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Summary 
Knowledge of the location of damaged buildings is of utmost importance for 
both the response and recovery phases of the disaster management cycle. To 
this regard, remote sensing images have been continuously used over the last 
20 years as the main data source in approaches to detect building damages. 
Partially and totally collapsed buildings are the structures which might contain 
entrapped victims; hence many studies focus on the mapping of debris and 
rubble piles. Nonetheless such assumption might leave out damage evidences 
such as spalling or cracks, especially in the façades. When comparing with the 
mapping of rubble piles and debris, the façade damage detection is an 
understudied topic. The objective of the research reported in this thesis was 
focused on the mapping of both debris/ruble piles and façade damages from 
remote sensing images. 
 
The mapping of partially and totally collapsed buildings is often constrained by 
the used system (platform and sensor). There is a growing amount of imagery 
being collected (e.g. by the International Charter and Emergency Management 
Service) using different sensors, platforms and resolution, where their optimal 
use and integration would represent an opportunity to positively impact the 
detection of building damages. However, this multitude of systems does not 
imply the availability of large datasets sufficient to train recent and more 
complex algorithms such as convolutional neural networks (CNN). Hence, one 
of the goals of this thesis is to fuse satellite and aerial (manned and unmanned) 
image samples in a unique classification network to assess the building damage 
detection in each of the considered resolution levels. 
 
While there are several contributions regarding the mapping of debris and 
rubble piles, this is not the case when focusing on the specific case of façade 
damages. Nonetheless, façade image data are already being collected by both 
aerial manned and unmanned vehicles. Regarding the use of UAV, only a few 
approaches focused on the specific issue of façade damage detection. These 
are often not made operational and require computationally expensive 
procedures which limit their utility to stakeholders, who need fast and reliable 
façade damage information. One of the objectives of this thesis is to improve 
the efficiency of such façade damage detection procedures. On the other hand, 
aerial manned platforms have a wider coverage whilst capturing data at a lower 
resolution. In particular, the use of imagery coming from aerial (manned) 
oblique surveys has substantially increased in the last decade, leading to 
periodic aerial surveys over entire cities in many countries. Such data could be 
therefore exploited for multi-temporal image classification of façade damages 
over a given city/region. This was the main focus of the third goal of this thesis, 
the detection of façade damages mainly focusing on the use of multi-temporal 
aerial oblique imagery to infer on the damage state of a given façade. 



 

ii 

Related with the overall objective of mapping rubble piles, debris and façade 
damages, three distinct objectives, with their own set of experiments are 
investigated in this thesis: 

1. Mapping of partially and totally collapsed buildings using multi-
resolution remote sensing images (Chapters 2 and 3). 
A preliminary study regarding the use of multi-resolution imagery focused 
on the specific case of the satellite image classification of building 
damages. Features were extracted from satellite and aerial (manned and 
unmanned) imagery and fed to a supervised classifier to detect rubble piles 
and debris in satellite images. The approaches considering image samples 
coming from other resolutions outperformed the traditional approach by 
nearly 4%, where the traditional approaches used only satellite image 
samples during training. Picking up on these results, the approach was 
extended to the other resolutions, referring to aerial manned and 
unmanned. Using the multi-resolution approach for the image classification 
of debris and rubble piles, improved the results in the case of aerial 
unmanned (by ~5 %) and performed similarly to traditional approaches 
when using aerial manned platforms. The best performing multi-resolution 
approach merged the features coming from the three different sets of 
images, and also considered feature information from the intermediate 
layers of each of the levels of resolution. The approach was also tested for 
geographical transferability where the differences between the traditional 
and multi-resolution approaches were maintained.  

 
2. Efficient detection of earthquake induced façade damages from 

UAV images (Chapter 4): 
An approach to perform a more efficient detection of façade damages from 
UAV images was developed. It aimed at reducing the time between the 
deployment of the UAV and per façade damage results, in order to be of 
use to first responders Such efficiency was achieved by directing all 
damage classification computations to the specific image regions 
containing the façades. This was achieved by acquiring nadir images in a 
first flight, which allowed to detect the buildings and consequently define 
the façades. This 3D façade information was then used to identify the 
façades in oblique images acquired in a second flight from which façade 
damages could be assessed. The buildings were identified by segmenting 
the building roofs from the sparse point cloud directly, avoiding the 
computationally expensive dense image matching algorithm. The acquired 
data were georeferenced using the on-board information. The second flight 
was performed only on façades of interest, where all the damage detection 
procedures were only applied to these same façades. Although this method 
is more efficient, the detection of façade damages used a model trained 
only on rubble piles and debris, delivering a high rate of false positives and 
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leaving out smaller cues of damage such as spalling or cracks. This method 
is only achieving ~80% accuracy. 

 
3. Multi-temporal façade damage detection (Chapters 5 and 6): 

The last objective focused on the use of multi-temporal aerial oblique 
datasets to assess a given city/region for façade damages. The first step 
in the detection of façade damages was the extraction of oblique image 
patches depicting the façade. To achieve this, the pre-event point cloud 
was generated through dense image matching, where the rest of the 
approach followed a similar façade extraction procedure as indicated in 2). 
Preliminary results on the multi-temporal façade damage detection were 
obtained by comparing rectified façade image patches, between and within 
epochs, using a simple cross correlation coefficient. This multi-temporal 
study was further investigated by integrating it in a supervised 
classification approach using CNN. This approach focused on two main 
issues: (i) the optimal fusion the multi-temporal data and (ii) the use of 
high overlapping aerial images to extract the same façade from different 
views and embedding them in the multi-temporal approach. The results 
demonstrated the benefits given by façade damage detection approaches 
using multi-temporal datasets. Moreover, the results show that considering 
several views per façade within a CNN approach improves the image 
classification of façade damages. The multi-temporal approach 
outperformed the mono-temporal ones by 20% in f1-score, where the best 
multi-temporal approach achieved an f1-score of 82%. Given the limited 
number of samples and the relatively low resolution, smaller damage 
evidences such as small cracks and/or small areas of spalling could not be 
detected. 
 

The research reported in this thesis was part of the EU (7th Framework 
Programme) funded INACHUS (Technological and Methodological Solutions for 
Integrated Wide Area Situation Awareness and Survivor Localization to Support 
Search and Rescue Teams) project (www.inachus.eu). This project aimed at a 
time reduction of the response phase performed by FR, namely in the 
identification of entrapped victims after a disaster. The work reported in this 
thesis focused on the use of aerial imagery to localize damaged buildings over 
a given region/building block. 
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Samenvatting 
Kennis van de locatie van beschadigde gebouwen is van het grootste belang 
voor zowel de respons- als de herstelfase van de rampenbestrijdingscyclus. In 
dit verband zijn de laatste 20 jaar voortdurend satellietbeelden gebruikt als de 
belangrijkste gegevensbron bij het opsporen van schade aan gebouwen. 
Gedeeltelijk en volledig ingestorte gebouwen kunnen ingesloten slachtoffers 
bevatten; vandaar dat veel studies zich richten op het in kaart brengen van 
puin en puinhopen. Andere schadebewijzen zoals versplintering of scheuren, 
met name in de gevels, worden buiten beschouwing gelaten. In vergelijking 
met het in kaart brengen van puinhopen en puin is de gevelschadedetectie een 
onderbelicht onderwerp. Het doel van het onderzoek dat in dit proefschrift 
wordt gerapporteerd was het in kaart brengen van zowel puin/afvalstapels als 
gevelschade door remote sensing beelden. 
 
Het in kaart brengen van gedeeltelijk en volledig ingestorte gebouwen wordt 
vaak beperkt door het gebruikte systeem (platform en sensor). Er wordt steeds 
meer beeldmateriaal verzameld (bijvoorbeeld door de International Charter 
and Emergency Management Service) met behulp van verschillende sensoren, 
platforms en resoluties, waarbij het optimale gebruik en de integratie ervan 
een kans zou bieden om de detectie van schade aan gebouwen te verbeteren. 
Deze veelheid aan systemen impliceert echter niet dat er grote datasets 
beschikbaar zijn die voldoende zijn om recente en meer complexe algoritmen 
zoals convolutionele neurale netwerken (CNN) te trainen. Een van de 
doelstellingen van dit proefschrift is dan ook om satelliet- en luchtfoto’s (van 
bemande en onbemande vliegtuigen) samen te voegen in een uniek 
classificatienetwerk om de detectie van gebouwschade in elk van de 
beschouwde resolutieniveaus te beoordelen. 
 
Hoewel er verschillende bijdragen zijn met betrekking tot het in kaart brengen 
van puin en puinhopen, is dit niet het geval voor het specifieke geval van 
gevelschade. Toch worden de beeldgegevens van gevels al verzameld door 
zowel bemande als onbemande vliegtuigen. Wat het gebruik van UAVs betreft, 
waren slechts enkele benaderingen specifiek gericht op het opsporen van 
gevelschade. Deze worden vaak niet operationeel gemaakt en vereisen 
rekenkundig dure procedures die het nut ervan beperken voor de 
belanghebbenden, die behoefte hebben aan snelle en betrouwbare informatie 
over gevelschade. Een van de doelstellingen van dit proefschrift is het 
verbeteren van de efficiëntie van dergelijke procedures voor het opsporen van 
gevelschade. Aan de andere kant hebben de bemande vliegtuigen een groter 
bereik, terwijl ze gegevens met een lagere resolutie vastleggen. Met name het 
gebruik van beeldmateriaal dat afkomstig is van oblieke luchtfoto's is de 
afgelopen tien jaar aanzienlijk toegenomen, wat heeft geleid tot periodieke 
opname van deze luchtfoto's over hele steden in veel landen. Dergelijke 
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gegevens zouden dus kunnen worden gebruikt voor een multi-temporele 
classificatie van gevelschade over een bepaalde stad/regio. Dit was de 
belangrijkste focus van het derde doel van dit proefschrift, het opsporen van 
gevelschade, voornamelijk gericht op het gebruik van multi-temporele 
luchtfoto’s om de schade aan een bepaalde gevel af te leiden. 
 
Met betrekking tot de algemene doelstelling van het in kaart brengen van 
puinhopen, puin en gevelschade worden in dit proefschrift drie verschillende 
doelstellingen ieder met hun eigen set van experimenten onderzocht: 
 
1. Het in kaart brengen van gedeeltelijk en volledig ingestorte 

gebouwen met behulp van multi-resolutie remote sensing beelden 
(hoofdstuk 2 en 3). 
Een voorstudie over het gebruik van multi-resolutiebeelden richtte zich op 
het specifieke geval van de satellietbeeldclassificatie van schade aan 
gebouwen. Kenmerken werden uit satelliet- en luchtbeelden (bemand en 
onbemand) geëxtraheerd en gebruikt in een gecontroleerde classificatie 
om puinhopen en puin in satellietbeelden op te sporen. De benaderingen 
waarbij gebruik wordt gemaakt van kenmerken, die afkomstig zijn van 
andere beeldresoluties, presteerden bijna 4% beter dan de traditionele 
aanpak, waarbij bij de traditionele benaderingen tijdens de training alleen 
gebruik werd gemaakt van kenmerken uit satellietbeelden. De aanpak 
werd uitgebreid naar de andere beelden met resoluties, die met zowel 
bemand als onbemand vliegtuigen zijn opgenomen. Het gebruik van de 
multi-resolutiebenadering voor de beeldclassificatie van puin- en 
puinhopen, verbetert het resultaat in het geval van beelden van 
onbemande luchtvaartuigen (met ~5%) en blijft ongeveer hetzelfde als bij 
een traditionele aanpak met luchtfoto’s uit bemande vliegtuigen. Bij de 
best presterende multiresolutiebenadering werden de kenmerken van de 
drie verschillende reeksen beelden samengevoegd en werd ook rekening 
gehouden met de informatie over kenmerken van de tussenliggende lagen 
van elk van de resolutieniveaus. De aanpak werd ook getest op 
overdraagbaarheid naar andere geografische gebieden, waarbij de 
verschillen tussen de traditionele en de multi-resolutiebenadering werden 
gehandhaafd. 
 

2. Efficiënte detectie van door aardbevingen veroorzaakte 
gevelschade aan de hand van UAV-beelden (hoofdstuk 4): 
Er is een aanpak ontwikkeld om een efficiëntere detectie van gevelschade 
door middel van UAV-beelden uit te voeren. Het doel was om de tijd tussen 
de inzet van UAVs en de beschikbaarheid van de resultaten over 
gevelschade te verkorten, zodat de hulpverleners er meer baat bij hebben. 
Een dergelijke efficiëntie werd bereikt door alle berekeningen van 
schadeclassificatie te concentreren op de specifieke beelduitsneden die 
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gevels. Dit werd bereikt door nadirbeelden in een eerste vlucht op te 
nemen, die het mogelijk maken de gebouwen te detecteren en zo de 
locaties van gevels te bepalen. De 3D-gevelinformatie werd vervolgens 
gebruikt om de gevels te identificeren in een oblieke beelden die in een 
tweede vlucht werden opgenomen en waarin de gevelschade kon worden 
beoordeeld. De gebouwen werden geïdentificeerd door de daken van de 
gebouwen rechtstreeks te segmenteren in een ijle puntwolk, waardoor het 
rekenkundig dure algoritme voor de zgn. dense matching werd vermeden. 
De verkregen gegevens werden gegeorefereerd aan de hand van de 
vluchtinformatie. De tweede vlucht werd alleen uitgevoerd op gevels van 
belang, waarbij alle schadedetectieprocedures alleen op deze gevels 
werden toegepast. Hoewel deze methode efficiënter is, werd voor het 
opsporen van gevelschade gebruik gemaakt van een model dat alleen 
getraind is op puinhopen en puin, waardoor een hoge mate van onjuiste 
detecties wordt verkregen en kleinere aanwijzingen voor schade zoals 
versplintering of scheuren worden genegeerd. Deze methode haalde 
slechts een nauwkeurigheid van ~80%. 
 

3. Multi-temporele geveldetectie (hoofdstuk 5 en 6): 
De laatste doelstelling richtte zich op het gebruik van multi-temporele 
foto’s die met bemande vliegtuigen zijn opgenomen, zodat een gehele 
stad/regio kan worden beoordeeld op gevelschade. De eerste stap in het 
opsporen van gevelschade was de extractie van uitsneden uit de oblieke 
foto’s die de gevel afbeeldden. Om dit te bereiken werd een puntwolk 
gegenereerd met dense matching in beelden die voor de aardbeving zijn 
opgenomen. De rest van de aanpak was vergelijkbaar met de procedure 
voor gevelextractie zoals aangegeven in 2). Eerste resultaten op de multi-
temporele gevelschadedetectie werden verkregen door het vergelijken van 
gerectificeerde gevelbeelduitsneden van het zelfde en het andere tijdstip 
met behulp van een eenvoudige kruiscorrelatiecoëfficiënt. Deze multi-
temporele studie werd verder onderzocht door het te  integreren in een 
gecontroleerde classificatie met behulp van een CNN. Deze aanpak was 
gericht op twee belangrijke aspecten: (i) de optimale fusie van de multi-
temporele gegevens en (ii) het gebruik van sterk overlappende 
luchtbeelden om dezelfde gevel uit verschillende aanzichten te halen en in 
te bedden in de multi-temporale aanpak. De resultaten toonden de 
voordelen aan van een aanpak voor de detectie van gevelschade met 
behulp van multi-temporele datasets. Bovendien blijkt uit de resultaten dat 
het gebruik van meerdere aanzichten per gevel binnen een CNN-aanpak 
de beeldclassificatie van gevelschades verbetert. De multi-temporele 
aanpak presteerde 20% beter dan de mono-temporele aanpak in f1-score, 
waar de beste multi-temporele aanpak een f1-score van 82% haalde. 
Gezien het beperkte aantal beelduitsneden en de relatief lage resolutie 
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konden kleinere beschadigingen zoals kleine scheurtjes en/of kleine 
gebieden met versplintering niet worden opgespoord. 
 

Het onderzoek dat in dit proefschrift wordt gerapporteerd maakte deel uit van 
het door de EU (7de Kaderprogramma) gefinancierde INACHUS-project 
(Technological and Methodological Solutions for Integrated Wide Area Situation 
Awareness and Survivor Localization to Support Search and Rescue Teams, 
www.inachus.eu). Dit project was gericht op een tijdsvermindering van de 
responsfase voor de eerste hulpverleners, namelijk bij de identificatie van 
ingesloten slachtoffers na een ramp. Het werk dat in dit proefschrift wordt 
gerapporteerd richtte zich op het gebruik van luchtfoto's om beschadigde 
gebouwen te lokaliseren in een bepaalde regio/woningblok. 
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 Earthquakes: human, social and economic 
losses 

The United Nations Department of Economics and Social Affairs (UNDESA) in 
their 2014 report on World Urbanization Prospects, indicated that more than 
half (54%) of the world population is living in urban centers and that by 2050 
this value will be situated around 66%. Already in 1999, Mitchell addressed the 
trend towards the increasing exposure to hazards, especially in megacities 
(cities with more than 10 million inhabitants) which are not prepared for such 
events (Mitchell, 1999). This increase in population exposure to hazards, 
among them earthquakes (see Figure 1), makes the disaster related field of 
growing importance. From the disaster risk to the disaster management all 
these fields have as objective to reduce the negative impact of such events. 

 

 
Figure 1 Relative death and recorded losses per disaster type– adapted from 

(Wallemacq and House, 2018) 

Within disaster management, the disaster response phase is defined by the 
United Nations Office for the Disaster Risk Reduction (UNISDR) as “the 
provision of emergency services and public assistance during or immediately 
after a disaster in order to save lives, reduce health impacts, ensure public 
safety and meet the basic subsistence needs of the people affected”. This 
definition clearly implies that the rescue operations by Urban Search and 
Rescue (USaR) and First Responders (FR) are one of the most important 
components of the disaster response phase since they are related with the task 
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of saving human lives. Performed by FR and USaR teams, these operations are 
time expensive since they are performed at a damaged building level and in a 
chaotic environment. Hence, prioritization of locations of where to deploy FR 
and USaR teams becomes a very important task. 

This optimization effort is directly related with the detection of the most 
affected building blocks given that partial and totally collapsed buildings are a 
proxy for victim localization. The elapsed time between the event and the 
localization of collapsed buildings is of utmost importance in this phase; given 
the critical conditions of trapped victims. 

Then a more detailed and qualitative assessment of damage is needed in the 
rehabilitation and recovery phase too. This phase focuses  on the restoration 
of both services/facilities and living conditions of a given region and affected 
communities. For example, insurance companies need a detailed and accurate 
description of the damages of a given building; while local authorities need to 
assess the number of persons that need to be relocated to new housing. Such 
tasks need to move on to a more detailed damage assessment, where for 
example the façades are also considered. 

Remote sensing images represent the conventional data source to determine 
the location and severity of damages over a region after a disastrous event 
(Dong and Shan, 2013). Most of the remote sensing platforms have been used 
for building damage assessment at several scales (Balz and Liao, 2010; 
Murtiyoso et al., 2014; Sui et al., 2014). The objectives vary according to the 
characteristics of both the sensor and platform used, and the desired 
application. 

 Remote sensing imagery for the localization of 
partially and totally collapsed buildings 

There is a wide range of literature which focused on the mapping of partially 
and totally collapsed buildings, from satellite systems (Miura et al., 2007; Ural 
et al., 2011; Yusuf et al., 2001), traditional airborne systems (Fukuoka and 
Koshimura, 2012; Hasegawa et al., 2000; Sirmacek and Unsalan, 2009), 
unmanned aerial systems (Fernandez Galarreta et al., 2015)) or even 
terrestrial imaging systems (Armesto-González et al., 2010; Curtis and Fagan, 
2013).  
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Figure 2 Examples of partially collapsed (2 left images) and total collapse, right 

Satellite optical imagery is often used for synoptic damage assessment (Miura 
et al., 2007; Tong et al., 2012). The current high spatial resolution of satellite 
optical images (for example WorldView-3 with resolutions ~ 0.35m) may 
enable a per building damage assessment, while covering large areas. 
Copernicus, through its Emergency Management Service (EMS), and the 
Disaster Charter, are two agencies which currently use such satellite imagery 
to manually generate grading damage maps right after a given disaster. Hence, 
there has been an increasing amount of studies reporting on the automation 
of damage assessment from satellite optical images. Such approaches might 
rely on post-event data only (Dell’Acqua and Polli, 2011), pre- and post-event 
image data (Miura et al., 2007) and even considering height information 
retrieved from stereo pairs generated from the satellite images (Tong et al., 
2012). Post-event only approaches usually rely on the radiometric features of 
the satellite images (Vetrivel et al. 2016) and/or alongside the height 
information (Tong et al., 2012). However, approaches considering pre-event 
images can further aid in the disambiguation between damaged and not 
damaged regions (Dong and Shan, 2013). However, the low resolution and 
nadir constrained view of satellite images may limit it to: 1) e.g. differentiate 
cluttered urban areas (such as narrow streets, slums, etc.) from damaged 
regions, 2) have a more detailed damage assessment regarding the damage 
state of a building (e.g. also considering façades).  

Recent literature also used aerial manned platforms to survey regions where a 
disaster occurred (Corbane et al., 2011; Saito et al., 2010). This increased the 
resolution of the imagery collected to a decimetre level and at the same time 
allowed to capture oblique views, while having a lower coverage when 
compared with satellite. This increase in resolution and the ability to capture 
oblique views is advantageous twofold: while the increase in resolution allows 
to reduce the ambiguity between damaged and not damaged buildings (Booth 
et al., 2011; Kerle, 2010), the oblique views allow the façades to be assessed 
for damage (Booth et al., 2011; Mitomi et al., 2002; Saito et al., 2010). Given 
this, the EMS recently started signing contracts with private companies to 
acquire such aerial imagery after a disaster (“CGR supplies aerial survey to JRC 
for emergency,” n.d.), as it happened already with the 2016 earthquakes in 
Italy. This interest in aerial imagery can also be noted on the several literature 
published regarding the use of such imagery for damage mapping in the last 
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couple of decades. Aerial television images captured with a tilt angle of about 
30-45 degrees from the vertical direction were used to detect damages after 
the Kobe (Japan) earthquake in 1995 (Mitomi et al., 2002). The authors 
extracted several textures (e.g. co-occurrence matrix of edge intensity) from 
the video frames to determine the image characteristics of collapsed buildings. 
Using aerial systems consisting of five cameras (one nadir and one for each 
cardinal direction, Pictometry system), Saito et al. (2010) manually assessed 
the imagery to detect damaged buildings. The authors indicated that the visual 
interpretation of such images allowed to identify both collapsed and partially 
collapsed buildings and façade damages. Given the usual decimetre resolution 
of aerial surveys, object based image analysis started to be considered 
(Fukuoka and Koshimura, 2012; Li et al., 2011). In such cases, to consider 
groups of pixels was found more advantageous than pixel based approaches, 
given that with decimetre resolution objects in the scene (as well as damaged 
regions) were composed by a greater amount of pixels. To this regard texture 
features were found to be central for the damage identification. Following these 
works, Ma and Qin (2012) and Nex et al. (2014) also indicated that 
morphological features could complement the already rich information 
extracted using texture features. Gerke and Kerle (2011) extracted features 
from aerial oblique images and derived a 3D point cloud to detect damaged 
buildings after the 2010 Haiti earthquake. The authors considered three 
classes, based on the European macroseismic scale (Grünthal, 1998).  
Recently, 3D features and 2D CNN features were integrated by Vetrivel et al. 
(2017) using a multiple kernel learning, where the relevance of 2D CNN 
features was reported. This was mostly due to the often-noisy point clouds 
derived from dense image matching (Vetrivel et al. 2017) and the recent 
developments in computer vision and machine learning. 

Unmanned aerial vehicles also started to be used to perform a more thorough 
damage assessment (Cusicanqui et al., 2018; Fernandez Galarreta et al., 
2015). Such platforms have higher portability and higher resolution and 
incredible flexibility in terms of acquisitions when compared with the manned 
aerial platforms. Aerial manned platforms usually follow a predefined flight plan 
considering an oblique view for each cardinal direction plus the nadir captures. 
In this way, occlusions due to urban design are often present, especially 
considering old European city centres for example. Hence, the high portability 
of the UAV opens the possibility of directing the flights according to the needs 
of the user. These can focus the analysis on a specific set of buildings and be 
able to assess several building elements separately. 
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 Remote sensing imagery for the detection of 
façade damages 

The detection of partially and totally collapsed buildings from remote sensing 
images currently shows very promising results, mainly due to the higher 
accuracies achieved using state of the art image classification algorithms using 
CNN. However, constraining the damage detection to debris and rubble piles 
might leave out smaller damage evidences. Spalling, cracks and other smaller 
signs of damage are overlooked by approaches which were trained with image 
samples depicting debris and rubble piles, even if using oblique imagery 
(Vetrivel et al. 2017; Gerke and Kerle 2011), see Figure 3. Moving forward 
from the detection of rubble piles and debris and focusing on the façades gives 
more awareness to first responders regarding the damage state of a given 
region, where more damage information regarding the different elements of a 
building enables more informed decisions. Moreover, the detection of such 
smaller damage evidences is also useful for later stages of the disaster 
management cycle. Extended building damage catalogues are needed for the 
planning of recovery actions for example. Nonetheless, such extensive and 
comprehensive damage mapping relies on high-resolution and multi-view 
imagery given the often-smaller damage evidences. Airborne oblique imagery 
has been recently indicated to be promising to perform such assessments. Both 
manned and unmanned platforms have been used to assess the facades and 
perform more detailed damage assessments. Focusing on the specific façade 
damage detection Tu et al. (2017) took advantage of the symmetry often 
present in facades to determine damaged facades when that symmetry is not 
present, using only post-event image data collected from aerial manned 
platforms with decimetre level resolution. Fernandez Galarreta et al. (2015) 
used millimetre resolution imagery from UAV and terrestrial acquisitions to 
detect cracks on façades using the images and to detect slanted façades using 
the 3D point cloud. 

 

Figure 3 Example of façade damages 
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 Research background, objectives and overall 
contributions 

The research reported on this thesis is part of the project Technological and 
Methodological Solutions for Integrated Wide Area Situation Awareness and 
Survivor Localization to Support Search and Rescue Teams (INACHUS), a 7th 
Framework Programme funded project (www.inachus.eu). The project aimed 
at time reduction related to the response phase of FR and USaR teams which 
translate in a higher number of victims rescued. A large consortium (20 
partners from 10 EU countries) from several technological and scientific 
domains was needed to achieve such goal. An operations framework was 
established covering a broad set of stages, from the inference on the location 
of victim hotspots at a regional level, up to the localisation of the victims inside 
a damaged building. Three main fields were addressed: 1) simulation tools, 
incorporating wide-area hazard simulation and building collapse simulations; 
2) remote sensing, making use of both passive and active sensors being 
airborne and terrestrial for the detection of building damages at several scales 
(comparing with the simulations in 1)); 3) human presence detection, such as 
a robot snake mounted with human detection sensors and mobile phones 
detection. These three main fields had to be integrated in a seamless manner 
also considering other parallel aspects, such as training material, ethics and 
standardization issues.  

