
 

 

REMOTE SENSING OF CROP LODGING: A 
MULTI-SENSOR APPROACH 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sugandh Chauhan 
 
  



 

 
 

  



 

 
 

REMOTE SENSING OF CROP LODGING: A 
MULTI-SENSOR APPROACH 

 
 
 
 

DISSERTATION 

 
 
 

to obtain  
the degree of doctor at the University of Twente, 

on the authority of the rector magnificus, 
Prof.dr. T.T.M. Palstra, 

on account of the decision of the Doctorate Board 
to be publicly defended 

on Wednesday 11 November 2020 at 12.45 hrs 

 
 
 
 
 
 
 

by 
 
 

Sugandh Chauhan 
born on 27 October 1991 

in Bijnor, India 

 

  



 

 
 

This dissertation has been approved by: 

 

Supervisor 

Prof.dr. A.D. Nelson 

 

Co-supervisors 

Dr. R. Darvishzadeh 
Dr. M. Boschetti 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cover design: Sugandh Chauhan 
ISBN: 90-978-365-5075-8 
DOI: 10.3990/1.9789036550758 
Dissertation no. 386 
 
 
© 2020 Sugandh Chauhan, The Netherlands. All rights reserved. No parts of this thesis 
may be reproduced, stored in a retrieval system or transmitted in any form or by any 
means without permission of the author. Alle rechten voorbehouden. Niets uit deze 
uitgave mag worden vermenigvuldigd, in enige vorm of op enige wijze, zonder 
voorafgaande schriftelijke toestemming van de auteur. 
 
 

 
 
  



 

 
 

Graduation Committee: 
 
 
Chairman/Secretary  

Prof.dr. F.D. van der Meer University of Twente 

  

Supervisor  

Prof.dr. A.D. Nelson University of Twente 

  

Co-supervisors  

Dr. R. Darvishzadeh University of Twente 

Dr. M. Boschetti National Research Council of Italy, Institute 
for Electromagnetic Sensing of the 
Environment. 

  

Members  

Prof.dr.ir. S. Steele-Dunne Delft University of Technology 

Prof.dr. M. Herold Wageningen University 

Prof.dr.ir. A. Veldkamp University of Twente 

Prof.dr. Z. Su University of Twente 

 
  



 

 
 

 
 
 
 

 
“Fall in love with the process, and the results 

will come.” 
 

― Eric Thomas 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I dedicate this work to my parents and mentors who 
pushed me to levels I never thought I would go to. 

 



 

i 

Acknowledgements 

Undertaking this PhD has been truly a life-changing experience for me, and it is 
my pleasure to acknowledge the roles of several individuals who were 
instrumental for the completion of my PhD research. 
 
Firstly, I would like to express my sincere gratitude to my promoter, Prof. Andy 
Nelson, who opened the door for me to work in his department and believed in 
my potential to be a part of this research project. You created a research 
environment for me that stimulated original thinking and initiative. The insightful 
discussions, constructive feedback and brainstorming sessions helped me grow 
as a person. I thank you for your expert guidance and support during this process. 
I could not have imagined having a better mentor for my PhD research. 
 
I would also like to extend my tremendous gratitude to my daily co-supervisor 
Dr. Roshanak Darvishzadeh, who is by far the most ambitious and hardworking 
person I have ever known. I thank you for your enduring supervision, patience 
and enthusiasm and for initiating me into the world of science. Your prompt 
feedback on my work and innumerous comments, thoughts and revisions of my 
work helped me navigate all the obstacles along the way and achieve my 
objectives. Your availability that extended beyond the office hours, the constant 
motivation and reminders to apply for conferences, to attend meetings/workshops 
and having my back in every situation is much more than I could have ever asked 
for. You always insisted me to think out of the box and aim higher and I am happy 
that I got to develop a lifelong cordial relationship with you, which is beyond 
mere mentoring.  
 
My sincere thanks go to our collaborator Dr. Mirco Boschetti from CNR-IREA, 
Institute for Electromagnetic Sensing of the Environment, Italy. Thank you for 
your supervision and involvement throughout my PhD and your support during 
my stay in Italy. Your expertise in remote sensing helped me shape the research 
papers in the present form. Your help with the selection of the study site in 
Bonifiche Ferraresi farm, Italy that matched with my research requirements is 
greatly appreciated. You facilitated the communication with the employees of the 
farm whenever the need arose, helped me find relevant contact points, and 
assisted in the formulation of fieldwork protocol that made the data acquisition 
process seamless. I also thank the CEO of Bonifiche Ferraresi farm, Dr. Federico 
Vecchioni, director Ado Guerrini and R&D responsible Francesco Pugliese, who 
facilitated the logistics for the fieldwork. 
 
I wish to show my gratitude to ITC and University of Twente for providing a 
lively research environment and to the staff members for their support. I thank 
Esther Hondebrink for the tremendous help in administrative tasks and for being 



 

ii 

such an adorable food enthusiast. I appreciate the friendly assistance provided by 
Loes Colenbrander in the thesis finalization. I received generous support from 
Benno and Job during my fieldwork preparation and designing posters for the 
conferences. I also thank Willem for the technical assistance. Caroline and 
Kathrin, thank you for assisting me with the lab equipment. I have also had the 
support and encouragement of all the colleagues in NRS: Michael, Festus, Anton, 
Thomas, Andrew, Valentijn, Wieteke, Eddy, Iris, Henk, Xin, Abebe, Alby, 
Louise, Joan, and many more. A special mention of Marga and Carla for the 
invaluable assistance in the library and giving me access to the papers whenever 
I needed.  
 
My appreciation also extends to my friends whose assistance was a milestone in 
the completion of this project. In particular, I would like to acknowledge the 
contribution of my best friend, Florentina Badea. You have been my most 
cherished discovery during my stay in Enschede and a literal partner in crime. 
Without your over the top energy and consistent mental support, I would not have 
reached where I am today. I am also deeply grateful to Elnaz Neinavaz for being 
the most generous human being and for supporting me throughout the years, 
practically and morally. You have helped me find ways to tackle many problems 
that surfaced during my PhD life. I also thank Xi and Trini for all the memorable 
moments within and outside ITC. I also wish to express my deepest gratitude to 
Arka, Sahil and Jagadeesh for all the crazy fun we have had in Mooeinhof, for 
the delicious food we have cooked together and for being the best party crashers. 
Samer, you have been one of my closest friends in ITC and thank you so much 
for all the discussions we have had during the coffee breaks and for being the 
most courteous person. Risham, Arwa, Nidale, Victoria, Evelien, Jurnan, Divyani 
and Yamini, your friendship and support has been particularly rewarding. Thank 
you, Alexandra Matei, for being the best badminton buddy and for making my 
experience in DIOK all the way more memorable. I also thank all my fellow PhDs 
in ITC: Yifang, Linlin, Xu, Ruosha, Peiqi, Tina, Tonny and so on. Pasqual, a very 
special thanks to you for your continued and unfailing love, support and 
understanding. You have helped me grow and evolve as a person and have helped 
me put things into perspective. Above all, you have been a constant source of 
inspiration to me in many ways. You showed me ways to make smarter, healthier 
food choices and instilled in me a lasting passion for life.  
 
Lastly, I would like to recognise the invaluable support and love of my parents 
and my sister Surbhi. Without your guidance and motivation, none of what I have 
accomplished would have been possible. Thank you so much for pushing me to 
do my best and instilling values in me that I will carry on throughout my life. 



 

iii 

Table of Contents 
 
Acknowledgements .......................................................................................................... i 
List of Figures ................................................................................................................. v 
List of Tables ................................................................................................................... x 
List of Abbreviations .................................................................................................... xii 
Chapter-1 .................................................................................... 1 
Introduction ................................................................................. 1 

1.1. The need for quantifying crop lodging ............................................. 2 
1.2. From conventional methods to remote sensing-based crop lodging assessment .. 3 
1.3. Research aim and objectives ........................................................ 4 
1.4. Study site ............................................................................ 4 
1.5. Thesis structure ...................................................................... 7 

Chapter-2 .................................................................................... 9 
Remote sensing-based crop lodging assessment: Current status and perspectives . 9 

Abstract ................................................................................. 10 
2.1. Introduction ........................................................................ 11 
2.2. Theoretical background and scope of remote sensing in lodging assessment ... 15 
2.3. Review of remote sensing-based studies for crop lodging assessment .......... 21 
2.4. Challenges in remote sensing of crop lodging ................................... 35 
2.5. Research gaps and future scope ................................................... 37 
2.6. Outlook on remote sensing sensors and platforms ............................... 40 
2.7. Conclusions ........................................................................ 42 

Chapter-3 .................................................................................. 45 
Estimation of crop angle of inclination for lodged wheat using RADARSAT-2 and 
Sentinel-1 SAR data ...................................................................... 45 

Abstract ................................................................................. 46 
3.1. Introduction ........................................................................ 47 
3.2. Materials and methods ............................................................ 51 
3.3. Results ............................................................................. 60 
3.4. Discussion ......................................................................... 66 
3.5. Conclusions ........................................................................ 74 

Chapter-4 .................................................................................. 77 
Discriminant analysis for lodging severity classification in wheat using 
RADARSAT-2 and Sentinel-1 SAR data .............................................. 77 

Abstract ................................................................................. 78 
4.1. Introduction ........................................................................ 79 
4.2. Materials and methods ............................................................ 81 
4.3. Results ............................................................................. 90 
4.4. Discussion ........................................................................ 100 
4.5. Conclusions ....................................................................... 106 



 

iv 

Chapter-5 ................................................................................. 109 
Understanding wheat lodging using time-series Sentinel-1 and Sentinel-2 data . 109 

Abstract ................................................................................ 110 
5.1. Introduction ....................................................................... 111 
5.2. Materials and methods ........................................................... 112 
5.3. Results and Discussion ........................................................... 121 
5.4. Conclusions ....................................................................... 139 

Chapter-6 ................................................................................. 141 
Mapping of wheat lodging susceptibility with Synthetic Aperture Radar data  . 141 

Abstract ................................................................................ 142 
6.1.  Introduction .................................................................. 143 
6.2.  Materials and Methods ...................................................... 146 
6.3.  Results ........................................................................ 156 
6.4.  Discussion .................................................................... 163 
6.5.  Conclusions .................................................................. 170 
Appendix .............................................................................. 173 

Chapter-7 ................................................................................. 177 
Synthesis: Remote sensing of wheat lodging and its susceptibility ................. 177 

7.1.  Summary/Introduction........................................................... 178 
7.2. Advances in remote sensing of crop lodging .................................... 180 
7.3. Potential of remote sensing data in detecting crop lodging stages .............. 182 
7.4. Exploring the information capacity of SAR remote sensing for lodging severity 
mapping ............................................................................... 184 
7.5. Contribution of time-series SAR and optical remote sensing data in identifying 
the time of lodging incidence in wheat ............................................... 187 
7.6. Role of SAR remote sensing in lodging susceptibility mapping ............... 189 
7.7. Future opportunities .............................................................. 190 
7.8. Research implications ............................................................ 197 
Bibliography .......................................................................... 201 
Summary ............................................................................. 221 
Samenvatting ......................................................................... 223 
Multi-Author Declaration ........................................................... 227 
Biography ............................................................................. 231 

 

  



 

v 

List of Figures 
 
Fig. 1.1. An example of a very severely lodged wheat field at the study site 
in Bonifiche Ferraresi farm, Jolanda di Savoia, Italy.  
 

2 

Fig. 1.2. (a) Study region in Italy, (b) Sentinel-1 RGB composite (VV, VH, 
VH/VV) scene containing the research area and (c) the distribution of daily 
cumulated precipitation (mm) and daily average wind speed (m/s) at 10 m 
from the ground during the winter wheat growing season. 
 

6 

Fig. 1.3. The structure of the thesis, the relationships between the chapters 
and list of ISI journal publications. 
 

8 

Fig. 2.1. Distribution of the selected peer-reviewed publications on lodging 
assessment within the last 68 years.  
 

14 

Fig. 2.2. Determinants of (a) wind-induced and plant self-weight moment, 
(b) stem strength and stem lodging and (c) anchorage strength and root 
lodging. 
 

16 

Fig. 2.3. Summary of important factors related to lodging (seasonal 
susceptibility and risk assessment, lodging detection and its impact on yield 
loss) and potential contribution of RS. 
 

20 

Fig. 2.4. The figure represents the number of reviewed articles based on 
study type: field/lab-based studies (49) and RS-based studies (22).  
 

32 

Fig. 2.5. Summary of important features in (a) optical and (b) microwave 
regions relevant to crop lodging detection and risk assessment as identified 
from RS-based crop lodging studies.  
 

34 

Fig. 3.1. An example of the change in plant height and crop angle of 
inclination in the event of lodging for (a) cultivar A and (b) cultivar B, at 
the same phenological stage.  
 

50 

Fig. 3.2. An RGB composite of a Sentinel-1 (R: VH, G: VV, B: VH/VV) 
scene containing the study area (Bonifiche Ferraresi farm) overlaid with the 
sampling points over the wheat fields and the farm boundary. 
 

51 

Fig. 3.3. (a) Measurement of crop angle of inclination and (b) illustration of 
different crop lodging stages. 
 

52 

Fig. 3.4. Methodological flowchart of the study. 
 

54 

Fig. 3.5. The variation in plant height in the healthy plots for different wheat 
cultivars at the flowering growth stage. 

54 



 

vi 

Fig. 3.6. Acquisition dates of remote sensing data during the 2018 wheat 
growing season. 
 

56 

Fig. 3.7. Box plots of (a) Sentinel-1 backscattering coefficients, (b) 
Sentinel-1 coherence, (c) RADARSAT-2 FQ8 backscattering coefficients 
and (d) RADARSAT-2 FQ21 backscattering coefficients at different 
polarisations.  
 

62 

Fig. 3.8. The CAI values predicted using support vector regression versus 
field measured crop angle of inclination (CAI) from Sentinel-1 and 
RADARSAT-2 data.  
 

66 

Fig. 3.9. CAI maps predicted from (a) Sentinel-1 data acquired on May 31, 
2018, (b) Sentinel-1 data acquired on June 6, 2018, (c) RADARSAT-2 
FQ21 data acquired on May 31, 2018, and (d) RADARSAT-2 FQ8 data 
acquired on June 13 2018.  
 

72 

Fig. 4.1. An RGB composite of a Van Zyl decomposed RADARSAT-2 
(double bounce, volume, surface scattering) scene containing the study area 
(Bonifiche Ferraresi farm) overlaid with the sampling points over the wheat 
sown fields and the farm boundary. 
 

82 

Fig. 4.2. (a) Measurement of CAI (b) Depiction of healthy (He) and lodged 
(L) subplots and plot centres in real field conditions. (c) The plot is divided 
into four quadrants Q1 to Q4-the lodged area in each quadrant is represented 
as LA1 to LA4; He1, He2 are the healthy subplots and L1,…L4 are the 
lodged subplots. 
 

83 

Fig. 4.3. Acquisition dates of RADARSAT-2 FQ8, RADARSAT-2 FQ21 
and Sentinel-1 data covering the study site during the 2018 wheat growing 
season. 
 

86 

Fig. 4.4. Methodological flowchart of the study.  
 

89 

Fig. 4.5. Pearson correlation coefficients between lodging score and metrics 
derived from (a) RADARSAT-2 FQ8 and (b) RADARSAT-2 FQ21.  
 

92 

Fig. 4.6. Pearson correlation coefficients between lodging score and metrics 
derived from Sentinel-1 in grey.  
 

93 

Fig. 4.7. Supervised clustering (left) and estimated and cross-validated 
AUC-ROC (right) of lodging severity classes using partial least squares 
discriminant analysis (PLS-DA) with (a), (b) RADARSAT-2 FQ8 data, (c), 
(d) RADARSAT-2 FQ21 data and (e), (f) Sentinel-1 data. 
 

94 

Fig. 4.8. Lodging severity maps generated from (a) Sentinel-1 data acquired 
on May 31 2018, (b) Sentinel-1 data acquired on June 6, 2018, (c) 

100 



 

vii 

RADARSAT-2 FQ8 data acquired on May 31, 2018, and (d) RADARSAT-
2 FQ21 data acquired on June 13, 2018, using PLS-DA models.  
 
Fig. 5.1. A false-colour RGB composite of a Sentinel-2 scene containing the 
study area (Bonifiche Ferraresi farm) overlaid with the sampling points over 
the wheat fields and the farm boundary. 
 

113 

Fig. 5.2. Measurement technique of crop angle of inclination (CAI). 
 

114 

Fig. 5.3. (a) Illustration of lodged/healthy subplots and the plot centre in real 
field conditions (b) Division of the plot into four quadrants Q1, Q2, Q3 and 
Q4. LA1, LA2, LA3 and LA4 correspond to the lodged area in each 
quadrant. In this scenario, L1, L2, …, L6 represent the lodged subplots while 
H1 and H2 are the healthy subplots.  
 

115 

Fig. 5.4. Acquisition dates of Sentinel-1 and Sentinel-2 data during the 2018 
wheat growing season. 
 

116 

Fig. 5.5. (a) Average spectral reflectance variation and (b) continuum 
removed spectra for healthy wheat plots at the stem elongation, booting, 
flowering, milking and ripening phenological stages. 
 

122 

Fig. 5.6. (a) Average spectral reflectance variation and (b) continuum 
removed spectra for plots with healthy wheat cultivars: PR22D66, Odisseo, 
Monastir and Marco Aurelio, at the milking phenological stage. 
 

123 

Fig. 5.7. Box plots presenting the reflectance variation in Sentinel-2 bands 
for healthy wheat plots and wheat plots with different lodging severities 
(ML, SL and VSL). Observations were taken from the stem elongation stage 
until the ripening stage. 
 

125 

Fig. 5.8. (a) Average spectral reflectance variation and (b) continuum 
removed spectra for healthy wheat plots and wheat plots with different 
lodging severities (ML, SL, and VSL) at the milking phenological stage.  
 

128 

Fig. 5.9. (a) Average spectral reflectance of plots with healthy wheat 
cultivars: PR22D66, Odisseo, Monastir and Marco Aurelio, and those with 
different lodging severities (ML, SL, and VSL) across multiple cultivars at 
the milking phenological stage.  
 

129 

Fig. 5.10. Temporal average reflectance of healthy and lodged wheat plots 
in (a) red edge (740 nm) and (b) NIR (865 nm) spectral bands, and (c) 
rainfall and wind speed over Bonifiche Ferraresi farm where wheat was 
cultivated in 2017-2018.  
 

130 

Fig. 5.11. Boxplots presenting the variation in (a) 𝜎௏ு
௢ , 𝜎௏௏

௢ , 𝜎௏ு/௏௏
௢  and (b) 

µ௏ு
௢  and µ௏௏

௢  using Sentinel-1 data throughout the stem elongation-ripening 
132 



 

viii 

phenological stages. (c) 𝜎௏ு
௢ , 𝜎௏௏

௢ , 𝜎௏ு/௏௏
௢  and (d) µ௏ு

௢  and µ௏௏
௢  corresponds 

to milking phenological stage. 
 
Fig. 5.12. Temporal average signatures of healthy and lodged wheat plots 
for (a) 𝜎௏ு

௢ , (b) 𝜎௏௏
௢ , (c) 𝜎௏ு/௏௏

௢ , (d) µ௏ு
௢  and (e) µ௏௏

௢  and (f) rainfall and wind 
speed over Bonifiche Ferraresi farm where wheat was cultivated in 2017-
2018.  
 

136 

Fig. 6.1. Schematic diagram of the safety factor against root lodging.  
 

144 

Fig. 6.2. An RGB composite of a Sentinel-1 (R: VH/VV, G: VV, B: VH) 
scene containing the study area (Bonifiche Ferraresi farm) overlaid with the 
sampling points over the wheat sown fields and the farm boundary. 
 

146 

Fig. 6.3. Field photographs of wheat in different phenological stages: (a) 
stem elongation, (b) booting, (c) flowering and (d) milking. 
 

147 

Fig. 6.4. The basic layout of the lodging meter and its demonstration in the 
field.  
 

149 

Fig. 6.5. Process flowchart for the estimation of safety factor against root 
lodging.  
 

156 

Fig. 6.6. Variation of crop biophysical parameters across the growing 
season.  
 

157 

Fig. 6.7. Variation of the field-measured SFA for different cultivar lodging 
susceptibility scores along the season. 
 

159 

Fig. 6.8. Pearson correlation scatter plots of the most significant satellite 
metrics derived from (a) Sentinel-1, (b) RADARSAT-2 data and the field-
measured safety factor against root lodging (SFA).  
 

161 

Fig. 6.9. Scatterplots show the relations between measured and predicted 
SFA values obtained using cross-validated regression models for (a) 
Sentinel-1 and (b) RADARSAT-2 data.  
 

162 

Fig. 6.10. Spatial distribution of SFA in the study area.  
 

163 

Fig. 6.11. Distribution of the field measured samples that remained (a) 
healthy and (b) were lodged at the end of the season versus the field-
measured safety factor values. 
 

169 

Fig. A6.1. Variation of crop biophysical parameters across the growing 
season for different wheat cultivars.  
 

173 

Fig. 7.1. Flowchart illustrating the research summary. 
 

179 



 

ix 

Fig. 7.2. The total number of publications and citations from the RS-based 
crop lodging studies throughout 1980-2020.  
 

181 

Fig. 7.3. The red polygon in (a) shows the location of the wheat fields in the 
Bonifiche Ferraresi farm where UAV data was acquired, (b) shows the false 
colour-composite (R:865 nm, G:665 nm, B:560 nm) of the data acquired 
from the UAV platform, and in (c) are the UAV images classified into 
different lodging stages. 
 

184 

Fig. 7.4. RGB composites (R: VV, G: VH, B: VV) of the two Sentinel-1 
images acquired on (a) May 13 2018 (moderately lodged) and (b) May 25 
2018 (very severely lodged) showing the variation in the backscattering 
intensity for the two wheat fields.  
 

186 

Fig. 7.5. Boxplot depicting the UAV reflectance at various wavelengths for 
healthy, moderate, severe and very severe crop lodging stages.  
 

189 

Fig. 7.6. Lodging susceptibility map derived from (a) leaf area index (LAI 
m2 m-2), (b) fraction of vegetation cover (fCover %) maps, (c) safety factor 
against root lodging (SFA) map and (d) plant density (PD plants m-2). 
 

195 

Fig. 7.7. Different stem lodging susceptibility scenarios based on a visual 
estimate of leaf area index (LAI m2 m-2) and the fraction of vegetation cover 
(fCover %) from the RGB photographs. 
 

197 

Fig. 7.8. The market estimation (grouped by the continents) for precision 
smart farming 2014-2020 is shown. The figures are in billion euros; CAGR 
is the compound annual growth rate. 
 

198 

Fig. 7.9. The proposed framework for developing a web/mobile-based 
application for lodging detection and risk mapping. 

199 

 
 

  



 

x 

List of Tables 

 
Table 2.1. Existing remote sensing studies for crop lodging assessment. The 
list in the table is sorted based on the platform types (ground-based, airborne, 
and spaceborne). 
 

22 

Table 3.1. Summary statistics of CAI and PH for healthy and lodged plots. 
Samples were collected throughout the flowering to ripening phenological 
stages. 
 

53 

Table 3.2. Image acquisition parameters for Sentinel-1 and RADARSAT-2 
data.  
 

55 

Table 3.3. Metrics extracted from RADARSAT-2 SAR data.  
 

57 

Table 3.4. Posthoc Tukey’s HSD analysis is reported for different classes and 
sensors. 
 

63 

Table 3.5. Pearson correlation coefficients (r) and p-values between CAI and 
metrics derived from Sentinel-1 data. 
 

63 

Table 3.6. Pearson correlation coefficients (r) between CAI and metrics 
derived from RADARSAT-2 FQ8 and FQ21 data.  
 

64 

Table 4.1. Summary statistics of biophysical/biochemical parameters in 
healthy and lodged samples throughout the flowering to ripening 
phenological stages.  
 

84 

Table 4.2. Cross-validated area under the curve (AUC-CV) statistics for four 
lodging severity classes using Sentinel-1, RADARSAT-2 FQ8 and 
RADARSAT-2 FQ21 datasets. 
 

98 

Table 4.3. Cross-validated confusion matrix, comparing reference and remote 
sensing-based lodging severity classes using Sentinel-1, RADARSAT-2 FQ8 
and RADARSAT-2 FQ21 datasets.  
 

98 

Table 5.1. Summary statistics of measured CAI, LA and LS for all samples 
throughout the stem elongation to ripening phenological stages.  
 

115 

Table 5.2. Summary statistics of measured soil moisture and 
biophysical/biochemical parameters in healthy and lodged samples 
throughout the stem elongation to ripening growth stages.  
 

117 

Table 5.3. Satellite specifications for Sentinel-1 data. Note that the range of 
the incidence angle is specific to the location of the study site within the 
swath. 

118 



 

xi 

 
Table 5.4. Specifications of the Multi-Spectral Imager (MSI) onboard the 
Sentinel-2 satellite.  
 

119 

Table 5.5. Average biophysical/biochemical properties of plots with healthy 
wheat cultivars: PR22D66, Odisseo, Monastir, and Marco Aurelio, at the 
milking phenological stage.  
 

123 

Table 5.6. Kruskal Wallis p-value statistics for Sentinel-2 spectral bands. 
 

126 

Table 5.7. Post-hoc Tukey’s HSD p-value statistics of different lodging 
severities for Sentinel-2 spectral bands. 
 

126 

Table 5.8. Kruskal Wallis p-value statistics for Sentinel-1 metrics. 
 

133 

Table 5.9. Post-hoc Tukey’s HSD p-value statistics of different lodging 
severities for Sentinel-1 metrics. 
 

133 

Table 6.1. Summary statistics of field measurements.  
 

150 

Table 6.2. The dates for the acquisition of Sentinel-1 and RADARSAT-2 
images over Bonifiche Ferraresi farm, Jolanda di Savoia, Italy during the 
wheat growing season March-June 2018 are outlined.  
 

151 

Table A6.1. Pearson correlation coefficients and p-values between metrics 
derived from Sentinel-1 data and the safety factor against root lodging at a 
crop angle of inclination of 30o. 
 

174 

Table A6.2. Pearson correlation coefficients and p-values between metrics 
derived from RADARSAT-1 data and the safety factor against root lodging 
at a crop angle of inclination of 30o. 

174 

 
Table A6.3. Comparisons within and across wheat cultivars demonstrating 
the agreement of lodging susceptibility predicted based on safety factor 
(high/low) and the actual crop condition (lodged/non-lodged) observed on the 
field at specific growth stages. 
 

 
175 

 
  



 

xii 

List of Abbreviations 

 
AHDB Agriculture and Horticulture Development Board 
ASC Ascending 
AUC-ROC Area Under the Curve-Receiver Operating Characteristics 
BBCH Biologische Bundesanstalt, Bundessortenamt und Chemische 

Industrie 
BD Band Depth 
BMI BioMass Index 
BOA Bottom Of Atmosphere 
CAI Crop Angle of Inclination 
CCD Coherence Change Detection 
COA Copernicus Open Access 
CSI Canopy Scattering Index 
DB Dry Biomass 
DEM Digital Elevation Model 
DMC Disaster Monitoring Constellation 
DoY Day of Year 
DSC Descending 
EO Earth Observation  
ESA European Space Agency 
ɛ-SVR Epsilon-Support Vector Regression 
ETM Enhanced Thematic Mapper 
FB Fresh Biomass 
fCover Fraction of vegetation cover 
FQ Fine Quad-pol 
FTP File Transfer Protocol 
GLCM Grey-Level Co-occurrence Matrix 
GRD Ground Range Detected 
GS Growth Scale 
He Healthy 
HH Horizontal-Horizontal polarisation 
HSD Honest Significant Difference 
HV Horizontal-Vertical polarisation 
ISI Institute of Scientific Information 
IW Interferometric Wide-swath 
LA Lodged Area  
LAI Leaf Area Index 
LiDAR Light Detection And Ranging 
LS Lodging Score 
LSS Lodging Susceptibility Score 
MDA MacDonald Dettwiler Associates Ltd 



 

xiii 

ML Moderate Lodging 
MLA Mean Leaf Angle 
MSI MultiSpectral Imager 
NCA Neighbourhood Component Analysis 
NEON National Ecological Observatory Network 
NIR Near-InfraRed 
NRT Near-Real Time 
OLI-TIRS Operational Land Imager -Thermal InfraRed Sensor 
PCA Principal Component Analysis 
PGR Plant Growth Regulator 
PH Plant Height 
PLS Partial Least Squares 
PLS-DA Partial Least Squares-Discriminant Analysis 
PWC Plant Water Content 
R-2 RADARSAT-2 
RADAR Radio Detection And Ranging 
RE Red Edge 
RFDI Radar Forest Degradation Index 
RGB Red Green Blue 
RMSEC Calibrated Root Mean Square Error 
RMSECV Cross-Validated Root Mean Square Error 
RPAS Remotely Piloted Aircraft System 
RS Remote Sensing 
RVI Radar Vegetation Index 
S-1 Sentinel-1 
S-2 Sentinel-2 
SAM Sustainable Agriculture Management 
SAR Synthetic Aperture Radar 
SDGs Sustainable Development Goals 
SfM Structure from Motion 
SL Severe Lodging 
SLC Single Look Complex 
SOAR Science and Operational Applications Research 
STICS Simulateur mulTIdisciplinaire pour les Cultures Standard 
SVM Support Vector Machine 
SVR Support Vector Regression 
OA Overall Accuracy 
UAV/UAS Unmanned Aerial Vehicles/Systems 
VENµS Vegetation and Environment monitoring on a New 

MicroSatellite 
VIS-SWIR VISible-Short Wave InfraRed 
VH Vertical-Horizontal polarisation 
VSI Volume Scattering Index 
VSL Very Severe Lodging 
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VSSC VENµS Superspectral Camera 
VV Vertical-Vertical polarisation 
XGB eXtreme Gradient Boosting 

 
Symbols 

 
α Alpha angle 
A Anisotropy 
σo Backscattering coefficient 
H Entropy 
µo Interferometric coherence 
K Kappa coefficient 
G Genetic 
E Environment 
M Management 
SFA Safety factor against root lodging 
SA Anchorage strength 
MP Self-weight moment of the whole plant 
HP Plant height 
hP Height at the center of gravity 
FBP Fresh biomass 
R2

Cal Calibrated coefficient of determination 
R2

CV Cross-Validated coefficient of determination 
RMSECal Calibrated Root Mean Square Error 
RMSECV Cross-Validated Root Mean Square Error 
r Pearson correlation coefficient 
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1.1 The need for quantifying crop lodging 

Crop lodging is the permanent displacement of crop stems from the upright 
position (Pinthus, 1974) and is common in staple cereals such as wheat (Fig. 1.1). 
Lodging can occur either due to root failure (root lodging) or stem failure (stem 
lodging) (Sterling et al., 2003). The incidence of lodging in wheat is most likely 
to occur during the two or three months before harvest and is caused due to 
complex interactions between genetic (G), environmental (E, i.e. weather – 
precipitation/hail and wind) and management factors (M, such as sowing date, 
sowing density, nitrogen application rate etc.) (Berry et al., 2004).  
 

 
Fig. 1.1. An example of a very severely lodged wheat field at the study site in Bonifiche 
Ferraresi farm, Jolanda di Savoia, Italy. The wheat is in the milking phenological stage 
(May 25, 2018). 
 
Lodging can cause drastic yield losses in wheat due to the destruction of the crop 
morphology and reduction in the photosynthetic capability of the plant (Berry and 
Spink, 2012). The level of yield loss depends upon how severe lodging is. The 
lodging severity is a function of numerous factors such as the crop phenological 
stage at which lodging occurs, the crop angle of inclination (CAI) and the spatial 
area that is lodged (Acreche and Slafer, 2011). For instance, Berry and Spink 
(2012) reported a reduction of 61% in wheat yield when wheat lodged at the CAI 
of 90o from the vertical. Lodging also deteriorates grain quality (reduced grain 
weight), increases drying costs and makes harvesting difficult, thus reducing the 
likelihood of achieving a premium market price. Continued intensification of 
cereal production (more production per unit area of land) coupled with the effects 
of climate change (increased frequency and intensity of extreme rainfall events 
and storms) will likely increase the occurrence of lodging and its impacts on 
yield. A quantitative evaluation of lodging susceptibility and timely detection of 
its incidence can control the effects of lodging and decisions regarding expected 
yield, crop-price, or insurance pay-outs can be made effectively. 
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1.2 From conventional methods to remote sensing-based 
crop lodging assessment 

Conventional measures to assess lodging rely on either visual ratings or 
mathematical/mechanistic crop growth models. The problem with solely relying 
on visual ratings of lodging is that they require the on-site availability of a person 
for the visual assessment. This makes the measurements point-based, time-
consuming and subjective, depending on the skill and self-consistency of the 
observer or complexity of the lodging event (Bock et al., 2010). The problem 
with mathematical/mechanistic crop growth models is their dependency on 
detailed field measurements of soil and crop parameters, which makes them 
input-intensive and challenging to apply over large areas.  
 
Remote sensing (RS) technology offers a very promising alternative to these 
conventional methods for automated monitoring of crop lodging at local, regional 
and global scales in near-real-time (NRT). The last three decades have witnessed 
a rapid evolution in RS methods and technologies, with satellite imagery now 
being routinely used for agricultural applications (Davies, 2009). Fine resolution 
RS data, coupled with data from ground surveys, are useful for monitoring crops 
at multiple spatial scales (Ozdogan et al., 2010). Agriculture monitoring using RS 
has been addressed from various viewpoints – based on i) specific applications 
(e.g., crop type mapping, biophysical parameter retrieval, phenology 
monitoring), ii) specific RS platforms (ground-based, airborne or satellite) or 
specific sensors (e.g., active vs passive, wavelength domain) and iii) particular 
locations and climate contexts (e.g., dryland, country, continent). In terms of the 
specific applications, the scientific literature on crop lodging assessment using 
RS is still in a nascent stage. Our published review (Chauhan et al., 2019a), in 
addition to the studies published subsequently, shows that there are only 44 peer-
reviewed studies since 1951 that have focused on the use of RS for crop lodging 
assessment (with most of them limited to qualitative lodging assessment). 
 
An extensive analysis of these studies shows that features derived from optical 
sensors embedded on ground-based (such as smartphones) and airborne RS 
platforms (such as unmanned aerial vehicles/systems (UAV/UAS) and air 
balloons) have been used for lodging detection in many crops such as wheat 
(Hufkens et al., 2019; Wang et al., 2018), buckwheat (Murakami et al., 2012), 
maize (Acorsi et al., 2019; Chu et al., 2017; Han et al., 2018), rice (Ding et al., 
2019; Han et al., 2017; Yang et al., 2020), spearmint (Vargas et al., 2020), canola 
(Mardanisamani et al., 2019) and barley (Wilke et al., 2019). However, timely 
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information about crop condition over vast and remote areas has become 
available due to the increased availability of free, high-resolution satellite data 
such as data from Sentinel 1, 2 and 3. While most studies have focused on optical 
imagery, synthetic aperture radar (SAR) platforms such as Sentinel-1 and 
RADARSAT-2 provide a rich set of features in dual (VV, VH) and fully 
polarimetric modes (HH, HV, VH and VV), that can help characterise complex 
agricultural ecosystems and more specifically the often heterogeneous patterns of 
lodging.  

 
Our thorough review of the literature and the limited number of existing studies 
(Gu et al., 2019; Kumpumäki et al., 2018; Shu et al., 2019) have demonstrated 
that there is no conceptual framework nor methodology for using satellite-based 
RS images to assess crop lodging. This research addresses that gap. 

1.3 Research aim and objectives  

This research aims to investigate the potential of spaceborne RS data for lodging 
detection, characterisation and mapping lodging susceptibility in wheat. To 
achieve this aim, we formulated five specific objectives as follows: 
 
a. To carry out a systematic literature review that relates field/lab-based lodging 

assessment approaches to RS-based methods, characterises the relative 
strengths, assesses the operational feasibility and identifies potential RS-based 
research gaps. 

b. To evaluate the performance of Sentinel-1 and RADARSAT-2 time series in 
estimating the crop angle of inclination (CAI) as a measure of crop lodging 
stage. 

c. To distinguish and classify lodging severity based on a lodging score using 
time-series of Sentinel-1 and RADARSAT-2 data. 

d. To investigate the capability of Sentinel-1 and Sentinel-2 time series in 
detecting the time of lodging incidence in wheat and to understand the effect 
of lodging on the RS signal. 

e. To estimate a safety factor against root lodging as a measure of root lodging 
susceptibility by exploiting time-series of Sentinel-1 and RADARSAT-2 data. 

1.4 Study site  

The study was carried out in the Bonifiche Ferraresi farm (Fig. 1.2b), situated in 
Jolanda di Savoia (central coordinates 44o52′59′′N, 11o58′48′′E), a commune in 
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the province of Ferrara, Italy (Fig. 1.2a). Bonifiche Ferraresi is an agri-food 
company and one of the largest farm holdings in Italy, with over 6500 ha of land 
spread across the municipalities of Jolanda di Savoia, Arborea, Mirabello and 
Santa Caterina. More than 60% of the area is in Jolanda, covering approximately 
3,850 ha. The study region is mainly covered by arable land. The main crops are 
durum wheat (Triticum durum), soft wheat (Triticum aestivum), rice (Oryza 
sativa), corn (Zea mays), barley (Hordeum vulgare), soybean (Glycine max) and 
potatoes (Solanum tuberosum), among several other horticulture and medicinal 
plants. These crops are typically grown in rotation in consecutive years.  
 
In 2017, winter wheat was sown between October 21-November 4 on almost 600 
ha area and was harvested by June 30, 2018. Several wheat cultivars were sown, 
with a wide range of lodging susceptibility scores (LSS) ranging between 0-9, 
with 0 being least susceptible and 9 being highly susceptible to lodging. The farm 
provided the LSS data of each cultivar which is derived from technical sheets of 
the cultivars and historical cultivar tests carried out in Bonifiche. The cultivars 
were PR22D66 (LSS: 1.5), Marco Aurelio (LSS: 2.5), Massimo Meridio (LSS: 
3), Rebelde (LSS: 3), Claudio (LSS: 4), Monastir (LSS: 5), Odisseo (LSS: 6.5), 
Giorgione (LSS: 7) and Senatore Capelli (LSS: 9).  
 
The size of the wheat fields in the farm varied between 2.38 and 84.86 ha. Winter 
wheat is dormant in the first few months after sowing due to low temperatures 
(from October to Feb). It is not until spring (from March onwards in this site) that 
wheat breaks its dormancy and resumes vegetative growth. We used a standard 
BBCH growth scale or GS (Biologische Bundesanstalt, Bundessortenamt und 
CHemische Industrie) of 0-99 (Bleiholder et al., 2001), to quantify the 
phenological growth stages throughout the work. The BBCH GS is based on ten 
principal phenological growth stages in wheat: germination (GS00-09), leaf 
development (GS10-19), tillering (GS20-29), stem elongation (GS30-39), 
booting (GS40-49), heading (GS50-59), flowering (anthesis) (GS60-69), milking 
(GS70-79), dough development (GS80-89) and senescence or ripening (GA90-
99). Our study focused on several stages that are critical to lodging in wheat. 
 
In the study site, wheat was mainly cultivated over clayey and silty soils in a 
warm and temperate climate. During the wheat growing season of 2017-18, the 
daily cumulated precipitation and average wind speed, as measured from a local 
automatic weather station, ranged between 0-65 mm and 0.5-6.4 m/s respectively 
(Fig. 1.2c). 
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Fig. 1.2. (a) Study region in Italy, (b) Sentinel-1 RGB composite (R: VV, G: VH, B: 
VH/VV) scene acquired on March 26, 2018, containing the research area (Bonifiche 
Ferraresi farm, a red polygon in the lower-left map) overlaid with the farm boundary 
(black outline) and (c) illustrates the distribution of daily cumulated precipitation (mm) 
and daily average wind speed (m/s) at 10 m from the ground during the winter wheat 
growing season from October 19, 2017-June 30, 2018. The period selected for this study 
ranges from March 14-June 30, 2018. 
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1.5 Thesis structure 

The thesis consists of seven chapters, including an introduction, five core 
chapters and a synthesis. Each core chapter has been published in or submitted to 
a peer-reviewed ISI journal (Fig. 1.3). The seven chapters have been structured 
as follows: 
 
Chapter 1 (This chapter) introduces the importance and relevance of the research 
topic, gives an overview of the limitations of field-based methods and 
perspectives on how RS can address these limitations for lodging assessment, 
defines the research objectives, introduces the study area and outlines the thesis 
structure. 
 
Chapter 2 presents a systematic overview of current approaches for crop lodging 
assessment and evaluates their strengths and weaknesses in the context of 
operational applications. It also identifies the challenges, research gaps and the 
potential contribution of RS within the current framework of field/lab-based crop 
lodging assessment studies. Several of these challenges and research gaps are 
addressed in chapters 3 to 6. 
 
Chapter 3 develops an approach for the evaluation of crop lodging stages 
through RS-based estimation of crop angle of inclination. This is achieved by 
relating field measurements with RS-based metrics derived from Sentinel-1 data 
and low incidence and high incidence angle RADARSAT-2 data. 
Chapter 4 presents an approach for the classification of lodging severity based 
on a lodging score assessment. This is done by exploring the potential of RS-
based metrics derived from Sentinel-1 data and low incidence and high incidence 
angle RADARSAT-2 data. 
 
Chapter 5 investigates the potential of Sentinel-1 and Sentinel-2 time-series data 
to detect the time of lodging incidence in wheat and understand the effect of 
lodging on RS-based metrics. 
 
Chapter 6 demonstrates the use of RS-based metrics derived from Sentinel-1 
data and multi-incidence angle (low and high combined) RADARSAT-2 data for 
estimating a safety factor against root lodging as a simple measure of root lodging 
susceptibility in wheat. 
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Chapter 7 provides a synthesis of the main findings of the research. Future 
opportunities and research implications for technology transfer to potential end-
users are also outlined. The market potential and the relevance of the research 
findings for the attainment of Sustainable Development Goals (SDGs) are also 
discussed.  

 

 
 
Fig. 1.3. The structure of the thesis, the relationships between the chapters and list of ISI 
journal publications. 
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Chauhan, S., Darvishzadeh, R., Boschetti, M., Pepe, M., & Nelson, A., (2019a). 
Remote sensing-based crop lodging assessment: Current status and 
perspectives. ISPRS journal of photogrammetry and remote sensing, 151, 124-
140. https://doi.org/10.1016/j.isprsjprs.2019.03.005
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Abstract 

Rapid and quantitative assessment of crop lodging is important for understanding 
the causes of the phenomena, improving crop management, making better 
production and supporting loss estimates in general. Accurate information on the 
location and timing of crop lodging is valuable for farmers, agronomists, 
insurance loss adjusters and policymakers. Lodging studies are performed to 
assess the impact of lodging events or to model the risk of occurrence, both of 
which rely on information that can be acquired by field observations, from 
meteorological data and RS. While studies applying RS data to assess crop 
lodging dates back three decades, there has been no comprehensive review of the 
status, potential, current approaches and challenges in this domain. In this 
position paper, we review the trends in field-/lab-based and RS-based studies for 
crop lodging assessment and discuss the strengths and weaknesses of current 
approaches. We present a theoretical background on crop lodging and review and 
discuss the scope of RS in assessing plant characteristics associated with lodging. 
The review focuses on RS-based studies, grouping them according to the platform 
deployed (i.e., ground-based, airborne and spaceborne), with an emphasis on 
analysing the pros and cons of the technology. Finally, we present the challenges, 
research gaps and perspectives for future research. We also offer an outlook on 
new sensors and platforms to provide state-of-the-art and future potential of RS 
in lodging assessment. Our review reveals that the use of RS techniques in crop 
lodging assessment is still in an experimental stage. However, there is increasing 
interest within the RS scientific community (based on the increased rate of 
publications over time) to investigate its use for crop lodging detection and risk 
mapping. The existing satellite-based lodging assessment studies are very few, 
and the operational application of the current approaches over large spatial 
extents seems to be the biggest challenge. We identify opportunities for future 
studies that can develop quantitative models for estimating lodging severity and 
mapping lodging susceptibility and risk using RS data. 
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2.1 Introduction 

2.1.1 Lodging and its impact on agricultural production 

Lodging, which is the displacement of a crop stem from its upright position (stem 
lodging) or failure of root-soil anchorage system (root lodging) (Pinthus, 1974), 
is a major yield-reducing factor in staple cereal crops such as wheat, rice, barley, 
maize and oats (Islam et al., 2007; Wu and Ma, 2016). It is induced by strong 
winds or heavy precipitation/hail and is exacerbated by improper crop 
management practices such as excessive nitrogen applications or high planting 
density (Duy et al., 2004). Studies conducted by Berry and Spink (2012) and 
Berry et al. (2013) report that yield losses in cereal crops and oilseed rape in the 
UK could be as high as 75% if lodging occurs close to the grain-filling period. In 
a severe lodging year, such losses are estimated at £105 and £64 million for wheat 
and oilseed rape, respectively (Berry, 2013). Lodging also causes several knock-
on effects such as deterioration in grain quality, destruction in plant morphology, 
physiological disruptions, etc. (Norberg et al., 1988; Setter et al., 1997). 
Therefore, proper monitoring of lodging, its impact, seasonal susceptibility and 
risk assessment is of interest for farmers, agronomists, insurance loss adjusters, 
and policymakers. 

2.1.2 The role of remote sensing 

The past few decades have witnessed considerable growth in the use of sensors 
on-board Earth Observation (EO) systems for agricultural monitoring 
applications. Today, crop biophysical properties such as leaf area index (LAI) 
can be estimated globally at the high spatial resolution, providing reliable inputs 
to crop growth models. RS estimates of crop lodging are also an important 
component of crop growth models and can help us make better crop 
production/loss estimates. 
 
Agronomists and plant physiologists have studied the problem of crop lodging 
for decades. For example, several studies have developed models to simulate and 
assess seasonal lodging risk (Baker et al., 2014, 1998; Sposaro et al., 2010) and 
to understand lodging-related morphological traits (Berry et al., 2002; Islam et 
al., 2007; Kong et al., 2013). These studies rely on the field- or lab-based methods 
and visual ratings for lodging assessment. Conventionally, visual lodging 
evaluation is done by assigning a lodging score to a crop, based on the lodged 
area and crop angle of inclination (CAI) (Fischer and Stapper, 1987). However, 
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such methods are likely to be constrained by limited coverage, high labour 
consumption, poor accessibility, and unfavourable weather conditions. RS is 
capable of providing consistent and continuous data in the spatial and temporal 
domains; however, to date, there are few examples of the use of RS for crop 
lodging assessment. This is mainly due to the complexity of the lodging process. 
While it may be straightforward to associate the increase in near-infrared (NIR) 
reflectance to biomass increment, the assessment of lodging is more complicated. 
It requires knowledge of local crop management practices and an understanding 
of crop biophysical variable dynamics and the physical processes involved in 
lodging. Given the complexity, our literature search revealed that there are only 
22 peer-reviewed articles - published between 1951 and 2018 - that focus on the 
use of RS to assess lodging damage or its risk. It suggests that the scientific 
consensus on RS-based lodging assessment is still evolving. 
 
