions (e.g., a wall and a door) and 3. applications (e.g., 
for navigation). The goal of this objective is not to fix the flaws in the model 
but only identify them for the user. The consistency control grammar has a 
flexible approach which can be adapted to different models. Either a model 
represents volumetric walls, paper-thin walls or just spaces, all can be 
controlled by our method because unlike other grammar approaches, we do 
not define fixed rules, instead the rules are extracted from the current 
standards (e.g., 9-intersection model, ISO 19107) and the knowledge expert. 
The difference between our control grammar and existing model checkers, 
(e.g., Autodesk Revit Model Review, Solibri Model Checker) for e.g., BIM 
models, is that a model checker needs very fixed and defined data models and 
specific classes particularly for construction applications. While models that we 
investigate necessarily do not retain all classes and standards for such model 
checkers and thus our control grammar serves a generic and flexible approach 
to such models. We believe, our proposed solution is a stepstone for learning 
a suite of rules from different type of models and bring a standard workflow 
for checking the consistency of the 3D models. As the future work, the 
grammar can suggest corrections to the identified defects or modify them 
automatically while keeping the integrity of the model. 

7.3 Reflections and Outlook 
This PhD research was part of the project ‘Smart Indoor Models in 3D’ which 
itself is in the umbrella of a bigger research program called Map4Scociety. The 
goal of Smart Indoor Models in 3D project was to equip the fire brigades with 
an advanced means of media for disaster management in complex buildings. 
This is indeed a necessity for first responders to know what is the current status 
in large buildings such as a train station, hospital or university campus. 
Unfortunately, for many important public buildings just a blueprint of the 
complex is available and there is no digital means reflecting the details of 
layout and furniture of each floor. Therefore, in this PhD work, we tried to 
address this problem.  
 
During this research, we continuously asked this fundamental question why 
governmental mapping agencies dedicate all their resources to provide maps 
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and geo information systems for outdoor environments when we spend most 
of our time inside the buildings? Luckily, in recent years with the improvements 
in indoor localization algorithms from one hand, and advances in indoor mobile 
mapping systems from the other hand, it is possible to scan the current status 
of the building in a short time and to guide the occupants inside the building. 
Furthermore, the national regulations in countries like UK is enforcing the 
property owners to provide the BIM when renovating or constructing a new 
building. Therefore, in coming years, it is expected more private and public 
buildings possess a digital twin of their property including a 3D model. By 
providing these digital models for fire brigade and auditing agencies, the 
inspection of buildings, for example clearance of evacuation doors, can be less 
time consuming. 
 
Using mobile laser scanners (MLS) for indoor mapping is a two-fold system. 
On the one hand and as an advantage, they acquire the geometry of the 
building in short time. In most cases, this geometry is supported by 360° 
images which provide better visualization media for the users. On the other 
hand, MLS devices produce large amount of point clouds and images which 
require advanced and expensive software to visualize and process. While 
images are easier to understand for the user, point clouds need expert 
knowledge and customized tools for specific applications. Therefore, unlike 
images, labeling objects and creating 3D models from point clouds are not 
trivial tasks. Such a complexity raises the necessity of (semi-) automatic 
approaches for 3D modeling and classification of point clouds. Concerning data 
acquisition systems, drones and low-cost scanners are interesting devices 
which are finding their place in indoor mapping domain. Low-cost devices, 
notwithstanding their lower accuracy, can be accessible for a larger user group 
in comparison to expensive MLS and TLS devices. This low-cost advantage in 
the future can provide more applications of indoor space to ordinary users. For 
example, one can easily scan the room and virtually design the interiors before 
spending money on the furniture. Unlike low-cost systems which can cover 
only small areas because of the limitations of the sensor and processors, 
drones are more advanced devices and can autonomously scan the interiors. 
Therefore, in the near future data acquisition will not be a problem but dealing 
with large amount of data coming from all the sensors inside the building is 
the challenge. Thus, the need of automatic methods for delivering real time 
service to the occupants of buildings is necessary and 3D models are the 
important platform for location-based services. 
 
