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1Introduction

1.1 Learning to Predict

A prediction is a guess about an uncertain but realizable phenomenon. The
guess can be based on our prior experience, beliefs, knowledge, and understand-
ing of the phenomenon; or more objectively, be based on past observations of
possible factors causing the phenomenon. The phenomenon itself can be an
inferable fact (e.g. the greenish pixels in the image are trees) or a contingent
event (e.g. the time and location of a likely wildfire ignition). Below we
discuss a quantitative perspective of prediction in the context of remote sensing
applications.

1.1.1 Function Approximation as a Form of Predictive Modeling
Predicting, i.e. making predictions, plays a crucial role in several remote
sensing applications ranging from land cover mapping [24, 156] to wildife risk
management [14, 62]. Often, we present predictions in quantitative form: for
example, i) how much area of the city is still covered by green vegetation or ii)
how much area is likely in risk due to a nearby wildfire. In this work, we refer
to predictive models as formalizations of methods to make and quantify these
predictions. One simple way to formalize such models is function approximation
[58, pp. 28–32]—where we try to find a useful approximate function f̂ for the
true underlying relationship

y = f(x) (1.1)

between the input vector x and output y. In statistics, x’s are interchangeably
called independent variables, predictors, or covariates; while the term features
is often preferred in machine learning and pattern recognition. y’s (classically
termed dependent variable), on the other hand, are interchangeably called
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1. Introduction

response or target variables. Following our land cover mapping example: x is a
vector of b predictors (x = {x1, x2, ..., xb}) that can naively correspond to the
bands of the remotely sensed image being classified, e.g. realizations of x1 are
the pixel values in the near infrared band; and y is a scalar representing c land
cover classes (y = {y1, y2, ..., yc}), e.g. realizations of y1 are the pixels in the
classified map corresponding to grassland cover.

We can then view other predictive modeling tasks t in similar remote
sensing applications as a mapping of the predictors to the response variables
via an approximate function f̂ . Intuitively, for different kind of tasks, data, and
objectives—we need to approximate f̂ in a different way. We expound the ways
of approximating a function for predictive modeling in the following paragraphs.
Table 1.1 provides a simplified overview of these different approaches.

Table 1.1 Summary of approaches in predictive modeling

Property of Modeling Task t Different Types
Availability of labels in y Supervised vs. Unsupervised
Level of measurement in y Classification vs. (Metric) Regression
Form of y Structured vs. Scalar Prediction
End-goal of t Data-driven vs. Knowledge-driven
Representation of x Feature Learning vs. Engineering

1.1.2 Supervised vs. Unsupervised

There are generally two ways to determine a useful f̂ for a given task t. We
can opt to approximate f̂ either in a supervised or unsupervised manner. If we
collect target or reference observations for y, we can learn f̂ in a supervised
manner. But if target observations are unavailable for y, we need to learn f̂ in
an unsupervised manner.

In the supervised case, the available observations in y serve as a teach-
ing/supervising signal (hence the term supervised) that directs the model to
learn a good f̂ . The “supervisor” or “teacher” (roughly corresponding to the
observations in y) either associates a correct answer and/or an error to the
“student’s answer” (which is ŷ, our current model’s prediction)—much like a
classroom metaphor [58, pp. 485–487]. Hence, in most supervised learning
algorithms, we update our f̂ based on the feedback we obtain from comparing ŷ
against our assumed truth: the observations we have for y. Building upon our
land cover mapping application, the observations in y may come from image
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1.1. Learning to Predict

interpretation, ground surveys, secondary sources such as topographic maps,
etc. [30, pp. 85–103]; [117, pp. 296–297].

In the absence of available observations in y, we resort to unsupervised
methods. Most machine learning literature does not associate unsupervised
learning methods to prediction problems, but rather refer to other tasks such
as dimensionality reduction and structure discovery [107, pp. 9–16]; [70, pp.
373–374]. This absence of responses in y makes the end-target of unsupervised
problems implicitly defined or undefined. Despite this lack of explicit definition
of y, we are still learning to model our input x into some other form, e.g.
representations of x with reduced dimension or clusters discovered within
x. Hence, we can still arguably view unsupervised learning problems in a
similar perspective we developed for predictive modeling: approximating a
proper f̂ for implicitly defined or undefined y’s. Furthermore, remote sensing
applications use clustering methods (such as ISODATA [8] and K-means [94]) to
perform unsupervised predictions. Following our land cover mapping example,
a remotely sensed image may be classified into unknown land cover classes
using an unsupervised (clustering) method. These unknown classes will then
be labeled by a human operator [117, p. 249].

1.1.3 Classification vs. Regression
For better clarity in terminologies, we further distinguish forms of predictive
modeling into two types depending on the level or scale of measurement in y. We
perform classification when the response variables are categorical, either nominal
(without order) or ordinal (with order); and we perform regression when the
response variables are continuous. The choice of appropriate form inherently
depends on the nature of the predictive modeling task, e.g. classification
for mapping discrete objects while regression for mapping continuous surface
representations. Mapping land cover may fall under a classification problem
while mapping a continuous wildfire risk index may be treated as a regression
problem.

Classification drives many remote sensing applications such as land cover
mapping, flood mapping [125], mapping of soil and minerals [104], etc. In this
era of multisource, voluminous, online-stream of data (see the 3 dimension
of “difficult” also called “big” data [79])—automating the classification of
remotely sensed data becomes relevant especially for environmental monitoring
systems [39] integrating remote sensing technology. The authors in [88] and
[117, pp. 193–266] review and discuss a number of well-known automated
image classification methods. Some of these methods include the widely-used
maximum likelihood classifier (MLC) [117, pp. 194–204], and machine learning

3



1. Introduction

methods like support vector machines (SVM) [117, pp. 226–231] and artificial
neural networks (ANN) [117, pp. 232–242]. Several points of concern affect
the automation of these classification methods such as appropriate choice and
representation of data [88], and assessment of the classification accuracy [43].
We will further deal with their relevance, specifically data representation, in
1.1.6.

Other remote sensing applications such as estimation of environmental
factors (e.g. vegetation health, pollutant concentration, etc.) benefit from
regression. We generally represent these environmental factors in terms of
continuous indices—hence, we perform regression instead of classification. In
[41], the authors review the application of linear regression for predicting
biophysical factors such as the leaf area index (LAI) and simple ratio (SR)
vegetation index. Some more advanced methods like Gaussian process regression
(GPR) [112] and support vector regression (SVR) [142] were also applied to
similar estimation of biophysical factors from remotely sensed images.

1.1.4 Structured Prediction vs. Scalar Prediction
Aside from the level of measurement, the form or dimensionality of y also
distinguishes two approaches in predictive modeling. If y is zero-dimensional,
we perform scalar prediction; but as soon as we add dimension/s to y and
consider the relationships between the elements of the latter, we will refer to
the approach as structured (output) prediction. In our land cover mapping
example, scalar prediction is equivalent to predicting a class for an individual
pixel at a time. On the other hand, we will be performing structured prediction
if we predict land cover classes for multiple pixels—which, unlike object-based
classification, may contain pixels with different classes.

Intuitively, the additional dimension and organization of output makes
structured prediction problems more complex than their scalar prediction
counterparts. Hence, most work in the context of remote sensing are performing
scalar prediction. But some recent works [2, 145], specifically in the context of
remotely sensed image analysis, steer into the direction of structured learning.
Both uses conditional random fields (CRF) [78] to model the structure in their
output predictions.

1.1.5 Data-driven vs. Knowledge-driven
We can distinguish two kinds of predictive models: knowledge-driven and
data-driven models. Here, we classify knowledge-driven models as those heav-
ily relying on inputs derived from the upper strata of the data-information-
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1.1. Learning to Predict

knowledge-wisdom (DIKW) pyramid [119]. The distinction between each
strata can arguably be subjective. In a more concrete analogy, data-driven is
to supervised learning methods as knowledge-driven is to rule-based methods.
In rule-based methods, the user provides the rules embedded in f̂ ; while in
supervised learning methods, the user provides examples and the algorithm
learns the appropriate input to output mapping based on the examples given
to it. We can further loosely generalize the difference between the two as
being a trade-off between predictive accuracy and model interpretability [73]—
where, in some applications, one may be favored than the other. In general,
knowledge-driven models are more interpretable than their data-driven coun-
terparts; and data-driven models demonstrate higher predictive accuracy than
their knowledge-driven counterparts.

Before the surge in abundance of remotely sensed data [92], insufficient
computing power and data scarcity primarily limits the choice of predictive
modeling approach. Most remote sensing application then resort to knowledge-
driven models, like a rule-based method such as [121]. Since constructing
such knowledge-driven models requires much less resources—in terms of data
and computing power—as compared to data-driven models, like the use cases
illustrated in [80] employing machine learning methods. But all the advances in
sensor, data acquisition, and computing technologies paved the way to use more
complicated and resource-intensive models. In the end, the choice of which
kind of approach to use will largely depend on the end-goal of the modeling
task: either we value predictive accuracy over model interpretability (hence
preferring data-driven models) or vice-versa.

1.1.6 Feature Learning vs. Feature Engineering
Lastly, we distinguish how we represent our features x. To avoid confusion, we
differentiate our input data x from our features r

r = φ(x) (1.2)

such that they are related by the function φ—mapping the input data into
the feature space. A good choice of φ can greatly improve the predictive
performance of our model. We can either learn φ directly from the input data
available to us or we can construct it based on our knowledge of the predictive
modeling task. We call the first approach feature learning or representation
learning [49, pp. 12–15]; [50, pp. 4–5]. We call the second one feature
engineering or feature handcrafting.

This last distinction in predictive modeling approach is directly related
to the two previous approaches. Feature learning is more data-driven than
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1. Introduction

knowledge-driven, while feature engineering is more knowledge-driven than
data-driven. Hence, the same illustration of our land cover mapping example
applies. We can either manually construct φ depending on our knowledge base
of the problem or we can plug-in φ to our function approximation algorithm.
Following the latter approach, Equation 1.1 becomes

y = f(φ(x)) (1.3)

emphasizing the difference between our input data x, features r, and feature
mapping function φ. Deep learning is a specific case of feature learning where
models are composed of multiple processing layers gradually transforming the
input data into a proper feature representation r and finally extracting f:

r = φn(φ...(φ1(φ0(x)))) (1.4)

with n composite functions transforming x into r.

1.2 Remote Sensing Applications

Predictive modeling can be useful for several remote sensing applications
[24, 156, 14, 62]. For this research, we are particularly interested in three
applications: land cover classification, land use classification, and wildfire risk
prediction. Input data can come from a wide range of sensors varying in the
spatial, spectral, and temporal resolution. Deep learning allows us to build
predictive models in an end-to-end manner, generating predictions directly
from the input data by integrating conventionally separate processing steps,
e.g. manual feature extraction, within the model itself.

1.2.1 Land Cover and Land Use Classification
Urbanization continues to change the anthropogenic landscape [35]. We need
efficient methods to automatically update land cover maps—a data product
essential for environmental authorities and policy makers to carry out well-
informed decisions. For local applications—where objects of interests such as
roads, individual buildings, trees, etc. must be mapped—very high resolution
images from airborne or satellite platforms may be required to derive necessary
land cover maps. Not only does finer resolution images suit these kind of
applications, such images also reduces the effect of the mixed pixel problem [89].
But with higher spatial resolution comes higher spectral intra-class variation
that may cause difficulty in the classification problem.

6



1.2. Remote Sensing Applications

Spatial-contextual classifiers [83] address the spectral variation problem
by taking into account the information around a group or neighborhood of
pixels. Such classifiers use handcrafted features—e.g. texture from the gray
level co-occurrence matrix (GLCM) [57], local binary patterns (LBP) [109],
etc.—to extract spatial-contextual information. But optimizing the proper
configuration of these feature extraction methods can be inefficient and time
consuming—especially for very high resolution images where long distance
pixel-to-pixel dependency is expected. Aside from using handcrafted features,
other classification approaches on very high resolution images even try to model
the mapping of these features to corresponding class labels using handcrafted
classification rules [163]. Classifiers following such methods fall under the
knowledge-driven and feature engineering type of approach (see 1.1.6 and 1.1.5).
A more data-driven approach is to learn the features and their corresponding
mapping to classification labels directly from the data (see Figure 1.1).

Figure 1.1 Learning features and classification rules simultaneously from the data.

1.2.2 Land Use Classification
Land use is another vital information for various planning and policy-making
processes [64]. Land use describes the human activity attached to a specific
geographical location. For example: buildings used for either residential or
commercial purposes, open spaces for recreation or waste management, trees for
timber supply or for natural reserves, etc. Intuitively, automatically classifying
land use compared to land cover will be more difficult since land use classes
are defined in a higher abstraction (and finer-grained) level. Hence, limited
work has been done in pixel-wise classification of land use from remotely sensed
images.

In [134], the authors combined vegetation indices—normalized difference
vegetation index (NDVI) and transformed difference vegetation index (TDVI),

7



1. Introduction

textural measures from gray-level co-occurrence matrix (GLCM), and edge
density to classify land use from IKONOS imagery of an Italian region using
maximum likelihood classification. The authors in [162] employed a rule-based
method to classify urban land use from another IKONOS scene of Ontario
Canada. Other works such as [91] and [25] inferred land use from LIDAR
derived features and single polarized SAR data respectively. All of the works
mentioned performed land use classification by engineering features by hand,
with even [162] manually specifying the classification rules to be applied.

1.2.3 Wildfire Prediction

Wildfire continues to be one of the major environmental problems in the
world [154]. To help land and fire management agencies manage and mitigate
wildfire-related risks, we need to develop tools for mapping the hazards and
risks associated with wildfire. Remote sensing coupled with ancillary data,
such as ground-based sensor observations and topographical datasets, can
help us characterize the dynamics of wildfire related events [28]. One such
characterization is the quantification of the probability of a wildfire burn.

Estimates of the probability of wildfire burn can either directly serve
as a proxy measure for wildfire risk or may serve as input, together with
information about assets-at-risk and their corresponding vulnerabilities, to
probabilistic methods from the actuarial sciences to quantify wildfire risk [42].
Furthermore, this probability can also guide problems on wildfire response and
fuel management, e.g. probability of burning as an input to prescribed burning
optimization.

Producing this probability out of input variables extracted from a hetero-
geneous stack of data including time-series of remotely sensed images, meteoro-
logical observations, and geospatial layers from topographical databases can be
complicated. Most studies employ a logistic regression (LR) [28, 5] trained on
a number of relevant wildfire indicators and information on historical wildfire
locations. The single-level linear combination employed in an LR limits the
complexity of the function mapping input variables to the probability of wild-
fire burn. Higher-level spatial and temporal association (intermediate feature
representations) between the input variables may improve the estimates of the
probabilities. Just like the mapping function, however, there is a knowledge
gap on how to construct these higher-level features.

8



1.3. Research Problem

1.3 Research Problem
Relevant remote sensing applications like urban land cover and land use clas-
sification and mapping probability of wildfire events require the organization
and analysis of challenging geodata. Challenging in terms of dealing with
large volume (very high resolution satellite and aerial imageries), high velocity
(weekly, daily, and subdaily time series of remotely sensed observations), highly
heterogeneous (varying data structure, quality, and storage format) datasets.
Current representations of the input data may be insufficient to effectively
perform a prediction task related to the problem. We need to learn further
representations of our input data that can improve the predictive performance
of our models.

The main focus of this research is the use of deep learning methods on
these challenging remote sensing applications. Learning higher-level data
representations is central to deep learning. One can find several formulation
of the definition of deep learning [34]. For the sake of clarity, we adopt a
modified version of the definition presented in [52]: deep learning is a group
of techniques facilitating the learning, retrieval, and analysis of information
(higher-level data patterns and representations) that are deeply hidden in
the input data. These techniques perform the learning of representations in
a hierarchical and distributed manner. Hierarchical, in a way that deeper
(higher-level) representations are built on top of simpler (lower-level) ones; and
distributed, in a way that inputs are described by multiple features and each
feature participates in the representation of multiple inputs [50, pp. 13–19].
Deep learning not only optimizes the features learned on for the prediction task,
but also streamlines and objectifies the prediction processing pipeline—skipping
tedious and subjective feature engineering steps.

1.4 Research Objectives

This research aims to develop deep learning methods for building end-to-end
predictive models in remote sensing. Variants of deep neural networks will
be mainly employed for three applications: land cover classification, land use
classification, and wildfire prediction. We formulate the work into four key
objectives:

1. To develop a deep learning based method performing an end-to-end image
fusion and classification of a multiresolution VHR satellite image in the
context of urban land cover classification.

9
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2. To develop a deep learning based method to model contextual label-to-
label dependencies and effectively regularize classification maps in the
context of urban land cover classification.

3. To develop a deep learning based method to classify urban land use from
VHR satellite images.

4. To develop a deep learning based method predicting daily maps of the
probability of a wildfire burn.

1.5 Thesis Outline
Chapter 1 presents background information on predictive modeling relating it
to several concepts in machine learning and remote sensing applications, the
latter being employed as use cases in this thesis. The chapter also presents the
research problem, corresponding research objectives, and the outline of this
thesis.

Chapter 2 provides an overview of several deep learning concepts used in
this study.

Chapter 3 presents a multiresolution convolutional network for urban land
cover classification. The network embeds both image fusion, feature extraction,
and image classification in a single end-to-end framework.

Chapter 4 presents a recurrent convolutional network to model contex-
tual label-to-label dependencies and effectively regularize urban land cover
classification maps. Contextual label dependencies are incorporated in the
recurrent convolutional network by feeding classification scores of a previous
convolutional network instance to a succeeding one.

Chapter 5 presents a deep fully convolutional multitask network to perform
urban land use classification from VHR imagery. Urban land cover classification
is used as a complimentary task in training the multitask networks.

Chapter 6 presents a fully convolutional network for predicting daily maps
of the probability of a wildfire burn over the next 7 days for Victoria, Australia
over the period of 2006–2017. The network utilizes as an input an extensive
set of wildfire related variables taken from various data sources such as: time
series of satellite images and data products, climatological sensor observations,
topographical geospatial databases, and historical wildfire burn records.

Chapter 7 presents the synthesis of this thesis. Key results from the
previous chapters are summarized. The chapter ends with the conclusions and
recommendations based on these summarized findings.
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Deep learning presents a promising way to build end-to-end computational
models by learning hierarchical and distributed representations of data. Hier-
archical, in a way that deeper (higher-level) representations are built on top of
simpler (lower-level) ones; and distributed, in a way that inputs are described by
multiple features and each feature participates in the representation of multiple
inputs [50, pp. 13–19]. It provides a framework where the transformations to
construct the feature representations and the rules for predictions are learned
simultaneously, integrating conventionally independent pre- and post-prediction
steps, and delivering end-to-end predictive models. It stands on the premise
that some mapping functions may be more efficiently approximated by deeper
architectures compared to their shallower counterparts [11]. This framework
results in highly flexible models that have empirically shown outstanding im-
provement of state-of-the-art methods in several applications. See [127] for an
exhaustive review of benchmark results relevant to deep learning.

More specifically, we are interested in applying deep learning using a family
of models called artificial neural networks. Variety of architectures exists such
as convolutional neural networks (CNN), recurrent neural networks (RNN),
autoencoders, Boltzmann machine variants, etc.—each of which are generally
tailored to certain applications. For example, using CNN for images and using
RNN for sequential data.

2.1 Artificial Neural Networks
Artificial neural networks are a group of statistical learning models inspired
by the structure of biological brains of animals. Computational units called
artificial neurons (perceptrons) comprises these networks. We characterize a
neural network by: i) how the artificial neurons are organized, ii) the operation
each artificial neuron performs, and iii) the learning rules governing them [36, pp.

