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Chapter 1 - Introduction



Introduction

1.1 Disaster risk management and post-disaster
recovery

A disaster is a serious event that disrupts the functioning of a community or a
society in a way that they cannot cope with using their own resources. It causes
widespread human, physical, economic, and environmental losses and impacts
(UNISDR 2009). The combination of hazards, vulnerability, and the inability to
reduce the potential negative consequences of risk results is a disaster (IFRC
2016).

Number of people affected
per disaster type 1998-2017 W piecd

45%

2.0 billion

o i
o

0.1%
mﬁ;‘znr, Breakdown of recorded economic losses (USS$)

per disaster type 1998-2017

US$ 1,330
billion

2%

fo
US$ 68 billion

2%
US$ 61 billion

& P

Figure 1.1 Human impacts and economic losses of disasters between 1998-2017
(adapted from CRED (2018))

Natural disasters can cause massive problems for communities, societies, and
economies, and devastating impact on infrastructures, firms, and people in the
affected region (Cole et al. 2013). Between 1998 and 2017, more than 5.7
billion people were affected, and more than 1.3 million people were killed by
disasters. A total loss of US$ 2.9 trillion was reported over the period of 1998
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to 2017 (CRED 2018) (see Figure 1.1). These statistics clearly demonstrate the
significance of the management of disasters, from rapid response to the
complete recovery process after any disaster event.

Disaster Risk Management (DRM) aims to avoid, lessen, and transfer the
adverse effects of hazards through activities and measures for prevention,
mitigation, and preparedness (UNISDR 2009). Four main phases in a disaster
cycle are considered in DRM studies; response, recovery, mitigation, and
preparedness (Coppola 2015) (Figure 1.2).

Figure 1.2 Disaster risk management cycle (adapted from Coppola, 2015)

Table 1.1 The four phases of DRM (adapted from UNISDR, 2009)
The four phases of DRM

Response: The provision of emergency Recovery: The restoration, and

services and public assistance during improvement where appropriate, of
or immediately after a disaster to facilities, livelihoods and living
save lives, reduce health impacts, conditions of disaster-affected
ensure public safety, and meet the communities, including efforts to
basic subsistence needs of the reduce disaster risk factors.

people affected.

Mitigation: The lessening or limitation | Preparedness: The knowledge and

of the adverse impacts of hazards capacities developed by
and related disasters. governments, professional response
and recovery organizations,

communities, and individuals to
effectively anticipate, respond to,
and recover from, the impacts of
likely, imminent or current hazard
events or conditions.

Table 1.1 provides generic definitions for the four phases of DRM. Of the
different DRM phases, mitigation and preparedness take place before a
disaster, while the response and recovery phases take place during and after
the disaster event. After a disaster, actions are taken to save lives and prevent
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further property damage (response phase) and then to return to a normal or
even better condition (recovery phase). In the mitigation phase, actions are
taken to prevent a disaster, reduce the chance of a disaster happening, or
reduce the damaging effects of unavoidable disasters, while in the
preparedness phase, plans are considered or preparations made to save lives
and to help the response of a disaster.

Post-disaster recovery is the process of reconstructing communities in all their
aspects (physical, economic, social, and environmental) to return life,
livelihoods, and the built environment to their pre-impact or even better states
(Burton et al. 2011). Conventionally, recovery was considered as a predictable
and orderly process (Haas et al. 1977). However, recent studies demonstrated
that the recovery process is more complex (Brown et al. 2015). The complexity
of the recovery process is basically because of being a multi-dimensional
process; indeed, it needs numerous sectors, stakeholders, policymakers, and
so on to take a role and responsibility. Reconstruction and, consequently,
recovery starts after the disaster has happened; therefore, governments and
disaster planners have to make decisions and act quickly. However, on the one
hand, reconstruction of buildings is only the physical part of the recovery, i.e.
it omits other important sides, such as economic, social and environmental
aspects. There are several socio-economic factors that influence the recovery
process and its rate from early stage such as social interactions (e.g. social
cohesion) (Townshend et al. 2014), or business recovery (Rose and Krausmann
2013). For example, manufacturers or service providers do not return to the
reconstructed region without existing consumers for their products, and
workers do not return without having appropriate jobs.

On the other hand, there are many other vital factors of recovery, such as
functional analysis of the reconstructed physical factors. For instance, does a
newly reconstructed building represent a successful recovery process even if it
is empty and nobody lives in it? Or an equipped hospital with skilled medical
staff and a sufficient humber of beds to support injured people, but without
electricity? These two examples, which are actual examples of what happens
after a disaster, confirm the importance of considering functional recovery in
the post-disaster recovery process. In addition, functional recovery analysis
can show the changes in functions (i.e., residential, commercial, education and
etc.). Therefore, post-disaster recovery is a compound process and is vital for
communities hit by disaster to survive and return to normal living conditions.

The term recovery is often confused with reconstruction and rehabilitation.
However, there are differences between these terminologies. Rehabilitation,
reconstruction, and recovery all start after a disaster. Rehabilitation is the
process of enabling necessary services to resume functioning, help victims for
preliminary repayments of physical damages and community infrastructures,
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restore basic economic activities, and support the social and psychological well-
being of the survivors (UNDP, 1993). Primarily rehabilitation actions are taken
for enabling the affected community and populations to more or less resume
their essential normal life, or in other words, to stand up and survive.
Reconstruction refers to the restoration of all services, infrastructures, and
rebuilding of damaged physical structures, such as individual buildings,
schools, hospitals, which help with the revitalization of the economy and the
restoration of social and cultural life. The recovery phase is defined as the
actions for the period after the emergency phase and includes both
rehabilitation and reconstruction and full functional recovery (Figure
1.3)(UNDP 1993). However, it varies over time and space due to several
factors, such as socio-economic and political ones, and because of the
multitude of decisions that are made before, during and after a disaster
(Olshansky et al. 2006).

1- Normal 2- Disaster 3- Rehabilitation 4- Reconstruction 5- Recovery

Figure 1.3 Recovery vs Rehabilitation vs Reconstruction (modified from - UNDP, 1993)

Another factor that is essential in post-disaster recovery and influences its
duration and quality is resilience (Platt et al. 2016; Unisdr 2015). Resilience is
“the ability to absorb change and disturbance and still maintain the same
relationships that control a system’s behavior,” and was first defined by Holling
(1973) in the ecology domain. Then, Timmerman (1981) used the term
resilience in a disaster context and described it as the measure of the capacity
of a system, or part of a system, to absorb or recover from a damaging event.
Since resilience entered in the disaster field researchers have tried to complete
and revise its definition. They also tried to include it in the disaster risk
assessment equation, not only in natural disaster studies but also in other
studies, such as in the social, economic, and environmental fields. In the
natural disaster domain, resilience has been incorporated into the risk equation
(Eg.1), and is mostly accepted as “the ability of a system, community or society
exposed to hazards to resist, absorb, accommodate to and recover from the
effects of a hazard in a timely and efficient manner, including through the
preservation and restoration of its essential basic structures and functions”
which was defined by the United Nations Office for Disaster Risk Reduction
(UNISDR, 2009).
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Hazard * Exposure * Vulnerability (1)
Resilience

Risk =

Resilience includes inherent conditions, allowing communities to absorb
impacts and cope with an event. Resilience also encompasses post-event
processes that would enable communities to reorganize, change, and learn in
response to an event (Cutter et al. 2008). Thus, to enhance a community’s
resilience to natural hazards is to improve its capacity to anticipate threats,
reduce its overall vulnerability, and to allow the community to recover from
adverse impacts when they occur. Decades of hazards and disaster research
have offered extensive findings within this context (Burton 2014; Kates et al.
2006; Sadiq et al. 2019; Tiernan et al. 2019). The threat of natural disasters
will continue, but their consequences can be reduced if communities and people
increase their resilience (Council 2012; Jones and Ballon 2020). However,
measuring the resiliency of a community has not yet been sufficiently
addressed, and it is a challenging topic for DRM researchers.

Recently, the Sendai Framework has been defined for disaster risk reduction
as a roadmap to make communities safer and resilient to disasters (UNISDR
2015). It proposes to use the post-disaster as a window of opportunity to build
back better, increasing the resilience of the community while reducing its pre-
exciting vulnerability. Accordingly, the aim of the post-disaster recovery will
be not only to return the community to normal/pre-disaster situation, but also
to improve the pre-existing physical, social, economic, and environmental
conditions.

Resilience is increasingly becoming a ubiquitous concept in many disciplines,
such as economic, sociology, psychology, and healthcare. It has also been
considered as an emerging research topic in disaster risk management in
recent decades. Figure 1.4 shows the relationship between resilience and post-
disaster recovery by comparing recovery curves of a more resilient community
with ordinary communities, demonstrating that the resilient communities
recover faster and even better than other communities. Since there is a strong
link between resilience and post-disaster recovery, resilience is frequently used
as a guiding concept for developing policies, plans, and programs to deal with
a diverse array of natural and human-made disasters that are progressively
increasing in frequency and severity (Sharifi and Yamagata 2016).
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Figure 1.4 Importance of resilience in post-disaster recovery process/curve.

Consequently, resilience-centered management has become a policy objective
in the United States and worldwide (Bakkensen et al. 2016). For instance, the
U.S. department of Housing and Urban Development launched a $1 billion
initiative to increase natural disaster resilience across communities, and the
Philippines government planned to launch $8.2 billion for the recovery from
the 2013 Typhoon Yolanda and to increase resilience (Lum and Margesson
2014). Hence, resilience to natural disasters is an important policy objective
for many governments.

Since the term has been defined in the DRM field, researchers have tried to
measure the resilience of communities (Manyena 2006; Revet 2012).
Resilience cannot be measured directly, similar to the recovery process, and
thus several researchers have attempted to identify and group the related
indicators (overall disaster or socio-economic resilience) (Rose and Krausmann
2013). For instance, Cutter et al. (2010) used housing capital, equitable
incomes, employment, business size, and position access as indicators for the
economic resilience of a community. Bruneau et al. (2003) created a
conceptual framework for the quantitative assessment and enhancement of
the seismic resilience of the community considering engineering-based
resilience. They focused on critical infrastructures for the resilience
measurement of both physical and social systems. Their measurement is based
on reducing failure probabilities, consequences from failures, and time to
recovery. They concluded that their proposed framework makes it possible to
assess and evaluate the contribution to seismic resilience of various activities.
Mayunga (2007) analyzed the resilience with a capital-based strategy. The
major challenge of their proposed method is how to measure each form of
capital adequately, due to having a relatively broad framework. They concluded
that it is practically not possible to measure all the dimensions of each type of
capital, partly because of the limitation of data availability. In a different study,
Maclean et al. (2014) studied disaster resilience, focusing on social
components, and they generated six key indicators, including engagement of
people and places, the presence of community infrastructure, community
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networks, and governance. Furthermore, Townshend et al. (2014) mentioned
the importance of social cohesion in community resilience and pointed out a
potential link between place-based social cohesion and resilience. Several
studies also exist for disaster resilience measurements based on content
analysis (Jordan et al. 2011), vulnerability analysis (Burton et al. 2002),
production theory macroeconomics (Rose 2009), and key infrastructure
resilience (Fisher et al. 2010). Some other researchers attempted to create a
resilience index, and key indicators to generate an overall and complete
indicator list for disaster socio-economic resilience (Norris et al. 2008; Rose
and Krausmann 2013; Sharifi and Yamagata 2016).

Some studies defined formulas to quantitatively measure socio-economic
resilience. For instance, socioeconomic resilience quantitatively is defined by
Hallegatte et al. (2016) to measure the ability of an economy to minimize the
impact of asset losses on wellbeing, and one part of the ability to resist, absorb,
accommodate and recover in a timely and efficient manner from asset losses.
In order to show the effect of socio-economic resilience in computing disaster
risk to welfare, they used the following equation:

. Expected asset losses Hazard * Exposure * Asset vulnerabilit
Risk to welfare = —+ = P y (2)

Socioeconomic resilience Socioeconomic resilience

Also, they measured socioeconomic resilience to floods and generated
scorecards using their developed model for 90 countries.

1.2 Remote sensing

Remote sensing can provide a valuable source of information at each phase of
the DRM cycle, helping to understand the spatial domain from a wide range of
areas to small scales, supporting scientists and authorities with objective
information for decision making. One of the important challenges with disaster
management is the unpredictability of hazard events and their magnitude,
which does not allow for a single all-encompassing solution to be developed
and explored (Joyce et al. 2009). Remote sensing provides various types of
data in terms of spatial, spectral, and temporal resolutions and scales.
Therefore, remote sensing platforms potentially can provide data required, and
answer information needs for each phase of DRM. For instance, in the
mitigation phase of DRM, and to assist risk reduction, remote sensing has been
used to identify the hazard-prone regions associated with flood plains, coastal
inundation and erosion (Klemas 2014), landslides (Pradhan et al. 2006), and
active faults (Dalati 2005).

Furthermore, it has been employed to verify hazard models by measuring the
location and magnitude of actual events (Joyce et al. 2009). Meteorologists
use remote sensing imagery to forecast weather (Liu et al. 2019; Nashwan et
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al. 2019; Thies and Bendix 2011), and produce warnings of potentially severe
weather events. Indeed, remote sensing can provide critical information for
the public and emergency responders that can assist decision making around
short term preparedness. In the response phase of DRM, remote sensing
provides a rapid method of assessing damages, most affected areas, and
significant information such as where key transport and other infrastructure
links have been damaged or destructed (Kerle 2011; Kerle and Hoffman 2013).
Besides, by developing new technologies in sensors and computer-based
systems, remote sensing data are becoming more readily available. Due to the
recognition of the significance of the information that remotely sensed imagery
could provide, some satellites are even addressing at least partially the DRM
and emergency response needs (Joyce et al. 2009). Furthermore, some
systems have been developed, such as the International Charter “Space and
Major Disasters”, to provide space data acquisition and delivery to those
affected by natural or man-made disasters, and even some organizations
provide information from ground-based sensors in addition to satellite and
airborne sensors’ data, such as Copernicus.

Recently, remote sensing data have been employed to study all phases of the
DRM cycle with the growing availability of their various types. This is due to
increasing the spatial, spectral, and temporal resolution of the remote sensing
imagery. Several automatic damage assessment methods based on change
detection techniques have been developed (Kerle et al. 2019). For example,
post-disaster damage assessment such as for buildings, roads, infrastructure
has been carried out using remote sensing data sets such as satellite (Duarte
et al. 2018b; Vetrivel et al. 2016b), aerial (Duarte et al. 2018a; Galarreta et
al. 2015; Nex et al. 2019; Vetrivel et al. 2016a), SAR images (Bell et al. 2019;
Chen and Sato 2013; Dadhich et al. 2019; Yulianto et al. 2015) and LiDAR data
(Rastiveis et al. 2015). In contrast, only few studies exist on the use of remote
sensing data sets to monitor and evaluate the recovery phase of the DRM cycle
(Brown et al. 2008; Platt et al. 2016). Furthermore, most of the developed
methods for recovery assessment are manual, and only a few are semi-
automatic, which are based on conventional computer vision models (Brown et
al. 2010b). However, the need for developing rapid, automatic, and robust
methods for post-disaster recovery assessment is demonstrated in the
literature (Joyce et al. 2009). One of the reasons for the limited number of
studies on post-disaster recovery assessment compared with damage
assessment is that the recovery process cannot be assessed in a direct manner
in most of the cases (note: if the damage is considered in its all aspects, not
only physically, it could also not be assessed directly). Accordingly, the need
for indicators and proxies is an obstacle of entering remote sensing and
computer vision societies to this field.
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Remote sensing data have been rarely used for post-disaster recovery
monitoring and evaluation. For instance, Curtis et al. (2010) employed video
data sets for monitoring and assessing the recovery processes of Hurricane
Katrina. They utilized videos to gather information about house conditions and
occupancies. They finally concluded that their method is an efficient tool for
collecting neighborhood data after a disaster. However, several critical places
may not be accessible to collect video data in a post-disaster situation.

Brown et al. (2010a) used indicator-based methods to monitor and evaluate
the post-disaster recovery assessment based on high-resolution remote
sensing imagery, particularly IKONOS and QuickBird satellite images, in
addition to field surveys and internet-based statistic data sets. They utilized
image processing techniques for change detection in the region, such as land
cover changes, building-based recovery/reconstruction analysis. Then, change
detection methods were used to support and extract changes at indicator
levels. They also used field surveys as complementary information for remote
sensing image analysis (Figure 1.5). However, their developed indicators in
this study did not robustly represent the entire recovery process, for example
lacking functional recovery indicators. Furthermore, their proposed image
processing techniques are not efficient, e.g. maximum likelihood classification.
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Figure 1.5 Recovery indicator outputs using satellite images. Retrieved from Brown et
al. (2010a).
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In a different study, Burton et al. (2011) used repeat photography to evaluate
post-Katrina recovery in Mississippi. They took photographs every six months
over a three-year period. Then, by assigning scores to each scene in terms of
change and recovery, they generated a map for recovery assessment for the
entire region. Wagner et al. (2012) used medium resolution images to capture
the rate of recovery for post-tornado sites in Oklahoma in 1990. They used
remote sensing images to support government and decision-makers by
monitoring reconstruction processes, which is reasonable considering the use
of medium resolution images and the complexity of urban areas.

Night-time lights satellite images have also been used for damage and recovery
analysis. It has been demonstrated that there is a close relation between light
intensity and economic activity (Chen and Nordhaus 2011; Sutton et al. 2007).
For instance, Gillespie et al. (2014) analyzed responses of night-time light to
tsunami damage and recovery in Sumatra. They demonstrated that there are
strong relations between brightness values of light images and per capita
expenditures and spending on energy and food. Klomp (2016) studied the
impact of natural disasters on economic development using satellite night-time
light images. In terms of using light images as a proxy for GDP per capita, he
showed that natural disasters reduce the amount of lights visible from outer
space significantly in the short run, and thus, they lead to a large drop in the
luminosity in the developing and emerging market countries. An important
limitation of using light satellite images for post-disaster recovery assessment
is their low spatial resolution.

Brown et al. (2011) developed a model to assess the damage and early
recovery using remote sensing data and ground survey tools after the 2008
Wenchuan earthquake in China. The recovery step of their study includes
buildings, accessibility (Figure 1.6), power, and water livelihoods assessments.
In this study, only the Normalized Differential Vegetation Index (NDVI)
computation was implemented automatically, and other information such as
building change detection, accessibility assessments, etc. were done manually.
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Figure 1.6 Accessibility assessment of roads and bridges. Retrieved from Brown et al.
(2011).

Costa Viera and Kerle (2014) studied urban recovery using geospatial data for
the firework disaster in Enschede, The Netherlands, 2000. They mainly used
building morphology, such as building density, shape and size, and
concentration of road networks as indicators. Also, they proposed a proxy to
measure the quality of housing based on the energy loss indicator of the
buildings (Figure 1.7). Their primary focus was on built-up, and the
environmental components of the recovery process and socio-economic
aspects were not studied. They also concluded that remote sensing and
landscape metrics could provide valuable information about the changes in the
landscape and the recovery of functions.

12
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Figure 1.7 Thermal scan images to measure the quality of housing. Retrieved from
Costa Viera and Kerle (2014).

On the other hand, disaster resilience in the DRM concept has not been
sufficiently studied in the remote sensing field, yet. However, Renschler (2011)
concluded that using historical and continuously gathered information through
remote sensing and also Geographic Information Systems (GIS) can play a
significant role in assessing the resilience of all integrated urban systems and
feed a predictive resilience model. Keating et al. (2014) also mentioned that
the importance of monitoring a considered region using remote sensing data
could be effective in the framework of iterative risk management.

1.3 Agent-based modeling

Remote sensing can be used as a recovery monitoring tool, but it cannot
explain the results and the reasons for the changes. In addition, in a post-
disaster recovery process many variables exist which have impacts on the
recovery process, including social networks and an individuals' behavior.
However, the effect of each is not known in the recovery process. Therefore,
to understand and explore the impacts of these components, simulation of the
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recovery process is needed. Computer-based models such as the Agent-based
models (ABM) allows simulating the recovery process from simple to complex
forms, to explain the impact of each aspect on the process. Accordingly, policy
and decision-makers can take advantage of the simulation outcomes to
improve the process.

In an ABM, each agent (decision-maker) considers its current situation
between other agents in the model to decide and act based on defined rules
for its behavior in that specific situation (Figure 1.8). In an ABM the initial state
of the environment and attributes of agents should be specified by a modeler.

Target System Agent based model
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Figure 1.8 Agent-based modeling visualization. Retrieved from Galan et al. (2009).

The attributes of the agents might include internalized behavioral norms, type
of characteristics, modes of communication and learning, and internally stored
information about itself and other agents (Tesfatsion 2002). All the interactions
between agents are tracked during the simulation process to see what happens
over time. ABMs can simulate a far wider range of nonlinear behaviour than
other conventional models. Therefore, it constitutes an opportunity for policy-
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makers to test different policy scenarios in an artificial simulation environment
and explore their consequences (Farmer and Foley 2009).

Several researchers used ABM in the context of disasters (An 2012; Grinberger
and Felsenstein 2016), for example for flood incident management (Dawson et
al. 2011), tsunami evacuation (Wang et al. 2016), road networks capacity for
after disaster evacuation (Chen and Zhan 2008), distribution of aid after a
disaster, how rumors relating to aid availability propagate through the
population (Crooks and Wise 2013), and dynamics of coastal adaptation for
climate risk (Mcnamara and Keeler 2013). They all demonstrated the
importance of including human behavior in such a model for accurate
simulation outcomes.

Recently the importance of the use of ABM for understanding the recovery
processes has been demonstrated (Mishra et al. 2018) and researchers started
simulating the post-disaster recovery process (Coates et al. 2019; Fan et al.
2019; Kanno et al. 2018; Nejat and Damnjanovic 2012). However, since
recovery is a complex process consisting of various components that may
change based on disaster type and environment conditions, the few existing
studies are not sufficient to understand and explore all influential factors of the
recovery, and consequently, there is a need for ABM-based experiments to
explore other components and their effects in the recovery process.

1.4 Research gap and objectives

Post-disaster recovery is the least studied component of the DRM cycle, and
there is a need for a conceptual framework for post-disaster recovery
assessment using remote sensing. In the existing literature most of the remote
sensing-based methods for recovery assessment focused on the reconstruction
part of the recovery, by using change detection techniques to extract whether
damaged buildings were reconstructed or new buildings or structures built. In
addition, some researchers studied the recovery process in its long-term
phase, utilizing indicators such as the reconstruction of bridges and roads for
accessibility analysis, change detection in land cover classification to extract
environmental changes, and so forth (Brown et al., 2010). However, the
emerging limitation is in the reliability of the defined indicators/proxies. For
instance, by extracting green spaces in urban areas, how accurately can the
environmental recovery of the area be evaluated? Another significant issue is
the recovery of functions in the area, which has not yet been studied. For
example, in the post-disaster recovery phase the functionality of the buildings
may change, which cannot be identified by only extracting the reconstructed
buildings. Similarly, transportation functional recovery analysis cannot be done
only by extracting reconstruction of roads and bridges.
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In the literature, most of the remote sensing-based indicators were extracted
manually or, in some cases, using semi-automatic image processing methods.
Therefore, it becomes a time consuming and tedious process, and clearly
demonstrates the need for automatic methods to extract information from
remote sensing data. Moreover, conventional methods were used as semi-
automatic methods. For example, Brown et al. (2010) used maximum
likelihood classification to classify the land cover. This demonstrates the need
for automated yet accurate remote sensing data analysis methods to efficiently
extract the relevant information. The current state of the art methods, i.e.,
machine learning and deep learning methods, provide promising accuracy
rates in extracting information from remote sensing images. Although they
provide accurate results, there is a need for training sample generation to feed
in the model to start with initially. Yet, developing a fully automatic machine
learning methods is a challenge, which is critical for decreasing the entire
process time.

Another issue is the need for high computation power for processing the big
remote sensing data (e.g., satellite images). This need even increases by
adding the complexity of state-of-the-art methods (e.g., advanced machine
learning). Indeed, we need a supercomputer to implement an advanced
machine learning method to extract relevant information for several time
epochs before and after a disaster to monitor the post-disaster recovery
process comprehensively.

Post-disaster recovery monitoring using remote sensing can give valuable
information regarding the processes and identify areas that were reconstructed
or completely removed after a disaster. However, another important issue for
the policy and decision-makers is to find out the reasons for weak and strong
recoveries in addition to monitoring the process. Modeling the recovery process
using the computer-based simulations such as agent-based modeling allows
simulating it from simplest to complex forms, including critical human activities
in the society, to understand and explore the impact of each aspect on the
process. ABMs have been studied in the response phase of the DRM concept,
particularly for modeling evacuation and aid distribution in disasters. However,
the utility of ABMs in the DRM context does not stop at this stage; ABMs can
also be used to forecast the developments for recovery processes after the
event (Crooks and Wise 2013).

Spatial data from standard GIS layers have been employed in ABMs
(Heppenstall et al. 2012; Simmonds et al. 2019); however, time series remote
sensing data have not been used as the primary source for an ABM, especially
in post-disaster recovery and resilience assessments. By increasing spatial,
spectral, and temporal resolution of remote sensing data, several types of
information can be used in ABMs to increase their efficiency and the accuracy
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of the simulation. This also decreases the dependencies of the ABMs on costly
and time-consuming surveys.

1.5 Research questions

The aim of this Ph.D. research is to analyze the potential of spatial/remote
sensing data to support governments, policy makers, and disaster planners in
post-disaster recovery and resilience assessments not only from a physical
perspective, but also the socio-economic side. In line with this aim and above
mentioned research objectives, six research questions are posed.

1. What are the state-of-the-art remote sensing-based proxies/indicators for
disaster risk management and resilience assessment.

2. How to conceptualize post-disaster recovery assessment, including its
different types and aspects, based on remote sensing data?

3. How to automate the extraction of useful information from remote sensing
data to evaluate the post-disaster damage and recovery process.

4. How to increase the precision and accuracy of remote sensing-based
damage and recovery assessments?

5. To what extent cloud computing, i.e., Google Earth Engine, can be used to
monitor the post-disaster recovery process?

6. How to integrate multi-temporal remote sensing data with ABM to assist
explanation of the different recovery patterns?

1.6 Structure of the thesis

This thesis is composed of 8 chapters. Chapter 1 and chapter 8 are introduction
and synthesis, respectively. The chapters in-between explain/consist of the
leading scientific findings of this study for each specific objective, providing an
independent introduction, methods, results and discussion, and conclusions
sections. More specifically, the organization of the chapters is as follows:

Chapter 1 - Introduction: introduces and motivates this research, presents
the research objectives and overall contributions.

Chapter 2 - Remote sensing-based proxies for urban disaster risk
management: A review: provides a comprehensive review of the current
remote sensing-based proxies developed for urban disaster risk management.
In particular, the proxies are sorted for two risk elements typically associated
with pre-disaster situations (vulnerability and resilience), and two post-
disaster elements (damage and recovery). The proxies are reviewed in the
context of four primary environments and their corresponding sub-categories:
built-up (buildings, transport, and others), economic (macro, regional and
urban economics, and logistics), social (services and infrastructures, and socio-
economic status), and natural. All environments and the corresponding proxies
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are discussed and analyzed in terms of their reliability and sufficiency in
comprehensively addressing the selected DRM assessments. We highlight the
strength and identify gaps and limitations in current proxies, including
inconsistencies in terminology for indirect measurements. We present a
systematic overview for each group of the reviewed proxies that could simplify
cross-fertilization across different DRM domains and may assist the further
development of methods. While systemizing examples from the wider remote
sensing domain and insights from social and economic sciences, we suggest a
direction for developing new proxies, also potentially suitable for capturing
functional recovery.

Chapter 3 - A conceptual framework for post-disaster recovery
assessment with remote sensing: presents a comprehensive theoretical
scheme to monitor and evaluate the post-disaster recovery process and
resilience using remote sensing data. In particular, available remote sensing
image-based proxies are used to evaluate the recovery addressing, not-only
physical but also functional aspects. In addition, this conceptual framework can
be used to evaluate disaster resilience assuming that the speed of the recovery
is a proxy for resilience assessment. The proxies are mostly extracted using
machine learning-derived land cover and land use maps. The proposed
approach is used to assess the recovery of barangays (municipalities),
including Tacloban city, in the Leyte region in the central Philippines.

Chapter 4 - Towards post-disaster debris identification for precise
damage and recovery assessments from UAV and satellite images:
discusses the limitations of using debris and rubble piles as proxies for damage
detection and subsequent post-disaster recovery assessment from remote
sensing images, and investigates two different approaches for post-disaster
debris identification. Distinguishing the structural rubble from ephemeral
debris can increase the accuracy of the damage and recovery assessments
since most of the damage detection methods using this debris as a proxy for
damage assessment. Three feature extraction methods i.e., Gabor filters, Local
Binary Pattern (LBP), and Histogram of the Oriented Gradients (HOG) are
investigated to identify the debris from UAV images. As the second strategy,
an approach is proposed, which monitors the multi-temporal satellite images
acquired days and weeks after the disaster to figure out the relation between
debris type and their time of removal. The approaches are tested for Tacloban
city using UAV and multi-temporal satellite images.

Chapter 5 - Post-disaster building database updating using
automated deep learning: An integration of pre-disaster
OpenStreetMap and multi-temporal satellite data: presents an
automated deep learning method of building database updating for post-
disaster damage and recovery assessments. The location of the damaged,
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reconstructed, and newly constructed buildings provide critical supporting
information for both first responders and recovery planners after a disaster.
The proposed method makes use of free OpenStreetMap building footprints
available for a pre-disaster situation to automatically collect training areas from
very-high-resolution satellite images for a convolutional neural network (i.e.,
U-net), which is supported with residual connections. The trained network is
then transferred and retrained for the post-disaster situation at any time after
a simple building-based change detection analysis over OSM data. The
proposed approach is tested for different scenarios of damage and recovery
assessments in very high-resolution satellite images selected from Tacloban,
the Philippines, after Typhoon Haiyan.

Chapter 6 - Post-disaster recovery monitoring with Google Earth
Engine: presents a cloud computing-based tool for post-disaster recovery
assessment. In previous chapters, computationally expensive methods are
developed to extract information from the costly very high-resolution satellite
images using paid supercomputers. However, the aim of this chapter is to
propose and investigate a completely free tool to monitor the recovery process.
Hence, an approach is proposed, which utilizes Google Earth Engine (GEE) as
a cloud computing platform and its coding environment, to perform land
cover/use classification for different time steps after a disaster. The Random
Forest method, which is available in the GEE, is employed as the main method
to classify the composite cloud-free Landsat 7 and 8 images. The composite
images are generated based on cloud and shadow detection/removal, and
computing the mode of the missing pixel values from the collection of the
images for the selected time-steps.

Chapter 7 - Agent-based modeling of post-disaster recovery with
remote sensing data: introduces the proposed agent-based model, which
uses information that was extracted from remote sensing images for post-
disaster recovery. The developed post-disaster recovery (PDR) model can be
used by decision-makers to understand the recovery process and carry out the
most influential factors and components. The satisfaction of the formal building
and slum households is tracked and mapped to understand and demonstrate
each of which recovery patterns. Also, the effect of the unemployment rate
and presence of a relocation site far from urban areas and workplaces after a
disaster are experimented using the PDR model.

Chapter 8 - Synthesis: synthesizes the results of the individual chapters. It
provides the main findings, contributions of this research, reflects on the work,
and discuss the usability of the proposed approaches from a stakeholder
perspective. The future outlook for improving each of the proposed research
lines and methods in this research is also reported.
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Chapters 2 through 7 are based on the published journal and conference
articles. There may, therefore, be repetitive information in the introduction
sections of the various chapters. Nevertheless, this makes every chapter
standalone and enables them to be considered individually, providing
comprehensive information for the readers who are interested in specific
chapters.
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Abstract

Rapid increase in population and growing concentration of capital in urban
areas has escalated both the severity and longer-term impact of natural
disasters. As a result, Disaster Risk Management (DRM) and reduction have
been gaining increasing importance for urban areas. Remote sensing plays a
key role in providing information for urban DRM analysis due to its agile data
acquisition, synoptic perspective, growing range of data types, and instrument
sophistication, as well as low cost. As a consequence numerous methods have
been developed to extract information for various phases of DRM analysis.
However, given the diverse information needs, only few of the parameters of
interest are extracted directly, while the majority have to be elicited indirectly
using proxies. This paper provides a comprehensive review of the proxies
developed for two risk elements typically associated with pre-disaster
situations (vulnerability and resilience), and two post-disaster elements
(damage and recovery), while focusing on urban DRM. The proxies were
reviewed in the context of four main environments and their corresponding
sub-categories: built-up (buildings, transport, and others), economic (macro,
regional and urban economics, and logistics), social (services and
infrastructures, and socio-economic status), and natural. All environments and
the corresponding proxies are discussed and analyzed in terms of their
reliability and sufficiency in comprehensively addressing the selected DRM
assessments. We highlight strength and identify gaps and limitations in current
proxies, including inconsistencies in terminology for indirect measurements.
We present a systematic overview for each group of the reviewed proxies that
could simplify cross-fertilization across different DRM domains and may assist
the further development of methods. While systemizing examples from the
wider remote sensing domain and insights from social and economic sciences,
we suggest a direction for developing new proxies, also potentially suitable for
capturing functional recovery.
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2.1 Introduction

By 2050 80% of the world population will live in urban areas (United Nations
2015). This unprecedented clustering of infrastructure and people has been
shifting the focus of Disaster Risk Management (DRM) studies towards cities.
Furthermore, the ability of a system to resist, absorb, accommodate to and
recover from the effects of a hazard in a timely and efficient manner - knows
as resilience - has become crucial to decrease the disaster risk (UNISDR 2009).
Resilience also encompasses post-event processes that allow communities to
reorganize, change, and learn in response to an event (Cutter et al. 2008).
Hence, enhancing community’s resilience to natural hazards implies improving
its capacity to anticipate threats, to reduce own overall vulnerability, and to
allow the community to recover from adverse impacts when they occur.
Decades of disaster research offer extensive findings in this respect (Burton
2014; Cutter et al. 2016; Cutter et al. 2010; Norris et al. 2008). Remote
sensing (RS) as an effective and rapid tool for monitoring large areas— is
essential for the acquisition of geospatial data, which in turn constitutes the
basis for risk assessment and management. RS is widely used for various
aspects of the DRM, ranging from vulnerability (Taubenbéck et al. 2008) to
rapid damage assessments (Cooner et al. 2016), for diverse areas ranging
from coastal ecosystems (Mccarthy et al. 2017) to complex urban settings (Du
et al. 2014), and for disasters as diverse as landslides (Stumpf and Kerle 2011;
Zhao and Lu 2018) or cyclones (Hoque et al. 2017).

Numerous methods have been developed to extract information from RS data
to identify, characterize or quantify different phases of the disaster risk cycle:
response, recovery, prevention/mitigation and preparedness (Coppola 2015).
However, early studies predominantly considered the physical side of the
assessments for both pre- and post-disaster phases and hazard assessment,
using direct observations. For example, scholars have assessed the number of
buildings collapsed/damaged (Arciniegas et al. 2007; Saito et al. 2004) and
reconstructed (Berke et al. 1993), or estimated their vulnerability (Mueller et
al. 2006). However, the attention to the non-physical side of DRM in both pre-
and post-disaster situations was scare. Non-physical assessments usually
comprise social, economic and natural aspects in addition to the built-up ones,
which refer to physical assessments, e.g., physical vulnerability assessment
(MCDEM 2005). Recent studies started to include socio-economic aspects when
examining DRM phases such as vulnerability (Flax et al. 2002; Morrow 1999),
resilience (Burton 2012), damage (Bevington et al. 2010; Bradshow 2004),
and recovery (Rubin et al. 1985) assessments. While several spatial and non-
spatial parameters required for detecting and quantifying of DRM-related
elements can be extracted directly from RS imagery, many have to be elicited
indirectly. Similarly, Indirect measurements are fundamental tools in related
research fields, such as environmental science (Pidwirny 2017). They have
been also used in social and economic studies in the DRM context, e.g. for
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social vulnerability (Fatemi et al. 2017) and business recovery (Rose and
Krausmann 2013) assessments. Proxies have become central in RS-based DRM
studies due to the inherent characteristics of several urban elements such as
social and economic activities, which makes it very difficult, if not impossible,
to directly observe them using RS data. Proxies use observable features in RS
data used to capture and extract information of interest that is not directly
visible or measurable but is correlated with the former. In recent years, using
proxies has become the predominant approach to capture implicit information
in urban DRM, for both pre- and post-disaster situations (Taubenbdck et al.
2009). For example, texture is used as a proxy to extract damage to buildings
and roads, with irregular texture indicating damaged area. For the purpose of
this review, the most relevant components of the disaster risk cycle for use of
RS in urban areas are the post-disaster phase proxies focusing on damage and
recovery, and the pre-disaster phase proxies measuring vulnerability and
resilience.

This work was specifically motivated by a number of limitations in the published
literature. Firstly, there is inconsistency in terminology: indirect measurements
labelled by various terms such as index (Kotzee and Reyers 2016), indicator
(Platt et al. 2016), and proxy (Ebert et al. 2009). In this paper, the term proxy
is overarching for all such indirect measurements. Secondly, duplications in
efforts: in certain cases methodologically the same proxies have been
developed independently in more than one domain. For instance, the presence
of vegetation in urban areas has been used as a proxy for both social
vulnerability (Ebert et al. 2009) and post-disaster recovery (Brown et al.
2010a) assessments. Thirdly, the current DRM literature suggests several
proxies that are at times unreliable. For example, the presence of vehicles has
been used to evaluate the accessibility of the roads (Brown et al. 2010a).
However, the metric is highly dependent on the image acquisition date and
time, and other legal or environmental parameters that affect the presence of
vehicles. Finally, need to go beyond the physical side towards functional
assessments is prominent. Yet, few proxies have been developed for social,
economic and functional assessments in urban DRM. This paper conducts
critical analyses on current RS-based proxies and borrows insights from other
research fields (e.g., the economy and social sciences). To address these
limitations, we conduct a systematical review following a number of steps. We
start by splitting reviewed proxies into four groups that characterize built-up,
economic, social, and natural environments. Then, a proxy catalog for each
group is generated based on the reviewed studies used by researchers and
governments in the different DRM phases. Finally, a comprehensive analysis is
done on the reviewed proxies, and the most suitable proxies for each DRM
situation are discussed. These analysis demonstrates current limitations
including lack of proxies to evaluate urban functions for DRM and suggests
future directions in developing new proxies. Furthermore, proxies originating
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from the wider RS domain and other disciplines — urban form studies, structural
engineering, and natural sciences - were identified and systemized in this
paper. This structured analysis may provide guidance for developing reliable
RS-based proxies.