Overall, a wide-area damage assessment was coupled with dasymetric 
mapping in order to identify the regional hotspots. Earth observation tools such 
as UAVs equipped with both passive and active sensors were used to survey 
the disaster area and detect damaged buildings and their degree of 
destruction. Collapse simulation tools enabled both an early comprehension of 
the disaster magnitude and the understanding of the collapse itself. 
Nevertheless, this remote sensing and building collapse simulation tools could 
only infer, not detect, on the location of the entrapped victims both at a 
building block and building level. This was performed by other partners. The 
broadness of technological fields being tremendous accounted for the large 
consortium. ITC along with three more project partners addressed the remote 
sensing slice of the project. Specifically, ITC covered the use of multi-temporal 
and multi-resolution remote sensing imagery in the detection of building 
damages, namely partially and totally collapsed buildings, and façade 
damages. In accordance with the project this thesis focus on these two distinct 
subjects: detection of partially and totally collapsed structures, and façade 
damages. The latter is comprised by two parts, one focusing on the 
optimization of a façade damage detection procedure using the UAV and a 
second part aiming at a multi-temporal approach for the detection of façade 
damages using aerial manned platforms. 
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As indicated in the previous sub-section, the mapping of partially and totally 
collapsed buildings from remote sensing imagery is an extensively studied 
subject. To this regard several methods have been proposed. Such methods 
are usually related with the chosen platform to perform the aerial surveys, 
given the differences in resolution and view angle as well as image quality. The 
proposed frameworks are specifically designed for a given system (combination 
of a given platform with a given sensor, e.g. satellite optical imagery). This 
makes the approaches dependent on the amount of image data available for a 
given system, in order to be successful. This is more critical given the current 
state-of-the-art in image recognition tasks, where convolutional neural 
networks often need large amounts of image samples in order to achieve 
recognition capabilities. The developed algorithms have been conceived to 
cope on one hand with the lack of extensive datasets and, on the other hand, 
to use as input all the available images, regardless the used system (satellite 
or airborne). The main objective regarding the first part of the presented 
research is to assess how the combination of damaged image samples coming 
from satellite and aerial (manned and unmanned platforms) impact the image 
classification of debris and rubble piles of a given system. Several experiments 
are performed in order to assess the optimal fusion of such multi-resolution 
and multi-platform imagery. Specifically, these present the context, novelty 
and experiments regarding the use of multi-resolution optical image data for 
the detection of building damages, namely partially and totally collapsed 
structures. 

The detection of rubble piles and debris is useful to identify partially or totally 
collapsed structures, however it leaves out several damage evidences. This is 
a different task to the mapping of rubble piles and debris since façade damages 
often entail several typologies of damage, from collapsed portions of the 
façade, to cracks on the walls.  The few existing approaches either assume that 
façades often present symmetries or follow rule-based approaches specific for 
a given dataset. Hence, the second part of the research reported in this thesis 
focuses on the detection of damaged façades using aerial oblique imagery, 
being captured from unmanned (UAV) or manned vehicles. Within this broader 
subject, the approach using UAV focused on the efficiency of the damage 
detection approach, given its possible use by FR. Instead of running a damage 
detection algorithm on all the UAV high resolution images, the objective was 
to direct all these computations to the façade image patches. Hence, the 
objective was to extract only the façades from the wide range of images and 
then apply the damage detection algorithm to those specific image regions. A 
further study regarding façade damage detection was then performed. This 
focused on the mapping of façade damages using aerial manned platforms, 
given the higher areal coverage when compared with UAV and also due to the 
fact that these types of aerial oblique surveys are increasingly more common, 
especially in urban areas due to their ability to survey the façades. To this 
regard, the second part of the broader façade damage detection subject 
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focused on a multi-temporal approach, since such approach was still not 
considered for the specific case of façade damage detection. The recent interest 
in aerial oblique images (Vetrivel et al. 2017; Nyaruhuma et al. 2012; 
Murtiyoso et al. 2014), especially from grading damage map producers such 
as the EMS, we can expect pre-event imagery being available and used for the 
detection of façade damages alongside the post-event data. In this research 
several multi-temporal approaches are tested for the image classification of 
façade damages using aerial oblique imagery. The experiments focus on two 
different issues: 1) merging of pre- and post-event imagery within a CNN 
framework, 2) take advantage of the usual high overlap of aerial oblique image 
surveys to acquire several different views from the same façade and embed 
this in the proposed frameworks.  

 Structure of the thesis 
This dissertation is composed of 7 chapters. While chapter 1 and chapter 7 are 
respectively the introduction and synthesis, the remaining chapters are 
scientific chapters holding specific research objectives, methods, results, 
discussion and conclusions. An overall content per chapter is indicated in the 
following paragraphs: 

1. Introduction: motivates remote sensing image-based damage detection 
from a broader context, presents the background regarding the mapping 
of debris/rubble piles and façade damages, lays out the research objectives 
and the overall contributions 

2. Satellite image classification of building damages using airborne 
and satellite image samples in a deep learning approach: The first 
set of experiments regarding the use of multi-resolution imagery was 
tested for the specific case of satellite images. The focus of the experiments 
was on the optimal merge of the different sets of images (satellite and 
aerial, manned and unmanned). Different ways of merging this multi-
resolution feature information were tested. 

3. Multi-resolution feature fusion for the image classification of 
building damages using convolutional neural networks: This chapter 
is an extension of the previous one, where the multi-resolution approaches 
are applied to satellite and aerial (manned and unmanned) imagery. 
Furthermore, in this extended study, the geographical transferability was 
also tested for each of the different resolutions. Overall there is an 
improvement in the detection of damages when using multi-resolution 
approaches. This was more critical for the satellite and UAV case, while for 
the aerial manned case, a traditional approach was preferable. 

4. Towards a more efficient detection of earthquake induced façade 
damages using UAV oblique imagery: This chapter is the first of three 
focusing on the façade damage detection. Specifically, this chapter focuses 
on providing a more efficient detection of façade damages when using UAV. 
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This is intended to be used by USaR in the field when needing to survey a 
building block. The objective was to direct all the damage computations to 
the images and image regions which contained façades, hence reducing 
the time needed for the running of damage algorithms on the whole set of 
multi-view images. However, it was noted that using a network trained on 
rubble piles and debris might not be optimal for the specific case of façade 
damage detection. 

5. Potential of multi-temporal oblique airborne imagery for structural 
damage assessment: This chapter presents early results on the 
detection of façade damages using multi-temporal aerial oblique imagery. 
The general approach aimed at comparing the correlation coefficient 
between the pre- and post-event rectified façade image patches and two 
pre-event views of the same façade. While the correlation coefficient 
between epochs was much lower when the façade was damaged, it relied 
on the definition of a threshold to differentiate between intact and 
damaged façades.  

6. Image classification of façade damages using multi-temporal aerial 
oblique imagery: This chapter is an extension of the previous one. 
Moving forward from rule based approaches, the focus of this chapter was 
on the optimal merge of pre- and post-event imagery within a deep 
learning approach. Moreover, given that in aerial oblique surveys a façade 
is observed from different views, this information was embedded in the 
framework merging both epochs feature information. Comparing with 
mono-temporal approaches there was a clear improvement. Furthermore, 
to consider several views per façade within a late fusion approach was 
preferable. 

7. Synthesis: The final chapter presents an overview of the findings reported 
in the previous chapters. Also presents the conclusions regarding said 
findings and recommendations for future research. 

The chapters of this thesis are based on peer-reviewed journal and conference 
papers. These follow a gradual set of experiments regarding both the mapping 
of debris and rubble piles, and façade damages. Given the shared goal of the 
objectives between contributions, there is often an overlap when presenting 
the background and related works. The chapters being standalone was found 
preferable due to the possible interest on a single chapter, where the reader 
does not need to consult any other part of the thesis for its full comprehension. 
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 Satellite image classification of building 
damages using airborne and satellite image 
samples in a deep learning approach1 
  

                                          
1 This chapter is based on the article: 
Duarte, D., Nex, F., Kerle, N., and Vosselman, G.: Satellite image classification of 

building damages using airborne and satellite image samples in a deep learning 
approach, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2, 89-96, 
https://doi.org/10.5194/isprs-annals-IV-2-89-2018, 2018. 
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Abstract 
The localization and detailed assessment of damaged buildings after a 
disastrous event is of utmost importance to guide response operations, 
recovery tasks or for insurance purposes. Several remote sensing platforms 
and sensors are currently used for the manual detection of building damages. 
However, there is an overall interest in the use of automated methods to 
perform this task, regardless of the used platform. Owing to its synoptic 
coverage and predictable availability, satellite imagery is currently used as 
input for the identification of building damages by the International Charter, 
as well as the Copernicus Emergency Management Service for the production 
of damage grading and reference maps. Recently proposed methods to 
perform image classification of building damages rely on convolutional neural 
networks (CNN). These are usually trained with only satellite image samples in 
a binary classification problem, however the number of samples derived from 
these images is often limited, affecting the quality of the classification results. 
The use of up/down-sampling image samples during the training of a CNN, has 
demonstrated to improve several image recognition tasks in remote sensing. 
However, it is currently unclear if this multi resolution information can also be 
captured from images with different spatial resolutions like satellite and 
airborne imagery (from both manned and unmanned platforms). In this 
chapter, a CNN framework using residual connections and dilated convolutions 
is used considering both manned and unmanned aerial image samples to 
perform the satellite image classification of building damages. Three network 
configurations, trained with multi-resolution image samples are compared 
against two benchmark networks where only satellite image samples are used.  
Combining feature maps generated from airborne and satellite image samples, 
and refining these using only the satellite image samples, improved nearly 4% 
the overall satellite image classification of building damages. 

2.1 Introduction and related work 
Building damage maps have been recurrently used in the response and 
recovery phase of the disaster management cycle. Damaged buildings may be 
a proxy for victim localization (Dell’Acqua and Gamba, 2012) and their 
identification can also aid to plan and delineate recovery activities (Eguchi et 
al., 2009). Remote sensing has been extensively used to perform the damage 
assessment of a given region affected by a disastrous event (Dell’Acqua and 
Gamba, 2012; Dong and Shan, 2013; Gerke and Kerle, 2011; Vetrivel et al., 
2017). The platforms used in remote sensing usually have a wide coverage, 
fast deployment and high temporal frequency while the collected data allow to 
automate building damage assessment procedures (Ural et al., 2011).  

A wide variety of remote sensing sensors mounted on different platforms have 
been used to map building damages (Armesto-González et al., 2010; 
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Dell’Acqua and Polli, 2011; Gokon et al., 2015; Khoshelham et al., 2013; Marin 
et al., 2015; Vetrivel et al., 2017). However, there has been a growing interest 
regarding the use of images (Curtis and Fagan, 2013; Fernandez Galarreta et 
al., 2015; Vetrivel et al., 2015, 2016a, 2017).  

In this regard, synoptic satellite imagery can be readily available and provide 
the first overview over a region struck by a disastrous event such as an 
earthquake (Dell’Acqua and Gamba, 2012). The International Charter (IC) 
(Bessis et al., 2004) and the Emergency Management Service (EMS) 
(Copernicus programme, European Commission), are two institutions which 
use such imagery to provide geoinformation to regions affected by disasters. 
The IC and EMS mostly rely on the manual interpretation of satellite images to 
identify damaged buildings, despite the amount of proposed automated 
methods. However, scene characteristics, cloud cover, limited resolution and 
viewpoint, limited time by map producers to develop new operational methods; 
hinder the automation of these procedures (Kerle, 2010; Vetrivel et al., 
2016a). 

Other platforms coupled with cameras have also been used to map damages 
(Sui et al., 2014; Vetrivel et al., 2016b). Manned and unmanned aerial vehicles 
(UAV) enable the acquisition of images at a higher-resolution and can also 
perform oblique flights, introducing another level of damage information 
regarding the façades (Tu et al., 2017). In this regard, the Joint Research 
Center (JRC, European Commission) awarded a contract in 2015 to a 
consortium of private companies for the provision of aerial imagery after a 
disastrous event within a European context (“CGR supplies aerial survey to JRC 
for emergency,” n.d.). UAV images have become a normal source of 
information for many rescue teams in the recent earthquakes in Nepal (2015) 
and Italy (2016). These trends have pushed many researchers (Duarte et al., 
2017; Sui et al., 2014; Vetrivel et al., 2017) to develop damage detection 
algorithms exploiting these high-resolution images.   

The use of overlapping images may allow the generation of 3D point clouds 
through dense image matching. The set of geometrical information extracted 
from point clouds can be used alongside the images for the detection of building 
damages (Fernandez Galarreta et al., 2015; Vetrivel et al., 2017). Their added 
value can be marginal if single epoch data are considered (Duarte et al., 2017; 
Vetrivel et al., 2017). Furthermore, the generation of 3D point clouds is still 
very time consuming, hindering their use in early response tasks. The quality 
of these 3D data is directly related with the resolution of the input images, 
which limits the use of the 3D generated from satellite imagery. 

The achieved results regarding the use of airborne and UAV images are 
promising and their use is drastically increasing in recent years. However, 
satellite images are still the first and most common source for damage 
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assessment. For this reason, a more reliable method to automate the detection 
from these images would be needed.  

The most recent approaches to perform satellite image classification of building 
damages use CNN (Vetrivel et al., 2016a). The used networks are very similar 
to the ones used in the computer vision domain (Krizhevsky et al. 2017). 
Satellite image samples are used for the training of the network, in a binary 
classification scheme (i.e. damaged and not damaged areas). However, the 
number of samples from satellite images is relatively small, while a wide 
variety of images acquired with airborne platforms, both manned and 
unmanned, are available too. These data are currently used to train a network 
which classifies images with the same resolution (Vetrivel et al., 2017). In 
computer vision and remote sensing, the use of multi-resolution data has 
demonstrated to improve the overall image classification and segmentation (Fu 
et al., 2017; Hamaguchi et al., 2017; Lin et al., 2016; Liu et al., 2016). The 
multi-resolution training is usually performed artificially (Fu et al., 2017; Hu et 
al., 2015; Li et al., 2015; Shen et al., 2015; Tang and Mohamed, 2012), 
up/down sampling the images at several scales. However, a multi-resolution 
approach using image data from different platforms and sensors has not been 
tested yet.  

The aim of this chapter is to assess if the combined use of different resolution 
images improves the image classification of building damages from satellite 
images using CNN (Figure 1). 

The main idea is that the native multi-resolution information of remote sensing 
imagery (i.e. satellite and airborne) can be captured by a CNN, improving the 
satellite image classification. Several CNNs configurations have been tested to 
assess how the image samples from different resolutions can influence the 
performance of the classification of building damages. Two recent 
developments in the computer vision domain are used: residual connections 
and dilated convolutions. More details regarding the developed approach are 
described in Section 2. This is then followed by an experiments section (3) 
which details the datasets (Section 3.1) used to test the approach, presents 
the experiments (Section 3.2) and the achieved results (Section 3.3). The 
discussion and the conclusions are finally given in Section 4 and Section 5 
respectively.  
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a) 

 

b) c) 

Figure 4 Examples of damaged and undamaged regions in a) UAV (Pescara del 
Tronto,Italy, 2016), b) satellite (WorldView 3, Amatrice, Italy, 2016) and c) manned 
aerial vehicles (St Felice, Italy, 2012 ) imagery. 

The main idea is that the native multi-resolution information of remote sensing 
imagery (i.e. satellite and airborne) can be captured by a CNN, improving the 
satellite image classification. Several CNNs configurations have been tested to 
assess how the image samples from different resolutions can influence the 
performance of the classification of building damages. Two recent 
developments in the computer vision domain are used: residual connections 
and dilated convolutions. More details regarding the developed approach are 
described in Section 2. This is then followed by an experiments section (3) 
which details the datasets (Section 3.1) used to test the approach, presents 
the experiments (Section 3.2) and the achieved results (Section 3.3). The 
discussion and the conclusions are finally given in Section 4 and Section 5 
respectively.  
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2.2 Methodology 
Five different CNN architectures are defined. Two are used as benchmark and 
the remaining three are used to test the multi-resolution approach. Regarding 
the benchmark networks, the first is trained from scratch and the other one is 
fined-tuned on the generic satellite image samples provided by Cheng et al. 
(2017). The three multi-resolution test networks have been conceived to 
analyze the best way to combine and exploit features from each image 
resolution level.  

All the networks take advantage of residual connections and dilated 
convolutions. This section explains these two central components of the 
networks while the two basic modules of the networks are then described in 
Section 2.1. The networks architectures used in the tests are finally presented 
in Section 3. 

Residual connections: The depth of CNN have shown an increase in their 
capabilities to retrieve relevant information from images (Telgarsky, 2016). 
The usual hierarchical stacking of convolutional layers allows the network to 
learn from lower level features to higher levels of abstraction. Nonetheless, a 
given layer l may need feature information not only from the layer l-1 but also 
from other previous layers (l-2, etc.). Residual connections (He et al., 2016) 
enable this process, by feeding a given layer to the previous one, as in the 
classical hierarchical approach, summed with a given output of earlier layers 
(Figure 2). In this way, every level of a given residual network effectivilly 
contributes to the final recognition task. Figure 2 shows a scheme of a residual 
connection and its interactions within a network.  In this approach, features 
are extracted from remote sensing imagery at different spatial resolutions, 
where the relevance and complexity of a given feature may vary between the 
considered resolution levels. Thus, it is mandatory to capture and retain all of 
these levels of feature complexity through the use of residual connections.  

 
Figure 5 Simple scheme of possible residual connections within a CNN. The grey arrow 

shows a classical approach, while the red arrows show the new added (residual) 
connections.   

Dilated convolutions: Another central aspect of a network capable of 
capturing multi-resolution information is its ability to capture spatial context. 
Recently, Yu and Koltun (2016) proposed the use of dilated convolutions 
(Figure 3) in CNN. These dilated convolutions consist of convolutions applied 
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to a given input image with a kernel having defined gaps (Figure 3). The 
receptive field of the network is bigger, capturing more contextual information 
(Hamaguchi et al., 2017). These dilated convolutions allow the integration of 
knowledge of the wider context (Hamaguchi et al., 2017) and at the same time 
depict finer details (Yu and Koltun, 2016). This is especially relevant for a multi-
resolution approach since several sizes of patterns at different resolutions may 
contribute to the classification task.  

  
Figure 6 a) 3x3 kernel with dilation 1, b) 3x3 kernel with dilation 3 

2.1.1 Basic convolutional set and modules definition: 

The architecture of the CNN is composed by two main modules: 1) context 
module, followed by 2) resolution specific module (Figure 5). This structure 
was inspired by the works of Hamaguchi et al. (2017), Yu et al. (2017) and He 
et al. (2016). The general idea is that both context and resolution specific 
information is needed (Hamaguchi et al., 2017), hence the use of the two 
distinct modules. 

Both modules are built stacking basic convolutional sets. These are composed 
of a convolution, batch normalization and ReLU (CBR, see Figure 4 a)) (He et 
al., 2016; Ioffe and Szegedy, 2015; Yu et al., 2017). Two basic convolutional 
sets bridged by a residual connection form a main CBR block, as shown in 
Figure 4 b). In each CBR, different number of filters and dilation values can be 
adopted. Both the context and resolution specific modules are composed of a 
sequence of CBRs with different numbers of filters and dilation rates as 
indicated in Figure 5. 
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a) 

 

 

b) 

 

 

 
Figure 7 Basic convolutional set (a). Basic group of convolutions used to build the context 
and (b) resolution specific modules indicating the number of filters used 

The context module (Figure 5 a)) is composed of several stacked CBRs with 
increasing dilation and increasing number of filters, with the objective of 
gradually capturing larger feature representations (Hamaguchi et al., 2017; Yu 
et al., 2017). The increasing number of filters over a CNN follows the state of 
the art approaches (He et al., 2016; Simonyan and Zisserman, 2015), more 
filters for higher level feature representation. The initial feature map is reduced 
from 224x224 (input) to 28x28px using a stride of 2, instead of 1 in the first 
three sets of CBRs. The use of larger stride has shown better performances 
than the max pooling operations, mainly because of the use of dilated 
convolutions (Yu et al., 2017). The kernel size of all the convolutions is 3x3 
(Springenberg et al., 2015). 
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a) 

 

  

 

b)

 
Figure 8 a) Context module, b) resolution specific module. Resolution specific module 
does not contain residual connections. 

The increase in the dilation factor can create artificacts on the resulting feature 
maps, due to the gaps generated by the dilated kernel (Hamaguchi et al., 
2017; Yu et al., 2017). To attenuate this drawback, the dilation increase in the 
context module is compensated in the resolution specific module with a gradual 
reduction of the dilation value and the removal of residual connections from 
the basic CBR blocks (Yu et al., 2017). This also allows to re-capture the more 
local features (Hamaguchi et al. 2017), which might be lost due to the 
increasing dilations in the context module. 

For the classification part of the network, global average pooling followed by a 
convolution which maps the feature map size to the number of classes, is 
applied. Since this is a binary classification problem, a sigmoid function is used 
as activation. 

2.3 Experiments 

2.3.1 Dataset and training samples 

There are two subsets of data: a) a multi-resolution dataset formed by three 
sets of images corresponding to satellite and airborne images (manned and 
UAV platforms) and b) a set of generic satellite image samples, which is used 
in one of the benchmark approaches. 
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Regarding the multi-resolution data, three sets of images, one set for each 
level of resolution, are considered: satellite, manned and unmanned aerial 
vehicles (Table 1). Most of the datasets depict real earthquake-induced 
building damages; however, there are also images from controlled demolitions. 

The satellite images cover five different geographical locations in Italy, Ecuador 
and Haiti (Table 1). The satellite imagery was collected with WorldView 3 
(Amatrice, Pescara del Tronto and Portoviejo) and GeoEye 1 (L’Aquila, Port-
au-Prince). These data are pansharpened and have a variable resolution 
between 0.4 and 0.6m. 

The airborne imagery consists of nadir and oblique imagery with a ground 
sampling distance (GSD) of 12-18 cm for the manned vehicles and of 2-10 cm 
for the UAV. The differences in image content at a given level of resolution 
(different illumination settings, view angles, sensors characteristics, 
morphology of buildings and urban landscape) are further increased by the 
multi-resolution aspect. 

The samples are extracted for each resolution from the set of images indicated 
before. First, damaged and undamaged image regions are manually 
delineated, see Figure 6. Every cell that contains more than 60% of its area 
covered by one of the classes is cropped and used as an image sample for that 
same class. The grid size varies according to the resolution: satellite 80x80px, 
airborne (manned vehicles) 100x100px and airborne (UAV) 160x160px. The 
variable size of the image samples is set in order to keep in count the different 
resolution and the extension of the area captured in each patch. Due to the 
scarcity of satellite image samples (Table 1), to consider a smaller patch in this 
level of resolution, allowed to extract a higher number of samples. 
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Table 1 Overview of the location and quantity of satellite and airborne samples. The ++ 
locations indicate controlled demolitions of buildings. 

Location 
N. of samples 

Month/Year of event Damaged Not 
damaged 

 Satellite samples 
Aquila 115 118 April 2009 
Port-au-Prince 732 701 January 2010 
Portoviejo 147 163 April 2016 
Amatrice 165 180 August 2016 
Pesc. Tronto 93 94 August 2016 
Total 1252 1256  
 Airborne (manned vehicles) samples  
Aquila, 336 385 April 2009 
St Felice 587 593 May 2012 
Amatrice 320 362 August 2016 
Tempera 259 260 April 2009 
Bidonville 229 229 January 2010 
Port-au-Prince 749 712 January 2010 
Onna 387 365 April 2009 
Total 2867 2906  
 Airborne (UAV) samples  
Aquila 113 131 April 2009 
Wesel 90 94 ++ 
Portoviejo 216 208 April 2016 
Pesc. Tronto 218 264 August 2016 
Katmandu 309 288 April 2015 
Taiwan 187 611 February 2016 
Gronau 457 501 ++ 
Mirabello 502 453 May 2012 
Lyon 312 310 ++ 
Total 2704 2860  

The number of samples is approximately the same for the damaged and 
undamaged classes. However, the number of samples is not balanced among 
the 3 levels of resolution. The number of satellite image samples is two-fold 
lower when compared to the other two levels of resolution.  
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Figure 9 Examples of damaged (red) and non-damaged (green) areas digitized in satellite 
(GeoEye 1, Port-au-Prince, Haiti, 2010), left. Airborne (manned platform) (St Felice, 
Italy, 2012) imagery, right. 

The generic satellite images samples are taken from a freely available 
benchmark dataset: NWPU-RESISC45 (Cheng et al., 2017). This benchmark 
dataset contains 45 classes with 700 satellite image samples per class. From 
these, fourteen classes were selected and divided into two broader classes, 
built and non-built (Table 2). Instead of considering the total 31500 samples, 
only fourteen classes are considered (9800) to reduce the computational cost 
of the approach. 

 
Table 2 Fourteen classes of the benchmark dataset (NWPU-RESISC45) divided in built 
and non-built classes. Each class contains 700 samples, totaling 9800 image samples. 

Built Non-built 
Airport Beach 
Commercial area Circular farmland 
Dense residential Desert 
Freeway Forest 
Industrial area Mountain 
Medium residential Rectangular farm 
Sparse residential Terrace 

2.3.2 Experiments 

Using the modules defined before in section 2.2, five different networks are 
derived from the architectures shown in Figure 7. The first two networks are 
used as benchmarks for the other tests involving the multi-resolution 
architecture. In the first benchmark network (Figure 7 a)), the satellite training 
samples are fed into a network composed of the context module and the 
resolution specific module. The second benchmark uses the same architecture 
as defined in Figure 7 c) (mresB). It feeds the generic satellite image samples 
(Table 2) into the context module, while the resolution specific is only fed with 
the satellite samples. Due to the low number of damage domain satellite image 
samples (2508) when compared to the other levels of resolution (around 
5700), training a network from scratch may not be optimal (Tajbakhsh et al., 
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2016). For this reason, the second benchmark (henceforth referred as 
benchmark_ft), fine tunes the learned features from generic satellite samples, 
with damage domain specific satellite image samples.  

The other three networks combine both the context and the resolution specific 
modules. The overall aim of these tests is to understand if sharing features 
between resolutions (Figure 7 b) and c)) captures more relevant information 
than merging the output of each separate context module (Figure 7 d)). A more 
detailed explanation of these three networks is given below: 

mresA: feeds the training data of all resolutions to the context followed by the 
resolution specific module. In this way the extracted features of both modules 
are shared between resolutions, Figure 7 b). 

mresB: all the training data of all resolutions are fed into the context module. 
However, the resolution specific module is only fed with the satellite samples. 
In this case the context module serves as base model with its weights that are 
tuned in the resolution specific module, Figure 7 c).  

mresC: each data resolution is given to a different context module. The output 
of these modules is subsequently summed. These summed feature maps are 
used to initialize the resolution specific module that considers only satellite 
image samples, Figure 7 d).  

The stockastic gradient descent (Wilson et al., 2017), with momentum of 0.9 
and with a decreasing learning rate, is used in the optimization. The initial 
learning rate is of 10ିଶ, decreasing by a factor of 10 every 30 epochs (total of 
120), with a weight decay of  10ିଶ. This is set for the benchmark and mresA 
networks. For the other two networks, the context and resolution specific 
modules are executed separately. In these cases, the context module is 
performed with the same learning rate parameters of the benchmark and 
mresA. However, the resolution specific learning rates differ. The mresB (and 
benchmark_ft) resolution specific module has the learning rate  initially set at 
10ିଷ, decreasing by a factor of 10 every 30 epochs, with a weight a decay of 
10ି଺. In the case of the mresC the learning rate is set initially to 10ିସ, with the 
same decreasing rate and weight decay as mresB. These parameters are 
obtained empirically. 

In the benchmark and mresA the networks are learning from scratch, hence 
the aggressive learning rate. While in the benchmark_ft,mresB and mresC, the 
resolution specific module intends to take advantage of the weights obtained 
by the context module, hence the lower learning rate parameters. In this way, 
the multi-resolution context information is refined for the specific case of the 
satellite image classification of building damages. 

During the training of every network, data augmentation is performed since 
this has shown to avoid overfitting and improve the overall image classification 
(Krizhevsky et al., 2017; Simonyan and Zisserman, 2015). The used data 
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augmentation consists of random translations, rotations, image normalization 
and up/downsampling of the images. The networks were run for 120 epochs 
with a batch size of 8. The input size for the network is 224x224px. The image 
samples are zero padded to fit in this template, instead of being resized 
(Vetrivel et al., 2016a). 

The training is performed using 70% of the samples of each resolution, while 
the validation uses 30% of the satellite image samples. This ratio is applied to 
each location separatly. The selected samples for both the training and 
validation remains the same for all the experiments. 

a) 

b) 

c) 

d) 

Figure 10 Tested network configurations: a) benchmark, b) multi-resolution A (mresA), 
c) multi-resolution B (mresB) and d) multi-resolution C (mresC). Details on the text. 

2.3.3 Results  

The achieved results of the use of the five network architectures are presented 
below in Table 2. 
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Table 3 Results of experiments 
Network Accuracy Parameters Training 

samples 
benchmark 0.905 8.6M 1718 
benchmark_ft 0.904 8.6M 11518 
mresA 0.898 8.6M 8685 
mresB 0.924 8.6M 8685 
mresC 0.944 18.4M 8685 

As indicated in this table, the benchmark network trained from scratch 
(benchmark) marginally outperforms the one which used generic satellite 
image samples in the context module and posteriorly fine-tuned it with the 
damage domain samples (benchmark). 