11
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9–12]. Synapses of the biological brain exhibits some form of plasticity (changing
or vanishing of connection strength) that is suggested to drive the underlying
process on how memory and learning works [36, pp. 1–5]. Analogous to the
biological synapses, the weights (or parameters) of the connections between
the units of a network also changes as the network is trained to learn a specific
task, e.g. image classification. The operation performed by an artificial neuron
can be summarized by an affine transformation (sum of products of the weight
of the connections and the value of the preceding units)

aj = w0,j +
n∑

i=1
zi,j−1Wi,j (2.1)

followed by a non-linear transformation. For example, the sigmoid

zj = 1
1 + exp(−aj)

(2.2)

or the hyperbolic tangent

zj = tanh(aj) (2.3)

functions; where aj is a pre-synaptic activation of a neuron in the jth layer
with n connections from the preceding j − 1th layer, zj is the post-synaptic
activation, w0,j is the weight of the bias unit, and Wi,j is the matrix containing
the weights of the connections. Figure 2.1 illustrates the operations performed
by a single artificial neuron where: x1, x2, ...xn are the units, having weights
of w1,w2, ...wn, with incoming connection; b0 is the bias unit; “Σ” sums the
product of the incoming units with their weights; and “ ” is the non-linear
operation applied (see Equations 2.2 and 2.3).

Figure 2.1 Diagram of an artificial neuron (also called perceptron) [12].
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A typical example of an artificial neural network is a multilayer perceptron
(MLP). In an MLP, we group the units into three kinds of layers: input, hidden,
and output. Each unit connects to all other units in the preceding (except for
those in the input layer) and succeeding layers while being disconnected to
neurons in the same layer (see Figure 2.2). The units in the input layer takes a
vectorized form of the data, e.g. in an image it will be the digital numbers of a
pixel in each band. The units in the hidden layer are the feature representations
of the data. Finally, the output layer contains the corresponding results of a
classification or regression problem, e.g. the class label scores in a land cover
classification. Aside from the characterization of the output units, the problem
is expressed by formally defining a loss or objective function to be minimized.
In a supervised learning setting (see 1.1.2), we often minimize this objective
function using the backpropagation [120] with gradient descent algorithm. For
more details regarding the MLP, the reader is directed to [36] and [50]. All the
details mentioned here are also applicable to other varieties of artificial neural
network architecture as we will discuss below.

Figure 2.2 Simplified structure of an MLP [12].

MLP can be applied in a number of remote sensing applications [97] involving
classification or regression problems. Specific examples of applications are land
cover classification [123], land use classification [26], and wildfire ignition
prediction [33]. Interestingly, [123] and [26] both used SAR data and all three
examples employed MLP with no more than two hidden layers.
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2.2 Convolutional Networks
Convolutional neural network (CNN) belongs to a group of artificial neural
networks whose hidden layers employ convolutional and aggregational (pooling)
operations. The CNN architecture originated from Fukushima’s neocognitron
[45], inspired by Hubel and Wiesel’s hierarchical model of the visual cortex [66],
with the main difference of the original CNN being trained via the backpropaga-
tion with gradient descent algorithm [120]. The mentioned hierarchical visual
cortex model comprises of group of cells with “simple” and “complex” receptive
fields. In analogy, the neocognitron network [45] comprises of hierarchical
layers consisting of alternating S-cells and C-cells resembling the simple and
complex cells in the visual cortex model. S-cells serve as feature extractors
responding to specific signal patterns, while C-cells receive and subsample
shifted versions of activation signals from a group of preceding S-cells—allowing
a certain degree of tolerance in the change in position of the patterns [44].
Similarly, convolutional and pooling layers in the CNN performs the same
pattern detection and subsampling with small positional shift invariance re-
spectively. The filters in the convolutional layers encode the patterns learned
by the network. By using filters with receptive fields, or filter sizes, smaller
than the dimension of the input signal (e.g an image), the same filter may
be used to recognize similar patterns in different locations of the input. This
“filter reusing” (formally: parameter sharing) scheme of a convolutional layer
results to a network with significantly lower number of parameters than an
equivalent non-convolutional (fully-connected) version. See figure 2.3 to see
the difference between a convolutional and non-convolutional layer.

Figure 2.3 Difference between convolutional and fully-connected layers [12].

The pooling layer then performs a fixed operation (e.g. taking the maximum
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or average) summarizing a group of output values (e.g. non-overlapping q × q
regions) from the previous convolutional layer. See Figure 2.4 illustrating the
convolution and pooling operations performed by a general CNN accepting an
input image of size m×m (patch size) with b bands, employing r convolutional
filters of size f × f followed by the pooling operation. Same as other artificial
neural networks, the hidden layers of the CNN applies a non-linear activation
as well.

Figure 2.4 Illustration of the CNN input and convolution and pooling operations.

Convolutional neural networks were initially developed to recognize hand-
written digits [81, 82]. But with recent advances in network design, optimization
strategies, abundance of labeled data, and the advent of powerful graphical
processing units (GPU) for computing, these networks continue to push forward
state-of-the-art results in several computer vision tasks including: image classi-
fication, object detection, scene labeling/semantic segmentation, etc. Below
we review several contemporary methods and applications contributing to the
development of CNNs.

From the early networks like the LeNet-5 [82] with seven hidden layers,
CNNs successfully trained recently have far greater depth than their early
predecessors. Some popular examples are the AlexNet [76] with eight hidden
layers, the VGGNet [130] with up to 19 hidden layers, the GoogLeNet [133]
with 22 hidden layers, and the ResNet [61] with up to 1202 layers. Deeper
networks have better representation ability—allowing the network to learn
features of higher abstraction in the last convolutional layers, e.g. a composition
of features in the previous layers—than their shallower counterparts. And these
modern networks enumerated above [76, 130, 133, 61] empirically show that the
depth of the network plays an important role in the latter’s performance. But
a deeper CNN will generally have more parameters to learn than a shallower
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one: making deeper networks more prone to overfitting and more difficult to
optimize.

All the networks mentioned above, except for GoogLeNet, uses the “usual
convolution” with filter sizes fixed in each layer and smaller than the input.
AlexNet uses relatively larger filters (11× 11) in the first convolutional layers
while using smaller filters (5 × 5 in the second and 3 × 3 in others) in the
succeeding layers [76]. VGGnet uses small filters (3 × 3) all throughout its
convolutional layers [130]. To keep the number of features relatively equal all
throughout the layers, the number of filters of succeeding convolutional layer/s
are generally a factor of n times the number of the preceding convolutional
layer/s, where n is the downsampling factor of the pooling layer between the
convolutional layers. GoogLeNet uses a special kind of convolutional layer
they called “Inception module” [133]—a generalization of the operation applied
by the Network in Network of Lin et al. [84]. Instead of applying the “usual
convolution”, the inception module applies convolutions of different filter sizes
(5× 5, 3× 3, and 1× 1) together with a maximum pooling operation within
a single convolutional layer. Such that, at the end of the Inception module,
the output of all sub-convolutions and maximum pooling are concatenated
into a single output tensor. The Inception module also heavily applies 1× 1
convolutions before the 5× 5 and 3× 3 convolutions as a means of dimension
reduction. With the Inception architecture, GoogLeNet performs comparably
well with networks of larger number of parameters (AlexNet has 15 times and
VGGNet has 35 times more).

Another noteworthy convolutional network architecture are the residual
networks [61]. These networks formulate convolutional blocks, composed
of multiple convolutional layers, within a network as residual functions by
propagating the input features of such blocks to their last layer through
skip connections. More specifically, an original desired underlying mapping
y = fo(x) between the input x and output y can be residualized to the form
of y = x + fr(x). Applying such an architecture allowed them to successfully
train networks with considerable depths, i.e. having a number of hidden layers
in the order of 102 to 103.

2.3 Recurrent Networks
Recurrent neural networks fall under the type of artificial neural network
employing feedback/recurrent connection, i.e. connections forming a directed
cycle. For example, the Jordan network [71] has connections from the output
units back to the hidden units. Recurrent networks are particularly suited
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for modeling sequential data. In [85], the authors reviewed the history and
advances in recurrent architectures specifically for learning sequential data—
e.g. image captioning, speech synthesis, etc. The authors in [115] applied a
recurrent (Jordan variant) convolutional network for semantic segmentation of
general images.

2.4 Deep Networks as Data-flow Graphs

We can generalize any variant of deep networks by seeing them as data-flow
graphs—a graph representing how a set of input data are processed along a
possibly branching chain of functions, in the end producing a final set of outputs.
In this section, we describe elements of a convolutional network in terms of data-
flow graphs. Using such a model, we define the networks by three elements: the
sets of data they take as an input, the operations they perform in each function
block, and the intermediate and final set of outputs they produce. The sequence
of operations performed can be understood from the direction of the edges in
the data-flow graph. Aside from these three key elements of data-flow graphs,
details of a unique configuration and instance of a convolutional network are
defined by its hyperparameters and parameters respectively. Hyperparameters
are associated with the configuration of a network architecture and are set to
fixed values before training the network. Parameters are values associated to
a specific network instance and are learned during network training. Below
we discus these three elements of data-flow graphs applicable to convolutional
networks together with the parameters and hyperparameters associated with
each element.

2.4.1 Input
A convolutional network receives as an input either the whole image itself to be
classified or a subset of it, called an input patch.The dimension of this patch
is defined by the patch size hyperparameter M and the number of bands B
as shown in Figure 2.5. A network is generally trained over a group of image
patches specified by the batch size N defining the number of image patches
present in a single batch. A convolutional network accepts an N×B×M×M
array of pixel values as an input (in the case of the image patches having equal
height and width), N being the number of patches processed by the network
in parallel. Aside from the input image patch, the corresponding reference
image can also be considered as an input in terms of data-flow graphs since no
operation precedes it.
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Figure 2.5 Illustration of CNN input and output types.

2.4.2 Operations
Convolutions are the main operations used by convolutional networks. A
convolution applies a linear operation on an input image/feature map using
a set of K ′ learnable kernels. The kernel values makes up the main chunk of
network parameters. Applying a kernel w, composed of a K×K ′×G×G array
of learnable parameters, on a K×H×W input feature map x, where G is the
kernel size, K is the number of kernels in each set of kernels, and H and W
are the height and width of the feature map, produces a K ′×H ′×W ′ output
feature map x′. The output at the i′ row and j′ column of the k′ feature map
is given by:

x′k′i′j′ =
K∑
k=1

G∑
p=1

G∑
q=1

xkij ·wkk′pq + bk′ (2.4a)

i = i′ + p− dG2 e (2.4b)

j = j′ + q − dG2 e (2.4c)

where bk′ is the learnable bias parameter associated with the k′ feature map.
The width and height of the output feature map are given by:

H ′ = bH −G+ 2Z
S

+ 1c (2.5a)

W ′ = bW −G+ 2Z
S

+ 1c (2.5b)

where the zero-padding Z is the number of rows and columns of zeros added to
the border of the input feature map and the convolutional stride S is the number
of units separating contiguous receptive fields of the kernel on the input feature
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map. Equation 2.5 implies that both Z and S have the same values for the two
spatial dimensions (row-wise and column-wise) of the feature maps. The case of
uneven zero-padding and strides can easily be derived from the same equation.
If G = H then a convolution equivalently becomes the same operation applied
by fully-connected feedforward networks—where each unit in the succeeding
layer has an independent weight connected to every unit of the previous layer.
A standard convolution, however, would have local-connectivity where G < H
effectively applying exactly the same set of w in different locations of the
input feature map. In this setup, an implementation of convolution can be
viewed as a moving window operation resulting to elementwise multiplication
of the kernel values and the values of the units within its receptive fields. This
effect of reusing the same set of weights in different parts of the input is called
parameter sharing, which reduces the number of parameters when compared to
a fully-connected variant. Parameter sharing also reflects the prior knowledge
that we expect similar patterns to be present in different areas of an input
feature map, e.g. a vertical edge might be present both in the upper left corner
as well as the lower right corner of an image. To preserve the spatial dimensions
of the input (H ′ = H and W ′ = W ), a conventional approach would be to
set S = 1 and Z = G−1

2 if G is odd and Z = G
2 if G is even. The authors in

[50, pp. 342–352] discusses variants of the basic convolution such as unshared
convolution (also called locally-connected layer) and tiled convolution. In an
unshared convolution, the connection is local (G < H) but the kernels are never
reused—hence, having different sets of w for each location in the input. Tiled
convolution compromises between shared (basic) and unshared convolution
such that: instead of totally sharing the same set of w for all parts of the
images, it applies T separate sets of w every (S×T )th unit. Tiled convolution
becomes shared convolution when T = 1; and becomes unshared convolution
when T = H ′×W ′. Another noteworthy variant is dilated convolution used
by authors in [23] to arbitrarily increase the size of the kernel—from G×G
to (G×D)×(G×D) by filing in zeros in-between—without further increasing
computational burden.

Nonlinearity is applied after the linear operation of a convolution. Since
applying a series of linear operations can be reduced to a single linear operation,
an elementwise nonlinear function applied between each convolution allows the
network to learn more complex input to output mapping. A common choice is
the rectifier function

x′i′j′k′ = max(0,xijk) (2.6)

or a variation of it [93, 59, 29]. The first convolutional network LeNet-5
[82] employs a scaled hyperbolic tangent (tanh) function as its nonlinear
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operation. Another previously commonly used activation is the logistic sigmoid
function. However, since both nonlinearities saturates at their tails—the former
having nearly-zero gradients at the latter, training deep networks may cause
slow convergence or even non-convergence of the learning process due the
so called “exploding/vanishing gradient” problem [152]. Modern networks
[76, 130, 133, 61], on the other hand, heavily use the rectifier function which
does not saturate on the positive domain. Several works [48, 93, 160] observed
that networks using rectified linear units (ReLU) perform better than those
using their saturated counterparts (tanh or sigmoid). The potential drawback of
using ReLU is having zero gradient for every inactive unit—hence, permanently
“killing” a unit (setting it to zero). To address this drawback, a number of
functions generalizing ReLU were proposed: leaky ReLU [93], parametric ReLU
[59], randomized ReLU [152], and exponential linear unit [29]. Leaky ReLU
allows a fixed small gradient δ to pass through units with negative activation
values [93]. Instead of using a fixed value, parametric ReLU learns δ as an
additional parameter for each feature map in the network [59]. Randomized
ReLU samples δ from a uniform distribution during training, and uses a
fixed value in testing [152]. Exponential linear units assign an exponentially
saturating value to the negative part of the rectifier—effectively improving
training convergence and generalization of the networks [29]. Maxout units
[51] further generalizes the ReLU by taking the maximum across the channels
of the input feature map at the same spatial location. Maxout units can
learn piecewise linear convex activation function [51]. A variant of maxout,
probout units [132] samples the same spatial location across channels of the
input feature map based on a multinomial distribution given by the normalized
activation values in the same location.

Pooling takes an aggregate of values over local regions of the input. A
common choice of a pooling function is the average or maximum function. We
can view pooling the same way as we view convolutions—where a moving G×G
window of stride S is applied to the input feature map. However, in contrast to
convolution, a basic pooling does not have any learnable parameters. Originally,
pooling was used to give the network a small degree of translation invariance
by summarizing values of the input on non-overlapping windows (S = G)—
also downsampling the input by a factor of S, with proper zero-padding.
Downsampling increases the receptive fields of succeeding convolutions while
decreasing the computational burden by reducing the spatial dimensions of
the output feature maps. Depending on the dataset, networks using maximum
pooling may outperform those using average pooling; and for some other
dataset an optimal pooling could be somewhere in between the two mentioned
operations [17]. Realizing this, [54] proposes a parametrized pooling by taking
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the lp norm of units over a pooling region. lp pooling reduces to average
pooling when the order of the norm p = 0 and max pooling when p = ∞.
In [54], p is a parameter of the model and is learned for each pooled unit in
the network. Inspired by the regularization method Dropout [63], [155] and
[158] proposes two pooling operations: mixed pooling and stochastic pooling
respectively. Mixed pooling assigns a random binary variable λ to each pooling
region—performing maximum pooling for λ = 1 and average pooling for λ = 0
[155]. Stochastic pooling, on the other hand, randomly samples each pooling
region based on the multinomial distribution given by the normalized activation
values within the pooling region [158]. Both these Dropout-inspired pooling
also promotes regularization in CNNs. He et al. introduces the pooling strategy
called spatial pyramid pooling [60] to address the “artificial problem” most CNN
implementations have: requiring fixed input sizes. Spatial pyramid pooling
aggregates features from convolutional layers into local spatial bins with sizes
proportional to the input feature map—hence, the number of bins is fixed
regardless of the size of the input feature map [60].

Upsampling operations are applied to increase the spatial dimensions of
input feature maps. Upsampling is important specifically if the network needs
to produce output predictions of the same size as the input, i.e. we want to
produce a label for each pixel in the M×M input patch. One way to upsample
is by employing resampling techniques such as nearest neighbor or bilinear
interpolation [23]. The original fully convolutional network (FCN) [87] learns
the upsampling operation using backwards convolution (or more technically
fitting called transposed convolution). Backwards convolution is equivalent
to the operation performed when calculating the gradients of a convolutional
operation. Convolutions can be efficiently expressed as a matrix operation and
its gradients can be computed by multiplying the backpropagated error of the
succeeding layer by the transpose of the matrix representing the convolution—
hence, the name transposed convolution. Another approach called unpooling
[159, 6] can be used to upsample input feature maps by saving the row and
column indeces of max-pooling operation with downsampling and copying the
values of the input to corresponding indices of a higher resolution output.

Identity operations are used to propagate information from lower-level
feature maps to higher-level ones and are called skip connections in [87]. It can
also be used to apply a recurrent connection within a network as done by [115].

Merging combines two or more sets of feature maps in a network either by
addition or by concatenation. Addition is an elementwise operation performed
between feature maps—adding each unit with corresponding indices—hence,
all the three dimensions (K, H, W ) must be the same for all inputs [87].
Concatenation stacks the input feature maps depth-wise—hence, only the
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spatial dimensions (H, W ) must be the same. The authors in [87] used
addition to combine lower-level features with higher-level ones.

Other technique-specific operations such as masking used in Dropout and
parametrized normalization used in Batch Normalization (BN) [68] may also be
used between convolutions to improve the training and generalization capability
of the networks. Index-searching funtions, such as arg max that returns the
index of the maximum values along a dimension, and comparison operations
are used in the evaluation of objective loss and classification accuracy. More
details on these techniques can be found in Section 2.5.

2.4.3 Outputs

In data-flow graph terms, the outputs of a convolutional network consist of all
the intermediate feature maps, the final class score maps, and the corresponding
loss and accuracy calculated using the class score maps and the reference labels.
Characteristics of resulting intermediate feature maps were discussed in Section
2.4.2 while calculation of objective loss and classification accuracy will be
discussed in the succeeding sections. Final class score maps correspond to
the units in the last layer of a neural network and its dimension depends on
how the task is defined. Authors in [146] categorize the approaches to this
task into three variants: 1) patch classification, 2) subpatch labeling, and
3) full patch labeling. In patch classification, we assign a single label to the
patch, i.e. the label corresponds to the class of the central pixel of the patch
[12, 146, 98] (see Figure 2.5). In subpatch labeling, we assign labels on a
smaller part of the patch corresponding to the area near the center of the
patch [146]. Finally, in full patch labeling, we assign labels to all the pixels
in the patch [87, 128, 6, 146, 113]. The last method, aside from being more
efficient, also decouples the limit of the input patch size to the number of
downsampling operations in the network. The class score map dimensions are
C×1×1, C×Msub×Msub, and C×M×M where 1 < Msub < M for the patch
classification, subpatch labeling, and full patch labeling respectively.