The review is structured as follows. Section 2 defines the terminology used for
indirect measurements, i.e. proxy, in this article. In Section 3 we explain the
methodology employed for this review. Section 4 presents a comprehensive
literature review of RS-based proxies for each of the four selected
environments, as well as a corresponding table of proxies. In addition, new
insights towards improving current or developing new proxies are provided
based on the state of the art analysis from different research fields including
urban form studies, structural engineering, economics and natural sciences.
The final section provides conclusions and outlines directions for future
development of the field.

2.2 Defining a proxy in remote sensing

Indirect estimation using proxies allows researchers to deduce the condition of
an element or process based on their relations and links with directly
identifiable and observable features in the surrounding/neighboring areas.
According to the Oxford Dictionary, a proxy is a figure that can be used to
represent the value of a non-directly measurable object in a calculation.
In statistics, it is @ measurable variable that is used in place of a variable that
cannot be measured (Upton and Cook 2014). Moreover, there are good
examples of using proxies in economics, such as per capita Gross Domestic
Product (GDP) being a proxy for growth in wealth and potentially quality of life
(Montgomery et al. 2000).

There is currently no clear definition for proxy in RS-based studies, though
proxies play a critical role in this field. Considering the growing role of proxies
in RS, similarities and differences can be found when compared with the
traditional use of proxies, particularly in the wider geosciences (including
climatology). In all disciplines, proxies have been used as indirect variables to
determine or constrain unobservable or immeasurable variables or as physical
variables to go back in time and measure the immeasurable or unobservable
parameters because of lack of data from that time. However, passive RS is by
definition an indirect form of measurement and an information source that
acquires data at a certain time. By that logic any image derivative or index
measure is a proxy. Therefore, the traditional definition of the proxy cannot be
used in this field. In this paper, the term proxy is defined as use of observable
physical features or directly measurable variables to understand and extract
what actually exists on the ground, but what is not directly observable or
measurable from RS data. For example, the proportion of built-up and
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vegetated area has been measured and used as a proxy to determine a
settlement type to determine the vulnerability of such settlements to disasters
(Ebert et al. 2009). Proxies can also be separated into two groups based on
their use in the RS field:

(i) not-directly observable physical parameters, e.g. use of shadow to
determine the height of an element at risk (building) (Contreras et al. 2016;
Kerle and Hoffman 2013),

(ii) and measures to assess processes and functions, e.g. the building
morphology and use to determine functionality of buildings and urban areas to
assess the post-disaster recovery processes and vulnerability (Liu et al.
2017a).

2.3 Methods

We systemize the published literature based on classification by (i) DRM stage
(focus on pre- and post-disaster) zooming into vulnerability, resilience,
damage and recovery assessments practices, and by (ii) the type of
environment changes in which a proxy tries to capture. Each is common in
DRM literature and fits well the main purpose of this article. Following (Mcdem
2005), we differentiate between 4 types of environment: (1) the built-up
environment divided into ‘buildings’, ‘transport’ and ‘others’; (2) the economic
environment with ‘macro, regional and urban economics’ and ‘logistics’
subcategories; (3) the social environment covering ‘services and infrastructure’
and ‘socio-economic status’; and (4) the natural environment.

This review is based on a systematic literature search, performed in summer
2018, using several databases (Web of Science, ScienceDirect,
SpringerLinkjournals, Taylor&Francis and Scopus). We select the articles for
this review, using the following keywords: indirect, proxy, proxies, index,
indices, indicator, and remote sensing, GIS, vector, raster, map, satellite
image, aerial image, lidar, UAV, UAS, drone, crowdsourced, ground image,
ground photo, and resilience, resilient, adaptive capacity, coping capacity,
preparation, prevention, vulnerability, damage, response, impact, rescue,
recovery, reconstruction, rehabilitation and relief. These keywords are selected
to address the goal of the review: to provide a systematic categorization of
proxies for DRM and resilience, supporting them with some key citations and
relevant state-of-the-art examples. Finding relevant papers for this review was
difficult because not necessarily all of the papers use keywords to describe
their indirect measurements (proxies). Indeed, with nearly every type of
passive RS being per se indirect, every form of processing of such data
inherently uses proxies. Furthermore, there are many commonly used proxies
(e.g., NDVI for vegetation cover extraction, the number or configuration of
buildings to extract information about urban sprawl and presence of slums,
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nightlights to detect electrification) that researchers accept as natural RS-
based measurements, without labeling them as proxies. Hence, there may be
additional studies using RS-based proxies that are not included in this review
due to different terminology. Moreover, there might be uncertainties in the
used terms for the selected pre-and post-disaster situations, which also made
it hard to find relevant studies. For example, for post-disaster damage
assessment, similar key phrases have been used such as response to a disaster
(Gil and Steinbach 2008), and impacts of a disaster (Mohan and Strobl 2017).
Naturally, to the best of our knowledge we have carried the search as
comprehensively as possible. Since the purpose of this article is to provide a
structured overview of existing approaches with exemplary citations on key
studies rather than perform a full coverage of the literature, the core
conclusions are not affected. The review covered journal publications, book
sections and conference publications that can be retrieved either via the
research engines employed or the websites of the main RS conferences. Only
English language papers were considered.

2.4 Remote sensing-based proxies for DRM in
urban areas

In total, we identify 114 key publications. Out of these, 52 papers address
damage assessment and 21, 40, and seven articles focus on recovery,
vulnerability, and resilience assessments, respectively. Papers with a focus on
two DRM areas, e.g., both damage and recovery assessments are counted on
both of them separately. A chronological overview of the publications shows
an increasing trend in studies for RS-based proxy literature for urban DRM
(Figure 2.1). Continuous progress in RS technology and sensors, which
supplies ever more diverse and detailed image data to a growing number of
communities, is one of the reasons behind this increase. Furthermore, an
understanding that DRM assessments have to go beyond capturing the physical
impact, calls for a need for indirect measurements, which also contributed to
this increase.
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Figure 2.1 Number of annual publications on remote sensing-based proxies for Disaster
Risk Management (DRM). Papers with a focus on two DRM areas, e.g., both damage and
recovery assessments, are counted on both of them separately.

Figure 2.2 shows the number of RS-based proxies that have been developed
for each component of DRM. The built-up environment is the most frequently
studied one with 35 RS-based proxies developed. Natural environment
accounts for the lowest number of developed RS-based proxies, offering a
choice of 13. Furthermore, the Economic and Social environments both have
21 developed RS-based proxies. Some proxies that are used interchangeably
in more than one area, e.g., damage and recovery assessments, are counted
on all of the used categories separately.
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Figure 2.2 Number of developed remote sensing-based proxies for DRM in each
environment (Built-up, Economic, Social, Natural). The proxies that are used
interchangeably in more than one area, e.g., damage and recovery assessments, are
counted on all of the used categories separately. However, the green colored bar shows
the total number of unique RS-based proxies for each environment.
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2.4.1 Built-Up RS-Based Proxies

The build-up environment in urban areas tends to be significantly impacted
during a disaster and these adverse impacts are relatively easy to detect. It
makes this category the most studied in the RS literature (Figure 2.1), with
the majority of RS-based proxies being developed here as compared to other
environments within urban DRM (Tables 2.1-2.3). To discuss and explain the
proxies in detail the built-up component is separated into three main
categories: Buildings, Transport, Others.

2.41.1 Buildings category

The predominant land cover in urban areas is the buildings class. This is why
one of the mostly used proxies for damage (Kerle and Hoffman 2013) and
recovery (Brown et al. 2010b) assessments in urban DRM is extracting the
status of the buildings. For example collapsed/damaged or reconstructed
buildings are detected either using multi-temporal RS data by comparing the
pre-event and post-event situations (Janalipour and Taleai 2016), or only using
mono-temporal RS data acquired after the disaster (Turker and Sumer 2008).
For example, Bevington et al. (2010) identify the damage level in urban areas
after the Haiti earthquake by extracting buildings damage using qualitative
analysis from satellite imagery along with the integration of visual field data.
Similarly, Chen et al. (2003) use aerial photography to identify collapsed and
damaged buildings (residential houses), and develop a damage pattern mining
framework to detect them. Besides, the physical changes in the recovery
processes are assessed mostly using a pathway from rubble of collapsed
buildings to standing (reconstructed) buildings. Hence, Platt et al. (2016) use
the reconstruction of buildings as a proxy for recovery assessment after an
earthquake. Several studies also employ this proxy for physical recovery
assessments (Brown et al. 2015; Brown et al. 2010a; Brown et al. 2011; Brown
et al. 2008; Costa Viera and Kerle 2014; Platt et al. 2016). A reconstruction of
some specific buildings (e.g. commercial buildings) is also used as a proxy for
socio-economic recovery assessments (Costa Viera and Kerle 2014). However,
all of them disregard the functional recovery assessment of buildings, which
indicates whether a building is operating and/or the building is being used for
its intended type of activity (e.g., commercial).

In addition, the value of point height change has been used as a proxy to
extract information for grading the damage for each building using pre- and
post-earthquake DEMs (Feng et al. 2013). Although this proxy provides a good
source of information to assess per building damages, it cannot detect
damages that do not necessarily change the value of the height of the
buildings, such as cracks and holes in facades.
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Some proxies are considered as higher level ones due to their indirect
observability in addition to indirect interpretations to indicate something
meaningful for computation. One of them is shadow, which has been used in
the DRM context to extract information about
collapsed/damaged/reconstructed structures from RS images (Huang and
Zhang 2012; Prince et al. 2017; Tian et al. 2017; Turker and Sumer 2008).
Kerle and Hoffman (2013) provide a comprehensive discussion of pros and
cons of using shadow as a proxy to detect building-based changes. They
demonstrate that although missing or smaller shadows compared to pre-event
situation may indicate a damaged or collapsed buildings (e.g. pancake
collapse), the sun direction differences between the acquired images resulting
in shadow changes, can lead to confusion. Image texture has frequently been
used as a proxy to identify damaged/collapsed buildings (Dong and Shan 2013;
Miura et al. 2013; Samadzadegan and Rastiveisi 2008; Tu et al. 2016),
damaged roads (Sghaier and Lepage 2015; Ye et al. 2014) and, damaged areas
(Cooner et al. 2016; Gao et al. 2015) from RS imagery. Damaged
buildings/areas have more irregular texture than intact ones (Samadzadegan
and Rastiveisi 2008); therefore, the damaged/collapsed ones can be extracted
by comparing their textures. However, this proxy may not be reliable in
detecting damages to informal settlement (slums) since they normally have
irregular textures. Moreover, texture has been shown as an useful additional
information for urban structure discriminations, and has been used for building
seismic vulnerability analysis (GeiB3 et al. 2015; GeiB et al. 2016).

In addition, building roof offsets between adjacent buildings have been used
as a proxy to detect pancake collapse, in which the building is characterized
by an intact roof but collapsed floors (Kerle and Hoffman 2013). Building
material has been used for vulnerability (Costanzo et al. 2016; GeiB et al.
2015) and resilience assessments (Qasim et al. 2016; Rezaie and Panahi 2015;
Yuan Zx and Lm 2004). Building material detection from RS data is typically
based on the interpretation of rooftop colors from aerial or satellite images
without considering other materials of building (e.g. building wall materials).
Data by drones/UAV on facades status have a potential to offer more reliable
proxies for building material analysis/assessment due to providing information
about the walls and other elements of the buildings in the facades in addition
to their rooftops (Ilehag et al. 2017). Energy loss by buildings has been used
as a proxy for recovery (Costa Viera and Kerle 2014), where a decrease in
energy loss of a structure is considered as a sign of positive recovery as it
indicates an improved building standard. This proxy is extracted based on the
heat level of structures using hyperspectral imagery. A lower heat level of a
house shows a lower energy loss level. The rate of energy loss reduction of
houses demonstrates their insulation level and is related to building materials
and overall construction quality. However, a non-functioning building does not
produce energy (heat), and thus, when compared to others shows a low energy
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loss, which can lead to inaccurate results in the extraction of the insulation
level of buildings. Meanwhile, this point also demonstrates that the energy loss
of buildings can be used as a proxy for functional assessment of buildings.
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Debris

Rubble piles

Figure 2.3 Examples of remote sensing-based built-up proxies. (a) Roof with dislocated
tiles, (b) cracks in concrete fagade, (c) cracks and hole in brick fagade (Galarreta et al.
2015), (d) inclined building (Galarreta et al. 2015; Tamkuan and Nagai 2017), (e) debris,
rubble piles, spalling (Vetrivel et al. 2016a) and (f) fagcade windows symmetry (Tu et al.
2017b).

Several proxies rely on geometric and morphological characteristics of built-up
components to extract detailed information about structural deformations of
buildings. They are used to compute the damage ratio of buildings. Gerke and
Kerle (2011) use the discontinuity of surface of building rooftops and vertical
walls as a proxy for damage detection. They show that continuous roofs
indicate intact buildings. In addition, Galarreta et al. (2015) identify cracks and
holes in the building roof or facades, intersections of cracks with load-carrying
elements and dislocated tiles (Figure 2.3a-c) as proxies to be utilized to assess
per-building damages after a disaster. Since these details can only be extracted
using VHR images and height data, UAV images were used to produce 3D point
clouds to extract them. The results illustrate the efficiency of using those
proxies for building-based damage assessment and classification when UAV
data are available. Tamkuan and Nagai (2017) used similar proxies: cracks,
displaced and collapsed roofing tiles, wall mortar that is somewhat peeled off,
or inclined buildings (Figure 2.3d) to evaluate and classify the building-based
damages, e.g. roof tile displacements and inclined buildings are used as proxies
for detecting slightly and heavily damaged buildings, respectively. Rubble piles
and debris (Figure 2.3e) are the first features to draw attention and have been
frequently used as proxies for damage detection (Jiang and Friedland 2015;
Maruyama et al. 2011; Rastiveis et al. 2015; Rastiveis et al. 2013; Sang et al.
2015; Tu et al. 2017a), while spalling of buildings (Figure 2.3e) also is one of
the features for heavy damages which has been used for damage detection
with UAV (Vetrivel et al. 2017; Vetrivel et al. 2016a) and satellite images
(Vetrivel et al. 2016b). Furthermore, geometric deformation of entire buildings,
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such as changes in building shape and size, is employed as a proxy to extract
the partly damaged buildings using satellite images (Wang et al. 2011).
Change in the symmetry of windows on the facade of a building serves as a
proxy for damage assessment from oblique aerial imagery (Tu et al. 2017b).
To do so, local symmetry points are detected in a sliding window. Then
histogram bins of those points in the vertical and horizontal directions are
generated to distinguish damaged and undamaged building facades using the
Gini Index. Using changes to different components of the buildings, e.g. fagade
and wall, as a proxy to evaluate damages to the buildings in detail remains a
challenge and continues to be actively studied (e.g. Duarte et al. (2018)).

Further improvements are required for robust and accurate damage
assessment per building. This can be done by extracting structural damage
patterns from RS data, for example by making use of the characteristics of
facade wall geometry, similar to using facade windows symmetry (Figure 2.3f)
(Tu et al. 2017b), wall slenderness, area of wall, or use of misalignment of wall
openings (Ferreira et al. 2014) as RS-based proxies.

Building morphology acts as a proxy to extract building-based land use
(Borfecchia et al. 2010; Brown et al. 2015; Contreras et al. 2014; Platt et al.
2016) and to measure living conditions (Brown et al. 2010a; Brown et al.
2010b; Costa Viera and Kerle 2014). It has been used for post-disaster
recovery and vulnerability (Borfecchia et al. 2010) evaluations, but hardly in
other DRM situations. In a different approach, Miller et al. (2011) apply the
position of buildings in relation to the street level as a proxy to determine the
likelihood of constructions to suffer damage in case of a flood event and assess
the building vulnerability. Accordingly, buildings with lower elevations than the
street are more vulnerable.

Building-based functional assessment has not been sufficiently addressed
through the developed proxies that only consider the land use information. For
example, functionality of the buildings may change during the post-disaster
recovery phase, which cannot be identified only by extracting the reconstructed
buildings. Nevertheless, fagades are good sources of information for building-
based functional assessment, and new proxies could make better use for
example of the presence of cars in a driveway, flower pots in front of windows
of residential buildings, or presence of panel and banners on top of shops for
extracting the functional use of buildings.

24.1.2 Transport category

Transportation is also a vital component for DRM as it provides accessibility to
different locations within urban areas. One of the first emergency activities in
post-disaster situations is to reopen blocked roads to reach damaged areas for
rescue operations. Road network connectivity and condition, i.e. accessibility
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(Pitts and So 2017) has been used as a proxy for damage assessment. In
addition, monitoring this proxy over a long period of time after a disaster also
contributes to measuring recovery of the area (Brown et al. 2010a; Costa Viera
and Kerle 2014). In terms of more detailed proxies, debris on the road (blocked
road) (Brown et al. 2011) and condition of bridges and transport facility (Platt
et al. 2016) have been proposed to evaluate the transportation condition for
urban DRM. Presence of vehicles has also been used as a proxy to evaluate the
accessibility of the roads after a disaster (Brown et al. 2010a). However, the
presence of vehicles on a road does not necessarily signal good condition and
usability of the roads. On the other hand, reconstruction of bridges and roads
is a reliable proxy for road accessibility analysis after a disaster.

In another study, Liu et al. (2017a) utilize length of roads as a proxy to
evaluate the storm surge vulnerability of urban area, and Brown et al. (2015)
use it for recovery assessment. However, a non-functioning road does not
demonstrate the successful recovery processes. In a different study, Kumagai
(2012) estimate width of roads as a proxy to assess the vulnerability of the
roads to blockades. The results show that in a dense urban area, in which high-
rise buildings exist and their blow-out debris or in case of collapsing during a
disaster event can block the road, width of roads can be used as a reliable
proxy to assess the vulnerability of the transport network. In a similar study,
Hu et al. (2017) rely on road network density as a proxy for disaster
vulnerability assessment. Although denser road networks and wider roads can
increase the chance of having access to damaged areas after a disaster,
occupying urban areas to reach denser road ratios and wider roads is a
controversial. Similar problems exist in using proportion of low-grade highways
such as county roads (Ye et al. 2010) as a proxy for vulnerability assessment
of a city. High proportion of low-grade highways indicates a less developed
transportation infrastructure, which leads to higher level of vulnerability of
urban areas.

24.1.3 Others

One of the unique features of tsunami inundation zones important during and
after an event is the level of sea water penetration on land. Thus, RS studies
have focused on extracting water bodies from the post-event images as the
first step to use it as a proxy for damage assessment (Koshimura et al. 2014).
Similarly, surface water areas (level of flood water coverage) serves for
damage (Adriano et al. 2014; Buehler et al. 2006) and recovery assessments
(Brown et al. 2008). Furthermore, debris line acts as a proxy to identify the
impact of water related disasters such as tsunami (Chang et al. 2006) and
hurricane (Friedland et al. 2011). The debris line demonstrates how far water
reached inland after a disaster, and it has also been used to identify debris
zone (Jiang and Friedland 2015).
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In a different study, impervious surface ratio is estimated as a proxy to
compute vulnerability of urban areas because the increase of impervious
surface can lead to an increase of volume, intensity, and duration of urban
water run-off, i.e. the duration that water remains on the surface after a flood
(Hu et al. 2017). In addition, Costa Viera and Kerle (2014) used impervious
surface as a measure for recovery assessment.

As a unique recovery situation, after a disaster people that are located in a
temporary shelter during the reconstruction processes move back to their
permanent houses when the reconstructions is completed. Consequently,
change in the ratio of permanent buildings to temporary accommodations
serves as a proxy for movement of the population from temporary
accommodation to permanent houses and as a successful recovery process
(Brown et al. 2015; Brown et al. 2008; Platt et al. 2016).

After a flood event, drainage plays an important role to evacuate flood waters,
with an increase in drainage density reducing the vulnerability from the
affected area; therefore, it has been used as a proxy for urban flood
vulnerability assessment (Chen and Chen 2009; Ouma and Tateishi 2014;
Rimba et al. 2017; Sowmya et al. 2015). In contrast, a higher river network
density ratio indicates a high vulnerability due to the relatively larger amount
of flood-prone regions during a flood event (Hu et al. 2017).

2.4.2 Economic RS-based proxies

The nature of economic and business flows associated with functions and
processes in urban areas is not directly observable and measurable through
RS data. Hence, the disruptions to the functioning of the economic environment
is one of the least studied topic in urban DRM. To discuss and explain the
proxies for the economic component in details, we differentiate between two
main categories — (macro, regional and urban) economics and logistics - that
characterize the state of an economy and assure physical flows of economic
activities correspondingly.

2.4.2.1 Macro, regional and urban economics

The macro, regional and urban economics category includes proxies that are
associated with the performance of the economy as a whole and its associated
changes (Table 2.4). Land use data provides information about locations and
types of economic activities. In the urban context it is one of the most popular
proxies used to identify disaster-related economic damage for different
economic sectors (Brown et al. 2011), as well as recovery (Costa Viera and
Kerle 2014) and vulnerability (Guntur et al. 2017). For example, Brown et al.
(2011) applied the building-based land use proxy to identify damages to
commercial and industrial buildings when assessing economic damages from
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the Wenchuan earthquake in China. Similarly, it has been also used for
recovery assessment by extracting reconstructed buildings associated with
economic activities (Brown et al. 2010a; Costa Viera and Kerle 2014). The land
use proxy and corresponding economic activities, their location, public
infrastructure, economic assets and economic capacity, has also been used for
economic vulnerability evaluations of urban areas (Liu and Shi 2017). Although
land use is a crucial source of information with respect to direct impact on
economic activities, it is salient on the detailed economic information such as
type of businesses and operationally of the impacted buildings. Moreover, while
land use proxies can capture direct economic damages to physical assets, it
provides little information about direct damage to building content (e.g.
equipment and furniture) and about indirect damage due to business
interruption.

Nightlight satellite imagery has been utilized to assess the economic impacts
of hurricanes (Bertinelli and Strobl 2013), typhoons (Elliott et al. 2015), and
tropical cyclone (Mohan and Strobl 2017). Nightlight images give an
opportunity to compare changes in night light intensity, which relates to
electricity availability, for before and after a disaster. It has been shown that
a strong correlation exists between night light intensity and GDP (Mellander et
al. 2015; Proville et al. 2017). Furthermore, it has also been suggested as a
potential proxy for economic resilience assessment (The World Bank 2014).
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Disruption of livelihood options for local population is a key component of
disaster risk and resilience assessments. A number of case-based proxies
assess a short-term economic recovery processes after a disaster, in particular
for the fishery and agricultural livelihood activities. These proxies include pier
length, presence of boats (Brown et al. 2010a), shrimp hatcheries and ponds
(Brown et al. 2008), and area of arable land (Costa Viera and Kerle 2014).
Although livelihood sources across study regions, generic proxies can address
it in @ more reliable manner than case-based ones, for example as with the
case of crop recovery (Platt et al. 2016).

Industry is one of the main pillars of an economy. Therefore, urban proxies to
assess industrial recovery include presence of heavy vehicles, chimneys,
warehouses, transportation to move raw materials around site (e.g. conveyors,
pipelines, railroads), and roof color and materials (Brown et al. 2010a; Costa
Viera and Kerle 2014). These proxies for detecting industrial buildings and
industry-related activities are especially useful for assessing recovery
associated with rebuilding and reconstruction. However, they are not always
reliable when used in isolation. For example, the effectiveness of using the
presence of heavy vehicles to detect an industry highly depends on the
acquisition time of RS data, not to mention that not all industries use heavy
vehicles. Hence, using multiple complementary proxies promises to deliver
more robust assessments. Furthermore, building facade materials, in addition
to rooftop materials, can also contribute to extract building use/land use
information (Ilehag et al. 2017).

Building morphology is used as a proxy for extracting building use/land use
information in urban areas (Brown et al. 2010a; Platt et al. 2016).
Characteristics of buildings such as size and shape have been used to extract
morphological information per building and then to classify building use
(Contreras et al. 2014). For example, an industrial building usually has a
complex shape and a large size (Li et al. 2016a). Similarly, and from a wider
point of view, change in urban morphology has been used for economic
recovery assessment by detecting businesses movements and types in large
scales (Hagelman et al. 2012).

Land surface temperature was used to extract evolution of settlement locations
and land use information after the earthquake in L'Aquila city, Italy (Baiocchi
et al. 2017). This proxy is robust when used on coarse resolution data to
extract large size settlement changes. However, it cannot identify any detailed
land use information for those settlements.

There are several RS-based proxies developed for economic vulnerability

assessment, in contrast to other DRM components. For instance, building
geometry and heights have been employed as proxies to assess the number of
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floors of buildings with economic activities. These two proxies may indicate the
density of such activities, which is essential for computing the economic value
of an urban area (Liu et al. 2017a). Building heights, when integrated with
local construction regulations, provide reliable data to compute the number of
floors. Moreover, a calculation of building density based on the number of floors
is reliable (Yu et al. 2010). However, it requires additional RS data such as
oblique imagery or nDSM data (Aubrecht et al. 2009).

Farmland ratio to other types of land uses is strongly linked to economic
activities and can be regarded as a comprehensive characteristics of socio-
economic systems (Chen and Chen 2009). Accordingly, it has been used as a
proxy to detect economic activity, with higher scores signaling lower economic
vulnerability in e.g. a flood scenario [refs]. However, in large regions, which
offer multiple livelihood options, the farmland ratio alone is not a reliable proxy
for identification of economic vulnerability. Moreover, a level of diversification
of economic activities is an important factor in assessing the resilience (Cutter
2016; Rose and Krausmann 2013). Hence, eliciting spatial proxies for a variety
of economic in an ensemble is a promising approach compared to computing
farmland ratio alone.

2422 Logistics

Logistics based on transport networks and facilities are vital aspects of a strong
economy in urban areas. Consequently, their state and performance are
important for urban DRM economic assessment (Table 2.5). Gil and Steinbach
(2008) compute the impact of a simulated disaster on the performance of the
street networks that are not directly affected by a flooding scenario in London.
The potential of street network analysis is to provide objective indicators of
indirect impacts of flooding on urban street networks in unaffected areas. The
indirect effects of business interruption, particularly in a city center, play a key
role in assessing an economic performance after an adverse event. In a similar
study, Contreras et al. (2013) propose spatial connectivity as a proxy for a
post-earthquake recovery assessment. Variables such as distance, travel time
and quality of public transportation are used to compute this metric. These
authors conclude that an efficient spatial connectivity of areas to the central
business district of L'Aquila after an earthquake can decrease the recovery time
due to an agile return of economic functioning. Cox et al. (2011) indicate that
an accessibility and commuting intensity within an urban area - computed
based on resources availability, vulnerability, and flexibility of the
transportation system - significantly boost economic activities. Accordingly,
Hsieh and Feng (2014) propose a model for accessibility analysis as a proxy to
compute an economic vulnerability of an urban are. This proxy is mostly based
on streets connectivity in an urban road network. However, the proposed
connectivity-based approaches need traffic data in addition to RS data to
compute street network performance. In a different study Liu and Shi (2017)
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show that a higher ratio of transportation lands (e.g. roads) and facilities
reduces economic vulnerability of urban areas. However, this proxy also
disregards the functional analysis of the roads and transportation facilities
focusing on the physical infrastructure side only.

Table 2.5 Remote sensing-based economic proxies for urban DRM, Logistics category.
Mono and Multi refer to mono-temporal and multi-temporal RS data that used for
extraction, respectively.

Used in Used RS z z Ke
Proxy Essence disaster data to S g ¢ ¥
phase extract ° = references

Indirect street Impacts of an event Damage VHR (Gil and
network not only on the images Steinbach
performance effected roads but v v 2008;

also on the other Penchev

streets 2016)
Spatial Spatial connectivity Recovery VHR (Contreras et
connectivity to central business images 4 V' al.2013)

district
Transportation High level of Vulnerability VHR (Liu and Shi
land and transportation images 2017)
facilities facilities reduces v

economic

vulnerability
Accessible Fragile accessibility Vulnerability VHR (Hsieh and
vulnerability/ increases the images v Feng 2014)
connectivity economic

vulnerability

2.4.3 Social RS-based proxies

The social dimension dealing with the status of people in a community is one
of the most important components in DRM. Yet, few reliable RS-based proxies
exist to address it. This is mostly because the social dimension of disasters
embraces an individual status of community members, diversity of livelihoods
(economic activities they may engage in), level of inequality, community
cohesion and level of services. Hardly any of these are directly captured
through physical infrastructure or other spatial data that can be extracted using
RS data. Tables 2.6 and 2.7 show existing RS-based proxies in the social
environment for urban DRM. To discuss and explain the proxies in detail we
separate them into two categories: services and infrastructures, and socio-
economic status.

2.4.31 Services and infrastructures

Social services and infrastructures are one of the most important tools to
assess the social features and characteristics of a community in an urban area.
Accordingly, several proxies relying on RS data can be used in the urban DRM
context. Urban primary social facilities and services, such as administrative

52



Chapter 2

services, schools, healthcare facilities and religious buildings, which are crucial
sources for networking and building social ties and cohesion, provide a proxy
information on social damage and recovery assessments (Brown et al. 2015;
Brown et al. 2010a; Platt et al. 2016). In addition, local facilities in use such
as car parking, highways, city gardens, children playgrounds, sport
playgrounds have been used to assess the social condition of the people living
in the shelters and temporary accommodation in recovery processes (Brown et
al. 2010a; Contreras et al. 2017; Costa Viera and Kerle 2014). Meanwhile, the
number of urban facilities such as hospitals and schools serve as a proxy to
assess the social resilience of a community to disaster. An increase in the
number of facilities indicates an increase in social resilience (Contreras et al.
2017).

To prevent a disease outbreak during the disaster recovery stage it is crucial
to monitor and avoid overcrowding in campus/temporary settlement sites
(Jafari et al. 2011). Here the minimum covered living space can contribute to
measuring overcrowding in the site using RS (Brown et al. 2010a; Costa Viera
and Kerle 2014).

During a recovery process, moving population that has been located in
temporary accommodation back to their permanent houses is one of the
positive processes because it increases people’s ability to return to normal lives
and offers stability. Therefore, temporary accommodation size —as a proxy to
estimate the total population living in temporary accommodation- can shed
light on the quality of life (Brown et al. 2010a; Costa Viera and Kerle 2014).
However, in cases where the temporary accommodation is not removed, the
movement of population cannot be monitored using this proxy. Moreover, the
destination of the population movement cannot be extracted using this proxy.
For example, people may migrate to other cities rather than moving back to
their former houses, which happened on a large scale in New Orleans after
hurricane Katrina (Sastry and Gregory 2014).

Pedestrian access/mobility serves as a proxy for evaluation of the recovery
processes that is linked to urban transportation facilities (Song and Knaap
2004). It indicates inequalities in mobility and access of people to social
facilities, which depends on the size of block parcels in the urban area, number
of street network intersections and distance to those facilities (Costa Viera and
Kerle 2014). Building height, similar to its use in the economy environment,
indicates social recovery. For example, commercial and industrial
developments indicate employment facilities and new job opportunities (Costa
Viera and Kerle 2014). However, often buildings are in a mixed use, i.e. half
commercial and half residential, limiting the application of this proxy. In this
case, using UAV/oblique images, which contain information about the fagades
of the buildings, can be useful. For example, one can extract signs/banners of
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shops located on buildings’ fagades to identify a functional use of these
buildings. Number of inhabitants per settlement indicates the recovery
processes, serving as a proxy for a contentment level of new settlements. Low
occupancy numbers in new developments demonstrate the dissatisfaction in
new settlements, usually due to lack of facilities, infrastructure and job
opportunities (Engineering 2013). RS data is used to detect new settlements
and demographic data to extract number of inhabitants (Contreras et al.
2017). Transportation facilities are a vital infrastructure. Hence, their
availability define the better life condition for the people living in the region
and form the basis for assessing social vulnerability of an urban area (Liu et
al. 2017a). In addition, a distance between buildings and lifelines (e.g.,
hospitals) is important in emergency cases: the longer this distance the higher
is the social vulnerability of urban areas (Armenakis and Nirupama 2013; Ebert
et al. 2009; Patino et al. 2016; Roy and Blaschke 2015).

Potential to evacuate based on the density of available roads (road/km?2) has
been used as a proxy to assess social resilience of an urban area during floods
(Kotzee and Reyers 2016). Although the availability of evacuation points is
important, distance to them and early warning systems are also crucial. As
another disaster resilience proxy, presence of open spaces including free and
green areas and the street networks have been used for providing services,
gathering and social interactions after/during a disaster (e.g. an earthquake
(Villagra et al. 2014)). In addition, open spaces such as hills and street
networks are significant for evacuation purposes (Allan and Bryant 2011;
Villagra et al. 2014)
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2.4.3.2 Socio-economic status

The socio-economic status of households is estimated based on the location
information of the houses in the city and topographic area characteristics for
social recovery and vulnerability assessments (Costa Viera and Kerle 2014;
Ebert et al. 2009). Urban areas with poor road quality, little available
infrastructure and economic development, little vegetation and situated in
hazard-prone areas are the most socially vulnerable areas. However, these
proxies are not necessarily correct for all cases in urban areas. For example,
not all people located in hazard-prone areas (e.g. steep slopes or lower
elevations) have a low socio-economic status; in contrast, in some cases there
are luxury buildings located in areas with steeper slopes (Ebert et al. 2009;
Stefanidis and Stathis 2013) or close to a waterfront (Huang and Li 2016; Xian
et al. 2015). Therefore, an effective way of using those proxies is to use them
as an ensemble to describe the socio-economic status of an urban area. In
addition, image-based texture serves as a proxy to extract homogeneity of an
area (Ebert et al. 2009; Mick et al. 2012; Sumaryono 2010). It is a good
complementary source of information for a settlement type extraction from
images, e.g. slum areas, even using medium resolution images (Kuffer et al.
2016). Similar to texture analysis, De Almeida et al. (2016) used irregular
clusters of roofs in an urban area as a proxy to extract socially vulnerable
areas, based on the fact that buildings poorer area are often not regularly
constructed. A share of slum areas in a city compared to regular or high-income
housing may serve as an indicator of social vulnerability. Muller (2013) also
used the amount of green spaces around each building block to estimate the
socio-economic status of householders based on the findings of Stow et al.
(2007). Accordingly, the occupants of buildings surrounded by more green
spaces - estimated using land cover and land use information to extract socio-

economic status - are less socially vulnerable to hazards.
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2.4.4 Natural RS-based proxies

Table 2.8 lists existing RS-based proxies capturing the natural environment for
urban DRM. As one of the most important sources of information for assessing
urban DRM, the natural environment relies on the vegetation cover
information. Vegetation spatial heterogeneity serves as a proxy to extract
changes in vegetation pattern, and to monitor ecosystem changes before and
after a disaster at the landscape scale for natural damage assessment (Wang
et al. 2017). Spatial heterogeneity may affect functions and processes in
ecological systems, which is a key to assess ecosystem changes (O'neill et al.
1988). Vegetation cover has been used as a proxy to extract the damages to
the natural and ecological environment of an urban area by comparing the
vegetation cover before and immediately after a disaster (Adriano et al. 2014;
Yang et al. 2011). Decrease in vegetation cover ratio of an area demonstrates
the ecological damage ratio. In a different study, Li et al. (2016b) use
vegetation cover change to assess the long-term effects of a hurricane in the
urban natural environment recovery in New Orleans after Hurricane Katrina.
Specifically, using MODIS and Landsat images, Li and colleagues assess the
period from immediately after the event to ten years later to discover that a
decade later the vegetation cover is still at a lower level than before Katrina,
indicating that the area has not yet fully recovered. Similarly, Brown et al.
(2011) and Brown et al. (2008) use vegetation cover maps to assess the
changes in vegetation/natural environment patterns in the recovery processes
using NDVI between yearl-year2. In addition, the cover ratio for various
vegetation classes can provide detailed and reliable information for damage
and recovery assessments. Fractional vegetation cover (Jiao et al. 2014; Yang
and Qi 2017), which represents the vegetation ecological function, and
vegetation cover type (Yang and Qi 2017), have also been used to assess the
vegetation recovery after a disaster. Fractional vegetation index can be
computed using NDVI values of vegetation and soil, and is a powerful tool for
vegetation cover classification and extraction (Liu et al. 2009). A change
analysis allows to compute the vegetation recovery rate. In addition,
vegetation offers an important ecosystem service in flood-prone areas by
providing a low drainage density and high permeable surfaces, thus
contributing to preventing floods (Pallard et al. 2009). Accordingly, vegetation
cover ratio has also been used as a proxy for vulnerability assessment of urban
areas, particularly for water-related hazards (Chen and Chen 2009; Liu et al.
2017a; Rimba et al. 2017).

Furthermore, vegetation cover ratio has been used as a proxy to evaluate the
biophysical (Rimba et al. 2017) and ecological (Zhang et al. 2015)
vulnerability, as well as resilience. A higher ratio of vegetation cover signified
and increase in resilience (the vegetation coverage is one of the most
important indicators for measuring ecological capacity for self-restoration). In
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a similar study, Mainali and Pricope (2017) use Standard Deviation of NDVI as
a proxy to extract diversity of the plants in vegetated areas for vulnerability
assessment. Debris and floodwater removal are also important for
environmental recovery after a disaster, as it provides space for the vegetated
area to regrow (Brown et al. 2008; Burton et al. 2011; Costa Viera and Kerle
2014; Finch et al. 2010; Platt et al. 2016).

The environmental role of public spaces and urban green areas, in addition to
providing clean air, is to provide habitats for biodiversity and helps to regulate
temperature. Therefore, it has been used as a proxy to assess natural recovery
processes (Brown et al. 2015; Brown et al. 2010a).