The way vegetation responds to changing ecological and climatological 
conditions is reflected by an immediate or slow change in its biophysical and 
biochemical properties (Hong et al., 2007). The retrieval of such plant properties 
by RS methods has been well established and documented (Battude et al., 2016; 
Moran et al., 1994; Zarco-Tejada et al., 2012) and can be extended further to 
extract lodging-related information. An RS-based approach to study crop lodging 
requires i) understanding of specific plant traits, which make a plant susceptible 
to lodging or can help to assess the occurrence of lodging; and ii) identification 
of appropriate modelling approaches. Such information can help predict the 
occurrence of lodging (risk) and map its severity. 
 
The existing RS-based lodging assessment studies have focused on two broad 
application areas: lodging detection (Liu et al., 2014; Yang et al., 2015) and 
lodging risk mapping (Coquil, 2004). These studies have been conducted as 
improvements to or complements to field-/lab-based assessment methods. 
However, there is no systematic review that relates field-/lab-based approaches 
to RS-based methods and characterises the relative strengths, assess the 
operational feasibility and identifies potential RS-based research gaps. This paper 
addresses the existing gap by exploring the current and potential application of 
RS for lodging damage and seasonal risk assessment. The objectives of this study 
are to: 
a) Present the contribution of RS within the current framework of field-/lab-

based crop lodging assessment studies. 
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b) Present a methodical overview of current approaches for assessing crop 
lodging and evaluate their strengths and weaknesses in the context of 
operational applications. 

c) Identify the challenges, research gaps and provide perspectives on the 
potential use of RS for crop lodging assessment research and applications. 

2.1.3 Review approach 

We browsed several scientific citation databases - Google Scholar, Scopus, ISI 
Web of Science, and Crossref - to search for field-/lab-based and RS-based 
articles on crop lodging, with keywords/expressions such as: crop lodging OR 
lodging AND husbandry; crop lodging OR lodging risk AND yield loss; remote 
sensing AND crop lodging OR plant lodging, etc. To refine the search in each 
category we altered or added more keywords, e.g., we searched for papers 
focusing on lodging (or its risk) in specific crops such as wheat, barley, and rice, 
or we substituted “remote sensing” with specific sensor types/names such as 
Remotely Piloted Aircraft System (RPAS), thermal, multispectral, radar, 
RADARSAT-2, etc. During the search, we came across very few ISI publications 
(22) that focused on the use of RS technique to assess lodging, which suggests 
that the use of this technology for crop lodging assessment is still in a nascent 
stage. To ensure that we covered all the studies, we also searched for the cited 
references individually. 
 
On the other hand, we retrieved more than 5000 field-/lab-based studies based on 
the set criteria (e.g., “crop lodging” OR “lodging risk” AND “husbandry”; “crop 
lodging” OR “lodging risk” AND “yield loss”). We focus on significant peer-
reviewed articles (field-/lab-based) on lodging published post-1951 since they 
have formed an important basis in the understanding of lodging phenomenon. We 
further pruned the number of field-/lab-based studies (to 49) to include modelling 
or observational studies where RS can have a contribution. We derived the 
descriptive statistics from a set of 71 studies (field-/lab-based – 49, RS-based – 
22). Fig. 2.1 illustrates the trend of field-/lab-based and RS-based publications 
over the past 68 years. 
 
While the focus of our review was to examine the progress made in RS-based 
assessment of crop lodging and to explore future potential areas, most RS-based 
studies have built upon numerous field-/lab-based experiments, hence their 
inclusion here. The RS-based studies have mainly highlighted the application of 
RS for lodging detection in cereal crops (Liu et al., 2012; Ogden et al., 2002; 
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Yang et al., 2017; Zhao et al., 2017) and to our knowledge, only one study has 
explored the complex interactions between environmental and crop management 
factors to map (or predict) the risk of lodging (Coquil, 2004). 
 

 

Fig. 2.1. Distribution of the selected peer-reviewed publications on lodging assessment 
within the last 68 years. The figure synthesizes the publications retrieved using controlled 
searches on Crossref, ISI Web of Science, Scopus and Google Scholar databases. These 
publications include significant lodging studies that have formed the basis of current 
lodging research and are important from an RS perspective. These studies are published 
as complete research articles in peer-reviewed journals or as book chapters or in 
conference proceedings between 1951 and 2018. The trend in field-/lab-based studies is 
based on the selected studies only.  
 
The remainder of the paper is structured as follows: Section 2 provides a 
theoretical background on lodging and briefly discusses the scope of RS within 
the current framework of field-/lab-based studies for crop lodging assessment. 
The review of field-/lab-based studies aims to understand: (i) the mechanics and 
factors that cause lodging; (ii) impact of lodging on yield loss; and (iii) 
methods/models for crop lodging assessment. Section 3 gives an overview of the 
status of RS-based lodging assessment at different scales and a variety of methods 
for assessing lodging. The advantages, drawbacks, and potential of each method 
are also highlighted. Section 4 discusses the challenges of RS-based crop lodging 
assessment. In section 5, we examine the research gaps in existing approaches 
and provide recommendations to undertake future studies. We provide an outlook 
on the new and upcoming sensors/platforms having potential for lodging 
assessment in section 6, and in the final section, we conclude the main findings. 
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2.2 Theoretical background and scope of remote sensing in 
lodging assessment 

2.2.1 Background and mechanics of lodging 
Before we proceed, it is important to understand the conceptual differences 
between the two terms: susceptibility and risk. In the case of lodging, 
susceptibility means the degree to which the crop is prone to lodging. It captures 
the fact that the host (the plant) reacts variably to lodging, some plants do better 
than others even if the exposure to a certain external factor is the same. Heavy 
rain increases the risk of lodging, but the amount and severity of lodging that 
occurs will be (partially) determined by how susceptible each plant is to lodging.  
 
From a mechanical perspective, the susceptibility of a crop to lodge depends on 
two factors: (i) bending strength of the stem and its resistance to buckle (Neenan 
and Spencer-Smith, 1975) and (ii) the anchorage strength of the root system 
(Crook and Ennos, 1993). The cultivar, environment, management practices and 
their complex interactions, strongly influence these factors due to their effects on 
the crop structure (Berry et al., 2004). A study of all these factors together can 
form part of a comprehensive lodging risk assessment.  
 
The bending strength of a stem can be quantified by the amount of force needed 
to break it and is an essential determinant of lodging resistance. Baker (1995) 
expressed this force as a wind-induced base bending moment (leverage force) and 
illustrated its significance in comprehending the mechanics of stem (Fig. 2.2b) 
and root (Fig. 2.2c) lodging. Crook and Ennos (1995, 1994) approximated these 
wind-induced forces into a plant self-weight moment. Plant self-weight moment 
is a moment induced at the plant base by the weight of the aerial parts of the plant 
(such as leaves, head, and stem). It is governed by the plant’s height at the centre 
of gravity, fresh aerial biomass of the plant, in addition to the CAI (illustrated in 
Fig. 2.2).  
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Timely and quantitative measurement of the variation in plant self-weight 
moment (or its determinants such as fresh aerial biomass) can help assign safety 
factors to a crop to reduce stem/root lodging and more importantly, can indicate 
the lodging susceptibility in future. A large body of literature spanning almost 
five decades has shown that RS technology has the potential to study the complex 
interactions in the crop canopy by providing detailed spatio-temporal information 
on plant response to the local environment and management practices (Asrar et 
al., 1985; Jackson, 1986; Lemaire et al., 2008). 

2.2.2 Factors affecting crop lodging 

The lodging risk of a crop is altered by the genetic, crop management and 
environmental factors, as shown in Fig. 2.3 (Berry et al., 2000; Hanley et al., 
1961). The effect of these factors on lodging is difficult to quantify due to the 
complexity of the lodging process. According to the practical guidelines issued 
by the Agriculture and Horticulture Development Board (AHDB, 2005), lodging 
risk can be scored on a scale of 1 to 9 (a higher score means higher resistance to 
lodging). To assess lodging risk, the cultivar lodging resistance score (determined 
through crop cultivar trials) is adjusted for the effect of wind speed, rainfall, LAI, 
crop nitrogen content, soil nitrogen supply, sowing date, and plant population 
density. 
 
Weather is an important aspect affecting lodging. Even 6-11 mm rain in a day 
can cause root failure by decreasing the soil strength, thereby increasing the risk 
of root lodging (AHDB, 2005). The study by Sylvester-Bradley et al. (1990) 
suggests that prolonged rainfall can also increase the plant self-weight moment 
on the stem base. Heavy rain, when accompanied by strong winds, can 
significantly increase the lodging risk, too (Niu et al., 2016). 
 
Apart from environmental factors, the crop management plan can be designed 
such that it minimises a plant’s susceptibility and ultimately, the risk of lodging. 
Sowing date, for instance, can affect the lodging susceptibility in winter wheat 
(Green and Ivins, 1985). Early sowing makes a plant more susceptible to lodging 
as it increases the residual soil nitrogen uptake efficiency, which results in 
profuse vegetative growth (Fischer and Stapper, 1987; Kirby et al., 1985; Spink 
et al., 2000). RS can provide reliable methods to monitor plant phenology and 
delineate spatio-temporal phenological patterns across large areas in a timely and 
accurate way (Boschetti et al., 2017; Manfron et al., 2017; Sakamoto et al., 2005). 
While numerous methods have been proposed to detect the timing of vegetation 
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green-up, maturity, senescence, and dormancy (e.g., Funk and Budde (2009); 
Zhang et al. (2003)), only a few have related phenological information derived 
from RS time-series to determine actual sowing dates (e.g. Jain et al. (2016); 
Marinho et al. (2014)). 
 
Lodging due to high plant population density is also prevalent in many crops such 
as wheat (Webster and Jackson, 1993), corn (Sangoi et al., 2002; Van Roekel and 
Coulter, 2011) and barley (Kirby, 1967). High seed rates lead to dense plant 
tillering and competition for limited resources (nutrients, space, etc.). According 
to AHDB guidelines (AHDB, 2005), an increase of 50 plants/m2 in winter wheat 
can lower the cultivar root and stem lodging resistance score by 1 and 0.5, 
respectively. High plant nitrogen and soil nitrogen supply can also increase 
lodging in cereals by either promoting vegetative growth (i.e., biomass) or by 
increasing stem height and thereby the plant self-weight moment (Chalmers et 
al., 1998; Tripathi et al., 2003). Accurate measurement of plant population 
density and nitrogen content during the growing season is a key to the targeted 
application of resources (such as fertilisers or plant growth regulators) as well as 
for mapping seasonal lodging susceptibility. Several studies have shown that RS 
signal (e.g., reflectance or backscatter) is a potential source for estimating plant 
population density (Patel et al., 2006) and characterising the plant/soil nitrogen 
status (Sorenson et al., 2017). 
 
Structural crop parameters, such as plant height can also affect the lodging 
resistance of a cultivar and have been a central focus of seasonal crop lodging 
risk management (Pinthus, 1974). In the event of lodging, the plant structure is 
destroyed such that the stem is inclined at a certain angle, thus reducing the plant 
height (basically the distance between the plant head and the soil surface) 
(Murakami et al., 2012; Setter et al., 1997; Zhu et al., 2016). Setter et al. (1997) 
reported a reduction of 75% in rice canopy height under lodged conditions, which 
consequently lowered the photosynthesis rate by 60-80% relative to non-lodged 
rice. Thus, a rapid, continuous and in-season availability of plant height data is 
essential for developing lodging classification models and seasonal risk mapping 
applications. Structure-from-Motion (SfM) photogrammetry using high-
resolution RPAS data (Holman et al., 2016), crop surface models derived from 
LiDAR data (Eitel et al., 2016) and polarimetric-interferometric capabilities of 
SAR data (Erten et al., 2016) have been applied successfully to estimate plant 
height (in non-lodged conditions) throughout the growing season. The 
measurement of LAI at the beginning of stem elongation (GS30-31), together 
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with ancillary information on the cultivar lodging resistance score and the yield 
potential, can also enable lodging risk prediction and formulate subsequent plant 
growth regulator (PGR) programme (BASF, 2011). Using RS, LAI products can 
be produced at local, regional and global scales. For instance, LAI has been 
derived from high spatial resolution (10-30m) data such as MSI and ETM+/OLI-
TIRS on-board Sentinel-2 and Landsat respectively (Campos-Taberner et al., 
2016; Fang et al., 2003), as well as from coarse to moderate resolution data (1 
km) such as MODIS, SPOT/VEGETATION, AVHRR and PROBA-V sensors 
(Gao et al., 2008). 

2.2.3 Crop yield response to lodging 

The response of crop yield to lodging has been explored in a large number of 
studies, but only at field or lab scale (Baylis and Wright, 1990; Easson et al., 
1993; Lang et al., 2012; Sisler and Olson, 1951). The outcome of these studies 
indicates that lodging severity impacts the extent of lodging-induced yield loss 
(Fig. 2.3). The studies also show that three factors govern lodging severity: the 
lodging stage (defined based on crop angle of inclination), the lodged area and 
time of its occurrence (phenological stage). A crop with a high CAI, lodged on a 
large surface area and close to the grain-filling growth stage depicts the most 
severe form of lodging (Caldicott and Nuttall, 1979; Laude and Pauli, 1956; 
Stanca et al., 1979). Determination of lodging severity has long been pursued via 
conventional field-based methods (Fischer and Stapper, 1987; Piñera-Chavez et 
al., 2016).  
 

RS has demonstrated to be a superior alternative for measuring 3D vegetation 
structure across different scales (e.g., Gao et al. (2013)). While several studies 
have assimilated RS data into crop growth models to improve crop yield estimates 
(Dente et al., 2008; Fang et al., 2008), further work is required to incorporate 
lodging severity into yield prediction models. We present a summary of important 
factors related to seasonal lodging risk assessment, lodging detection and yield 
loss in Fig. 2.3. The figure also illustrates the potential contribution of RS in 
estimating lodging-related parameters related to different factors.  
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Fig. 2.3. Summary of important factors related to lodging (seasonal susceptibility and risk 
assessment, lodging detection and its impact on yield loss) and potential contribution of 
RS. 

2.2.4 Field-/lab-based methods for crop lodging assessment 

Based on the selected studies, we found that lodging has been studied most 
extensively in wheat (Sterling et al., 2003) followed by barley (Stanca et al., 1979; 
White, 1991) and rice or cereals in general (Lang et al., 2012) (Fig. 2.4). Several 
methods and models of lodging assessment have been developed for these crops 
(Baker et al., 1998; Berry et al., 2006). For instance, Caldicott and Nuttall (1979) 
adapted the prior work of Caldicott (1966) and Caldicott and Nuttall (1968), to 
develop a field-based visual/in situ assessment method for determining the 
lodging score in cereals. The score, on a scale of 1 (completely lodged) to 10 (no 
lodging), accounts for both; the lodged area and the stage (CAI) of lodging. 
Retrieval of the lodging score is an interesting application from RS perspective 
since current approaches are solely based on visual ratings.  
 
In another study, Baker (1995) made the first attempt to develop a theoretical 
model for the windthrow (i.e. uprooting or breakage by wind) of cereals and forest 
trees. The model was extended by Baker et al. (1998) to develop a quantitative 
lodging risk model for wheat. Sterling et al. (2003) and Berry et al. (2003b) 
further refined and validated the model to obtain more accurate model 
parameters. The fundamental assumption of these models is the depiction of a 
crop as a simple damped harmonic oscillator. These works have formed a basis 
of the methodology that is now being used to guide farmers and agronomists in 
many countries (such as the UK) on ways to reduce lodging risk in wheat. 
 
The applicability of these models has also been tested on other crops. For 
instance, Berry et al. (2006) extended the wheat-lodging model to barley. The 
authors suggest that a minor modification is needed to adapt the wheat root-



Chapter-2 

21 

lodging model to barley. In contrast, the stem-lodging model needs to be changed 
substantially, owing to the less erect nature of barley ears, greater stem height, 
and increased flexibility. Similarly, Sposaro et al. (2010) developed a 
mathematical lodging model for sunflower based on existing models for wheat 
and barley. A more generalized model was developed by Baker et al. (2014) to 
calculate crop lodging risk. The authors tested the model on barley, oats, and 
oilseed rape and found varying levels of uncertainties in the lodging risk for each 
crop. Mi et al. (2011) and more recently, Brune et al. (2017) also developed 
models to predict lodging risk in maize.  
 
While these mathematical models are promising and provide an understanding of 
the lodging process, they are data-intensive, complex and computationally 
expensive. They also require prior knowledge and understanding of the input data 
for proper calibration and fine-tuning. Moreover, model formulations are 
primarily based on empirical data and artificially induced or controlled lodging 
conditions. These models, therefore, need to be optimized before they can be 
extended on a larger scale. More straightforward methods are needed that can 
rapidly assess the biophysical parameters of crops and provide accurate lodging-
related information. 

2.3 Review of remote sensing-based studies for crop lodging 
assessment 

The traditional techniques for crop lodging assessment are visual ratings/in situ 
assessment and the use of complex field-/lab-based physical models. Visual 
rating is a direct way to evaluate the extent and degree of lodging damage in 
crops, but it has its drawbacks as discussed previously. The field-/lab-based 
models, on the other hand, are data-intensive and largely based on empirical data. 
RS can complement the traditional methods and has the potential to extend our 
knowledge of crop lodging in space and time (Branson, 2011). The past decade 
has seen an increase in the use of RS for crop lodging assessment, although the 
research in this domain is still at an early stage. Broadly, we have grouped the 
current RS studies into three categories based on the monitoring platform 
deployed: ground-based, airborne and spaceborne. Table 2.1 lists the studies that 
demonstrate the use of different RS platforms for crop lodging assessment in 
terms of the aim, crops studied, extent, scale and significant findings. 
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2.3.1 Remote sensing platforms for crop lodging assessment 

2.3.1.1 Ground-based platforms 

RS-based agricultural applications have particular spatial, radiometric and 
temporal resolution requirements. For example, timely availability of diagnostic 
information on a crop’s biophysical and ecophysiological status (such as LAI) is 
critical in the context of precision farming (Doraiswamy et al., 2004), while high 
spatial resolution is mandatory when observing fragmented crop fields or for 
assessing within-field variability (Cushnie, 1987). The motivation behind using 
ground-based or proximal sensing systems is mainly threefold: i) ground 
conditions can be manipulated or conditioned to examine the effects of specific 
crop parameters; ii) the mixed-pixel impact is reduced and iii) high spatial 
resolution information is not constrained by weather conditions or platform 
revisit frequency, thus enabling the timely implementation of required remedial 
action (Moran et al., 1997). Our literature review shows that most of the studies 
(10) have applied proximal sensing to analyse the RS signal from lodged crop 
canopies (Fig. 2.4). Of these, only a few deal with lodging as the central focus 
(e.g., Ogden et al. (2002)), while the majority provide some valuable 
interpretations about the behaviour of the RS signal in response to crop lodging 
(e.g., Bouman and van Kasteren (1990a), Fitch et al. (1984), Sakamoto et al. 
(2010); see Table 2.1). 
 
When a plant is lodged, the signal that is reflected or backscattered at different 
wavelengths is affected by the changes in plant geometry and structure (LAI, leaf 
angle of inclination and CAI) (Hosoi and Omasa, 2012); plant morphology (plant 
height and biomass) (Murakami et al., 2012) and plant biochemical properties 
(such as chlorophyll content) (Baret et al., 2007; Clevers, 1986). Multispectral 
data have been exploited to assess these changes in most of the investigations. 
Earlier work by Fitch et al. (1984) examined the linear polarisation of light 
reflected from wheat and barley to determine its potential in detecting the 
differences in crop morphology. The spatial mean value of polarisation showed a 
decreasing trend for barley, but an increase for wheat due to lodging. 
 
In another study, Ogden et al. (2002) employed motor-driven cameras in paddy 
fields to investigate the use of textural information from digital images to measure 
the extent of lodging. However, studies suggest that textural information alone 
fails to give effective classification results (Berberoglu et al., 2000) as different 
image characteristics, due to differences in vigour, soil type or phenology etc. 
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may produce contradicting results (Sims and Gamon, 2002). Therefore, more 
research should be conducted to validate the applicability of texture-based 
approaches for lodging assessment.  
 
The use of hyperspectral measurements for distinguishing lodged and non-lodged 
rice has also been demonstrated by Liu et al. (2012). They observed that the shape 
of the spectral signature of lodged rice is similar to that of non-lodged. However, 
there is a significant increase in the spectral amplitude. Broadly, it can be 
concluded that studies employing proximal optical sensors mostly rely on the 
spectral reflectance-based measures to assess lodging state, but this approach has 
some contradictions. For example, Yang et al. (2015) state that the success of 
using spectral methods is limited to ideal situations only since the change in 
spectral features due to lodging is relatively weak. It is often drowned out in the 
complex mixed spectrum of features that optical data is sensitive to (like moisture 
stress, pesticide stress or pigment content). Thus, more conclusive results are 
needed to comment on the utility of optical RS data for crop lodging assessment. 
 
The feasibility of studying geometric or structural characteristics of a crop canopy 
with synthetic aperture radar (SAR) data has long been recognised and is well 
documented (Brown et al., 2003; McNairn and Brisco, 2004). Since crop 
structural changes are evident in the event of lodging, observations made from 
SAR data can be useful in crop lodging assessment since lodged crops exhibit 
asymmetric polarimetric behaviour, in contrast to the symmetric behaviour 
portrayed by standing vegetation in the azimuth direction (Freeman et al., 1994). 
Ground-based SAR systems (such as scatterometers) can be instrumental in 
investigating the response of radar data to crop lodging due to the availability of 
a wide range of sensor configurations (such as multi-polarisation, multi-
frequency, etc.). For instance, Bouman and van Kasteren (1990a, 1990b) 
estimated lodging-induced changes in radar backscattering with multi-parametric 
scatterometer data. The main findings of these studies are presented in Table 2.1. 
In another study, Bouman (1991a) suggested that a sudden increase in radar 
backscatter from wheat could indicate lodging. These studies also state that for a 
given crop type, the satellite incidence angle and state of polarisation can 
contribute to high variability in the backscatter signal obtained from lodged crops. 
Our review suggests that there has been no detailed investigation of the suitability 
of different radar configurations (for example, the sensitivity of satellite 
incidence angle to lodging) and polarimetric data to detect lodging. 
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With the increasing pressure and growing demand for efficient crop monitoring 
methods to improve management, there is a need to transfer the research from 
these scientific studies to agricultural practices. Proximal sensing is particularly 
suited for such applications, as it allows an “on-the-go” monitoring of the crop 
with high temporal resolution. However, there are some limitations to its 
commercial use in agriculture at this moment. For instance, the spatial coverage 
of proximal monitoring equipment is poor, even if mounted on fixed poles or 
moving vehicles (Maes and Steppe, 2012). In such scenarios, multiple sensors are 
required to view entire fields, which can be prohibitively expensive. With 
advances in ground-based sensors, it is now possible to mount some sensors 
directly on the operating tractor (e.g., GreenSeeker active canopy sensor; 
Trimble, Sunnyvale, CA, USA) and map the variability within a field during 
mechanisation activities. 

2.3.1.2 Airborne platforms 

Recent advancements in the development of RPAS, commonly known as drones, 
together with robotics, electronics and computer vision, have led to new 
opportunities in airborne RS (Nebiker et al., 2008). The fine spatial resolution 
and NRT monitoring ability of airborne RS suggests that it is well suited for 
applications that characterise changes in crop attributes over time. Airborne video 
imaging systems, LiDAR/RADAR data and RPASs have been applied to 
agricultural disaster (and post-disaster) assessment applications to meet the need 
for timely observational data (Huang et al., 2010; Hunt et al., 2005). Except for a 
few early applications, it is only in the last decade that the use of airborne 
platforms for lodging assessment has gained momentum. About 85% of these 
studies were published after 2010, emphasising the growing interest of the RS 
scientific community in the subject (Fig. 2.1). 
 
The earliest efforts can be traced back to the work of Gerten and Wiese (1987), 
and Hoekman and Bouman (1993). Gerten and Wiese (1987) employed an aerial 
video camera to identify lodging in winter wheat. They reported high under-
estimation of the lodged areas due to problems in density slicing and lack of a 
microcomputer with enhanced graphics capabilities. Hoekman and Bouman 
(1993), on the other hand, analysed the angular backscattering behaviour of 
lodged wheat at different frequencies using airborne scatterometer data. 
 
With the development of miniature imaging instruments (such as scanning 
detectors and cameras) and an expanding pool of commercial vendors facilitating 
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data acquisition and analysis, there has been a shift from aircraft towards 
relatively low-cost systems such as RPASs. In comparison to proximal sensors, 
RPAS platforms can carry out surveys at a faster rate without disturbing the 
canopy cover (Burkart et al., 2015) and are more flexible than aircrafts and 
satellite-based systems, in terms of flight planning. They are increasingly being 
deployed as RS platforms for retrieving biophysical/biochemical parameters 
(Thenkabail et al., 2000), detecting environmental stress (Sullivan et al., 2007) 
and, more recently, for extracting lodged areas and estimating lodging severity 
(Liu et al., 2014; Yang et al., 2017). 
 
The importance of using airborne multispectral data has been reported by some 
studies. For instance, Constantinescu et al. (2017) studied the normalised 
reflectance RGB spectra of wheat and barley cultivars and identified distinct 
spectral features that differed notably across different bands. In lodged wheat, the 
normalised reflectance in red and green bands was lower than that in the blue 
band while in lodged barley; the reflectance in all the three bands was lower than 
the reflectance in non-lodged barley. They also employed Euclidean distance-
based cluster analysis (between RGB bands), which yielded distinct clusters of 
lodged and non-lodged crops. Furthermore, Zhang et al. (2014) performed a 
qualitative analysis of lodging (in the VIS-NIR region) in wheat and found that 
the lodged areas could be detected as a bright red tone in the IR image. Chapman 
et al. (2014) reported similar results and additionally highlighted the significance 
of thermal images in detecting lodged areas. They found that the lodged areas 
appear hotter (higher surface temperature) in both day and night thermal images. 
 
Textural features such as Grey-Level Co-Occurrence Matrix (GLCM)-based 
measures (Liu et al., 2014) have also been adopted in airborne RS for improving 
the classification accuracy of crop lodging. Texture usually provides 
supplementary information about the object properties, which can help in the 
assessment of heterogeneous crop fields (Pacifici et al., 2009), although they are 
highly dependent on image quality, resolution and have high computational cost. 
Factors such as phenological stage, canopy structure, planting patterns and plant 
population density mainly define the textural pattern of the crops at a parcel-scale. 
Combining spectral and textural features often increases the accuracy of lodging 
classifications (Yang et al., 2017). According to Liu et al. (2014), incorporating 
texture information improved the lodging classification accuracy by up to 8-9%. 
However, in hierarchical classification scenarios, selective application of textural 
information for specific classes becomes crucial since not all classes are separable 
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based on a single textural measure (Yang et al., 2017). Also depending on the 
crop and its phenological stage, the textural information can lead to contradictory 
results (Stroppiana et al., 2018). With a limited number of studies, it is difficult 
to conclude the significance of textural features for lodging classification. 
 
As discussed in section 2.2.2, changes in crop morphological status affect the RS 
signal. While most of the studies rely on spectral changes and spatial variations 
to detect the occurrence of lodging, only a few studies have used plant traits (such 
as plant height) to detect lodging. For instance, Murakami et al. (2012) used 
digital canopy model-derived plant height as an index to detect lodging in 
buckwheat, with smaller height values implying severe lodging. Broadly, two 
approaches have been demonstrated for detecting lodging using height 
information derived from RPAS or aerial stereo images: (1) height thresholding 
and (2) grid-based thresholding. Chapman et al. (2014) calculated the average 
height of lodged and non-lodged crops from a DEM and used a height threshold 
(50 cm, based on the variance in pixel heights) to identify lodged areas. The 
successful delineation of 10 to 70% of the lodged area using this approach seems 
to confirm the validity of using height information for lodging stage detection. In 
a more recent study, Chu et al. (2017) investigated the potential of the grid-based 
thresholding approach to detect lodging. This method divides the image into grids 
and applies thresholds to each grid to detect the occurrence of lodging and can 
also be used to estimate the number of lodged plants. While this approach was 
applied successfully to detect lodging, the number of lodged plants were highly 
under/overestimated. The authors suggest that such uncertainties can be due to 
the existence of mixed grids (where leaves from a non-lodged grid extend into a 
lodged grid) and estimation errors introduced by seed count (which ultimately 
affects the stand count and the number of lodged plants). In summary, substantial 
research efforts are still required to develop transferrable crop lodging detection 
algorithms to facilitate proper remedial actions. 
 
As the initial trials have demonstrated promising results towards crop lodging 
assessment, the introduction of such portable RPASs opens up several research 
directions (discussed in the later sections). In comparison to the point 
measurements provided by proximal sensors, airborne sensors possess the 
capability to offer additional information associated with the patterns of lodging, 
thus allowing exploration of lodging events on a larger scale. Despite some 
interesting results, the quality of data from RPASs relies heavily on sky 
conditions and is affected by intervening atmospheric disturbances, cloud or 
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snow cover, and solar radiation. Moreover, even though these systems deliver 
high spatial resolution data, radiometric responses can differ between the 
acquired frames, thereby generating artefacts in vegetation condition. This could 
be due to the inability of the automatic systems to find homologous points 
between frames when creating orthomosaics. Finally, commercial and research 
RPAS can potentially be cost-prohibitive for regional or large-scale applications. 

2.3.1.3 Spaceborne platforms 

Spaceborne/satellite-based platforms can monitor the textural and spectral 
characteristics of vegetation at varying spatial and temporal scales. They provide 
local to global coverage while offering data at different intervals: monthly (ERS, 
ASAR, RADARSAT-2), biweekly (Landsat), near-weekly (Sentinel-1 and 
Sentinel-2) or approximately daily (NOAA-AVHRR, SPOT-VEGETATION, 
MODIS, PROVA-V and Sentinel-3). The spatial, temporal, spectral, and 
radiometric resolution of spaceborne RS sensors is continuously improving 
through technical improvements in sensor technology, while access to imagery is 
improving through increased public and private investments in satellite platforms. 
 
The availability of optimal resolution data actively governs the accuracy with 
which within-field spatial variabilities of lodging can be mapped. While moderate 
resolution sensors (e.g. AVHRR or MODIS) provide global coverage at daily 
intervals, their coarse spatial (>1km), spectral (5/6 bands) and radiometric (10/12 
bits) resolution cannot capture such variabilities. Satellites such as Landsat- 7/8 
with 30 m spatial resolution (and 8/11 spectral bands, 9/12-bit radiometric 
resolution), on the other hand, have lower revisit times (~ 16 days) which are 
impractical for lodging-related applications. The spatial resolutions have 
improved in some recent satellite sensors such as Sentinel-2 (10 or 20 m), 
Sentinel-1 (20×22 m) (from the European Space Agency), or commercial 
providers such as Worldview-4 (31 cm in the panchromatic and multispectral at 
1.24 m) and IKONOS-2 (1 m). However, free access to high spatial resolution 
temporal spaceborne images becomes crucial if operational satellite-based 
quantitative applications are to be developed. 
 
In our review, we found very few studies that have utilized RS data acquired from 
spaceborne platforms to address the problem of crop lodging (Fig. 2.4). To the 
best of our knowledge, the first study that demonstrated the capability of satellite 
data (SAR) to address the problem of lodging was performed in 2015 on a farm-
scale extending over 3000ha (Yang et al., 2015). Until then, the potential of SAR 
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satellite data for crop lodging assessment was undetermined. Building upon the 
findings of earlier studies that have established the unique sensitivity of SAR to 
vegetation structural changes (McNairn et al., 2009; Ulaby et al., 1984), some 
subsequent studies have explored the potential of RADARSAT-2 quad-
polarimetric data to assess lodging in wheat and sugarcane (Chen et al., 2016; 
Yang et al., 2015; Zhao et al., 2017). These studies suggest that advanced 
polarimetric parameters such as scattering ratios, circular-pol correlation 
coefficients, etc. and time-series data can enhance the discrimination of lodged 
areas from non-lodged. 
 
However, the existing studies address lodging qualitatively and do not provide 
quantitative estimates of lodging (e.g., crop angle of inclination or CAI). Such 
estimates are important in predicting the yield losses or assessing grain quality. 
For instance, Fischer and Stapper (1987) demonstrated that the yield losses 
incurred at a CAI of 80° are almost 2-4 times than those at 45° in wheat. 
Furthermore, the selected sites in these studies comprise of relatively 
homogeneous fields. It remains a challenge to address lodging in areas with 
complex and fragmented agricultural fields. While a few studies have exploited 
the advanced capabilities of RADARSAT-2 satellite data (a single platform, 
commercial data source with limited revisit frequency), we found only one study 
that used freely accessible satellite data with a high temporal resolution to map 
lodging. Recently, Han et al. (2017) built a quantitative lodging classification 
model for maize using height information derived from Sentinel-1 data. It is a 
first step towards the use of satellite data for quantitative modelling of lodging. 
 
Still, the main problem for the farmers in their inability to predict where and when 
lodging is likely to occur. An early-season assessment of lodging susceptibility 
and risk can support more accurate and cost-effective targeting of lodging control 
measures. While most of the studies using spaceborne data have focused on 
lodging detection problem, there is only one study which mentions the use of 
satellite images for seasonal lodging risk mapping at a regional scale. Coquil 
(2004) describes the FARMSTAR commercial service that was launched 
successfully in France in 2002. It is a decision support tool for sustainable crop 
management; seasonal lodging risk mapping is one of its application. The service 
is based on the integration of RS images (satellite, aircraft or UAVs), agronomic 
expertise and meteorological data, and is still operational. It exploits SPOT-6/7 
satellite images to measure crop biophysical parameters (LAI, chlorophyll 
content and biomass) which are then analysed and transformed into seasonal 



Remote sensing-based crop lodging assessment: Current status and perspectives 

32 

lodging risk maps for the second plant growth regulator (PGR) spray. The product 
has been tested on different crop types: wheat, corn, soybean, barley, potatoes, 
etc. and it is being transferred to other countries: such as Germany, UK, Spain, 
Canada and Australia. However, a challenge is posed by the spectral bands of 
SPOT-6/7 for the estimation of chlorophyll content and LAI, since more bands 
are required to decouple the absorption features of these biophysical parameters 
from other physical effects. As a result, highly accurate a priori information 
needs to be fed into the model inversion process, making the model data intensive. 
FARMSTAR also relies on the combined use of SPOT-6/7 and airborne sensors 
(CASI, AISA Eagle, and MIVIS) to ensure better spatial and spectral coverage 
for an accurate estimation of crop parameters. The applicability of spaceborne RS 
for lodging can thus be constrained by limited spectral bands, in addition to lower 
revisit times, coarser spatial resolutions and high acquisition/processing costs (in 
most cases).  
 
In the view of these studies, we have categorised the RS contributions for crop 
lodging assessment in terms of crop type, RS platform and sensor spectral range, 
as illustrated in Fig. 2.4b. 
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Fig. 2.4. The figure represents the number of reviewed articles based on study type: 
field/lab-based studies (49) and RS-based studies (22). Field/lab-based studies are further 
categorised based on crop type, while RS-based studies are divided into three categories: 
crop type, deployed RS platform and sensor spectral range.  

2.3.2 Important wavelength regions and remote sensing parameters 

The findings of the above studies underline the importance of different 
wavelength regions in detecting lodging and assessing its risk (e.g., Yang et al. 
(2015), Zhang et al. (2014)). Fig. 2.5 summarises important wavelength regions 
and other RS parameters retrieved from the major RS-based crop lodging studies. 
Fig. 2.5a reveals that the important wavelength intervals (marked as dark green) 
mainly correspond to the absorption bands of plant pigments and water, thus 
corroborating the hypothesis that they are the main components of lodging 
detection in VIS-SWIR region. Some studies have highlighted the significance of 
the near-infrared (NIR) and red-edge regions for lodging assessment. For 
instance, Chapman et al. (2014) and Sakamoto et al. (2010) discuss the relevance 
of NIR reflectance in detecting lodging in wheat since a strong increase in the 
reflectance from wheat leaves and stems is recorded in NIR region (and relatively 
less from the underlying soil as lodged crops entirely cover it). 
 
Crop lodging information from SAR data mainly relates to crop structural 
parameters such as CAI and plant height. The estimation of these features 
depends on the SAR wavelength, the incidence angle, as well as polarisation 
modes, in addition to terrain and weather conditions. The SAR wavelength 
governs the penetration depth of a signal through the crop canopy, with shorter 
wavelengths (e.g. K-, X-, C-band) interacting mainly with the top canopy and 
longer-wavelengths (e.g., L-, P-band) penetrating deeper through the canopy and 
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yielding backscatter from both vegetation and soil (Ulaby et al., 1984). 
Concerning the selection of optimal SAR wavelength for crop lodging 
assessment, studies show that shorter wavelengths, namely X- to Ku2-bands are 
more suitable for assessing lodging (Bouman and Hoekman, 1993; Bouman and 
van Kasteren, 1990a). Similar conclusions regarding the potential of C-band for 
studying lodging in “narrow-leaf” crops such as wheat have been made by Yang 
et al. (2015) and Han et al. (2017). These results are summarised in Fig. 2.5b. 

 

(a) 

 

(b) 

 

Fig. 2.5. Summary of important features in (a) optical and (b) microwave regions relevant 
to crop lodging detection and risk assessment as identified from RS-based crop lodging 
studies. Light green indicates the entire wavelength range of the respective sensors, the 
total number of backscatter/polarimetric parameters and the range of incidence angles 
that were tested in the selected studies. Dark green indicates the specific wavelength 
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region, backscatter/polarimetric parameters and incidence angles that have been found to 
be sensitive to lodging (according to the results of these selected studies). 
 
Apart from emphasising the importance of specific wavelengths in assessing 
lodging, some studies also outline the additional information obtained from 
different polarisations and incidence angles (Bouman, 1991b; Zhao et al., 2017). 
Yang et al. (2015) suggest that the backscatter from a single channel (HH or HV 
or VV) cannot distinguish the lodged wheat parcels from non-lodged ones while 
a polarimetric index based on ratios can enhance the detection capability (Fig. 
2.5b). Chen et al. (2016), on the other hand, found that HV backscatter intensity 
alone could distinguish lodged and non-lodged sugarcane fields, in addition to 
other polarimetric features. More recently, Zhao et al. (2017) studied the 
sensitivity of correlation coefficients (co-, cross-, and circular-pol) to lodging in 
wheat and canola. They found that co-pol and circular-pol correlation coefficients 
are uniquely sensitive to lodging in wheat but not in canola. As reflection 
asymmetry described by the circular-polarisation coefficient is an identifiable 
feature of lodged wheat, this observation seems to be very promising for lodging 
detection. 

2.4 Challenges in remote sensing of crop lodging 

The contribution of RS data to operational crop monitoring systems is increasing 
(Atzberger, 2013). However, several challenges have prevented the integration of 
RS data into routine crop lodging assessment. Primarily it is the unavailability of 
high spatial resolution data at low costs. The heterogeneous distribution of 
lodging directly affects our ability to detect it using RS. In general, to map 
lodging accurately, the spatial resolution of the sensor must be smaller than the 
size of the field and the lodged area. However, high spatial resolution alone is not 
sufficient. High temporal resolution information is also important to improve 
lodging detection and to identify the phenological stage at which lodging occurs 
(to quantify yield loss estimates). With coarse resolution data, more frequent 
observations are available but with pronounced mixed-pixel effects. For instance, 
consider a single MODIS 250 m pixel, which corresponds to an area of 6.25 
hectares, while a Sentinel-2 10/20 m pixel covers 0.01/0.04 hectares. In this case, 
the lodged area would fall in only a fraction of the coarse spatial resolution pixel 
of MODIS, while in the latter case; there is a possibility to extract a unique 
signature from lodging. Moreover, the selection of optimal spectral bands 
(optical) or polarisations (radar) that are uniquely sensitive to lodging is also 
challenging. For example, while several indices have been tested for retrieving 
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crop biophysical parameters (e.g. crop biomass), the cause of their spatio-
temporal variations, whether due to crop growth or lodging, is much less 
straightforward and hence more difficult to determine. 
  
The accuracy assessment of lodging severity and lodging risk maps poses another 
issue, given the absence of a standard reference scale or terminologies to 
represent lodging. There is also no consensus about the most appropriate way of 
producing and validating lodging maps. For instance, the term ‘lodging 
detection’, used until now, is reasonably broad and merely means identifying the 
presence or occurrence of lodging in an area. Based on our review and the 
gathered insights, we propose three terms that can further characterise lodging 
detection, through the quantification of i) lodging stage (i.e. moderate, severe or 
very severe lodging based on crop structural parameters such as crop angle of 
inclination (CAI)); ii) lodging severity (i.e. moderate, severe or very severe 
lodging based on an index called lodging score which combines CAI and lodged 
area at a particular phenological stage) and iii) lodging incidence (i.e. when 
lodging occurs based on time-series analysis of lodging score). As mentioned in 
section 2.2.1, we also differentiate between the terms susceptibility and risk 
mapping in the context of lodging. Genetic traits (such as plant height) and crop 
management factors (such as self-weight moment, LAI, etc.) determine how 
susceptible a plant is to lodging. On the other hand, a model encapsulating the 
impact of external environmental factors (such as rainfall and wind speed) on the 
genetic and crop management factors could contribute to a comprehensive 
lodging risk assessment. We believe that the above distinction can serve as a 
framework or a standard reference for future studies.  
 
The collection of ground truth data (such as plant height, CAI, lodged area) to 
assess lodging damage can itself be a daunting task, due to unfavourable weather 
conditions, irregular plant structures, lack of expertise and absence of field 
methods/equipment to carry out the measurements. A considerable investment in 
time and resources is required to plan and perform such campaigns. Furthermore, 
the acquisition of RS data coincident to specific dates, especially from spaceborne 
platforms, may not always be feasible. This can consequently hinder the 
application of RS data close to the onset of the lodging event, making it difficult 
to capitalise on the current lodging information being reported (e.g., lodged area) 
and in situ data (e.g., plant height) being collected. Seasonal lodging 
susceptibility and risk mapping, on the other hand, requires specific phenological 
stages to be monitored so that in-season remedial actions can be undertaken. For 
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instance, the crop nitrogen status and plant population density at the start of stem 
elongation (GS30-31) in wheat can be indicative of the fertility of a field and 
therefore its propensity to lodge. An assessment of these attributes with RS 
(directly) can be crucial to map the potential susceptibility and risk of lodging 
and target proper management strategies. 

2.5 Research gaps and future scope 

Active engagement of the RS community with crop physiologists is important for 
successful integration of EO products into lodging assessment. The Earth Science 
Decadal Survey (Board and NRC, 2007) emphasises the need to form a stronger 
linkage between RS scientists and end-users to define data requirements in a 
better way and disseminate knowledge to the users to be able to apply the EO 
data to specific applications. The end-users, for instance, loss adjusters, could 
provide real case scenarios, to have an overview of and determine the intensity 
of lodging damage. This data can then be shared with the interested parties, such 
as the farmers whose crops are damaged or the Agriculture Development 
Authorities providing support to farmers in the event of crop damage. Moreover, 
end-users should be engaged, in future, in the provision of crowdsourced lodging 
information directly from the field, thus promoting Citizen Science initiatives, 
and exploiting smart technologies, such as those used by Dickinson et al. (2012) 
and Fritz et al. (2009) in ecology and land cover mapping, respectively. This kind 
of interaction can be fruitful, not only for the collection of a large amount of data 
but also for raising user awareness regarding the use of RS information for crop 
management. Providing web-based GIS solutions for lodging susceptibility/risk 
mapping as well as enhancing data visualisation and decision making by using 
the data from RS sensors and field surveys can facilitate collaboration between 
stakeholders involved in farm risk management.  
 
RS can be a convenient and efficient method to monitor crop lodging, but its use 
within operational lodging detection or seasonal susceptibility or risk assessment 
faces some challenges. In this review, we made the first attempt to consolidate 
research progress in the field of RS while categorising different studies into major 
groups. We found only 22 publications that explored the potential of RS to study 
lodging. The early work on the assessment of crop lodging with RS date back to 
the 1980s; however, significant progress has been made post-2000. Nevertheless, 
there are still many prospective research areas that merit further investigation. 
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2.5.1 Lodging detection 

The current literature on RS-based lodging assessment suggests that a large group 
of studies (68%) have focused on either lodging identification or evaluating crop 
lodging stage based on plant height. However, most of these studies focus on the 
qualitative analysis of lodging. Although timely identification of lodging can be 
beneficial to plan harvest operations, such qualitative analyses can be of limited 
use since the yield losses or deterioration in grain quality cannot be directly 
quantified. There is scope to develop quantitative approaches for estimating 
lodging stages as well. Moreover, the use of plant height for the interpretation of 
lodging stages is highly influenced by the crop cultivar and the phenological 
stage, making it less reliable. The CAI, on the other hand, is independent of these 
variables and can also be used to predict crop lodging scores, which are otherwise 
evaluated by visual assessment of lodged fields. The potential of radar 
polarimetry and suitability of different radar configurations in characterising crop 
structural properties (Gherboudj et al., 2011) should also be further explored. 
 
A potentially interesting avenue for future research is to explore how lodging 
severity and lodging rate (i.e., number of lodged plants per unit area) can be 
estimated remotely close to a lodging event. This information can enable a farmer 
or a loss adjuster to evaluate crop loss, quantitatively support damage assessment 
and aid in agricultural disaster relief compensation. For instance, according to the 
regulations of the Agricultural Natural Disaster Relief system in Taiwan, if 
lodging in a sampled area exceeds 20%, it is considered a disaster area. A 
sampling accuracy of > 90% is required in these cases to allocate funds and 
restore the damaged crop (Yang et al., 2017). Furthermore, the images analysed 
before harvesting can enable assessment of the lodged patches in a field and can 
practically result in navigation maps to guide the drivers or autonomous 
harvesting vehicles to adjust their speeds based on the lodging situation. Another 
research gap is NRT identification of lodging incidence (when lodging occurs) 
using the dense time-series analysis of the satellite data. In this context, Sentinel-
1 and Sentinel-2 data have high potential and should be explored. 
 