Most of the multi-resolution approaches overcome the benchmark networks. 
Only mresA underperformed the two benchmark networks. The best 
performing network was mresC with an accuracy increase of almost 4% 
compared to the benchmark. This network also outperformed mresB by 2%. 
The network mresC is also the one with the higher number of parameters since 
3 context modules were added before the resolution specific module. The 
number of training samples is of 1718 for the benchmark 11518 for the 
benchmark_ft and 8685 for the rest of the networks.  

To better understand and validate the networks behaviour, a second test was 
conducted by feeding them with new and unused satellite image patches. 
These input patches were of 224x224 px (i.e. different from the sample sizes 
of 80x80 px). Figure 8 and Figure 9 show activations given by the last set of 
filters of all the multi-resolution networks and the benchmark one with the 
higher accuracy (benchmark, Table 2). In particular, for each network and from 
the set of 256 feature maps, the one with the higher average activation value 
is visualized. 
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a) b) 

c) d) 

Figure 11 Satellite image sample (collected with WorldView-3, Porto Viejo, Ecuador, 
2016), with damaged area manually outlined in red, fed into the network. Higher 
activation value of the last set of feature maps of the benchmark b), mresA c), mresB 
d) and mresC 
 

a) b) 

c) d) 

Figure 12 Satellite image sample, with the damage manually outlined in red (GeoEye 1, 
Port-au-Prince, Haiti, 2010) fed into the network. Higher activation value of the last set 
of feature maps of the benchmark a), mresA b), mresB c) and mresC d) networks 

The activation from mresC (Figure 8 d)) shows a stronger agreement with the 
damaged area in red, when considering all the presented activations. However, 
smaller damaged areas are not considered as damaged. The activation from 
the benchmark (Figure 8 a)) also shows localization capabilities, but it is less 
discriminative in correspondence of non-damaged areas.  Figure 8 b) presents 
the activation from mresA, where some difficulty to localize the damaged area 
from the given patch is evident. The mresB (Figure 8 c)), fails to localize the 
damage. 

Another example is presented in Figure 9, left. In this case the mresC activation 
(Figure 9, d)), from the four activations, is the one that shows the better 
agreement with the damaged region. As in the previous case, there are smaller 
damage regions that are not identified in the activation. The benchmark (Figure 
9, a)) activation goes across the whole image sample, including areas which 
are not damaged. mresA (Figure 9, b)) and mresB (Figure 9, c) only focus on 
the damaged area on the left upper part of the sample. 
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Both figures, mresA and mresB, present noisier activations than the 
benchmark and the mresC. 

2.4 Discussion 
The presented results indicate an improvement in the satellite image 
classification of building damages thanks to the use of different training 
samples from different spatial resolutions. 

Only one multi-resolution network did not improve the classification accuracy 
compared to the used benchmarks. Two factors could have contributed to this: 
1) this network was the only multi-resolution network where the resolution 
specific module was not trained only considering the satellite image samples; 
2) the number of satellite training samples is twofold lower if compared with 
the other two resolutions. This might have led the networks to discard features 
which might be relevant for the satellite resolution. 

The other two networks, which take input samples from all the resolution levels 
in their context module, outperform the benchmark tests. In this regard, the 
sum of the feature maps coming from the context module of each of the 
resolutions (mresC) seems to be more beneficial than feeding all of them into 
the same context module (mresB). In the case the context module is shared, 
the network might discard satellite features, due to an unbalanced number of 
training samples between the different image resolutions. This is in agreement 
with other remote sensing studies where the up/down sampled image samples 
are fed into a different network (or parts of the network) and each feature map 
is then summed to provide a stronger classifier (Fu et al., 2017; Maggiori et 
al., 2017). The number of parameters is also higher in the best performing 
resolution; this might have a positive effect on the performance.  

Considering previous works (Vetrivel et al., 2016a), there was an increase 
(around 15%) in the accuracy of satellite image classification of building 
damages, even without considering the multi-resolution aspect. This accuracy 
difference is, however, closely related with recent advancements in the image 
classification algorithms using CNN (He et al., 2016; Krizhevsky et al., 2017). 

The activation maps confirm the results provided by the accuracy assessment; 
also in this case mresC outperform the other methods. However, the 
activations of this network appear to be smoother; smaller signs of damage 
might not be considered. In contrast, the activation maps of networks which 
shared the context module present a noisier activation and seem to generate 
artefacts as indicated in Hamaguchi et al. (2017) and Yu et al. (2017), even 
after decreasing the dilation value in the resolution specific module. 

The learning rate was found to be critical. The used parameters were tuned 
empirically and a small change in the parameter values showed to have a high 
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impact on the final result. The presented results represent the best accuracy 
values achieved with each network configuration.  

2.5 Conclusions and future developments 
This chapter assessed the combined use of remote sensing imagery with 
different resolutions within a CNN approach, to perform the satellite image 
classification of building damages.  

The combined use of several resolutions and their different combination in the 
training of the CNN, improved the accuracy of satellite image classification of 
building damages by nearly 4%. The addition of feature maps from the 
different resolutions has shown to capture more relevant information than 
having these shared in a single network. The activations of the best performing 
network, which sums the feature maps coming from the several resolutions, 
have shown a better agreement with manually defined damaged regions. 
However, the activations also show that this network is not able to identify 
smaller signs of damage, which can be critical for any decision maker 
considering a damaged map generated by such an automated approach.  

Since the shown results are only related with the overall accuracy and 
behaviour of the networks, more research is needed to assess in which specific 
conditions this multi-resolution approach improves damage mapping. The 
datasets used in this experiment mostly refer to the same geographical regions 
(Haiti and Italy) and the same disastrous events, which could be one of the 
reasons for the reported results. 

With the expected increase in the amount of collected imagery from several 
different platforms (both manned and unmanned platforms), this multi-
resolution aspect of CNN can be beneficial in many practical cases. The trained 
networks would be very useful in the damage assessment at regional level, 
where satellite images are currently the only used source of information. This 
model could be further refined adding location specific samples in an online 
learning approach (Vetrivel et al., 2016a). In an early post-disaster setting, 
this multi-resolution capability is even more meaningful, due to the different 
sources of imagery that might be collected.  While satellite may be the first set 
of available data, there is a continuous capture of airborne multi-resolution 
data from the initial stages of the response phase.  

New tests will be performed using the same number of samples for every 
resolution. This would allow to better understand the impact of using 
unbalanced number of data with different resolutions. The use of only airborne 
samples as training to classify damages from satellite imagery will be then 
considered in order to assess the transferability of learned features to different 
resolutions.  
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The successful use of multi-resolution remote sensing image samples should 
also be extended to other image classification problems with more classes. 
There is an increasing amount of multi-resolution image data available and, in 
that sense, a multi-resolution approach taking advantage of such large amount 
of data would be beneficial. 

2.6 References of Chapter 2 
Armesto-González, J., Riveiro-Rodríguez, B., González-Aguilera, D., Rivas-

Brea, M.T., 2010. Terrestrial laser scanning intensity data applied to 
damage detection for historical buildings. Journal of Archaeological 
Science 37, 3037–3047. https://doi.org/10.1016/j.jas.2010.06.031 

Bessis, J.-L., Béquignon, J., Mahmood, A., 2004. The International Charter 
“Space and Major Disasters” initiative. Acta Astronautica 54, 183–190. 
https://doi.org/10.1016/S0094-5765(02)00297-7 

CGR supplies aerial survey to JRC for emergency [WWW Document], n.d. . CGR 
spa. URL http://www.cgrspa.com/news/cgr-fornira-il-jrc-con-immagini-
aeree-per-le-emergenze/ (accessed 11.9.15). 

Cheng, G., Han, J., Lu, X., 2017. Remote sensing image scene classification: 
benchmark and state of the art. Proceedings of the IEEE 1–19. 
https://doi.org/10.1109/JPROC.2017.2675998 

Curtis, A., Fagan, W.F., 2013. Capturing damage assessment with a spatial 
video: an example of a building and street-scale analysis of tornado-
related mortality in Joplin, Missouri, 2011. Annals of the Association of 
American Geographers 103, 1522–1538. 
https://doi.org/10.1080/00045608.2013.784098 

Dell’Acqua, F., Gamba, P., 2012. Remote sensing and earthquake damage 
assessment: experiences, limits, and perspectives. Proceedings of the 
IEEE 100, 2876–2890. https://doi.org/10.1109/JPROC.2012.2196404 

Dell’Acqua, F., Polli, D.A., 2011. Post-event only VHR radar satellite data for 
automated damage assessment. Photogrammetric Engineering & Remote 
Sensing 77, 1037–1043. https://doi.org/10.14358/PERS.77.10.1037 

Dong, L., Shan, J., 2013. A comprehensive review of earthquake-induced 
building damage detection with remote sensing techniques. ISPRS Journal 
of Photogrammetry and Remote Sensing 84, 85–99. 
https://doi.org/10.1016/j.isprsjprs.2013.06.011 

Duarte, D., Nex, F., Kerle, N., Vosselman, G., 2017. Towards a more efficient 
detection of earthquake induced facade damages using oblique UAV 
imagery. ISPRS - International Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences XLII-2/W6, 93–100. 
https://doi.org/10.5194/isprs-archives-XLII-2-W6-93-2017 

Eguchi, R.T., Huyck, C.K., Ghosh, S., Adams, B.J., McMillan, A., 2009. Utilizing 
new technologies in managing hazards and disasters, in: Showalter, P.S., 
Lu, Y. (Eds.), Geospatial Techniques in Urban Hazard and Disaster 



Satellite image classification of building damages 

34 

Analysis. Springer Netherlands, Dordrecht, pp. 295–323. 
https://doi.org/10.1007/978-90-481-2238-7_15 

Fernandez Galarreta, J., Kerle, N., Gerke, M., 2015. UAV-based urban 
structural damage assessment using object-based image analysis and 
semantic reasoning. Natural Hazards and Earth System Science 15, 1087–
1101. https://doi.org/10.5194/nhess-15-1087-2015 

Fu, G., Liu, C., Zhou, R., Sun, T., Zhang, Q., 2017. Classification for high 
resolution remote sensing imagery using a fully convolutional network. 
Remote Sensing 9, 498. https://doi.org/10.3390/rs9050498 

Gerke, M., Kerle, N., 2011. Automatic structural seismic damage assessment 
with airborne oblique Pictometry© imagery. Photogrammetric Engineering 
& Remote Sensing 77, 885–898. 
https://doi.org/10.14358/PERS.77.9.885 

Gokon, H., Post, J., Stein, E., Martinis, S., Twele, A., Muck, M., Geiss, C., 
Koshimura, S., Matsuoka, M., 2015. A method for detecting buildings 
destroyed by the 2011 Tohoku earthquake and tsunami using 
multitemporal TerraSAR-X data. IEEE Geoscience and Remote Sensing 
Letters 12, 1277–1281. https://doi.org/10.1109/LGRS.2015.2392792 

Hamaguchi, R., Fujita, A., Nemoto, K., Imaizumi, T., Hikosaka, S., 2017. 
Effective use of dilated convolutions for segmenting small object instances 
in remote sensing images arXiv:1709.00179. 

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image 
Recognition. IEEE, pp. 770–778. https://doi.org/10.1109/CVPR.2016.90 

Hu, F., Xia, G.-S., Hu, J., Zhang, L., 2015. Transferring deep convolutional 
neural networks for the scene classification of high-resolution remote 
sensing imagery. Remote Sensing 7, 14680–14707. 
https://doi.org/10.3390/rs71114680 

Ioffe, S., Szegedy, C., 2015. Batch normalization:  Accelerating deep network 
training by reducing internal covariate shift. Presented at the 34th 
International Conference on Machine Learning, Sydney, Australia. 

Kerle, N., 2010. Satellite-based damage mapping following the 2006 Indonesia 
earthquake—How accurate was it? International Journal of Applied Earth 
Observation and Geoinformation 12, 466–476. 
https://doi.org/10.1016/j.jag.2010.07.004 

Khoshelham, K., Oude Elberink, S., Sudan Xu, 2013. Segment-Based 
classification of damaged building roofs in aerial laser scanning data. IEEE 
Geoscience and Remote Sensing Letters 10, 1258–1262. 
https://doi.org/10.1109/LGRS.2013.2257676 

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2017. ImageNet classification with 
deep convolutional neural networks. Communications of the ACM 60, 84–
90. https://doi.org/10.1145/3065386 

Li, H., Lin, Z., Shen, X., Brandt, J., Hua, G., 2015. A convolutional neural 
network cascade for face detection. IEEE, pp. 5325–5334. 
https://doi.org/10.1109/CVPR.2015.7299170 



Chapter 2 

35 

Lin, G., Shen, C., Hengel, A. van den, Reid, I., 2016. Efficient piecewise training 
of deep structured models for semantic segmentation. IEEE, pp. 3194–
3203. https://doi.org/10.1109/CVPR.2016.348 

Liu, W., Rabinovich, A., Culurciello, E., 2016. Parsenet: looking wider to see 
better, in: ICLR 2016. Presented at the ICLR 2016. 

Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., 2017. Convolutional neural 
networks for large-scale remote-sensing image classification. IEEE 
Transactions on Geoscience and Remote Sensing 55, 645–657. 
https://doi.org/10.1109/TGRS.2016.2612821 

Marin, C., Bovolo, F., Bruzzone, L., 2015. Building change detection in 
multitemporal very high resolution SAR images. IEEE Transactions on 
Geoscience and Remote Sensing 53, 2664–2682. 
https://doi.org/10.1109/TGRS.2014.2363548 

Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J., 2015. Multi-scale convolutional 
neura lnetworks for lung nodule classification, in: Ourselin, S., Alexander, 
D.C., Westin, C.-F., Cardoso, M.J. (Eds.), Information Processing in 
Medical Imaging. Springer International Publishing, Cham, pp. 588–599. 
https://doi.org/10.1007/978-3-319-19992-4_46 

Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for 
large-Scale image recognition, in: ICLR 2015. pp. 1–13. 

Springenberg, J., Dosovitskiy, A., Brox, T., Riedmiller, M., 2015. Striving for 
simplicity: The all convolutional net, in: ICLR 2015. 

Sui, H., Tu, J., Song, Z., Chen, G., Li, Q., 2014. A novel 3D building damage 
detection method using multiple overlapping UAV images. ISPRS - 
International Archives of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences XL-7, 173–179. 
https://doi.org/10.5194/isprsarchives-XL-7-173-2014 

Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, 
M.B., Liang, J., 2016. Convolutional neural networks for medical image 
analysis: full training or fine tuning? IEEE Transactions on Medical Imaging 
35, 1299–1312. https://doi.org/10.1109/TMI.2016.2535302 

Tang, Y., Mohamed, A.R., 2012. Multiresolution deep belief networks, in: 
International Conference on Artificial Intelligence and Statistics. Presented 
at the International Conference on Artificial Intelligence and Statistics, 
Canary Islands, Spain. 

Telgarsky, M., 2016. Benefits of depth in neural networks, in: 29th Annual 
Conference on Learning Theory. pp. 1–23. 

Tu, J., Sui, H., Feng, W., Sun, K., Xu, C., Han, Q., 2017. Detecting building 
façade damage from oblique aerial images using local symmetry feature 
and the Gini Index. Remote Sensing Letters 8, 676–685. 
https://doi.org/10.1080/2150704X.2017.1312027 

Ural, S., Hussain, E., Kim, K., Fu, C.-S., Shan, J., 2011. Building Extraction 
and Rubble Mapping for City Port-au-Prince Post-2010 Earthquake with 
GeoEye-1 Imagery and Lidar Data. Photogrammetric Engineering & 



Satellite image classification of building damages 

36 

Remote Sensing 77, 1011–1023. 
https://doi.org/10.14358/PERS.77.10.1011 

Vetrivel, A., Gerke, M., Kerle, N., Nex, F., Vosselman, G., 2017. Disaster 
damage detection through synergistic use of deep learning and 3D point 
cloud features derived from very high resolution oblique aerial images, 
and multiple-kernel-learning. ISPRS Journal of Photogrammetry and 
Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2017.03.001 

Vetrivel, A., Gerke, M., Kerle, N., Vosselman, G., 2016b. Identification of 
structurally damaged areas in airborne oblique images using a Visual-Bag-
of-Words approach. Remote Sensing 8, 231. 
https://doi.org/10.3390/rs8030231 

Vetrivel, A., Kerle, N., Gerke, M., Nex, F., Vosselman, G., 2016a. Towards 
automated satellite image segmentation and classification for assessing 
disaster damage using data-specific features with incremental learning. 
Presented at the GEOBIA 2016, GEOBIA 2016, Enschede, The 
Netherlands. https://doi.org/10.3990/2.369 

Vetrivel, A., Markus Gerke, Norman Kerle, George Vosselman, 2015. 
Identification of damage in buildings based on gaps in 3D point clouds 
from very high resolution oblique airborne images. ISPRS Journal of 
Photogrammetry and Remote Sensing 105, 61–78. 
https://doi.org/10.1016/j.isprsjprs.2015.03.016 

Wilson, C., Roelofs, R., Stern, M., Srebro, N., Recht, B., 2017. The marginal 
value of adaptive gradient methods in machine learning. 
arXiv:1705.08292. 

Yu, F., Koltun, V., 2016. Multi-scale context aggregation by dilated 
convolutions, in: ICLR 2016. Presented at the ICLR. 

Yu, F., Koltun, V., Funkhouser, T., 2017. Dilated residual networks, in: CVPR 
2017. Presented at the CVPR 2017. 

 



 

37 

 Multi-resolution feature fusion for the image 
classification of building damages2 

  

                                          
2 This chapter is based on the article: 
Duarte, D.; Nex, F.; Kerle, N.; Vosselman, G. Multi-Resolution Feature Fusion for Image 
Classification of Building Damages with Convolutional Neural Networks. Remote Sens. 
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Abstract 
Remote sensing images have long been preferred to perform building damage 
assessments. The recently proposed methods to extract damaged regions from 
remote sensing imagery rely on convolutional neural networks (CNN). The 
common approach is to train a CNN independently considering each of the 
different resolution levels (satellite, aerial, and terrestrial) in a binary 
classification approach. In this regard, an ever-growing amount of multi-
resolution imagery are being collected, but the current approaches use one 
single resolution as their input. The use of up/down-sampled images for 
training has been reported as beneficial for the image classification accuracy 
both in the computer vision and remote sensing domains. However, it is still 
unclear if such multi-resolution information can also be captured from images 
with different spatial resolutions such as imagery of the satellite and airborne 
(from both manned and unmanned platforms) resolutions. In this chapter, 
three multi-resolution CNN feature fusion approaches are proposed and tested 
against two baseline (mono-resolution) methods to perform the image 
classification of building damages. Overall, the results show better accuracy 
and localization capabilities when fusing multi-resolution feature maps, 
specifically when these feature maps are merged and consider feature 
information from the intermediate layers of each of the resolution level 
networks. Nonetheless, these multi-resolution feature fusion approaches 
behaved differently considering each level of resolution. In the satellite and 
aerial (unmanned) cases, the improvements in the accuracy reached 2% while 
the accuracy improvements for the airborne (manned) case was marginal. The 
results were further confirmed by testing the approach for geographical 
transferability, in which the improvements between the baseline and multi-
resolution experiments were overall maintained. 

 Introduction 
The location of damaged buildings after a disastrous event is of utmost 
importance for several stages of the disaster management cycle. Manual 
inspection is not efficient since it takes a considerable amount of resources and 
time. Preventing the use of such inspections results in the early response phase 
of the disaster management cycle (United Nations, 2015). Over the last 
decade, remote sensing platforms have been increasingly used for the mapping 
of building damages. These platforms usually have a wide coverage, fast 
deployment, and high temporal frequency. Space, air, and ground platforms 
mounted with optical (Curtis and Fagan, 2013; Ishii et al., 2002; Vu et al., 
2005), radar (Balz and Liao, 2010; Brunner et al., 2011), and laser (Armesto-
González et al., 2010; Khoshelham et al., 2013) sensors have been used to 
collect data to perform automatic building damage assessment. Regardless of 
the platform and sensor used, several central difficulties persist, such as the 
subjectivity in the manual identification of hazard-induced damages from the 
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remote sensing data, and the fact that the damage evidenced by the exterior 
of a building might not be enough to infer the building’s structural health. For 
this reason, most scientific contributions aim towards the extraction of damage 
evidence such as piles of rubble, debris, spalling, and cracks from remote 
sensing data in a reliable and automated manner. 

Optical remote sensing images have been preferred to perform building 
damage assessments since these data are easier to understand when 
compared with other remote sensing data (Dell’Acqua and Gamba, 2012). 
Moreover, these images may allow for the generation of 3D models if captured 
with enough overlap. The 3D information can then be used to infer the 
geometrical deformations of the buildings. However, the time needed for the 
generation of such 3D information through dense image matching might hinder 
its use in the search and rescue phase because fast processing is mandatory 
in this phase. 

Synoptic satellite imagery can cover regional to national extents and can be 
readily available after a disaster. The International Charter (IC) and the 
Copernicus Emergency Management Service (EMS) use synoptic optical data 
to assess building damage after a disastrous event. However, many signs of 
damage may not be identifiable using such data. Pancake collapses and 
damages along the façades might not be detectable due to the limited 
viewpoint of such platforms. Furthermore, its low resolution may introduce 
uncertainty in the satellite imagery damage mapping (Kerle and Hoffman, 
2013), even when performed manually (Kerle, 2010; Saito et al., 2010). 

To overcome these satellite imagery drawbacks, airborne images collected 
from manned aerial platforms have been considered in many events (Gerke 
and Kerle, 2011; Murtiyoso et al., 2014; Nex et al., 2014; Vetrivel et al., 2017). 
These images may not be as readily available as satellite data, but they can be 
captured at a higher resolution and such aerial platforms may also perform 
multi-view image captures. While the increase in the resolution aids in the 
disambiguation between damaged and non-damaged buildings, the oblique 
views enable the damage assessment of the façades (Gerke and Kerle, 2011). 
These advantages were also realized by the EMS, which recently started 
signing contracts with private companies to survey regions with aerial oblique 
imagery after a disaster (“CGR supplies aerial survey to JRC for emergency,” 
n.d.), as it happened in the 2016 earthquakes in central Italy.  

Unmanned aerial vehicles have been used to perform a more thorough damage 
assessment of a given scene. The high portability and higher resolution, when 
compared to manned platforms, have several benefits: they allow for a more 
detailed damage assessment (Vetrivel et al., 2017), which allows lower levels 
of damage such as cracks and smaller signs of spalling to be detected 
(Fernandez Galarreta et al., 2015), and they allow the UAV flights to focus only 
on specific areas of interest (Duarte et al., 2017). 
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Recent advances in the computer vision domain, namely, the use of 
convolutional neural networks (CNN) for image classification and segmentation 
(He et al., 2016; Krizhevsky et al., 2012; Simonyan and Zisserman, 2015), 
have  also shown their  potential in the remote sensing domain (Fu et al., 2017; 
Maggiori et al., 2017; Wei et al., 2017) and, more specifically, for the image 
classification of building damages such as debris or rubble piles (Vetrivel et al., 
2016b, 2017). All these contributions use data with similar resolutions that are 
specifically acquired to train and test the developed networks. The use of multi-
resolution data has improved the overall image classification and segmentation 
in many computer vision applications (Eigen and Fergus, 2015; Fu et al., 2017; 
Hu et al., 2015) and in remote sensing (Maggiori et al., 2017). However, multi-
resolution images are generated artificially when the input images are up-
sampled and down-sampled at several scales and then fused to obtain a final 
stronger classifier. While in computer vision, the resolution of a given image is 
considered as another inherent difficulty in the image classification task, in 
remote sensing, there are several resolution levels defined by the used 
platform and sensor, and these are usually considered independently for any 
image classification task. 

A growing amount of image data have been collected by map producers using 
different sensors and with different resolutions, and their optimal use and 
integration would, therefore, represent an opportunity to positively impact 
scene classification. More specifically, a successful multi-resolution approach 
would make the image classification of building damages more flexible and not 
rely only on a given set of images from a given platform or sensor. This would 
be optimal since there often are not enough image samples of a given 
resolution level available to generate a strong CNN based classifier. The 
previous chapter focused on the satellite image classification of building 
damages (debris and rubble piles) whilst also considering image data from 
other (aerial) resolutions in its training. It was reported an improvement of 
nearly 4% in the satellite image classification of building damages by fusing 
the feature maps obtained from satellite and aerial resolutions. However, the 
chapter limited its investigation to satellite images, not considering the impact 
of the multi-resolution approach in the case of aerial (manned and unmanned) 
images.  

The present chapter extends the previously reported work in the previous 
chapter, by thoroughly assessing the combined use of satellite and airborne 
(manned and unmanned) imagery for the image classification of the building 
damages (debris and rubble piles, as in Figure 13) of these same resolutions. 
This work focuses on the fusion of the feature maps coming from each of the 
resolutions. Specifically, the aim of the chapter is twofold: 

 Assess the behavior of several feature fusion approaches by considering 
satellite and airborne (manned and unmanned) (Figure 13) feature 
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information, and compare them against two baseline experiments for the 
image classification of building damages; 

 Assess the impact of multi-resolution fusion approaches in the model 
transferability for each of the considered resolution levels, where an image 
dataset from a different geographical region is only considered in the 
validation step. 

The next section focuses on the related work of both image-based damage 
mapping and CNN feature map fusion. Section 3 presents the methodology 
followed to assess the use of multi-resolution imagery, where the used network 
is defined and the fusion approaches formalized. Section 4 deals with the 
experiments and results, followed by a discussion of the results (Section 5) 
and conclusions (Section 6). 

 

 
Figure 13. Examples of damaged and undamaged regions in remote sensing imagery. 
Nepal (top), aerial (unmanned). Italy (bottom left), aerial (manned). Ecuador (bottom 
right), satellite. These image examples also contain the type of damaged considered in 
this study: debris and rubble piles. 
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 Related Work  

3.2.1 Image-Based Damage Mapping 

Various methods have been reported for the automatic image classification of 
building damages. These aim to relate the features extracted from the imagery 
with damage evidences. Such methods are usually closely related to the 
platform used for their acquisition, exploiting their intrinsic characteristics such 
as the viewing angle and resolution, among others. Regarding satellite 
imagery, texture features have been mostly used to map collapsed and 
partially collapsed buildings due to the coarse resolution and limited viewing 
angle of the platform. Features derived from the co-occurrence matrix have 
enabled the detection of partial and totally collapsed buildings from the 
IKONOS and QuickBird imagery (Vu et al., 2005). Multi-spectral image data 
from QuickBird, along with spatial relations formulated through a 
morphological scale-space approach have also been used to detect damaged 
buildings (Vu and Ban, 2010; Yamazaki et al., 2007). Another approach 
separated the satellite images into several classes; bricks and roof tiles were 
among them (Miura et al., 2007). The authors assumed that areas classified 
as bricks are most likely damaged areas. 

The improvement of the image sensors coupled with the aerial platforms have 
not only increased the amount of detail present in aerial images but have also 
increased the complexity of the automation of damage detection procedures 
(Dong and Shan, 2013). Due to the high-resolution of the aerial imagery, 
object-based image analysis (OBIA) has started to be used to map damage (Li 
et al., 2011; Ma and Qin, 2012; Vetrivel et al., 2015) since objects in the scene 
are composed of a higher number of pixels. Instead of using the pixels directly, 
these approaches worked on the object level of an image composed of a set of 
pixels. In this way, the texture features were related not to a given pixel but 
to a set of pixels (Blaschke, 2010). Specifically, OBIA was used, among other 
techniques, to assess façades for damage (Fernandez Galarreta et al., 2015; 
Gerke and Kerle, 2011). 