Presence of debris, mud and salt in water as an indicator of water
contamination (Brown et al. 2010a; Costa Viera and Kerle 2014) and
availability of land as a provision of access to recreation have been employed
as proxies for natural recovery assessment. Costa Viera and Kerle (2014) used
permeability of surfaces to measure environmental quality as a proxy for
recovery assessment. For example, the permeability of impervious surfaces is
very low in urban areas, which leads to an increase in flood frequency and
storm flows, and consequently influences urban climate and pollution levels
(Weng 2012). Similarly, low levels of permeability of surfaces increase the
vulnerability of the area to water-related hazards (Kablan et al. 2017).

Disasters destroy the natural environment directly through landslide and
flooding, or indirectly by human activities such as intense construction work
after a disaster in the recovery stage (Brown et al. 2010a). Consequently,
monitoring land cover provides a proxy information on the natural environment
recovery, e.g. land cover change from tree/forest to building as a result of
constructions during the recovery processes (Costa Viera and Kerle 2014;
Wagner et al. 2012). Land cover change assessments also contribute to
monitoring land degradation, erosion and deforestation in the recovery
processes (Cebecauer and Hofierka 2008; Quan et al. 2011).

Land cover and land use types are also used to indicate the vulnerability of the
natural environment (Guntur et al. 2017; Ntajal et al. 2017; Poompavai and
Ramalingam 2013; Rimba et al. 2017; Taubenbdéck et al. 2008). For example,
expansion of urbanized areas, cultivation development, and decreasing of
natural forest lands increase the eco-environmental vulnerability to hazards
(Liou et al. 2017). In another example, Mainali and Pricope (2017) associate
built-up and bare land with high vulnerability ranks and forest land - with low
natural vulnerability rank (Mainali and Pricope 2017). In addition, a high
proportion of managed natural land cover indicates greater vulnerability
because vegetation and crop yield are negatively influenced by environmental
degradation (Yoo et al. 2014).
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Evapotranspiration is a combined process of evaporation and transpiration and
is an important factor in the hydrological cycle. Consequently, it plays a role of
a proxy to evaluate flood vulnerability through extracting vegetation cover and
type (Liu et al. 2017b).

Frazier et al. (2013) use gross primary production (GPP) as a proxy for
ecosystem-wellness derived from RS data, and assess the effect of resilience
of ecological capital in DRM, particularly in recovery processes. GPP represents
the photosynthetic capacity of vegetation, which can be used to estimate the
vegetation productive capability. Liu et al. (2010) employ it also for damage
and recovery assessments.

Ecological RS studies offer robust proxies applicable for urban DRM. For
example, high plants productivity is directly related to good soil moisture and
nutrient retention. The amount of soil organic carbon is a proxy to assess them
and can be extracted using RS data (Bhunia et al. 2017; Rasel et al. 2017).
Therefore, areas with higher soil organic carbon are more suitable for
agriculture and consequently more resilient to disasters, particularly those
linked to climate change (Lal 2006).
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2.5 Conclusions and discussion

This article surveyed recent advances in the development of RS-based proxies
for urban DRM, focusing on the literature for both pre- and post-disaster
situation assessments. Specifically, damage, recovery, vulnerability, and
resilience RS-based proxies were identified along the four dimensions of built-
up, economic, social, and natural environments. The structured review of 109
published articles shows that a comprehensive toolkit of RS-proxies has been
developed and is widely used in practice. We observed an increasing use in the
number of proxy-based studies in urban DRM. This is due to the availability of
diverse and detailed image data and rapidly increasing computational power to
a growing number of communities. This also shows an increasing need for and
interest in proxy-based measurements.

Despite significant progress, there are gaps evident in the field that demand
further research to focus on a number of directions:

(1) A rich set of RS-based proxies currently focuses on the physical side of
urban DRM. Yet, urban DRM assessments rarely go beyond aggregated
proxies for the socio-economic environment and the offered proxies are
very limited to assess functional aspects. For example, although a good
number of proxies has been developed for building-based damage
detection, none of them addresses the functionality of the buildings that is
also a critical information source for all aspects of urban DRM. Assessing
the extent of damage to socio-economic activities and their functional
recovery is essential and will likely be possible via a complimentary set of
proxies rather than a single index.

(2) RS-based proxies have been developed in several different fields that can
be interchangeably used for other DRM phases with little modification in
estimation methodology. There are relatively few detailed proxies for
recovery assessment compared to damage assessment in built-up
environments (Figure 2.2), whereas most of the damage assessment
proxies can also be used for recovery assessment. The opposite is also true,
and some of the RS-based proxies that have been developed for other
environments, e.g. in the economics environment, can also be used for
damage assessment. Furthermore, this statement is also correct with
respect to the use of proxies for other risk elements in urban DRM: e.g. GPP
that has been used for economic recovery and resilience assessments, could
also be used for damage and vulnerability assessments. As a result,
developing proxies focused on a particular risk element may overlook
similar proxies, which have been developed to address the same point but
under different names. Our review integrates these different streams of
literature and offers a structured overview of the state-of-the-art RS
methods across various DRM phases. More work on aligning methodological
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advancements and use of similar RS tools, data and analysis to address
DRM at various stages is vital to advance the field without reinventing the
wheel.

(3) Using insights from other disciplines in developing RS-based proxies offers
possibilities to intelligently connect various proxies that allow to
comprehensively assess vulnerability, resilience, damage and recovery for
urban DRM beyond the physical impact alone. As suggested in this review,
a structured analysis of specific proxy-based examples and finding
important proxies from structural engineering, economic, social and natural
sciences for urban DRM will be instrumental in creating a public
interdisciplinary library of methods for urban DRM. If maintained and
updated by an interdisciplinary scholarly and practitioners community, such
an open library will always rely on the state-of-the-art RS data and
processing methods to extract them. It will help the RS community to fill
the gap in comprehensive assessments of the different DRM phases in urban
settings and beyond.

(4) Disaster resilience is one of the significant components of DRM, which has
been gaining increasing importance in this field. However, only seven of the
reviewed articles focus on resilience (Figure 2.1), and only 7 RS-based
proxies have been developed for its assessment (Figure 2.2). These
numbers indicate a significant need for further studies in resilience
assessments. Modifying and using RS-based proxies form other disciplines
such as vulnerability, which is comprehensively discussed in this paper, can
help the RS community to develop proxies for resilience assessments.
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Abstract

Natural disasters are projected to increase in number and severity, in part due
to climate change, and monitoring and evaluation of the post-disaster recovery
process has become crucial to support decision makers and governments after
a disaster. Remote sensing as an efficient tool has been used for different
components of the disaster risk management (DRM) and recovery assessment,
mostly focused on physical assessments. However, a comprehensive recovery
assessment includes socio-economic and functional aspects in addition to
physical ones, which needs to be approached indirectly using proxies. In this
study, we proposed a conceptual framework for post-disaster recovery
assessment using remote sensing-based proxies. Then we further improved
the framework and linked it to resilience assessment and intervention impact
evaluation hypothesizing that resilience-enhancing interventions should result
in less damage during a hazard event, or at least quicker recovery. We
assessed recovery over a 3 year period of seven municipalities in the central
Philippines devastated by Typhoon Haiyan in 2013. We used very high
resolution optical images (<1 meter), and created detailed land cover and land
use maps for four time points before and after the event, using a machine
learning approach with extreme gradient boosting. While a number of causal
links between intervention parameters and reconstruction was found, the
common notion that a resilient community should recovery better and more
quickly could not be confirmed. The study also revealed a number of
methodological limitations, such as the high cost for typically commercial
image data, the remote sensing analysis likely overestimating damage and
thus providing incorrect recovery metrics, and image data catalogues
especially for more remote communities often being incomplete.
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3.1 Introduction

The average annual global economic damage caused by disasters is difficult to
determine, with estimations ranging from about 300 billion US$ (Mochizuki and
Naqgvi 2019; UNISDR 2015a) to more than 520 billion US$ (The World Bank
2017). Predictions of future damages, in particular as part of wider expected
losses resulting from climate change, are even harder, with different warming
scenarios by the Intergovernmental Panel on Climate Change (IPCC) leading
to a wide range of consequences (Kharin et al. 2007), including variable
changes in hydro meteorological hazards (Bengtsson et al. 2006).
Nevertheless, it is widely accepted that economic consequences will be both
severe and spatially highly variable (Hsiang et al. 2017; Tol 2018).

Post-disaster recovery is one of the four main components of the Disaster Risk
Management (DRM) cycle. It is the process of reconstructing communities in
all their aspects (physical, economic, social, and environmental) to return life,
livelihoods, and the built environment to their pre-impact or even better states
(Burton et al. 2011). In addition, recovery can serve as the window of
opportunity and address the build back better concept.

Post-disaster recovery is the least studied component of the DRM cycle, and
there is a need for a conceptual framework for comprehensive post-disaster
recovery assessment using new technoligies, i.e. remote sensing (RS). The
advantages of RS in terms of synoptic coverage, cost effectiveness, and
flexibility in sampling frequency or sensor choice are well recognized in the
field of disaster risk management (Kerle 2015b). In the existing literature most
of the RS-based methods for recovery assessment focused on the
reconstruction part of the recovery, by using change detection techniques to
extract whether damaged buildings were reconstructed or new buildings or
structures built. In addition, some researchers studied the recovery process in
its long-term phase, utilizing indicators such as the reconstruction of bridges
and roads for accessibility analysis, change detection in land cover
classification to extract environmental changes, and so forth (Brown et al.,
2010). Conventionally, recovery was considered as a predictable and orderly
process (Haas et al. 1977). However, recent studies demonstrated that the
recovery process is more complex (Brown et al. 2015). The complexity of the
recovery process is basically because of being a multi-dimensional process;
indeed, it needs numerous sectors, stakeholders, policymakers, and so on to
take a role and responsibility. Reconstruction and, consequently, recovery
starts after the disaster has happened; therefore, governments and disaster
planners have to make decisions and act quickly. However, on the one hand,
reconstruction of buildings is only the physical part of the recovery, i.e. it omits
other important sides, such as economic, social and environmental aspects.
There are several socio-economic factors that influence the recovery process
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and its rate from early stage such as social interactions (e.g. social cohesion)
(Townshend et al. 2014), or business recovery (Rose and Krausmann 2013).
The principal challenge in utilizing RS for recovery assessment is that most
image analysis methods developed in this domain focus on the detection or
characterization of physical features. Only more recent research has also
looked at non-physical properties such as social vulnerability (Ebert et al.
2009) or functional disaster damage. All make use of physical proxy indicators
(hereafter: proxies) constituting indirect measures that provide insights
regarding not directly observable features or processes (Ghaffarian et al.
2018).

Recently, the Sendai Framework has been defined for disaster risk reduction
as a roadmap to make communities safer and resilient to disasters (Unisdr
2015b). It proposes to use the post-disaster as a window of opportunity to
build back better, increasing the resilience of the community while reducing its
pre-exciting vulnerability. Accordingly, the aim of the post-disaster recovery
will be not only to return the community to normal/pre-disaster situation, but
also to improve the pre-existing physical, social, economic, and environmental
conditions.

Resilience is increasingly becoming a ubiquitous concept in many disciplines,
such as economic, sociology, psychology, and healthcare. It has also been
considered as an emerging research topic in disaster risk management in
recent decades. However, measuring the resiliency of a community has not yet
been sufficiently addressed, and it is a challenging topic for DRM researchers.
Furthermore, resilience assessment can be used for intervention impact
evaluations. It stands to reason that communities that have received several
years of DRR interventions should suffer less damage during a hazard event,
or at least recover more quickly than unassisted communities. However,
assessing the effect of interventions is complicated. This is because of the
difficulty (i) to attribute a certain performance or behavior of people or
governments to specific interventions, especially when different organizations
are active in the area, (ii) to estimate the future effect and value of planning
activities or what people learned in a community meeting, and (iii) to collect
the very detailed socio-economic data needed to support a quantitative impact
evaluation. There has generally been growing interest in transparency and
accountability, with auditing agencies but also donors giving post-disaster
assistance increasingly requesting evidence of the effect of funded
interventions.

Impact evaluations, which can address relevance, effectiveness, efficiency,
impact, or sustainability, usually follow a common procedure: first, evaluators
collect baseline data prior to the start of the intervention. After the program
has been completed and project impacts have crystalized endline data are
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compiled. It is good practice to collect additional performance data during the
program implementation stage to carry out adjustments if needed. Data
collection is performed in treatment and non-treatment communities. Ideally
treatment is assigned randomly (randomized control trial), but if this is not
possible, matching methods can be employed (quasi-experimental design)
(Gertler et al. 2016).

Traditional impact evaluation methods face a number of limitations: (i)
collecting survey data is a time consuming and expensive task (Gertler et al.
2016). Particularly if a program is implemented widely across a country or
region, costs can rise drastically and limit either coverage or detail; (ii)
traditional survey methods require a long planning horizon and are difficult to
implement ad-hoc. This makes it challenging to collect baseline data for
programs that respond to sudden onset disasters such as storms, flooding, or
earthquakes (Leppert et al. 2018); (iii), traditional survey methods are
restricted by access considerations. For example, it is difficult to evaluate
programs that take place in very remote locations without proper road access.
Similarly, the political situation in a country (e.g., military conflict) may
prevent evaluators to collect survey information (Pech 2017).

A prerequisite for employing rigorous evaluation methodologies is sufficient
data availability. Traditionally, evaluations have made use of survey methods
to collect the necessary data before, during and after an intervention. However,
the collection of survey data is expensive and responses may be subjective. In
addition, survey data frequently lack the geographical detail if environmental
changes are to be evaluated (Lech et al. 2018). The use of RS data to
complement traditional evaluation designs offers some major advantages
(Nawrotzki 2019), such as archives that often span decades, and thus the
availability of image data acquired long before the intervention started. Many
satellite products are available free of charge, which may help reduce the costs
for data collection. Finally, geographic data can provide an objective measure
of high detail for changes in environmental conditions, which is difficult to
obtain from survey data alone.

Many methods have been developed to extract information from RS data to
measure and characterize different aspects of disaster risk management
(Coppola 2015; Kerle 2015b). However, most existing studies have focused on
physical assessments using direct observations, be it for hazard or risk
assessment, but also to detect post-disaster damage or recovery. For example,
researchers have assessed the number of buildings collapsed/damaged
(Arciniegas et al. 2007; Saito et al. 2004) and reconstructed (Berke et al.
1993), or estimated their vulnerability (Mueller et al. 2006). However, the non-
physical aspects of DRM, e.g., social and economic properties, are also crucial
and should be assessed (MCDEM 2005). However, this requires indirect
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observations and the use of proxies (Ghaffarian et al. 2018), as demonstrated
in recent studies on vulnerability (Flax et al. 2002; Morrow 1999), resilience
(Burton 2012), damage (Bevington et al. 2010; Bradshow 2004), and recovery
(Rubin et al. 1985). In addition, recent studies showed that most of the
developed proxies for damage and recovery assessments can be extracted
through LC and LU monitoring (Rau et al. 2007; Reif et al. 2011), increasingly
through the use of ML techniques (Sheykhmousa et al. 2019). The growing
sophistication of image-based extraction of both physical and non-physical
indicators of recovery, and thus resilience, suggests a possible role in impact
evaluation, which we test in this work.

Our work focused on the effect of interventions on resilience, i.e. the ability to
rebound from an adverse event, based on the developed recovery assessment
framework with remote sensing. We considered post-disaster recovery to be a
proxy for resilience, and thus used RS to detect evidence of spatially variable
recovery. Similar to (Sheykhmousa et al. 2019) we assessed land cover (LC)
and land use (LU) with machine learning (ML) methods over a 3 year period
following a disaster event to detect the level of recovery across space, which
was then related to intervention information collected in the field. We
developed the proof of concept for a number of barangays (municipalities) in
the Leyte region in the central Philippines, which was severely affected during
Typhoon Haiyan in 2013.

3.2 Data and Methods

3.2.1 Overall approach

Figure 3.1 illustrates the conceptual framework for post-disaster recovery
assessment and overall methodological approach followed in this study. Using
a variety of image-derived proxies that cover the built-up, social, and economic
dimensions we first quantified the damage caused by typhoon Haiyan, followed
by a quantification of the recovery for different post-event years. The spatially
variable recovery performance was considered to reflect the underlying
resilience. In the following we first provide details about the study area and
the satellite data used. Subsequently we explained the developed proxies, and
how they were used in the damage and recovery assessment. Finally the
correlation analysis to link the RS results and the impact evaluation data was
described.
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Figure 3.1 The conceptual framework connecting post-disaster recovery assessment
using remote sensing-based proxies with resilience assessment and impact evaluation.

3.2.2 Study location and image data used

Typhoon Haiyan passed over the Central Visayas region of the Philippines,
crossing the islands of Samar and Leyte on 8 November 2013. With sustained
wind speeds exceeding 310 km/h at landfall, it was one of the strongest tropical
storms on record worldwide. The center of the storm passed close to Leyte’s
largest city and adminstrative center, Tacloban. Reported fatality figures vary
widely, though are inofficially estimated to be in excess of 13,000 (Daniell et
al. 2013) attributable to strong winds and high waves up to 5m along the Basey
and Tacloban coastal area (Lagmay et al. 2015). Other sources reported
heights of up to 7 m in Leyte (Takagi and Esteban 2016), and even 12 m in
Samar (Kure et al. 2016). Structural damage was extensive, with more than 1
million buildings getting partially or completely destroyed in nearly 600
affected municipalities. Leyte alone acounted for a reported 86% of all
casualties, and a quarter of the economic losses relate to destroyed rice and
corn crops (Boschetti et al. 2015).
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Very high-resolution satellite images were used to implement the developed
LCLU classification approach and to extract relevant proxies, shows the

specifications and acquisition times of the images used.
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Table 3.1 Satellite images used in this study.

Area Satellite Acquisition date Time [T0, Spatial
T1, T2, T3] resolution?
[MS; Pan]
Tacloban WorldView2 2013-03-17 TO 2m;0.5m
Tacloban WorldView2 2017-03-18 T3 2m;0.5m
Tacloban GeoEyel 2013-11-10 T1 2m;0.5m
Tacloban GeoEyel 2013-11-12 T1 2m; 0.5m
Tacloban GeoEyel 2013-11-13 T1 2m; 0.5m
Tacloban GeoEyel 2016-04-24 T2 2m; 0.5m
South Leyte WorldView?2 2013-03-25 TO 2m;0.5m
South Leyte WorldView?2 2013-04-02 TO 2m;0.5m
South Leyte WorldView?2 2014-01-07 T1 2m;0.5m
South Leyte WorldView?2 2014-07-16 T2 2m;0.5m
South Leyte WorldView?2 2014-09-11 T2 2m;0.5m
South Leyte WorldView?2 2014-10-21 T2 2m; 0.5 m
South Leyte WorldView?2 2014-12-01 T2 2m; 0.5 m
South Leyte WorldView?2 2016-01-24 T3 2m; 0.5 m
South Leyte WorldView?2 2016-06-24 T3 2m; 0.5 m
Basey WorldView?2 2013-05-18 TO 2m; 0.5 m
Basey WorldView?2 2013-05-18 TO 2m; 0.5 m
Basey WorldView?2 2013-09-01 TO 2m; 0.5 m
Basey WorldView?2 2013-11-19 T1 2m; 0.5 m
Basey WorldView?2 2013-11-21 T1 2m; 0.5 m
Basey WorldView3 2014-12-09 T2 1.3m; 0.31 m
Basey WorldView3 2015-01-10 T2 1.3m; 0.31 m
Basey WorldView?2 2016-06-04 T3 2m;0.5m
Basey WorldView?2 2016-06-04 T3 2m;0.5m
Lawaan WorldView2 2013-05-18 TO 2m; 0.5m
Lawaan WorldView2 2013-05-18 TO 2m;0.5m
Lawaan WorldView2 2014-01-07 T1 2m;0.5m
Lawaan WorldView2 2014-01-07 T1 2m;0.5m
Lawaan WorldView3 2014-10-07 T2 1.3m;0.31 m
Lawaan WorldView2 2015-11-24 T3 2m;0.5m

TO - pre-disaster, T1 - shortly after Haiyan, T2 and T3 - approx. 2 years and 3 years
after the disaster, respectively. 2 MS - multispectral, Pan - panchromatic

3.2.3 Remote sensing data analysis

We developed a conceptual framework to assess recovery based on the
extraction of image-based proxies (Figure 3.1). The approach consisted of two
main steps: (i) to generate the damage map, and (ii) to generate the recovery
map at the required times after the disaster. To do so, suitable proxies needed
to be identified and extracted for each of the required time steps (e.g., pre-
disaster, event time and post-disaster). Proxies for separate dimensions, i.e.
built-up, social, and economic (Ghaffarian et al. 2018) are needed to cover the
entire damage and recovery process comprehensively. The proxies listed for
the pre-disaster (TO) and event (T1) times support the damage assessment,
and subsequently the damage map was compared with the proxies listed for
two post-disaster time epochs approximately 2 and 3 years after Haiyan (T2
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and T3) to assess recovery at each time. The changes in the state of each
proxy between two epochs demonstrate the damage to the indicators, and
subsequently the degree of recovery.

Table 3.2 shows the selected proxies and their use to evaluate recovery in the
selected study area. To assess the full scope of damages we employed proxies
that measure the structural damages to buildings, bridges and transportation
facilities, but also textural proxies and evidence of blow-out debris. To assess
the recovery process we employ proxies that measure the reconstruction of
buildings and impervious surface. Once the proxy-based damage map has been
produced, monitoring changes through the built-up proxies indicates the
degree of recovery at a given point in time following the disaster. Among the
economic proxies, LU information indicates the types of economic activity,
while the presence of vehicles and boats provides an indication of the extent
and frequency of its use. Arable land is a proxy for the potential for farming.
In addition, roof color and material helps to differentiate between types of
buildings (e.g., industrial facilities vs. residential housing). We use the share
of population residing in informal settlements (i.e., slums) as a proxy for the
socio-economic status of the area.

Machine learning methods such as support vector machines (SVM) and random
forest (RF) have been widely used in remote sensing data processing,
particularly for satellite image processing, due to their efficiency and accurate
results. Several researchers also studied their applicability in producing
accurate LC and LU maps from remote sensing optical images (Georganos et
al. 2018a; Ma et al. 2017; Maxwell et al. 2018; Nery et al. 2016; Sheykhmousa
et al. 2019). Recent advances in computer science motivated researchers to
use deep learning and convolutional neural network (CNN) approaches as
superior classification methods (Yang et al. 2018; Zhu and Newsam 2015).
However, CNN-based models must be trained with a large number of samples
to give appropriate results, which also requires substantially more
computational power and complex models.

Other advanced ML methods have been developed to support challenging
image classification tasks at low computational costs, such as logistic model
trees, and rotation forest ensembles. Gradient boosting method (GBM) is a
supervised classification technique and belongs to regression and classification
trees models (Friedman 2001). Tree boosting is an ensemble learning
algorithm that is very effective in the classification of even weak trees (Ren et
al. 2017), as has been shown in scene classification (Chan and Paelinckx 2008;
Zhang et al. 2016). However, traditional GBMs require the tuning of a number
of parameters and are thus more susceptible to overfitting than other ML
algorithms, such as SVM. In 2008, Chen and Guestrin (Chen and Guestrin
2016) developed the Extreme Gradient Boosting (XGBoost) method, which is
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the regularized version of GBM and overcomes most of the limitations. Since
then XGBoost has been successfully used for different classification problems.

Table 3.2. The proxies used for the recovery assessment.

Proxy Sategor Description

Building damage Built up Number of damaged/ collapsed buildings

Texture Built up To extract damaged buildings, roads,
and urban areas

Building removal and Built up To detect recovered buildings

reconstruction

Blow-out debris Built up To detect blocked roads and damaged
buildings

Reconstruction of bridges Built up Accessibility and transportation facility

and public transport facilities assessments

Impervious surface Built up To extract built-up area and permeability
of the surface

Presence of vehicles Built up/ For transportation condition/

Economic accessibility analysis and functioning of
roads, and extract level of economic
activities

Land use (large-scale Economic Economic activity types/ location and

industry) economic focal spaces

Presence of boats Economic Fishery industry for livelihood recovery

Arable land Economic  Agriculture industry for livelihood
recovery

Roof color and material Economic Industry recovery

Proportion of built-up and Social Settlement type/ location in urban areas

vegetated area

Share of population in Social Irregular clusters as roof types refer to

irregular clusters people with low income/ economy (slum
area)

Its superiority for LC and LU classification from very high resolution images
was also shown in recent studies (Georganos et al. 2018b; Ren et al. 2017).
Both urban and rural LU classes in most cases cannot be distinguished using
only spectral information (e.g., slum areas), and require the addition of spatial
features (i.e., texture) (Chen et al. 2015). Local Binary Patterns have been
shown to be an effective textural information extraction method (Kuffer et al.
2016; Mboga et al. 2017; Sheykhmousa et al. 2019). LBP are based on the
gray level co-occurrence matrix, which contains simple textural computations
such as mean, variance, homogeneity and entropy. Therefore, in this study the
LBP of each image, using a 5 x 5 kernel, were computed and used as input in
addition to the image bands in the XGBoost classification. The implementation
of the XGBoost classifier was based on the default parameter values, and the
calculation of the LBP and XGBoost was performed in Python.
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The LC map contains the following classes: building, impervious surface, bare
land, inland water, trees/flattened trees, non-tree vegetation, and rubble for
the event time images. In addition, the LU maps include large-scale industry,
informal settlement (slums), formal buildings, trees/flattened trees, crop land,
grass land, inland water, bare land, impervious surface, and rubble for event
time images. In the first step of the classification the training areas were
selected for each class, separately for the LC and LU classifications. In addition,
the accuracy of the results was computed based on standard measurements,
overall, user, and producer accuracy (OA, UA, and PA, respectively) for
Barangay 69. Stratified random sampling was used to generate random
reference points for the evaluation. Considering the size of the test area, a
minimum of 150 sample pixels for both the LC and LU classification maps was
selected to produce reference data.

High resolution
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Figure 3.3. Framework for the extraction of proxies using high resolution satellite
images for each region of interest (ROI) at each time step (e.g., pre-disaster, TO).

Figure 3.3.3 shows the general framework of the implemented steps for the
proxy extraction based on LCLU maps. Before starting to select the training
areas for the classification, three pre-processes were implemented: (i)
improving the geo-referencing of the images; since the final recovery
map/proxy extraction was conducted based on a pixel-by-pixel comparison of
the maps for each time step, the images required a good matching in terms of
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geo-referencing. Accordingly, one of the images was selected as a base image,
and the geo-referencing of the other images refined using image-to-image
registration/rectification, as is commonly done in pixel-based change detection
techniques (Singh 1989). However, satellite inclination angles vary, and in
particular the time-critical post-disaster response phase tends to be dominated
by images taken at large off-nadir angles. This leads to errors in the change
assessment, in particular for vertical features such as building fagades; (ii)
Image mosaicking to match and merge different satellite images to cover the
entire area. The merging operation, and thus the provided merged images,
challenge the classification approach and lead to inaccuracies in the LCLU
maps, particularly for images collected in different seasons or with large gaps
between acquisitions; (iii) ROI/barangay image extraction, which was
conducted using ArcGIS based on the barangay boundaries by the United
Nation’s Office for Humanitarian Affairs (OCHA) based on information provided
by the Philippine Statistical Authority (PSA) (The Humanitarian Data Exchange
2019).

The computed class characteristics were used for the proxy extraction and
interpretations. The LCLU classification was implemented on multi-spectral
satellite images, while due to the small size of the vehicles and boats compared
to other LCLU classes, they were extracted using both panchromatic and
multispectral images. The boats inside the barangays (on inland water), as well
as the boats close to the selected barangays (on open water) were counted.
The proxies were extracted based on the LCLU class area sizes and their
changes from (TO-T3) except number of boats and vehicles, which were
manually counted. For example, the building land cover change from the pre-
disaster time (TO) to just after disaster time (T1) shows the change in the
overall size of the buildings in the area and consequently the damaged
buildings. Furthermore, roof color was calculated based on the extraction of
the brightness values of the pixels for the building class using MATLAB.

We implemented the developed approach on the images of the 4 epochs
considered (TO-T3) to extract the selected proxies.

3.3 Results

The main analysis was conducted based on the proposed methodology for the
selected barangays from each municipality. Barangay 69 (0.38 km2 in size),
located in the North of Tacloban (Figure 3.2), was selected to visualize the
analysis and explain the results in detail for each step. This barangay contains
most of the LCLU classes, in addition to some representative
challenges/inaccuracies we encountered during the classification and providing
the final recovery assessment results.
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Figure 3.4 and Figure 3.5 show the LC and LU results and their corresponding
area coverage ratios for the entire Barangay 69, respectively. The original true
color images as well as LCLU maps are provided for each time step to visualize
the recovery. However, the selection of the training areas was challenging for
some classes, particularly for LU, such as distinguishing the large-scale
industry facilities from formal buildings without using auxiliary data.

The developed approach resulted in overall accuracy scores of 85.4%, 76.1%,
83.4% and 86.0% for the LC classification at TO, T1, T2 and T3 images,
respectively, which demonstrate the robustness of the method in classifying
the land covers from satellite images (Table 3.3). However, the user accuracy
(UA) values of the Impervious surface and Water classes are, 66.7% and
60.0%, respectively that show the relatively high commission error level in
those classes. In addition, overall accuracies of the LU maps produced by the
developed method are 81.8%, 72.1%, 78.7% and 78.8% for TO, T1, T2 and
T3 images, respectively (As can be seen from Figure 3.5 most of the buildings
recovered, while half of the trees had not yet recovered by T3. The latter was
to be expected, given that an estimated 33 million coconut trees were
destroyed by Haiyan in the Visayas (Acda 2015), which take 6-8 years to
regrow to maturity. This also explains an observed shift in cultivation of palm
trees to other crop types, which leads to a decrease in the number of trees in
the area. In addition, young replanted trees are not yet detectable in satellite
images, which results in them being misclassified as grass or crop land.

Shows the final extracted proxies. Almost 80% of the buildings in Barangay 69
had been reconstructed/ had recovered by March 2017. However, the area
covered by both industrial buildings and informal settlements (slums)
decreased. The latter are marked by clusters with highly irregular patterns,
and their share decreased, which illustrates a positive recovery aspect after
the disaster.

Table 3.4). More classes and their similarity in the LU classification, which
challenges the classification process, resulted in lower accuracy scores when
compared to the LC classification. However, the high producer accuracy (PA)
values for most of the land use classes ranging from 70% to 100%
demonstrates the low level of omission errors for those classes in such a
challenging case. The developed method produced accurate results in
classifying roads (impervious surface) and built up areas, as well as the
vegetation classes. However, some inaccuracies resulted in particular from the
presence of clouds and their corresponding shadows. For example, the T1
image contains a shadowed area that is mainly covered with low-level
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vegetation and trees; however, in the LCLU maps the area is classified as
debris/rubble (Figure 3.4, Figure 3.5).
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Figure 3.4 A0,A1,A2,A3: Original very high resolution WorldView2, GeoEyel, GeoEyel,
and WorldView?2 satellite images, respectively, acquired over Barangay 69, Tacloban city
from 8 months before (TO), right after (T1), 2 years (T3) and 4 years after Typhoon
Haiyan (T3), respectively; B0,B1,B2,B3: LC classification result for the four time epochs;
C0,C1,C2,C3: corrresponding pie charts show ditribution of the LC classes. The area
denoted by the blue circles in A1 and B1 shows the shadowed area in the image.
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Figure 3.5 A0,A1,A2,A3: Original very high resolution WorldView2, GeoEyel, GeoEyel,
and WorldView?2 satellite images, respectively, acquired over Barangay 69, Tacloban city,
8 months before (T0), right after (T1), 2 years (T3) and 4 years after Typhoon Haiyan
(T3), respectively; B0,B1,B2,B3: LU classification result for the four time epochs;
C0,C1,C2,C3: corrresponding pie charts show ditribution of the LU classes. The area
denoted by the blue circles in A1 and B1 shows the shadowed area in the image.
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Table 3.3 The LC classification accuracies for TO, T1, T2 and T3 time epochs for
Barangay 69. User and producer accuracies and corresponding errors are computed
across the study area from the confusion matrices. PA - Producer’s Accuracy; UA - User’s
Accuracy; OA - Overall Accuracy; N.S - Number of Smaples used for accruacy
assessment.

- - Bar Non-tree
Time/Class Building Imperviou e Wate Tree vegetati Rubble
s s Surface r s
land on

N.S. 40 40 40 40 40 40
. 72.0 89.2 829 950 971 818
d'f?gt)e’ o 90.0 82.5 725 950 825 90.0

OA

o 85.4

N.S. 40 30 30 30 30 30 44
Just i 92.5 76.9 80.0 947  65.9 79.4 58.7
after U;‘
disaster 92.5 66.7 66.7 60.0 96.7 90.0 61.1
(T1) O°A

o 76.1

N.S. 30 30 30 30 30 37
. = 69.2 100 828 962 722 917
d'ﬁ;t)e’ o 90.0 70.0 80.0 833  86.7 89.2

on 83.4

N.S. 30 30 30 30 30 50
—_ 71.1 87.5 815 100  85.3 93.5
d'f:;t)e" E/f 90.0 70.0 733 100  96.7 86.0

OA 86.0

%

As can be seen from Figure 3.5 most of the buildings recovered, while half of
the trees had not yet recovered by T3. The latter was to be expected, given
that an estimated 33 million coconut trees were destroyed by Haiyan in the
Visayas (Acda 2015), which take 6-8 years to regrow to maturity. This also
explains an observed shift in cultivation of palm trees to other crop types,
which leads to a decrease in the number of trees in the area. In addition, young
replanted trees are not yet detectable in satellite images, which results in them
being misclassified as grass or crop land.

Shows the final extracted proxies. Almost 80% of the buildings in Barangay 69
had been reconstructed/ had recovered by March 2017. However, the area
covered by both industrial buildings and informal settlements (slums)
decreased. The latter are marked by clusters with highly irregular patterns,
and their share decreased, which illustrates a positive recovery aspect after
the disaster.
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Table 3.4 The LU classification accuracies for TO, T1, T2 and T3 for Barangay 69. User
and producer accuracies and corresponding errors were computed across the study area
from the confusion matrices. BareL: Bare land; FB: Formal built-up area; ImS:
Impervious surface; LSI: Large scale industry; IS: Informal settlement; PA - Producer’s
Accuracy; UA - User’s Accuracy; OA - Overall Accuracy; N.S. - Number of Smaples used

for accruacy assessment.

Time/Class Bare Cro FB Gras Im Wate LSI IS Tree Rubbl
L p s S r s e
Pre- N.S 30 30 35 30 30 30 30 30 40 ===
disaster .
(TO) PA 78.6 95.7 75. 90.3 71. 78.8 87. 53. 90.7 -
% 9 0 5 5
UA 73.3 73.3 73. 86.7 73. 86.7 70. 76. 97.5 ===
% 3 3 0 7
OA 81.8
%
Just N.S 30 30 30 30 30 30 36 30 30 47
after .
disaster PA 74.2 100 78. 60.5 72. 100 71. - 55.8 61.4
UA 76.7 53.3 60. 76.7 70. 50.0 88. - 96.7 67.5
% 0 0 9
OA 72.1
%
Post- N.S 30 30 32 30 30 30 30 30 31 ---
disaster .
(T2) PA 87.1 93.8 75. 64.1 91. 96.3 70. 60. 66.7 -
% 9 3 0 6
UA 90.0 50.0 73. 83.3 70. 86.7 70. 66. 75.0 ---
% 3 0 0 7
OA 78.7
%
Post- N.S 30 30 30 30 30 30 30 30 30 ---
disaster .
(T3) PA 90.9 100 67. 80.0 80. 90.3 61. 63. 70.7 -
% 7 0 1 6
UA 66.7 53.3 70. 93.3 66. 93.3 73. 70. 72.5 ---
% 0 7 3 0
OA 78.8

%
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3.4 Discussion

The underlying assumption in this work was that communities that received
DRR-related interventions such as comprehensive land-use planning would
perform better in the aftermath of a major disaster than those without, and we
considered post-disaster recovery to be a proxy of resilience. The analysis of
high spatial resolution satellite images for 18 barangays provided a detailed
picture of LCLU changes caused by typhoon Haiyan and the recovery efforts
during the subsequent 3 years. The developed conceptual framework based on
a range of proxy indicators primarily extracted through ML allowed the
quantification of reconstruction in both formal and informal settlements, as
well as of industrial facilities, but also changes in agricultural LU. As such we
demonstrated the utility of RS to detect and characterize recovery, similar to
(Sheykhmousa et al. 2019), who did this for the city of Tacloban only.
Nevertheless, the inherently descriptive nature and resulting limitation of RS
data became apparent, in that the reasons for the spatially and temporally
highly variable recovery performance observed could not be determined.
Survey data are suitable to generate very detailed insights into DRR-related
perspectives, motivations and drivers of the affected population, though their
acquisition required a considerable effort and planning horizon. In addition,
socio-economic data are frequently limited when it comes to assessing physical
characteristics such as infrastructural changes. While the survey data are able
to reveal changes in DRR-related perceptions and motivations of humans, they
are not suitable to estimate actual recovery processes such as building
reconstruction or industry recovery.