We also found that the re-occurring method for crop lodging detection is the use 
of spectral and textural indices from optical imagery. In this context, the 
drawback of using a spectral index is that the change/variability in such features 
may be caused by a composite of factors other than lodging, such as soil 
conditions, water or nutritional stresses, leaf pigment concentrations, canopy 
structure, pests, diseases, etc. (Schaepman et al., 2009). Therefore, it is difficult 
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to automatically detect and recognise the evidence of lodging amongst these 
factors, unless their effect is characterised in combination with lodging. More 
diagnostic measures that are strongly sensitive to lodging should be investigated, 
though some attempts have been made by Zhao et al. (2017) and Chapman et al. 
(2014) in this direction. Another finding of our review is that there are very few 
examples of characterising crop lodging over large areas. Bridging the gap 
between current approaches and crop lodging assessment over large spatial 
extents is still one of the major challenges in this field. From 22 reviewed cases, 
only five studies (as shown in Fig. 2.4) explored lodging using satellite data (e.g., 
(Chen et al., 2016; Yang et al., 2015). Furthermore, the utility of thermal and 
hyperspectral datasets for lodging assessment seems to be under-examined. We 
found only one study that examined the utility of thermal dataset (Chapman et 
al., 2014). The data from spaceborne thermal sensors may not offer fine spatial 
resolution but can be integrated into ensemble sensor fusion/multi-sensor cross-
calibration frameworks to derive lodging information over large geographical 
extents. 

2.5.2 Lodging susceptibility and risk mapping 

Mapping lodging susceptibility is an essential component of a comprehensive risk 
assessment for lodging (and it does not yet exist). Complex mathematical models 
based on the underlying physics of plant structure have been formulated to predict 
lodging risk quantitatively (Baker et al., 1998; Berry et al., 2003a). However, 
their complexity and reliance on intensive field measurements of input 
parameters make it difficult to apply them widely. The mapping capabilities of 
RS can be used to quantify simple lodging susceptibility indicators such as safety 
factors, crop nitrogen, plant population density, etc. so that remedial treatments 
can be targeted more efficiently. Studies show that a safety factor can be used to 
predict both root and stem lodging susceptibilities of a plant and correlates well 
with the observed lodging (Crook and Ennos, 1994), even though the external 
wind or precipitation/hail-induced forces are not accounted. RS-based lodging 
risk assessment, on the other hand, has been reported by only one study (Coquil, 
2004), although the results are still not conclusive. Research along these lines 
would require building upon earlier efforts (Berry et al., 2006; Crook and Ennos, 
1994; Sposaro et al., 2010) that have modelled the risk of lodging in various crops 
(such as wheat, barley, and sunflower) using intensive ground measurements. In 
our view, future studies should develop stand-alone geo-information 
products/models for the provision of seasonal lodging susceptibility and risk 
maps to facilitate proper crop recommendations and management. It is envisioned 
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that such seasonal lodging susceptibility/risk models could also contribute to 
climate change resilience of agricultural practices since lodging 
susceptibility/risk is directly associated with the increased frequency of extreme 
rainfall and wind events. 

2.6 Outlook on remote sensing sensors and platforms 

Timely and accurate monitoring of crop lodging at multiple scales can provide 
insights into its spatial and temporal dynamics. The need for large and fine-scale 
analysis for agricultural applications has boosted the ongoing efforts in 
developing high-end sensors and monitoring platforms. Recent developments in 
RS have resulted in new satellite missions such as the Sentinel series, which 
provides free data while continuously mapping the Earth at short time intervals. 
Other missions such as RADARSAT-2 and COSMO-SkyMed (constellation of 
four satellites), RapidEye (five-satellite constellation), DigitalGlobe 
(constellation of Worldview and GeoEye high-resolution satellites), DMC 
(Disaster Monitoring Constellation) and Planet (with 175+ satellites in orbit) also 
provide flexible monitoring options, imaging the Earth’s landmass at monthly to 
daily time intervals.  
 
Until recently, the availability of spectral data from the red-edge region, which is 
highly sensitive to crop’s biophysical parameters such as biomass (Mutanga and 
Skidmore, 2004), and indirectly to lodging, was limited to certain hyperspectral 
sensors. The scenario changed with the launch of RapidEye (in 2008), 
Worldview-2 (2009), Worldview-3 (2014), and more recently with Sentinel-2A 
(2015), Worldview-4 (2016) and Sentinel-2B (2017). There is little research on 
whether broadband red-edge, satellite data (>10 nm) can detect high biomass 
values or lodging-induced changes in crops. Although local-scale studies may 
benefit with very high spatial resolution data from commercial missions such as 
Worldview (2-4), availability of freely available satellite data (such as from 
Sentinel) can be a motivation to investigate such approaches on a larger scale. 
The VSSC (VENµS Superspectral Camera) onboard the VENµS (Vegetation and 
Environment monitoring on a New MicroSatellite) spacecraft launched in 2017, 
is another sensor providing red-edge data at high spatial resolution (5.3 m) and 
two-days’ revisit time. Other ongoing/future missions such as PRISMA (2019, 
237 spectral bands), JAXA’s HISUI (2019, 20 m), EnMAP (2020, 228 spectral 
bands), Capella (2019, <1 m), ICEYE mission (2018, 1-3 m), RADARSAT 
Constellation Mission (2019, 5-30 m), HyspIRI (2022, 60 m), SHALOM (2022, 



Chapter-2 

41 

8-10 m) will deliver super-spectral information at moderate (60 m) to high (8 m) 
spatial resolutions and have the potential for regional-scale applications. 
 
Lodging occurs in adverse climatic conditions and the all-weather data capability 
of SAR data can contribute to developing operational applications. Among the 
satellite sensors, studies have predominantly used RADARSAT-2 for assessing 
crop lodging. RADARSAT-2, with its ability to acquire data in quad-
polarisations (HH, HV, VH, VV), reduces the need to acquire data over several 
dates. Moreover, data from recently launched SAR missions such as L-band 
ALOS-2 (2014) and C-band Sentinel-1A and B (2014, 2016) have not yet been 
explored for lodging assessment (except by Han et al. (2017)). Although the 
limited feature space of Sentinel-1 data (dual-pol data) may not characterise the 
heterogeneous patterns of lodging in the same way as RADARSAT-2, free data 
access and high temporal resolution make it particularly relevant for developing 
operational applications. Furthermore, the frequency (5.4 GHz) of Sentinel-1, 
unlike ALOS-2 (1.2 GHz), is more sensitive to the phenological changes and 
volume scattering from crops, such as wheat with moderate plant height, 
providing an excellent contrast in the dynamic range of backscatter response from 
a crop and the underlying soil cover. Also, the multi-sensor fusion of Sentinel-2 
with either Sentinel-1 or RADARSAT-2 data should be investigated due to the 
complementary nature of microwave and optical signals. 
 
We are confident that field-level research on the application of airborne 
multi/hyperspectral as well as microwave data for crop lodging assessment will 
continue. The availability of airborne data is slowly reaching an operational level 
and can be obtained over large spatial extents, as exemplified in the national 
ecological observatory network (NEON, http://www.neoninc.org) (Keller et al., 
2008). RPASs may become even more powerful, due to continued improvements 
in spatial and spectral resolution of the onboard sensors and their ability to 
provide information to meet specific temporal requirements. RPAS data can be 
used either directly as a dataset to assess lodging on local scales or can serve as 
additional reference information for satellite or airborne datasets. The second 
solution is more viable when large areas have to be mapped. RPAS reference data 
can provide detailed information on lodging extent or crop properties such as 
stem diameter and shoot numbers, which could then serve as explanatory 
variables to interpret the success or failure of lodging detection or seasonal 
susceptibility/risk mapping algorithms using coarser RS data. 
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2.7 Conclusions 

The accurate and timely detection of lodging, its susceptibility and risk is a 
challenging prospect. In this paper, we made the first attempt to review the 
progress towards this goal and at classifying different studies in some major 
groups. Given the demand for rapid and quantitative evaluation of crop lodging 
(and its risk), with evidence from 22 studies, RS data has been explored for 
lodging assessment during the last three decades. RS measurements of crop 
lodging are needed for crop models; however, the methodology has not yet 
reached sufficient maturity in an operational context. Here we attempt to fill the 
current gap in RS reviews by placing a focus on crop lodging assessment. The 
main findings of the review are: 
 
(i) A comprehensive review of 71 studies showed that lodging is one of the 
major yield-reducing factors in crops and is a global phenomenon. Viable 
solutions for its detection and seasonal susceptibility and risk mapping require 
knowledge of crop biophysical parameters (such as self-weight moment, plant 
height, crop nitrogen, LAI, etc.) during the growing season and meteorological 
products potentially derived from RS data and processing chains that can 
contribute to the development of practical applications. 
 
(ii) The number of RS-based studies focusing on crop lodging assessment 
has increased in the last decade, but the research is still at an early stage. We 
found only 22 RS-based articles that studied lodging, of which 15 were lodging-
detection driven investigations, six focused on understanding the response of RS 
signal under lodged conditions, while only one study explored the capability of 
RS technique for seasonal lodging risk mapping (see Table 2.1). 
 
(iii) Studies using satellite imagery for large-scale monitoring of the 
agricultural areas are still sparse (only five studies). To date, there is no rapid 
method available for the quantitative evaluation of crop lodging over large areas. 
With the ongoing developments in sensor technologies and reducing data 
acquisition costs, the satellite data (such as from Sentinel missions) has great 
potential in the context of operational applications. 
 
(iv) The results from existing RS studies are mostly qualitative. For instance, 
the focus of most of the studies was to analyse the response of the RS signal to 
lodged and non-lodged crops. There are several other research areas that remain 
unexplored. The goal of the future studies should be to develop empirically tested 
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robust quantitative models that can support estimation of crop lodging stages, 
lodging severity, lodging incidence and prediction of seasonal susceptibility and 
lodging risk. The models can be enhanced by assimilation of crop biophysical 
parameters (such as crop angle of inclination, plant self-weight moment, LAI and 
chlorophyll content) and phenological information (e.g. sowing date) derived 
from RS data. This may provide an alternative to complex models that need 
extensive parameterisation and a huge amount of ground data. The studies should 
focus on investigating representative/diagnostic measures of crop lodging from 
RS. 
 
(v) Most research on crop lodging has been conducted using optical RS data, 
with an emphasis on the VIS-NIR region of the electromagnetic spectrum. Very 
few studies have examined other spectral regions such as SWIR bands, TIR or 
microwaves, which might be due to the constraints on data access or lack of 
expertise. For instance, before the advent of Sentinel-1 data, SAR data was 
available only from commercial (RADARSAT, ALOS, COSMO) or scientific 
space agency platforms (e.g. ASAR from ENVISAT of ESA) with biweekly or 
monthly frequencies, making it difficult to study lodging phenomena. Future 
research efforts should investigate ensemble sensor fusion approaches to extract 
lodging information. 
 
(vi) The greatest number of RS-based lodging studies have been carried out 
for wheat and barley, through the development of lodging detection models and 
the identification of different bands/indices/wavelengths that are sensitive to 
lodging. This has underpinned most of the current understanding of the response 
of RS variables to wheat and barley lodging. There are few RS-based studies on 
other crops such as corn, oats, rice, canola, and sugarcane. Genetic, structural and 
physiological differences, as well as crop-specific management practices, may 
influence the incidence and intensity of lodging in different crops. For instance: 
in comparison to wheat, barley stems are more flexible and the ears are less erect 
with the presence of awns, which can affect the lodging model parameters 
significantly; the pods in canola provide a high degree of randomness to the 
canopy structure, which causes the scattering properties to be significantly 
different from other crops. These differences suggest that (a) genetic, 
environmental and management differences should be accounted for when 
considering the relevance of observed relationships between RS information and 
lodging between one crop production situation and another and (b) a need for 
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further RS studies of lodging across diverse crops, including studies of multiple 
crops with the same imagery. 
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Estimation of crop angle of 
inclination for lodged wheat using 
RADARSAT-2 and Sentinel-1 SAR 
data* 
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Abstract 

Lodging - bending of crop stems or failure of root anchorage, reduces the quantity 
and quality of cereal crop yields. Early quantification of crop lodging is vital to 
prevent further losses and to facilitate harvesting operations. Crop angle of 
inclination (CAI); an important structural parameter for lodged crops, is a 
quantitative measure of the lodging stage and is a component of lodging 
severity/score. To our knowledge, no study has yet explored the potential of 
satellite RS for estimating CAI. In this study, we investigated the performance of 
two satellite sensors: RADARSAT-2 at different incidence angles (R-2 FQ8-27o 
and R-2 FQ21-41o) and Sentinel-1 (S-1) for estimating CAI. We collected 
temporal crop biophysical/structural parameters (CAI and plant height) and 
meteorological data (rainfall and wind speed) throughout May 1-June 30, 2018 
in a very large commercial farm located in Jolanda di Savoia, Ferrara, Italy. We 
defined non-lodged/healthy (He) and different crop lodging stages (moderate 
lodging (ML), severe lodging (SL) and very severe lodging (VSL)) based on 
field-measured CAI. We then established quantitative relationships between 
field-measured CAI values and the RS-based metrics derived from S-1 and R-2 
using support vector regression (SVR) models. The R-2 FQ8 model estimated 
CAI most robustly with an R2

CV (cross-validated R2) of 0.87 and an RMSECV 
(cross-validated RMSE) of 8.89o while the performance of the S-1 and R-2 FQ21 
models were comparable with an RMSECV of 11.35o and 11.63o respectively. Low 
incidence angle R-2 data were particularly sensitive to high CAI values (VSL) 
while high incidence angle data were useful for predicting lower CAI (ML and 
SL). While the R-2 FQ-8 model outperformed the other two, the S-1 model still 
explained 78% of the CAI variability in the study site, which is important in the 
context of operational crop lodging stage assessment. This is the first study to 
demonstrate the utility of SAR RS data for estimating CAI as a measure of the 
lodging stage and a component of lodging severity. 
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3.1 Introduction 

Crop lodging is the permanent bending of plant stems from the vertical or 
displacement of the root anchorage, causing destruction of canopy structure, 
degradation of grain quality, slowed harvest, increased drying costs and severe 
yield reductions (up to 75%) (Berry et al., 2004; Pinthus, 1974). Crop lodging is 
caused by the complex interaction between crop’s genetic, environmental and 
management factors, making every lodging event unique with different onset, 
duration and intensity (Nafziger, Wax, & Brown, 1986; Zhu et al., 2016; Piñera-
Chavez et al., 2016). The assessment of lodging on large scales is challenging 
due to these complex interactions and many other factors: the heterogeneous and 
random distribution of lodging within a field, the absence of a standard scale to 
represent it and the lack of statistics to validate lodging (e.g. year wise statistics 
of percentage area lodged for different crops at a local, regional or global scale).  
 
Plant physiologists and agronomists have studied crop lodging intensively (Baker 
et al., 1998; Easson et al., 1993; Lang et al., 2012; van Delden et al., 2010) but 
the scope is mainly limited to breeding trials (i.e. producing lodging resistant 
cultivars) and agronomic management (i.e. agronomic practices that can reduce 
lodging risk). The results of these studies, as reviewed by Chauhan et al. (2019a) 
show that three main factors - the CAI, the lodged area and the time when lodging 
occurs (phenological stage) control lodging severity and govern the extent of 
yield loss. CAI is defined as the angle made by the crop stem with respect to the 
vertical (Fig. 3.1). During the process of lodging, a crop undergoes a series of 
stages (hereafter referred to as lodging stages) starting with a slight lean from the 
vertical (CAI ~ 0°) and ending with the crop lying close to horizontal (CAI ~ 
90°). CAI is, therefore, an important metric to describe the physical structure of 
a lodged crop or the lodging stage (an index based on CAI-moderate, severe or 
very severe). 
 
Accurate estimation of CAI can contribute to the estimation of crop yield losses. 
For instance, Fischer and Stapper (1987) demonstrated that the yield losses in 
wheat incurred at a CAI of 80o were almost 2-4 times than those at 45o. CAI, 
when combined with lodged area estimates, can also help assign lodging scores 
(a lodging severity index combining CAI and lodged area) to a crop. Quantitative 
estimates of CAI can thus be beneficial to farmers (to plan remedial actions, for 
example, to minimise the harvesting losses and settle compensation disputes) and 
insurance loss adjusters (to get an estimate of the extent of damage). The 
conventional methods to measure CAI and assess lodging stages rely on intensive 
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manual ground measurements and visual ratings. As with most ground 
measurement strategies, such methods are time consuming and severely restrict 
their application for monitoring large areas repeatedly. In addition, high spatial 
variability associated with lodging makes it challenging to capture this variability 
via ground measurements.  
 
Remotely sensed imagery offers an efficient way to obtain timely information on 
the temporal trends and spatial distribution of lodging. This is possible with 
frequent acquisitions of high-resolution imagery during the crop growth period 
or at least during the critical phenological stages. High-quality optical RS data 
may not be consistently available due to cloud, rain and haze interference. In this 
context, synthetic aperture radar (SAR) sensors offer a clear advantage since 
microwaves are less affected by the atmosphere and can image the Earth’s surface 
successfully irrespective of weather conditions. Also, the unique sensitivity of 
microwave scattering to crop structure has led to many studies utilizing the SAR 
data for crop monitoring (Chauhan et al., 2019c, 2018; Lopez-Sanchez et al., 
2011; Nelson et al., 2014a; Yuzugullu et al., 2017). However, a recent review by 
Chauhan et al. (2019a) revealed that only eight peer-reviewed articles published 
between 1951-2018 have focused on the use of SAR data for lodging assessment, 
four of which utilized data acquired from spaceborne platforms (Chen et al., 
2016; Han et al., 2017; Yang et al., 2015; Zhao et al., 2017). Most of these studies 
have investigated the behaviour of RS signals with respect to the condition of the 
lodged crop (lodging detection), but there is limited knowledge on the use of SAR 
data for the quantitative assessment of crop parameters associated with lodging.  

 
Multi-parametric (multi-incidence angle, multi-polarisation and multi-temporal) 
data from RADARSAT-2 (hereafter abbreviated as R-2) satellite has made it 
possible to address crop lodging in more effective ways. For instance, a 
correlation analysis between RS-based metrics derived from R-2 data and lodging 
in wheat by Yang et al. (2015) showed that polarimetric ratios, especially those 
based on odd/double scattering and span (i.e. Odd/Span, Double/Span) could 
distinguish non-lodged and lodged wheat fields, while a single-channel 
backscattering coefficient (σo) such as σo

HH, σo
HV or σo

VV cannot separate the two 
classes efficiently. However, given the sensitivity of the polarisation of 
microwaves to crop structure and dielectric properties (Srivastava et al., 2009), 
the capability of PolSAR in crop lodging assessment is highly dependent on the 
crop type (Mascolo et al., 2016).  Zhao et al. (2017) performed a study to test this 
hypothesis. The authors examined σo and polarimetric features derived from R-2 
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data to distinguish lodging in wheat and canola fields. Some features such as σo
VV, 

σo
HH, the depolarisation degree and the circular-pol correlation coefficient were 

highly sensitive to lodged wheat, unlike canola, whose canopy structure is highly 
random. In another study, Chen et al. (2016) showed that σo

HV, as well as features 
such as those referring to the double bounce scattering, volume scattering and the 
T22 and T33 matrix elements derived from R-2 data, are capable of detecting 
lodging in sugarcane. Unfortunately, these studies do not provide quantitative 
estimates of lodging-related crop parameters. 
 
To date, quantitative assessment of lodging using RS was also hampered by the 
lack of dense time-series data at high spatial resolution. An analysis of dense time 
series data over the crop-growing season has the potential to detect when lodging 
occurs in NRT. A new era started with the launch of Sentinel-1 (hereafter 
abbreviated as S-1), offering a unique opportunity to monitor lodging 
systematically. In a recent study, Han et al. (2017) used S-1 data to classify 
lodging into different stages (mild, moderate and severe) using plant height as a 
proxy variable. Although their model demonstrated some potential to identify and 
classify lodging stages, it was tested over a single phenological stage (tassel) and 
did not exploit dense time-series data. Furthermore, the use of plant height for the 
interpretation of lodging stages is highly dependent on the crop cultivar and the 
phenological stage. This is exemplified in Fig. 3.1. As the crop inclines at a 
certain angle (θ) during lodging, the effective plant height, which is defined as 
the distance from the soil surface to the tip of the head of the longest tiller, also 
changes (van Delden et al., 2010). However, it is highly probable that at a specific 
phenological stage, the non-lodged plant height (hH = 150cm) of a wheat cultivar 
A can be higher than that of wheat cultivar B (hH = 90cm). In the event of lodging, 
the lodged height (hL) will, therefore, be different in both cases (say at 45o, hL = 
75cm for cultivar A and hL = 45cm for cultivar B, respectively). This variation 
makes plant height a poor indicator of lodging since there is too much of “natural” 
variation to use it to distinguish between lodged and non-lodged targets (hereafter 
abbreviated as He or healthy), without additional information. CAI, on the other 
hand, is independent of the crop cultivar and the phenological stage, as evident 
in Fig. 3.1. 
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Fig. 3.1. An example of the change in plant height and crop angle of inclination in the 
event of lodging for (a) cultivar A and (b) cultivar B, at the same phenological stage. hH 
is the height before lodging, while hL is the height of the lodged crop (figures not to scale). 
 

Estimation of crop biophysical properties from active RS data has been 
investigated using several modelling approaches. These models have evolved 
from regression and machine learning approaches such as multiple linear 
regression, neural networks and decision trees (Kumar et al., 2018; Prasad et al., 
2012) to sophisticated radiative transfer models (Blaes et al., 2006). While these 
process-based models are theoretically sound in interpreting SAR data (Erten et 
al., 2016), the inversion of crop variables is still challenging due to inherent 
complexity, limited operational usage and intensive data requirement (Wang et 
al., 2009). Among the machine learning approaches, support vector machine 
regression (SVM-R or SVR) has shown excellent generalization capabilities 
(Blanzieri and Melgani, 2008; Tuia et al., 2011). 
 
To the best of our knowledge, there is no research on the use of SAR data for 
estimating CAI of lodged wheat. Therefore, the main objective of this study is to 
compare the performances of S-1 and R-2 data (at different incidence angles) for 
estimating CAI. The CAI estimation has been achieved by implementing SVR as 
a regression tool with different sets of RS-based metrics derived from the two 
SAR sensors.  
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3.2 Materials and methods 

3.2.1 In situ measurements 

We performed stratified random sampling and identified 76 sample plots (Fig. 
3.2) using six information strata (elevation, seed density, soil type, soil pH, crop 
cultivar and sowing date). Care was taken to ensure that the samples were 
collected from various stratum and that the entire geographical area was well 
represented while also considering the spatial distribution of the points. We chose 
the plot size of 60 × 60 m in this study since larger plots considerably reduce the 
negative impact of the potential edge effects on the stability and magnitude of 
RS-based metrics (Frazer et al., 2011) and exhibit less inter-plot variance (Zeide, 
1980). Furthermore, to capture the structural variability and heterogeneity of CAI 
within the plots, we sampled three subplots of 2 × 2 m in fully healthy plots 
(0o<CAI<5o, n=51) and increased the number of subplots to 4-8 in lodged plots 
(6o<CAI<90o, n=67), depending on the lodged area. We averaged the subplot 
values such that they were representative of the crop condition at the plot level.  
 
We started revisiting the plots three times from March 2018 onwards (when the 
crop was in GS30-39) to detect when lodging occurred. It was only around May 
1 (i.e. amidst the 2nd round of sampling when the crop was approaching GS40) 
that we recorded the first few instances of lodging. Therefore, for this study, we 
considered the observation period as of May 1-June 30, 2018, which resulted in 
a subset of 118 samples covering three phenological stages– flowering, milking 
and ripening. 

 
Fig. 3.2. An RGB composite of a Sentinel-1 (R: VH, G: VV, B: VH/VV) scene acquired 
on June 6, 2018 containing the study area (Bonifiche Ferraresi farm) overlaid with the 
sampling points (white dots) over the wheat fields and the farm boundary (black outline). 
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Since there is no definite method in the literature, we developed a simple 
technique to measure CAI. For each subplot, we measured CAI indirectly using 
a plumb bob (Fig. 3.3a), measuring tape and some trigonometric calculations (eq. 
3.1). We suspended the string of the plumb bob from the top of the plant head 
until the tip touched the ground. The heavyweight at the bottom ensured accurate 
measurement of the vertical height from the point of suspension (Fig. 3.3a). We 
then used the total length of the suspended string (hs) and the height of the plumb 
bob (hw) to calculate the vertical height (hL) (Fig. 3.3a). For lodged plants, we 
measured the slant height (hsl) with a measuring tape. We derived CAI (θ) from 
the vertical based on the measurements shown in Fig. 3.3a and equation 3.1. 
Subsequently, we defined the lodging stages based on CAI from the vertical (Fig. 
3.3b) to carry out an exploratory discriminative analysis. We categorised the plots 
with an average CAI of 1-5o as healthy (He, n=51) plots and classified those with 
the average CAI ranging between 6-90o into moderate lodging (ML, n=12), 
severe lodging (SL, n=25) and very severe lodging (VSL, n=30) stages (Fig. 
3.3b).  

 

 
 
Fig. 3.3. (a) Measurement technique for crop angle of inclination using a vertical 
plumbob. θ and θ’ are the crop angle of inclination (CAI) with respect to the vertical and 
soil surface, respectively. hs and hw are the height of the string and the heavyweight at the 
bottom of the plumbob, respectively, hL (hs + hw) is the total vertical height of the lodged 
plant, hsl is the slant height of the plant measured from the soil surface to the tip of the 
head of the longest tiller with a measuring tape and (b) illustration of different crop 
lodging stages: healthy/non-lodged, moderate, severe and very severe lodging, along with 
the field photographs.  
 

Ɵ ሺ𝑑𝑒𝑔𝑟𝑒𝑒ሻ ൌ 90଴ െ sinିଵ ℎ௅

ℎ௦௟
 

(3.1) 
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Where, θ is the crop angle of inclination (CAI) from the vertical, hL and hsl are the height 
of the lodged plant and slant height of the plant, respectively. 
 

In addition, we also took replicate measurements of soil moisture in each plot 
using a Stevens Hydra Probe. We quantified the crop phenological stages using 
the BBCH scale. In each plot, we also recorded the point of plant failure (stem or 
root lodging) and other structural/morphological parameters (such as plant height, 
leaf area index (LAI), biomass, etc.) to facilitate interpretation of the results. 
Additionally, we continually recorded the daily cumulated precipitation (mm) 
and daily average wind speed (10 m from the ground) through a local automatic 
weather station (44o5′22.9′′N, 11o57′51.0′′E). The summary statistics of 
important field measurements are presented in Table 3.1 and the methodological 
flowchart of the study is presented in Fig. 3.4. Lastly, we also analysed the 
variation in plant height (PH) for healthy cultivars at a specific (flowering) 
growth stage to demonstrate the point we made earlier in Fig. 3.1. Our field 
records show that for healthy plots, the CAI remained stable at 3-5o during the 
flowering stage. On the other hand, as we can see in Fig. 3.5, the PH varied from 
0.70 to 1.22 m, which shows that CAI is a better proxy variable for lodging stage 
assessment than PH as there is a lot of “natural” variation in PH to use it to 
distinguish between lodged and non-lodged targets. 
 
Table 3.1. Summary statistics of CAI and PH for healthy (He, n=51) and lodged plots 
(L, n=67). Samples were collected throughout the flowering to ripening growth stages. 
COV is the coefficient of variation. 
 

Data 
Mean Min Max Std. Dev. COV (%) 

He L He L He L He L He L 
CAI 
(o) 

4.84 50.79 3.00 9.36 5.00 79.50 0.53 18.76 0.11 0.37 

PH 
(m) 

0.86 0.49 0.70 0.18 1.22 0.94 0.08 0.19 0.10 0.38 
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Fig. 3.4. Methodological flowchart of the study. The inputs are colour-coded in yellow, 
the model used is in blue and primary outputs are in green.  

 

 

 
Fig. 3.5. The variation in plant height (PH) in the healthy plots for different wheat 

cultivars at the flowering growth stage. 
 

3.2.2 Remote sensing data acquisition 

We selected the satellite images synchronous to the dates of the field data 
acquisition. We acquired a total of five R-2 images in single look complex (SLC) 
fine quad-polarimetric (FQ) mode from the Canadian Space Agency through the 
SOAR (Science and Operational Applications Research) program. We selected 
two-beam modes (FQ8-27o and FQ21-41o) to study the effect of incidence angle 
on the estimation of CAI and to increase the temporal data availability.  
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We also procured 11 S-1A/B images in Interferometric Wide-swath (IW) dual-
polarimetric (VV and VH) mode. We used the data in both Level-1 ground range 
detected (GRD) and SLC formats to extract backscattering coefficients (σo) and 
coherence (µo), respectively. The GRD products consist of focused SAR data that 
has already been detected, multi-looked and projected to ground-range using the 
WGS84 Earth ellipsoid model. SLC products, on the other hand, consist of 
focused SAR data and are provided in slant-range geometry. Table 3.2 shows 
some key characteristics of the acquired S-1 and R-2 images. Fig. 3.6 gives an 
overview of the image acquisition dates of S-1, R-2 FQ8 and R-2 FQ21 images. 
In our study, we could acquire only two R-2 FQ8 and three R-2 FQ21 images (as 
opposed to 11 Sentinel-1 images) available during the observation period. Thus, 
only 57 and 61 field samples could be used for the analysis of R-2 FQ8 and R-2 
FQ21 data, respectively, while for S-1 data, all field samples (n=118) were 
analysed. 
 
Table 3.2. Image acquisition parameters for Sentinel-1 (S-1) and RADARSAT-2 (R-2) 
data. Note that the incidence angle is based on the location of the study site within the 
swath. 
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R-2 

SLC FQ8 
HH, HV, VH, VV 

26.9-28.7 4.78 × 4.78 10 × 10 25 × 25 ASC 

SLC FQ21 
HH, HV, VH, VV 

40.2-41.6 4.73 × 5.12 7 × 7 25 × 25 DSC 

S-1 

IW-GRD 
VV, VH 

39.7-40.4 10 × 10 15 × 15 
250 × 
250 

ASC 
 

IW-SLC 
VV, VH 

39.7-40.4 2.3 × 14.1 15 × 15 
250 × 
250 

ASC 
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Fig. 3.6. Acquisition dates of remote sensing data during the 2018 wheat growing season. 
 

3.2.3 Remote sensing data pre-processing 

3.2.3.1 RADARSAT-2 

We performed the linear backscatter processing of R-2 in SARscape 5.5 and 
extracted the polarimetric parameters in SNAP 6.0 software. To eliminate the 
orbital error in R-2 images, we applied the definitive orbit files obtained from the 
FTP repository of MacDonald Dettwiler Associates Ltd. (MDA) on the SLC 
images. We subset and co-registered the images using a high-resolution (10 m) 
digital elevation model (DEM) provided by Tarquini et al. (2007). We then 
spatially co-registered and resampled the image pixels to compensate for the 
relative translational shift, rotational and scale differences (Farghaly et al., 2019). 
The targets under observation can have translational and rotational motion 
relative to the data collection platform. Uncompensated translational motion can 
result in target signatures being degraded by large frequency phase errors 
(Werness et al., 1990) and hence need to be accounted for. For rotating targets 
too, it is crucial to obtain a satisfactorily focused target image whose dimensions 
in azimuth are known (Werness et al., 1990). We then used the De Grandi spatio-
temporal filter to remove speckle from the images. The filter works in a combined 
time-space domain and preserves the temporal signature (De Grandi et al., 1997). 
We used the approach outlined in Nelson et al. (2014b) for further processing to 
get normalised σo values (in dB).  
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Table 3.3. Metrics extracted from RADARSAT-2 SAR data. * denotes metrics referring 
to double bounce scattering, ** denotes metrics referring to volume scattering and *** 
denotes metrics referring to surface scattering. 

Method/Index Parameters/Formulation Reference 

Backscattering coefficients 𝜎ுு
௢ , 𝜎ு௏

௢ , 𝜎௏ு
௢ , 𝜎௏௏

௢  
(Lee and Pottier, 

2017) 

Sinclair decomposition |𝜎௏௏
௢ |ଶ, |ሺ𝜎ு௏

௢ ൅ 𝜎௏ு
௢ ሻ/2|ଶ, |𝜎ுு

௢ |ଶ 
(Krogager et al., 

1997) 

Pauli decomposition Pauli_T11, Pauli_T22, Pauli_T33 
(Cloude and Pottier, 

1996) 

Freeman-Durden 
decomposition 

Freeman_double*, 
Freeman_volume**, 

Freeman_surface/odd*** 

(Freeman and 
Durden, 1998) 

Yamaguchi decomposition 

Yamaguchi_double*, 
Yamaguchi_volume**, 

Yamaguchi_surface/odd***, 
Yamaguchi_helix 

(Yamaguchi et al., 
2005) 

H-a Alpha decomposition Entropy (H), Anisotropy (A), Alpha 
(Lee and Pottier, 

2017) 

Cloude decomposition 
Cloude_double*, 

Cloude_volume**, 
Cloude_surface/odd*** 

(Cloude and Pottier, 
1996) 

Touzi decomposition Psi, Tau, Alpha, Phi (Touzi, 2007) 

Van Zyl decomposition 
VZ_double*, 

VZ_volume**, VZ_surface/odd*** 
(Van Zyl et al., 

2011) 

Coherency matrix elements T11, T22, T33 
(Cloude and Pottier, 

1996) 
Covariance matrix 

elements 
C11, C22, C33 

(Cloude and Pottier, 
1996) 

Span |𝜎ுு
௢ |ଶ ൅ 2|𝜎ு௏

௢ |ଶ ൅ |𝜎௏௏
௢ |ଶ 

(Lee and Pottier, 
2017) 

Pedestal height 
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒

 
(Lee and Pottier, 

2017) 

Radar vegetation index 
(RVI) 

8𝜎ு௏
௢

𝜎ுு
௢ ൅ 𝜎௏௏

௢ ൅ 2𝜎ு௏
௢  

(Kim and van Zyl, 
2009) 

Radar forest degradation 
(RFDI) 

ሺ𝜎ுு
௢ െ 𝜎ு௏

௢ ሻ
ሺ𝜎ுு

௢ ൅ 𝜎ு௏
௢ ሻ

 
(Mitchard et al., 

2012) 

Canopy scattering index 
(CSI) 

𝜎௏௏
௢

𝜎௏௏
௢ ൅ 𝜎ுு

௢  (Pope et al., 1994) 

Biomass index (BMI) 
ሺ𝜎ுு

௢ ൅ 𝜎௏௏
௢ ሻ

2
 (Pope et al., 1994) 

Volume scattering index 
(VSI) 

𝜎ு௏
௢

𝜎ு௏
௢ ൅ 𝐵𝑀𝐼

 (Pope et al., 1994) 
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The normalisation of the σo helps in compensating for the range variations and is 
intended to empirically correct the dependency of the backscatter signal on the 
incidence angle. We also computed the polarimetric indices, polarimetric 
decomposition parameters, covariance (C3) and coherency matrix (T3) elements 
from each R-2 image (Table 3.3). We generated a total of 42 metrics from each 
beam mode, as listed in Table 3.3. 

3.2.3.2 Sentinel-1 

We performed the entire processing of S-1 data in SARscape 5.5. The 
methodology of extracting linear σo from GRD data was similar to that explained 
in Nelson et al. (2014b). We subset and co-registered the images and applied a 
De Grandi multi-temporal filter to remove the speckle. For the generation of 
geocoded coherence maps, we used the coherence change detection (CCD) 
processing chain of SARscape. Coherence is a function of additive noise, 
systemic spatial de-correlation and scene de-correlation that occurs between two 
acquisition dates. It is sensitive to changes in either phase or amplitude of an 
image pixel. For instance, dielectric (wet vs dry soil) or backscattering properties 
both due to natural processes (e.g. crop growth) and due to abrupt changes (e.g. 
harvest or destruction of a crop morphology during lodging) can result in 
coherence loss. The interferometric coherence (µo), which ranges from 0-1 (1 
being the perfect coherence), refers to the amplitude of the complex correlation 
coefficient between the two complex SAR images (s1 and s2) and is formulated 
as follows: 
 

µ௢ ൌ
|〈𝑠ଵ𝑠ଶ

∗〉|

ඥሺ〈𝑠ଵ𝑠ଵ
∗〉〈𝑠ଶ𝑠ଶ

∗〉ሻ
 

(3.2) 

 
Where µo is the interferometric coherence, s* is the complex conjugate of s; |..| 
represents the absolute values and 〈〉 is the ensemble average (Touzi et al., 1999). 
CCD chain operates in a series of steps: i) importing the master and slave SLC 
data which are already corrected using the precise orbit files, ii) importing a 
DEM to estimate the multi-looking factors, iii) µo estimation and iv) 
geocoding. We used a high-resolution (10 m) DEM provided by Tarquini et al. 
(2007) in steps (ii) and (iv) to geocode and correct for topographic variations. 
The coherence was calculated for every adjacent image pair from an ascending 
pass (e.g. date-1 and date-2, date-2 and date-3,…date-n-1 and date-n) to achieve 
the lowest possible temporal baseline (six days). It was assumed that there was 
no change in the crop lodging condition during the six-day interval (i.e. He 
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remained He, ML remained ML and so on). Thus, we computed five metrics 
(σo

VV, σo
VH, σo

VH/VV, μo
VH, μo

VV) from S-1 data.  

3.2.4 Exploratory statistical data analysis  

Given limited knowledge of the spatio-temporal dynamics of lodging, we carried 
out a preliminary exploratory statistical data analysis in MATLAB 2018b. Firstly, 
we analysed the behaviour of σo (and µo from S-1 data) metrics derived from both 
satellites and interpreted them using in situ CAI measurements for different 
lodging stages (He, ML, SL and VSL).  

 
We also calculated the Pearson correlation coefficients (r) between CAI and the 
47 metrics (42 from R-2 and five from S-1 data). We checked the normality with 
the Shapiro-Wilk test and used Levene’s test to check the homogeneity of 
variances between different lodging stages. We used the Kruskal Wallis rank-
sum test (Kruskal and Wallis, 1952) to assess the statistical differences of the 
sample means among the groups. Subsequently, we used a post hoc Tukey’s 
Honest Significant Difference (HSD) test to find significant pairwise differences 
between the categorical variables. 

3.2.5 Support Vector Regression analysis 

Support vector regression (SVR) is a non-parametric machine-learning tool that 
relies on kernel functions which project the input data into a new (higher 
dimensional) hyperspace where complex non-linear trends can be represented in 
a simple manner (Brereton and Lloyd, 2010; Williams, 2011). SVR aims to build 
an optimal hyperplane in the new hyperspace in a way that it fits the data with 
minimal error and complexity of the modelling function. The main advantages of 
SVR are (i) its ability to generalize from limited training data, (ii) convexity of 
the cost function allowing it to identify the optimal solution consistently, thus 
making it resilient to being trapped in local minima, (iii) it is independent of the 
statistical distribution of the data, (iv) does not have the problem of local optimal 
and multicollinearity and (v) it minimises the risk of overfitting (Bhatia and Yu-
Wei, 2017).  
 
In this study, we implemented three epsilon-SVR (ɛ-SVR) models to estimate 
CAI using input metrics from S-1 (n=118), R-2 FQ8 (n=57) and R-2 FQ21 (n=61) 
datasets. We trained and cross-validated the models using the partial least squares 
toolbox v8.7 from Eigenvector Research, Inc., with Multivariate Image Analysis 
toolbox v3.0 add-on in MATLAB 2018b (Wise et al., 2007). We used a Venetian 
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blinds cross-validation procedure with 10 data splits to preserve the class 
proportion in each cross-validation group (Allison et al., 2009). We operated the 
toolbox in default mode where it utilizes a grid search and cross-validation to 
select the optimal SVR parameters (such as cost, epsilon and gamma) and then 
build a model using those values.  
 
The type of kernel function also governs the performance of SVR. The purpose 
of using a kernel function is to transform linearly inseparable data to linearly 
separable one by applying them on each data instance. The original (non-linear) 
observations are then mapped into higher-dimensional space (in which they 
become separable). This transformation is applied to the data before the model is 
trained. We used a Gaussian or Radial Basis Function since it is known to produce 
better results, than other functions such as sigmoid or linear, and has fewer 
parameters to tune (Zuo and Carranza, 2011). We evaluated the model 
performance using the coefficient of determination (R2

CV) as a measure of 
goodness-of-fit (between predicted and measured CAI) and root-mean-square 
error (RMSECV). We applied the cross-validated models on two S-1 (May 31 and 
June 6), one R-2 FQ8 (June 13) and one R-2 FQ21 (May 31) satellite images to 
map CAI in all the wheat fields. We selected the S-1 and R-2 images with the 
least temporal gap to enable comparative analysis of the performance of the two 
sensors.  

3.3 Results 

We observed the first few instances of lodging when the crop was approaching 
the end of the booting stage or was in the early flowering stage. Lodging became 
more severe as the crop approached its maturity. During this period, the CAI 
varied significantly from 3o in the He plots to a maximum of 79.5o in VSL plots 
(Table 3.1). Since PH also changes during lodging, we performed a preliminary 
analysis to understand its variability as well. Over the same observation period, 
the PH changed from a maximum of 1.22 m in He plots to the minimum of 0.18 
m in lodged plots (Table 3.1) and was negatively correlated with CAI (r=-0.55) 
(not shown). PH, however, did not correlate well with the RS-based metrics. We 
also carried out a detailed time series analysis of S-1 derived metrics for different 
lodging stages to understand the effect the rainfall, wind speed and other crop 
parameters (such as LAI) (not shown). 
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3.3.1 Scattering characteristics of different lodging stages 

We present the scattering behaviour for different lodging stages using the σo (and 
µo) metrics derived from S-1 and R-2 data in Fig. 3.7. Table 3.5 and 3.6 indicates 
the Pearson correlation coefficients for all the metrics. 
 
We found significant differences in the variation of mean values of the metrics 
across the lodging stage groups. It can be seen in Fig. 3.7a that the σo

VV and σo
VH 

derived from S-1 increased as lodging became severe. The increase was more 
prominent in VH polarisation with a difference of 1.3 dB, 2 dB and 4.2 dB for 
ML, SL and VSL stages respectively w.r.t. He stage. In contrast, the σo

VV variation 
was smaller (2.7 dB difference between He and VSL) (Fig. 3.7a). The average 
σo

VH and σo
VV for He stage was around -19 dB and -12.5 dB respectively, whereas 

for VSL, it was around -14.8 dB and -9.8 dB, respectively (Fig. 3.7a). The change 
in S-1 derived σo

VH/VV was very gradual, while no significant variations were 
observed for R-2 data. As we can see in Fig. 3.7a, the average σo

VH/VV values for 
He, ML and SL stages are almost the same while for VSL stage, the value 
increased by 1.4 dB (w.r.t. He). From Fig. 3.7b, we also see that μo

VV dropped 
substantially when lodging occurred. This is also evident from Table 3.5, where 
CAI has a low negative correlation with μo

VV (r = -0.34) and μo
VH (r = -0.31). 

However, the variation in µo was statistically insignificant across all the groups 
(Table 3.4).  
 
In the case of R-2 data, we investigated the scattering mechanisms at low/steep 
(R-2 FQ8) and high/shallow (R-2 FQ21) incidence angles by interpreting the 
SAR data behaviour for different lodging stages. Fig. 3.7c and 3.7d compare the 
σo

HH, σo
HV, σo

VH and σo
VV values observed at approximately 27o and 41o incidence 

angles over different lodging stages in wheat. The average σo
HV and σo

VH values 
were almost the same since natural targets (e.g. agricultural fields) follow the 
assumption of reciprocity (Larranaga et al., 2012; Lee and Pottier, 2017). R-2 
derived σo

VH was thus not included in the subsequent analysis. In general, studies 
show that σo decreases over a crop field with moderate surface roughness as the 
angle of incidence increases (McNairn and Brisco, 2004). This is noticeable in 
the He stage, as the incidence angle increased from 27 to 41o, the overall σo 
decreased by ~0.6 dB. The σo measurements showed distinct behaviours at the 
two incidence angles (Fig. 3.7c, 3.7d). For instance, the average σo

HH moderately 
increased (by 1.5 dB) as CAI increased at 27o while it decreased steadily at 41o 
(1.6 dB). We also noticed remarkable differences in the HV band. At low 
incidence angle (Fig. 3.7c), we observed a sharp increase in σo

HV (5.3 dB) as 
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lodging progressed from He to VSL, whereas at higher angles, we witnessed a 
relatively small increase (1.4 dB) from He to ML stage, after which the σo

HV 

saturated. 
 
While the Kruskal Wallis test revealed statistically significant differences 
between the He, ML, SL and VSL classes for most of the metrics, the post hoc 
Tukey’s analysis showed significant differences only between some of them 
(Table 3.4). For instance, in the case of S-1 derived σo

VV, the He class was 
significantly different from the lodging classes (ML, SL and VSL). Still, the 
separability among the lodging classes was not significant (Table 3.4). On the 
other hand, significant differences were observed among the lodging classes (ML 
and VSL, SL and VSL) with S-1 derived σo

VH (Table 3.4). With R-2 data, the 
results confirmed that the σo

HV in FQ8 beam mode was favourable for 
distinguishing most of the classes (He-SL, He-VSL, ML-VSL, SL-VSL) while 
σo

HH (He-VSL) and σo
VV (He-SL, He-VSL) resulted in reasonable detection of 

only few of them. The results are presented in Table 3.4. 

 

 
Fig. 3.7. Box plots showing the variation of (a) Sentinel-1 derived backscattering 
coefficients (n =118), (b) Sentinel-1 derived coherence (n =118), (c) RADARSAT-2 FQ8 
derived backscattering coefficients (n =57) and (d) RADARSAT-2 FQ21 derived 
backscattering coefficients (n =61) at different polarisations. The p-values calculated 
using the Kruskal Wallis test (at 0.01 level of significance) are displayed adjacent to the 
box plots. Red p-values are non-significant at p = 0.01 level of significance. 
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Table 3.4. Posthoc Tukey’s HSD analysis is reported for different classes and sensors. * 
and ** indicate significant values at p = 0.05 and 0.01 levels of significance respectively. 
 