Overlapping aerial images can be used to generate 3D models through dense 
image matching, where 3D information can then be used to detect partial and 
totally collapsed buildings (Gerke and Kerle, 2011). Additionally, the use of 
fitted planes allows us to assess the geometrical homogeneity of such features 
and distinguish intact roofs from rubble piles. The 3D point cloud also allows 
for the direct extraction of the geometric deformations of building elements 
(Fernandez Galarreta et al., 2015), for the extraction of 3D features such as 
the histogram of the Z component of a normal vector (Vetrivel et al., 2017), 
and for the use of the aforementioned features alongside the CNN image 
features in a multiple-kernel learning approach (Gerke and Kerle, 2011; 
Vetrivel et al., 2017). 
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Videos recorded from aerial platforms can also be used to map damage. 
Features such as hue, saturation, brightness, edge intensity, predominant 
direction, variance, statistical features from the co-occurrence matrix, and 3D 
features have been derived from such video frames to distinguish damaged 
from non-damaged areas (Cusicanqui et al., 2018; Hasegawa et al., 2000; 
Mitomi et al., 2002).  

Focusing on the learning approach from the texture features to build a robust 
classifier, Vetrivel et al. (2016a) used a bag-of-words approach and assumed 
that the damage evidence related to debris, spalling, and rubble piles shared 
the same local image features. The popularity of the CNN for image recognition 
tasks has successfully led to approaches that consider such networks for the 
image classification of building damage (satellite and aerial) (Duarte et al., 
2018; Vetrivel et al., 2016b, 2016a). 

Despite the recent advancements in computer vision, particularly in CNN, these 
works normally follow the traditional approach of having a completely separate 
CNN for each of the resolution levels for the image classification of building 
damages from remote sensing imagery (Vetrivel et al., 2017, 2016b). In this 
work, the use of a multi-resolution feature fusion approach is assessed. 

3.2.2 CNN Feature Fusion Approaches in Remote Sensing 

The increase in the amount of remote sensing data collected, be it from space, 
aerial, or terrestrial platforms, has allowed for the development of new 
methodologies which take advantage of the fusion of the different types of 
remote sensing data (Gomez-Chova et al., 2015). The combination of several 
streams of data in CNN architectures has also shown to improve the 
classification and segmentation results since each of the data modalities (3D, 
multi-spectral, RGB) contribute differently towards the recognition of a given 
object in the scene (Gomez-Chova et al., 2015; Paisitkriangkrai et al., 2015). 
While the presented overview focusses on CNN feature fusion approaches, 
there are also other approaches which do not rely on CNNs to perform data 
fusion (Hermosilla et al., 2011; Prince et al., 2017; Sohn and Dowman, 2007). 

The fusion of 3D data from laser sensors or generated through dense image 
matching using images has been already addressed (Audebert et al., 2018, 
2017; Paisitkriangkrai et al., 2015; Vetrivel et al., 2017). Liu et al. (2017) 
extracted handcrafted features from Lidar data alongside CNN features from 
the aerial images, fusing them in a higher order conditional random fields 
approach. Merging optical and Lidar data improved the semantic segmentation 
of 3D point clouds (Audebert et al., 2017) using a set of convolutions to merge 
both feature sets. The fusion of Lidar and multispectral imagery was also 
addressed (Audebert et al., 2018), in which the authors report the 
complementarity of such data in semantic segmentation. CNN and hand-
crafted image features were concatenated to generate a stronger segmentation 
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network in the case of aerial images (Paisitkriangkrai et al., 2015). In the 
damage mapping domain, Vetrivel et al. (2017) merged both the CNN and 3D 
features (derived from a dense image-matching point cloud) in a multiple-
kernel-learning approach for the image classification of building damages using 
airborne (manned and unmanned vehicles) images. The most relevant finding 
in this work was that the CNN features were so meaningful that, in some cases, 
the combined use of 3D information with CNN features only degraded the 
result, when compared to using only CNN features. The authors also found that 
CNNs still cannot optimally deal with the model geographical transferability in 
the specific case of the image classification of building damages because 
differences in urban morphology, architectural design, image capture settings, 
among others, may hinder this transferability. 

The fusion of multi-resolution imagery coming from different resolution levels, 
such as satellite and airborne (manned and unmanned) imagery, had already 
been tested only for the specific case of satellite image classification of building 
damages (Duarte et al., 2018). The authors reported that it is more meaningful 
to perform a fusion of the feature maps coming from each of the resolutions 
than to have all the multi-resolution imagery share features in a single CNN. 
Nonetheless, the multi-resolution feature fusion approach was (1) not tested 
for the airborne (manned and unmanned) resolution levels and (2) not tested 
for the model transferability when a new region was only considered in the 
validation step. 

 Methodology 
Three different CNN feature fusion approaches were used to assess the multi-
resolution capabilities of CNN in performing the image classification of building 
damages. These multi-resolution experiments were compared with two 
baseline approaches. These baselines followed the traditional image 
classification pipeline using CNN, where each imagery resolution level was fed 
to a single network. 

The network used in the experiments is presented in Section 3.1. This network 
exploited two main characteristics: residual connections and dilated 
convolutions (presented in the following paragraphs). The baseline 
experiments are presented in Section 3.2, while the feature fusion approaches 
are presented in Section 3.3. 

A central aspect of a network capable of capturing multi-resolution information 
present in the images is its ability to capture spatial context. Yu and Koltun 
(2016) introduced the concept of dilated convolutions in CNN with the aim of 
capturing the context in image recognition tasks. Dilated convolutions are 
applied to a given input image using a kernel with defined gaps (Figure 14). 
Due to the gaps, the receptive field of the network is bigger, capturing more 
contextual information (Yu and Koltun, 2016). Moreover, the receptive field 
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size of the dilated convolutions also enables the capture of finer details since 
there is no need to perform an aggressive down-sampling of the feature maps 
throughout the network, better preserving the original spatial resolution (Yu et 
al., 2017). Looking at the specific task of building damage detection, the visual 
depiction of a collapsed building in a nadir aerial image patch may not appear 
in the form of a single rubble pile. Often, only smaller damage cues such as 
blown out debris or smaller portions of rubble are found in the vicinity of such 
collapsed buildings. Hence, by using dilated convolutions in this study, we aim 
to learn the relationship between damaged areas and their context, relating 
these among all the levels of resolution. 

 
(a) 

 
(b) 

Figure 14. The scheme of (a) a 3 × 3 kernel with dilation 1, (b) a 3 × 3 kernel with 
dilation 3 (Duarte et al., 2018). 

 

From the shallow alexnet (Krizhevsky et al., 2012), to the VGG (Simonyan and 
Zisserman, 2015), and the more recently proposed resnet (He et al., 2016), 
the depth of the proposed networks for image classification has increased. 
Unfortunately, the deeper the network, the harder it is to train (Simonyan and 
Zisserman, 2015). CNNs are usually built by the stacking of convolution layers, 
which allows a given network to learn from lower level features to higher levels 
of abstraction in a hierarchical setting. Nonetheless, a given layer l is only 
connected with the layers adjacent to it (i.e., layers l−1 and l+1). This 
assumption has shown to be not optimal since the information from earlier 
layers may be lost during backpropagation (He et al., 2016). Residual 
connections were then proposed (He et al., 2016), where the input of a given 
layer may be a summation of previous layers. These residual connections allow 
us to (1) have deeper networks while maintaining a low number of parameters 
and (2) to preserve the feature information across all layers (Figure 15) (He et 
al., 2016). The latter aspect is particularly important for a multi-resolution 
approach since a given feature may have a different degree of relevance for 
each of the considered levels of resolution. The preservation of this feature 
information is therefore critical when aggregating the feature maps generated 
using different resolution data. 
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Figure 15. The scheme of a possible residual connection in a CNN. The grey arrows 
indicate a classical approach, while the red arrows on top show the new added residual 
connection (Duarte et al., 2018). 

3.3.1 Basic Convolutional Set and Modules Definition 

The main network configuration was built by considering two main modules: 
(1) the context module and (2) the resolution-specific module (Figure 16). This 
structure was inspired by the works of References [21,52,53]. The general idea 
regarding the use of these two modules was that while the dilated convolutions 
capture the wider context (context module), more local features may be lost 
in the dilation process, hence the use of the resolution-specific module 
(Hamaguchi et al., 2017; Yu and Koltun, 2016) with the decreasing dilation. In 
this way, the context is harnessed through the context module, while the 
resolution-specific module brings back the feature information related to a 
given resolution. The modules were built by stacking basic convolutional sets 
that were defined by convolution, batch normalization, and ReLU (rectified 
linear unit) (called CBR in Figure 16) (Ioffe and Szegedy, 2015). As depicted 
in Figure 16, a pair of these basic convolutional sets bridged by a residual 
connection formed the simplest component of the network, which were then 
used to build the indicated modules. 

The context module was built by stacking 19 CBRs with an increasing number 
of filters and a dilation factor. For our tests, a lower number of CBRs would 
make the network weaker while deeper networks would give no improvements 
and slow the network runtime (increasing the risk of overfitting). The growing 
number of filters is commonly used in CNN approaches, following the general 
assumption that more filters are needed to represent more complex features 
(He et al., 2016; Krizhevsky et al., 2012; Simonyan and Zisserman, 2015). 
The increasing dilation factor in the context module is aimed at gradually 
capturing feature representations over a larger context area (Yu and Koltun, 
2016). The red dots in Figure 16 indicate when a striding of 2, instead of 1, 
was applied. The striding reduced the size of the feature map (from the initial 
224 × 224 px to the final 28 × 28 px) without performing max pooling. Larger 
striding has been shown to be beneficial when dilated convolutions are 
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considered (Yu et al., 2017). The kernel size was 3 × 3 (Springenberg et al., 
2015) and only the first CBR block of the context module had a kernel size of 
7 × 7 (Yu et al., 2017). The increase in the dilation factor can generate artifacts 
(aliasing effect) on the resulting feature maps due to the gaps introduced by 
the dilated kernels (Hamaguchi et al., 2017; Yu et al., 2017). To attenuate this 
drawback, the dilation increase in the context module was compensated in the 
resolution-specific module with a gradual reduction of the dilation value 
(Hamaguchi et al., 2017) and the removal of the residual connections from the 
basic CBR blocks (Yu et al., 2017). This also allowed us to recapture the more 
local features (Hamaguchi et al., 2017), which might have been lost due to the 
increasing dilations in the context module. For the classification part of the 
network, global average pooling followed by a convolution which maps the 
feature map size to the number of classes was applied (Long et al., 2015; Yu 
et al., 2017). Since this was a binary classification problem, a sigmoid function 
was used as the activation. 

 

 
Figure 16. The basic convolution block is defined by convolution, batch-normalization, 
and ReLU (CBR). The CBR is used to define both the context and resolution-specific 
modules. It contains the number of filters used at each level of the modules and also the 
dilation factor. The red dot in the context module indicates when a striding of 2, instead 
of 1 was used. 

3.3.2 Baseline Method 

As already mentioned, the multi-resolution tests were compared against two 
baseline networks. These followed the traditional pipelines for the image 
classification of building damages [17,27].  
In the first baseline network (Figure 17), the training samples of a single 
resolution (i.e., only airborne—manned or unmanned—or satellite) were fed 
into a network composed of the context and the resolution-specific module like 
in a single resolution approach. The second baseline (hereafter referred to as 
baseline_ft) used the same architecture as defined for the baseline (Figure 17). 
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It fed generic image samples of a given level of resolution (Table 5 and Table 
6) into the context module, while the resolution-specific one was only fed with 
the damage domain image samples of that same level of resolution. Fine-
tuning a network that used a generic image dataset for training may improve 
the image classification process (Maggiori et al., 2017), especially in cases with 
a low number of image samples for the specific classification problem 
(Tajbakhsh et al., 2016). The generic resolution-specific image samples were 
used to train a network considering two classes: built and non-built 
environments. Its weights were used as a starting point in the fine-tuning 
experiments for the specific case of the image classification of building 
damages. This led to two baseline tests for each resolution level (one trained 
from scratch and one fine-tuned on generic resolution-specific image samples). 

3.3.3 Feature Fusion Methods 

The multi-resolution feature fusion approaches used different combinations of 
the baseline modules and their computed features (Section 3.2). Three 
different approaches have been defined: MR_a, MR_b, and MR_c, as shown in 
Figure 5. The three types of fusion were inspired by previous studies in 
computer vision (Ngiam et al., 2011) and remote sensing (Audebert et al., 
2018, 2017; Duarte et al., 2018; Gomez-Chova et al., 2015). In the presented 
implementation, the baselines were independently computed for each level of 
resolution without sharing the weights among them (Audebert et al., 2017). 
The used image samples have different resolutions and they were acquired in 
different locations: the multi-modal approaches (e.g., (Audebert et al., 2018)), 
dealing with heterogeneous data fusions (synchronized and in overlap), could 
not be directly adopted in this case as there was no correspondence between 
the areas captured by the different sensors. Moreover, in a disaster scenario, 
time is critical. Acquisitions with three different sensors (mounted on three 
different platforms) and resolutions would not be easily doable. 

A fusion module (presented in Figure 5) was used in two of the fusion 
strategies, MR_b and MR_c, while MR_a followed the fusion approach used in 
Reference [30]. This fusion module aimed to learn from all the different feature 
representations, blending their heterogeneity (Audebert et al., 2018; Ngiam et 
al., 2011) through a set of convolutions. The objective behind the three 
different fusion approaches was to understand (i) which layers (and its 
features) were contributing more to the image classification of building 
damages in a certain resolution level and (ii) which was the best approach to 
fuse the different modules with multi-resolution information. The networks 
were then fine-tuned with the image data (X in Figure 5) of the resolution level 
of interest. For example, in MR_a, the features from the context modules of 
the three baseline networks were concatenated. Then, the resolution-specific 
module was fine-tuned with the image data X of a given resolution level (e.g., 
satellite imagery). 
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Figure 17. The baseline and multi-resolution feature fusion approaches (MR_a, MR_b, 
and MR_c). The fusion module is also defined. 

The concatenation indicated in Figure 5 had as input the feature maps which 
had the same width and height, merging them along the channel dimension. 
Other merging approaches were tested such as summation, addition, and the 
averaging of the convolutional modules, however, they underperformed when 
compared to concatenation. In the bullet points below, each of the fusion 
approaches is defined in detail. Three fusions (MR_a, MR_b, and MR_c) were 
performed for each resolution level. 

MR_a: in this fusion approach, the features of the context modules of each of 
the baseline experiments were concatenated. The resolution-specific module 
was then fine-tuned using the image data of a given resolution level (X, in 
Figure 5). This approach followed a general fusion approach already used in 
computer vision to merge the artificial multi-scale branches of a network (Eigen 
and Fergus, 2015; Li et al., 2015) or to fuse remote sensing image data (Boulch 
et al., 2017). Furthermore, this simple fusion approach has already been tested 
in another multi-resolution study (Duarte et al., 2018). 

MR_b: in this fusion approach, the features of the context followed by the 
resolution-specific modules of the baseline experiments were concatenated. 
The fusion module considered as input the previous concatenation and it was 
fine-tuned using the image data of a given resolution level (X, in Figure 5). 
While only the context module of each resolution level was considered for the 
fusion in MR_a, MR_b considered the feature information of the resolution-
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specific module. In this case, the fusion model aimed at blending all these 
heterogeneous feature maps and building the final classifier for each of the 
resolution levels separately (Figure 17). This fusion approach allows the use of 
traditional (i.e., mono resolution) pre-trained networks as only the last set of 
convolutions need to be run (i.e., fusion module).  

MR_c: this approach builds on MR_a. However, in this case, the feature 
information from the concatenation of several context modules is maintained 
in a later stage of the fusion approach. This was performed by further 
concatenating this feature information with the output of the resolution-specific 
module that was fine-tuned with a given resolution image data (X in Figure 5). 
Like MR_b, the feature information coming from the context modules and 
resolution-specific module were blended using the fusion module.  

 Experiments and Results 
The experiments, results, and used datasets are described in this section. The 
first set of experiments was performed to assess the classification results 
combining the multi-resolution data. In the second set of experiments, the 
model geographical transferability was assessed; i.e., when considering a new 
image dataset only for the validation (not used in training) of the networks.  

3.4.1 Datasets and Training Samples 

This subsection describes the datasets used in the experiments for 
each resolution level. It also describes the image sample generation 
from the raw images to image patches of a given resolution, which 
were then used in the experiments (Section 4.2). The data were 
divided into two main subsets: (a) a multi-resolution dataset formed 
by three sets of images corresponding to satellite and airborne 
(manned and unmanned) images containing damage image samples, 
and (b) three sets of generic resolution-specific image samples used in 
the fine-tuning baseline approach for the considered levels of 
resolution. 

3.4.1.1 Damage Domain Image Samples for the Three Resolution 
Levels Considered 

Most of the datasets depict real earthquake-induced building damages; 
however, there are also images of controlled demolitions (Table 1). The 
satellite images cover five different geographical locations in Italy, Ecuador, 
and Haiti. The satellite imagery was collected with WorldView-3 (Amatrice 
(Italy), Pescara del Tronto (Italy), and Portoviejo (Ecuador)) and GeoEye-1 
(L’Aquila (Italy), Port-au-Prince (Haiti)). These data were pansharpened and 
have a variable resolution between 0.4 and 0.6 m. The airborne (manned 
platforms) images cover seven different geographic locations in Italy, Haiti, 
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and New Zealand. These sets of airborne data consist of nadir and oblique 
views. These were captured with the PentaView capture (Pictometry) and 
UltraCam Osprey (Microsoft) oblique imaging systems. Due to the oblique 
views, the ground sampling distance varies between 8 and 18 cm. These are 
usually captured with similar image capture specifications (flying height, 
overlap, etc.). The airborne (unmanned platforms) images cover nine locations 
in France, Italy, Haiti, Ecuador, Nepal, Germany, and China. These are 
composed of both the nadir and oblique views that were captured using both 
fixed wing and rotary wing aircraft mounted with consumer grade cameras. 
The ground sampling distance ranges from <1 cm up to 12 cm, where the 
image capture specifications (flying height, overlap, etc.) are related to the 
specific objective of each of the surveys, which changes significantly between 
the different datasets. 

The image samples were derived from the set of images indicated before. First, 
the damaged and undamaged image regions were manually delineated, see 
Figure 18. A regular grid was then applied to each of the images and every cell 
that contained more than 40% of its area masked by the damage class was 
cropped from the image and used as an image sample for the damage class. 
The low value of 40% to consider a patch as damaged, aimed at forcing the 
networks to detect damage on an image patch even if it did not occupy the 
majority of the area of the said patch. This is motivated by practical reasons 
as an image patch should be considered damaged even if just a small area 
contains evidence of damage. On the other hand, a patch is considered intact 
only if no damage can be detected (Figure 18). The grid size varied according 
to the resolution: satellite = 80 × 80 px, airborne (manned vehicles) = 100 × 
100 px, and airborne (unmanned) = 120 × 120 px (examples in Figure 19). 
The variable size of the image patches according to the resolution aimed to 
attenuate the captured extent by each of the resolution levels. The use of 
smaller patches also allowed us to increase the number of samples, 
compensating for the rare availability of these data. 
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Table 4. An overview of the location and quantity of the satellite and airborne image 
samples. The ++ locations indicate the controlled demolitions of buildings. Satellite used 
WorldView-3 GeoEye-1  imagery. Aerial manned used Vexcel and Pentaview systems 
while the Aerial unmanned used several commercial handheld cameras with varying 
characteristics. 

Location No. of Samples Month/Year of 
Event Dam. Not Dam. 

 Satellite  
L’Aquila (Italy) 115 108 4-2009 
Port-au-Prince (Haiti) 701 681 1-2010 
Portoviejo (Ecuador) 125 110 4-2016 
Amatrice (Italy) 135 159 8-2016 
Pesc. Tronto (Italy) 91 94 8- 2016 
Total  1169 1152  
 Airborne (manned)  
L’Aquila (Italy) 242 235 4-2009 
St Felice (Italy) 337 366 5-2012 
Amatrice (Italy) 387 262 9-2016 
Tempera (Italy) 151 260 4-2009 
Port-au-Prince (slums) 
(Haiti) 

409 329 1-2010 

Port-au-Prince (Haiti) 302 335 1-2010 
Onna (Italy) 293 265 2-2009 
Christchurch (New 
Zealand) 

603 649 2-2011 

Total  2754 2701  
 Airborne (unmanned)  
L’Aquila (Italy) 103 99 4-2009 
Wesel (Germany) 175 175 6-2016+ 
Portoviejo (Ecuador) 306 200 4-2016 
Pesc. Tronto (Italy) 197 262 8-2016 
Katmandu (Nepal) 388 288 4-2015 
Taiwan (China) 257 479 2-2016 
Gronau (Germany) 437 501 10-2013+ 
Mirabello (Italy) 412 246 5-2012 
Lyon (France) 230 242 5-2017+ 
Total  2505 2692  

 

The number of image samples between the classes was approximately the 
same, while the number of image samples between the three different 
resolution levels was not balanced. The number of satellite image samples was 
two-fold lower when compared to the other two levels of resolution.  
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Figure 18. An example of the extracted samples considering a satellite image (GeoEye-
1, Port-au-Prince, Haiti, 2010) on the left. The center image contains the grid for the 
satellite resolution level (80 × 80 px) where the damaged (red) and non-damaged 
(green) areas were manually digitized. The right patch indicates which squares of the 
grid are considered damaged and non-damaged after the selection process. 

3.4.1.2 Generic Image Samples for the Three Levels of Resolution 

Generic image samples for each of the levels of resolution are presented in this 
sub-section. These were used in one of the baseline approaches (baseline_ft).  

The generic satellite image samples were taken from a freely available baseline 
dataset: NWPU-RESISC45 (Cheng et al., 2017). This baseline dataset 
contained 45 classes with 700 satellite image samples per class. From these, 
fourteen classes were selected and divided into two broader classes: built and 
non-built (Table 5).  

To derive the generic image samples from the airborne images (manned and 
unmanned), the same sample extraction procedure used for the damage and 
non-damaged samples was adopted. In this case, the division was between the 
built and non-built environments, while the rest of the procedure was the 
same: a mask for the built and non-built environments was applied by 
considering a 60% threshold for each given class. This threshold was adopted 
to ensure that one of the two classes (the built and non-built environment 
classes) occupied the larger area of the image patch.  

Table 5. The 14 classes of the benchmark dataset (NWPU-RESISC45) divided into the 
built and non-built classes. Each class contains 700 samples, with a total of 9800 image 
samples. 

Built Non-Built 
Airport Beach 
Commercial area Circular farmland 
Dense residential Desert 
Freeway Forest 
Industrial area Mountain 
Medium residential Rectangular farm 
Sparse residential Terrace 
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Table 6 shows the origin of the data for this generic image samples generation, 
the quantity of image samples and the considered camera for each location. 

During the training of every network, data augmentation was performed (Table 
4) since this was shown to decrease overfitting and improve the overall image 
classification (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015). The 
used data augmentation consisted of random translations and rotations, image 
normalization, and the up-/down-sampling of the images (examples in Figure 
20). Since we were dealing with oblique imagery in the airborne data, the 
performed flips were only horizontal and both the rotation value and the scale 
factor were low. Furthermore, light data augmentation is usually considered 
when batch normalization is used in a CNN since the network should be trained 
by focusing on less distorted images (Ioffe and Szegedy, 2015).  

 
Figure 19. Examples of image samples derived from the procedure illustrated in Figure 
6. These were used as the input for both the baseline and multi-resolution feature fusion 
experiments. (Left side) damaged samples; (Right side) non-damaged samples. From 
top to bottom: 2 rows of satellite, aerial (manned), and aerial (unmanned) image 
samples. The approximate scale is indicated for each resolution level. 
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Table 6. The generic airborne image samples used in one of the baselines. The * indicates 
that in the aerial (manned) case, three different locations from the Netherlands were 
considered. The system/sensor used are several handheld cameras for the unmanned 
aerial vehicles and PentaView and Vexcel imaging systems. 

Location 

Generic Airborne 
(Unmanned) Image 

Samples 

Generic Airborne (Manned) 
Image Samples 

Built Non-Built Built Non-Built 

Netherlands * 971 581 1758 878 
France 697 690   
Germany 681 618 1110 1953 
Italy 578 405   
Switzerland 107 688   

Total 3034 
 

2982 2868 2831 

 
Table 7. The data augmentation used: image normalization, the interval of the scale 
factor to be multiplied by the original size of the image sample, the rotation interval to 
be applied to the image samples, and the horizontal flip. 

Data Augmentation Value 
Image normalization 1/255 
Scale factor [0.8,1.2] 
Rotation [−12,12] deg
Horizontal flip true 

The image samples were zero padded to fit in the 224 × 224 px input size, 
instead of being resized; this has been demonstrated to perform better 
(Vetrivel et al., 2016b) in the specific image classification of building damages 
using CNNs. 

Two main sets of experiments were performed using the multi-resolution 
feature fusion approaches indicated in Figure 17: (1) general multi-resolution 
feature fusion experiments, where the training was performed using 70% of 
the image samples of each resolution and using the remaining 30% of the 
image samples for validation. This ratio was applied to each location 
separately. The training/validation data splits were performed randomly three 
times, enforcing the validation sets to contain different image samples on each 
data split; (2) model transferability, where the training of each of the multi-
resolution feature fusion approaches was performed by considering all the 
locations except the one that was used for the validation. This experiment 
aimed at assessing the behavior of the approaches in a realistic scenario 
wherein the image data from a new event were classified without extracting 
any training samples from this location. 
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For both sets of experiments, the accuracy, recall, and precision were 
calculated for the validation image datasets described before and the following 
equations were considered: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃 ൅ 𝐹𝑁

# 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (1) 

𝑟𝑒𝑐𝑎𝑙𝑙 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
 (2) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃
 (3) 

where, in Equations (1)–(3), TP are the true positives, FN are the false 
negatives, and FP are the false positives. 

 

Figure 20. Several random data augmentation examples from an original aerial 
(unmanned) image sample with the scale, left. 

3.4.2 Results 

In this sub-section, the results of the multi-resolution fusion approaches are 
shown. The results are divided into two sub-sections for each of the resolution 
levels: the general multi-resolution fusion experiment and the model 
transferability experiment (using a dataset from a location not used in the 
training). To understand the behavior of the networks better, the activations 
from the last set of filters of the networks are visualized when classifying a 
new and unused image patch depicting a damaged scene. These activations 
show the per pixel probability of a pixel being damaged (white) or not damaged 
(black). Furthermore, in the model transferability sub-section, larger image 
patches were considered and classified with the best baseline and multi-
resolution feature fusion approach. 
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3.4.2.1 Multi-Resolution Fusion Approaches 

The achieved accuracies, recalls, and precisions for the baselines and 
for the different multi-resolution feature fusion approaches are presented in 
Table 8. 

 
Table 8. The accuracy, recall, and precision results when considering the multi-resolution 
image data in the image classification of building damage of the given resolutions. 
Overall, the multi-resolution feature fusion approaches present the best results. 

Network 
Satellite 

Accuracy(%) Recall (%) Precision (%) Training 
Samples 

baseline 87.7 ± 0.7 88.4 ± 0.9 87.4 ± 1.0 1602 
baseline_ft 84.3 ± 0.8 84.1 ± 1.2 87.5 ± 1.8 11,402 
MR_a 89.2 ± 1.0 87.0 ± 1.2 91.0 ± 1.3 8968 
MR_b 89.3 ± 0.9 91.0 ± 0.9 86.5 ± 0.6 8968 
MR_c 89.7 ± 0.9 93.1 ± 1.1 82.3 ± 1.6 8968 

Network 
Airborne (Manned) 

Accuracy Recall Precision Training 
Samples 

baseline 91.1 ± 0.1 92.4 ± 1.5 91.1 ± 0.4 3736 
baseline_ft 90.0 ± 0.4 89.8 ± 2.4 90.5 ± 0.3 9752 
MR_a 91.4 ± 0.2 94.0 ± 0.6 88.0 ± 0.7 8968 
MR_b 90.7 ± 0.4 91.9 ± 2.2 90.0 ± 1.2 8968 
MR_c 91.4 ± 0.2 92.4 ± 0.7 89.4 ± 1.3 8968 

Network 
Airborne (Unmanned) 

Accuracy Recall Precision Training 
Samples 

baseline 94.2 ± 1.0 93.1 ± 2.6 95.0 ± 0.7 3630 
baseline_ft 91.3 ± 1.0 91.8 ± 2.0 89.9 ± 2.0 9329 
MR_a 94.3 ± 0.7 94.1 ± 1.9 95.7 ± 1.9 8968 
MR_b 95.3 ± 1.2 95.2 ± 0.7 95.3 ± 1.5 8968 
MR_c 95.4 ± 0.6 95.5 ± 1.7 95.1 ± 1.2 8968 

 

Considering the satellite resolution, the multi-resolution approaches improved 
the overall image classification of building damages when compared with the 
baselines by 2%. However, these also presented a slightly higher standard 
deviation between different runs. The MR_c presents the best results even 
though the improvement was marginal when compared with the other multi-
resolution approaches. In comparison to the baseline experiment, the recall 
was higher in 2 of the 3 fusion approaches, while the precision was only higher 
in MR_a. 