However, while the image analysis does provide detailed information about LC
and LU changes directly linked to recovery, the observed recovery performance
could not always be unambiguously explained by the socioeconomic data. For
example, contrary to expectation we observed slower recovery rates in
barangays that had received the SIMPLE intervention or other donor support,
but also for those communities with prior disaster experience. This may be the
consequence of more rigorous planning efforts and stricter building policies. As
such slower recovery may signal higher quality of the newly established
building stock and could indicate higher resilience, including to future events.
Nevertheless, this does not agree with the generally accepted notion of resilient
communities showing faster recovery (Ghaffarian et al. 2018; Sheykhmousa
et al. 2019). The image analysis did show an overall rapid and positive
recovery, with building stock getting reconstructed quickly (although more
rapidly in urban than in rural communities), with the proportion of informal
settlements declining, and some adaptation in the agricultural sector, such as
vulnerable coconut palms getting replaced by other crops.
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The RS analysis is subject to additional limitations. The quantification of
recovery hinges on an accurate initial damage assessment. However, RS-based
damage detection continues to pose challenges, even if very high resolution
images are used (Kerle 2010, 2015b), and in particular when volunteers carry
out the immediate post-disaster damage mapping (Kerle 2015a; Kerle and
Hoffman 2013). In particular in Tacloban the blanket coverage with washed-
up or wind-blown rubble and debris led to strong damage overestimation in
published maps (Ghaffarian and Kerle 2019). An analysis of the damage map
created during a Humanitarian OpenStreetMap campaign showed an
overestimation of destroyed buildings in Tacloban by some 92% (Westrope et
al. 2014), and also the damage and resulting recovery maps in (Ghaffarian et
al. in press; Sheykhmousa et al. 2019) show this overestimation to some
extent. It is likely that some of the barangay that in this study show building
reconstruction rates of >100% within about 3 years also suffered less actual
building damage. In addition some of the proxies used in the analysis, in
particular LU classes such as crop or tree types, but also related to building
and settlement type, suffer from uncertainties. While it would also have been
ideal to process images covering all 100 DEval municipalities, this would have
been prohibitive in terms of image and processing costs. The narrow coastal
strip from Tacloban to Dulag alone covers an area of approximately 400 km?2,
A single high resolution multispectral Pléiades images for this area would cost
in excess of 5,000 US$, while an 8-band WorldView-3 image would cost about
7,500 US$, and a simple recovery assessment requires 3 time steps as a
minimum (TO, T1, T2). For the image analysis part of this work we made use
of image data costing approximately 45,000 US$, part of which was donated
by the Digital Globe foundation. In particular immediate post-event images are
also often acquired at large off-nadir angles, resulting in additioanl challenges
for detailed recovery assessment (Ghaffarian et al. in press).

3.5 Conclusions

We initially hypothesized that image data could add critical additional
information to the questionnaire-based evaluation, and might allow an
extrapolation to areas with fewer or no interviews. However, it became clear
quickly that matching a RS analysis to the spatial extent of the DEval study
(100 municipalities spread over 2 regions) was prohibitive. In addition to cost,
many of the more outlying communities are not adequately covered in high
resolution data catalogues. Conversely, the statistical analysis in this study
showed that it was actually the survey information that added value to the
interpretation of the LCLU classification results. Similar to other recent work
(e.g., Sheykhmousa et al. 2019) the limitations of RS to explain spatially and
temporally variable recovery also became clear here, and the field-based
information proved valuable.
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The purpose of this study was to develop a conceptual framework for post-
disaster recovery and resilience assessment using remote sensing.
Subsequently the usefulness of the RS, in particular satellite images, was
evaluated to assess the resilience-centered development interventions. The
image-based proxies extracted from LC LU classification results were employed
to assess the recovery process and thus resilience, assuming the resilient
municipalities recover quicker. However, regarding the utility of RS data to
support intervention evaluations in such large areas, current limitations are
clear. Vast amounts of detailed image data are necessary, resulting also in high
processing cost. However, the efficiency and sophistication of damage- and
recovery-focused processing has also been increasing, in particular through
advances in deep learning/ CNN (Duarte et al. in press; Ghaffarian et al. in
press), where a trend towards automatically handling large datasets as training
samples is evident. The recent recovery study that focused on Tacloban
(Sheykhmousa et al. 2019) showed that a detailed LU classification that is
needed for comprehensive urban recovery assessment requires very high
spatial resolution imagery. However, it also showed that lower resolution data
suffice for a LC assessment in urban areas, and are also suitable to support
the quantification of recovery in rural areas, where the size of relevant objects
tends to be larger. This means that a more optimized use of images can be
achieved, i.e. very high spatial resolution imagery is not always needed.

One of the critical aspects related to resilience is climate change adaptation.
This can include physical measures such as dikes or dams, but increasingly
nature-based solutions are sought (Lafortezza and Sanesi 2019;
Zwierzchowska et al. 2019), and remote sensing has shown its utility in
monitoring many relevant indicators (Taramelli et al. 2019). In coastal
communities such as the ones studied in this work, which are subject to rising
sea levels, salt water intrusion and regular tropical storms, image data have
tremendous potential in detecting and quantifying adaptive measures, such as
vulnerable crops (e.g., coconut palms) getting replaced by more resilient
solutions, or protective mangrove corridors getting reinstated. Evidence of
such actions can be a valuable addition to household surveys. For rural areas
and crop monitoring it may be possible to work with freely available data, such
as 3-5m resolution images from Planet. However, more work is needed in this
area.

Due to the high costs for image data and high demand on human resources
(coding and manual data processing), we were unable to compute LC and LU
for the full sample of municipalities (N=100) for which socioeconomic survey
data were available via the DEval impact evaluation. Since we purposefully
selected seven municipalities (13-18 barangays), our analysis did not permit a
rigorous attribution of causal impacts. Nevertheless, the purpose of this work
was to provide a comprehensive theoretical scheme for post-disaster recovery
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and resilience assessments using RS. Considering the above-explained
limitations of the RS, future research may employ integration of the survey
data with RS for a comprehensive assessments. For instance, using a
geospatial impact evaluation designs (GIE) (Benyishay et al. 2017), and use
matching techniques to obtain a sufficiently large sample of control and
intervention barangays.. With a sufficiently large sample the full potential of
combining survey information with RS data could then be realized.

3.6 References of Chapter 3

Acda, M. N., 2015. Fuel pellets from downed coconut (Cocos nucifera) in super
typhoon Haiyan. Biomass & Bioenergy, 83, 539-542.

Arciniegas, G., Bijker, W., Kerle, N., Tolpekin, V. A., 2007. Coherence- and
amplitude-based analysis of seismogenic damage in Bam, Iran, using
Envisat ASAR data. Ieee Transactions on Geoscience and Remote Sensing,
45(6(1) Special issue "Remote sensing for major disaster prevention,
monitoring and assessment"), 1571-1581.

Bengtsson, L., Hodges, K. I., Roeckner, E., 2006. Storm tracks and climate
change. Journal of Climate, 19(15), 3518-3543.

Benyishay, A., Runfola, D., Tricher, R., Dolan, C., Goodman, S., Parks, B.,
Tanner, J., Heuser, S., Batra, G., Anand, A., 2017. A primer on geospatial
impact evaluation methods, tools, and applications. Retrieved from
Williamsburg, VA, USA:

Berke, P. R., J., K., D., W., 1993. Recovery after Disaster: Achieving
Sustainable Development, Mitigation and Equity. Disasters, 17(2).

Bevington, J., Pyatt, S., Hill, A., Honey, M., Adams, B., Davidson, R., Brink, S.,
Chang, S., Panjwani, D., Mills, R., Amyx, P., Eguchi, R., 2010.
UNCOVERING COMMUNITY DISRUPTION USING REMOTE SENSING: AN
ASSESSMENT OF EARLY RECOVERY IN POST-EARTHQUAKE HAITI.
Miscellaneous Report #69, University of Delaware (Newark, Delaware
USA), Disaster Research Center.

Boschetti, M., Nelson, A., Nutini, F., Manfron, G., Busetto, L., Barbieri, M.,
Laborte, A., Raviz, J., Holecz, F., Mabalay, M. R. O., Bacong, A. P.,
Quilang, E. J. P., 2015. Rapid assessment of crop status: An application
of MODIS and SAR Data to rice areas in Leyte, Philippines affected by
Typhoon Haiyan. Remote Sensing, 7(6), 6535-6557.

Bradshow, S., 2004. Socio-economic impacts of natural disaster: a gender
analysis. Nation Economic Commission for Latin America (ECLA), Serie
Manuales 32.

Brown, D., Platt, S., Bevington, J., Saito, K., Adams, B., Chenvidyakarn, T.,
Spence, R., Chuenpagdee, R., Khan, A., 2015. Monitoring and evaluating
post-disaster recovery using high-resolution satellite imagery - towards
standardised indicators for post-disaster recovery.

Burton, C., Mitchell, J. T., Cutter, S. L., 2011. Evaluating post-Katrina recovery
in Mississippi using repeat photography. Disasters, 35(3), 488-509.
Burton, C. G., 2012. The development of metrics for community resilience to
Natural disasters. University of South Carolina, University of South

Carolina.

102



Chapter 3

Chan, J. C.-W., Paelinckx, D., 2008. Evaluation of Random Forest and Adaboost
tree-based ensemble classification and spectral band selection for ecotope
mapping using airborne hyperspectral imagery. Remote Sensing of
Environment, 112(6), 2999-3011.

Chen, C., Zhang, B., Su, H., Li, W., Wang, L., 2015. Land-use scene
classification using multi-scale completed local binary patterns. Signal,
Image and Video Processing, 10(4), 745-752.

Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. Paper
presented at the Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco,
California, USA.

Coppola, D. P., 2015. Chapter 1 - The Management of Disasters Introduction
to International Disaster Management (Third Edition) (pp. 1-39). Boston:
Butterworth-Heinemann.

Daniell, J., Miuhr, B., Girard, T., Dittrich, A., Fohringer, J., Lucas, C., Kunz-
Plapp, T., 2013. Super Typhoon Haiyan/Yolanda - report no. 2. Retrieved
from Karlsruhe Institute of Technology, Germany:

Duarte, D., Nex, F., Kerle, N., Vosselman, G., in press. Detection of seismic
fagcade damages with multi-temporal oblique aerial imagery. Isprs
International Journal of Geo-Information.

Ebert, A., Kerle, N., Stein, A., 2009. Urban social vulnerability assessment with
physical proxies and spatial metrics derived from air- and spaceborne
imagery and GIS data. Natural Hazards, 48(2), 275-294.

Flax, L., Jakson, R., Stein, D., 2002. Community vulnerability assessment tool
methodology.

Friedman, J. H., 2001. Greedy function approximation: A gradient boosting
machine. Ann. Statist., 29(5), 1189-1232.

Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., Kalogirou,
S., Wolff, E., 2018a. Less is more: optimizing classification performance
through feature selection in a very-high-resolution remote sensing object-
based urban application. GIScience & Remote Sensing, 55(2), 221-242.

Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., Wolff, E.,
2018b. Very High Resolution Object-Based Land Use-Land Cover Urban
Classification Using Extreme Gradient Boosting. IEEE Geoscience and
Remote Sensing Letters, 15(4), 607-611.

Gertler, P. J., Martinez, S., Premand, P., Rawlings, L., Vermeersch, C., 2016.
Impact evaluation in practice (Second edition ed.). Washington, DC, USA:
World Bank Group.

Ghaffarian, S., Kerle, N., 2019. Towards post-disaster debris identification for
precise damage and recovery assessments from UAV and satellite images.
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W13, 297-
302.

Ghaffarian, S., Kerle, N., Filatova, T., 2018. Remote sensing-based proxies for
urban disaster risk management and resilience: A review. Remote
Sensing, 10(11), 30.

Ghaffarian, S., Kerle, N., Pasolli, E., Jokar Arsanjani, J., in press. Post-disaster
building database updating using automated deep learning: An integration
of pre-disaster OpenStreetMap and multi-temporal satellite data. Remote
Sensing.

Haas, J. E., Kates, R. W., Bowden, M. J., 1977. Reconstruction following
disaster. Cambridge, MA: The MIT Press.

103



A conceptual framework for post-disaster recovery assessment with remote sensing

Hsiang, S., Kopp, R., Jina, A., Rising, J., Delgado, M., Mohan, S., Rasmussen,
D. J., Muir-Wood, R., Wilson, P., Oppenheimer, M., Larsen, K., Houser, T.,
2017. Estimating economic damage from climate change in the United
States. Science, 356(6345), 1362-1368.

Kerle, N., 2010. Satellite-based damage mapping following the 2006 Indonesia
earthquake--How accurate was it? International Journal of Applied Earth
Observation and Geoinformation, 12(6), 466-476.

Kerle, N., 2015a. Disaster mapping by citizens is limited. Nature, 517(7535),
438-438.

Kerle, N., 2015b. Disasters : risk assessment, management, and post -
disaster studies using remote sensing. In: Remote sensing of water
resources, disasters, and urban studies / edited by P.S. Thenkabail. Boca
Raton: CRC Press, 2015. ISBN: 978-1-4822-1792-6 (Remote sensing
handbook, 3) pp. 455-481.

Kerle, N., Hoffman, R. R., 2013. Collaborative damage mapping for emergency
response: the role of Cognitive Systems Engineering. Natural Hazards and
Earth System Sciences, 13(1), 97-113.

Kharin, V. V., Zwiers, F. W., Zhang, X. B., Hegerl, G. C., 2007. Changes in
temperature and precipitation extremes in the IPCC ensemble of global
coupled model simulations. Journal of Climate, 20(8), 1419-1444.

Kuffer, M., Pfeffer, K., Sliuzas, R., 2016. Slums from Space—15 Years of Slum
Mapping Using Remote Sensing. Remote Sensing, 8(6), 455.

Kure, S., Jibiki, Y., Quimpo, M., Manalo, U. N., Ono, Y., Mano, A., 2016.
Evaluation of the characteristics of human loss and building damage and
reasons for the magnification of damage due to Typhoon Haiyan. Coastal
Engineering Journal, 58(1), 27.

Lafortezza, R., Sanesi, G., 2019. Nature-based solutions: Settling the issue of
sustainable urbanization. Environmental Research, 172, 394-398.

Lagmay, A. M. F., Agaton, R. P., Bahala, M. a. C., Briones, J., Cabacaba, K. M.
C., Caro, C. V. C., Dasallas, L. L., Gonzalo, L. a. L., Ladiero, C. N., Lapidez,
J. P., Mungcal, M. T. F., Puno, J. V. R., Ramos, M., Santiago, J., Suarez,
J. K., Tablazon, J. P., 2015. Devastating storm surges of Typhoon Haiyan.
International Journal of Disaster Risk Reduction, 11, 1-12.

Lech, M., Harten, S., Uitto, J. I., Batra, G., Anand, A., 2018. Improving
International Development Evaluation through Geospatial Data and
Analysis. International Journal of Geospatial and Environmental Research,
5(2).

Leppert, G., Hohfeld, L., Lech, M., Wencker, T., 2018. Impact, diffusion and
scaling-up of a comprehensive land-use planning approach in the
Philippines. From development cooperation to national policies. Retrieved
from Bonn:
http://www.deval.org/files/content/Dateien/Evaluierung/Berichte/2018/
DEval-2018_Philippinen_final_web.pdf

Ma, L., Li, M., Ma, X., Cheng, L., Du, P., Liu, Y., 2017. A review of supervised
object-based land-cover image classification. ISPRS Journal of
Photogrammetry and Remote Sensing, 130, 277-293.

Maxwell, A. E., Warner, T. A., Fang, F., 2018. Implementation of machine-
learning classification in remote sensing: an applied review. International
Journal of Remote Sensing, 39(9), 2784-2817.

104



Chapter 3

Mboga, N., Persello, C., Bergado, J., Stein, A., 2017. Detection of Informal
Settlements from VHR Images Using Convolutional Neural Networks.
Remote Sensing, 9(11), 1106.

Mcdem. 2005. Focus on Recovery: A Holistic Framework for Recovery in New
Zealand. MCDEM, New Zealand.

Mochizuki, J., Naqvi, A., 2019. Reflecting disaster risk in development
indicators. Sustainability, 11(4), 14.

Morrow, B. H., 1999. Identifying and Mapping Community Vulnerability.
Disasters, 23(1), 1-18.

Mueller, M., Segl, K., Heiden, U., Kaufmann, H., 2006. Potential of High-
Resolution Satellite Data in the Context of Vulnerability of Buildings.
Natural Hazards, 38(1-2), 247-258.

Nawrotzki, R., 2019. The geodata decision tree: Using geodata for evaluations.
Retrieved from Bonn, Germany:

Nery, T., Sadler, R., Solis-Aulestia, M., White, B., Polyakov, M., Chalak, M.,
2016, 10-15 July 2016. Comparing supervised algorithms in Land Use and
Land Cover classification of a Landsat time-series. Paper presented at the
2016 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS).

Pech, L., 2017. Development of an urban area of limited statehood observed
from above: The case of Goma, Democratic Republic of the Congo
Measuring Statehood on a Sub-National Level: A dialogue among methods
(pp- 27-34). Berlin, Germany: Collaborative Research Center (SFB) 700.

Rau, 1. Y., Chen, L. C., Liu, J. K., Wu, T. H., 2007. Dynamics monitoring and
disaster assessment for watershed management using time-series
satellite images. Ieee Transactions on Geoscience and Remote Sensing,
45(6), 1641-1649.

Reif, M. K., Macon, C. L., Wozencraft, J. M., 2011. Post-Katrina land cover,
elevation, and volume change assessment along the South shore of Lake
Pontchartrain, Louisiana, USA. Journal of Coastal Research, 30-39.

Ren, X., Guo, H., Li, S., Wang, S., Li, J., 2017. A Novel Image Classification
Method with CNN-XGBoost Model. 10431, 378-390.

Rose, A., Krausmann, E., 2013. An economic framework for the development
of a resilience index for business recovery. International Journal of
Disaster Risk Reduction, 5, 73-83.

Rubin, C., Spence, R., Going, C., Markus, M., 1985. Community recovery from
a major natural disaster. Institute of Behavioral science University of
Colorado Boulder, co, Monograph 41.

Saito, K., Spence, R. J. S., Going, C., Markus, M., 2004. Using High-Resolution
Satellite Images for Post-Earthquake Building Damage Assessment: A
Study Following the 26 January 2001 Gujarat Earthquake. Earthquake
Spectra, 20(1), 145-169.

Sheykhmousa, M., Kerle, N., Kuffer, M., Ghaffarian, S., 2019. Post-disaster
recovery assessment with machine learning-derived land cover and land
use information. Remote Sensing, 11(10), 1174.

Singh, A., 1989. Review Article Digital change detection techniques using
remotely-sensed data. International Journal of Remote Sensing, 10(6),
989-1003.

Takagi, H., Esteban, M., 2016. Statistics of tropical cyclone landfalls in the
Philippines: unusual characteristics of 2013 Typhoon Haiyan. Natural
Hazards, 80(1), 211-222.

105



A conceptual framework for post-disaster recovery assessment with remote sensing

Taramelli, A., Lissoni, M., Piedelobo, L., Schiavon, E., Valentini, E., Xuan, A.
N., Gonzalez-Aguilera, D., 2019. Monitoring green infrastructure for
natural water retention using Copernicus global land products. Remote
Sensing, 11(13), 27.

The Humanitarian Data Exchange. 2019. Retrieved from
https://data.humdata.org/dataset/philippines-administrative-levels-0-to-
3

The World Bank. 2017. Results Brief — Climate insurance. Retrieved from
https://www.worldbank.org/en/results/2017/12/01/climate-insurance

Tol, R. S. J., 2018. The economic impacts of climate change. Review of
Environmental Economics and Policy, 12(1), 4-25.

Townshend, I., Awosoga, O., Kulig, J., Fan, H., 2014. Social cohesion and
resilience across communities that have experienced a disaster. Natural
Hazards, 76(2), 913-938.

UNISDR. 2015a. Global assessment report on disaster risk reduction. Retrieved
from https://www.preventionweb.net/english/hyogo/gar/2015/en/home/

UNISDR. 2015b, 14-18 March. Sendai framework for disaster risk reduction
2015 - 2030. Paper presented at the Third World Conf. Disaster Risk
Reduction, Sendai, Japan.

Westrope, C., Banick, R., Levine, M., 2014. Groundtruthing OpenStreetMap
building damage assessment. In A. Vidan & D. Shoag (Eds.), Humanitarian
Technology: Science, Systems and Global Impact 2014 (Vol. 78, pp. 29-
39). Amsterdam: Elsevier Science Bv.

Yang, C., Rottensteiner, F., Heipke, C., 2018. Classification of Land Cover and
Land Use Based on Convolutional Neural Networks. ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-
3, 251-258.

Zhang, F., Du, B., Zhang, L., 2016. Scene Classification via a Gradient Boosting
Random Convolutional Network Framework. IEEE Transactions on
Geoscience and Remote Sensing, 54(3), 1793-1802.

Zhu, Y., Newsam, S., 2015. Land use classification using convolutional neural
networks applied to ground-level images. 1-4.

Zwierzchowska, 1., Fagiewicz, K., Ponizy, L., Lupa, P., Mizgajski, A., 2019.
Introducing nature-based solutions into urban policy - facts and gaps.
Case study of Poznan. Land Use Policy, 85, 161-175.

106



Chapter4 - Towards post-disaster debris
identification for precise damage and recovery
assessments from UAV and satellite images?

3 This chapter is based on:

— Ghaffarian, S.; Kerle, N., 2019. Towards post-disaster debris identification for precise
damage and recovery assessments from UAV and satellite images. Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W13, 297-302.

107



Post-disaster debris identification from UAV and multi temporal satellite images

Abstract

Often disasters cause structural damages and produce rubble and debris,
depending on their magnitude and type. The initial disaster response activity
is evaluation of the damages, i.e., the creation of a detailed damage estimation
for different object types throughout the affected area. First responders and
government stakeholders require the damage information to plan rescue
operations and later on to guide the recovery process. Remote sensing, due to
its agile data acquisition capability, synoptic coverage, and low cost, has long
been used as a vital tool to collect information after a disaster and conduct
damage assessment. To detect damages from remote sensing imagery (both
UAV and satellite images) structural rubble/debris has been employed as a
proxy to detect damaged buildings/areas. However, disaster debris often
includes vegetation, sediments, and relocated personal property in addition to
structural rubble, i.e., items that are wind- or waterborne and not necessarily
associated with the closest building. Traditionally, land cover classification-
based damage detection has been categorizing debris as damaged areas.
However, in particular, in a waterborne disaster such as tsunamis or storm
surges, vast areas end up being debris-covered, effectively hindering actual
building damage to be detected, and leading to an overestimation of the
damaged area. Therefore, to perform a precise damage assessment, and
consequently, recovery assessment that relies on a clear damage benchmark,
it is crucial to separate actual structural rubble from ephemeral debris. In this
study two approaches were investigated for two types of data (i.e., UAV and
multi-temporal satellite images). To do so, three textural analysis, i.e., Gabor
filters, Local Binary Pattern (LBP), and Histogram of the Oriented Gradients
(HOG), were implemented on mosaic UAV images, and the relation between
debris type and their time of removal was investigated using very high-
resolution satellite images. The results showed that the HOG features, among
other texture features, have the potential to be used for debris identification.
In addition, multi-temporal satellite image analysis showed that debris removal
time needs to be investigated using daily images because the removal time of
debris may change based on the type of disaster and its location.
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4.1 Introduction

Building/structural damage assessment is a crucial task at the first stage for
the post-disaster response phase by supporting rescue operations, and then
recovery phase by providing key information to support governments and
decision-makers planning for reconstructions.

Remote sensing has been demonstrated as an essential and efficient tool for a
rapid damage assessment after a disaster (Brunner et al. 2010). In addition,
advances in computer vision and photogrammetry allow scientists to develop
complicated but advanced methods. Several studies were conducted for
damage assessment using remote sensing data such as UAV (Cotrufo et al.
2018; Galarreta et al. 2015; Vetrivel et al. 2017; Vetrivel et al. 2016) and
satellite images (Duarte et al. 2018b; Gillespie et al. 2007; Joshi et al. 2017).
Most of them are based on the assumption that the urban disaster debris
belongs to building rubbles, and the presence of the debris surrounding and
inside/on the buildings has been used as a proxy to extract damage ratio (Kerle
and Hoffman 2013). For example, Galarreta et al. (2015) used rubble piles as
a damage feature to identify the damage ratio to the buildings from 3D point
clouds derived from UAV images. Vetrivel et al. (2015) detected rubble
piles/debris around/on/inside buildings in addition to gaps to extract damaged
regions of the structures. In another study, Vetrivel et al. (2016) developed a
method to detect building damage corresponding to debris, rubble piles, and
heavy spalling buildings. In addition, Ural et al. (2011) developed a method
for larger urban area damage extraction using very high-resolution satellite
images and LiDAR data and showed the efficiency of their method in extracting
damaged buildings and their footprint. For a precise damage detection (Duarte
et al. 2018a; Duarte et al. 2018b) fused satellite and UAV images using a CNN-
based approach and improved the accuracy of the rubble/debris-based damage
identification results. All of the aforementioned studies extracted the building
damages with a high success/accuracy rate via mainly extracting the rubble
piles/debris. However, disaster debris often incorporates sediments, vegetative
debris, and personal property in addition to building materials/rubble, which is
not necessarily belong to the closest building. For example, in a tsunami/storm
surge scenario, a large quantity of mixed debris can be washed up close to the
intact buildings, or a high-speed wind can rip roofs off houses and pluck tree
fronds, and relocate them during the event. Furthermore, to do a post-disaster
recovery assessment, damage assessment is needed as the first step to
determine the damaged areas and ratios. Changes in land cover and land use
of the areas were mostly used for damage and, consequently, recovery
assessment of the areas (Ghaffarian et al. 2018; Ishihara and Tadono 2017).
Hence, land cover/use classification/change detection of post-disaster satellite
images the debris class is mostly used as an indicator/proxy of the damaged
building and roads/area (Ghaffarian et al. 2018). For example, land cover-
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Figure 4.1 a) Track of Typhoon Haiyan over the Philippines, b-c) Overview of Tacloban
city. 1-5) The selected UAV images for one week after the disaster from the study area.

based change detection derived from high-resolution satellite imagery and
conducted a land cover and land use assessments for a few days after a
disaster. They demonstrated that the remobilized debris in the entire area
caused inaccuracies in land cover and land use classification results. Land cover
and land use classification of the damaged area, particularly in water-related
disasters, are prone to overestimation due to washed-up debris that may
hinder the intact road and structures and also lead to overestimation of the
post-disaster damaged area/ratio. Hence, identification of the disaster debris
types is critical for precise post-disaster damage and consequently recovery
assessments from both UAV and satellite images.

In this study, we aim to address the challenge of post-disaster debris
identification by investigating the potential of the UAV/drone images and multi-
temporal very high-resolution satellite images acquired some days, weeks and
months after a disaster to distinguish between quasi-permanent debris (e.g.,
rubble related to building materials) and ephemeral materials that get
continuously remobilized (e.g., flotsam deposited by flood/storm surge water,
and wind-blown vegetation matter such as palm fronds) (figure 4.1).

4.2 Methodology

Two distinct approaches are proposed in this paper to identify the debris types
for after disaster situations. UAV images due to providing very high-resolution
images can contribute to the identification of the disaster debris types. Thus,
we conducted a textural analysis using the UAV images to compare areas with
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quasi-permanent debris and ephemeral materials and figure out the most
informative ones to distinguish them. In the second approach, the idea that
the ephemeral materials can be collected much earlier than the structural
debris is investigated to identify the debris types from multi-temporal satellite
images.

4.2.1 Textural analysis

In order to distinguish the quasi-permanent structural rubble from other more
remobilized debris from UAV images, three textural analyses were
investigated, i.e., Local Binary Patterns (LBPs), Gabor features, and Histogram
of the Oriented Gradients (HOG).

4211 Texture features (LBPs and Gabor features)

In general, image-based textural features are extracted using two approaches;
statistical-based and signal processing-based approaches. Statistical methods
make use of statistical relations of the spatial distribution of gray-level
brightness values within the image. Currently, the gray-level co-occurrence
matrix (GLCM) is one of the well-known statistical-based methods for textural
analysis, which is also used as a basis for other advanced textural methods
(e.g., Local Binary Pattern). GLCM features are used for different remote
sensing application such as land use classification (Kabir et al. 2010; Pacifici et
al. 2009), slum area detection (Kuffer et al. 2016b), built-up area extraction
(Pesaresi et al. 2008), and high-resolution satellite image analysis (Zhang et
al. 2017). GLCM-based Local Binary Patterns (LBP) have been indicated as one
of the most useful and powerful texture analyzing for high-resolution remote
sensing images due to their computational simplicity and discriminative power
(Gevaert et al. 2016; Kuffer et al. 2016a; Mboga et al. 2017).

GLCM features (e.g., entropy, mean, correlation, homogeneity) are computed
based on the occurrence of a pair of grey-level pixels in an image in predefined
directions (Rao et al. 2002). Local Binary Pattern (LBP) features (Ojala et al.
2002) are computed based on a selected number of neighboring pixels (N) at
a defined distance (d) from the central pixel, which is rotationally invariant.
LBPs are developed to identify uniform features, such as corners and edges. In
this study, LBP features were extracted with N= 8 and d= 16 from UAV images.

Signal processing-based texture extraction approaches cut-up image data into
different frequency components, and use frequency information of the signals
in addition to spatial characteristics of the selected image. One of the well-
known, such textural analysis is a wavelet-based method (Arivazhagan et al.
2006). Wavelet-based texture features were also used for remote sensing
applications (Vetrivel et al. 2017) and found to be superior to GLCM texture
features in many applications, including classification of remote sensing images
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(Ruiz et al. 2004). Furthermore, wavelets and particularly one of its methods,
Gabor filters were used for damage assessment from remote sensing imagery
(Radhika et al. 2012; Vetrivel et al. 2016). Gabor filters/features, which are
based on wavelets, have been indicated as a robust texture extraction method
for damage detection (Arivazhagan et al. 2006; Vetrivel et al. 2015, 2016).
Gabor features are computed using a set of filters, and each of which is
specifically defined to carry out frequency information at a specific orientation.
Gabor filters separate image regions based on spatial frequency and
orientation. Detailed information about the generation of the Gabor filters and
their application are given by Arivazhagan et al. (2006).

Both LBP and Gabor features are used in this study to investigate their
usefulness in identifying debris types.

4212 Histogram of the Oriented Gradients (HOG)

The HOG is a feature descriptor that is widely used in computer vision and
remote sensing for object detection and classification (Dalal and Triggs 2005;
Gao et al. 2013; Xiao et al. 2015; Xu and Liu 2016; Xu et al. 2016). The HOG
uses the spatial distribution of the gradients in the image regions to measure
the spatial variation of edge orientations within a region (Kobayashi et al.
2008), which is a crucial factor in defining/extracting the shape of an object
(Dalal and Triggs 2005). The magnitude and angle of the gradient of pixels in
the image are computed to extract HOG features. Then the magnitude of the
gradients is binned into a histogram according to their angle/orientation for
each predefined image block/cell. After normalizing the results of all blocks,
they are concatenated to generate the image based on the block size.
Furthermore, feature vectors that represent the gradient orientation and
magnitude of blocks can be computed from the histograms. The HOG feature
vectors were calculated in this study from UAV images to investigate their
utility in identifying debris types.

4.2.2 Multi-temporal analysis

Since structural rubbles are supposed to be heavier than ephemeral debris,
they should be removed easier, and thus earlier, than structural rubbles after
a disaster. Hence, the temporal change of the debris deposits in the images
are monitored using multi-temporal satellite images. Furthermore, since the
size of debris range from very small to bigger objects in the images, very high-
resolution satellite images with 0.5 spatial resolution are employed.

4.3 Results and discussions

The proposed approaches were tested in Tacloban city, the Philippines, which
was hit by super Typhoon Haiyan in November 2013. Since the Typhoon Haiyan
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also caused a storm surge during the event, which led to deposit washed-up
debris in urban areas, it is suitable to examine the proposed approaches. Five
different locations of the debris were selected from the urban area of the
Tacloban to implement the proposed approaches and discuss the results

(Fig.1).

4.3.1 Textural analysis of UAV images

Three textural methods (i.e., HOG, LBP and Gabor filters/magnitude) were
implemented on the five selected UAV image regions. From selected images,
#1 and #4 images mostly include ephemeral debris, while the others mostly
consist of the regions with quasi-permanent structural rubbles. The LBP and
Gabor features are studied, and no significant difference between debris types
are found.

55
Figure 4.2 1-5) UAV images an
denoted regions.

d their corresponding HOG vector results for the
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Figure 4.2 shows the results of the HOG textural analysis of the selected UAV
images. Visual inspection of the results shows a slight difference between HOG
of the ephemeral debris and quasi-structural rubble, while ephemeral debris
has spread distribution of the gradient orientations (see HOG of images 1 and
2). Structural rubbles due to containing bigger sized objects have less spread
HOG distribution. However, visually inspection of the other textural results
does not show a significant difference between debris types.

4.3.2 Multi-temporal analysis of satellite images

Satellite images acquired by different platforms (e.g., GeoEyel, World_View2
and 3, and Pleiades satellite) for 2, 3, 5, 7 days, 3, 4, 5 weeks and 2, 8 and 9
months after the disaster are analyzed to detect debris changes and extract
the relation of temporal changes with debris types in the area.

Figure 4.3 shows the satellite images for the selected area of Tacloban city.
Considering the change in the debris area denoted at the images, we can see
that most of the debris (on the road) was removed between the first week and
4 weeks after the disaster. However, remaining debris next to the road was
removed 5 weeks after the disaster. Since most of the debris had been
disappeared from week 4 in the images, we cannot find any relation between
the removal time of the debris, and more satellite images are needed to study
the changes between the first week and 4 weeks after the disaster.
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(b) 2 days after the disaster

(£) 4 weeks after the disaster (g) 5 weeks after the disaster (h) 2 months after the disaster
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Figure 4.3 a-j) Very high-resolution satellite images respectively for before disaster, 2,
3, 5, 7 days, 4 and 5 weeks, and 2, 8, and 9 months after the disaster.

4.4 Conclusions and future work

In this paper, two approaches are proposed and analyzed for post-disaster type
identification. Textural methods are studied for UAV images to test HOG, LBP
and Gabor features in differentiating the quasi-permanent structural rubble
and ephemeral debris. The results showed that HOG is the most effective
feature; however, in the future, to precisely investigate the efficiency of the
features and their effectiveness in disaster debris type identification, they
should be followed by a classification method and conduct a quantitative
comparison. In addition, using 3D point clouds derived from UAV images will
help debris identification. Furthermore, the idea of that ephemeral debris due
to containing light-weighted debris can be removed earlier than structural
rubble is investigated using multi-temporal satellite images. Based on the
achieved results in this study and the used time intervals after the disaster,
we did not find a strong relationship between the time of removal and debris
type. However, it is demonstrated that in order to study this approach, we
need daily data/images, type of the structures, and other characteristics of the
considered areas that can influence the debris removal time and types. Hence,
in the future, this idea should be studied using daily data (e.g., daily drone
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imagery), and use classification methods to extract the disaster debris areas
quantitatively.
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Abstract

First responders and recovery planners need accurate and quickly derived
information about the status of the buildings as well as the newly built ones to
both help victims, and to make decisions for reconstruction processes after a
disaster. Deep learning and in particular convolutional neural network (CNN)-
based approaches have recently become state-of-the-art methods to extract
information from remote sensing images, in particular for image-based
structural damage assessment. However, they are predominantly based on
manually extracted training samples. In the present study we use pre-disaster
OpenStreetMap building data to automatically generate training samples to
train the proposed deep learning approach after the co-registration of the map
and the satellite images. The proposed deep learning framework is based on
the U-net design with residual connections, which has been shown as an
effective method to increase the efficiency of CNN-based models. The ResUnet
is followed by a Conditional Random Field (CRF) implementation to further
refine the results. Experimental analysis was carried out on selected very high
resolution (VHR) satellite images representing various scenarios after 2013
Super Typhoon Haiyan in both the damage and the recovery phases in
Tacloban, the Philippines. The results show the robustness of the proposed
ResUnet-CRF framework in updating the building map after a disaster for both
damage and recovery situations by producing an overall F1-score of 84.2%.
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5.1 Introduction

Post-disaster map updating is one of the essential tasks to support
officials/governments to make decisions, policies and plans for both the
response phase to conduct emergency actions, and the recovery phase to
return to normalcy after the event, and even to build back better as per the
Sendai Framework (UNISDR 2015). Buildings constitute an essential land cover
class in the affected area. Consequently, updating the building database is vital
to provide accurate information related to demolition, reconstruction and
building modification taking place during the response and recovery phases
(Ghaffarian et al. 2018). Building map updating requires new building data for
detecting changes in the status of the buildings and the identification of newly
built ones. Satellite remote sensing (RS) has become an essential and rapid
tool for acquiring suitable geospatial data given its synoptic coverage and ready
availability. In addition, the availability of free high-resolution images that are
provided by platforms such as Google Earth has also been attracting
researchers in the remote sensing domain to focus on image-based building
detection and mapping (Ghaffarian and Ghaffarian 2014a, 2014b).

Building database updating can be done based on two general frameworks:
building detection/extraction from mono temporal RS data, and building
change detection using multi-temporal RS data (Feng and Zhao 2009; Ghanea
et al. 2016; Sofina and Ehlers 2016). The second framework is the focus of
this study and usually comprises two main steps: 1- extracting buildings, and
2- detecting changes. Change detection approaches can be grouped based on
the type of data they use:

1- Multi-temporal RS data: The multi-temporal data are directly considered
to detect changes, for example, from multi-temporal satellite images with
a pixel-by-pixel or an object-/feature-based change analysis by comparing
two images (Liu et al. 2018; Singh 1989).

2- Multi-temporal RS and map data: In this approach, the multi-temporal RS
data are classified using additional support from existing maps by
providing guidance in training area selection (Knudsen and Olsen 2003b),
or excluding non-building pixels based on a probability analysis (Holland
et al. 2008; Rottensteiner 2007). Then the maps or the classified building
images are compared to detect changes in buildings in an object-oriented
manner (Armenakis et al. 2003; Walter 1999).

3- Monocular RS and old map data: In many cases, pre-disaster high-
resolution RS data of the affected region do not exist, precluding method
1 from being used. However, the old geo-databases containing building
information can be used to guide the method to find changes in the
building stock (Bouziani et al. 2010; Gharibi et al. 2014; Le Bris and
Chehata 2011). This method is more complicated than the previous one
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because it contains a level of generalization and abstraction (Bentabet et
al. 2003; Fiset et al. 1998), and existing databases may not accurately
reflect the immediate pre-disaster situation. However, the method can
provide valuable information about relevant feature classes (Baltsavias
2004).

4- Height-related data: Approaches that use height data such as Digital
Surface Models (DSMs), including height information obtained through
LIght Detection And Ranging (LiDAR) and Unmanned Aerial Vehicle (UAV)
data. Height-related data from DSMs and LiDAR data are generally utilized
as changed or non-changed features to detect building changes (Choi et
al. 2009; Jung 2004; Tian et al. 2011; Xu et al. 2015).