2.4.4 Parameters and hyperparameters

Table 2.1 summarizes the parameters and hyperparameters in the different
elements of a data-flow graph representing a convolutional network. Only
convolutional layers (including transposed convolution) are parametrized. Other
values and functions—such as the activation fa, pooling fp, upsampling fu,
and merging fm function—are hyperparameters and are fixed beforehand.
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Table 2.1 Parameters and hyperparameters in a CNN

Graph element Parameters Hyperparameters
Input none M
Convolutiona w, b G, S, Z
Nonlinearlitya none fa
Pooling none Gp, Sp, Zp, fp
Upsampling w, b b fu
Merging none fm

a Basic convolution and non-parametrized activation func-
tions

b When transposed convolution is used
M is the input patch size
w, b are the kernel and bias weights
G, S, Z are the kernel size, stride, and zeropadding
f∗ symbolizes a function and subscripts a,p,u,m corresponds
to activation, pooling, upsampling, and merging

2.5 Training Deep Networks

We determine the values of the parameters of the network in a step called
training phase. In a supervised learning setting, where we have available
reference labels corresponding to our training samples, we search for the “best”
possible values of our network parameters by showing the network sets of
examples where the network compares its predictions (based on the examples
it has seen) against targets (reference labels) associated with the examples.
We formalize the comparison by defining an objective function. We train the
network by minimizing an objective function in terms of the parameters of the
network. For classification involving C classes, a cross-entropy loss function is
often used given by:

EN (w) = −
N∑
n=1

tn · log(yn) (2.7)

where E is the loss function value evaluated over N samples, tn is a binary
vector encoding the the target class labels (with the index corrresponding to
a class having a value of 1 and 0 otherwise), · denotes the dot product, and
yn is the class score maps of a sample n calculated using a softmax activation
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function:

ykij = exp(xkij)
C∑
c=1

exp(xcij)
. (2.8)

In this equation, y is the softmax score and x is the last set of feature maps
containing unnormalized class scores at location ij.

We train the network by minimizing a specified objective function. The most
common method to minimize the objective function is an iterative gradient-
based optimization technique called backpropagation with gradient descent
[120] or a variant of it. Backpropagation computes the derivative of the loss
function with respect to the learnable network parameters and gradient descent
updates the weights by adding a value proportional to the negative of the
gradients. The weight update ∆w is obtained by:

∆w(τ) = −η(τ)∂E(τ)
∂w(τ) + α∆w(τ − 1) (2.9)

where ∂E
∂w is the vector of gradients, η is the learning rate, and α is the

momentum hyperparameter at epoch τ . An epoch is defined to be the number
of iterations required for the network to compute gradients using all training
samples, while a single iteration is a one-time evaluation and application of
Equation 2.9. The evaluation of Equation 2.9 can be decomposed into two
different steps: the forward pass and backward pass of the network. A forward
pass consist of applying all the series of operations a CNN has to calculate the
objective function value E. A backward pass, on the other hand, computes
the gradients and correspondingly produce an evaluation of Equation 2.9. The
learning rate and momentum are hyperparameters of the optimizer. The
learning rate hyperparameter defines the proportion of the gradient values
that we need subtract from the previous gradients—analogous to the “size of
the step” we take in the parameter space to search the latter’s optimal values.
The momentum method [116] accelerates the convergence of the optimizer by
forcing it to the same direction as the previous gradient update—effectively
“dampening oscillations” in regions of the parameter space with problematic
curvatures and gradients.

The basic variant of backpropagation with gradient descent evaluates the
weight update over the whole set of training samples and is called batch gradient
descent. However, in practice, the batch version of gradient descent is often
too computationally expensive since we need to evaluate the gradients over
all training samples before calculating the final weight updates. Hence, we
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often use a stochastic version of the gradient descent where we approximate
the weight updates over randomly sampled subsets (called mini-batches) of the
training set. We can infer predictions from the final trained network instance
by truncating the loss evaluation in the computational graph and taking the
index of the maximum class score map value along the class score dimension
by

yij = arg max
c

ycij (2.10)

where y and y are the class score and prediction for location ij respectively.
Advances in optimization methods address the problem of underfitting.

Underfitting happens when a learning algorithm gets stuck in a poor set of
parameter values—hence, performing (almost) equivalently badly in both train-
ing and testing phase. Several proposed solutions to overcome the underfitting
problem, aside from stochastic gradient descent [16], are: proper weight initial-
ization [47], batch normalization [68], and shortcut connections [61]. In [47],
the authors proposed to initialize the weights with values randomly sampled
from a Gaussian distribution with variance 2/(nin + nout), where nin and nout
are the number neurons in the preceding and succeeding layers. Batch normal-
ization [68], as the name implies, transforms the activations (by batch) of a
preceding feature map to follow a normal distribution with N (0, 1)—instead of
just performing normalization of the whole training set. In [61], the authors
employ shortcut connections in the form of identity mapping within hidden
layers of deep networks.

2.6 Regularizating Deep Networks

Deep networks are often prone to overfit the training set. Overfitting occurs
when a model reports high accuracy during training but performs poorly on
unseen test data. Regularization approaches address the overfitting problem
using three common methods: data augmentation, weight decay, and early-
stopping. Data augmentation technique increases the number of training
samples by permuting them with applicable rotational and/or translational
transformations. Data augmentation helps the network to learn relevant
invariances that may be present in the input. Weight decay modifies the loss
function by

Q(w) = E(w) + λ‖w‖2
2 (2.11)

adding a penalty proportional to the square of the l2 -norm of the weight vector
w. The weight decay λ hyperparameter controls the contribution of this penalty
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2. End-to-end Predictive Models

to the loss function. Such penalization promotes weight values near the origin
of the parameter space—hence, allowing more uniform/smoother values. Early
stopping prematurely stops the training when a criterion measured from a
validation set is met. For example, we can stop the training when the value of
the loss function or the classification accuracy evaluated on the validation set
did not change by more than 1% for the past 5 epochs.

Two more recent algorithms addressing the overfitting problem are: dropout
[63] and dropconnect [148]. Dropout basically randomly drops a unit within a
hidden layer by a probability 1− ψ, where ψ defines the chance of retaining
a unit during training. In testing phase, the weights of the network are
multiplied by a factor of ψ. It is equivalent to sampling a binary vector d
whose elements are sampled from a Bernoulli distribution parametrized by ψ.
Dropout effectively samples different architectures of the network at training
time indirectly creating an ensemble of network. Dropout has been empirically
shown to improve the ability of deep networks to generalize on unseen data
set. In dropconnect, instead of zeroing out the hidden units, the connections
between units are randomly dropped instead. Authors in [141] observed that
the standard dropout method does not help in regularization when applied to
convolutional layers and, hence proposed an new method called SpatialDropout.

We summarize common learning and regularization hyperparameters and
parameters in table 2.2.

Table 2.2 Learning and regularization parameters and hyperparameters

Method Parameters Hyperparameters
Stochastic Gradient Descent none η, α, N , T
Batch Normalization γ, β none
Weight decay none λ
Early-stopping none stopping criteria
Dropout none ψ

η, α, N , T are the learning rate, momentum, batchsize, and
number of epochs
γ and β are the scaling and shift parameters [68]
λ is the weight decay rate
ψ is the dropout rate.
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3FuseNet: End-to-end Multispectral
VHR Image Fusion and
Classification

Abstract

Classification of very high resolution (VHR) satellite images faces
two major challenges: 1) inherent low intra-class and high inter-class
spectral similarities and 2) mismatching resolution of available bands.
Conventional methods have addressed these challenges by adopting sep-
arate stages of image fusion and spatial feature extraction steps. These
steps, however, are not jointly optimizing the classification task at hand.
We propose a single-stage framework embedding these processing stages
in a multiresolution convolutional network. The network, called FuseNet,
aims to match the resolution of the panchromatic and multispectral bands
in a VHR image using convolutional layers with corresponding down-
sampling and upsampling operations. We compared FuseNet against the
use of separate processing steps for image fusion, such as pansharpening
and resampling through interpolation. We also analyzed the sensitivity
of the classification performance of FuseNet to a selected number of its
hyperparameters. Results show that FuseNet surpasses conventional
methods.

This chapter is based on:
J. R. Bergado, C. Persello, and A. Stein. FuseNet: End-to-end multispectral VHR

image fusion and classification. 2018 IEEE International Geoscience and Remote Sensing
Symposium, IGARSS 2018 - Proceedings, pp. 2091-2094, Jul 2018.

J. R. Bergado, C. Persello, and A. Stein. Recurrent multiresolution convolutional net-
works for vhr image classification. IEEE Transactions on Geoscience and Remote Sensing,
56(11):6361–6374, Nov 2018.
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3. FuseNet: End-to-end Multispectral VHR Image Fusion and Classification

Figure 3.1 Different pipelines for classifying multiresolution VHR images.

3.1 Introduction
Classification of very high resolution (VHR) satellite images presents two major
challenges: 1) inherent low intra-class and high inter-class spectral similarities
and 2) mismatching resolution of available bands. The first challenge is often
addressed by extracting spatial-contextual features from the image such as
texture-describing measures, e.g. gray level co-occurrence matrix (GLCM) and
local binary patterns (LBP) [109] or products of morphological operators [40]
that are expected to reduce spectral class ambiguities. The second challenge is
dealt with pansharpening and interpolation-based resampling techniques used
to fuse images of different resolutions. A typical approach to classification of
a multiresolution VHR satellite image would then be as shown in Figure 3.1
(a). These additional steps to address problems in classifying a multiresolution
VHR satellite image are disjoint from the supervised classifier, and hence, not
optimized for the task at hand.

Deep learning offers a framework to build end-to-end classifiers by dir-
ectly learning the predictions from the inputs with minimal or no separate
pre-classification steps. Convolutional neural networks (CNN), for instance,
integrate the feature extraction step within the training of the supervised classi-
fier and have performed better than intermediate handcrafted features [12, 98].
Recently, a patch-based CNN [98] and a fully convolutional network (FCN)
[113], utilizing pansharpening for image fusion, were used to detect informal
settlements from a multiresolution VHR satellite image. Both works have
addressed the classification challenges as in Figure 3.1 (b). In this paper, we
present a novel single-stage network performing image fusion and classification
of a multiresolution VHR satellite image in an end-to-end fashion as in Figure
3.1 (c).

28



3.2. Data and Methods

3.2 Data and Methods
We propose a multiresolution convolutional network, called FuseNet, to perform
an end-to-end image fusion and classification of a multi-resolution VHR satellite
image. FuseNet is built on top of a fully convolutional network architecture
learning to: 1) fuse panchromatic (PAN) and multispectral (MS) bands of
a VHR satellite image, 2) extract spatial feature, and 3) classify land cover
classes.

FuseNet is specifically designed for VHR satellite images with PAN band
and MS bands having a ground sampling distance ratio of four (e.g. Quickbird,
Worldview 2/3, Pleiades, Ikonos). This architecture can be generalized to fuse
any number of images with different spatial resolutions and any number of bands.
It accepts two sets of input: an image patch of dimensions N×1×4M×4M
taken from a PAN image and another patch of dimensions N×4×M×M taken
from corresponding locations in the MS image. It performs two series of
convolution, nonlinearity, and maximum pooling with downsampling to the
PAN image patches such that the spatial dimensions of the intermediate feature
maps match the spatial dimensions of the MS image patches. The nonlinear
operations use an exponential linear activation function [29]. The second input
is linearly projected in k dimensions using 1×1 convolutions such that k matches
the number of intermediate feature maps extracted from the first set of input.
This ensures that succeeding feature maps extract the same number of pattern
variations from both sets of inputs. FuseNet merges the linear projection of
the MS image patches with intermediate feature maps extracted from the PAN
image patches via a concatenation operation.

Additional series of convolution, nonlinearity, and maximum pooling with
downsampling operations are applied to the merged feature maps thus producing
a set of feature maps with the smallest spatial dimensions—called a bottleneck.
FuseNet then upsamples the bottleneck back to the resolution of the PAN
input image patches using transposed convolutions. The resulting set of feature
maps is linearly projected again using 1×1 convolutions such that the number
of feature maps matches the number of classes C. FuseNet applies a softmax
activation to calculate normalized class score maps and couples those with a
cross-entropy loss function (see Equation 5.2).
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Figure 3.2 The general architecture of FuseNet with skip connections (FuseNetskip). FuseNet accepts two streams of
input: one from PAN image patches and another from MS image patches. It applies convolutional and pooling layers with
downsampling to extract spatial features and at the same time match the resolution of the two streams of input. Similar
operations are performed to the output of the merged streams of input arriving at a feature map with smallest spatial
dimensions (bottleneck). From there, upsampling operations using transposed convolutions are performed to restore the
resolution back to the resolution of the PAN image patches. Skip connections are implemented using appropriate upsampling
and linear projections.
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3.2. Data and Methods

Table 3.1 Detailed operations of FuseNetlow.

FuseNetlow
xPAN (1×4M×4M) xMS(4×M×M)

conv13-16 conv1-32
maxpool
conv7-32
maxpool

IFM1 (32×M×M) IFM2 (32×M×M)
concat

IFM3 (64×M×M)
conv3-64
maxpool

conv3-128
maxpool

BFM (128×M/4×M/4)
ups2-128
ups2-64
ups2-32
ups2-16
conv1-6

IFM4 (6×4M×4M)
softmax

Table format as in [130].
xPAN and xMS denote input patches from
the PAN and MS images, respectively.
IFM and BFM corresponds to intermedi-
ate and bottleneck feature maps respect-
ively.

This configuration of FuseNet is called FuseNetlow because it performs
fusion at the lower (MS image) resolution. We also tested a network, called
FuseNetskip, adding skip connections to lower-level feature maps of FuseNetlow
[87]. Additionally, we experimented with a version of FuseNet performing fusion
at the resolution of the PAN image, called FuseNethigh which is more similar
to pansharpening as it upsamples the MS image patches first before fusing
them with the PAN image patches. Table 3.1 shows details of the operations,
including dimensions of intermediate output feature maps used by FuseNetlow.
Figure 3.2 shows the the skip connections in the FuseNetskip variant.
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3. FuseNet: End-to-end Multispectral VHR Image Fusion and Classification

Figure 3.3 PAN, MS, and reference images in the tiles used for testing.

We evaluated the proposed network for a land cover classification of a dataset
covering Quezon City, Philippines. The dataset is composed of a Worldview-03
satellite image acquired on 17th April 2016 and manually prepared reference
images for five chosen tiles (subsets) of the satellite image. The satellite image
has a PAN band of 0.3 m resolution and four MS bands (near-infrared, red,
green, and blue) of 1.2 m resolution.

The satellite image was first divided into regularly-sized image tiles. PAN
image tiles have a dimension of 3200×3200 pixels, while MS image tiles have a
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dimension of 800×800 pixels. Five non-adjacent tiles were sparsely labeled—
annotating a pixel with a label belonging to one of the following six classes:
1) impervious surface, 2) building, 3) low vegetation, 4) tree, 5) car, and 6)
clutter. Two of the five labeled tiles were used for training (tiles 100 and 105),
one for validation (tile 45), and the remaining two for testing (tiles 78 and 82).
Figure 3.3 shows the two tiles used for testing.

We compared FuseNet with baseline methods using pansherpening and using
bilinear interpolation to match the resolution of the MS image patches to the res-
olution of the PAN image patches, called Netpansharp, SegNet [6], Netpan−cnn,
and Netbilinear, respectively. Netpansharp applies the Gram-Schmidt pan-
sharpening technique, SegNet uses the first three principal components of the
inputs of Netpansharp, while Netpan−cnn adapts the CNN-based pansharpening
method proposed in [126]. Only the pansharpened image is fed as an input
into Netpansharp, SegNet, and Netpans−cnn. In contrast, Netbilinear upsamples
the resolution of the MS image to match the resolution of the PAN image using
bilinear interpolation. The upsampled MS images are then merged with the
PAN image using concatenation. The architecture of the network after the
fusion, except for SegNet, is kept the same to have a fair comparison among
the different methods.

3.3 Results and Discussion

Table 3.2 Comparison of fusion approaches

Network OA (%) κ (%) AA (%) F1 (%)
Netbilinear 84.76 78.70 81.99 77.48
Netpansharp 86.87 81.53 82.76 77.86
Netpan−cnn [126] 87.88 82.69 84.58 72.45
SegNet [6] 88.11 83.17 83.96 77.01
FuseNethigh 88.03 83.18 89.79 79.06
FuseNetlow 91.63 88.03 92.91 82.90
FuseNetskip 91.90 88.43 93.46 81.74

Table 3.2 shows the results of accuracies comparing different fusion ap-
proaches. FuseNetskip scores the highest in all the four numerical metrics, except
for F1 where FuseNetlow scores the highest. Correspondingly, FuseNetlow, the
architecture from which FuseNetskip was derived, outperforms all the other
networks, except for FuseNetskip itself. Observing each metric: FuseNetlow
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Figure 3.4 Results of selected FuseNet variants and baseline methods.

gains about 3–6% in OA, 4–9% in κ, 3–10% in AA, and 3–10% in F1 against
the other baselines. FuseNetskip further increases the numerical results of
FuseNetlow for the first three metrics by about 0.2–0.5%, but degrades the F1
by about 1.2%.

We notice that: 1) learning fusion can improve the classification of PAN and
MS VHR images with different resolutions; 2) fusing at the scale of the image
with lower resolution results in better classification than performing fusion at
the scale of the image with higher resolution. The first point demonstrates our
expected effectiveness of coupling and learning the fusion operation within a
supervised classifier. Regarding the second point, introducing upsampling layers
early in the network (FuseNethigh) may produce artifacts that can degrade its
performance.

Figure 3.4 shows the classification maps from selected FuseNet variants and
baseline methods. The most noticeable misclassifications are found in large
and high-rise buildings and overpassing roads. The facades and rooftops of the
buildings are often mistaken to be impervious surfaces by the classifiers, while
overpassing roads are mistaken to be a building. These regions can appear to
have similar spectral characteristics and can only be distinguished by presence
of other indications such as appearing to be elevated. Manually distinguishing
arguably vaguely-defined classes such as low-vegetation and impervious surface
can also be problematic, especially in the PAN image, with the lack of ancillary
information such as elevation. The cars are also generally misclassified by all the
classifiers. This is, aside from being underrepresented in terms of the number
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Figure 3.5 Plots showing the results of FuseNet sensitivity analysis.

of labeled pixels, due to the lack of spatial resolution of the MS bands and the
spectral similarity of cars with other classes such as impervious surface and
buildings in the PAN band. Overall, FuseNetskip has less errors in the facade
of large buildings and provides a better delineation of classes with irregular
boundaries such as trees and low-vegetation—providing the best classification
results.

3.3.1 Sensitivity Analysis
Fig. 3.5 shows the results of a sensitivity analysis performed on four chosen
hyperparameters of FuseNet: 1) bottleneck feature map dimensions, 2) number
of convolutional layers in the downsampling part of the network, 3) input patch
sizes, and 4) upsampling methods. We got the highest validation accuracy of
90.35% using a bottleneck feature map dimension of 4×4 pixels. Decreasing
the dimension below its optimum severely degrades the classification resulting
to large uniform areas producing stamp-like patterns especially at the 1×1
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level. Increasing the dimensions produces much noisier classification. Fixing
the bottleneck size dimension to 4×4 and further increasing the number of
convolutional layers without downsampling did not produce any improvements
in the validation accuracy. Hence, the results show that with only eight convo-
lutional layers with downsampling, we can learn enough contextual information
for the most accurate classification.