S-1 
Class1 Class2 σo

VH σo
VV μo

VH μo
VV σo

VH/VV 
He ML 0.2400 0.0057** 0.9958 0.9955 0.6470 
He SL 0.0015* 0.0000** 0.9970 0.8467 0.6212 
He VSL 0.0000** 0.0000** 0.9980 0.9613 0.0641 
ML SL 0.9202 0.9661 0.9858 0.9907 0.9871 
ML VSL 0.0012** 0.1361 0.9877 0.9511 0.0393* 
SL VSL 0.0001** 0.0854 1.0000 0.6529 0.0069** 

 
R-2 FQ8 

Class1 Class2 σo
HH σo

HV σo
VH σo

VV 

He ML 0.8336 0.2815 0.2505 0.4107 
He SL 0.7432 0.0059** 0.0058** 0.0118* 
He VSL 0.0000** 0.0000** 0.0000** 0.0000** 
ML SL 0.9966 0.9896 0.9947 0.9774 
ML VSL 0.0110* 0.0080** 0.0070** 0.3200 
SL VSL 0.0000** 0.0001** 0.0001** 0.1818 

 
R-2 FQ21 

He ML 0.7598 0.9892 0.9821 0.5832 
He SL 0.8011 0.1838 0.1481 0.0048** 
He VSL 0.7661 0.0000** 0.0000** 0.8146 
ML SL 0.9923 0.6921 0.6793 0.6198 
ML VSL 0.9953 0.0002** 0.0003** 0.3064 
SL VSL 0.9999 0.0004** 0.0006** 0.0024** 

 
Table 3.5. Pearson correlation coefficients (r) and p-values between CAI and metrics 
derived from Sentinel-1 data. *** denotes significant values at p = 0.001 level of 
significance. 
 

 
Satellite 
metrics 

r p-value 

1 σo
VH 0.67 1.81e-31*** 

2 σo
VV 0.48 1.28e-14*** 

3 μo
VH -0.31 9.75e-07*** 

4 μo
VV -0.34 9.18e-08*** 

5 σo
VH/VV 0.25 1.06e-04*** 
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Table 3.6. Pearson correlation coefficients (r) between CAI and metrics derived from 
RADARSAT-2 FQ8 and FQ21 data. Backscattering coefficients are expressed in dB and 
the covariance/coherency matrix elements are in a linear scale. *, ** and *** denote 
significant values at p = 0.05, 0.01 and 0.001 levels of significance, respectively. 
 

 Satellite metrics 
r 

R-2 FQ8 
p-value 

r 
R-2 FQ21 

p-value 

1 σo
HH 0.19 0.03* -0.42 3.98e-06*** 

2 σo
HV 0.74 1.42e-22*** 0.40 1.75e-05*** 

3 σo
VV 0.48 1.71e-08*** -0.27 0.005** 

4 Span 0.30 0.0007*** -0.23 0.01** 
5 Pedestal height 0.57 8.78e-12*** 0.21 0.02* 
6 RVI 0.55 8.79e-12*** -0.11 0.24 
7 RFDI -0.49 1.12e-08*** -0.24 0.01** 
9 CSI 0.22 0.0135* 0.30 0.001*** 
9 VSI 0.48 2.53e-08*** 0.17 0.07 

10 BMI 0.17 0.06 -0.21 0.02* 
11 Sinclair_1 0.41 2.52e-06*** -0.020 0.83 
12 Sinclair_2 0.65 0.84e-16*** -0.005 0.95 
13 Sinclair_3 0.15 0.0903 -0.37 6.08e-05*** 
14 Pauli_T11 0.30 7.10e-04*** -0.33 4.56e-04*** 
15 Pauli_T22 0.65 0 .84e-16*** -0.006 0.95 
16 Pauli_T33 0.24 0.008** -0.15 0.11 
17 FD_dbl -0.40 3.43e-06*** -0.42 3.92e-06*** 
18 FD_vol 0.67 2.25e-17*** 0.00 0.94 
19 FD_surf -0.54 9.31e-11*** -0.15 0.09 
20 Yamaguchi_dbl -0.40 4.97e-06*** -0.53 1.69e-09*** 
21 Yamaguchi_vol 0.69 1.34e-18*** 0.05 0.55 
22 Yamaguchi_surf -0.45 0.41e-07*** -0.26 0.006** 
23 Yamaguchi_hlx -0.20 0.02* -0.08 0.38 
24 VZ_dbl -0.45 1.36e-07*** -0.53 1.85e-09*** 
25 VZ_vol 0.66 0.16e-16*** 0.03 0.73 
26 VZ_sur -0.11 0.20 -0.08 0.35 
27 Cloude_dbl -0.05 0.52 -0.43 2.52e-06*** 
28 Cloude_vol 0.62 3.10e-14*** -0.07 0.44 
29 Cloude_surf 0.22 0.01** 0.23 0.01** 
30 Entropy 0.52 9.20e-10*** 0.26 0.005** 
31 Anisotropy -0.33 1.54e-04*** -0.39 2.56e-05*** 
32 Alpha 0.34 1.19e-04*** 0.18 0.05* 
33 Psi 0.18 0.041* -0.01 0.89 
34 Tau 0.12 0.18 -0.09 0.33 
35 Alpha_touzi 0.11 0.20 0.07 0.42 
36 phi -0.26 0.004** -0.25 0.008** 
37 T11 0.27 0.003** -0.14 0.14 
38 T22 0.35 6.07e-05*** -0.30 0.001*** 
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39 T33 0.72 7.20e-21*** 0.02 0.76 
40 C11 0.24 0.007** -0.20 0.03* 
41 C22 0.42 1.05e-06*** -0.16 0.07 
42 C33 0.44 3.57e-07*** -0.06 0.52 

3.3.2 Estimating CAI using support vector regression 

We conducted a preliminary test, employing a neighbourhood component 
analysis (NCA) feature selection method, to select the most important features 
and compare the performance of SVR for two cases: the model with the whole 
set of RS-based metrics and the one with subset features. The results were quite 
similar, with lower RMSE in the former case, which confirmed that 
multicollinearity was dealt within the SVM and the complementary effect of the 
interaction among the predictor variables contributed to increased accuracy of the 
model. Therefore, the whole set of features were used in the final regression 
models. 
 
We evaluated the SVR models for estimating CAI using RS-based metrics as 
inputs from (a) S-1 (S-1 model), (b) R-2 FQ8 (FQ8 model) and (c) R-2 FQ21 
(FQ21 model) images. We calibrated and cross-validated the models using 
Gaussian radial basis functions and calculated the overall accuracy and error 
statistics. The utility of the S-1 derived metrics was confirmed by a good linear 
relationship that was established throughout the growth cycle (R2

CV = 0.78; 
RMSECV = 11.63o) (Fig. 3.8a), with only a minor underestimation at higher CAI 
values (>70o). The model performance considerably improved with the FQ8 
model. It performed most robustly, accounting for 87% of the observed variance 
in CAI while the RMSECV dropped by almost 24% in comparison to the S-1 model 
(Fig. 3.8b). However, a slight underestimation was again recorded in the FQ8 
model, which was most evident at the medium CAI values (50-60o) (see Fig. 
3.8c). The performance of the FQ21 model, was comparable to the S-1 model as 
it explained close to 81% of the variance in the plot level measurements, with 
some underestimated values at high CAI values (>70o). In contrast to the FQ8 
estimations, the RMSECV increased by 28%.  
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Fig. 3.8. The CAI values predicted using support vector regression versus field measured 
crop angle of inclination (CAI) from (a) Sentinel-1 (n=118), (b) RADARSAT-2 FQ8 
(n=57) and (c) RADARSAT-2 FQ21 data (n=61). 

3.4 Discussion 

This study investigated the performance of S-1 and R-2 data for estimating CAI 
in wheat. We first assessed the scattering behaviour of metrics derived from SAR 
satellite data across different lodging stages. Further, we established quantitative 
relationships between CAI measured in the field and RS-based metrics. Finally, 
we used those relationships to map CAI in 26 wheat fields in the study site. The 
important findings are discussed in this section. 
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3.4.1 Scattering characteristics of SAR metrics for different lodging 
stages 

The wavelength of S-1 and R-2 satellites (~5.5 cm) is comparable to the size of 
some of the wheat plant constituents such as grain heads and leaves, which makes 
them particularly useful for wheat monitoring (Ferrazzoli et al., 1997). In section 
3.3.1, we saw how the σo (and µo from S-1) derived from the two sensors with 
different configurations vary across different lodging stages. In the case of S-1, 
the relative change in σo

VV was smaller than that in σo
VH as lodging became severe 

(Fig. 3.7a). This could be due to the increased attenuation in the VV polarisation. 
The Pearson coefficient values in Table 3.5 also confirm our interpretation that 
σo

VV and σo
VH increase significantly with CAI (positive r). σo

VH/VV, on the other 
hand, was particularly sensitive to the VSL stage (Fig. 3.7a). The σo

VH/VV is known 
to be strongly correlated with PH and represents the randomness of scattering 
mechanisms (Canisius et al., 2018). During lodging, the PH reduces with an 
associated increase in CAI. The reduction in PH is more drastic in the VSL stage 
(mean PH = 0.37 m) and it seems that σo

VH/VV is sensitive to this change.  
 
We did not observe meaningful differences in the variation of µo across different 
lodging stages. The change was statistically insignificant (Table 3.4). This may 
have been due to the unavailability of field observations every six days. With a 
six-day temporal baseline, the µo was low over the vegetated fields. However, we 
found an inverse relationship between CAI and µo (for both μo

VV and μo
VH see Fig. 

3.7b), i.e. the µo declined as the CAI increased (Fig. 3.7b). A probable explanation 
for this is that a lodged crop screens the ground more effectively, resulting in 
higher backscatter from vegetation that decorrelates more quickly than that from 
the underlying soil (Engdahl et al., 2001). Simplistically, coherence can be 
explained as the summation of the incoherent and coherent scattering from the 
soil surface as well as the vegetation (Blaes and Defourny, 2003). In the case of 
a healthy crop, it is possible that mainly coherent scattering from the soil 
constitutes the backscattering and results in higher coherence values than that 
from a lodged crop. However, due to a limited amount of data (every six days) 
and lack of literature (for the six-day interval), it is difficult to comment on how 
the underlying soil moisture and surface roughness affect the soil scattering in 
healthy and lodged areas in this study. Precipitation also results in temporal 
decorrelation, thus complicating the interpretation of coherence (Tamm et al., 
2016). Our meteorological records show that in cases where rainfall coincided 
with the date of image acquisition (e.g. May 13 – 2.6mm and June 6 – 7.6mm), it 
might have resulted in increased soil moisture. Besides, the antecedent soil 
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moisture conditions on other dates (due to few other rainfall events) could also 
have resulted in a decrease in the coherence values, thus impeding its use for 
detecting the lodged event. Therefore, repeated observations across several 
growing seasons are necessary to confirm the potential exploitation of coherence 
as a key source of information for lodging assessment.  
 
Some interesting findings were also generated from high (41o) and low incidence 
angle (27o) R-2 data. High incidence angle is known to maximize the contribution 
of vegetation scattering due to increased path length (of the signal) through the 
crop canopy. In contrast, low incidence angle is less sensitive to vegetation 
attenuation and maximizes the contribution from ground scattering in the return 
signal (Srivastava et al., 2009). At both angles, the σo

HH was higher than that in 
σo

VV (Fig. 3.7c, 3.7d). This finding is consistent with the findings of Brown et al. 
(2003) and Mattia et al. (2003a) for healthy wheat. This is primarily due to 
stronger attenuation of the V wave by the vertical stems on both forward and 
returns propagation paths (Xu et al., 2014). The angular variation was particularly 
evident between He and VSL stages (Fig. 3.7c, 3.7d). Due to the reduced path 
length of a radar signal through vegetation at low incidence angle (Brown et al., 
2003), it is possible that as CAI increases, this path length through the lodged 
crop is further reduced, resulting in higher scattering from the ground.  
 
The σo

HH increased as lodging became severe, as the soil return dominates the 
σo

HH (Mattia et al., 2003b). At low incidence angle, a sharp increase was witnessed 
in σo

HV from He to VSL stage (5.3 dB) (Fig. 3.7c), which could be due to the 
contributions from both volume and double bounce scattering mechanisms. At 
low incidence angle, σo

HV had a good correlation with CAI (r=0.74) while at the 
high incidence angle, a moderate relationship existed (r=0.40) (Table 3.6). The 
ability of σo

HV to distinguish most of the lodging stages at low incidence angle 
(Table 3.4) can be explained by the strong impact of ear-bending/ear orientation 
on σo

HV (Ferrazzoli, 2002). The Pearson coefficient values in Table 3.6 also 
confirm our interpretation that volume scattering indicators increase significantly 
with CAI (positive r). In contrast, the double bounce indicators show a negative 
trend (negative r). 
 
Lodging mainly results in the irregular appearance of crop canopy and changes 
the orientation of the canopy elements. In a healthy plot, the crop canopy stands 
erect with the horizontal orientation of the ears. When lodging occurs, the stems 
and the ears bend downwards and incline against each other. This effect is more 
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pronounced in VSL stage. Radar σo is sensitive to these structural changes and 
hence can explain the variability in different stages of lodging (Fig. 3.7a-d). The 
variation is more considerable at the low incidence angle (Fig. 3.7c). Thus, the 
box plots in Fig. 3.7 provide some evidence for the potential application of RS 
(or specifically C-band SAR) to distinguish different stages of lodging. We 
recommend that future studies explore simple electromagnetic models to better 
understand the behaviour of different polarisations in the event of lodging. 

3.4.2 Estimation of CAI 

Microwave scattering from vegetation is dependent on the SAR 
frequency/wavelength, incidence angle and polarisation (Soria-Ruiz et al., 2009). 
Apart from this, the spatial resolution and radiometric quality also affects the 
backscatter response (Bovenga et al., 2018) and may provide different and/but 
complementary information. We achieved satisfactory results when we modelled 
the field measured CAI values using SVR. Overall, the SVR models fitted with 
inputs from R-2 data performed better than the S-1 model. Even though these two 
sensors have the same frequency, some of the other characteristics such as their 
polarisation (dual vs quad), incidence angle (27o vs 41o/40o), radiometric quality 
and spatial resolution are considerably different resulting in a better performance 
for R-2.  
 
Among the input variables from R-2, the metrics referring to volume scattering 
derived from low incidence angle data were highly correlated with CAI 
(0.62<r<0.69). In contrast, the metrics relating to double bounce scattering had a 
weak negative relationship with CAI at a high angle of incidence (FQ21) (-
0.30<r<-0.53) (see Table 3.6). Pedestal height and RVI also proved to be 
important indicators of CAI at a low incidence angle (r = 0.57, 0.55) (Table 3.6). 
The height of the pedestal determines the degree of polarisation of the scattered 
wave. The signatures with high pedestal height are characteristic of targets that 
are dominated by volume scattering (McNairn et al., 2002). Pedestal height is 
also reported to be directly proportional to vegetation density or the vegetation 
cover (Evans et al., 1988), which increases with the increase in lodging 
percentage (Sher et al., 2018). RVI (ranges from 0 to 1), on the other hand, is a 
measure of randomness of scattering. The average RVI for the healthy vegetation 
was close to 0.6 while for the VSL crop, RVI was considerably higher (>0.96) at 
a low incidence angle (see Table 3.6). The high RVI values could be explained 
by the displacement of some of the individual plant scatterers during lodging, due 
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to which several scattering mechanisms arise from the target resulting in an 
increased degree of random scattering. 
 
The findings also revealed that low incidence angle data is particularly sensitive 
to high CAI (>60o) while high incidence angle can be useful for predicting lower 
CAI values (Fig. 3.8b, 3.8c). The underestimation of the FQ8 model for SL stage 
could be due to the non-homogeneous distribution of the number of samples in 
different lodging classes. It could be that the SVR model did not have enough 
cases in the SL class to be more robust. Also, in our case, the samples for the SL 
class comes from two images, while those for VSL comes from one image which 
could also have been a potential source of error. The reason being that during 
cross-validation, the model has to estimate VSL on the same target condition. At 
the same time, SL can correspond to different target conditions according to the 
acquisition dates. For S-1 data, σo

VH and σo
VV had a reasonable correlation with 

CAI (r = 0.67 and r = 0.48, respectively) while coherence values were poorly 
correlated with CAI (r < -0.4) (Table 3.5). The performance of the S-1 model was 
almost comparable to FQ21 model, which suggests that the potential of S-1 data; 
considering the significance of free data for operational needs, cannot be ignored. 
 
It is also important to note here that the acquisition of S-1 and R-2 FQ8 data in 
the ascending pass (evening time) (Table 3.2) ensured that the possible early 
morning dew effects on the backscatter values were non-existent. Due to user 
conflicts and acquisition constraints, the R-2 FQ21 images were, however, 
acquired in the descending pass (morning 5 am). Therefore, the morning dew 
could be a source of error in the analysis of these images. However, a study done 
by Wood et al. (2002) suggests that there is a significant correlation between the 
backscatter of ascending and descending orbits, which implies that although 
absolute backscatter increases in the presence of dew, relative differences remain 
very similar. Also, the effect of azimuth angle or orientation on the polarimetric 
response of wheat crop could be neglected in this study since for C-band (contrary 
to lower frequencies such as L-band), the scattering value is independent of 
azimuth angle as shown by Stiles et al. (2000). 

3.4.3 Mapping of CAI 

To map CAI, we applied the SVR models on two S-1 and two R-2 images. We 
masked out the non-wheat areas and the resulting maps are shown in Fig. 3.9. We 
derived the maps when the crop was in the milking stage (May 31), early ripening 
stage (June 6) and mid-ripening stage (June 13). The healthy areas are mapped 
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with CAI values close to 0o, while the most severe ones are close to 90o. The maps 
indicate that lodging was widespread across the wheat fields with more severely 
lodged areas detected in the ripening stage as expected. Since field observations 
were used to assess the mapping results qualitatively, the obtained CAI maps 
should be considered as qualitative indicators of the within-field spatio-temporal 
variability of lodging. However, patterns provided by different models show the 
convergence of CAI results, supporting the general qualitative validity of the 
produced maps.  
 
The closest acquisition dates between S-1 and R-2 images were considered for 
comparing the outputs. For instance, Fig. 3.9a and 3.9c show the S-1 and R-2 
FQ21 predicted CAI maps, respectively for May 31. While the S-1 model mapped 
the entire field 4 as He (Fig. 3.9a), the FQ21 model could capture the ML areas 
as well (Fig. 3.9c). Also, in field 1 (Fig. 3.9c), the S-1 model overestimated the 
healthy patches. The better performance of FQ21 model can be attributed to its 
high spatial resolution that allowed for the assessment of spatial variability at 
both field and plot scale. The FQ8 image from June 13 could also capture the 
spatial variabilities of CAI quite effectively. These spatial maps can serve as a 
valuable baseline for assessing the performance of the models across stages of 
lodging progression and have potential applications for crop management and 
precision agriculture. For instance, the CAI maps generated before harvesting can 
contribute to in-field navigation routes to guide drivers or autonomous driving 
vehicles to adjust their speeds based on the lodging condition and thus minimise 
the harvesting losses.  
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Fig. 3.9. CAI maps predicted from (a) Sentinel-1 data acquired on May 31, 2018, (b) 
Sentinel-1 data acquired on June 6, 2018, (c) RADARSAT-2 FQ21 data acquired on May 
31, 2018 and (d) RADARSAT-2 FQ8 data acquired on June 13, 2018. Field photographs 
from several plots have been used to assess the maps qualitatively. The correctly mapped 
areas are supported with field photographs marked in green while the others are marked 
in red. "RADARSAT-2 Data and Products. MacDonald, Dettwiler and Associates Ltd. 
(2018) – All Rights Reserved. RADARSAT is an official trademark of the Canadian 
Space Agency." 
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3.5 Conclusions 

In this study, we introduced a new method to assess crop lodging stages based on 
the crop angle of inclination (CAI) derived from Sentinel-1 and RADARSAT-2 
data. We first demonstrated the potential of metrics derived from these datasets 
to distinguish between different lodging stages: non-lodged/healthy (He), 
moderate lodging (ML), severe lodging (SL) and very severe lodging (VSL). The 
performance of different support vector regression models (SVR) was then 
evaluated for estimating CAI from RS-based metrics. The main conclusions of 
the study are summarised below:  
 
1) Among the different SVR models developed to establish quantitative 
relationships between field-measured CAI values and RS-based metrics, the R-2 
FQ8 (low incidence angle) performed most robustly with an R2

CV of 0.87 and 
RMSECV of 8.89o. The performance of S-1 and R-2 FQ21 (high incidence angle) 
models were comparable with an RMSECV of 11.35o and 11.63o, respectively. The 
differences in sensor configuration (mainly the incidence angle and spatial 
resolution) had a primary influence on the model performance. At the same time, 
the increased dimensionality of R-2 data seemed to play a secondary role. 
However, we believe that the combination of the two can improve the ability to 
monitor CAI throughout the crop growth cycle. 
 
2) Low incidence angle data was found to be particularly sensitive to high CAI 
(>60o) while high incidence angle predicted the lower CAI values more 
accurately.  
 
3) Among the polarimetric decomposition parameters that were derived from R-
2 data, the volume scattering parameters (such as FD_vol, Yamaguchi_vol, 
VZ_vol, Cloude_vol) derived from low incidence angle data were highly 
correlated with CAI (0.62<r<0.69) while double bounce scattering parameters 
(such as FD_dbl, Yamaguchi_dbl, VZ_dbl, Cloude_dbl) had a stronger negative 
relationship with CAI at a high angle of incidence (-0.30<r<-0.53). 

 
4) The S-1 model explained 78% of the CAI variability in the area showing that 
the dense time series high-resolution S-1 data can be exploited for lodging stage 
assessment. The unprecedented amount of free S-1 data guaranteed with the next 
generation of Sentinel up to or probably beyond 2030, presents a unique 
opportunity to monitor lodging in crops in NRT.  
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5) In summary, this study provides evidence of the potential of high-resolution 
SAR RS data in estimating CAI as a measure of assessing lodging stages, which 
to the best of our knowledge, has not been documented in the literature.  
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Abstract 

Crop lodging - the bending of crop stems from their upright position or the failure 
of root-soil anchorage systems - is a major yield-reducing factor in wheat and 
causes deterioration of grain quality. The severity of lodging can be measured 
using a lodging score (LS)- an index calculated from the crop angle of inclination 
(CAI) and the lodged area (LA). The information derived from RS-based 
estimates of LS could improve estimates of crop yield losses, ensure timely 
insurance pay-outs and influence management decisions for subsequent seasons. 
This research - conducted in the 600 ha wheat sown area of the Bonifiche 
Ferraresi farm, located in Jolanda di Savoia, Ferrara, Italy - evaluated the 
performance of RADARSAT-2 (R-2) and Sentinel-1 (S-1) data to distinguish and 
classify lodging severity based on LS. We measured temporal crop characteristics 
related to lodging (e.g. lodged area, CAI, plant height) and collected relevant 
meteorological data (wind speed and rainfall) throughout May 1-June 30, 2018. 
We used LS to distinguish healthy (He) wheat from lodged wheat with different 
degrees of lodging severity (moderate, severe and very severe). We acquired the 
low (FQ8-27o) and high (FQ21-41o) incidence angle R-2 images in combination 
with high incidence angle S-1 (40o) images. As a part of our data exploration, we 
performed a correlation analysis between the RS-based metrics and LS. Next, we 
developed a multi-temporal discriminant analysis approach, including a partial 
least squares (PLS-DA) model to classify lodging severities. Results show that 
(1) volume scattering components were highly correlated with LS at low 
incidence angle while double and surface scattering was more prevalent at high 
incidence angles; (2) lodging severity was best classified using low incidence 
angle R-2 FQ8 data (overall accuracy 72%) and (3) the S-1 classification model 
was able to correctly identify 60% of the lodging severity cases in the study site. 
The results from this first study on classifying lodging severity using satellite-
based SAR platforms suggests that SAR-based metrics can capture a substantial 
proportion of the observed variation in lodging severity. This is important in the 
context of operational crop lodging assessment in particular, and sustainable 
agriculture in general.  
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4.1 Introduction 

Food production will have to increase by 70% by 2050 (FAO, 2014) to ensure 
that global food supply meets the demands of the world’s growing population. 
Raising the productivity of wheat, a staple crop that contributes to 20% of global 
dietary calories, will be fundamental in achieving this goal (Reynolds et al., 2012; 
Shiferaw et al., 2013). Multiple factors limit or reduce wheat productivity. 
Lodging - the bending of crop stems from their upright position, or the failure of 
crop root-soil anchorage systems (Pinthus, 1974) - is a major yield-reducing 
factor in wheat. A complex interaction between genetic, environmental and 
management factors affects the incidence and severity of lodging. Lodging limits 
wheat productivity directly by reducing photosynthetic efficiency due to 
disruption of crop morphology (Berry and Spink, 2012), and indirectly through 
breeding by boosting the amount of dry matter (Berry et al., 2007). Methods to 
detect lodging and estimate its severity can be incorporated into agricultural 
management practices to reduce losses, boost productivity and make more 
efficient use of resources.  
 
A standard, quantitative measure of the severity of crop lodging is the lodging 
score (LS) (Piñera-Chavez et al., 2016). LS has two components: the angle of 
displacement or crop angle of inclination (CAI) from the vertical and the lodged 
area (LA) (Fischer & Stapper, 1987; Oplinger & Wiersma, 1984). In-season 
assessment of LS can indicate plant health status, lodging severity, improve 
estimations of yield loss, facilitate targeted and early harvesting operations 
(Oplinger et al., 1967; Wu and Ma, 2019). The conventional methods to evaluate 
LS rely on visual ratings on a scale of 0-1, 1-9 or 0-100 where 1, 9 or 100 refer 
to instances when crop in the entire plot is lying horizontally on the ground. Such 
evaluations are i) sparse and may not cover all lodged areas, ii) biased and 
subjective since they depend on the skill or self-consistency of the observer and 
the complexity of the lodging event, and iii) time consuming and expensive to 
implement (Bock et al., 2010). As with many ground-based observation methods, 
such assessments cannot provide consistent and comparable estimates of lodging 
severity over vast areas from season to season. Thus, LS is difficult and time 
consuming to measure manually meaning that information on lodging occurrence 
and severity is limited and sparse. 
 
Alternatively, RS provides a timely, synoptic and reliable way of obtaining crop 
lodging information across large and diverse areas. RS has been used for crop 
lodging assessments, albeit with a focus on detecting lodging in individual fields 
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rather than at regional scales (Chauhan et al., 2019a). The earliest work dates 
back to 1980s to identify lodging in winter wheat using microcomputer-assisted 
video image analysis (Gerten and Wiese, 1987). Subsequent work that focused 
on lodging assessment using optical data provided examples of where lodging 
could be detected, and where the variability in inter/intra-field lodging could be 
captured by airborne or satellite-based information (Vargas et al., 2020; Yang et 
al., 2020; Zhou et al., 2020). For instance, Zhang et al. (2014) and Chapman et 
al. (2014) showed that infrared and thermal images respectively could be useful 
in identifying lodged patches in a field. The potential of synthetic aperture radar 
(SAR) data for lodging assessment has particularly been emphasised in the 
literature due to its all-weather availability and unique sensitivity to plant 
structure (Chen et al., 2016; Zhao et al., 2017).  
 
Recently, more widespread access to images and advanced data processing 
platforms have substantially reduced the cost of obtaining and (pre-)processing 
images. For instance, georeferenced Sentinel-1/2 data is now available for free 
via the Copernicus Open Access Hub and can be rapidly mosaicked and 
composited in the Sentinel Hub or Google’s Earth Engine platform (Gorelick et 
al., 2017). For instance, Han et al. (2017) utilised the plant height information 
derived from S-1 data to build a quantitative lodging stage classification model. 
More recently, Shu et al. (2019) used S-1 data to develop a method based on the 
change in plant height before and after lodging to estimate CAI and monitor the 
lodging stages. However, the use of height variation is not a reliable diagnostic 
of lodging without additional information as it is sensitive to the crop cultivar and 
phenological stage (Chauhan et al., 2020a). On the other hand, the metrics 
retrieved from commercial RADARSAT-2 (hereafter referred as R-2 data) fully 
polarimetric data - such as HV backscatter and the ratios of the span, double 
bounce scattering and single-bounce scattering - have also shown promising 
results for lodging detection in wheat (Yang et al., 2015; Zhao et al., 2017). 
 
LS-based discrimination between healthy and different lodging severity classes 
(such as moderate, severe and very severe) from RS has still not become 
widespread due to a combination of factors including (i) unavailability of high 
spatio-temporal resolution data at low cost; (ii) absence of a standard scale to 
represent lodging which hinders accuracy assessment; (iii) a lack of consensus on 
the most appropriate way to produce and validate lodging maps; (iv) a lack of 
statistics/data related to lodging (unlike crop yield) on local/ regional/global 
scales; and (v) the daunting task of collecting field data related to lodging, due to 
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its heterogeneous distribution. Among the few limited studies, our previous 
research investigated the utility of RS for detecting lodging stages in wheat-based 
on CAI (Chauhan et al., 2020a). However, CAI alone is not a representative and 
quantitative measure of crop lodging. LS, which combines CAI and LA, provides 
a more comprehensive assessment of lodging-related damage. Our review 
(Chauhan et al., 2019a) also shows there is no prior published research that 
demonstrates the potential of RS-based information for classifying crop lodging 
severity based on LS. This study aims to fill this gap by developing a new 
approach for lodging severity classification and building on the positive outcomes 
of our previous research on CAI estimation via non-parametric regressive 
analysis of SAR metrics (Chauhan et al., 2020a).  
 
Among several methods applied for discriminant analysis and image 
classification, partial least squares discriminant analysis (PLS-DA) has shown to 
be a promising tool when dealing with the complexities of high dimensional 
datasets (Boulesteix and Strimmer, 2006). While the use of PLS-DA has mainly 
been limited to regression-based analysis, such as for predicting canopy biomass 
in wheat (Hansen and Schjoerring, 2003) or estimating forest structural 
parameters (Wolter et al., 2009), only a few have examined the utility of PLS for 
discriminant analysis and classification purposes (Peerbhay et al., 2013).  
 
In this context, we present an approach that integrates CAI and LA as a way to 
assess and classify crop lodging severity. We evaluate the performances of R-2 
(at different incidence angles) and S-1 data for classifying non-lodged/healthy 
(He) wheat and wheat with different degrees of lodging severity (moderately 
lodged (ML), severely lodged (SL) and very severely lodged (VSL)) using partial 
least squares discriminant analysis (PLS-DA).  

4.2 Materials and methods 

4.2.1 In situ measurements 

We implemented stratified random sampling using six information strata 
(elevation, sowing date, crop cultivar, soil type, seed density and soil pH) and 
identified 76 sample plots (60×60 m). The spatial distribution of these plots is 
shown in Fig. 4.1. We started inspecting the plots frequently from March 2018 
onwards to record the first instance of lodging. The first few instances of lodging 
were observed close to the end GS40 (around May 1, amidst the 2nd round of 
sampling). Therefore, we considered the observation period from May 1 onwards 
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until June 30, 2018, when the crop was harvested. A total of 118 samples were 
collected during this period which spanned three phenological stages - flowering, 
milking and ripening. The field and satellite image data were collected 
synchronously between May 1-June 30, 2018. 
 

 
Fig. 4.1. An RGB composite of a Van Zyl decomposed RADARSAT-2 (double bounce, 
volume, surface scattering) scene acquired on May 31, 2018, containing the study area 
(Bonifiche Ferraresi farm) overlaid with the sampling points (white dots) over the wheat 
sown fields and the farm boundary (black outline). “RADARSAT-2 Data and Products. 
MacDonald, Dettwiler and Associates Ltd. (2018) – All Rights Reserved. RADARSAT 
is an official trademark of the Canadian Space Agency.” 
 
We calculated a normalised lodging score index (LS, [0-1]) (see Eq. (4.2), 
modified after Fischer and Stapper (1987) for each plot based on CAI (ѳ, [0-90°]) 
(see Eq. 4.1) and lodged area (LA%, [0-100%]). We measured and calculated the 
CAI from the vertical using a plumb bob, measuring tape and some trigonometric 
calculations (Eq. 4.1). The detailed approach for CAI estimation is mentioned in 
Chapter-3. We assessed the LA (0-100%) using a quadrant method. From the plot 
centre, we visually assessed the LA in four quadrants (Fig. 4.2c) and averaged 
the readings. A scenario is depicted in Fig. 4.2b and 4.2c, illustrating the 
distribution of He and lodged subplots in real field conditions.  
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Fig. 4.2. (a) Measurement technique for crop angle of inclination using a vertical plumbob 
(Chauhan et al., 2020a). θ and θ’ is the crop angle of inclination (CAI) with respect to the 
vertical and soil surface, respectively. hs and hw is the height of the string and the 
heavyweight at the bottom of the plumbob, respectively, hL (hs + hw) is the total vertical 
height of the lodged plant, hsl is the slant height of the plant measured from the soil surface 
to the tip of the head of the longest tiller with a measuring tape (θ) (b) Depiction of healthy 
(He) and lodged (L) subplots and plot centres in real field conditions. (c) The plot is 
divided into four quadrants Q1 to Q4-the lodged area in each quadrant is represented as 
LA1 to LA4; He1, He2 are the healthy subplots and L1,…L4 are the lodged subplots. 
 

Ɵ ሺ𝑑𝑒𝑔𝑟𝑒𝑒ሻ ൌ 90଴ െ sinିଵ ℎ௅

ℎ௦௟
 (4.1) 

𝐿𝑆 ൌ
𝐿𝐴%
100

∗
𝐶𝐴𝐼
90௢  (4.2) 
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The plots with LS=0.0 were categorised as healthy (He, n=51) while the lodged 
plots (LS>0.0) were divided into three lodging severity classes: moderately 
lodged (ML) (0.0<LS<=0.30, n=12), severely lodged (SL) (0.31<LS<=0.60, 
n=25) and very severely lodged (VSL) (0.61<LS<=1.0, n=30) to capture the 
heterogeneity of LS. The determination of lodging has been partly derived and 
modified after the works of Caldicott and Nuttall (1979), Chauhan et al. (2020b), 
Fischer and Stapper (1987) and Nottingham and User (1998). In He plots, we 
chose three subplots of 2×2 m to carry out the crop biophysical measurements. In 
lodged plots, we increased the number of subplots to 4-8 (depending on the LA 
within each plot) to capture the heterogeneity caused by lodging and then 
averaged the readings. The summary statistics of these parameters are presented 
in Table 4.1.  
 
Furthermore, to investigate lodging in relation to crop condition, we measured 
several biophysical/biochemical parameters (such as plant height, biomass). The 
meteorological data (daily cumulative precipitation (mm) and average daily wind 
speed 10 m from the ground) were recorded through a local automatic weather 
station at the farm. For biomass measurements, we destructively sampled the 
plants in 0.2×0.2 m2 area in each subplot and used a high-precision digital scale 
to measure the weight. We then placed the samples in a zip-locked plastic bag 
and transported to the laboratory where we dried them in an oven at 60°C for 72 
hours and then weighed the dry mass. We calculated the fresh and dry biomass 
(t/ha) using the fresh and dry weights divided by the surface area. Lastly, we used 
a measuring tape to measure plant height. The summary statistics of these 
parameters are presented in Table 4.1 for He and lodged samples. Additionally, 
we used a standard BBCH phenological scale to identify the phenological stages.  

4.2.2 Remote sensing data acquisition 

We acquired a set of five R-2 and eleven S-1 A/B images over the study area (Fig. 
4.3). We selected the S-1 and R-2 images that were synchronous to the dates of 
the ground truth data acquisition. We procured single look complex (SLC) R-2 
data in fine-quad pol (FQ) beam mode from the Canadian Space Agency through 
the SOAR (Science and Operational Applications Research for RADARSAT-2) 
program. We selected two-beam modes: low/steep incidence angle FQ8 or R-2 
FQ8 (resampled to 10 m spatial resolution with ~27° incidence angle, 25 km 
swath, ascending mode) and medium/shallow incidence angle FQ21 or R-2 FQ21 
(resampled to 7 m spatial resolution, ~41° incidence angle, 25 km swath, 
descending mode). Also, we obtained S-1A/B images in the Interferometric Wide 
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(IW) swath mode with dual polarisation (VV and VH) from the Copernicus Open 
Access Hub. In this study, we used both SLC as well as ground range detected 
(GRD) images (resampled to 15m spatial resolution with ~40° incidence angle, 
250 km swath and ascending mode) for polarimetric as well as backscatter 
intensity analysis, respectively. Fig. 4.3 gives an overview of the acquisition dates 
of S-1, R-2 FQ8, and R-2 FQ21 images. In our study, we could acquire only two 
R-2 FQ8 and three R-2 FQ21 images (as opposed to 11 Sentinel-1 images) 
available during the observation period. Thus, only 57 and 61 field samples could 
be used for the analysis of R-2 FQ8 and R-2 FQ21 data, respectively, while for 
S-1 data, all field samples (n=118) were analysed.  
 

 
Fig. 4.3. Acquisition dates of RADARSAT-2 FQ8, RADARSAT-2 FQ21 and Sentinel-1 
data covering the study site during the 2018 wheat growing season. 

4.2.3 Remote sensing data pre-processing 

4.2.3.1 RADARSAT-2 

We performed the backscatter processing of R-2 data in SARscape 5.5 and 
extracted the polarimetric parameters using SNAP 6.0. After applying the orbit 
file correction, we obtained the normalised backscattering coefficient (in dB) 
using the approach outlined in Nelson et al. (2014b). In order to extract the 
polarimetric parameters, we first performed radiometric calibration on the subset 
images so that the pixel values could be directly related to the target radar 
backscatter. We then extracted the polarimetric parameters such as span (Lee and 
Pottier, 2017), pedestal height (Lee and Pottier, 2017), radar vegetation index 
(RVI) (Kim and van Zyl, 2009), radar forest degradation index (RFDI) (Mitchard 
et al., 2012), canopy scattering index (CSI) (Pope et al., 1994), biomass index 
(Pope et al., 1994), and volume scattering index (VSI) (Pope et al., 1994) and 
geocoded the co-registered datasets using a high-resolution (10 m) DEM 
(Tarquini et al., 2007). 
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For polarimetric decomposition, we first applied a Refined Lee polarimetric 
speckle filter with a 5×5 window size to reduce speckle in the images while 
preserving the complex information. With several polarimetric decomposition 
methods, we decomposed the scattering matrix into different components that 
could be physically interpreted. We used Sinclair decomposition (Krogager et al., 
1997), which represents the symmetric scattering matrix in the form of a three-
element target vector where the elements are associated with the HH, HV and VV 
polarimetric channels. We used the Pauli decomposition (Cloude and Pottier, 
1996), which denotes the vector representation of linear combinations of the 
elements of the scattering matrix. We used an eigenvector-eigenvalue based-
H/α/A decomposition proposed by (Cloude and Pottier, 1997) to calculate H 
(entropy), α (alpha angle) and A (anisotropy) parameters. The H represents the 
heterogeneity of the scattering, ranging from 0 (for dominant scatterers, e.g. 
corner reflectors) to 1 (a random mix of scattering mechanisms, e.g. in vegetation 
canopy). The α indicates the type of scattering, ranging from the surface (α~0°), 
to random volume/dipole scattering through anisotropic particles (e.g. tree 
crowns, α~45°), moving into double bounce scattering mechanisms (e.g. urban 
areas, α up to 90°). The A enables further understanding of the secondary 
backscattering mechanisms occurring in the resolution cell (or a pixel). Finally, 
we also used model-based decomposition methods such as Freeman-Durden 
(Freeman and Durden, 1998), Yamaguchi (Yamaguchi et al., 2005), Cloude 
(Cloude and Pottier, 1996), Touzi (Touzi, 2007) and Van Zyl (Van Zyl et al., 
2011), which decompose the scattering matrix into different scattering 
mechanisms (e.g., surface, double bounce or volume). The decomposed images 
were co-registered and geocoded with the high-resolution DEM. Thus, a total of 
36 metrics were generated from each beam mode. 

4.2.3.2 Sentinel-1 

We extracted the normalised VH (σo
VH), VV (σo

VV) and VH/VV (σo
VH/VV) 

backscattering coefficients/ratios (in dB) from the GRD S-1 datasets in SARscape 
5.5 using the approach outlined by Nelson et al. (2014b). The metrics were 
extracted for each sample plot be averaging the pixel values in a 3x3 window. 
For polarimetric decomposition, we first applied the orbit file correction on the 
SLC S-1 images in SNAP 6.0. We then used the TOPSAR Split operator to 
extract the sub-swath with our area of interest. We then radiometrically calibrated 
the output product and deburst it to produce a continuous image in terms of 
azimuth time. The deburst operation is required to remove the black-fill 
demarcation lines as well as the redundant lines between the bursts. We then 
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applied a Refined Lee speckle filter with a 5×5 window and performed H/α/A 
polarimetric decomposition to extract H, α and A parameters for all the sample 
plots. Similar to R-2 data, the decomposed products were then co-registered and 
geocoded. Thus, a total of six metrics (σo

VH, σo
VV, σo

VH/VV, H, α and A) were 
generated from S-1 images.  

4.2.4 Statistical analysis 

4.2.4.1 Partial least squares discriminant analysis (PLS-DA) 

As a part of our data exploration, we first calculated the Pearson correlation 
coefficients (r) and p-values between each RS-based metric and our field 
measured lodging score (LS) to understand the relationship between them. This 
analysis was done to enable the interpretation of the results. We then carried out 
a partial least squares discriminant analysis (PLS-DA) for discriminating He from 
other LS-derived lodging severity classes. All these steps were performed in 
MATLAB 2018b. The methodological flowchart of the study is presented in Fig. 
4.4. 
 
PLS-DA is an adaptation of classical PLS regression methods to the problem of 
supervised clustering and classification (Wold et al., 2001). In an application 
where the response variable (Y) is related to the predictor variables (X), PLS 
regression aims to provide dimensionality reduction while dealing with multi-
collinearity (Abdullah et al., 2018). The response variable is categorical and 
expresses the class membership (Galtier et al., 2011) by transforming the 
categorically dependent variable into a binary dummy variable “0” and “1”. In 
our case, the categorical variable, i.e. lodging severity had four levels/classes (He, 
ML, SL, VSL) and therefore, four dummy variables were required to represent 
those classes. PLS-DA aims to sharpen the separation between groups of 
observations by rotating Principal Component Analysis (PCA) components to 
obtain maximum class separation and to understand which variables separate the 
classes in the best way. The model is developed in a way that the chosen latent 
variables retain the most information from the predictor and response variables.  
 
In this study, we developed three classification models (for R-2 FQ8, R-2 FQ21, 
S-1) for distinguishing He from other LS-derived lodging severity classes using 
PLS-DA algorithm. The principal components were used as new predictors and 
regressed on lodging severity classes to determine the optimum separation 
between the lodging classes. With the increase in the number of predictor 
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variables/components, the predictive capacity of PLS-DA model increases, as 
many variables tend to contain more information than a few (Whelehan et al., 
2006). However, in general, due to the presence of many correlated variables in 
a PLS model, it is essential to identify the optimal number of components to 
minimise the risk of overfitting (Wold et al., 2001). We optimised the parameters 
of all the three classification models using 10-fold Venetian blinds cross-
validation (Wolter et al., 2008). The optimisation involved adding each 
component progressively to the model until the further addition did not reduce 
the CV error rate. Since PLS is known to deal with multicollinearity (Serrano-
Cinca and GutiéRrez-Nieto, 2013), we fed all the metrics as inputs to the 
respective models. We performed the modelling using partial least square (PLS) 
toolbox v8.7 from Eigenvector Research, Inc., with the Multivariate Image 
Analysis (MIA) toolbox v3.0 add-on (in MATLAB 2018b) (Wise et al., 2007).  

 

 
 
Fig. 4.4. Methodological flowchart of the study. Inputs are in yellow, method/model in 
blue, and primary/intermediate outputs in green. The dashed line represents that the 
output is used for interpretation. 
 
4.2.4.2. Accuracy assessment 
 
For the accuracy assessment of the PLS-DA classification results, we used two 
methods: Area under the curve-Receiver Operating Characteristics (AUC-ROC) 
and a cross-validated confusion matrix. These are important metrics for 
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evaluating the performance of multi-class classifiers (Comber et al., 2012; 
Narkhede, 2018). For validation, we used a Venetian blinds cross-validation 
procedure (Wolter et al., 2008) with 10 data splits as this method is useful in 
preserving the class proportion in each cross-validation group and guarantees that 
both training and validation sets span across the entire data range (Allison et al., 
2009). This involved dividing the datasets randomly into ten subgroups, each 
with approximately 10% of the samples from each class. We trained the model 
with 90% of the reference data and applied it to the remaining 10% (i.e. validation 
set). After ten repetitions, we aggregated the results.  
 
AUC-ROC is a powerful tool to evaluate classifiers over all the possible 
thresholds and is particularly useful for problems with skewed class distribution 
and differing classification errors costs (Fawcett, 2006). ROC is a probability 
curve, while AUC is a measure of separability. Higher the AUC, better the model 
at predicting class A as A and class B as B. An AUC=1 is an ideal diagnostic test 
since it results in 100% specificity as well as 100% sensitivity (Estes et al., 2010). 
The AUC-ROC quantitatively represents the trade-offs between omission (true 
positive rate or sensitivity) and commission (false positive rate or 1-specificity) 
error. AUC>0.5 signify classifiers performing better than chance. In this study, 
we created the estimated and cross-validated ROC response curves for all the 
three datasets. When used in conjunction with the confusion matrix, ROC can 
enable the selection of an optimal threshold for the latter (Alatorre et al., 2011). 
The confusion matrix allows identification of confusion between the classes and 
the accuracy is measured in terms of overall accuracy (OA), producer’s accuracy 
(PA), user’s accuracy (UA) and kappa coefficient (K). We computed a cross-
validated confusion matrix to evaluate the classification accuracy.  

4.3 Results 

4.3.1 Field observations 

The first round of lodging occurred when the crop was approaching the end of 
the booting stage (around May 1, 2018). Lodging subsequently became more 
severe as the crop approached maturity (June 10 onwards). During this period, 
CAI varied significantly from 3-5° in He plots to 9-79.5° in lodged plots with a 
COV of 0.11-0.37 (see Table 4.1). LA also varied dramatically from 0% (He) to 
100% (VSL) with a COV of 0.0-0.21 (Table 4.1). LS varied from 0.00 (He) to 
0.88 (VSL), with a standard deviation of 0.00-0.23 and COV of 0.00-0.45.  
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4.3.2 Correlation analyses of the backscattering coefficients and 
polarimetric parameters with lodging score 

We first calculated the Pearson correlation coefficients (r) between each RS-
based metric and LS to investigate the capability of RS to classify lodging 
severity. This further enabled us to interpret the classification results. A majority 
of the metrics obtained from R-2 data had a significant correlation with LS (Fig. 
4.5). In general, higher correlations between LS and R-2 metrics were obtained 
at a low incidence angle (R-2 FQ8) than those at a high incidence angle (R-2 
FQ21). Among the backscattering coefficients, σo

HV had the highest correlation 
with LS (r = 0.77) while σo

HH and σo
VV were moderately correlated to LS at a low 

incidence angle (0.50<r<0.70) (Fig. 4.5a). On the contrary, at a high incidence 
angle, σo

HV had a moderate correlation with LS (r = 0.67) while with σo
HH and 

σo
VV, the correlation was not significant (Fig. 4.5b).  