In this regard, our pipeline tries to address several challenges which were as 
research problems in the literature. Including automatic reconstruction of fully 
3D models without the assumption of horizontal floor and ceiling and with 
lifting Manhattan World assumptions. Additionally, as we use mainly an MLS 
device for scanning, dealing with the reflection from the glass surfaces was 
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another problem causing noise in the data which we discussed in chapter 3. 
Concerning the level of automation of the pipeline, one can ask how our 
pipeline helps the automation of 3D construction? It may be difficult to quantify 
the level of automation but we can claim that most of the developed algorithms 
need the minimum user interaction for 3D modeling of the interiors. In Chapter 
4, section 4.4, there is a slight intervention of the user to resolve complex 
cases and large data gaps in the data. Apart from this user interaction, the 
expert knowledge is just required when tuning critical parameters. The critical 
parameters are discussed at the end of each chapter for each algorithm. In 
brief, from chapter 3, they are including parameter of voxel size for space 
partitioning, three parameters for door detection, the adjacency graph 
parameter and the planar segmentation parameter. We experienced, for most 
of the dataset these parameters can be adjusted based on the point density, 
point spacing, the computational time, and the dimensions of the structures 
(e.g., a door). In chapter 4, the parameters for undershoot correction are 
important to assure the closure of the spaces while avoiding extension of 
unnecessary elements. Parameter for merging two faces of a volumetric wall 
normally can be adjusted as a range between the thinnest wall and the thickest 
wall. The connected component analysis for extracting large furniture depends 
on the point spacing and for extracting stairs depends on the size and the 
inclination of the stairs. In chapter 5, no parameter is discussed as it is a 
conceptual framework for consistency control of the 3D models. In chapter 6, 
when using change detection, the parameter for detecting changes between 
two datasets is inferred from the co-registration errors and sensor noise. To 
conclude, we discovered our default values for most of the datasets can be 
generalized to other cases considering the accuracy of the data coming from 
the sensor. Since most of our parameters are tested for mobile laser scanners, 
the same parameters should work for terrestrial laser scanners as they have 
more accurate and dense data. Another important fact that was considered 
during the designing of our pipeline was the scalability of the algorithms. 
Because point clouds are delivered in large amounts, the algorithms should be 
scalable to large buildings with big data. As our pipeline is dealing with each 
floor independently in a building, thus the computations can be deployed in a 
parallel programming environment to handle large buildings.  
 
With the recent advances in deep learning, we can ask this question that how 
do machine learning methods can help in the process of 3D modeling and 
learning parameters? Currently, there are not enough benchmarks to cover all 
types of building interiors and architecture styles, but considering the progress 
in data acquisition systems, soon we will have enough training samples to be 
able to classify indoor objects with high accuracy. Knowing the class of indoor 
objects including the permanent structures can help in geometric modeling of 
the interiors. Moreover, understanding the type of objects in a space can 
provide insight of the function of the room, for example in a classroom there 
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are many chairs. Therefore, although deep learning methods can not directly 
help to model furniture and rooms, they can indirectly provide knowledge about 
the interiors for mapping and modeling. 
 
When it comes to 3D modeling from point clouds the question of the accuracy 
of the model is raised. It is important to consider the application of the 3D 
model to use a fit-to-purpose method. For example, when modeling for BIM 
applications, the accuracy of the permanent structures is critical, thus the data 
collection should be done with more accurate scanners and the walls should be 
modeled accurately while the spaces or subspace between furniture are not 
the purpose. Unlike BIM applications, extracting spaces and the room layout 
are more important when using the model for disaster management. For 
applications such as energy management, the thickness of wall, the size and 
location of windows, and material of the structure fit the purpose. Above all, 
the author believes creating an accurate and consistent 3D model should be 
the goal of any automatic pipeline to reach a reliable outcome. To this end, the 
framework in chapter 5 helps to validate the model in terms of applications. 
 
The author recommendation is on both data collection and data processing. 
From our experience in this research, it is very important to choose a proper 
data acquisition system for the application. When deciding for digitalization of 
large buildings several factors should be considered: 1. budget, 2. time, 3. 
accuracy, 4. the complexity of the environment. The selection of laser scanner 
is a trade-off between budget and time. MLS devices are expensive but suitable 
for large projects, on the other hand TLS devices or RGBD cameras are less 
expensive but also less mobile. The scanning devices ranged according to their 
accuracy from high to low are: TLS, pushing-cart systems, back packs systems, 
handheld devices and RGBD cameras. The accuracy varies from 4 mm to 4 cm, 
thus based on the application the proper scanner can be chosen. The 
complexity of the environment can be a range of amount of occlusion, number 
of glass surfaces, number of moving objects and people. When using mobile 
laser scanners, it is important to consult with the manufacturer about the 
performance of the scanner in such environment. For data processing, most of 
the manufacturer deliver registered point clouds, or a software which can 
automatically in a short time register the points. However, for classification of 
the data and modeling still there is no fully automatic software. CAD Software 
such as Revit and PointCab facilitate the modeling process by providing tools, 
but it needs professional modelers with sufficient time to model a building. 
Therefore, automatic pipelines similar to ours bridge the gap between data 
collection and data modeling without the need to visualize large amount of data 
and provides a primary model for the modeler to be enriched further. By 
practicing on using such automatic approaches in corporation with CAD 
software, modelers can help developers to understand which part of the 
modeling process should be automated and to what extent.  
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By looking at the progress in indoor 3D modeling since 2010, in the near future, 
indoor modeling pipelines become more accurate in modeling details of the 
interiors and can replace the tedious work of modelers. Another future work 
can investigate seamless indoor-outdoor modeling where the 3D models of 
cities can be enriched by indoor models and the navigation of cars and people 
can be carried out seamlessly in indoor complexes. Additionally, with the 
emerge of autonomous drones, it is foreseen that in future, indoor environment 
can be monitored and modeled continuously. Therefore, real-time and light 
algorithms which can be deployed on limited processing devices are in demand. 
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