We found the optimal patch sizes to be equal to 64×64 for the PAN image
patches and 16×16 for the MS image patches. Further increasing the patch
sizes results in overclassification of a single class impervious surface. Increasing
the patch size also increases the proportion of frequently occurring classes in
the training sample, possibly resulting into overclassification. Lastly, we noted
that the use of transposed convolution for learned upsampling performs better
than the use of interpolation for fixed upsampling. This result supports the
expected flexibility of empirically learning upsampling directly from the data.

3.4 Conclusion
In this paper, we presented a multiresolution convolutional network named
FuseNet to classfiy a VHR satellite image. The operations for fusing the
bands with different resolutions are learned within convolutional layers with
corresponding downsampling and upsampling operations to match the resolution
of the images. Results show the advantages of incorporating image resolution
matching within the training of the classifier. To this end, we provided a single-
stage classification pipeline incorporating image fusion and feature extraction
combined in a convolutional network trained in an end-to-end manner.
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4ReuseNet: Integrating Contextual
Label Information via Network
Recurrence

Abstract

Classification of very high resolution (VHR) satellite images has three
major challenges: 1) inherent low intra-class and high inter-class spectral
similarities, 2) mismatching resolution of available bands, and 3) the
need to regularize noisy classification maps. Conventional methods have
addressed these challenges by adopting separate stages of image fusion,
feature extraction, and post-classification map regularization. These pro-
cessing stages, however, are not jointly optimizing the classification task
at hand. In this study, we propose a single-stage framework embedding
the processing stages in a recurrent multiresolution convolutional network
trained in an end-to-end manner. The feedforward version of the network,
called FuseNet, aims to match the resolution of the panchromatic and
multispectral bands in a VHR image using convolutional layers with
corresponding downsampling and upsampling operations. Contextual
label information is incorporated into FuseNet by means of a recurrent
version called ReuseNet. We compared ReuseNet against the use of
separate processing steps for both image fusion, e.g. pansharpening
and resampling through interpolation, and map regularization such as
conditional random fields. We carried out our experiments on a land
cover classification task using a Worldview-03 image of Quezon City,

This chapter is based on:
J. R. Bergado, C. Persello, and A. Stein. Recurrent multiresolution convolutional net-

works for vhr image classification. IEEE Transactions on Geoscience and Remote Sensing,
56(11):6361–6374, Nov 2018.
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Philippines and the ISPRS 2D semantic labeling benchmark dataset of
Vaihingen, Germany. ReuseNet surpasses the baseline approaches in
both quantitative and qualitative results.

4.1 Introduction
Classification of very high resolution (VHR) remotely sensed images allows us
to automatically produce maps at a level of detail comparable to conventional
in-situ mapping methods. Due to the high spatial resolution of such images,
automated classification comes with a set of challenges. One challenge is the
inherent low intra-class and high inter-class spectral similarities, inhibiting
discrimination of the classes of interest. Conventional methods address this
challenge by extracting spatial-contextual features from the image such as
texture-describing measures, e.g. gray level co-occurrence matrix (GLCM) [57]
and local binary patterns (LBP) [109], or products of morphological operators
[106, 40]. This step is crucial for obtaining discriminative features and accurate
classification. However, such feature extraction methods are often disjoint from
the supervised classifier, and, hence, not optimized for the task at hand. Deep
learning offers a framework to build end-to-end classifiers—directly learning
the predictions from the inputs with minimal or no pre-classification and post-
classification steps. Features automatically extracted by deep learning based
classifiers such as convolutional neural networks (CNN) [82] perform better than
intermediate handcrafted features [12, 98]. These networks automatically learn
spatial-contextual features directly from the input VHR image—effectively
integrating the feature extraction step into the training of the classifier as
shown in Figure 4.1 (b). The design of network architecture, inspired by the
model of the visual cortex [66], makes CNN suitable for image analysis and
land cover classification.

Literature shows that classification accuracy can be improved by using
post-classification spatial regularization [23, 110, 150]. Methods employing
graphical models, such as conditional random fields (CRF) and Markov random
fields (MRF), provide a way to perform this spatial regularization step. Similar
to the two pre-classification steps described above, a post-classification map
regularization technique adds another step independent of the training of the
classifier itself—further including a separate objective function to be optimized.
For classifying a multiresolution VHR image, a typical classification pipeline
would be composed of three main stages: a pre-classification step performing
image fusion and feature extraction, a supervised learning algorithm performing
the classification, and a post-classification step regularizing the maps obtained
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Figure 4.1 Illustration comparing a standard (a), state-of-the-art (b), and proposed (c)
piplelines for classifying multiresolution VHR images.

from the supervised classification algorithm. This conventional approach is
shown in Figure 4.1 (a).

Convolutional networks have been recently applied to classify remotely
sensed images with very high resolution [110, 128, 95, 98, 113, 146, 164]. But,
aside from [86] which used a combination of patch-based CNN and stacked
autoencoders to fuse PAN and MS images, the majority of the works did not
address the problem of multiresolution VHR images. A patch-based CNN [98]
and a fully convolutional network (FCN) [113] were used to detect informal
settlements from a pansharpened VHR image. Fully convolutional networks
were also used to classify urban objects in VHR images both acquired in aerial
and space-borne sensors [110, 128, 95, 146]. Moreover, [110, 128, 164] also
utilized a separate post-classification step for map regularization. In this paper,
we design a novel single-stage network performing image fusion, classification,
and map regularization of a multiresolution VHR image in an end-to-end
manner.

We propose a recurrent multiresolution convolutional network, called Re-
useNet, to perform image fusion, classification, and map regularization of a
multiresolution VHR image in an end-to-end fashion. We incorporate recurrence
in the FuseNet base architecture to model contextual label-to-label dependencies
and effectively regularize classification maps. We call this improved version
ReuseNet. Contextual label dependencies are incorporated in ReuseNet by
feeding classification scores of a previous FuseNet instance to a succeeding

39



4. ReuseNet: Integrating Contextual Label Information via Network Recurrence

Figure 4.2 The general architecture of ReuseNet with R FuseNet+ instances. FuseNet+
employs exactly the same operations as FuseNet except for the first layer applying
additional sets of convolutional filters on the input score maps. ReuseNet accepts three
streams of input: 1) xP AN , 2) xMS , and 3) score maps of the same resolution as xP AN .
It applies the same operations employed by a FuseNet in R cycles, taking the output
score map of the previous cycle as an input.

one. Moreover, we introduce and compare a novel method to initialize the
parameters and initial score maps of a ReuseNet.

4.2 Data and Methods
4.2.1 ReuseNet

ReuseNet builds on top of the architecture of FuseNet (see Chapter 3) by
incorporating recurrent connections. Incorporation of this recurrent architecture
in a full patch labeling approach enables the network to learn contextual label-
to-label dependencies by feeding output score maps of a FuseNet instance to
another instance of itself as an input. Such dependencies are similar to what
graphical model (e.g. CRF/MRF) based methods learn in a post-classification
regularization inference. For instance, a fully-connected CRF [75] solves an
energy function that penalizes label configurations based on a unary term, often
taken as the negative logarithm of the class scores [23], and a pairwise term,
adding a penalization for pixels with different labels based on image-space
and feature-space distances. Even though ReuseNet is based on the FuseNet
architecture, the idea of learning contextual label information through recurrent
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connections is independent of the choice of the base network architecture and
can therefore be applied to other segmentation networks.

For ease of notation, let the series of operations performed by FuseNet
(Equation 4.1) be given by the function f :

y = f(xPAN ,xMS) (4.1)

where the x’s are the input of FuseNet, and y is the class score map resulting
from this input. The operations performed by ReuseNet are given by a recurrent
variant g:

y1 = g(xPAN ⊕ y0,xMS) (4.2a)
yr = g(xPAN ⊕ yr−1,xMS) (4.2b)

where the r score map is obtained by applying the same function to a combina-
tion of the previous r − 1 score map and the original FuseNet input as a new
input. The recurrent variant g (denoted as FuseNet+ in Figure 4.2) applies
exactly the same operations as f except for the first operation that instead
of only taking xPAN as an input, this operation takes the concatenation of
xPAN and a class score map yr associated to the network instance r. Figure
4.2 shows a diagram illustrating the general architecture of ReuseNet.

We tested ReuseNet with several number of FuseNet instances (2, 3, and 4),
calling each ReuseNet-R where R is the number of FuseNet instances within
the ReuseNet. We also investigated various methods for initializing weights
and initial score maps y0 of ReuseNet. Plain ReuseNet initializes the score
maps with zeros, while ReuseNetmap−init initializes the score maps using scores
from a pre-trained FuseNet showing the best results in the fusion comparison
experiments. We further extend ReuseNetmap−init by initializing the weights
of the FuseNet instance in the ReuseNet with the same FuseNet that provides
the initial score maps. We call this extension ReuseNetmap−weights−init.

4.2.2 Perspective on Incorporating Recurrent Connections
The parameter sharing across FuseNet instances in a ReuseNet is consistent with
the definition of a recurrent network, i.e. a recurrent network is a feedforward
network that keeps on reusing the same set of weights to cycle through a
sequence. The authors in [115] view such incorporation of recurrence as a
way to increase the contextual window size, equivalent to the patch size M in
a patch classification approach, of their patch classification based approach
while controlling the capacity of the network via inter-instance weight sharing.
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Table 4.1 Number of labeled pixels in each tile

Tile Number of labeled pixels Set
100 2178768 Training
105 2173602 Training
45 2063971 Validation
78 1977336 Test
82 1961955 Test

While both increase in contextual window size and capacity control of a CNN-
based image patch classifier helps to improve the latter’s performance, the first
benefit is lost in a full patch labeling approach. In a fully convolutional network
implementing full patch labeling, the contextual window size does not change
as recurrent operations are added to the network since the contextual window
size is equivalent to the effective size of the receptive field of the network. The
effective size of the receptive field of the network depends on kernel sizes and
strides of the network’s convolutional and pooling operations, which are fixed
and the same across instances.

In the proposed ReuseNet, recurrence integrates contextual label information
to our model by considering class score maps as inputs to each FuseNet
instance. This allows the model to learn label-to-label dependencies in addition
to the spatial contextual information learned from the pixel values, pixel-to-
label dependencies. This is a form of structured output prediction [7] where
interdependencies between outputs may be expressed in terms of constraints
restricting permissible output combinations or a more flexible form such as
spatial dependencies across different output variables. Graphical models such as
conditional random fields [78] are commonly used for such structured prediction
tasks. ReuseNet uses operations in a deep convolutional network to learn
features from both the input image and class scores—integrating the learning
of label-to-label dependencies from the data instead of explicit image-space
and feature-space distances as represented in a pairwise potential of CRF. This
allows ReuseNet to be trained end-to-end as opposed to a two-stage approach
applying a post-classification MRF/CRF as done in [46] and [128].

42



4.2. Data and Methods

Figure 4.3 Figure showing the true color VHR image together with the locations of the
labeled tiles (in blue squares) and the study area: Quezon City, Philippines.

4.2.3 Dataset Description

4.2.3.1 Worldview-03 Quezon City dataset

I evaluated the proposed networks in the land cover classification of a dataset
covering Quezon City, Philippines. The dataset is composed of a Worldview-
03 satellite image of the city acquired on 17th April 2016 and corresponding
manually prepared reference images for five chosen tiles (subsets) of the satellite
image. The satellite image has a PAN band of 0.3 m resolution and four MS
bands (near-infrared, red, green, and blue) of 1.2 m resolution. Reference
images were prepared via photointerpretation and set to have the same spatial
resolution as the PAN image. The whole satellite image was first divided into
regularly-sized image tiles. PAN image tiles have a dimension of 3200 pixels
× 3200 pixels, while MS image tiles have a dimension of 800 pixels × 800
pixels. Five non-adjacent tiles were sparsely labeled—annotating a pixel with a
label belonging to one of the following six classes: impervious surface, building,
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low vegetation, tree, car, and clutter. Two of the five labeled tiles were used
for training (100 and 105), one for validation (45), and the remaining two for
testing (78 and 82). Training samples are composed of pairs of image patches
with dimensions M×M (taken from the MS image) and 4M×4M (taken from
the PAN image tile). Figure 4.3 shows the VHR image and the corresponding
locations of labeled tiles in the study area while Table 4.1 shows the number of
labeled pixels in each image tile. Training samples were normalized to have a
value between zero and one. The reference image patches have been converted
into a “one-hot” encoding—a vector having zero values except for the index
corresponding to the code of the class.

4.2.3.2 ISPRS Vaihingen dataset

For the ReuseNet experiments, we utilized the ISPRS 2D semantic labeling
benchmark dataset of Vaihingen as an additional dataset [31]. We adopted
the experimental setup used in [128, 146], employing the same training and
validation tiles, to provide comparable results. We followed the sampling done
in [128], except that data augmentation was not applied—resulting in less
training samples. The method discussed in [103] was employed to extract the
normalized DSM.

4.2.4 Comparison of methods
We compared ReuseNet against FuseNet using fully-connected CRF [75], de-
noted as FuseNet+CRF, to assess the capability of our classifiers to spatially
regularize the classification results. The FuseNet+CRF baseline is similar to
the approach adopted in [23, 128] but applied to PAN and MS images with
different spatial resolutions. Spatial and feature space distances in the pairwise
potentials of the fully-connected CRF are computed from the PAN image. We
performed a grid-search of the CRF parameters, i.e. the weights and standard
deviations of the appearance and smoothness kernels, and used the set of the
parameters with the highest accuracy on the validation tile. We fixed the
number of iterations to 10 for the mean field approximation algorithm used to
perform inference in a fully-connected CRF.

We trained all the networks using a set of 17409 image patches taken from
the training tiles and used 8255 image patches taken from the validation tile
for early-stopping. We performed a random sampling with the constraint that
the pixel near the center of the image patch is labeled. This may produce
overlapping patches unlike the systematic gridwise sampling approach used
in [128]. Gridwise sampling reduces the number of training patches since the
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reference images is sparsely labeled, only around five percent of the pixels are
labeled. The total loss value computed over a mini-batch is the total loss of all
pixels divided by the number of labeled pixels within the mini-batch.

The FuseNets are trained using backpropagation with stochastic gradient
descent setting the initial learning rate η = 0.01, momentum α = 0.9, mini-
batch size N = 32, and maximum number of epochs T = 240. We decrease
the learning rate in a stepwise manner as done in [61]—multiplying it by a
factor of 0.1 after 60 and 180 epochs. The weights were initialized as in [47].
We did not find dropout to be helpful; hence, we only used an l2 -weight decay
penalty—setting λ = 0.001—and a variant of early-stopping to regularize
FuseNet. For early stopping, the classification accuracy on the validation set is
calculated every epoch and the last model with the best validation accuracy is
fixed to be the final instance of the model.

The FuseNet instances within a ReuseNet are identical, sharing the same
network configuration and parameters. Each instance also couples a cross-
entropy loss function with each of their score map. The total objective loss of
a ReuseNet is the average of the cross-entropy loss values from all the FuseNet
instances. We also used the same backpropagation with stochastic gradient
descent setting as training a FuseNet with the initial learning rate η = 0.01,
momentum α = 0.9, mini-batch size N = 32, and maximum number of epochs
T = 240. Likewise, we decreased the learning rate in a stepwise manner—
multiplying it by a factor of 0.1 after 60 and 180 epochs. For regularization,
we only used an l2 -weight decay penalty—setting λ = 0.001. We can infer
classification map from a ReuseNet in the same manner of inference as a
FuseNet, with one additional option: to extract different predictions from each
FuseNet instance.

For applying ReuseNet on the ISPRS Vaihingen dataset, we employed a
feedforward network similar to the No-downsampling FCN proposed by [128]
truncating the last two layers (fc5 and fc6) before softmax activation and entirely
removing all maximum pooling without downsampling operations. With only
convolutional layers (without pooling), we call this network AllConvNet. The
network was trained on 12717 training patches as opposed to the 123330
training patches in [128]. Although having less parameters and having trained
with a smaller number of training samples, AllConvNet provided comparable
results with the original No-downsampling FCN while requiring less operations.
We trained AllConvNet for 150000 iterations as reported in [128]. ReuseNet
versions of AllConvNet were applied to the ISPRS Vaihingen dataset and were
compared to the best results of both [128] and [146]. All the networks in this
additional set of experiments were trained using a variant of SGD proposed in
[157].
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4.2.5 Accuracy Assessment

We compared the results of the different approaches using global measures: 1)
overall classification accuracy (OA), 2) the Kappa coefficient (κ), 3) average
class accuracy (AA), 4) and average class-F1 scores (F1). OA is given by:

OA =

C∑
i=1

nii

n
(4.3)

where nii is the number of samples classified as class i in both the the predictions
and reference images, n is the total number of labeled samples in the reference
images, and C is the number of classes, whereas κ is given by:

κ =
n

C∑
i=1

nii −
C∑
i=1

ni+n+i

n2 −
C∑
i=1

ni+n+i

(4.4)

where ni+ and n+i are the number of samples classified as class i in the
predictions and reference images respectively. Both OA and κ provides the rate
of correctly classified pixels with the latter compensating for random agreement
in classification. These global measures, however, are biased toward frequently
occurring classes—meaning, classes with less frequencies have relatively little
impact to the two measures. Unlike OA and κ, AA and F1 provides average of
measures independent of class distribution. AA is given by:

AA = 1
C

C∑
i=1

nii
ni+

(4.5)

while F1 is given by:

F1 = 1
C

C∑
i=1

2 nii

ni+
nii

n+i

nii

ni+
+ nii

n+i

(4.6)

AA computes the average within-class rate of correctly classified pixels, while
F1 calculates the harmonic mean of the precision (user’s accuracy) and recall
(producer’s accuracy). We also observe and comment on the quality of the
resulting classified maps.
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Table 4.2 Comparison of map regularization approaches on Worldview-03 Quezon City
dataset

Network OA (%) κ (%) AA (%) F1 (%)
FuseNet 91.90 88.43 93.46 81.74
FuseNet+CRF 93.07 90.08 94.71 81.72
ReuseNet-2 92.82 89.69 94.09 82.64
ReuseNet-3 92.98 89.88 94.54 85.42
ReuseNet-4 93.49 90.58 94.53 86.67
ReuseNet-5 92.74 89.53 92.78 87.29

Figure 4.4 Two subsets from the test tiles showing, from right to left, the satel-
lite image (natural color), reference image, and classification maps from FuseNetskip,
FuseNetskip+CRF, and ReuseNet-4. All ReuseNets reported are “plain” meaning initial
score maps are filled with zeros. Reusenet-R denotes a ReuseNet composed of R number
of FuseNet instances.

4.3 Results and Discussion

4.3.1 Worldview-03 Quezon City dataset

Table 4.2 shows the accuracies obtained by comparing different classification
techniques on the Worldview-03 Quezon City dataset. We found that both
the ReuseNet instances and the baseline method FuseNet+CRF improves
the numerical results of the plain FuseNetskip gaining around: 0.9–1.5% in
OA, 1.2–2.1% in κ, and 0.6–1.2% in AA. For the F1, however, FuseNet+CRF
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method performs worse than the plain FuseNet losing 0.02%; while all the
other ReuseNet instances improves the F1 by around 0.9–5.5%. ReuseNet-4
outperforms all the other classifiers in all the metrics except for AA and F1—
where both ReuseNet-3 and FuseNet+CRF outperform it by some margin in
AA (0.01% and 0.18% respectively) and ReuseNet-5 considerably outperforms
it in F1 by 0.62%. In particular, all the ReuseNets consistently show better
F1 compared to both FuseNet and FuseNet+CRF—gaining almost 6%. These
expected relatively smaller gains in numerical accuracy is consistent with
what the author in [128] found—applying a post-classification CRF to an
FCN to classify extremely high resolution aerial imagery increases the overall
classification accuracy by around 0.1–1.0%. More noticeable changes are
expected in the resulting improved regularity of the classified maps.