 
Among the polarimetric parameters, Span computed from low incidence angle 
data resulted in a positive, moderate correlation (r = 0.54) with LS. At the same 
time, CSI had a negative, moderate correlation at high incidence angle (r = -0.52) 
(Fig. 4.5). In both cases, a negative, low correlation was obtained between RFDI 
values and LS (r = -0.31 and -0.34, respectively). The parameters generated from 
different decomposition methods had contrasting r values at low and high 
incidence angle (Fig. 4.5). At low incidence angle, the volume scattering 
components (such as FD_vol, Yamaguchi_vol) were highly correlated with LS (r 
~ 0.75 in most cases) while at high incidence angle, double and surface scattering 
mechanisms had higher correlations (Fig. 4.5). The double bounce scattering 
components (such as FD_dbl, Yamaguchi_dbl) were negatively correlated while 
the surface scattering components (such as FD_surf, Yamaguchi_surf) had 
positive correlations with LS (Fig. 4.5). On the other hand, in the case of S-1 data, 
the backscattering coefficients were more significantly correlated with LS (r = 
0.65) than the polarimetric parameters (r < 0.36) (Fig. 4.6). 
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(a) 

 

 
(b) 

 
Fig. 4.5. Pearson correlation coefficients (r) between lodging score (LS) and metrics 
derived from (a) RADARSAT-2 FQ8 (n=57) in black and (b) RADARSAT-2 FQ21 
(n=61) in blue. p-values are indicated at the end of the bars. Metrics with non-significant 
p-values (at 0.05 level of significance) are marked red. 
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Fig. 4.6. Pearson correlation coefficients (r) between lodging score (LS) and metrics 
derived from Sentinel-1 (n=118) in grey. p-values are indicated at the end of the bars. 
Metrics with non-significant p-values (at 0.05 level of significance) are marked red. 

4.3.3 PLS Discriminant analyses (PLS-DA) and accuracy 
assessment 

We used six metrics derived from S-1 data as an input to the model, while for the 
R-2 data, we used 36 metrics as the input. Fig. 4.7(a, c, e) shows a scatter plot of 
the classes grouped according to the first two PLS components for R-2 FQ8 
(incidence angle 27o), R-2 FQ21 (41°) and S-1 (40°) datasets, respectively. The 
ellipse surrounds the observations that are within the 95% confidence interval. 
The sensitivity (true positive rate) and 1-Specificity (false positive rate) as 
functions of the varying thresholds associated with each class are shown in Fig. 
4.7(b, d, f) for different datasets. The graphs present both estimated and cross-
validated ROC curves over ten training and test partitions at varying thresholds. 
If both the sensitivity and specificity at the threshold of x is high, it indicates 
excellent discrimination power at that threshold. Furthermore, the corresponding 
cross-validated AUC(CV) are presented in Table 4.2. Generally, the AUCs in the 
training and test data did not differ much, suggesting little overfitting in the LS 
classification.  
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Although distinct clusters were not evident for any class, the predictive capability 
of the models can be ranked roughly as fail (0.5<AUC<=0.6), poor 
(0.6<AUC<=0.7), fair (0.7<AUC<=0.8), good (0.8<AUC<=0.9) and excellent 
(0.9<AUC<=1.0) (Swets, 1988). One can note that for the classifier based on He 
and VSL observations, the predictive capability of the models was “good” and 
“fair”, respectively in terms of AUC(CV) (Table 4.2). It is apparent that most of 
the He and VSL samples are distinctly grouped for S-1, R-2 FQ8 and R-2 FQ21, 
with an AUC(CV) > 0.74. However, as seen in the scatter plots of Fig. 4.7, there 
was moderate to extreme mixing among the other lodging severity classes 
(mainly ML and SL) with the AUC(CV) ranging between 0.53 (fail) to 0.73 (fair), 
except for the SL class modelled with R-2 FQ21 data (AUC(CV) = 0.84).  
 
The S-1 model classified the ML class with a poor AUC(CV) value (0.64) while 
the SL class had the lowest separability (Fig. 4.7e). The mixing among the 
lodging severities (more extreme in ML and SL) is evident in Fig. 4.7e as well. 
The separability of the SL class enhanced by 25% (Table 4.2) with R-2 FQ8 
model (with respect to the S-1 model) while the AUC(CV) for the ML class was 
comparable to the S-1 model. In contrast, the AUC(CV) values for ML and SL 
increased considerably by 17% and 26% with the inputs from the R-2 FQ21 
model (with respect to the R-2 FQ8 model). The R-2 FQ21 model, however, 
performed fairly in terms of distinguishing the VSL class from the other classes 
(AUC(CV) = 0.75) in comparison to the other models (Fig. 4.7c, Table 4.2). 
 
We further assessed the classification accuracy for all the models using 
confusion/error matrices. We used cross-validated data to construct the standard 
confusion matrices for each dataset (Table 4.3). We converted the data in each 
cell of the matrix into percentages by dividing the number of pixels in each cell 
by the total number of pixels. The percentage figures in the matrix allow a 
straightforward comparison between the measurements derived from field 
reference data and the RS-based estimates. While it is apparent that some classes 
are more reliably classified than others (indicated via PA and UA), the OA and 
K are used to make quantitative comparisons of different models (Table 4.3).  
 
The first evaluation of the classifier results shows that the ability of PLS-DA to 
distinguish between He and VSL accurately is consistent across all the datasets. 
These results are in line with the ROC curves. The S1-based model had the lowest 
OA of 60% with a K of 0.42, ranging from PA of 22.2% for the SL class to 80.4% 
for the He class (Table 4.3). We can note that the SL class had the lowest PA 
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(22.2%) and UA (35.3%). Using the R-2 FQ8 and R-2 FQ21 data, the OA 
increased by 20% and 10%, with K of 0.60 and 0.49, respectively (Table 4.3). 
The low PA and UA of the ML class are consistent across all the datasets, with 
significant mixing with other classes.  
 
Table 4.2. Cross-validated area under the curve (AUC-CV) statistics for four lodging 
severity classes using Sentinel-1, RADARSAT-2 FQ8 and RADARSAT-2 FQ21 
datasets. 
 

Data He ML SL VSL 

S-1 0.85 0.64 0.53 0.84 

R-2 FQ8 0.86 0.62 0.66 0.84 

R-2 FQ21 0.85 0.73 0.84 0.75 

 
Table 4.3. Cross-validated confusion matrix, comparing reference and RS-based lodging 
severity classes using Sentinel-1 (He: n=51, ML: n=12, SL: n=25, VSL: n=30), 
RADARSAT-2 FQ8 (He: n=22, ML: n=5, SL: n=14, VSL: n=16) and RADARSAT-2 
FQ21 (He: n=29, ML: n=7, SL: n=11, VSL: n=14) datasets. Figures are in percentages. 
OA is the overall accuracy and K is the kappa coefficient 
 

 Reference data 
 R-2 FQ8 

Classified 
data 

 He ML SL VSL Sum 
He 31.58 8.77 3.51 0.00 43.86 
ML 1.75 3.51 1.75 0.00 7.02 

SL 5.26 1.75 19.30 1.75 28.07 
VSL 1.75 0.00 1.75 17.54 21.05 

Sum 40.35 14.04 26.32 19.30 100 
       
 PA 78.26 25.00 73.33 90.91  
 UA 72.00 50.00 68.75 83.33  
 OA 72%  K 0.60  

 
 Reference data 
 R-2 FQ21 

Classified 
data 

 He ML SL VSL Sum 
He 39.34 3.28 1.64 0.00 44.26 
ML 4.92 1.64 3.28 0.00 9.84 

SL 4.92 4.92 13.11 4.92 27.87 
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VSL 3.28 1.64 1.64 11.48 18.03 

Sum 52.46 11.48 19.67 16.39 100 
       
 PA 75.00 14.29 66.67 70.00  
 UA 88.89 16.67 47.06 63.64  
 OA 66%  K 0.49  

 
 Reference data 
 S-1 

Classified 
data 

 He ML SL VSL Sum 
He 31.36 0.85 5.93 0.85 38.98 
ML 0.85 4.24 2.54 3.39 11.02 

SL 5.08 0.85 5.08 3.39 14.41 
VSL 5.93 1.69 9.32 18.64 35.59 

Sum 43.22 7.63 22.88 26.27 100 
       
 PA 72.55 55.56 22.22 70.97  
 UA 80.43 38.46 35.29 52.38  
 OA 60%  K 0.42  

 
Lastly, we applied the PLS-DA models on two R-2 (R-2 FQ21: May 31, R-2 FQ8: 
June 13) and two S-1 (May 31, June 6) images to map the lodging severity on 
those dates. We chose the closest acquisition date between R-2 and S-1 images 
to facilitate comparison. We masked out the non-wheat areas and generated four 
classified maps, as shown in Fig. 4.8. The four classes correspond to He, ML, SL 
and VSL categories. The maps indicate that lodging was widespread in the study 
site with more severely lodged patches in June when the crop was approaching 
maturity, thus agreeing with the general trends observed during our fieldwork.  
 
As illustrated in Fig. 4.8d, the FQ8 image from June 13 captured the spatial 
variability in lodging severity most effectively (OA = 72%). Fig. 4.8a and 4.8c 
show the lodging severity mapped with S-1 and R-2 FQ21 models, respectively 
for May 31. Table 4.3 and the classified maps reveal that with R-2 FQ21 data, 
variability in lodging severity is more effectively captured (OA = 66%) in 
comparison to the S-1 model which overestimated the healthy patches in some 
areas with an OA of 60%.  
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Fig. 4.8. Lodging severity maps generated from (a) Sentinel-1 data acquired on May 31, 
(b) Sentinel-1 data acquired on June 6, (c) RADARSAT-2 FQ8 data acquired on May 31 
and (d) RADARSAT-2 FQ21 data acquired on June 13 using PLS-DA models. He 
represents healthy samples, ML is moderately lodged, SL is severely lodged, and VSL 
corresponds to very severely lodged samples. “RADARSAT-2 Data and Products. 
MacDonald, Dettwiler and Associates Ltd. (2018) – All Rights Reserved. RADARSAT 
is an official trademark of the Canadian Space Agency.”  

4.4 Discussion 

In this paper, we presented the first comparative study on lodging severity 
classification based on lodging score using data from two sensors (R-2 data at 
different incidence angles and S-1 data). As a part of our preliminary data 
analysis, we studied the correlation between RS-based metrics and lodging score. 
We then used the input metrics generated from different SAR configuration 
satellites separately in a PLS-DA algorithm for classifying the lodging severity 
based on lodging score. The important findings are discussed below. 
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4.4.1 General characteristics of the backscattering coefficients and 
polarimetric parameters with respect to the lodging score 

SAR backscattering coefficients are primarily a function of crop structure (such 
as size, orientation and density of scatterers in the plant) and the dielectric 
properties of crop canopy as well as underlying soil moisture (particularly at 
initial phenological stages when the vegetation is scarce and more soil surface is 
exposed) (Chauhan et al., 2018; Forkuor et al., 2014). The trends vary from crop 
to crop and change with crop condition. In the study area, healthy wheat grew to 
its maximum biomass (up to 8.01 t/ha) during May before it reached the milking 
stage. The intensity of σo

HV at this time was close to -6.4 dB (R-2 FQ8) with an 
entropy of 0.94 (R-2 FQ8). It has been shown that the interaction of the incident 
waves with the top leaf layer in this scenario produces more surface/single bounce 
and double bounce scattering due to the dense canopy structure while random 
orientation results in volume scattering due to depolarisation (Jiao et al., 2014). 
By mid-June, wheat reached the senescence stage and the plants were dead and 
dry. This implies that there are fewer vegetative components available for 
attenuation. The σo

HV dropped significantly to -12.7 dB (R-2 FQ8) with an entropy 
of 0.37 (R-2 FQ8) as fresh biomass reduced.  
 
We can also make several insights on the sensitivity of multi-angular data to crop 
lodging based on the Pearson correlation analysis of backscattering coefficients 
and polarimetric parameters with LS. The strong correlation (>0.74) of volume 
scattering components (e.g., σo

HV, Yama_vol, VZ_vol, FD_vol, VSI, entropy) 
with LS at a low incidence angle indicates that an increase in lodging severity (or 
LS) leads to an increase in the amount of multiple scattering which causes the 
signal to depolarise, thus increasing the volume scattering (Fig. 4.5a). On the 
other hand, a moderate negative correlation of double bounce scattering 
components at a high incidence angle (R-2 FQ21, Fig. 4.5b) suggests that 
destruction of the vertical structure of the canopy after lodging results in a 
decrease in the double bounce scattering from the soil surface and upright stems. 
This decrease is mainly driven by the CAI component of LS, as also shown by 
Chauhan et al. (2020b). Contrarily, the positive correlation of surface scattering 
components with LS at a high incidence angle (R-2 FQ21, Fig. 4.5b) seems to 
depend on the LA component of LS. As the LS increases or lodging becomes 
very severe, the crop area is lodged flat on the ground resulting in more surface 
scattering. 
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As expected, CSI (ratio of σo
VV and σo

VV + σo
HH) which is an indicator of the 

relative importance of vertical versus horizontal vegetation structure (Pope et al., 
1994), had a negative correlation with LS (r = -0.52) at high incidence angle (Fig. 
4.5b). Since σo

HH favours double bounce scattering (Pope et al., 1992), this 
implies that crop structures dominated by vertical stems (and low double bounce) 
will lead to higher CSI values. The BMI parameter, which is known to respond 
to changes in crop biomass, had a moderate correlation with LS at low (r = 0.48) 
and high (r = 0.33) incidence angle (Fig. 4.5). Field observations show that the 
average fresh biomass of He wheat (LS = 0) during the period was 4.42 t/ha, 
while for lodged wheat, the average fresh biomass was close to 4.98 t/ha (Table 
4.1). The moderate correlation can be explained by the small change in the 
average fresh biomass of lodged wheat. Pedestal height which is characteristic of 
volume scattering and is directly proportional to vegetation density or the 
vegetation cover (Evans et al., 1988; McNairn et al., 2002), had a moderate 
correlation with LS (r = 0.45) (Fig. 4.5). At the time of lodging, the vegetation 
cover increases due to an increase in the LA (Sher et al., 2018). The RFDI index 
(ratio of σo

HH - σo
HV and σo

HH + σo
HV), on the other hand, decreased with the 

increase in LS at both low (r = -0.31) and high (r = -0.34) incidence angle (Fig. 
4.5). RFDI assesses the strength of double bounce scattering and decreases with 
increasing lodging severity since the σo

HH term (in RFDI index) is sensitive to 
both volume and double bounce scattering (Mitchard et al., 2012) while σo

HV is 
sensitive to volume scattering.  

4.4.2 Performance of PLS-DA models for lodging severity 
classification 

The results of this study demonstrate that the classification of lodging severity 
(based on LS) using SAR RS data is feasible. We applied the models developed 
using PLS-DA on two R-2 images with different incidence angles and two S-1 
images. Each dataset has varying spatial resolution and a different number of 
polarimetric channels.  
 
The consistent performance of the PLS-DA algorithm is demonstrated by the 
class-specific accuracies (Table 4.3). The models classified the He and VSL 
classes with high PA and UA while there was some degree of mixing in the ML 
and SL classes (higher in case of S-1 data). The high accuracy of the He and VSL 
classification can be attributed to the wide separation in the range of the LS values 
for both classes (0.0 and 0.61-1.0), which correspond to distinct crop structural 
attributes (e.g. CAI, plant height, etc.) which reduces the probability of erroneous 
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placements of validation pixels to any other class. However, in the case of ML, 
our field records show that at least 50% of the healthy crop in ML plots had turned 
yellow, the plant water content was very low while the lodged patches suffered 
from a phenological delay. This might have attributed to the confusion between 
ML and other classes. This observation is, in particular, coherent with the 
commission error that occurs mainly in the SL class. Considering the level of 
detail (different lodging severities) and complexity (random and heterogenous 
lodging distribution) in the lodged crop canopy, the achieved accuracies assured 
by rigorous cross-validation of PLS-DA models are very promising. AUC-ROC 
and confusion matrices contributed differently to the accuracy assessment of the 
classification models. Since the class distribution was skewed in this study, the 
ROC curve proved to be a better measure of the classification performance. We 
suggest that in general, AUC values can be considered as a measure to indicate 
the discriminability between different class pairs while the OA derived from the 
confusion matrices can be used to evaluate the overall performance of the models.  
 
Overall, the use of low incidence angle R-2 FQ8 data outperformed high 
incidence angle R-2 FQ21 and S-1 data for classifying lodging severity. This 
ranking of performance can be explained as follows. Microwave scattering from 
a crop canopy is dependent on many sensor parameters such as SAR wavelength, 
polarisation and incidence angle (Soria-Ruiz et al., 2009). Besides, the spatial 
resolution and radiometric quality of the data also affects the backscatter signal 
(Bovenga et al., 2018). This can result in the contribution of different and/but 
complementary information. Although both S-1 and R-2 (FQ8/FQ21) sensors 
operate at C-band, differences in other characteristics such as polarisation (dual 
and quad-pol), incidence angle (40° and 27°/41°), radiometric accuracy (1 dB and 
<1 dB) and spatial resolution (15×15 m and 10×10 m/7×7 m) resulted in better 
performance of R-2 data. The higher accuracy of R-2 FQ8 model contrary to that 
of R-2 FQ21 indicates that the incidence angle has a higher impact on lodging 
detection than spatial resolution of the radar image. 
 
In this study, we tested a new approach to map lodging severity with both 
commercial and freely available satellite imagery. S-1 data shows potential for 
crop lodging monitoring at the global, national and regional scales. The 
unprecedented availability of dense time-series of SAR data with a high spatial 
resolution with no acquisition costs presents a new opportunity for operational 
assessment of lodging severity in NRT. This potential was not explored to date. 
A key question is a degree to which the high temporal observation density of S-
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1 dual-polarised SAR data can compensate for the lower sensitivity to detect 
lodging severity when compared to quad-polarimetric R-2 SAR data. Our results 
show that relatively small but abundant changes in crop lodging condition, such 
as changes in moderately or severely lodged areas, could not be detected by S-1 
as efficiently as R-2 FQ8 data. The R-2 FQ8 data (with higher spatial resolution, 
higher range of incidence angles with more polarimetric information) quantified 
and mapped these changes at a fine spatial resolution. 
 
Furthermore, the classified maps (Fig. 4.8) can serve as a valuable baseline for 
evaluating the utility of SAR data for mapping lodging severity in wheat. The 
identification of lodging severities within agricultural fields can be used by the 
farmers or insurance adjusters to support insurance claims, can contribute to in-
field navigation routes to minimise harvesting losses and deliver accurate crop 
lodging inventories with consistency and reliability. Studies also show that an 
accurate assessment of LS can enable prediction of lodging-induced yield losses 
(Xiao et al., 2015). If the number of days that the crop has been lodged is known, 
LS can be multiplied with this number to get the lodging duration. Yield is 
estimated to reduce by 1% for every two days of lodging duration in the milking 
stage (Stapper et al., 2007).  
 
Future efforts can be aimed at improving the overall accuracy of classifying 
lodging severity based on LS with the following points in mind. We believe that 
the simplicity of our approach for measuring the crop lodged area visually in the 
field (quadrant method) could have been a potential cause of error due to factors 
such as omission and misstatement. A more robust and objective methodology 
might be needed to get better estimates of the lodged area in the plot size as big 
as 60×60 m. Secondly, the backscatter recorded by a radar system contains 
information about dielectric properties and geometrical structure of the crop, 
which makes it challenging to interpret SAR images (Xu et al., 2012). Moreover, 
being a coherent measuring system, the signal received by the radar system is 
affected by high coherent noise (speckle), which degrades image quality, 
reducing the classification accuracy (Gallego et al., 2008; Wang et al., 2015). The 
substantial spatial heterogeneity caused by the random distribution of lodged 
patches further aggravates the problem as there are chances of the noise being 
misinterpreted as crop lodging. It is also possible that the speckle filtering 
operations might result in loss of information related to spatial heterogeneities 
caused by lodging. 
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Model accuracy could be further improved by combining SAR and optical data 
(especially hyperspectral observations) in a multi-sensor approach, to account for 
risks associated with adverse atmospheric conditions and ensure continuity of 
data acquisition (Kussul et al., 2013; McNairn et al., 2009). For instance, 
McNairn et al. (2009) integrated SAR and optical data in a decision tree, neural 
network and supervised Gaussian Maximum-Likelihood Classifier (MLC) for 
crop classification. The study showed that the overall accuracies increased with 
MLC for SAR-optical classification, especially when limited optical images are 
available. The almost daily availability of Capella, ICEYE and RADARSAT 
Constellation Mission (RCM) SAR data and high temporal resolution of EnMap 
and PRISMA (in combination with all available sets of Sentinel-1 and Sentinel-
2 images) will help to overcome the problem of the image gap.  
 
While there have been a few studies that have utilised surface reflectance from 
airborne optical sensors to produce crop lodged area estimates (Sun et al., 2019), 
there is no research on the use of SAR data for the same. For instance, a study by 
Liu et al. (2018) has shown that incorporation of structure, texture and thermal 
information from time-series optical data can result in higher accuracy of crop 
lodged area estimation with R2 values greater than 0.90. In another study, Wilke 
et al. (2019) reported the R2 of 0.96 (RMSE=7.66%) while estimating crop lodged 
area based on RGB images with a slight overestimation of 2%. The authors used 
differentiated canopy height variations to determine thresholds to detect lodged 
areas. Unfortunately, these estimates are available for only very fine spatial 
resolution data (in the order of a few centimetres) and limited surface area (1-2 
ha) as acquired from aerial platforms such as UAVs. Data from the EO satellites 
can play an important role in delivering this information over large geographic 
areas at relatively low cost. There are no studies employing data (optical and 
SAR) from satellite-based platforms for quantitative estimation of crop LA. 
Nevertheless, there is no shortage of research on large scale crop area estimates 
mainly based on the spectral theory of green plants from coarse resolution 
MODIS data (Potgieter et al., 2013) to high-resolution Landsat-5/TM and 
RapidEye data (Gallego et al., 2014), which can be used as a reference for 
building algorithms for retrieving lodged area estimates.  
 
In our study, the temporal offset between the satellite images and the ground 
reference data ranged from 0-4 days, and therefore, this may also represent a 
potential error source. Another thing to note here is that the S-1 and R-2 FQ8 
images were acquired in the ascending pass (evening time) while due to user 
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conflicts and acquisition constraints, R-2 FQ21 data was obtained in the 
descending pass (morning time). Thus, while the effect of early morning dew on 
the backscatter was non-existent in the former case, it might have been a potential 
source of error in the latter case. Nonetheless, Wood et al. (2002) suggest that the 
presence of dew can cause an absolute increase in the backscatter. Still, the 
relative differences remain similar due to a high correlation between the 
backscatter of ascending and descending orbits.  
 
Overall, our work opens up a new avenue for research to explore the use of RS-
based information for crop lodging. This has the potential for tactical and 
strategic applications to help manage and mitigate crop lodging, which is a major 
yield-reducing factor in cereal crops cultivation.  

4.5 Conclusions 

Existing information on lodging severity is scarce, which limits actions to address 
this important yield-limiting factor. Satellite-based RS data allows monitoring of 
the status and variation in crop condition during the growing season. In particular, 
microwave data can capture information related to structural and dielectric plant 
properties. The assessment of crop lodging is nevertheless challenging due to the 
unavailability of frequent microwave data at high spatial resolution. To the best 
of our knowledge, this study represents the first attempt to compare the 
performance of high-resolution satellite data acquired from different sensors to 
assess lodging severity using a quantitative crop lodging score. 
 
We presented a discriminant analysis approach that integrated a partial least 
squares method (PLS-DA) and metrics derived from satellite data to distinguish 
between different lodging severities (He, ML, SL and VSL). We assessed the 
accuracy of the cross-validated models for each dataset using AUC-ROC and 
confusion matrices and applied them to classify and map lodging severity.  
 
Our results show that at low incidence angle (R-2 FQ8), volume scattering 
components had a higher correlation with LS (r ~ 0.75 in most cases). In contrast, 
double bounce and surface scattering were more prominent at high incidence 
angle (R-2 FQ21). The polarimetric parameters such as CSI, BMI, pedestal height 
and RFDI had a moderate correlation with LS. Among the applied models, the 
low incidence angle R-2 FQ8 (27°) model discriminated different class pairs with 
the highest AUC and resulted in the highest OA and Kappa (72% and 0.60, 
respectively) values. The performance of S-1 (40°) and R-2 FQ21 (41°) were 



Chapter-4 

107 

comparable with OAs of 60% and 66% respectively. High PA and UA for He and 
VSL classes were consistent across the three datasets while there was 
considerable mixing between the ML and SL classes. These results are important 
in the context of operational crop lodging assessment in particular, and 
sustainable agriculture in general.  
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Abstract 

Identifying the time of crop lodging incidence is essential for facilitating crop 
pricing and informing crop management decisions for sustainable agricultural 
production. While a few studies have demonstrated the potential of optical and 
SAR data for crop lodging assessment in general, large-scale identification of the 
time of lodging incidence in wheat has been hampered by the unavailability of 
dense satellite time-series data. The unprecedented availability of free Sentinel-1 
and Sentinel-2 data may provide a basis for operational detection and monitoring 
of crop lodging. In this context, this study aims to investigate the potential of 
time-series Sentinel-1 and Sentinel-2 data for identifying the time of lodging 
incidence in wheat and understanding the effect of lodging on the remote sensing 
signal. We measured the crop biophysical parameters in the field for both healthy 
and lodged plots from March to June 2018 in a study site in Ferrara, Italy, and 
processed the corresponding Sentinel images. We further categorised the lodged 
plots into different lodging severity classes (moderate, severe and very severe) 
based on lodging score. We studied the temporal profiles of backscatter, 
coherence, reflectance and continuum removed spectra for healthy and lodging 
severity classes throughout the stem elongation to ripening phenological stages. 
We used Kruskal Wallis and posthoc Tukey tests to analyse if there were 
significant differences between different classes. Our results showed that red 
edge (740 nm), NIR (865 nm) and the VH backscatter could best distinguish 
healthy from lodged wheat. In contrast, VV and VH/VV backscatter were 
complementary in distinguishing the maximum number of classes. Moreover, 
with the time-series analysis of Sentinel-1 and Sentinel-2 data, it was possible to 
indicate a plausible window of the main lodging event, thus demonstrating the 
potential of Sentinel data for near real-time identification of the time of lodging 
incidence and severity of lodging in wheat. To the best of our knowledge, no 
study has contributed to this application. 
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5.1 Introduction 

Lodging, defined as the permanent displacement of plant shoots from their 
upright position (stem lodging) or destruction of the root anchorage (root 
lodging), is a major yield-limiting factor in cereal crops, including wheat (Zhang 
et al., 2017). Apart from reducing grain yield (Fischer and Stapper, 1987; Tripathi 
et al., 2005), lodging can cause several knock-on effects such as increased drying 
costs, deterioration of grain quality and slowed harvest (Berry et al., 2004). 
Accurate and timely detection of crop lodging can help farmers improve crop 
yield forecasts, guide harvest operations and contribute to optimum crop pricing 
(Ceballos et al., 2019; Shah et al., 2017). Field-based approaches – that use visual 
inspection- are the most common methods to assess lodging and detect the time 
of its incidence (Chauhan et al., 2019a), but are infeasible for areas larger than a 
few hundred hectares. Moreover, the accuracy of these methods is subjective to 
the skill, experience and consistency of the observer (Bock et al., 2010). RS offers 
a more cost-effective and scalable approach (Yang et al., 2015).  
 
Only a few studies have explored the use of optical and SAR data for crop lodging 
assessment. For instance, Ogden et al. (2002) and Liu et al. (2014) used airborne 
optical data to investigate the role of spectral and textural information to measure 
the extent of lodging and improve lodging classification accuracy. Chauhan et al. 
(2019b) analysed the spectral variability between different lodging stages using 
high-resolution multispectral data acquired by UAVs. However, to date, no study 
has utilised satellite-based optical time-series data to identify the time of lodging 
incidence and its severity. 
 
The earliest works that used SAR data for lodging assessment can be traced back 
to the works of Bouman and van Kasteren (1990b) and Bouman (1991b). They 
analysed the temporal backscatter trends of X-band scatterometer data to study 
lodging-induced changes in wheat. In a recent study, Shu et al. (2019) 
investigated the potential of Sentinel-1 satellite data for quantitative assessment 
of maize lodging. The results showed that the VH/VV ratio was sensitive to non-
lodged maize, while VV backscatter was sensitive to lodged maize. A few studies 
have also demonstrated the ability of polarimetric SAR to distinguish lodged and 
healthy areas (Chen et al., 2016; Yang et al., 2015; Zhao et al., 2017). For 
instance, Chauhan et al. (2020b) explored the potential of Sentinel-1 and 
RADARSAT-2 SAR data for estimating crop angle of inclination (CAI) as a 
measure of lodging stage in wheat. The study highlighted the importance of 
Sentinel-1 time series data, in the context of the operational assessment of CAI-
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based lodging stage, as it could explain 78% of the variability in CAI. These 
studies have primarily focused on the detection, classification and quantitative 
assessment of lodging; however, large-scale identification of the time of crop 
lodging incidence has been hindered by the lack of high spatial resolution dense 
time-series SAR data. The analysis of dense time-series satellite data may further 
improve our understanding of how lodging affects spectral and backscatter 
signals from the crop canopy and how RS data can be used to identify the time of 
lodging incidence.  
 
Identifying the time of lodging incidence and its severity from RS is challenging 
due to a combination of factors such as the unavailability of low-cost, high spatio-
temporal resolution data and the absence of a standard scale to represent lodging. 
Moreover, collecting field data related to lodging damage can be a daunting task 
due to its heterogeneous distribution within and across fields. The Sentinel-1 and 
Sentinel-2 missions provide fine spatial resolution imagery with revisit times that 
offer an unprecedented capacity for land surface monitoring applications such as 
identifying the time of lodging incidence. In this context, the main objectives of 
this study are to assess the capability of Sentinel-1 and Sentinel-2 time series data 
for detecting when lodging occurs in wheat and understanding the change in 
backscatter/coherence and reflectance spectra due to lodging. Our study benefits 
from measurements performed in actual lodged field conditions. 

5.2 Materials and methods 

5.2.1 In situ measurements 

We identified 76 plots (Fig. 5.1), each measuring 60×60m, based on a stratified 
random sampling and the wheat planting plans of the farm. Several cultivars of 
winter wheat were planted in 600 of the 3,850 hectares: Altamira, Bologna, 
Claudio, Giorgione, Marco Aurelio, Massimo Meridio, Monastir, Odisseo, 
PR22D66, Rebelde and Senatore Capelli. We collected field data from each plot 
between March 14 and the end of June 2018 when the crop was harvested. Each 
plot was revisited three times during this period, resulting in 228 samples. Five 
important phenological stages were covered during this period: stem elongation, 
booting, flowering, milking and ripening. The first few instances of lodging were 
recorded towards the end of the booting stage.  
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Fig. 5.1. A false-colour RGB composite of a Sentinel-2 scene acquired on April 19, 
2018 containing the study area (Bonifiche Ferraresi farm) overlaid with the sampling 
points (white dots) over the wheat fields and the farm boundary (black outline). 
 
We measured the crop angle of inclination from the vertical (CAI, [0-90°]) and 
lodged area (LA [0-100%]) in each plot to determine if the plot was healthy (He) 
or lodged. We measured CAI from the vertical using a plumb bob, a measuring 
tape and trigonometric calculations (Chauhan et al., 2020a). We suspended the 
string of the plumb bob from the top of the plant head such that the tip of the 
plumb bob just touched the ground, ensuring accurate measurement of the vertical 
height (hv) (Fig. 5.2). For lodged plants, we used a measuring tape to measure the 
slant height (hsl). We then calculated CAI from the vertical using the 
measurements shown in Fig. 5.2 and in equation 5.1.  
 
We also visually assessed LA using a quadrant method (Chauhan et al., 2020b). 
From the centre of each plot, we visually assessed the percentage of LA in each 
of the four quadrants (Fig. 5.3b) and averaged them to obtain a representative LA 
for the plot. A scenario is illustrated in Fig. 5.3 for a lodged plot, depicting the 
distribution of lodged and He subplots. In He plots, we carried out the crop 
biophysical measurements in three subplots (2×2m) while in lodged plots, we 
increased the number of subplots to 4-8 (depending on the LA) to account for the 
spatial heterogeneity of lodged patches.  
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Fig. 5.2. Measurement technique for crop angle of inclination using a vertical plumbob 
(Chauhan et al., 2020a). θ and θ’ is the crop angle of inclination (CAI) with respect to the 
vertical and soil surface, respectively. hs and hw is the height of the string and the 
heavyweight at the bottom of the plumbob, respectively, hL (hs + hw) is the total vertical 
height of the lodged plant, hsl is the slant height of the plant measured from the soil surface 
to the tip of the head of the longest tiller with a measuring tape (θ) 
 

Ɵ ሺ𝑑𝑒𝑔𝑟𝑒𝑒ሻ ൌ 90଴ െ sinିଵ ℎ௅

ℎ௦௟
 

(5.1) 

 
We then calculated a normalised lodging score index (LS, [0-1]) combining CAI 
and LA to define healthy and lodging severity classes (equation 5.2) as also 
mentioned in Chauhan et al. (2020b). If no lodging was observed within a plot, 
then we labelled the plot as He (LS = 0.0, n=160). In the event of lodging, the 
plots were categorised as moderately lodged (ML) (0.0<LS<=0.30, n=12), 
severely lodged (SL) (0.31<LS<=0.60, n=25) and very severely lodged (VSL) 
(0.61<LS<=1.0, n=31). The summary statistics of these parameters are shown in 
Table 5.1. 
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Fig. 5.3. (a) Illustration of lodged/healthy subplots and the plot centre in real field 
conditions (b) Division of the plot into four quadrants Q1, Q2, Q3 and Q4. LA1, LA2, 
LA3 and LA4 correspond to the lodged area in each quadrant. In this scenario, L1, L2, 
…, L6 represent the lodged subplots while H1 and H2 are the healthy subplots. The CAI 
is calculated by averaging the sampled CAI and LA estimated in the six lodged subplots 
and in each quadrant, respectively.  
     

𝐿𝑆 ൌ
𝐿𝐴%
100

∗
𝐶𝐴𝐼
90௢  

(5.2) 

 
Table 5.1. Summary statistics of measured CAI, LA and LS for all samples (healthy 
(n=160) and lodged (n=68)) throughout the stem elongation to ripening phenological 
stages. COV is the coefficient of variation. 
 

Parameter Mean Min. Max. Std. Dev. COV 

CAI (o) 17.33 1.00 79.50 25.83 1.49 

LA% 25.53 0.00 100.00 40.83 1.60 

LS 0.162 0.00 0.88 0.28 1.76 

 
We also collected other biophysical parameters such as plant height, leaf area 
index (LAI), mean leaf angle (MLA), SPAD readings, fresh/dry biomass 
(FB/DB), plant water content (PWC) and soil moisture and obtained 
meteorological data (daily-cumulated rainfall and windspeed) from a local 
automatic weather station (located at 44o51'22.9''N, 11o57'51.0''E) to facilitate 
interpretation of the results. The summary statistics of these parameters are shown 
in Table 5.2. We measured the LAI non-destructively using an LAI-2200 Plant 
Canopy Analyser. In each subplot, we made two above-canopy and six below-
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canopy radiation measurements using a view restrictor of 45o with the sun behind 
the operator and then we averaged the readings from the subplots. We also made 
chlorophyll measurements using a SPAD-502, which measures the transmittance 
in the red (650 nm) and NIR (920 nm) regions. We took readings from 10 leaves; 
representing the dominant crop state in each subplot and averaged them. We 
measured average soil moisture using a calibrated Stevens Hydra Probe. For 
measuring biomass, we destructively sampled the plants in each subplot (0.2×0.2 
m2). We placed the samples in a zip-locked plastic bag, transported them to the 
on-farm laboratory and processed them on the day of collection. We measured 
the FB using a high-precision digital scale. We then dried the samples in the oven 
for 72 hours at 60oC and weighed the DB.  

5.2.2 Remote sensing data acquisition and pre-processing 

We acquired a set of 19 Sentinel-1 (A/B) and eight Sentinel-2 (A/B) images over 
the study area between March 14 (day of the year or DoY 73) and June 30, 2018 
(DoY 181) (Fig. 5.4). The Sentinel-1 (hereafter referred to as S-1) images were 
acquired in Interferometric Wide swath dual-polarisation (VV and VH) mode 
from the Copernicus Open Access (COA) Hub of the European Space Agency 
(ESA, 2015). We obtained both ground range detected (GRD) and single look 
complex (SLC) formats to extract backscatter intensity (σo) and interferometric 
coherence (µo) respectively. 
 

 
Fig. 5.4. Acquisition dates of Sentinel-1 and Sentinel-2 data during the 2018 wheat 
growing season. 
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Studies reveal that early morning dew can increase the backscatter from a crop 
and hence should be considered when extracting quantitative crop information 
from SAR imagery (Wood et al., 2002). To address this, we selected the S-1 
images only from the ascending (ASC) pass (acquired at approximately 5:00 PM 
local time). Other satellite specifications are shown in Table 5.3.  
 
For GRD image pre-processing, we first updated the orbit information of the 
images and then co-registered and geocoded them in SARscape 5.5 using the 
approach outlined in Nelson et al. (2014b) to get normalised σo values (in dB). 
For the SLC products, we used the coherence change detection (CCD) processing 
chain of SARscape to produce geocoded coherence maps. The interferometric 
coherence (µo) ranging from 0-1 (1 being perfect coherence), is the amplitude of 
the complex correlation coefficient between two SAR images (s1 and s2) and is 
mathematically defined as: 

             𝜇௢ ൌ  
|〈௦భ௦మ

∗〉|

ඥሺ〈௦భ௦భ
∗〉〈௦మ௦మ

∗〉ሻ
                   (5.3) 

where s* is the complex conjugate of s; and 〈〉 is the ensemble average (Touzi et 
al., 1999). We calculated µo (μo

VV and μo
VH) between every adjacent image pair 

(e.g. date-1, date-2; date-2, date-3; …; date-n-1, date-n) to achieve the lowest 
temporal baseline (i.e. six days). 

 
Table 5.3. Satellite specifications for Sentinel-1 data. Note that the range of the incidence 
angle is specific to the location of the study site within the swath. 
 

Parameter Specification 

Wavelength C-band 

Frequency 5.405 GHz 

Product type GRD, SLC 

Acquisition mode IW 

Incidence angle 39.7-40.4o 

Pass ASC 

Polarisation VH, VV 

Spatial resolution (resampled) 15m 

Repeat cycle 6 days 

No. of looks (range× azimuth) 7×1 

 
We obtained standard Sentinel-2 (hereafter referred to as S-2) Level-2A products 
in UTM/WGS84 projection with bottom of atmosphere (BOA) reflectance from 
COA hub. The S-2 Multispectral Imager (MSI) has 13 spectral bands in the 
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visible (VIS), red edge, NIR and SWIR domains. Table 5.4 provides an overview 
of the 13 bands. Pre-processing of the S-2 spectral data included eliminating B1, 
B9 and B10 since they were not relevant for this work and resampling of the 
bands to 10 m in SNAP toolbox 5.0.  

 
Table 5.4. Specifications of the Multi-Spectral Imager (MSI) onboard the Sentinel-2 
satellite.  
 

Spectral band Centre 
wavelength (nm) 

Bandwidth 
(nm) 

Spatial 
resolution (m) 

B1 Coastal aerosol 443 20 60 
B2 Blue  490 65 10 

B3 Green  560 35 10 
B4 Red  665 30 10 

B5 Red edge1 (RE1) 705 15 20 
B6 Red edge2 (RE2) 740 15 20 
B7 Red edge3 (RE3) 783 20 20 

B8 NIR1  842 115 10 
B8a NIR2  865 20 20 

B9 Water vapor 940 20 60 
B10 SWIR Cirrus 1375 30 60 

B11 SWIR1 1610 90 20 
B12 SWIR2 2190 180 20 

 
For the lodged field samples, we selected the images that were available on the 
same date or immediately after the field observation date (not earlier, since 
lodging may not have happened). For the healthy samples, we selected the images 
which belonged to the same or earlier than the field observation time (not later 
since lodging may have happened). In our study, we could acquire only eight 
cloud-free S-2 images (as opposed to 19 Sentinel-1 images) available during the 
observation period. Thus, only 120 samples could be used for the spectral analysis 
of S-2 data while for S-1 data, all samples (n=228) were analysed. 

5.2.3 Data analysis 

For every plot, we extracted the mean σo, µo and reflectance values from S-1 and 
S-2 images and grouped them based on their lodging score. We performed the 
following time-series analysis from S-1 and S-2 data to understand the difference 
between He and lodged wheat plots and possibly detect the incidence of initial 
lodging event.  
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Using S-2 data, we first studied the influence of phenological stage and cultivar 
differences on the reflectance spectra and the continuum removed spectra of only 
He plots. We then analysed the reflectance spectra and the continuum removed 
spectra of He in comparison to other lodging severity classes for two scenarios: 
from stem elongation to ripening stage (i.e. for the entire observation period) and 
at the milking phenological stage (i.e. for a specific phenological stage). We 
tested the second scenario to disentangle the effect of the crop growth on the 
spectral curve from the lodging effect. Continuum removal normalises the 
reflectance spectra to a common baseline by fitting a convex hull over the top of 
the spectrum so that individual absorption features can be compared (Kokaly and 
Clark, 1999). The reflectance at a particular wavelength is divided by the values 
of the hull at that wavelength, giving a relative absorption value between 0 and 1 
(Clark and Roush, 1984). We also calculated the absorption band depth (BD) at 
each wavelength by subtracting one from the continuum-removed value and used 
this to compare the difference between He and lodging severity classes. Similarly, 
for S-1, we generated five metrics (σo

VV, σo
VH, σo

VH/VV, μo
VH and μo

VV) and 
analysed the time-series for He and other lodging severity classes for the two 
scenarios. 
 
We used the Kruskal Wallis rank-sum test (Kruskal and Wallis, 1952) to assess 
the statistical differences of the sample means among the lodging classes. This 
test is particularly useful for comparing statistical differences among more than 
two groups (four in our case) with respect to a dependent variable (MacFarland 
and Yates, 2016). We then used a post hoc Tukey’s Honest Significant Difference 
(HSD) test to find significant pairwise differences among the classes. Tukey’s 
HSD (equation 5.4) compares all possible pairs of group’s means with each other 
to find out which specific group means are different. 
 

𝐻𝑆𝐷 ൌ
𝑀௜ െ 𝑀௝

ට𝑀𝑆௪
𝑛௛

 
(5.4) 

 
where Mi-Mj is the difference between the pair of means given Mi > Mj; MSw is 
the mean square within and n is the number of groups. 
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5.3 Results and Discussion 

5.3.1 Spectral analysis from Sentinel-2 data 

5.3.1.1 Influence of phenological stage and cultivar differences on the 
spectra of healthy wheat 

The average spectral profile and continuum removed spectra of He plots are 
shown in Fig. 5.5a and 5.5b, respectively. The lowest reflectance values in the 
NIR spectral region were observed in the early vegetative stage (stem elongation), 
where LAI (2.2) and FB (stems and leaves) were low (1.69 t/ha) and soil had a 
dominant effect on the reflectance. With the increase in FB and LAI to 3.62 t/ha 
and 3.78, respectively in the booting stage, the NIR reflectance also increased 
(which is related to an increase in leaf intercellular spaces and change of the dry 
leaf mass). The highest absorption peak at ~665 nm also characterised the booting 
stage (Fig. 5.5b) (BD = 0.83), which could correspond to the presence of high 
chlorophyll content (SPAD = 44.58). Maximum reflectance in the NIR was 
observed in the flowering stage, which is coincident with the highest average 
values of LAI (5.23) and peak FB values (3.9 t/ha) (composed of stems, leaves 
and heads). In the NIR region, the reflectance decreased due to the probable 
increase in the number of senescent leaves which causes the mesophyll structure 
to collapse into more compact horizontal layers (Bunnik, 1978). As the crop 
approached maturity, the crop reflectance spectra lost the typical vegetation 
features with a continuous increase in the VIS range similar to that of soil. During 
ripening, as the plants began to senesce, the chlorophyll concentration (SPAD = 
24.24) along with moisture content declined (PWC = 49.50%), which might have 
increased the reflectance in visible (pigment reduction) and SWIR (drying 
processes) regions (Fig. 5.5a). The absorption peaks in the entire spectrum were 
almost non-existent (maximum BD = 0.07) (Fig. 5.5a). These results are 
consistent with the observations made by Leamer et al. (1980), Miglani et al. 
(2011), Sun et al. (2010) and Xavier et al. (2006). 

 



Understanding wheat lodging using time-series Sentinel-1 and Sentinel-2 data 

122 

 

 
Fig. 5.5. (a) Average spectral reflectance variation and (b) continuum removed spectra 
for healthy wheat plots at the stem elongation (n=15), booting (n=15), flowering (n=5), 
milking (n=15) and ripening (n=9) phenological stages. 
 
Fig. 5.6a and 5.6b show the average spectral reflectance and the continuum 
removed spectra of major He wheat cultivars at the milking phenological stage. 
We chose the milking phenological stage since the highest lodging incidence 
rates were recorded at this stage. The profiles have been physically interpreted as 
a function of the differences in biophysical/biochemical properties at the milking 
phenological stage (see Table 5.5) for four different wheat cultivars: PR22D66, 
Odisseo, Monastir and Marco Aurelio.  
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Fig. 5.6. (a) Average spectral reflectance variation and (b) continuum removed spectra 
for plots with healthy wheat cultivars: PR22D66 (n=5), Odisseo (n=2), Monastir (n=4) 
and Marco Aurelio (n=4), at the milking phenological stage. 
 
Table 5.5. Average biophysical/biochemical properties of plots with healthy wheat 
cultivars: PR22D66 (n=5), Odisseo (n=2), Monastir (n=4), and Marco Aurelio (n=4), at 
the milking phenological stage. The maximum values are in bold for each plant/soil 
parameter. 