In the aerial (manned) case, the accuracy improvement was only marginal 
compared with the best performing baseline experiment. One of the multi-
resolution approaches (MR_b) presented the worst results compared to the 
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baseline network. Baseline_ft was the experiment with the weakest 
performance as happened in the satellite case. MR_a had the highest recall 
and it also had the lower precision compared with the baseline experiment. 
MR_c increased the precision of the baseline test. 

The airborne (unmanned) case also presented a marginal improvement using 
the proposed fusion approaches (MR_c and MR_b). Furthermore, in MR_c, the 
standard deviations of the experiments were lower. The baseline_ft was the 
experiment with the weakest performance. Overall, the best performing 
network regarding the classification accuracy was MR_c. This was further 
confirmed by the recall and precision values where all the fusion approaches 
had higher values for both the recall and precision than the baseline 
experiment. 

The activations are shown in Figure 21. On the left, the input image patches 
are shown; on the right, the activations with the higher average activation 
value for each of the baseline and feature fusion approaches are shown. 
Overall, the multi-resolution fusion approaches presented better localization 
capabilities. These usually detected larger damaged areas than the baseline 
experiments. Namely, MR_c was the fusion approach with the better overall 
localization, even if it was noisier. The Figure 21 activations also present 
several striped patterns and gridding artifacts, where MR_b seems to be the 
network which better attenuates this issue. 

3.4.2.2 Multi-Resolution Fusion Approaches’ Impact on the Model 
Transferability 

Table 6 shows the accuracies, recalls, and precisions of the multi-resolution 
and baseline approaches when using a single location in the validation which 
was not used in the training. In the satellite case, only the image data from 
Portoviejo were used as its validation data. In the airborne (manned) case, the 
Port-au-Prince image data were used as validation while in the airborne 
(unmanned) case, the Lyon image data were used for validation. 
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Table 9. The accuracy, recall and precision results when considering the multi-resolution 
feature fusion approaches for the model transferability. One of the locations for each of 
the resolutions is only used in the validation of the network: satellite = Portoviejo; aerial 
(manned) = Haiti; aerial (unmanned) = Lyon. Overall, the multi-resolution feature fusion 
approaches outperform the baseline experiments, where the baseline_ft present better 
results only in the aerial (manned) case. 

Network 
Satellite (Portoviejo) 

Accuracy (%) Recall (%) Precision (%) Training 
Samples 

baseline 81.5 84 78 2160 
baseline_ft 79.4 76 85 11,960 
MR_a 81.5 ± 0.9 83.5 ± 0.1 83.5 ± 1.7 9526 
MR_b 82.1 ± 0.6 77.7 ± 0.8 90.5 ± 1.5 9526 
MR_c 83.4 ± 0.4 86.5 ± 0.9 82.9 ± 0.6 9526 

Network 
Aerial (Manned, Port-au-Prince) 

Accuracy (%) Recall (%) Precision (%) Training 
Samples 

baseline 84.3 80.2 83.4 4406 
baseline_ft 84.7 83.2 85.1 10,442 
MR_a 81.9 ± 0.4 85.0 ± 0.3 78.6 ± 2.0 9638 
MR_b 83.9 ± 0.4 80.3 ± 0.9 84.1 ± 2.1 9638 
MR_c 84.2 ± 0.2 85.0 ± 0.5 80.0 ± 1.4 9638 

Network 
Aerial (Unmanned, Lyon) 

Accuracy (%) Recall (%) Precision (%) Training 
Samples 

baseline 87.2 79.5 95.1 4711 
baseline_ft 83.0 70.0 94.6 10,442 
MR_a 85.7 ± 3.2 85.2 ± 3.6 90.0 ± 3.4 9943 
MR_b 83.6 ± 2.1 86.2 ± 1.4 83.2 ± 3.3 9943 
MR_c 88.7 ± 1.7 89.6 ± 2.0 82.4 ± 3.3 9943 
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  Baseline Baseline_ft MR_a MR_b MR_c 

 
Figure 21. The image samples (left) and activations from the last set of feature maps 
(right) for each of the networks in the general multi-resolution feature fusion 
experiments. From top to bottom: 2 image samples of the satellite and aerial (manned 
and unmanned) resolutions. Overall, the multi-resolution feature fusion approaches have 
better localization capabilities than the baseline experiments. 

Overall, the results followed the tendency of the previous experiments. The 
multi-resolution fusion approaches were the networks that performed better. 
Only in the aerial (manned) case was the baseline_ft accuracy superior to that 
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of the multi-resolution experiments. In the rest of the experiments, the 
baseline networks performed the worst.  

In the airborne (unmanned) experiments, while the accuracy also increased 
with the MR_c feature fusion approach, the standard deviation was also 
considerably higher when compared with the rest of the experiments. Overall, 
the recall was higher in the fusion approaches, while the precision was lower 
when compared to the baseline experiments. 

The activations are shown in Figure 22. On the left, the input image patches 
are shown; on the right, the activations with the highest average activation 
value per network are shown. Overall, the activations of the model 
transferability test presented the worst results when compared to the previous 
set of experiments. Striped patterns and gridding artifacts can also be noticed 
in this case. MR_b was the network which presented a lower amount of artifacts 
compared to the rest of the experiments. In the aerial (unmanned) case, the 
localization capability decreased drastically. Nonetheless, the multi-resolution 
experiments, in general, could better localize the damaged area. 

In Figure 23 and Figure 25, larger image patches are shown for each of the 
locations considered for model transferability. These image patches were 
divided into smaller regions (80 × 80 px for the satellite, 100 × 100 px for the 
aerial manned, and 120 × 120 px for the aerial unmanned) and classified using 
the best performing baseline and multi-resolution feature fusion approaches 
(Table 9). The red overlay in these larger image patches indicates when a patch 
was classified as damaged (with a >0.5 probability of being damaged). The 
details (on the right) of these figures indicate the areas where differences 
between the baseline and the multi-resolution feature fusion methods were 
more significant. In these details, the probability of each of the smaller image 
patches being damaged is indicated.Figure 23 contains the image patch 
considered for the satellite level of resolution (Portoviejo). Besides correctly 
classifying 2 more patches as damaged, MR_c also increased the certainty of 
the already correctly classified patches in the baseline experiments. 
Nonetheless, none of the approaches was able to correctly classify the patch 
on the lower right corner of the larger image patch as damage. 

Figure 24 shows a larger image patch for the aerial (manned) case (Port-au-
Prince). The best performing networks were the baseline_ft and MR_c networks 
and the classification results are shown in the figure. In general, the results 
followed the accuracy assessment presented in Table 9. In this case, MR_c 
introduced more false positives (the details are on the right and on the bottom 
of the patch), even if it correctly classified more damaged patches. 

Figure 25 shows a larger patch of the Lyon dataset classified with the 
benchmark and MR_c networks. In this case, the MR_c is clearly more 
generalizable. It reduced the false positives of the baseline approach and 
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correctly classified the patches that were not considered damaged by the 
baseline. 

 Discussion 
The results show an improvement in the classification accuracy and the 
localization capabilities of a CNN for the image classification of building 
damages using the multi-resolution feature maps. However, each of the 
different feature fusion approaches behaved differently. The overall best multi-
resolution feature fusion approach (MR_c) concatenates the feature maps from 
intermediate layers, confirming the need for preserving feature information 
from the intermediate layers at a later stage of the network (Eigen and Fergus, 
2015; Maggiori et al., 2017).  
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 Baseline Baseline_ft MR_a MR_b MR_c 

 
Figure 22. The image samples (left) and activations from the last set of the feature maps 
(right) for each of the networks in the model transferability experiments. From top to 
bottom: the 2 image samples of the satellite and aerial (manned and unmanned) 
resolutions.  

This feature fusion approach also considers a fusion module (Figure 17) that is 
able to merge and blend the multi-resolution feature maps. Other feature 
fusion studies using small convolutional sets to merge audio and video features 
(Ngiam et al., 2011) or remote sensing multi-modal feature maps (Audebert 
et al., 2018; Liu et al., 2017; Paisitkriangkrai et al., 2015) have underlined the 
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same aspect. In general, the satellite and aerial (unmanned) resolutions were 
the ones which presented the most improvements when using multi-resolution 
feature fusion approaches. The aerial (unmanned) resolution also improved 
their image classification accuracy and localization capabilities (although 
marginally). In the aerial (manned) case, the resolution level had the least 
improvement with the multi-resolution feature fusion approach. This will be 
discussed in detail below. 

 

 
Figure 23. The large satellite image patch classified for damage using (top) the baseline 
and (bottom) the MR_c models on the Portoviejo dataset. The red overlay shows the 
image patches (80 × 80 px) considered as damaged (the probability of being damaged 
= >0.5). The right part with the details contains the probability of a given patch being 
damaged. The scale is relative to the large image patch on the left. 
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The model transferability experiments generally had a lower accuracy, 
indicating the need for in situ image acquisitions to get optimal classifiers, as 
shown in (Vetrivel et al., 2017). In the satellite case, both the precision and 
recall were higher in the multi-resolution feature fusion approaches, and the 
models captured fewer false positives and fewer false negatives. In the aerial 
(manned and unmanned) cases, the recall was higher and the precision was 
lower, reflecting that a higher number of image patches were correctly 
classified as damaged but more false positives were also present. In the aerial 
(manned) resolution tests, the multi-resolution feature fusion approaches had 
worse accuracies than the baselines. In this case, the best approach was to 
fine-tune a network which used generic aerial (manned) image samples during 
the training. In the aerial (manned) case, the image quality was better (high-
end calibrated cameras), with more homogenous captures throughout different 
geographical regions. The aerial (unmanned) platform image captures were 
usually performed with a wide variety of compact grade cameras which 
presented a higher variability both in the sensor characteristics and in their 
image capture specifications. Consequently, there was a variable image quality 
compared to the aerial (manned) platforms. 

The transferability tests of aerial (unmanned) imagery, contemporarily deal 
with geographical transferability aspects and also with very different image 
quality and image capture specifications. In such cases, the presented results 
indicate that the multi-resolution feature fusion approaches helped the model 
to be more generalizable than when using traditional mono-resolution 
methods. 

The activations shown in the results are in agreement with the accuracy 
results. The multi-resolution feature fusion approaches presented better 
localization capabilities compared with the baseline experiments. Strike 
patterns and gridding artifacts can be seen in the activations. This could be 
due to the use of a dilated kernel in the presented convolutional modules, as 
indicated in (Hamaguchi et al., 2017; Yu et al., 2017). 
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Figure 24. The large aerial (manned) image patch classified for damage using the (top) 
baseline_ft and (bottom) the MR_c models on the Port-au-Prince dataset. The red 
overlay shows the image patches (100 × 100 px) considered as damaged (the probability 
of being damaged = >0.5). The right part with the details contains the probability of a 
given patch being damaged. The legend is relative to the large image patch on the left. 
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Figure 25. The large aerial (unmanned) image patch classified using (top) the baseline 
and (bottom) the MR_c models on the Lyon dataset. The red overlay shows the image 
patches (120 × 120 px) considered as damaged (the probability of being damaged = 
>0.5).  

The right part of the figure shows the probability of each patch being damaged. 
The scale is relative to the large image patch on the left. 

The large image patches shown in Figures 11 - 13 show that both the satellite 
and aerial (unmanned) resolution levels can benefit more from the multi-
resolution feature fusion approach in comparison to the baseline experiments. 
Furthermore, the aerial (unmanned) multi-resolution feature fusion identifies 
only one of the patches as a false positive, while correctly classifying more 
damaged image patches. 
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The previous chapter, also on multi-resolution feature fusion, using both a 
baseline and a feature fusion approach similar to the MR_a, had better 
accuracies than the ones presented in this chapter, although both contributions 
reflect a general improvement. The differences in the two works is in the 
training data that were extracted from the same dataset but considering 
different images and different damage thresholds for the image patches 
labelling (40% in this chapter, 60% in the previous one). The different results 
confirm the difficulties and subjectivity inherent in the manual identification of 
building damages from any type of remote sensing imagery (Kerle, 2010; Saito 
et al., 2010). Moreover, it also indicates the sensibility of the damage detection 
with CNN according to the input used for training. 

 Conclusions and Future Work 
This chapter assessed the combined use of multi-resolution remote sensing 
imagery coming from sensors mounted on different platforms within a CNN 
feature fusion approach to perform the image classification of building 
damages (rubble piles and debris). Both a context and a resolution-specific 
network module were defined by using dilated convolutions and residual 
connections. Subsequently, the feature information of these modules was 
fused using three different approaches. These were further compared against 
two baseline experiments. 

Overall, the multi-resolution feature fusion approaches outperformed the 
traditional image classification of building damages, especially in the satellite 
and aerial (unmanned) cases. Two relevant aspects have been highlighted by 
the performed experiments on the multi-resolution feature fusion approaches: 
(1) the importance of the fusion module, as it allowed both MR_b and MR_c to 
outperform MR_a (2) the beneficial effect of considering the feature 
information from the intermediate layers of each of the resolution levels in the 
later stages of the network, as in MR_c.  

These results were also confirmed in the classification of larger image patches 
in the satellite and aerial (unmanned) cases. Gridding artifacts and stripe 
patterns could be seen in the activations of the several fusion and baseline 
experiments due to the use of dilated kernels, however, in the multi-resolution 
feature fusion experiments, the activations were often more detailed than in 
the traditional approaches. 

The model transferability experiments in the multi-resolution feature fusion 
approaches also improved the accuracy of the satellite and aerial (unmanned) 
imagery. On the contrary, fine-tuning a network by training it with generic 
aerial (manned) images was preferable in the aerial (manned) case. The 
different behavior in the aerial (manned) case could be explained by the use 
of images captured with high-end calibrated cameras and with more 
homogenous data capture settings. The characteristics of the aerial (manned) 
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resolution level contrasted with the aerial (unmanned) case, where the 
acquisition settings were more heterogeneous and a number of different 
sensors with a generally lower quality were used. In the aerial (manned) case, 
the model transferability to a new geographical region was, therefore, more 
related with the scene characteristics of that same region (e.g., urban 
morphology) and less related with the sensor or capture settings. In the aerial 
(unmanned) case, the higher variability of the image datasets allowed to better 
generalize the model. 

The transferability test also indicated that the highest improvements of the 
multi-resolution approach were visible in the satellite resolution, with a 
substantial reduction of both false positives and false negatives. This was not 
the case in the aerial (unmanned) resolution level, where a higher number of 
false positives balanced the decrease in the number of false negatives. In a 
disaster scenario, the objective is to identify which buildings are damaged 
(hence, having potential victims). Therefore, it is preferable to lower the 
number of false negatives, maybe at the cost of a slight increase in false 
positives. 

Despite the successful multi-resolution feature fusion approach for the image 
classification of building damages, there is no information regarding the 
individual contribution of each of the levels of resolution in the image 
classification task. Moreover, the presented results are mainly related to the 
overall accuracy and behavior of the multi-resolution feature fusion and 
baseline experiments. More research is needed to assess which signs of 
damage are better captured with this multi-resolution feature fusion approach, 
for each of the resolution levels. The focus of this work was on the fusion of 
the several multi-resolution feature maps. However, other networks can be 
assessed to perform the same task. In this regard, MR_b, for example, can be 
directly applied to pre-trained modules, where the last set of activations can 
be concatenated and posteriorly fed to the fusion module. In this case, there 
is no need to re-train a new network for a specific multi-resolution feature 
fusion approach. There is an ongoing increase in the amount of collected image 
data, where a multi-resolution approach could harness this vast amount of 
information and help build stronger classifiers for the image classification of 
building damages. Moreover, given the recent contributions focusing on online 
learning (Vetrivel et al., 2016b), the initial satellite images from a given 
disastrous event could be continuously refined with location-specific image 
samples that come from other resolutions. In such conditions, the use of a 
multi-resolution feature fusion approach would be optimal. This is especially 
relevant in an early post-disaster setting, where all these multi-resolution data 
would be captured independently with different sensors and at different stages 
of the disaster management cycle. 

This multi-resolution feature fusion approach can also be assessed when 
considering other image classification problems with more classes. There is an 



Multi-resolution feature fusion for the image classification of building damages 

70 

ever-growing amount of collected remote sensing imagery and taking 
advantage of this large quantity of data would be optimal. 
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Abstract 
Urban search and rescue (USaR) teams require a fast and thorough building 
damage assessment, to focus their rescue efforts accordingly. Unmanned 
aerial vehicles (UAV) are able to capture relevant data in a short time frame 
and survey otherwise inaccessible areas after a disaster, and have thus been 
identified as useful when coupled with RGB cameras for façade damage 
detection. Existing literature focuses on the extraction of 3D and/or image 
features as cues for damage.  However, little attention has been given to the 
efficiency of the proposed methods which hinders its use in an urban search 
and rescue context. The framework proposed in this chapter aims at a more 
efficient façade damage detection using UAV multi-view imagery. This was 
achieved directing all damage classification computations only to the image 
regions containing the façades, hence discarding the irrelevant areas of the 
acquired images and consequently reducing the time needed for such task. To 
accomplish this, a three-step approach is proposed: i) building extraction from 
the sparse point cloud computed from the nadir images collected in an initial 
flight; ii) use of the latter as proxy for façade location in the oblique images 
captured in subsequent flights, and iii) selection of the façade image regions 
to be fed to a damage classification routine. The results show that the proposed 
framework successfully reduces the extracted façade image regions to be 
assessed for damage 6 fold, hence increasing the efficiency of subsequent 
damage detection routines. The framework was tested on a set of UAV multi-
view images over a neighborhood of the city of L’Aquila, Italy, affected in 2009 
by an earthquake. 

 Introduction and related work 
Early post-disaster efforts, in particular the delineation and optimization of 
urban search and rescue (USaR) deployment, require fully automated, fast and 
detailed building damage assessment. This detailed damage information aids 
in the identification of viable rescue sites and is commonly performed by an 
USaR mobile team (United Nations 2015). However, in a hazard event such as 
an earthquake, ground observations have several limitations: limited 
access/points of view, procedure requiring a substantial amount of time and 
the need of sufficient USaR personnel. 

Remote sensing has been recognized as a critical aid in building damage 
assessment (Dong and Shan 2013). Optical (Dell’Acqua and Polli 2011; Vetrivel 
et al. 2017), radar (Gokon et al. 2015; Marin, Bovolo, and Bruzzone 2015) or 
laser instruments (Armesto-González et al. 2010; Khoshelham, Oude Elberink, 
and Sudan Xu 2013) have already been used successfully in building damage 
detection. These, mounted on aerial platforms may acquire data in a short time 
interval and allow the automatization of the damage detection procedures 
(Dell’Acqua and Gamba 2012).  



Chapter 4 

77 

In particular, aerial images have been demonstrated to be suited for building 
damage assessment (Dong and Shan 2013; Vetrivel, Gerke, et al. 2016). The 
use of overlapping images allows for the computation of 3D point clouds, 
adding geometric information to the radiometric content of the images. While 
the point clouds are usually used to detect damages in the form of geometrical 
deformations (e.g. collapsed building), the images are used to detect damage 
evidences which may not be clearly represented in the point cloud (e.g. cracks 
or spalling) (Fernandez Galarreta, Kerle, and Gerke 2015; Sui et al. 2014; 
Vetrivel, Duarte, et al. 2016). 

Nadir aerial imagery readily depicts totally collapsed buildings or damaged 
roofs (Ma and Qin 2012). However, nadir imagery is physically constrained by 
its capture geometry and cannot directly observe the façades. Even a pancake 
collapse of a building or a partially collapsed façade with an otherwise intact 
roof cannot be directly identified.  

To overcome this limitation, airborne multi-view images started to be exploited 
for building damage assessment. With this capture geometry it is possible to 
survey directly the façades, and consequently, assess them for damage 
evidences (Gerke and Kerle 2011). Nonetheless, unmanned aerial vehicles 
(UAV) with their fast data acquisition, centimetre resolution, high revisit 
capability, low cost and possibility of surveying otherwise inaccessible or 
dangerous areas, seem to be the fit-for-purpose platform for USaR building 
damage assessment. 

Similar to the airborne, the UAV multi-view images are usually collected with 
enough overlap to derive a 3D point cloud through the computationally 
expensive dense image matching (DIM). This allows to assess geometrical 
deformations through the extraction of 3D features (Fernandez Galarreta et al. 
2015; Vetrivel et al. 2017). Assuming that a given façade is still standing or is 
only partially collapsed, the image information becomes critical to identify 
damage evidences that may not be translated into any deformation in an 
image-derived point cloud (Fernandez Galarreta et al. 2015). The relevance of 
the images for damage detection was also pointed out by Vetrivel et al.  (2017). 
The authors indicated the negligible increase in accuracy when using 3D 
features and convolutional neural network (CNN) features in a multiple-kernel-
learning approach, instead of the CNN features alone. This approach reached 
an average damage detection accuracy of 85%, solely using CNN features 
derived from labelled image samples from UAV datasets, not containing 
samples from the dataset being analysed for damage. 

When the 3D information is not generated, the time needed for the damage 
detection part is reduced. However, the processing time is still lengthy, due to 
the high amount of images that are usually collected in such UAV-multi-view 
surveys. 
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Procedures like the simple linear iterative clustering (SLIC) (Achanta et al. 
2012) segmentation are often used as starting point for current object-based 
or damage classification procedures, as in the CNN approach indicated earlier. 
These are applied to every image of a given dataset, which is not efficient. The 
temporal inefficiency is not a problem in many applications but limits the use 
of such methods in the USaR context. 

The objective of this contribution is to propose a more efficient approach for a 
thorough façade damage detection using UAV multi-view imagery. Specifically, 
the aim is to avoid the computationally expensive procedures, and to direct all 
damage classification computations only to the images and image portions 
containing the façades, hence discarding the irrelevant areas of the captured 
UAV images. To accomplish this, a three-step approach is proposed, taking 
advantage of the rapid data acquisition and ready revisiting capabilities of the 
UAV (see Figure 27): i) extract the building’s roof outline from the sparse point 
cloud generated from nadir images alone; ii) use the latter as a proxy for 
façade location in the oblique images, using the raw image orientation 
information of the UAV, and iii) damage detection only on relevant patches of 
the extracted façade image patch using the CNN as in Vetrivel et al. (2017). 
More details regarding the method are given in section 3.  

The remainder of the chapter contains in section 2, a description of the data 
used in the experiment. Section 4, contains the results, followed by discussion 
and conclusion, in sections 5 and 6, respectively. 

 Data 
The proposed approach was tested on a set of UAV multi-view images, 
captured using a Sony ILCE-6000 mounted on an Aibot X6 hexacopter. It 
comprises a subset of 281 nadir images, and four subsets of oblique images 
(891 images in total, one set for each cardinal direction). These were captured 
using a flying height of approximately 100 m with 70-80% forward overlap and 
60-70% side lap. The average ground sampling distance is ~0.04m. 

The captured images depict the damage caused by the M5.9 April 6th 2009 
earthquake in L’Aquila, Italy. These were acquired over a city block of 
approximately10 ha. The scene contains partial collapses and buildings with 
smaller signs of damage (e.g. cracks and spalling). In spite of the image 
capture only being performed in 2016, the area of the city covered was 
abandoned and still contains the damage evidences from the 2009 earthquake, 
with only very limited reconstruction taking place. Due to the time interval 
between event and capture, and since the area is still largely untouched since 
the earthquake, it contains several areas with high vegetation. Hence, many 
of the façades are not visible, even in the oblique images (see Figure 26), 
making this dataset more challenging for research purposes. 
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Figure 26 Three examples of vegetation occlusion in the UAV multi-view L'Aquila dataset 

 Method 
The central idea behind the targeted efficiency increase in façade damage 
mapping, is to reduce not only the number of images that are used in a façade 
damage detection routine, considering a conventional grid flight; but also to 
reduce the area of the oblique images to be fed for damage classification. In a 
first stage the façades are defined. This façade location allows to select only 
the oblique images that contain a given façade. Moreover, knowing the façade 
location also enables the identification of the oblique image patch 
corresponding to a given façade. Only this patch is then fed to the damage 
detection step. The second core idea regarding this method is to avoid that the 
whole façade image patch is fed to the damage assessment phase. The façade 
image patch is divided into equilateral patches of a given size, where only 
patches with early evidence of damage are fed to the damage classification 
step, which will use a pre-trained CNN, more details in section 3.3. 

The approach can be divided in three main steps as presented in Figure 27. 
The initial step is to detect the buildings, that will be used as proxies for the 
presence of façades. The second step is to use the façade locations to extract 
the façade patch from the oblique images. The last step refers to the façade 
damage detection on the previously extracted façades.  

The first step of the method is to locate the façades, as shown in Figure 28. 
Considering that every façade is connected to a building roof, this need to be 
located and a building hypothesis formulated, to subsequently define the 
façades. Usually the DIM point cloud is used as the main source of information 
to perform the building extraction phase. This is due to the general assumption 
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that building roofs are elevated (above ground) objects composed by planar 
surfaces. 

Since one of the aims of the proposed approach is to avoid the computationally 
expensive DIM, it is hypothesized that to detect the building’s roof, the (sparse) 
tie point  cloud suffices. A conventional UAV nadir flight generates a large 
amount of images, and it is expected that the sparse point cloud is dense 
enough to derive building information. To reduce the number of outliers only 
tie points present in at least three images are considered. 

 

 
Figure 27 Overview of the method - divided into the three main components 

4.3.1 Building detection and façade extraction 

The sparse point cloud is generated using Pix4D, which also generates the 
internal camera parameters and the updated orientation of the images. In a 
first step, a distinction is needed from on and off ground points, to identify the 
elevated objects present in the scene. This is achieved recurring to LAStools  
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software package which uses the method proposed by Axelsson (2000).  Due 
to the common heterogeneity of sparse point clouds, since these rely on the 
texture present in the scene to compute the point correspondences, isolated 
points are removed with lasnoise. This is performed to avoid the inclusion of 
these isolated points in the building detection phase. With the isolated points 
removed, the following step is to differentiate between on and off ground 
points, using lasground. This further allows to obtain a normalized height 
surface by differencing each of the off ground points by its closest on groud 
point. 

 

 
Figure 28 Building extraction and facade definition flowchart 

 

1) Building detection from the off ground points: the off ground points of 
the sparse point cloud are segmented into disjoint planar segments as 
described in Vosselman (2012). An initial set of 10 points is used to estimate 
the plane equation and initialize the region growing algorithm. An initial 
distance threshold of 0.3 m is used to determine these points. New points are 
added considering a radius of 2 m to define the local neighbourhood: only those 
that have a distance from the plane lower than 1 m are added. These adopted 
parameters are intentionally lax in order to address the low and heterogeneous  
point density of some building roofs. Since there still may exist points on 
vertical elements of building roofs, segments with a slope greater than 70% 
are discarded.The resulting segments are then merged into building regions 
using a connected component analysis. 

2) Façades per detected building: the points belonging to a given building  
region are initially projected into the xy plane. The proposed algorithm then 
assumes that each building has 4 or more facades and that they are mutually 
perpendicular. Using this assumption, the points are then fitted with a 
minimum-area bounding rectangle (Freeman and Shapira 1975), defining, in 
this way, the 4 main façade directions of a building region. The planes of the 
main façades directions are finally computed considering the same X, Y 
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coordinates of the bounding rectangle corners and assigning as Z values the 
mean roof height and the ground mean values, respectively.  