The numerical results above supports our assertion that introducing con-
textual label information through recurrence in an FCN applying a full-patch
labeling approach can improve the classification of a VHR image. Such incorpor-
ation of label information allows our classifier to learn both pixel-to-label and
label-to-label contextual dependencies. We can develop an intuition of these
two dependencies by using an analogy to photointerpretation. We can easily
imagine that it is easier to label a pixel when viewed with its neighboring pixels.
This setup is analogous to the improvements a spatial-contextual classifier, like
a CNN applying a patch classification, approach bring over a simple pixel-based
classifier. But we can also see that it is easier to label a pixel when, aside from
viewing its neighboring pixels, its surrounding pixels’ labels are given. With
contextual label information, the classifier can learn and leverage class spatial
co-occurrences. Additionally, we observe that adding more FuseNet instances
to the ReuseNet until R = 4 increases the score of all metrics, except for the
average class accuracy where ReuseNet-3 marginally outperforms ReuseNet-4.
Adding one more instance only improves the F1 score and degrades the other
three metrics. We can interpret this addition of FuseNet instances as a way to
increase ReuseNet’s capacity to refine contextual label information fed to it as
latter FuseNet instances receive more refined labels.

Figure 4.4 shows classification results of the best performing ReuseNet, the
baseline method FuseNet+CRF, and the plain FuseNet. Both FuseNet+CRF
and ReuseNet instances improves the quality of the resulting classified map by
producing more regularized classification. We also observe that locations of the
errors are carried over from the results of the FuseNet classifier from which both
FuseNet+CRF and ReuseNet are based from. However, the occurrences of the
errors are diminished especially on the facades of the large buildings. Detection
of isolated cars in roads were also improved. Overall, results of ReuseNet-
4 show better-quality classified maps by reducing noise in the classification
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Table 4.3 Comparison of map regularization approaches on ISPRS Vaihingen dataset

Network OA (%) κ (%) AA (%) F1 (%)
NFCN [128] 87.17 –.– –.– –.–
CNN-FPL [146] 87.83 83.83 81.35 83.58
AllConvNet 86.98 82.71 87.17 85.46
NFCN with CRF [128] 87.90 –.– –.– –.–
ReuseNet-2 87.11 82.89 85.09 85.38
ReuseNet-3 88.08 84.18 87.29 87.24
ReuseNet-4 87.64 83.59 87.18 86.81

NFCN is a shorthand for No-downsampling fully convolutional
network
Unreported values in the reference are denoted by ”–.–”

(such as island of impossibly small buildings), further improving delineation
of classes with irregular boundaries, and reducing misclassification in regions
with ambiguous spectral characteristics such as facades and rooftops of high
rise buildings.

4.3.2 ISPRS Vaihingen dataset

Table 4.3 shows the accuracies obtained by comparing different classification
techniques on the ISPRS dataset. These results are in agreement with the
results from the previous dataset. All the ReuseNet versions of AllConvNet
improve the resuslts on all the four metrics except for AA and F1 of ReuseNet-2
(2.08% in AA and 0.06% in F1 respectively). ReuseNet-3, the best performing
network, considerably improves all the numerical results of the plain AllConvNet
by 1.1% in OA and is comparable and even greater than the 0.73% gain after
a post-classification CRF in [128], 1.47% in κ, 0.12% in AA, and 1.78% in F1.
ReuseNet-3 also outperforms best results reported in both [128] and [146].

These results reconfirm that introducing contextual label information
through recurrence in an FCN applying a full-patch labeling approach can
improve the classification of a VHR image. Similarly, qualitative improvements—
such as holes in building being filled, better delineation of all classes in general,
lesser artifacts—in the resulting classified maps are observed when ReuseNet is
applied as shown in Figure 4.5.
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Figure 4.5 Two subsets from the validation tiles of ISPRS Vaihingen dataset showing,
from right to left, the true orthophoto, normalized dsm, reference image, and classification
maps from AllConvNet and ReuseNet-3 (best performing ReuseNet in this dataset). All
ReuseNets reported are “plain” meaning initial score maps are filled with zeros. Reusenet-R
denotes a ReuseNet composed of R number of FuseNet instances.

4.3.3 Different initializations

Figure 4.6 shows results of quantitive metrics on the three different ReuseNet
initializations. There is low variation in the OA and κ. The trend of the two
global scores is also inconsistent across the ReuseNet instances. For ReuseNet-2
and ReuseNet-3, the scores increases marginally (around 0.5% for OA and 0.8%
for κ) when initialized with both the scores and weights from a previously-
trained FuseNet. But for ReuseNet-4, there is a minor drop in both the scores
(around 0.2% for both scores) when the two intialization methods are introduced.
This could mean that increasing the FuseNet instances to a certain amount
already provides enough room to a ReuseNet for “label refinement” such that
gains from the initialization methods are compensated.

Introducing both initialization methods to a ReuseNet degrades the AA by
around 0.9–5.2%. Applying only the initialization using scores from a FuseNet
instance (map-init) degrades the F1 by around 0.9–12.2%. Interestingly, the F1
improve by around 0.8–6.1% when both initialization methods are introduced
(map-weights-init). Decrease in AA can only imply an increase in false positive
predictions in most of the classes; while increase in F1 could either mean decrease
in false positive predictions or decrease in false negative predictions or both in
most of the classes. The results therefore show that the initialization methods
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Figure 4.6 Plots showing results of quantitive metrics comparing different ReuseNet
initializations; plain, map-init, and map-weights-init correspond to intializing the ReuseNet
with zero-score maps, scores from a previously-trained FuseNet, and scores and weights
from a previously-trained FuseNet respectively.

promote higher recall rate (decrease in false negatives) in underrepresented
classes such as cars.

4.4 Conclusion
In this study, we presented a recurrent multiresolution convolutional network
named ReuseNet to classfiy VHR satellite images. The operations for fusing
the bands with different resolutions are learned within convolutional layers
with corresponding downsampling and upsampling operations to match the
resolution of the images. Regularization of the resulting classified maps is
achieved by incorporating contextual label information through the recurrent
architecture of ReuseNet. Additionally, we investigated various ways to initialize
ReuseNet. The effect of varying a set of chosen network hyperparameters to
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the classification accuracy of the network was explored. Both numerical and
qualitative results show the advantages of incorporating image resolution
matching and contextual label learning within the training of the classifier.
To this end, we provided a single-stage classification pipeline incorporating
image fusion, feature extraction, and map regularization, all combined in a
convolutional network trained in an end-to-end manner. We designed the
presented network architecture such that it can easily be adapted to other
multiresolution image datasets. Inclusion and leverage of contextual label
information is also separate from the design of the fusion network in the sense
that it can be implemented on network classifying single-resolution images.
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5Urban Land Use Classification
using Deep Multitask Networks

Abstract

Updated information on urban land use allows city planners and
decision makers to conduct large scale monitoring of urban areas for
sustainable urban growth. Remote sensing data and classification meth-
ods offer an efficient and reliable way to update such land use maps.
Features extracted from land cover maps are helpful on performing a
land use classification task. Such prior information can be embedded
in the design of a deep learning based land use classifier by applying a
multitask learning setup—simultaneously solving a land use and a land
cover classification task. In this study, we explore a fully convolutional
multitask network to classify urban land use from very high resolution
(VHR) imagery. We experimented with three different setups of the
fully convolutional network and compared it against a baseline random
forest classifier. The first setup is a standard network only predicting
the land use class of each pixel in the image. The second setup is a
multitask network that concatenates the land use and land cover class
labels in the same output layer of the network while the other setup
accept as an input the land cover predictions, predicted by a subpart of
the network, concatenated to the original input image patches. The two
deep multitask networks outperform the other two classifiers by at least
30% in average F1-score.

This chapter is based on:
J. R. Bergado, C. Persello, and A. Stein. Land Use Classification using Deep Multitask

Networks. XXIV ISPRS Congress 2020, Sep 2020 (accepted for publication).
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5.1 Introduction

Urban land use maps provide essential information on the utilization of urban
spaces. Updated information on urban land use allows city planners and decision
makers to conduct large scale monitoring of urban areas for sustainable urban
growth. Remote sensing data and methods offer an efficient and reliable way to
update such land use maps. Using images regularly acquired by spaceborne and
airborne sensors provide a much higher degree of objectivity and automation
than traditional in-situ mapping methods. In this manner, extensive and
updated information on urban land use can be made available on a regular
basis.

Unlike land cover which describes the physical objects on a land surface,
land use describes the human activity related to a specific geographical location.
Since land cover is related to the physical properties of the land, the former is
more straightforward to associate with observable physical properties that can
be captured by sensors, such as land surface geometry and reflectance, than
land use. Therefore, land use classification requires advanced classification
techniques to be able to deliver functional land use maps.

Knowledge-driven rule sets from object-based classification techniques have
been employed for such purpose [147]. However, those require tedious crafting of
features extracted from the input data. More recently, deep learning techniques
applied on remote sensing data further automated this feature crafting step by
learning empirical data representations that are optimized for the classification
task [12, 98, 65, 114, 161]. Particularly, [65] used a patch-based convolutional
network combined with a post-classification trimming step to classify land use
from high spatial resolution multispectral imagery; while [161] used an object
based CNN to classify land use from very high resolution imagery.

A subset of handcrafted features employed in knowledge-driven land use
classification can also be extracted from land cover maps [147]. Such prior
information can be embedded in the design of a deep learning based land
use classifier by applying a multitask learning setup—simultaneously solving
a land use and a land cover classification task. Fully convolutional network
variants have also been recently found to be more effective than their patch-
based counterparts (Volpi and Tuia, 2017). In this study, we explore a fully
convolutional multitask network to classify urban land use from very high
resolution (VHR) imagery. To the best of our knowledge, this is the first study
to explore performing a land use and a land cover classification simultaneously,
in an end-to-end manner.
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Figure 5.1 Sample image and corresponding reference for test Tile 1.

5.2 Data and Methods

In this study, we utilized a deep fully convolutional multitask network to perform
urban land use classification from VHR imagery. The dataset comprises of a
Worldview-03 satellite image of Quezon City, Philippines acquired on 17th April
2016 and manually prepared reference images extracted by updating a Land Use
Map of Metro Manila, the capital region where Quezon City is. Fully labeled
reference images of land use classes were obtained from this step. Sparsely
labeled reference images for the land cover classes to be used by the multitask
networks were manually prepared via photointerpretation. The satellite image
has a panchromatic band of 0.3 m resolution and four multispectral bands
(near-infrared, red, green, and blue) of 1.2 m resolution.

The satellite image was pan-sharpened using the Gram-Schmidt pansharpen-
ing technique (Laben and Brower, 2000) and was subdivided into smaller
non-overlapping image tiles of size 3200× 3200 pixels. Twelve tiles were chosen,
taking into account the presence of land use classes of interest, and grouped
into training, validation, and testing set—six for training, three for validation,
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Figure 5.2 Illustration of the three different fully convolutional networks. STN (single
task network) is a standard network only predicting the land use class of each pixel in the
image. PMN (parallel multitask network) is a multitask network that concatenates the
land use and land cover class labels in the same output layer of the network while SMN
(sequential multitask network) accept as an input the land cover predictions, predicted by
a subpart of the network, concatenated to the original input image patches.

and three for testing. Reference images corresponding to the 12 input image
tiles were prepared with 6 land use classes: i) educational and cultural, ii)
residential, iii) religious and cemetery, iv) informal settlements, v) commercial
and industrial, vi) government and military. The image tiles were systematically
sampled into smaller non-overlapping 128× 128 image patches that are then
fed as input to the network. The training set was further augmented by two
flips and three 90°rotation transformations. Figure 5.1 shows a sample image
and reference tile from the test set.

5.2.1 Standard approach

We used two methods as baseline approaches to be compared to our proposed
methods. Firstly, a pixel-based random forest classifier trained to classify land
use from the input pansharpened images. Secondly, a standard fully convolu-
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tional network (FCN) classifying land use from the same input pansharpened
images; but instead of accepting a 1D input vector of pixel values as done in
the random forest classifier, accepts a 3D array of values from the 128× 128
image patches, and thus, takes spatial context into account. For notational
purposes, we call this network STN (single task network).

Figure 5.3 Predicted land use maps of the four classifiers on test Tile 1.

We used a modified version of U-Net [118] as the base network architecture
of all our convolutional networks. The weights of the encoder is also initialized
from a pretrained VGG16 (Simonyan and Zisserman, 2015). The modification,
similarly done by [128], involves adding an additional set of kernels in the first
convolutional layer, this additional kernel is initialized from randomly choosing
one of the three original kernels from the pretrained VGG16. The number of
channels of the output layer was also correspondingly changed to be equal to
the number of our target land use and land cover classes.

5.2.2 Proposed approach

The proposed approach multitask LULC networks has two variants: first is a
multitask network that concatenates the land use and land cover class labels
in the same output layer of the network; second is a variant that accept as
an input the land cover predictions, predicted by a subpart of the network,
concatenated to the original input image patches. We call the first variant PMN
(parallel multitask network) and the second one SMN (sequential multitask
network). The three networks can be represented by the following functions:

yu = STN(x) (5.1a)
[yu, yc] = PMN(x) (5.1b)

57



5. Urban Land Use Classification using Deep Multitask Networks{
yc = SMNα([x, y0

c ])
yu = SMNβ([x, yc])

(5.1c)
(5.1d)

where x is the pansharpened input image patch, yu is the output land use
predictions, yc is the output land cover predictions, SMNα and SMNβ are two
sub networks of SMN, y0

c is land cover class initialization (in the experiments
we initialized all the values to zero), and [ ] is a channel-wise concatenation
operation. Equations 5.1c and 5.1d are jointly optimized. Figure 5.2 shows a
diagram of the three networks, highlighting the difference between the input
and output layers of each network.

All the networks were trained to optimize a cross-entropy loss:

EN = −
N∑
n=1

tn • log(yn) (5.2)

where E is the loss function value evaluated over N samples, tn is a binary
vector encoding the the target class labels (with the index corrresponding to
a class having a value of 1 and 0 otherwise), • denotes the dot product, and
yn is the class score maps of a sample n calculated using a softmax activation
function. STN and PMN defines one cross-entropy loss function in their output
layers while SMN decomposes the total loss function into two equally-weighted
cross-entropy losses at the output layers of SMNα and SMNβ .

The loss was optimized using Adam (Kingma and Ba, 2014) for 150 epochs
utilizing a batch size of 64. The base learning rate used was 0.0001 which was
reduced by a factor of 10 every 50 epochs.

Table 5.1 Land use class frequency averaged over the whole set of image tiles

Class Frequency (%)
Educational and Cultural 22
Residential 39
Religious and Cemetery 2
Informal Settlements 3
Commercial and Industrial 19
Government and Military 15

Since there is an imbalance in the distribution of the land use classes present
in our image tiles (see Table 5.1), we assessed the classification performance of
the four classifiers using the average class F1-score. This metric will be more
robust to the class frequency imbalance than the standard overall classification
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accuracy, the latter generally giving overly optimistic estimates of the classifier
performance.

5.3 Results and Discussion

Figure 5.4 Confusion matrix of PMN on the three test tiles.

Table 5.2 Average land use class F1 scores of the classifiers on the three test tiles

Classifier Tile 1 Tile 2 Tile 3
random forest 1.07 14.27 12.36
STN 25.48 21.59 29.63
PMN 57.90 52.89 57.44
SMN 59.87 52.53 53.34

The land use classification accuracy of the different classifiers assessed on
the three test image tiles (1, 2, and 3) are shown in Table 5.2. PMN achieves the
highest average class F1 score in two of the three test tiles, with SMN having
better results for Tile 1. There is a considerable increase in the classification
accuracy of the classifier by using a standard fully convolutional network over
the baseline random forest classifier. This shows that the features learned
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Figure 5.5 Comparison of predicted land cover maps of Tile 3 using the plain network
STN and one of the multitask network PMN.

in the hidden layers of the convolutional network is helpful for this land use
classification task. There is also an observable increase in performance, at least
about 30% in average F1-score, when using the two multitask network over
the standard one. Such improvements are consistent with the intuition that
features extracted from land cover can help the land use classification task.

Figure 5.3 shows the predicted maps of all the classifiers on Tile 1. All the
three networks produced maps of better quality than the baseline random forest
classifier. All of three confuses the underrepresented (see Table 5.1) informal
settlement classes as residential areas. This is due to the visual similarity of
high density residential areas in the city to informal settlements. This is further
affected by the limited number of training labels for this class. This can also be
observed in the resulting confusion matrix (see Figure 5.4) of PMN on the three
test tiles where it can clearly be seen the poor performance of the classifier on
both the underrepresented two classes (religious and cemetery and informal
settlements). On the other hand, the educational and cultural land use class
appears to have the least misclassification compared to other classes.

Figure 5.5 shows a comparison of predicted land cover maps of Tile 3
using the plain network STN and one of the multitask network PMN. The
plain network poorly classifies the car class which are confused with building
pixels. Predictions of the underrepresented car class were greatly improved by
using the multitask learning setup. There is also less overclassification of the
impervious surface class after using the multitask network PMN. This shows
that the learned features shared by both tasks help on improving the each
other’s predictions.
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5.4 Conclusion
Classification of urban land use maps is essential to provide updated information
on utilization of urban spaces. This study shows that performing land use
classification simultaneously with classifying land cover improves the resulting
classified land use maps. Comparing two multitask networks, we obtained an
improvement of at least 30% in the average F1-score as compared to standard
classification approaches. Such an approach can be embedded in the design
of a deep learning based classifier. The multitask network also improves the
predictions on the additionally embedded land cover prediction task.
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6Predicting Wildfire Burns from Big
Geodata using Deep Learning

Abstract

Wildfire continues to be a major environmental problem in the world.
To help land and fire management agencies manage and mitigate wildfire-
related risks, we need to develop tools for mapping those risks. Big
geodata—in the form of remotely sensed images, ground-based sensor
observations, and topographical datasets—can help us characterize the
dynamics of wildfire related events. In this study, we design a deep
fully convolutional network, called AllConvNet, to produce daily maps
of the probability of a wildfire burn over the next 7 days. We applied
it to burns in Victoria, Australia for the period of 2006–2017. Fifteen
factors that were extracted from six different datasets and resulted into
29 quantitative features, were selected as input to the network. We
compared it with three baseline methods: SegNet, multilayer perceptron,
and logistic regression. AllConvNet outperforms the other three baseline
methods in four of the six quantitative metrics considered. AllConvNet
and SegNet provide smoother and more regularized predicted maps, with
SegNet providing greater sensitivity in discriminating less wildfire-prone
locations. Input feature statistical importance was measured for all the
networks and compared against logistic regression coefficients. Total
precipitation, lightning flash density, and land surface temperature occur
to be consistently highly weighted by all models while terrain aspect
components, wind direction components, certain land cover classes (such
as crop field and woodland), and distance from power lines are ranked

This chapter is based on:
J. R. Bergado, C. Persello, K. Reinke, and A. Stein. Predicting Wildfire Burns from Big

Geodata using Deep Learning (submitted for review).
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on the lower end. We conclude that wild-fire burn prediction methods
based on deep learning present quantitative and qualitative gains.