Cultivar 
Plant 

height (m) 
LAI 

FB 
(t/ha) 

SPAD 
reading 

PWC 
(%) 

Soil moisture 
(%) 

PR22D66 0.75 2.93 4.95 43.95 74.13 40.00 

Odisseo 0.91 3.72 5.26 45.51 79.61 44.05 

Monastir 0.71 4.81 6.05 49.73 77.87 37.24 

Marco 
Aurelio 

0.81 2.76 3.50 34.69 59.68 43.17 
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In the visible region, the mean reflectance of PR22D66, Odisseo and Monastir 
are almost similar (1.8%) while for Marco Aurelio, it went up to 5.7% (with the 
lowest absorption in red region-665 nm) (Fig. 5.6a, b). Since chlorophyll content 
has a significant effect on the reflectance of visible light, we observed that this 
effect is in agreement with the chlorophyll (SPAD readings) of the investigated 
cultivars (Table 5.5). Several studies have shown that a linear or curvilinear 
relationship exists between SPAD readings and wheat chlorophyll content (James 
et al., 2002; Wood et al., 1993). In the NIR region, the interaction of incident 
radiant flux with the crop canopy is primarily related to the intercellular scattering 
within the leaves and hence is governed by the crop structural parameters such as 
LAI, canopy cover (fCover) and crop FB/DB (Bunnik, 1978). The lowest 
reflectance of Marco Aurelio in the NIR region (32.4%) corresponds to lower 
LAI and lower FB values of this cultivar (Table 5.5). Monastir, on the other hand, 
has the highest reflectance (45.7%) in this region, which can be explained with 
high LAI (4.81) and high FB (6.05 t/ha). The vegetation reflectance in SWIR 
region (1400-2500 nm), particularly the reflectance at 1530 and 1720 nm 
wavelengths are influenced by several factors such as PWC, dry matter content, 
LAI, FB/DB, MLA and CAI (Ali et al., 2015; Darvishzadeh et al., 2019b, 2019a; 
Faurtyot and Baret, 1997). In Fig. 5.6, the high reflectance for the Marco Aurelio 
cultivar in the SWIR region is mainly explained by low PWC (59.68%), lower 
FB (3.5 t/ha) and LAI (2.76) compared to the others (Table 5.5). 

5.3.1.2 Spectral behaviour of healthy and lodged wheat throughout the 
observation period 

Fig. 5.7 shows the spectral behaviour of He and different lodging severities from 
stem elongation until the ripening stage. He represents the average spectra of the 
healthy plots that remained healthy throughout the observation period. Similarly, 
ML, SL and VSL correspond to the average spectra of the lodged plots which 
were observed to be moderately, severely and very severely lodged, respectively 
at the end of the ripening stage. Table 5.6 and Table 5.7 provides the overall and 
pairwise p-value statistics, respectively, for the differences in the reflectance 
values across the spectral regions for different classes.  
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Fig. 5.7. Box plots presenting the reflectance variation in Sentinel-2 bands for healthy 
wheat plots (He (n=50)) and wheat plots with different lodging severities (ML (n=8); SL 
(n=7) and VSL (n=8)). Observations were taken from the stem elongation stage until the 
ripening stage.  
 
Differences in the spectra are clearly visible in Fig. 5.7. The overall magnitude 
of reflectance increased with the increase in lodging severity. In the visible region 
(447-683 nm), the mean reflectance of He wheat varied between 3.3 and 5.5% 
while it ranged from 6.8 to 12.2% for VSL (Fig. 5.7). The effect was more 
pronounced in the red edge (695-796 nm) and NIR (800-880 nm) regions (Fig. 
5.7). However, for ML and SL, the mean reflectances were quite similar (~31%). 
In the NIR region, the mean reflectance increased from 37% for He to 42%, 46%, 
and 58% for ML, SL, and VSL wheat respectively. In the SWIR region (1542-
2324 nm), the mean reflectance initially increased from 10% (He) to 18% (SL), 
and then saturated (Fig. 5.7). Overall, a clear upward trend was observed from 
He to VSL in all the spectral bands, which can be explained as follows.  
 
The changes in vegetation due to lodging become evident by an immediate or 
slow change in its biophysical/biochemical properties (e.g. uneven biomass 
accumulation in different parts of the plant, reduction in plant height, change in 
CAI, etc.). These changes in the biophysical/biochemical properties which are 
manifested in the reflectance characteristics (Darvishzadeh et al., 2008; Gitelson 
et al., 2003) of He and lodged plants are apparent in our results. The increase in 
the magnitude of overall reflectance after lodging in the VIS region is mainly due  
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to the reduction of plant chlorophyll content (VIS) as photosynthesis is disrupted 

due to self-shading (Alberda, 1977). This decrease progressively manifests with 
the number of days after lodging. In the NIR-SWIR region, the change of canopy 
structure (significant reduction of CAI) and consequent increase in the fCover 
and FB (in the NIR-SWIR region) and reduction of PWC (in the SWIR region) 
are major factors affecting the spectra. 
 
Furthermore, the blue and redshift of the red edge area is a critical component of 
spectral analysis of vegetation. A blue shift is visible in the red edge region, 
accompanied by an increase in overall reflectance (Fig. 5.7) which also suggests 
reduced chlorophyll concentrations in the lodged canopy. However, Fig. 5.7 also 
reveals that ML had abnormally high mean reflectance (even higher than VSL in 
some cases) in the visible and red edge region. Our field records show that at least 
50% of the healthy wheat in most of these ML plots had turned yellow, while the  
lodged patches suffered from a phenological delay (these patches were relatively 
underdeveloped). This might have increased the reflectance. 
 
The Kruskal Wallis test showed that majority of the spectral bands (green, RE1, 
RE2, RE3, NIR1, NIR2 and SWIR1) had statistically significant differences 
among different classes, with RE2 (central wavelength 740 nm) and NIR2 
(central wavelength 865 nm) being the most significant (Table 5.6). Additionally, 
the posthoc Tukey HSD (pairwise) comparison identified significant differences 
between He and ML (for blue, green and RE1), between He and SL (for SWIR1) 
and between He and VSL wheat (for RE2, NIR1, NIR2 and NIR3) (Table 5.7).  

5.3.1.3 Spectral behaviour of healthy and lodged wheat at the milking 
phenological stage 

We further analysed the average spectral reflectance of He plots and plots with 
different lodging severities across different spectral bands at a single (milking) 
phenological stage. Fig. 5.8 displays the average spectral reflectance curve and 
continuum removed spectra of He and lodged wheat plots at the milking 
phenological stage. We observed that lodging caused the red edge to shift towards 
shorter wavelengths (blue shift) (Fig. 5.8a) and there was an increase in the 
overall reflectance. He wheat plots had a higher BD at 665 nm (0.88) than ML 
(0.62), SL (0.63) and VSL (0.75) plots (Fig. 5.8b). In the SWIR region, which is 
sensitive to the variation in PWC, the highest absorption peak was observed at 
~1610 nm for He plots (BD = 0.37) (Fig. 5.8b). The SWIR reflectance for ML 
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(BD = 0.25), SL (BD = 0.18) and VSL (BD = 0.29) plots was higher than that 
from He plots. (Fig. 5.8a, b).  
 

 

 
Fig. 5.8. (a) Average spectral reflectance variation and (b) continuum removed spectra 
for healthy wheat plots (He (n=15)) and wheat plots with different lodging severities: ML 
(n=6), SL (n=6), and VSL (n=5) at the milking phenological stage.  
 
An in-depth analysis of the spectra of He plots for different wheat cultivars and 
lodged plots at the milking stage showed that change in mean reflectance due to 
cultivar differences is less than that due to lodging (Fig. 5.9). For instance, in the 
NIR region, the reflectance of He plots for different cultivars ranges from 32.4 to 
40.6% (encircled green in Fig. 5.9) while for the lodged classes, the reflectance 
range increases to 42.7-58% (encircled red in Fig. 5.9). In the VIS region, the 
average reflectance at 665 nm increased from 2.13 (He) to 8.10% (lodged), which 
is consistent with the reduction in SPAD readings from 43.47 to 34.21. However, 
in the SWIR region, the reflectance of the Marco Aurelio cultivar in He plots 
(18.9%) and ML plots (19.2%) at 1610 nm was similar (Fig. 5.9). Furthermore, 
the mean reflectance of SL (calculated from different cultivars) (23.03%) and 
VSL (calculated from different cultivars) (22.7%) classes were also similar at 
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1610 nm (Fig. 5.9). The comparison of average PWC values for He (72.89%), 
ML (72.11%), SL (65.83%) and VSL (54.45%) plots (not shown) indicates that 
PWC is probably not the only driver of the existing variation in SWIR region. 
Therefore, other factors such as variation in MLA (He: 54o and ML: 51o; SL: 44 

o and VSL: 41o) and increase in FB (He: 1.3 and ML: 1.5; SL: 1.6 and VSL: 2.3 
t/ha) might have had a bigger effect on the SWIR reflectance. 

 

 
Fig. 5.9. (a) Average spectral reflectance of plots with healthy wheat cultivars: PR22D66 
(n=5), Odisseo (n=2), Monastir (n=4) and Marco Aurelio (n=4) and those with different 
lodging severities (ML (n=6), SL (n=6), and VSL (n=5)) across multiple cultivars at the 
milking phenological stage. The green circle corresponds to the range of reflectance for 
the plots with healthy wheat cultivars while the red circle represents the range for plots 
with different lodging severities in the visible and NIR regions.  

5.3.1.4 Sentinel-2 time-series analysis to identify the time of lodging 
incidence 

We also analysed the time-series S-2 data as a function of time (DoY) for 
different lodging severities to see if we could identify the plausible time of 
lodging incidence. In this section, we only present the results for RE2 and NIR2 
spectral bands, since they were highly significant in distinguishing He and lodged 
wheat (Table 5.7). The average temporal reflectance (of RE2 and NIR2) for He 
and different lodging severities is presented in Fig. 5.10 along with the 
distribution of rainfall and wind speed for the same period. In both spectral  
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Fig. 5.10. Temporal average reflectance of healthy and lodged wheat plots in (a) red edge 
(740 nm) and (b) NIR (865 nm) spectral bands, and (c) rainfall and wind speed over 
Bonifiche Ferraresi farm where wheat was cultivated in 2017-2018. The blue profile in 
(a)-(b) correspond to healthy plot samples (n=59), the green profile is moderately lodged 
(n=12), the yellow profile is severely lodged (n=21), and the red profile is very severely 
lodged (n=28). In figure (c), the blue bars represent the daily-cumulated rainfall (mm). 
The daily average wind speed measured at 10 m from the ground (m/s) is displayed in the 
orange line. Vertical solid and dashed grey lines indicate Sentinel-1 and Sentinel-2 
acquisition days, respectively while dotted red bars represent the wheat phenological 
stage intervals. 
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regions, the temporal reflectance of He and lodging severity classes followed a 
similar pattern until DoY 115, after which some abrupt variations were observed. 
In the RE2 spectral band, the reflectance of VSL wheat increased considerably 
from 29% to 48% with respect to He post-DoY 115 while for ML and SL wheat, 
reflectance increased by only 4 and 8%, respectively (Fig. 5.10). A similar change 
was noticeable for the temporal reflectance in NIR2 band; however, it was less 
pronounced. Post DoY 115, the reflectance increased from 43 to 61% for VSL 
wheat (with respect to He) while for ML and SL wheat, it increased by 6 and 
7.5% respectively.  
 
The field records confirmed that all the plots were healthy prior to DoY 115 (end 
of booting), and a few plots were VSL close to DoY 115. Overall, from the 
temporal analysis of S-2 data, we can infer that the wheat plots might have lodged 
post-DoY 115, i.e. when the crop was approaching the end of the booting stage. 
The meteorological data (Fig. 5.10c) also reports a period of wind and heavy rain 
after DoY 120 that are likely to be the cause of further lodging events as detected 
by the change in reflectance after that (Fig. 5.10a, b). Our field records are 
consistent with this observation. However, due to the unavailability of (cloud-
free) satellite and field data every five days, it is difficult to state the exact date 
when the maximum (or all) number of plots had lodged. The results agree with 
the posthoc analysis presented in Table 5.7, which shows that He and VSL wheat 
can be distinguished in these spectral regions. Overall, we can say that different 
severity classes could be discriminated to some extent with the multispectral 
time-series data over the selected observation period. 

5.3.2 Backscatter and coherence analysis from Sentinel-1 data 

5.3.2.1. Backscatter and coherence analysis for healthy and lodged wheat 

The box plots in Fig. 5.11a and 5.11b show the change in backscatter and 
coherence metrics, respectively for He and lodging severity classes during the 
entire observation period. Fig. 5.11a shows a clear linear trend of increasing σo

VH 
and σo

VV with the increase in the lodging severity (from He to VSL). The inverse 
relationship of μo

VH and μo
VV with lodging score is apparent in Fig. 5.11b as these 

metrics decreased from He to VSL. However, no clear trend was noticeable, 
especially with μo

VV (Fig. 5.11b).  
 
Furthermore, Kruskal Wallis tests demonstrated significant differences between 
He and lodging severity classes with all the five metrics (as shown in Table 5.8). 
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However, the post-hoc Tukey test showed that while He could be distinguished 
from VSL using any of the five SAR metrics (Table 5.9), σo

VH outperformed the 
other metrics as it could discriminate five class pairs (out of six). With σo

VV, the 
difference between the lodging severity classes (ML, SL and VSL) was 
significant with respect to He (Table 5.9), but it failed to differentiate within the 
lodged classes (such as ML-SL, ML-VSL, and SL-VSL). σo

VV and σo
VH/VV 

however, seemed to provide complementary information since together, they 
could discriminate five class pairs (Table 5.9). Similar behaviour in the 
backscattering coefficients was evident among the classes at the milking stage 
(Fig. 5.11c). 
 

 
 
Fig. 5.11. Boxplots presenting the variation in (a) σo

VH, σo
VV, σo

VH/VV and (b) μo
VH and 

μo
VV for healthy wheat plots (He (n=160)) and wheat plots with different lodging 

severities using Sentinel-1 data: ML (n=12); SL (n=25) and VSL (n=31) throughout the 
stem elongation-ripening phenological stages. (c) σo

VH, σo
VV, σo

VH/VV and (d) μo
VH and μo

VV 
corresponds to healthy wheat plots (He (n=21)) and wheat plots with different lodging 
severities: ML (n=6); SL (n=6) and VSL (n=8) at the milking phenological stage. 
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Table 5.8. Kruskal Wallis p-value statistics for Sentinel-1 metrics. *** indicates a 0.001 
level of significance 
.  

Parameter p-value 
σo

VH 6.18e-18*** 
σo

VV 8.07e-13*** 
σo

VH/VV 2.65e-05*** 
μo

VH 1.82e-05*** 
μo

VV 7.85e-06*** 
 
Table 5.9. Post-hoc Tukey’s HSD p-value statistics of different lodging severities for 
Sentinel-1 metrics. *, **and *** indicates 0.05, 0.01 and 0.001 levels of significance. 
  

Class pairs σo
VH σo

VV σo
VH/VV μo

VH μo
VV 

He ML 0.005*** 0.049* 0.996 0.082 0.015* 
He SL 1.27e-07*** 2.50e-05*** 0.999 0.003** 0.012* 
He VSL 3.76e-09*** 3.76e-09*** 1.14e-05*** 0.0002*** 7.88e-06*** 
ML SL 0.881 0.886 0.999 0.999 0.937 
ML VSL 1.08e-06*** 0.134 0.0377* 0.975 0.988 
SL VSL 2.82e-07*** 0.306 0.0031** 0.985 0.673 

5.3.2.2 Sentinel-1 time series analysis to identify the time of lodging 
incidence 

We further interpreted the trend of S-1 time-series for He and lodged wheat while 
accounting for ancillary rainfall and wind speed information, as well as with the 
in situ observations. The corresponding S-1 time series are shown in Fig. 5.12 
with respect to DoY. The backscatter and coherence of the plots that were lodged 
later in the season (or remained healthy until the harvest) have been plotted from 
March 14, 2018 onwards, when they were still in a healthy state.  
 
Most of the variability in the backscatter profiles (Fig. 5.12) can be explained 
physically through changes in physical plant properties. The most striking feature 
is the sensitivity of σo

VH to lodging (Fig. 5.12a). There is no distinct difference in 
σo

VH profile until DoY 120 (end of booting), even though there was a constant 
increase in plant height, FB and LAI. In the initial phenological stages (early stem 
elongation), the vegetation was short (LAI = 2.6); hence soil σo (driven by soil 
moisture and roughness) might have been the dominant contributor to the total 
σo

VH and σo
VV. For the majority of the plots, the average soil moisture during stem 

elongation ranged from 34 to 82%, except for a few plots in which the soil was 
fully saturated (soil moisture >100%). The slight increase in σo

VH, which is 
observed on DoY 103 (Fig. 5.12a), is mostly the result of an increase in attenuated 
double bounce and volume scattering mechanisms (as LAI and FB increased to 
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4.1 and 4.59 t/ha, respectively). This is characteristic of narrow-leaf crops such 
as wheat (with small plant constituents or scatterers, i.e. stems and leaves) where 
absorption by the canopy elements appears to be a dominant factor in 
backscattering from the plant (Macelloni et al., 2001; Tsang et al., 1985). 
However, a significant increase in the backscatter of lodged wheat is observed 
around the beginning of May, when wheat is at the end of the booting period or 
the beginning of the flowering phenological stage. While there is an increase in 
the magnitude of σo

VH for ML, SL, and VSL, the overall σo trend follows the same 
behaviour as He. On DoY 121, the increase in σo

VH by almost 1.8 dB with respect 
to He is consistent with the field observations made in VSL plots. The increase 
in σo

VH for ML and SL plots (with respect to He) was close to 0.14 and 0.21 dB 
respectively, which is well below the radiometric resolution of the sensor (1 dB) 
and hence might be considered as noise. As reported in the interpretation of S-2 
data, the heavy rain and windy period after DOY 120, can justify the observed 
change in σo

VH. 
 
The increase in σo

VV is also evident in Fig. 5.12b as lodging became severe. σo
VV 

initially decreased until DoY 120, which suggests that the differential extinction 
(wave attenuation as it propagates through the vegetation volume) is significant 
due to the vertical stems while the plant is growing. Studies show that cereal 
stems play an important role in both scattering and attenuation as they represent 
a significant part of the fresh aboveground biomass (Picard and Toan, 2002). The 
contribution of the stems is even more important for V polarised waves because 
of their vertical structure. However, this vertical structure is destroyed after 
lodging, causing an increase in the magnitude of σo

VV (and even σo
VH) for ML, SL 

and VSL classes (see Fig. 5.12a, b). The extent of σo extinction, however, seems 
to depend on the CAI and LA (i.e. LS). For instance, with severe lodging, as we 
can see in Fig. 5.12a and 5.12b, there is a higher attenuation than that with very 
severe lodging, resulting in higher σo

VH and σo
VV in the latter case. σo

VV increased 
steeply for all lodging severities, except for VSL where the backscatter increased 
by 0.3 dB (with respect to He) from DoY 114 onwards (end of booting). The wind 
and rainfall events (see Fig. 5.12f) also explain some of the variations. For 
instance, the strong wind on DoY 124 (see Fig. 5.12f) could have pronounced the 
increase in radar backscatter (Pichierri et al., 2018; Skrunes et al., 2018) through 
its effect on the orientation of the canopy elements. The high wind (5.4 m/s) and 
rainfall (20.6 mm) events on DoY 78 just before the second S-1 image acquisition 
could explain the slight increase in σo

VV (assuming that the antecedent soil 
moisture condition may still affect the σo few days later) (Fig. 5.12f). Then, a 
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prominent decrease in σo
VV by 2.2 dB (Fig. 5.12b) was observed during the 

vegetative growth until it saturated (-15.1 dB). Overall, from the field 
observations of soil moisture and crop biophysical parameters (Table 5.2) of He 
and lodged plots as well as the temporal analysis of radar backscatter (σo

VH and 
σo

VV), it can be inferred that the change in the soil/biophysical properties due to 
lodging is manifested in the backscatter response.  
 
σo

VH/VV remained relatively unstable throughout the season with an overall 
increase during the stem elongation stage, around the beginning of April (Fig. 
5.12c). The change in coherence values (in both μo

VH and μo
VV polarisations) was 

moderate across different lodging severities. As can be seen from Fig. 5.12d and 
5.12e, the µo in both channels decreased steadily until DoY 120 and then became 
stable, followed by a slight increase after crop harvest. The μo

VH and μo
VV of the 

He wheat were slightly higher than that of ML, SL and VSL (Fig. 5.12d), 
probably because the lodged crop screens the ground more effectively, causing 
higher backscatter return from the vegetation that decorrelates quickly than that 
from the underlying soil (Engdahl et al., 2001). However, due to limited field data 
(every six days) and lack of literature, it is difficult to comment on the role of soil 
scattering from He and lodged plots. Thus, we cannot wholly attribute the change 
in µo values to lodging (Fig. 5.12d, e) even though the statistical analyses revealed 
a significant difference between He and SL/VSL (Table 5.9). This makes it 
challenging to consider that any decorrelation observed in the interferogram is 
solely due to lodging-induced structural changes in vegetation. 
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Fig. 5.12. Temporal average signatures of healthy and lodged wheat plots for (a) σo

VH, (b) 
σo

VV, (c) σo
VH/VV, (d) μo

VH and (e) μo
VV and (f) rainfall and wind speed over Bonifiche 

Ferraresi farm where wheat was cultivated in 2017-2018. The blue profile in (a)-(e) 
corresponds to healthy plot samples (n=160), the green profile is moderately lodged 
(n=12), the yellow profile is severely lodged (n=25), and the red profile is very severely 
lodged (n=31). In figure (f), the blue bars represent the daily-cumulated rainfall (mm). 
The daily average wind speed measured at 10 m from the ground (m/s) is displayed in the 
orange line. Vertical solid and dashed grey lines indicate Sentinel-1 and Sentinel-2 
acquisition days, respectively while dotted red bars represent the wheat phenological 
stage intervals. 

5.3.3 Comparison of Sentinel-1 and Sentinel-2 data for identifying 
the time of lodging incidence 

The statistical analysis and time-series interpretation of S-1 and S-2 data in the 
above sections leads to recommendations of the best features in the context of 
lodging incidence identification. This is in accordance with the physical 
processes that are involved in the plants and their effect on plant parameters as 
measured in the field. As observed in Fig. 5.7 and Fig. 5.11, red edge (740 nm), 
NIR (865 nm), σo

VH/VV together with σo
VV, and lastly σo

VH are able to clearly 
separate He and different lodging severities when lodging occurs between the 
stem elongation and ripening phenological stages (from March to June). Lodging 
resulted in a shift in the red edge to the shorter wavelengths (blue shift) and 
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increased the reflectance in this region (Fig. 5.7) possibly due to reduction in 
chlorophyll content as revealed by SPAD measurements (Table 5.2). The lodging 
effect was pronounced in the NIR region as well, mainly due to structural changes 
and an increase in crop surface cover, with the highest reflectance in the VSL 
class (Fig. 5.7). Moreover, reduction of PWC in the lodged canopy, as observed 
in the field data (Table 5.2), might have increased the reflectance in the SWIR 
region (Fig. 5.7). σo

VH outperformed all the other metrics while the information 
provided by σo

VV and σo
VH/VV seemed to be complementary as they could 

discriminate the maximum number of lodging severity class pairs (five out of 
six). On the other hand, red edge and NIR bands could discriminate only between 
He and VSL classes.  
 
Thus, in this study, the changes in crop biochemical and structural parameters 
due to lodging are detected either by optical or SAR data which shows that these 
datasets provide complementary and convergent information on lodging event. 
Although, our results showed that both datasets could reproduce the changes in 
wheat growth status and temporal dynamics, the benefit of having regular S-1 
acquisitions versus the rather sparse dates of S-2 was apparent. One of the most 
critical challenges associated with optical data is the lack of spatial/temporal 
continuity caused by differential cloud cover, which can greatly affect the 
accuracy of time-series analysis. (Kovalskyy and Roy, 2013). In this study, we 
could acquire only eight S-2 images as opposed to 19 S-1 images during the same 
observation period. This advantage means that SAR-based information can be 
more reliable than optical information for supporting crop management decisions. 
The availability of a priori information such as sowing dates, crop cultivar, soil 
type and cultivation practices from the farm managers, can help with the 
interpretation of SAR data in agricultural applications (Moran et al., 2002).  
 
Our findings suggest that the availability of dense-time series data is important 
for identifying the time of lodging incidence in wheat since the phenomenon is 
very dynamic and can occur at any time after the booting stage. Despite gaps in 
the S-2 time-series, our study highlights the potential of S-2 data due to its high 
spectral sensitivity and the presence of red edge bands. Indeed, in this study, 
optical data served as an additional information source to identify lodging 
severity and most importantly, identify the time of lodging incidence. With the 
time-series analysis of both datasets together, we could select the best features 
that could identify the time of lodging incidence (somewhere between DoY 115-
121). The unprecedented free availability of dense time-series of S-1 and S-2 data 
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at high spatial resolution and the further expansion of S-1 and S-2 to four satellites 
per constellation (A and B, will soon be joined by C and D satellites) presents a 
new opportunity for operational detection of crop lodging in NRT.  

5.4  Conclusions 

We assessed the potential of Sentinel-1 and Sentinel-2 time-series data for 
identifying the time of lodging incidence in wheat and understanding the effect 
of lodging on the backscatter/coherence and spectral response. The time series of 
the radar backscatter (σo

VH, σo
VV and σo

VH/VV), coherence and reflectance were 
analysed and interpreted in healthy and lodged field conditions, together with 
meteorological data (rainfall and wind speed data) and in situ measurements of 
crop parameters (LAI, biomass, CAI, etc.). We showed that the use of S-1 and S-
2 data could distinguish He from different lodging severities throughout the stem 
elongation and ripening phenological stages in wheat while the (dense) time-
series of Earth Observation data can be used to identify the time of lodging 
incidence.  
 
We studied the spectral reflectance behaviour of He and different lodging severity 
classes (derived from lodging score) throughout the stem elongation to ripening 
phenological stages as well as at the milking stage. We further analysed the 
influence of phenological stages and cultivar differences on the spectral curves 
of He wheat to understand the change in spectra from factors other than lodging. 
In the event of lodging, we observed that the magnitude of reflectance increased 
with increasing lodging severity as a consequence of changes in structural and 
biochemical parameters (e.g. photosynthetic reduction and drying process). We 
also found that the effect of the phenological stage and cultivar differences on the 
spectra was far less than that due to lodging. This evidence confirms the 
capability of optical data in detecting changes that are diagnostic of lodging 
event. The temporal analysis of the spectra in the red edge (740 nm) and NIR 
(865 nm) spectral regions showed that lodging might have occurred after DoY 
115. However, more than 20 days of missing satellite data did not allow more 
precise estimates. 
 
In the case of S-1, σo

VH was the most reliable discriminator to separate He from 
other lodging severity classes. σo

VV and σo
VH/VV metrics were complementary as 

together they could distinguish maximum class pairs. The temporal analysis of 
σo

VV confirmed that the lodging event started somewhere after DoY 115 (same as 
what was observed with Sentinel-2 data). However, the analysis of σo

VH provided 



Understanding wheat lodging using time-series Sentinel-1 and Sentinel-2 data 

140 

hints of lodging incidence around DoY 121. Since the reflectance/backscatter 
profiles were averaged across different He and lodged plots with different 
cultivars and also due to the unavailability of field data every five or six days, it 
is difficult to point out a precise date when the maximum number (or all) of the 
plots had lodged. However, with the temporal analysis of both S-1 and S-2 data, 
it was possible to indicate a plausible window of the main lodging event (i.e. 
between DoY 115-121); even though lodging continues throughout the season as 
was observed in the field and mapped by Chauhan et al. (2020a) and Chauhan et 
al. (2020b). This suggests the complementary nature of the two Sentinel sensors. 
The change in coherence metrics due to lodging was significant in some cases, 
but the change could not be wholly attributed to lodging alone. Overall, this study 
has demonstrated the potential of dense time-series of SAR and optical data in 
identifying the time of lodging incidence and distinguishing different lodging 
severities, which has been poorly documented in the literature 
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Abstract 

Crop lodging reduces yield quantity and grain quality of cereal crops. 
Understanding seasonal variation in crop lodging susceptibility enables lodging 
risk assessments and predictions of associated crop yield losses. We demonstrate 
a novel remote sensing-based approach, using sparse field observations and 
widely available synthetic aperture radar (SAR) satellite imagery, to map a safety 
factor against root lodging (SFA) in wheat. SFA quantifies the ability of the rooting 
system to support the self-weight moment of the whole plant and can be used as 
an indicator of in-season root lodging susceptibility.  SAR satellite images, from 
Sentinel-1 and RADARSAT-2, were acquired synchronously with field 
measurements in Jolanda di Savoia, Ferrara, Italy during the 2018 winter wheat 
growing season. The field data included measurements from non-lodged 
(healthy) wheat such as plant height, height at the centre of gravity, self-weight 
moment of the whole plant, soil anchorage strength, SFA and those from lodged 
wheat such as crop angle of inclination, lodged area and the point of plant failure 
(stem or root). Field measurements confirmed that SFA decreased progressively 
through the season and was consistent with the observed lodging. Strong and 
significant correlations through the season were observed between SFA and SAR 
satellite image metrics. The validated regression models showed a strong 
relationship between field-measured SFA and the metrics from RADARSAT-2 
(R2

CV = 0.84, RMSECV= 0.54) and Sentinel-1 data (R2
CV = 0.73, RMSECV= 0.59). 

Our study, for the first time, demonstrates the use of remote sensing SAR data 
for lodging susceptibility assessment. Current and planned satellite platforms 
have the potential for large scale, operational assessment of lodging susceptibility 
in cereal crops. 
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6.1 Introduction 

Crop lodging, which is the permanent displacement of the crop’s stem from its 
vertical position (Pinthus, 1974), can cause severe yield reductions by up to 75% 
in cereals (Berry and Spink, 2012). Lodging is also associated with delayed 
harvest, increased drying costs, deterioration in grain quality and increased 
susceptibility to mycotoxins (Fischer and Stapper, 1987). Accurate spatio-
temporal information about crop lodging and its susceptibility during the growing 
season are critical for improving yield estimates, increasing productivity and 
targeting lodging control interventions. 
 
Lodging is caused by either stem failure (stem lodging) or anchorage failure (root 
lodging) and the most probable form of lodging is governed by genetic, 
management and environmental factors (Berry et al., 2003a). For instance, high 
plant population density increases the susceptibility of root lodging over stem 
lodging, while the early application of nitrogen fertilizer may favour stem lodging 
(Berry et al., 2000). Root lodging is more predominant in wheat than stem lodging 
(Crook and Ennos, 1993). For example, an extensive study Berry et al. (2003a) 
examining 15 winter wheat cultivars at three UK sites between 2000 and 2002 
showed that root lodging varied between 2-47%, while stem lodging was 
observed in only 0-19% of the wheat cultivars.  
 
Before we proceed, it is important to understand the conceptual differences 
between the two terms: susceptibility and risk. In the case of lodging, 
susceptibility means the degree to which the crop is prone to lodging. It captures 
the fact that the host (the plant) reacts variably to lodging, some plants do better 
than others even if the exposure to a certain external factor is the same. Heavy 
rain increases the risk of lodging, but the amount and severity of lodging that 
occurs will be (partially) determined by how susceptible each plant is to lodging. 
The cultivar, environment, management practices and their complex interactions, 
strongly influence these factors due to their effects on the crop structure (Berry 
et al., 2004). A study of all these factors together can form part of a 
comprehensive lodging risk assessment.  
 
Conventional measures to assess lodging susceptibility are primarily based on 
visual inspection of the crop (Caldicott and Nuttall, 1979). Visual assessments 
are sparse, subjective, time-consuming and costly (Bock et al., 2010). 
Alternatively, mathematical models based on the underlying physics of plant 
structure might be used to assess lodging (Berry et al., 2003b). Although these 
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mechanistic models facilitate an in-depth understanding of the lodging 
phenomenon, the detailed measurements required to parameterize these models 
make them input-intensive; therefore, mechanistic models are challenging to 
apply on a large scale. In this regard, some efforts have been made to develop 
“simple” lodging susceptibility indicators (Crook and Ennos, 1995, 1993).  
 
A safety factor against root lodging (SFA) has been conceptualized as a “simple” 
indicator of root lodging susceptibility (Crook and Ennos, 1994). The SFA is the 
ratio between the root anchorage strength (SA) and the self-weight moment of the 
whole plant (MP) generated by all the aerial parts, i.e. stems, leaves and heads 
(Fig. 6.1). SFA correlates well with lodging in the field, with lodging resistant 
cultivars having greater SFA (>1) than susceptible cultivars (≤1) (Crook and 
Ennos, 1994, 1993; van Delden et al., 2010). Accurate information about the 
variability of SFA and its distribution can enable assessment of root lodging 
susceptibility and help mitigate lodging impacts (e.g., lodging controls).  
 

 
Fig. 6.1. Schematic diagram of the safety factor against root lodging. Crop and soil 
parameters are governing the safety factor against root lodging (SFA) for two scenarios 
(A) healthy/non-lodged wheat with θ = 0o and (B) root lodged wheat with θ = 30o. An 
SFA is a ratio of the plant self-weight moment (MP, N-m) and root anchorage strength (SA, 
N-m). MP is a function of crop angle of inclination (CAI, θo), height at the center of gravity 
(hP, m), fresh aerial biomass (FBP, kg) and acceleration due to gravity (g, N kg-1). SA is a 
function of root plate diameter (D), soil shear strength (τ) and a dimensionless constant 
(k). 
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Satellite-based remote sensing (RS) data, with its ability to cover large 
geographic areas with repeated observations, offer a promising alternative for 
lodging monitoring and susceptibility assessment. So far in the context of lodging 
assessment using satellite RS data, only three research avenues have been 
investigated: i) discrimination between lodged and non-lodged areas (Chen et al., 
2016), ii) detection of when lodging occurs (Chauhan et al., 2020c), and iii) 
classification of lodging severity (Chauhan et al., 2020b). These studies diagnose 
lodging events after they have occurred and emphasise the need for precise and 
timely Earth observation data for improving lodging assessment. These studies 
have emphasised that cloud contamination in optical RS data can substantially 
decrease the number of suitable observations over a region of interest. At the 
same time, synthetic aperture radar (SAR) sensors can create gap-free datasets 
for continuous lodging monitoring.  
 
A sound theoretical basis for RS-based lodging susceptibility assessment and the 
underlying estimation of lodging susceptibility indicators is still missing. 
Seasonal assessment of lodging susceptibility is important in many aspects - for 
optimal resource utilization in risk-prone areas, effective decision-making in 
selecting remedial measures (e.g., nitrogen or plant growth regulator application 
at critical growth stages), for decreasing crop production costs and reducing the 
impact on crop yield and grain quality. 
 
This study aims to address this gap and contribute to future lodging risk 
prediction studies by estimating SFA as a simple measure of in-season root 
lodging susceptibility using SAR data. For seasonal susceptibility, we assess the 
actual plant condition that can influence lodging due to the interaction between 
genetic, environment and management factors that can amplify or reduce the 
inherent propensity of different cultivars to lodging. In this study, we compare 
the performance of RS-based metrics derived from multi-temporal Sentinel-1 
(dual-polarized) and RADARSAT-2 (quad-polarized) datasets representing state-
of-the-art observational platforms for agricultural monitoring. We also discuss 
the performance of field-measured SFA in detecting root lodging susceptibility 
throughout the growing season and analyse the lodging susceptibility of nine 
different cultivars.  
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6.2 Materials and Methods 

6.2.1 Experimental design and field measurements 

We used stratified random sampling with information derived from six raster 
layers (sowing date, soil pH, soil type, elevation, seed density and crop cultivar) 
to obtain spatially distributed sampling points and represent the heterogeneity of 
the research area. We selected a total of 61 plots (size 60×60 m per plot) on the 
basis of a t-test based power analysis (with a power of 0.95). These plots are 
overlaid on the satellite image in Fig. 6.2. To capture the variability of crop 
growth in each plot, we selected three subplots (2×2 m) and averaged the readings 
to get plot-level measurements. We revisited each plot three times in 2018 
between March 14 and June 30 to measure crop biophysical and structural 
variables: i) we took measurements for plant height (HP in m); root anchorage 
strength (SA in N-m); plant height at the center of gravity (hP in m); self-weight 
moment of the whole plant (MP in N-m); fresh aerial biomass (FBP in kg) and 
determined the crop phenological stage using the Biologische Bundesanstalt, 
Bundessortenamt and CHemical industry (BBCH) scale (Bleiholder et al., 2001).  

 
Fig. 6.2. An RGB composite of a Sentinel-1 (R: VH/VV, G: VV, B: VH) scene acquired 
on April 19, 2018 containing the study area (Bonifiche Ferraresi farm) overlaid with the 
sampled plots (white dots) over the wheat sown fields and the farm boundary (black 
outline).  
 
During the entire duration of the field campaign, 30 plots had lodged at one point 
or the other while the others remained healthy until the end of the season. To see 



Chapter-6 

147 

if SFA can actually be used as an indicator of root lodging susceptibility in wheat, 
it was first important to analyze how field measured SFA values vary in both 
lodged and non-lodged scenarios. Therefore, the field measurements were used 
for two different purposes:  

(i) First, we aimed at demonstrating how field measured SFA vary with 
lodging susceptibility scores (LSS) and observed lodging in the field. The results 
of this preliminary analysis would establish if SFA in fact, could be used as an 
indicator to map lodging susceptibility.  

(ii) Secondly, we investigated the potential of SAR derived metrics to 
estimate SFA, through regression analysis. For the model development and 
validation to predict SFA, we only used the samples from healthy wheat (non-
lodged wheat). The rationale behind using only healthy samples to predict SFA is 
that SFA should be able to indicate the susceptibility of the healthy samples to 
lodge in the future early in the season (when the plants are still healthy) or even 
at later growth stages.  
 
Overall, the sampled observations covered four major crop phenological stages – 
stem elongation, booting, flowering, and milking (Fig. 6.3).  
 

 



Mapping of wheat lodging susceptibility with Synthetic Aperture Radar data 

148 

 
 
Fig. 6.3. Field photographs of wheat in different phenological stages: (a) stem elongation, 
(b) booting, (c) flowering and (d) milking.  
 
The field measurement protocol was as follows: first, we recorded plant height 
(HP), defined as the distance from the soil surface to the tip of the head of the 
longest tiller; then SA was measured by subjecting the plants to lodging using a 
custom-built, handheld lodging meter (Fig. 6.4). The lodging meter was built 
using a sensitive digital torque screwdriver (reading up to 6 N-m with 0.001 N-
m intervals; Mecmesin Ltd., UK) fitted with an integrated tiller holding cup, a 
lodging arm and an outer casing with four spikes similar to (Crook and Ennos, 
2000; van Delden et al., 2010) (Fig. 6.4a). To estimate SA the following steps 
were taken: i) Stubbles were created by cutting all stems at 10 cm above soil level, 
the upper mass was preserved to measure (hP) and fresh aerial biomass (FBP). ii) 
To make the stubbles behave like a rigid beam and avoid bending, lightweight 
hollow metalcore was inserted in the middle of the stubbles and the stubble-pin 
combination was tied together with a fastener (Fig. 6.4b). iii) The lodging meter 
was inserted into the soil such that the setup could deliver a rotational force 
around the base of the plant stem (Fig. 6.4b). iv) Using the lodging meter, the 
stubble-pin combination was pushed over to create different angles of inclination 
(AIs) from the vertical, i.e., 10o, 20o, 30o, 40o, 45o and 60o and at each angle, we 
recorded the maximum root resistance, i.e., root anchorage strength (SA) (Fig. 
6.4c). This is the basically the force needed to create an angle of inclination of 
the stubbles (the reading on the display was recorded). We also recorded the angle 
of inclination at which the roots break.  This is noticeable when the force 
suddenly drops because the crown roots break (one can even hear a click) and the 
stubbles become easy to move around.  
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We ensured that the neighboring plants did not interfere with these measurements 
and the readings were corrected for the self-weight moment of the stubble-pin 
combination and the pushing device. We then cut off the stubble at soil level and 
tied the stubble together with the remaining section of the plant (with lightweight 
tape) and measured the hP of the whole plant using a balancing method. We 
balanced the plant on a thin (3 mm), smooth metal tube to find the balance point 
of the whole plant, while the leaves and ears were still attached. hP was defined 
as the distance between the balance point and the stem base. Then FBP was 
measured using a high-precision digital scale. Lastly, we calculated the self-
weight moment of the whole plant (MP in N-m) and the safety factor against root 
lodging (SFA) using equation 6.1 and equation 6.2 (Crook and Ennos, 1994), 
respectively.  
 
𝑀௉ ൌ 𝑠𝑖𝑛𝜃 ൈ ℎ௉ ൈ 𝐹𝐵௉ ൈ 𝑔   (6.1) 

𝑆𝐹஺ ൌ  
ௌಲ

ெು
     (6.2) 

 
where MP (N-m) is the self-weight moment of the whole plant at 10o, 20o, 30o, 
40o, 45o, 60o from the vertical, hP (m) is the plant height at the center of gravity, 
FBP (kg) is the fresh aerial biomass, g (N kg-1) is the acceleration due to gravity; 
g is ~ 9.81 N kg-1, SFA is the safety factor against root lodging and SA (N-m) is 
the maximum root anchorage strength. The summary statistics of the field 
measured variables are in Table 6.1. 
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Fig. 6.4. Basic layout of the lodging meter and its demonstration in the field. (a) 
Schematic illustration of the lodging meter connected with a portable digital unit, (b) 
shows the setup of the lodging meter in the soil. The stubble (stem base cut 10 cm from 
the soil surface) with a hollow metal core inserted in between and tied with a fastener is 
shown. The lodging meter is placed level with the soil at a distance such that the lodging 
arm touches the stubble-pin combination and (c) illustrates the procedure to measure the 
root anchorage strength at different crop angles of inclination.  
 
Table 6.1. Summary statistics of field measurements. A statistical summary (mean, 
minimum, maximum, standard deviation and coefficient of variation) of the field 
measurements are provided for non-lodged (healthy) wheat across the wheat-growing 
period (n=90). CAI is the crop angle of inclination. The measurements were taken from 
61 plots with different wheat cultivars. 
 

Parameter Mean Min. Max. Std. Dev. COV 

Plant height (m) 0.50 0.20 1.01 0.27 0.54 

Height at the centre of gravity (m) 0.21 0.04 0.65 0.16 0.79 

Fresh biomass (kg m-2) 0.33 0.05 1.01 0.22 0.65 

Self-weight moment of the whole 
plant (N-m) (CAI=30o) 

0.46 0.013 2.57 0.55 1.21 

Root anchorage strength (N-m) 
(CAI=30o) 

0.18 0.013 1.80 0.23 1.34 

Safety factors (CAI=30o) 0.98 0.056 2.90 0.79 0.81 

6.2.2 Remote sensing data acquisition 

We acquired remote sensing images synchronously with the field observations 
(Table A6.1). We downloaded ten Sentinel-1A/B (in Interferometric Wide swath 
mode) images in ascending mode between March 14 and June 30, 2018 via the 
Copernicus Open Access Hub. The Interferometric Wide swath mode provides 
data in dual-polarization mode (VV: Vertical-Vertical and VH: Vertical-
Horizontal). We acquired the images in both ground range detected (GRD) and 
single look complex (SLC) formats to facilitate the extraction of backscattering 
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coefficients and polarimetric/coherence parameters, respectively. The incidence 
angle over the surveyed study site ranged between 39.7o to 40.4o. The spatial 
resolution was resampled to 15 m.  
 
We also obtained five SLC RADARSAT-2 images in fine quad-polarization 
mode through the Canadian Science and Operational Applications Research 
Program (SOAR). We selected the fine-polarization mode for its high spatial 
resolution and quad-polarized configuration that permits the derivation of various 
polarimetric parameters. We procured the images in different beam modes with 
incidence angles ranging from 26.9-28.7o to 40.2-41.6o. The nominal spatial 
resolution of the images was resampled to 10 m. 
 
Table 6.2. The dates for the acquisition of Sentinel-1 and RADARSAT-2 images over 
Bonifiche Ferraresi farm, Jolanda di Savoia, Italy during the wheat growing season 
March-June 2018 are outlined. The images were selected synchronous to the field 
measurements.  
 

Acquisition 
date 

Satellite data 

Mar 14 Sentinel-1  
Mar 20 Sentinel-1 RADARSAT-2  

Mar 26 Sentinel-1  
Apr 1 Sentinel-1  
Apr 2  RADARSAT-2 

Apr 19 Sentinel-1 RADARSAT-2 

Apr 26  RADARSAT-2 

May 1 Sentinel-1  
May 7 Sentinel-1 RADARSAT-2 

May 13 Sentinel-1  
May 31 Sentinel-1 RADARSAT-2 

June 24 Sentinel-1 RADARSAT-2 

6.2.3 Remote sensing data pre-processing 

6.2.3.1 Sentinel-1 

We pre-processed Sentinel-1 images in SARscape 5.5 to extract backscattering 
coefficients (σo) and coherence (μo) metrics and carried out polarimetric 
decomposition in SNAP 6.0. After applying the precise orbit correction on the 
GRD images, we extracted the backscattering coefficients (σo

VH, σo
VV, σo

VH/VV) in 
dB units using the methodology outlined by  Nelson et al. (2014b). In addition, 
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we also applied orientation angle correction to remove the azimuth slope 
variations. The Radar Vegetation Index (RVI) for dual-pol data proposed by 
Charbonneau, Trudel, & Fernandes (2005) was later derived using equation 6.3: 
 

𝑅𝑉𝐼 ൌ   
ସఙೇಹ

೚

൫ఙೇಹ
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೚ ൯
  (6.3) 

 
where σo

VH and σo
VV are the backscattering coefficients (in dB) in VH and VV 

polarizations. 
 
We used the coherence module of SARscape to generate geocoded coherence 
maps. Unlike SAR, which utilizes the amplitude information of a complex SAR 
signal, InSAR utilizes phase information to calculate interferometric coherence 
(that includes both, the interferometric correlation coefficient and interferometric 
phase). Coherence is a function of the change in phase or amplitude of an image 
pixel and is defined as the systemic spatial or scene de-correlation that occurs 
between two acquired dates. These changes in the backscatter can be due to 
differences in dielectric properties (e.g. wet or dry soil), due to natural processes 
(e.g. growth of crop) or abrupt changes (e.g. crop harvesting or lodging) all of 
which can cause coherence loss. γ is formulated as the amplitude of the complex 
correlation coefficient between two SAR scenes,  
 

𝛾 ൌ  
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∗〉|
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where, γ is the interferometric coherence, |..| represents the absolute values, 〈. . 〉 
denotes the averaging operation, * is the complex conjugate product, and s1 and 
s2 are the complex pixel values from the two image dates (Touzi et al., 1999). 
The processing steps for coherence estimation include i) Orbit file and 
orientation angle correction, (ii) interferogram generation. This step resamples 
the slave image onto the geometry of the master image, applies multilooking 
and generates a coregistered output. The coregistration accuracy was improved 
(in the order of 1/1000th of a pixel) using an external DEM (10 m resolution) 
as an additional input and spectral diversity techniques, iii) interferogram 
flattening using the external DEM and topographic phase removal, iv) adaptive 
phase filtering to reduce noise and coherence estimation, v) geocoding.  
 