4.3.2 Façade extraction from oblique views 

The façade regions defined before are used to locate their corresponding image 
patch on the oblique images, see Figure 29. The images are not relatively 
oriented by means of photogrammetric procedures but using the raw 
GNSS/IMU (X,Y,Z,ω,φ,κ) information from the UAV navigation system. The 
accuracy of such raw GNSS/IMU data can range from 2-10m for the positions 
and 0.5-5 deg for the attitudes (Eling et al. 2014).  

 
Figure 29 Flowchart regarding the facade extraction from the oblique images  
 

A projection matrix is built using the camera internal parameters and the raw 
orientation from the UAV stored in the image as exif metadata. With the 
projection matrix and the 4 3D corners of the façade it is possible to re-project 
the 3D corners into the image. The extracted image patch can then be rectified 
defining the real-world plane formed by the 4 3D façade corners. However, 
since the raw UAV image orientation is not accurate, the extraction of the patch 
containing the whole façade can be a difficult task. The extracted image patch 
is therefore buffered in image space.  

The extracted image patch now contains other objects from the scene in its 
background, apart from the façade itself. This patch needs to be refined before 
its use in the damage assessment because: 1) it increases the image area to 
be analysed; 2) neighbouring objects could also contain damaged areas, 
hindering the damage classification of the analysed façade. Hence, a further 
refinement of the façade location is performed using two main sets of 
information: 1) salient object probability image (Tu et al. 2016),  and 2) line 
segments analysis on the façade (Yi Li and Shapiro 2002). 

1) Salient object probability image: the problem to distinguish the façade 
from its neighbouring objects in image space is in accordance with the 
objective  of salient object detection, which aims to distinguish the figure from 



Chapter 4 

83 

the background in a given image (Borji et al. 2015). A real-time salient object 
detection algorithm (Tu et al. 2016), using a minimum spanning tree image 
representation, is used as one set of information to distinguish the façade from 
the background resulting from the applied buffer. This salient object detection 
approach uses the image boundary pixels as seed points for the background 
detection. In this approach, the boundaries of the buffered image patch 
extracted before are assumed to be dissimilar from the façade. The result of 
the application of this algorithm is an image containing the probability of a 
given pixel to belong to the figure, in this case, the façade.  This probability 
map is then transformed to a binary image, where only the blob occupying the 
largest image area is considered. 

2) Façade line segments analysis: the images should provide a clear 
indication of horizontal and vertical elements on the image façade. These lines 
should appear as perpendicular in the rectified patches. The vertical and 
horizontal line segments are extracted using the line segment extraction as 
described in (Košecká and Zhang 2002), which uses the Canny edge detector 
(Canny 1986) followed by a line fitting stage (Kahn, Kitchen, and Riseman 
1990). Line segments which are not vertical nor horizontal (within a 10 degree 
tolerance) are not considered. In the case the intersection between a vertical 
and a horizontal line segment is on, or close to the edges of the extended line 
segments, these are considered as façade line segments (Yi Li and Shapiro 
2002). 

The salient object detection blob and the façade line segments analysis are 
finally merged to detect the actual façade within the buffered façade image 
patch. Every façade line segment which overlays with the salient object blob is 
considered as part of the façade. The façade area is defined by the image 
coordinates of the detected façade lines: the maximum and minimum of both 
x and y pixel coordinates are used to define the rectangle to crop the façade 
image patch. 

4.3.3 Damage assessment on the refined façade image patch 

The cropped façade region is used as input for the damage assessment step. 
This patch is further divided into equilateral patches (50px size), these are the 
unit of analysis. 

The developed method exploits the presence of vertical and horizontal 
elements on the rectified patch to quickly analyse the façade. The gradient 
information has previously been used in contributions aiming at façade 
decomposition (Recky and Leberl 2010; Teeravech et al. 2014). In this case, 
the objective is to early select patches in which the gradient information 
indicates the patches that are candidates for damage. The vertical and 
horizontal gradients are computed for each patch and posteriorly projected into 
the horizontal and vertical axes. For each axis, the local maxima and minima 
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of the gradients are computed, and its concentration per axis is determined 
(peaks per pixel ratio). Figure 5 contains two examples (one damaged and one 
non-damaged) of the projection of the vertical and horizontal gradients. The 
peaks ratio for the non-damaged patch (Figure 5, left) is of 0.11 and 0.12, 
respectively for the horizontal and vertical projection of the gradients. The 
peaks ratio for the damaged patch (Figure 5, right), is of 0.45 and 0.33, 
respectively for the horizontal and vertical projection of the gradients. A 
candidate for damage is considered when the ratio peaks/pixel is greater than 
0.25 on both axes: this number has been experimentally defined and it is 
intentionally low in order to avoid discarding damaged patches. The image 
patches where anomalies are detected are further analysed using a pre-trained 
damage classification CNN as described in Vetrivel et al. (2017). The used 
model allows to distinguish between damaged and intact regions and it is pre-
trained with a set of approximately 8000 training samples (4000 for each class) 
obtained from several sets of UAV multi-view imagery.  

 Results 
The described method has been applied to the set of data presented in section 
2. For each sub-section of the method, a corresponding sub-section in this 
results section is given.  

 
Figure 30 Projection of the vertical and horizontal gradients :in a non-damaged façade 
patch (left) and damaged façade patch (right). 

4.4.1 Building hypothesis generation and façade definition 

This sub-section presents the results for the building detection and façade 
definition from the sparse point cloud. 

Figure 31 presents the sparse point cloud and the corresponding detected 
buildings (coloured). As can be noted in this figure, the sparse point cloud 
density is not homogenous throughout the project area, as it highly depends 
on the texture of the different regions and the image block overlap. 
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Figure 31 Sparse point cloud, left ; building hypothesis (coloured) overlaid on the sparse 
point cloud , right 
 

Three examples of the façade definition are given in Figure 32. As can be noted, 
the proposed approach successfully defines the 4 main façade directions. Since 
the building edges are usually good candidates for tie points, most of the 
extracted building regions had a greater concentration of points in those 
regions. As such, even in the case the point density is low, the main façade 
identification was successful. This is central to correctly define the minimum 
bounding rectangle. 

With this approach only a building was not identified, because it was partially 
covered by vegetation, this biased the plane based segmentation and the 
following building detection. Another issue was the inclusion of points outside 
the building roof see Figure 33, that happened in one building, hindering the 
following façade definition. 
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Figure 32 Façade definition. Nadir view of 3 buildings, left and corresponding xy projected 
sparse points (blue points), and minimum area bounding rectangle (red rectangle), right. 

4.4.2 Façade extraction from oblique views 

This subsection presents the result of the façade extraction from the oblique 
images, using the façades defined previously. The used buffer was 350px, to 
account for the use of the raw orientation coming from the UAV. This buffer 
was sufficient to successfully capture the whole extent of the façades. 

From the 40 considered buffered façade image patches, only 2 were incorrectly 
extracted due to an incorrect result in the salient object detection (see Figure 
34, a and d). This resulted in the extraction of only a small patch of the whole 
façade. The edges of the buffered image patch in Figure 34 a, contain 
radiometric similarities with the façade itself. This hindered the real-time 
salient object detection (since this approach assumes that the image edges are 
background hence a cue to distinguish it from the façade). The façade line 
segments, in this case, enclosed only a part of the façade.  
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Figure 33 Details of 3 detected building roofs. Left nadir image; right sparse point cloud 
overlaid with the detected buildings - red circle indicates a segment which is part of the 
vegetation but is identified as part of a roof segment. 
 
Figure 35 and Figure 36, show the result of the application of the salient object 
detection combined with the façade line segments to define the façade image 
patch. In these figures is also visible how the façade line segments information 
complemented the salient object detection. As it can be noticed in Figure 10, 
there was no significant impact of the building having more than 4 façades, 
due to the fitting of the minimum-area bounding rectangle. In this case, and 
since the other smaller façade shared the same plane orientation, the 
rectification procedure had a different scale for each  façade plane. On the 
other hand, the results depicted in Figure 36 were hindered by both the 
presence of façade line segments of a neighbouring façade and by the inclusion 
of that same façade in the salient object detection. In this case, however, the 
whole façade patch was still considered. 
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a) b) c) 

  

d)

 

e) f)

 

Figure 34 Three examples of the salient object detection results, second row (white 
regions show a higher probability of the pixel pertaining to the façade) 

4.4.3 Damage assessment on the refined façade image patch 

This sub-section presents the results for the damage detection on the refined 
façade image patch. 

 

Table 10 provides the damage classification results, considering the building 
façades as unit of analysis. Considering 11 damaged façades, 10 contained at 
least one patch classified as damaged. However, 1 façade was incorrectly 
classified as not-damaged. Considering the non-damaged façades, 23 were 
correctly identified as not-damaged, while 6 were incorrectly classified as 
damaged. 
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a) b) 

 

c) 

d) 

 
Figure 35 Results of the façade line segments and salient object map: a) façade line 
segments overlaid in buffered façade patch, b) real-time salient object, c) final refined 
facade patch, d) binary image of the salient object detection in b) 
 
Table 10 Results of the façade damage classification on 40 façades 

Façade damage classification  No. 
Correctly classified as damaged 10 
Incorrectly classified as damaged 6 
Correctly classified as not-damaged 23 
Incorrectly classified as not-damaged 1 
Precision = 62% ; Recall= 90% ; Accuracy= 83% 
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a) 
b) 

 

c) 

 

d) 

 

Figure 36 Results of the façade line segments and salient object map: a) façade line 
segments overlaid in buffered façade patch, b) real-time salient object, c) final refined 
facade patch, d) binary image of the salient object detection in b) 

 

The visual outcome of the damage classification is depicted in several examples 
in Figure 37. Ground regions and overhanging elements of the façade contain 
most of the false positives.  

Table 11 provides the results regarding the number of the classified patches 
on all the façades. The projection of the gradient information in the form of a 
peaks/pixel ratio allowed to successfully omit  1233 patches from the CNN 
damage classification. A total of 179 image patches were classified by the CNN, 
83 of which as damaged. 

Table 11 Results regarding the early selection of patches to be fed to the CNN, 
considering the 40 façades 

Patches assessed for 
damage 

Patches confirmed 
damaged (CNN) 

Patches not 
considered (gradient 
peaks) 

179 83 1233 



Chapter 4 

91 

 Discussion 
The use of the sparse point cloud to extract the buildings, through a plane base 
segmentation followed by a connected component analysis, has been validated 
on 40 façades. In spite of the heterogeneous 3D point density in such a point 
cloud, only one building was not identified due to vegetation occlusions that 
hindered the plane-based segmentation. However, in cases where the building 
roof does not reflect the actual orientation of the façades, these are not 
properly rectified, hindering the consequent analysis. 

The buffer used in the extraction of the façade image patch also sufficed to 
account for the poor raw orientation from the UAV navigation system. However 
the adoption of the same buffer size for every façade is not optimal due to the 
variability in the image georeferencing inaccuracies and due to the varying 
façade size. 

The posterior façade patch refinement using line segments and the salient 
object image, successfully depicted the façade location. However, 2 façades 
were incorrectly extracted due to a wrong salient object detection. 

a) 

 

b) 

 
c) 

d) 

 

Figure 37 Refined façade damage detection results: a, b, c and d. Damaged patches 
overlaid in red. 
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The use of the projection of the vertical and horizontal gradient, allowed to 
decrease the refined façade image patch regions to be processed by the 
damage classification step. Only approximately 1/6 of the total regions 
contained in the refined façade image patch were considered for classification. 

The results of the damage classification using a CNN, at a refined façade image 
patch level, are in accordance with the results obtained in Vetrivel et al. (2017). 
Scene characteristics like ground regions, overhanging objects in the façade, 
construction sites and roof tiles, are the main cause of the false positives (6) 
reported in the results. 

In spite of the increase in efficiency it must be noted that the façades which 
were wrongly defined from the sparse point cloud or incorrectly extracted from 
the images, are not assessed for damage. This is one of the main drawbacks 
of the proposed method. 

 Conclusions 
In this chapter a methodology to increase the efficiency of façade damage 
detection using a set of UAV multi-view imagery was presented. The higher 
productivity of the method was achieved by reducing the number of images 
and image regions to be analysed for damage in a three step approach. 

One of the major contributions of the presented approach was the possibility 
of using the sparse point cloud to detect building roofs. This allowed to omit 
the generation of the computationally expensive DIM, increasing the speed of 
the façade damage detection. 

The 4 main façade directions, together with the raw orientation information 
from the navigation system of the UAV, were used to identify the façades in 
the oblique images. Due to the uncertainties of such orientation information, a 
wide image buffer was adopted. Future work will address this issue, by relating, 
the façade size with the size of the buffer to apply.  

The salient object detection coupled with the façade line segments, successfully 
identified the façade in the buffered image patch, reducing the area to be used 
in the subsequent damage classification step.  

The damage detection using the CNN approach gave 6 false positives. The 
performances of the CNN for this step will be addressed in a future work by re-
designing the network (as suggested in Cheng et al. (2017)) and by extending 
the used training dataset. In this regard, the reduced number of post-
earthquake UAV multi-view datasets could represent a limiting factor. Another 
possibility to improve these results would be to consider more than one image 
to assess the damage state of a given façade.  

The presented methodology is still an on-going work, the final goal would be 
to reach a near-real-time façade damage detection. In this regard, a new way 
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to acquire images could be considered, planning the acquisitions of the oblique 
views on the basis of the buildings extracted from the sparse point cloud, hence 
decreasing the amount of collected images. Moreover, the information provided 
by nadir images may be also used to detect evidences of façade damage, such 
as blow out debris or rubble piles in the vicinity of the building. This would 
enable a prioritization of the planed oblique views. 
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 Potential of multi-temporal oblique airborne 
imagery for structural damage assessment4 

  

                                          
4 This chapter is based on the article: 
Vetrivel, A., D. Duarte, F. Nex, M. Gerke, N. Kerle, and G. Vosselman. 2016. “Potential 
of multi-temporal oblique airborne imagery for structural damage assessment.” ISPRS 
Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences III–3 
(June): 355–62. https://doi.org/10.5194/isprsannals-III-3-355-2016. 
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 Introduction  
Damage assessment is an imperative process to be carried out immediately 
after the disaster event for effective planning and execution of response and 
recovery actions. Assessing building damages over large areas affected by 
hazard events with ground observations is not efficient. Alternatively, remote 
sensing-based approaches have been recognized as useful means for assessing 
synoptic building damage. Detailed information of an affected area can be 
provided in a short time using a variety of sensors such as optical, SAR and 
LiDAR (Khoshelham et al., 2013; Maruyama et al., 2014; Miura et al., 2007). 
In particular airborne oblique images have been recognized as a valuable data 
source to assess building damages because, compared to traditional nadir 
views, they allow the complete inspection of the external outlines of the 
building, such as roofs and façades (Murtiyoso et al., 2014). Nowadays, 
airborne images are captured with high overlap, and the generated point clouds 
can be exploited in the damage assessment process as well (Sui et al., 2014). 
Geometrical deformations such as partial/complete collapse, pancake collapse, 
inclination, broken and dislocation of elements can be easily derived by 3D 
geometric information (Fernandez Galarreta et al., 2015), while damages such 
as cracks and spalling can be inferred from the images directly. Several papers 
have highlighted the potential of synergistic use of 3D point cloud and images 
for building damage assessment (Gerke and Kerle, 2011; Vetrivel et al., 2015). 
However, only few studies have looked at the use of digital oblique aerial 
imagery for structural damage assessment, and were focused on (mono-
temporal) post-event information (Gerke and Kerle, 2011; Vetrivel et al., 
2015). The major limitation of this approach is that damage is inferred based 
on a set of ontological assumptions: i.e. a surface with unusual radiometric or 
geometric characteristics is assumed to be damaged, while manmade objects 
are assumed to have a regular shape and uniform radiometric characteristics. 
These assumptions have limitation in complex environments, leading to a high 
rate of false alarms, which reduces their reliability and operational utility. In 
Vetrivel et al. (2015), damages presenting regular and uniform shapes (false 
negative), or intact regions characterized by cluttered and non-uniform 
radiometric distributions (false positive), were incorrectly classified due to 
these assumptions.  The above uncertainties can be alleviated if pre-event data 
are available for reference. Many studies have demonstrated the potential of 
multi-temporal data for damage assessment, though with most focusing on 
nadir-view images (Dong and Shan, 2013; Murtiyoso et al., 2014). To our 
knowledge, no methods have been reported yet for identifying building 
damages, namely façades, using multitemporal oblique images and/or 3D point 
clouds.  In this chapter the first implementation of an automated algorithm, 
for building damage assessment focusing on the façades, from multi-temporal 
oblique images is presented. Although geometrically more stable cameras are 
used nowadays in oblique airborne systems, many data sets are captured with 
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less sophisticated camera systems, and image overlap is often restricted to 2-
fold. Hence, for such configurations one has to cope with dense image 
matching point clouds of minor quality (relatively large random error margin, 
gaps). In particular façade regions are generally represented by sparse and 
very noisy 3D points, as they are more cluttered and often occluded (Rupnik 
et al., 2014). The proposed method uses the point cloud to locate the façades 
and focus on image information to assess the damage of a given façade. 

The chapter addresses the analysis of multi-temporal oblique images for 
identifying the damages along façades which are often not well modelled in the 
generated point clouds.    

The detailed description of the methodologies and the results achieved on the 
test area of L’Aquila (Italy) will be presented in detail.   

 Data description 
The data used are corresponding to the city of L’Aquila, Italy in which an 
earthquake occurred on 6th April 2009. The data consist of two airborne 
oblique acquisitions (August 2008 and May 2009) covering the city with both 
oblique (4 cameras) and nadir (1 camera) imagery, captured by small format 
DSLR cameras. Images were acquired at a flying height of approximately 1000 
m allowing for an average ground sampling distance of 16 cm on oblique views. 
The flight was conducted considering a forward overlap between 60-70% and 
side overlap between 35-45%, allowing to derive a 3D point cloud. The 
registration was achieved computing tie-points from all the imagery, forcing 
both epochs to share a local coordinate system. Dense image matching was 
then performed separately on both epochs. 

 Method 
The objective of the following method is to automatically detect building façade 
changes by comparing their radiometric values. It will lay the ground for further 
developments focusing first on the extraction and rectification of the image 
patches containing the façades, followed by the comparison itself, and 
considering three main categories: highly damaged or collapsed façades, lower 
levels of damage (changes), and undamaged buildings.    

To perform the multi-temporal comparison between the façades, these building 
elements must be, beforehand, extracted from the images. The pre-event 3D 
point cloud allows the identification and extraction of the points relative to the 
façades. These can be back-projected into the image, using the correspondent 
projection matrices, defining the boundaries of the image patches to extract. 
The 3D points corresponding to the façades will also be used to define the plane 
containing the façade by fitting a least square plane. Using this 3D plane and 
the extracted façade patches, these can be rectified using a homography 
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matrix. An interpolation is performed on the gaps produced by the projection 
of the pixels to the real world façade plane (see Figure 12). Variable resolution 
and brightness can be detected according to the point of view of each image. 
These problems affect the results independently of the epoch of the images 
(same or different epoch). The comparison itself is made by determining the 
correlation coefficient between the rectified façade patches. This correlation 
coefficient is computed using a 7 by 7 pixels moving window, determining local 
(on each window position) and global (mean of the considered façade) values 
of the computed cross correlation. Nevertheless, only results of the inter-epoch 
correlation are not sufficient, since they do not have an actual meaning of 
change/no change, but just provide a correlation value of the pixels of the 
compared façades. To normalize the correlation values and increase the 
feasibility in the change detection, the correlation coefficient is first performed 
using different images of the same epoch as this value serves as reference to 
judge the multi-epoch comparison. The façades with a difference between 
intra- and inter-epoch correlation coefficients bigger than an imposed value 
will be considered as highly damaged or collapsed buildings. Again, this 
imposed value to limit the difference in the correlation values between epoch 
is based on the intra-epoch correlation results (see 4.2 Results). The same for 
undamaged buildings where similar correlation coefficients in both the intra- 
and inter-epoch indicate the presence of an undamaged element. The 
correlation values from the intermediate category, lower levels of damage, are 
still the most critical to be automatically interpreted, and they are classified as 
changes in the current method implementation.    

 
Figure 12. Example of two pre- and post-event subsets of oblique images containing the 
façade (above) and respective rectified images (below).   

 Results   
This section presents the results according to the categories defined earlier. As 
explained before the intra-epoch radiometric comparison will serve as 
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reference value for the inter-epoch comparison. The undamaged case will be 
assessed first (Figure 38). It will be followed by an example posing the possible 
intraepoch differences between the extracted image patches from two distinct 
images (Figure 39), given the problems addressed in the previous section. The 
inter-epoch comparison will then be addressed considering damage related 
changes (Figure 40) and other changes (Figure 41). Finally, the collapsed 
building case will be depicted (Figure 42). Considering the façade presented in 
Figure 13, the correlation coefficient was 0.78 intra-epoch and 0.75 inter-
epoch. This similarity can categorize this façade as unchanged and 
consequently not damaged.    

 
Figure 38 Same façade extracted from both epochs. a) and b) relative to pre-event and 
c) post event. 

 

Figure 39 represents another façade element in which the intraepoch 
correlation coefficient is lower than in the former example. The balconies which 
are not in the defined plane, are hence consequently wrongly rectified. 
Different illumination settings are also noticeable on the shadows of the shown 
rectified patches.  The global correlation value on the façade is therefore very 
low (0.51) and the correlation values are extremely low (darker areas) in 
correspondent balconies and associated shadows (Figure 39, rightmost part)   

 

 
Figure 39 Pre-event rectified image patches and corresponding correlation coefficient. 

In Figure 40, the intra-epoch correlation coefficient is 0.52 and inter-epoch 
correlation is 0.40. In this case low correlation values are mainly due to the 
lack of texture in a large portion of the façade and different position of the 
shadows in the images; in the inter-epoch case, the value is further decreased 
by the presence of a large spalling area on the façade.    
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Figure 40 Hazard-related changes. Same façade extracted from both epochs. a) and b) 
relative to pre-event and c) post event. 
 

Not all changes are damage related as can be seen in Figure 41. Here the intra- 
and inter-epoch correlation coefficients were 0.66 and 0.33, respectively. 
Unlike the latter case, the changes which decreased the correlation coefficient 
are not hazard related and are due to the removal of banners present in the 
pre-event.   

 
Figure 41 Changes not hazard related. Same façade extracted from both epochs. a) and 
b) relative to pre-event and c) post event. 

However, correlation values are completely different in the case of complete 
collapses. The façade shown Figure 39 is considered in an inter-epoch 
comparison: the mean of the correlation coefficient drops drastically (from 0.51 
to 0.04) indicating directly the presence of a collapsed building (Figure 42). 
This can be performed for several façades to confirm the outcome of the 
categorization, as collapsed, for the whole building.   

 
Figure 42 Total collapse example, rectified images on both epochs and correlation 
coefficient matrix. 
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 Discussion  
The results obtained above allow to confirm that the present methodology can 
differentiate between the three proposed categories, collapsed/highly damage, 
presence of lower levels of damage and undamaged buildings, using a 
computationally light approach. In the collapsed or highly damaged case this 
can even be confirmed using the available façade elements and also roof 
elements corresponding to a same building. Considering the 
undamaged/unmodified case, the correlation coefficient similarity will mostly 
indicate the presence of the same unchanged element. Although, as seen in 
Figure 14. Pre-event rectified image patches and corresponding correlation 
coefficient., the presence of balconies or other overhanging details will 
decrease the correlation between facades, since these were assumed flat in 
order to perform the image rectification. Analogously a very low correlation 
value can immediately indicate a high level of damage. Concerning the 
intermediate category, where the changes happened at a façade level, the 
definition of a correlation interval which includes these elements may not be 
so direct like the previously referred categories; nonetheless, the multi-
temporal component can certainly aid in the definition of such interval.   

 Conclusion and outlook 
The presented methodology aimed at comparing building façades at an image 
level, in order to infer the presence of damages on them. A rough distinction 
between the three proposed damaged levels using a fast approach was 
demonstrated. However, due to the variability of light conditions and different 
point of views, the correct selection of damages on the façades still remains a 
challenge. The façades that are present in just an epoch will have to be 
carefully assessed. These variations in the occlusion can have its origin in the 
data acquisition itself, another example can be vegetation changes or the 
modification of the urban configuration. A segmentation of the building façade 
(in 2D and 3D) will be performed on the façades in order to detect and remove 
windows and balconies, restricting the change search on the facade walls. The 
shadow detection will be addressed as well. This method does not need the 
computation of point clouds from different epochs but only co-registered 
images. Already existing 3D city models could be used to define (and rectify) 
the façade position, strongly reducing the time needed in the damage map 
generation since there is no need to generate a point cloud. It would also allow 
not only the integration of the damage results with the city model itself but 
also to ease an integration with damage maps from other sources.   
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 Detection of seismic façade damages with 
multi-temporal aerial oblique imagery5 
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Abstract 
Remote sensing images have long been recognized as useful for the detection 
of building damages, mainly due to their wide coverage, revisit capabilities and 
high spatial resolution of the used sensors. The majority of contributions aims 
at identifying debris and rubble piles, as the main focus is to assess collapsed 
and partially collapsed structures. However, these approaches might not be 
optimal for the image classification of façade damages, where damages might 
appear in the form of spalling, cracks and collapse of small segments of the 
façade. Only a few studies focus their damage detection on the façades using 
only post-event images. A multi-temporal approach is missing. One of the main 
objectives of the chapter is to optimally merge pre- and post-event aerial 
oblique imagery within a supervised classification approach using convolutional 
neural networks to detect façade damages. The second objective is related to 
the fact that façades are normally depicted in several views in aerial manned 
photogrammetric surveys; hence, different procedures combining these multi-
view image data are also proposed and embedded in the image classification 
approach. Six multi-temporal approaches are compared against 3 mono-
temporal ones. The results indicate the superiority of multi-temporal 
approaches (up to ~25%  in f1-score) when compared to the mono-temporal 
ones. The best performing multi-temporal approach takes as input sextuples 
(3 views per epoch, per façade) within a late fusion approach to perform the 
image classification of façade damages. However, the detection of smaller 
evidences of damage, such as smaller cracks or smaller areas of spalling, 
remains challenging in this approach, mainly due to the low resolution (~0.14m 
ground sampling distance) of the used dataset. 

 Introduction 
Earthquakes are the deadliest natural hazard, and are responsible for almost 
a quarter of the recorded economic losses by disasters in the last 20 years 
(Wallemacq and House, 2018). The built-up environment plays a major role in 
both of the latter issues, where a growing migration to megacities is further 
increasing the risk associated with earthquakes (Dong and Shan, 2013). A 
synoptic assessment of the damaged buildings over an affected region is 
therefore useful in the several steps of the disaster management cycle. The 
localization of collapsed and partially collapsed buildings is mandatory for an 
efficient deployment of first responders immediately after an event occurs 
(United Nations, 2015). On the other hand, the thorough damage assessment 
of a building can be also valuable for recovery and insurance purposes (United 
Nations, 2009) performed at a later stage of the disaster management cycle. 

The manual inspection of damaged buildings is a time and resource consuming 
procedure, aggravated by the post-disaster context. Many approaches using 
remote sensing have been proposed for building damage assessment at several 
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scales and with different platforms and sensors. Satellite, aerial and terrestrial 
platforms coupled with optical (Curtis and Fagan, 2013; Cusicanqui et al., 
2018; Dubois and Lepage, 2014; Sui et al., 2014), radar (Brunner et al., 2011; 
Jung et al., 2018; Li et al., 2012) or laser instruments (Armesto-González et 
al., 2010; Khoshelham et al., 2013) have already been proposed as main 
source of data for building damage assessment. However, the largest effort 
has been focused on the methods using optical images as input (Cusicanqui et 
al., 2018; Dell’Acqua and Gamba, 2012; Duarte et al., 2018a; Dubois and 
Lepage, 2014; Vetrivel et al., 2017). This is due to several factors, among 
them the availability of images being collected by satellite and aerial platforms, 
when compared with laser scanners for example, and their frequent use in 
photogrammetric processes to generate 3D models (Gerke and Kerle, 2011; 
Vetrivel et al., 2017). 