6.1 Introduction

Wildfire continues to be a major environmental problem in the world [154, 19].
When poorly managed, it can cause permanent and undesirable changes to
certain landscape and ecosystem services [22]. Although most incidents are
found in remote areas and naturally occur as part of terrestrial ecoystem
processes, human populations and infrastructure within wildland-urban inter-
faces are still exposed to wildfire related risks [101]. In the context of wildfire
management, we consider wildfire risk as the probability of a wildfire event
that may consequently result in expected loss of lives and degradation of as-
sets. We can characterize such risk by mapping associated risk conditions. In
general, these conditions are both spatially and temporally dynamic in nature
and depend on a number of factors including: fuel conditions, meteorological
variables, topography, and sources of ignitions [27]. Big geodata—in the form
of multitemporal remotely sensed images, ground-based sensor observations,
and topographical datasets—is a promising source of information on these
wildfire risk factors.

Quantitative assessment of wildfire risk employs a four-stage framework
[38, 139]. Firstly, problem formulation defines specific management objectives
to be addressed. Secondly, exposure analysis quantifies the likely magnitude and
spatiotemporal connection between the identified risk variables [38]. Thirdly,
effect analysis quantifies the response of the valuable resources at risk as a
function of the fire behavior—usually flame length [140] in combination with rate
of spread and fire intensity. Finally, risk characterization integrates information
from the three previous stages to come up with a complete, informative, and
useful conclusion for decision-making [129].

Exposure analysis describes how likely will valuable resources of interest
interact with a wildfire [140]. Thus, it directly deals with quantifying probab-
ilities of wildfire events [1]. Probability of wildfire burn refers to how likely
a geographical location will change from an unburnt state to a burnt state
within a given time period, e.g. annually [100]. Estimates of this probability
can either serve as a proxy measure for wildfire risk or as input to probabilistic
methods to quantify wildfire risk [42]. Maps showing probability of wildfire
burn can be further intersected with the asset locations [9, 3]—to identify likely
affected assets.
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Formal treatment to quantify the probabilities associated to wildfire events
can become complicated. Most case studies on wildfire occurrence do not
adopt a consistent quantitative definition. They employ a logistic regression
(LR) [33, 20, 28, 5, 72, 55, 32, 111] trained on a number of relevant wildfire
risk factors, acquired through remotely sensed data and data products, and
information on historical wildfire locations. Within this group of studies,
differences exist in interpretation. For example, Chuvieco et al. (2010) predicts
the number of fire incidence reclassified into low and high incidence while Badia
et al. (2011) reclassifies the output of the logistic function into five ranges.
Other studies have applied methods such as multilayer perceptron (MLP) [33],
weights-of-evidence Bayesian model [69], evidential belief function [108], and
conversion from reference fuel moisture tables [124].

A wildfire event prediction problem can be seen as a function learning task,
where the function maps wildfire-related input variables into probabilities of
a wildfire event. Higher-level spatial and temporal association between the
input variables may improve the predictive accuracy of the learned function.
However, just like the mapping function, there is a knowledge gap on how to
construct these higher-level features. Models based on deep learning can be
used to capture such higher-level spatial and temporal association together
with learning the mapping function.

There is limited work on employing deep neural networks and remotely
sensed data for wildfire mapping. A recent relevant work presents a two-stage
strategy on estimating weekly wildfire hotspots in Australia [37] using deep
belief networks for feature compression before feeding the latter to an ensemble
classifier. Most relevant works produce static probability maps estimated over
a certain period of time [33, 20, 5, 32]. Although, wildfire-driving factors are
dynamic in nature, hence, producing time-series maps, either sub-hourly [151],
daily [28, 55] or weekly [37, 53] presents a better understanding of wildfire risk.
Remotely sensed images and stationary ground-based sensors are promising
sources of time-series information that can be used to produce these maps. We
can combine these time-series information with historical wildfire burn records
in a predictive model, e.g. a FCN, to produce dynamic probability maps of
wildfire burn.

This research aims to utilize supervised deep learning techniques to estimate
probabilities of wildfire burn by combining information from remotely sensed
images, stationary ground-based sensors, topographical datasets, and historical
wildfire data. Specifically, fully convolutional networks (FCN) are employed
to produce daily predictions mapping probability of wildfire burns in Victoria,
Australia for the period 2006–2017.

The major contributions of this study are:
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• to design and implement a fully convolutional network for predicting daily
maps of the probability of a wildfire burn over the next 7 days utilizing
an extensive set of wildfire related input variables taken from various
data sources such as: time series of satellite images and data products,
climatological sensor observations, topographical geospatial databases,
and historical wildfire burn records for Victoria, Australia over the period
of 2006–2017;

• to quantitatively and qualitatively evaluate the proposed network against
several baseline methods;

• and to quantify the relative statistical importance of each input features
used in the deep fully convolutional network.

6.2 Data and Methods
6.2.1 Study area

Victoria (37°S 144°E) is the southeastern state of Australia. It has an area of
approximately 238000 km2, of which roughly 16% is forest, 10% is woodland,
5% is shrubland, and 6% is grassland. Wildfire is a natural component, making
the state one of the most wildfire-prone areas in the world [138].

The spatial extent of wildfire burns within Victoria was extracted from the
“Fire History Records of Fires primarily on Public Land” dataset made publicly
available by the State of Victoria, Department of Environment, Land, Water &
Planning (DELWP) [The State of Victoria, 1992]. This allows prescribed burns
to be distinguished from wildfires, whereas the MODIS active fires dataset
does not allow for this distinction and may miss fire activity with smaller burn
extents [56] or lower intensities. Temporally, the Fire History Records dataset
only provides the starting date of the fires. Figure 6.1 shows a map of the
study area. Planned burns conducted by DELWP were filtered out and the
remaining wildfire burn extents for the period of 2006–2017 were used in this
study.

6.2.2 Input variables
The probability of a wildfire burning a specific geographical location depends
on both natural and anthropogenic factors. The spatial and temporal scale of
the study required the organization of a big geodataset, not only in terms of
volume and update frequency but also data heterogeneity, matching wildfire
risk factors with recorded wildfire extent locations. Fifteen factors that were
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Figure 6.1 Location of the state of Victoria and its public land

extracted from six different datasets and resulted into 29 quantitative features,
were selected as input to our models predicting probability of wildfire burn.
These features encode the factors associated to wildfire burn such as topography
(elevation, slope, and aspect), weather (temperature, humidity, solar radiation,
rainfall, wind speed and direction, and lightning flash density), proximity to
anthropogenic interfaces (distance to roads, distance to power lines) and fuel
characteristics (fuel type, fuel moisture, emissivity). Table 6.1 shows these
input variables including the dataset from which they are taken from and their
corresponding spatial and temporal resolution before any spatial resampling.

We first downsampled the digital elevation model [Hutchinson et al., 2008]
to 500 m resolution using bilinear interpolation to produce the elevation,
slope, and the cosine and sine components of the aspect. Road and power
line network vectors [The State of Victoria, 2009a, 2009b] were rasterized
to a spatial resolution of 500 m. Euclidean distances from both the roads
and the power lines resulted into two additional features extracted from this
topographical vector database. These six features are temporally stationary.

We obtained land cover/land use information from the National Dynamic
Land Cover Dataset of Australia [Lymburner et al., 2011]. The original dataset
with a spatial resolution of 250 m and 22 land cover classes was downsampled
using nearest neighbor into a spatial resolution of 500 m. The original 22 classes
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were collapsed into eight (Table 6.2) based on similar land use, land cover and
vegetation characteristics. The new land cover maps were transformed into
binary presence maps, encoding the value one when a class is present and the
value zero otherwise. This resulted into eight features extracted from the land
cover dataset. The original dataset is obtained from classifying MODIS time
series images spanning over two-year periods. The eight resulting features were
temporally matched to other features using the year of the latest image from
the two-year averaging period.
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Table 6.1 Input variables associated to wildfire burns of Victoria, 2006–2017

Source Dataset Input Variable Units Spatial
Resolution

Temporal
Resolution

Digital elevation modela elevation m 250 m stationary
aspect —
slope —

Topographical databasesb proximity measures m — stationary
Land cover/usea surrogate for fuel type — 250 m bi-annual
MODIS imagesc fuel moisture proxy — 500 m 8 days

land surface temperature K
emissivity —

LIS data productd lightning flash density flashes·km−2 12 km DOY
Meteorological datae temperature ◦C — daily

relative humidity %
solar radiation MJm−2

precipitation mm — 1 minute
wind speed kmh−1

wind direction degrees
a Obtained from Geoscience Australia web portal [Hutchinson et al., 2008, Lymburner et al., 2011]
b Obtained from Victoria’s open data directory [The State of Victoria, 2009a, 2009b];
c Obtained from NASA EOSDIS Land Processes DAAC data portal [Vermote, 2015, Wan et al., 2015];
d Obtained from NASA GHRC DAAC data portal [Cecil et al., 2014];
e Sourced from Australian Bureau of Meteorology;

DOY means observations are averaged based on the day of the year
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Table 6.2 Aggregated land cover/use classes of the Australian Dynamic Land Cover
Dataset

New Class ID Original Classes
1 lakes and dams

salt lakes
2 mines and quarries

urban areas
3 irrigated cropping

rain fed cropping
irrigated pasture
rain fed pasture
irrigated sugar
rain fed sugar
wetlands

4 alpine meadows
5 open hummock grassland

closed tussock grassland
open tussock grassland

6 scattered shrubs and grasses
dense shrubland
open shrubland

7 closed forest
open forest

8 woodland
open woodland

A proxy for fuel moisture content was obtained from spectral indices derived
from a time series of MODIS images [Vermote, 2015]. The images have a
temporal resolution of eight days and a spatial resolution of 500 m. Four
spectral indices correlated with fuel moisture content [18, 153] were used: the
normalized difference vegetation index (NDVI), visible atmospherically resistant
index (VARI), normalized difference infrared index (NDII), and the normalized
difference water index (NDWI). One thermal band and two emissivity bands
were directly used as input features [Wan et al., 2015]. This resulted into seven
features extracted from MODIS images. The features are temporally matched
using the latest date of the eight-day averaging period prior to the starting
date of the wildfire.

A major natural cause of wildfire ignitions is lightning. Lightning flash
density information was obtained from annual lightning climatology derived
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Figure 6.2 LIS flash rate density original extent

from NASA’s lightning imaging sensor (LIS) observations [Cecil et al., 2014].
The annual lightning climatology provided estimates of lightning flash density
for each day of the year averaged over more than a 16-year period with a spatial
resolution of about 12 km. The dataset is spatially incomplete beyond the
south of the 38°S parallel (Figure 6.2). We therefore used direct sampling [96]
to impute locations within the study area extent with missing lightning flash
density rate. The imputed data were manually upsampled to 500 m spatial
resolution using bilinear interpolation. This resulted into one feature that is
temporally matched using the day of year (DOY) associated to the average
lightning flash density rate image.

Finally, we selected five weather variables associated with wildfire [143, 122,
5, 55, 105, 99] namely: temperature, humidity, solar radiation, wind speed and
direction, and precipitation. The first three have a daily resolution, whereas
the last two have a minutely resolution. We selected the temperature as the
maximum temperature past 9 am in 24 hours. For humidity, the lowest relative
humidity from every three hours within a day was chosen. The solar radiation
records the total amount of daily global solar exposure. Both the wind speed
and direction and precipitation were aggregated into daily values—taking
the average wind speed and direction and total precipitation within the day.
Observations having bad quality indicators were removed and four days (of
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interest) without any qualified solar radiation observations were temporally
imputed using the average of the same DOY from years with measurements
having good quality indicator. The five variables were interpolated using
ordinary kriging into a spatial resolution of 500 m. This resulted into five
features matched using the date associated to the meteorological observation.

The raster grids were matched to have the same geographic coordinate
system (WGS 84) and spatial resolution of 500 m. The organized dataset
resulted into 29-band input images and one-band target images of size 1536×
2304 pixels for all dates between 2006 and 2017 (Figure 6.3). Figure 6.4 shows
the location of the wildfire burns for the whole period. Directly feeding these
input and target images to our predictive model would both severely limit
the size of the convolutional neural network we can train and would make the
learning process computationally slower (because of the spatial dimensions of
the images) and difficult (considerable imbalance in the number of labels). To
address such computational constraints, we sampled this images into smaller
input patches.

6.2.3 Predictive model

In the context of wildfire prediction, the inputs of the artificial neural networks
are equivalent to the independent variables associated to a wildfire event.
Identifying the outputs of the network can be challenging. Specially since there
has not been any consistent formal definition of probability of burn in the
literature. A generalization of common neural network operations can be found
in [13].

Feedforward artificial neural networks are often employed as deterministic
models. But, the outputs of these networks can be treated with probabilistic
meaning. For example, in a regression problem, we can assume that the
target variable t follows a Gaussian distribution dependent on the input x and
parameters w of the network f such that

p(t|x,w) = N (t|f(x,w), σ2) (6.1)

where σ is the variance of the Gaussian [15, pp. 232–236]. The choice of
the probability distribution is not constrained by the network itself but is
problem-dependent, reflecting our expected distribution of the target variable
t.
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Figure 6.3 Visualization of the input images for one selected date (December 1, 2006).
All images are continuous variables normalized to [0, 1], except for the fuel type map
that shows discrete class categories from Table 6.2.
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Figure 6.4 Visualization of the location of wildfire burns for the whole study period.
Locations were obtained from the “Fire History Records of Fires primarily on Public Land”
dataset made publicly available by the State of Victoria, Department of Environment,
Land, Water & Planning (DELWP) [The State of Victoria, 1992].

6.2.4 Sampling of burn and non-burn locations

We systematically extracted non-overlapping sample patches of size M ×M ,
with the pixel near the center of the patch lying on a location of a wildfire burn,
from both the wildfire burn location (target patches) and the 29 quantitative
features (input patches) accordingly matched with the recorded starting date
of a wildfire. Corresponding burn locations are temporally binned together
in 7-day temporal windows, hence the resulting probability is an estimate of
the likelihood of a wildfire burning a specific location within the next 7 days.
All pixels in the target patches encodes a binary label, one for wildfire burn
locations and zero otherwise, except for pixels lying outside the study area.
Additionally, patches only having non-burn locations were randomly collected
from dates with and without any recorded wildfire.

Each of the input features was normalized to a value of [0, 1]. Training
patches were sampled from images within the period 2006–2016, while all test
patches are taken from an entirely separate period 2017. Data augmentation,
including two flips and three 90° rotations, was applied to increase the number
of training patches and help prevent the networks from overfitting.
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Figure 6.5 Simplified illustration of the deep fully convolutional network architecture
(AllConvNet) we designed for predicting the probability of wildfire burn. Figure 5.a shows
the main components of an artificial neural network—input layer, hidden layer, and ouput
layer—specifying the dimensions of the first and last layers. Figure 5.b further shows the
pattern of operations applied within the hidden layer of the network (a more detailed
discussion of these operations can be found in [13]). The “2D conv” learns sets of 2D
convolutional filters to extract higher-level features from the input, Batchnorm learns
parameters used to normalize the values of the learned features to have zero mean and
unit variance [68], ELU activation applies an element-wise non-linear activation function
called exponential linear units [29], and Addition performs an element-wise addition.

6.2.5 Network architecture and learning setup

For predicting the probability of wildfire burn from our input and target patches,
we designed a variant of deep fully convolutional network [87] employing residual
blocks with identity connections [61]. Figure 6.5 shows a simplified diagram of
the network architecture used in this study. For notational purposes, we call this
network AllConvNet. In contrast to the original fully convolutional network,
which uses both convolutional and maximum pooling with downsampling layers,
AllConvNet only uses convolutional layers (hence the shortened name for all-
convolutional network). We performed sensitivity analysis experiments on some
chosen hyperparemters of the network including: the number of layers, number
of filters, and input patch size of the network. For the last layer, the network
applies a sigmoid activation function followed by a binary cross-entropy loss
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function:

EN (w) = − 1
N

N∑
n=1

h(tn)tn log(yn) (6.2a)

yn = f(xn) (6.2b)

h(tn) =
{

1 if tn = 0
γ if tn = 1

(6.2c)

where E is the loss function value evaluated over a batch size N , h is a class-
based weighting function, γ is the class-weighting value (giving more importance
to the positive samples, encoded as tn = 1), t is the target output vector, y
is the model output vector, x is the input feature vector, and f is the series
of operations performed by the network. The network is optimized using a
variation of the backpropagation with stochastic gradient descent algorithm
called “Adam” [74]. The networks are trained for 500 epochs and early stopping
was applied by using the model with the best loss function value evaluated on
a separate validation set taken from the original set of training patches.

6.2.5.1 Accuracy assessment

We compared three other methods against our network. Firstly, an adapted
version of SegNet [6], an encoder-decoder FCN that has been mainly used and
employed in pixel-wise image classification originating from computer vision
but has also been employed in remote sensing applications [114]. Secondly,
a multilayer perceptron. And finally, a logistic regression. Our network and
SegNet accepts M×M input patches with 29 feature bands, while the MLP and
LR only accepts a 1D input vector with 29 features. Both the other two artificial
neural networks (SegNet and MLP) used the same optimization method as
AllConvNet. We also used similar hyperparameter selection experimental
setups and class-weighting function for all the three networks.

The labels of the target image predominantly consists of negatively-labeled
(non-wildfire burn location) pixels. Hence, using pixel-wise overall classification
accuracy would be inappropriate as predicting negatives for the whole output
would still yield a high accuracy. For such cases of imbalance distribution of
labels, more fitting accuracy metrics would be a recall-biased F-beta score
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averaged over the two classes:

Fβ = 0.5(F+
β + F−β ) (6.3a)

F+
β = (1 + β2)TP

(1 + β2)TP + β2FN + FP (6.3b)

F−β = (1 + β−2)TN
(1 + β−2)TN + β−2FP + FN , (6.3c)

the class balance accuracy [102] defined as:

CBA = 0.5(CBA+ + CBA−) (6.4a)

CBA+ = TP
max(TP + FP,TP + FN) (6.4b)

CBA− = TN
max(TN + FN,TN + FP) , (6.4c)

and the Matthews correlation coefficient:

MCC =
TP
N − S × P√

(P × S)(1− S)(1− P )
(6.5a)

N = TP + TN + FP + FN (6.5b)

S = TP + FN
N

(6.5c)

P = TP + FP
N

(6.5d)

where Fβ is the F-beta score parametrized by β, CBA is the class balance
accuracy, MCC is the Matthews correlation coefficient, and TP, TN, FP, and
FN are the true positive, true negative, false positive, and false negative counts
respectively. Increasing β in Fβ decreases the weight of the FP and TN relative
to the TP and FN. Unlike the overall classification accuracy, all these measures
can provide less biased estimate of the predictive accuracy on tasks involving
highly imbalanced class distribution. Aside from these three measures, we also
report three important numbers in the confusion matrix when dealing with
highly imbalanced binary classes: the TP, FN, and FP.

All the metrics reported are calculated on test patches of size 128 × 128
pixels. We recognize that evaluating a pixel-wise accuracy is too restrictive to
predict a very rare phenomenon that greatly varies in size from one pixel to
tens of thousands. Therefore, we adapted a less-constrained measure allowing

77



6. Predicting Wildfire Burns from Big Geodata using Deep Learning

a tolerance of eight pixels. The measure is equivalent to applying 8× 8 non-
overlapping maximum pooling filters to both the predictions and reference
before calculating the accuracy metrics. The size of the tolerance, equivalent
to around 16 km2 in ground area, is comparable to the sizes of recommended
planned burned area units by several case studies reported in the Australian
National Guidelines for Prescribed Burning Operations [4].