SARscape, based on the master input data resolution, suggests the azimuth and 
range multi-looking factors. The multi-looking factors of 4 (looks in range 
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direction) × 1 (looks in azimuth direction), leading to the pixel size of 13.27 m × 
13.8 m, was used for Sentinel-1 to increase the signal-to-noise ratio (SNR) of the 
interferograms and obtain squared pixels. A similar approach was also used by 
Darvishi et al. (2018) and Khabbazan et al. (2019) for coherence estimation. We 
also filtered the interferograms for visual inspection, and to identify fringe 
patterns and coherence estimation using a Goldstein filter. Additionally, we used 
the SARscape Sentinel-1 SLC data processing guidelines, which recommends 
setting the cartographic grid size for Sentinel-1 SLC data as 15m. The resampling 
parameters were estimated from the orbital data information and exploited cross-
correlation and coherence maximization techniques. The accuracy of the results 
was further improved using a very high-resolution data DEM (10 m) as an 
additional input to the process. In order to achieve the lowest temporal baseline 
(six days), we estimated γ between every adjacent image pair (e.g. between 
date 1 and date 2; between date 2 and date 3; and so on). The coherence (γ) 
reported for a given date indicates the coherence between the image on that date 
(or the closest available later date, i.e. N) and its predecessor, i.e. N-1. The in-situ 
observations were matched to the coherence image pairs based on the N image 
date. The coherence value γN-1,N was assigned to the in-situ observation if the date 
of the latter was either close to N or if it fell between N-1 and N. 
 
We also applied a dual-pol H/α/A polarimetric decomposition to the SLC 
images using the Graph Builder and Batch processing capabilities of SNAP. 
The processing chain consisted of six steps: i) orbit file correction, ii) Terrain 
Observation with Progressive Scan (TOPS) Split to extract the sub-swath with 
our region of interest, iii) radiometric calibration, iv) TOPS Deburst to remove 
the demarcation zones between the bursts, v) Refined Lee polarimetric speckle 
filter with 5×5 window, and vi) H/α/A decomposition to produce entropy (H), 
alpha angle (α) and anisotropy (A) parameters. H/α/A decomposition, proposed 
by (Cloude and Pottier, 1996), is an eigenvector-eigenvalue based decomposition. 
H [0,1] accounts for the heterogeneity of the scattering, α [0,90o] indicates the 
type of scattering (surface, double-bounce or volume) and A provides information 
on the relative importance of the secondary mechanisms occurring in the pixel. 
The anisotropy may reach 0 value for a dominant scattering mechanism. We 
processed all the SLC images in a batch mode to produce the decomposed outputs 
and then co-registered and terrain corrected them. Thus, for each Sentinel-1 
acquisition, we computed nine metrics: i) σo

VH, ii) σo
VV, iii) σo

VH/VV, iv) RVI, v) 
γVH vi) γVV, vii) H, viii) α and ix) A.  
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6.2.3.2 RADARSAT-2 

Similar to S-1 data, we pre-processed RADARSAT-2 images in SARscape 5.5 to 
extract σo and carried out polarimetric processing in SNAP 6.0. We used 
definitive orbit files obtained from the MacDonald Dettwiler Associates Ltd. FTP 
repository to update the orbital information in the RADARSAT-2 images. We 
used the approach outlined in Nelson et al. (2014b) to get normalized σo values 
(dB). The backscatter was normalized for the incidence angle induced variations 
using the cosine law of incidence angle, and an orientation angle correction was 
applied to remove the variations due to azimuth slope. For polarimetric 
decomposition, we applied a Refined Lee polarimetric speckle filter (5×5 
window) on the calibrated images to eliminate speckle noise while preserving the 
complex information. We then used different polarimetric decomposition 
methods: i) Sinclair decomposition, ii) Pauli decomposition, iii) H/α/A 
decomposition, iv) Freeman-Durden decomposition, v) Yamaguchi 
decomposition, vi) Cloude decomposition, vii) Touzi decomposition and viii) 
Van Zyl decomposition to decompose the radar scattering matrix into 
components that could be physically interpreted in terms of the scattering 
mechanisms. The detailed description of these methods can be found in Chauhan 
et al. (2020a).  
 
In addition to the decomposition parameters, we also computed simple SAR 
polarimetric parameters such as span, biomass index, RVI, pedestal height, 
volume scattering index, canopy scattering index, radar forest degradation index, 
co-pol (σo

HH/ σo
VV) ratio and cross-pol (σo

HH/ σo
HV) ratio from the radiometrically 

calibrated images. The detailed description of these parameters can be found in 
Chauhan et al. (2020a). Lastly, we co-registered and geocoded the images and 
extracted 39 metrics (Table A6.3) from them. 

6.2.4 Statistical analysis 

In this study, we performed two different kinds of statistical analyses: (i) Pearson 
correlation coefficient analysis aimed at understanding the correlation between 
the predictors, i.e. remote sensing metrics derived from Sentinel-1 and 
RADARSAT-2 data (Table A6.2, A6.3) and the safety factor against root lodging 
(SFA); and (ii) an Extreme Gradient Boosted Tree Ensemble for regression (XGB) 
model to estimate SFA using the remote sensing predictors. Pearson correlation 
coefficient, also referred to as Pearson's r [-1,1], is a statistic to measure the linear 
correlation between the two variables. It is an established way to provide insights 
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into the black-box machine learning algorithms as it can indicate the relative 
performances of different predictor variables. 
 
XGB is a non-parametric regularized extension of traditional boosting techniques 
(Chen & Guestrin, 2016). It iteratively applies tree-based approximation to 
varying gradient descent by predicting a new membership value after each 
iteration to minimize the overall loss (Torres-Barrán et al., 2019). The overall 
loss is depicted by a cost function that measures the difference between the 
observed and the predicted output from the model. Boosting works on the 
principle of the ensemble, which means that a set of weak learners are combined 
to improve the prediction accuracy. This is achieved by weighing the outcome of 
the model at an instant t based on the outcome of the previous model at instant t-
1 and capitalizing on the error. XGB simplifies the objective functions by 
combining the training loss and regularization terms to prevent overfitting (Zhang 
et al., 2020). The training loss measures the predictive capability of the model 
with regard to the training data while the regularization term accounts for the 
model complexity. The aim is to develop a simple, yet predictive model and the 
tradeoff between the two is known as a bias-variance tradeoff.  
 
In this study, we implemented an extreme gradient boosting tree ensemble 
regression model to estimate safety factor parameter using the XGBoost package 
in MATLAB in the partial least square toolbox v8.7 from Eigenvector Research, 
Inc., with the Multivariate Image Analysis toolbox v3.0 add-on (in MATLAB 
2018b). We trained and cross-validated the models separately with the input 
metrics from Sentinel-1 and RADARSAT-2 data separately. The input metrics 
derived from each sensor data are mentioned in Table A6.2 and A6.3. We used a 
cross-validated grid-search to tune the hyperparameters and select the optimal 
parameter values to build the models. We used RMSECV as the evaluation measure 
of the model performance, with the model parameters yielding the lowest 
RMSECV being chosen as the best performing model. We used a five-fold 
Venetian blinds cross-validation procedure to divide the datasets into training and 
validation subsets. This method guarantees that both training and validation sets 
span across the entire data range (Allison et al., 2009). This involved dividing the 
datasets randomly into five subgroups, performing five iterations such that each 
subgroup could be used once as a validation set and giving an average output. We 
then used the final cross-validated models to generate SFA maps of all the wheat 
fields in the study area. The methodological flowchart of the study is shown in 
Fig. 6.5. 
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Fig. 6.5. Process flowchart for the estimation of safety factor against root lodging. The 
inputs are colour-coded in yellow, the model used is in blue, and primary/intermediate 
outputs are in green. The dashed line signifies that the output is used for interpretation. 

6.3 Results 

6.3.1 Temporal variation of field-measured parameters 

Field measurements on biophysical and structural parameters (Table 6.1) of nine 
winter wheat (Triticum aestivum) cultivars were performed between March 14 
(early stem elongation stage: BBCH 30) and June 23, 2018 (crop maturity: BBCH 
99). We limit our interpretation of the temporal variation in field-measured 
parameters from non-lodged (healthy) wheat to four phenological stages: stem 
elongation (BBCH 30-39), booting (BBCH 40-49), flowering (BBCH 60-69), 
and milking (BBCH 70-77). Samples from later phenological stages (BBCH>80) 
were mostly lodged and were excluded from the analysis but were used for 
validating the performance of SFA for assessing root lodging susceptibility. 
 
Plant height (HP) and height at the centre of gravity of the whole plant (hP) (Fig. 
6.6a) changed from a mean of 0.30 and 0.08 m during stem elongation stage to 
0.86 and 0.49 m in the milking stage, respectively (Fig. 6.6a, b). They exhibited 
a similar pattern of change across the season and were found to correlate with 
each other positively (r = 0.96, p<0.001). During early grain filling, hP was almost 
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half of HP but increased as the grains matured (Fig. 6.6a, b). Overall, HP and hP 
were significantly different between cultivars throughout the period (p<0.05) 
(Fig. A6.1a, b). The high variation in HP and hP at the booting stage was mainly 
due to the samples from Senatore Capelli, a traditional and tall cultivar with HP 
up to 1.1 m.  
 
After both HP (Fig. 6.6a) and fresh aerial biomass of the whole plant (FBP) (Fig. 
6.1) plateaued (Fig. 6.6c), hP still increased (Fig. 6.6b) due to grain filling, i.e., 
the continued accumulation of dry biomass in the plant head. Large variation 
existed in the FBP of different cultivars (p<0.001), with cultivars such as Senatore 
Capelli, Odisseo and Marco Aurelio having relatively higher FBP (Fig. A6.1c). 
The self-weight moment of the whole plant (MP) was measured (using equation 
6.1) at six different crop angles of inclination (CAI) from the vertical - 10o, 20o, 
30o, 40o, 45o and 60o. During our analysis we found, that both MP and SA values 
increased linearly with increasing crop angle before levelling (slight decline) out 
at CAI of 30o, which was also consistent with the findings of Crook & Ennos 
(1994).  The moment of decline is the maximum resistance and a good measure 
for root anchorage failure, after that moment the plants will lodge for sure. 
Therefore, we selected the measurements made at CAI = 30o for subsequent 
analyses. MP continued to rise after flowering, reaching its maximum at the 
milking stage (mean of 1.34 N-m) (Fig. 6.6d) when the plant ears were the 
heaviest (late May/beginning of June). The high MP of Senatore Capelli, Odisseo 
and Marco Aurelio can be attributed to high hP and FBP (Fig. A6.1d). 
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Fig. 6.6. Variation of measured crop biophysical parameters across the growing season. 
Boxplots illustrate plot-level variation in field-measured crop biophysical parameters: (a) 
plant height (HP, m), (b) plant height at the center of gravity (hP, m), (c) fresh aerial 
biomass (FBP, kg m-2), (d) self-weight moment of the whole plant at the crop angle of 
inclination of 30o (MP, N-m), (e) anchorage strength at a crop angle of inclination of 30o 
(SA, N-m) and (f) safety factor against root lodging at a crop angle of inclination of 30o 
(SFA) across different growth stages (n=90): stem elongation (SE), booting (BO), 
flowering (FL) and milking (ML). Boxplots display data distribution from bottom to top: 
lower whisker as a minimum, first quartile, median, third quartile and upper whisker as 
maximum. The black dots represent outliers, and red diamonds are mean values.  
 

From the early stem elongation stage to crop maturation, mean root anchorage 
strength (SA) increased from 0.11 to 0.36 N-m (Fig. 6.6e). In general, from the 
booting stage onwards, the mean SA of the observed samples was lower than the 
mean MP resulting in a mean crop safety factor against root lodging (SFA) below 
1 (Fig. 6.6e, Fig. A6.1e). There were minor differences in the MP and SA for 
different cultivars. For example, at the flowering stage, Massimo Meridio 
required the largest moment to push the plant over (mean SA = 0.45 N-m) 
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compared to other cultivars (mean SA = 0.20 N-m) (Fig. A6.1e); still, Massimo 
Meridio’s SA was lower than its MP. The maximum SA of all cultivars over the 
entire observation period did not exceed 1 N-m, except for one Marco Aurelio 
sample (1.8 N-m at the milking stage) (Fig. A6.1e). The variation of SFA across 
different growth stages is shown in Fig. 6.6f. The values of SFA demonstrated a 
statistically significant decreasing trend as the crop matured (p<0.001, Fig. 6.6f). 
SFA was lowest during the flowering and grain filling phenological stages. The 
mean SFA from the booting stage onwards was <=1, which indicated that root 
lodging might have occurred from any point thereon. 

6.3.2 Field-measured safety factor versus lodging susceptibility score 
of different cultivars 

We further assessed the correlation between cultivar lodging susceptibility score 
(LSS) and SFA (Fig. 6.7). Based on the LSS, we categorized the cultivars as “low 
score” (<4.5) and “high score” (≥4.5) where the cultivars falling in the “high 
score” group were highly susceptible to lodging. A total of 44 out of 47 (i.e., 
94%) samples were observed to be lodged in the study site and 30% of the 
samples falling in the “low score” group still lodged, showing that the cultivars 
with low LSS were, to some extent, still prone to lodging. This observation is not 
surprising because “cultivar susceptibility” is only one of the components of 
lodging risk that is strongly dependent on i) site-specific crop growth (i.e. 
seasonal susceptibility - SFA) and ii) external driving forces (e.g. wind and rain). 

 
Fig. 6.7. Variation of the field-measured SFA for different cultivar lodging susceptibility 
scores along the season (n=90). Cultivars are categorized into low (<4.5) and high score 
(≥4.5) groups. The observed lodged samples are highlighted with red boxes. The dashed 
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red line represents the critical threshold at SFA=1. Plots with SFA≤1 signify that the crop 
is at high risk of being root lodged due to the self-weight moment while the ones with 
SFA>1 are at relatively lower root lodging risk. 

6.3.3 Correlation analyses between remote sensing-based metrics 
and SFA 

Pearson correlation coefficients were used to quantify the relationship between 
RS-based metrics and SFA and to identify the best performing metrics. Sentinel-
1 has a shorter revisit time than RADARSAT-2 resulting in more images in the 
time-series. Therefore, 90 and 71 field samples were measured across the season 
for the analysis of Sentinel-1 and RADARSAT-2 data, respectively. Six out of 
nine Sentinel-1 metrics and 23 out of 39 RADARSAT-2 metrics had statistically 
significant correlations with SFA (Fig. 6.8, Table A6.2, A6.3). 
 
For Sentinel-1, the coherence in VV polarization (γvv) showed the highest positive 
correlation with SFA (r = 0.64) (Fig. 6.8a), suggesting that γvv provided the most 
reliable information for monitoring SFA over the study area. Strong negative 
correlations were observed between SFA and the σo

VH/VV, Anisotropy and Radar 
Vegetation Index (RVI) (-0.57<r<-0.60) (Fig. 8a). High anisotropic scattering 
(>0.5) corresponded to low SFA values (<1) while higher SFA values (>1) 
exhibited low anisotropic scattering (<0.3).  
For RADARSAT-2, the volume scattering component derived from Pauli 
decomposition (Pauli_vol) had the highest correlation with SFA (r = 0.71) (Fig. 
6.8b). The Span, biomass index and surface scattering component derived from 
Cloude decomposition (Cloude_surf) showed the same trend in correlation with 
SFA (r = 0.69) (Fig. 6.8b). The correlation of SFA with double-bounce scattering 
components derived from Pauli (Pauli_dbl, r = 0.51), Freeman-Durden (FD_dbl, 
r = 0.37) and Yamaguchi (Yama_dbl, r = 0.24) decomposition were statistically 
significant but lower than the other metrics (Table A6.3).  
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Fig. 6.8. Pearson correlation scatterplots of field measured SFA against satellite metrics. 
Pearson correlation scatter plots of the most significant satellite metrics derived from (a) 
Sentinel-1 (n=90), (b) RADARSAT-2 (n=71) data and the field measured safety factor 
against root lodging (SFA). The variation in the number of samples (n) for Sentinel-1 and 
RADARSAT-2 data is due to the difference in image availability between the two. All 
shown correlation coefficients between SFA and satellite metrics are statistically 
significant at p = 0.01. σo

VH is the backscattering coefficient in VH polarization, σo
VH/VV 

is the ratio of the backscattering coefficients in VH and VV polarizations, γVH, γVV are 
the interferometric coherences in VH and VV polarizations, RVI is the radar vegetation 
index, BMI is the biomass index, Sinclair_vol and Pauli_vol are the volume scattering 
components derived from Sinclair and Pauli decomposition respectively, and Yama_surf 
and Cloude_surf are the surface scattering components derived from Yamaguchi and 
Cloude decomposition respectively. 

6.3.4 Estimation and mapping of the safety factor  

The XGB regression models were trained and validated using a five-fold 
Venetian blinds cross-validation. Fig. 6.9 displays the scatterplots between 
measured and predicted SFA values, the cross-validated coefficient of 
determination (R2

CV) and root mean square error (RMSECV) based on a regression 
analysis of SFA against RS-based metrics. The predicted SFA values were in 
strong agreement with the measured values when the backscattering coefficients, 
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coherence, and polarimetric metrics (listed in Table A6.2) derived from Sentinel-
1 were used as inputs, (R2

CV  = 0.73) (Fig. 6.9a). However, the results were 
penalized by some degree of underestimation for the high SFA values (>2), 
resulting in an RMSECV of 0.59. This is evident from the dispersion of the samples 
around the 1:1 line in Fig. 6.9a. The degree of underestimation reduced when 
backscattering coefficients and polarimetric metrics derived from RADARSAT-
2 were used, resulting in an RMSECV of 0.54 (Fig. 6.9b). The predicted SFA 
correlated strongly with the measured SFA (R2

CV = 0.84).  

 

 
Fig. 6.9. Relationships between measured and predicted SFA for Sentinel-1 and 
RADARSAT-2. Scatterplots show the relations between measured and predicted SFA 
values obtained using cross-validated regression models for (a) Sentinel-1 (n=90) and (b) 
RADARSAT-2 (n=71) data. The variation in the number of samples (n) for Sentinel-1 
and RADARSAT-2 data is due to the difference in the image availability for each sensor. 
The field data has been compiled for the entire season for different wheat cultivars. The 
black dashed line is the 1:1 line, while the red dotted line is the modeled regression line. 
The R2

CV is the cross-validated coefficient of determination, and RMSECV is the cross-
validated root mean square error for each model.  
 

Cross validated XGB models were applied over the study site to map the spatial 
and temporal variability of SFA. Fig. 6.10 illustrates the predicted SFA maps 
derived from Sentinel-1 (March 26) and RADARSAT-2 (April 2) datasets over 
the wheat fields. These dates were selected to demonstrate the potential of 
indicating root lodging susceptibility early in the season (early spring) when the 
crop is in the stem elongation growth stage. The underestimation of high SFA 
values is apparent in the Sentinel-1 map (Fig. 6.10a). However, the spatial 
distribution of predicted SFA in both maps shows that areas where SFA is 1 (or 
less), it is likely that the gravitational forces due to MP of the whole plant alone 
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could cause lodging. The areas with SFA>1 indicate that MP alone may not cause 
lodging.  

 

 
Fig. 6.10. Spatial distribution of SFA in the study area. SFA in wheat fields in study site 
obtained from the cross-validated regression models using inputs from (a) Sentinel-1 
(image on March 26, 2018) and (b) RADARSAT-2 (image on April 2, 2018). Wheat was 
in the stem elongation growth stage. The farm boundaries are also overlaid on the maps. 
Non-wheat fields are gray. “RADARSAT-2 Data and Products. MacDonald, Dettwiler 
and Associates Ltd. (2018) – All Rights Reserved. RADARSAT is an official trademark 
of the Canadian Space Agency.”  

6.4 Discussion 

6.4.1 Safety factor prediction using Sentinel-1 and RADARSAT-2 
data 

Microwave scattering is mainly governed by crop macrostructure (such as plant 
density or row spacing), plant dielectric properties and canopy structure (shape, 
size and orientation of plant constituents) (Wang et al., 2019). C-band SAR, to a 
certain degree, can penetrate the crop canopy, which also results in a contribution 
from the soil in the total backscatter signal (soil roughness and moisture). This is 
especially true in the early growth stages when the crop cover is less dense. 
Polarimetric decomposition parameters can be used to separate the vegetation 
contributions from the total backscatter. The better performance of the 
RADARSAT-2 (quad-polarization mode with HH, HV, VH and VV channels) 
model can be attributed to a rich set of polarimetric decomposition metrics. 
Sentinel-1 has a higher revisit time, but its data is available only in the dual-
polarization mode, which restricts the usage to just one cross-polar (VH) and one 
copolar channel (VV). This results in fewer metrics and lower SFA retrieval 
accuracy. However, the synergic use of backscattering coefficients and 
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interferometric coherence in Sentinel-1 enhanced the estimation of SFA (R2
CV = 

0.73, RMSECV = 0.59), over using backscattering coefficients alone.   
 
Even though the scattering from crop and attenuation effects are complexly 
coupled in wheat (Ferrazzoli, 2002; Wang et al., 2019), the XGB models were 
able to capture the coupling pattern, resulting in a robust SFA retrieval 
(R2

CV>0.70; RMSECV<0.60) (Fig. 6.9). However, there are two issues that should 
be mentioned here. Firstly, the underestimation of both models at high SFA values 
(>2) can perhaps be explained by the saturation of the backscatter and 
polarimetric parameters with high plant height and fresh aerial biomass values 
due to pronounced scattering from wheat heads (Bouman and van Kasteren, 1989; 
Harfenmeister et al., 2019; Yan et al., 2019). Moreover, the general tendency of 
the regression models to underestimate large magnitudes cannot be neglected. 
This phenomenon has been reported in diverse experimental settings and is likely 
to represent a general response bias under uncertainty (Karolis et al., 2011). 
Despite this, the critical SFA value (close to 1) required to assess root lodging 
susceptibility in wheat could be detected by both Sentinel-1 and RADRSAT-2-
based models (Fig. 6.9). Hence, the identified underestimation is not considered 
critical for highlighting spatially explicit zones of potential lodging susceptibility 
that can occur later in the crop season. The predicted SFA maps demonstrate the 
capability of SAR data for geospatial mapping SFA in wheat and can consequently 
be used as an indicator of root lodging susceptibility early in the season. 
Secondly, it is possible that the relationship between SFA and SAR parameters 
may potentially be confounded by the variations in crop biomass, which is highly 
correlated with SFA (r = -0.63). The correlation of biomass with SFA may also 
largely reflect the sensitivity of the radar measurements to SFA.  The accuracy 
may further be improved by reducing the effects of such confounding factors and 
will be addressed in our further work.  

6.4.2 Relationship between satellite metrics and SFA 

The correlation analyses between the RS-based metrics and field measured SFA 
identified the most significant parameters for estimating SFA from satellite data. 
In general, the r values were higher for RADARSAT-2 derived metrics (Fig. 
6.8b). The microwave signal is highly sensitive to the structure and geometry of 
the canopy and is a function of size, orientation and density of the scatterers/target 
(Chauhan et al., 2018). As a microwave signal hits the crop canopy, there are 
three forms of scattering mechanisms that can occur: surface/single-bounce, 
double-bounce, and volume scattering. The higher relative correlation of the 
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volume scattering components such as Pauli_vol (r = 0.71) and Sinclair_vol (r = 
0.67) (Fig. 8b) with SFA possibly indicates the dominance of the volume 
scattering mechanism as the crop grows. The decrease in SFA across different 
growth stages (Fig. 6f) indicates the increasing susceptibility of root lodging 
during the season as the MP exceeded SA in our study site. However, we would 
like to emphasize that the decreasing trend of SFA (Fig. 6f) over the season is not 
always the case (as observed in our study site). If the root structure is strong 
enough to compensate for the increased MP, the safety factor may show an 
increasing trend (Crook and Ennos, 1994). The decrease in SFA with the crop 
growth in our case is because the rate of increase in MP is much higher than the 
increase in SA (Fig. 6d, 6e). And since the increase in MP (which is composed of 
biomass, crop height and crop angle of inclination) is the main factor here 
governing the SFA trend, the volumetric component is increasing due to 
increasing crop volume.  
 
It should also be emphasized here that the contribution of azimuth slope and soil 
roughness on elevated cross-polarized response can be considered negligible here 
since (i) we applied orientation angle correction to remove the orientation angle 
shift caused by azimuth slopes from the polarimetric SAR data, (ii) unlike lower 
frequencies (such as L-band), higher frequency PolSAR responses (such as from 
C-band) are less sensitive to azimuth slope variations, because electromagnetic 
waves with shorter wavelengths are less penetrative and more sensitive to small 
scatterers (Lee and Pottier, 2017) and lastly (iii) wheat fields had similar soil 
roughness, approximately 1 cm in average, with minimal changes during the 
entire crop development. 
 
We also found evidence of a certain degree of surface scattering from the wheat 
fields, which is depicted by a moderate correlation between SFA and the 
Cloude_surf metric (r = 0.69) (Fig. 6.8b). The presence of surface scattering 
confirms some degree of backscatter contribution from the soil attenuated by 
vegetation canopy. Typically, either of the scattering mechanisms dominates, 
however for distributed targets (such as an agricultural field), secondary or 
tertiary scattering mechanisms can also occur (Steele-Dunne et al., 2017). At the 
beginning of the season when the crop cover is less dense, surface scattering 
dominates (soil is the dominant contributing factor) and with the development of 
crop canopy volume scattering becomes more dominant, although the surface 
scattering is still evident, due to a quite probable horizontal orientation resulting 
from the bending of leaves (Chauhan et al., 2018). Furthermore, SFA is a 
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parameter that is sensitive to both crop (MP) and soil components (SA). Therefore, 
our analyses showed that a mixture of volume and surface scattering types 
characterized the crop canopy. Similar observations were also made by Kar et al. 
(2017). 
 
For Sentinel-1 data, the interferometric coherence in the VV polarization showed 
the highest positive correlation with SFA (r = 0.64) (Fig. 6.8a). Interferometric 
coherence at any polarization is not only sensitive to the dielectric properties, 
orientation and shape of plant constituents but also the vertical structure of the 
plant (Lopez-Sanchez and Ballester-Berman, 2009). Studies have shown that a 
strong linear relationship exists between plant height and coherence (Khabbazan 
et al., 2019; Vreugdenhil et al., 2018). At the same time, at VV polarization, the 
contribution from the upper canopy dominates for incidence angles >37o, due to 
the presence of flag leaves and ears (Brown et al., 2003). With the increasing 
plant height (Fig. 6.6a) and fresh biomass (Fig. 6.6c), the SFA decreases (Fig. 
6.6f). As plant height is inversely proportionate to the interferometric coherence 
(Engdahl et al., 2001), a positive correlation emerged between SFA and VV 
coherence values. We should also emphasize here that based on the insights 
gained from previous studies (Ghosh et al., 2020; Khabbazan et al., 2019; Shang 
et al., 2020), we assumed that the changes in vegetation structure between the two 
Sentinel-1 SAR acquisitions resulted in temporal decorrelation. The negative 
correlation of SFA with RVI and σo

VH/VV (Fig. 6.8a) could be attributed to the 
increase in RVI and σo

VH/VV from booting to flowering as the plant biomass 
accumulates. The increasing RVI and σo

VH/VV at the beginning of the vegetation 
period indicates the attenuation of the radar signal by growing vegetation. Similar 
results have also been reported by Mandal et al. (2020) for wheat crop during 
these growth stages. Furthermore, a high anisotropic scattering (>0.5) for low SFA 
values (<1) indicates two dominant scattering mechanisms with almost equal 
probability and a less significant third scattering mechanism. Lower anisotropic 
scattering (<0.3) for higher SFA values (>1), on the other hand, shows that there 
is only one dominant scattering mechanism with two non-negligible secondary 
mechanisms with equal importance. However, it is difficult to point out which 
scattering mechanism is dominant and which is not solely based on dual-
polarimetric Sentinel-1data. The polarimetric parameters derived from 
RADARSAT-2 quad-pol data complement these observations (as shown above).  
 
Furthermore, there are studies that explain the effect of soil moisture, roughness 
and texture on SAR backscatter (Balenzano et al., 2010; Srivastava et al., 2003), 
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there is limited knowledge on the how SAR data is responsive to soil structural 
properties such as soil shear strength and root plate diameter (factors that govern 
root anchorage strength). An analysis in this regard is beyond the scope of this 
study and should be researched in future studies. A study done by Rabus et al. 
(2010) does shed some light on how backscatter and interferometric phase 
information can infer near soil structural parameters such as vertical gradients 
and inhomogeneities, the research is in a very nascent stage and was performed 
in simulated conditions. However, the results are promising and must be explored 
further to study other soil structural traits (such as root anchorage strength).  
 
Overall, although both Sentinel-1 and Radarsat-2 sensors operate at the same 
frequency C-band, differences in other sensor characteristics such as polarization 
(dual and quad-pol), incidence angle (40° and 27°-41°), radiometric accuracy (1 
dB and <1 dB) and spatial resolution (15× 15 m and 10 ×10 m) resulted in varying 
performances of the two sensors. The r values for RVI (radar vegetation index) 
(Table A6.2, A6.3) are particularly different for Sentinel-1 and RADARSAT-2. 
This could be attributed to different polarization channels that are used in the 
formulation of RVI for Sentinel-1 (RVI = 4 σo

VH/( σo
VH+ σo

VV)) and RADARSAT-
2 (RVI = 8 σo

HV /( σo
HH + σo

VV +2 σo
HV)).  

6.4.3 Variability in the field measured crop biophysical parameters 

Plant height (HP) and height at the center of gravity (hP) are important factors 
influencing lodging susceptibility in wheat (Berry et al., 2000). hP is influenced 
by both HP and ear biomass (Berry et al., 2000). With grain filling, ear biomass 
increases, and straw biomass reduces, thus raising hP. The self-weight moment of 
the whole plant (MP), which approximates the wind-induced base bending 
moment that a plant experiences, increased as the crop matured (Fig. 6.6d). This 
could be due to the increase in both hP and FBP.  
 
Root system architecture plays an essential role in anchoring the plant to soil. It 
has been demonstrated that SA is a function of mechanical properties such as root 
plate diameter and soil shear strength (van Delden et al., 2010) (Fig. 6.1). SA 
increased as the crop matured, which is possibly due to the increase in the depth 
and spread of the root plate diameter (Berry et al., 2000)  The susceptibility of 
root lodging increases if MP exceeds SA (Crook and Ennos, 1993) and can be 
quantified using SFA (equation 6.2). In most cases, SA was less than MP (Fig. 6.6d, 
e). A relatively high SA (1.8 N-m) for one of Marco Aurelio samples can be 
explained by the low seed rate in this plot, which might have increased the SA by 
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increasing the root plate spread (Berry et al., 2000). The decrease in SFA across 
different growth stages (Fig. 6.6f) indicated the increasing susceptibility of root 
lodging during the season due to the plant self-weight moment alone as MP 
exceeded SA. Lower SA resulted in a lower SFA later in the season, implying that 
root-soil anchorage may not be able to resist the overturning moments produced 
by the plant’s self-weight, even though only gravitational forces were considered. 
Therefore SA should be improved to increase root lodging resistance (Wu et al., 
2019). A rigid root system can be developed by enabling enlarged root spread 
through low seed rate, increasing soil shear strength and stimulating greater 
proportion of assimilates to be partitioned into the roots (Li et al., 2018; Wu et 
al., 2012). SFA does not account for the forces generated by wind, which can 
further intensify the overturning moments and can progressively weaken the root-
soil anchorage (Coutts, 1983).  

6.4.4 Field measured safety factor versus observed lodging 

The observed rate of lodging was high throughout the growing season, with most 
cases coinciding with grain filling when the ears were heaviest. Root lodging was 
the primary cause of failure (80% of cases). The measured SFA was largely 
consistent with field recorded observations of lodging (Fig. 6.11). The time when 
SFA dropped to the absolute critical value of 1, coincided with the observed onset 
of lodging in the field (i.e., at the end of the booting stage) (Fig. 6.6f); 32 samples 
were non-lodged while 58 samples had lodged with different degrees of severity. 
Furthermore, as shown in Fig. 11, 24 out of 32 healthy samples corresponded to 
SFA > 1, i.e. 75% of the samples were correctly identified as having no root 
lodging susceptibility using the SFA while 42 out of 58 lodged samples 
corresponded to SFA ≤ 1, meaning that 73% of the samples were correctly 
identified as susceptible to root lodging using the SFA (Fig. 6.11). A comparison 
within and across different wheat cultivars at specific growth stages is also 
presented in the appendix (Table A6.3) demonstrating how the root lodging 
susceptibility (high/low) predicted using SFA correlate with the actual crop 
condition (lodged/non-lodged) observed on the field around the harvest time. 
Based on the analysis, we can say that the SFA assessment resulted in an overall 
agreement with the observed lodging phenomena.  
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Fig. 6.11. Distribution of the field measured samples that remained (a) healthy and (b) 
were lodged at the end of the season versus the field-measured safety factor values. The 
red line indicates the safety factor lodging threshold (i.e. SFA=1) considered in this study. 
 
Currently, LSS serves as the only measure for farmers to indicate the theoretical 
relative lodging susceptibility for each cultivar. However, LSS does not explain 
the reason for a high or low susceptibility of a cultivar. The relative strength of 
the stem base and the roots as depicted by MP and SA (see Fig. A6.1d, e) can 
explain the variation in LSS for each cultivar. For instance, the high LSS (6.5) of 
the cultivar Odisseo is probably explained by very low root anchorage strength 
(SA) and safety factor (SFA), resulting from poor root structure (Fig. A6.1). 
Similarly, a very low self-weight moment (MP) for the cultivar Senatore Capelli, 
indicates that poor stem structure might explain a high LSS (9) (Fig. A6.1). This 
information can be beneficial as it gives a better idea to the farmers about which 
section of the plant to target for lodging control. In this context, for a cultivar 
such as Odisseo, it might be more important to take measures to boost the soil/root 
structure (e.g. through lower seed rate or rolling), while for Senatore Capelli with 
weaker stem structure, using plant growth regulators can be useful. For cultivars 
with a good root and stem structure (such as Monastir), careful management 
along with low plant growth regulator input could be sufficient to reduce lodging 
susceptibility. Thus, an understanding in the variation of SFA (and its 
components), in addition to a cultivar LSS, can result in informed cultivar choice. 
 

6.4.5 Recommendations and perspectives 
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The primary advantage of using a safety factor against root lodging (SFA) as an 
indicator of crop lodging susceptibility is that it is simple, allows quantitative 
analysis of the variation in root lodging resistance and, above all, is detectable 
over large areas using operational remote sensing platforms. The RS model can 
be applied to other locations under similar conditions, but this will require model 
validation using a small number of SFA field measurements. The SFA measure 
thus constitutes a state-of-the-art approach for the assessment of root lodging 
susceptibility early in the season. Information about SFA can be used to develop 
optimum crop management practices in almost real-time, for instance, adjusting 
the use of plant growth regulators later in the season, as the maps can be generated 
early in the spring when the crop completes the stem elongation period. The use 
of SFA as an indicator to guide nitrogen fertilizer applications and mitigate 
lodging susceptibility would further validate the effectiveness of the SFA method. 
 
SFA does not directly account for wind or rain-induced forces; neither does SFA 
explicitly consider the environmental or other management-related parameters, 
SFA is simply a measure of lodging susceptibility. This study provides a basis for 
future research efforts that could benefit from the incorporation of the SFA 
parameter in lodging risk assessments. For example, SFA could be combined with 
long term climate averages (for baseline risks), forecasts of precipitation and 
wind gusts, soil properties and other remotely sensed crops biophysical and 
biochemical parameters (such as plant area index and plant nitrogen) to provide 
more accurate and timely risk assessments. Also, despite the diverse dataset used 
in this work, the robustness and reproducibility must be assessed further in other 
environmental, soil and management conditions for wheat as well as other crops 
using a multi-season and more contrasted dataset. Although stem lodging was 
almost neglectable for the cultivars in our study area (only 15 plots showed an 
occurrence of stem lodging contrary to 30 plots with root lodging), an RS-based 
investigation of the safety factors against stem lodging is another potential topic 
of research. Regardless of the assumptions behind the formulation of SFA, our 
study demonstrates that time-series of RS data can be used effectively to estimate 
root lodging susceptibility at the field scale and offers a preview of further 
opportunities in making lodging risk analysis more robust and accurate.  

6.5 Conclusions 

This study aims to quantify the utility of fine spatial resolution SAR imagery as 
acquired from commercial and open-access satellite platforms for the estimation 
of SFA in wheat crop. First, we analyzed and interpreted the temporal trend of the 
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field measurements across different growth stages. A suite of RS-based metrics 
was also correlated with the field measured SFA for different plots to understand 
the strength of correlation and enable interpretation of the regression models. 
Lastly, we developed two XGB regression models using the inputs from Sentinel-
1 and RADARSAT-2 data to estimate SFA and map its spatial distribution across 
the study site. We also validated field measured SFA with the occurrence of 
lodging in the field. The key conclusions are summarized below: 
 
a) The SFA showed a decreasing trend as the crop matured, with the lowest 

values during the flowering and grain filling period when the lodging risk is 
the highest.  

b) In general, most of the RS-based metrics showed a statistically significant 
correlation with SFA values, particularly the biomass index, VV coherence, 
span, Pauli volume scattering component and Cloude surface scattering 
components (r>0.60). 

c) The cross-validated XGB model using the inputs from RADARSAT-2 data 

(𝑅஼௏
ଶ  = 0.84, 𝑅𝑀𝑆𝐸஼௏ = 0.54) outperformed the Sentinel-1 model (𝑅஼௏

ଶ  = 
0.73, 𝑅𝑀𝑆𝐸஼௏ = 0.59), with some degree of underestimation at high SFA 
(>2) values. The resulting maps also successfully captured the spatial 
variation in SFA.  

d) The field measured SFA correlated well with the lodging observed on the 
field. The time when SFA reached the critical threshold of 1, coincided with 
the time when the first few instances of lodging were observed in the field 
(i.e. during the booting stage). 70% of the actual healthy samples 
corresponded to SFA>1 while 74% of the lodged samples had SFA<=1, which 
indicates the utility of RS-derived SFA as an early measure of root lodging 
risk.  

 
The SFA measure constitutes a state-of-the-art approach in the RS community for 
the assessment of root lodging susceptibility early in the season. However, we 
emphasise that SFA does not account for the external wind or rain-induced forces 
and neither the environmental and other management-related parameters are 
considered in this study. These parameters when incorporated in a model can 
provide more robust lodging risk estimates. This study provides a basis for future 
research efforts which could benefit from the incorporation of SFA parameter 
along with other lodging sensitive parameters in a lodging risk model. The 
investigation of the assessment of RS-based stem lodging susceptibility using 
safety factors against stem lodging is another potential topic of research. 
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Nevertheless, this study demonstrates that the time-series RS data from different 
sources can be used effectively for detecting root lodging susceptibility at the 
field scale.  
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Appendix 

 

 

 

 
Fig. A6.1. Variation of crop biophysical parameters across the growing season for 
different wheat cultivars. Boxplots illustrate plot-level variation in field-measured crop 
biophysical parameters: (a) plant height (HP, m), (b) plant height at the centre of gravity 
(hP, m), (c) fresh biomass (FBP, kg m-2), (d) self-weight moment of the whole plant at the 
crop angle of inclination of 30o (MP, N-m), (e) anchorage strength at a crop angle of 
inclination of 30o (SA, N-m) and (f) safety factor against root lodging at a crop angle of 
inclination of 30o (SFA) across different growth stages (n=90): stem elongation (SE), 
booting (BO), flowering (FL) and milking (ML). The blue and red diamonds are the 
median and mean values, respectively.  
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Table A6.1. Pearson correlation coefficients (r) and p-values between metrics derived 
from Sentinel-1 data (n=90) and the safety factor against root lodging at a crop angle of 
inclination of 30o. *** indicates values are significant at p=0.001 level of significance. 
 

 
Satellite metrics r p-value 

1 VH backscattering coefficient 0.50 5.90e-03*** 
2 VV backscattering coefficient 0.09 0.4113 
3 Ratio of VH and VV backscattering 

coefficient (VH/VV) 
-0.59 9.49e-06*** 

4 VH coherence 0.59 1.40e-05*** 
5 VV coherence 0.64 2.13e-07*** 
6 Entropy -0.11 0.3236 
7 Alpha 0.10 0.3349 
8 Anisotropy -0.58 2.78e-05*** 
9 Radar vegetation index (RVI) -0.60 5.42e-06*** 

 
Table A6.2. Pearson correlation coefficients (r) and p-values between metrics derived 
from RADARSAT-1 data (n=71) and the safety factor against root lodging at a crop angle 
of inclination of 30o. *** indicates values are significant at p=0.001 level of significance. 
 

 Satellite metrics r p-value 

1 HH backscattering coefficient 0.51 5.03e-06*** 
2 HV backscattering coefficient 0.54 1.02e-06*** 
3 VV backscattering coefficient 0.56 3.39e-07*** 
4 Span 0.69 2.29e-11*** 
5 Pedestal height -0.22 0.0672 
6 Radar vegetation index (RVI) -0.31 0.9140 

7 
Radar forest degradation index 

(RFDI) 
0.04 0.7096 

8 Canopy scattering index (CSI) 0.14 0.2549 
9 Volume scattering index (VSI) -0.13 0.2930 

10 Biomass index (BMI) 0.69 3.88e-11*** 

11 
Ratio of HH and VV 

backscattering coefficient  
-0.11 0.3578 

12 
Ratio of HH and HV 

backscattering coefficient 
(HH/HV) 

0.10 0.4274 

13 
Ratio of VH and VV 

backscattering coefficient 
(VH/VV) 

-0.58 5.87e-04*** 

14 Sinclair_surf 0.64 1.53e-09*** 
15 Sinclair_dbl 0.51 5.67e-06*** 
16 Sinclair_vol 0.67 1.52e-10*** 
17 Pauli_surf 0.44 1.34e-04*** 
18 Pauli_dbl 0.51 5.67e-06*** 
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19 Pauli_vol 0.71 2.82e-12*** 
20 Freeman Durden_dbl 0.37 0.001*** 
21 Freeman Durden _vol 0.51 6.83e-06*** 
22 Freeman Durden _surf 0.48 2.75e-05*** 
23 Yamaguchi_dbl 0.24 0.0469* 
24 Yamaguchi_vol 0.53 1.59e-06*** 
25 Yamaguchi_surf 0.64 2.28e-09*** 
26 Yamaguchi_hlx 0.42 3.04e-04*** 
27 Van Zyl_dbl 0.15 0.2277 
28 Van Zyl_vol 0.51 4.38e-06*** 
29 Van Zyl_sur 0.58 9.35e-08*** 
30 Cloude_dbl -0.004 0.9732 
31 Cloude_vol 0.11 0.3800 
32 Cloude_surf 0.69 2.95e-11*** 
33 Entropy -0.26 0.0311* 
34 Anisotropy -0.11 0.3730 
35 Alpha -0.34 0.0032** 
36 Psi -0.004 0.9684 
37 Tau -0.02 0.9010 
38 Alpha_touzi -0.30 0.0109** 
39 Phi 0.15 0.2266 

 
Table A6.3. Comparisons within and across wheat cultivars demonstrating the agreement 
of lodging susceptibility (in bold) predicted based on safety factor (high/low) and the 
actual crop condition (lodged/non-lodged) observed on the field at specific growth stages.  
 
Cultivar: Odisseo, Growth stage: Stem elongation 

Field measured safety 
factor value 

Lodging susceptibility 
based on the safety factor 

Crop condition as 
observed on the field 

0.260 High Lodged 
0.292 High Lodged 
0.936 High Lodged 
0.637 High Lodged 
0.501 High Lodged 
0.195 High Lodged 

 
Cultivar: Marco Aurelio, Growth stage: Stem elongation 

Field measured safety 
factor value 

Lodging susceptibility 
based on the safety factor 

Crop condition as 
observed on the field 

1.665 Low Non-Lodged 
1.040 Low Non-Lodged 
1.590 Low Non-Lodged 
2.425 Low Non-Lodged 
2.134 Low Non-Lodged 
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Cultivar: Senatore Capelli, Growth stage: Stem elongation 
Field measured safety 

factor value 
Lodging susceptibility 

based on the safety factor 
Crop condition as 

observed on the field 

0.960 High Lodged 
0.909 High Lodged 
0.851 High Lodged 
1.008 Low Lodged 
0.899 High Lodged 
1.017 Low Lodged 
0.788 High Lodged 

 
Cultivar: Claudio, Growth stage: Booting 

Field measured safety 
factor value 

Lodging susceptibility 
based on the safety factor 

Crop condition as 
observed on the field 

2.906 Low Non-Lodged 

1.570 Low Non-Lodged 

1.570 Low Non-Lodged 

1.404 Low Non-Lodged 

2.006 Low Non-Lodged 

0.659 High Non-Lodged 

 
Cultivar: Massimo Meridio, Growth stage: Stem elongation 

Field measured safety 
factor value 

Lodging susceptibility 
based on the safety factor 

Crop condition as 
observed on the field 

2.332 Low Lodged 
2.433 Low Lodged 
1.863 Low Non-Lodged 
0.621 High Lodged 
1.229 Low Lodged 
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Chapter-7 
 
Synthesis: Remote sensing of wheat 
lodging and its susceptibility 
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7.1 Summary/Introduction 

A quantitative understanding of the spatio-temporal variability of crop lodging 
over synoptic scales is important for targeted crop management and reducing 
yield losses. In situ methods to assess crop lodging are sparse, subjective and 
costly and therefore not sufficient for monitoring the heterogeneous distribution 
of lodging in vast agricultural fields. High-resolution time-series RS data is 
highly beneficial for crop lodging monitoring as it provides timely and precise 
information on the change in crop biophysical traits. 
 
This research aimed to investigate and formulate a robust methodology for 
lodging detection, characterisation and susceptibility mapping in wheat using RS 
techniques. The research is summarised in Fig. 7.1. We first carried out an 
extensive literature review in Chapter-2 that enabled us to understand the state-
of-the-art and identify unanswered research questions in the area of crop lodging 
assessment. Subsequently, we characterised lodging using RS in three ways: 
through i) quantification of the crop angle of inclination (CAI) as a measure of 
wheat lodging stages (Chapter-3); ii) classification of wheat crop lodging severity 
using a lodging score (Chapter-4) and; iii) identifying the time of lodging 
incidence in wheat using time-series image analysis based on lodging score 
(Chapter-5). Finally, in Chapter-6, we mapped lodging susceptibility in wheat 
with a safety factor against root lodging. In this context, we analysed the 
performances of freely available Copernicus data (Sentinel-1, Sentinel-2) as well 
as commercial (RADARSAT-2) satellite data sources to examine the trade-offs 
between temporal, spatial and spectral (or polarimetric) resolution associated 
with crop lodging assessment. We made temporal field measurements in 
Bonifiche Ferraresi farm, Italy covering the critical wheat phenological stages 
from stem elongation (GS30) until ripening (GS99) between March-June 2018. 
To analyse the field and RS data, we further used different machine learning 
algorithms such as support vector regression, partial least square discriminant 
analysis and extreme gradient boosting tree regression. 
 