Many approaches have been proposed to detect damaged regions in remote 
sensing imagery (Duarte et al., 2018a; Fernandez Galarreta et al., 2015; Gerke 
and Kerle, 2011; Sui et al., 2014; Vetrivel et al., 2017). Often these 
approaches rely on features extracted from images which are later used as 
input for a given classifier. Convolutional neural networks (CNN) have been 
shown to outperform the image classification with traditional handcrafted 
features in many applications (Krizhevsky et al., 2012; Long et al., 2015), and 
this has been confirmed in the detection of building damages in remote sensing 
images (Duarte et al., 2018a; Vetrivel et al., 2016), too. 

Most of the recent image-based damage detection frameworks rely on CNN to 
determine if a given image patch contains a damage region in a binary 
classification approach (Duarte et al., 2018a; Nex et al., 2019; Vetrivel et al., 
2017). Such frameworks were designed to detect rubble piles and/or debris 
from satellite (Duarte et al., 2018b) and aerial images (Vetrivel et al., 2017). 
The details visible in satellite images and the (near) nadir view only allow a 
rough analysis and identification of collapsed buildings (Kerle and Hoffman, 
2013). In contrast, aerial (manned and unmanned) systems have a higher 
spatial resolution and may also capture oblique views. Smaller details of 
damage evidences may be therefore identified, such as spalling and cracks 
(see Figure 43).  

Moreover, aerial images are usually captured with enough overlap to derive a 
3D point cloud through dense image matching. Depending on the data 
resolution 3D models may be the input to detect geometrical deformations of 
the built environment (Gerke and Kerle, 2011), while the images may be used 
to detect rubble piles and/or debris (Vetrivel et al., 2017), as well as smaller 
signs of damage such as cracks (Fernandez Galarreta et al., 2015).  

In the literature most of the contributions consider the detection of partially or 
completely collapsed buildings. Given that these are trained with image 
samples containing rubble piles and debris, these are not optimal for the façade 
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case (Duarte et al., 2017). The specific case of façade damage detection is only 
discussed in a few contributions. Fernandez Galarreta et al. (2015) extracted 
cracks and spalling from façades from unmanned aerial vehicle (UAV) imagery, 
relying both on the image and 3D features. Gerke and Kerle (2011) used multi-
view aerial imagery and derived a 3D point cloud to extract features and 
identify damaged buildings, and at the same time classified the damage of a 
given building into three classes, based on the European Macroseismic Scale 
(EMS-98). More recently, Tu et al. (2017) identified damaged façades using 
local symmetry features and the Gini Index extracted from aerial oblique 
images. The authors assumed symmetric façades and considered the 
deviations from that symmetry to be façade damage proxies. Furthermore, 
only two contributions used pre- and post-event multi-view aerial imagery in 
a multi-temporal approach to detect damaged façades. Vetrivel et al. (2016) 
tested the potential of multi-temporal aerial imagery by using a correlation 
coefficient to determine the similarity between two rectified façade image 
patches. Duarte et al. (2019), reported preliminary results regarding the use 
of a supervised classifier to detect damaged façades using multi-temporal 
oblique imagery. The authors used two different approaches to merge the 
multi-temporal oblique image data, which clearly outperformed mono-
temporal approaches. Nonetheless, the results only achieved ~66% accuracy 
in the best performing multi-temporal approach. 

The use of airborne oblique imagery has substantially increased in the last 
decade, allowing the efficient collection of detailed high-resolution information 
over urban areas. Aerial surveys are regularly performed in many countries 
and enable their use to detect changes over time and after sudden events. 
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Figure 43. Examples of nadir images depicting rubble piles and debris, left. Damaged 
façades shown in oblique imagery, right. 

 

Exploiting the availability of multi-temporal datasets, six different approaches 
to detect façade damages from pre- and post-event are discussed. Three 
mono-temporal approaches (using only post-event data) are used as 
reference.  

The focus on the multi-temporal experiments is twofold: 

1. To determine the optimal approach to merge the multi-temporal 
information within deep learning framework for the image classification of 
façade damages; 

2. To leverage the redundancy present in aerial (manned) surveys to extract 
several façade image patches per façade in each epoch, and to combine 
these within the frameworks presented in 1). 

An additional effort is made to conceive methods exploiting only image 
information and pre-event 3D models to be (potentially) used in near-real time 
conditions (assuming the availability of multi-temporal data), when fast and 
automated methods are needed.  

The following section presents a short background. The datasets used in the 
experiments are presented in section 3. This section also addresses the façade 
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extraction from the aerial oblique imagery. Section 4 presents the methodology 
for the multi-temporal image classification of façade damages. Section 5 
presents the experiments and results, which are followed by the discussion and 
conclusions. 

 Background 
This sub-section focuses on CNN and its role in multi-temporal studies using 
remote sensing imagery. It starts with a brief description of recent 
developments in CNN that were adapted to this work. An overview of multi-
temporal approaches using remote sensing imagery is also given. 

Supervised deep learning methods have become an established machine 
learning technique for image-based tasks, where CNN play a central role. CNN 
usually achieve high discriminative capacity by stacking convolutions in a 
hierarchical manner, learning from lower level features to higher levels of 
abstraction (Krizhevsky et al., 2012). However, in this way each layer is only 
connected with the previous and posterior layer. Hence, there is feature 
information that may be lost during backpropagation, especially from earlier 
layers (Yu et al., 2017). To tackle this, short connections between non-
adjacent layers started to be used (He et al., 2016; Huang et al., 2017). He et 
al. (2016), introduced the concept of residual connection, in which the authors 
used short connections through element-wise addition of non-consecutive 
layers. This allowed for the use of deeper networks while maintaining their 
efficiency, which is often translated into more accurate predictions. 

More recently it was found to be preferable to concatenate the feature 
information instead of performing element-wise addition. Huang et al. (2017) 
proposed the densely connected convolutional network, introducing short 
connections in the form of the concatenation of feature maps. This difference 
allows the model to be more compact, given that every layer receives feature 
information from the layers preceding it. Thus, features of a given layer may 
be re-used in later stages of the network, which offers them more 
representability. 

Another aspect of CNN that is closely related with remote sensing is the use of 
dilated convolutions. These were proposed by Yu and Koltun (2017) and are 
convolutions with a kernel with pre-defined gaps. This is translated into a wider 
receptive field, capturing more contextual information. Given that the receptive 
field of the dilated convolutions is larger, it can capture features over a larger 
image region, while maintaining a low number of parameters due to the gapped 
kernel (Yu et al., 2017). This has been taken advantage of by researchers in 
remote sensing image recognition tasks, who extensively used dilated 
convolutions in remote sensing tasks (Hamaguchi et al., 2017; Jiang and Lu, 
2018; Persello and Stein, 2017; Zhang et al., 2019). 
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The remote sensing community has been adapting and proposing CNN 
approaches for the singularities of earth observation tasks and data. For 
example, such CNN have been directly used in image classification (F. Hu et 
al., 2015; W. Hu et al., 2015; Maggiori et al., 2017; Nogueira et al., 2017) and 
image segmentation (Kampffmeyer et al., 2016; Längkvist et al., 2016; Volpi 
and Tuia, 2017) approaches. However, CNN have for example also been used 
to merge different modalities of remote sensing data (e.g., 3D and images) 
(Audebert et al., 2018, 2017; Duarte et al., 2018a), annotate aerial images 
(Xia et al., 2015; Zhuo et al., 2019) and perform multi-temporal studies (Daudt 
et al., 2018; Jung et al., 2018; Wang et al., 2018; Zhang et al., 2019).  

Multi-temporal studies using CNN often focus their attention on the optimal 
merging of the different epochs of imagery. Several approaches have been 
proposed, mostly using satellite imagery and nadir constrained images. Wang 
et al. (2018) reported that for the task of change detection in satellite imagery 
it would be preferable to consider the subtraction of pre- and post-event 
imagery, with the new image being then fed to the CNN. Daudt et al. (2018) 
tested two approaches to detect changes in multi-temporal satellite imagery. 
One of the approaches considered two branches of convolutional layers with 
shared weights (also known as Siamese network), one for each epoch, while 
the other considered a single set of convolutions performed on the 
concatenation of the pre- and post- event data as the first stage of the network. 
The authors reported that early fusion of the inputs was preferable for the 
detection of changes from satellite imagery. In a different study with the 
objective of the detection of landslides, Chen et al. (2018) used a two branch 
network (one for each epoch of image data), where the feature maps of these 
streams were then merged by computing a Manhattan distance between them. 

 Datasets and CNN input generation 
This section presents the image datasets used in the experiments and the 
process from the original aerial oblique images to the input given to the 
approaches indicated in section 4. 

The datasets used in this chapter comprise two airborne oblique image 
captures of the city of L’Aquila and a smaller neighboring village, Tempera. 
These two locations were surveyed within an approximately 9-month interval, 
in August 2008 and in May 2009, the latter depicting the situation after the 
April 2009 earthquake that occurred in central Italy. 

The image capture was performed using the Pictometry system that contains 
small format DSLR cameras, four obliques (one for each cardinal direction) and 
one nadir. The flying height was approximately 1000 m, which translated to an 
average sampling distance of 0.14 m on the oblique views. The flight was 
performed considering a forward overlap between 60 -70% and a side overlap 
between 35-45%.  
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Figure 44  depicts the process between the original images and the final input 
to the experiments. Two types of input were generated, façade image patches 
extracted from the original images (Figure 45, top), and these same image 
patches rectified using the corresponding façade 3D information (Figure 45, 
bottom). These were the two types of input that were used, and compared, in 
the experiments. 

The first step was to generate the 3D point cloud, which was used to define 
the façade planes and subsequently extract the façades from the images. To 
this end the first step was to perform the image orientation of both pre- and 
post-event images. These shared the tie point computation with the objective 
of aligning the datasets. However, only the pre-event images were used for 
dense matching.  

Figure 44 presents the overview of the main steps to extract the façade image 
patches from the oblique views using the 3D point cloud generated from the 
pre-event images. The first step was to differentiate between on and off ground 
points, using lasground from the package lastools (Axelsson, 2000). The point 
cloud, with the added attribute of the normalized height surface, was the input 
for a plane-based segmentation, which was followed by a connected 
component analysis, generating the final roof segments (Vosselman, 2012). 

The roof segments were then projected into the xy plane (see Figure 44 – 
Façade definition). The approach then assumed that each building segment 
contains 4 façades and that they are mutually perpendicular. With this 
assumption the roof points were fitted with a minimum-area bounding 
rectangle (Freeman and Shapira, 1975) (red rectangle in Figure 44 - Façade 
definition) , defining the 4 main façade directions of a given building. The 
façade planes were then defined by the xy coordinates of the edges of the 
rectangle, where the z is obtained from the normalized height and from the 
difference between the mean z coordinate of the roof and the mean normalized 
height value. At this stage every façade was finally defined by 4 facade corners. 
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Figure 44 Overview of the main steps of the façade extraction from the aerial images. 
The segments in the Roof segmentation thumbnail are color coded. The red rectangle in 
the Facade definition thumbnail indicates the main 4 façades extracted from the roof 
points. Below, example of a façade, showing both pre- and post-event. These façade 
image patches (image pair) are one of the inputs to the experiments (see Figure 45). 

The projection matrices, coming from the orientation step, were then used to 
project the facade pixels into these 3D planes. This process was repeated for 
all images containing a given façade, in both epochs. The same resolution was 
forced on the façades: gaps due to different viewpoints and scales of the 
oblique views were interpolated using a nearest neighbors’ algorithm. This 
ensured the registration of the different views of the same façade. The visibility 
of the four façade corners in the images was used to detect occluded parts. 
The pre-event point cloud was used to perform the visibility analysis as it was 
assumed that all the buildings are still standing, and the number of occlusions 
is higher. A façade was considered occluded if at least two of the four corners 
were not visible in the image. 
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Original 

 

Rectified 

 
  Image pair 1 Image pair 2 

Figure 45 The two types of input used in the experiments, considering two views of two 
façades. Each of this pairs is an example of the input used in one set of experiments 
(see Figure 48). Top, original facade image patches. Bottom, corresponding rectified 
façade image patches.  

Examples of the two types of extracted (original and rectified façade image 
patches) data can be seen in Figure 45. All the experiments, both mono- and 
multi-temporal, were tested considering separately the original and the 
rectified façade image patches. The aim was to test if the approaches could 
leverage the rectification and registration of the façade image patches to 
perform a better image classification of façade damages, while at the same 
time assuming the interpolated areas which might modify the already small 
damage evidences present in the façades. 

To take advantage of having several façade image patches per façade per 
epoch, these pre- and post-event image data (original and rectified) were 
combined in two distinct ways: 

1) Image pairs – these were created associating each pre-event façade 
image patch to all the post-event façade image patches of a given 
façade (Figure 2). This was performed for all façades. This input is 
related with the experiments MTa (see section 4.3). Performing this 
combination between different views of the same façade allowed to 
generate more input data, instead of considering an image patch per 
façade, which would make the training dataset very small (only 88 
damaged and 90 undamaged façades were possible to extract from the 
images). 

2) Image sextuples – these were created combining three pre-event 
image patches, with three post-event image patches of a given façade. 
In this case the maximum amount of combinations allowed per façade 
was 50, given an unbalanced number of views per facade. This input 
is related with the experiments MTb (see section 4.3). Considering 
several views per façade per epoch could enable the network to learn 
the similarities between different views of the same façade. This is due 
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to the fact that these networks compute features that are shared 
across all the different views, instead of focusing on single image pairs 
like in 1). 

This allowed the extraction of 4,546 image pairs and 5,179 image sextuples 
from a total of 178 façades (see Table 12).  

Table 12 Number of image pairs and image sextuples extracted considering the 178 
façades. 

 Image pairs Image sextuples Façades 
Damaged 2,274 2,559 88 
Not damaged 2,272 2,610 90 
Total 4,546 5179 178 

 Methodology 
Six multi-temporal approaches were designed, tested, and compared with 
three mono-temporal approaches. The multi-temporal approaches assumed as 
input pre- and post-event façade image patches captured from different 
oblique views (original and rectified), as described in the data section. The 
focus of the experiments was on the optimal merging of pre- and post-event 
image information within a supervised deep learning framework for the image 
classification of façade damages using CNN. Table 12 illustrates the small 
amount of data to perform this multi-temporal façade analysis using aerial 
manned imagery. This issue was central to the current work and is one of the 
main limitations of the experiments. Several measures were taken to attenuate 
the lack of data, and these are further detailed in this section and in the 
experiments. 

This section starts by laying out the main characteristics of the used CNN, in 
the following paragraphs. The following sub-section formalizes the used 
network, while the final sub-sections explain the rationale behind each 
performed test.   

6.4.1 Network definition 

The basic network used in the experiments is presented in this sub-section, 
and it was a central component of the mono- and multi-temporal approaches 
(see stream in Figure 47,Figure 48 and Figure 49). This network was composed 
by consecutively stacking of 2 modules, dense blocks and transitional layers. 
This composition was proposed in (Huang et al., 2017), where the authors 
derived several networks from different combinations of these modules. In the 
current work, the used network was composed of 4 dense blocks, with 
transitional layers between these blocks. While maintaining the number of 
dense blocks presented in (Huang et al., 2017), a lower number of layers per 
dense block was considered in this work. Given the small amount of data, 
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decreasing the model complexity did not impact its representability and 
contributed to reduce overfitting. 

Each dense block contained two sets of two convolutions, as indicated in Figure 
46. In Figure 46, the conv field indicates the group: batch normalization, relu 
and convolution. A dropout layer (0.2) was also added after the first 
convolution, to further prevent overfitting (Clevert et al., n.d.). Each 
transitional layer contained a convolution and it was followed by average 
pooling with stride 2 in order decrease the feature map size from the initial 
224x224px to the final 28x28px. The façade image patch given as input (both 
original and rectified) was zero padded to fit the 224x224px size. In rare cases 
where the façade image patch was larger than the 224x224px, it was resized 
to fit the input size while keeping the aspect ratio. This input size was mainly 
chosen to fit the fine-tuning experiment.  

The number of filters per convolution was tied to the growth rate (Huang et 
al., 2017), which was defined as 6 (see Figure 46). This growth was set in 
order not to overfit the small set of data for the current study, while following 
the general assumption that more filters are needed to represent more 
complex features later in the network (Szegedy et al., 2014).  

Given the small damage evidences often present in façades that did not 
collapse (see introduction figure) it was mandatory that a given network would 
be able to detect such small details. In this way it was important to retain 
contextual information, i.e. in the vicinity of the damaged area. Only then a 
network would be able to differentiate these small damage evidences from 
other areas with similar texture but in a different context. As can be seen in 
Figure 46, the dilation factor is also growing with the number of filters even if 
at a smaller rate. The last set of dilated convolutions had a receptive field of 
19x19. 

The classification part of the network was performed by coupling batch 
normalization, relu, global average pooling and a dense layer of size 1 at the 
end of all networks. 

6.4.2 Mono-temporal approaches 

Three mono-temporal approaches were tested. These served as baseline for 
the multi-temporal methods (see Figure 47).  

The mono-temporal traditional (MN-trd) directly used a network trained with 
aerial image patches containing debris and rubble piles, as in (Duarte et al., 
2018a). This network was trained on aerial (manned) image samples of 7 
different geographical locations and using approximately 5,400 image samples 
in total. These locations include cities with similar urban design as to L’Aquila 
and Tempera (e.g., Amatrice, Italian city). For this approach each post-event 
façade image patch was divided into smaller 50px squared patches. The latter 
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were then classified for damage. In the case a façade image patch contained 
at least one of these squared patches classified as damage, the whole façade 
image patch was considered damaged. This was performed for every façade 
image patch of a given façade. This experiment aimed at understanding how a 
network trained solely on debris and rubble piles and mostly using nadir 
imagery could be used for the specific case of the detection of façade damages. 

 
Figure 46 Network used in the experiments (stream), composed of dense blocks and 
transition layers. conv depicts the group batch normalization, relu and convolution. The 
number of filters and dilation value is affected by the number of dense block, transitional 
layer group, as indicated by i. 
 

The other two mono-temporal approaches also only used post-event façade 
image patches. The mono-temporal, MN-scr, was trained from scratch, while 
the MN-ft was fine-tuned on densenet (DenseNet121 as in (Huang et al., 
2017)), where only the last dense block layers were re-trained with the façade 
image patches coming from the different oblique views. This experiment was 
deemed necessary given the low amount of data and where the model could 
leverage the knowledge of the feature information learned on the ImageNET 
dataset. 
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Figure 47 Mono-temporal approaches, MN-trd and MN-scr. * The network in italic refers 
to the aerial (manned) network presented in (Duarte et al., 2018a). The stream refers 
to the network presented in Figure 4. Input refers to façade image pairs. 

6.4.3 Multi-temporal approaches 

In this subsection, six multi-temporal approaches are presented. Overall, these 
experiments, aimed at: 1) better understanding how to merge the multi-
temporal façade image patches within a CNN for the image classification of 
façade damages, and 2) embedding the façade image pairs and façade image 
sextuples defined in section 2.1 in the experiments. Figure 48 and Figure 49, 
show the six different approaches. Two different ways to integrate the data 
from multiple perspectives and epochs were adopted and tested in the 
approaches, respectively considering the image pairs (1) and image sextuples 
(2): 

(1) The group MTa (see Figure 48) considered as input only image pairs, as 
described in section 3.1. In MTa three different strategies were adopted. 
The MTa-1str concatenated the images in the channels dimension and 
subsequently fed this to the network defined previously. On the other 
hand, MT-2str, assumed one convolutional block for each epoch which 
were later concatenated. The MT-2str-ws (or Siamese) was similar to 
MT-2str, but in this case the convolution weights were shared between 
the two streams.  

(2) The group MTb (Figure 49) considered as input the image sextuples 
defined in section 3.1. The rationale of these approaches followed the 
same concept of the group MTa. The MTb-1str concatenated the six 
images (three per epoch), where this 18-channel image was then fed to 
the network, while MTb-2str considered a convolutional set per epoch. 
In this case a concatenation of the three images per epoch was 
performed, where this 9-channel image was fed to an independent 
convolutional block. MT-2str-sw (or Siamese) was only different from 
MTb-2str, given that the convolutions were shared across streams. In 
this case features were computed not only across epochs but also across 
different views, given that for each epoch several image façade patches 
per façade were simultaneously considered. 
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Figure 48 MTa group of experiments. Façade image pairs are fed to the experiments 
present in this figure. 

The 1str set of experiments, both in MTa and MTb, forced the input image 
patches (both pre- and post-event) to go through a single convolutional set. 
On the other hand, 2str experiments had a set of epoch specific convolutions, 
where this information was later merged through concatenation. The 2str-sw 
(or Siamese) had the convolution weights shared across the epochs. These 3 
different ways of considering the input data aimed at understanding which set 
of features were relevant for the image classification of façade damages. While 
the 1str approaches made use of inter-epoch features given that the inputs 
were concatenated at an early stage of the network, the 2str approaches gave 
more relevance to intra-epoch features which were merged at a later stage of 
the network. The 2str and 2str-sw only differed in the fact that the convolutions 
were shared across the epochs: in spite of having a set of convolutions for each 
epoch, these had the filters shared among them. Moreover, given the sharing 
of filters between epochs, this drastically decreased the number of parameters 
when compared with the 2str which did not share the convolutions. 

  



Detection of seismic façade damages with multi-temporal oblique aerial imagery 

122 

Figure 49 MTb group of experiments. Façade image sextuples are considered as input 
and indicated by i1-3 for each epoch. 

While concatenation was used to merge the feature maps, other approaches 
were tested (e.g., element-wise multiplication or addition/subtraction of the 
feature maps). However, these did not perform as well as the simple 
concatenation. 

All these approaches were tested using both the original and rectified façade 
images patches as described in 2.1.  

 Experiments and Results 
All the networks were trained with learning rate of 0.1 and weight decay of 
10ିସ (except for the fine tune experiment, where the learning rate was of 0.01) 
using stochastic gradient descent as optimizer (He et al., 2016; Huang et al., 
2017). For each experiment one loss function, binary cross entropy, was used, 
given the binary classification problem being considered. The experiments 
were performed with early stopping, i.e. when the validation data loss stopped 
improving. This was performed to avoid overfitting given the small data set.  

Data augmentation was performed also in a bid to decrease overfitting and to 
give more generalization capabilities to the network (Krizhevsky et al., 2012). 
However, the data augmentation consisted only of horizontal shifts and image 
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normalization. This was due to two reasons: 1) shifts in the images could mask 
out the damaged area when it is close to the edge of the image; 2) rotations 
on the image patches could be cue for damage (e.g., slanted buildings which 
did not collapse). Given the small amount of data, this solution attenuated 
overfitting and helped generalization (Krizhevsky et al., 2012).   

The results were evaluated in terms of accuracy, recall, precision and f1 score 
(as indicated in the equations 1, 2, 3 and 4). These were computed three times 
for each experiment. In each run of the experiment the data were randomly 
divided in sets of training and validation (70% and 30%, respectively). This 
division was performed at a façade level, where both the image pairs and image 
sextuples datasets are relative to the same façades and hence comparable. In 
this way every façade was present in both training and validation when 
considering the three different splits. The mean and the range (min. and max.) 
of the different runs per experiment are shown in the results, too. 

  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
்௉ାிே

# ௩௔௟௜ௗ௔௧௜௢௡ ௦௔௠௣௟௘௦
 (1) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 ൌ
்௉

்௉ାிே
  (2) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
்௉

்௉ାி௉
 (3) 

 

𝑓1 ൌ 2
௥௘௖௔௟௟∗௔௖௖௨௥௔௖௬

௥௘௖௔௟௟ା௔௖௖௨௥௔௖௬
 (4) 

Overall, the multi-temporal approaches clearly outperformed the mono-
temporal ones. This is seen in both in the MTa and MTb experiments, and also 
when using either the original façade image patches or the rectified ones. 

In general, using an epoch-specific set of convolutions per epoch was 
preferable in all the multi-temporal experiments. However, the results differ 
when considering different inputs, original or rectified façade image patches. 
While having similar results, the MTb-2str-sw-r was the best performing 
approach when compared with MTa-2str. Hence, the use of shared 
convolutions (in a Siamese setting) is most valuable when considering the 
image sextuples using as input the rectified façade image patches. On the other 
hand, when using the original façade image patches, the network cannot take 
advantage of the simultaneous consideration of several views per façade. 

The results of MTa-2str and MTb-2str-sw-r were considerably different when 
compared at an image pair/sextuple level, where the difference was bridged 
when evaluated at a façade level. While having less correctly predicted image 
pairs/sextuples, MTb-2str-sw-r (82% f1-score) outperformed MTa-2str (80% 
f1-score) at a façade level. Hence, the better results at an image pair/sextuple 
by MTa-2str were more distributed among the façades, not being enough to 
change the prediction at a façade level. On the other hand, MTb-2str-sw-r, 
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improved the results at a façade level while having less correctly predicted 
image pairs/sextuples. Hence, in this case the correct predictions were more 
distributed among the façades, which in turn, through the majority vote, 
improved the results at this level.  

The overall statistical measures range between the three different data splits 
was also smaller when using the rectified image patches. In some of the 
experiments (e.g., MTa-2str-r and MTa-2srt-sw-r) recall and precision achieve 
1.0 at least in one of the data splits, where the approach struggled to 
differentiate between the two classes. However, their non-rectified counterpart 
did not present this behavior, indicating that the combined use of rectified 
façade image patches and image pairs may not be optimal. 

The mono-temporal approaches presented the worst results. The traditional 
approach trained on rubble piles and debris was the worst performing 
approach, especially using rectified façade image patches. 