6.2.6 Measuring statistical importance of input variable

Another issue of interest is the relative statistical importance of each input
feature in the prediction task. This could help future analysis and data collection
efforts to choose which dataset to prioritize when considering a similar case
study. For this we consider two measures: 1) the average gradient with respect
to the input feature [143] for the three deep neural networks and 2) the LR
coefficients.

Table 6.3 Selected network hyperparameter values

Model M L K γ
AllConvNet 32 21 32 100
SegNet 64 — — 5
MLP — 4 64 20

6.2.7 Network hyperparameters

We experimented with varying hyperparameters of the three deep neural
networks including: the input patch size M for both AllConvNet and SegNet;
the number of layers L and the number of filters in each convolutional layer
K for both MLP and AllConvNet; and the class weighting value γ for all
three networks. Values for each hyperparameter were chosen by optimizing the
network accuracy on a validation set (taken from within the training period
but is spatially disjoint from the training set). The parameters yielding the
best validation accuracy for each network are shown in Table 6.3.
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6.3 Results and Discussion
6.3.1 Burn prediction maps

We visually compare the resulting predicted maps from each of our four
predictive models. Performance on contrasting days—e.g., during summer
when a wildfire is recorded and winter when no fire is recorded—cannot be
inferred just by observing Tables 6.4 and 6.5. We, therefore, visualize three sets
of sample maps resulting from our four models’ predictions. Firstly, a sampled
date (date I) within the training period (December 1, 2006) having recorded
a large wildfire (around 680,000 hectares); secondly, a sampled date (date II)
within the test period (October 18, 2017) also with recorded, but relatively
smaller than the previous date, wildfire (around 8,000 hectares); and lastly, a
sampled date (date III) within the test period (June 27, 2017) without any
recorded wildfire.

Figure 6.6 shows the reference and predicted maps for date I. Figure 6.7
shows the reference and predicted maps for date II. Figure 6.8 shows the
reference and predicted maps for date III. Looking at each set of results from
a model across the three dates, we can see that the amount of predicted
wildfire-prone locations (red pixels) increases together with the area of wildfire
observed for a date, except for SegNet and less noticeable for LR. AllConvNet
and LR perfectly predicts the locations without wildfire for a given date as
shown in Figure 6.8. This observation suggests that the AllConvNet and
LR are relatively better at temporally distinguishing whether a day is more
wildfire-prone compared to another day. Spatially comparing the two dates
with recorded wildfire, the predictions of wildfire-prone locations appears to
concentrate on comparably similar locations for each of the classifier, with
observable size and pattern changes being more apparent in the results of
AllConvNet and SegNet.
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Figure 6.6 Visualization of reference (topmost row) and predicted maps for a date
(December 1, 2006) when a wildfire was recorded. The maps to the left show the
prediction for the whole extent of Victoria while to the right is an inset map of a zoomed
location. The maps use WGS84 as their coordinate reference system.80
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Figure 6.7 Visualization of reference (topmost row) and predicted maps for a date
(October 18, 2017) when a wildfire was recorded. The maps to the left show the prediction
for the whole extent of Victoria while to the right is an inset map of a zoomed location.
The maps use WGS84 as their coordinate reference system. 81
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Figure 6.8 Visualization of reference (topmost row) and predicted maps for a date
(June 27, 2017) when no wildfire was recorded. The maps to the left show the prediction
for the whole extent of Victoria while to the right is an inset map of a zoomed location.
The maps use WGS84 as their coordinate reference system.
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We also notice a significant portion of the maps predicted for dates I and II
appear to have a high number of FP’s. Since the phenomenon can be generally
observed regardless of the model, then a possible explanation of this can be
the lack of discriminatory information encoded in our input features. We can
decompose the probability of a wildfire burning into the probability of fuel
ignition, given a causative agent triggers an ignition, and the probability of
a causative agent starting an ignition. On the one hand, the information on
the first probability is intuitively embedded in the features describing fuel
characteristics such as topography, land cover, fuel moisture proxies, and the
meteorological observation. On the other hand, only the lightning flash density
rate and proximity measure (from roads and power lines) features generally
embeds information on the second probability—both of which do not have daily
temporal resolution. Observing the sample map predictions, all the models
seem to capture the interactions within the first probability stronger, that
is to say, the models are able to spatially distinguish the differences in fuel
ignitability more than the differences in whether one location is more likely to
experience an ignition than others. Adding features embedding information on
the second probability, if possible, with higher temporal resolution, might help
address this challenge.

Both the convolutional networks predict more connected fire-prone regions
compared to the results of MLP and LR that shows noisier predictions—with
the results from the LR and SegNet at the extreme opposing ends, SegNet
producing the smoother and more regularized results. This can be explained
by the fact that the two convolutional networks accepts as an input M ×M
patches, a practice that is rarely done in similar case studies, as opposed to
single pixel vectors utilized as an input by LR and MLP. By accepting input
patches instead of single pixel vectors, the trainable convolutional filters of the
two networks allow the latter to learn spatial-contextual dependencies that
may be present between the input features.

Another notable observation is the difference on how the models assign final
class score, p(burn|x = X). In the one instance, AllConvNet and LR assigning
more extremely high scores to most, if not all, wildfire-prone regions. Whereas
conservative (in between extremely high and low) scores are more observable in
the results of SegNet and MLP. Similar results were observed by (author?) [33]
where the authors compared MLP and LR for wildfire ignition prediction—with
the MLP producing more intermediate probability values. Extreme scores can
be attributed to possible model overtraining on a dataset with limited positive
samples such as recorded wildfire events. The cross-entropy loss function in
Equation 6.2 continues to be minimized by assigning higher scores to already
correctedly classified training samples instead of correctly classifying samples
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which are still misclassified—hence, promoting high scores assigned to wildfire-
prone locations during model testing. Broadly speaking, the maps from the
two convolutional networks appear to be smoother and more regularized, with
the SegNet having smoother and more regularized areas and providing more
information by discriminating intermediate, less wildfire-prone areas.

Table 6.4 Comparison of estimated predictive model accuracy based on sample counts

Model TP FN FP
AllConvNet 538 390 66881
SegNet 112 816 18873
MLP 412 516 69997
LR 167 761 24034

6.3.2 Predictive accuracy
Tables 6.4 and 6.5 show the results of our model compared to the three baseline
models. We first report metrics based on sample counts in Table 6.4. Secondly,
we report metrics based on class-averaged rates in Table 6.5. All the metrics
are evaluated using results obtained by applying a threshold of 0.5 to the final
class score, p(burn|x = X), given by each predictive model.

AllConvNet has the highest TP and lowest FN counts but ranks 2nd lowest
in terms of FP counts. On the contrary, SegNet produces the lowest FP counts
but has the worst TP counts—only correctly classifying 12% of the positive
samples as compared to the 58% of the AllConvNet. AllConvNet correctly
classified 14% more positive samples than the MLP while still having 5% less
FP samples. LR correctly classified 6% more positive samples than the SegNet
but have 27% more false positives.

An ideal predictive model should naturally have high TP count and both
low FP and FN counts. None of the four models outperforms the rest in all
three counts with the MLP and SegNet being on the extreme ends—the MLP
overpredicting and the LR underpredicting positives. Choosing the best among
the four would be a matter of how much relative importance we assign to
each of the three counts. We argue that putting more weight on both the
TP and FN than the FP sounds more reasonable in the context of hazard-
related studies such as wildfire prediction. In hazard-related studies where
we predict a rare phenomenon, FP’s can either be actual miscategorization or
possibly genuine hazard-prone locations that are yet to develop the hazardous
phenomenon [10]. In line with the argument of assigning less relative weight
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Table 6.5 Comparison of estimated predictive model accuracy based on averaged rates

Model F1 F5 F20 F100 CBA MCC
AllConvNet 37.64% 56.20% 74.39% 78.57% 58.23% 0.025
SegNet 50.56% 53.45% 55.78% 56.02% 56.03% 0.027
MLP 36.63% 54.03% 64.33% 71.75% 50.48% 0.002
LR 46.52% 53.98% 58.17% 58.70% 51.54% 0.007

on FP (recall-biased premise), we report additional Fβ measures in Table 6.5
aside from the conventional F1 measure. Moreover, we report the CBA and
MCC which are specifically developed for assessing problems with imbalanced
class distribution.

SegNet achieves the highest F1 and MCC while AllConvNet outperforms
the rest of the models in terms of the four other measures. All Fβ scores
consistently increase for all the models as the β increases. The β parameter
intuitively provides a way, in the model assessment step, to control how much
importance we want to assign on the model’s capability to predict as much
as wildfire burn event as it can while being more tolerant on false alarms.
However, the choice of such weighting will generally fall on the fourth stage
of a wildfire risk assessment framework, risk characterization, that is better
handled by land and fire management agencies in line with their management
objectives.

In these experiments, we evaluated the models varying β to be equal to
the optimal γ values chosen in the hyperparameter selection steps (see Table
6.3), since γ > 1 serves a similar purpose as β but is employed in the training
phase of the models. Intuitively, assigning higher γ value would influence the
model to overpredict, increasing FP. However, results presented in Table 6.4
demonstrates that AllConvNet, despite having higher γ than MLP, is less prone
to overprediction. While scoring highest in terms of all Fβ except F1 and the
parameter-free CBA, AllConvNet also comes out second in terms of the other
parameter-free measure MCC. This shows that improvement in the accuracy
metrics of the results from AllConvNet is independent from our recall-biased
premise.

6.3.3 Feature statistical importance

Artificial neural networks are often criticized for being less interpretable than
other models like LR, such that, it is difficult to determine the internal statistical
importance of each input variable being considered in the modelling task. This
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Figure 6.9 Feature statistical importance measures considering gradient with respect
to the input feature for AllConvNet, SegNet, and MLP and the normalized magnitude of
the LR coefficients.

apparent low model transparency can be negligible in the context of other
predictive tasks, e.g. in land cover classification where there may be less
significance in knowing how the digital values assigned to pixels in a satellite
image get transformed into land cover categories. In the context of wildfire
prediction, understanding the relative statistical importance of each input
variable as to how they affect the predictability of a wildfire event can be
valuable as most fire danger ratings, such as the McArthur Forest Fire Danger
Index and the Canadian Forest Fire Weather Index, are similarly based on
relative importance weighting of wildfire-related variables. Figure 6.9 shows the
feature statistical importance measures considering two techniques: 1) gradient
with respect to the input feature for AllConvNet, SegNet, and MLP and 2)
normalized magnitude of the LR coefficients.
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Table 6.6 Correlation of the feature statistical importance measures

Model A Model B Pearson’s
R

p-value

AllConvNet SegNet 0.32 0.0858
AllConvNet MLP 0.15 0.4288
AllConvNet LR coefficients 0.45 0.0146
SegNet MLP 0.08 0.6947
SegNet LR coefficients 0.62 0.0002
MLP LR coefficients 0.47 0.0097

Total precipitation, lightning flash density, and land surface temperature
occur to be consistently highly weighted by all models while terrain aspect
components, wind direction components, certain land cover classes (such as
crop field and woodland), and distance from power lines are ranked on the
lower end. In a study employing MLP and LR to predict fire weather index,
[143] compared a subset of the weather variables that we considered in our
own study and found that their model also ranked the amount of precipitation
as the highest among four variables they compared followed by temperature,
wind speed, and finally relative humidity—a result comparable to what we can
observe from the ranking provided by AllConvNet.

The slope and elevation and presence of certain land cover classes (forest,
alpine meadow, and grassland) were given moderate importance by AllConvNet
together with most of the bands and indices derived from MODIS except
NDWI. Slope and elevation ranked consistently higher than the terrain aspect
components. MODIS derived land surface temperature has higher statistical
importance measure than the two emmissivity bands. Notably, NDWI and
VARI generally ranks higher than NDVI and NDII even though [18], regressing
these four indices against live fuel moisture content, found NDII and NDWI to
have the highest and lowest coefficient of determination respectively.

The degree of agreement between the resulting set of feature statistical
importance scores cannot be quantitatively observed in Figure 6.9. Thus, we
present Table 6.6 showing the correlation coefficients and corresponding p-values
of the feature statistical importance scores shown in Figure 6.9. Statistical
importance measures from logistic regression appear to have highest correlation
values with the other models, MLP generally having the lowest ones. SegNet
has the lowest and highest correlation values with LR and MLP respectively.
This could be due to the increased model complexity of MLP but still having
the same input dimensionality as LR, possibly making the former more prone
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to fixating on features the other models found less statistically important.

6.4 Conclusion
This study presents a deep fully convolutional neural network for predicting
daily maps of the probability of a wildfire burn over the next 7 days in Victoria,
Australia for the period of 2006 - 2017. The proposed network architecture,
AllConvNet, outperforms the other three baseline methods namely: SegNet,
multilayer perceptron, and logistic regression in four of the six quantitative
metrics (four recall-biased F-beta scores, class balance accuracy score, and
Matthews correlation coefficient) and ranks second in one of the other two
parameter-free metric. Both the two convolutional networks, AllConvNet and
SegNet, also provide smoother and more regularized predicted maps, with
SegNet providing better visual information on discriminating less wildfire-
prone locations. Input feature statistical importance was measured for the
three networks and compared against logistic regression coefficients. Total
precipitation, lightning flash density, and land surface temperature occurs to
be consistently highly weighted by all models while terrain aspect components,
wind direction components, certain land cover classes (such as crop field and
woodland), and distance from power lines are ranked on the lower end.

The deep fully convolutional networks designed in this study demonstrate
better predictive accuracy and map quality than the baseline methods com-
monly explored in previous studies. Exploratory feature statistical importance
measures presented in this work also provide a way to better understand these
rather less transparent models. Future studies on the application of deep
learning for wildfire prediction can look into improving the features encoding
information on the probability that a location would experience an ignition.
In the context of deep learning, future works on incorporating temporal in-
formation, accepting as inputs and producing as outputs sequences instead of
daily snapshots of features and predictions, and data fusion within the model
design would be relevant. Resulting maps from our models can be reclassified
into wildfire burn exposure indices and be intersected with information on
assets-at-risk to produce alternative wildfire risk index maps.
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7.1 Research findings and conclusions

This research focuses on deep learning based methods for two relevant pre-
diction problems in remote sensing including: urban land cover and land use
classification, and mapping the probability of wildfire burn events. Several
components of standard prediction processes in all the use cases—such as
automated feature extraction, image fusion, post-classification regularization,
quantification of input feature importance—were all improved and optimized
by embedding them within an end-to-end framework. Below I summarize the
main findings of the research objectives presented in Section 1.4. Section 7.2
reflects on the implications of this work and discusses future research directions.

Research objective 1: To develop a deep learning based method performing
an end-to-end image fusion and classification of a multiresolution VHR satellite
image in the context of urban land cover classification. Results showed that there
can be an improvement fo 3–10% in the classification accuracy of predicted
urban land cover maps when opting to perform image fusion and feature
extraction within a multiresolution convolutional network, FuseNet, as opposed
to performing a separate image fusion step utilizing a fixed or learnable filters.
Results on varying the architecture of the proposed network also indicated that
performing the fusion on the resolution of the multispectral image yields a higher
classification accuracy than performing the fusion on the higher resolution of
the panchromatic image. A sensitivity analysis of the network hyperparameters
showed that it is more important to choose the proper upsampling operation,
patch size, and corresponding bottleneck feature dimension of the network than
varying the number of hidden layers. The utility of a single-stage classification
pipeline incorporating image fusion and feature extraction combined within
a convolutional network trained in an end-to-end manner improves the land
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cover classification process.
Research objective 2: To develop a deep learning based method to model

contextual label-to-label dependencies and effectively regularize classification
maps in the context of urban land cover classification. Experimental results
from the proposed recurrent multiresolution convolutional network, ReuseNet,
demonstrates the improvement on classification accuracy of urban land cover
from very high resolution imageries by incorporating contextual label depend-
ency as similarly done by other post-classification regularization methods like
conditional random fields. Land cover maps classified by ReuseNet also show
a smoother, less noisy classification than those obtained by classifiers that
do not utilize any contextual label information. Aside from streamlining the
classification process, by integrating several conventionally independent steps in
the prediction pipeline (such as image fusion, feature extraction, classification,
and map regularization), ReuseNet also shows 0.5–2.0% increase on classific-
ation accuracy over the baseline methods. The initialization of ReuseNet’s
parameters and initial score maps can also greatly affect the classification
accuracy of the network, changing it by as much as 12%. Inclusion and leverage
of contextual label information is separate from the design of the base network
architecture, and can therefore be incorporated to other state-of-the-art network
architectures.

Research objective 3: To develop a deep learning based method to classify
urban land use from VHR satellite images. Results in this chapter show at least
30% increase in classification accuracy of the urban land cover classes when
using the two multitask networks (PMN and SMN) over the other standard
classification methods. The two multitask networks also improves the predic-
tions on the additionally embedded land cover classification task. Performing
land use classification simultaneously with land cover classification within an
end-to-end deep multitask network improves the classification performance on
both the main urban land use classification and the complimentary land cover
classification tasks.

Research objective 4: To develop a deep learning based method predicting
daily maps of the probability of a wildfire burn. The proposed network architec-
ture, AllConvNet, outperforms the other classifiers in four of the six quantitative
metrics (four recall-biased F-beta scores, class balance accuracy score, and
Matthews correlation coefficient) considered in this study. Experiments on
quantifying input feature statistical importance show that total precipitation,
lightning flash density, and land surface temperature are consistently highly
weighted by all the models while terrain aspect components, wind direction
components, certain land cover classes (such as crop field and woodland),
and distance from power lines are ranked on the lower end. Using a deep
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convolutional network improves the accuracy of daily probability of wildfire
burn maps over standard logistic regression and multilayer perceptron. Quan-
tification of input feature statistical importance allows the interpretation of
models considered by many end-users as “black boxes” like deep convolutional
networks.

In sum, this research contributed towards the improvement of state-of-the-
art methods for automated feature extraction, image fusion, classification, and
post-classification regularization in the context of urban land cover mapping;
land use classification; and wildfire burn prediction. Five different end-to-end
models: FuseNet, ReuseNet, PMN and SMN, and AllConvNet, were developed
to address three different use cases. Results from these models show quantitative
and qualitative improvements over results from state-of-the-art methods.

7.2 Reflections and recommendations
The research was formulated with the aim of developing end-to-end predictive
models that can contribute towards mapping technologies leveraging remote
sensing data. I address this by formulating techniques within the deep learn-
ing paradigm. Models developed from this research was able to blend a
diverse group of dataset—varying in spatial, spectral, temporal resolution and
modality—to generate predictions for three remote sensing applications: urban
land cover classification, urban land use classification, and wildfire prediction.
Deep learning techniques made it possible to construct these predictive models
in an end-to-end manner, generating predictions directly from the input data
by integrating conventionally separate processing steps.