In this paper we propose a framework to provide an automatic updating of the
building database from very high resolution (VHR) satellite images and
outdated map data. OpenStreetMap (OSM) data were selected to be used as
the reference building layer, due to their free availability. OSM provides global
coverage of crowdsourced geoinformation and has become the premier
Volunteered Geographic Information (VGI)-derived cartographic database,
though with spatially varying data quality. OSM has been proven to be even
more accurate than proprietary data in some areas (e.g., generally in Europe)
(Zielstra and Zipf 11-14 May 2010), while not offering the same accuracy or
completeness in many more remote parts of the world (Brovelli and Zamboni
2018; Siebritz and Sithole 1-3 July, 2014). Since a wide range of volunteers,
including highly-experienced and amateurs, contributes to the OSM data
collection, certain limitations apply when dealing with OSM data (Jokar
Arsanjani et al. 2015). OSM building datasets contain a number of errors: a)
omission errors, which indicate actual buildings not mapped in OSM, b) spatial
mismatch/shift of the building footprints compared to satellite images, c)
geometric errors, which indicate that the size and/or shape of the actual
buildings do not match with the mapped ones, and d) thematic
information/label errors, which indicates that the information regarding the
types/use of the buildings does not match the actual building use/information.
In addition, e) mismatch of the building rooftop with the footprints can occur
in satellite images due to the incident angle of the sensor during their
acquisition.

Since the present study is dedicated to automatic building database updating
from multi-temporal VHR satellite images and (potentially outdated) OSM map
data, we primarily discuss the previous studies that used RS datasets guided
by old map data to generate new building maps.

Fiset et al. (1998) introduced the use of maps to guide a change detection

algorithm to update road network maps. Afterwards Bentabet et al. (2003)
proposed a new approach to refine and update road vector data using SAR
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images. Regarding building change detection using existing map data, Knudsen
and Olsen (2003a) developed a method that combines supervised and
unsupervised comparisons and tested their method to update Denmark’s map
database. They used a conventional classification method to extract buildings,
which produced a high amount of false positives in detecting buildings.
Bouziani et al. (2010) proposed a heuristic technique based on contextual
information obtained from old map data. Their method was based on object-
based image analysis (OBIA) classification and fuzzy logic-based rules to
extract the changed buildings from VHR images. However, the inclusion of rules
based on color, size, and spectral information results in the accuracy being
strongly correlated with the possibility of tuning the OBIA parameters properly.
Building change detection was done in (Matikainen et al. 2010) by first
segmenting DSM information produced from laser data. Then, aerial images
and laser data were used to obtain a classification map, which was further
refined through information from an old map. Results were promising and
exhibited accuracy values in terms of completeness and correctness of about
85% for buildings larger than 60 m2. However, their method is highly
dependent on the quality of the DSM data, which are critical for the removal of
non-building features. Le Bris and Chehata (2011) conducted a comparison
analysis including methods that rely on images and old maps, and strategies
based on multi-temporal images for building map updating. They concluded
that such methods were not appropriate for operational uses. Similar
approaches were investigated by Malpica et al. (2012) and Gharibi et al.
(2014), who used old map data and a LiDAR-based nDSM to guide a Support
Vector Machine (SVM) classification and Level Set method for building change
detection. Although their methods provided good results, nDSM data were
again critical for building detection. This departs from what we propose in the
present paper, in which only multispectral VHR satellite images are used,
therefore without considering any products that include height information.
Furthermore, most of the previous studies did not consider the building change
in different scenarios, particularly in a disaster situation. For example, a pre-
event building may either be damaged and rebuilt or demolished, change into
a different shape or type during recovery, or be rebuilt in a new place.

Concurrent with the development of map-guided building change detection
methods, computer vision and RS data processing methods have evolved, and
based on recent advances in computer hardware systems researchers can
readily run deep neural network-based models. Deep learning and
convolutional neural networks (CNN) have been investigated and become the
state-of-the-art for many computer vision tasks. These methods have been
also used for RS data processing problems such as scene classification (Yang
et al. 2015; Zhao et al. 2016), hyperspectral image classification (Li et al.
2017b; Mou et al. 2017a, 2017b), object detection (Cheng et al. 2016; Jin and
Davis 2007), image retrieval (Jiang et al. 2017), multi-modal data fusion
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(Duarte et al. 2018a; Loncan et al. 2015), and change detection (Li et al.
2017a; Lyu et al. 2016; Zhang et al. 2018b). However, the developed deep
learning-based change detection methods aim at detecting scene-based
changes rather than a specific object and need further processes to be used in
RS applications. Deep learning, in particular CNN, has also been used for
disaster-based applications, such as structural damage assessment (Duarte et
al. 2018a; Duarte et al. 2018b, 2019; Nex et al. 2019; Saha et al. 2018;
Vetrivel et al. 2017), as well as landslide (Chen et al. 2018; Xiao et al. 2018)
and fire detection (Zhao et al. 2018). Most of the developed methods for
building damage assessments require VHR UAV images and/or 3D point clouds,
and aim at assessing only structural damages. However, changes in the status
of the buildings months and years after a disaster provide crucial information
for post-disaster recovery assessment, which is addressed in the present
paper. In a recent study, Ji et al. (2019) proposed a method to detect collapsed
buildings after an earthquake using pre- and post-disaster satellite imagery.
Their method made use of CNN-based features to be used in a random forest
classifier to do the detection work. Although the method was able to extract
collapsed buildings with high accuracy, the building map was manually
generated, a subjective and time-consuming task. This problem is overcome
by our fully-automated methodology based on the OSM building map.
Furthermore, their method was aimed at detecting collapsed building after an
earthquake, which is inherently unsuitable for detecting new buildings or
changes in building size or shapes during the recovery/reconstruction phase as
exploited in our current work.

In the present paper we adapted the deep residual U-net (ResUnet) developed
by (Zhang et al. 2018a) as the classifier, and the training area was selected
automatically using the pre-disaster building OSM data after a preprocessing
step that co-registered the OSM and satellite data. The network was first
trained on the pre-disaster OSM data and pre-disaster satellite images, and
then fine-tuned using the same building map after conducting a building-based
change detection process from a post-disaster satellite image. The change
detection step was done based on two textural measurements to select
appropriate training areas. Two measures, i.e., Variation-Histogram of the
Oriented Gradients (V-HOG) and Edge Density Index (EDI), were considered
to perform the change detection. This step was essential to exclude those
buildings that may have been destroyed or damaged during the disaster from
the training set when retraining the network for the period just after disaster.
Furthermore, by fine-tuning the pre-trained network on the post-disaster
images after conducting the change detection step, the proposed method was
able to detect buildings in the post-disaster (recovery) time that were newly
constructed, and to extract changes in the size or shapes of the existing
buildings. As final step, Conditional Random Field (CRF) was performed to
refine the boundaries and improve the classification results, similar to the
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methods investigated in (Alam et al. 2018; Pan and Zhao 2018). The proposed
framework was evaluated using WorldView2 satellite images of Tacloban, the
Philippines, which was hit by Typhoon Haiyan (Yolanda) in 2013. Images were
acquired one month before the disaster, three days, and four years after the
disaster.
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Figure 5.1 The framework proposed in this paper for post-disaster building database
updating. Notes: V-HOG = Variation of Histogram of Oriented Gradients; EDI = Edge
Density Index; CRF = Conditional Random Field.

5.2 Materials and Methods

In this paper we propose a framework for updating the building database after
a disaster through an automated ResUnet-CRF, using outdated OSM building
data and multi-temporal satellite images (Figure 5.1). The proposed approach
consists of four main steps.
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5.2.1 Step 1: Co-registration of OSM data and satellite
images

Since the aim of this study was to use OSM building data as a mask to extract
building training samples from the pre-disaster image for a CNN-based
approach, we implemented simple preprocesses to create accurate training
samples. Since it was observed that the shift on the building footprints is not
systematic and the shift direction and amount differs substantially across the
area, initially the downloaded OSM data for the pre-disaster time were
separated into five sections/regions. Then rubber sheeting was implemented
in ArcGIS, which can also handle small geometric correction as well as shifting
the vector maps, to adjust and align the building map to the building rooftops
in the pre-disaster image (Figure 5.2). In order to achieve good results from
the application of the rubber sheeting method, five geographically well-
distributed points within each region of interest were used, so that the points
cover at least the center and the four main directions. Furthermore, the post-
disaster satellite images were co-registered/rectified according to the pre-
disaster image using ArcGIS by selecting geo-rectification points.

Figure 5.2 Example of the co-registration of the OSM building map and satellite images
for Tacloban city, the Philippines. (a) Pre-disaster satellite image, (b) original OSM
building map, and (c) modified OSM building map. The areas denoted by red boundaries
show the effect of the refinements on OSM map data.

5.2.2 Step 2: Training patch generation from the pre-disaster
image

Pre-processed data from step 1 were used to automatically generate training
samples from the pre-disaster image. Although the mismatch between OSM
building footprints and the actual buildings in the pre-disaster images was
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mostly corrected for in step 1, some matching errors remained. For example,
in the case that a building near a vegetated area has a mismatch, the building
mask might contain vegetation pixels. In addition, even in a correct match of
building and OSM map some non-building pixels might end up inside the
training samples e.g., a tree may partially cover a rooftop of a building. This
case might also occur where the buildings are next to the sea/water bodies,
which may lead to the inclusion of water pixels in the training samples. Hence,
to overcome these issues the Normalized Difference Vegetation Index (NDVI)
and Normalized Difference Water Index (NDWI) indices were computed for the
pre-disaster image to exclude vegetated areas, trees, and water bodies from
the building mask. To do so, NDVI and NDWI masks were computed based on
pre-defined thresholds and those pixels falling into the masks were removed
from the building training class. Training patches with a height and width of
512 pixels were extracted from the entire image. Moreover, in order to increase
the training samples, more patches were generated from the same area by
shifting the starting point of the generation of the patches by 100 pixels in both
x and y directions. This procedure was conducted three times to obtain
different image patches from the same area, and then the suitable training
samples were selected from those to train the network. In total, 780 image
patches were selected to be used as initial training sample set. In addition, 542
image patches were selected for each of disaster and post-disaster images to
be used for fine-tuning of the model.

5.2.3 Step 3: Detecting damaged and demolished buildings

The OSM building map represents the pre-disaster time; however, since some
buildings get damaged during the disaster and are later demolished, direct use
of those maps for the training area selection from post-disaster images will
lead to inaccurate results, as rubble and damaged buildings are included.
Hence, the damaged and destroyed buildings should be excluded from the
building footprint map before using them for training area selection for post-
disaster time images. Since the extraction of the buildings will be based on the
advanced proposed deep learning approach, a simple yet accurate method was
developed only for the identification of the intact and damaged buildings from
the provided OSM building map.

Two measurements based on the Histogram of the Oriented Gradients (HOG)
and the edge detection results of the satellite images, namely Variation-HOG
(V-HOG) and Edge Density Index (EDI), were used to conduct the change
detection between the pre-disaster and post-disaster satellite images. The
change detection was performed only on the building masks of the images to
distinguish the damaged/demolished and intact buildings in the post-disaster
image.
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5.2.3.1 Variation of HOG (V-HOG)

HOGs provide powerful features (Dalal and Triggs 2005) for image
representation, which are particularly robust for image-based object
classification. They were initially developed for pedestrian identification
(Geronimo et al. 2010), but were then found to be robust features in different
applications (Geronimo et al. 2010), including for remote sensing data (Cheng
et al. 2016; Patel et al. 2016; Torrione et al. 2014; Xu et al. 2016) and for
image-based damage detection (Vetrivel et al. 2016).

The standard approach was used to extract the HOG features, which starts by
computing the gradient angles of the image and their magnitude distributions.
Then the images were split into cells of size (axb). Gradient images were split
into overlapping blocks in a manner that each block contained 50% overlap
with the cells. Then the orientation of the gradients was computed based on
the defined bin size. The histogram of the oriented gradients was computed as
a vector and concatenated for each block after adding the normalized
magnitude of the gradients. Since damaged areas have a larger HOG
distribution compared to intact buildings, we considered the V-HOG to compute
the variation of the normalized magnitude of the gradients of the bins to detect
damaged buildings (Figure 5.3e). Hence, a higher variation of the HOG
descriptor (higher V-HOG value) represented damaged areas, while small V-
HOG values indicated intact buildings. The V-HOG can be computed for each
block or each pixel, similarly to the HOG. However, HOG features may show
high variation in some cases due to color differences between pixel values in
building roofs. For example, a building may contain more than one color in its
rooftop, which was overcome by conducting a building-based change analysis,
rather than considering only the mono temporal image. This rasterized value
can be used simply by defining a threshold in the change in mean of V-HOG
from pre- to the post-disaster image to distinguish damaged/demolished
buildings from the intact ones.
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Figure 5.3 (a-c) Pre-disaster data in terms of (a) multispectral image, (b) V-HOG and
(c) edge detection image; OSM building map denoted with red lines. (d-f) Event time
data in terms of (d) multispectral image, (e) V-HOG and (f) edge detection image;.
result of Step 3 denoted with red lines.

5.2.3.2 Edge Density Index (EDI)

Edge detection results have previously been employed to refine image
classification (Marmanis et al. 2018) and object boundary detection (Ghaffarian
and Turker 2018). In our study we used the edge detection results to detect
changes in building status, i.e. to differentiate among damaged, demolished
and intact buildings. Since damaged buildings are expected to contain greater
variations in their pixel values inside the building footprints due to the presence
of debris/rubble, they were expected to contain more edge pixels when
compared to intact buildings that had more stable color variation. Accordingly,
the number of edge pixels along a building damaged during a disaster was
higher than that of buildings in the pre-disaster situation that were not
damaged (Figure 5.3c,f). Since the size of a building could vary from large
factories to very small slum dwellings, the number of edge pixels should be
considered based on the corresponding building size. Hence, Edge Density
Index (EDI) was proposed, which measures the percentage of edge pixels
within a building area, and if the change was higher than the defined threshold
the building was considered to be damaged/demolished. Edges were detected
using the Canny edge detector (Canny 1986), and its two parameters were set
to extract even weak edge pixels from the images.
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After a disaster and during the reconstruction process, the rooftop color of a
building may change, and thus conventional techniques that perform direct
change detection such as pixel value-based subtraction methods (Celik 2009;
Lu et al. 2004) were not suitable for this aim. However, the two proposed
indices were not sensitive to the changes in the rooftop colors of buildings from
the pre- to the post-disaster scenario. In addition, since the change detection
is at building level and is followed by an advanced deep learning approach, a
simple yet accurate method is required rather than more complicated methods
that include contextual information (Janalipour and Mohammadzadeh 2016).
The buildings in each image patch were considered individually, and each
building was taken into account at each time. Subsequently, the intact
buildings were extracted. Furthermore, NDVI and NDWI were used to remove
vegetated areas and water bodies and to refine the results from the building
mask in the post-disaster image. Only pre-disaster OSM building data were
used for the damage analysis (Figure 5.3a), and thus the damaged buildings
(in the event time case) and demolished buildings (in the recovery case) were
detected based on changes in the mean V-HOG and EDI.

5.2.4 Step 4: Updating the building database

The output of step 3 is affected by three main problems: 1) buildings that are
present in the images but are missing in the OSM building map data cannot be
detected by the procedure implemented in step 3; 2) inaccuracies may occur
especially due to mismatches and inaccuracies of OSM building map data. This,
for example, will classify an intact building as damaged due to connected and
adjacent buildings; and 3) it gives only changes of buildings existing before
the disaster, therefore missing the capability to extract newly constructed
buildings. To overcome these relevant issues, step 3 is followed by step 4 which
is based on an automated deep learning-based network as we will detail later.
Furthermore, since the method is a pixel-level classification it can extract the
shape and size of the buildings and thus their changes. The method is primarily
based on the adapted deep residual U-net (Zhang et al. 2018a) to
automatically train and detect buildings for post-disaster situations. U-net has
been shown to be reliable for image segmentation tasks (Bai et al. 2018; Yuan
et al. 2019; Zhu et al. 2017), and residual connection has been also
demonstrated as one of the effective network designs to detect building
damages (Duarte et al. 2018a). Figure 5.4 shows the DeepResUnet-CRF design
used in our study. We used only historical OSM data for the initial training of
the network from the pre-disaster image, in which there were inaccuracies
even after refinements of the OSM building maps. Therefore, only suitable ones
were selected to train the network. In addition, transfer learning has been
shown to be an effective method to accelerate the training process and
increase the accuracy performance of the network in several computer vision
(Gopalakrishnan et al. 2017; Ker et al. 2018; Shin et al. 2016) and remote
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sensing applications (Huang et al. 2017; Li et al. 2017c; Zhu et al. 2017).
Hence, the Resnet34 trained network from ImageNet was considered as pre-
trained network. Given that every satellite image may differ from the other
ones in terms of image characteristics (e.g., radiometric range values) and
changes in building properties (e.g., colors) after a disaster, the network
trained on the pre-disaster situation/images may not provide accurate results
for the post-disaster situations/images. Hence, the results of step 3 were used
to generate new samples from the associated post-disaster satellite images to
fine-tune the pre-trained network. The fully connected networks and U-net
have a common limitation in image segmentation tasks, which is the smoothing
of edges. In addition, since the OSM building map did not provide a precise
building mask, particularly for the building boundaries, we verified inaccuracies
in some parts of the images. This problem was alleviated by implementing a
Conditional Random Field method (CRF), which has been primarily investigated
in the literature as a refinement over the U-net or Fully Connected Networks
(FCNs) results (Liu et al. 2019; Pan and Zhao 2018; Wang et al. 2018).
Accordingly, a fully/dense CRF model developed by Krahenblihl and Koltun
(2011) was employed to optimize the ResUnet results.

Labels for each pixel can be considered as random variables, and their relations
in the image can be considered as edges in a graph-based theory, and these
two factors constitute a conditional random field. In dense CRF two main
factors in its energy function are the unary and pairwise potentials.

Let x be the pixel-level labels for the input image, then the unary potential
@;(x;) represents the probability of each i pixel, and the pairwise potential
1;;(x1,%;) that represents the cost between labels at i,j pixels is computed as
follow:

w0 ) = o) [oenp (~Lt = 2 4 e (D) ™
where [; and C; are the position and color vector for pixel i. u(xl-,x]-) is defined
based on the Potts model (Potts 1952) and is equal to one if x; # x;, otherwise
it is equal to zero. The first Gaussian expression considers both color and

location of the pixels, which is an appearance kernel to consider the similarity
of the adjacent pixels using the 6, and 6; parameters, and the second

expression only consider pixel positions and is for smoothness using the 6, as
the control parameter.
Then the energy function can be written as follow:

E(x) = Xi0:(x) + X575 (x, %)) (2)
The CRF is an iterative method that evolves and computes the labels and

predictions.
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Figure 5.4 The proposed ResUnet-CRF framework.
5.3 Experimental results

5.3.1 Datasets

We tested the proposed post-disaster building database updating framework
on satellite images of Tacloban city, the Philippines, which was hit by super
Typhoon Haiyan in November 2013, resulting in massive damages and losses
(Figure 5.5). Tacloban is a highly urbanized city that is extensively vegetated
due its tropical location. There are several types of built-up regions in the city,
including dense urban areas mostly located in the central business district of
the city with adjacent buildings, slum areas, mix of slum and formal buildings,
isolated buildings surrounded by dense vegetation/trees, various building
shapes and sizes from very small slum dwellings to large factories, and diverse
rooftop colors. All these characteristics made the building detection procedure
challenging and a suitable test area for our method.
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Figure 5.5 An overview of the Philippines showing the path of Typhoon Haiyan (a) and
the location of Tacloban city (b). Pre-disaster image (c), and image acquired three days
after the disaster (d).

The WorldView2 (WV2) pan-sharpened images with 0.5 m spatial resolution
and four multispectral bands (Blue, Green, Red, NIR) acquired 8 months
before, 3 days after and 4 years after the Typhoon were used in the work. The
selection of 4 bands (Red, Green, Blue, and NIR) instead of using entire 8
bands available in the satellite images is to reduce the computational
complexity/time of the processes while using the most informative bands of
the satellite images for our goal. In addition, OSM (historical) building data for
2013 obtained from the OSM platform were used as the pre-disaster building
map data.

5.3.2 Experimental settings

The proposed method was applied to ten selected image patches to evaluate
its capabilities on urban areas characterized by various building and
environmental characteristics. The test images were not included in the
training process of the network, and were specifically selected to test the
performance of the proposed approach in various environmental/data sets-
based conditions, as well as different damage and recovery (reconstruction)
scenarios (Table 5.1).
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Table 5.1 The targeted post-disaster building detection scenarios for each selected test
images.

Image Targeted post-disaster building detection scenarios

#1 Buildings that survived the disaster

#2 Partially destroyed slums and formal buildings

#3 | Buildings surrounded by flood water

#4 | Completely destroyed slums that produced an extensive amount of
debris
#5 Partially damaged factory buildings

#6 Reconstructed and not-reconstructed (completely cleared/removed)
buildings after 4 years

#7 | Reconstruction of the buildings almost to the same amount, shape
and sizes

#8 Construction of new buildings and changes in rooftop colors in the
recovery phase

#9 Clear expansion of the built-up area and construction of new
buildings

#10 | Change in the size of the reconstructed factory building

Table 5.2 presents the parameters and thresholds which were employed in the
implementation of the developed method. The results obtained by the
proposed automatic procedure were compared with reference data produced
manually by a qualified human operator. Accuracies were assessed using
common precision, recall, Fi-score, and Intersection over Union (IoU)
(Ghaffarian and Ghaffarian 2014a) measurements, all computed at pixel-level.
Therefore, initially all the pixels in the image were sorted into four classes:
True Positive (TP), True Negative (TN), False Positive (FP) and False Negative
(FN). TP and TN show the correct detections, while FP and FN show incorrect
detection results. Accordingly, the abovementioned quality measurements can
be computed as follow:

.. |TP|
T =
precision = o= 3)
TP
recall = —=2 4)
|TP|+|FN|
F, = 2 Xprecisionxrecall (5)
1= precision+recall
TP
IoU=—1" (6)

= |TP|+|FP|+|FN|

where |.| denotes the number of pixels assigned to each distinct class, and Fi-
score is the combination of precision and recall into a single score.

134



Chapter 5

Table 5.2 The parameters and threshold values used to do the experiments.
The parameters Value
S

Edge Density Index (EDI):
Difference between EDISs for change detection 0.03
o Edge detection: Canny

o Low threshold 10
o High threshold 25
Variation-HOG (V-HOG):
Difference between the mean of V-HOGs for 0.008
change detection
o HOG:
o Cell size 2
o Block Size 1
o Number of bins 9
o Conditional Random Field (CRF):
o 06, 35
o 6g 8
o 8y 5

The accuracy values of the proposed approach in extracting buildings from the
selected image patches, which are representative of different scenarios, shows
the performance of the method in such challenges and conditions.

5.4 Experimental results and discussion

The implementation of the Deep ResUnet was carried out on the LISA platform
of the SURFSara Dutch supercomputer. This platform is widely available for
academic organizations. The pre-processing of the OSM data and the image
rectifications were conducted in ArcGIS.

Figure 5.6 shows the automated post-disaster building detection results for the
10 selected images. From those, 5 images were selected from the satellite
image acquired 3 days and the other 5 images acquired 4 years after Typhoon
Haiyan to test the performance of the proposed method in both the response
(damage) and recovery (reconstruction) phases. The TP, FP and FN pixels are
illustrated and overlaid on the original images by assigning green, red and blue
colors, respectively. In addition, the pre-disaster OSM building map overlaid
(yellow color) on the pre-disaster satellite images is shown in the first column
of Figure 5.6 to illustrate the changes after the disaster.
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Figure 5.6 The results of the proposed method, test images and pre-disaster images
with OSM building boundaries (yellow). Column A: Pre-disaster (8 months before Haiyan)
images with OSM building boundaries in yellow. Column B, Images #1-5 taken 3 days
after Haiyan and Images#6-10 taken 4 years after Haiyan. Column C: the reference
image for buildings, in which white and black colors represent the building and
background pixels, respectively. Column D: detected buildings for test images. Green,
red and blue represent TP, FP and FN, respectively.

Qualitative analysis of the results based on the visual interpretation showed
the robustness of the proposed method in the extraction of the post-disaster
buildings in such a challenging case study by producing more TPs (i.e., green
areas), while limiting the FPs (i.e., red areas). Furthermore, the quantitative
assessment of the results also supported this statement. The overall Fi-score
for the event-time and recovery time images was 84.2%, the overall precision
84.1%, and the overall recall 84.4% (Table 5.3). The balance between these
accuracy measurements also showed the efficiency of the proposed method.
In addition, the overall IoU of 73.1% for such a challenging test area
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demonstrates the performance of the proposed method in extracting building
boundaries and their overlap with actual building footprints.

Table 5.3 Numerical results of the proposed post-disaster building database update for
event and recovery times.

Event time satellite images

Precision (%) Recall (%) F1score (%) IoU (%)

#1 86.3 78.2 82.1 69.6
#2 84.8 84.1 84.5 73.1
#3 70.6 77.0 73.7 58.4
#4 75.2 77.7 76.4 61.8
#5 88.1 88.5 88.3 78.9
Mean 81.0 81.1 81.0 68.4

Recovery satellite images

Precision (%) Recall (%) F1score (%) IoU (%)

#6 90.6 85.9 88.2 78.8
#7 87.2 86.4 86.8 76.7
#8 81.3 87.4 84.2 72.8
#9 85.4 91.8 88.5 79.4
#10 91.3 87.3 89.3 80.6
Mean 87.2 87.8 87.4 77.7
Overall 84.1 84.4 84.2 73.1
accuracy

The main challenges experienced in this case study were: (i) different textures
of the building rooftops and in some cases their similarity with other land
covers (e.g., bare soil) that made the change detection step challenging; (ii)
inaccuracies in the OSM map data that influenced the change detection and
extraction procedures (e.g., mismatches of the OSM building map with actual
buildings in the satellite images, and missing boundaries for some buildings);
(iii) the complexity of the scene to perform the building extraction task (e.g.,
mixture of slums and formal buildings even in the business district of the city,
and buildings with various colors, shapes and other building characteristics).
The proposed method produced 81.0% and 68.4% mean Fi-score and IoU
accuracies, respectively, for the images belonging to the event time, and
87.4% and 77.7% mean Fi-score and IoU, respectively, for the recovery
images. The lower accuracy for the event time images was due to presence of
a large amount of debris in the areas just after the disaster. From the event
time images, the test image #5 produced the best accuracy values with 88.3%
Fi1-score (Table 5.3), while the lowest accuracy belonged to image #3 with a
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73.7% Fi-score. The most important reason for the low performance was the
similarity of the texture and color of the buildings with the damaged ones,
which resulted in more false positives (i.e., red areas) in the results. In
addition, image #4 produced a 76.4% Fi-score due to the presence of large
amounts of debris around the intact buildings, which also led to more false
positives. Also, the similarity of some of intact building rooftop colors and
texture to debris resulted in more false negatives (i.e., blue colored areas).
Moreover, images #1 and #2 demonstrated the efficiency of the proposed
method in extracting buildings in dense urban areas, as well as a mixture of
formal building and slum areas, by producing a 82.1% and 84.5% Fz:-score,
respectively. However, one large dark-green colored building was not detected
in this image using the proposed method, which could have two reasons: the
lack of dark-green colored buildings in the training samples, and/or the building
was detected only partially, which was later removed during post-processing,
particularly during the implementation of the CRF method (Figure 5.7).
Although CRF removed some pixels that were correctly classified as building in
the previous step, it led to an overall increase in the Fi-score from 73.7% to
82.1% (Figure 5.7). Furthermore, image #5 showed the robustness of the
method in extracting even partially damaged building. In addition, the low F;-
score (54.09%) and IoU accuracy (37.1%) values produced by the network
initially trained without fine-tuning for Image#1 shows the significance of this
step in improving the performance of the final building database updating
results (Figure 5.7).
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Figure 5.7 (a) Original test Image#1, (b) ResUnet-CRF, (c) ResUnet, and (d) ResUnet
without fine-tuning results. The areas within the yellow boundaries denote the dark green
buildings to stress the effect of the CRF in the final result. The areas within the purple
boundaries denote the inaccuracies in the results extracted using the network initially
trained without fine-tuning. Green, red and blue pixels represent TP, FP and FN,
respectively.

5.5 Conclusion

In this paper, we proposed a novel framework to update the post-disaster
building database from VHR satellite imagery coupled with a leading online
collaborative and open access map database, OSM. The approach was based
on the automated training area generation for the proposed ResUnet-CRF
network for building extraction. In addition, the proposed EDI and V-HOG
indices confirmed a reliable performance in detecting changes of built-up areas
from multi-temporal satellite imagery, to distinguish between damaged and
intact buildings. This was then used as a preprocessing step in the automatic
training area selection for the post-disaster building extraction (both for
immediately after the disaster, and the recovery phase).

Experiments performed on ten test images selected from the study area (VHR
images) demonstrated that the proposed approach produced robust results in
updating the building database in different post-disaster scenarios, such as
damaged, collapsed, reconstructed, newly built, and demolished buildings,
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using diverse building characteristics such as color, shape, and size of the
buildings under challenging environmental conditions. Indeed, the efficacy of
the proposed method was independent from building characteristics. Although
the proposed method performed efficiently in this case study, it would likely
produce even higher accuracies where OSM data are more accurate, such as
in large cities. Assessing the impact of registering and modifying the OSM map
and satellite images before training the network is also of interest for future
studies. The inaccuracies in the OSM data (i.e. mismatching of the building
footprint with the actual ones in the satellite images) led to smoothness in the
edge of the buildings, which was mostly overcome through the CRF method.
The CRF method showed a fairly good performance in refining the ResUnet
results of the building boundaries; however, it did not perform well in the pixel
brightness value-based refinements. This was also expected due to the
complexity of the study area, in which the color variation was high and there
was a strong similarity between the building and non-building classes in some
parts of the images in terms of color and texture. In this case, in future
research spatial context-based approaches can be used to overcome these
drawbacks. The limitation of the proposed method was mainly associated with
difficulties in detecting buildings that rarely occurred in the training set. For
example, in a post-disaster scenario construction materials of the buildings
may change to increase the resilience of the buildings, which may result in
changes in the rooftop color and texture of the buildings which were not
present in the training set used to build the network. However, this issue was
limited by the proposed method by retraining the network using updated
satellite images. Besides, the performance of the network can be improved by
adding more image patches for training. In addition, the framework could be
used to update building maps in a normal situation by implementing the
proposed approach but excluding the change detection phase.
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Abstract

Post-disaster recovery is a complex process in terms of measuring its progress
after a disaster and understanding its components and influencing factors.
During this process, disaster planners and governments need reliable
information to make decisions towards building the affected region back to
normal (pre-disaster), or even improved, conditions. Hence, it is essential to
use methods to understand the dynamics/variables of the post-disaster
recovery process, and rapid and cost-effective data and tools to monitor the
process. Google Earth Engine (GEE) provides free access to vast amounts of
remote sensing (RS) data and a powerful computing environment in a cloud
platform, making it an attractive tool to analyze earth surface data. In this
study we assessed the suitability of GEE to analyze and track recovery. To do
so, we employed GEE to assess the recovery process over a three-year period
after Typhoon Haiyan, which struck Leyte island, in the Philippines, in 2013.
We developed an approach to (i) generate cloud and shadow-free image
composites from Landsat 7 and 8 satellite imagery and produce land cover
classification data using the Random Forest method, and (ii) generate damage
and recovery maps based on post-classification change analysis. The method
produced land cover maps with accuracies >88%. We used the model to
produce damage and three time-step recovery maps for 62 municipalities on
Leyte island. The results showed that most of the municipalities had recovered
after three years in terms of returning to the pre-disaster situation based on
the selected land cover change analysis. However, more analysis (e.g.,
functional assessment) based on detailed data (e.g., land use maps) is needed
to evaluate the more complex and subtle socio-economic aspects of the
recovery. The study showed that GEE has good potential for monitoring the
recovery process for extensive regions. However, the most important limitation
is the lack of very-high-resolution RS data that are critical to assess the process
in detail, in particular in complex urban environments.
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6.1 Introduction

Natural disasters have devastating impacts on infrastructure, business sectors,
and people in the affected region. Between 1998 and 2017, more than 5.7
billion people were affected by disasters, and more than one million people
were killed by such events, while a total loss of USD 2.9 trillion was reported
(CRED 2018). Recovery starts after the immediate post-disaster response
phase, mainly search and rescue operations, have concluded. Post-disaster
recovery is the process of reconstructing communities in all their aspects (e.g.,
physical, economic, social, and environmental) in order to return life,
livelihoods, and the built environment to their pre-impact (Burton et al. 2011),
or even better, states, as per the Sendai Framework (UNISDR 2015). Recovery
can take years or even decades, and is the least studied phase of the disaster
management cycle. Moreover, it has been considered as a proxy to evaluate
resilience (Ghaffarian et al. 2018; Sheykhmousa et al. 2019), with resilient
communities recovering faster after a disaster. However, a recent study argued
that this assumption may not be true in all cases, and there is a need for more
studies to explore the relationship (Kerle et al. 2019a). Accordingly, providing
information about the status of the damage and the reconstruction and
recovery process after a disaster is vital to support decision-makers and
planners, but also to support post-event risk updating efforts.

Remote sensing (RS) data and techniques have been extensively used for
different aspects of disaster risk management (DRM) (Ghaffarian et al. 2018),
from quantification of social (Ebert et al. 2009) and physical (Harb et al. 2015)
vulnerabilities, to rapid damage assessments (Kerle et al. 2019b) using
satellite (Vetrivel et al. 2016b), airborne (Vetrivel et al. 2016a), and Unmanned
Aerial Vehicle (UAV) images (Nex et al. 2019a), and numerous data analysis
methods have been developed. Conversely, only recently have a small number
of studies focused on the recovery phase (Ghaffarian and Kerle 2019b;
Sheykhmousa et al. 2019). Recently, RS data also started to be used for
disaster recovery monitoring; however, most of these studies used RS for
physical recovery assessment (Ghaffarian et al. 2018). For instance, Brown et
al. (Brown et al. 2010) developed an indicator-based methodology to monitor
and evaluate post-disaster recovery based on high-resolution RS imagery,
particularly IKONOS and QuickBird satellite images, in addition to field surveys
and internet-based statistic data sets. They implemented image processing
techniques for change detection (i.e., land cover changes) and building-based
recovery/reconstruction analysis. They evaluated the potential of RS data for
recovery assessment. In a different study, Burton et al. (Burton et al. 2011)
used the repeat photography method to evaluate post-Katrina recovery in
Mississippi. They took photographs every six months over a three-year period.
Then, by assigning scores to each scene in terms of change and recovery, they
generated a map for recovery assessment for the entire region. Night-time
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light satellite images have been also used for damage and recovery analysis,
and it has been demonstrated that there is a close relationship between light
intensity and economic activity (Sutton et al. 2007). However, the night-time
light satellite images are only useful for urban area recovery assessments.

Brown et al. (Brown et al. 2011) developed a model to assess the damage and
early recovery using RS data and ground survey tools after the 2008 Wenchuan
earthquake in China. The recovery step of their study included buildings,
accessibility, power, and water livelihoods assessments. In their study, only
the Normalized Differential Vegetation Index (NDVI) computation was
implemented automatically, and other information, such as building change
detection and accessibility assessments, were generated manually. Costa
Vieira and Kerle (Costa Viera and Kerle 2014) studied urban recovery using
geospatial data for the firework disaster in Enschede, the Netherlands, 2000.
They mainly employed very high-resolution aerial images to extract
information about the building morphology, such as building density, shape,
and size, and concentration of road networks as proxies. In addition they
proposed a proxy to measure the quality of housing based on the energy loss
indicator of the buildings. Hoshi et al. (Hoshi et al. 2014) used ground survey
information in combination with RS, employing visual interpretation and binary
classification methods to monitor post-disaster urban recovery. Contreras et
al. (Contreras et al. 2016) integrated RS (high-resolution satellite/aerial
imagery) and ground observations to assess the recovery process in the Italian
city of L’Aquila after the 2009 earthquake. They showed that using RS data for
recovery monitoring reduces the required ground fieldwork.

Recent studies have focused on the extraction of proxies for post-disaster
recovery assessment by land cover and land use classification and change
detection of very high-resolution images using advanced machine learning
methods (Kerle 2016). Sheykhmousa et al. (Sheykhmousa et al. 2019)
implemented a Support Vector Machine (SVM)-based method to produce land
cover and land use classification maps for before, event/just after, and years
after the disaster. They assessed the recovery processes by monitoring the
changes in land cover and use maps. They also introduced the concept of
positive and negative recoveries based on the observed change patterns.
Furthermore, Kerle et al. (Kerle et al. 2019a) developed a conceptual
framework for RS-based recovery monitoring and then integrated it with
statistical economic analysis to assess the resilience-centered development
interventions. They hypothesized that the speed of recovery is a proxy for
resilience assessment; however, for some areas their results showed a
negative relationship between image-derived speed of the recovery and
resilience calculated based on household surveys. They employed the Extreme
Gradient Boosting (XGBoost) method (Chen and Guestrin 2016; Georganos et
al. 2018) to classify the very high-resolution images to extract RS-based
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proxies. They concluded that although RS can provide useful information in
addition to socio-economic survey data, the high cost of very high-resolution
images and the need for high computational processing power are the
limitations of utilizing RS data. Moreover, deep learning, in particular
convolutional neural networks (CNN), has become the state-of-the-art method
in computer vision and RS data analysis, and has also been used for post-
disaster damage and recovery assessments (Duarte et al. 2018; Kerle et al.
2019b; Nex et al. 2019b). For instance, a new image-patch generation
approach was developed to train a CNN-based network simultaneously with
multi-temporal satellite images and assess recovery (Ghaffarian and Kerle
2019a). In addition, free OpenStreetMap building footprints were employed to
automatically generate training data from very high-resolution satellite images
for a pixel-level deep learning method for post-disaster building database
updating (Ghaffarian et al. 2019). The study showed that the proposed
approach significantly decreased the manual work of training area collection,
while maintaining the accuracy of the detected damaged, reconstructed, and
newly constructed buildings at a high level. However, extensive computational
power is needed to execute deep learning methods.