The main findings of this research are discussed in this chapter and summarised 
as follows: a) the scientific consensus on crop lodging assessment using RS data 
is in the nascent stage and is still evolving. Very few studies (22) published 
between 1951-2018 demonstrated the potential of RS data for crop lodging  
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assessment, particularly at regional scales using high-resolution satellite data (see 
section 7.2); b) low incidence angle (~27o) quad-polarimetric RADARSAT-2 
data with a spatial resolution of 10 m was found to be sufficient in estimating 
crop lodging-related structural parameters such as CAI (R2

CV=0.87, 
RMSECV=8.89o) (see section 7.3) and classifying lodging severity-based on 
lodging score (overall accuracy=72%, Kappa=0.60) (see section 7.4); c) the use 
of dense-time series Sentinel-1 SAR data in combination with multispectral 
Sentinel-2 data enabled the identification of a plausible time of lodging incidence 
and could distinguish between different degrees of lodging severity in wheat 
(moderate, severe and very severe) (see section 7.5) and d) multi-incidence angle 
RADARSAT-2 data enabled root lodging susceptibility mapping through the 
estimation of safety factor with an R2

CV of 0.84 and RMSECV of 0.54 (see section 
7.6). Finally, in this chapter, we discuss the future opportunities for crop lodging 
assessment using RS data (see section 7.7) and implications of the research for 
technology transfer to potential end-users (see section 7.8).  

7.2 Advances in remote sensing of crop lodging 

Our capacity to monitor the Earth’s surface with satellite-based Earth observation 
platforms has expanded rapidly in the past three decades. During this time. RS 
has proved to be a promising tool for crop lodging assessment (Bouman, 1991b; 
Hufkens et al., 2019; Ogden et al., 2002). While RS methods for lodging 
assessment have not yet reached sufficient maturity, a vast array of studies 
already exists on the use of field-/lab-based methods and approaches (Crook and 
Ennos, 1995; Sterling et al., 2003). These well-established field-/lab-based 
methods have enabled a deep understanding of lodging mechanics and the factors 
that cause lodging as well as how lodging severity impacts crop yield.  
 
In Chapter 2, for the first time, we provided a detailed overview of some of these 
field-/lab-based studies (49 studies) and showed how RS could contribute to 
lodging-based applications. The chapter also characterised the strengths and 
limitations of RS-based crop lodging studies. It laid out a solid foundation for 
subsequent research on this topic by identifying research gaps and providing 
perspectives on the untapped potential of RS for crop lodging assessment. The 
review showed that there were only 22 ISI publications between 1951-2018 that 
used RS for crop lodging assessment. We have summarised the number of RS-
based publications (and their citations) that were reviewed in Chapter-2 and the 
subsequent (22) studies performed post-2018 in Fig. 7.2. Research on RS-based 
lodging progressed at a slow pace until 2010 and increased rapidly after that, with 
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much of this increase taking place after 2018 (Fig. 7.2). This increase is mainly 
due to the rapid advancement in airborne and satellite-based sensors together with 
promising developments in machine learning research, which have led to new RS 
opportunities for lodging assessment. About 22 RS-based studies on crop lodging 
assessment have been published post-2018, including the outputs from this 
research, resulting in a total of 44 RS-based lodging publications to date. The 
number of citations of these studies has also increased dramatically, with 
approximately 400 citations of the studies published between 2011-2020. The 
increasing number of publications exhibit that a preliminary level of knowledge 
now exists on the use of RS for lodging assessment and that the interest of the 
scientific RS community in lodging is growing rapidly (Fig. 7.2). 
 

 
Fig. 7.2. The total number of publications and citations from the RS-based crop lodging 
studies throughout 1980-2020. This includes the studies reviewed in Chapter-2 and the 
ones published subsequently (post-2018).  
 
Lodging detection in wheat using airborne UAV data acquired in the VNIR 
(visible-near infrared) region continues to be a hot topic of RS-based lodging 
research. A substantial part of the efforts (80% of the studies) has been dedicated 
to the categorical classification of crop lodging stages (non-lodged and lodged) 
using optical RS data while the remaining studies have focused mainly on 
understanding the impact of lodging on the RS signal. However, most of these 
studies merely detect lodging while replacing the existing technology but do little 
to advance it or show the unique capabilities of RS methods. The findings of the 
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review pointed out four major research gaps that were taken up as the objectives 
of this study: we proposed the i) estimation of crop angle of inclination (CAI) as 
a proper measure of wheat lodging stages, ii) classification of lodging severity 
using RS-based assessment of lodging score, iii) identifying the time of lodging 
incidence in wheat and understanding the effect of lodging on the RS signal using 
lodging score, and iv) estimation of a “safety factor against root lodging” as a 
measure of root lodging susceptibility in wheat. 

7.3 Potential of remote sensing data in detecting crop lodging 
stages  

It is important to characterise the intensity of lodging as it is a prerequisite to 
calculate crop yield losses and plan harvesting operations. SAR satellite data has 
shown to be valuable for crop lodging assessment due to its sensitivity to crop 
vertical structure, the ability of the SAR signal to resolve the scattering within the 
crop canopy into separate scattering mechanisms and data availability 
irrespective of weather conditions (Wang et al., 2019). When the plant is lodged, 
the stem moves from the upright position, and there is a change in the crop’s 
morphological status. It can be reasonably assumed that this change is manifested 
in the backscatter/polarimetric response of the canopy. Multiple metrics derived 
from SAR satellite data have shown to detect crop lodging successfully (e.g. 
detection of lodging stages) (Yang et al., 2015; Zhao et al., 2017). However, it 
was important to compare these diverse set of metrics to form a more mechanistic 
understanding of the probable variabilities produced by each of them. Moreover, 
it was not known how the incidence angle of the sensor affects the interaction of 
the microwave signal with the lodged canopy. 
 
In Chapter-3, we investigated the role and contribution of a range of RS-based 
metrics derived from Sentinel-1 and RADARSAT-2 data (low and high incidence 
angle) to estimate crop angle of inclination (CAI [0, 90o]), as a measure of crop 
lodging stages (moderate, severe and very severe). CAI is the angle made by the 
crop stem with respect to the vertical. During lodging, a crop undergoes a series 
of stages (referred to as lodging stages in this study) starting with a slight lean 
from the vertical (CAI ~ 0°) and ending with the crop lying close to horizontal 
(CAI ~ 90°). We demonstrated how CAI is a better quantitative indicator of 
lodging stage than plant height (that had been used in most of the studies), as the 
variation in CAI is independent of the differences in crop cultivars and 
phenological stages. In general, higher accuracy was achieved with low incidence 
angle (~27o) RADARSAT-2 data (R2

CV = 0.87) especially for CAI>60o. 
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Moreover, the cross-polarised backscattering coefficients and volume scattering 
metrics were highly sensitive to CAI at a low incidence angle, suggesting that 
volume scattering was dominant at low incidence angles. The double bounce 
scattering metrics were highly correlated (negatively) with CAI at a high 
incidence angle. The analysis also revealed the potential of backscattering 
coefficients in distinguishing different lodging stages. For instance, the cross-
polarised (VH or HV) backscattering coefficient values between healthy (He, 
non-lodged) and severely lodged (SL), He and very severely lodged (VSL), 
moderately lodged (ML) and VSL, and SL and VSL stages were all significantly 
different. The CAI maps, generated for the first time in this study, showed 
widespread lodging in the study area and its progression over time.  
 
To better understand the utility of CAI for lodging detection and for classifying 
lodging stages, Chauhan et al. (2019b) also analysed multispectral very fine-
resolution unmanned aerial vehicle (UAV) data (5 cm) (not included in this 
thesis). The UAV data with nine spectral bands (390-950 nm) was acquired over 
two wheat fields (18.6 ha each) on May 29, 2018 (Fig. 7.3a, b) parallel with CAI 
and plant height measurements in 51 plots (2×2 m spatial extent). The lodging 
stages were classified with a high overall classification accuracy (90%), with 
some degree of confusion between VSL and other lodging stages (Fig. 7.3c).  
 
Overall, the results underlined the significance of very fine-spatial resolution data 
in lodging detection and mapping lodging stages. CAI maps generated in NRT 
can be used to predict yield losses and to design in-field navigation routes for 
autonomous driving vehicles so that the speed can be adjusted depending on the 
lodging condition, thus reducing harvest losses.  
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Fig. 7.3. The red polygon in (a) shows the location of the wheat fields in the Bonifiche 
Ferraresi farm where UAV data was acquired, (b) shows the false colour-composite 
(R:865 nm, G:665 nm, B:560 nm) of the scenes acquired from the UAV platform on May 
29, 2018 and in (c) are the UAV images classified into different lodging stages using a 
supervised nearest neighbour algorithm. 

7.4 Exploring the information capacity of SAR remote 
sensing for lodging severity mapping 

One of the primary findings of our review (Chapter-2) was the absence of a 
standard reference/scale and terminology to represent lodging condition. 
Therefore, based on the gathered insights, we differentiated between three terms 
in the context of lodging characterisation: lodging stage, lodging severity and 
detecting when lodging occurs (or identifying lodging incidence). Crop 
biophysical parameters, such as CAI or plant height, were defined as measures 
for lodging stage assessment, whilst lodged area (LA), CAI and the phenological 
stage under observation govern lodging severity (Acreche and Slafer, 2011; 
Easson et al., 1993; Lang et al., 2012) and in turn, the extent of yield loss.  
 
In Chapter-4, building upon our previous chapter, we carried out a discriminant 
analysis for classifying different degrees of lodging severity using Sentinel-1 and 
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RADARSAT-2 data (low and high incidence angle). We proposed an index, 
modified after Caldicott and Nuttall (1979) called lodging score, that combines 
LA and CAI, as a simple measure of lodging severity. We hypothesised that an 
assessment of lodging score delivers a more comprehensive evaluation of 
lodging-induced crop damage than using CAI alone. In this regard, we analysed 
the correlation between the proposed lodging score and various satellite metrics. 
We then classified lodging severity-based on the lodging score using PLS 
discriminant analysis. As was the case with CAI estimation (Chapter-3), the low 
incidence angle RADARSAT-2 based model (overall accuracy of 72%) 
outperformed the high incidence angle RADARSAT-2 and Sentinel-1 models.  
 
Furthermore, correlation analysis indicated the dependency of backscattering 
mechanisms on the satellite incidence angle and the polarimetric information 
content of Sentinel-1 and RADARSAT-2 data. The backscattering coefficients 
and polarimetric parameters responsive to the volume scattering mechanism (e.g. 
σo

HV, Yama_vol, biomass index) were highly sensitive to lodging severity for low 
incidence angle RADARSAT-2 data. The double bounce and surface scattering 
were more prevalent for high incidence angle RADARSAT-2 data. In the case of 
Sentinel-1, different backscattering mechanisms were prevalent in varying 
proportions. This is further explained in Fig. 7.4 for high angle of incidence 
(~40o) Sentinel-1 data acquired at different dates. The two wheat fields are in ML 
(Fig. 7.4a right) and VSL (Fig. 7.4b right) severity states. The Sentinel-1 
backscattering intensities in VV and VH polarisations are also shown on the left. 
In essence, the higher the backscattering intensity, the rougher the surface being 
imaged. The polarised return from the target provides information on structure 
orientation and penetration depth. The visual interpretation of both wheat fields 
in Fig. 7.4a, b (right) shows varying levels of crop surface roughness that is being 
imaged. The VSL field in Fig. 7.4b (right) appears slightly less rough than the 
ML field in Fig. 7.4a (right), resulting in decreased backscatter. Although both 
VV and VH backscatter are evident in both image dates, the dominance of VV 
backscatter in the VSL condition is mainly due to increased surface scattering 
(smoother surface). Contrarily, in the ML scenario, VH is dominant (Fig. 7.4a 
left) indicating more volume scattering. The moderate to very severe destruction 
of the vertical plant structure could have resulted in a corresponding decrease in 
double bounce scattering (stem-soil returns). 
 
This study is the first demonstration that satellite-based SAR RS data can detect 
and characterise the lodging severity of staple crops like wheat. Our research 
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shows that accurate, synoptic-scale assessment of lodging severity in wheat is 
feasible and can form part of timely, data-driven approaches for crop 
management at farm level and food security monitoring systems at a regional 
level. The classified lodging severity maps can also be used for insurance pay-
outs and settling insurance compensation disputes. 
 

 
(a) 

 
(b) 
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(c) 

Fig. 7.4. RGB composites (R: VV, G: VH, B: VV) of the two Sentinel-1 images acquired 
on (a) May 13, 2018 (moderately lodged) and (b) May 25, 2018 (very severely lodged) 
showing the variation in the backscattering intensity for the two wheat fields. The 
photographs from the fields taken on the same date as the acquired satellite images are 
shown on the left. An example of the backscattering mechanisms caused due to different 
degree of lodging severities is also illustrated in the field photographs. (c) shows the 
colour scale for interpreting the satellite image colour composites.  

7.5 Contribution of time-series SAR and optical remote 
sensing data in identifying the time of lodging incidence in 
wheat  

Monitoring the seasonal variations of vegetation is important for many 
applications such as crop yield and net primary productivity estimation, detecting 
the time of crop harvest or supporting decisions about water supply (Sakamoto et 
al., 2005). Time-series RS data constitutes a valuable tool for NRT monitoring of 
crop growth by providing precise and timely information on vegetation status and 
development. While optical data provide a link between the biochemical and 
photosynthetic properties of crops, SAR data is useful for analysing the structural 
attributes of plants. The free and openly available dense time-series of Sentinel-
1 and Sentinel-2 data have stimulated a shift in recent years towards studying the 
temporal behaviour of different crop types (Schlund and Erasmi, 2020; Veloso et 
al., 2017). However, these time series had not been exploited to detect the changes 
in crop development that are informative of when lodging occurs.  
 
In Chapter-5, we addressed this gap and our time series analysis indicated that a 
plausible window of the first main lodging event in our experimental dataset 
could be identified (between DoY 115-121) using Sentinel-1 and Sentinel-2 data 
together. However, >20 days of missing Sentinel-2 satellite data (primarily due 
to cloud cover), did not allow for as accurate estimates as with Sentinel-1 data 
(with data available every six days). We also demonstrated the capability and 
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complementarity of the metrics derived from different polarisations and spectral 
bands to distinguish between different degrees of lodging severity. For instance, 
the red-edge and NIR regions with central wavelengths of 740 nm and 865 nm, 
respectively were the most important spectral regions for distinguishing He and 
other lodging severity classes, while σo

VH backscattering coefficient and the 
complementarity of σo

VV and σo
VH/VV backscattering coefficients also played a 

major role in distinguishing the lodging severity classes. The change in 
reflectance spectra due to crop cultivar differences and crop growth (or change in 
phenological growth stages) was much less than the variation due to lodging. The 
results are promising given the complexity (heterogeneous and random 
distribution of lodging) and level of detail (different degree of lodging severities) 
in the lodged wheat considered in the study. 
 
The results observed from the analysis of Sentinel-2 data were further confirmed 
by Chauhan et al. (2019b) (not included in this thesis). They also noted that the 
mean reflectance obtained from UAV acquired data increased as the lodging 
progressed from He to VSL stage (Fig. 7.5). The change was more pronounced 
in the green (560 nm), NIR (842 nm) and red-edge (740nm) regions (Fig. 7.5). 
This effect is mainly due to the change in structural characteristics of the plant 
and leaves from their vertical position to a horizontal flat condition. Moreover, 
the increase of reflectance in VIS is also an indicator of plant stress (e.g. reduced 
chlorophyll absorption in red region). 
 

The identification of when lodging occurs and the knowledge about how lodging 
affects the RS signal could contribute to in-season yield loss estimates, crop 
management decision support systems, setting crop retail prices and enabling 
algorithm development for operational crop lodging detection. 
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Fig. 7.5. Boxplot depicting the UAV reflectance at various wavelengths for healthy, 
moderate, severe and very severe crop lodging stages. The Kruskal Wallis p-values at the 
end of each box plot indicate if the differences between group means are significant (at 
0.01 level of significance). The p-value in red indicates that the difference between group 
means is insignificant at 0.01 level of significance. 
 

7.6 Role of SAR remote sensing in lodging susceptibility 
mapping 

RS serves as a valuable tool for monitoring the changes in crop canopy that are 
too subtle to be noticed at the local scale but maybe distinct when summarised at 
synoptic scales. Susceptibility indicators that can be quantitatively measured 
using RS are often used to depict the degree to which crops are susceptible to 
being influenced by future change (Kim et al., 2014). RS has been widely used 
to assess crop trajectories following the damage caused due to lodging (lodging 
detection), as seen in section 7.2 and Chapter-2. However, lodging susceptibility 
mapping using RS data is still mostly unexplored.  
 
In Chapter-6, we addressed this gap by demonstrating the use of RS-based 
metrics derived from Sentinel-1 and multi-incidence angle RADARSAT-2 data 
to estimate safety factor against root lodging (SFA) as a simple quantitative 
measure of root lodging susceptibility. Root lodging is a result of the failure of 
the root-soil anchorage system due to weak soil shear strength and a small root 
plate diameter (Crook and Ennos, 1994). It is a ratio of the self-weight moment 
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of a plant (measured using crop angle of inclination, plant height at the centre of 
gravity, fresh aerial biomass and acceleration due to gravity) to the anchorage 
strength of the root-soil system.  
 
The results obtained in this chapter showed that the SFA is detectable from high-
resolution SAR satellite data with up to 73-84% accuracy at the field level, 
although the backscattering coefficients and polarimetric features saturated at 
high safety factor values (>2). Despite this, the critical SFA value (close to 1) 
required to assess root lodging susceptibility in wheat could be reliably detected 
by both models; with higher accuracy for fully polarimetric multi-incidence angle 
RADARSAT-2 data (R2

CV = 0.84, RMSECV = 0.54). In the case of Sentinel-1 data, 
the interferometric coherence combined with backscattering coefficients seemed 
promising for estimating the safety factor (for non-lodged wheat). This is 
probably due to the well documented high correlation of coherence with the plant 
height of non-lodged wheat. We also found that the safety factor was largely 
consistent with the real lodging events observed during the field visits and that 
the crop condition in early spring (stem elongation growth stage [GS30-40]) can 
indicate future lodging susceptibility. In Chapter-6, we also emphasised that a 
safety factor against root lodging, when combined with other crop biophysical 
(such as plant density) and environmental (such as rainfall and wind speed) 
parameters sensitive to root lodging susceptibility, would result in more 
comprehensive and timely lodging risk estimates.  
 
This study is the first demonstration that presents a replicable and scalable 
method of assessing the susceptibility of globally relevant yield-reducing factor 
to staple crop production. Lodging susceptibility mapping is important in several 
aspects, e.g. for efficient nitrogen fertiliser management during the growing 
season and formulating the subsequent plant growth regulator programme. Our 
research shows that accurate, synoptic-scale assessment of the susceptibility of 
the wheat crop to lodging is feasible and can form part of timely, data-driven 
approaches for crop management at farm level and food security monitoring 
systems at a regional level.  
 

7.7 Future opportunities 

This study has advanced the use of RS for characterising crop lodging using 
current operational satellite-based sensors and field observations. In this section, 
we share some insights into research avenues that can be explored in future 
studies. 
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7.7.1 Crop lodging detection and characterisation  

Crop lodging detection and the characterisation of lodging stages, lodging 
severity and lodging incidence remain challenging, despite the growth in the 
number of lodging-based RS studies. Although our research had promising 
findings, it is limited to one season in a single test site with limited field 
observations. We believe the following five issues should be considered to 
achieve major improvements in the existing methodologies for lodging detection 
and characterisation i) availability of a statistically significant temporal sample 
size before and at the time of the lodging event for proper validation, ii) 
minimising the image gap, especially after lodging occurs, iii) exploiting 
hyperspectral data in the VIS-SWIR range to identify the absorption features 
diagnostic of lodging, iv) utilising textural features in combination with existing 
RS-based satellite metrics and v) a larger-scale study, covering different 
environments and management practices and using information from a broader 
set of current and near-future EO platforms. Future studies can benefit from a 
combination of current and upcoming satellite sensors such as multi-temporal 
NISAR, ALOS2/PALSAR-2, RADARSAT Constellation Mission (RCM), 
Sentinel-1, Sentinel-2, ICEYE, Capella, EnMap and PRISMA for operational 
multi-sensor monitoring of crop lodging. 
 
In order to increase the availability of field data close to the lodging events, a 
network of phenological cameras (phenocams), spread over multiple sites and 
climate zones, can be installed in agricultural fields to provide hourly to daily 
information from which the timing of lodging events can be determined. This 
could also assist in subsequent planning of timely collection of ground truth data 
of lodging events and crop parameters. A network of phenocams is already 
expanding globally, covering different ecosystems (Brown et al., 2016). Recent 
developments in the EO sector can also improve the efficacy of crop lodging 
assessment across the globe. The (almost) daily availability of ICEYE and RCM 
data (with limited polarimetric information) and the increased frequency of the 
optical observations from hyperspectral systems such as EnMap and PRISMA (in 
combination with multispectral Sentinel-2 and Landsat-OLI acquisitions further 
complemented by Sentinel-1 SAR data) would help overcome the problem of the 
image gap. Since lodging can occur any time after the booting or flowering 
phenological stages, the (almost) daily time-series of ICEYE and RCM data could 
be useful to accurately identify the timing of a lodging event by analysing 
temporal changes in the RS signal. The rich spectral information of EnMap (228 
spectral bands) and PRISMA (237 spectral bands) data may allow understanding 
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of how lodging-induced change in the crop parameters affect the spectral 
reflectance of wheat fields, which absorption features are diagnostic of lodging 
and how different degrees of lodging severity can be discriminated. 
 
Textural analysis of very high-resolution satellite images has shown promising 
results in the retrieval of crop biophysical parameters in non-lodged conditions 
(Colombo et al., 2003). In general, texture analysis provides an estimate of the 
spatial distribution of grey levels in an image by reflecting the contrast between 
the areas lit by the sun and those that are in shadow (Ploton et al., 2017). This, in 
turn, provides information about the size and distribution of the crop canopy and 
intercrop gaps, given the spatial resolution is very high. Our review study 
(Chapter 2) revealed that there is a lack of understanding about how canopy 
texture features in contrasted lodging and environmental conditions vary with 
respect to the crop structural attributes such as CAI or lodging score. Feature 
extraction methods such as grey-level co-occurrence matrix (GLCM) can be used 
(Singha and Sarmah, 2019) to derive textural features related to contrast 
(homogeneity, dissimilarity and contrast), orderliness (angular moment, 
maximum probability and entropy) and statistical (mean, variance and 
correlation) features.  

7.7.2 Quantification of lodging impact on crop yield and grain 
quality 

Accurate crop yield estimates allow farmers to interpret how management 
strategies affect crop productivity and can help guide future practices (Lobell, 
2013). Existing RS-based methods of wheat yield estimation (Barbouchi et al., 
2016) have been applied to homogeneous non-lodged wheat fields. Despite the 
recognised impact that lodging has on crop yield (with losses up to 75%), to our 
knowledge, the use of RS for assessing the effects of lodging on the accuracy of 
these methods for yield estimation remains unknown. The mechanisms by which 
lodging results in yield loss (such as inefficient use of radiation by the canopy 
resulting in reduced photosynthesis) is well understood and has been postulated 
in the literature (Berry and Spink, 2012; Setter et al., 1997). The knowledge of 
these mechanisms can help build RS-based algorithms to predict lodging-induced 
yield losses. For instance, RS can contribute to estimating the absorbed 
photosynthetic active radiation (APAR) as a direct proxy of the dry matter 
productivity and final yield of the lodged canopy. RS-derived parameters such as 
photochemical reflectance index (Barton and North, 2001) and solar-induced 
chlorophyll fluorescence (Meroni et al., 2009) have shown to have a consistent 
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relationship with the light use efficiency of a non-lodged canopy. Future studies 
should focus on the use of these remotely sensed parameters to characterise the 
light use efficiency of lodged crops in combination with crop growth models 
(such as Crop Estimation through Resource and Environment Synthesis or 
CERES-Wheat) driven by weather data to quantify the crop yield losses. In this 
context, the upcoming Fluorescence Explorer (FLEX) satellite mission (2022) 
intended for rapid improvement in solar-induced chlorophyll fluorescence 
sensing capabilities will play an important role.  
 
Moreover, the use of RS-derived biophysical parameters such as crop angle of 
inclination (CAI) and lodging score should also be explored for yield loss 
assessments. For example, the RS-derived lodging score can be assimilated into 
a simple equation (Eqn. 7.1) formulated by Berry and Spink (2012), that can 
predict the extent of yield loss (Yloss) for any lodged crop: 
 

𝑌௟௢௦௦ ൌ  
∑ ሺ𝐿𝐴ଽ଴బ ൈ 0.7 ൅ 𝐿𝐴଺ହబ ൈ 0.3 ൅ 𝐿𝐴ଶହబ ൈ 0.1௙

௜ ሻ
𝑛

 
(7.1) 

 
where, i and f are the 1st and last days of grain filling, 𝐿𝐴ଽ଴బ , 𝐿𝐴଺ହబ  and 𝐿𝐴ଶହబis 
the extent of the lodged area at the CAI of 85-90o (very severely lodged), 46-84o 
(severely lodged) and 5-45o (moderately lodged) from the vertical, respectively 
and n is the number of days of grain filling.  
 
As discussed in Chapter-2, lodging can have a significant impact on grain quality 
too. The use of RS to quantify the impact of lodging on grain quality indicators 
such as grain protein content is still largely unexplored. An assessment of grain 
protein content in cereal crops is important to meet varying commodity needs. 
For instance, a grain protein content above 12.5% is needed in wheat to provide 
sufficient gluten for bread making. Studies show that the nitrogen content of 
wheat at the flowering growth stage is indicative of grain protein content (Zhao 
et al., 2005, 2019). An RS model based on hyperspectral data estimating plant 
nitrogen content for lodged canopy can be integrated – in future studies- with 
process-based models such as SiriusQuality (Martre et al., 2006) or STICS 
(Brisson et al., 2003) to quantify lodging impact on grain protein. 

7.7.3 Lodging risk mapping using remote sensing retrieved soil and 
crop parameters 
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The findings stemming from this work could eventually result in more accurate 
and timely lodging risk estimates. As mentioned earlier, the mapping of 
susceptibility indicators is an essential component of a comprehensive risk 
assessment of lodging. A comprehensive lodging risk assessment entails the 
inclusion of long term climate averages (baseline risks exposure), forecasts of 
precipitation and wind gusts (hazard) and susceptibility indicators such as soil 
nitrogen, soil moisture or other remotely sensed crops biophysical and 
biochemical parameters into a model. The status of the crop at the beginning of 
the stem elongation stage (GS 30-31) is a crucial determinant of lodging 
susceptibility in wheat. Just like the crop safety factor, other estimates of 
biophysical parameters such as leaf area index (LAI), fraction of vegetation cover 
(fCover) and plant density at GS30-31 can also be used as lodging susceptibility 
indicators (HGCA, 2005).  
 
Our study showed that a remotely sensed safety factor against root lodging could 
serve as a reliable lodging susceptibility indicator during the growing season. It 
would be useful to further extend and validate the use of RS-based safety factor 
for assessing lodging susceptibility at several test sites with contrasting 
agricultural landscapes. A more detailed experimental investigation combining 
the crop safety factor with other environmental and crop/soil biophysical 
parameters is also needed. This could substantially improve and upscale lodging 
risk assessment capabilities using RS, as a major step towards a complete and 
comprehensive evaluation of lodging over large areas. In order to fully integrate 
quantitative lodging risk assessment in modern agriculture, future studies should 
make the model compliant with the standards of decision support schemes such 
as DESSAC (DEcision Support System for Arable Crops) so that farmers can use 
the knowledge in a practical and applied way. Future studies can also explore the 
application of RS in investigating lodging risk in other staple cereals such as rice, 
oats and barley. 
 
Lastly, we demonstrate two approaches that could form a basis for future studies 
for lodging risk mapping. The first approach presents a lodging susceptibility map 
derived by combining different crop biophysical parameters. We combined the 
thresholds of safety factor against root lodging (SFA) derived in Chapter-6 (Fig. 
7.6c) with those of LAI (Fig. 7.6a), fCover (Fig. 7.6b) and plant density (Fig. 
7.6d) to produce an “in season” lodging susceptibility map (Fig. 7.6e). We 
derived the LAI and fCover maps from Sentinel-2 data using the Biophysical 
processor in SNAP toolbox while the plant density map (Fig. 7.6d) was provided 
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by Bonifiche Ferraresi farm (study site). According to HGCA (2005) guidelines, 
LAI>2 or fCover>60% at GS30-31 increases stem lodging susceptibility. 
Furthermore, an increase in plant density above 200 plants per square meter can 
increase root lodging susceptibility (as it weakens the soil anchorage). As shown 
in Chapter-6, the SFA≤1 increases the root lodging susceptibility. A combined 
(stem+root) lodging susceptibility map combining these four parameters (LAI>2 
AND fCover>60% AND SFA≤1 AND PD>200) is shown in Fig. 7.6e. Future 
studies should develop models to produce accurate and fully validated products 
of LAI, fCover and plant density, should validate the thresholds that can indicate 
the lodging risk and carry out a sensitivity analysis to study the influence of each 
of these parameters together with environmental parameters on the lodging risk. 
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Fig. 7.6. (a) Leaf area index (LAI m2 m-2), (b) fraction of vegetation cover (fCover %) 
maps derived from the Sentinel-2 image acquired on March 30, 2018. The maps are 
derived using the biophysical processor in SNAP. The safety factor against root lodging 
(SFA) map shown in (c) is derived from Sentinel-1 data (dated March 26) using extreme 
gradient boosting regression. The plant density (PD plants m-2) map shown in (d) is 
provided by the Bonifiche Ferraresi farm. The lodging susceptibility map in (e) showing 
high risk is derived by combining the thresholds of LAI>2, fCover>60%, SFA≤1 and 
PD>200 plant m-2. The wheat fields shown in the maps are at GS30-31. 
 
The second approach that we demonstrate here is a proof of concept can 
contribute to developing an RS-based model independent of physical field-based 
measurements. We demonstrate a simple and cost-effective approach for getting 
a preliminary estimate of stem wheat lodging susceptibility using RGB 
photographs (acquired in nadir position) of a field. Based on the RGB 
photographs, a visual assessment can be made regarding the relative LAI or 
fCover values. Fig. 7.7 shows different stem lodging susceptibility scenarios in 
our study site based on the RGB photographs of the wheat plots at GS30-31 and 
the relative LAI/fCover values of wheat estimated visually. Although qualitative, 
such visual estimates can be useful in the absence of field measurements for 
assessing relative lodging susceptibility on a smaller scale (field level) and for 
validating the RS-based estimates. The accuracy of the relative LAI and fCover 
estimates can be further improved through object-based segmentation. 
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Fig. 7.7. Different stem lodging susceptibility scenarios based on a visual estimate of leaf 
area index (LAI m2 m-2) and the fraction of vegetation cover (fCover %) measured from 
the RGB photographs of the wheat plots at the beginning of stem elongation growth stage 
(GS30-31). The highest stem lodging susceptibility is for the scenario where the green 
canopy cover is highest (LAI>2, fCover>60%). 

7.8 Research implications 

7.8.1 Implications for technology and knowledge transfer to end-
users: Market potential of the research 

An increased focus on crop monitoring is a major factor fuelling the smart 
precision farming RS market today. One of the biggest growth prospects in smart 
precision farming is the web/mobile applications segment, which is growing at a 
much higher rate than the market average growth rate. Roland (2015) estimated 
the worldwide total available market of the software and hardware for precision 
farming to be €4.5 billion in 2020 which has been growing at a compound annual 
growth rate (CAGR) of 12% from 2014 through 2020 (Fig. 7.8). The 
demonstrated potential of using RS for crop lodging assessment has created a new 
market niche. Therefore, it is envisaged that an easy-to-use web/mobile-based 
application or a decision support tool that uses satellite data to notify the end-user 
about possible lodging risk and the extent of lodging-induced crop damage in 
NRT could be developed. This would allow optimal resource utilisation for 
affected areas and adequate decision-making in selecting remedial measures. 
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Fig. 7.8. The market estimation (grouped by the continents) for precision smart farming 
2014-2020 is shown. The figures are in billion euros; CAGR is the compound annual 
growth rate (Roland, 2015).  
 
Through a combination of expertise in RS data and algorithms, GIS analysis and 
agronomy, the application can serve as a useful tool for crop lodging monitoring. 
A scheme for RS-based lodging detection and risk mapping of wheat is proposed 
in Fig. 7.9. There are seven key steps: 1) acquiring satellite images at critical 
growth stages such as GS30-31 for lodging risk analysis and after GS60 for 
lodging detection in wheat; 2) a processing chain for processing the satellite 
images; 3) intermediate crop biophysical data products such as LAI maps, soil 
moisture maps, etc. as indicators for lodging susceptibility; 4) assimilation of 
intermediate products, such as climate data as well as meteorological conditions 
from sowing to harvest date into a crop lodging model to generate precision maps 
(such as a lodging risk map); 5) the precision maps can be delivered to the end-
user through a web platform or mobile application; 6) the end-user also receives 
suggestions regarding the remedial measures in high-risk/highly-lodged areas, 
and 7) providing customised support from technicians for follow-up queries. 
Through a co-development process with the necessary stakeholders, it can be 
ensured that the RS-based information meets requirements for local and regional 
assessments of crop production and losses. 
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Fig. 7.9. The proposed framework for developing a web/mobile-based application for 
lodging detection and risk mapping. 
 
In order to develop a web/mobile-based interface, two important considerations 
can be made for the NRT availability of information to the end-user. Firstly, 
freely available satellite data has high potential in creating an NRT, localised crop 
lodging tracking and risk mapping system that can provide immediate value to 
the end-user with negligible human involvement. A framework can be developed 
for processing free satellite data (using Google Earth Engine, for example) by 
leveraging computational devices in combination with cloud infrastructures (such 
as Google Cloud). Second is the availability of information irrespective of the 
weather conditions. A model that uses weather-independent satellite data (e.g. 
microwave data) as the data source will be useful.  

7.8.2 Potential end-users  

The agri-food Bonifiche Ferraresi company in Italy could be the primary tester 
and early adopter of the application or the recommendations generated from this 
study. For a long time, the main problem for the Bonifiche farm was their inability 
to detect the timing and severity of a lodging event, quantify its impact and 
foresee where lodging was expected to occur. We identified the problem and 
realised that if this information was available in time, it could help the farm take 
proper actions during the crop season and prevent/lessen the extent of the 
damage.  
 
The other potential end-users of the research could be crop insurance companies, 
agronomists, agricultural retailers, policymakers and most importantly, farmers. 
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Farmers, loss adjusters from the insurance companies and even Bonifiche face 
this huge challenge to get an accurate estimation of crop damage and decide upon 
the compensation claims. Upon receiving a claim, it may take weeks for a loss 
adjuster to assess the farm as large as 5000 ha to validate the claim and assess the 
crop damage. High claim rates during the season make it even more challenging. 
For agricultural retailers, it is important to get an estimate of the damage to set 
the crop retail prices. For policymakers, delivering accurate crop lodging 
inventories with consistency and reliability at the regional or national scales can 
be important.  

7.8.3 The relevance of the results to the attainment of the Sustainable 
Development Goals 

The Sustainable Development Goals (SDGs) laid out by the United Nations spell 
out the commitment to address global challenges and attain sustainable 
development in three dimensions: economic, environmental and social. The 17 
goals are associated with critical sectors, including clean water, responsible 
consumption/production and climate action, among others. Geospatial datasets 
from EO satellites have been recognised as feasible replacements or 
complementary data source to survey or to get census-based statistics that often 
form the basis for assessing and reporting on these goals (Holloway and 
Mengersen, 2018). In this context, the objectives and the successive results of this 
work are directly relevant and applicable for the accomplishment of two targets 
(2.3 and 2.4) under SDG 2 (“Zero hunger-Achieve food security and improved 
nutrition and promote sustainable agriculture”), though implicit links exist with 
five other SDGs (9, 12, 13, 15 and 17).  
 
The Inter-agency Expert Group on SDG Indicators (IAEG-SDGs) has proposed 
indicators to examine progress towards sustainable agriculture management 
(SAM) (indicators 2.3.1 and 2.4.1). These indicators correspond to increasing 
crop production volume per unit area (2.3.1) and monitoring the proportion of 
agricultural land under productive and sustainable agriculture (2.4.1). Inter-year 
comparison of these indicator values at regional or national scales can help 
quantify the advancements being made towards SAM. Thus, stable or increasing 
crop yields per hectare over time due to the timely assessment of lodging can 
indicate SAM while a long-term decrease in crop production volumes could 
imply otherwise. The demonstrated feasibility of using freely available satellite 
data to map crop lodging and assess its susceptibility can greatly aid in accurately 
estimating, observing and reporting on SDG indicators 2.3.1 and 2.4.1. 
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Summary 

Crop lodging: the permanent bending of the crop stem from its vertical position 
(stem lodging) or displacement of root anchorage (root lodging), is a major yield-
reducing factor in cereal crops such as wheat. It can also delay harvest, increase 
drying costs and deteriorate grain quality in cereal crops, thus affecting the 
likelihood of achieving a premium price. Therefore, accurate spatio-temporal 
information about crop lodging and its susceptibility is critical for improving 
yield estimates, informing insurance loss adjusters and facilitate decision making.  
 
The conventional measures to assess lodging are primarily based on visual 
inspection of crop health and the use of mechanistic mathematical models which 
can be time-consuming and challenging to apply over large areas. Remote sensing 
(RS) data can be a valuable supplement or even replacement to these conventional 
methods, delivering spatial and temporal information about crop lodging over 
synoptic scales. However, the use of RS for crop lodging assessment is still in a 
nascent stage. An understanding of the RS-based metrics derived from the 
satellite data and their utility for lodging detection, characterisation and 
susceptibility analysis was lacking in the literature. In this context, this PhD study 
aimed to address the problem of lodging assessment using RS satellite data from 
different sensors, including Sentinel-1, Sentinel-2 and multi-incidence angle 
RADARSAT-2 data.  
 
We defined five objectives that aimed at investigating the potential of spaceborne 
RS data for lodging detection, its characterisation and susceptibility mapping in 
wheat. The first objective was to carry out a systematic literature review that 
could relate field/lab-based approaches to RS-based methods, review and identify 
the research gaps in existing RS-based crop lodging studies and provide 
perspectives for future research. Our review found only 22 peer-reviewed articles 
published between 1951-2018, most of which focused on qualitative analysis of 
lodging. The review also enabled us to identify several unanswered research 
questions. Buildings upon our findings from the review, the subsequent 
objectives characterized lodging in three ways: detecting lodging stages, 
classifying lodging severity and identifying the time of lodging incidence. The 
final objective dealt with susceptibility analysis. The second objective 
investigated the use of Sentinel-1, low incidence angle RADARSAT-2 and high 
incidence angle RADARSAT-2 data for estimating crop angle of inclination as 
an indicator of lodging stage (moderate, severe and very severe). Our results 
demonstrated the higher sensitivity of low incidence angle RADARSAT-2 data 
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(R2
CV= 0.87) for estimating crop angle of inclination and highlighted the 

importance of Sentinel-1 data for operational assessment of crop lodging stages. 
The third objective presented a SAR-based approach for the classification of 
lodging severity based on lodging score. We found that lodging severity was best 
classified using low incidence angle RADARSAT-2 (overall accuracy 72%) 
while the model developed using Sentinel-1 data could identify 60% of the 
lodging severity cases in the study site. The next objective examined the utility 
of dense time-series Sentinel-1 data in combination with multi-spectral Sentinel-
2 data for identifying the time of lodging incidence in wheat. It also evaluated the 
effect of lodging on backscatter/coherence and spectral reflectance response. Our 
results showed that with the temporal analysis, it was possible to indicate a 
plausible window of the main lodging event and the red edge (740nm), NIR 
(865nm) and VH backscatter could best distinguish between healthy from lodged 
wheat. The last objective investigated the role of SAR data for estimating a safety 
factor against root lodging as an indicator of lodging susceptibility in wheat. We 
found that the safety factor correlated well with the lodging observed in the fields 
and was detectable using the satellite data (with 73-84% accuracy), confirming 
that it could be used as an early indicator of lodging susceptibility.  
 
Overall, this study contributes to understanding and monitoring crop lodging 
using RS. Our findings show that SAR and optical satellite data-based metrics 
can capture a substantial proportion of the observed variation in lodging, which 
is important in the context of operational crop lodging assessment in particular, 
and sustainable agriculture in general.  
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Samenvatting 

Gewassen-verbuiging: het permanent buigen van het gewas vanuit de verticale 
positie (stengelverbuiging) of verplaatsing van de wortelverbuiging (wortel-
verbuiging), is een belangrijke opbrengst-verlagende factor bij graangewassen 
zoals tarwe. Het kan ook de oogst vertragen, de droogkosten verhogen en de 
graankwaliteit in graangewassen verslechteren, waardoor de kans op het behalen 
van een premiumprijs wordt aangetast. Daarom is nauwkeurige spatio-temporele 
informatie over gewas-verbuiging en de gevoeligheid ervan cruciaal voor het 
verbeteren van opbrengstschattingen, het informeren van schade-experts en het 
vergemakkelijken van besluitvorming. 
 
De conventionele maatregelen om de gewassen-verbuiging te beoordelen zijn 
voornamelijk gebaseerd op visuele inspectie van de gezondheid van gewassen en 
het gebruik van mechanistische wiskundige modellen die tijdrovend en uitdagend 
kunnen zijn om toe te passen op grote oppervlakken. Remote sensing (RS) -
gegevens kunnen een waardevolle aanvulling op of zelfs vervanging zijn van 
deze conventionele methoden, door ruimtelijke en tijdelijke informatie te leveren 
over de legering van gewassen op synoptische schalen. Het gebruik van RS voor 
de beoordeling van gewas-verbuiging bevindt zich echter nog in de 
kinderschoenen. In de literatuur ontbrak een begrip van de op RS gebaseerde 
metrieken die zijn afgeleid van de satellietgegevens en hun bruikbaarheid voor 
detectie, karakterisering en gevoeligheidsanalyse. In deze context was dit 
doctoraatsonderzoek gericht op het aanpakken van het probleem van verbuiging-
beoordeling met behulp van RS-satellietgegevens van verschillende sensoren, 
waaronder Sentinel-1, Sentinel-2 en RADARSAT-2-gegevens met meerdere 
invalshoeken. 
 
We hebben vijf doelstellingen gedefinieerd die gericht waren op het onderzoeken 
van het potentieel van RS-gegevens in de ruimte voor detectie van onderdak, de 
karakterisering ervan en het in kaart brengen van de gevoeligheid in tarwe. Het 
eerste doel was om een systematische literatuurstudie uit te voeren die veld / 
laboratorium-gebaseerde benaderingen zou kunnen relateren aan RS-gebaseerde 
methoden, de lacunes in het onderzoek in bestaande RS-gebaseerde gewas-
verbuigingsstudies te beoordelen en te identificeren en perspectieven te bieden 
voor toekomstig onderzoek.  
 
Onze review vond slechts 22 peer-reviewed artikelen gepubliceerd tussen 1951-
2018, waarvan de meeste gericht waren op kwalitatieve analyse van verbuiging. 
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De review stelde ons ook in staat om enkele onbeantwoorde onderzoeksvragen te 
identificeren. Gebouwen op basis van onze bevindingen uit de beoordeling, 
kenmerkten de daaropvolgende doelstellingen het verbuiging op drie manieren: 
het detecteren van verbuigingsfasen, het classificeren van de ernst van het 
verbuiging en het identificeren van het tijdstip waarop het verbuiging plaatsvond. 
Het uiteindelijke doel betrof de gevoeligheidsanalyse. De tweede doelstelling 
onderzocht het gebruik van Sentinel-1, lage invalshoek RADARSAT-2 en hoge 
invalshoek RADARSAT-2 data voor het schatten van de hellingshoek van het 
gewas als een indicator van het verbuigingstadium (matig, ernstig en zeer 
ernstig). Onze resultaten toonden de hogere gevoeligheid aan van RADARSAT-
2-gegevens met een lage invalshoek (R2CV = 0,87) voor het schatten van de 
hellingshoek van het gewas en benadrukten het belang van Sentinel-1-gegevens 
voor de operationele beoordeling van de stadia van de plaatsing van gewassen. 
De derde doelstelling presenteerde een SAR-gebaseerde benadering voor de 
classificatie van de ernst van de verbuiging op basis van de verbuiging-score. We 
ontdekten dat de ernst van de verbuiging het best werd geclassificeerd met behulp 
van de lage invalshoek RADARSAT-2 (totale nauwkeurigheid 72%), terwijl het 
model dat was ontwikkeld met behulp van Sentinel-1-gegevens 60% van de 
gevallen van de ernst van de verbuiging op de onderzoekslocatie kon 
identificeren. 
 
De volgende doelstelling onderzocht het nut van dichte tijdreeksen Sentinel-1-
gegevens in combinatie met multi-spectrale Sentinel-2-gegevens voor het 
identificeren van het tijdstip van verbuiging in tarwe. Het evalueerde ook het 
effect van verbuiging op backscatter / coherentie en spectrale reflectantierespons. 
Onze resultaten toonden aan dat het met de temporele analyse mogelijk was om 
een plausibel venster van de hoofdzakelijke verbuigings gebeurtenis aan te geven 
en dat de rode rand (740 nm), NIR (865 nm) en VH-terugverstrooiing het beste 
onderscheid konden maken tussen gezonde en ingediende tarwe. De laatste 
doelstelling onderzocht de rol van SAR-gegevens voor het schatten van een 
veiligheidsfactor tegen wortelvorming als indicator voor vatbaarheid voor 
verbuiging in tarwe. We ontdekten dat de veiligheidsfactor goed correleerde met 
de verbuiging die in de velden werd waargenomen en detecteerbaar was met 
behulp van de satellietgegevens (met een nauwkeurigheid van 73-84%), wat 
bevestigt dat deze factor kan worden gebruikt als een vroege indicator voor 
vatbaarheid voor verbuiging. 
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Over het algemeen draagt deze studie bij aan het begrijpen en monitoren van 
gewas-verbuiging met RS. Onze bevindingen tonen aan dat op SAR en optische 
satellietgegevens gebaseerde meetgegevens een substantieel deel van de 
waargenomen variatie in huisvesting kunnen vastleggen, wat belangrijk is in de 
context van de operationele beoordeling van gewas-verbuiging in het bijzonder 
en duurzame landbouw in het algemeen. 
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