Convolutional networks, found to be effective in dealing with many computer
vision problems, were adapted and extended to address several issues intrinsic to
remote sensing problems. Chapter 3 tackles the image fusion problem inherent
with classifying multiresolution VHR imagery. Chapter 4 presents a novel way
to incorporate contextual label information to improve classification results in
a similar manner that a separate post-classification regularization technique
would do. Chapter 5 leverages similar remote sensing tasks, i.e. land cover
classification as a complimentary task to land use classification, to boost the
classification accuracy on highly abstracted classes such as urban land use.
And chapter 6 introduces a method based on deep convolutional networks to
map daily probability of wildfire burn, and consequently quantify input feature
statistical importance—presenting a way to unravel the transparency of what
many end-users consider as obscure deep learning models.
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Building end-to-end models streamlines and objectifies the prediction pro-
cess by integrating separate independent steps within one model and directly
coupling these steps to the objective function formulated for the specific pre-
diction problem. However, such improvements come with a few drawbacks
such as: i) increased training time, ii) obfuscation of the “physical interpret-
ation” of the model, iii) and the need to provide a relatively larger number
of labeled training samples. Both the first two drawbacks are observed in
all the experiments from Chapters 3 to 6. Training can be done separately
from operationalization, thus, this issue can either be neglected or directly
addressed depending on the scope and goals of a project. The second drawback
depends on the nature of the problem, whether the physical interpretation of
intermediate features have impact on the objectives of the problem. For urban
land cover and land use classification, I would argue that there is little value to
such physically interpreting digital numbers extracted from an optical image
to come up with appropriate urban land cover and land use labels. However,
for wildfire risk related application such as that presented in Chapter 6, the
possible physical interpretation and connection of intermediate learned features
to variables intuitively related to wildfire risk but is not captured by the input
data can be beneficial. The need for a larger number of labeled samples was
also encountered in Chapters 3 to 6. This issue can only be addressed if there
is a way to collect additional samples, i.e. in urban land cover and land use
classification, by investing more resources on data collection efforts, otherwise
can be ignored when there is no way to collect additional samples, i.e. wildfire
mapping application.

Taking into account these drawbacks, other use cases that can benefit from
adapting the methodologies developed in this research are those that are more
concerned with increasing the level of automation and accuracy of a prediction
task rather than the explanation and interpretation of how the predictions
are obtained from the input data. On the one hand, tasks like producing
accurate masks for cloud and cloud shadow and mapping locations with dense
water vegetation as parts of a project monitoring complex waterways could
benefit more on the aspect of automation and accuracy rather than model
interpretability. On the other hand, spatiotemporally mapping agricultural
activities for the purpose of regulating statutory subsidies for farmers would
require more transparency and interpretability from the model. The resource
related constraints on training time and number of labeled samples also limits
the spatial and temporal extent with respect to spatial and temporal resolution
of the use cases adapting these methods. Applications which require very fine
resolution outputs, e.g. weekly monitoring narrow waterways, will likely be
bounded on the spatial extent of the area of interest (possibly a small-sized
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city) for computational and practical reasons.
The second example opens up another kind of problems when using methods

based on deep learning that is: the ethical implications of models that are not
fully physically explainable. In the agricultural activity monitoring example,
decisions derived from the models can affect the livelihood of an individual
and therefore potential petitions challenging these decisions can arise. Hence,
a model incapable of fully explaining how the predictions were produced can
become problematic for the end users of these predictions. This also questions
the accountability for decisions made from possibly erroneous model predictions.
Therefore, for such situational applications, combining guided manual checks,
e.g. field visits on flagged nonconforming parcels, and automated methods will
be the way to go.

The studies presented in Chapters 3 to 5 illustrates a rather more familiar
remote sensing application utilizing multispectral very high resolution images to
provide geospatial information on the urban environment. Spectral bands (RGB
and NIR) and target classes (land cover and land use) are widely employed in
other similar research problems. This enables straightforward adaptation of
the methods we have developed in these chapters. On the other hand, Chapter
6 presented a relatively niche application were there is no standard treatment
of inputs and formalization of outputs. Comparison between different but
related studies are therefore complicated and the research contributes more
towards the analysis of the input variables and the assessment of the quality
of output predictions than the method development itself. This second to the
last chapter balances out the previously presented chapters heavily focused on
method development and assessment.

The methods developed in this study can be extended and adapted to
similar studies that, for example, are focusing on study areas involving a
different kind of environment such as agricultural, glacial, or transition areas
like coastal shores. The methods in Chapters 3 to 5 can also be embedded
within an operational workflow mapping change signals for automatic updating
of topographical or other geospatial databases for the urban environment.
Similarly, the outputs of Chapter 6 can either directly serve as a proxy measure
for wildfire risk or may serve as input, together with information about assets-
at-risk and their corresponding vulnerabilities, to probabilistic methods from
the actuarial sciences to quantify wildfire risk. Furthermore, these outputs can
also guide problems on wildfire response and fuel management, e.g. probability
of wildfire burn as an input to prescribed burning optimization. On the methods
development side, the network presented in Chapter 6 can be further extended
accommodate additional input features and explicitly incorporate temporal
relationships of the latter within the network architecture. Further exploration
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of a Bayesian treatment of the deep networks developed in this study can
provide a way to explicitly quantify the uncertainties of the output predictions
of our models.

94



Bibliography

[1] A. A. Ager, M. A. Day, C. W. McHugh, K. Short, J. Gilbertson-Day,
M. A. Finney, and D. E. Calkin. Wildfire exposure and fuel management
on western US national forests. Journal of Environmental Management,
145:54–70, 2014.

[2] M. Alioscha-Perez and H. Sahli. Efficient learning of spatial patterns
with multi-scale conditional random fields for region-based classification.
Remote Sensing, 6(8):6727–6764, 2014.

[3] D. Atkinson, M. Chladil, V. Janssen, and A. Lucieer. Implementation of
quantitative bushfire risk analysis in a GIS environment. International
Journal of Wildland Fire, 19(5):649–658, 2010.

[4] Australasian Fire Emergency Service Authorities Council and Forest
Fire Management Group. National Guidelines for Prescribed Burning
Operations. Australasian Fire Emergency Service Authorities Council,
Level 1, 340 Albert Street East Melbourne Victoria 3002, 2014.

[5] A. Badia, P. Serra, and S. Modugno. Identifying dynamics of fire igni-
tion probabilities in two representative Mediterranean wildland-urban
interface areas. Applied Geography, 31(3):930–940, 2011.

[6] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2017.

[7] G. H. Bakir, T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and
S. V. N. Vishwanathan. Predicting Structured Data (Neural Information
Processing). The MIT Press, 2007.

[8] G. Ball and D. Hall. Isodata: A novel method of data analysis and pattern
classification. Technical report, Stanford Research Institute, Menlo Park,
1965.

95



Bibliography

[9] A. Bar Massada, V. C. Radeloff, S. I. Stewart, and T. J. Hawbaker.
Wildfire risk in the wildland-urban interface: A simulation study in
northwestern Wisconsin. Forest Ecology and Management, 258(9):1990–
1999, 2009.
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Guimarães, and R. A. T. Gomes. Predicting wildfire vulnerability using
logistic regression and artificial neural networks: a case study in Brazil.
International Journal of Wildland Fire, 28:35–45, 2018.

[33] M. P. de Vasconcelos, S. Silva, M. Tome, M. Alvim, and J. C. Pereira.
Spatial prediction of fire ignition probabilities: comparing logistic re-
gression and neural networks. Photogrammetric engineering and remote
sensing, 67(1):73–81, 2001.

[34] L. Deng and D. Yu. Deep learning: Methods and applications. Technical
report, Microsoft, May 2014.

[35] A. M. Dewan and Y. Yamaguchi. Land use and land cover change in
Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable
urbanization. Applied Geography, 29(3):390–401, 2009.

[36] K.-L. Du and M. N. S. Swamy. Neural Networks and Statistical Learning.
Springer-Verlag, London, 2014.

[37] R. Dutta, A. Das, and J. Aryal. Big data integration shows Australian
bush-fire frequency is increasing significantly. Royal Society Open Science,
3(2):150241, Feb. 2016.

[38] A. Fairbrother and J. G. Turnley. Predicting risks of uncharacteristic
wildfires: Application of the risk assessment process. Forest Ecology and
Management, 211(1–2):28–35, 2005.

[39] S. Fang, L. D. Xu, Y. Zhu, J. Ahati, H. Pei, J. Yan, and Z. Liu. An
integrated system for regional environmental monitoring and management
based on internet of things. IEEE Transactions on Industrial Informatics,
10(2):1596–1605, 2014.

[40] M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C.
Tilton. Advances in spectral-spatial classification of hyperspectral images.
Proceedings of the IEEE, 101(3):652–675, March 2013.

[41] R. Fernandes and S. G. Leblanc. Parametric (modified least squares) and
non-parametric (Theil-Sen) linear regressions for predicting biophysical
parameters in the presence of measurement errors. Remote Sensing of
Environment, 95(3):303–316, 2005.

[42] M. A. Finney. The challenge of quantitative risk analysis for wildland
fire. Forest Ecology and Management, 211(1–2):97–108, 2005.

98



Bibliography

[43] G. M. Foody. Status of land cover classification accuracy assessment.
Remote Sensing of Environment, 80(1):185–201, 2002.

[44] K. Fukushima. Neocognitron: A hierarchical neural network capable of
visual pattern recognition. Neural Networks, 1(2):119–130, 1988.

[45] K. Fukushima and S. Miyake. Neocognitron: A new algorithm for pattern
recognition tolerant of deformations and shifts in position. Pattern
Recognition, 15(6):455–469, 1982.

[46] A. D. Giorgi, G. Moser, and S. B. Serpico. Contextual remote-sensing
image classification through support vector machines, markov random
fields and graph cuts. In 2014 IEEE Geoscience and Remote Sensing
Symposium, pages 3722–3725, July 2014.

[47] X. Glorot and Y. Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Aistats, volume 9, pages 249–256, 2010.

[48] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks.
In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April
11-13, 2011, pages 315–323, 2011.

[49] I. Goodfellow. Deep learning of representations and its application to
computer vision. PhD thesis, University of Montreal, Montreal, Canada,
4 2014.

[50] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[51] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and Y. Ben-
gio. Maxout networks. In Proceedings of the 30th International Conference
on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013,
pages 1319–1327, 2013.

[52] D. Graupe. Deep learning neural networks: Design and case studies,
2016.

[53] M. E. Gray, L. J. Zachmann, and B. G. Dickson. A weekly, continually
updated dataset of the probability of large wildfires across western US
forests and woodlands. Earth System Science Data, 10(3):1715–1727,
Sept. 2018.
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ASummary

Prediction plays a crucial role in mapping urban land cover, land use, and
wildfire risks. Data-related challenges concern the spectral confusion of the
classes of interest, noisy classification results, highly abstracted class definitions,
and the large amount of spatial, temporal, structural, and typological variation.
Standard methods tackle these issues by introducing pre- and post-prediction
steps such as image fusion, feature extraction, and label regularization. These
additional steps are often approximate and detached from the prediction task
at hand, making them sub-optimal. This research explores end-to-end predict-
ive models for several remote sensing applications, integrating independent
additional steps within a single prediction pipeline.

The first objective addresses image fusion in the context of urban land cover
classification. I present a single-stage framework embedding feature extraction
and image fusion in a multiresolution convolutional network, called FuseNet.
The network matches the resolution of the panchromatic and multispectral
bands in a very high resolution (VHR) image using convolutional layers with
corresponding downsampling and upsampling. I compared FuseNet with the
use of separate processing steps for image fusion, such as pansharpening and
resampling through interpolation. Results show quantitative improvements on
the accuracy of the land cover classification results when using FuseNet.

The second objective addresses label regularization in the context of urban
land cover classification. I propose a novel end-to-end classification model
integrating image fusion, feature extraction, and label regularization within a
recurrent multiresolution convolutional network, called ReuseNet. ReuseNet
extends FuseNet by incorporating contextual label information via recurrent
connections. This extension is similar to a standard post-classification label
regularization step. I designed experiments on land cover classification where
I compared ReuseNet with using separate processing steps for both image
fusion and map regularization. Experimental results show both quantitative
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and qualitative improvements on the classified land cover maps produced by
ReuseNet.

The third objective addresses predicting abstracted urban land use classes.
Features extracted from land cover maps are helpful on performing land use
classification. Such prior information can be incorporated in the design of a
deep learning based land use classifier by applying a multitask learning setup,
i.e. simultaneously solving a land use and a land cover classification task. I
explored a fully convolutional multitask network to classify urban land use
from VHR imagery. I experimented with three different setups: a standard
network only predicting the land use class of each pixel in the image, a multitask
network concatenating the land use and land cover class labels in the same
output layer, and a multitask network accepting as an input the land cover
that was predicted by a subpart of the network, concatenated to the original
input image patches. Comparing the three against a standard random forest
classifier, I found that the two convolutional multitask networks outperform
the other two classifiers by at least 30% in the average F1-score.

The fourth objective deals with integrating a big set of geodata to produce
daily maps of the probability of wildfire burn. I designed a deep fully convolu-
tional network, called AllConvNet, to produce daily maps of the probability
of a wildfire burn over the next 7 days in Victoria, Australia for the period
of 2006–2017. Fifteen factors that were extracted from six different datasets
and resulted into 29 quantitative features, were selected as input. I compared
AllConvNet with three baseline methods: SegNet, multilayer perceptron, and
logistic regression. AllConvNet outperformed the three baseline methods in
four of the six quantitative metrics considered. Total precipitation, lightning
flash density, and land surface temperature were consistently highly weighted
by all models while terrain aspect components, wind direction components,
certain land cover classes (such as crop field and woodland), and distance from
power lines were lowly weighted.

In summary, this thesis presents end-to-end predictive models for three
different remote sensing applications: urban land cover, urban land use, and
wildfire prediction. These models demonstrate that standard methods adding
independent pre- and post-prediction steps can be integrated into a single end-
to-end framework that streamlines the prediction task. The urban land cover
and land use maps can be used for regular updating of geospatial database layers,
while the wildfire probability maps can either directly serve as a proxy measure
for wildfire risk or may serve as an input for probabilistically quantifying
wildfire risk.
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Samenvatting

Het maken van voorspellingen speelt een cruciale rol bij het in kaart brengen
van stedelijke landbedekking, landgebruik en de risico’s op natuurbranden.
Uitdagingen die gerelateerd zijn aan de gegevens hebben betrekking op de spec-
trale vermenging van de betreffende klassen, onduidelijke classificatieresultaten,
abstracte definities van klassen en sterke ruimtelijke, temporele, structurele
en typologische variatie. Standaardmethoden pakken deze problemen aan
door pre- en post-voorspellingsstappen te introduceren, zoals Image-fusie,
feature-extractie en label-regularisatie. Deze extra stappen zijn vaak enkel een
benadering en staan los van de voorspellingstaak, waardoor ze niet optimaal
zijn. Dit onderzoek verkent end-to-end voorspellende modellen voor verschil-
lende toepassingen van remote sensing, waarbij onafhankelijke aanvullende
stappen worden gëıntegreerd binnen één voorspellingspijplijn.

De eerste doelstelling betreft image-fusie in de context van de classificatie van
stedelijke landbedekking. Ik presenteer een één-staps kader genaamd FuseNet,
dat functie-extractie en beeldfusie in een multiresoluut convolutioneel netwerk
combineert. Het netwerk opereert op het niveau van panchromatische en
multispectrale banden in een zeer hoge resolutie (VHR) afbeelding en gebruikt
convolutie lagen met bijbehorende downsampling en upsampling. Ik heb
FuseNet vergeleken met het gebruik van afzonderlijke bewerkingsstappen voor
image-fusie, zoals pansharpening en resampling door middel van interpolatie.
De resultaten laten kwantitatieve verbeteringen zien in de nauwkeurigheid van
de classificatieresultaten voor landbedekking bij gebruik van FuseNet.

De tweede doelstelling betreft de regularisatie van labels in de context van de
classificatie van stedelijke landbedekking. Ik stel een nieuw end-to-end classific-
atiemodel voor dat image-fusie, feature-extractie en label-regularisatie integreert
binnen een recurrent multiresoluut convolutie netwerk, genaamd ReuseNet.
ReuseNet in een uitbreiding van FuseNet door contextuele label-informatie op
te nemen. Deze uitbreiding is vergelijkbaar met een standaard regularisatiestap
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tijdens een postclassificatie van de labels via terugkerende verbindingen. Ik
heb experimenten ontworpen voor de classificatie van landbedekking waarbij ik
varianten van ReuseNet vergeleken heb met het gebruik van afzonderlijke ver-
werkingsstappen voor zowel image-fusie als kaartregularisatie. Experimentele
resultaten laten zowel kwantitatieve als kwalitatieve verbeteringen zien op de
geclassificeerde landbedekkingskaarten die via ReuseNet zijn geproduceerd.

De derde doelstelling betreft het voorspellen van geabstraheerde klassen van
stedelijk landgebruik. Kenmerken die uit landbedekkingskaarten zijn gehaald,
zijn nuttig bij het uitvoeren van classificatie van landgebruik. Dergelijke voor-
informatie kan worden opgenomen in het ontwerp van een classificator van
landgebruik die is gebaseerd op deep learning door een multitask-leeropstelling
toe te passen, d.w.z. het gelijktijdig oplossen van een classificatietaak voor
landgebruik en landbedekking. Ik heb een volledig convolutioneel multitask-
netwerk onderzocht om stedelijk landgebruik te classificeren op basis van
VHR beelden. Ik heb geëxperimenteerd met drie verschillende netwerken:
een standaardnetwerk dat alleen de landgebruiksklasse van elke pixel in de
afbeelding voorspelt, een multitask-netwerk dat de labels voor landgebruik-
en landbedekkingsklassen koppelt in dezelfde uitvoerlaag, en een multitask-
netwerk dat als invoer de landbedekking, voorspeld door een onderdeel van het
netwerk, koppelt met de oorspronkelijke beelden in de invoer. Door deze drie
te vergelijken met een standaard random forest-classificatie, ontdekte ik dat de
twee convolutionele multitask-netwerken minstens 30

De vierde doelstelling betreft het integreren van een grote reeks geodata
om dagelijkse kaarten te maken van de kans op bosbranden. Ik heb een diep
volledig convolutioneel netwerk ontworpen, genaamd AllConvNet, om dagelijkse
kaarten te maken van de waarschijnlijkheid van een bosbrand gedurende de
komende 7 dagen in Victoria, Australië voor de periode 2006–2017. Vijftien
factoren die uit zes verschillende datasets werden gehaald en resulteerden
in 29 kwantitatieve kenmerken, werden als input geselecteerd. Ik vergeleek
AllConvNet met drie basismethoden: SegNet, een perceptron bestaande uit
meerdere lagen en logistische regressie. AllConvNet presteerde beter dan de drie
basismethoden in vier van de zes onderzochte kwantitatieve statistieken. Totale
neerslag, dichtheid van bliksems en temperatuur van de landoppervlakte werden
consequent zwaar gewogen binnen alle modellen, terwijl componenten van terre-
inaspecten, componenten van de windrichting, bepaalde landbedekkingsklassen
(zoals akkerbouw en bos) en afstand tot hoogspanningsleidingen lager werden
gewogen.

Samenvattend presenteert dit proefschrift end-to-end voorspellende modellen
voor drie verschillende remote sensing toepassingen: stedelijke landbedekking,
stedelijk landgebruik en voorspelling van natuurbranden. De modellen laten zien
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dat standaardmethoden die onafhankelijke pre- en post-voorspellingsstappen
toevoegen, kunnen worden gëıntegreerd in een enkel end-to-end kader dat de
voorspellingstaak stroomlijnt. De kaarten voor stedelijke landbedekking en
landgebruik kunnen worden gebruikt voor het regelmatig bijwerken van geospa-
tiale lagen in een database, terwijl de kansenkaarten voor natuurbranden ofwel
direct kunnen dienen als een proxy-maat voor het risico op natuurbranden of als
input voor een kanstheoretische kaartering van de risico’s op natuurbranden.
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