Most of the developed RS-based approaches in post-disaster damage and
recovery assessments focus on the use of costly very high-resolution data that
require extensive digital storage and computing capacity to make use of them.
In recent years, freely available RS images made available through platforms
such as Google Earth have attracted the attention of researchers to extract
useful information (Ghaffarian and Ghaffarian 2014a, 2014b). In addition,
cloud-based platforms such as Google Earth Engine (GEE) provide free RS data
and computing power with a coding environment to develop and implement
user-defined methods and process the data (Gorelick et al. 2017; Kumar and
Mutanga 2018). Freely available, low- to medium-resolution images by data
providers (e.g., Copernicus) are mainly collected in these platforms. The
potential of such systems has been studied for vegetation cover change
analysis (Xie et al. 2019), land cover and land use classification (Ge et al.
2019; Stromann et al. 2019), change detection/analysis (Canty et al. 2019;
Sidhu et al. 2018), wetland map generation (Mahdianpari et al. 2018; Wu et
al. 2019), rangeland and crop monitoring (Xiong et al. 2017; Zhou et al. 2020),
and in the DRM domain for flood prevention and emergency response (Liu et
al. 2018), drought assessment (Sazib et al. 2018), and wildfire progress
mapping (Crowley et al. 2019). However, they have not yet been studied to
monitor the post-disaster recovery process. Furthermore, there is a need for
higher spatial resolution images for detailed analysis (e.g., functional
assessments), especially in urban areas.

The aim of this study was to test the suitability of GEE for a large-scale post-
disaster recovery assessment. The big time series Landsat 7 and 8 data
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available on GEE were used to first generate image composites for the before,
event/just after, and post-disaster times (i.e., three time-steps after the
disaster) to obtain cloud-free images, by adapting the method developed by
De Alban et al. (De Alban et al. 2018). Then, the Random Forest classifier
available on the cloud computing platform was employed to classify the
generated images and monitor the land cover changes during the recovery
process. The entire Leyte island (with an area of ca. 7300 km?2) in the
Philippines was selected to test the developed approach, and municipality-
based damage and recovery maps for the entire island were generated for the
selected time epochs. Leyte region was hit by Super Typhoon Haiyan on 8
November 2013. As one of the strongest typhoons on record worldwide, it
resulted in more than 6000 fatalities, and total damages were estimated at ca.
USD 2.2 billion (NDRRMC 2014).

6.2 Materials and Methods

6.2.1 Case Study and Google Earth Engine Data

Leyte province, located in the Eastern Visayas, is the seventh largest island in
the Philippines (Figure 6.1). With a population of approximately 250,000,
Tacloban is the biggest city and the capital of Leyte, which in total houses ca.
1.7 million people. The region has a tropical climate with two slightly different
rainfall patterns during a year. While most of Leyte island has an even annual
rainfall distribution, some eastern parts have a pronounced maximum rainfall
from November to January. Typhoon Haiyan (also known as Typhoon Yolanda
in the region) passed over Leyte island close to Tacloban City on 8 November
2013. Tacloban was hit by the full force of the typhoon, which caused massive
destruction in the city. A state of emergency was declared in Tacloban and the
typhoon caused a storm surge of up to 5 m (NDRRMC 2014).

Since Leyte island is a tropical region and is covered by clouds most of the
time, we first aimed at using Synthetic Aperture Radar (SAR) data. However,
only Landsat images were available and found suitable for our study in the GEE
data sets for the time of the disaster and recovery processes. Accordingly,
atmospherically corrected surface reflectance Landsat 7 and 8 satellite images
with 30 m spatial resolution were used to map the selected land cover types
and implement the developed approach for post-disaster recovery assessment
(Table 6.1). In total, 446 Landsat images were employed in this study. In
particular the potential of big geospatial time-series data (i.e., Landsat 7 and
8 images) available on the cloud was used to generate the best-available-pixel
image composites (explained in the methodology section) for the pre-disaster,
event time, and post-disaster time steps over Leyte island to minimize/remove
the cloud and shadow areas.
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Figure 6.1 An overview of the Philippines showing the path of Typhoon Haiyan and the
location of Leyte island. Pre-event image and an image acquired three days after the
disaster for Tacloban.

Table 6.1 Satellite images used in this study.
Number
- - Acquisition of Satellite Spatial
D Timeline Dates Images Platforms Resolution
Collected
2013-05-01 to
TO | Before Haiyan 68
2013-10-28
2013-11-10 to
T1 Event time 56
2014-03-31 Landsat 7
2014-06-01 to ETM+ and
T2 | Post-Haiyan 1 104 30 m
2014-12-30 Landsat 8
2015-06-01 to ol
T3 | Post-Haiyan 2 109
2015-12-30
2016-06-01 to
T4 | Post-Haiyan 3 109
2016-12-30

6.2.2 Reference Data and Land Cover Classes

We defined the land cover classes based on the local knowledge of the authors
about the study area, and by considering the capacity/potential of the Landsat
images (i.e., spatial and spectral resolutions) to identify different classes
through field verification and visual interpretation of high-resolution satellite
imagery acquired from various platforms (i.e., WorldView1-3, GeoEye 1,
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Pleiades) and images available from Google Earth Pro. We identified five land
cover classes: forest/trees, built-up, crop land, water body, and other (i.e.,
non-tree vegetation, bare land, and debris/rubble) (Table 6.2), and the
corresponding regions of interests (ROIs) were collected for training and
testing of the classification method using the tools available within GEE.

Table 6.2 Description of the selected land cover classes.
ID Land Cover Description
Class
1 Forest/Trees All types of trees (e.g., forest, palm and banana), tree
canopy coverage >30%

2 Built-up Any type of developed lands such as buildings, roads,
impervious surfaces
3 Crop land Agricultural fields with any non-tree crop type
plantation
4  Water body Bodies of water including lakes, oceans, rivers and
flooded areas
5 Other All other land cover classes (i.e., non-tree vegetation,

bare land, rubble and debris)

6.2.3 Methods

The developed approach for post-disaster recovery assessment has three main
steps (Figure 6.2): (i) land cover classification of the pre-disaster, event time,
and post-disaster images, (ii) change detection of pre-disaster and event time
classified images to obtain the damage map, and (iii) change analysis of the
post-disaster classified images and the damage map to obtain the recovery
maps at T2-T4. Generating the land cover maps from the Landsat 7 and 8
satellite images with GEE consisted of three main stages: image composite
generation, image classification, and accuracy assessment.
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Figure 6.2 The proposed framework for post-disaster recovery monitoring.

6.2.3.1 Image Composite Generation

We generated the best-available-pixel image composites for the T0O-T4 time
steps by extracting the best observations from several Landsat 7 and 8 images
for our case study (Leyte island), using pixel-based image compositing within
the GEE platform, and implemented using rule-based criteria such as dates of
acquisition and exclusion of clouds and shadows (Griffiths et al. 2013; Hansen
and Loveland 2012; White et al. 2014; Wulder et al. 2012). To do so, we
adapted a script within the GEE environment provided by De Alban et al. (De
Alban et al. 2018). The generated Landsat image composites were exported
for subsequent use in the image classification. The developed script needs
user-defined inputs and parameters: the coordinates and extent of Leyte
island, the number of years, starting and ending date range for the selected
region (i.e., Leyte), the thresholds for cloud detection and masking (10% or
less) and shadows (z-score = —1), and the image collection used, (i.e., Landsat
7 ETM+ and Landsat 8 OLI). Then the areas that were masked out in the
previous step were filled by the median of the selected image pixels (De Alban
et al. 2018; Reductions. 2019). The scripts developed for this study are
provided as supplementary materials in this paper.

In addition, we calculated five well-known indices from the Landsat composite

images and added to the available Landsat bands to be used in the
classification step as follows:
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Normalized Difference Vegetation Index (NDVI; (Tucker 1979)) using Equation

(1):
NIR — Red
NDVI= §IR T Red (1)
The Soil-Adjusted Total Vegetation Index (SATVI; (Marsett et al. 2006)) using
Equation (2):

SWIR1 — Red w
SAVE= skt v Rea v 01" (1 /2.0 ()

Enhanced Vegetation Index (EVI; (Huete et al. 2002; Huete et al. 1997)) using
Equation (3):

EVI = 25+% NI (3)
" NIR + (6.0 x Red) — (7.5 = Blue) + 1.0

Land Surface Water Index (LSWI; (Gao 1996; Jurgens 1997)) using Equation
(4):

LS = NIR — SWIR1 @)
" NIR + SWIR1

Normalized Difference Tillage Index (NDTI; (Van Deventer et al. 1997)) using
Equation (5):
SWIR1 — SWIR2

NDTT= TR + swirz (5)

where Blue is the blue band, Red is the red band, NIR is the near-infrared
band, SWIR1 is the shortwave infrared 1 band, and SWIR2 is the shortwave
infrared 2 band of the Landsat image.

NDVI was shown to be a useful tool for distinguishing green vegetation areas
from other land cover types; LSWI is for detecting water bodies and when
combined with NDVI improves the performance of separating crop lands and
forests (Xiao et al. 2002). SATVI, EVI, and NDTI have been shown to be
effective tools for identifying forest and crop types from other land cover
classes (De Alban et al. 2018; Torbick et al. 2016).

6.2.3.2 Image Classification

The final stacked/combined images for each time step consisted of seven
Landsat bands (i.e., Blue, Green, Red, NIR, SWIR1, SWIR2, and TIR) and the
computed indices (i.e., NDVI, EVI, SATVI, NDTI, and LSWI). The combined
images were stored under the “Asset” tab of the GEE code editor platform to
be later used for training and testing ROI selection/extraction.

We collected regions of interest (ROIs)/training areas from the images, using
the tools within GEE in a way that each class had at least 40 polygons. These
selections were based on field verifications and visual interpretations from
high-resolution Google Earth Pro historical images and high-resolution satellite
images acquired by different sensors (i.e., WorldView1-3, GeoEyel, Pleiades),
and Landsat true- and false-color images to obtain final robust training and
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testing datasets. From the collected ROIs, 70% were randomly selected for
training the classifier method and the rest were used for testing purposes. We
used Random Forest, as an ensemble machine learning algorithm, to classify
the images based on the collected training samples. Random Forest has been
widely used in RS image processing for different applications (Belgiu and
Dragut 2016), including land cover and land use classification (Abdi 2019;
Gislason et al. 2006), landslide detection (Stumpf and Kerle 2011), and
hyperspectral image classification (Ham et al. 2005), due to providing efficient
and accurate results. It is also one of the machine learning-based methods
available and ready to use in GEE. This approach has also been used by other
researchers and its ability to produce accurate classification results has been
demonstrated (Kelley et al. 2018; Oliphant et al. 2019; Shelestov et al. 2017;
Teluguntla et al. 2018). In addition, Random Forest was selected as the best
classifier among several advanced algorithms, including SVM and neural
networks, for classifying hundreds of different real-world datasets (Fernandez-
Delgado et al. 2014).

Random Forest grows multiple decision trees on randomly selected training
subsets. In addition, it takes the advantage of the bootstrapping approach to
construct the decision trees from training samples and input variables at every
node. The constructed numerous decision tress then go through the majority
voting mechanism to obtain the final classification result. This strategy
contributes to overcoming the limitations of single tree-based classifiers such
as overfitting, and makes it less sensitive to noise. In the current study we
executed Random Forest with 100 decision trees per class, a 0.5 fraction
number to bag per tree, and 10 for the minimum size of a terminal node.

6.2.3.3 Accuracy Assessment

The overall user’s and producer’s accuracies were calculated for each time step
classified maps (i.e., T0O-T4) to assess the accuracy of the produced land cover
classification results. A proportion of 30% of the collected ROIs for each class
were selected using stratified random sampling for testing and computing the
accuracy measures (Marsett et al. 2006). To do so, we adapted the code script
used by De Alban et al. (De Alban et al. 2018) and executed it within the GEE
environment. Selecting the training and ground truth ROIs was challenging for
some classes due to similarities between the land cover classes (e.g., crop land
and vegetation classes). We tried to minimize the effect of these inaccuracies
using different sources (e.g., very high-resolution satellite images) in selecting
the ROIs. In addition, considering debris/rubble as the damaged area may
cause inaccuracies, e.d., in the case of storm surge that may relocate/wash
debris to other regions covering the intact built-up area (Ghaffarian and Kerle
2019).
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6.2.3.4 Change Analysis

Final damage and recovery maps were generated based on the amount of
change in the forest, built-up, and crop land classes. The changes were
computed at the municipality level, and the damage map was generated by
comparing the TO and T1 land cover classification results; also, the recovery
maps for each post-disaster time step (T2-T4) were computed by comparing
the T1 and T2-T4 land cover classification results.

6.3 Results and Discussion

The proposed approach produced overall accuracies of 92.8%, 88.6%, 93.8%,
94.6%, and 89.0% for land cover classifications of the TO, T1, T2, T3, and T4
images, respectively (Table 6.3). In addition, Figure 6.3 shows the original
true-color image composites and the results of the land cover classification for
the TO-T4 time steps. Visual interpretation of the results and the high accuracy
rates demonstrate the robustness of the approach and the Random Forest
classifier for land cover classification for the defined classes in such a case
study. However, the producer’s accuracy values of the built-up and the other
(including non-tree vegetation, bare land, and debris) classes for T1 and T4
images were 76.5% and 75.4%, respectively, which shows the relatively high
omission errors for those classes. Relocation of palm tree fronds by the typhoon
made distinguishing trees, crop land, and other (including debris) classes more
difficult for the event time, and resulted in the lowest overall accuracy of 88.6%
for the T1 image classification. Furthermore, the generated composite images
may still include cloud coverage. For example, the presence of clouds in the T4
image even after image composition generation resulted in some inaccuracies
that produced the second-lowest overall accuracy of 89.0% among other
images. The developed method produced accurate results in classifying built-
up, water body, and forest/trees classes in most of the images.
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Table 6.3 The land cover classification accuracies for TO, T1, T2, T3, and T4 time epochs
for Leyte island. PA—producer’s accuracy; UA—user’s accuracy; OA—overall accuracy;
Non-tv—Non-tree vegetation.

Built- Crop Water Other (Non-tv,

Time/Class Trees Bare Land,
Up Land Body Debris)

Pre-disaster UA(%) 90.7 100 93.0 100 86.7

(T0) PA(%) 87.3 100 84.6 100 85.8
OA(%) 92.8

Event time UA(%) 98.4 94.8 85.1 100 71.9

(T1) PA(%) 84.1 100 84.9 100 76.5
OA(%) 88.6

Post-disaster UA(%) 96.4 89.1 90.6 99.9 90.3

(12) PA(%) 88.4 95.7 90.6 99.8 96.4
OA(%) 93.8

Post-disaster UA(%) 95.7 98.5 84.8 100 86.5

(13) PA(%) 93.1 97.8 98.7 100 91.3
OA(%) 94.6

Post-disaster UA(%) 90.1 81.0 86.3 99.5 86.7

(T4) PA(%) 96.6 75.4 93.3 99.9 82.6
OA(%) 89.0
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Figure 6.3 (a-e) Landsat image composites acquired over Leyte island for T0O-T4
times, respectively, (f-j) land cover classification maps produced with GEE for TO-
T4 times, respectively. Red rectangles show the status of the relocation site
(northern part of Tacloban) for TO-T4 times. Non-tv—Non-tree vegetation.
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Figure 6.4 shows the land cover class change trends extracted from the TO to
T4 images. Typhoon Haiyan clearly had a significant impact on the forest/trees
and built-up areas, reducing their coverage by about 40% and 30% from TO
to T1 images, respectively. The increase of the other class from TO to T1 is
mostly due to the debris and rubble caused by Haiyan and denuded trees,
which led to an increase in non-tree vegetation coverage even in (formerly)
forested areas. The storm surge during the typhoon resulted in the increase in
water bodies in the T1 image. Monitoring three years after Typhoon Haiyan for
Leyte island demonstrates that most of the land cover changes returned to
their pre-disaster situation. However, there is an increase in the built-up class
that is due to the construction of resettlement sites (as safe zones) mostly
around the eastern coastal cities (e.g., Tacloban city—Figure 6.3).
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Forest/Trees Built-up Crop land Water body tv+B(a):2IZrn(c:\-:-oD:bris)
HTO (%) 65.12 1.01 28.25 0.32 5.30
BT (%) 40.51 0.72 33.44 0.62 24.71
HT2 (%) 55.23 0.76 27.30 0.29 16.41
T3 (%) 56.90 1.45 29.30 0.25 12.10
uT4 (%) 65.00 1.45 28.39 0.22 4.93

Figure 6.4 Per class land cover percentage for Leyte island for TO-T4. Non-tv—Non-tree
vegetation.

Figure 6.5 shows the damage and recovery maps for the post-Typhoon Haiyan
situation generated at the municipality level for Leyte island. The damage map
was produced based on the change analysis of the land cover classes for the
TO and T1 times, and recovery maps (RC) (i.e., RC1, RC2, and RC3) were
produced based on change analysis of the damage map and the land cover
classes of T2, T3, and T4 times, respectively.
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Figure 6.5 (a) Municipality level damage map for T1 and (b-d) the recovery maps for
T2-T4 times after Typhoon Haiyan for Leyte island, respectively.

In Figure 6.5, the darker red color shows more damage while, for the recovery
maps, the darker green color shows a higher level of recovery. The most
damaged/impacted municipalities are located in the center and northern part
of the island. However, since Haiyan passed through the northern part of the
island, the municipalities in the southern parts have the lowest damage ratios,
close to zero. The most affected land cover classes were the forest/trees and
built-up classes (Figure 6.4). Consequently, the municipalities with more
forest/trees and built-up coverage compared to other land cover types have
higher damage ratios. The change in the recovery maps (from RC1 to RC3)
shows that the municipalities with more forest/tree coverage recovered more
slowly than the others, and eventually, after a period of three years, most of
the forest trees had recovered (RC3) (Figure 6.5d). Moreover, the results
reported in a previous study (Sheykhmousa et al. 2019) show almost the same
pattern of recovery in terms of change in land cover classes at a small scale
(i.e., Tacloban) in the post-Haiyan time. The only difference is in built-up class,
where our study shows growth in built-up areas three years after Haiyan, while
they reported that Tacloban city returned to almost the same level of built-up
coverage four years after the disaster. This is mainly because their focus was
on central urban areas of Tacloban, not including the northern part of Tacloban
in their analysis, in which the primary resettlement sites for the period after
Haiyan were built (Figure 6.3).

6.4 Discussion and Conclusions

The aim of this study was to assess the suitability of GEE for post-disaster
recovery assessment for a large-scale region after Typhoon Haiyan, which hit
Leyte island in the Philippines in 2013. We proposed an approach to monitor
and quantify the recovery process using GEE, in particular with Landsat
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images, based on land cover classification and subsequent change analysis,
and then producing municipality-based damage and recovery maps. The land
cover classification results show the robustness of the employed approach,
including image composite generation and Random Forest-based image
classification. Furthermore, the change analysis and generated recovery maps
clearly illustrate the damage and recovery processes during the selected time
epochs, i.e., three time-steps for recovery assessment for three years after
Haiyan. However, among the big geo dataset available in the platform and
considering the time of Typhoon Haiyan (i.e., November 2013), we only found
Landsat images suitable for this study. Hence, due to the limited spatial
resolution of the data, detailed recovery analysis was not possible (e.g.,
extracting more land-use classes, such as building use and crop types). As also
concluded by Sheykhmousa et al. (2019), land cover maps can provide the
main information for decision-makers to have an overview of the damage and
reconstruction/recovery processes, which are critical in the early stages of
recovery. However, a comprehensive recovery assessment needs more details
that can be obtained using land use maps extracted from very high-resolution
images. Little work has been done to date in damage and recovery mapping of
the selected area, and none of this previous research investigated the entire
Leyte island. In addition, the available studies that focused on some selected
small areas were based on very high-resolution images with different class
definitions. Hence, the validation is only based on the accuracy assessment of
the land cover classification results. However, since GEE also allows to upload
user images for processing, it might be used to upload a very high-resolution
image for validation purposes.

Moreover, the change in types of crops and trees, or any detail about the
recovered trees, can provide more information about the recovery process. For
example, it is essential from the environmental and ecological points of view
to understand whether the same trees that were denuded by the typhoon
recovered, or whether the trees detected were newly planted after the disaster.
More detailed information on the age of the trees can provide significant
additional insights into the post-disaster recovery process.

In conclusion, further studies are needed to investigate the potential of the
more recently available higher resolution optical and SAR images (Sentinel 1
and 2 images) for most of the case studies (i.e., disasters) that occurred after
those platforms became operational. In addition, SAR data have been shown
to be a useful tool for extracting land cover and use classes such as
distinguishing different crop and tree types (De Alban et al. 2018). Hence,
using higher resolution images and SAR data available in GEE will allow the
researchers to detect damage to the crops, contribute to detecting changes in
tree types, and extract more details for urban areas after a disaster (Bell et al.
2019; Dadhich et al. 2019; Phan et al. 2019).
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Computer vision and image processing/classification methods deal with the
actual image-based pixel values and try to classify them to achieve the best
accuracies. However, in post-disaster remote sensing images, especially in
water-related disasters, seeing actual damage and visually distinguishing
damaged and intact areas is nearly impossible in some cases, as some intact
areas are often buried under debris. Hence, assuming the debris area as the
damaged class is not entirely correct, there is a need for further studies to
identify the debris types (e.g., (Ghaffarian and Kerle 2019b)) or use proxies
for distinguishing between damaged and other classes (Sheykhmousa et al.
2019) instead of only using direct image classification methods.

Evaluating the recovery process with more details (e.g., building use detection,
crop type classification) and several time epochs at such a large scale, and
providing municipality level recovery scores similar to those proposed in our
study, can be further used for per-municipality resilience assessment at large
scales, assuming that the speed of recovery is a proxy for evaluating resilience.
However, it has been shown that this assumption is not correct for all cases,
and further investigation is needed to clearly determine the relationship
between the speed of the post-disaster recovery and resilience (Kerle et al.
2019a).

Although the Random Forest-based image classification produced a high
accuracy rate, using more advanced methods (i.e., deep learning-based
approaches) within the Google Earth API could help to improve the accuracy
and would allow executing more advanced image classification and object
detection tasks.

Supplementary Materials

Supplementary materials can be accessed at: https://www.mdpi.com/2076-
3417/10/13/4574/s1.
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6 This chapter is based on:
- Ghaffarian, S.; Roy, D; Filatova, T.; Kerle, N., 2020. Agent-based modelling of post-
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Reduction. (Under review)

173



Agent-based modeling of post-disaster recovery

Abstract

Disaster risk management, and post-disaster recovery (PDR) in particular,
become increasingly important to assure resilient development. Yet, PDR is the
most poorly understood phase of the disaster management cycle and can take
years or even decades. The physical aspects of the recovery are relatively easy
to monitor and evaluate using, e.g. geospatial remote sensing data compared
to functional assessments that include social and economic processes.
Therefore, there is a need to explore the impacts of different dimensions of the
recovery, including individual behaviour and their interactions with socio-
economic institutions. In this study, we develop an agent-based model to
simulate and explore the PDR process in urban areas of Tacloban, the
Philippines devastated by Typhoon Haiyan in 2013. Formal and informal (slum)
sector households are differentiated in the model to explore their resilience and
different recovery patterns. Machine learning-derived land use maps are
extracted from remote sensing images for pre- and post-disaster and are used
to provide information on physical recovery. We use the empirical model to
evaluate two realistic policy scenarios: the construction of relocation sites after
a disaster and the investments in improving employment options. We find that
the speed of the recovery of the slum dwellers is higher than formal sector
households due to the quick reconstruction of slums and the availability of low-
income jobs in the first months after the disaster. Finally, the results reveal
that the households’ commuting distance to their workplaces is one of the
critical factors in households’ decision to relocate after a disaster.
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7.1 Introduction

Annually natural disasters take a high toll in terms of assets and people
globally. Between 1998-2017 the number of affected people increased from 4
to more than 5.7 billion people (CRED 2015, 2018), imposing US$ 520 billion
of damages in real annual global economic costs (The World Bank 2017; CRED
2018). This escalation is due to the accelerated urbanization and the increase
in the number and severity of natural disasters triggered by climate change.
However, these losses are not equally distributed across countries. Low-income
countries incurred substantially higher Gross Domestic Product (GDP) losses
over the past 20 years due to natural disasters when compared to high-income
countries (CRED 2018). The rapid increase in disaster severity and frequency
and associated damage calls for effective disaster risk reduction and
management strategies at different scales, including individual actions.

One of the main phases of the disaster risk management cycle is the recovery
phase, which usually starts after the operations for the response phase have
concluded, and whose effectiveness has a significant effect on the final disaster
cost. Post-disaster recovery (PDR) is known as a process to rebuild the
community to normal conditions/functioning level, i.e. the same as before the
disaster. However, it is essential to use the recovery process as an opportunity
to rebuild the affected area better as per the Sendai Framework (Unisdr 2015).
Improving disaster preparedness through the building back better concept in
the recovery phase is the Framework’s priority, resulting in more resilient and
sustainable communities (Brundiers and Eakin 2018; UNISDR 2015). This
becomes vital where the vicious cycle of disasters weakens affected areas,
setting them up for rapid follow-on disasters (Alcayna T et al. 2016; Bank
2018). Nevertheless, recovery is a dynamic process that varies in duration and
quality (Brown et al. 2010). Furthermore, a holistic recovery process goes
beyond a physical recovery of infrastructure and includes a re-establishment
of social, economic, and natural environmental processes (Mcdem 2005).
Hence, it involves multiple sectors, governmental departments, policymakers,
and households working together. This makes recovery a complex process.
Therefore, there is a need for monitoring and providing tools for decision-
makers to collect information about the ongoing PDR process and understand
the effect of different scenarios in dynamics. Evaluating the PDR can give
valuable information to the decision-makers regarding the current stage of the
process, useful for monitoring and comparison with the envisioned recovery
plans (Ghaffarian and Kerle 2019a; Ghaffarian et al. 2018; Kerle et al. 2019a;
Sheykhmousa et al. 2019).

Increasingly, there is a need to understand and explore the impacts of different

dimensions of recovery, including the behavior of individual actors and their
interactions with socio-economic institutions. Computer-based simulations
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such as agent-based models (ABMs) permit to explore the dynamics of the
recovery process from the bottom up. ABMs are computational models of
societies where different actors — households, firms, farmers, governments -
act, learn, interact, and co-evolve with their environment (Fiedrich and
Burghardt 2007). In an ABM, agents (decision-making entities) interact with
each other and their environments to decide and act based on defined rules for
their behaviour in a specific situation such as a PDR (Tesfatsion 2005;
Wooldridge 2009). ABMs, which simulate paths between equilibria and
emergence of new post-disaster states, generate a wider range of nonlinear
behaviour than conventional models that focus on the recovery as the ‘return
to normality’. Therefore, it constitutes an opportunity for policy-makers to test
different policy scenarios in an artificial simulation environment and explore
their consequences (Farmer and Foley 2009). Accordingly, policy and decision-
makers can take advantage of the simulation outcomes to steer the recovery
process.

ABMs are used frequently in the disaster management domain (An 2012;
Burger et al. 2019; Filatova 2014; Filatova et al. 2011; Mehvar et al. 2019;
Watts et al. 2019) such as flood management (Abebe et al. 2019; Dawson et
al. 2011), disaster evacuation modeling (Chen and Zhan 2008; Wang et al.
2016), coastal adaptation (Mcnamara and Keeler 2013), disaster impact
assessment (Grinberger and Felsenstein 2016; Markhvida et al. 2020; Mehvar
et al. 2019), recovery modeling (Eid and El-Adaway 2015; Sun et al. 2019)
and resilience assessment (Boston et al. 2014; Sun et al. 2019; Taylor et al.
2015). The response phase management and evacuation after a disaster have
been extensively addressed in the literature (Burger et al. 2019; Chen and
Zhan 2008; Markhvida et al. 2020; Wang et al. 2016). However, PDR
management as a long-term process has not yet been sufficiently studied to
extract the influential factors and their impacts on this process. Besides, formal
and informal (slum) sector households have not been studied as separate
groups for recovery modelling and resilience assessment in developing
countries. Furthermore, the potential of the alternative data sources for survey
data, in particular remote sensing (RS) data, for ABMs have not been
sufficiently studied.

RS as a rapid and effective tool to collect geospatial data has been used for
different purposes in the DRM domain (Ghaffarian and Kerle 2019b; Ghaffarian
et al. 2018; Kerle et al. 2019a; Kerle et al. 2019b; Sheykhmousa et al. 2019).
Also, recent advances in machine learning/computer vision methods and
computer hardware have increased the accuracy and speed of the
semi/automatic approaches in the extraction of information from RS data
(Duarte et al. 2018; Ghaffarian and Kerle 2019a; Ghaffarian et al. 2019;
Vetrivel et al. 2015). These improvements make RS a reliable alternative for
fieldwork-based data collection approaches, particularly when there is a need
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for Earth surface-related information. RS data, especially satellite images, are
of particular importance in data-scarce situations. Spatial data from standard
GIS layers have been employed in ABMs; however, RS was not been used
before as the primary source for a PDR ABM, especially in the Global South
DRM research.

This article presents an ABM to explore the post-disaster recovery process (the
PDR ABM). We apply the model to Tacloban, the Philippines, which hit by super
Typhoon Haiyan in 2013. The innovative contribution of this article is four-fold.
Firstly, RS data are employed as the main data source to initialize the PDR ABM
and the reconstruction of the built-up area in the recovery process. RS data
can be used to monitor the recovery process directly by extracting physical
aspects of the process (Ghaffarian et al. 2019; Sheykhmousa et al. 2019) or
indirectly using proxies to conduct functional recovery assessments (Ghaffarian
et al. 2018; Sheykhmousa et al. 2019). In our study, RS data are used to
extract multi-temporal land use maps, including slum and formal building
information, using advanced machine learning methods. And Secondly, we
differentiate between the behaviour of formal and informal (slum) sector
households, which follow different decision-making strategies in the recovery
process. The outputs of the model and the multi-temporal utility satisfaction
can serve to evaluate the disaster resilience of these target groups. This also
allows us to go beyond the physical aspects and understand/explore the socio-
economic factors of the PDR dynamics. Thirdly, the spatial distribution of the
households utility satisfaction is visualized and overlaid with the high-
resolution satellite images that add the capability of exploring the spatial
recovery patterns. Fourthly, we use the developed model to run two realistic
policy scenarios: the construction of relocation sites after a disaster and the
investments in improving employment options. In what follows we describe the
methodology and the case-study, present the simulation results and discuss
them in the context of disaster risk and resilience management.

7.2 Methods

7.2.1 Case-study and data

Tacloban city, located in the Eastern Visayas, is the biggest city and the
economic centre of the Leyte region in the Philippines (Figure 7.1). The city
has a population of approximately 250.000, with an economy largely focused
on commerce, agriculture, fishing, industry (mostly palm oil factories),
tourism, and trade. There are formal and informal (slums, mostly stretched
along the coast) neighbourhoods in the city, showing the socio-economic
diversity of the population. On the 8% of November 2013, Tacloban was hit by
Typhoon Haiyan (locally known as Typhoon Yolanda), which was one of the
strongest typhoons ever to make a landfall worldwide (Mori et al. 2014). The
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occurrence of a storm surge of up to 5 m led to an official fatality humber of
6201 for the city, mostly killing people who lived in the coastal neighbourhoods
(Ching Pk et al. 2015).
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Figure 7.1 The overview of Tacloban, the Philippines, and the satellite image for the
modelled urban area acquired before Haiyan.

Using the RS data (i.e. high-resolution satellite images) we can extract the
built-up areas, including slum and formal buildings, of the city before the
disaster and trace the recovery process in the first years following Haiyan. To
explore the social processes driving this recovery, we developed the PDR ABM,
parameterized with the maps extracted from the RS data. Advanced machine
learning methods (Kerle et al. 2019a; Sheykhmousa et al. 2019) were
employed to extract the land use maps from high-resolution satellite images
(for the pre-disaster situation, as well as three days, three months, and eight
months after Haiyan) (Table 7.1). The land use raster maps of the region were
converted to points with corresponding attributes as a GIS map of the
urbanized region to be used in the model. Accordingly, informal and formal
built-up areas were identified. Also, the buildings damaged by Haiyan and the
reconstruction levels of the area during the recovery process for each month
were extracted from the land use maps. According to the results reported by
Sheykhmousa et al. (2019) on the reconstruction of the Tacloban area for four
years after Haiyan and the best of our knowledge, we assumed that the
modelled area had been fully reconstructed after five years.
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Table 7.1 Satellite images used in this study.

ID Timeline Acquired date Satellite Description
platform
TO Before Haiyan 2013-03-17 WorldView-2 )
TI  Eventtime 2013-11-11 WorldView-2 Pa”?t:agpsne“ |m:g|es
T2 Post-Haiyan1  2014-01-25 Pleiades with 9.5 m spatia
resolution
T3  Post-Haiyan 2 2014-06-16 Pleiades

Moreover, in 2015 we conducted extensive fieldwork in the area to understand
how households made decisions and what impacted them. Specifically, we
carried out interviews with key stakeholders, analyzed survey data (collected
for the study (Kerle et al. 2019a)), and the demographic data collected from
the Philippines Statistics Authority (e.g., employment rate, type of the
economic activities before and after the disaster). The key persons, including
authorities of the Tacloban city and a group of farmers and fishermen, were
interviewed to understand the characteristics of the community, and how the
disaster impacted them. Among others, the fieldwork revealed that
immediately after Haiyan there was a relocation site developed in the northern
part of Tacloban, aimed at becoming a safe area to move people out of danger
zones, mostly slum dwellers. However, the relocation site was far from the city
centre and the coast where most of the employment opportunities are located.
We use the presence of the relocation site as well as the creation of additional
employment opportunities as scenarios in the PDR ABM.

7.2.2 Agent-based modelling of post-disaster recovery

Related work: Scholars actively use ABMs to simulate and understand the
recovery process after a disaster (Burger et al. 2019; Mishra et al. 2018). As
one of the initial ABM-based studies in post-disaster recovery, Nejat and
Damnjanovic (2012) developed a spatial-temporal ABM based on the dynamic
homeowners' interactions with their neighbours in a post-disaster recovery
situation. They showed that the discount factor (i.e., the weight of
homeowners’ utility from reconstruction) and the accuracy of the signals (i.e.
the owners’ future reconstruction property value) have impacts on the
reconstruction of the houses. However, their model only focuses on housing
recovery/reconstruction  without including the individual personal
factors/attributes. Afterwards, researchers tried to add individual personal
behaviours to ABM for different purposes and applications for the recovery
process. Kanno et al. (2018) developed an ABM framework for the simulation
of the post-disaster recovery in urban systems, with a final goal of disaster
resilience assessment. In their ABM, they defined agents representing the
behavior of the civil life, production industry, and infrastructures to understand
their impact on the recovery and resilience. Their results showed that each of
the subsystems has an impact on the resilience (i.e., the action or act of
rebounding or springing back) of the urban systems with different
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coefficients/weights. In another study, tourist recovery strategies were studied
using ABM after an earthquake in Jiuzhai Valley, China (in August 2017) (Fan
et al. 2019). Their model provides a tool for managers to have an overall
estimation of future tourist decline, as well as economic losses during the post-
earthquake recovery period. Coates et al. (2019) developed an ABM to assess
the flood recovery and preparedness adaptation measures for small and
medium-sized enterprises. They mainly studied physical and social adaptation
factors and showed their combined significance effects in the adaptation of a
key industrial area of the UK for a severe flooding scenario. In a different study,
an ABM was developed to support sustainable disaster recovery by adding the
environmental vulnerability to the model, and thus the decision-making
process. The model was used to improve the community’s welfare by reducing
the wvulnerability of the area to disasters and increasing the residents’
needs/objective function (e.g. income and monthly distributed tax amount)
(Eid and El-Adaway 2017). Current post-disaster recovery ABM simulates the
entire community, ignoring decision traits that may vary among low and high-
income households. In our case, formal and informal residents vary in their
behavioural strategies, mostly due to their education, employment
opportunities and economic level. In addition, the models usually utilize
extensive survey-based information and ignore high-resolution RS information
for modelling.

The PDR ABM: We developed a spatial ABM to simulate the decision-making
process of individuals in a post-disaster recovery process in a city. The PDR
model provides a tool to understand how households (living in informal or
formal settlements) change jobs and locations to live after a disaster, driven
by primary factors that influence their decisions during the reconstruction
process. Appendix A provides a detailed description of the model according to
the ODD + D protocol (Miller et al. 2013). Here we briefly outline the main
agents, the rules guiding their choices and the overall flow of the model.

The main agents in the PDR ABM are households and buildings in an urban
environment. There are two types of households: those residing in formal (FH)
or informal (IH) urban areas that have different behaviours mostly due to their
economic and education level. Further, households can be heterogeneous
within each group, differentiated by income, education and workplace.
Buildings in the modelled city can be for residential (formal or informal) and
industrial use. Industrial buildings, important as they represent the location of
mid- and high-income jobs, usually accessible only for FH with a higher level
of education compared to IH. IH, which reside in slums, often have jobs in an
informal sector, such as in fishing or as a seasonal labourer in the agricultural
sector.
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Households agents aim to satisfy their utility by choosing where to live and
what job to take. Currently, the PDR ABM is applied to several neighbourhoods
in Tacloban and heavily relies on empirical data as explained in 2.1 and
Appendix A. Households' utility is shaped by agents’ social and economic needs
(i.e. job, education, income, accessibility to the workplace). These factors help
to assess how satisfied an agent is with living in a particular location, and
having/lacking a job, the match between its income and education level, and
the commute to its workplace. Though agents try bounded rationality: while
they prefer an action that improves their utility, they are not searching for a
global maximum. Such actions include: relocating their place of residence,
changing a job, or both combined. The agent can change its job or location
consulting its social network or by searching among available options
individually. To define the social network and agent interactions in the PDR
model we employ the theory of homophily (Mcpherson et al. 2001; Roy and
Lees 2020), in which the social network is based on the degree of similarity
(homophily) between two agents. To do so, we first determine the contact
network and collect the information, then the agent selects through the
available opportunities provided by the networks. In the PDR model, the degree
of homophily is computed based on the similarity of the three agent attributes:
job category/workplace, education, and income level (Eq. A.3). As a proxy for
the accessibility analysis in the PDR model, we employed the distance to the
workplace, which was computed from the RS data (please refer to Appendix A
for details). Based on our interviews, we assume that IHs prefer to live near
their workplaces, having therefore short daily commute.