Figure 50 presents activations (right) considering a given façade (pre- and 
post-rectified façade image patches) (left). These activations were extracted 
from the last set of activations of each of the experiments predicting on an 
image sample that was present in training. This aimed at understanding where 
the approaches were focusing their attention on a given façade image patch, 
to derive a given class prediction. Figure 50 B, D and E were predicted as 
damaged. The only clear activation focusing on the damaged area is present 
in E. In the B and D cases, in spite of also considering the correct damaged 
area, these are not so clear and often consider other areas of the image. For 
example in D, post-event, the balconies area was relevant for the approach to 
derive the damaged class (also close to the damaged portion of the façade, 
see red indication in Figure 50) . A and C present damaged areas which were 
predicted as not damaged. In both cases the attention of the network was on 
almost the whole extent of the façades, detecting neither the small cracks in 
A, nor the small collapsed segment in C. 
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Table 13 Precision, recall, accuracy and f1 score (mean) for the mono- and multi-
temporal approaches using the original façade image patches (range between brackets). 
These are presented at both an image pair/sextuple and at a façade level 

 Image/image-pair/image-sextuple level 

 Prec. Rec. Acc. F1 

MN-trd 0.49 (0.48-0.58) 0.66 (0.55-0.73)  0.50 (0.47-0.55) 0.55 (0.52-0.64) 

MN-scr. 0.58 (0.45-0.63) 0.85 (0.65-1.00) 0.64 (0.61-0.68) 0.72 (0.53-0.73) 

MN-ft 0.64 (0.57-0.64) 0.84 (0.47-0.96) 0.63 (0.57-0.64) 0.67 (0.54-0.76) 

MTa-1str 0.73 (0.65-0.77) 0.60 (0.60-0.69)  0.72 (0.64-0.74) 0.67 (0.62-0.71) 

MTa-2str 0.83 (0.79-0.85) 0.76 (0.57-0.80)  0.81 (0.72-0.83) 0.80 (0.66-0.82) 

MTa-2str-ws 0.76 (0.66-0.81) 0.60 (0.56-0.89) 0.73 (0.65-0.83) 0.69 (0.61-0.82) 

MTb-1str 0.76 (0.66-0.78) 0.64 (0.52-0.64) 0.73 (0.64-0.80) 0.70 (0.58-0.81) 

MTb-2str 0.71 (0.66-0.77) 0.64 (0.52-0.87) 0.76 (0.64-0.71) 0.70 (0.58-0.70) 

MTb-2str-sw 0.77 (0.64-0.77) 0.75 (0.55-0.78) 0.76 (0.63-0.78) 0.75 (0.59-0.78)	

 Façade level 

MN-trd 0.52 (0.43-0.63) 0.67 (0.38-0.70) 0.55 (0.52-0.60) 0.60 (0.40-0.65) 

MN-scr. 0.55 (0.50-0.60) 0.92 (0.67-1.00) 0.67 (0.52-0.74) 0.70 (0.57-0.72) 

MN-ft 0.65 (0.54-0.70) 0.61 (0.38-0.67) 0.63 (0.59-0.70) 0.60 (0.49-0.63) 

MTa-1str 0.69 (0.67-0.9) 0.82 (0.56-0.83) 0.72 (0.62-0.87) 0.74 (0.62-0.86) 

MTa-2str 0.88 (0.88-0.92) 0.73 (0.64-0.79) 0.82 (0.80-0.86) 0.80 (0.74-0.85) 

MTa-2str-ws 0.75 (0.70-0.81) 0.58 (0.38-0.81) 0.68 (0.59-0.83) 0.64 (0.51-0.81) 

MTb-1str 0.78 (0.67-0.81) 0.58 (0.46-0.93) 0.70 (0.58-0.86) 0.67 (0.55-0.87) 

MTb-2str 0.72 (0.67-0.80) 0.73 (0.56-0.73) 0.78 (0.59-0.78) 0.76 (0.56-0.76) 

MTb-2str-sw 0.82 (0.75-0.85) 0.73 (0.50-0.82) 0.79 (0.60-0.82) 0.79 (0.67-0.83) 

 

In Figure 51 several correct (on the left) and wrong (on the right) predictions 
are shown considering the best performing approach. This approach correctly 
identifies several degrees of spalling, building segment collapses and larger 
cracks. However, it is not able to detect areas with small spalling when these 
are too small when compared with the size of the façade. Façades which only 
presented cracks were often missed by the approach, probably because of the 
limited resolution of the images. 
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Table 14 Precision, recall, accuracy and f1 score (mean) for the mono- and multi-
temporal approaches using the rectified (-r) façade image patches (range between 
brackets). These are presented at both an image pair/sextuple and at a façade level 

  Image/image‐pair/image‐sextuple level 

  Prec.  Rec.  Acc.  F1 

MN‐trd‐r  0.39 (0.34‐0.80)  0.37 (0.26‐0.38)   0.50 (0.47‐0.64)  0.38 (0.30‐0.52) 

MN‐scr.‐r  0.65 (0.48‐0.72)  0.83 (0.71‐0.88)  0.70 (0.65‐0.72)  0.71 (0.64‐0.77) 

MN‐ft‐r  0.69 (0.68‐0.94)  0.68 (0.22‐0.68)  0.69 (0.59‐0.70)  0.68 (0.36‐0.69) 

MTa‐1str‐r  0.76 (0.70‐0.80)  0.67 (0.52‐0.77)  0.73 (0.67‐0.76)  0.73 (0.62‐0.73) 

MTa‐2str‐r  0.70 (0.66‐0.88)  0.72 (0.65‐0.94)  0.73 (0.70‐0.79)  0.78 (0.68‐0.79) 

MTa‐2str‐ws‐r  0.86 (0.63‐0.87)  0.64 (0.53‐0.81)  0.73 (0.68‐0.77)  0.71 (0.66‐0.73) 

MTb‐1str‐r  0.69 (0.67‐0.7)  0.86 (0.72‐0.96)  0.74 (0.71‐0.76)  0.77 (0.71‐0.79) 

MTb‐2str‐r  0.71 (0.64‐0.71)  0.64 (0.61‐0.64)  0.69 (0.65‐0.69)  0.66 (0.64‐0.66) 

MTb‐2str‐sw‐r  0.76 (0.72‐0.89)  0.75 (0.67‐0.83)  0.76 (0.71‐0.79)  0.75 (0.62‐0.81) 

  Façade level 

MN‐trd‐r  0.47 (0.46‐0.56)  0.47 (0.32‐0.58)  0.58 (0.52‐0.66)  0.51 (0.38‐0.52) 

MN‐scr.‐r  0.65 (0.53‐0.66)  0.92 (0.62‐1.00)  0.69 (0.69‐0.70)  0.69 (0.64‐0.76) 

MN‐ft‐r  0.66 (0.66‐1.00)  0.62 (0.22‐0.62)  0.69 (0.56‐0.70)  0.64 (0.30‐0.64) 

MTa‐1str‐r  0.80 (0.80‐0.89)  0.66 (0.57‐0.73)  0.74 (0.72‐0.84)  0.72 (0.67‐0.80) 

MTa‐2str‐r  0.67 (0.67‐1.00)  0.73 (0.67‐1.00)  0.76 (0.72‐0.83)  0.80 (0.70‐0.80) 

MTa‐2str‐ws‐r  0.78 (0.60‐1.00)  0.58 (0.67‐1.00)  0.68 (0.66‐0.70)  0.67 (0.55‐0.70) 

MTb‐1str‐r  0.69 (0.68‐0.71)  0.84 (0.83‐0.93)  0.74 (0.71‐0.76)  0.77 (0.76‐0.79) 

MTb‐2str‐r  0.71 (0.67‐0.83)  0.71 (0.55‐0.77)  0.71 (0.65‐0.79)  0.74 (0.60‐0.77) 

MTb‐2str‐sw‐r  0.87 (0.76‐0.94)  0.80 (0.45‐0.95)  0.84 (0.76‐0.85)  0.82 (0.62‐0.87) 

 Discussion 
All the multi-temporal approaches outperformed the mono-temporal ones. This 
confirms the commonly reported results on multi-temporal approaches in 
remote sensing, where the use of multi-temporal data is often translated into 
an improvement in the quality of a given task (Hussain et al., 2013; Lu et al., 
2004; Singh, 1989; Tewkesbury et al., 2015). The best performing approach 
can identify partially and totally collapsed buildings, and façades with large 
areas of spalling and cracks. However, the overall results (best performing 
network with 82% f1-score) reflect some difficulties in the detection of damage 
to the facades, from manned aerial oblique imagery, even when also using pre-
event images. This can be mainly explained by the low resolution of the used 
data (GSD ~0.14 m) that hinders the reliable detection of smaller signs of 
damage. 

From all the mono-temporal approaches, fine-tuning or training from scratch 
did not lead to considerable differences as reported in other works focused on 
building damage detection (Duarte et al., 2018a; Vetrivel et al., 2017). The 
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mono-temporal traditional approach using a model trained with image samples 
depicting rubble piles and debris was the worst approach: as expected the 
model was not able to identify lower levels of damage present in the façades. 
This resulted in a high rate of both false negatives and false positives as in 
Duarte et al. (2017). This problem was more accentuated when using the 
rectified façade image patches, as the traditional approach was trained on non-
rectified image patches. 

 

A 

B 

C 

D 

E 

Figure 50 Activations extracted from the last activation layer of the network (training) 
MTb-2str-sw-r (right). Left(pre-event) and middle (post-event) facade image patches. 
A, C predicted as not damaged, while B, D and E were predicted as damaged. 
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Figure 51 Left, correctly classified as damaged. Right, incorrectly classified as not-
damage. Both using the best performing approach MTb-2str-sw-r, when these façades 
were not present in training. 

Regarding the multi-temporal approaches the relevance of intra-epoch 
features must be noticed, which are merged later in the network. This can be 
observed in the results, where the single stream approaches were always 
outperformed by the 2str approaches, independently of the use of original or 
rectified image patches or the input data (i.e. image pairs or sextuples). Recent 
literature in remote sensing that made use of multi-branch networks reported 
different results in this regard. For example, Daudt et al. (2018) reported that 
for the specific case of satellite imagery change detection the concatenation of 
the images before being fed to the network would be preferable, as images 
share the features within a single convolutional set. This was also the case 
when localizing street view images using overhead images (Vo and Hays, 
2016). However, there are also studies in which the merging of the feature 
information later in the network, instead of considering as input a merged layer 
of both epochs, is preferable (Chen et al., 2018). The merging of the pre- and 
post-event information seems to be application dependent, where for the case 
of the image classification of façade damages it is preferred to merge the 
feature information at a later stage in the network. Also, the differences 
between the results at an image pair/sextuple and at a façade level are 
noteworthy. Since in most of the approaches the façade level results were 
worse than its image pair/sextuple counterpart, it seems that in such situations 
there was no considerable variation of the predictions within the same façade. 

In the case where the façade image patches are rectified, the approach using 
the sextuples as input outperforms all the other approaches (MTb-2str-sw-r) 
at a façade level. Besides using image sextuples and rectified façade image 
patches the approach also shared the convolutions between the two streams. 
Given the rectification and registration of the façades, this approach aimed at 
taking advantage of considering different viewpoints of the same façade 
simultaneously. In this way it was expected that the networks would leverage 
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the multi-view information, extracting features across both the different 
epochs and the different views. However, at a façade level the approach 
considering only image pairs (MTa-2str) performed comparatively well 
(difference of 2% f1-score) while using the original image patches. In this 
regard, although the rectification/registration procedure is preferable, it may 
at the same time smooth out the often small damage evidences present in the 
façades. 

In this study only 88 damaged façades were extracted, where the high overlap 
of manned aerial systems allowed to derive several image pairs and image 
sextuples per façade, per epoch. In this way it was possible to perform the 
experiments reported in this chapter. This is an understudied subject, where 
usually the redundancy of aerial surveys is not fully used. 

Although the image coverage of the area is relatively high, another limitation 
was given by the occlusions in dense urban areas: several buildings or part of 
them were almost invisible in the images. This is an intrinsic limitation of aerial-
manned platforms with pre-defined flight patterns not tailored to decrease such 
occlusions. In this sense more careful flight plans and using UAV could 
attenuate this problem. 

 Conclusions  
This chapter assessed the image classification of façade damages using multi-
temporal aerial oblique imagery. Six multi-temporal and three mono-temporal 
approaches were tested, following a binary classification approach using CNN. 
For this purpose, the only dataset (to the best of the authors’ knowledge) 
available with pre- and post-event data was used for this analysis. Although 
the dataset is not optimal in terms of number of images and resolution, it has 
shown very encouraging results and good indications for the wide adoption of 
multi-temporal data in the assessment of catastrophic event damages.  

The objective of this study was twofold: 1) determine the optimal framework 
to combine the multi-temporal image data within a CNN approach, and 2) 
investigate the improvement introduced by the use of the multi-view 
characteristics of aerial (manned) systems (extracting several image patches 
per façade and per epoch) in the image classification of façade damages. In 
this regard two main approaches were tested: 1) using image pairs by pairing 
every pre-event façade image patch to the corresponding post-event façade 
image patches, and 2) using image sextuples where three views per façade 
per epoch were considered. 

An important element tested in this chapter was the use of rectified façades 
instead of the original façade image patches. Regarding the original façade 
image patches, the best approach was to use image pairs and a 2-stream 
network (no shared convolutions) while using rectified façade image patches, 
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the use of the image sextuples and shared convolutions was more 
advantageous. Given the rectification and registration of the façade image 
patches, considering three views per epoch only slightly improved over the 
approach considering image pairs. A study considering more data would need 
to be performed to assess if the network can learn not only inter epoch 
dependencies, but also to cope with different views of a given façade.  

The multi-temporal approaches generally outperformed the mono-temporal 
ones. Large differences in the multi-temporal results were, however, visible 
according to the used network. The use of epoch-specific convolutions was 
preferable to single stream architectures, where both epochs inputs are 
concatenated together before being fed to the network. Epoch-specific feature 
information is in this way valuable for the image classification of façade 
damages. This was the case regardless of the use of original or rectified image 
patches as input, and regardless of the use of image pairs or image sextuples. 
However, while the best performing network using the original image pairs 
considered a 2-stream network without shared convolutions, this was not the 
case when using the rectified façade image patches where the 2-stream 
network sharing the convolutions (i.e. Siamese) was preferable. 

Regarding the mono-temporal approaches, the network trained on image 
samples depicting debris and rubble piles was often not able to have a better 
score than random guess (i.e. 50% accuracy). Hence, such networks trained 
with only rubble piles and debris from mostly nadir viewing imagery, are not 
transferable for façade cases where damage evidences are often different in 
image content but also in extent (e.g., small signs of spalling or cracks). The 
mono-temporal approach using damaged and non-damaged façade image 
patches performed better when trained from scratch; however, overall it 
behaved poorly. 

A notable limitation of the approach presented here is its binary nature that 
precludes more nuanced damage assessment. In the disaster response phase, 
the location of partially and totally collapsed buildings is a priority. Hence, in 
such case the binary nature of the approach is not sufficient, since it considers 
several typologies of damage (from spalling to completely destroyed façades). 
More work is needed, based on more oblique multi-temporal image datasets, 
to move towards the classification of the different types of façade damages 
and their localization within the façade. Nonetheless, given the focus of this 
work on the specific façade damage detection, this approach could be 
performed in parallel with the already extensively reported methods in the 
literature to detect rubble piles and debris.  

The used dataset was extremely challenging not only for the limited number of 
images (and facades) and the low resolution, but for the urban typology 
(historical city center) that introduced additional challenges. Several façades 
in the test area were impossible to extract given the often narrow streets. This 
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was further exacerbated by the use of an aerial (manned) system and its pre-
defined flight pattern, which limited the data completeness in some narrow 
streets.  
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The research presented in this dissertation focused on the development of 
methods for the identification of rubble piles, debris, and façade damages from 
remote sensing images. The identification of such damaged areas is of utmost 
importance for several stages of the disaster management cycle. The 
identification of rubble piles and debris from remote sensing images may serve 
for the identification of partially and totally collapsed buildings over a region, 
city or even a building block. Such information is critical in the response phase, 
so first responders (FR) can plan their rescue efforts, where the generation of 
damaged maps needs to be both fast and accurate to be of use.  Spalling, 
cracks and other signs of façade damage as well as a per building segment 
damage assessment is central for the recovery and rehabilitation phase, given 
its contribution to the broader task of a per building damage assessment. The 
approaches presented in this dissertation used image data that were captured 
from three platforms: satellite and aerial (manned and unmanned), for the 
mapping of building damages. In the specific case of façade damages only 
aerial oblique views were used, since these directly survey the façades. The 
findings and results of the approaches are presented and summarized below. 
The research is also contextualized within developments which occurred during 
its execution and also within the INACHUS project. 

The mapping of partially and totally collapsed buildings relies on the 
identification of debris and rubble piles from remote sensing imagery.  Mapping 
such damage evidences is often performed specifically considering the used 
system (platform and sensor) (Dubois and Lepage, 2014; Fernandez Galarreta 
et al., 2015; Vetrivel et al., 2017). In the case the objective is to identify rubble 
piles and debris from satellite images, features are extracted from these 
images and used to identify damages on new image patches (Dubois and 
Lepage, 2014). However, such task is constrained by the amount of available 
imagery (captured from a given platform) to extract these features. This is 
more critical considering the state-of-the-art in image classification approaches 
such as convolutional neural networks (CNN) which need large amounts of 
image data for the classifiers to have image recognition capabilities. The 
experiments presented in sections 2 and 3 address this issue by proposing a 
unified damage detection procedure which makes use of all the imagery 
containing rubble piles and debris, regardless of the platform which was used 
for its capture. The first set of experiments focused on the use of aerial 
(manned and UAV) and satellite image samples for the image classification of 
debris and rubble piles in satellite images following a binary, patch-based CNN. 
Two main approaches were considered: 1) focusing on the sharing of features 
between the different resolutions within a single set of convolutions, 2) having 
a resolution specific set of convolutions for each of the resolution levels. The 
latter was preferred, where the satellite image classification of building 
damages was improved almost 4% when comparing with a classical approach 
(mono-resolution trained only with satellite image patches). The results 
indicate that stronger image classification algorithms for the mapping of debris 
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and rubble piles can be generated when extracting features also from aerial 
images. Up to now this was not the case, where such images would not be 
considered at all for the specific case of image classification of building 
damages from satellite images.  Moreover, it was observed that the activation 
maps from the last set of convolutions had coarse localization capabilities even 
if a patch-based method was used. Such information can be used to generate 
heat maps of building damages within the image patches being classified   

Given the results obtained before when using satellite images, the multi-
resolution approach was then extended to the other resolutions, aerial manned 
and UAV.  Chapter 3 presents the experiments for each of the resolution levels, 
satellite, aerial manned, and UAV, when using a multi-resolution approach. As 
happened before when only focusing on the satellite case, in this case to merge 
the epoch specific convolutional sets was also preferable (~3% difference in 
accuracy).  However, results varied between resolutions. While in the case of 
satellite and UAV, the use of a multi-resolution approach improved their image 
classification accuracy; this was not the case for the aerial case in which there 
was no improvement. Aerial manned datasets are usually captured with high-
end calibrated cameras and with a more homogenous data capture when 
compared with satellite and the UAV datasets. Hence, using image data from 
other resolutions only matched the image classification accuracy of mono-
resolution approaches in the aerial manned case. The impact of a multi-
resolution approach was then tested for geographical transferability in order to 
assess its impact when used on unseen locations with different urban design 
and image capture characteristics, namely in the UAV and satellite case.  
Overall the relative differences between the baseline and the multi-resolution 
experiments were maintained, especially for the satellite and UAV case. 
Nonetheless, all the geographical transferability experiments suffered from a 
decrease in accuracy. Such results confirm the relevance for site specific 
samples as indicated before by Vetrivel et al. (2017). Taking advantage of 
more image data depicting damaged areas coming from other resolutions, 
instead of independently considering each of the different resolution levels, is 
beneficial, especially considering the limitations in the quantity of available 
image data. 

Chapters 2 and 3 aimed at using multi-resolution imagery, i.e. from different 
platforms, to assess its impact on each of the platforms considered (satellite 
and aerial, both manned and unmanned). The approaches were based on a 
modified version of the resnet (He et al., 2016) architecture and tested on 
more than 15  different locations, from 4 different continents. The approach 
relied on a computationally expensive network (resnet, with dozens of millions 
of parameters), which would require dedicated computational power to be of 
use in an operational context. In the meantime other networks were proposed 
for image recognition tasks such as the densenet (Huang et al., 2017). 
Densenet not only improved the overall accuracy metrics but also the 
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computational cost.It is likely that in the future different architectures are 
proposed which further improve both the accuracy and the computational cost 
of present networks. Hence, a drawback of this approach was to be tailored to 
a given architecture instead of considering a broader approach which could be 
more architecture independent. In spite of the use of a multitude of data, given 
the multi-resolution nature of the approach where damaged samples are 
considered from a larger set of data (from mono- to multi-resolution), there is 
often lack of image data to generate reliable damage detection routines. To 
this regard overwhelming difference of the amount of imagery depicting not 
damaged areas vs damaged ones could be taken advantage of. For example 
by learning the feature representation of such images depicting non-damaged 
areas (Oza and Patel, 2019) in a one-class (not damaged) classification 
approach, which could then be merged with the smaller amount of damaged 
image samples. This large amount of imagery depicting non-damaged areas 
could also be used alongside an image classification framework which could 
successfully address the class imbalance issue (Buda et al., 2018) and take 
advantage of it. Given that the generated models can only learn from what is 
present in the training images, an inventory of the different damage evidences 
present in the training/testing data should be performed. Such inventory 
should also contain location and image capture details for example. Only then 
and with an extensive description of a given image dataset, such analysis can 
be performed. This extensive description of the dataset could then be used to 
label the damage evidences into different typologies of damage (e.g. partial 
and total collapse, blown out debris). This could be the input for a multi-class 
classification or even within a multi-task learning approach (Bittner et al., 
2019). This would give an extra information to stakeholders moving from the 
traditional binary nature of damage detection procedures. 

The mapping of debris and rubble piles might leave out smaller damage 
evidences such as spalling and cracks, especially in the façades. To survey 
building façades for damage, oblique imagery capturing these building 
elements is critical, given that otherwise such damage can only be inferred by 
blown out debris for example. Hence, in this research both aerial manned and 
UAV have been used to detect façade damages. Using UAV, the focus of the 
presented research was to make the façade damage detection more efficient 
due to the usual capture of a larger number of images. Applying a damage 
detection algorithm to all the images would not be optimal. The objective was 
to reduce the number of images and image regions to be fed to the damage 
detection algorithm with the objective of having a faster façade damage 
detection using UAV. The general idea was to detect the façades and then use 
that information to extract their respective image patch from the images, while 
discarding the rest of the image regions. First, the point cloud of tie points was 
used to detect the building roofs. While many contributions focused on building 
roof segmentation from point clouds, also considering photogrammetric point 
clouds and image information (Vetrivel et al., 2015), in this case the objective 
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was to use the point cloud of tie points instead of the dense image matching 
point cloud to decrease the computational cost of the approach. This was found 
to be possible due to the often centimeter resolution of UAV surveys, which 
was translated in a high concentration of tie points. Nonetheless, points 
observed at least on three images were considered. This allowed to rely only 
on stronger tie points, while discarding weaker ones to detect building roofs 
recurring to point cloud segmentation approaches. With the building roofs 
detected, the façades were defined and extracted from the oblique images 
using the raw orientation information coming from the global navigation 
satellite systems (GNSS) and inertial measurement units (IMU) present 
onboard the UAV. These façade image patches were then fed to a damage 
detection procedure trained with debris and rubble piles. For example, with the 
image dataset used for testing of the approach, only oblique images containing 
façades were considered and only the façade image patches present in each of 
the images were fed to a damage detection approach. Given that the damage 
detection algorithm was mostly trained on nadir images and with image 
samples of debris and rubble piles, it was prone to a high rate of false positives. 
It was clear from these experiments that a damage detection procedure 
tailored for the façades was needed. While more research is needed to build a 
façade damage detection algorithm; the façade extraction procedure could 
already be used within an operational context to reduce the amount of images 
and image regions to be fed to a given façade damage detection algorithm. 

This optimization of the  façade damage detection approach using the UAV 
could be combined with a recent framework proposed by  Nex et al. (2019). 
The latter aimed at autonomously and near-real-time mapping of debris and 
rubble piles using a UAV. Such a system was tailored for FR when surveying a 
building block for damaged buildings within the INACHUS project. The 
framework received positive feedback by the FR evaluating two pilot tests 
performed within INACHUS. The approach specifically aimed at generating an 
orthophoto (using only nadir images) of the area of interest with the regions 
presenting debris and rubble piles overlaid in red. However, no attention was 
given to the façades. The proposed approach in this thesis (chapter 4) could 
extend the nadir-only mapping of debris and rubble piles to the detection of 
damaged façades using oblique views, given the focus of the presented 
approach in the computational cost of such assessment. This would give more 
information to FR, also regarding the façades still standing in a given area. 
Moreover, it could be continuously performed to generate constant updates 
regarding a given building block. All this damage information generated both 
from nadir and oblique views and focusing on debris and façade damages would 
certainly enable more informed decisions.  

The façade damage detection was then performed using as input aerial oblique 
imagery captured from manned platforms. These platforms often capture 
imagery at a lower resolution when comparing with UAV but can cover larger 
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areas. Moreover, from the previous study, it was clear that an approach trained 
with debris and rubble piles fell short when applying it for the specific case of 
the façades, where damage evidences such as cracks, spalling and other 
smaller signs of damage were overlooked. Given the interest for aerial oblique 
data, also from damage map producers, we focused on a multi-temporal 
approach. A preliminary set of tests was performed making use of pre- and 
post-event aerial oblique imagery. To this end a simple correlation coefficient 
was proposed to compare pre- and post-event façade image patches. First the 
comparison was performed intra-epoch (pre-event only), to define a baseline 
correlation value between different views of a given façade. This was then 
compared with the correlation coefficient between pre- and post-event façade 
image patches. On one hand intact façades presented similar correlation 
coefficients when calculated between pre-event only façade image patches and 
when calculated between pre- and post-event façade image patches. On the 
other hand, damaged façades presented a lower correlation coefficient when 
calculated between pre- and post-event façade image patches. This difference 
varied regarding each of the façades (e.g. façades with no texture where the 
correlation coefficient fails), hence to establish a manually defined threshold 
makes the transferability of the method difficult. 

In order to derive a more generalizable approach for the multi-temporal façade 
damage assessment a supervised classification was tested in chapter 6. The 
focus of the approach was to derive a framework that given a set of pre- and 
post-event façade image patches could determine if such façade was intact or 
damaged. Specifically, the focus of the experiments was two-fold: 1) 
determine the optimal merge of the multi-temporal imagery within a CNN for 
façade damage detection, 2) take advantage of the redundancy of aerial 
manned surveys to extract several façade images patches per façade and 
embed this with 1). The multi-temporal approaches were compared with mono-
temporal approaches which were considered as baseline. The multi-temporal 
approaches clearly outperformed the mono-temporal ones (up to 25% 
difference in f1-score). This confirms the general improvement of multi-
temporal approaches when compared with mono-temporal ones in remote 
sensing studies (Tewkesbury et al., 2015). The different views extracted from 
the multi-temporal image data were combined following two different 
approaches where image pairs (pre- and post-event façade image patches) 
and image sextuples (three pre- and three post-event façade image patches) 
were used as input.  With this input several approaches were defined, aimed 
at better understanding how to consider the different features derived from the 
façade image patches. Early and late fusion were tested, where it was observed 
that when using image pairs, it is preferable to perform late fusion and have 
an independent set of features per epoch. Such experiment was only 
marginally outperformed by an approach using the image sextuples as input 
and also merging the different epochs feature maps in a later stage of the 
network. Hence, per epoch feature information still plays a major role in the 
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identification of façade damages. Sharing features between different epochs is 
not optimal where in none of the early/fusion experiments using as input both 
image pairs and image sextuples outperformed the late fusion ones. However, 
overall, the results were poor, achieving at the most 82% f1-score. This may 
be due to the low amount of image data, where only around 90 damaged 
façades were identified, and in cases where damage evidences were smaller 
cracks on the wall or other small evidences of damage (i.e. low resolution of 
the imagery). Moreover, and from an operational point of view, such approach 
would need to be tested for geographical transferability given that the reported 
results only refer to a specific Italian region. Aerial manned platforms can 
survey regional/city wide areas; however, the low resolution of the images 
makes it challenging to identify smaller signs of damage. To this regard, UAV 
could be used to survey the most critical and/or occluded façades, capturing 
image data at a higher resolution and at specific locations, as in chapter 3. 

While focusing on the façades, such a framework could be used alongside other 
studies that focus on the identification of debris and rubble piles, as in chapter 
2 and 3. This merge would allow to generate a more complete damage 
assessment over a given region and, in the aerial case, using the same survey 
with both nadir and oblique views. It would also enable more certainty in the 
damage identification since these two sets of results (debris and façade 
damage) could be compared with one another.  Such redundancy is especially 
relevant for FR, where the damage results need to be reliable. On the other 
hand, the binary nature of the approach, which includes several typologies of 
damage is not optimal given the focus of FR on partially and totally collapsed 
buildings. Like in the identification of rubble piles and debris, there is a need 
to have not only the localization of the damaged façades but also a qualitative 
analysis regarding the type of damage that was detected. This would not only 
increase the information given to stakeholders but would also allow to analyse 
where such damage detection approaches fail. The experiments performed in 
this thesis relied heavily on commercial imagery making the public 
dissemination of such data not possible. This is a bottleneck to researchers in 
the field, especially when considering meter resolution satellite and/or aerial 
(manned platforms) imagery. Instead, researchers are disseminating the 
weights of damage detection networks (Nex et al., 2019). This is not optimal 
given that there is no raw data to perform experiments but these may be used 
to, for example, compare different approaches. 

Overall, the findings reported in this thesis can be of use in both the response 
and, recovery and rehabilitation phase of the disaster management cycle. 
Taking advantage of image data coming from several systems instead of 
focusing on each of them separately might be beneficial for any actor which 
aims at mapping debris and rubble piles from remote sensing images. The 
mapping of façade damages reported in this study could also identify damaged 
façades from multi-temporal imagery obtained using aerial manned platforms. 
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However, in both cases (debris and façade damage) there is little information 
regarding the actual damage evidence that was detected, given the binary 
nature of the approaches. While the location of the damaged areas/façades is 
relevant for several actors dealing with disaster management, it falls short in 
describing the actual damages. Such information is critical, namely in the 
façade case, given that a collapsed façade entails different actions when 
comparing with a façade which only contains spalling and/or cracks. Hence, 
more research is needed to this regard, moving beyond the binary nature of 
the approaches reported in this study. 
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