The PDR model is initialized using the point-based land use data (FH, IH, and
location of the industrial workplaces). In total, the agents are randomly
assigned to 2131 informal residential and 1703 formal housing areas at
initialization. The agents' state variables for individual IH and FH households
are derived from the land use map of the Tacloban urban area, key interviews,
census data, and survey data as described in Appendix (Table 7.2). The PDR
model started from one month before Haiyan and evolved with a time step
equal to one month. Hence, the PDR model started in September 2013 with a
total of 11,502 agents.

During each step of the recovery phase in the PDR ABM, a damaged building
may be reconstructed or a new one added to the residential building stock for
agents to live in. The monthly increase of the reconstructed buildings was
extracted separately for formal buildings and slums using the machine
learning-derive land use maps from the satellite images (see 2.1).
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7.3 Results and discussion

Our PDR ABM simulates the post-disaster recovery to explore the recovery
patterns of formal sector households and slum dwellers. Their differences affect
decision making during the recovery process. We focus specifically on the
effects of relocation site existence after a disaster and the dynamics of the
employment rate in the model. In some post-disaster cases, such as in
Tacloban, based on the hazard exposure and vulnerability measurements,
governments decide to relocate people from high natural hazard risk to safer
zones; however, this policy is not always successful. To model this policy
scenario, we added a new residential area - built in the Tacloban case - as
formal houses to the model that becomes accessible after the disaster, which
is far from central urban areas. As a second policy scenario, we consider a
boost in the job recovery commonly supported by NGOs in disaster-impacted
areas. Having a job is key for individual welfare and socio-economic resilience
in every society. Hence, we assess the impacts of changing employment rates
on the recovery process and the resilience for both IH and FH by changing the
employment rate while the other parameters are fixed.

The model was executed 30 times for each of the experiments under the same
parameter combinations. We present the mean and standard deviation values
of households’ utility satisfaction across the 30 model runs. Since this metric
is computed based on the socio-economic status of the households (e.g.,
income and education level) as well as the physical recovery rate (i.e.,
reconstruction of the buildings), it provides a holistic overview of the recovery
status of the households (please refer to Appendix A. for more details). Socio-
economic assumptions at the micro-level of the households choices are based
on the insights from our field work. The results of the model at the macro-level
are validated by comparing them with the actual recovery patterns in the RS
data. However, since RS data capture only the physical aspects of the recovery
- damage and reconstruction of buildings - and not the utility satisfaction of
individual households, a macro validation of this socio-economic dimension was
not feasible given the available data.

7.3.1 Post-disaster recovery patterns

We implement the PDR model based on the available data and the information
collected using both machine learning-derived information from RS images and
census data. The PDR model results are employed to show and discuss the
recovery patterns of the IH and FH in the urban area of Tacloban after Haiyan
for the first 18 months after the disaster. Figure 7.2 shows the mean
satisfaction of the IH and FH starting from before the disaster (step = 0), and
immediately after the disaster (step = 2), and then during the post-disaster
recovery process. Indeed, this figure illustrates the post-disaster recovery
curve of the area in terms of the utility satisfaction of the households. The
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increasing speed of the IH satisfaction in the early recovery phase (in the first
four months) is higher than the one with FH, indicating that the IH is more
resilient than the FH in terms of coming back to the same utility satisfaction
levels. Yet, it does not necessarily demonstrate that IH is indeed more resilient
since the original state was not, to begin with. In addition, the recovery rates
of the IH and FH are 97% and 103%, where above 100% shows the better
mean utility satisfaction than pre-disaster situation, and thus, reaching the
build-back-better goal. The speedy recovery of slum dwellers occurs due to
two main reasons: (1) slums were reconstructed much faster than the formal
buildings since it is easier to build a slum dwelling compared to a formal
structure; (2) availability of low-income jobs is higher than high-income jobs
in the early recovery phase, and the IH are more easily satisfied even with
lower-income occupations due to their generally low education level. At the
same time FHs prefer to have high-income jobs, given their education level.
Yet, the large industries and factories — which most of the FHs prefer as a
workplace offering higher-incomes - take more time to reconstruct after a
disaster.
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Figure 7.2 Mean standard deviation utility satisfaction of the families residing in formal
(FH) and informal (IH) urban areas for different time steps in the model, in which each
step is equal to a month and the time step = 1 is the Haiyan disaster moment.
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Figure 7.3 (a) Pre-Haiyan high-resolution satellite image of central Tacloban, (b-f)
spatial distribution of the mean utility satisfaction for IHs and FHs for steps O, 2, 5, 10,
and 19, respectively. The areas denoted with a circle and a rectangle denote informal
and formal settlements, respectively. Each time step is equal to a month, and step = 1
is the Haiyan disaster moment.

Figure 7.3 illustrates the spatial distribution of the mean utility satisfaction of
the households for pre-disaster (step = 0), just after the event (step = 2), 3
(step = 5), 8 (step = 10), and 18 (step =19) months after the disaster. The
areas denoted with a circle are informal settlements/slums, which recovered
faster than the area denoted with a rectangle, which is formal settlements.
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Figure 7.4 Percent of HHs work in high income versus low-income jobs in the post-
disaster recovery process. Each time step is equal to a month, and step = 1 is the disaster
moment.

Figure 7.4 illustrates the dynamics in the percent of HHs working in high
income and low-income jobs during the recovery. The results show an increase
in HHs working in low-income jobs after the disaster (step=1 is the disaster
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moment) due to destruction of the high-income job places (e.g. factories) and
FH (highly educated households) work in low-income jobs. However, by
progressing with the reconstruction of the industrial buildings those FH have
come back to high-income jobs to increase their utility satisfaction.

7.3.2 Planned relocation and individual choices in the post-
disaster recovery process

One of the policies that have already been implemented in Tacloban is to move
people away from the coastal strip, which is highly exposed to Typhoon-related
hazards such as high winds and storm surges, to a relocation site in the
designated safe zone North of Tacloban. Hence, we tested the scenario of
having such a relocation site in the PDR model and to assess the effect of
commuting distance in the post-disaster recovery process. We did this by
adding new and available residential areas after the disaster only for slum
households, the same as the actual policy in Tacloban. However, the distance
to work (i.e. IH workplaces e.g. fishing) for IH who reside in this relocation site
increases (i.e. 0.9 as the normalized distance to the workplace in the city), and
has a significant impact on households’ utility. Figure 7.5 shows the recovery
curve (based on mean utility) of the FH and IH after the disaster. Accordingly,
the results show that IHs recover faster in the early recovery phase by having
an option of accommodation after the disaster; however, after two to three
months the presence of relocation site has a low impact on the speed or quality
of the recovery, but rather producing almost the same change in utility of the
IH. In addition, the recovery rates of the IH and FH are 102% and 109%,
where above 100% shows the better mean utility satisfaction than pre-disaster
situation, and thus, reaching the build-back-better goal.
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Figure 7.5 Mean and standard deviation utility satisfaction of the families residing in
formal (FH) and informal (IH) urban areas for different time steps with the presence of
relocation site. Each time step is equal to a month and the time step = 1 is the
disaster/Haiyan moment.
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The spatial distribution of the mean utility for IH and FH with relocation site
availability after the disaster is generated and overlaid on the original image
of the area for the pre-disaster and post-disaster periods (Figure 7.6).
Moreover, the number of relocation site dwellers was computed for each of the
selected steps and is illustrated for each step (Figure 7.6i). The results
demonstrate the pattern of IH movement into and out of the relocation site in
the post-disaster recovery period. Accordingly, IHs moved to the relocation
site in the early recovery phase, where they do have at least houses to live in,
and consequently, this increases their satisfaction. However, by progressing
with the reconstruction process in the central part of the Tacloban, the
occupation ratio of the relocation site is decreased (Figure 7.6). This shows
that IHs prefer to move back to the same locations as the pre-disaster
situation, which are closer to their workplaces, and this is an important factor
in increasing their satisfaction. Accordingly, policy and decision-makers should
consider the commute distance to workplaces as one of the influential factors
in planning the recovery, in particular new settlement constructions, while
trying to increase the resilience of the households by decreasing the hazard
exposure and vulnerability.
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Figure 7.6 (a) Pre-Haiyan high-resolution satellite image of Tacloban urban area, (b-h)
spatial distribution of the mean utility satisfaction for the His and FHs with the occupation
ratio of the relocation site for steps 0, 2, 3, 4, 5, 10 and 19, respectively, and (i) is the
relocation site occupied and unoccupied ratio for pre-and post-disaster situations. Each
time step is equal to a month, and step = 1 is the disaster moment.

Occupation (%)

7.3.3 The effect of the employment rate on the post-disaster
recovery process

In the PDR model, the employment rate determines the probability of an agent
having a job, which also has an impact on the calculation of agents’ utility
satisfaction (Appendix A. Eq.1). The utility satisfaction of an agent without a
job will be zero, and it will look for new job opportunities or a new location and
a job. This also becomes important in a post-disaster situation, in which there
are job dynamics, and an agent may use its social contact network or individual
processing to find a job based on its characteristics. According to the official
statistics data (explained in section 2.1) for Tacloban, the employment rate in
2012 was 0.92. However, the employment in the post-disaster situation is
contingent on the financial aid received from national governments and
international NGOs, expanding the range of feasible recovery pathways. Hence,
we ran a sensitivity analysis changing the employment rate [0.5; 0.7; 0.8] in
addition to the actual rate (i.e. 0.92) to explore its effect on the post-disaster
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recovery process. As before, we report the dynamics of utility satisfaction
unfolding during the recovery for IHs and FHs separately (Figure 7.7). The
results demonstrate that the FH and IH recover (i.e. return to almost normal
utility satisfaction) after the disaster at almost the same speed. Moreover, the
IH recovery rates with the employment rates of 0.5, 0.7, 0.8, and 0.92 are
respectively 99%, 98%, 104%, and 97%, and the FH recovery rates with the
employment rates of 0.5, 0.7, 0.8, and 0.92 are respectively 104%, 103%,
104%, and 103%. The above 100% recovery rates show the better mean utility
satisfaction than pre-disaster one, and thus, reaching the build-back-better
goal.
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Figure 7.7 The mean and standard deviation utility satisfaction produced by the PDR
model with different employment ratios (0.5, 0.7, 0.8, 0.92) for the IH (a) and FH (b) in
different time steps. Each time step is equal to a month, and step = 1 is the disaster
moment.

7.4 Conclusions

In this paper, we develop a spatial ABM of post-disaster recovery to explore
the behaviour of two distinct groups living in a city, i.e. families residing in the
formal and informal urban areas. The urban area of the Tacloban city, the
Philippines, which hit by Typhoon Haiyan on 8% November in 2013, is used as
a case study to define the characteristics of the agents and create the
environment. The objective of the study is to go beyond the physical
assessment of the recovery process and investigate socio-economic reasons
why some areas thrive while others languish in the post-disaster recovery
process. We have integrated multi-temporal RS data and advanced machine
learning methods to provide input to the ABM. To do so, we model the behavior
of heterogeneous households who aim to satisfy their utility shaped by the
individual socio-economical characteristics. We present the simulation results
for two groups: slum dwellers (IH) and households residing in formal housing
(FH). Based on the insights gained from the PDR model we identify that IH
recovers faster than FH and therefore, may appear more resilient. However,
we question whether returning to the same state - which was already
undesirable to begin with for IH - is ethically-acceptable in the presence of
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such inequalities, and runs counter to Sendai principles. Slum-dwellers suffer
the most extensive damage during the disaster and develop no capacity to
recover to a better state, even in the presence of new housing in a safe zone
if it robs them of employment opportunities. It is also shown that this type of
visualization provides insights into the neighbourhood level assessments,
which can also be employed for other applications. To gain more insights and
detailed information regarding the behaviour of the IH and FH groups, we
define and test two policy scenarios: the construction of the relocation site and
impact of the employment rate change on the recovery process and resilience
of the households. We show that while the existence of a relocation site
increased the IH recovery speed and thus their resilience, the employment rate
has a small effect on the speed of the recovery for both IH and FH in terms of
utility satisfaction measure. Furthermore, we demonstrate the importance of
the commute distance to the workplace for IH.

The results show that the basic aim of developed PDR model has been reached
since it provides insight into different recovery patterns of the slum and formal
sector households. Therefore, policymakers and governments can use the
insights derived from the model to understand recovery rates at the
neighbourhood level. However, detailed data are needed to replace the
randomness/stochasticity in the model and understand the behavior of each
individual and their dynamics during the recovery.

One of the limitations of this study is neglecting the effect of the natural hazard
risk and risk perception of the individuals after such a major disaster. Hence,
by adding the natural hazard risk components (e.g. exposure to hazard,
vulnerability and prior disaster experience) to the PDR model, more accurate
empirical implementation of the model can be obtained. Some of the
information related to these components can also be extracted from RS data.
Moreover, adding more variables/components to utility measure of the PDR
model, such as social and economic characteristics of households (e.g., age
and gender), can provide more insights into the recovery process.

7.5 Appendix A. The ODD +D description of the
PDR agent-based model

In this section, we describe the developed post-disaster recovery (PDR) model
based on the ODD + D protocol (Miller et al. 2013). The ODD + D provides a
standard description and documentation protocol for agent-based models,
which guides researchers to sufficiently substantiate their model.

a. Overview
i. Purpose
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The developed post-disaster recovery (PDR) model simulates the decision-
making process of individuals with respect to spatial mobility and job
dynamic/selection based on the maximization of the satisfaction score
computed according to socio-economic parameters for the households in urban
areas of Tacloban, the Philippines. The PDR model provides a tool to
understand how households (living in informal or formal settlements)
select/change jobs and locations after a disaster during the reconstruction
processes, based on the primary factors that influence their decisions after the
disaster. In addition, the variable recovery across different
neighbourhoods/sections of an affected urban area can be revealed by
processing RS data; however, there is a need for effective tools to explain
those observations and identify suitable means to influence the recovery
process (find bottlenecks, etc.). The PDR model allows studying the different
recovery rates of urban areas. Accordingly, policymakers and governments can
use the insights derived from the model to understand why some regions may
thrive and others languish (formal and informal settlements) and make
effective decisions during the post-disaster recovery process.

ii. Entities, state variables, and scales

The main agents in the PDR model are households and buildings in an urban
environment. Households could be of two types: families residing in formal
(FH) or informal (IH) urban areas that have different behaviours, mostly due
to their economic and education level. Further, households can be
heterogeneous within each group, differentiated by income, education,
workplace. Urban buildings could be of residential formal or informal and
industrial buildings. The PDR model distinguishes between two types of
residential areas - formal and informal (slums) as well as industrial buildings.
The latter is important as they represent the location of mid- and high-income
jobs, usually accessible only for FH with a higher level of education compared
to IH. IH often have jobs in an informal sector, such as fishing or seasonal
agricultural sector labour. The time interval of the model after the disaster is
defined as a month.
iii. Process overview and scheduling

The overall process of the model is based on satisfying individual utility by
choosing an action that gives them higher utility (Figure 7.8). This is derived
from the agent’s social and economic needs, which also defines the behaviour
of the agent in the model. Let (U(A))(i = 1, 2, 3, ..., N) represent the utility
level of the agent, where N is the number of agents, and (A;) is based on its
current state in the model, then it will look for possible actions (options) (ai)
to change its state and increase the current utility level. The possible actions
for the agent (A;) are to move to a new location or changing its job, or both
move to a new location and change its job. The agent can change its job or
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location using its social network or by looking for a list of available options
individually. The lower utility level of an agent derived from its current state
when compared to the others increases the chance of taking one of the possible
actions in the model and changing its state. Accordingly, the information/state
of the agent (a;) will be updated to its selected action from the previous step.
Then, the utility (U (ai)) is calculated using the updated state of the agent
based on the selected new action. The higher calculated utility from its current
one will lead to taking action and change in the information of the agent for

the next step.

Data fer each step +

A
»| UPDATE STATE VARIABLES }

Initialization

CALCULATE SOCIAL
NETWORK
Update State CALCULATE UTILITY
Variables SATISFACTION

NO ACTION

Social processing @ Individual processing

r v
LIST OF N JOBS & HOUSES | | LIST OF A JOBS & HOUSES

.| EVALUATE AVAILABLE |
OPTIONS

k.
PICK AN ACTIVITY:

¥v' ONLY CHANGE JOB
¥ ONLY CHANGE LOCATION
¥ CHANGE BOTH JOB & LOCATION

Figure 7.8 Conceptual flow framework of the PDR ABM.

b. Design concepts
i. Theoretical and empirical background
o Theoretical background: We mainly used two theories for developing
the PDR model: the accessibility to the workplace (Alonso 1964), and the
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social capital (Lu 2017; Meikle et al.). The accessibility to the workplace
is one of the influential factors in household choices (Alonso 1964), e.g.,
residential choice model (Roy and Lees 2020). According to the key
interviews conducted during fieldwork in the area, it is also important after
a disaster, while some buildings and workplaces can be destroyed, and
some households may need to move or change jobs. We employed the
distance to the workplace as a proxy for the accessibility analysis in the
PDR model and used it to compute the satisfaction score (U (Ai)) (see Eq.
(1).

The concept of social capital explains/defines the benefits of the contact
networks between households and different social groups based on their
social ties that can provide information regarding the opportunities in the
communities (Meikle et al.). This means that households can have an
impact on each other’s decisions. In addition, social networks are one of
the influential factors of individual activities in the community after a
disaster and in the recovery phase by sharing the information in their
social networks (Lu 2017). The similarity (homophily) and interactions
between individuals are one of the important factors in making the
connections and creating social contact networks (Mcpherson et al. 2001;
Roy and Lees 2020). Hence, we employed the theory of homophily in the
PDR model to define agent interactions. To do so, we first determined the
contact network and then selected the information with the agent to select
through the available opportunities provided by the networks.

o Empirical background: We used two information/data sources in the
PDR model (explained in section 2.1): 1- Fieldwork data: key interviews,
survey data (collected for the study (Kerle et al. 2019a)) and the
demographic data collected from the Philippine Statistics Authority (e.g.,
unemployment rate, type of the economic activities before and after the
disaster), 2- RS data, in particular, high-resolution satellite images
acquired during pre- and post-disaster times. We extracted information
from the machine learning-derived land cover, and land use maps using
multi-temporal satellite images (the pre- and three days after disaster
land use maps produced by (Sheykhmousa et al. 2019)) to be used in the
PDR model.

ii. Individual decision making

The decision making of an agent (A;) relies on satisfying own utility U(A;) based
on its current state with respect to living and working environment. Taking an
action (a;) changes individual agent utility. The utility of an agent (A;) depends
on its socio-economic and personal expectations defined by the agent’s social
level (i.e. education level). This score expresses how satisfied an agent is with
living in a particular location, and having/not having a job, the balance between
its income and education level, and which workplace it has to commute to each
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day for work. Accordingly, the utility for each agent can be computed using the
following equation:

vy =1+j+(%)+@-D0)  (Eq.A.1)

where I represents the impact of the disaster, J shows the job status, Y and E
are the income and education levels, respectively, and D is the normalized
distance to the workplace for each agent (A;). Each variable of the utility can
be determined as follow:

Probability

I: shows if the agent has been impacted by the disaster and its house has
been damaged or even destroyed. Thus, if the agent has a house
damaged/destroyed I =0, and if not I =1. The damaged and intact
buildings were extracted using RS-derived land use maps (explained in
section 2.1).

J: if the agent has a job j=1, and if not j =0. The job options for the
highly educated households/agents (FH) are services (which are
considered high-income jobs), farm, fishing, construction (which are in
the group of low-income jobs). However, IH agents can only work in low-
income jobs. The selection of the unemployed agents is made based on
the probability distribution, which is extracted from the data. Accordingly,
the probability of having a job for each agent is 0.92, while the probability
of not having a job is 0.08.

Y: there are two income levels in the model: low and high. For an agent
with high-income Y =1, and with low-income Y =0.5. Service sector
employment falls in the high-income job group, while farm, fishing, and
construction are in the low-income job category. Hence, FH agents prefer
to work in high-income jobs, given that they are highly/better-educated
agents, and IH can only work in low-income jobs. Assigning a workgroup
to an agent is also based on the distributions extracted from data (Figure
7.9).
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Figure 7.9 The probability distribution of the job sectors for IH (a) and FH (b) over time.
Each time step is equal to a month, and step = 1 is the disaster moment.

E: there are two education levels in the model. For an agent with high
education level E =1, and with low education level E = 0.5.
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Table 7.2 Explanation of the variables used for computing the utility satisfaction
of the agents in each step.

Variable

Description

Range of value

Data used to
extract

Shows if the
agent has been
impacted by
the disaster

I = 0 if the agent’s
house destroyed by the
disaster, and I = 1 if the

agent’s house remain
intact after the disaster

Extracted from
remote sensing
data

194

Shows if the
agent has a job

Income level of
the agent

Education level
of the agent

Normalized
distance to the
workplace for
only high-
income jobs
(i.e. service)

D: is the distance to workplaces for the agents. The distance for FHs is
based on the distribution that has been computed from the RS data
(Figure 7.10). This distance was initially computed in a point-to-point
manner using the pre-Haiyan land use map (using FH and industrial
buildings locations/coordinates). Also, for IHs, it can be either 0.05 or 0.1

J = 0 if the agent has a
job, and J =1 if not
has a job

Y = 1 for high-level
income, and
Y = 0.5 for low level
income

E = 1 for high level
education, and E = 0.5
for low level education

D e [0.001, 0.408]

based on equal distribution.

Initialized using
census data
(unemployment
rate)

Extracted using
remote sensing
data

Extracted using
remote sensing
data

Extracted using
remote sensing
data



Chapter 7

0.5
0.408

0.4 X
Z
£03 0.274
a X
S 0.198
0 0.2 x
a

0.1 0.062

x 0031
% 0011 0.006 0.005 0.002 0.002 0.001

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Distance to workplace

Figure 7.10 The probability distribution of the distance to the workplace (i.e. service
job type) for FHs.

Based on the above-explained variables and their possible values, the utility of
the agent will be [0,1]. For example, an agent without a house to live (when
its house was destroyed by the disaster and has not yet been reconstructed in
the recovery phase) or a job to have income, or has a workplace in the farthest
place its U(4;) will be equal to zero.

Each step of the model is considered as one month, and during the recovery
phase, the buildings might be reconstructed and can be added to the model,
i.e. can be used for agents to live in. The monthly increase of the reconstructed
buildings was extracted separately for formal buildings and slums using the
machine learning-derive land use maps from satellite images (explained in
section ).

iii. Individual sensing

The social contact network of each agent can be formed based on their social
interactions in the social spaces like community centres and workplaces
(Bandyopadhyay et al. 2011; Jackson et al. 2012; Oldenburg and Brissett
1982; Shughrue 2013; Wasserman and Faust 1994). Accordingly, we used the
workplace of agents as a space to make the contact network in the model.
First, we used the following equation to find the degree of the potential of being
a contact network:

C(Ai, A;) = Sector(Ai, A;) + v (Eq. A.2)
where Sector(Ai,Aj) is equal to one if the agents work in the same business

sector, and if not it equals to zero. And, ye¢[0,1] adds randomness to the
interaction between agents.

Finally, the agents 4;and 4; may become a contact network and may have an
impact on each other’s decisions if C(4;,4;) has a greater number than 0.8.
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iv. Interactions

This section describes how the agents in their contact network (which are
extracted using the previous section) make social networks and share
information and opportunities in the model. To do so, we used the theory of
homophily, in which the social network is based on the degree of similarity
(homophily) between two agents. Accordingly, the agents with similar
attributes have a higher degree of homophily and have more social impact on
each other. This theory has been validated in several studies that use different
attributes (e.g., age, education language) of the individuals in the social
network (Chierchia and Coricelli 2015; Damon centola et al. 2005; Mcpherson
et al. 2001). In addition, it has also been used for defining the social network
for slum dwellers (Roy and Lees 2020).

In the PDR model, the degree of homophily is computed based on the similarity
of the three agent attributes: job category/workplace, education, and income
level. And it can be formulated as follows:

At,. N Aty,.
Hom(Ai'Ai)=| " A]%Am (Eq. A.3)

where Hom(Ai,Aj) € [0,1] is the degree of homophily and the greater number
near to one the higher degree of homophily, At,, and Aty are the attributes of
the A; and 4;, respectively. Hence, the weight of an edge between the agents
A; and A; can be calculated using the equation below:

Dy.
(A)e(AL,A]) = Hom(AL,A]) * an; (Eq. A.4)

where D, is the degree of agent 4;. Hence, based on the weight of the edges
for each agent, the agents tend to have/select the same attributes as of the

similar agents who have a high homophily degree.

After computing the homophily degree for the agent 4; and ranking them, the
first five agents were selected as the most influential ones. However, due to
the monthly change of the status of the available job market in the recovery
processes, the half weight of the influential agents is included in the model to
have still the effect of the reconstruction process and job dynamics after the
disaster.

v. Individual prediction

An individual/agent only in the case of finding a new opportunity that can
increase its satisfaction score will change either its location or workplace or
both at each step. However, deciding to look for new opportunities is based on
the threshold value selection form the probability density distribution of the
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utility value in the model from the previous step. This means that if the number
of agents with a specific utility value is larger than the others, the agents with
that utility value will have a higher probability value to decide to seek new
opportunities. Therefore, the threshold value as T pgng. ranging from 0 to 1for
an agent A; to look for new opportunities for changing its current state can be
computed using probability density function.

Then, if the utility value of the agent 4; is below the T p4,4., the agent will
decide to gather information and look for updating/changing its current state
and increase its utility satisfaction. There are three options to change for each
agent (only change job, only change location, change both job and location),
of which the agent randomly selects one based on the equal probability for
each. After selection of each of which, the agent starts gathering information
for undertaking a new action using one of the following ways:

e Individual processing: randomly evaluating N workplace or location or both
from available options.

e Social networking: evaluating available options only for the workplace
offered by its top N social contact network.

Since the process of building reconstruction (including slums, formal and
industrial buildings) changes the options available for the agents (workplace,
household location) at each step, the reconstruction rate and job dynamics are
the key components of the model. Thus, individual processing is based on the
updated information on the recovery. However, the social networking process
for evaluating options uses information from the previous step. Hence, the PDR
model only uses the half weight of the output of the social network added to
the half weight of the updates that come from the reconstruction processes.
Eventually, after evaluating all the options, the agent decides to undertake an
activity only if this will increase its current utility level.

vi. Collectives

Each agent (either FH or IH) collects and stores information about his social
contact network.

vii. Stochasticity

The process of selection of the social contact network is stochastic due to
including the randomly selected number for parameter y. In addition, the
decision making of the agents/individuals has a randomness selection
procedure first to choose whether to change workplace or location or both
together and then a random selection from the probability distribution of the
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available options. This procedure adds stochasticity to the decision-making
process of the agents in the PDR model.

c. Details

The initialization of the model and the employed input data are described in
this section. The PDR model was developed and executed in Python using the
MESA framework, and the residential choice model developed by (Roy and Lees
2020) was used as the base model. The source code is available on an open-
access library for ABM, which can be downloaded using the following link :
(https://github.com/Saman-Gh933/Agent-based-modeling-of-post-disaster-
recovery-with-remote-sensing-data).

i. Initialization

The PDR model initialized using the point-based land use data (FH, IH and
location of the industrial workplaces). In total, the agents randomly assigned
to 2131 IH points and 1703 FH points are initialized in the model. The agents'
state variables are individual IH and FH households derived from the land use
map of the Tacloban urban area, key interviews, census data, and survey data
(from (Kerle et al. 2019a)). The PDR model started from one month before
Haiyan to evolve. Hence, the PDR model started in September 2013 with a
total number of 11,502 agents.

ii. Input data

There are two sources of the input data used in the model that change the
conditions (available jobs, job types, and their probability distribution and open
locations/houses) in each step. The damaged buildings and reconstruction
levels of the built-up areas (slums and formal buildings) were extracted from
the land use maps for three days after the disaster (for damage mapping and
extracting the damaged houses), as well as three and eight months after the
disaster. In addition, based on the best of our knowledge, we also assumed
that the area had been fully reconstructed after five years. Subsequently, the
extracted damage and reconstruction levels were transformed/translated to
steps, given that each step of the model is one month.
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8.1 Conclusions

The main objective of this research was to analyze the suitability of the remote
sensing and spatial economic modeling to support a comprehensive post-
disaster recovery assessment by: reviewing and analyzing the remote sensing-
based proxies for DRM and resilience, developing a conceptual framework for
post-disaster recovery and resilience assessments, adopting machine learning
approaches to improve the precision of the current remote sensing-based
damage and recovery assessments, developing the deep learning-based
methods for damage and recovery assessments and test it in actual case
studies, analyzing the suitability of the cloud computing platforms for recovery
monitoring, and analyzing and developing an agent-based model to explain the
different post-disaster recovery patterns, and resilience. The main findings and
conclusions of this study are sorted based on the initially designed research
questions as follows:

Research question 1: What are the state-of-the-art remote sensing-
based proxies/indicators for disaster risk management and resilience
assessment?

To address this question, the available remote sensing-based proxies in urban
Disaster Risk Management literature/studies were reviewed and analyzed,
focusing on two risk elements typically associated with pre-disaster situations
(i.e., vulnerability and resilience), and two post-disaster elements (i.e.,
damage and recovery). The identified proxies were grouped and reviewed in
four primary environments and their corresponding sub-categories: built-up
(buildings, transport, and others), economic (macro, regional and urban
economics, and logistics), social (services and infrastructures, and socio-
economic status), and natural. The collected proxies can be used by
researchers, governments, and disaster planners at any stage of the DRM cycle
to assess targeted risk components, i.e., vulnerability, resilience, damage, and
recovery. Furthermore, critical analysis and discussions were conducted to
determine the strength and limitations of the current proxies in the field. In
addition, insights from wider science fields such as social, economic, and urban
form studies were provided to propose improvement directions for the proxies.
The results indicated that there has been an increase in the number of proxy-
based studies in urban DRM. The results also imply the increase in studies that
require indirect measurements such as socio-economic analysis. However,
there are gaps in the field that demand further research. The current remote
sensing-based proxies were mostly developed for the physical assessments in
urban DRM. Yet, urban DRM assessments rarely go beyond aggregated proxies
for the socio-economic environment, and the offered proxies are have very
limited capacity to assess functional aspects. Disaster resilience is the least
studied component of DRM in terms of developing remote sensing proxies.
However, resilience has been shown as one of the significant components of
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DRM, which has been gaining increasing importance in the field. Analyzing the
proxies also showed that in some cases the developed proxies can be
interchangeably used with some modifications in other assessments. Only
seven remote sensing-based proxies have been developed for resilience
assessment, and only seven of the reviewed articles focused on resilience.
These numbers indicate a significant need for further studies in resilience
assessment.

Research question 2: How to conceptualize post-disaster recovery
assessment, including its different types and aspects based on remote
sensing data?

The remote sensing-based direct and indirect measurements were sorted to
address the holistic post-disaster recovery assessment. The procedure includes
physical and socio-economic assessments. Each of these measurements
provides information regarding its corresponding time of acquired remote
sensing image, for example, the number of buildings for pre-disaster or post-
disaster time. However, recovery assessment is mainly based on two steps.
First, to do damage assessment through comparing the just after the disaster
with the pre-disaster situation and second, recovery assessment based on
change detection over damaged elements at risks and post-disaster time to
extract how much they have come back to the normal or pre-disaster situation
and functioning. This procedure can be executed for any disaster at any time
step, providing three-time step remote sensing data (e.g., high-resolution
satellite images), i.e., pre, just after, and post-disaster times. In addition,
evaluating and comparing the rate and speed of the recovery for the selected
regions can provide insights for resilience assessment, assuming that the
resilient areas recover faster after a disaster. The results of this study also
revealed that the proposed conceptual framework provides a comprehensive
basic framework for any general or detailed analysis for recovery assessment
depending on the amount and type of the information provided for each step
of evaluation.

Research question 3: How to automate the extraction of useful
information from remote sensing data to evaluate the post-disaster
damage and recovery processes?

The ultimate goal is to automate the entire post-disaster damage and recovery
assessments, including physical and socio-economic aspects. However, the
automatization should start at small steps by automatic extraction of the
required information and status of the considered elements, and then
aggregate them for comprehensive damage and recovery assessments. Hence,
to address this question, one of the most critical elements for urban areas, i.e.,
buildings, was selected to automatically update databases at any time after a
disaster for both damage and recovery assessments. the state-of-the-art deep
learning methods was chosen to process the satellite images and perform the
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change detection and extraction works. A ResUnet-CRF model, which is based
on Unet with residual connection followed by a Conditional Random Field (CRF)
was developed to train and then update building databases. OpenStreetMap
building maps after conducting a modification and novel automatic change
detection process were employed as the automated training area selection
approach. The results showed that the proposed approach produces robust
results in updating the building database in different post-disaster scenarios,
such as damaged, collapsed, reconstructed, newly built, and demolished
buildings, using diverse building characteristics such as color, shape, and size
of the buildings under challenging environmental conditions.

Research question 4: How to increase the precision of remote sensing-
based damage and recovery assessments?

One of the primary limitations of the current damage and recovery
assessments from remote sensing imagery is using structural rubble/debris as
a proxy to detect damaged buildings/areas. However, disaster debris often
includes vegetation, sediments, and relocated personal property in addition to
structural rubble, i.e., items that are wind- or waterborne and not necessarily
associated with the closest building. This leads to inaccuracies in building-
based damage detection from remote sensing imagery since all assume the
debris/rubbles belong to the closes building. In addition, traditionally, land
cover classification-based damage detection has been categorizing debris as
damaged areas. However, in particular in waterborne disasters such as
tsunamis or storm surges, vast areas end up being debris-covered, effectively
hindering actual building damage to be detected, and leading to an
overestimation of the damaged area. Hence, the most emerging topic of
increasing the accuracy of the remote sensing-based damage and,
consequently, recovery assessments is to identify the debris types and find
their origin. For building damage assessment, it is crucial to separate actual
structural rubble from ephemeral debris. Accordingly, two approaches were
investigated, first for debris identification from UAV images, and second from
multi-temporal satellite images. To do so, three textural analysis approaches,
i.e., Gabor filters, Local Binary Pattern (LBP), and Histogram of the Oriented
Gradients (HOG), were implemented on mosaicked UAV images, and the
relation between debris type and their time of removal was investigated using
very high-resolution satellite images. The results showed that the HOG
features, among other texture features, have the potential to be used for debris
identification. In addition, multi-temporal satellite image analysis showed that
debris removal time needs to be investigated using daily images because the
removal time of debris may change based on the type of disaster and its
location.
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Research question 5: To what extent cloud computing, i.e., Google
Earth Engine, can be used to monitor the post-disaster recovery
process?

Google Earth Engine (GEE) provides free access to vast amounts of remote
sensing (RS) data and a powerful computing environment in a cloud platform,
making it an attractive tool to analyze Earth's surface data. Hence, it was
selected to be used as a cloud computing platform to monitor the recovery
process after Typhoon Haiyan in a larger region, i.e., entire Leyte island that
includes 62 municipalities in the Philippines, rather than only Tacloban city.
Since Haiyan hit the island in November 2013, the best multi-temporal satellite
images for this study, which are freely available in GEE, belong to Landsat 7
and 8 images. Hence, those images were utilized first to generate a cloud and
shadow-free image composites and then perform a land cover classification for
pre and post-disaster time steps. The experiments showed that GEE is a
suitable platform for free and rapid cloud-based processes that also includes
ready to use scripts and functions and useful guidance through the analysis.
The results also revealed that the available Random Forest classification
method is a reliable choice for a rapid large-scale land cover classification. In
addition, to have an overview of the post-disaster recovery process for
extensive regions, the Landsat 7 and 8 images are suitable, but higher spatial
resolution images are needed for detailed analysis.

Research question 6: How to integrate multi-temporal remote sensing
data with ABM to assist in explaining the different recovery patterns?
Remote sensing is an efficient tool to monitor and assess the recovery process
after a disaster. However, it cannot explain the results since many other factors
and actors cannot be tracked using remote sensing. To address this issue and
develop a tool to explore different recovery patterns, an Agent-based
modeling-based approach was developed mostly based on the remote sensing
data. I integrated/used remote sensing with the ABM in two directions. First,
the machine learning-derived land use maps extracted from remote sensing
images were employed as the initial and step by step data sources, and second
as a spatial domain to visualize and track the results. The model was used to
understand and explore the post-disaster recovery patterns of the families
residing in formal and informal (slum) urban areas, which follow different
decision-making strategies in the recovery process. A utility satisfaction
measure was proposed and generated for each group of agents. In addition,
the disaster resilience of the targeted groups is assessed, assuming that the
speed of the recovery is a proxy for resilience.

Furthermore, two realistic policy scenarios was simulated using the developed
model: the construction of relocation sites after a disaster and the investments
in improving employment options. The results were illustrated and the
differences between informal and formal sector households recovery patterns
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in the base and selected scenarios were discussed based on their utility
satisfactions. The results showed that the developed post-disaster recovery
ABM provides insight into different recovery patterns of the selected groups.
Therefore, policymakers and governments can use the insights derived from
the model to understand recovery rates at the neighborhood level. In addition,
the results revealed that remote sensing in integration with machine learning
can be used as a robust source of information to provide the required
information for modeling.

8.2 Reflections and outlook

The aim of the proposed research was, on the one hand, the assessment of
the post-disaster recovery with remote sensing, and the second was on
explaining the different recovery patterns with spatial economic modeling. The
first goal was addressed through a detailed investigation of the potential of the
remote sensing for assessing the post-disaster recovery process from a holistic
point of view, which includes functional assessments in addition to physical
analysis. Remote sensing has been proved to be an effective and rapid tool to
extract features and physical objects when processed with machine learning
methods. In literature, there were quite a lot of papers at the time of
conducting this research 2017 that address the feature and object
extraction/detection using traditional machine learning methods or recent
advanced ones, i.e., deep learning (Cheng and Han 2016). Those can also were
employed to assess the status of the essential objects in post-disaster time,
for example, detection of the damaged buildings and roads (Ural et al. 2011;
Vetrivel et al. 2015; Vetrivel et al. 2016). However, socio-economic and
functional assessments have to be elicited indirectly using proxies. Hence, the
first goal was to develop new proxies for a comprehensive post-disaster
recovery assessment. Shortly after starting to review the literature to extract
the available remote sensing-based proxies, several issues raised up. For
instance, the most important issue was to define proxy while nearly every type
of passive RS being per se indirect, and therefore, every form of processing of
such data inherently uses proxies. In addition, already several proxies were
developed in different research fields without using any keyword for their
indirect measurement or using different terminologies for such indirect
interpretation/measurements, (e.g., indicator, proxy, index)(Ebert et al. 2009;
Kotzee and Reyers 2016; Platt et al. 2016). Consequently, a comprehensive
literature review was conducted at the start of the thesis in Chapter 2 to list
the available remote sensing-based proxies for urban DRM and resilience,
identify the limitations. and gaps, and provide insights from various
perspectives for future studies. However, due to the mentioned problems in
finding the relevant literature for the review, all the studies that used proxies
were not included in the paper, while it has been tried to cover all of the
developed proxies. In addition, the term “proxy” was defined and proposed as
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a keyword to address such measurements and make studies more organized
then one can find the relevant studies more easier. Most of the relatively easy
proxies were already developed by researchers in the DRM domain. For
example, the presence of cracks and holes in facades of the buildings has been
used as a proxy to assess damages to the buildings (Galarreta et al. 2015).
However, there is a need for higher-level proxies that need indirect
observability in addition to indirect interpretations to indicate something
meaningful for computation. Higher-level proxies are crucial for addressing the
functional assessment. Developing higher level remote sensing-based proxies
is similar to solving a puzzle, trying to connect the different objects and
features in data (e.g., extracted from remote sensing images) to interpret
something meaningful. This makes developing higher-level proxies
challenging. However, by increasing the spatial, spectral, and temporal
resolutions of the remote sensing images as well as new tools to acquire data,
the available objects and features for solving the puzzles will increase and lead
to developing robust proxies. Already the results of this review were used by
researchers to address the identified gaps (Castafieda-Garza et al. 2019;
Hodicky et al. 2020) and develop new remote sensing-based proxies or
combine them to address DRM (Derakhshan et al. 2020), and even using the
term “proxy” as defined in this study in other domains rather than DRM (Lee
and De Vries 2020). The proposed conceptual framework in Chapter 3
comprehensively addresses the aim of recovery assessment based on remote
sensing data. It consists of two change detection approaches, in which the first
one is for evaluating the damages, then using it as a benchmark for recovery
assessment. The framework is a straightforward model that shows how to
reach the goal of post-disaster evaluations at any time for any type of disaster,
which is an extension of post-disaster damage assessment. Various types of
remote sensing data can be used in the framework to have a comprehensive
recovery assessment, integrating the physical assessment with the sorted
proxies from Chapter 2 for socio-economic and functional assessments.
Chapter 3 clearly shows the comprehensiveness and usefulness of the
framework for assessing the damage and recovery processes. In addition,
resilience can be evaluated, assuming that the recovery speed is a proxy for
resilience. However, the results of Chapter 3 revealed that this assumption is
not correct all the time. This might be due to the complexity of the
assessments, and neglecting some other parameters that might lead to this
result. Hence, there is a need to investigate and identify the relation between
post-disaster recovery and its speed with resilience.

Chapters 2 and 3, in addition to conceptualization, identified the gaps in post-
disaster recovery assessment with remote sensing. Accordingly, Chapters 4,
5, and 6 addressed three of the current limitations and needs in recovery and
resilience assessments. One of the identified limitations was in remote sensing-
based damage assessment. Most of the remote sensing-based damage
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detection methods actually detect debris/rubble not damaged areas/buildings.
Then assume that those detected debris are damaged areas or belong to the
closest buildings, and thus, those buildings are damaged. However, this
assumption is not entirely correct mostly in the case of water- and wind-borne
disasters or in the case of multi-hazard event combined with an extensive
storm surge, flooding or tsunami. Accordingly, there is a need to first identify
the type of debris then one can associate them to region-based or structural
damages. The proposed approaches in Chapter 4 for identifying the post-
disaster debris for accurate damage and recovery assessments are fairly
preliminary ones and need further investigations. However, it is the first study
that brings this important point to attention of the researchers. Also using the
feature extraction methods (e.g., HOG) showed promising results. Thus, as a
future study, those features should be used in a machine learning classification
procedure to extract the debris types. In addition, in this study it was not
possible to use deep learning/CNN-based approaches due to lack of sufficient
images and training samples; however, given the power such advanced
methods, just using deep learning approaches (e.g., CNN) without
preprocessing and feature extraction can produce robust results in identifying
debris types. The idea of using the multi-temporal satellite images should be
investigated further for a few days and weeks after a disaster to figure out its
potential for debris identification. However, this highly depends on the
characteristics of the region of interest (case studies), and in some cases, the
type of disaster. So far, this study took the attention of the researchers and
they started talking about this critical point (Baranwal et al. 2020; Nex 2019;
Saffarzadeh et al. 2019); however, no method yet developed to directly
address it.

The ultimate goal of fully automating the assessment was addressed in Chapter
5. To a large extent, this goal was reached with the proposed model. However,
there is still a lot to do in this regard. At the start of this study and during the
initial researches of this thesis, already the transition from traditional feature
extraction-based machine learning (e.g., SVM, random forest )(Brunner et al.
2010; Gerke and Kerle 2011; Miura et al. 2013; Turker and Sumer 2008) to
advanced deep learning/CNN models for building-based damage detection was
completed and comprehensively studied. Accordingly, several advanced deep
learning/CNN-based methods were already developed for post-disaster
damage detection work (Ji et al. 2019; Vetrivel et al. 2017). However, all the
studies required intensive manual work of extracting training samples for their
developed CNN-based approaches. In addition, none of them went beyond the
only damage assessment and monitor the changes in damaged buildings or
other areas during the recovery process, which are addressed in this study.
The idea of automating the training area selection procedure of an advanced
deep learning method using OpenStreetMap produced reliable results for
updating the building database. However, due to inaccuracies in the OSM
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building map required to develop a preliminary small modification step, which
should be done manually. In addition, fine-tuning the change detection and
deep learning parameters should be done by experts manually. Hence,
developing a fully automated method not yet achieved. However, this was a
great step forward in developing fully automated methods. Moreover, building
database includes other aspects and details rather than the only location and
damaged or not-damaged information. For example, the type and degree of
the damages are of much importance. Although the proposed method produced
robust results in detecting buildings and providing an overall overview of the
building status after a disaster, yet it cannot be used for building footprint
extraction. Accordingly, there is a need for exact building footprint extraction
and updating the building databases with more details. The results of this study
were already used in the literature, for example, to use OSM data for automatic
training area selection for deep learning approaches (Ning et al. 2020).
Furthermore, it is a pioneer study in automated post-disaster building map
updating not only for damage time but also during recovery process (Nex et
al. 2019; Shi et al. 2020; Sun et al. 2020).

In contrast to developed pixel-based deep learning methods in Chapter 5,
which requires high computational power to process the data, Chapter 6
investigated the use of free cloud computing platforms, i.e., Google Earth
Engine (GEE), for post-disaster recovery monitoring. GEE and cloud computing
platforms were further improved their platforms and increased the available
remote sensing data in their platforms and this attracts the researchers to do
analysis in large/extensive regions (Ge et al. 2019; Mahdianpari et al. 2018;
Sidhu et al. 2018; Stromann et al. 2019). This can also be employed for large-
scale post-disaster recovery monitoring, which was the aim of this study. The
experiments showed that the GEE has a good potential to process the
geospatial data, in particular freely available satellite images. However, the
only available data in GEE for the considered case study were Landsat 7 and 8
satellite images. Despite the coarse resolution of the images, the results
showed the potential of the images and the platform for rapid land cover
classification of extensive regions. The coding environment of the GEE is user-
friendly, but it uses JavaScript language, which is different from the popular
programming languages for machine learning-based processes like Python.
However, there are ready to use functions inside the platform, which makes it
easier to implement the required methods. The available Random Forest
classifier in the GEE also produced good accuracies in classifying different land
covers from the Landsat images. However, the state-of-the-art deep learning
methods are missing in the platform, which Google API is supposed to fill this
gap and makes it possible to process the data in a Python programming
language. Chapter 6 provided the first study on the use of cloud computing to
monitor the post-disaster recovery process. However, it needs more future
investigations in different directions, such as implementing new deep learning
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methods and adding very-high-resolution remote sensing data to assess the
process in detail, in particular in complex urban environments.

The second underlying objective of this research was to develop spatial
economic modeling to explain the different recovery patterns extracted with
remote sensing. The goal was reached by developing a spatial economic model
for post-disaster recovery in Chapter 7. As an effective spatial economic
modelling, the agent-based modeling (ABM) was selected to be utilized in this
study, which was already used and tested in different science fields and DRM
domain as well (Filatova 2014; Filatova et al. 2011; Markhvida et al. 2020;
Sun et al. 2019; Watts et al. 2019). The observations from the experiments
conducted using ABM for exploring and understanding the recovery process
indicate that it is indeed a useful method to explain the different recovery
patterns. In particular, the developed ABM was employed to explore the
behavior of two distinct groups living in a city, formal and informal sector
households. In addition, the proposed utility satisfaction measurement was a
good choice to track the behavior change of the households. However, it needs
more studies to add other parameters and components to have a complete
utility satisfaction measure and increase the robustness of the model. The two
scenario-based experimental studies also indicate the usefulness of the
developed ABM for forecasting and testing the different policy scenarios for the
recovery process. There are many other scenarios and components that should
be tested to carry out and understand their impacts on the recovery process.
In addition, the observations indicate that the model can be used to assess the
resilience, assuming that recovery speed is a proxy for resilience. However,
the assumption itself needs more investigations to find the real relationship
between recovery and resilience (Chapter 3).

In sum, the main contribution of this dissertation is three-fold. Firstly, it
generates a catalog of remote sensing-based proxies for urban DRM and
resilience, which can be used by researchers, governments, and decision-
makers. Secondly, it illustrates how remote sensing can be efficiently used for
post-disaster damage, recovery, and resilience assessments through
conceptualization, tackling the limitations of the current assessment methods
using advanced machine learning techniques, development of automated deep
learning-based approaches, and using cloud computing platforms. Thirdly,
agent-based modeling sheds light on the reasons for different recovery
patterns, and thus, resilience by exploring the critical socio-economic
components and parameters of the recovery process.

214



Chapter 8

8.3 References of Chapter 8

Baranwal, E., Seth, P., Pande, H., Raghavendra, S., Kushwaha, S. K. P., 2020.
Application of Unmanned Aerial Vehicle (UAV) for Damage Assessment of
a Cultural Heritage Monument, Cham.

Brunner, D., Lemoine, G., Bruzzone, L., 2010. Earthquake Damage
Assessment of Buildings Using VHR Optical and SAR Imagery. IEEE
Transactions on Geoscience and Remote Sensing, 48(5), 2403-2420.

Castafeda-Garza, G., Valerio-Urena, G., Izumi, T., 2019. Visual Narrative of
the Loss of Energy after Natural Disasters. Climate, 7(10), 118.

Cheng, G., Han, J., 2016. A survey on object detection in optical remote
sensing images. ISPRS Journal of Photogrammetry and Remote Sensing,
117, 11-28.

Derakhshan, S., Cutter, S. L., Wang, C., 2020. Remote Sensing Derived Indices
for Tracking Urban Land Surface Change in Case of Earthquake Recovery.
Remote Sensing, 12(5), 895.

Ebert, A., Kerle, N., Stein, A., 2009. Urban social vulnerability assessment with
physical proxies and spatial metrics derived from air- and spaceborne
imagery and GIS data. Natural Hazards, 48(2), 275-294.

Filatova, T., 2014. Market-based instruments for flood risk management: A
review of theory, practice and perspectives for climate adaptation policy.
Environmental Science & Policy, 37, 227-242.

Filatova, T., Mulder, J. P. M., Van Der Veen, A., 2011. Coastal risk
management: How to motivate individual economic decisions to lower
flood risk? Ocean & Coastal Management, 54(2), 164-172.

Galarreta, J. F., Kerle, N., Gerke, M., 2015. UAV-based urban structural
damage assessment using object-based image analysis and semantic
reasoning. Natural Hazards and Earth System Sciences, 15(6), 1087-
1101.

Ge, Y., Hu, S., Ren, Z., Jia, Y., Wang, J., Liu, M., Zhang, D., Zhao, W., Luo, Y.,
Fu, Y., Bai, H., Chen, Y., 2019. Mapping annual land use changes in
China's poverty-stricken areas from 2013 to 2018. Remote Sensing of
Environment, 232, 111285.

Gerke, M., Kerle, N., 2011. Automatic Structural Seismic Damage Assessment
with  Airborne Oblique Pictometry© Imagery. Photogrammetric
Engineering & Remote Sensing, 77(9), 885-898.

Hodicky, 1., Ozkan, G., Ozdemir, H., Stodola, P., Drozd, J., Buck, W., 2020.
Dynamic Modeling for Resilience Measurement: NATO Resilience Decision
Support Model. Applied Sciences, 10(8), 2639.

Ji, M., Liu, L., Du, R., Buchroithner, M. F., 2019. A Comparative Study of
Texture and Convolutional Neural Network Features for Detecting
Collapsed Buildings After Earthquakes Using Pre- and Post-Event Satellite
Imagery. Remote Sensing, 11(10), 1202.

215



Synthesis

Kotzee, I., Reyers, B., 2016. Piloting a social-ecological index for measuring
flood resilience: A composite index approach. Ecological Indicators, 60,
45-53.

Lee, C., De Vries, W. T., 2020. Bridging the Semantic Gap between Land
Tenure and EO Data: Conceptual and Methodological Underpinnings for a
Geospatially Informed Analysis. Remote Sensing, 12(2), 255.

Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., Gill, E.,
2018. The First Wetland Inventory Map of Newfoundland at a Spatial
Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google
Earth Engine Cloud Computing Platform. Remote Sensing, 11(1), 43.

Markhvida, M., Walsh, B., Hallegatte, S., Baker, J., 2020. Quantification of
disaster impacts through household well-being losses. Nature
Sustainability, 3, 538-547.

Miura, H., Midorikawa, S., Kerle, N., 2013. Detection of Building Damage Areas
of the 2006 Central Java, Indonesia, Earthquake through Digital Analysis
of Optical Satellite Images. Earthquake Spectra, 29(2), 453-473.

Nex, F., 2019. UAV-g 2019: Unmanned Aerial Vehicles in Geomatics. Drones,
3(3), 74.

Nex, F., Duarte, D., Tonolo, F. G., Kerle, N., 2019. Structural Building Damage
Detection with Deep Learning: Assessment of a State-of-the-Art CNN in
Operational Conditions. Remote Sensing, 11(23), 2765.

Ning, H., Li, Z., Wang, C., Yang, L., 2020. Choosing an appropriate training set
size when using existing data to train neural networks for land cover
segmentation. Annals of GIS, 1-14.

Platt, S., Brown, D., Hughes, M., 2016. Measuring resilience and recovery.
International Journal of Disaster Risk Reduction, 19, 447-460.

Saffarzadeh, A., Shimaoka, T., Nakayama, H., Afsari Fard, S., 2019. Lessons
learned from the Ezgeleh-Sarpol Zahab earthquake of November 2017:
status of damage and disposal of disaster waste. Waste Disposal &
Sustainable Energy, 1(4), 301-317.

Shi, W., Zhang, M., Zhang, R., Chen, S., Zhan, Z., 2020. Change Detection
Based on Artificial Intelligence: State-of-the-Art and Challenges. Remote
Sensing, 12(10), 1688.

Sidhu, N., Pebesma, E., Camara, G., 2018. Using Google Earth Engine to detect
land cover change: Singapore as a use case. European Journal of Remote
Sensing, 51(1), 486-500.

Stromann, O., Nascetti, A., Yousif, O., Ban, Y., 2019. Dimensionality Reduction
and Feature Selection for Object-Based Land Cover Classification based
on Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine.
Remote Sensing, 12(1), 76.

Sun, L., Stojadinovic, B., Sansavini, G., 2019. Agent-Based Recovery Model
for Seismic Resilience Evaluation of Electrified Communities. Risk Anal.,
39(7), 1597-1614.

216



Chapter 8

Sun, W., Bocchini, P., Davison, B. D., 2020. Applications of artificial intelligence
for disaster management. Natural Hazards.
https://doi.org/10.1007/s11069-020-04124-3.

Turker, M., Sumer, E., 2008. Building-based damage detection due to
earthquake using the watershed segmentation of the post-event aerial
images. International Journal of Remote Sensing, 29(11), 3073-3089.

Ural, S., Hussain, E., Kim, K., Fu, C.-S., Shan, J., 2011. Building Extraction
and Rubble Mapping for City Port-au-Prince Post-2010 Earthquake with
GeoEye-1 Imagery and Lidar Data. Photogrammetric Engineering &
Remote Sensing, 77(10), 1011-1023.

Vetrivel, A., Gerke, M., Kerle, N., Nex, F., Vosselman, G., 2017. Disaster
damage detection through synergistic use of deep learning and 3D point
cloud features derived from very high resolution oblique aerial images,
and multiple-kernel-learning. ISPRS Journal of Photogrammetry and
Remote Sensing.

Vetrivel, A., Gerke, M., Kerle, N., Vosselman, G., 2015. Identification of
damage in buildings based on gaps in 3D point clouds from very high
resolution oblique airborne images. ISPRS Journal of Photogrammetry and
Remote Sensing, 105, 61-78.

Vetrivel, A., Kerle, N., Gerke, M., Nex, F., Vosselman, G., 2016. Towards
automated satellite image segmentation and classification for assessing
disaster damage using data specific features with incremental learning.
Paper presented at the GEOBIA 2016, Enschede, The Netherlands.

Watts, J., Morss, R. E., Barton, C. M., Demuth, J. L., 2019. Conceptualizing
and implementing an agent-based model of information flow and decision
making during hurricane threats. Environmental Modelling & Software,
122, 104524.

217



Synthesis

218



Summary

One of the main components of the disaster risk management (DRM) cycle is
recovery; however, it is the least understood one. Post-disaster recovery is the
process of reconstructing communities in all their aspects (e.g., physical,
economic, social, and environmental) in order to return life, livelihoods, and
the built environment to their pre-impact or event better states. In this regard,
timely and reliable information about the states of the damage and recovery
process is vital for disaster planners and governments to make decisions.
Remote sensing is an effective tool in providing information for post-disaster
impact and recovery evaluations due to its agile data acquisition, synoptic
perspective, growing range of data types, and instrument sophistication, as
well as low cost. However, there is a need for diverse information to address
the recovery process (including socio-economic aspects) comprehensively, and
only a few of the parameters of interest can be extracted directly, while the
majority have to be elicited indirectly.

In addition, although the variable recovery across different
neighborhoods/sections of an affected area can be revealed by processing
remote sensing data, there is a need for effective tools to explain those
observations and identify suitable means to influence the recovery process
(find bottlenecks, etc.). Spatial economic modeling, in particular, Agent-based
modeling (ABM), permits to explore the dynamics of the recovery process from
the bottom up. In an ABM, agents (decision-making entities) interact with each
other and their environments to decide and act based on defined rules for their
behavior in a specific situation such as a recovery process. Therefore, it
constitutes an opportunity for policy-makers to test different policy scenarios
in an artificial simulation environment and explore their consequences.
Accordingly, policy and decision-makers can take advantage of the simulation
outcomes to steer the recovery process. According to the above-described two
main issues, the objectives of this research were first to develop remote
sensing-based approaches to assess the post-disaster recovery and second, to
explain further and explore the recovery process using ABM. In this regard,
several investigations were conducted, and several approaches were
developed as summarized below:

1) Review of remote sensing-based proxies for disaster risk
management: While several spatial and non-spatial parameters required
for detecting and quantifying of DRM-related elements can be extracted
directly from RS imagery, many have to be elicited indirectly. Hence, a
comprehensive review of the current remote sensing-based proxies
developed for urban DRM and resilience were conducted. The proxies were
sorted for two risk elements typically associated with pre-disaster
situations (vulnerability and resilience), and two post-disaster elements
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(damage and recovery). The proxies were reviewed in the context of four
primary environments and their corresponding sub-categories: built-up
(buildings, transport, and others), economic (macro, regional and urban
economics, and logistics), social (services and infrastructures, and socio-
economic status), and natural. All environments and the corresponding
proxies were discussed and analyzed in terms of their reliability and
sufficiency in comprehensively addressing the selected DRM assessments.
We highlight the strength and identify gaps and limitations in current
proxies, including inconsistencies in terminology for indirect
measurements. A systematic overview for each group of the reviewed
proxies was presented that could simplify cross-fertilization across
different DRM domains and may assist the further development of
methods. While systemizing examples from the wider remote sensing
domain and insights from social and economic sciences, a direction for
developing new proxies was suggested, also potentially suitable for
capturing functional recovery.

Post-disaster recovery assessment with remote sensing: A
conceptual framework: The collected remote sensing-based information
for pre- and post-disaster situations should have been used synergistically
to address the post-disaster recovery assessment. Hence, a conceptual
framework to monitor and evaluate the post-disaster recovery process and
resilience was developed. In particular, available remote sensing image-
based proxies were used to assess the recovery addressing not-only
physical but also functional aspects. Also, this conceptual framework can
be used to evaluate disaster resilience, assuming that the speed of the
recovery is a proxy for resilience assessment. The proxies were mostly
extracted using machine learning-derived land cover and land use maps.
The proposed approach was used to assess the recovery of barangays
(municipalities), including Tacloban city, in the Leyte region in the central
Philippines.

Improving the precision of the damage and recovery assessments
through post-disaster debris identification: Most of the developed
remote sensing-based damage detection methods have a common
limitation, and it is using debris as a proxy for damage detection for both
building/structural and regional damage detection. Thus, distinguishing the
structural rubble from ephemeral debris can increase the accuracy of the
damage and recovery assessments. The limitations of using debris and
rubble piles as proxies for damage detection and subsequent post-disaster
recovery assessment from remote sensing images were discussed, and two
different approaches for post-disaster debris identification were
investigated. Three feature extraction methods, i.e., Gabor filters, Local
Binary Pattern (LBP), and Histogram of the Oriented Gradients (HOG),
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were investigated to identify the debris from UAV images. As the second
strategy, an approach was proposed, which monitors the multi-temporal
satellite images acquired days and weeks after the disaster to figure out
the relation between debris type and their time of removal. The approaches
were tested for Tacloban city using UAV and multi-temporal satellite
images.

Automated deep learning-based post-disaster building database
updating: The location of the damaged, reconstructed, and newly
constructed buildings provide critical supporting information for both first
responders and recovery planners after a disaster. The proposed method
makes use of free OpenStreetMap building footprints available for a pre-
disaster situation to automatically collect training areas from very-high-
resolution satellite images for a convolutional neural network (i.e., U-net)
which is supported with residual connections. The trained network is then
transferred and retrained for the post-disaster situation at any time after
a simple building-based change detection analysis over OSM data. The
proposed approach was tested for different scenarios of damage and
recovery assessments in very high-resolution satellite images selected
from Tacloban, the Philippines, after Typhoon Haiyan. The results showed
that the proposed approach significantly decreased the manual work of
training area collection, while maintaining the accuracy of the detected
damaged, reconstructed, and newly constructed buildings at a high level.

Post-disaster recovery monitoring with Google Earth Engine: Most
of the developed RS-based approaches in post-disaster damage and
recovery assessments focus on the use of costly very-high-resolution data
that require extensive digital storage and computing capacity to make use
of them. However, cloud-based platforms such as Google Earth Engine
(GEE) provide free RS data and computing power with a coding
environment to develop and implement user-defined methods and process
the data. Hence, the aim of this study was to test the suitability of GEE for
a large-scale post-disaster recovery assessment. To do so, the GEE was
employed to assess the recovery process over a three-year period after
Typhoon Haiyan, which struck Leyte island, in the Philippines, in 2013. The
following steps were developed and followed (i) generate cloud and
shadow-free image composites from Landsat 7 and 8 satellite imagery and
produce land cover classification data using the Random Forest method,
and (ii) generate damage and recovery maps based on post-classification
change analysis. The method produced land cover maps with accuracies
>88%. The model was used to produce damage and three time-step
recovery maps for 62 municipalities on Leyte island. The study showed that
GEE has good potential for monitoring the recovery process for extensive
regions. However, the most important limitation is the lack of very-high-
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resolution RS data that are critical to assess the process in detail, in
particular in complex urban environments.

Agent-based modeling of the post-disaster recovery with remote
sensing data: Recovery planners and decision-makers need to monitor
and collect information about the ongoing post-disaster recovery process
and understand the effect of different response strategies in dynamics.
Monitoring tools/data such as geospatial platforms/remote sensing has
been recently employed to assess the post-disaster recovery. However,
remote sensing can mostly provide information regarding the physical
aspects of the recovery, which are relatively easy to monitor and evaluate
compared to functional assessments that include social and economic
processes. Therefore, there is a need for a tool to understand and explore
the impacts of different dimensions of the recovery, including the behavior
of individual actors and their interactions with socio-economic institutions.
An agent-based model was developed to simulate and explore the recovery
process in urban areas of Tacloban, the Philippines devastated by Typhoon
Haiyan in 2013. The recovery patterns of the formal and informal (slum)
sector households, which follow different decision-making strategies in the
recovery process, were studied differently. The satisfaction of the formal
building and slum households were tracked and mapped to understand and
demonstrate each of which recovery patterns. In addition, the disaster
resilience of the targeted groups was assessed, given that the speed of the
recovery is a proxy for resilience. Also, the effect of the unemployment
rate and presence of a relocation site far from urban areas and workplaces
after a disaster were experimented using the developed model. The
developed post-disaster recovery model can be used by decision-makers
to understand the recovery process and carry out the most influential
factors and components.



Samenvatting

Het minst begrepen onderdeel van de rampenrisicomanagementcyclus (RRM)
is herstel na een ramp. Herstel na een ramp is het proces waarbij
gemeenschappen in allerlei aspecten (e.g., fysiek, economisch, sociaal en
milieu) worden gerestaureerd met als doel het leven en levensonderhoud te
herstellen naar de staat van voor de ramp of zelfs naar een betere staat. In dit
opzicht is tijdige en betrouwbare informatie over de toestand van het schade-
en herstelproces van vitaal belang voor rampen managers en de regeringen
om beslissingen te nemen. Remote sensing (RS)is een effectief hulpmiddel bij
het verstrekken van informatie voor de evaluatie van de impact van een ramp
en het herstel na een ramp, dankzij zijn wendbare data-acquisitie, zijn
synoptische perspectief, het groeiende aantal RS datatypen en verfijnde RS
instrumenten alsmede de lage kosten. Er is echter behoefte aan uiteenlopende
informatie om het herstelproces (met inbegrip van de sociaaleconomische
aspecten) uitgebreid aan te kaarten, en slechts enkele parameters kunnen
direct worden geéxtraheerd, terwijl de meeste indirect ontlokt moeten worden.
Bovendien, hoewel het variabele herstel in verschillende buurten/secties van
een getroffen gebied kan worden geopenbaard door het verwerken van remote
sensing gegevens, is er behoefte aan effectieve instrumenten om deze
waarnemingen te verklaren en geschikte middelen te identificeren om het
herstelproces te beinvlioeden (het vinden van knelpunten, enz.). Ruimtelijke
economische modellering, met name Agent-based modeling (ABM), maakt het
mogelijk om de dynamiek van het herstelproces van onderaf te onderzoeken.
In ABM werken agenten (besluitvormende entiteiten) met elkaar en met hun
omgeving samen om te beslissen en te handelen op basis van gedefinieerde
regels voor hun gedrag in een specifieke situatie, zoals een herstelproces. Dit
biedt een kans voor beleidsmakers om verschillende beleidsscenario's in een
kunstmatige simulatieomgeving te testen en de gevolgen ervan te
onderzoeken. Beleids- en besluitvormers kunnen derhalve gebruik maken van
de simulatieresultaten om het herstelproces te sturen. Op basis van de
hierboven beschreven twee hoofdkwesties waren de doelstellingen van dit
onderzoek ten eerste het ontwikkelen van op remote sensing gebaseerde
methoden om het herstel na de ramp te beoordelen en ten tweede het nader
uitleggen en onderzoeken van het herstelproces met behulp van ABM. In dit
kader werden verschillende onderzoeken uitgevoerd en werden verschillende
methoden ontwikkeld zoals hieronder samengevat:

1) Review van op remote sensing gebaseerde proxies voor rampen
risicomanagement: Hoewel verschillende ruimtelijke en niet-ruimtelijke
parameters die nodig zijn voor het detecteren en kwantificeren van DRM-
gerelateerde elementen direct uit RS-beelden kunnen worden
geéxtraheerd, moeten veel van deze parameters indirect worden ontlokt.
Daarom werd een alomvattende review uitgevoerd van de huidige op
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remote sensing gebaseerde proxies die zijn ontwikkeld voor stedelijke RRM
en veerkracht. De proxies werden gesorteerd op twee risico-elementen die
typisch verbonden zijn met situaties véér de ramp (kwetsbaarheid en
veerkracht), en twee elementen na de ramp (schade en herstel). De
proxies werden beoordeeld in de context van vier hoofdomgevingen en hun
corresponderende subcategorieén: bebouwd (gebouwen, vervoer en
andere), economisch (macro-, regionale en stedelijke economie en
logistiek), sociaal (diensten en infrastructuren en sociaaleconomische
status) en natuurlijk. Alle omgevingen en de bijbehorende proxies werden
bediscussieerd en geanalyseerd op het gebied van hun betrouwbaarheid
en toereikendheid om de geselecteerde RRM-evaluaties uitgebreid aan te
kunnen pakken. We belichten de kracht en identificeren tekortkomingen
en beperkingen in de huidige proxies, inclusief inconsistenties in de
terminologie voor indirecte metingen. Voor elke groep van de geévalueerde
proxies werd een systematisch overzicht gepresenteerd dat de
kruisbestuiving  tussen de  verschillende RRM-domeinen kan
vereenvoudigen en de verdere ontwikkeling van de methoden kan
ondersteunen. Tijdens het systematiseren van voorbeelden uit het bredere
remote sensing-domein en inzichten uit de sociale en economische
wetenschappen werd een richting voorgesteld voor het ontwikkelen van
nieuwe proxies, die mogelijk ook geschikt zijn voor het vastleggen van
functioneel herstel.

Evaluatie van het herstel na de ramp met behulp van remote
sensing: Een conceptueel kader: De verzamelde remote sensing
informatie voor pre- en post-disaster-situaties had synergetisch moeten
worden gebruikt om de evaluatie van het herstel na de ramp te kunnen
adresseren. Daarom werd een conceptueel kader ontwikkeld om het
herstelproces en de veerkracht na de ramp te monitoren en te evalueren.
In het bijzonder werden de beschikbare remote sensing beeld-gebaseerde
proxies gebruikt om het herstel te beoordelen, waarbij niet alleen fysieke
maar ook functionele aspecten aan de orde kwamen. Ook kan dit
conceptuele kader worden gebruikt om de veerkracht van rampen te
evalueren, ervan uitgaande dat de snelheid van het herstel een proxy is
voor de beoordeling van de veerkracht. De proxies werden meestal
onttrokken met behulp van machine learning-verworven landbedekking en
landgebruikskaarten. De voorgestelde werkwijze werd gebruikt om het
herstel van barangays (gemeenten), waaronder Tacloban city, in de regio
Leyte in het midden van de Filippijnen te beoordelen.

Verbetering van de nauwkeurigheid van schade- en
herstelbeoordelingen door middel van puin-identificatie na de
ramp: De meerderheid van de ontwikkelde remote sensing gebaseerde
schade-detectiemethoden hebben een gemeenschappelijke beperking, het
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gebruik van puin als een proxy voor schade-detectie voor zowel
bouwkundige/structurele als regionale schade-detectie. Door het
onderscheid te maken tussen het structurele puin en het kortstondige puin
kan de nauwkeurigheid van de schade- en herstelbeoordelingen dus
worden verbeterd. De beperkingen van het gebruik van brokstukken en
puinhopen als proxies voor de detectie van schade en de daaropvolgende
beoordeling van het herstel na de ramp aan de hand van remote sensing
beelden werden besproken, en er werden twee verschillende benaderingen
voor de identificatie van brokstukken na de ramp onderzocht. Drie feature-
extractiemethoden, namelijk Gaborfilters, Local Binary Pattern (LBP) en
Histogram of the Oriented Gradients (HOG), werden onderzocht om
brokstukken uit UAV-beelden te identificeren. Als tweede strategie werd
een aanpak voorgesteld, waarbij de multi-temporele satellietbeelden die
dagen en weken na de ramp worden verkregen, worden gemonitord om de
relatie tussen het type brokstukken en hun verwijderingstijdstip te
achterhalen. De methodes werden getest op Tacloban stad met gebruik
van UAV en multi-temporele satellietbeelden.

Geautomatiseerd en op deep-learning-gebaseerd updaten van een
gebouwen-databank na een ramp: De locatie van de beschadigde,
gereconstrueerde en nieuwgebouwde gebouwen biedt cruciale
ondersteunende informatie aan zowel de eerstehulpverleners als de
herstelplanners na een ramp. De hier voorgestelde methode maakt gebruik
van kosteloze OpenStreetMap gebouw footprints die beschikbaar zijn voor
een situatie véér de ramp om automatisch trainingsgebieden te
verzamelen van zeer hoge resolutie satellietbeelden voor een
convolutioneel neuraal netwerk (d.w.z. U-net) dat wordt ondersteund met
residuele verbindingen. Het getrainde netwerk wordt vervolgens op elk
gewenst moment overgedragen en opnieuw getraind voor de situatie na
de ramp, na een eenvoudige veranderingsdetectie analyse op basis van de
OSM gegevens. De voorgestelde aanpak werd getest voor verschillende
scenario's van schade en herstel evaluaties in zeer hoge resolutie
satellietbeelden geselecteerd uit Tacloban, de Filippijnen, na Typhoon
Haiyan. De resultaten toonden aan dat de voorgestelde methode de
handmatige werkzaamheden voor het verzamelen van trainingsgebieden
aanzienlijk heeft verminderd, terwijl de nauwkeurigheid van de
gedetecteerde beschadigde, gereconstrueerde en nieuwgebouwde
gebouwen op een hoog niveau is gebleven.

Het monitoren van het herstel na de ramp met Google Earth Engine:
De meeste van de ontwikkelde op RS gebaseerde methodieken voor
schade- en herstelbeoordelingen na een ramp zijn gericht op het gebruik
van kostbare gegevens met een zeer hoge resolutie die een uitgebreide
digitale opslag- en rekencapaciteit vereisen om er gebruik van te kunnen
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maken. Cloud-gebaseerde platformen zoals Google Earth Engine (GEE)
bieden echter kosteloze RS-data en rekenkracht aan binnen een
codeeromgeving om door de gebruiker gedefinieerde methoden te
ontwikkelen en te implementeren en de data te verwerken. Het doel van
deze studie was dan ook om de geschiktheid van GEE voor een
grootschalige beoordeling van het herstel na een ramp te testen. Om dit
mogelijk te maken werd de GEE ingezet om het herstelproces te
beoordelen over een periode van drie jaar na Typhoon Haiyan, dat in 2013
op het eiland Leyte, in de Filippijnen, toesloeg. De volgende stappen zijn
ontwikkeld en uitgevoerd (i) het genereren van wolken- en schaduwvrije
beeldcomposieten uit Landsat 7 en 8-satellietbeelden en het produceren
van landbedekkingsclassificatiegegevens met behulp van de Random
Forest-methode, en (ii) het genereren van schade- en herstelkaarten op
basis van een analyse van de veranderingen post-classificatie. De methode
leverde landkaarten op met een nauwkeurigheid van >88%. Het model
werd gebruikt voor het maken van schade- en drie temporeel opvolgende
herstelkaarten voor 62 gemeenten op het eiland Leyte. Uit het onderzoek
is gebleken dat GEE een goed potentieel heeft om het herstelproces voor
omvangrijke regio's te monitoren. De belangrijkste beperking is echter het
ontbreken van RS-data met een zeer hoge resolutie die van cruciaal belang
zijn om het proces in detail te kunnen beoordelen, met name in complexe
stedelijke omgevingen.

Agent-based modellering van het herstel na de ramp met remote
sensing data: Herstelplanners en beleidsmakers moeten toezicht houden
op en informatie verzamelen over het lopende herstelproces na de ramp
en het effect van verschillende responsstrategieén op de dynamiek
begrijpen. Monitoringsinstrumenten/gegevens zoals geospatiale
platforms/remote sensing zijn recentelijk gebruikt om het herstel na de
ramp te beoordelen. Remote sensing kan echter vooral informatie
opleveren over de fysieke aspecten van het herstel, die relatief eenvoudig
te controleren en te evalueren zijn in vergelijking met functionele
beoordelingen die sociale en economische processen omvatten. Daarom is
er behoefte aan een hulpmiddel om de impact van de verschillende
dimensies van het herstel te begrijpen en te verkennen, inclusief het
gedrag van de individuele actoren en hun interacties met de
sociaaleconomische instellingen. Een agent-based model werd ontwikkeld
om het herstelproces in stedelijke gebieden van Tacloban, de Filippijnen
verwoest door Typhoon Haiyan in 2013 te simuleren en te verkennen. De
herstelpatronen van huishoudens in de formele en informele (sloppenwijk)
sector, die verschillende besluitvormingsstrategieén in het herstelproces
volgen, werden verschillend bestudeerd. De tevredenheid van de formele
gebouwen- en krottenwijkhuishoudens werd gevolgd en in kaart gebracht
om de herstelpatronen te begrijpen en te demonstreren. Daarnaast is de
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rampbestendigheid van de doelgroepen beoordeeld, aangezien de snelheid
van het herstel een indicatie is voor de veerkracht. Met behulp van het
ontwikkelde model werd ook geéxperimenteerd met het effect van het
werkloosheidspercentage en de aanwezigheid van een verplaatsingslocatie
ver van stedelijke gebieden en werklocaties na een ramp. Het ontwikkelde
model voor herstel na een ramp kan door besluitvormers worden gebruikt
om het herstelproces te begrijpen en de meest invloedrijke factoren en
componenten uit te voeren.
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